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Abstract. In this paper, the resource constrained project scheduling problem
with preemption is studied in which fixed setup time is needed to resume the
preempted activities. The project entails activities with finish-to-start precedence
relations, which need a set of renewable resources to be done. A mathematical
model is presented for the problem and a hybrid of Tabu Search (TS) and
Simulated Annealing (SA) with tuned parameters is developed to solve it. In
order to evaluate the performance of the proposed TS/SA a set of 100 test
problems is applied. Comprehensive statistical analysis shows that the proposed
algorithm efficiently solves the problem. Furthermore, the benefits of preemp-
tion with setup times and its justifiability is demonstrated numerically.

Keywords: Project scheduling � Simulated annealing � Tabu search �
Preemption � Set up time

1 Introduction

The resource constrained project scheduling problem (RCPSP) is a challenging opti-
mization problem because of its application and NP-hardness [1]. The objective of
RCPSP is minimization of project duration preserving the precedence and resources
constraints. There are many solution methods to solve the RCPSP [2–5]. In classic
scheduling problems it is supposed that each activity once started, will be continued
nonstop. Preemptive project scheduling problem addresses the problem which relax this
constraint and lets activities to be preempted and resumed later. To solve the preemptive
case of project scheduling problems we can find some algorithms in the literature [6–8].

Considering setup times, it is a common assumption in machine scheduling [9–11],
while this is not true in the context of project scheduling. Setup is defined as pre-
paredness of all perquisites for the accomplishment of an activity. The required time for
this preparedness is named setup time. When set up time is considerably small in
comparison with processing time of activity, set up time can be merged into processing
time. However, when activities require relatively long setup times, formulating and
solving the problem as a traditional RCPSP, may culminate in poor solutions especially
when preemption is permitted [12].
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Motivation of this work is modelling the setup times in the preemptive case and
solving the model. In doing so, a mixed integer formulation is proposed for the pre-
emptive RCPSP with setup times. We call this problem PRCPSP-ST. Then, an efficient
hybrid of TS/SA is developed to solve this NP-hard problem. Finally, the proposed
algorithm is evaluated to solve the PRCPSP-ST and effect of setup time on project
duration is analyzed. The rest of the paper is organized as follows: in Sect. 2 the
PRCPSP-ST is described and formulated. In Sect. 3 the steps of the proposed algorithm
are explained. Section 4 is devoted to the experimental results and validation of the
proposed TS/SA. Finally, conclusion of the paper in presented in Sect. 5.

2 Problem Description

In preemptive resource constrained project scheduling problem with setup times
(PRCPSP-ST), each activity i is performed in a single mode with deterministic duration
of di. There is a max number K of renewable resource types where each activity
i requires rqik units of renewable resource type k (k ¼ 1; . . .;K) per time unit. Avail-
ability of the renewable resource type k, Rq

k , is constant throughout the project. The
project is represented in activity on node, AON, style by G = {N, A} in which, N,
denoted activities (nodes) and, A, denotes finish to start precedence relations (arcs). The
activities are numbered from the dummy start activity 0 to the dummy end activity
n + 1. When an activity i is preempted, a setup time STi is needed to resume the
preempted activity. In modelling PRCPSP-ST, we assume that:

• Preemption of the activities is in discrete time points.
• A setup time is needed to resume a preempted activity.
• Duration of an activity contains the initial setup time.
• Setup times are known and constant.
• Each activity is restarted immediately after its setup.
• Setups require same resources as process of activities.

The objective of the PRCPSP-ST is minimization of the project duration. A feasible
schedule S is defined by a vector of activities start times satisfying all perquisite
relations and resources constraints. Let fi; j represents the finish time of jth unit of
activity i. Also let fi; 0 denotes start time of activity i. By defining xij ¼ 1 if jth unit
(1� j� di � 1) of an activity i is preempted; xij ¼ 0 otherwise, PRCPSP-ST can be
conceptually modelled as follows:

MinCmax ¼ fnþ 1;0 ð1Þ

fi; di � fj;0; for i; jð Þ 2 A ð2Þ

fi; j�1 þ 1 � fi; j � xi; j�1ð Þ 1þ STið Þ; for i ¼ 0; . . .; nþ 1 and j ¼ 0; . . .; di ð3Þ

fi; j � xi; j�1ð Þ 1þ STið Þ � fi; j�1 þ 1þMxi; j�1ð Þ; for i ¼ 0; . . .; nþ 1 and j ¼ 0; . . .; di

ð4Þ
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f0;0 ¼ 0 ð5Þ
X

i2St r
q
ik �Rq

k ; for k ¼ 1; . . .;K and t ¼ 1; . . .; fnþ 1;0 ð6Þ

xi; j 2 f0; 1g; fi; j 2 Integer; for i ¼ 0; . . .; nþ 1 and j ¼ 0; . . .; di ð7Þ

The objective in Eq. (1) minimizes the project duration. Equation (2) preserves the
finish to start precedence relations. Equations (3) and (4) impose a setup time after any
preemption. Parameter M is a big positive number. Equations (3) and (4) maintains the
logical relation between xi j and fi j. Equation (5) guarantees that start activity 0 be
started at time 0. Equation (6) take care of the renewable resources availability. St
denotes the set of activities which are in progress or their setups are in progress at time
interval [t − 1, t]. Equation (7) specifies that fi j are integers, while xi j are binary.

