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Abstract In his 1854 Habilitationsvortrag Riemann presented a new concept of
space endowed with a metric of great generality, which, through specification of the
metric, gave rise to the spaces of constant curvature. In a different vein, yet with a
similar aim, J. Hjelmslev, A. Schmidt, and F. Bachmann, introduced axiomatically
a very general notion of plane geometry, which provides the foundation for the
elementary versions of the geometries of spaces of constant curvature. We present a
survey of these absolute geometric structures and their first-order axiomatizations,
as well as of higher-dimensional variants thereof. In the 2-dimensional case, these
structures were called metric planes by F. Bachmann, and they can be seen as the
common substratum for the classical plane geometries: Euclidean, hyperbolic, and
elliptic. They are endowed with a very general notion of orthogonality or reflection
that can be specialized into that of the classical geometries by means of additional
axioms. By looking at all the possible ways in which orthogonality can be introduced
in terms of polarities, defined on (the intervals of a chain of subspaces of) projective
spaces, one obtains a further generalization: theCayley-Klein geometries.We present
a survey of projective spaces endowed with an orthogonality and the associated
Cayley-Klein geometries.
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1 Introduction

With hisHabilitationsvortrag of 1854, Riemann opened up a great number of vistas.
Its first paragraph indicates Riemann’s disagreement with the conventional, Euclid-
ean approach to the foundations of geometry:

Bekanntlich setzt die Geometrie sowohl den Begriff des Raumes, als die ersten Grundbe-
griffe für die Constructionen im Raume als etwas Gegebenes voraus. Sie giebt von ihnen
nur Nominaldefinitionen, während die wesentlichen Bestimmungen in Form von Axiomen
auftreten. Das Verhältniss dieser Voraussetzungen bleibt dabei in Dunkeln; man sieht weder
ein, ob und in wie weit ihre Verbindung nothwendig, noch a priori, ob sie möglich ist.1

Here we find, for the first time (as noticed by Ferreirós [21, p. 69]), a statement
of the requirement that the consistency of an axiom system be proved (“ob ihre
Verbindung [die Verbindung der Voraussetzungen] möglich ist” (“whether their [the
assumptions’] association is possible”). Expressed in a modern language unavailable
in his time, Riemann would ask, given axioms α1, . . . , αn , for a proof that their
Verbindung (“association”) α1 ∧ . . . ∧ αn is satisfiable. There is a requirement of
the independence of the axioms implicit in the phrase “ob […] ihre Verbindung
nothwendig ist” (“whether […] their association is necessary”), as well as one asking
for the structure of the models of independence of an axiom, implicit in the request
to find out “in wie weit ihre Verbindung nothwendig [ist]” [“to what extent their
association is necessary”].

It will become apparent during this survey that Riemann’s critique no longer
applies to the modern axiomatization of geometry, that the “assumptions” have been
weakened, producing a very general notion of “geometry,” and that the “relations
between” these “assumptions” are no longer “obscure.”

The great breakthroughs theHabilitationsvortrag contains, pertaining to the con-
cept of a differentiable manifold and to that of Riemannian geometry, have been
analyzed in detail in [11–14, 21, 54, 82–84], and will not be referred to in the
sequel.

There is no doubt in our minds regarding the visionary value of the Habilita-
tionsvortrag or of its importance for the foundations of geometry. Our goal is to
indicate how the aims Riemann had in mind when he provided a solid foundation for
geometry, leading to spaces of constant curvature, can be reached from a different
point of view, using advances in abstract algebra, logic, and our understanding of the
structure of the Universe, none of which were present in any usable form in 1854.

Riemann’s overall aim can be read from his critique of past attempts, and from
his own proposal. What he dislikes in the old axiomatic approach is the fact that one
lonely geometry appears at the end of a list of axioms, making it very hard, if not

1“As is well known, geometry assumes as given both the notion of space and the fundamental
notions for constructions in space. If offers merely nominal definitions for these notions, whereas
the essential determinations appear in the form of axioms. In the process, the relation between these
assumptions remains obscure; we neither realize whether and to what extent their association is
necessary, nor a priori, whether it is possible.” (all translations are by V. Pambuccian).
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impossible, to judge the contribution of the individual axioms. Nor is there a funda-
mental concept of space available, which allows, by adding new axioms, (hypotheses
as Riemann would say, to emphasize their arbitrary nature, as opposed to axioms,
which were thought to be true), to obtain a wide variety of geometries. It wasn’t quite
true that this did not exist at all in 1854, but it is apparent that Riemann had no knowl-
edge of it, since he cites only Euclid and Legendre as precursors in the foundations of
geometry. In §15 of his Appendix of 1832, J. Bolyai had defined absolute geometry,
a geometry worthy of being considered a scientiam spatii, that did allow the addition
of further hypotheses to reach more specific geometries. Riemann’s aim, of starting
with an n-dimensional manifold, and then adding a metric, is certainly much more
bold, and offers a far more general notion of space. However, that approach, although
very general from one point of view, is extraordinarily restrictive from another point
of view. It stipulates that space be continuous, and be modeled by the real numbers.
Riemann is very well aware that this is a hyothesis, i.e., that it is not a self-evident
truth. He writes:

Die Frage über die Gültigkeit der Voraussetzungen der Geometrie im Unendlichkleinen
hängt zusammen mit der Frage nach dem innern Grunde der Massverhältnisse des Raumes.
Bei dieser Frage, welche wohl noch zur Lehre vom Raume gerechnet werden darf, kommt
die obige Bemerkung zur Anwendung, dass bei einer discreten Mannigfaltigkeit das Princip
der Massverhältnisse schon in dem Begriffe dieser Mannigfaltigkeit enthalten ist, bei einer
stetigen aber anders woher hinzukommen muss. Es muss also entweder das dem Raume
zu Grunde liegende Wirkliche eine discrete Mannigfaltigkeit bilden, oder der Grund der
Massverhältnisse ausserhalb, in darauf wirkenden bindenen Kräften, gesucht werden.2

This concernwith the discrete in the context of “metric relations” is highly unusual
for the prevailing zeitgeist. Riemann very likely expressed it due to the acknowledged
influence the philosopher Johann Friedrich Herbart (1776–1841) had on his own
philosophical outlook (the only other acknowledged influence being that of Gauß).3

Among the five ideas from Herbart’s works that “gave rise to many of Riemann’s
epoch-making speculations,” ([77, p. 63]) Bertrand Russell lists Herbart’s “general
preference for the discrete above the continuous.” ([77, pp. 62–63]).

