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Abstract In this chapter, we review the works of Cauchy and Puiseux on the theory
of functions of a complex variable that preceded Riemann’s introduction of what
soon became known as Riemann surfaces. The work of the two French mathemati-
cians (especially that of Puiseux) inaugurates a group-theoretic point of view which
complements the topological one discovered by Riemann.
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1 Introduction

Riemann surfaces were introduced unexpectedly by Riemann in his doctoral thesis,
defended on December 16, 1851. I said “unexpectedly” because it was something
completely new, difficult to apprehend by Riemann’s contemporaries, and it is not
clear whether somebody else would have invented this notion even fifty years after
Riemann, had he failed to do it. Riemann introduced these surfaces as ground spaces
on which holomorphic (or meromorphic) functions are naturally defined. We recall
Klein’s sentence from his monograph [40] in which he surveys Riemann’s ideas (p.
77): “The Riemann surface not only provides an intuitive illustration of the functions
in question, but it actually defines them.” In particular, a multi-valued function given
as the solution of an algebraic equation acquires a new domain of definition, its
associated Riemann surfaces, on which it becomes uniform (single-valued). This
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idea of working with general surfaces equipped with complex structures, instead of
only the sphere or the complex plane, or subsets of them, had a tremendous influence
on the development of complex analysis, but also on geometry and topology.

The notion of Riemann surface, as all mathematical notions, has a history. Its
discovery was motivated by several questions on which many mathematicians spent
their lives. One of the main problems that led to this notion was addressed by the
uniformization of algebraic functions. In fact, the notion of “algebraic function” is
complicated, because such a “function” is generally not a function in the usual sense:
it is multi-valued. In this sense, the uniformization problem asks for a way of getting
around this complication. It is in trying to solve this “uniformization problem” that
the theory of Riemann surfaces was born.

In this chapter, I will explain how the problem of uniformization of algebraic
functions led to results by Puiseux—who was strongly motivated by the work of
Cauchy—which, interpreted in the right perspective, are the algebraic counterpart
of Riemann surfaces. The work of Puiseux, rather than the one of Riemann, was
discussed in the French treatises on analysis during the first decades that followed
these works. We discuss this fact in Chap.8 of the present volume [49].

The outline of the rest of this chapter is the following.
In Sect. 2we recall the notion of algebraic function and the problemof uniformiza-

tion of such functions.
Section3 is the heart of the chapter. We explain there how Puiseux, in his two

articles published in 1850 and 1851, using Cauchy’s theory of path integration,
developed a notion which is a combinatorial analogue of the notion of Riemann
surface. Puiseux’s theory was also rooted in the theory of the uniformization of
algebraic functions, and it makes connections with group theory, in particular with
Galois theory. This section also contains information on the life of Puiseux.

In Sect. 4, we give a summary of the important work of Cauchy that was used
by Puiseux when he developed his theory. This work was also available to Riemann
when he introduced Riemann surfaces.

In Sect. 5, we review Hilbert’s 22nd problem which concerns uniformization. In
this statement, the word uniformization is slightly different from the one we use in
the previous sections, but the two notions are closely related, and the origin of the two
words is the same. Our goal in this concluding section is to indicate the development
of the theory whose bases were laid down by Puiseux and Riemann.

2 Algebraic Functions and Uniformization

An algebraic function u of the complex variable z is defined by an equation

f (u, z) = 0

where f is a polynomial in the two variables u and z. Here, u is considered as
an implicitly defined function of z. For each value of z, there are generally more
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than one value of u. (If the equation is irreducible, then the number of values is the
highest degree of u in the equation.) The first question that arises is: Can one make
a choice between these values so as to get a bona fide function u(z)? The obvious
answer is clearly “no,” but one wishes to understand more. The first approach to the
question is a case by case analysis. Consider for example the case where f is the
polynomial f (u, z) = u2 − z. Then, for each value of z, we have, except if z = 0, two
different values of u. Setting z = reiθ with r > 0, the two values are u1 = √

reiθ/2

and u2 = −√
reiθ/2. If for some value of z we choose one of the values u1 or u2 and

assign it to u(z), and if we try to extend u as a function defined on the whole complex
plane, we obtain a discontinuous function, which is not desirable. We are then led
to define the function u(z) on a subset of the plane, but there is no natural choice of
such a subset.

Uniformization originates with this problem, that is, the fact that algebraic equa-
tions generally have more than one complex solution. The word “uniformization”, in
the sense of Riemann, refers to the fact that one would like to have a way of making
such a multi-valued function single-valued, or “uniform.” The German adjectives
einwerthig and mehrwerthig used by Riemann are translated, in the 1898 French
version [64], by uniforme and multiforme. In the recent English translation by Jason
Ross, the same words are used: uniform and multiform. Riemann utilises the word
mehrwerthig (multiform) for a function which may assign to a value of the variable
more than one value, and einwerthig (uniform) otherwise. In the preliminary part
(§1) of his memoir on Abelian functions, he addresses the problem of extending a
holomorphic function defined on a piece of the plane. He writes: “From the nature
of the function we wish to extend, this function either will always take, or will not
take, the same value for a given value of z regardless of the path along which we are
extending. In the first case, I will call it uniform: it is then a perfectly determined
function for any value of z, and it will never be discontinuous along a line. In the
second case, where we shall say it is multiform, we first have, in order to understand
the motion of this function, to concentrate our attention on certain points of the z-
plane, around which the function is extended into another function...” A little bit
later, he uses, as an alternative for the word “uniform,” the word “monodromic” (see
our Footnote 10). Likewise, in his memoir [62], Riemann uses the wordmonodromic
as a synonym for uniform. Weyl, in [70] (p. 2), also uses the word “uniform.” We
shall use the word “uniformization” in this original sense of Riemann. There are
other meanings for the word uniformization; see Sect. 5 of the present chapter.

The modern definition of function assumes that a function is single-valued, or
“uniform,” that is, to each value of the variable, the function associates a single value.
But this was not the case at the epoch of Riemann or Cauchy or before them. In fact,
Euler, to whom the first abstract definition of a function is attributed, considered the
possibility that a function is multi-valued. Riemann was a devoted reader of Euler.
He mentions his name at several occasions, when he informs his reader about the
origin of his own ideas, for instance in his doctoral dissertation, in his Habilitation
dissertation [59], in his memoir on Gauss’s hypergeometric series [62], and there
are several references to Euler in Riemann’s memoirs and posthumous papers. The
interested reader may find a thorough report on Riemann’s debt to Euler in Chap.1 of
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the present volume [48]. Among other things, we discuss in that chapter the way the
notions of algebraic and multivalued functions appear in Euler’s treatise Introductio
in analysin infinitorum (Introduction to the analysis of the infinite) (1784) [29].

3 Puiseux and Uniformization

Victor Puiseux (1820–1883) defended a doctoral dissertation on astronomy in 1841.
He attended Cauchy’s courses on analysis and soon became interested in this topic.
At the same time, he became Cauchy’s closest follower and friend, and he always
expressed his respect and admiration for his teacher’s work. Puiseux spent a large part
of his time developing, correcting and refining results of Cauchy who used to publish
very rapidly his ideas, sometimes in rough form. Cauchy’s influence on Puiseux was
enormous.

Motivated byCauchy’swork, Puiseuxwrote two remarkablememoirs,Recherches
sur les fonctions algébriques (Researches on algebraic functions, 1850) [55] and
Nouvelles recherches sur les fonctions algébriques (New researches on algebraic
functions, 1851) [56]. The second memoir appeared in the year Riemann defended
his doctoral dissertation, consisting of his first memoir on the theory of functions
of a complex variable.1 After the publication of Riemann’s dissertation, Puiseux
practically stopped working on this topic.

Below, we shall give a quick review of the content of the two memoirs of Puiseux.
Puiseux taughtmathematics at the École Normale Supérieure. From 1855 to 1859,

heworked at theObservatory of Paris, and in 1859 he became amember of theBureau
des longitudes.2 In 1857, he became the successor of Cauchy on the chair of astron-
omy at the University of Paris, and he taught there until his health became critical,
in 1882, one year before his death. His works included, besides complex analysis,
mechanics, observational astronomy and botanics. Puiseux alsomade important con-
tributions to celestial mechanics. In this field, he solved several difficult questions
which had also been addressed by Cauchy. One of his most influential memoirs in
this domain is the Mémoire sur l’accélération séculaire du mouvement de la lune
(Memoir on the secular acceleration of the motion of the moon) [57] 1873, in which
he contributed to the difficult problem of explaining the acceleration of the mean
motion of the moon. Puiseux is also a precursor of French Alpinism, and a pick
(3946m) in the Alps, which he climbed in 1848, carries his name.

