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1 Introduction

It goes without saying that the notion of manifold is a very important foundation
of modern geometry, or even of modern mathematics in general. The invention of
this notion is usually attributed to Riemann. In fact, the term “Mannigfaltigkeit”,
of which the word “manifold” is an English translation, appeared for the first time
in the world of mathematics in Riemann’s famous Habilitationsvortrag. There are
other English translations such as “multiplicity” or “variety” in the literature. Prior
to Riemann, the word “Mannigfaltigkeit” was already used in a non-mathematical
context. There is even a poem by Schiller entitled “Mannigfaltigkeit.” Still, if we
read the text of Riemann today, we find that his description of manifolds is rather
literary, and there is no clear, rigorous definition. On the other hand, his text is very
suggestive and has fertile content. This is one of the reasons why his text inspired
many mathematicians, and also philosophers. Even today, we can learn something
new reading his text although it is not so easy to reach its depth.

New notions in mathematics quite often take much time for their maturation and
consolidation. The notion of manifold is one such example, and it took nearly half
a century from the first invention by Riemann to get to the modern definition we
know today. The purpose of this article is to give an overview of this slow process
where the notion of manifold was born, clarified and developed, taking a look at
both mathematical and philosophical aspects. We shall start with the philosophical
background of the time when Riemann’s Habilitationsvortrag was written, focusing
on Kant’s metaphysics. Then we shall turn to Riemann’s paper, showing how he
described manifolds there and quoting some passages from his text directly. We
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shall also see how Riemann’s worldview diverges from the Kantian. It was Poincaré
who put for the first time Riemann’s idea into clear mathematical terms. We shall
look at Poincaré’s celebrated paper “Analysis Situs”, where he gave two definitions
ofmanifold, and also at his philosophical position, conventionalism. Finally, we shall
see the process in which the notion ofmanifold becamemathematically rigorous, and
reached the notion we understand today. There are many mathematicians involved
in this process, but we just pick up prominent ones among them, looking at the work
of Hilbert, Weyl, Kneser, Veblen-Whitehead and Whitney.

The author would like to express his gratitude to Athanase Papadopoulos, who
invited him to write this article, and drew his attention to Grothendieck’s mention of
“multiplicité modulaire” and to the Kantian use of the word “Mannigfaltigkeit.”

2 Kantian Worldview

At the timewhenRiemann gave birth to the notion ofmanifold in theworld, or before,
what should be called a Kantian worldview was prevailing. This view was widely
held by scientists andmathematicians. To understand the philosophical aspects of the
papers of Riemann and Poincaré, it is very helpful first to take a glance at Immanuel
Kant’s work.

It is well known that Kant tried to give philosophical foundations to mathematics
and the natural science. His position was quite different from naïve empiricism or
even a “sceptical empiricism” à la David Hume, and also from continental rational-
ism. If we allow ourselves to use modern jargon, his work should be regarded as a
trial to “aufheben” both.

He supposed that there are a priori things in human thinking which make natural
science possible. In the Kritik der reinen Vernunft [7] (we use the abbreviation
KrV from now on), he included space, which should be understood to be a three-
dimensional Euclidean space or as subset of it, or the human recognition of space,
into the category of ‘synthetic a priori.’ (Here the qualifier “synthetic” is opposed
to “analytic”, the latter referring to a tautological kind of propositions.) In spite
of his non-empiricist view, in contrast to conventionalism which was to become
preponderant afterwards, Kant regards space as neither a human invention nor a
framework which we created, but something given to us from the beginning and
preceding all other form of recognition and knowledge.

Let us take a look at how Kant describes “space” in the first chapter of KrV. For
English translations of all quotations from KrV, we use the Cambridge version [8].

Der Raum ist kein empirischer Begriff, der von äußeren Erfahrungen abgezogen worden.

Space is not an empirical concept that has been drawn from outer experiences.

This is an outright negation of the empiricists’ view that our notion of space and
its perception derive from our experiences and observations. Moreover, he regarded
space as a foundation of all our perceptions.
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Der Raum ist eine notwendige Vorstellung a priori, die allen äußeren Anschauungen zum
Grunde liegt.

Space is a necessary representation, a priori, which is the ground of all outer intuitions.

Der Raum ist kein diskursiver oder, wie man sagt, allgemeiner Begriff von Verhältnissen der
Dinge überhaupt sondern eine reine Anschauung. Denn erstlich kann man sich nur einen
einigen Raum vorstellen, und wenn man von vielen Räumen redet, so versteht man darunter
nur Teile eines und desselben alleinigen Raumes.

