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Abstract Riemann introduced in his doctoral dissertation (1851) the concept of Rie-
mann surface as a new ground space for meromorphic functions and in particular as
a domain for a multi-valued function defined by an algebraic equation such that this
function becomes single-valued when its is defined on its associated Riemann sur-
face. It took several years to the mathematical community to understand the concept
of Riemann surface and the related major results that Riemann proved, like the so-
called Riemann existence theorem stating that on any Riemann surface—considered
as a complex one-dimensional manifold—there exists a non-constant meromorphic
function. In this chapter, we discuss how the concept of Riemann surface was appre-
hended by the French school of analysis and the way it was presented in the major
French treatises on the theory of functions of a complex variable, in the few decades
that followed Riemann’s work. Several generations of outstanding French mathe-
maticians were trained using these treatises. At the same time, this will allow us to
talk about the remarkable French school that started with Cauchy and expanded in
the second half of the nineteenth century. We also comment on the relations between
the French and the German mathematicians during that period.
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1 Introduction

The notion of Riemann surface, discovered by Riemann and introduced in his doc-
toral dissertation (1851), is the culmination of a series of investigations done before
him, by Cauchy and others, on the theory of functions of a complex variable. With
this discovery, Riemann made a complete transformation of the field of complex
analysis, merging it with topology and algebraic geometry. He also paved the way
to the methods of hyperbolic geometry combined with group theory that gave rise
to automorphic forms, developed by Poincaré, Klein and others, and to many other
developments.

In Chap.7 of the present volume (cf. [77]), we discussed the results of Cauchy and
Puiseux on line integrals and their dependence on homotopy classes of paths, and we
also mentioned other related results that were available to Riemann when he wrote
his doctoral dissertation. Although the problems he addressed were in the continuity
of the works of his predecessors, the complete novelty of his ideas, with proofs
that rely largely on geometric intuition, sometimes with arguments from physics,
led to the fact that these ideas were sometimes poorly understood by Riemann’s
contemporaries and immediate successors. In particular, this led Klein to spend a
substantial part of his life explaining Riemann’s work and trying to make it more
accessible. He did this in numerous lectures and books, including the well-known
treatise Über Riemanns Theory der algebraischen Funktionen und ihrer Integrale
(On Riemann’s theory of algebraic functions and their integrals) (1882) [58].

France, in the few years preceding the publication of Riemann’s first memoir, saw
the rise of a remarkable school of analysis whose major representative was Cauchy.
Among the immediate followers of Cauchy, one has to mention Liouville, Puiseux,
Hermite, Briot, andBouquet, and then came another generation of analysts, including
Jordan, Halphen, Goursat, Appell, Tannery, Lacour, Molk, Picard, Darboux, Simart,
Fatou, and there are others. All these mathematicians had a great admiration for
Riemann and had no doubt about the importance of his ideas, even if they did not fully
make use of them in their works. Riemann’s collected papers, translated into French,
appeared in 1889, with a preface by Hermite [98], who starts with the following1:

The work of Bernhard Riemann is the most beautiful and greatest one in analysis in our
epoch. It has been consecrated by a unanimous admiration and will leave an imperishable
mark in Science. [...] Never before that, in anymathematical publication, the gift of invention
appearedwithmore power, never had anybody asked for such beautiful conquests in themost
difficult questions in analysis.2

One notion which was particularly painful to accept by the French analysts is that
of Riemann surface. Most of the treatises on the theory of functions of a complex

1In the present chapter, the translations from the French are mine.
2L’œuvre de Bernhard Riemann est la plus belle et la plus grande de l’Analyse à notre époque: elle a
été consacrée par une admiration unanime, elle laissera dans la Science une trace impérissable. [...]
Jamais, dans aucune publication mathématique, le don de l’invention n’était apparu avec plus de
puissance, jamais on n’avait demandé autant de belles conquêtes dans les plus difficiles questions
de l’analyse.

http://dx.doi.org/10.1007/978-3-319-60039-0_7


Riemann Surfaces: Reception by the French School 239

variable that were used in teaching in the French universities or at the École Poly-
technique, in the few decades that followed Riemann’s death, were based exclusively
on the methods of Cauchy, missing the essential relevance of Riemann surfaces. As a
general rule, Riemann’s ideas were absorbed very slowly, and it was only around the
turn of the twentieth century that the French treatises included the theory of Riemann
surfaces in their full strength.

In the present chapter, we review this fascinating page of the history of complex
analysis. This will also give us the occasion of surveying briefly the lives and works
of several prominent mathematicians from this exceptional period, and of discussing
the relations between the French and the German mathematical schools.

The plan of the rest of this chapter is the following.
In Sect. 2, we comment on the notion of Riemann surface and on Riemann’s

existence theorem and how these concepts were received when Riemann introduced
them.

In Sect. 3, we review the way Riemann’s ideas on this subject are presented in
the famous French treatises on analysis, including those of Briot-Bouquet, Briot,
Hermite, Jordan, Appell-Goursat, Goursat, Picard, Picard-Simart, Appel-Goursat-
Fatou, Halphen, Tannery-Molk and Appell-Lacour. Elliptic functions constitute the
central theme of several of these treatises. At the same time, we give some bio-
graphical information on the authors of these treatises, highlighting relations among
them. The overall picture is that of a coherent group, forming a “school,” which was
probably the first French school of mathematics. Several doctoral dissertations were
written under the same advisor, and the dissertation committees often consisted of
the same persons: Darboux, Hermite, Bouquet, with some small variations.

In Sect. 4, we review the content of the doctoral dissertation of Georges Simart,
which is entirely dedicated to a presentation of Riemann’s work on Riemann surfaces
and Abelian functions. To complete the picture, we have included a section, Sect. 5,
in which we review a few French doctoral dissertations and other works of the period
considered which contributed to the diffusion of other major ideas of Riemann: the
zeta function, minimal surfaces and integration.

In Sect. 6, we take the opportunity of the topic discussed in this chapter to say
a few words on the relationship between the French and the German schools of
mathematics, in particular in the fewyears that followed the 1870 devastating French-
German war.

The concluding section, Sect. 7, contains some additional notes on the relationship
between the French and the German schools in the period considered.
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2 Riemann Surfaces

In his doctoral dissertation [92], Riemann introduced Riemann surfaces as ramified
coverings of the complex plane or of the Riemann sphere. He further developed his
ideas on this topic in his paper on Abelian functions [94]. This work wasmotivated in
particular by problems posed by multi-valued functions w(z) of a complex variable
z defined by algebraic equations of the form

f (w, z) = 0, (1)

where f is a two-variable polynomial in w and z.
Cauchy, long before Riemann, dealt with such functions by performing what he

called “cuts” in the complex plane, in order to obtain surfaces (the complement
of the cuts) on which the various determinations of the multi-valued functions are
defined. Instead, Riemann assigned to a multi-valued function a surface which is
a ramified covering of the plane and which becomes a domain of definition of the
function such that this function, defined on this new domain, becomes single-valued
(or “uniform”). Riemann’s theory also applies to transcendental functions. He also
considered ramified coverings of surfaces that are not the plane.

Together with introducing Riemann surfaces associated with algebraic functions,
Riemann considered the inverse problem: Given a Riemann surface obtained geo-
metrically by gluing a certain finite number of pieces of the complex plane along
some curves (which are equivalent to the “cuts” in the sense of Cauchy), can we find
an algebraic relation such as (1) with which this Riemann surface is associated? This
can also be formulated as the problem of finding on an arbitrary Riemann surface a
meromorphic function with prescribed position and nature of its singularities (poles
and branch points). The idea, contained in Riemann’s 1851 dissertation [92], is nat-
ural, since a polynomial is described by its roots, and a rational function by its zeros
and poles. Riemann showed that the general question has a positive answer, and in
his solution to the problem, he proved that a meromorphic function is determined
by its singularities. This result is one form of what is usually called the Riemann
existence theorem, a theorem that had a tremendous impact on complex geometry.
For instance, it was the main motivation for what became known as the Riemann–
Roch theorem. In his paper on Abelian functions [94], Riemann proved one part of
that theorem, namely, that given m points on a closed Riemann surface of genus
p, the dimension of the complex vector space of meromorphic functions on this
surface having at most poles of first order at the m points is ≥ m − p + 1. In his
paper [101] (1865), Gustav Roch, a student of Riemann, transformed this inequality
into an equality, which became known as the Riemann–Roch theorem. Riemann’s
result relies on his existence theorem, the description of a meromorphic function
by its singularities allowing a dimension count. The proof that Riemann gave of his
inequality relies on the Dirichlet principle and it was considered non-rigorous. This
initiated works by several mathematicians, some of them with the aim of finding
alternative proofs Riemann’s results that are based on this principle, and others with
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the goal of giving a solid foundation to the Dirichlet principle. Thus, an important
activity was generated as an indirect consequence of Riemann’s existence theorem.

The discussion around Riemann’s existence theorem is spread in several sections
of Riemann’s doctoral dissertation [92] and his paper on Abelian function, [94], in
particular in Section III of the preliminary part of the latter, entitled Determination
of a function of a complex variable magnitude by the conditions it fulfills relatively to
the boundary and to the discontinuities. Later in the same paper, an existence result
is given in the case of functions defined by integrals of algebraic functions.

Riemann’s use of the Dirichlet principle was harshly criticized by Weierstrass
[109], and these critiques spread a doubt not only on the validity of Riemann’s proof
of his existence theorem but also of other theorems. It is important to emphasize this
fact, because it explains in part why Riemann’s results on Riemann surfaces were not
used by his immediate followers. Klein writes in his Development of mathematics in
the 19th century ([59] p. 247 of the English translation):

With this attack byWeierstrass on Dirichlet’s principle, the evidence to which Dirichlet, and
after him, Riemann, had appealed, became fragile: Riemann’s existence theorems3 were left
in the air.

It is interesting to observe the positions mathematicians took with respect to Riemann’s
existence theorem and Weierstrass’s critique.

The majority of mathematicians turned away from Riemann; they had no confidence in the
existence theorems, whichWeierstrass’s critique had robbed of their mathematical supports.
They sought to salvage their investigations of algebraic functions and their integrals by again
proceeding from a given equation F(ζ, z) = 0 [...] Riemann’s central existence theorem for
algebraic functions on a given Riemann surface fell from its place, leaving only a vacuum.

It is also interesting to note Riemann’s attitude toward Weierstrass’s critique as
recorded by Klein in the same book ([59] pp. 247–48 of the English translation):

Riemann had a quite different opinion. He fully recognized the justice and correctness of
Weierstrass’s critique; but he said, as Weierstrass once told me “that he appealed to the
Dirichlet principle only as a convenient tool that was right at hand, and that his existence
theorems are still correct.”

Concerning the notion of Riemann surface, Klein writes, in the same work ([59]
p. 245 of the English translation):

The most important point is that, according to Riemann’s considerations, to any given Rie-
mann surface there corresponds one (and only one) class (a “field”) of algebraic functions
(with their Abelian integrals). For Riemann a “class” of algebraic functions means the total-
ity of functions R(ζ, z) that can be rationally expressed in terms of ζ and z; the term “field”
was introduced later by Dedekind. This is a theorem that could not have been obtained in
another way. At this point Riemann’s theory remained, for the time being, ahead of all the
others which started from the equation F(ζ, z) = 0.

Riemann not only considered Riemann surfaces as associated with individual
multi-valued functions or with meromorphic function in general, but he also con-
sidered them as objects in themselves, on which function theory can be developed

3The plural will be explained later, when we shall talk about Picard’s work.
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Fig. 1 A drawing of a Riemann surface, from the treatise Théorie des fonctions algébriques (1895)
by Goursat and Appell

in the same way as the classical theory of functions is developed on the complex
plane. Riemann’s existence theorem for meromorphic functions with specified sin-
gularities on a Riemann surfaces is also an important factor in this setting of abstract
Riemann surfaces. Riemann conceived the idea of an abstract Riemann surface, but
his immediate followers did not. During several decades after Riemann, mathemati-
cians (analysts and geometers) perceived Riemann surfaces as objects embedded
in three-space, with self-intersections, instead of thinking of them abstractly. They
tried to build branched covers by gluing together pieces of the complex plane cut
along some families of curves, to obtain surfaces with self-intersections embedded
in three-space. In his 1913 book Idee der Riemannschen Fläche (The concept of a
Riemann surface), [110] (p. 16 of the English translation), Weyl writes about these
spatial representations:

In essence, three-dimensional space has nothing to do with analytic forms, and one appeals
to it not on logical-mathematical grounds, but because it is closely associated with our
sense-perception. To satisfy our desire for pictures and analogies in this fashion by forcing
inessential representations on objects instead of taking them as they are could be called an
anthropomorphism contrary to scientific principles.

Hilbert, in his 1903 paper [50], considers surfaces that are not embedded in a Euclid-
ean space.4

The example of a Riemann surface in Fig. 1 is extracted from the treatise Théorie
des fonctions algébriques (Theory of algebraic functions) by Paul Appell and
Edouard Goursat (1895) in which the authors explain Riemann’s ideas and on which
we shall comment later in the present chapter. The authors explain that in the picture,
the “sheets traverse each other,” but that the reader should imagine that these “sheets
are infinitely close to each other.” We shall survey the treatise by Appell and Goursat
in Sect. 3 below.

4I thank K. Ohshika for this reference.
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Fig. 2 A drawing from Riemann’s paper on Abelian functions

In 1909, Hadamard, in his survey on topology entitledNotions élémentaires sur la
géométrie de situation (Elementary notions of geometry of situation),5 talking about
Riemann surfaces, still considers lines along which the leaves cross each other (cf.
[39] p. 204).

It was difficult to conceive these surfaces without the intersections of the sheets in
3-dimensional space. One had to wait several years before these surfaces were freed
from their three-dimensional prison. Weyl, writes in his 1913 book ([110] p. 16 of
the English translation): “The concept of ‘two-dimensional manifold’ or ‘surface’
will not be associated with points in three-dimensional space; rather it will be a
much more general abstract idea.” Figure2 represents a more abstract drawing in the
tradition of Riemann. It is extracted from the French version of Riemann’s works
[98].

Klein considers that around the year 1881, at least some of Riemann’s important
ideas were already understood in France. He writes in his Development of mathe-
matics in the 19th century [59] p. 258:

Working on the subject of automorphic functions, from 1881 on, I came into close touch
with Poincaré; this was also the time when Riemann’s modes of thoughts were transplanted
to France and there found firm ground.

In the next section, we review the way Riemann surfaces are treated in some of the
major French treatises on complex analysis that were published in the few years that
followed Riemann’s work.

5“Geometry of situation” was one of the various names given to topology, before the word “topol-
ogy” became universally accepted.
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3 The Nineteenth-Century French Treatises on Analysis

In this section, we review some of the nineteenth-century French treatises on analy-
sis, in relation with the notion of Riemann surface and some associated notions like
elliptic and Abelian integrals and their periods. As we shall see, there was a great
variety of important treatises of various levels of difficulty, covering a large spectrum
of topics. Let us note that independently of the work of Riemann, it is interesting to
review these treatises, because these were the textbooks in which the French mathe-
maticians of that epoch were trained. These mathematicians constituted a consistent
and very strong school of analysis whose imprint is still felt today. The next table is
a list of the treatises that we shall mention, in an approximate chronological order. It
is difficult to make a precise chronological order, because several of these treatises
consist of several volumes, with a time lapse of several years between the first and the
last volume. In the commentary that follows this table, the order takes into account
the connections between the ideas rather than the chronology.

Author Title Year
(1st ed.)

Ch.-A. Briot Théorie des fonctions doublement 1859
and J.-C. Bouquet périodiques et, en particulier,

des fonctions elliptiques
Ch. Hermite Cours d’analyse 1873

de l’École Polytechnique
Ch.-A. Briot Théorie des fonctions Abéliennes 1879
C. Jordan Cours d’analyse 1882–1897

de l’École Polytechnique
Ch. Hermite Cours à la faculté 1882

des sciences de Paris
G.-H. Halphen Traité des fonctions elliptiques 1886–1891

et de leurs applications
É. Picard Traité d’analyse 1891–1896
J. Tannery Éléments de la théorie 1893–1902
and J. Molk des fonctions elliptiques
P. Appell Théorie des fonctions algébriques 1895
and É. Goursat et de leurs intégrales
É. Picard Théorie des fonctions algébriques 1897–1906
and G. Simart de deux variables indépendantes
P. Appell Principes de la théorie 1897
and É. Lacour des fonctions elliptiques

et applications
É. Goursat Cours d’analyse mathématique 1902–1905
P. Appell, Étude des fonctions analytiques 1929
É. Goursat sur une surface de Riemann
and P. Fatou
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Briot and Bouquet

We start with the treatise Théorie des fonctions doublement périodiques et, en parti-
culier, des fonctions elliptiques (Theory of doubly periodic functions, and in partic-
ular, elliptic functions) [17] by Briot and Bouquet. This treatise, whose first edition
appeared in 1859, became one of the major references on the theory of functions of
a complex variable in France during the second half of the nineteenth century. As
the name of the treatise indicates, the stress is on elliptic functions and their gen-
eralizations to doubly periodic functions. We recall that elliptic functions have (at
most) two independent periods; they are essentially functions defined on the torus.
We start by recalling a few facts about these functions. For a glimpse into the history
of elliptic integrals, which are at the origin of the general theory of elliptic functions,
the reader is referred to Chap. 1 of the present volume [75].