We shall give in the next section several biographical details on Cauchy. Let us
mention that like Cauchy, Puiseux was involved in social issues, that he founded
several charities, including one for the help of the poor at their home. During
his lifetime, Puiseux kept secret most of his philanthropical activity, which was

1It may be useful to recall that Dedekind, in his notes on Riemann’s life published in the Collected
works edition [63], states that Riemann probably conceived his ideas on Riemann surfaces in 1847.
2The Bureau des longitudes is a French institution in charge of geodesy, standardisation of time-
keeping, and astronomical measurements. The names of famous members of the Bureau include
Lagrange, Laplace and Poincaré.
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discovered by his family only after his death [68]. Picard writes about Puiseux as a
teacher ([51] p. v)3:

Victor Puiseux’s modesty was intimidating, and his patience and politeness were admirable.
To a student blundering at some test, he just used to say, with a very sweet tone: “I don’t
know whether I heard well or whether I am mistaken, but it seems to me that what you said
is not completely true.”4

In an article [55] published in 1850, that is, one year before Riemann defended
his doctoral thesis, Puiseux addressed the problem of uniformization. As a result,
he did not introduce Riemann surfaces, but he discovered a notion which is close to
it. We now give a short description of his work on the subject, using the notation of
Sect. 2 above for an algebraic function, which is Puiseux’s notation.

Puiseuxwrites, after introducing the discontinuity problem posed bymulti-valued
functions which we recalled in the introduction ([55] p. 366):

We shall avoid this discontinuity by defining in a different way the function u. Let us consider
again the equation

f (u, z) = 0,

of which we may assume the first side to be integral in u and z; let us give to z an arbitrary
initial value c, and, for the initial value b of u, let us choose any one of the solutions of the
equation

f (u, c) = 0.

Let us now conceive that z varies in an arbitrarymanner starting from the value c, and reaches
another value k. Mr. Cauchy showed (Nouveaux Exercices de Mathématiques, tome II, p.
109) that the different values of u vary simultaneously in a continuous manner. Thus, there
will be one which is first equal to b, which will pass by infinitely small steps to a determinate
value h which it will attain for z = k. For us, this value of u will be a function of z, and, as
we can see, it will be a continuous function. But its determination, for a particular value of
z, will depend at the same time on this same value and on the series of values by which e
passed starting from its initial value.

Thus, Puiseux solves the continuity problem by declaring that the function u(z)
not only depends on the variable z but also on a path that we choose from a basepoint
to the point z. Concerning the choice of the path, he writes:

Let us observe however that the function will stop being determined if, when passing from
the value c to the value k, z takes a value for which the equation

f (u, z) = 0

have equal solutions. But the number of these values being finite, it will always be possible
to avoid this circumstance, for any values c and k.

Thus, the chosen path between the basepoint and this point z avoids a certain
number of singular points. Puiseux investigates in detail the dependence of u(z) on

3In this chapter, all the translations from the French are mine.
4Victor Puiseux était d’une modestie intimidante, d’une patience et d’une politesse admirables.
Quand un élève avait, dans une interrogation, énoncé quelque énormité, il se contentait de lui dire
d’un ton très doux: “Je ne sais pas si j’ai bien entendu ou si je me trompe, mais il me semble que
ce que vous avez dit n’est pas tout à fait exact.”
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the path, highlighting the roles of the singular points, which, he says, are of two types:
pointswhere the function u becomes infinite, and pointswhich correspond tomultiple
solutions of the algebraic equation. Cauchy, in his previous works, misunderstood
the nature of the singularities, since he considered that the singular points are only
those where the algebraic function u becomes infinite. Puiseux presents clearly the
invariance of the value of the function at the point z under homotopy of paths.

To show the close relation with Riemann’s work, we need to recall Riemann’s idea
of a Riemann surface, and we consider again the example of the algebraic function
w2 − z = 0. In this case, w is the “function”

√
z. We take a basepoint z0 �= 0 in

the complex plane. The function
√
z is multi-valued at such a point. We take some

determination of this function in some neighborhood of z0.We continue the definition
of this function along paths starting at z0 (we use analytic continuation). We allow
ourselves the use of modern terminology. A problem arises when the path comes
back at z0 and encloses the origin 0 of the complex plane. If such a path is not simple
(that is, injective), the fact of enclosing the origin means that it has non-zero winding
number with respect to 0. If such a path has odd winding number with respect to
the origin, the value we get at z0 is different from the initial one. At this point,
Riemann introduced the idea that in this case the endpoint of such a path should not
be considered as the basepoint z0, but a point on a different sheet of a new surface
on which the function

√
z should be defined. This is the Riemann surface associated

with the function. At the same time, Riemann introduced the notion of covering
space. In the example considered, the surface obtained is a two-sheeted branched
cover of the complex plane (or of the sphere), and the branching locus is the origin.
This construction is very general, that is, it associates to an arbitrary multi-valued
function defined by an algebraic equation a Riemann surface which is a branched
cover of the sphere and on which the function is defined and becomes single-valued.
The degree of the covering is the number of values of w associated with a generic
value of z. This construction is described for the first time in Riemann’s dissertation
[58] and is further developed in the section on preliminaries in his 1857 paper [60].

It is not hard for a topologist to see that Puiseux’s description of u as a function, not
of z alone, but of a pair (z, γ), where γ a homotopy class of paths joining a basepoint
to the variable point z, the homotopy being relative to some finite set of points on
the surface (namely, the set of singular points of the algebraic equation f (z) = 0), is
equivalent to considering that the function is defined on a Riemann surface which is
a covering of the complex plane, ramified over this set of singular points. In fact, the
usual modern construction of a covering of a surface defines it as a set of equivalence
classes of homotopy classes of paths in the base surface subject to certain conditions
which can be expressed in terms of group theory. (With no condition on the homotopy
classes of paths, we get the universal covering of the base surface.) Let us emphasize
though that we know the relation between the two definitions, the one of Puiseux and
the one using Riemann surfaces and their coverings, initiated by Riemann, because
we are familiar with the theory of surfaces. Thus, we are not claiming that Puiseux
discovered Riemann surfaces. But he came very close to them. In fact, the work of
Puiseux is group-theoretic, before the formal introduction of groups in the theory of
Riemann surfaces. There is a famous result due to Riemann, which he gives in his
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paper on Abelian functions [60]. The result, stated in modern terms, says that given
a finite set of points on the Riemann sphere and a representation of the fundamental
group of the complement of these points into a permutation group, there exists a
Riemann surface which is a branched covering of the sphere having the given points
as branch points and whose monodromy is the given representation. This is one
form of the so-called Riemann existence theorem (there are several other forms).
The general form of the theorem deals with branched covers of surfaces that are
more general than the Riemann sphere. The theorem establishes relations between
topology, group theory and function theory. The permutation representation is that
which Puiseux studies.

It was natural that Puiseux, in considering functions defined using paths from a
basepoint to the variable point, studies line (or path) integrals, especially that the
theory of such integrals was part of Cauchy’s courses he followed. Starting from §8
of his memoir [55], Puiseux considers line integrals of the form

∫ k
c udz where c and

k are points in the complex plane. In §9 (p. 373), he proves the following theorem:

The value of the integral
∫ k
c udz, taken along the line CMK , will not change if, the points c

and k remaining fixed, this line is deformedwithout crossing any point for which the function
u1 becomes infinite or equal to another solution of the equation f (u, z) = 0.5

Puiseux attributes this theorem to Cauchy, like a few others he proves in §9 to 11
of his memoir, as preliminaries for his main results. However, he brings important
complements to Cauchy’s results. He states ([55] Note p. 375):

The theorems in §9, 10, 11 were given by Mr. Cauchy in the Comptes Rendus des séances
de l’Académie des Sciences, year 1846. But the famous geometer [Cauchy] characterizes
the points which must be avoided by the path that is travelled by the fact that at these
points the function becomes discontinuous; but since I restrict here to algebraic functions,
I thought I would give more precision to the statements and the proofs by saying that the
points considered are those for which the function u either becomes infinite or is a multiple
solution of the equation f (u, z) = 0.6

Here, u1 is a fonction obtained by starting with one of the branches of the function
u defined by the equation f (u, z) = 0.

Later in the same paper (§53 to 55), Puiseux considers elliptic integrals and their
dependence on the integration path, and he makes explicit the periods of the inverse
functions. We note incidentally that the study of these integrals was one of the main
subjects of interest of Riemann. We shall consider this question again below.