Riemann was interested in the connection between geometry and physics, in
particular the spatial structure of the Universe. The recent realization that space very
likely exhibits a granular structure (see [76] for a contemporary point of view, and
[35, p. 705] for the same realization a century ago, in Hilbert’s words “ein homogenes
Kontinuum, das die fortgesetzte Teilbarkeit zuliesse und somit das Unendlich-Kleine
realiseren würde, [wird] in der Wirklichkeit nirgends angetroffen. Die unendliche

2The question of the validity of the hypotheses of geometry in the infinitely small is connected
with the question of the intrinsic reasons for the metric relations of space. It is in this last question,
which may still be regarded as belonging to the doctrine of space, that the remark made above finds
its application, viz. that in the case of a discrete manifold, the principle of its metric relations are
already contained in the very notion of this manifold, whereas in the case of a continuous manifold,
this principle must come from somewhere else. Thus either the underlying reality of space must
form a discrete manifold, or else we must seek the reason for its metric relations outside it, in
binding forces acting upon it.
3See [111, 2.2.10] for more on the influence of Herbart.
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Teilbarkeit eines Kontinuums ist nur eine in Gedanken vorhandene Operation, nur
eine Idee, die durch unsere Beobachtungen der Natur und die Erfahrungen der Physik
und Chemie widerlegt wird.”4) makes a search for a foundation of geometry that
would not be completely dependent on the real numbers desirable from this point of
view as well.

Most mathematicians, in Riemann’s time and at present, work inside well-
established theories and objects, inside a social consensus of what is acceptable
and what not. A very small minority, among whose ranks one could, in his own time,
consider J. Bolyai and N. I. Lobachevsky to belong, develop a firm belief in the valid-
ity of a well-reasoned vision that does not yet have a place in the world of socially
accepted mathematical practice. An idealist strain is at work here, one for which
what is born of exact thought is primordial, one for which “in the beginning was
the word.” This approach looks at mathematics as the art of producing new insights
from a few basic principles, that have been singled out as “hypotheses,” central to
the envisioned realm of discourse. The idealist approach originates with the ancient
Greeks, and it is no wonder that some of its early practitioners in modern times, in
particular Russell and Hilbert, were under their spell.

As the author of the Habilitationsvortrag, Riemann is an accomplished idealist.
He emphasizes the hypothetical character of the assumptions, finds it necessary to
justify at length the choice of continuous rather than discrete scales, and—much
like Lobachevsky and Bolyai before him—has no problem believing in the truth of
his “Riemannian manifolds” more than 100 years before they were shown to exist
globally in the sense concretemathematical practicewould deem convincing, namely
as submanifolds of a Euclidean space with the induced metric. That was the way 2-
dimensional manifolds had been first considered by Gauß and the representation of
a part of the hyperbolic plane in that manner by Beltrami in 1868 was the turning
point eventually leading to the social acceptance of hyperbolic geometry.

Few abstractly existing entities, without a concrete model, had been put forward
before (such as complex numbers), and certainly none of that level of complexity.

Approaches that were not accessible in 1854 were those involving groups, whose
abstract concept had only appeared that same year, in Cayley’s papers. Nor was there
any awareness of the complexities involved in providing a foundation ex nihilo for
the real numbers. With our current knowledge, we know that the real numbers, if
they are to receive a foundation from the ground up, in the idealist manner, require
the language of set theory and its axioms. As Skolem had emphasized since 1923,
and as has become commonly accepted (see [18]) for the past 70 years or so, in the
words of J. Ferreirós,“if we are interested in producing an axiomatic system, we can
only use first-order logic.” [20, p. 472]) Andwithin first-order logic, the real numbers

4A homogeneous continuum, that would allow indefinite divisibility and would thus achieve the
infinitely small, cannot be encountered anywhere in nature. The infinite divisibility of the continuum
is an operation existing only in thought, only an idea, which is refuted by our observations of nature
and by the experience drawn from physics and chemistry.
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cannot be axiomatized on the basis of addition, multiplication, some constants, and
the order relation. They do require all of set theory, which means the foundation for
all of mathematics.

Riemann had no reason to doubt the fundamental nature of the real numbers, as
their only competition in the world of Grössenbegriffe, which Riemann mentions
when referring to discrete or continuous Bestimmungsweisen, were the natural num-
bers. In that foundationally innocent time before 1854, the notion of a field was
non-existent, nor was there any doubt that Archimedeanity is a fundamental attribute
of any Grössenbegriff.

We should mention from the start of our alternative approach—one that bears no
direct relation to Riemann’sHabilitationsvortrag—that no elementary account of the
foundations of geometry (i.e., no first-order axiomatization) can ever hope to provide
a foundation for the bewildering variety of Riemannian manifolds, i.e., to have all
of them among its models. What we can do inside our elementary approach is to do
justice to Riemann’s desire of starting with a very general notion of space that allows,
through a step by step process (often referred to as a Stufenaufbau in German), for the
foundation of the essentially geometric scaffolding of spaces of constant curvature
(the differential geometric story of which has been told elsewhere, see [114]).

Despite the apparent differences in these two approaches, there are historical
connections inexorably leading from Riemann to Hilbert, and then to Hjelmslev, to
Hilbert’s student Arnold Schmidt, and finally to Bachmann. In the fourth appen-
dix to his Grundlagen der Geometrie, Hilbert starts with “the studies of Riemann
and Helmholtz on the foundations of geometry”,5 which have led (“veranlaßten”)
Lie to approach the problem by using the concept of a group. He then proposes
his own version of what we call today the Riemann-Helmholtz-Lie space problem
in both topological and group-theoretical terms. On the last page of that appendix,
Hilbert points out that the difference between the approach mixing topology with
group theory and that of the “main part” (“Hauptteil”) of the book lies in the place
occupied by the axiom of continuity in the scaffolding of the axiom system. In the
fourth appendix Über die Grundlagen der Geometrie, continuity is assumed from
the start, so comes first, whereas in the axiom system of theGrundlagen der Geome-
trie it comes last, to allow for a continuity-independent development of elemen-
tary geometry. Bachmann’s approach, which will be followed closely in this survey,
can be seen as combining the group-theoretical aspect present in Hilbert’s fourth
appendix, and originating in the Riemann-Helmholtz-Lie space problem, with the
continuity-independent approach found in the elementary foundation of geometry—
along ancient Greek lines going back toAristotle’sPosterior Analytics—in the “main
part” of the Grundlagen der Geometrie. It was precisely the Aristotelian approach
that had been completely forgotten, and was nowhere present in the mathematics of
the first half of the 19th century. Up until the modern axiomatization of arithmetic
and geometry, the zeitgeist was one of the belief in the unity of all mathematics,
in the spirit of Plato (see [46]). There was no sense to be made out of Aristotle’s

5Die Untersuchungen von Riemann und Helmholtz über die Grundlagen der Geometrie.
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Posterior Analytics, A 7, 75a38-b20, the first half of which reads (in the translation
of Theophilos Kouremenos):

It follows that it is impossible to prove something by passing to it from another kind, e. g.
to prove a geometrical truth with arithmetic. For there are three elements in demonstration:
what is proved, the conclusion (which is an attribute belonging to a kind in itself); the axioms
(which are premises of the proof); third, the underlying kind whose attributes and properties
that hold of it in itself are revealed by the demonstration. The axioms, which are premises of
demonstration, may be identical in two or more sciences: in the case of two different kinds
such as arithmetic and geometry, however, you cannot fit arithmetical demonstration to the
attributes of magnitudes, unless the magnitudes in question are numbers; how this is possible
in certain cases I will explain later. Arithmetical proof always has its own kind, and so do the
proofs in the other sciences. Thus, if a proof is to cross from one science to another, the kind
must be the same absolutely or to some extent. Otherwise crossing is evidently impossible
since the extreme and the middle terms must come from the same kind; for, if they do not
hold in themselves, they hold incidentally.