Before Riemann, elliptic functions had occupied the greatest mathematicians:
Euler, Gauss, Dirichlet, Legendre and others. In France, the first mathematician who
made a thorough study of these functions is Legendre, who wrote treatises compris-
ing several volumes on the subject, cf. [63, 64]. The subject became fashionable
in France only after his death. It is interesting in this respect to quote a letter from
Legendre to Jacobi, dated February 9, 1828, in which Legendre complains that in
France, mathematicians, at his time, were not enough interested in elliptic functions.
Responding to a letter in which Jacobi makes for him a summary of Abel’s arti-
cle Recherches sur les fonctions elliptiques (Researches on elliptic functions) [1]
published in 1827, Legendre writes ([54], t. 1, p. 407):

I was already aware of the beautiful work of Mr. Abel inserted in Crelle’s Journal. But I was
very pleased by the analysis you have given me in your own language, which is closer to
mine. Forme, it is a big satisfaction to see two young geometers, like you and him, cultivating
with success a branch of analysis which has been for such a long time my favorite subject
of study, and which is not as much welcome in my own country as it deserves to be.6

By the time of Briot and Bouquet published their treatise, that is, thirty years after
this letter was written, the study of elliptic functions was already a very active field
in France. Cauchy has already introduced line integrals in the field of functions of
a complex variable, and elliptic integrals constituted a new class of functions with
interesting properties. The known functions of a complex variable, before this class,
were limited to polynomials, exponentials, logarithms, trigonometric functions, and
some other special functions introduced by Euler. Several questions concerning these
functions, motivated by the work of Legendre, Abel and Jacobi, constituted the
basis of several research topics. Furthermore, elliptic functions were known to have
numerous applications in geometry, number theory, mechanics and physics.

6J’avais déjà connaissance du beau travail de M. Abel inséré dans le Journal de Crelle. Mais vous
m’avez fait beaucoup de plaisir dem’en donner une analyse dans votre langage qui est plus rapproché
du mien. C’est une grande satisfaction pour moi de voir deux jeunes géomètres, comme vous et lui,
cultiver avec succès une branche d’analyse qui a fait si longtemps l’objet de mes études favorites
et qui n’a point été accueillie dans mon propre pays comme elle le méritait.

http://dx.doi.org/10.1007/978-3-319-60039-0_1
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A few words about Briot and Bouquet may be useful, before talking about their
treatise. Although they were great analysts and remarkable teachers, their names are
rather unknown today.

In 1842,Charles-AugusteBriot (1817–1882) submitted at theFaculté desSciences
de Paris, a dissertation on mechanics whose title was Sur le mouvement d’un corps
solide autour d’un point fixe (On themotion of a solid body around a fixed point) [15].
The aim of this dissertation was to provide complete proofs of results on mechanics
that were stated by Poinsot in his memoir Théorie nouvelle de la rotation des corps
(A new theory for the rotation of bodies) [91]. Briot then taught at the Sorbonne
and at the École Normale Supérieure, but also, for several years, in two lycées7 in
Paris: Bourbon and Saint-Louis. These were among the famous lycées preparing
for the highly competitive entrance examination of the École Polytechnique and
the École Normale Supérieure. Having good teachers in such lycées was a tradition
in France, and some of these teachers were excellent mathematicians.8 Briot, like
Riemann, Cauchy and many mathematicians of his generation, was highly interested
inphysics, in particular, heat, light and electricity, three topicswhichwereparticularly
dear to Riemann. Briot’s research in these fields was based on his theories of aether,
and in his research on these topics he was strongly influenced by Louis Pasteur.
He wrote a large number of textbooks for students, encompassing analysis, algebra,

7The lycées where Briot (and several other mathematicians we encounter in the present chapter)
taught are high-schools whose curricula included an additional year of study after the high-school
diploma (baccalauréat). During that year, called Mathématiques spéciales, the élèves (pupils) are
prepared for the entrance examinations (concours d’entrée) to some highly competitive schools
which, in the period we are interested in, were essentially the École Polytechnique and the École
Normale Supérieure. In principle, only gifted andhard-working élèveswere admitted in such classes.

Only a small percentage of the élèves were accepted into these schools (2–5%) at the first trial.
The others usually returned to the lycée and spent another year in the class of Mathématiques
spéciales where they deepened their knowledge and their training. The chances of entering one of
the two schools after this second year were about 25%. Some of the élèves, after a second failure,
repeated a third time the class ofMathématiques spéciales, and the chances of success, for thosewho
tried the concours d’entrée after a third year, were about 50%. (These figures are extracted from the
article [85] by Pierpont in which the author compares the French and the American mathematical
education systems by the end of the nineteenth century.)

These classes still exist today in France, they are called Classes préparatoires aux Grandes
Écoles, and include two years, Mathématiques supérieures and mathématiques spéciales. They
prepare to the entrance examinations of a large number of schools.
8The list includes Briot, Bouquet, Darboux, Bertrand, Hoüel, Valiron, Châtelet, Tannery, Boutroux,
Lacour, Lucas, Lichnerowicz, and there are others. The following story is related by Picard, in
his Eulogy of Jules Tannery [84]: “Bouquet used to relate that after he graduated from the École
[Normale Supérieure], and while he was in charge of the class of “mathématiques spéciales” at
Marseille’s lycée, he received the visit of the father of one of his élèves, who wanted that his son be
prevented from working in mathematics, because they lead to noting good. He asked for a professor
whowould give a course which is enough bad so that his son does not enter the École Polytechnique,
after which one gains less money than in business. [Bouquet aimait à raconter que, chargé à sa sortie
de l’École, du cours de mathématiques spéciales au Lycée de Marseille, il avait eu la visite du père
d’un de ses élèves, qui voulait qu’on empêchât son fils de travailler lesmathématiques qui nemènent
à rien de bon. Il demandait que le professeur fit un assez mauvais cours pour que son fils n’entrât
pas à l’École Polytechnique au sortir de laquelle on gagne moins d’argent que dans le commerce.]
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analytic geometry, mechanics and physics. Having textbooks written by outstanding
and devoted teachers was traditional in France in that period.

Jean-Claude Bouquet (1819–1885) defended his doctoral dissertation in 1842, the
same year as Briot. The subject was the calculus of variations, and the title was Sur la
variation des intégrales doubles (On the variation of double integrals) [14]. Bouquet
first taught at a lycée in Marseille and then became, at the age of 26, professor at the
University of Lyon. Seven years later hemoved to Paris where he became professor at
Lycée Bonaparte, and then Lycée Louis-le-Grand. In 1868, he became the successor
of Puiseux at the École Normale Supérieure, and in 1885 the successor of Serret at
the Chair of differential and integral calculus of the Faculté des Sciences de Paris.
Bouquet’s successor at that chair was Émile Picard.

Briot and Bouquet published, separately and as co-authors, several important
articles and treatises on the theory of functions of a complex variable and on elliptic
and Abelian functions. It might be useful to recall that in the period considered, joint
mathematical works were rare, and for this reason the long-term collaboration of
Briot and Bouquet stands as a singular spot in the history of mathematics. In 1856,
Briot and Bouquet published a joint paper entitledÉtude des fonctions d’une variable
imaginaire (Study of functions of an imaginary variable) [16] in which they present
in a comprehensive way Cauchy’s theory of functions of a complex variable. In the
introduction to that memoir, they write:

This first memoir contains the principles of Cauchy’s theory of an imaginary variable. We
shall adopt the definition given by Mr. Cauchy, and we shall explain it by examples. We then
study the properties of the functions defined by series ordered according to the increasing
integer powers of the variable. This will allow us to establish, in a clear and precise manner,
the necessary and sufficient conditions for a function to be expanded as a convergent series
according to the increasing integer powers of the variable. In this way, we shall get rid of
the clouds that still obfuscate the beautiful theorem of Mr. Cauchy.9

This paper, together with two other papers by Briot and Bouquet, became the bulk of
their famous treatise Théorie des fonctions doublement périodiques et, en particulier,
des fonctions elliptiques which we consider now. In that treatise, Cauchy’s work is
at the forefront. This treatise became famous especially by its second edition (1875),
which carried the simpler name Théorie des fonctions elliptiques, cf. [19]. In the
preface, the authors start by pointing out the importance of transcendental functions,
recalling that Legendre spent almost all his life in trying to understand them. They
then mention the works of Abel and Jacobi, declaring that Abel, around the year
1826, was the first to consider elliptic functions from the right point of view and to
realize that these functions are doubly periodic. According to their account, Jacobi’s
Fundamenta nova theoriæ functionum ellipticarum [52], published three years later,

9Ce premier mémoire contient les principes de la théorie des fonctions d’une variable imaginaire.
Nous adoptons la définition donnée par M. Cauchy, et nous l’expliquons par des exemples. Nous
étudions ensuite les propriétés des fonctions définies par des séries ordonnées suivant les puissances
entières et croissantes de la variable. Ceci nous permet d’établir, d’une manière nette et précise, les
conditions nécessaires et suffisantes pour qu’une fonction se développe en série convergente suivant
les puissances entières et croissantes de la variable. Nous faisons disparaître ainsi les nuages qui
obscurcissent encore le beau théorème de M. Cauchy.
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contains nothing essential which Abel had not discovered before. They declare that
the difference between the two mathematicians is that Abel tried to prove the main
results on the theory of elliptic functions from their double periodicity prorperty,
whereas Jacobi did the same using algebraic reasonings which have the disadvan-
tage of hiding the reason behind the results and which do not lead to interesting
developments. Briot and Bouquet then write ([19] p. xviii of the Preface):

Despite the remarkable works of these two great geometers, the theory of elliptic functions
was still in the dark, and very complicated. Neither the double periodicity was recognized
clearly, not the function itself was defined rigorously. To shed light on this theory, one had to
introduce a newmathematical idea, and it is to the famous Cauchy that we owe this important
progress.10

In this treatise, single-valued functions are called monotropic (monotropes) and
multi-valued ones are called polytropic (polytropes). This terminology is introduced
in the first pages of the second edition of the treatise (p. 9 and 11 of the 1875 edition).
It indicates clearly that the authors think of these functions in terms of paths. (The
word “tropos” in Greek means path.) Riemann’s work (or, at least, its existence) is
known to the authors, but they prefer to rely on Cauchy, completed by Puiseux. They
write in the preface of the 1875 edition:

In Cauchy’s theory, the excursion of the imaginary variable is represented by the motion of
a point in the plane. To represent the functions which acquire several values for the same
value of the variable, Riemann used to look at the plane as composed of several sheets which
are superposed and joined by weldings, in such a way that the variable can pass from a sheet
to another by passing a junction line (“ligne de raccordement”). The conception of many-
sheeted surfaces presents some difficulties; in spite of the beautiful results that Riemann
reached by this method, it appeared to us that it has no advantage regarding the object we
have in mind. Cauchy’s idea is very well fit to the presentation of multiple functions; it
suffices to attach to the value of the variable the corresponding value of the function, and,
when the variable describes a closed curve and the value of the function changes, to indicate
this change by an index.11

The authors acknowledge in the preface that they were influenced by Liouville’s
course at the Collège de France on elliptic functions, based on the double periodicity

10Malgré les remarquables travaux de ces deux grands géomètres, la théorie des fonctions elliptiques
restait fort obscure et très-compliquée; ni la double périodicité n’avait été reconnue d’une manière
nette, ni la fonction elle-même définie d’unemanière rigoureuse. Il fallait, pour éclairer cette théorie,
l’introduction d’une idée nouvelle en mathématiques, et c’est à l’illustre Cauchy que l’on doit cet
important progrès.
11Dans la théorie de Cauchy, la marche de la variable imaginaire est figurée par le mouvement d’un
point sur un plan. Pour représenter les fonctions qui acquièrent plusieurs valeurs pour une même
valeur de la variable, Riemann regardait le plan comme formé de plusieurs feuillets superposés
et réunis par des soudures, de manière que la variable puisse passer d’un feuillet à un autre en
traversant une ligne de raccordement. La conception des surfaces à feuillets multiples présente
quelques difficultés; malgré les beaux résultats auxquels Riemann est arrivé par cette méthode, elle
ne nous a paru présenter aucun avantage pour l’objet que nous avions en vue. L’idée de Cauchy
se prête très bien à la représentation des fonctions multiples; il suffit de joindre à la valeur de la
variable la valeur correspondante de la fonction, et, quand la variable a décrit une courbe fermée et
que la valeur de la fonction a changé, d’indiquer ce changement par un indice.
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of these functions. A set of notes by Liouville on lectures he gave in 1847 on doubly
periodic functions were published 33 years later,12 cf. [66]. It seems that Liouville
considered that Briot and Bouquet stole his ideas, and he treated them as “unworthy
robbers,” see [78], p. 232.

Bottazzini reports in [55] (p. 244) that in 1861, Riemann lectured on complex
function theory followingCauchy’s point of view as contained inBriot andBouquet’s
treatise. A German translation of this treatise was published in 1862 [18].

Briot

In 1879, Briot published a treatise entitled Théorie des fonctions abéliennes (Theory
of Abelian functions) [20]. His goal in this new book is to explain Riemann’s theory
of Abelian functions. These are integrals of algebraic differentials on Riemann sur-
faces that generalize elliptic functions (which are defined on surfaces of genus one,
that is, tori), and they played amajor role in the development of complex analysis and
of algebraic geometry. In the introduction to his treatise, Briot recalls that Riemann
was the first to study these functions, and that he found beautiful theorems concern-
ing them. He nevertheless declares that the methods of Riemann present enormous
difficulties and he describes them as lacking of clearness and rigor. He announces
that, in his treatise, he relies on the works of Clebsch and Gordan,13 but leaving aside
some of their geometric considerations. Sofia Kovalevskaya did not like Briot’s trea-
tise. In a letter to Mittag-Leffler, sent on January 8, 1881 quoted by the latter in his
1900 Paris ICM talk [67], she writes:

Isn’t it surprising how, at the time being, the theory of Abelian functions with all the par-
ticularities of its own method and which make it rightly one of the most beautiful branches

12The notes were taken by C. W. Borchardt, the editor of the Journal für die reine und angewandte
Mathematik. In a footnote to the article, Borchardt writes about these notes: “When, in the first half
of the year 1847 I stayed in Paris at the same time of my late friend Ferdinand Joachimstahl, Mr.
Liouville accepted to give, at his home, for the two of us, a few lessons on his method for treating the
theory of doubly periodic functions. I collected Mr. Liouville’s lessons, and when, back in Berlin,
I have completed writing them up, I sent him a copy of my manuscript which he authorized me
to communicated to Jacobi and Lejeune-Dirichlet. [...] In communicating to the geometers a work
done more than thirty years ago and without the intention of publishing it, I think nevertheless that I
can assure that in general my redaction reproduces faithfully the lessons of Mr. Liouville. [Lorsque
dans la première moitié de l’année 1847 j’ai fait un séjour à Paris en même temps que mon ami
bien regretté Ferdinand Joachimstahl, M. Liouville a bien voulu nous faire chez lui à nous deux
quelques leçons sur sa méthode de traiter la théorie des fonctions doublement périodiques. [...] En
communiquant aux géomètres un travail fait il y a plus de trente ans et sans l’intention de le faire
imprimer, je crois néanmoins pouvoir assurer qu’en général ma rédaction reproduit fidèlement les
leçons de M. Liouville.
13The work of Clebsch and Gordan which was a major reference at that time is their treatise Theorie
der Abelschen Funktionen (Theory of Abelian functions), 1866 [24]. One of the major results of
Clebsch is a classification of algebraic curves using Riemann’s theory of Abelian functions and
based on his notion of birational transformation. Clebsch’s ideas were further developed by Brill
and Noether.
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of analysis, is still poorly studied and poorly understood everywhere else than in Germany?
I was really outraged in reading, for instance, the Traité des fonctions abéliennes by Briot,
which I had not seen before. How can one present such beautiful material in such a dry and
with so little benefits for the students? I am almost not surprised any more that our Russian
mathematicians, who know this theory only through Neumann’s14 book and that of Briot,
profess such a profound indifference to the study of these functions.15

This book by Briot is the only treatise that he authored alone. The book won the
Poncelet prize.

The works of Briot and Bouquet were influential on Poincaré who, in his Analysis
of his own works (Analyse des travaux scientifiques de Henri Poincaré faite par lui-
même), [88], declares that the starting point of his research on differential equations—
which was his first topic of investigation—were the works of Cauchy, Fuchs, Briot,
Bouquet and Kovalevskaya.

Appell and Goursat

We now consider the treatise Théorie des fonctions algébriques et de leurs intégrales
(Theory of Abelian functions and their integrals) by Appell and Goursat, [4]. This
treatise was published in 1895, that is, thirty-six years after the first edition of Briot
and Bouquet’s Théorie des fonctions doublement périodiques et, en particulier, des
fonctions elliptiques. The treatise carries the subtitle Étude des fonctions analytiques
sur une surface de Riemann (A study of analytic functions on a Riemann surface).
A few biographical notes on the authors are in order; both of them are important
representatives of the nineteenth century French school of analysis.