3 Proposed Hybrid TS/SA

In this work a hybrid algorithm based on Tabu Search (TS) and Simulated Annealing
(SA) is developed to solve PRCPSP-ST. The proposed algorithm uses both advantages
of TS and SA. Tabu search applies an intelligent local (http://en.wikipedia.org/wiki/
Local_search_(optimization)) search procedure to iteratively move from one potential
solution to an improved one by using memory structures that describe the visited
solutions or user-provided sets of rules [13]. Simulated annealing is a random search
method that is initially proposed by Kirkpatrick et al. [14]. SA algorithm starts by
generating an initial solution and by initializing the temperature parameter T. Then, at
each iteration a solution S0 is randomly generated in the neighborhood of the current
solution S and if it is an improvement upon the current solution, it replaces the current
solution, else it replaces the current solution with a probability generally computed
following the Boltzmann distribution:

p ¼ exp � f s0ð Þ � f ðsÞ
T

� �
ð8Þ

where T is the current temperature and f s0ð Þ � f ðsÞ is the change in objective function
value obtained by moving from previous solution to new solution. Tabu search and
simulated annealing are successfully applied to a noticeable number of project
scheduling problems. Solution representation, starting solution and neighborhood
generation and tabus are the basic elements of TS/SA.

3.1 Solution Representation

Random-key (RK) and activity-list (AL) are two important representations for solutions
in project scheduling. It is proved that AL representation outperform the others [15].
Herein the AL representation is applied to encode a schedule and a revised version of
serial schedule generation scheme (SSGS) followed by a double justification is used to
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decode the codes to schedules. An activity i with duration of di is replaced by di
activities with duration of 1 and the same resource requirements as the original activity.
Then a feasible solution is represented by an N 0 ¼ Pn

i¼1 di elements vector (I). In this
structure, each unit j ¼ 1; . . .; di of an activity i is successor of the previous unit ðj� 1Þ.

I ¼ ðJ1; J2; . . .; JN 0 Þ ð9Þ

When a feasible solution represented by the above mentioned vector obtained, the
start times of all activities is determined by a revised SSGS followed by a double
justification. The SSGS sequentially adds activities to the partial schedule till a com-
plete feasible schedule is achieved. In each step, the first un-scheduled activity in the
AL is selected and the first possible start time is devoted to it preserving precedence
and resource constraints. In the revised SSGS applied in this work, setup time after
preemptions is embedded.

The double justification is an improvement procedure with two steps which is
implemented on a schedule generated by the revised SSGS. In the first step, except for
the first and the last dummy activities all activities are shifted to the right in the
schedule which culminates in a right active schedule; a schedule where no activity can
be finished later without delaying some other activities or increasing the makespan. In
the second step, except for the initial activity; all activities are shifted to the left which
results to a left active schedule; a schedule where no activity can be started earlier
without violating the precedence or resource constraints.

3.2 Starting Solution

An initial solution is constructed by a Greedy Randomized Adaptive Search Procedure
(GRASP) which is a two phase iterative procedure: construction and improvement [16].
The construction mechanism consists of two main components: a dynamic constructive
heuristic and randomization. A solution is constructed by adding one new element from
a set of elements at a time. The next element is selected randomly from a candidate list
(CL). CL contains the activities that have all their predecessors already scheduled. The
elements are prioritized based on a heuristic criterion that gives them a rank as a
function of their insertion benefits. The second phase is a local search, which may be a
basic or an advanced technique.

3.2.1 Construction Phase
At each stage, starting from the partial schedule assembled thus far, the CL is calcu-
lated. For each activity j 2 CL, a priority cost(j) is calculated which is duration of the
schedule resulted by adding the activity j to the partial schedule assembled thus far.
Then activities with the lowest cost(j) are filtered to restricted candidate list (RCL).
Length of RCL is controlled by a parameter 0� a� 1. An activity is selected from RCL
at random and inserted to partial schedule. This procedure continues until a complete
schedule is reached.
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3.2.2 Local Search Phase
After constructing the greedy randomized solution, the local search is employed on
solution using the following Insertion procedure. First, an integer a is randomly
selected from set 1; . . .; N 0f g. Let Jae denotes the last predecessor and Jaw denotes the
first successor of activity Ja in activity list of the current solution I. Then, an integer
h different from a is randomly selected from set eþ 1; . . .; w� 1f g. Finally, the
activity in position a is moved to position h. This operator preserves the feasibility of
the new solution. Local search procedure is continued until a predetermined number of
iterations max_neighbor is reached. After the local search is done, the fitness of
neighbor schedules is calculated and if the best neighbor schedule is better than current
schedule, it replaces the schedule.