At the start of the modern axiomatic approach we have Pasch, who in 1882 pro-
vided a modern axiomatic foundation for ordered geometry (see [67] for details
on their possible axiomatizations). These can be considered, in a certain sense, the
elementary version of differentiable manifolds, given that there is only a topology
present (the one induced by the order relation), but no metric, i.e., no notion of
orthogonality or congruence. In dimensions ≥3, these spaces are, however, much
more rigidly structured than manifolds, given that they have to be Desarguesian, i.e.,
that they can be embedded in projective spaces over ordered skew fields. In trying
to mimic Riemann’s approach, one could start with ordered spaces and then add a
notion of orthogonality or congruence to obtain elementary versions of spaces of con-
stant curvature. This would roughly correspond to the approach present in Hilbert’s
Grundlagen der Geometrie of 1899. There the axioms are divided into groups. The
first group consists of incidence axioms, the second group of order axioms, the third
group of congruence axioms. Taken together, the three groups axiomatize an ele-
mentary (i.e., first-order) version of J. Bolyai’s absolute geometry.

We will follow instead a different Stufenaufbau, that starts with a bare bones
orthogonality structure, in which there is neither order nor the various forms of
free mobility that Riemann asks of his geometry, nor the possibility of embedding
the structures in Euclidean spaces over the real numbers. This originates, to a cer-
tain extent, in Hilbert’s work (see also [68]), for he states, in the conclusion of his
Grundlagen der Geometrie, that he was led throughout by the fundamental principle
(Grundsatz):

eine jede sich darbietende Frage in der Weise zu erörtern, daß wir zugleich prüften, ob ihre
Beantwortung auf einem verschiedenen Wege mit gewissen eingeschränkten Hilfsmitteln
möglich ist.6

6To treat any question that might arise in a manner which also allowed us to check whether its
answer is possible by a different route with certain restricted means.
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This purelymetric7 treatment of geometry startedwith the 2-dimensional case, and
is due, in large measure, to J. Hjelmslev. It was he who, in [36], had the deep insight
that line-reflections have certain properties that are independent of any assumption
regarding parallels, and thus absolute. Line-reflections—and with them the crucial
three-reflection theorem, stating that the composition of three reflections in lines
which have a common perpendicular or a common point must be a line-reflection—
had been the subject of earlier studies, such as [31, 33, 89, 113]. However, in these
works, line-reflectionswere treated inside the particular geometry at hand (Euclidean,
hyperbolic, or elliptic), and not independently of it, as they were by Hjelmslev, who
carried on this line of research in [37]. Many more geometers—whose contributions
are chronicled in [7, 38]—have helped build up geometry in terms of line-reflections.
Their work helped remove order or free mobility assumptions. What is left after the
removal work was done consists of the three-reflections theorem, beside very basic
axioms stating that there are at least two points, that there is exactly one line incident
with two distinct points, that perpendicular lines intersect, and that through every
point there is a perpendicular to any line, which is unique if the point and the line are
incident. The final touch in carving this austere axiom system came from Bachmann
[4], who showed that two axioms from the axiom system ofHilbert’s student Schmidt
[80] are superfluous.

Later, several ofBachmann’s students andother geometers extended the reflection-
geometric axiomatization to higher-dimensional and to dimension-free geometries.
It is these geometries that we consider to be the elementary (first-order) counterpart
of Riemannian manifolds. They share the following characteristics: (i) they are both
defined as abstract structures, which can be shown—with great effort—to be embed-
dable in some Euclidean space (in the case of Riemannian manifolds) or in some
projective-metric space (in the case of reflection geometries); (ii) they both allow the
definition of a notion of orthogonality (in the case of Riemannian manifolds on the
tangent space of each point), defined by a bilinear symmetric map (which is given
a priori in the Riemannian case, while it is discovered through the hard work of a
representation theorem in the case of reflection geometries). Since the symmetric
bilinear map is left unspecified, except for the restriction that the radical (orthogonal
complement) of the quadratic space it determines be ≤1, in the case of reflection
geometries, the notion of space thus created is one of wide generality.

Much like in the case of Riemannian manifolds, some of which were known in
the 2-dimensional case as surfaces in 3-dimensional Euclidean space, variants of the
reflection-geometrically defined geometries had been studied earlier as inhabitants of
projective-metric spaces. Understanding a metric geometry inside a projective space
originated in the discovery of Cayley [15] and Klein [42] that projective geometry
allows the introduction of metric concepts. By distinguishing an absolute figure (the
absolute) in a real projective manifold, they were able to introduce a projective
measure (Maßbestimmung). Metrical properties became properties of the relation of

7Throughout this paper metric will always refer to a structure with an orthogonality relation or in
which one such relation can be defined. It is in no way related to metrics defined as distances with
real values.
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a figure to the absolute and the projectiveMaßbestimmung “blazed a convenient road
through [the] jungle undergrowth of Lobachevsky’s computations.”8

In the Euclidean case the absolute is a degenerate imaginary conic, consisting of
a couple of complex points, called “the circular points at infinity” (see [92, II §8] or
[42]). If the two complex circular points are replaced by a real non-degenerate conic
then the associated geometry is the geometry of Bolyai and Lobachevsky, commonly
referred to, following Klein, as hyperbolic. If the absolute non-degenerate conic is
imaginary, then the associated geometry is, again following Kleinian terminology,
elliptic. Elliptic geometry is the spherical geometry of Riemann if antipodal points
are identified, so that any two points have a unique joining line. The incidence
structure of an elliptic plane, i.e., an elliptic plane in which one “forgets” the metric
structure, is a projective plane. Elliptic lines are unbounded9 but of finite length—a
distinction which Riemann emphasized in section III.2 of his Habilitationsvortrag
with the words:

Bei der Ausdehnung der Raumconstructionen in’s Unmessbargrosse ist Unbegrenztheit und
Unendlichkeit zu scheiden; jene gehört zu den Ausdehnungsverhältnissen, diese zu den
Massverhältnissen.10

Klein made a systematic analysis to determine all projective measures of a pro-
jective space and described the associated Euclidean and non-Euclidean geometries
which are nowadays commonly referred to as Cayley-Klein geometries. He himself
was initially reluctant to refer to them as geometries, for although they have “from
a logical point of view equal rights beside Euclidean geometry”,11 “they are in part
not usable for measurements in the outside world”,12 so he preferred to refer to them
asMaßbestimmungen. With the advent of relativity theory, he changed his mind and
pointed out that all the geometries underlying the newly proposedmodels of “space”,
be they Minkowski space or de Sitter space, were among the “geometries” for which
he had reserved the more modest term “projective measure”.