5L’intégrale
∫ k
c udz, prise le long de la ligne CMK , ne changera pas de valeur, si, les points C et

K restant fixes, cette ligne vient à se déformer, sans franchir toutefois aucun point pour lequel la
fonction u1 devient infinie ou égale à une autre racine de l’équation f (u, z) = 0.
6Les théorèmes de nos 9, 10, 11 ont été donnés parM. Cauchy dans lesComptes Rendus des séances
de l’Académie des Sciences, année 1846. Seulement l’illustre géomètre caractérise les points que le
chemin parcouru ne doit pas franchir en disant que, pour ces points, la fonction devient discontinue:
comme je me borne ici aux fonctions algébriques, j’ai cru donner plus de précision aux énoncés
et aux démonstrations en disant que les points dont il s’agit sont ceux pour lesquels la fonction u
devient infinie ou une racine multiple de l’équation f (u, z) = 0.
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In the second part of his memoir [55] (starting p. 384), Puiseux studies the passage
from one value of u to another one corresponding to the same z. This involves a
detailed analysis of how the various values u1, . . . , u p corresponding to a given z
are interchanged when the point z, seen as a geometric point in the complex plane,
describes a small loop. The result will depend on the behavior of the function at the
singular points enclosed by the loop.

Puiseux discovered the fact that the solutions of an algebraic equation are grouped
into cycles which he called circular systems (systèmes circulaires) and he gave a
method to perform this grouping. This decomposition into circular systems is related
to the fact that the solutions are permuted by following the points geometrically along
closed paths, and that an arbitrary permutation may be decomposed into circular
permutations, a fact already proved by Cauchy in his paper [16], precisely in the
setting of solutions of algebraic equations. In p. 479 of his memoir [55], he writes
that the possibility of grouping into circular systems the various solutions u1, u2, . . .
and of seeing that these values are interchanged around the points where the function
u has multiplicity or takes the value infinity may be deduced from a theorem on
substitutions7 by Cauchy (Journal de l’École Polytechnique, tome X). But he adds
that the method that he gives for this grouping is new.

The third part of the memoir [55] concerns applications of the theory to periods
of integrals. Again, Puiseux refers to Cauchy’s work, declaring that it leads to the
existence of periods, that Cauchy recovered in this way the periods of elliptic inte-
grals, but that Cauchy’s method does not allow one to recover periods of general
integrals. With his results on periods, Puiseux gave an explanation of the periodicity
in the determinations of the complex circular functions, of elliptic functions and of
other functions defined by integrals (in particular those introduced by Jacobi).

On p. 428 of his memoir, Puiseux says that the propositions he established are also
applicable to the casewhere the function u of the variable z, whichwas taken to satisfy
an algebraic equation f (u, z) = 0, is transcendental instead of being algebraic. He
declares that the only property that is used is the continuity of u in terms of z,
and he says that this question was treated by Cauchy in his Nouveaux Exercices de
Mathématiques, tome II, p. 109.

In the following year, Puiseux published a second paper [56] in which he gave a
method for characterizing periods of integrals in the case where the function f in
the equation f (u, z) = 0 is an irreducible polynomial.

Puiseux’s paper [55] also contains the so-called “Newton–Puiseux polygon,” a
method for evaluating the value of an algebraic function near a branch point, using so-
called Pusieux series. These are a generalization of power series where the exponent
may be fractional or negative. In fact, Puiseux did not discover these series, he
rather rediscovered them ([55] p. 399), since they were introduced before him by
Newton, in 1676.8 Puiseux came up with these series in the context of his work on
separating the various branches of functions defined by algebraic equations. He gave

7In this context, a “substitution” means a permutation of letters. This word substitution is used e.g.
in Jordan’s Traité des substitutions et des équations algébriques [39].
8Isaac Newton, Letter to Oldenburg, October 24, 1676.
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an expansion of each of these branches in such a convergent series. The so-called
Newton–Puiseux theorem states that an algebraic equation f (u, z) = 0, the variable
u, seen as a function of z, may be expanded as a series (called now Puiseux series)
that converges in some neighborhood of the origin. Stated differently, the result says
that any branch of an algebraic curve can be represented as a Puiseux series. The
Newton–Puiseux series has a wide generalization to the study of polynomials over
local fields (the classical case being the onewhere the local field is the field of Laurent
polynomials).

The work of Puiseux on solutions of algebraic equations was a forerunner of
works of several mathematicians. It was interpreted and generalized in the setting of
groups by Hermite and others. One should mention here that group theory was still
unborn, or at best, was only in its infancy.9

Hermite presented a paper, in 1849, entitled Sur la théorie des fonctions elliptiques
(On the theory of elliptic functions) [35] where he studies periods of elliptic integrals,
and in which he acknowledges Cauchy’s influence.We shall soon talk about the work
of Hermite in relation with that of Puiseux.

We showed that Puiseux studied how the fact that the roots of an algebraic equation
are interchanged when the variable z describes some loops in the plane leads to a
group factorized into permutations. He used in this context the word “monodromic,”
which was already introduced by Cauchy. Hermite continued using this word in [36]
(1851).10 This led eventually to the notion of monodromy group, which we still use
today. Jordan, in his Traité des substitutions [39] (1870), defined a group he called
the algebraic group, which contains the monodromy group as a normal subgroup.
The paper [36] byHermite in which he studies the solvability of equations by radicals
makes the relation between the work of Puiseux and the Galois group of an algebraic
equation. Hermite’s paper starts as follows:

It seems to me that the propositions given byMr. Puiseux, on the roots of algebraic equations
considered as functions of a variable z which enters rationally in their first member, open
up a wide research field which is intended to shed light on the analytic nature of this kind
of quantities. I propose to give here the principle of these researches, and to show how they
lead to the knowledge of whether an arbitrary equation

F(u, z) = 0

9It is usually considered that the first abstract definition of a group is contained in the 1854 paper by
Arthur Cayley [24]. But the notion of group appears in essence, as a group of permutations of the
roots of an algebraic equation, in works of various people on the solutions of polynomial equations
of degree ≥ 4, in particular the work of Galois. Klein writes, in his Development of mathematics in
the 19th century ([42] p. 316 of the English translation), that “group theory first developed in the
theory of algebraic equations [...] the central significance of group theory for algebraic equations
first appeared in the work of Galois in 1831 (from whom the term ‘group’ also stems).”
10Let us note thatRiemannused theword “monodromic” in hismemoir onAbelian functions [60] for
a function which is uniform, or single-valued. He writes (§1): “To simplify the designation of these
relations, we shall call the various extensions of one function, for some fixed portion of the plane
of the z, the branches of this function, and a point around which a branch of the function extends
in another one a ramification point of the function. Everywhere where there is no ramification, the
function will be monodromic or uniform.”
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is algebraically solvable, that is, whether the unknown u can be expressed by a function of
the variable z, containing only this variable under root extraction signs of integer degree.
The theorems to which we will be led in this way will give, from a completely new point of
view, the beautiful result obtained by Abel on the possibility of expressing algebraically11

sin am
( x
n

)
by sin am(x). I restrict myself here to the question of the resolution by radicals.

Later, I will show how the theorems of Mr. Puiseux lead to a lowering of these equations
in the cases announced by Galois, whose principles will serve as a basis for everything we
shall say.12

Cauchy published two reports [20, 21] on the two memoirs of Puiseux. In the first
report, he reviews in detail his own work on the subject, and then presents Puiseux’s
contribution. He writes in his conclusion:

Not only Mr. Puiseux added new developments and new improvements to the theory of
curvilinear integrals of algebraic functions, but, furthermore, he highlighted, with a lot of
wisdom, the rules according to which the various values of an algebraic function are inter-
changed when the curve which conducts the integration winds around one of the points he
calls principal points. Finally, he was able to determine in general the number of distinct
values and the periods of certain curvilinear integrals which are relative to a very large class
of algebraic functions and which contain as particular cases elliptic and Abelian integrals.13

In the report on the second memoir, Cauchy mentions Puiseux’s new results on the
periods of curvilinear integrals and the use that Hermite made of Puiseux’s results
in his research on the solvability of equations by radicals.