3.3 Main Structure of the Proposed TS/SA

Starting from the initial feasible solution S generated by GRASP, number of max_-
subiteration neighbor solutions is considered. Main structure of the proposed algorithm
is based on SA, while neighborhood structure is based on TS. In regular TS, one must
evaluate the objective for every element of the neighborhood N(S) of the current
solution. An alternative is to instead consider only a random sample N 0 Sð Þ of N(S), thus
reducing the computational effort. This sample must be large enough to get a better
solution with a fair probability at the next search stage. In our implementation, the size
of N 0 Sð Þ is set equal to the square root of the number of activities N 0. Finally, the best
neighbor solution generated by TS will be subject of acceptance criterion of SA. The
choice of an appropriate cooling schedule is crucial for the performance of the SA. In
proposed TS/SA a geometric law Tkþ 1 ¼ bTk; 0� b� 1 is used which corresponds to
an exponential decay of the temperature. The procedure is continued until a prede-
termined number of schedules, max_schedules, are produced. We obtained good results
by indexing the number of produced schedules to the size of the problem, i.e. use of the
small number of produced schedules for small problems and large number of produced
schedules for larger problems. Therefore after some trials to obtain reasonable results,
we fixed the number of produced schedules limited to 100N 0.

3.4 Neighborhood Structure (Moves)

The neighbor generation operators (moves) utilized in TS/SA is defined as follows:

i. Insertion: As described in Subsect. 3.2.2.
ii. Swap: Two random integers, c and d are drawn from set 1; . . .; N 0f g with c\d.

Then the positions of activities Jc and Jd in the activity list are exchanged. Also,
some activities between these positions are shifted to left or right such that fea-
sibility of resulting solution is preserved.
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3.5 Tabu List

The tabu list is managed as follows: Whenever a feasible move performed, its reverse
move is added to the tabu list and the oldest existing move is removed from the front of
the list according to the First-in-First-out (FIFO) rule. All moves on the tabu list are
forbidden. However, if a tabu move can generate a solution better than the best found
so far its tabu status may be cancelled in the light of the aspiration criterion so that the
algorithm can move to this solution.

3.6 Calibrating

Value of the meta-heuristics parameters and operators are crucial factors in their per-
formance. Herein the Taguchi experimental design is applied to calibrate the param-
eters of the proposed TS/SA. The Taguchi method determines the optimal level of
controllable factors and minimizes the effect of noise [17]. In the proposed GRASP, the
factors that should be tuned are RCL control parameter, a, number of GRASP itera-
tions, GRASPit, and number of neighbors, Nmax. A randomly generated problem with
30 non-dummy original activities and 102 sub-activities with duration of 1 is utilized
for parameters tuning. Using MINITAB software version 16, a L9 orthogonal array
design is applied. To obtain more reliable data each experiment executed 4 times and
the best result is considered. Also, same selection and reproduction scheme is used for
all 36 runs.

However, we used the Taguchi design to calibrate the number of neighbors
(subiteration), length of Tabu list, initial temperature and cooling rate considering three
levels for each of these parameters. With tuned values for GRASP parameters and
using a L27 orthogonal array design, the randomly generated problem is considered
again. The number of produced schedules limited to 10000 as stopping criterion. We
found optimal levels of a, GRASPit and Nmax as 0.3, 20, and 10, respectively, while
tuned values for number of neighbors (subiteration), length of Tabu list, initial tem-
perature and cooling rate are 10, 0.3, 20 and 0.7, respectively (Fig. 1).

Fig. 1. The mean S/N ratio plot for the parameters
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4 Performance Evaluation

4.1 Validation of Proposed Algorithm

In order to validate the proposed TS/SA algorithm for the PRCPSP-ST, a set of 10
problems with 10 non-dummy activities is generated by the generator ProGen devel-
oped by Drexl et al. [18] using the parameters given in Table 1.

The proposed TS/SA were coded in Borland C++ 5.02 and executed on a personal
computer with an Intel Core i5, 2.4 GHz processor and 4000 MB memory. Table 2
presents the computational results of the proposed algorithm. For problems with 10
activities, the results are compared with the optimal solutions obtained by LINGO 11.
In Table 2, set up time ST of an activity is defined as a percent of its duration. Table 2
shows that when the number of activities is equal to 10, the results obtained by
proposed TS/SA and LINGO are identical.