Cayley and Klein showed that both Euclidean and hyperbolic geometry are subor-
dinate to projective geometry, and that the only difference—from a projective point
of view—is in the choice of the absolute. Moreover, all Cayley-Klein geometries
are independent entities in their own right, in the sense that they do not need to be
considered as geometries embedded in projective geometry. The fact that, even if the

8“bahnt eine bequeme Straße durch…[das] Urwaldgestrüpp der Lobatschefskijschen Rechnungen”
[42, p. 277].
9In the sense that there are no boundaries to a line, that one can travel along one without ever
reaching anything remotely resembling an end, or, in Euclid’s own formulation, in Postulate 2 of
Book I of the Elements, it is always possible “To produce a finite straight line continuously in a
straight line.”.
10When space-constructions are extended toward the unmeasurably large, one must distinguish
between unboundedness and infinitude; the former belongs to the realm of extension, the latter to
the that of measure.
11“stellen sich vom logischen Standpunkte aus gleichberechtigt neben die euklidische Geometrie”
[42, p. 164].
12“da sie zum Teil nicht für Messungen in der Außenwelt verwendbar sind.” [42, p. 164].
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Cayley-Klein geometries are abstractly defined, they end up being embeddable in a
projective space with a projective metric, is a remarkable result, referred to as the
Begründung (grounding) of a geometry. It is worth mentioning that such a Begrün-
dung cannot proceed by constructing a model in Euclidean space, such as a sphere
model of elliptic geometry, for such constructions presuppose Euclidean geometry
rather than happen inside the neutrality of the projective setting.

This Cayley-Klein approach was not without its critics from an epistemological
point of view. Its fundamental problem, as pointed out by Russell in his Foundations
of Geometry [77, p. 31], was one of circularity (see also [26, Chaps. 1–3]):

But what are projective coordinates, and how are they introduced? This question was not
touched upon inCayley’sMemoir, and it seemed, therefore, as if a logical errorwere involved
in using coordinates to define distance. For coordinates, in all previous systems, had been
deduced from distance; to use any existing coordinate system in defining distance was,
accordingly, to incur a vicious circle.13

This criticism asks one to justify in a purely geometrical manner the introduction
of coordinates in geometry to validate the Cayley-Klein approach. This problem had
been left unanswered for a very long time afterDescartes showed that geometry canbe
practised inside a coordinate structure without providing reasons why synthetically
given geometry can be coordinatized. In other words, the problems was to indicate
how numbers or magnitudes show up in a realm like that of synthetic geometry, in
which they do not belong to the vocabulary of its axiom system. This question was
first answered by Schur [89, 90], and made widely known for Euclidean geometry
by Hilbert in the Grundlagen der Geometrie with his arithmetic of line segments
(Streckenrechnung). It is also addressed in [42, Kap. V] for the projective case to
ensure that the construction of non-Euclidean geometries does not depend upon the
specifically Euclidean coordinatization process. For absolute geometry, where the
task is significantly more complex, it was Hjelmslev and Bachmann who provided
the coordinatization of an abstractly presented geometry by means of their calculus
of reflections. This method turns out to be applicable to all Cayley-Klein geometries.

Our aim is to survey results of what can be considered the modern axiomatic
foundation of geometry. This will bring to light the little known fact that this is
a field of research with its own challenging problems, rather than one of largely
historical interest.

Given the axiomatic nature of our undertaking, one needs a language in which to
write the axioms, and a logic by means of which to deduce consequences from those
axioms. Based on the work of Skolem, Hilbert and Ackermann, Gödel, and Tarski,
a consensus had been reached by the end of the first half of the 20th century that, as
Skolem had emphasized since 1923, “if we are interested in producing an axiomatic
system, we can only use first-order logic” (cp. [20, p. 472]).

Given that symbolic logic is not within the comfort zone of a majority of present-
day mathematicians, each axiom that is phrased in formal logic is followed by a plain

13Russell’s question is rhetorical in nature. He answers it on the next page, pointing out that the
work of von Staudt, with its introduction of coordinates in a metric-free manner, removes all doubts
regarding the independence of projective coordinates from distances.
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English description of what it says. This allows the reader to skip the formal part of
an axiom without losing the thread of the story.

We will proceed by first presenting the theory of metric planes in its group-
theoretical axiomatization in Sect. 2.1, followed by a more traditional, synthetic
geometric, axiomatization in Sect. 2.2, and a partial algebraic characterization of
the models in Sect. 2.3. Next come the introduction of order and free mobility in
Sects. 2.4 and 2.5, turning metric planes into Hilbert planes (planes satisfying the
axioms for absolute geometry presented by Hilbert in [34]), as well as Pejas’s alge-
braic characterization of Hilbert planes. We next pause to reflect in Sect. 2.6 on
the methodological advantages of this approach, and mention the generalizations of
metric planes proposed in the literature in Sect. 2.7. Sections3 and 4 are devoted
to n-dimensional and dimension-free generalizations of metric planes. Given that
the orthogonality relation of metric planes or of higher-dimensional metric spaces
is induced by a polarity defined on a subspace of a projective plane or space, we
turn in Sect. 5 to the study of all possible orthogonality relations that are induced
by polarities. The 2-dimensional case is treated in Sect. 5.1, the finite-dimensional
case in Sect. 5.2. While the 2-dimensional case has a venerable history, going back
to Cayley [15] and Klein [42], the higher-dimensional case has been systematically
dealt with only recently in [106, 108], and offers a better understanding of themanner
in which Cayley-Klein geometries, which are dealt with in Sect. 6, come into exis-
tence. The 2-dimensional case of Cayley-Klein geometries is treated in greater detail
in Sect. 6.1, with a novel reflection-geometric axiomatization presented in Sect. 6.3.
Remarks concerning finite plane Cayley-Klein geometries and on the connection
between Cayley-Klein spaces and differential geometry can be found in Sects. 6.2
and 6.4. We append a reasonably comprehensive list of references.

2 Metric Planes

2.1 The Group-Theoretical Approach

We now present metric planes as they appear in [7]. There, however, they are
presented as structures living inside groups generated by a set of involutions. This is
not a first-order axiomatization (a fact Bachmann knew all too well, having written
his thesis and done research in formal logic), but rather a convenient language in
which the theory should be presented to a wider audience. That the theory could be
phrased in first-order logic he no doubt knew. We choose to present the theory of
metric planes in formal logic just to show that it can be done, that it is an elementary
theory, far removed from the concept of set.14 Our language will be a one-sorted
one, with variables to be interpreted as “rigid motions,” containing a unary predicate
symbolG, withG(x) to be interpreted as “x is a line-reflection,” a constant symbol 1,

14The axiom system inside group theory can be found, with n = 2, in Sect. 3.
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to be interpreted as “the identity,” and a binary operation ◦, with ◦(a, b), which we
shall write as a ◦ b, to be interpreted as “the composition of a with b.”

To improve the readability of the axioms, we introduce the following
abbreviations:

a2 = a ◦ a,

ι(g) :⇔ g �= 1 ∧ g2 = 1,

a |b :⇔ G(a) ∧ G(b) ∧ ι(a ◦ b),

J (abc) :⇔ ι((a ◦ b) ◦ c),

pq |a :⇔ p |q ∧ G(a) ∧ J (pqa).