11The notation am is used in the theory of elliptic functions. It denotes the Jacobi amplitude.
12Les propositions données par Mr. Puiseux, sur les racines des équations algébriques considérées
comme fonctions d’une variable z, qui entre rationnellement dans leur premiermembre,me semblent
ouvrir un vaste champ de recherches destinées à jeter un grand jour sur la nature analytique de ce
genre de quantités. Je me propose de donner ici le principe de ces recherches, et de faire voir
comment elles conduisent à reconnaître si une équation quelconque

F(u, z) = 0

est résoluble algébriquement, c’est-à-dire si l’inconnue u peut être exprimée par une fonction de la
variable z, ne contenant cette variable que sous les signes d’extraction de racines de degré entier.
Les théorèmes auxquels nous serons ainsi amenés donneront, et sous un point de vue entièrement
nouveau, le beau résultat obtenu par Abel sur la possibilité d’exprimer algébriquement sin am

( x
n

)

par sin am(x). Je me borne ici à la question de la résolution par radicaux ; plus tard je ferai, au
même point de vue, l’étude des équations modulaires, et je montrerai comment les théorèmes de
Mr. Puiseux conduisent à effectuer l’abaissement de ces équations dans les cas annotés par Galois,
dont les principes serviront d’ailleurs de base à tout ce que nous allons dire.
13Mr. Puiseux a non seulement ajouté de nouveaux développements et des perfectionnements nou-
veaux à la théorie des intégrales curvilignes des fonctions algébriques, mais, de plus, il a mis en
évidence, avec beaucoup de sagacité, les lois suivant lesquelles les diverses valeurs d’une fonction
algébrique se trouvent échangées entre elles quand la courbe qui dirige l’intégration tourne autour
de l’un des points qu’il nomme points principaux; enfin, il est parvenu à déterminer généralement
le nombre de valeurs distinctes et le nombre de périodes de certaines intégrales curvilignes, qui
sont relatives à une classe très étendue de fonctions algébriques, et qui comprennent comme cas
particuliers les intégrales elliptiques et abéliennes.
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The work of Puiseux was acknowledged as important by many mathematicians.
Bertrand,14 in his eulogy of Puiseux [6], writes the following:

Ch. Sturm,15 our benevolent master of all, but above all proud of his pupil of Collège Rollin,
accosted me one day with this question which nobody before Puiseux had addressed: “If
you follow along a closed loop the root of an equation whose parameter represents a point of
the contour, what do you obtain when you come back to the starting point?” – I responded
without hesitation: “I will recover my root.” – “Well, no! you will not recover it: Puiseux
proves this. He did a beautiful memoir!”16

The relation of the work of Puiseux with the notion of Riemann surface has not
been sufficiently emphasized. Riemann defined these surfaces as ramified coverings
of the plane (more precisely, of the Riemann sphere). The work of Puiseux on alge-
braic functions, interpreted from a topological point of view, contains in essence the
combinatorics of such a surface, giving a description of how its sheets are permuted
above a ramification point, and establishing the precise relation between this sheet
permutation and the nature of the singularities of the algebraic equation. At the same
time, Puiseux’s work makes the relation with group theory. At the expense of being
anachronical, let us mention that the theory of Puiseux expresses the so-called mon-
odromy homomorphism from the fundamental group of the Riemann sphere with
a finite set deleted (the singular set of the algebraic equation) into the permutation
group on d symbols. The books on the history of nineteenth-century complex analysis
hardly mention Puiseux. Gray writes in [33] p. 193: “although we know from Laug-
witz [44] that Riemann had read Cauchy’s report on Puiseux’s memoir by December
1851 it seems unlikely that Riemann had anything to learn from Puiseux by the time
he was writing his doctoral thesis.”

The work of Puiseux was thoroughly used in several French treatises and disserta-
tions on complex analysis and Riemann surfaces in a period that lasted more than 50
years after the publication of this work. We refer the reader to Chap. 8 of the present
volume [49].

14Joseph Bertrand (1822–1900) taught mathematics and physics at Lycée Saint-Louis, École Poly-
technique, École Normale Supérieure and then Collège de France. His name is attached to the
“Bertrand series” in analysis and to the “Bertrand postulate” in number theory. He became member
of the Académie des Sciences, in 1856, as the successor of Charles Sturm. He was the secretary
(“secrétaire perpétuel”) of the mathematical section of the Academy from 1874 until his death, after
which Darboux became the secretary. This explains the fact that Bertrand wrote several eulogies.
Bertrand was also the brother-in-law of Hermite. Paul Appell’s wife was a niece of Bertrand and of
Hermite and a cousin of Émile Picard.
15Charles-FrançoisSturm (1803–1855)whosename is associatedwith theSturm-Liouville principle
on linear order-two differential equations with a parameter, was one of Puiseux’s teachers at the
Collège Rollin in Paris, which Puiseux enrolled in 1834.
16Ch. Sturm, notre maître bienveillant à tous, mais fier surtout de son élève du collège Rollin,
m’aborda un jour par cette question que personne avant Puiseux ne s’était proposée: “Si vous
suivez le long d’un contour fermé la racine d’une équation dont un paramètre représente un point
du contour, qu’obtiendrez-vous en revenant au point de départ ?”—“Je retrouverai ma racine,
répondis-je sans hésiter.”—“Eh bien, non ! vous ne la retrouverez pas: ce Puiseux le démontre. Il a
fait un bien beau Mémoire !”.

http://dx.doi.org/10.1007/978-3-319-60039-0_8
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In the next section, we give a summary of some of the tools introduced by Cauchy
that were available to Puiseux. Riemann had the same tools at his disposal.

4 Cauchy and His Work on Functions of a Complex
Variable

When Riemann started working on his doctoral dissertation, functions of a complex
variable were already studied by various authors. In particular, such functions were
considered by Euler in his 1748 treatise Introductio in analysin infinitorum [29].
In 1777, Euler, in a memoir on geographical maps [30], uses complex numbers
in his study of maps from the sphere to the complex plane. See also [25] for a
commentary on thatmemoir.More importantly, by the timeRiemann started his study
of such functions, Cauchy had introduced several of the tools that were needed for the
development of the theory of Riemann surfaces. In particular, in a series of articles he
published in the 1830s and the 1840s, Cauchy studied line integrals in the complex
domain and their dependence of homotopy classes of paths. This inaugurated the use
of topological methods in the study of functions of a complex variable.17 Riemann,
whoknew the importance ofCauchy’swork,was certainly following his publications.
Klein, who was probably the most enthusiastic representative of Riemann, in his
essay Riemann and his significance for the development of modern mathematics
[41] (1895), recalls that the foundations of the theory of functions of a complex
variable are due to Cauchy. He writes (p. 168):

The founder of this theory is the great French mathematician Cauchy; but only later, in
Germany, did this theory assume its modern aspect which has made it the central point
of our present views of mathematics. This was the result of the simultaneous efforts of
two mathematicians whom we shall have to name together repeatedly, – of Riemann and
Weierstrass.18

Weierstrass, who is mentioned in this passage, based on Cauchy’s theory, devel-
oped the theory of functions of a complex variable in a way different from that of
Riemann. He is known for a multitude of interesting works related to the theory
of functions. To him is attributed the definition of an analytic function of a com-

17One should remember though that the topological notions that appear in Cauchy’s work (paths,
homotopy, etc.) were still not rigorously defined, and that part of this theory was based on intuitive
grounds. One of the earliest rigorous definitions of a path is contained in the much later Jordan’s
Cours d’Analyse de l’École Polytechnique, in three volumes, written between 1882 and 1887 (cf.
[38], 2nd. edition, vol. 1, p. 90).
18Klein writes in a footnote: “In the text I refrained from mentioning Gauss, who being in advance
of his time in this and in other fields, anticipated many discoveries without publishing what he had
found. It is very remarkable that in the papers of Gauss we find occasional glimpses of methods in
the theory of functions which are completely in line with the later methods of Riemann, as if uncon-
sciously a transfer of leading ideas has taken place from the older to the younger mathematician.”
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plex variable using convergent power series,19 which he developed around the year
1841 in a work which was essentially unpublished.20 This led him to a concept of
Riemann surface using the principle of analytic continuation.

One of the facts that emanates from an analysis of Cauchy’s work is that although
he had most of his ideas early in his career, the fact that his results became precise
and rigorous was progressive. Before our exposition of Cauchy’s work, we shall say
a few words on his life.

Cauchy was born in the year of the French revolution. He belonged to a family
who escaped Paris during the revolution and had to remain discreet during the so-
called Terror regime which followed it. Later, and due to a sequence of political
events, Cauchy had to leave his country several times.