Also, Table 2 reveals that for problems 2, 3, 6, 8 and 10, makespan of the project in
the preemptive RCPSP is same as the non-preemptive case. In problem 1, makespan of

Table 1. The parameter settings for the problem set

Control parameter Value

Activity durations Integer [1, 5]
Number of initial activities Integer [1, 3]
Number of terminal activities Integer [1, 2]
Maximal number of successors and predecessors 3
Number of renewable resources 2
Activity renewable resource demand (per period) Integer [1, 10]
Resource factor (RF) 0.5
Resource strength (RS) 0.2
Network complexity (NC) 1.5

Table 2. Comparison results for problems with 10 activities

Problem number RCPSP TS/SA for PRCPSP-ST LINGO for PRCPSP-ST

ST = 0% ST = 25% ST = 50% ST = 50% ST = 50% ST = 50%

Problem 1 14 13 14 14 14 14 14
Problem 2 19 19 19 19 19 19 19
Problem 3 15 15 15 15 15 15 15
Problem 4 18 17 17 18 18 18 18
Problem 5 20 19 19 20 20 20 20
Problem 6 19 19 19 19 19 19 19
Problem 7 27 26 26 26 26 26 26
Problem 8 22 22 22 22 22 22 22
Problem 9 24 23 23 23 23 23 23
Problem 10 19 19 19 19 19 19 19
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PRCPSP without setup time (ST = 0%) is less than non-preemptive RCPSP, while
when setup time is ST = 25% and 50%, preemption has no improving effect. In
problems 4 and 5, a setup time up to ST = 25% and in problems 7 and 9, a setup time
up to ST = 50% has improving effect on makespan of the project.

4.2 Experimental Results

In order to evaluate the proposed TS/SA for problems with more activities which
LINGO is unable to solve the problem optimally in a reasonable time, a set of 90
project networks is considered. These project networks contain 30, 60 and 90 activities
which are randomly chosen from the PSPLIB. The proposed TS/SA executed 10 times
for each problem to obtain more reliable data. The results are reported in Table 3. In
Table 3, Max.imp.(%) and Avr.imp.(%) denotes the maximum and average percentage
of improvement in project makespan compared to non-preemptive RCPSP, respec-
tively. Also, Imp.Inst.(%) denotes the percentage of improved problems compared to
non-preemptive RCPSP. These measures in Table 3 reveal that when the number of
activities or setup time is increased, the justifiability of preemption is reduced. This is

Fig. 2. Average improvement PRCPSP-ST to RCPSP

Table 3. Comparison of the results for problems with 30, 60 and 90 activities obtained by the
TS/SA

ST(%) Max.imp. (%) Avr.imp. (%) Imp.Inst. (%) ARD (%) Avr.CPU

0 6.4 1.18 30 0.08 163.586
25 4.7 0.34 10 106.549
50 2 0.18 6.66 77.648
0 8.1 0.82 16.66 0.19 1250.73
25 3.9 0.27 13.33 712.734
50 1.9 0.06 3.33 466.666
0 4.2 0.35 16.66 0.20 545.476
25 1.3 0.04 3.33 339.097
50 0.00 0.00 0.00 213.137
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demonstrated in Fig. 2 based on Avr.imp.(%). Avr.CPU denotes the average CPU-time
for the TS/SA (in seconds). Average CPU-time for TS/SA indicates when the number
of activities is increased the complexity of problem is increased, too. Also, average
CPU-time is a decreasing function of setup time ST%. ARD(%) denotes the average
relative deviation percentages from the best found solution by the TS/SA. ARDs for the
TS/SA algorithm are not high. This means that proposed TS/SA gives robust solutions.
These results show that when the number of activities is large, while the LINGO is
unable to solve the problem, there is a satisfying solution by the proposed TS/SA in a
reasonable CPU time.

5 Conclusions

In this paper, we formulated and solved the preemptive resource constrained project
scheduling problem with setup time to resume preempted activities. The objective is to
schedule the activities in order to minimize of project duration subject to the prece-
dence relations and renewable resource constraints. The problem was conceptually
formulated, and then a hybrid of tabu search and simulated annealing (TS/SA) was
designed to solve it. The parameters of proposed TS/SA were calibrated based on
Taguchi experimental design. The evaluation of the proposed algorithm is done on 100
test problems with 10, 30, 60 and 90 activities. From the computation results, we found
that the TS/SA algorithm could efficiently solve optimally the problems with 10
activities. Also, for problems with more activities which LINGO was unable to solve
the problem optimally, we could find out that the proposed TS/SA is capable to find a
satisfying solution in a reasonable CPU time. However results showed that the justi-
fiability of preemption is a decreasing function of the number of activities and setup
time.
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