Thus ι(g) stands for “g is an involutory element;” a |b for “a and b are orthogonal
lines;” J (abc) stands for “a, b, and c lie in a pencil;” pq |a stands for “the line a
and the orthogonal lines p and q lie in a pencil.” The axioms are (we omit universal
quantifiers whenever the axioms are universal sentences):

M 1 (a ◦ b) ◦ c = a ◦ (b ◦ c)
M 2 (∀a)(∃b) b ◦ a = 1
M 3 1 ◦ a = a
M 4 G(a) → ι(a)

M 5 G(a) ∧ G(b) → G(a ◦ (b ◦ a))

M 6 (∀abcd)(∃g) a |b ∧ c |d → G(g) ∧ J (abg) ∧ J (cdg)
M 7 ab |g ∧ cd |g ∧ ab |h ∧ cd |h → (g = h ∨ a ◦ b = c ◦ d)

M 8
∧3

i=1 pq |ai → G(a1 ◦ (a2 ◦ a3))
M 9

∧3
i=1 g |ai → G(a1 ◦ (a2 ◦ a3))

M 10 (∃ghj) g |h ∧ G( j) ∧ ¬ j |g ∧ ¬ j |h ∧ ¬J ( jgh)

M 11 (∀x)(∃ghj)G(g) ∧ G(h) ∧ G( j) ∧ (x = g ◦ h ∨ x = g ◦ (h ◦ j))

Since a ◦ b with a |b represents a point-reflection, we may think of an unordered
pair (a, b) with a |b as a point, an element a with G(a) as a line, two lines a and b
for which a |b as a pair of perpendicular lines, and say that a point (p, q) is incident
with the line a if pq |a. With these figures of speech in mind, the above axioms make
the following statements: M1, M2, and M3 are the group axioms for the operation
◦; M4 states that line-reflections are involutions; M5 states the invariance of the set
of line-reflections, M6 states that any two points can be joined by a line, which is
unique according to M7; M8 and M9 state that the composition of three reflections
in lines that have a common point or a common perpendicular is a line-reflection;
M10 states that there are three lines g, h, and j , such that g and h are perpendicular,
j is perpendicular to neither g nor h, nor does j go through the intersection point
of g and h; M11 states that every motion is the composition of two or three line-
reflections. It is this fact, that every element of the group generated by line-reflections
can be written as the product of at most three line-reflections, that made the first-
order axiomatization of the group of motions of a metric plane possible. Notice that,
in the presence of M11, M4, M1, and M3, the statement regarding the existence
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of the inverse, M2, becomes superfluous. We have listed it nevertheless, given that
M1–M3 will be used in axiom systems that appear later. We will denote by M the
axiom system {M1–M11} for metric planes.

From here on, there are two options, according to the answer the question “Is
it possible for a product of an odd number of line-reflections to be the identity?”
receives. If the answer is yes, whichmeans—given that any product of an odd number
of line-reflections can be reduced to a product of three line-reflections—that

El 1 (∃abc)G(a) ∧ G(b) ∧ G(c) ∧ a ◦ (b ◦ c) = 1

then we have an axiom system for elliptic planes (the geometry first mentioned by
Riemann in hisHabilitationsvortrag as a geometry with positive constant curvature).
El1 states that the composition of three line-reflections can be the identity.

If the answer is no, meaning that ¬El1 holds, then we have a non-elliptic metric
plane. The presence of ¬El1 ensures that the perpendicular from a point not on a
line to that line is unique.

Within the theory of metric planes we can separate the hypotheses regarding the
nature of the metric (Euclidean or non-Euclidean (hyperbolic, elliptic)) from those
regarding free mobility (with subdivisions into the free mobility of points (every
point-pair has a midpoint) and the free mobility of lines (every pair of intersecting
lines has an angle bisector)), and from those regarding the order of the plane. These
three requirements are almost completely distinct, in the sense that a metric plane
may satisfy, within limits, a variety of combinations of them. The two cases in which
one hypothesis leads to another are the case in which the metric is hyperbolic, in
which the order comes for free, and the case of a Euclidean metric, in which the free
mobility of points, i. e., the universal existence of midpoints, is ensured.

2.1.1 The Elliptic Case

There are simpler axiom systems for elliptic planes than M ∪ {El1}. The first in-
depth study of an axiomatization in terms of reflections for elliptic planes goes back
to Baer [10]. After proving that one of Baer’s axioms is superfluous and re-writing
Baer’s axiom system, Heimbeck [28] showed that {M1–M3, El2, El3, El4} is an
axiom system for elliptic planes in a one-sorted language with one binary operation
symbol ◦. The specifically elliptic axioms are:

El2 (∀g)(∃i)(∀x) g �= 1 → (ι(i) ∧ (ι(x) → (ι(x ◦ g) ↔ ι(x ◦ i)))
El3 (∀g)(∃h) ι(g) → g ◦ h �= h ◦ g
El4 (∃g) g �= 1

El2 states that, for all elements g �= 1 of the group, there is an involution i of that
group, such that the set of all involutions x for which x ◦ g is an involution coincides
with the set of all involutions x for which x ◦ i is an involution. El3 states that no
involution commutes with all elements of the group, and El4 that the group is not
trivial.
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2.1.2 The Hyperbolic Case

Two lines a and b are called non-connectable, to be denoted by ω(a, b) if a and b
neither intersect nor have a common perpendicular, i.e.,

ω(a, b) ⇔ (∀gh)¬(gh |a ∧ gh |b) ∧ ¬(g |a ∧ g |b).

To obtain an axiom system for hyperbolic planes from metric planes, one just
needs to add two axioms to {M1–M11}, namely (addition in the indices being
modulo 3)

H 1 (∃ab) ω(a, b)
H 2 (∀a1a2a3mng) (

∧3
i=1 mn |ai ∧ ω(ai , g)) → (

∨3
i=1 ai = ai+3)

H1 states that there are two lines that are non-connectable.H2 states that through
a given point (m, n) there can be at most two lines ai that are non-connectable with a
given line g. The theory axiomatized byM ∪ {H1,H2} was studied by Klingenberg
[43], who showed that all of its models are isomorphic to Beltrami-Cayley-Klein unit
disk models of hyperbolic geometry built over arbitrary ordered fields. To get to the
elementary version of plane hyperbolic geometry, first axiomatized by Hilbert [33],
one needs to add to M ∪ {H2} an axiom stronger than H1, namely one that states
that from a point (p1, p2) to a line g not through (p1, p2) there are two distinct lines
non-connectable with g, i.e.,

H 3 (∀p1 p2g)(∃a1a2) p1 | p2 ∧ ¬(p1 p2 |g) → a1 �= a2 ∧ ∧2
i=1(p1 p2 |ai ∧

ω(ai , g))

It forces the arbitrary ordered coordinate field of the models ofM ∪ {H1,H2} to be
Euclidean, i.e., one in which all positive elements must have square roots. As shown
in [43, 4.5], one can replace H3 with the requirement that every point-pair has a
midpoint

H 4 (∀a1a2b1b2)(∃c1c2) a1 |a2 ∧ b1 |b2
→ c1 |c2 ∧ ((c1 ◦ c2) ◦ (a1 ◦ a2)) ◦ (c1 ◦ c2) = b1 ◦ b2

to get another axiom system, M ∪ {H1, H2, H4}, for Hilbert’s plane elementary
hyperbolic geometry. Another, simpler axiom system in terms of line-reflections and
their composition can be found in [9, Satz 7].