LikeEuler andRiemann,Cauchy received his education at home, fromhis father.21

Laplace and Lagrange were family friends, and they encouraged Cauchy’s father in
the education of his son. Like Euler and Riemann, Cauchy was a devout Christian,
and this had some effect on his relation with others, in particular, with Puiseux
and Hermite who shared the same faith and with whom he had excellent relations,
but others considered Cauchy’s extreme religiousness problematic. Cauchy founded
several charities, in particular the famousŒuvre d’Orient, which still operates today.
Valson, in his Vie et travaux du Baron Cauchy [69], writes that “Cauchy was par
excellence a man of charities. For them he never bargained his time and effort.”
The list of mathematicians who were openly hostile to him includes Poinsot, Abel,
Poisson, Fourier and there are others.We also learn from his biographers that Cauchy
was often sick and had a depressive character. In a letter to Holmboë, dated October
24, 1826, the young Abel, who was visiting Paris, writes: “Cauchy is crazy and it is
impossible to deal with him.” In the same letter, Abel writes about Cauchy that he is
extremely Catholic and bigoted, which Abel finds strange for a mathematician. He
adds about him: “he is the only one actively working on pure mathematics. Poisson,
Fourier, Ampère, etc. work exclusively on magnetism and other parts of physics.”22

(The text of the letter is contained in [1] p. 45–49.)
Between 1816 and 1830, Cauchy lectured regularly on analysis in Paris, at the

École Polytechnique, at the Collège de France and at the Faculté des Sciences. Like

19Lagrange defined complex functions using power series, but for him the notion of convergence
was a secondary issue.
20Weierstrass, at that time was working in isolation, as a high-school teacher.
21In one of his writings, quoted by Bertrand [4] p. 187, Cauchy says: “If I know something, it is
only through the care of my father.” [Si je sais quelque chose, c’est uniquement à cause des soins
que mon père a pris de moi.
22Picard, in his historical survey [52] (p. 15) describes this epoch, saying that one must not profess
opinions which are too much systematic, on this parallel between pure theory and applications,
like, he says, Laplace, Fourier, Poisson and the brilliant French school of mathematical physics
of the beginning of the nineteenth century. “For them, he says, pure analysis was only the instru-
ment, and Fourier, when he announced to the Academy of sciences the works of Jacobi, said that
natural philosophy must be the main object of meditation of geometers.” Picard says that such an
exclusiveness would mean ignoring the philosophical and artistic value of mathematics.
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Euler, Cauchy had a very close relation with his students. Valson, in [69] p. 253 of
Vol. I, describes this relation:

His position of professor did not offer only the satisfaction of that feeling of generous
expansion which led him to be in intimate connection with the young men of the schools he
liked, whom he admitted into his study like in a lounge, with whom he was used to converse
informally as a friend rather than as a master.23

UnlikeRiemann and Puiseux, Cauchywas very prolific in terms of volume ofwrit-
ings. In this respect, he was also close to Euler. His list of publications includes more
than 800 articles, and his collected works edition consists of 28 large volumes, whose
publication took almost a century (1882–1974). Cauchy used to publish quickly, and
it is rather common knowledge that he made mistakes which for us today seem
trivial. For instance, it is considered that he thought he proved that a function of
several variables is continuous provided it is continuous separately in each variable
(Cours d’analyse (1821), [10] p. 37–38; Œuvres, Série II, 3, p. 45–47).24 Cauchy
also “proved” that a convergent series of continuous functions can be integrated term
by term ([12] p. 157; Œuvres, Série 2, t. 4, p. 237–238). Chebyshev, who had a
lot of respect for French mathematicians, and in particular for Cauchy, pointed out
some mistakes of the latter. In one of his first papers, written in 1844, whose title
is Note sur la convergence de la série de Taylor [26], he writes, after he proves a
theorem concerning Taylor expansions of functions: “This theorem is only a simple
conclusion of the remarkable discoveries of Mr. Cauchy; but in part, it is contrary to
the rule for convergence of series that was given by this famous geometer,” and he
states the rule25:

If x denotes a real or imaginary variable, a real or complex function of x can be expanded into
increasing powers of x provided the value of the modulus of x stays less than the smallest
value for which the function or its derivative stop being finite and continuous.

Chebyshev declares that it seems that the inadequacy of this rule comes from the fact
that Cauchy assumed that a definite integral may be expanded as a convergent series
when the differential between the two limits of integration may be expanded as a
convergent sequence. Chebyshev says that “this happens only in particular cases.”

Some mathematicians argued however that Cauchy’s so-called errors are in fact
correct theorems when interpreted in the right setting, using his own concepts. For
instance, and especially in the first period of his mathematical works, when Cauchy
considers a functions, hemeans analytical expressions in the sense of Euler where the
existence of a derivative follows from the assumptions; see e.g. [32, 45]. We recall

23Les fonctions de professeur ne lui offraient pas seulement la satisfaction de ce sentiment
d’expansion généreuse qui le portait à se mettre en communication intime avec les jeunes gens
des écoles qu’il aimait, qu’il admettait dans son cabinet de travail comme dans son salon, avec
lesquels il s’entretenait familièrement en ami plutôt qu’en maître.
24The first definition of a continuous function of two variables, in the sense we intend it today, using
a Euclidean norm on the plane, was given by Darboux in 1872, [28].
25Cauchy’s Exercices d’Analyse et de Physique Mathématique, Tome I, p. 29.
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incidentally that there are also gaps and mistakes in some of Riemann’s works,26 and
there are also gaps and inconsistencies in the works of several other great mathemati-
cians. Fortunately, mathematicians are not evaluated by their mistakes, but only by
their achievements. Mentioning the mistakes does not undervalue their work. Some-
times, on the contrary, it shows how subtle was the new material they were working
with, even though today their mistakes seem obvious. Picard, in one of his famous
historical talks that he gave in the United States [52], says (p. 5) that “error is some-
times useful, and in epochs of real creativity, an incomplete or approximate truth
may be more productive than the same truth accompanied by the necessary restric-
tions.”27 He gives the examples of Newton and Leibniz, saying that if they knew that
there exist continuous function with no derivative, differential calculus would not
have been born. Likewise, he says, the false ideas of Lagrange onTaylor expansions
were extremely useful. One can find many examples in mathematics where gaps and
mistakes led to important developments. Talking about Riemann, we mention that in
1892, Hadamard obtained the Grand Prix of the Académie des Sciences for an article
on Riemann’s zeta function [34], and that the subject of that contest was to fill in a
gap in Riemann’s work on that function.28

Cauchy submitted his first paper on definite integrals of a complex variable, the
Mémoire sur les intégrales définies, in 1814 [8]. The paper is 188 pages long. Cauchy,
at the time he wrote this paper, was 25, the same age at which Riemann submitted
his doctoral dissertation, thirty-six years later. This was not Cauchy’s first result.
Cauchy found in 1805 (he was 16) a solution to a problem of Apollonius concerning
a circle tangent to three circles. In 1811, he wrote two articles on polyhedra, general-
izing Euler’s formula, solving a rigidity problem that Lagrange asked him. Cauchy’s
name is now attached to this rigidity result. In Chap.1 of the present volume [48],
we comment on the work of Cauchy on polyhedra in relation with Euler’s work.
Legendre, in a later edition of his Éléments de géometrie, included the new proofs
and the results of Cauchy on polyhedra. In 1812, Cauchy submitted a memoir on
symmetric functions. In 1816, he won a prize for a contest set by the Paris Academy
of Sciences concerning the propagation of water waves. The paper he presented for

26For instance, Riemann “proved” in a course he gave on complex variables that if a series of
functions is convergent, then one can integrate it term by term; cf. [27] p. 13, where Riemann’s
proof is analyzed.
27On peut dire que l’erreur est quelquefois utile, et que, dans les époques vraiment créatrices,
une vérité incomplète ou approchée peut être plus féconde que la vérité même accompagnée des
restrictions nécessaires.
28The subject of the competition was: “The determination of the number of primes smaller than a
given quantity” (which is the title of Riemann’s article [61]), but in the comments following the
problem, it was asked to fill the gaps in Riemann’s work on the zeta function. The subject of the
contest was chosen byHermite, with his friend Stieltjes inmind, who had announced in 1885 a proof
of the Riemann hypothesis. In the meantime Stieltjes withdrew his “proof,” and the prize went to
Hadamard [34]. See the details of this story in [46], and also in Chap.8 of the present volume [49].
Hadamard’s contribution followed from the work he did in his doctoral thesis, Essai sur l’étude des
fonctions données par leur développement de Taylor (Essay on the study of the functions given by
their Taylor expansion), devoted to complex function theory and written under Émile Picard and
Jules Tannery.
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that competition is 300 pages long. Cauchy did these works while he was working
as an engineer, at the construction site of the port of Cherbourg (between 1810 and
1813). Bertrand [4] writes that during these three years where he worked as an engi-
neer, “Cauchy reserved several hours every day to the study of Lagrange and Laplace,
but original and new ideas were perturbing him at every moment. After they stole
from him his sleep, formulae were haunting him on the construction site.”29 After
these three years, Cauchy decided to stop working as an engineer and to come back
to university.