Paul Appell (1855–1930) was born in Strasbourg. He started studying mathemat-
ics at the University of this city, but had to flee from there, in order to remain French,
after the annexion of Alsace by Germany, in 1870.16 His brother, who stayed in
occupied Alsace, was later convicted for “anti-German activities.” Appell wrote his

14The book by Neumann which is referred to in this quote is certainly his treatise Vorlesungen über
Riemann’s Theorie der Abel’schen Integrale (Lectures on Riemann’s theory of Abelian integrals),
published in 1865, [69]. Unlike the French treatises, Neumann’s book was written in the spirit of
Riemann.
15N’est-il pas étonnant vraiment comme, à l’heure qu’il est, la théorie des fonctions abéliennes avec
toutes les particularités de laméthode qui lui sont propres et qui en font justement une des plus belles
branches de l’Analyse, est encore peu étudiée et peu comprise partout ailleurs qu’en Allemagne ?
J’ai été vraiment indignée en lisant, par exemple, le Traité des fonctions abéliennes par Briot, qui
jusqu’à présent ne m’était pas tombé sous les yeux. Peut-on exposer une aussi belle matière d’une
manière aussi aride et aussi peu profitable pour l’étudiant ? Je ne m’étonne presque plus que nos
mathématiciens russes, qui ne connaissent toute cette théorie que par le livre de Neumann et celui
de Briot, professent une indifférence aussi profonde pour l’étude de ces fonctions.
16In a chronicle on Appell which appeared in Le petit parisien (18/02/1929) it is reported that when
he came back to Strasbourg, after the Second World War, he whispered: “I thought I was becoming
crazy when I saw the French flag fleeting on our old cathedral. On that day, my life was filled. I
could well have died.” [Je croyais devenir fou en voyant le drapeau tricolore flotter sur notre chère
cathédrale, murmure-t-il. Ce jour-là, ma vie était comblée. J’aurais pu mourir.]
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doctoral dissertation under Chasles, on projective geometry. The title of this disserta-
tion is Sur la propriété des cubiques gauches et le mouvement hélicoïdal d’un corps
solide (On the properties of skew cubics and on the helocoidal motion of a solid
body) [2]. The thesis was published in the Annales de l’École Normale Supérieure,
[3]. Besides being a mathematician, Appell was the rector of the Académie de Paris
from 1920 to 1925, and he became secretary general of France at the League of
Nations. He is also the founder of the Paris Cité Universitaire Internationale. He
married a niece of Bertrand and Hermite, and his daughter became the wife of Emile
Borel. Appell, like many other French mathematicians of his generation (see Chap. 7
of the present volume, [77]), was profoundly religious.17 There is an interesting
correspondence between Appell and Poincaré, see [86].

Édouard Goursat (1858–1936) had as teachers Briot, Bouquet and Darboux.
Goursat started as a teaching assistant (“agrégé préparateur”) at the École Normale
Supérieure in 1879, and one year later he was appointed at the Faculté des Sci-
ences de Paris, taking over the position of Picard who was appointed at Toulouse. In
1881 he submitted a doctoral dissertation bearing the title Sur l’équation différen-
tielle linéaire qui admet pour intégrale la série hypergéométrique (On the linear
differential equation that admits as integral the hypergeometric series), [32]. The
thesis committee consisted of Bouquet, Darboux and Tannery. It was published in
the Annales de l’École Normale Supérieure [33]. This dissertation, written under
Darboux, is based on results of Jacobi and Riemann, and it uses Cauchy’s theory.
Among other things, Goursat simplifies a proof of a theorem given by Riemann in his
memoir of the hypergeometric function [97] (Second part of Goursat’s dissertation).
After his dissertation, he took a position at the Faculté des Sciences de Toulouse, as
the successor of Picard who returned to Paris. In 1885, he came back to the École
Normale Supérieure, replacing Bouquet. In 1897, he took over again Picard’s posi-
tion at the Chair of Differential and Integral Calculus at the Faculté des Sciences
de Paris. The name of Goursat is attached to a theorem in complex function theory,
which is usually referred to as the Cauchy-Goursat theorem. It says that given a
holomorphic function on a simply connected domain in the plane, the integral of this
function over a loop contained in the interior of the domain is zero. The first step
of the proof is a lemma, called the Goursat lemma, which is a particular case of the
theorem in which the loop bounds a rectangle. The result is contained in the 1814
paper of Cauchy [23] but under some unnecessary strong hypotheses on the function.
Goursat’s proof is contained in a paper that appeared in Acta Mathematica entitled
“Proof of Cauchy’s theorem” [36].

Unlike the case of the treatise of Briot and Bouquet, Riemann’s theory is well
present in the treatise Théorie des fonctions algébriques et de leurs intégrales by
Goursat and Appell. Hermite wrote the preface of that treatise. In this preface, he
starts by giving an overall summary of the work of Puiseux on algebraic functions,

17In a biography of Hermite, written by his grand-daughter (the manuscript, kept in the Archives
of the Académie des Sciences de Paris) quoted in [48] p. 79, we read that Hermite told Appell
once, “Can you imagine, my dear Appell, that after our death, we shall at last contemplate, face
to face, the number π and the number e?” [Songez-vous, mon cher Appell, qu’après la mort nous
contemplerons enfin face à face le nombre π et le nombre e ?].
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which, he says “opened the field of research which led to the great discoveries of our
epoch.” He declares that this work transformed the field of analysis by giving it new
bases.18 Hermite, in his introduction, also mentions the influence of Cauchy. After
that, he passes to the work of Riemann, praising this work and announcing that the
treatise is based on the latter’s ideas. Hermite writes in this introduction:

The works of Puiseux were followed, in 1857, by those of Riemann, received with a unani-
mous admiration, as themost considerable event in analysis of our times. The present treatise
is dedicated to the exposition of the work of this great geometer, and to the researches and
the discoveries to which it led.

A remarkably original concept is at their foundation. These are the surfaces to which is
attached the name of their discoverer. They are constituted of superposed planes, whose
number is equal to the degree of an algebraic equation, connected among themselves by
crossing lines, which we obtain by joining in a certain manner the critical points. The
establishment of these lines is a first question of great importance, which later on was made
much simpler and easier by a beautiful theorem of Mr. Lüroth. After that, we are offered the
notion of connected surfaces, their order of connection, the theorems on the lowering, using
cuts, which lead the surface to a simply connected one. From these profound and delicate
considerations follows a geometric representation, which is an element of the greatest power
for the study of the algebraic functions. It would be too long to recall all the discoveries that
carry the seal of the greatest mathematical genius, to which it led Riemann. [...]19

In their treatise, Goursat and Appell present Riemann’s topological theory of
surfaces and their dissection, his theory of the complex-analytic Riemann surfaces,
and his theory of Abelian integrals. Cauchy’s calculus of residues is used, as well as
Puiseux’ method of dealing with multiple branch points of algebraic functions. The
treatise also contains an exposition of Riemann–Roch’s theorem, of the Brill-Noether
law of reciprocity, of Abel’s theorem and of the theory of moduli of algebraic curves.
Jacobi’s inversion problem of Abelian integrals, and a problem of Briot and Bouquet
on the uniformization of solutions algebraic differential equations are addressed.
W. F. Osgood published an extensive review of Appell and Goursat’s treatise in the
Bulletin of the AMS, see [72].

18The reader may find details on the work of Puiseux, and its relations to the works of Cauchy,
Hermite and others, in Chap.7 of the present volume [77].
19Aux travaux de Puiseux succèdent, en 1857, ceux de Riemann accueillis par une admira-
tion unanime, comme l’événement le plus considérable dans l’analyse de notre temps. C’est à
l’exposition de l’œuvre du grand géomètre, des recherches et des découvertes auxquelles elle a
donné lieu qu’est consacré cet ouvrage.

Une conception singulièrement originale leur sert de fondement, celle des surfaces auxquelles est
attaché le nom de l’inventeur, formées de plans superposés, en nombre égal au degré d’une équation
algébrique, et reliés par des lignes de passage, qu’on obtient en joignant d’une certaine manière
les points critiques. L’établissement de ces lignes est une première question de grande importance,
rendue depuis beaucoup plus simple et plus facile par un beau théorème deM.Lüroth. S’offre ensuite
la notion des surfaces connexes, de leurs ordres de connexion, les théorèmes sur l’abaissement par
des coupures qui ramènent la surface à être simplement connexe. De ces considérations profondes et
délicates résulte une représentation géométrique, qui est un instrument de la plus grande puissance
pour l’étude des fonctions algébriques. Il serait trop long de rappeler toutes les découvertes portant
l’empreinte du plus grand génie mathématique, auxquelles elle conduit Riemann [...].

http://dx.doi.org/10.1007/978-3-319-60039-0_7
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Goursat

Goursat is mostly known today for his Cours d’analyse mathématique (A course in
mathematical analysis) [34], a treatise which became a reference for all French stu-
dents in mathematics. The first edition of that book, in two volumes, was published
in 1902 and 1905.A second edition, in three volumes, appeared between 1910 and
1915, a third edition in 1917–1923, a fourth edition in 1923–1927, a fifth edition
in 1933–1942, and there were several later editions after Goursat’s death in 1936.
The treatise was translated into English, cf. [35]. The whole treatise is a systematic
treatment of analysis, including integration and differential equations. The subti-
tles of the various volumes of Goursat’s Cours give an idea of the content. They
are (in the final three-volume version): Volume I: Dérivées et différentielles. Inté-
grales définies. Développements en séries. Applications géométriques. (Derivatives
and differentials. Definite integrals. Series expansions. Geometrical applications).
Volume II: Théorie des fonctions analytiques. Equations différentielles. Equations
aux dérivées partielles du premier ordre. (Theory of analytic functions. Differential
equations. First order partial differential equations). Volume III: Intégrales infiniment
voisines. Équations aux dérivées partielles du second ordre. Équations intégrales.
Calcul des variations (Infinitely close integrals. Second order partial differential
equations. Integral equations. Calculus of variations).

In his treatise, Goursat, in presenting the theory of functions of a complex variable,
relies on Cauchy’s methods on the theory of complex integration and on the existence
of solutions for ordinary and partial differential equations. Weierstrass’s methods are
also presented, in particular for what concerns singular points and series of analytic
functions, and the calculus of variations. Riemann’s theories are briefly addressed in
Volume III,Chap.XXVII, in relationwith theLaplace equation. The author discusses,
besides the methods of Riemann, those of Neumann, Schwarz and others, in relation
with conformal mappings.

Osgood wrote two reviews for the Bulletin of the AMS, [73, 74], on Goursat’s
first edition (two volumes) of his treatise. As a conclusion to his review of Volume
I, Osgood writes the following:

When the future historian inquires how the calculus appeared to the mathematicians of the
close of the nineteenth century, he may safely take Professor Goursat’s book as an exponent
of that which is central in the calculus conceptions and methods of this age.

Goursat’s treatise lost its prestige with the advent of Bourbaki, and it was replaced
in the French university curricula by the more rigorous (in the modern standards)
treatises of Dieudonné, Cartan, Schwartz, etc.

Picard

Emile Picard (1856–1941) was one of those mathematicians whose work, encom-
passing a period straddling the nineteenth and the twentieth centuries, exerted an
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important influence on mathematics by giving it a new direction. In 1877, he sub-
mitted a doctoral dissertation on the geometry of Steiner surfaces, written under the
guidance of Darboux. The title of the dissertation is Application de la théorie des
complexes linéaires à l’étude des surfaces et des courbes gauches (Application of the
theory of linear complexes to surfaces and skew curves) [80]. Picard’s thesis was also
published in the Annales de l’École Normale, [81]. Picard had a long career during
which he worked on ordinary and partial differential equations, algebraic geometry,
algebra, mechanics, elasticity, heat, electricity, relativity, astronomy and on other
subjects of mathematics and theoretical physics. But he was above all an analyst. His
name is attached in particular to two theorems he obtained in 1879 which exerted a
tremendous influence on analysis. One of these theorems says that a non-constant
entire function takes every complex value an infinite number of times, possibly with
one exception. Picard’s proof of this result uses Hermite’s theory of elliptic modular
functions. It is short, elegant but indirect. Giving simpler proofs and generalizations
of that theorem gave rise to a large number of works done by several generations
of mathematicians, including Borel, Hadamard, Montel, Julia, Bloch, Carathéodory,
Landau, Lindelöf, Milloux, Schottky, Valiron, Nevanlinna, Ahlfors and several oth-
ers. These works resulted in a thorough investigation of the nature of holomorphic
functions and they led to a whole field of mathematics called value distribution the-
ory. When the young Picard (he was 23) published his two theorems, he attracted the
attention of Hermite, and they soon became friends. Two years later (in 1881), Picard
married Hermite’s daughter. Between 1895 and 1937, Picard taught mechanics at an
engineering school in Paris, the École Centrale des Arts et Manufactures. Picard was
also a philosopher and a historian of science. In 1917, Picard lost his son (who was
therefore Hermite’s grand-son) at the war.

In 1891, Picard published the first volume of his Traité d’analyse (Treatise on
analysis) [79], a treatise in three volumes (the second volume was published in
1893 and the third one in 1896). This treatise was acclaimed as one of the impor-
tant writings of its epoch. In a 27-page review of the first two volumes published
by T. Craig in the Bulletin of the AMS, the author writes:

One of the ablest of American mathematicians said to the writer not long ago, ‘we have
waited fifty years for the book!’

Cauchy’s theory and all the introductory material on functions of a complex
variable are presented in Volume I of Picard’s Traité (1891). Riemann’s ideas play a
central role in Volume II (1893). Picard writes in the introduction to that volume:

This volume contains the lessons I gave at the Sorbonne during the last two years. It is
primarily dedicated to harmonic and to analytic functions. Without leaving aside Cauchy’s
point of view on the theory of analytic functions, I mainly dwell on a thorough study of
harmonic functions, i.e., of the Laplace equation; a large section of this volume is dedicated
to that famous equation, on which depends all the theory of analytic functions. I also dwell
at length on the principle of Dirichlet, which plays such a big role in the works of Riemann,
and which is as much important for mathematical physics as for analysis.

Among the particular functions I study, I note the algebraic functions and the Abelian inte-
grals. A chapter deals with Riemann surfaces, whose study has been too much left over in
France. It is possible, by a convenient geometric representation, to make intuitive the main
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results of this theory. Once this clear view of the Riemann surface is obtained, all the appli-
cations are conducted with the same facility as the classical Cauchy theory relative to the
ordinary plane. But it is important to judge according to its real value the beautiful concep-
tion of Riemann. It would be an incomplete view to regard it only as a simplified method of
presenting the theory of algebraic functions. No matter how important is the simplification
brought in this study by the consideration of surfaces with many leaves, it is not there that the
interest of Riemann’s ideas lies. The essential point of his theory is the a priori conception
of the connected surface formed by a finite number of plane leaves, and in the fact that to
such a surface conceived in full generality corresponds a class of algebraic curves. Thus, we
did not want to mutilate the profound thought of Riemann, and we have dedicated a chapter
to the capital and difficult question of the existence of analytic functions on an arbitrarily
given Riemann surface. The problem itself is susceptible of generalization, if we take an
arbitrary closed surface in space and if we consider the corresponding Beltrami equation.20

Riemann surfaces are introduced in Chap. XIII of Volume II. They are associated
with algebraic equations of the form f (u, z) = 0 where f is a polynomial in the
two variables u and z. Their construction uses the method of paths and the analysis
of permutations of roots developed by Puiseux which we describe in Chap.7 of the
present volume [77]. On the resulting Riemann surface, we have a single-valued
function u of z. Picard writes that “the algebraic function u is uniform: to each point
on that surface is associated a single value of u, which is the value corresponding
to the leaf on which we find the point that we consider.” He proves that the surface
obtained by this construction is connected, and he spends some time explaining
how one obtains a simply-connected surface from an arbitrary Riemann surface by
performing a certain number of cuts. Picard refers to Riemann’s article on Abelian
functions [94], to Simart’s dissertation [103] which we consider below, and to papers

20Ce second volume contient les leçons que j’ai faites à la Sorbonne ces deux dernières années. Il
est principalement consacré aux fonctions harmoniques et aux fonctions analytiques. Sans négliger
le point de vue de Cauchy dans la théorie de ces dernières fonctions, je me suis surtout attaché à une
étude approfondie des fonctions harmoniques, c’est-à-dire de l’équation de Laplace; une grande
partie de ce volume est consacrée à cette équation célèbre, dont dépend toute la théorie des fonctions
analytiques. Je me suis arrêté longuement sur le principe de Dirichlet, qui joue un si grand rôle
dans les travaux de Riemann, et qui est aussi important pour la physique mathématique que pour
l’analyse.

Parmi les fonctions particulières que j’étudie, je signalerai les fonctions algébriques et les inté-
grales abéliennes. Un chapitre traite des surfaces de Riemann, dont l’étude a été laissée un peu trop
de côté en France; on peut, par une représentation géométrique convenable, rendre intuitifs les prin-
cipaux résultats de cette théorie. Cette vue claire de la surface de Riemann une fois obtenue, toutes
les applications se déroulent avec la même facilité que dans la théorie classique de Cauchy relative
au plan simple. Mais il importe de juger à sa véritable valeur la belle conception de Riemann. Ce
serait une vue incomplète que de la regarder seulement comme une méthode simplificative pour
présenter la théorie des fonctions algébriques. Si importante que soit la simplification apportée dans
cette étude par la considération de la surface à plusieurs feuillets, ce n’est pas là ce qui fait le grand
intérêt des idées de Riemann. Le point essentiel de sa théorie est dans la conception a priori de la
surface connexe formée d’un nombre limité de feuillets plans, et dans le fait qu’à une telle surface
conçue dans toute sa généralité correspond une classe de courbes algébriques. Nous n’avons donc
pas voulu mutiler la pensée profonde de Riemann, et nous avons consacré un chapitre à la question
difficile et capitale de l’existence des fonctions analytiques sur une surface de Riemann arbitraire-
ment donnée; le problème même est susceptible de se généraliser, si l’on prend une surface fermée
arbitraire dans l’espace et que l’on considère l’équation de Beltrami qui lui correspond.
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by Clebsch and Lüroth. Chapter XIV of Volume II of Picard’s treatise concerns
periods of Abelian integrals, another topic which was dear to Riemann. Chapter XVI
contains several results on meromorphic functions on Riemann surfaces, including
the Riemann–Roch theorem. These are the famous Riemann existence theorems.21

The title of this chapter is: “General theorems relative to the existence of functions on
Riemann surfaces.” Picard summarizes first the work he did in the previous chapters
([79], Vol. II, beginning of Chap. XVI). To an algebraic equation f (x, y) = 0 as
above, a Riemann surface is associated, and on that surface, functions and integrals
are studied. The problem addressed now is the converse: one starts with a connected
Riemann surface which, Picard says, is defined a priori and “in a purely geometrical
manner,” taking a certain number of leaves and joining them by a certain number
of “intersection curves” (lignes de croisement). One wishes to associate with such
an abstract surface a class of algebraic curves, and to show a priori the existence of
the functions of the type considered before. After formulating this problem, Picard
writes: “We thus enter in the profound thought of Riemann.” He declares that the
previous chapters diverged from Riemann’s ideas, in that one started there from a
curve, or from an algebraic relation, whereas now, “the starting point is them-sheeted
Riemann surface.” He adds (p. 459):

Unfortunately, Riemann’s method, which was so simple for establishing general existence
theorems, does not have the rigor which we require today in the theory of functions. It relies
on the consideration of the minimum of certain integrals which are very similar to those we
already studied in the Dirichlet problem, and the same objections were addressed to him.
Anotherway had to be found, andMr.Neumann andMr. Schwarz reached it independently.22

Picard mentions the references [69] (pp. 388–471) and [102] (p. 303), and from there
he reconstructs completely the proof. In Sects. 6–13 of this chapter, the author studies
the existence of harmonic functions on Riemann surfaces. These functions are used
in the proof of the existence theorem. We note incidentally that for several decades,
all the proofs of Riemann’s existence theorem were based, like the one of Riemann,
on potential theory. Picard states the main result of that chapter as a “fundamental
theorem” ([79] Tome II, Chap.XVI, §18):

To an arbitrary Riemann surface there corresponds a class of algebraic curves.