Space is not a discursive or, as is said, general concept of relations of things in general,
but a pure intuition. For, first, one can only represent a single space, and if one speaks of
many spaces, one understands by that only parts of one and the same unique space.

The preceding claim is remarkable for us, mathematicians, although the present
author is not sure whether Kant allowed this “unique space” to be disconnected.

Der Raum wird als eine unendliche gegebene Größe vorgestellt.

Space is represented as a given infinite magnitude.

The meaning of infinity for Kant is rather ambiguous if we consider it from a mathe-
matical viewpoint, but it may be most natural to interpret this notion as the unbound-
edness of space with respect to some metric. Kant gave these claims with some
justification, which looks like a kind of reductio ad absurdum.

In addition to these basic theses on space by Kant, it is worthwhile to look at what
he claimed to be antinomies regarding the nature of space. He posed the following
two theses which contradict each other.

1. Die Welt hat einen Anfang in der Zeit, und ist dem Raum nach auch in Grenzen
eingeschlossen.
The world has a beginning in time, and in space it is also enclosed in boundaries.

2. Die Welt hat keinen Anfang, und keine Grenzen im Raume, sondern ist, sowohl in
Ansehung der Zeit, als des Raumes, unendlich.
The world has no beginning and no bounds in space, but is infinite with regard to both
time and space.

For today’smathematicians,whatKantmeans bywords like “infinite” or “bounds”
may seem rather cryptic. For instance, we may wonder in the same way as for the
previous quotation if he meant by ‘infinite’ space non-compactness of a topological
space or unboundedness of a metric space. Since the notion of topological space did
not exist in the time of Kant and nometrics were known except for the Euclidean one,
it is more natural to interpret this notion of infinity as unboundedness with respect
to the Euclidean metric. Still, we are allowed to imagine that if Kant had known the
existence of closed 3-manifolds, then he would have posed his antinomies in a quite
different way.

It should be mentioned here that Kant also used the term “Mannigfaltigkeit” in
KrV. For him, however, this word is an abstract noun which means a condition
of things being “manifold” rather than an object, and hence may be translated as
“manifoldness.” In contrast, the word “Mannigfaltige,” which is a noun derived from



298 K. Ohshika

the adjective “mannigfaltig,” appears in KrV in a sense a bit closer to the later use of
“Mannigfaltigkeit” by Riemann etc., although its meaning is not mathematical. We
cite here a couple of passages from KrV. The first is taken from a section where he
talks about “time,” and there he poses an infinite line as an analogy of time. The use
of the word “Mannigfaltige” in this passage is comparable to Riemann’s description
of one-dimensional “Mannigfaltigkeit.”

Und, eben weil diese innere Anschauung keine Gestalt gibt, suchen wir auch diesen Mangel
durchAnalogien zu ersetzen, und stellen die Zeitfolge durch eine insUnendliche fortgehende
Linie vor, in welcher das Mannigfaltige eine Reihe ausmacht, die nur von einer Dimension
ist, und schließen aus den Eigenschaften dieser Linie auf alle Eigenschaften der Zeit, außer
dem einigen, daß die Teile der ersteren zugleich, die der letzteren aber jederzeit nacheinander
sind.

And just because this inner intuition yields no shape we also attempt to remedy this lack
through analogies, and represent the temporal sequence through a line progressing to infinity,
in which the manifold constitutes a series that is of only one dimension, and infer from the
properties of this line to all the properties of time, with the sole difference that the parts of
the former are simultaneous but those of the latter always exist successively.

The second passage is taken from a section where Kant explains what the tran-
scendental logic means. Here the meaning of the word “Mannigfaltige” is more
abstract.

Dagegen hat die transzendentale Logik ein Mannigfaltiges der Sinnlichkeit a priori vor sich
liegen, ... Raum und Zeit enthalten nun einMannigfaltiges der reinen Anschauung a priori, ...

Transcendental logic, on the contrary, has a manifold of sensibility that lies before it a priori,
... Now space and time contain a manifold of pure a priori institution, ...

In the paragraph next to the one containing this passage, Kant also uses the word
“Mannigfaltigkeit.” In the Cambridge English translation, this word is translated as
“manifoldness” as below.

Ichverstehe aber unter Synthesis in der allgemeinstenBedeutungdieHandlung, verschiedene
Vorstellungen zueinander hinzuzutun, und ihre Mannigfaltigkeit in einer Erkenntnis zu
begreifen.

By synthesis in the most general sense, I understand the action of putting different represen-
tations together with each other and comprehending their manifoldness in one cognition.