2.1.3 The Euclidean Case

There are two particular behaviors that may be deemed as Euclidean. One is purely
metric and can be expressed by either requiring the existence of a rectangle, i.e.,

E 1 (∃abcd) a |c ∧ b |c ∧ a |d ∧ b |d ∧ a �= b ∧ c �= d

or by asking that a quadrilateral with three right angles is a rectangle,

E 2 a |c ∧ b |c ∧ a |d → b |d
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It turns out that, in the presence ofM, E1 and E2 are equivalent (see [7, p. 306]).
Alternatively, one may think of the behavior of parallels as being quintessen-

tially Euclidean and ask that two distinct lines either intersect or have a common
perpendicular, i.e.,

E3 (∀ab)(∃mn) a �= b → (mn |a ∧ mn |b) ∨ (m |a ∧ m |b)
That E1 (or E2) describe a phenomenon different from thatE3 postulates became

apparent only after Dehn’s [16] investigation, at Hilbert’s suggestion, of the matter.
Dehn found out that, even if both order and free mobility were present, E1 and E2
do not imply E3. On the either hand, neither is the reverse implication E3→E1 valid
in the presence of M (see [7, p. 124]).

Put differently, a metric plane satisfies both E1 and E3 if and only if Playfair’s
form of the Euclidean parallel postulate—“There is exactly one line through P that
does not intersect l, whenever P is a point not on the line l”—holds in it.

2.2 The Synthetic Approach

The axiom system M we have presented for metric planes appears to be one for its
group of motions, not for the geometry itself. It turns out, however, that the informa-
tion contained in the group of motions of a metric plane, in which we know which
of the involutory elements are to be considered as line-reflections, contains enough
information to enable the recovery of the underlying geometry. That underlying
geometry can be axiomatized, as shown in [7, §2,3], in a more traditional, synthetic,
manner, in which the individual variables are the usual points and lines, and the
primitive notions are incidence, line orthogonality, and reflections in lines. Techni-
cally speaking, the axiom system is one inside a bi-sorted logic, given that there are
two distinct kinds of variables, with points and lines to be denoted by upper-case,
respectively lower-case letters of the Latin alphabet. Point-line incidence, a binary
relation with point variables in the first place and line variables in the second, will
be denoted by I, and we will write P I l instead of I (P, l). Line orthogonality, a
binary relation among lines, will be denoted by ⊥, and we will write g ⊥ h instead
of ⊥ (g, h). Reflections in lines are binary operations—the first argument of which
are line variables, whereas the second argument and its value are of the same sort
(that is, both line variables or both point variables)—are denoted by σ .

An axiom system logically equivalent toM thus is (addition in the indices being
modulo 3):

O 1 (∃AB) A �= B
O 2 (∀g)(∃A1A2A3)

∧3
i=1 Ai �= Ai+1 ∧ ∧3

i=1 Ai I g
O 3 (∀AB)(∃=1g) A �= B → A I g ∧ B I g
O 4 (∀ab) a ⊥ b → b ⊥ a
O 5 (∀ab)(∃P) a ⊥ b → P I a ∧ P I b
O 6 (∀Pg)(∃h) P I h ∧ h ⊥ g
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O 7 P I g ∧ P Im ∧ g ⊥ m ∧ P I n ∧ g ⊥ n → m = n
O 8 σ(g, σ (g, h)) = h ∧ σ(g, σ (g, P)) = P
O 9 (P I h → σ(g, P) I σ(g, h)) ∧ (m ⊥ n → σ(g,m) ⊥ σ(g, n))

O 10 (∀Pga1a2a3)(∃b)(∀Xx) [(∧3
i=1 P I ai ) ∨ (

∧3
i=1 g ⊥ ai )]

→ σ(a1, σ (a2, σ (a3, x)) = σ(b, x) ∧ σ(a1, σ (a2, σ (a3, X)) = σ(b, X)

Here O1 states that there are two distinct points; O2 that every line has at least
three points on it;O3 that any two distinct points are incident with a unique line;O4
that line-orthogonality is a symmetric relation; O5 that orthogonal lines intersect;
O6 and O7 that there is, through any given point P a perpendicular h to any given
line g, which is unique if P is on g; O8 states that, for each line g, the mapping
αg(·), defined by αg(·) := α(g, ·) is an involution (and thus a bijection) on the set
of points and lines; O9 states that, for any line g, σg preserves both incidence and
orthogonality; O10 is the three-reflection theorem, stating that the composition of
reflections in three lines with a common point or a common perpendicular is a line
reflection.

There is also, as shown in [64], an axiom system for metric planes that can be
expressed, in terms of ∀∃-axioms (axioms in which all universal quantifiers precede
all existential quantifiers) stated in a language with points and the single ternary
relation of orthogonality—with ⊥ (abc) to be read as abc is a right triangle with
right angle at a—as primitive notions.

Another synthetic axiomatization, as well as one in terms of groups operating
on sets (all in first-order logic) have been proposed for non-elliptic metric planes in
[61] and in [52], and their logical equivalence to the group theoretic axiomatization
M ∪ {¬El1 was spelled out in [63].

2.3 Algebraic Characterization

Metric planes, being embeddable in projective planes satisfying the Pappus axiom,
can be, to a certain degree, characterized algebraically. To do so we recall a few
notions from analytic projective geometry.

By a projective-metric coordinate plane P(K , f) over a field K of characteristic
�=2, with f a symmetric bilinear form, which may be chosen to be defined by

f(x, y) = λx1y1 + μx2y2 + νx3y3, (1)

with λμ �= 0, for x, y ∈ K 3 (where u always denotes the triple (u1, u2, u3), line or
point, according to context), we understand a set of points and lines—the former
to be denoted by (x, y, z) the latter by [u, v,w] (determined up to multiplication
by a non-zero scalar, not all coordinates being allowed to be 0)—endowed with a
notion of incidence—point (x, y, z) being incident with line [u, v,w] if and only if
xu + yv + zw = 0—and an orthogonality of lines defined by f, under which lines g
and g′ are orthogonal if and only if f(g, g′) = 0.
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The reflection of a line u = [u1, u2, u3] in a line v = [v1, v2, v3] is the line

2v
f(v,u)

f(v, v)
− u.

Everymodel of ametric plane (i.e., ofM) can be represented as a locally-complete
subplane (i.e., one containing with every point all the lines of the projective-metric
plane that are incident with it) that contains the point (0, 0, 1) of a projective-metric
coordinate plane P(K , f), from which it inherits the collinearity and orthogonality
relations.

The problem of conveniently describing algebraically the possible point-sets of
metric planes inside projective-metric planes, also known as the Umkehrproblem, is
hopeless in this generality.15 For several classes ofmetric planes satisfying additional
axioms, however, the Umkehrproblem was solved.