Another “fundamental theorem” is stated in §28 of the same chapter:

To a surface in space having p holes, corresponds uniformly an algebraic curve of genus p.

Without entering into the technical definition of the genus of an algebraic curve,
let us simply say that this is a birational invariant and that the equality between a

21Picard indeed uses the plural for Riemann’s existence theorems.
22Malheureusement, la méthode si simple de Riemann pour établir les théorèmes généraux
d’existence ne présente pas la rigueur qu’on exige aujourd’hui dans la théorie des fonctions. Elle
repose sur la considération du minimum de certaines intégrales tout à fait analogues à celles que
nous avons déjà étudiées dans le problème de Dirichlet et on lui a adressé les mêmes objections. Il
a donc fallu chercher dans une autre voie. M. Neumann et M. Schwarz y sont parvenus, chacun de
son côté.
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notion from birational geometry and a topological notion is one of the major ideas
of Riemann. It is interesting to read Picard’s footnote to the theorem:

This theorem was stated by Mr. Klein in his work which we quoted several times on the
Theory of Riemann surfaces. The method of proof ofMr. Klein is extremely interesting, even
though it does not pretend to be rigorous from the analytical viewpoint. The author borrows
the elements of his proof to a fictive electrical experience performed on the surface. Thus,
the existence of potential functions together with their various singularities is, in some way,
proved experimentally.23

Section5 of Chap.XVI concerns moduli of algebraic curves. Picard starts by
addressing a preliminary question raised by Riemann: Suppose we are given in the
complex plane of the variable z, the 2(m + p − 1) ramification points of a Riemann
surface of genus p with m sheets. (The count was carried on in §19 of Chap.XIII of
Picard’s treatise.) The question is to find the number of such surfaces. Picard notes
that this number is finite, and thatHurwitz found it for small values ofm. The question
then is to find the number of arbitrary parameters on which a Riemann surface of
some fixed genus p “essentially” depends. This is the famous moduli problem raised
by Riemann and solved in a satisfactory manner by Teichmüller in his seminal paper
[108]. Picard describes two methods, which are both due to Riemann, for computing
these moduli. One of them relies on the Riemann–Roch theorem, and the other one
uses a conformal representation of a Riemann surface onto a polygon, using an
integral of the first kind, and a count of the number of periods of such integrals. The
result of each of these methods is Riemann’s count of the number of moduli, that is,
3p − 3, for a closed surface of genus p.

Picard concludes this important chapter by explaining how these ideas are used
in the conformal representation of multiply-connected surfaces.

Picard-Simart

Wenow consider Picard and Simart’sThéorie des fonctions algébriques de deux vari-
ables indépendantes (Theory of algebraic functions of two independent variables)
[83], a treatise in two volumes, published in 1897 and 1906 respectively. The level of
difficulty is higher than most of the other French treatises of the same period on the
same subject, and the topics treated are more specialized. The introduction in each
volume is written by Picard. In the introduction to the first volume, Picard declares
that since a long time he had the intention to resume his ancient research on algebraic
functions of two variables and to present them in a didactical form. He writes that he
realized that, for more clarity, it was necessary to take into account the classical work

23Ce théorème a été énoncé par M. Klein dans son ouvrage déjà bien des fois cité sur la Théorie des
surfaces de Riemann. Lemode de démonstration deM.Klein est extrêmement intéressant, quoi qu’il
ne prétende pas à être rigoureux au point de vue analytique. C’est à une expérience électrique fictive
faite sur la surface que l’illustre auteur emprunte les éléments de ses démonstrations. L’existence
des fonctions potentielles avec leurs singularités diverses se trouve ainsi démontrée en quelque sorte
expérimentalement.
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of Mr. Noether as well as several works done in Italy on the same subject. The book
contains indeed sections on invariants of algebraic surfaces and integrals of total
differentials, including a study of the invariants introduced by Clebsch and Noether,
and an exposition of the works of Castelnuovo and Enriques. Picard declares that his
co-author and himself by all means “do not have the pretentiousness of going deeply
into all the questions that are addressed in this “very difficult theory,” but that their
unique goal is “to give the state of the art on a question that deserves the effort of
several researches.”24

In the first volume, the authors develop Riemann’s ideas on integrals of Abelian
differentials and onRiemann surfaces, from the topological viewpoint. The title of the
first chapter is On multiple integrals of functions of several variables. The theories of
multiple integrals and integrals of total differentials constitute a link between several
questions addressed in this treatise. They are generalizations of the Abelian integrals
that were studied byRiemann, and they lead Picard and Simart to study hypersurfaces
in a five-dimensional space. This is why the authors are led, in Chap.2, to questions
of topology in an n-dimensional space. Indeed, the second chapter is dedicated to
geometry of situation (topology). By the timePicard andSimart’s treatisewaswritten,
Poincaré had already published his famous paper with this title, two years before, in
the Journal de l’École Polytechnique [87]. Picard and Simart show in particular that
the genus of a Riemann surface is determined by the number of linear independent
integrals of the first kind on such a surface. At the beginning of this chapter, they
write (p. 19):

This theory was founded by Riemann, who gave the name. In his study of Abelian functions,
the great geometer considers only two-dimensional spaces, but later on he generalized his
researches to an arbitrary number of dimensions, as is shown by his notes published after
his death in the volume containing his Complete Works. Independently of Riemann, Betti
studied various orders of connectivity in n-dimensional spaces, and he published a funda-
mental memoir on this subject.25 In his memoir on algebraic functions of two variables, Mr.
Picard showed the usefulness of such considerations in the study of algebraic surfaces. Very
recently, Mr. Poincaré26 took up in a general manner this question of Analysis situs, and
after completing it and making more precise the results obtained by Betti, he drew atten-
tion to the considerable differences that the theories present, the two-dimensional and the
higher-dimensional ones.27

24Nous n’avons certes pas la prétention d’approfondir toutes les questions qui se posent dans cette
théorie difficile; notre seul but est de donner une idée de l’état actuel de la science sur un sujet dont
l’étude mérite de tenter l’effort de nombreux chercheurs.
25Annali di Mathematica, t. IV (1870–71).
26Journal de Mathématiques (1899).
27Cette théorie a été fondée par Riemann, qui lui a donné ce nom; dans ses études sur les fonctions
abéliennes, le grand géomètre ne considère que les espaces à deux dimensions, mais il a ensuite
généralisé ses recherches pour un nombre quelconque de dimensions, comme le montrent les notes
publiées après sa mort dans le volume renfermant ses œuvres complètes. Indépendamment de Rie-
mann, Betti avait de son côté étudié les divers ordres de connexion dans les espaces à n dimensions,
et publié un mémoire fondamental sur ce sujet. Dans son mémoire sur les fonctions algébriques,
M. Picard avait montré l’intérêt que présentent des considérations de ce genre dans l’étude des
surfaces algébriques. Tout récemment, M. Poincaré a repris d’une manière générale cette question

http://dx.doi.org/10.1007/978-3-319-60039-0_2
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Fig. 3 Simple closed curves on surfaces, from the treatise by Picard and Simart [83]

On p. 22 of the same volume, the authors consider a Riemann surface as “a
2-dimensional manifold in 3-dimensional space,” allowing the surfaces to traverse
each other. The authors show that a surface defined by algebraic equations and
inequalities is necessarily orientable. They introduce boundaries, Betti numbers, and
their relations with multiple integrals. Homotopy classes of simple closed curves on
orientable topological surfaces are drawn (cf. Fig. 3). The authors prove, at the end
of Chap.2, that for a general closed “multiplicity” (a word used by Riemann), the
first and the last Betti numbers are equal, which is a special case of the result of
Poincaré saying that two Betti numbers which are equidistant from the extreme ones
are equal.

The 3rd chapter is dedicated to the extension of Cauchy’s theorem to double
integrals of functions of two variables, an extension due to Poincaré, and to residues
of double integrals of rational functions. The 4th chapter concerns the reduction of
singularities of an algebraic surface, and the study of its topological invariants. The
authors prove in particular that any algebraic surface is birationally equivalent to a
nonsingular surface embedded in the 5-dimensional space. Chapters5 and 6 concern
integrals of total differentials, and Chap. 7, double integrals.

In Volume II of the treatise, published nine years after the first one, the authors
present the recent results, obtained by Picard, Castelnuovo, Enriques and others,
on questions that were already addressed in the first volume and their extensions. In
particular, the reduction theory for singularities of an algebraic surface is revisited, as
well as the theory of double integrals of the second kind, in particular, their invariants
and their periods.

(Footnote 27 continued)
dans l’Analysis situs, et, après avoir complété et précisé les résultats obtenus par Betti, a appelé
l’attention sur les différences considérables que présentent ces théories, suivant qu’il s’agit d’un
espace à deux dimensions ou d’un espace à un plus grand nombre de dimensions.

http://dx.doi.org/10.1007/978-3-319-60039-0_2
http://dx.doi.org/10.1007/978-3-319-60039-0_7
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Appel-Goursat-Fatou

Riemann surfaces are also thoroughly studied in the first volume of the treatise
Théorie des fonctions algébriques et de leurs intégrales et des transcendantes qui
s’y rattachent (Theory of algebraic functions and their integrals, and their related
transcendentals) [6] byAppell, Goursat and Fatou,which appeared in 1929. In reality,
the treatise is a revised edition, by Fatou, of the treatise [4] by Appell and Goursat.
Fatou was at the same time amathematician and an astronomer. In 1906, he defended
a thesis entitled Séries trigonométriques et séries de Taylor (Trigonometric series
and Taylor series), [29, 30], whose subject is Lebesgue’s integration theory, which
in some sense is a refinement of Riemann’s integration theory (see Sect. 5 below).
It is in this thesis that we find the famous Fatou Lemma (also called the Fatou-
Lebesgue Lemma) on the comparison between the integral of a lower limit of positive
measurable functions and the lower limit of their integrals. The lemma is a key
element in the proof of the Dominated Convergence Theorem. In the same year,
Fatou started his work on the iteration of rational maps of the plane, a work that was
revived in the last two decades of the twentieth century by Sullivan, Thurston and
others. Fatou also worked on the dynamics of transcendental functions.

The title of the first volume of the treatise by Appell, Goursat and Fatou is Étude
des fonctions analytiques sur une surface de Riemann (Study of analytic functions on
a Riemann surface) [6]. In that treatise, Riemann surfaces are still represented, like in
the 19th-century treatises, in an anthropomorphic fashion, (usingWeyl’s expression;
see Sect. 2 of the present article). Figure4 is extracted from that volume, and is
already contained in the first edition by Appell and Goursat (Fig. 1 in Sect. 2 above).
The authors declare, concerning the surface considered: “This surface is analogous
to that represented in Fig. 10, with the difference that, in reality, the two leaves are
infinitely close and the apertures are infinitely narrow.

Chapter III of this volume is entitled Connexion des surfaces à deux feuillets.
Périodicité des intégrales hyperelliptiques (Connectivity of two-sheeted surfaces
and periodicity of hyperelliptic integrals). The authors start by saying (p. 99):

In what follows, we consider surfaces as leaves without thickness, in such a way that a point
or a line drawn on that surface will be visible for a observer situated on one side or the other.
These surfaces will be considered as perfectly elastic and rip-stop.28

Halphen

Among the other treatises that are related toRiemann surfaces,wementionHalphen’s
Traité des fonctions elliptiques et de leurs applications (A treatise on elliptic fonc-
tions and their applications) in 3 volumes, published in 1886, 1888 and 1891 [41].

28Dans ce qui suit, nous considérons des surfaces comme des feuillets sans épaisseur, de sorte qu’un
point ou une ligne tracée sur la surface seront visibles pour un observateur placé d’un côté ou de
l’autre. Les surfaces seront en outre regardées comme parfaitement élastiques et indéchirables.

http://dx.doi.org/10.1007/978-3-319-60039-0_10
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Fig. 4 A picture from the treatise by Appell, Goursat and Fatou [6]. One can read in the text above
the figure: “This surface is analogous to the one presented in Fig. 10, with the difference that, in
reality, the two sheets are infinitely close, etc.,” and, below the figure: “We have represented the
surface in the way an observer standing on the upper sheet would see it.”

This treatise had a certain impact on students in algebra and analysis. Georges-Henri
Halphen, was a graduate of the École Polytechnique,29 and he started with a career
in the army. He submitted a doctoral dissertation on 1878, titled Sur les invariants
différentiels (On differential invariants) [40], in which he determined the invariants
of planar or skew curves under projective transformations. His thesis committee con-
sisted of Hermite, Bouquet and Darboux. Haplhen participated to the 1870 French-
German war. In 1872, he was appointed répétiteur30 at the École Polytechnique. He
was a specialist, among other things, of differential invariants, elimination theory,
and singularities of algebraic curves. Picard, in biography of Halphen [82], writes
the following (p. x of the Introduction):

Riemann, in his theory of Abelian functions, had introduced the major notion of genus of
elliptic curves, and he classified them into different classes, two curves being in the same
class whenever there is a uniform correspondence between them. The famous geometer,
who liked the great horizons, passed quickly on more than one difficult point, in particular,
for what concerns higher singularities. Halphen gave a general formula, which applies to
all cases, for the determination of the genus of an algebraic curve. Then, passing to the
study of curves belonging to the same class, he went deeper into a remarkable proposition of

29We remind the reader that the École Polytechnique is a military school.
30A kind of a teaching assistant.

http://dx.doi.org/10.1007/978-3-319-60039-0_10
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Mr. Nœther according to which one may find in every class curves that have only ordinary
singularities [...]31

The first part of Halphen’s treatise concerns the general theory of elliptic func-
tions. The second part makes this treatise special compared to the other treatises
on the same subject: it concerns the applications of elliptic functions to various
branches of mathematics and physics. The subtitle of that volume is Applications
à la mécanique, à la physique, à la géodésie, à la géométrie et au calcul intégral
(Applications to mechanics, physics, geodesy, geometry and integral calculus). It
was known since the eighteenth century, that is, since the birth of the theory of ellip-
tic functions, that these functions have many applications in physics. It suffices to
recall in this respect that these functions are in some sense generalizations of the
familiar trigonometric functions, and that they can be used to represent a large class
of periodic phenomena. For instance, whereas the small oscillations of a pendulum
are represented by the sine functions (which is the inverse function of the elliptic

integral
∫ x

0

dt√
1 − t2

), for large oscillations, one needs (inverses of) more general

elliptic integrals. By the time of Riemann, elliptic integrals were used in problems of
gravitation and electromagnetism.We recall in this respect that the famous treatise of
Legendre, Exercices de calcul intégral (Exercises of integral calculus) [63] contains
a substantial part on elliptic integrals and their applications to problems in geometry
and mechanics. We also note that the subtitle of the first volume of Legendre’s Traité
des fonctions elliptiques et des intégrales eulériennes (Treatise on elliptic functions
and Eulerian integrals) [64] is: Contenant la théorie des fonctions elliptiques et son
application à différents problèmes de géométrie et de mécanique (Containing the
theory of elliptic functions and its application to various problems of geometry and
mechanics). One may also mention in this respect that expressions of the lengths
of arcs of an ellipse (which are precisely given by elliptic integrals) are obviously
useful in celestial mechanics, since Kepler’s first law says that orbits of planets in
the solar system are ellipses with the Sun at one of their two foci. His second law
says that a segment joining a planet and the Sun sweeps out equal areas during equal
intervals of time. We also recall that Gauss was also an astronomer, and his interest
in elliptic functions was motivated by his work on the trajectories of planets. Finally,
Abel’s 1827 famous paper on elliptic functions that we already mentioned, starts by
mentioning the “beautiful properties” of Abelian functions “and their applications.”
He writes ([1] p. 101):

Since a long time, the logarithmic functions, and the exponential and circular functions were
the only transcendental functions that attracted the attention of the geometers. It is only in

31Riemann, dans sa théorie des fonctions abéliennes, avait introduit la notion capitale du genre des
courbes algébriques, et partagé celles-ci en différentes classes, deux courbes étant de lamême classe
quand elles se correspondent uniformément. L’illustre géomètre, qui aimait les grands horizons,
avait peu insisté sur plus d’un point difficile, en particulier sur ce qui concerne les singularités
élevées. Halphen donne une formule générale, applicable à tous les cas, pour la détermination du
genre d’une courbe algébrique; puis, passant à l’étude des courbes d’unemême classe, il approfondit
une proposition remarquable donnée par M. Noether, d’après laquelle on peut trouver dans toute
classe des courbes n’ayant que des singularités ordinaires [...].
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recent times that some other functions started to be considered. Among them one has to
distinguish the so-called elliptic functions, at the same time because of their beauty and of
their use in the various branches of mathematics.”32

The applications to geodesy mentioned by Halphen concern the geodesics on an
ellipsoid of revolution whose ratio of major to minor axis is close to 1. Such a body
is a representation of the shape of the Earth. It is also well known that Gauss was
highly interested in geodesy. The applications of elliptic functions to geodesy were
also considered by Jacobi in his paper [53]. In that paper, Jacobi solves a problem in
geodesy which was addressed by Gauss. More details on elliptic functions are given
in Chap.1 of the present volume [76].