To sum up, as can be seen from these examples, Kant’s use of the word “Man-
nigfaltige” or “Mannigfaltigkeit” is close to our daily use of words like “variety”
and “diversity”, and it does not indicate some concrete mathematical object as in
Riemann’s paper. Still, we can imagine that this notion motivated Riemann’s choice
of the word “Mannigfaltigkeit”, presumably via the work of Herbart, who was an
indirect successor of Kant in Königsberg.

3 Riemann’s Habilitationsvortrag

Riemann’s Habilitationsvortrag, which was published only posthumously in 1867,
is the content of his habilitation lecture given in 1854. It was required for Riemann
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to submit three different topics for his habilitation, from which the faculty would
choose one. Riemann proposed one work on trigonometric series, another one on a
system of quadratic equations, and a third one entitled ‘Über Hypothesen, welche
der Geometrie zu Grunde liegen’, and Gauss chose the last one.

3.1 Philosophical Aspects

Reading Riemann’s Habilitationsvortrag [18] today, it is clear that this work has a
strong philosophical connotation. Although Riemann did not mention the name of
Kant there, he talked about the philosophyofHerbart. In the introduction of this paper,
Riemann writes the following. (There are several English translations of Riemann’s
text. We shall mainly use the one by Spivak [20], but also refer to the one by Clifford
[19] occasionally.)

Diese Dunkelheit wurde auch von Euklid bis auf Legendre, um den berühmtesten neueren
Bearbeiter der Geometrie zu nennen, weder von den Mathematikern, noch von den
Philosophen, welche sich damit beschäftigten, gehoben. Es hatte dies seinen Grund wohl
darin, dass der allgemeineBegriffmehrfach ausgedehnterGrössen, unterwelchemdieRaum-
grössen enthalten sind, ganz unbearbeitet blieb.

From Euclid to Lagrange, the most famous of the modern reformers of geometry, this dark-
ness has been dispelled neither by the mathematicians nor by the philosophers who have
concerned themselves with it. This is undoubtedly because the general concept of a multiply
extended quantities, which includes spatial quantities, remains unexplored.

It is quite natural to imagine that Kant was included among the philosophers
whom Riemann was talking about. With these words, Riemann began to elucidate
the concept of space underlying geometry. The “multiply extended quantities” men-
tioned here would turn out to be “manifolds (Mannigfaltigkeiten)”, whose study was
supposed to be the subject of this Habilitationsvortrag.

There are phrases in Riemann’s text which should be regarded as “anti-Kantian.”
The following is one example.

…, dass die Sätze derGeometrie sich nicht aus allgemeinenGrössenbegriffen ableiten lassen,
sondern dass diejenigen Eigenschaften, durch welche sich der Raum von anderen denkbaren
dreifach ausgedehnten Grössen unterscheidet, nur aus der Erfahrung entnommen werden
können.
…, it is a necessary consequence that the theorems of geometry cannot be deduced from
general notions of quantity, but that those properties that distinguish space from other con-
ceivable triply extended quantities are only to be deduced from experience.

Riemann claimed that there are more possibilities for multiply extended quantities
than we can usually imagine and that the space as we intuitively grasp it is just one
of them. Consequently, this choice is not a priori, but based on our experience. This
position should be contrasted with the Kantian ‘a priorism’, and has rather a flavour
of empiricism. We shall see later that this position is also significantly different from
that of Poincaré, whose doctrine is explicitly anti-empiricist.
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3.2 Mannigfaltigkeit

Now we proceed to look at the main part of the Habilitationsvortrag. Riemann intro-
duced the notion of “Mannigfaltigkeit” (manifold or multiplicity) as a kind of set
which “Bestimmungsweisen” (instances or specialisations) form and he said that this
Mannigfaltigkeit can be either discrete or continuous. Here is the quotation of the
part where the word “Mannigfaltigkeit” appears for the first time in the text.

Grössenbegriffe sind nur da möglich, wo sich ein allgemeiner Begriff vorfindet, der ver-
schiedene Bestimmungsweisen zulässt. Je nachdem unter diesen Bestimmungsweisen von
einer zu einer andern ein stetiger Uebergang stattfindet oder nicht, bilden sie eine stetige
oder discrete Mannigfaltigkeit; ...

Notions of quantity are possible only when there already exists a general concept that admits
particular instances. These instances form either a continuous or a discretemanifold, depend-
ing on whether or not a continuous transition of instances can be found between any two of
them; ...