If themetric plane satisfiesE1 andE3 (inwhich case it is called aEuclideanplane),
then the point-set is precisely the affine plane over some field K of characteristic
�=2 (i.e., the projective plane mentioned above, from which the line [0, 0, 1] has
been removed), and in (1) we have ν = 0 and f(x, x) �= 0 for x �= 0. The models can
be described more conveniently in terms of a constant k, with −k not a square in
K , as having the point and line set of the affine plane over K , i.e., points are pairs
(x, y) of elements from K , lines are triples [u, v,w], point-line incidence is given
by ux + vy + w = 0, whereas the orthogonality of the lines [u, v,w] and [u′, v′,w′]
is given by

kuu′ + vv′ = 0. (2)

If a metric plane satisfies only E1 (in which case it is called a metric-Euclidean
plane), then it can be embedded in a Euclidean plane. There is a large literature
providing alternative axiomatization of Euclidean planes [27, 57, 60, 81] and of
metric-Euclidean planes [3, 7, 59], as well as a detailed description of their models.

In a metric plane which satisfies El1, we have λμν �= 0 and f(x, x) = 0 holds
only for x = 0 in (1).

In a metric plane which satisfiesH1, we have that K is an ordered field, λμν �= 0,
there is x �= 0 such that f(x, x) = 0 in (1). The points of the metric plane are all the
points inside the absolute (which is the set of solutions of f(x, x) = 0).

2.3.1 Free Mobility

A metric plane is said to possess free mobility if any two intersecting lines g and h
have an angle bisector w (i.e., if (w ◦ g) ◦ w = h holds), and any two points (a1, a2)
and (b1, b2) (recall that points are pairs of orthogonal lines) have a midpoint (c1, c2)

15In [7, p. 339] one finds the only known algebraic characterization and in [7, Satz 1 on p. 286]
a geometric characterization of these point-sets. Both are far from the specificity obtained in the
actual solution of the Umkehrproblem for restricted classes of metric planes.
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(i.e., if ((c1 ◦ c2) ◦ (a1 ◦ a2)) ◦ (c1 ◦ c2) = b1 ◦ b2 holds). The rather intricate alge-
braic structure of these metric planes has been described in [17].

2.4 Order

To introduce order in metric planes, we need an additional predicate, a ternary one,
Z , among points, with Z(ABC) standing for “B lies between A and C .” To simplify
the statement of the axioms, it is useful to have a name for the collinearity predicate,
so we introduce the following abbreviation

L(ABC) ⇔ (∃g) A I g ∧ B I g ∧ C I g,

with L(ABC) to be read as “A, B, and C are collinear points.”

Z 1 If A, B, and C are three different collinear points, then Z(ABC)

or Z(BCA) or Z(BCA).
Z 2 If Z(ABC), then A, B, and C are collinear points.
Z 3 If Z(ABC), then Z(CBA).
Z 4 If Z(ABC), then Z(ACB) does not hold.
Z 5 If Z(ACB) and Z(ABD), then Z(CBD).
Z 6 If Z(CAB) and Z(ABD), then Z(CBD).
Z 7 If C �= D, Z(ABC), and Z(ABD), then Z(BCD) or Z(BDC)).
Z 8 For all A �= B there exists a point C such that Z(ABC).
Z 9 If A, B, and C are three non-collinear points and D and E are two points

such that Z(ADC), E is such that it is neither collinear with A and C
nor with D and B, then there exists a point F collinear with E and D,
such that Z(AFB) or Z(BFC).

Z1 ensures that any three points on any line are in some order; Z2 that only
collinear points are ordered, Z3–Z7 are linear order axioms, Z8 states that the order
is unending. Z9 is the Pasch axiom, stating that the line determined by D and E ,
which intersects the side AC of triangle ABC , must intersect one of the sides AB or
BC as well. Ordered metric planes, i.e., the models of {O1–O10, Z1–Z9}, are well-
understood in case the metric is Euclidean, that is, whenever the plane satisfies E1.
There is an algebraic characterization of ordered metric planes with a non-Euclidean
metric, due to Pejas [72], which is, however, not very helpful in establishing the
validity of a given statement.

2.5 Order and Free Mobility

Metric planes endowed with both order and free mobility are, historically speaking,
at the origin of the term absolute, coined by J. Bolyai. They are the models of the
plane axioms of the groups I, II, and III (of incidence, order, and congruence) in
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the second and in all later editions of Hilbert’s Grundlagen der Geometrie. One of
the greatest achievements of the reflection-geometric foundation of geometry has
been the algebraic characterization of the models of these planes, also called Hilbert
planes. It happens to be a very useful characterization, in the sense that one can often
accomplish much more and much easier with the algebraic description than with
synthetic geometry.

Let K be again a field of characteristic �=2, and k an element of K , to be referred
to as the orthogonality constant (or the metric constant). By the affine-metric plane
A(K , k) (cf. [32, p. 215]) we mean the projective planeP(K ) over the field K from
which the line [0, 0, 1], as well as all the points on it have been removed (and we
write A(K ) for the structure with the remaining point-set, the corresponding line-
set, with their incidence and orthogonality relations), for whose points of the form
(x, y, 1) we shall write (x, y) (which is incident with a line [u, v,w] if and only if
xu + yv + w = 0), together with a notion of orthogonality, the lines [u, v,w] and
[u′, v′,w′] being orthogonal if and only if

uu′ + vv′ + kww′ = 0. (3)

If K is an ordered field, then one can order A(K ) in the usual way.
The algebraic characterization of the Hilbert planes consists in specifying a point-

set E of an affine-metric plane A(K , k), which is the universe of the Hilbert plane.
The Hilbert plane will thus inherit the order relation Z from A(K ). We can also
define a notion of congruence of two segments ab and cd, which will be given, in
case E ⊂ A(K , 0), by the usual Euclidean formula

(a1 − b1)
2 + (a2 − b2)

2 = (c1 − d1)
2 + (c2 − d2)

2

and, in case E ⊂ A(K , k) with k �= 0, by

F(a,b)2

Q(a)Q(b)
= F(c,d)2

Q(c)Q(d)
, (4)

where

F(x, y) = k(x1y1 + x2y2) + 1, Q(x) = F(x, x), and x = (x1, x2), y = (y1, y2).

Let now K be an ordered Pythagorean field, R the ring of finite elements, i.e.,
R = {x ∈ K : (∃n ∈ N) |x | < n} and P the ideal of infinitely small elements of K ,
i.e., P = {0} ∪ {x ∈ K : x−1 /∈ R}. All Hilbert planes are isomorphic to a plane of
the following three types:
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Type 1 E = {(a, b) : a, b ∈ M} ⊂ A(K , 0), where M is an R-module �= (0);
Type 2 E = {(a, b) : a, b ∈ M} ⊂ A(K , k) with k �= 0, where M is an R-module

�= (0) included in {a ∈ K | ka2 ∈ P}, that satisfies the condition

a ∈ M ⇒ ka2 + 1 ∈ K 2;

Type 3 E = {x : Q(x) > 0, Q(x) /∈ J } ⊂ A(K , k) with k < 0, where J ⊆ P is a
prime ideal of R that satisfies the condition

ka2 + 1 > 0, ka2 + 1 /∈ J ⇒ ka2 + 1 ∈ K 2,

with K satisfying

{a ∈ K : ka2 ∈ R \ P} �= ∅.

The meaning of k in this context can be best described by mentioning that its sign
is the same as that of α + β + γ − π , where α, β, and γ are the measures of the
three angles of a triangle.