The third volume of Halphen’s treatise contains fragments on elliptic functions
which were collected after Halphen’s death and published by Stieltjes.33 The volume
also contains Picard’s biography of Halphen [82] which we already quoted. Picard
declares there that Halphen was “one of the most eminent geometers in Europe.”

Tannery and Molk

We now review the 4-volume treatise Éléments de la théorie des fonctions elliptiques
(Elements of the theory of elliptic functions) [107] byTannery andMolk.A fewwords
on the authors are in order.

Jules Tannery (1848–1910) was a geometer, philosopher and writer. He edited the
correspondence between Lagrange and d’Alembert.

In 1874, Tannery defended a doctoral dissertation whose title is Propriétés des
intégrales des équations différentielles linéaires à coefficients variables (Properties
of the integrals of linear differential equations with variable coefficients) [105] and
[106]. The thesis committee consisted of Hermite, Briot and Bouquet. The disserta-
tion starts with the following:

The study of functions of an imaginary variable defined by an equation, a study which was
substituted to the research, often unworkable, of the explicit form of these functions, pro-
foundly renewed analysis in this century. It is well known that the glory of having shown
this new way goes to Cauchy. The works of Mr. Puiseux on the solutions of algebraic equa-
tions, those of Messrs. Briot and Bouquet on doubly periodic functions and on differential
equations, have largely proved the fertility of the idea of Cauchy in France. In Germany, the

32Depuis longtemps les fonctions logarithmiques, et les fonctions exponentielles et circulaires ont
été les seules fonctions transcendantes qui ont attiré l’attention des géomètres. Ce n’est que dans les
derniers temps qu’on a commencé à en considérer quelques autres. Parmi celles-ci il faut distinguer
les fonctions, nommées elliptiques, tant pour leurs belles propriétés analytiques que pour leur
application dans les diverses branches des mathématiques.
33Thomas Johannes Stieltjes (1856–1894) was Dutch but he decided to live in France. He acquired
the French citizenship and in 1886 he became professor at the Faculté des Sciences de Toulouse.
Stieltjes is known for several works on analysis and number theory, in particular on the so-called
Stieltjes integral, elliptic functions, Dirichlet series, and is considered as the founder of the analytic
theory of continued fractions. Stieltjes is also remembered for a failed attempt to prove the Riemann
hypothesis, which he announced in his paper [104].

http://dx.doi.org/10.1007/978-3-319-60039-0_1
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beautiful discoveries of Riemann have accelerated the scientific movement which, since that
time, did not slow down.

Those who love science and who have too many reasons for distrusting their invention
capacities, still have a useful role to play, that of clarifying the others’ researches and dis-
seminating them. This is what I tried to do in the present work.34

There is a beautiful biography of Tannery by Picard [84]. The latter, as the secré-
taire perpétuel of the Académie des Sciences had to write several such biographies
and reports, and many of them give us a lively image of the French mathematical life
in France at his epoch. In his report on Tannery, describing his teachers—Puiseux,
Bouquet and Hermite—at the École Normale, Picard writes, concerning the latter:

What stroke Tannery above all in the teaching of Hermite is that he was able to give to
mathematical abstractions color and life. He used to show how functions transform into one
another, like a naturalist would do, in recounting the evolution of human beings.35

Jules Tannery was the thesis advisor of Hadamard. His brother, Paul Tannery, (1843-
1904) was also a mathematician and (probably the most important French) historian
of mathematics.

Jules Molk was Alsacian. He was born in 1857 in Strasbourg, where he stud-
ied at the Protestant Gymnasium founded by Jean Sturm in 1538. From 1874 to
1877 he studied at Zürich’s Eidgenössische Technische Hochschule. His teachers
there included Méquet, Geiser and Frobenius. After obtaining his diploma he went
to Paris, where he followed courses by Hermite, Bouquet, Bonnet, Tisserand and
Tannery. In 1882, he moved to Berlin, where he followed the courses of Weierstrass,
Helmholtz, Kirchhoff and Kronecker. He obtained his doctorate in 1884 in Berlin
under Kronecker. The title of his doctoral dissertation is: Sur une notion qui com-
prend celle de la divisibilité et sur la théorie générale de l’élimination (On a notion
which included that of divisibility and on the general theory of elimination). The dis-
sertation was published in Acta Mathematica, [68]. In the introduction, Molk writes
that his goal is to unravel some points of Kronecker’s memoirGründzüge einer arith-
metischen Theorie der algebraischen Grössen (Principles of an arithmetic theory of
algebraic magnitudes) [51] published in 1882. He declares that this memoir seems to
have been designed to give a new direction to algebra, and that his aim in his thesis is

34L’étude des fonctions d’une variable imaginaire définies par une équation, étude qui s’est substi-
tuée à la recherche, souvent impraticable, de la forme explicite de ces fonctions, a, dans notre siècle,
profondément renouvelé l’analyse. C’est, comme on le sait, à Cauchy que revient la gloire d’avoir
frayé cette voie nouvelle. Les travaux de M. Puiseux sur la recherche des racines des équations
algébriques, ceux de MM. Briot et Bouquet sur les fonctions doublement périodiques et sur les
équations différentielles ont, en France, amplement prouvé la fécondité de l’idée de Cauchy. En
Allemagne, les belles découvertes de Riemann ont accéléré un mouvement scientifique qui, depuis
lors, ne s’est pas ralenti.

Ceux qui aiment la science et qui ont trop de raisons pour se défier de leurs facultés d’invention,
ont encore un rôle utile à jouer, celui d’élucider les recherches des autres et de les répandre: c’est
ce que j’ai essayé de faire dans ce travail.
35Ce qui frappa surtout Tannery dans l’enseignement d’Hermite, c’est qu’il donnait aux abstractions
mathématiques la couleur et la vie; il montrait les fonctions se transformant les unes dans les autres,
comme l’eût fait un naturaliste retraçant l’évolution des êtres vivants.



Riemann Surfaces: Reception by the French School 265

to call the geometers to go thoroughly into Kronecker’s difficult memoir. Molk died
in Nancy in 1914. He was a specialist of elliptic functions, but he is mostly known
for his collaboration with Klein to the edition of an encyclopedia of mathematics,
which appeared in two versions, a German and a French one. The first volume of
the German edition appeared in 1898 (Teubner, Leipzig) and the first volume of the
Frenchone in 1904 (Gauthier-Villars, Paris). TheGermannameof the encyclopedia is
Encyklopädie der mathematischen Wissenschaften mit Einschluss ihre Anwendungen
(Encyclopedia of mathematical sciences including their applications). The French
title is Encyclopédie des sciences mathématiques pures et appliquées (Encyclope-
dia of the pure and applied mathematical sciences). The French version comprises
22 volumes. More than a hundred mathematicians and physicists from Germany,
France, Italy and England collaborated to the project. Their names include Abraham,
Appell, Bauer, Borel, Boutroux, É. Cartan, Darwin, Ehrenfest, Enriques, Esclangon,
Fano, Fréchet, Furtwängler, Goursat, Hadamard, Hilbert, Klein, Langevin, Montel,
Painlevé, Pareto, Perrin, Runge, Schoenflies, Schwarzschild, Sommerfeld, Steinitz,
Study, Vessiot, Zermelo, and there are others. The publication of the encyclopedia
is a remarkable example, at the turn of the twentieth century, of a trans-border col-
laboration between mathematicians, especially French and German. The publication
date also corresponds to the period where the International Congresses of Mathe-
maticians started. The French edition is modeled on the German one, but it is not an
exact translation of it. It contains several original articles, and several of the German
articles, in the French version, are expanded. It is interesting to quote some excerpts
from a letter from Molk to Poincaré, sent on December 12, 1901; cf. [90] pp. 188–
189, in which he describes the project. This is also a testimony of the collaboration
between mathematicians of the two countries.

Our Encyclopedia will not be a translation of the German edition; it will be a new edition
of that encyclopedia. We shall be free to insert new articles, to present the German articles
according to our French habits, to add to them notes and complements. Each article will be
published with the mark: exposed by (the French author) following (the German author), and
the notes [or complemets] added by the French author will be, furthermore, mentioned in a
special way, with the goal of reserving our rights, in the case where the French edition will
be followed – which is most probable – by an English-American one, or a German one, or
even other editions. [...] The Germans have very remarkable qualities in careful scholarship;
we shall take advantage of those that they highlight in their German edition. Their exposition
qualities may be less remarkable; we shall try to do our best in this regard. We shall may
be succeed in helping them: this would be something! In any case, it would be dangerous to
not to have in our country a research tool which is analogous to the one which is spreading
more and more rapidly in their country [...] But there are also articles which manifestly are
missing in the German edition. For instance, researches on the law of great numbers are
hardly mentioned. Here, an additional article seems to be appropriate; the researches of Mr.
Darboux, your own researches, those of Hadamard, should find their place in our edition.
You will tell me if it is convenient for you to talk yourself about this subject, or if you find
it appropriate to entrust this article to others.36

36NotreEncyclopédie ne sera pas une traduction de l’édition allemande; ce sera une nouvelle édition
de cette encyclopédie. Nous serons libres d’intercaler de nouveaux articles, d’exposer, d’après nos
habitudes françaises, les articles allemands, d’y ajouter des notes, des compléments. Chaque arti-
cle sera publié avec lamention: exposé par (l’auteur français) d’après (l’auteur allemand), et les notes
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Unfortunately, the French edition was interrupted during the First World War and
the project was never resumed. We refer the reader who wishes to know more about
this project to the article [31] by H. Gispert.

Wenow review the four volumesof the treatiseÉléments de la théorie des fonctions
elliptiques by Tannery andMolk [107]. They appeared in 1893, 1896, 1898 and 1902.

In the introduction, the authors explain why they “dared writing a book on elliptic
functions, such a short time after the publication of Halphen’s treatise.” They say that
they do not have any pretension of replacing or equating the work of the Master. But
Halphen’s work remained incomplete after his early death, and the missing part was
long-awaited from the public. Tannery and Molk declare that the fragments edited
by Stieltjes are difficult to be read by students and that their treatise is meant to
compensate this fact. They write that their aim is that the student, after reading this
treatise, becomes able to work on the applications—in particular those contained in
the second volume of Halphen’s treatise, and of reading without difficulty Schwarz’s
Formeln und Lehrsäte zum Gebrauche der elliptischen Functionen (Formulae and
propositions for the use of elliptic functions)37 which is based on the lessons and
notes of Weierstrass, the fundamental memoirs of Abel and Jacobi, and the rest of
the “rich and admirable literature on elliptic functions,” in particular the researches
of Kronecker and Hermite.

The first volume of the treatise by Tannery and Molk contains an exposition of
infinite series and sums, with details on results of Weierstrass. The authors declare
right at the beginning that they assume that Cauchy’s theory of line integrals is
known. The second volume is an exposition of ϑ functions and the general results
on doubly periodic functions, deduced from the work of Hermite. The third volume
is concerned with the problem of inversion of elliptic functions. One may recall
here that the inverse functions of elliptic integrals are considered in some sense as
a generalization of the familiar trigonometric functions. (The reader might recall

that the the integral
∫ x

0

dt√
1 − t2

represents the inverse sine function.) The fourth

(Footnote 36 continued)
[ou compléments] ajoutées par l’auteur français seront, en outre, mentionnées d’une façon spéciale,
afin de réserver nos droits, dans le cas où à l’édition française succéderait, ce qui est fort probable,
une édition anglo-américaine, une nouvelle édition allemande, ou d’autres éditions encore. [...] Les
Allemands ont des qualités d’érudition minutieuses très remarquables; nous profiterons de celles
qu’ils ont mises en évidence dans leur édition allemande. Leurs qualités d’exposition sont peut-
être moins remarquables; nous essayerons de faire mieux à cet égard. Nous parviendrons peut-être
ainsi à leur rendre service; c’est quelque chose. Il serait en tous cas dangereux de ne pas avoir
chez nous un instrument de recherche analogue à celui qui se répand de plus en plus rapidement
chez eux. [...] Mais il y a aussi des articles qui manquent manifestement dans l’édition allemande.
C’est à peine si l’on mentionne, par exemple, les recherches sur les lois des grands nombres. Là
un article additionnel semblerait peut-être indiqué; les recherches de M. Darboux, les vôtres, celles
d’Hadamard devraient trouver place dans notre édition. Vous me direz s’il vous convient d’en parler
vous-même, ou si vous croyez bon de confier à d’autres cet article.
37Schwarz’s treatise was also published in French, under the title Formules et propositions pour
l’emploi des fonctions elliptiques, d’après des leçons et des notes manuscrites de M. K. Weierstrass,
translated by Henri Padé, Gauthier-Villars, Paris, 1894. The translation was offered to Charles
Hermite at the occasion of his seventieth birthday.
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chapter of that volume is concerned with the applications. The authors declare in the
introduction to Volume I (which serves as an introduction to the whole series) that the
notation they use is that ofWeierstrass. The fourth volume endswith a reprint of a long
letter (9 pages), dated September 24, 1900, from Hermite to Tannery, preceded by a
commentary (12 pages) by the authors on that letter. Hermite, in his letter, explains
to the authors (at their demand) a result which he had published without proof in
1858, in two articles both entitled Sur la résolution de l’équation du cinquième degré
[42, 43]. The authors refer to Hermite’s result in their treatise, but they rely there on
proofs by Weber and Dedekind, instead of the one of Hermite which was difficult to
follow. They declare in their commentary that the reason for which they reproduce
Hermite’s proof is its beauty, and this explains the inclusion of that letter.

Jordan

We shall review Jordan’sCours d’analyse de l’École Polytechnique (Course in analy-
sis of the École Polytechnique) [57] in three volumes, entitled respectively Calcul
différentiel (Differential calculus), Calcul intégral (Integral calculus) and Equations
différentielles (Differential equations). The first edition was published in 1882, 1883
and 1887 respectively. The courses given at the École Polytechnique had a large
impact, because several French mathematicians were trained at that school. On the
other hand, theCours were intended to the students and had to comply with a specific
official program, therefore they cannot be considered as a testimony of the research
inmathematics that was conducted at that time. Still, theCours by Jordan, like that by
Hermite which we also consider below, contains enough interesting material related
to the ideas of Riemann.

Jordan has been himself a student of theÉcole Polytechnique (graduating in 1855).
In 1860, he defended a doctoral dissertation entitled Sur le nombre des valeurs des
fonctions (On the number of values of functions) [56]. The jury consisted ofDuhamel,
Serret and Puiseux. His second thesis38 is entitled Sur les périodes des fonctions
inverses des intégrales des différentielles algébriques. (On the periods of inverse
functions of integrals of algebraic differentials). The subject was proposed to him
by Puiseux. Jordan is mostly known for his results on topology and group theory,
but he also worked on the theory of functions of a complex variable, and he was
well aware of Riemann’s work. Furthermore, he was among the first mathematicians
to understand the impact of Galois’ ideas, and he was also among the first who
introduced group theory in the study of differential equations. Jordan was appointed
examiner at the École Polytechnique in 1873, and then professor, at the chair of

38The French doctorate (until a reform which took place at the end of the 1980s) always involved
a second thesis, on a subject which was proposed by the jury, about 3 months before the date of
the thesis defense. The work done for that second thesis was not necessarily original, but it was
an occasion for the student to familiarize himself with a subject which was not his main research
subject.
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analysis, in 1876. His last years were saddened by the loss of three of his sons in
World War I.

Part of Jordan’s Cours d’analyse de l’École Polytechnique is related to Riemann’s
theory. In fact, Jordan’s treatise is concerned essentially with the (new) foundations
of real analysis, but half of Volume II is on complex analysis. This volume is entitled
Calcul intégral (Integral calculus). Chapter V (pp. 305–376) is on complex integra-
tion, Chap. VI (pp. 378–621) on elliptic functions, and Chap. VIII (pp. 619–693) on
Abelian integrals.

Chapter V is an exposition of Cauchy’s theory of integration, included in the
new rigorous setting of analysis, with applications to algebraic functions. The theory
is developed in the complex plane, and Riemann surfaces are not introduced. We
refer the reader to Chap.7 [77] of the present volume for a discussion of the relation
between Cauchy’s and Riemann’s theories.

In Chap. VI, Jordan studies elliptic functions. He starts with the fact they have at
most two (independent) periods. Group theory (in the language of “substitutions”) is
introduced in the study of linear transformations, and the language of determinants is
used. Elliptic functions are considered, as in the modern point of view, as defined on
the torus. Hermite’s decomposition of elliptic functions into elementary functions is
presented. This is an analogue of the decomposition theory of rational functions, and
it is used in integration. Operations on elliptic functions (multiplication and division)
are discussed in detail.