Therefore, in modern terminology, this notion of manifold should be interpreted
as a set parametrised by n-tuples of real numbers. There is no formal definition
in this part, such as the one using charts contained in modern textbooks. We can
interpret what Riemann had in mind in several ways. For instance, it is possible to
imagine that he allowed singularities to exist in a Mannigfaltigkeit. Riemann talked
about the set of colours as an example of a Mannigfaltigkeit, which was said to have
three dimensions. Of course he also mentioned a “Riemann” surface as an example
in mathematics. It would not be so anachronic to expect that he also regarded the
moduli space ofRiemann surfaces as an example. In fact,Grothendieck referred to the
“mulitiplicités modulaires” in [3], apparently in homage to Riemann. Unfortunately
we cannot find any hint of Riemann’s thinking along this line in his papers.

To justify the possibility of thinking ofn-fold extendedMannigfaltigkeit, Riemann
gave a detailed explanation on how to construct the entity of dimension n as follows.
He started from a one-dimensional manifold:

Geht man bei einem Begriffe, dessen Bestimmungsweisen eine stetige Mannigfaltigkeit
bilden, von einer Bestimmungsweise auf eine bestimmte Art zu einer andern über, so bilden
die durchlaufenen Bestimmungsweisen eine einfach ausgedehnte Mannigfaltigkeit, deren
wesentliches Kennzeichen ist, dass in ihr von einem Punkte nur nach zwei Seiten, vorwärts
order rückwärts, ein stetiger Fortgang möglich ist.

In a concept whose instances form a continuous manifold, if one passes from one instance to
another in a well-determined way, the instances through which one has passed form a simply
extended manifold, whose essential characteristic is that from any point in it a continuous
movement is possible in only tow directions, forwards and backwards.

Then he observed that it is possible to increase the dimension one by one, and to
construct an n-dimensional Mannigfaltigkeit inductively. Thus he wrote:
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Wennman, anstatt denBegriff als bestimmbar, seinenGegenstand als veränderlich betrachtet,
so kann diese Construction bezeichnet werden als eine Zusammensetzung einer Veränder-
lichkeit von n + 1Dimensionen aus einer Veränderlichkeit von n Dimensionen und aus einer
Veränderlichkeit von Einer Dimension.

If one considers the process as one in which the objects vary, instead of regarding the concept
as fixed, then this construction can be characterised as a synthesis of a variability of n + 1
dimensions from a variability of n dimensions and a variability of one dimension.

Here again the description is rather intuitive, and there is no formal definition
of dimension. Still, we can see that Riemann understood dimension as a number
of parameters which can vary independently. It should be noted that n-dimensional
Euclidean space itself had already been introduced by Grassmann [2] in 1844, as a
vector space, using a basis. What is new in Riemann’s argument lies in the fact that
he considered dimension as something which can be applied to much more general
spaces.

Riemann’s definition of metrics on manifolds is more explicit than that of mani-
folds themselves. He considered how the lengths of curves can be measured, and he
used the symbol ds to denote the length element in manifolds, as we still do today.
He also defined (rather intuitively) the sectional curvature by considering a surface
spanned by geodesics in the manifold, as follows.

Um die Krümmungsmass einer n-fach ausgedehnten Mannigfaltigkeit in einem gegebenen
Punkte und einer gegebenen durch ihn gelegten Flächenrichtung eine greifbare Bedeutung
zu geben, muss man davon ausgehen, dass eine von einem Punkte ausgehende kürzeste
Linie völlig bestimmt ist, wenn ihre Ansfangsrichtung gegeben ist. Hienach wird man eine
bestimmte Fläche erhalten, wenn man sämmtliche von dem gegebenen Punkte ausgehenden
und in dem gegebenene Flächenelement liegenden Anfangsrichtungen zu kürzesten Linien
verlängert, und diese Fläche hat in dem gegebenen Punkte ein bestimmtes Krümmungsmass,
welches zugleich das Krümmungsmass der n-fach ausgedehnten Mannigfaltigkeit in dem
gegebenen Punkte und der gegebenen Flächenrichtung ist.

To give a tangible meaning to the curvature of an n-fold extended manifold, at a given point,
and in a given surface direction, we first mention that a shortest line emanating from a point
is completely determined if its initial direction is given. Consequently, we obtain a certain
surface if we prolong all the initial directions from the given point which lie in the given
surface element, into shortest lines; and this surface has a definite curvature at the given
point, which is equal to the curvature of the n-fold extended manifold at the given point, in
the given surface direction.