The 1814 paper [8] of Cauchy is considered as one of his most important. It
inaugurated a long series of papers on the theory of definite integrals and on complex
functions, two subjects that accompanied Cauchy for the rest of his life. In this paper,
Cauchy studies definite integrals in which the limits of integration are real numbers,
but where the function that is integrated may be real or complex. Using the standard
terminology of his epoch, Cauchy calls such a function “imaginary.” Furthermore the
function is allowed to become infinite at somepoints between the limits of integration.
This led him to develop a notion of integrals he called singular. The 1814 memoir
contains in an embryonic form the theory of line integrals in the complex planewhich
he developed later.

In two memoirs written in 1825, [13, 14], Cauchy initiated the theory of definite
integrals taken between complex values. He proved that such an integral can take
more than one value, depending on the choice of a path between the (now complex)
numbers x0 and X . Again, this happens in particular when the function f takes the
value infinity at some points. Cauchy also gave amethod of calculating the difference
between two such values in terms of a finite number of “singular integrals.” It might
be important to note that one of the main reasons for which Cauchy studied integrals
of functions of complex variables is that he knew that passing to complex values
of the variable and using his residue calculus will also lead to results on definite
integrals of functions of a real variable; see e.g. [17]. In fact, getting formulae for
definite integrals was a fashionable subject at that time.

It is not possible to mention here the totality of Cauchy’s later papers and books
on functions of a complex variable (there are too many), and we shall say only a
few words on some of them. For a comprehensive exposition of Cauchy’s work on
functions of a complex variable, the reader may refer to [7, 33]. We give though a
list of a few important concepts in the theory of functions that we owe to Cauchy.
Our list is very far from being exhaustive, but some of the concepts we present here
were crucial in the work of Riemann.

(1) The notion of path (“chemin”), in relation with functions of a complex variable,
and the notion of path integral.

29Cauchy à Cherbourg réservait des heures réglées pour l’étude de Lagrange et de Laplace; mais
les idées originales et nouvelles le troublaient à toute heure. Après avoir usurpé sur son sommeil,
les formules le poursuivaient sur les chantiers.
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(2) Rigorous definitions of limits,30 of integrals (as limits of sums) and of conver-
gence of series. In the introduction to his Cours d’analyse de l’École Royale
Polytechnique [10], written in 1821, Cauchy writes:

[...] Thus, before carrying out the summation of any series, I was led to examine in what
cases these series may be summed, or, in other words, what are the conditions of their
convergence. And in this respect, I established general rules which I think are worth of
some attention.31

In particular we owe to Cauchy the espsilon-delta and the epsilon-N definitions
of limits and convergence32 aswell as the notion of Cauchy sequence. In this con-
text, Cauchy is considered as one of the main founders of the rigorous methods
in analysis as we conceive them today, for what concerns convergence, infinite
series, integration, etc.

(3) The notion of circle of convergence of a power series. One might note also that
power series were studied by Euler and Lagrange long before Cauchy (and, in
fact, the notion of power series, in Lagrange’s sense was part of his definition
of a function), but that it was Cauchy who considered that a power series makes
sense only if it is convergent.

(4) A theorem for local existence results for differential equations (known today as
Cauchy’s theorem).

(5) The definition of a holomorphic function through the partial differential equa-
tions which became known as the Cauchy–Riemann equations.
In 1851, Cauchy discovered the notion of a derivative independent of direction
and he called a functionwith such a property “fonctionmonogène.”33 He showed
that the real and imaginary parts of such a function must satisfy the Cauchy–
Riemann equations; cf. his papers [19, 22].34 This was the same year (1851)
that Riemann defined analytic functions using the Cauchy–Riemann equations.
In fact, starting from 1831 (see [15]), Cauchy was interested in the question of
when a function can be developed as a convergent power series. He introduced,
rather unsuccessfully, several conditions, including the fact that the function has

30Cauchy had rigorous definitions of limit and continuity, although, in some sense, it is difficult to
have such rigorous definitions without a rigorous development of the notion of real number, which
was done much later.
31[...] Ainsi, avant d’effectuer la sommation d’acucune série, j’ai dû examiner dans quels cas les
séries peuvent être sommées, ou, en d’autres termes, quelles sont les conditions de leur convergence;
et j’ai, à ce sujet, établi des règles générales qui me paraissent mériter quelque attention.
32On this subject, besides Cauchy, one has to mention the work of Bolzano, done around the same
period.
33The Greek roots of the French word “monogène” used by Cauchy reflect the fact that this function
has a unique derivative. The Greek word “monogenes” has a theological connotation. It is used in
the Septuagint translation of the Bible (Hebrews 11–17), for Isaac as Abraham’s “only begotten
son” and in the Gospel of John (20–31) for Jesus as the “only begotten son” of God.
34It is interesting to note that in his doctoral dissertation, Riemann includes in the definition of a
function of a complex variable the fact of having a derivative independent of direction. The fact
that every complex function satisfies the Cauchy–Riemann equations becomes a theorem. Cf. §4
of Riemann’s dissertation.
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a continuous derivative. It was only at the beginning of the 1850s that he came
up with the condition saying that the function has a (unique) complex derivative,
which is equivalent to conformality. These hesitations of Cauchy are analyzed
in the thesis [50].
It is important to emphasize that even though the Cauchy–Riemann equations
were known before Cauchy and Riemann,35 it is thanks to these two authors
that these equations became at the forefront of the theory of functions of one
complex variable, and at the same time made the connection between analysis
and mathematical physics.

(6) The notion of period of a definite integral [18].
(7) The Cauchy integral formula and the calculus of residues which became known

as the Cauchy formula. (An early version appears in his paper [9]).
(8) The notion of monodromy associated with a function on a given domain which

attains the same value independently of the path chosen in that domain. Cauchy
made the relation between this notion and that of being monogenic (having a
derivative independent of direction) [23].

Cauchy, like Riemann, was also a physicist. He made important contributions to
hydrodynamics, elasticity and astronomy. His name is also attached to a hypersur-
face in spacetime which intersects every inextensible causal curve exactly once. We
mention this fact because it is related to relativity theory, a field on which the ideas
of Riemann have a large impact and which is the subject of the last three chapters of
the present volume.

We review now a major treatise of Cauchy on analysis, his Cours d’analyse de
l’École Royale Polytechnique [10], written in 1821. This treatise was conceived
as a textbook for the first-year students of the École Polytechnique, accompanying
Cauchy’s lectures whose aimwas to present the bases of analysis in themost possible
rigorous way.36 An English translation of Cauchy’s Cours is available (see [11]). In

35The Cauchy–Riemann equations are, in themselves, much older than Cauchy and Riemann. They
already occur in d’Alembert’sworks on fluid dynamics,Essai d’une nouvelle théorie de la résistance
des fluides, Paris, 1752. Klein, in his Development of mathematics in the 19th century ([42] p. 239)
writes that “perhaps they occur even earlier.”
36There is a long French tradition of Cours d’Analyse for the students of the École Polytechnique.
One may mention Lagrange’s Cours whose complete title is Théorie des fonctions analytiques,
contenant les principes du calcul différentiel, dégagés de toute considération d’infiniment petits
ou d’évanouissans, de limites ou de fluxions, et réduits à l’analyse algébrique des quantités finies
(Theory of analytic functions containing the principles of differential calculus, without any consid-
eration of infinitesimal or vanishing quantities, of limits or of fluxions, and reduced to the algebraic
analysis of finite quantities), written in 1797, three years after the foundation of the École. Cauchy
started to teach his course two years after Lagrange’s death. One should also mention the Résumé
des leçons données à l’École Royale Polytechnique sur le calcul infinitésimal (Summary of lectures
on infinitesimal calculus given at the École Royale Polytechnique) (1823), a treatise which Cauchy
wrote for the use of his students, after he modified his lectures because of a change in the official
program. One may also mention the Résumé des cours d’analyse by Charles Hermite, in two parts
(1867–1868 and 1868–1869), the Cours d’analyse de l’École Polytechnique by Charles Sturm, the
Cours d’Analyse by Jacques Hadamard, the more recent Cours d’analyse by Laurent Schwartz
(1967), and there are several others.
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fact, Cauchy published only the first part of his Cours, to which he gave the name
Analyse algébrique. It is conceivable that the sequel of this treatise never appeared
because of a change in the curriculum, after which Cauchy published his Résumé
des leçons [12].