We now review Chap. VIII, on Abelian integrals. Jordan starts with a proposition
which he attributes to Lüroth, concerning a canonical way of associating to an alge-
braic function a cut system of curves in the plane. He then introduces the connectivity
of a Riemann surface in terms of such a canonical cut systems. The curves of such
a system are called retrosections. The fact that a simple closed curves on a simply
connected surface is homotopic to a point (Jordan says: “is equivalent to zero”) is
presented as a theorem. The definition of the genus of a surface is also given. The
adjective monodromic (“one-path”) for functions on a piece of a Riemann surface
is introduced. A synectic function is monodromic with no critical point. A function
is said to be uniform if it is synectic on the whole surface. Integrals of functions on
Riemann surfaces are then introduced and studied. Using integrals, a function which
is synectic on the whole Riemann surface is shown to be constant. A general expres-
sion is given for functions which are uniform on a Riemann surface and whose only
critical points are poles. Abelian integrals are then studied, as integrals of the form∫

Fdz where F is a rational function of two variables. Periods of these integrals are
introduced, as integrals along certain paths. The number of times a rational function
F takes a given value is independent of that value and is equal to the number poles
of the function. From that, a proposition, called Abel’s theorem, on the determina-
tion of Abelian integrals along some paths, is proved. Jordan gives then a theorem
saying that an Abelian integral is determined up to a constant by some periods he
calls the first p cyclic periods, and the location of its critical points together with
some finite part of its expansion at each such point. Integrals of the first, second and
third kind are introduced, and a strong form of Riemann’s existence theorem, which
Jordan calls the Riemann–Roch theorem, is obtained. ϑ functions and the inversion
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problem are introduced, and the solution of the inversion problem is presented. In
particular, an expression of elementary integrals of the second and third type in terms
of ϑ functions are given.

Appell and Lacour

In the treatise Principes de la théorie des fonctions elliptiques et applications (Prin-
ciples of the theory of elliptic functions and applications) [5] (1897) by Appell and
Lacour, the ideas of Riemann are hardly mentioned, but we include it in our series of
commentaries because this treatise complements naturally those that we considered
before.

Émile Lacour (1854–1913) was one of those good mathematicians who taught in
the French lycées, namely, at the famous lycée Saint-Louis and at the fancy Parisian
lycée Janson-de-Sailly. In 1895, he defended a thesis entitled Sur des fonctions d’un
point analytique à multiplicateurs exponentiels ou à périodes rationnelles (On func-
tions of an analytic point with exponential multipliers or with rational periods) [60].
The second thesis concerns the heat equation. The theory of Riemann surfaces of
algebraic curves is used in this dissertation. The “analytic points” that are mentioned
in the title are points on the Riemann surfaces of the functions considered. The “mul-
tipliers” are related to Riemann’s theory of Abelian integrals, and they refer to the
factors with which such an integral is multiplied when one traverses the cuts of a Rie-
mann surface on which it is defined. In other words, they are periods. The functions
considered (those that are referred to in the title) are generalizations of functions
introduced by Appell which are analogues of the so-called doubly periodic functions
of the third type. On of the simply connected surfaces obtained—in the tradition of
Riemann—by cutting the Riemann surface along 2p arcs called “cuts”, the multi-
plicative constants of the functions along the cuts are exponential, with an exponent
being a linear function of p Abelian integrals of the first kind. The thesis contains
results that make relations between, on the one hand, theorems of Abel on the zeros
and singularities of algebraic functions and ofAppell on the so-called “functionswith
multipliers,” and on the other hand, results of Riemann on ϑ functions. We recall
by the way that Riemann’s solution of the inversion problem, given in his paper on
Abelian functions, is based on the properties of the ϑ function in which the variables
are replaced by the corresponding integrals of the first kind. The resulting functions
become uniform when they are defined on their Riemann surfaces. In the last part of
his dissertation, Lacour shows that the new functions he introduces are solutions of
certain linear differential equations whose coefficients are rational functions.

In 1886, Lacour had Élie Cartan among his students, at the lycée Janson-de-Sailly.
At the same time, he taught at the Faculté des Sciences de Paris. In 1901, he held
the chair of differential and integral calculus at the University of Nancy, and he later
moved to the University of Rennes. After Lacour left Nancy, he was replaced there
by his former student Élie Cartan.
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Appell and Lacour conceived their treatise as an elementary introduction to the
subject, and as a preparation for the more advanced treatises (they refer to them as
the “great treatises”) of Briot-Bouquet, Halphen and Tannery-Molk. The treatise of
Appell and Lacour also includes simple applications to geometry, mechanics and
mathematical physics. The authors consider the theory of elliptic functions as a
“higher-order trigonometry,” in reference to the generalizations of the complex sine
and cosine functions.

Hermite

Toend this sequence of treatises,we say a fewwords on a treatise ofHermite,whowas
alreadymentioned several times in this chapter. This is hisCours d’analyse de l’École
Polytechnique. We first mention a few biographical facts on Hermite, extracted from
the Preface to Volume I of his collected works [49], written by Picard.

Charles Hermite (1822–1901) studied at the famous lycées Henri IV and Louis-
le-Grand. His teacher at Louis-le-Grand was Richard, who, fifteen years before, had
the young Galois as élève. Hermite, while he was still at Louis-le-Grand, used to go
to the nearby library, the famous Bibliothèque Sainte-Geneviève, to read Lagrange’s
Traité de la résolution des équations numériques. He bought with his savings, in
French translation, Gauss’s Recherches arithmétiques. Later on, Hermite used to say
that it wasmainly in these twoworks that he learned algebra. In 1842, at the age of 20,
Hermite entered the École Polytechnique, and the same year he published two papers
in the new journal Nouvelles annales de mathématiques. One of these papers is on
the impossibility of solving the fifth degree equation. A few months later, in January
1843, Hermite wrote to Jacobi, presenting his work on Abelian functions in which he
extends results of Abel on the division of the argument of elliptic functions.The next
year he sent another letter to Jacobi, on transformations on elliptic functions which
included results on ϑ functions. Jacobi was so pleased by the letters of the young
Hermite that he inserted them in his Collected Works. Later on, Hermite became
mostly interested in number theory, and elliptic and Abelian functions continued to
occupy his mind for the rest of his life. Jacobi’s Fundamenta nova were always on
his worktable. According to Picard, Hermite used to say that he will be until his last
day a disciple of Gauss, Jacobi and Dirichlet.

Hermite taught at the École Polytechnique and he wrote, like many other pro-
fessors at that school, a Cours d’analyse de l’École Polytechnique (1873) [44]. He
also taught at the University of Paris, and lecture notes from his teaching, for the
year 1882–1883, exist [45]. A large part of his course at the university is on elliptic
integrals. The topics include the rectification of the parabola, ellipse and hyperbola,
results of Fagnano, Graves and Chasles on arcs of ellipses whose difference is rec-
tifiable (see Chap.1 in the present volume for the work done on the rectifiability
of these curves), and hyperelliptic integrals. Several results of Chebyshev are also
presented together with Cauchy’s theory on the dependence of a path integral on the
homotopy class of the path. Riemann’s method for the construction of holomorphic
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functions is also discussed, together with Green’s theorem. Hermite also included in
his course Riemann surfaces associated to multi-valued functions, periods of elliptic
functions, doubly periodic functions, the transformation theory of elliptic functions,
the ϑ function and other functions introduced by Jacobi.

4 Simart’s Dissertation

Georges Simart (1846–1921) studied at the École Polytechnique. After that, he
became a mathematician but he also worked as an officer in the Navy.39 On the
cover page of his doctoral dissertation, he is described as Capitaine de vaisseau.40

On the one of his book with Picard, he is described as Capitaine de frégate41 et
répétiteur42 à l’École Polytechnique. His dissertation is entitled Commentaire sur
deux mémoires de Riemann relatifs à la théorie générale des fonctions et au principe
de Dirichlet (A commentary on two memoirs of Riemann relative to the general the-
ory of functions and to the principle of Dirichlet). It was defended on May 1, 1882,
with a jury consisting of Hermite (acting as the president), Darboux and Bouquet.
Simart had personal relationswith Picard. In the introduction toVolume I of hisTraité
d’analyse [79], Picard writes that the volume was proof-read by Simart, “a dedicated
friend and an invaluable collaborator” (un ami dévoué et un précieux collaborateur).
We already mentioned the treatise that Picard and Simart wrote together, the Théorie
des fonctions algébriques de deux variables indépendantes (Sect. 3). In the introduc-
tion to that work, Picard indicates that he wrote that book “with his friend, Georges
Simart, who had helped him a lot in his Traité d’analyse.”

Simart’s thesis is a commentary on the twomemoirs of Riemann on functions of a
complex variable, namely, his doctoral dissertation [92] and his memoir on Abelian
functions [94].

The first sentences of the thesis give us some hints on the status of Riemann’s
work among the French mathematicians at that epoch:

We know the magnificent results obtained by Riemann in his two memoirs on the general
theory of functions and on the theory of Abelian functions; but the methods he used, may be
too briefly presented, are poorly known in France. On the other hand, reading these memoirs
is particularly difficult and requires a heavy amount of work. Furthermore, the methods used
by the famous geometer, and in particular his use of the Dirichlet principle, gave rise to
several criticisms, whether in Germany or in France.43

39We remind the reader that the École Polytechnique is primarily a military school.
40A Captain in the Navy.
41A Frigate Captain. The progress is unusual because the rank of Capitaine de frégate is lower than
that of Capitaine de vaisseau.
42See Footnote 30. From 1900 to 1906, Simart worked as a répétiteur at the École Polytechnique.
43On connaît les magnifiques résultats auxquels Riemann est parvenu dans ses deux mémoires
relatifs à la théorie générale des fonctions et à la théorie des fonctions abéliennes; mais les méthodes
qu’il a employées, peut-être trop succinctement exposées, sont peu connues en France. La lecture
de ces mémoires est d’ailleurs singulièrement difficile et demande un travail approfondi. De plus,
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The author then declares that his exposition is based on the works published in
Germany by Königsberger, Neumann, Klein, Dedekind, Weber, Prym, Fuchs and a
few others.44 He declares that “reading thesememoirs requires a knowledge of the so-
called Riemann surfaces, whose use became classical in some German universities.”
He writes, at the end of the introduction, that at the moment he was achieving his
work, he learnt about the existence of a booklet byKlein45 inwhich the latter develops
Riemann’s ideas. Simart declares that Klein explains in that booklet that it is not
necessary that Riemann surfaces be coverings of the plane (“des surfaces à plusieurs
feuillets étendues sur le plan”), but that complex functionsmaybe studied on arbitrary
curved surfaces, in the same way as we do it on the plane. Simart also uses the work
of Puiseux. We refer the reader to the description of the work of Puiseux given in
Chap.7 of the present volume, [77].

At the beginning of the dissertation, Simart shows how a Riemann surface is
associated with an irreducible algebraic equation F(s, z) = 0 defining implicitly an
algebraic function s of z. This surface is obtained using the distribution of the critical
points and the poles, and it depends on the combinatorics of the (multi-)values of
the function s(z) at these points. This is considered as “the Riemann surface of the
function s.” This is the new domain on which the function s becomes uniform (that
is, no more multi-valued). The construction of the surface is described on pp. 5–7 of
the thesis. To the critical points (points z for which the given equation has multiple
roots s) are associated products of cyclic transformations (permutations) obtained by
winding around these values, in the tradition of Cauchy and Puiseux (see the review
in [77]). TheRiemann surface is obtained by gluing pieces of the complex plane using
this combinatorial data. The pieces constitute the various “sheets” of the Riemann
surface, which becomes a branched covering of the sphere. Each critical point gives
rise to a certain number of ramification points of the covering, their number depending
on the number of cyclic systems associated with the critical point. A ramification
point of order μ corresponds to a cyclic permutation of μ + 1 roots of the algebraic
equation. Examples of gluing patterns for the various sheets are represented in Fig. 5.
In this figure, the surface to the left (called Fig. 1 in the original drawing) represents a
critical point of order 3, having a unique cycle. It corresponds to a unique ramification
point of order 2. The surface in the middle (called Fig. 2) represents a critical point
of order 4 having two cycles. It corresponds to two ramification points of order 1
each. The surface to the right (called Fig. 3) represents a critical point of order 4
having three cycles. It corresponds to three ramification points, one of order 1, and
two others of order 0. The Riemann surface associated with the algebraic equation
satisfies the following properties:

(Footnote 43 continued)
les procédés employés par l’illustre géomètre, en particulier l’application qu’il a faite du principe
de Dirichlet, ont donné lieu à de nombreuses critiques tant en Allemagne qu’en France.
44Klein, in his Development of mathematics in the 19th century [59], gives a concise report on the
contribution of these authors to the diffusion of Riemann’s work.
45This should be Klein’s Über Riemanns Theorie der algebraischen Funktionen und ihrer Integrale
[58].
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Fig. 5 Picture from Simart’s thesis [103]

(1) Any rational function of s and z, when it is defined on the Riemann surface, is
also a uniform function of z.

(2) The various integrals of the function s on this surface differ by a constant.

The rest of Part I of the dissertation is also purely topological. Simart recalls
Riemann’s definition and classification of surfaces according to their connectivity,
and how an n + 1-connected surface may be transformed into an n-connected one
by performing cuts. He declares that this theory was outlined by Riemann, but that
the details were worked out by Königsberger. Simart then proves that a connected
(n + 1)-connected surface is transformed by an arbitrary cut into an n-connected
surface.

Part II of the dissertation concerns the study of the Laplace equation. We recall
that Riemann, at the beginning of his doctoral dissertation, showed that if a function
w = u + iv of a complex variable z = x + iy has the property that its derivative
is independent of direction, then its real and imaginary parts satisfy the Laplace
equation.This is oneof themajor tools thatRiemannuses in the rest of hiswork.Using
a system of coordinates that Riemann introduced in his dissertation and his memoir
on Abelian functions, Simart proves an extension of Green’s theorem to a region
contained in an arbitrary Riemann surface bounded by an arbitrary finite number of
curves. Riemann’s use of the Dirichlet principle relies on that theorem. Simart gives
the precise hypotheses on the functions which are concerned by Green’s theorem,
taking into account points of discontinuity and the points at infinity. The points of
discontinuity of a function u are arranged, following Riemann’s classification in §10
of his dissertation, into two species, according to whether the surface integral

∫ ∫ (
(
∂u

∂x
)2 + (

∂u

∂y
)2

)
dT

is finite or not on a piece of surface containing this point.
Simart proves the following theorem, which he attributes to Riemann (§10 of

Riemann’s dissertation):
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Let u be a function defined on a simply connected Riemann surface with boundary satisfying
the differential equation

∂2u

∂x2
+ ∂2u

∂y2
= 0

and suppose that the function satisfies furthermore the following conditions:

(1) The set of points where this differential equation is not satisfied has dimension ≤ 1.

(2) The number of points where u, ∂u
∂x , ∂u

∂y are discontinuous is finite.

(3) At these discontinuity points, the magnitudes ρ ∂u
∂x , ρ ∂u

∂y are infinitely small compared
with ρ, where ρ is the distance to the singular point.

(4) There are no isolated discontinuities of u which correspond to an instantaneous change
in value.

Then u as well as its partial derivatives are necessarily finite and continuous.

Simart then proves (§11 of Riemann’s dissertation) the uniqueness of a function
u satisfying the Laplace equation on the interior of a domain, with a given value on
the boundary.

Part III of Simart’s dissertation concerns the Dirichlet principle (§16–18 of Rie-
mann’s disssertation), in connection with Riemann’s determination of the functions
discussed in Part II. We recall that Riemann uses this principle in his proof of the so-
called Riemann mapping theorem, stated as follows (§21 of Riemann’s dissertation
and p. 78 of Simart’s dissertation):

Given a simply connected Riemann surface T with boundary, there exists a function ζ(z)
defined on this surface such that the image by ζ of T is the unit disc.

Part IV concerns Abelian integrals, as an approach to the Riemann existence
problem: “To determine a function knowing its ramification points, its discontinuity
points and the way in which it is discontinuous.” The analytic forms of the so-called
integrals of the first kind are given as well as the Riemann–Roch theorem.

More precisely, Simart addresses in this part the following two problems, for
which he gives a complete solution:

Problem 1 (p. 80) Given an irreducible algebraic equation F(s, z) = 0 defining a
multi-valued algebraic function s of z, find the associated Riemann surface, that is:

(1) determine the critical points of the function s, the number of ramification points
that are above these critical points, and the order of each of these ramification
points;

(2) transform this surface, using Riemann’s “cuts,” into a simply connected surface,
evaluate the number of cuts, and then determine the connection of the surface.

Problem 2 (p. 97) Let T be the closed surface associated with the function s(z)
defined in Problem 1, and assume it is 2p + 1-connected. Let T ′ be the simply
connected surface obtained from s using 2p cuts. Find a function w(z) which is
uniform on T , continuous on T ′ except at certain points and along certain lines, and
satisfying the following:
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(1) Along each cut, the difference of the function from one side of the cut to the
other is a constant; the real parts of these constants are given in advance.

(2) The function is discontinuous at a certain finite number of points, and at such
points it has a finite expression of the form

A log r + Br−1 + Cr−2 + · · ·

where the constants A, B, . . . are given and r is an arbitrary function of z which
at the given point is infinitely small of the first order.

(3) With the set of points in (2), the surface is no more closed, and one has to draw
new cuts joining these points to the boundary of the surface T ′. The difference
of the function w along both sides of each of these new cuts is constant for each
such cut and equal to 2π A.

In the solution of Problem 1, the Puiseux expansions and the techniques of the
Puiseux-Newton polygon are thoroughly used.

The second problem is one of the main problems that were addressed by Riemann
in his memoir on Abelian functions. The proof that Simart gives uses, in the tradition
of Riemann, the Dirichlet principle.

To each critical point corresponds a certain number of ramification points which
are determined by the system of circular points formed around that point. A ramifica-
tion point of orderμ is a point aroundwhichμ + 1 roots are permuted. A ramification
point of order 1 is a point around which 2 roots are permuted, and it is called a simple
ramification point. There is a relation between the order and the degree of a critical
point, and the orders of the corresponding ramification points above it. These con-
siderations are in the tradition of the work of Puiseux; cf. the exposition in Chap.7
of the present volume [77].