4 Poincaré’s Analysis Situs

In contrast to Riemann’s paper, the definition of a manifold by Poincaré is clear-
cut. In his celebrated paper “Analysis situs” which was published in the Journal
d’Ecole Polytechnique in 1895 [13], Poincaré gave explicitly twodifferent definitions
of manifolds. This paper begins with an audacious declaration which reads (the
translation is by the present author):
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La Géométrie à n dimensions a un objet réel; personne n’en doute aujourd’hui. Les êtres de
l’hyperespace sont susceptibles de définitions précises comme ceux de l’espace ordinaire,
et si nous ne pouvons nous les représenter, nous pouvons les concevoir et les étudier. Si
donc, par exemple, la Mécanique à plus de trois dimensions doit être condamnée comme
dépourvue de tout objet, il n’en est pas de même de l’Hypergéométrie.

The geometry of n-dimensions has a real object, nobody doubts this today. The things
in hyperspace are susceptible of precise definitions in the same way as those in the ordinary
space, and even if we cannot represent them, we can conceive and study them. So if, for
instance, Mechanics in more than three dimensions should be condemned as lacking any
object, it is not the case for hypergeometry.

4.1 Poincaré’s Definitions of Manifold

In the first two sections after the introduction, Poincaré gives his definitions of man-
ifolds. The first definition is as follows. We consider the n-dimensional Euclid-
ean space with coordinates x1, . . . , xn . Suppose that we are given p + q functions
F1, . . . , Fp;ϕ1, . . . , ϕq with p ≤ n, which are assumed to be continuous and have
continuous derivatives. Assume moreover that the rank of the Jacobian matrix

⎛
⎜⎜⎜⎜⎝

∂F1
∂x1

∂F1
∂x2

. . . ∂F1
∂xn

∂F2
∂x1

∂F2
∂x2

. . . ∂F2
∂xn

...
. . .

∂Fp

∂x1

∂Fp

∂x2
. . .

∂Fp

∂xn

⎞
⎟⎟⎟⎟⎠

is p at every point in the domain where the Fi are defined. We then consider a system
of equations and inequalities as follows,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1(x1, . . . , xn) = 0
...

Fp(x1, . . . , xn) = 0

ϕ1(x1, . . . , xn) > 0
...

ϕq(x1, . . . , xn) > 0.

Poincaré defines a manifold of dimension n − p as the set of points satisfying the
above system of equations and inequalities. By the implicit function theorem, such a
set constitutes a differentiable manifold in the modern sense. In fact, Poincaré him-
self showed that a manifold according to this definition is automatically a manifold
according to the second definition which we shall describe below, using an argument
involving a kind of implicit function theorem. Notice that the first definition does not
use charts and local coordinates.
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Now we turn to the second definition. Again, we work in the n-dimensional
Euclidean space with coordinates x1, . . . , xn . We consider n functions θi of m vari-
ables y1, . . . , ym such as the following,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1 = θ1(y1, . . . , ym)

x2 = θ2(y1, . . . , ym)

....................

xn = θn(y1, . . . , ym).

These functions θn are assumed first to be continuous, but Poincaré claims that they
can be assumed to be analytic, by approximating the original functions arbitrarily
closely by analytic ones. Furthermore, the Jacobian matrix of these functions is
assumed to have rank m at every point. We cut out from this an open region denoted
by V by adding inequalities ψ j (y1, . . . , ym) > 0. For convenience, let us call such a
V a local manifold.

Poincaré next considers another system of functions xi = θ ′
i (y1, . . . , ym) for i =

1, . . . , n which defines another local manifold V ′, supposing that V ∩ V ′ is non-
empty. Then he claims that we can extend V to a larger manifold V ∪ V ′ by analytic
continuation. He also observes that in the same way, we can continue the process by
gluing local manifolds V1, . . . , Vn .

This definition is closer to the modern one which usually starts with charts, but
it is not clear whether Poincaré assumed that two local manifolds which are not
adjacent to each other are disjoint. Without such an assumption, this is a definition
of an immersed manifold rather than an embedded manifold. Anyway, it should be
noted that in both definitions, a manifold always lies in a Euclidean space. Manifolds
without this environment were to appear later, in the 20th century.

4.2 Poincaré’s Conventionalism

It is well known that Poincaré’s position regarding the philosophical aspects of geom-
etry is radical. His position is often labelled as “conventionalism,” which opposes
him to both empiricists and neo-Kantians. Generally, conventionalism refers to a
philosophical doctrine which regards (both judicial and natural) laws and morals as
mere conventions. We can think of Poincaré’s views as conventionalism with regard
to geometry. This can be seen typically in his text on the foundation of geometry
[16]. (Its English translation by T. J. McCormack, which we use here together with
the original, appeared in [14] a long time before the original French version.)