In his Cours, Cauchy starts with the notion of variable and constant, then he
considers infinitely small quantities, the various kinds of functions of a real or com-
plex variable, logarithms, powers, trigonometric functions, limits of functions and of
sequences, convergent and divergent series, methods of solving equations, decom-
position of rational functions, continuity, convergence and divergence criteria and
many other items that are still taught to students today. In Chap. 1, Sect. 3, Cauchy
discusses functions which assign to a given value of the variable more than one value.
An example is when the function is defined by a limiting procedure, and the limits
are not unique. He calls such values singular values of the function. He says that
such values can be obtained when the variable takes the value infinity. He writes
that “the search of the singular values of functions is one of the most important and
delicate questions in analysis.”

Between the years 1826 and 1830, Cauchy published, on a monthly basis, a
series of papers in volumes which he called Exercices de Mathématiques. Between
1840 and 1847, he published another set of four volumes, which he called Exercices
d’analyse et de physique mathématique. The Exercices appeared in the form of a
periodical of which Cauchy was the unique author. In several papers published in
the Exercices, Cauchy rewrites, corrects, improves previous results.37 In a report that
Bertrand wrote on Cauchy’s biography by Valson [5], he says (p. 110):

The genius of Cauchy is worthy of all our respect. But why should we refrain from recalling
that the great profusion of his works, which often reduces their precision, has more than one
time hidden their force? The dangerous easiness of an immediate publicity was for Cauchy
a compelling temptation, and often, a pitfall. His sprit, always in motion, used to bring each
week to the Academy works that were barely sketched, projects of memoirs and attempts

37In his Éloge of Cauchy, Bertrand writes ([4] p. 114) about the Exercices: No mathematical
publication, with whatever excellency and number of collaborators, may compete with the eight
volumes of the Exercices. Avidly expected in their novelty, they are nowadays classical among
the masters. No page of the Exercices is unknown to any geometer. When Cauchy had to refer to
himself, he gladly referred to himself as the author of the Exercices. This title was sufficient. If some
geometer today dared to publish an Exercices de mathématiques, we would be surprised by such a
boldness, in the sameway, and I am not exaggerating at all, as if a poet, whose name is not Lamartine
or Victor Hugo, had dared to publish someOrientales orMéditations poétiques [Aucune publication
mathématique, quelle que fût l’excellence et le nombre de ses collaborateurs, ne pourrait rivaliser
avec les huit volumes des Excercices. Avidement attendus dans leur nouveauté, ils sont aujourd’hui
classiques parmi lesmaîtres ; aucune page desExcercices n’est inconnue à aucun géomètre. Lorsque
Cauchy avait à se citer lui-même, il se nommait volontiers: l’auteur des Exercices. Ce titre suffisait.
Si un géomètre osait aujourd’hui publier des Exercices de mathématiques, on s’étonnerait d’une
telle audace, tout autant, je n’exagère rien, que si un poète, sans se nommer Lamartine ou Victor
Hugo, osait publier des Orientales ou desMéditations poétiques]. We note that the name Exercices
for a publication was already used by Legendre, who published a famous multi-volume Exercices
de calcul intégral (1811–1817) [43], a treatise whose main subject is elliptic integrals and their
applications to geometry and analysis, which incidentallywas one of the favorite subjects of research
of Riemann.
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which were sometimes unsuccessful. Even when a brilliant discovery came to crown his
efforts, he used to force his reader to follow him in ways that were often infertile and which
were tested and abandoned alternately without any prior notice. Let us take as an example
the theory of substitutions and the number of values of a function. To whom does it owe its
greatest advances? To Cauchy, without any doubt, and it is true that his name, in the history
of this beautiful question, rises to a great hight above all the others. But on that theory,
which owes him a lot, Cauchy composed more than twenty memoirs. Two among them are
masterpieces. What can we say of the eighteen others? Nothing, except for the fact that their
author is searching a new way, follows it for some time, catches a glimpse of light, tries
hard pointlessly to attain it, and at the end quits, without showing any embarrassment, the
avenues of the edifice which he renounces to build.38

We quote now Bertrand, from his Éloge of Cauchy ([4] p. 101):

He was exploring new regions, whose hights were known, but nobody was able to guess the
extent, the consistency, and their inexhaustible fertility.39

An Éloge funèbre is an homily in which the departed person is praised for his life
and achievements, and it is natural to find in Bertrand’s Éloge such laudatory words.
Other people, historians of mathematics, made also very laudatory statements. We
quote Bruno Belhoste, from the end of his exquisite biography of Cauchy [3]:

Thus ended the life of the greatest French mathematician of his times scarcely two years had
passed since Gauss had died in Germany. A new age was now opening in the long history
of mathematics, an age in which the leading figures in the mathematical sciences would
be Germans. Between 1854 and 1859, Riemann, Weierstrass, and Kronecker came onto the
scene on the other side of the Rhine. Meanwhile, however, in France, there was a blossoming
of works on Cauchy’s theory.

Laugwitz notes in his article [44] p. 80 that Cauchy’s Cours d’analyse, remained
for a long time the only treatise containing a complete theory of real and complex
power series. He also reports that according to the Göttingen library borrowing list,
Riemann, during the years 1846/47, while he was a student, borrowed this book,
together with the Exercices de mathématiques and other works of Cauchy. Further-
more, in the draft for the defense of his doctoral thesis, Riemann refers to the works

38Le génie deCauchy est digne de tous nos respects;mais pourquoi d’abstenir de rappeler que la trop
grande abondance de ses travaux, en diminuant souvent leur précision, en a plus d’une fois caché la
force ? La dangereuse facilité d’une publicité immédiate a été pour Cauchy une tentation irrésistible
et souvent un écueil. Son esprit, toujours en mouvement, apportait chaque semaine à l’Académie
des travaux à peine ébauchés, des projets de Mémoire et des tentatives parfois infructueuses, et
lors même qu’une brillante découverte devrait couronner ses efforts, il forçait le lecteur à le suivre
dans les voies souvent stériles essayées et abandonnées tour à tour sans que rien vint l’en avertir.
Prenons pour exemple la théorie des substitutions et du nombre de valeurs d’une fonction. À qui
doit-elle ses plus grands progrès ? à Cauchy sans aucun doute, et il est véritable que son nom, dans
l’histoire de la belle question, s’élève à une grande hauteur au-dessus de tous les autres. Mais, sur
cette théorie qui lui doit tant, Cauchy a composé plus de vingt mémoires. Deux d’entre eux sont des
chefs d’œuvre. Que dire des dix-huit autres ? rien, sinon que le lecteur y cherche une voie nouvelle,
la suit quelque temps, entrevoit la lumière, s’efforce inutilement de l’atteindre et quitte enfin, sans
marquer aucun embarras, les avenues de l’édifice qu’il renonce à construire.
39Il explorait des régions nouvelles, on savait à quelle hauteur : nul n’en pouvait deviner l’étendue,
la consistance et l’inépuisable fécondité.
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of Cauchy concerning the definition of an analytic function [47]. Neuenschwander
adds the following:

Riemann was suitable, as no other German mathematician was, to effect the first synthesis of
the “French” and the “German” approaches in function theory. In his introductory lectures
on complex function theory (cf. [65–67]; 1861), Riemann dealt with the Cauchy Integral
Formulae, the operations on infinite series, the power series expansion, the Laurent series,
the analytic continuation by power series, the argument principle, the product representation
of an entire function with arbitrarily prescribed zeros, the evaluation of definite integrals by
residues, etc., besides the subjects known from his published papers.

Riemann does not mention Cauchy in his doctoral dissertation [58]. It is not sure
that Riemann, even though he borrowed from the library Cauchy’s work, really read
them. It is possible that he only skimmed them and reconstructed the theory on
his own. Riemann however mentions Cauchy’s name twice in his paper on Abelian
functions [60], at the end of §2 and in §6, for a result on the expansion of a function in
power series, but he adds, both times, that the result may also be proved using Fourier
series. Riemann also mentions Cauchy’s work three times in his Habilitation memoir
on trigonometric functions [59]. The first time is in §2, in the historical part of his
paper, where Riemann quotes a result where Cauchy was mistaken, and which he
says, can be proved using Fourier series.40 The second time is in §3 of this memoir,
where Riemann says that Cauchy’s attempt to prove the convergence of a certain
series is unsuccessful. The third time is in §4, where Riemann introduces his famous
theory of integration. He criticizes again Cauchy’s attempts to develop a general
concept of definite integral. It is possible that Riemann was disturbed by Cauchy’s
mistakes and for this reason he was not so much inclined to quote him. Cauchy was
also hardly quoted by the Germans during the same period. On the contrary, Cauchy
was very generous in quoting others. Freudenthal writes his biography [31]:

Of all the mathematicians of his period he is the most careful in quoting others. His reports
on his own discoveries have a remarkably naïve freshness because he never forgot to sum
up what he owed to others. If Cauchy were found in error, he candidly admitted his mistake.