Simart’s dissertation is one of the important French writings that contributed to
the understanding of Riemann’s ideas by the French mathematicians.

5 Other French Dissertations and Other Works of Riemann

In this section,we reviewbrieflya fewotherworks done inFrance inwhich the authors
explain some major ideas of Riemann, including his work on the zeta function, on
minimal surfaces, and on integration.

The Zeta Function

Eugène Cahen, defended in 1895, at the Faculté des Sciences de Paris, a doctoral
dissertation titled Sur la fonction ζ(s) de Riemann et sur des fonctions analogues
(On Riemann’s ζ(s) function and on analogous functions) [21]. The dissertation is

http://dx.doi.org/10.1007/978-3-319-60039-0_7
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dedicated to a generalization of Riemann’s zeta function to functions of the form∑ αn

ns
, in particular for sequences αn which are periodic, and to the development

of a theory of Dirichlet series. The dissertation was criticized as being faulty, but
it contains the kind of mistakes which were a ferment for further research. For
instance, Cahen gives, with an incomplete proof, an asymptotic value of the sum
of the logarithms of prime numbers which are smaller than x . In his paper [38],
Hadamard writes:

In his memoir which was previously quoted, Mr. Cahen presents a proof of the theorem
stated by Halphen: The sum of the logarithms of the prime numbers which are at most x is
asymptotic to x . However, his reasoning depends on Stieltjes’ proposition concerning the
realness of the roots of ζ( 12 + ti) = 0. We shall see that by modifying slightly the author’s
analysis, we can establish the same result in all rigor.46

The mistakes in Cahen’s dissertation are analyzed in E. Landau’s review [61].
Landau corrected some of them. Cahen’s dissertation was published in the Annales
de l’École Normale, [22].

It is interesting to recall that in 1891, the Paris Académie des Sciences announced
a prize for a competition whose subject was: “The determination of the number of
prime numbers smaller than a given quantity.”When the competitionwas announced,
it was thought that the prize would be attributed to Stieltjes, who had claimed a proof
of the Riemann hypothesis, but his proof turned out to be wrong. The prize went in
1892 to Hadamard, for completing Riemann’s proof of the prime number theorem.
Here is how Hadamard relates his discoveries, in his report on his own works [37]:

The last ring in the chain of deductions which started in my thesis and continued in my
crowned memoir led to the clarification of the most important properties of Riemann’s ζ(s)
function.

By considering this function, Riemann determines the frequency asymptotic law of prime
numbers. But his reasoning assumes: 1) that the function ζ(s) has finitely many zeros; 2)
that the successive moduli of these zeros grow roughly like n log n; 3) that, in the expression
of the auxiliary function ξ(t) in prime factors, no exponential factor is introduced.

Since these propositions remained without proof, Riemann’s results remained completely
hypothetical, and it was not possible to find others in the same trend. As a matter of fact,
no effort has been attempted in this respect since Riemann’s memoir, with the exception of:
(1) Halphen’s note which I mentioned earlier, which was, after all, a research project for the
case where Riemann’s postulates would be established; (2) a note by Stieltjes in which this
geometer announced a proof of the realness of the roots of ζ(t), a proof which was never
produced since.

Nevertheless the propositionswhose statements I recalled before are only a trivial application
of general theorems contained in my memoir.

Once these propositions are established, the analytic theory of prime numbers was able, after
a break which lasted thirty years, to take a new boom; since that time, it continued to grow
rapidly.

46Dans sonmémoire précédemment cité,M. Cahen présente une démonstration du théorème énoncé
par Halphen: La somme des logarithmes des nombres premiers inférieurs à x est asymptotique à
x . Toutefois son raisonnement dépend de la proposition de Stieltjes sur la réalité des racines de
ζ( 12 + ti) = 0. Nous allons voir qu’en modifiant légèrement l’analyse de l’auteur on peut établir le
même résultat en toute rigueur.
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This is how the knowledge of the genus47 of ζ(s) allowed, first,Mr. vonMangoldt to establish
in all rigor the final result of Riemann’s memoir. Before that, Mr. Cahen had made a first
step towards the solution of the problem addressed by Halphen; but he was not able to
attain completely his goal: indeed, it was necessary, in order to achieve in an irrefutable
way Halphen’s reasoning, to prove once again that the ζ function has no zero on the line
R(s) = 1.

I was able to overcome this difficulty in 1896, while Mr. de la Vallée-Poussin reached
independently the same result. But the proof which I gave is much quicker and Mr. de la
Vallée-Poussin adopted it in his later publications. It uses only the simple properties of ζ(s).

At the same time, I extended the reasoning toDirichlet series and, consequently, I determined
the distribution law for prime numbers in an arbitrary arithmetic progression, then I showed
that this reasoning may be used as such for quadratic forms with negative determinant. Since
then, the same general theorems on entire functions allowed Mr. de la Vallée-Poussin to
complete this cycle of proofs by treating the case of forms with positive b2 − ac.48

47Hadamard was studying, at the same period, a notion of genus for entire functions. In particular,
he gave a formula for the growth of the moduli of the roots of such functions in terms of their power
series expansion.
48Le dernier anneau de la chaîne de déductions commencée dans ma Thèse et continuée dans mon
Mémoire couronné aboutit à l’éclaircissement des propriétés les plus importantes de la fonction
ζ(s) de Riemann.

Par la considération de cette fonction, Riemann détermine la loi asymptotique de fréquence des
nombres premiers. Mais son raisonnement suppose: (1) que la fonction ζ(s) a des zéros en nombre
infini; (2) que les modules successifs de ces zéros croissent à peu près comme n log n; (3) que,
dans l’expression de la fonction auxiliaire ξ(t) en facteurs primaires, aucun facteur exponentiel ne
s’introduit.

Ces propositions étant restées sans démonstration, les résultats de Riemann restaient complète-
ment hypothétiques, et il n’en pouvait être recherché d’autres dans cette voie. De fait, aucun essai
n’avait été tenté dans cet ordre d’idées depuis le Mémoire de Riemann, à l’exception: (1) de la
Note précédemment citée d’Halphen, qui était, en somme, un projet de recherches pour le cas où
les postulats de Riemann seraient établis; (2) d’une Note de Stieltjes, où ce géomètre annonçait une
démonstration de la réalité des racines de ξ(t), démonstration qui n’a jamais été produite depuis.

Or les propositions dont j’ai rappelé tout à l’heure l’énoncé ne sont qu’une application évidente
des théorèmes généraux contenus dans mon Mémoire.

Une fois ces propositions établies, la théorie analytique des nombres premiers put, après un
arrêt de trente ans, prendre un nouvel essor; elle n’a cessé, depuis ce moment, de faire de rapides
progrès.

C’est ainsi que la connaissance du genre de ζ(s) a permis, tout d’abord, à M. von Mangoldt
d’établir en toute rigueur le résultat final duMémoire deRiemann.Auparavant,M.Cahen avait fait un
premier pas vers la solution du problème posé par Halphen; mais il n’avait pu arriver complètement
au but: il fallait, en effet, pour achever de construire d’une façon inattaquable le raisonnement
d’Halphen, prouver encore que la fonction ζ n’avait pas de zéro sur la droite R(s) = 1.

J’ai pu vaincre cette dernière difficulté en 1896, pendant que M. de la Vallée-Poussin parvenait
de son côté au même résultat. La démonstration que j’ai donnée est d’ailleurs de beaucoup la plus
rapide et M. de la Vallée-Poussin l’a adoptée dans ses publications ultérieures. Elle n’utilise que les
propriétés les plus simples de ζ(s).

Enmême temps j’étendais le raisonnement aux séries deDirichlet et, par conséquent, déterminais
la loi de distribution des nombres premiers dans une progression arithmétique quelconque, puis je
montrais que ce raisonnement s’appliquait de lui-même aux formes quadratiques à déterminant
négatif. Les mêmes théorèmes généraux sur les fonctions entières ont permis, depuis, à M. de la
Vallée-Poussin d’achever ce cycle de démonstrations en traitant le cas des formes à b2 − ac positif.
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Minimal Surfaces

Regarding Riemann’s work on minimal surfaces (see [95, 96] cf. also Chap.5 of the
present volume [111]), we mention the thesis defended at the Faculté des Sciences
de Paris on May 27, 1880, by Boleslas-Alexandre Niewenglowski [71]. The title is
Exposition de la méthode de Riemann pour la détermination des surfaces minima de
contour donné (Exposition of Riemann’s method for the determination of minimal
surfaces with a given contour). The thesis committee consisted of Hermite, Bonnet
andTannery.The author declares there thatRiemann, in hisworkonminimal surfaces,
was inspired by Bonnet. He writes, in his introduction:

I would like to clarify, if I can, a remarkable memoir of Riemann, relative to minimal
surfaces. The famous author had briefly indicated most of the results he obtained; I hope that
I established them in a satisfactory way.

Riemann makes use of imaginary variables which we immediately reduce to the variables
that were used before him by Mr. O. Bonnet, in several important memoirs on the general
theory of surfaces. Indeed, the logarithm of the variable μ, chosen by Riemann, is equal to
y + x

√−1 and, therefore, the logarithm of the conjugate variable μ′ is equal to y − x
√−1,

where x et y are the independent variables adopted by Mr. O. Bonnet. I think that I am not
exaggerating at all in claiming that the scholarly research of Mr. O. Bonnet inspired that of
Riemann.49

In §6 of his dissertation, Niewenglowski recalls the partial differential equation that
Riemann obtains to show that a surface is minimal (that is, has zero mean curva-
ture), and he shows that this equation is contained in Bonnet’s memoir [7]. We note
by the way that Bonnet wrote several other articles on minimal surfaces; cf. e.g.
[8–12]. In the first section of the second part of his dissertation, titled Applications,
Niewenglowski considers the special case of minimal surfaces that contain two non-
planar surfaces. He notes that the only such surface that Riemann indicates in his
article is a surface that was known since a long time (a surface Niewenglowski calls
“hélicoïde gauche à plan directeur.”) Niewenglowski notes that Serret showed that
there are other surfaces that satisfy this requirement and he describes them. Other
examples of minimal surfaces given by Riemann are described from a new point of
view.Niewenglowski’s dissertationwas published in theAnnales de l’ÉcoleNormale
Supérieure, [70].

49Je me propose d’élucider, s’il m’est possible, un mémoire remarquable de Riemann, relatif aux
surfaces minima. L’illustre auteur a brièvement indiqué la plupart des résultats qu’il a obtenus;
j’espère les avoir établis d’une manière satisfaisante.

Riemann se sert de variables imaginaires que l’on ramène immédiatement aux variables
employées avant lui par M. O. Bonnet, dans plusieurs mémoires importants sur la théorie générale
des surfaces. En effet, le logarithme népérien de la variable μ, choisie par Riemann, est égal à
y + x

√−1 et le logarithme de la variable conjuguéeμ′ est égal, par suite, à y − x
√−1, x et y étant

les variables indépendantes adoptées par M. O. Bonnet. Je pense ne rien exagérer en affirmant que
les recherches savantes de M. O. Bonnet ont inspiré celles de Riemann.

http://dx.doi.org/10.1007/978-3-319-60039-0_5
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The Riemann Integral

Finally, we talk about the fate of the Riemann integral in the French treatises on
analysis of the period considered. It seems that it is only in the second edition of
Jordan’s Cours d’analyse, published in 1893, that this topic was considered for the
first time. We note by the way that this second edition contains Jordan’s theorem
saying that a simple closed curve in the plane separates the plane into two regions.

Riemann introduced his theory of integration in his habilitation memoir on
trigonometric series, Über die Darstellbarkeit einer Function durch eine
trigonometrische Reihe (On the representability of a function by a trigonometric
series) [93]. The text was written in 1853 but was published only after Riemann’s
death. Darboux, in a letter to Hoüel, who had just translated Riemann’s memoir into
French, dated March 30, 1873 and quoted in [28], writes the following:

It is very kind of you to have finished the Riemann. There is a pearl which everybody will
discover there, I hope. This is the definition of the definite integral. It is from here that I
extracted a large quantity of functions which do not have a derivative.50

Darboux and Hoüel were the two editors of the Bulletin des sciences mathé-
matiques et astronomiques, and we mention incidentally that Hoüel translated into
French, and published, other memoirs of Riemann, including his two Habilitation
works, Über die Darstellbarkeit einer Function durch eine trigonometrische Reihe
(On the representability of a function by a trigonometric series) [93] and Über die
Hypothesen, welche der Geometrie zu Grunde liegen (On the hypotheses that lie at
the bases of geometry) [99].

Two years after hewrote that letter, Darboux published amemoir on discontinuous
functions [25] in which he uses Riemann’s ideas. His memoir starts as follows:

Until the appearance Riemann’s memoir on trigonometric series, no doubts were raised on
the existence of a derivative for continuous functions. Excellent and famous geometers,
among whom one must count Ampère, had tried to provide rigorous proofs for the existence
of a derivative. These attempts were without doubt far from being satisfying. But I repeat it:
no doubt was even formulated on the existence of a derivative for continuous functions.

The publication of Riemann’s memoir concluded the question in the opposite way. At the
occasion of trigonometric series, the famous geometer presents his ideas on the principle of
infinitesimal calculus: he generalizes, with one of these views that belong only to first order
minds, the notion of definite integral; he shows that it applies to discontinuous functions on
any interval, and he states the necessary and sufficient conditions under which a function,
continuous or discontinuous, can be integrated. As we shall see, the sole fact that there exist
discontinuous functions that can be integrated suffices to prove that there are discontinu-
ous functions that have no derivative, and this consequence of Riemann’s works was soon
admitted by the German geometers.

50Vous êtes bien aimable d’avoir fini le Riemann. Il y a une perle que tout le monde y découvrira,
je l’espère. C’est la définition de l’intégrale définie. C’est de là que j’ai tiré une foule de fonctions
qui n’ont pas de dérivées.
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[...] In the work that will be read, I resume, providing all the necessary developments, the
definitions of Riemann’s definite integral after Riemann, and I show how this definition must
lead to infinitely many continuous functions which have no derivative.51

Picard, in his Notice on Darboux, reports that the latter declared later on that his
memoir “was poorly received by several among those who usually are interested
by his works. They had dissuaded him to further cultivate this unproductive field of
functions which do not have a derivative.”52

Lebesgue, in a letter to Borel dated April 28, 1909, writes ([65] p. 189):

I appreciate the last works of Riemann (I think he died young) as much as his dissertation
on functions of a complex variable, whose importance, it seems to me, was exaggerated.53

One may mention here that the main idea that Lebesgue wanted to convey in
that letter is that, from his point of view, the work of a mature mathematician is
generally more important than the work he did when he was young. It is also true
that Lebesgue found in Riemann’s memoir on trigonometric series [93], which was
written three years after his doctoral dissertation [92] (that is, he was more mature,
in Lebesgue’s wording), the bases of his integration theory, the work for which the
name of Lebesgue is mostly remembered.

Lebesgue is the founder of measure theory, and he was inspired by Riemann’s
integration theory. In the introduction to his famous Leçons sur l’intégration et la
recherche des fonctions primitives (Lessons on integration and on the search for
primitive functions) [62], Lebesgue writes:

[...] It is for the resolution of these problems, and not by love of complications, that I
introduced in this book a definition of the integral which ismore general than that of Riemann
and which includes the latter as a special case.

51Jusqu’à l’apparition dumémoire deRiemann sur les séries trigonométriques aucun doute ne s’était
élevé sur l’existence de la dérivée des fonctions continues. D’excellents, d’illustres géomètres, au
nombre desquels il faut compter Ampère, avaient essayé de donner des démonstrations rigoureuses
de l’existence de la dérivée. Ces tentatives étaient loin sans doute d’être satisfaisantes; mais je
le répète, aucun doute n’avait été formulé sur l’existence même d’une dérivée pour les fonctions
continues.

La publication du mémoire de Riemann a décidé la question en sens contraire. À l’occasion des
séries trigonométriques, l’illustre géomètre expose ses idées sur le principe duCalcul Infinitésimal: il
généralise, par une de ces vues qui n’appartient qu’aux esprits de premier ordre, la notion d’intégrale
définie; il montre qu’elle est applicable à des fonctions discontinues dans tout intervalle, et il
énonce les conditions nécessaires et suffisantes pour qu’une fonction, continue ou discontinue,
soit susceptible d’intégration. Ce seul fait, qu’il existe des fonctions discontinues susceptibles
d’intégration, suffit à prouver, comme on le verra, qu’il y a des fonctions continues n’ayant pas de
dérivée, et cette conséquence des travaux de Riemann n’a pas tardé à être admise par les géomètres
allemands.

[...] Dans le travail qu’on va lire, je reprends, en donnant tous les développements nécessaires,
les définitions de l’intégrale définie d’après Riemann, et je montre comment cette définition doit
conduire à une infinité de fonctions continues n’ayant pas de dérivée.
52CeMémoire avait été froidement accueilli par plusieurs de ceux qui habituellement s’intéressaient
à ses travaux. Ils l’avaient dissuadé de labourer plus longtemps le champ stérile des fonctions qui
n’ont pas de dérivée.
53J’apprécie autant les derniers travaux de Riemann (mort jeune je crois) que sa dissertation sur les
fonctions de variable complexe dont l’importance m’a semblé parfois exagérée.
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I think that those who will read me carefully, even if they regret that things are not simpler,
will grant me that this definition is necessary and natural. I dare say that in a certain sense it is
simpler than that of Riemann, as much easy to grasp, and that only some previously acquired
mental habits can make it appear more complicated. It is simpler because it highlights the
most important properties of the integral, whereas Riemann’s definition only highlights a
computational mechanism. For this reason, it is almost always as much easy, and even easier,
using the general definition of the integral, to prove a property for all the functions to which
this definition applies, that is, the summable functions, than to prove it for all the integrable
functions, relying onRiemann’s definition. Even if one is only interested in the results relative
to simple functions, it is therefore useful to be familiar with the notion of summable function
because it suggests fast methods of proof.54

Chapter II of Lebesgue’s treatise is entirely dedicated to Riemann’s theory.