La géométrie n’est pas une science expérimentale; l’expérience n’est pour nous que
l’occasion de réfléchir sur les idées géométriques qui préexistent en nous.

Geometry is not an experimental science; experience forms merely the occasion for our
reflecting upon the geometric ideas which pre-exist in us.
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This shows that Poincaré’s position is far from the empiricists’ view. On the
other hand, the following passage shows that his thinking is also quite different from
Kantians (or neo-Kantians). It is about how we choose one geometry, say Euclidean
geometry, among other possible geometries.

Notre choix ne nous est donc pas imposé par l’expérience. Il est simplement guidé par
l’expérience. Mais il reste libre: nous choisissons cette géométrie-ci plutôt que celle-là, non
parce qu’elle est plus vraie, mais parce qu’elle est plus commode.

Our choice is therefore not imposed by experience. It is simply guided by experience. But
it remains free: we choose this geometry rather than that geometry, not because it is more
true, but because it is more convenient.

Therefore, for him, geometry is something like a tool, and our preference of one
geometry over another does not depend on its validity, but on its usefulness. His view
is quite close to our modern thinking, and we have little difficulty in understanding
it. But we can imagine that for people at the turn of the 20th century, this view should
have been outrageous, as we explain now.

To see the impact and the novelty of his view, it is worthwhile to take a look at the
debate between him andB.Russell. (SeeNabonnand’s paper [11] formore details and
for the significance of this debate in wider contexts.) Russell, who was in his mid 20s
at that time, published a book entitled “An essay on foundation of geometry” in 1897
[21], which was based on his doctoral dissertation. In this book, although Russell
criticised Kantian a-priority of geometry, he tried to separate what is given a priori
and what should be tested empirically in geometry. For Russell, a-priority means
what precedes every experience and what makes experiences possible. To make a
clear distinction between what is a priori and what depends on experience, he gave
axioms for projective geometry, which is a common ground for both Euclidean and
non-Euclidean geometries, and those of “metric geometry.” Russell considered that
axioms of projective geometry (except for the one concerning the dimension of space)
and some of metric geometry are a priori, but there are others in metric geometry,
for instance those which distinguish Euclidean geometry from non-Euclidean, which
can be verified or falsified by experiences.

Poincaré criticised this approach of Russell in two ways, in his review of the book
[15]. The first criticism is purely mathematical: he pointed out the insufficiency of
Russell’s axioms on projective geometry. The second criticism ismore philosophical:
he denied the a-priority of these axioms. Poincaré examined the axioms proposed
by Russell one by one, and gave a harsh judgement declaring that for most of the
cases, Russell failed to show that they were indispensable for experience. He said
that although Russell’s statements with unclear termsmade it difficult to see through,
once it was cleared, then the illusion he gave would also disappear.

Poincaré also criticised Russell’s claim that some of his axioms (for metric geom-
etry) are empirical. In particular Poincaré argued, in opposing Russell’s claim that
Euclidean geometry can be empirically tested, that none of our experiences verifies
Euclidean geometry and falsifies hyperbolic geometry.
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As can be seen in this polemic, Poincaré’s view on the foundations of geometry
was quite clearly posed, andwe can say that it was quite ahead of time, even compared
with that of a much younger philosopher like Russell.

5 Definitions Using Local Charts According to Hilbert,
Weyl, Kneser and Veblen-Whitehead

As we saw in the previous section, although Poincaré gave two clear definitions of
manifold, they are both different from the definition which we are familiar with. In
this section, we shall see when and how the modern-day definition of topological
manifold appeared for the first time.

Historically, the definitionof a two-dimensionalmanifold precedes that for general
dimensions. We first look at Hilbert’s paper entitled “Ueber die Grundlagen der
Geometrie” published in 1902 [5], where he tried to give axioms for a surface which
he called “Ebene” i.e. a plane rather than a surface. Here are his axioms. A surface is
defined to be a point set with bijections onto domains in the Cartesian plane with the
following conditions. (The itemisation and the translation are by the present author.)

1. Zu jedem Punkte A unserer Ebene giebt es Jordan’sche Gebiete, in welchen der
Bildpunkt von A liegt und deren sämmtliche Punkte ebenfalls Punkte unserer Ebene
darstellen. Diese Jordan’schen Gebiete heissen Umgebungen des Punktes A.

2. Jedes in einer Umgebung von A enthaltene Jordan’sche Gebiet, welches den Punkt A
einschliesst, ist wiederum eine Umgebung von A.