We elaborate on the relation between the way Riemann’s work on Riemann sur-
faces was received by the French school in Chap.8 of the present volume [49].
Hermite, in the introduction to the treatise Théorie des fonctions algébriques et de
leurs intégrales (Theory of algebraic functions and their integrals) by Appell and
Goursat [2], published in 1895, makes a summary of the influence of the ideas of
Puiseux, 44 years after their appearence. He writes the following:

The Memoir on algebraic functions by Puiseux, published in 1854,41 opened the research
ground which led to the great mathematical discoveries of our epoch. These discoveries
gave the science of calculus necessary and fruitful principles which were missing until that
time. They replaced the notion of function, which was still obscure and incomplete, by
a precise conception which transformed analysis by giving it a new basis. Puiseux is the
first who shed complete light onto the insufficiency and the defect of the point of view
where we represent, in the same way as polynomials and rational fractions, the algebraic

40Riemann adds that it was Dirichlet who showed Cauchy’s mistake.
41The year should be 1851.
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irrationals and all the quantities in infinite numberwhich have their origin in integral calculus.
Following the path of Cauchy, considering the succession of imaginary values, the paths
described simultaneously by the variable and the roots of an equation, the eminent geometer
highlighted, in its essential character, their analytic nature. He discovered the role of critical
points, and the circumstances of the exchange of the initial values of the roots, when the
variable returns to its starting point, describing a closed loop containing one or several of
these roots. He resumed the consequences of these results in the study of the integrals of
algebraic differentials. He noticed that the various integration paths give rise to multiple
determinations, which led him to the origin – which till then was completely hidden – of the
periodicity of circular functions, of elliptic functions, and of themulti-variable transcendants
defined by Jacobi as inverse functions of hyperelliptic integrals.42

5 Uniformization Again

In the previous sections, we used the word “uniformization” in the original sense
intended by Riemann, as finding a ground space on which a multi-valued func-
tion defined by an algebraic equation becomes uniform (that is, single-valued). We
showed that the question of uniformization, in this sense, was a major factor in the
development of the theory of Riemann surfaces. Later on, the word uniformization
acquired several newmeanings, albeit variations on the original one. One of the alter-
native formulations of the uniformization problem is the following: Given an alge-
braic equation f (z, w) = 0 as in Sect. 2 above, to find two single-valued functions
z(t) and w(t) of one variable t such that the equation f (z(t), w(t)) = 0 is satisfied.
This is the form in which Poincaré used this word. Besides his formulation of the
problem, Poincaré introduced automorphic functions in the study of uniformization.
In an 1882 Comptes Rendus note [53], he announces a result saying that for any
algebraic curve of genus ≥ 2 defined by an algebraic equation f (z, w) = 0 there
exists two Fuchsian functions F(u) and G(u) satisfying f (F(u),G(u)) = 0. One

42Le mémoire de Puiseux sur les fonctions algébriques, publié en 1854, a ouvert le champ de
recherches qui a conduit aux grandes découvertes mathématiques de notre époque. Ces découvertes
ont donné à la science du calcul des principes nécessaires et féconds qui, jusqu’alors, lui avaient
manqué; elles ont remplacé la notion de fonction, restée obscure et incomplète, par une conception
précise qui a transformé l’analyse en lui donnant de nouvelles bases. Puiseux a le premier mis
en lumière l’insuffisance et le défaut de ce point de vue où l’on se représente, à l’image des
polynômes et des fractions rationnelles, les irrationnelles algébriques et toutes les quantités en
nombre infini qui ont leur origine dans le calcul intégral. En suivant la voie deCauchy, en considérant
la succession des valeurs imaginaires, les chemins décrits simultanément par la variable et les
racines d’une équation, l’éminent géomètre a fait connaître, dans ses caractères essentiels, leur
nature analytique. Il a découvert le rôle des points critiques, et les circonstances de l’échange
des valeurs initiales des racines, lorsque la variable revient à son point de départ, en décrivant un
contour fermé comprenant un ou plusieurs de ces points. Il a poursuivi les conséquences de ces
résultats dans l’étude des intégrales de différentielles algébriques. Il a reconnu que les divers chemins
d’intégration donnent naissance à des déterminations multiples, ce qui l’a conduit à l’origine,
jusqu’alors restée entièrement cachée, de la périodicité des fonctions circulaires, des fonctions
elliptiques, des transcendantes à plusieurs variables définies par Jacobi comme fonctions inverses
des intégrales hyperelliptiques.



Cauchy and Puiseux: Two Precursors of Riemann 231

year later, in his paper [54], he stated a general uniformization theorem, in which the
reference to algebraic functions disappeared:

Let y be an analytic function of x , which is non-uniform. We can always find a variable z
such that x and y are uniform functions of z.43

This is the general form of the uniformization problem. It took several years for
Poincaré to provide a proof of this theorem. The attempts to prove this general
statement made the subject of uniformization, for several decades, a vast subject
of research. Whereas from the French side only one name comes to the fore-
front: Poincaré, on the German side, a multitude of prominent mathematicians were
involved in this uniformization program (Christoffel, Hilbert, Klein, Koebe, Osgood,
Schwarz, and there are others). It is not our aim here to enter into this immense
research ground, but we would like to recall Hilbert’s Problem 22, a problem con-
cerning specifically this general uniformization. This is one of the problems that
Hilbert presented in his lecture, delivered on August 1900, at the Second Interna-
tional Congress of Mathematicians held in Paris. The lecture is entitled The future
problems of mathematics, and the problems he presented became a guide for a sub-
stantial part of themathematical research that was conducted in the twentieth century.
Several slightly different versions of Hilbert’s problems were published by Hilbert
after that lecture, in various journals and in several languages. Moreover, the number
of problems is not the same in all these versions. The paper published in the Bulletin
of the American Mathematical Society ([37], 1901) contains a commented set of
twenty-three problems. Problem 22 is entitled Uniformization of analytic relations
by means of automorphic functions. Hilbert presents the problem completely in the
tradition of Poincaré, as the one of reducing a two-variable relation to a one-variable
one, by introducing automorphic forms. In his statement of and his comments on
the problem, Hilbert mentions several times Poincaré and no other mathematician,
except for Picard, whom he mentions at the end of his text, when he suggests a more
general uniformization problem, involving algebraic (and, more generally, analytic)
equations of three or more variables. Let us review precisely Hilbert’s statement:

As Poincaré was the first to prove, it is always possible to reduce any algebraic relation
between two variables by the use of automorphic functions of one variable. That is, if any
algebraic equation in two variables be given there can always be found for these variables two
such single valued automorphic functions of a single variable that their substitution renders
the given algebraic equation an identity. The generalization of this fundamental theorem
to any analytic non-algebraic relations whatever between two variables has likewise been
attempted with success by Poincaré,44 though by a way entirely different from that which
served him in the special problem first mentioned. From Poincaré’s proof of the possibility
of reducing to uniformity an arbitrary analytic relation between two variables, however, it
does not become apparent whether the resolving functions can be determined to meet certain
additional conditions. Namely, it is not shown whether the two single valued functions of the
one new variable can be so chosen that, while this variable traverses the regular domain of
these functions, the totality of all regular points of the given analytic field are actually reached

43Soit y une fonction analytique de x , non uniforme. On peut toujours trouver une variable z telle
que x et y soient fonctions uniformes de z.
44[Hilbert’s footnote:] Bull. Soc. Math. de France, vol. 11 (1883).
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and represented. On the contrary it seems to be the case, from Poincaré’s investigations, that
there are beside the branch points certain others, in general infinitely many other discrete
exceptional points of the analytic fields, that can be reached only by making the new variable
approach certain limiting points of the function. In view of the fundamental importance of
Poincaré’s formulation of the question it seems to me that an elucidation and resolution of
this difficulty is extremely desirable.

In conjunctionwith this problemcomes up the problemof reducing to uniformity an algebraic
or any other analytic relation among three or more complex variables – a problem which
is known to be solvable in many particular cases. Toward the solution of this the recent
investigations of Picard on algebraic functions of two variables are to be regarded aswelcome
and important preliminary studies.

The uniformization problem in its general formwas solved eventually by Poincaré
and Koebe. There are several modern books and articles that report on this problem
and its solution. The interested reader should go through the original papers, guided
by the modern reports.

Acknowledgements I would like to thank Vincent Alberge, Ken’ichi Ohshika and François Lau-
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