6 On the Relations Between the French and German
Mathematicians

The impact of Riemann’s work on the French mathematical school naturally leads to
the question of the relation between the French and German schools of mathematics.
We already addressed this issue, in particular in Sect. 3 above. The question has
several sides, ranging from the attitude towards the so-called German tendency to
abstraction, to the political aspect, taking into account the ravagingwar that broke out
20 years after Riemann defended his dissertation.We recall that in 1870, a devastating
war erupted between France andGermany, which resulted in the German annexion of
the French provinces of Alsace and Moselle. This war clearly affected the relations
between the two countries, but the French kept the great admiration they had for
Riemann, Weierstrass and the German school of function theory. One must add that
despite this admiration, some of Riemann’s methods remained foreign to the French
geometers. Darboux, in a letter to Hoüel, dated March 5, 1870, complains of the fact
that the French mathematicians were still relying on the old methods. He writes ([26]
p. 109):

54[...] C’est pour la résolution de ces problèmes, et non par amour des complications, que j’ai
introduit dans ce livre une définition de l’intégrale plus générale que celle deRiemann et comprenant
celle-ci comme cas particulier.

Ceuxquime liront avec soin, tout en regrettant peut-être que les choses ne soient pas plus simples,
m’accorderont, je le pense, que cette définition est nécessaire et naturelle. J’ose dire qu’elle est, en
un certain sens, plus simple que celle de Riemann, aussi facile à saisir que celle-ci et que, seules,
des habitudes d’esprit antérieurement acquises peuvent faire paraître plus compliquée. Elle est plus
simple parce qu’elle met en évidence les propriétés les plus importantes de l’intégrale, tandis que la
définition de Riemann ne met en évidence qu’un procédé de calcul. C’est pour cela qu’il est presque
toujours aussi facile, parfois même plus facile, à l’aide de la définition générale de l’intégrale, de
démontrer une propriété pour toutes les fonctions auxquelles s’applique cette définition, c’est-à-
dire pour toutes les fonctions sommables, que de la démontrer pour toutes les fonctions intégrables,
en s’appuyant sur la définition de Riemann. Même si l’on ne s’intéresse qu’aux résultats relatifs
aux fonctions simples, il est donc utile de connaître la notion de fonction sommable parce qu’elle
suggère des procédés rapides de démonstration.
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All our geometers, although very distinguished, seem to belong to another age. They are
eminent scientists, belonging to a science which is twenty or thirty years old which they
improve and develop with a lot of success, but all the modern branches remain inaccessible
to them.55

One may naturally address the question of quoting the German mathematical
literature by the French, and vice-versa, independently of the question of the difficulty
of Riemann’s ideas. Darboux, in another letter to Hoüel, complains about the fact
that the Germans never quote Cauchy. In a letter written around the year 1870 (the
letter does not carry a date), he writes (see [26] p. 89, Letter No. 3):

People in France start studying extensively complex variables. It is odd that this theory, born
in France with the work of Cauchy, received its most beautiful developments abroad, but, I
don’t know if you will be of the same opinion as me, I find that the Germans are not fair for
what regards Cauchy. They take advantage of his work but never quote him.56

In another letter to Hoüel, talking again about the Germans ([26] p. 96, Letter No. 7,
again with no date), Darboux writes:

Their behavior concerning Cauchy is unworthy. All the copies of Cauchy[’s writings] leave
for Germany. Gauthier-Villars quite rightly said this to me. Nevertheless his work is never
quoted.57

How was the situation in France? It is sometimes claimed that Poincaré was not
keen on quoting theGermans. In a letter toHermite (August 20, 1881),Mittag-Leffler
([46] p. 251, also quoted in Dugac [28], pp. 156–157), writes:

Weiserstrass’s work is prior to that of Merss. Briot and Bouquet, but Mr. Poincaré, who
should have known this from the memoir of Mme Kowalewski—if ever he did not know
about the work Analytische Facultäten—never said a word about it. Monsieur de Ramsey
told me that he heard from Mr. Molk—the French student following Weierstrass’s course in
Berlin—that Mr. Poincaré hates the Germans, which I find very natural, and that he made it
a principle to never quote any German author, which I find very bad if it were true.58

It is possible that Poincaré’s passing over the German literature is simply due to
his general ignorance about others’ writings. Dieudonné, writes, in his article on
Poincaré in the Dictionary of Scientific Biography ([27] Vol. 11, pp. 51–61):

55Tous nos géomètres, quoique tous fort distingués, semblent appartenir à un autre âge. Ce sont des
savants éminents restés à la science d’il y a vingt ou trente ans qu’ils perfectionnent, développent
avec beaucoup de succès, mais toutes les branches modernes sont pour eux très accessoires.
56[...] on commence à s’occuper beaucoup en France des variables complexes. Il est singulier que
cette théorie née en France par le travail de Cauchy ait reçu les plus beaux développements à
l’étranger, mais je ne sais si vous serez de mon avis, je trouve que les Allemands ne sont pas justes
envers Cauchy. Ils profitent de ses travaux mais ne le citent presque jamais.
57Leur conduite vis à vis de Cauchy est indigne. Tous les exemplaires de Cauchy partent pour
l’Allemagne. Gauthier-Villars me l’a bien dit et cependant il n’est jamais cité.
58Le travail de Weierstrass est antérieur à celui de Messieurs Briot et Bouquet, mais M. Poincaré
qui devait savoir ça par le mémoire de Madame Kowalewski—s’il n’a pas connu le travail Ana-
lytische Facultäten—n’en dit pas un mot. Monsieur de Ramsey m’a raconté qu’il a entendu par M.
Molk—l’étudiant français qui suit le cours de M. Weierstrass à Berlin—que M. Poincaré déteste
les Allemands, ce que je trouve fort naturel, et qu’il a pour principe de ne jamais citer un auteur
allemand ce qui serait fort mal si c’était vrai.
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Poincaré’s ignorance of the mathematical literature, when he started his researches, is almost
unbelievable. He hardly knew anything on the subject beyondHermite’s work on themodular
functions; he certainly had never read Riemann, and by his own account had not even heard
of the Dirichlet principle.

This may also be due to Poincaré’s lack of time, although the contrary may also
be supported, that is, Poincaré had so much energy that it is unlikely that he could
not find time to read others’ writings, especially on topics on which he was working.
The explanation may come from the fact that Poincaré belongs to this small category
of a mathematician who reconstructs his background by himself, without reading
others’ works.

As we already mentioned, despite the war, the French mathematicians had an
immense admiration for German mathematics, even though they considered it too
abstract. Let us quote a fewpassages on this subject from the correspondence between
Hermite and Mittag-Leffler. Hermite writes in a letter dated October 6, 1884, [47]:

Abstraction, which is a charm for the Germans, is bothering us; it draws a kind of veil on
the consequences which stays hidden to us in part, until we have taken, to attain it, a path
which is more adapted to us.59

In other letters, Hermite expresses his highest esteem for the German mathemati-
cians. For example, on January 14, 1892, he writes [48]:

History of science keeps for ever the memory of the relations between Legendre and Jacobi;
something good and affectionate emerges from the correspondence between these great
geometers, which exerted its influence on their heirs.60 No division ever emerged among
mathematicians of these two countries. It is in entertaining friendly relations that they fol-
lowed the same path in their works, and Appell’s mémoire couronné61 is a shining example,
by its exceptional merit, by the new light it sheds on Riemann, of the ultimate alliance of
the genius of the two nations, for the advancement of science.”62

In another letter to Mittag-Leffler, dated July 10, 1893, Hermite writes [48]:

I wrote to the French ambassador a letter which Appell read, at my request, with great
care, and to which he gave his complete assessment. I was expressing, in a natural way, the

59L’abstraction, qui est un charme pour les Allemands, nous gêne et jette sur les conséquences
comme un voile qui nous dérobe une partie jusqu’à ce que nous ayons fait pour y parvenir un
chemin plus à notre convenance.
60The correspondence is reproduced in Jacobi’s Collected Works, [54] t. I, pp. 385–461, and in
Crelle’s Journal, 80 (1875), pp. 205–279.
61This is Paul Appell’s memoir Sur les intégrales de fonctions à multiplicateurs et leur application
au développement des fonctions Abéliennes en séries trigonométriques (mémoire couronné par S.
M. le roi Oscar II, le 21 janvier 1889).
62L’histoire de la science garde à jamais le souvenir des relations de Legendre et de Jacobi; quelque
chose de bon et d’affectueux se dégage de la correspondance entre ces grands géomètres, qui
a exercé son influence sur leurs successeurs. Aucune division ne s’est jamais montrée entre les
mathématiciens des deux pays; c’est en entretenant des relations d’amitié qu’ils ont suivi la même
voie dans leurs travaux, et le mémoire couronné d’Appell est un témoignage éclatant, par son mérite
hors ligne, par le lustre nouveau qu’il jette sur Riemann, de l’intime alliance des génies des deux
nations, pour la marche en avant de la science.



284 A. Papadopoulos

sympathy and the admiration that all of us vow to the geometers that are the pride and the
glory of German science.63

We quote, as the last example (there are many others) a letter from Hermite to
Poincaré, dated November 27, 1880. We already mentioned that Poincaré was not
keen on reading other’s mathematical papers. Hermite writes ([89] pp. 169-170):

[...] Allowme to urge youmost of all to familiarize yourself with the works ofMr. Kronecker
who infinitely surpassedme in this kind of research and towhomweowe themost remarkable
and the most productive discoveries. The notions of class and of genus in the theory of
quadratic forms were entirely linked to analysis by the eminent geometer [...] Some of the
beautiful results discovered by Mr. Kronecker, and published in the Monatsbericht, were
translated into French, at my request, and they appeared, around 1859 or 1860 in the Annales
de l’École Normale Supérieure. But you must read in the same issue of the Monatsbericht
of the Academy of Sciences of Berlin, and without omitting anythings of them, everything
written by the hand of the great geometer.64

It is well known that Klein, at several places of his published talks, classifies
mathematicians into logicians, formalists, and intuitives, and he claims that this has
to dowith the fact they are of Latin, Hebraic orGerman descent. Jules Tannery, whom
we mentioned several times in this chapter, says that “Klein modestly related the gift
of envisioning, whichwas so generously allocated to him, to the Teutonic race, whose
natural power for intuition is supposed to be a pre-eminent attribute.”65 (quoted by
Picard in [84] p. xxviii). This is an indication of the admiration that the French had
for Klein. There are many other examples. Thus, to the question of whether French
and German mathematicians ignored each other because of that war, the answer is
clearly no.

7 In a Way of Conclusion

In this chapter, we tried to convey the idea that it took a certain amount of time for
the notion of Riemann surface to be understood and used by French mathematicians.
We also wanted to give a broad picture of the French mathematical community,

63[...] J’ai écrit à l’ambassadeur de France une lettre qu’Appell a lue avec grande attention à ma
demande, et à laquelle il a donné son plus complet assentiment. J’exprimais naturellement les
sentiments que nous éprouvons tous de sympathie et d’admiration pour les géomètres qui sont à
l’honneur et la gloire de la science allemande.
64[...] Permettez-moi de vous engager à prendre surtout connaissance des travaux de Mr. Kronecker
qui m’a infiniment dépassé dans ce genre de recherches et à qui l’on doit les découvertes les plus
remarquables et les plus fécondes. Les notions de classes et de genres dans la théorie des formes
quadratiques ont été entièrement rattachées à l’analyse par l’éminent géomètre [...] Quelques uns
des beaux résultats découverts par Mr. Kronecker, et publiés dans les Monatsbericht, ont été à ma
demande traduits en français et ont paru, vers 1859 ou 1860, dans les Annales de l’École Normale
Supérieure. Mais il faut lire dans ce même recueil des Monatsbericht de l’Académie des Sciences
de Berlin, et sans en rien omettre, tout ce qui est sorti de la plume du grand géomètre.
65Le don de voir, qui lui a été départi si généreusement, M. Klein le rapporte modestement à la race
teutonique, dont la puissance naturelle d’intuition serait un attribut prééminent.
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especially the branch on analysis, in the few decades following Riemann’s work, and
of the relations between the Frenchmathematicians and their German colleagues. Let
us quote again Hermite, from his preface to the French edition of Riemann’s works
[98], published in 1898. This is an interesting passage in which he summarizes the
passage from Cauchy’s ideas to Riemann’s notion of Riemann surface.

The notion of integration along a curve has been presented, in its simplest and easiest form,
with numerous and important applicationswhich showed their scope, since 1825, in amemoir
by Cauchy entitled Sur les intégrales définies prises entre des limites imaginaires (On the
definite integrals taken between imaginary limits). But it stays a property of the famous
author. One had to wait for twenty-five years, until the works of Puiseux, Briot and Bouquet,
so that it soars up and shines in Analysis. The profound notion of Riemann surface, whose
access is very difficult, was soon introduced and it dominated Science, so as to remain there
for ever.66

It is important to recall that in Germany, although Riemann’s ideas were inves-
tigated since the beginning by several pre-eminent mathematicians, these ideas
remained, to many, very cryptic.Wemay add that in Germany, Riemann’s ideas were
not always unanimously praised, and they were even subject to criticism. Bottazzini,
in his ICM 2002 communication [13], reports on some notes written by Casorati
during a visit he made to Berlin in 1864, at the time when Riemann was staying, for
health reasons, in Italy (Pisa). Casorati writes ([13] p. 919) that “Riemann’s things
are creating difficulties in Berlin [...]” Bottazini quotes Casorati:

Weierstrass claimed that “he understood Riemann, because he already possessed the results
of his [Riemann’s] research.” As for Riemann surfaces, they were nothing other than “geo-
metric fantasies.” According to Weierstrass, “Riemann’s disciples are making the mistake
of attributing everything to their master, while many [discoveries] had already been made
by and are due to Cauchy, etc.; Riemann did nothing more than to dress them in his manner
for his convenience.”

The mathematician and historian of science Leo Könisbsberger, who taught at
the University of Heidelberg, recalls in his autobiography, Mein Leben (My life)
published in 1919, that at the time he was a student in Berlin, the mathematics taught
byWeierstrass was considered as the only mathematics that was rigorous. He writes:
“All of us, the younger generation, had the impression that the ideas and methods
of Riemann were not part of the rigorous mathematics of Euler, Lagrange, Gauss,
Jacobi and Dirichlet” (p. 59). In his last course at the University of Berlin (1866),
Weierstrass also declared that the theory of Riemann surfaces was a “pure fantasy.”
(From the manuscript course in the Humbolt-University in Berlin, quoted in [90], p.
131.) Regarding the same theory, Klein writes in his Development of mathematics in
the 19th century (1926) ([59] p. 241):

66La notion de l’intégration le long d’une courbe avait été exposée, sous la forme la plus simple
et la plus facile, avec de nombreuses et importantes applications qui en montraient la portée, dès
1825, dans un Mémoire de Cauchy ayant pour titre Sur les intégrales définies prises entre des
limites imaginaires; mais elle reste dans les mains de l’illustre Auteur; il faut attendre vingt-cinq
ans, jusqu’aux travaux de Puiseux, de Briot, de Bouquet, pour qu’elle prenne son essor et rayonne
dans l’Analyse. La notion profonde des surfaces de Riemann, qui est d’un accès difficile, s’introduit
sans retard et domine bientôt la Science pour y rester à jamais.
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Even today, the beginning student of Riemann surfaces faces great difficulties: The “winding
points,” aroundwhich the various “sheets” hang together, are essential; the curves proceeding
from these points along which the sheets intersect, are not—they can be arbitrarily shifted,
as long as their ends remain fixed, and in any case, they occur only because we involuntarily
make the construction in three-dimensional space.

Riemann visited Paris in April 1860, on the invitation of French mathematicians. In
a letter to his sister Ida, he describes a social atmosphere that was not in accord with
his restrained character. He writes67:

In general I am satisfied with the results of my trip, even if my expectations which I had
earlier attached to the journey must remain unfulfilled, necessitated by the shortness of time.
In this regard it would have been of little value if I had remained one or two weeks longer
in Paris. And so I preferred to return to Göttingen at the right time.

I can not complain at all about a lack of friendliness on the part of the Parisian scholars.
The first social occasion, in which I took part, was a tea at Herr Serret’s, who had become
a member of the institute a few weeks before. Such a tea or “Réunion” contrasts sharply
with our socials. It begins at 9:00 pm, really gets going at 10:00 and goes till 1 o’clock in
the morning. During this time guests continually come and go; many come right from the
theatre, which in Paris seldom closes before 12:30. They consist of nothing but teal ice cream
and a variety of sweet-meats (?), namely, glazed fruits and other sweets of that sort. It cannot
be denied that this unrestrained manner has perverted many.

The social gathering at Serret’s consisted of 30 to 40 ladies and gentlemen, among whom
were also several Germans or rather speakers of German. I conversed chiefly with them.

Bottazzini declares in [55] p. 244 that during that stay in Paris, Riemann met,
among others, Hermite, Puiseux, Briot and Bouquet.

The German mathematicians had in general a great consideration for the French.
We quote a passage from a letter from Weierstrass to Kovalevskaya, sent on June
14, 1882, after the latter informed him that she met Hermite (the letter is reproduced
in Mittag-Leffeler’s ICM lecture [67]): “You should now also enter into a relation-
ship with other mathematicians: the young ones, Appell, Picard, Poincaré will be
extremely interesting for you.”
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