3. Ist B irgend ein Punkt in einer Umgebung von A, so ist diese Umgebung auch zugleich
eine Umgebung von B.

4. WennA und B irgend zwei Punkte unserer Ebene sind, so giebt es stets eine Umgebung,
die zugleich eine Umgebung von A und eine Umgebung von B ist.

1. For every point A on our surface, there is a Jordan domain in which the point corre-
sponding to A lies and all of whose points represent points in our surface. These Jordan
domains are called neighbourhoods of A.

2. Every Jordan domain contained in a neighbourhood of A which contains A is in turn a
neighbourhood of A.

3. If B is any point contained in a neighbourhoodU of A, thenU is also a neighbourhood
of B at the same time.

4. If A and B are any two points on our surface, then there is always a neighbourhood of
A which is at the same time a neighbourhood of B.

We should keep in mind that this paper of Hilbert precedes the work of Hausdorff
on abstract topological spaces, which appeared in his book “Grundzüge der Men-
genlehre” [4]. Therefore, Hilbert could not start from a topological space, but from
just a point set. Consequently, his axioms include those for neighbourhood systems
in a topological space. Setting this part aside, these axioms are equivalent to the
modern definition of topological manifold using charts. Thus we can say that two-
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dimensional topological manifolds as we know them today were formally defined
for the first time by Hilbert in 1902.

There is one more remark which we should make: the last axiom implies that the
surface is a Hausdorff space. This should be contrasted with the following definition
by Weyl. (This subtle difference was also pointed out by Scholtz [22].)

Now, we turn to Weyl’s book on Riemann surface [27]. A formal definition of
a topological surface (a topological 2-dimensional manifold) which is close to the
modern one is given in §4 of this book. It is somehow more common to attribute the
first formal definition of a manifold using charts to this book rather than to Hilbert’s
paper. In Weyl’s definition, the setting is quite similar to Hilbert’s. We are given a
point set F, and for each point p of F, there is a system of subsets U containing p
which are called neighbourhoods of p. For every neighbourhood U0 of a point p0 of
F, there is a bijection from U0 to an Euclidean open disc K0 taking p0 to the centre
of K0, and the following conditions hold.

1. ist p irgend ein Punkt vonU0 undUeine nur aus Punkten vonU0 bestehende Umgebung
von p auf F, so enthält das (durch jene Abbildung in K0 entworfene) Bild von U den
Bildpunkt von p im Innern; d. h. es läßt sich um den Bildpunkt p von peine Kreisfläche
k beschreiben, sodaß jeder Punkt von k Bild eines Punktes von U ist;

2. ist K das Innere irgend eines ganz in K0 gelegenen Kreises mit dem Mittelpunkt p, so
gibt es stets eine Umgebung U von p auf F, deren Bild ganz in K liegt.

1. If p is any point of U0 and U is a neighbourhood of p consisting only of points of U0,
then the image of U (under the map from U0 to K0) contains that of p as an interior
point, i.e., there is an open disc k around the point p which is the image of p, such that
every point of k is the image of a point of U.

2. If K is any circle with centre p contained entirely in K0, then there is always a neigh-
bourhood U of p on Fwhose image entirely lies in K .

We see that if we define a topology on F using the given neighbourhood systems,
then these two conditions guarantee that themap fromU0 to K0 is a homeomorphism.
Thus, this definition is equivalent to amodern definition of topological two-manifold.
There is one subtle point: the definition does not contain the axiom of separability,
which means that the surface defined as such may not be a Hausdorff space. In
a later revised version of the same book and its English translation, this part was
substantially revised. The definition has been divided into two parts: the first part
is the definition of a Hausdorff space using neighbourhood systems whereas the
second part is almost the same as the two conditions above. In particular the subtlety
concerning the separability disappeared.

There is one more difference with Hilbert’s definition. Weyl assumed the image
of the map from a neighbourhood to be an open disc in the plane, not a general
Jordan domain. In fact Schoenflies proved that any Jordan domain is homeomorphic
to an open disc in 1906; this was after Hilbert’s paper was published but before Weyl
wrote his book.

As we have seen above, the definitions by Hilbert and Weyl only deal with two-
dimensional manifolds. The same kind of definition for higher dimensional man-
ifolds was given for the first time by Kneser [9] in 1926. After giving axioms of
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neighbourhood systems for a Hausdorff space, Kneser added the following two con-
ditions as axioms for an n-dimensional manifold.

(a) Zu jedem Punkt gibt es eine Umgebung, die sich topologisch auf die offene Vollkugel
des n-dimensionalen Zaahlenraumes: x21 + · · · + x2n < 1 abbilden läßt.

(b) Unter den Umgebungen des den topologischen Raum definierenden oder eines äquiv-
alenten Systems befinden sich nur abzählbar unendlich viele verschiedene Mengen.

(a) For every point there exists a neighbourhood which is mapped homeomorphically to
an open ball x21 + · · · + x2n < 1 in the n-dimensional Euclidean space.

(b) Among neighbourhoods defining the topological space or those of an equivalent system,
there are only countably many different sets.

Thus, Kneser defined a topological manifold of general dimension with an axiom
of countability, which is precisely what we do today. This definition appears at the
beginning of Kneser’s paper. The main topic of the paper is rather the triangulabil-
ity of manifolds and the uniqueness of triangulations (up to subdivision), i.e., the
Hauptvermutung. Of course he did not prove this result, but he posed the conjecture
in clear terms for topological manifolds and gave a precise definition of combinator-
ial manifolds, which made the meaning of the conjecture clear. The Hauptvermutung
itself for simplicial complexes had been given earlier by Steinitz [23] and Tietze [24],
and a definition of a manifold using simplices was first given by Brouwer [1]. The
originality of Kneser was to consider this problem for topological manifolds, and to
try to unify the approach using neighbourhood systems with the simplicial approach
pioneered by Brouwer.

Up to this point, we only talked about the definition of a topological manifold.
Although Weyl’s book contains the notion of differentiability or analyticity of func-
tions on the surface, hence also differentiable structures and complex structures, we
did not touch upon this part. In the rest of this section, we shall see how the definition
of a differentiable manifold as we understand it today appeared.

Veblen and Whitehead published a paper entitled “A set of axioms for differen-
tial geometry” in 1931 [25], whose aim was to define a space axiomatically where
differential geometry can be developed without the aid of global coordinates as in
Euclidean space. (An expanded and detailed version of this theory can be found in
their book [26].) There they gave a set of axioms of Cu (class u) manifolds. This
was done by defining a set of coordinate systems, which they call allowable coordi-
nate systems, such that the transition between any two of them with an overlapping
domain is Cr . They did not assume the manifold to be a topological space at the
beginning, but they gave a topology using the domains of coordinate systems, which
are assumed to satisfy the Hausdorff separability.

From this definition of a differentiable manifold, it became possible for the first
time to define differentiation, etc. on manifolds without assuming they lie in Euclid-
ean spaces. From the work of Whitney [28], it follows that every differentiable
manifold can be regarded as lying in a Euclidean space. In fact Whitney showed
that every n-dimensional Cr -manifold can be embedded into a 2n + 1-dimensional
Euclidean space by a Cr -map. This showed the equivalence between Poincaré’s
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definition of manifolds and the modern one using charts. He also defined notions
like submanifolds, Cr -maps between manifolds and so on. Thus we can say that at
this stage the foundations of the notion of manifold were really consolidated.

6 Conclusion: Philosophical Significance

Now, we return to the philosophical viewpoint, with which we started our exposition.
It is obvious that thanks to the development ofmanifold theory, ourworldview (both in
a cosmological sense and in a more practical sense) has been widened. If we take into
account the possibility that our universe is compact, then Kantian antinomies must
be seriously reconsidered, even in the framework of classical physics. The possibility
of a non-simply connected universe poses further problems of epistemology. In fact,
we do not have any way to distinguish a non-simply connected universe and its
(non-trivial) coverings, only by observations.

It is quite well known that Einstein used Riemannian geometry for his theory of
general relativity. Modern physics makes use of much more sophisticated manifold
theory, typically seen in string/super-string theory. Such a development might lead
to the necessity to redefine the “universe” and distinguish the world where physical
theory should work from the three-dimensional manifold in which we believe that
we live in our day-to-day recognition. On the other hand, what is striking is that there
still remains a longway to go to the complete solution of a naïve question askingwhat
is the topological structure of our day-to-day universe. By virtue of the resolution
of Thurston’s geometrisation conjecture by Perelman, once we know the (average)
sectional curvature of the universe, we can make our list of possible topologies of the
universe shorter. Still, to the author’s knowledge, it is not known even whether the
universe is compact or not, and although there is some data bounding the sectional
curvature of our universe (see e.g. [12]), it is a far cry from determining the geomet-
ric structure of the universe. On the other hand, the development of manifold theory
started by Riemann gave a strong impact and an inspiration to contemporary philos-
ophy, which is often dubbed “post-modern”. Some aspects of this kind of influence
on philosophy are illustrated in Jedrzejewski [6] and Plotnitsky [17] in this volume.

The epistemological revolution with regard to the universe started by Riemann’s
Habilitationsvortrag is not completely achieved yet. It is still going on.
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