Thus, a Hilbert plane is either (i) a part of an ordered Euclidean plane with
free mobility (Type 1), thus a plane of Dehn-type, as these were first described
in [16], or (ii) an infinitely small neighborhood of the origin in a plane with an
arbitrary orthogonality constant, or (iii) a generalized Beltrami-Cayley-Klein model,
consisting of the interior of a circle, with, possibly, an infinitely small collar around
its circumference removed.

This characterization, due to Pejas [71], may be considered to be one of the
most impressive early applications of the reflection-geometric approach. It may look
strange that a first-order theory (the geometry of Hilbert planes) has models that
require second-order notions (such as R and P which occur in the representation
theorem) for their description. These models can, indeed, be expressed completely
inside first-order logic, but we chose the original expression of Pejas for its intuitive
character.

2.6 Methodological Reflections

One may, at this point, ask what is gained by this approach, other than Pejas’s
representation theorem,which answered an existing open question. Dometric planes,
in themselves, have an interesting geometry, the way Riemannian manifolds have?

There are, indeed, a wide variety of universal statements σ , expressed solely
in terms of incidence, orthogonality, and segment congruence, that are commonly
encountered as theorems in Euclidean geometry, and which turn out to be either true
in all metric planes or else logically equivalent to E1 (i.e. we have eitherM � σ or
M � σ ↔ E1). In the first category we have the theorem stating the concurrence of
the altitudes of a triangle (a concurrence re-interpreted to mean that the composition
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of the reflections in the three altitudes is a line-reflection16)— in fact, less is needed
for that theorem, as shown in [6]—and the one stating that the medians of a triangle
lie in a pencil. In the same category is the theorem stating that a triangle with two
congruent medians is isosceles (see [69]). These theorems are significantly harder to
prove inside the theory of metric planes than inside Euclidean geometry. However,
their proofs reveal the true reasons for the validity of these theorems, which their
better-known proofs in an affine setting obscure.

In the second category, that of statements equivalent to E1, we have, as shown
in [66], the statement that, in a non-isosceles triangle ABC , with AB �≡ AC , with
M , N and P the midpoints of AB, AC , and BC respectively, and R the midpoint
of MN , the points A, R, and P are collinear. In the “not yet decided” category is
a theorem that raised Hilbert’s interest (see [68]), called Three Chord Theorem. It
states that, if three circles pairwise intersect in two points, then the three lines joining
those two points (to be referred in the sequel as “chords”) lie in a pencil. It probably
belongs to the first category, theorems true in M. What is important, though, is the
profoundly changed nature of the questions asked. Whereas previously the question
was whether a statement σ holds in Euclidean geometry, or, more generally holds in
M ∪ {E1}, the question is now whether that statement is one of metric geometry or
whether its validity is characterizing the Euclidean nature of the metric of the metric
plane. There is no theorem stating that a purely metric universal statement σ , true in
Euclidean geometry, must be in one of the two categories. It just so happens that this
is the case for all known instances in which the question has been answered.

If we are presented with a universal statement σ , true in Euclidean geometry, but
involving order, then there are more options. One of them is that the statement holds
without additional assumptions regarding the nature of the metric. In that case, an
additional question arises, namely whether the statement is true in all ordered metric
planes, or whether it holds only inside all standard ordered metric planes, which are
those in which the foot of the altitude to the hypotenuse of a right triangle always lies
between the endpoints of the hypotenuse. While the number of universal statements
involving both order and metric notions known to be true in Hilbert planes is large,
there are very few known to hold in all ordered metric planes. A version of the
Steiner-Lehmus theorem holds in all standard metric planes, as shown in [69]. It is
very likely that all universal statements that hold in all Hilbert planes are true in all
standard ordered metric planes, but no such theorem has been proved. Candidates for
sentences that are likely true in all ordered metric planes are: (i) Urquhart’s theorem,
usually referred to as “the most ‘elementary’ theorem of Euclidean geometry” (see
[70, 110]), when stated as a universal sentence; (ii) Gergonne’s theorem, stating that
the lines joining the vertices of a triangle with the points of tangency of the inscribed
circle are concurrent; (iii) the Steiner-Lehmus theorem. A candidate for a universal
statement which, given the theory of ordered metric planes, is equivalent to E1, is
Morley’s trisector theorem.

Another option is that σ holds in some Hilbert planes and not in others. For
example, its validity may depend on the sign of the orthogonality constant k, as is the

16This kind of “concurrence” of three lines will be referred to as “the three lines lie in a pencil”.
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case of the Erdős-Mordell inequality, whose validity is equivalent to the statement
that k ≤ 0 (as shown in [65]). Or it may hold only in planes of Type 1 and 2, as is
the case with the universal statement equivalent to Bachmann’s Lotschnittaxiom (“A
quadrangle with three right angles closes,” see [5]), stated in [58]. Yet the change in
perspective is the same as in the case ofmetric planes without order. Instead of asking
for the truth of a certain statement, we are asking for its relative strength vis-à-vis
the theory of ordered metric planes, for its strength as a hypothesis, in case it is not
a theorem holding in all ordered metric planes.

2.7 Generalizations of Metric Planes

There are even more general notions than that of a metric plane, in which the above
questions can be asked. The weakest is that of a generalized metric plane, whose
properties are analyzed in [7, §2,4–5], and which can be considered as axiomatized
by the axiomsO1–O9 (so no form of the three reflections axiom is assumed). Hardly
any theorem of interest holds in them, although it is not easy to prove that a certain
theorem does not hold in generalized metric planes, given that there is no useful
description of their models. The theorem stating that the altitudes of a triangle lie
in a pencil is known not to hold in them, as it is equivalent to the validity of the
three reflections theorem for lines with a common perpendicular, as shown in [6].
Generalized metric planes that do satisfy the three reflections theorem for lines with
a common perpendicular, referred to in [9] as semi-absolute planes, are the next stage
in the hierarchy of generalizations of metric planes. It is not easy to determine which
particular theorems that hold in metric planes already do so in semi-absolute planes.

Another generalization is that of theHjelmslev planes, in which both the existence
and the uniqueness of the line joining two points may be omitted. Their properties
have been studied in [8] and they are reasonably well understood. Closely related
are the plane Cayley-Klein geometries, that we will turn to in Sect. 6. A further
generalization, to pre-Hjelmslev groups, can be found in [78] (see also [45]).

An independent level of generalization is that of the S-planes, introduced by
Lingenberg, which are based on a certain relaxation of the three reflections axiom.
Their properties were presented in monograph form in [48], and most theorems valid
in metric planes, sometimes with slight modifications, hold in S-planes as well.

3 Higher-Dimensional Metric Spaces

The question regarding higher-dimensional analogues of metric planes was first
raised for the 3-dimensional case. The first reflection-geometric axiom system, in the
style ofM, was put forward in [1]. One in the style of the O-axioms in Sect. 2.2, in
terms of points, planes, point-plane incidence, plane orthogonality, and reflections
in planes, logically equivalent to that in [1], was put forward in [79].
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Ahrens’s [1] axiom system has been extended by Kinder [40] to one for n-
dimensional metric spaces, for any n ≥ 2. In analogy to the 2-dimensional case,
their models can be embedded in projective-metric n-dimensional spaces, where the
metric is given, again, by a symmetric bilinear form. We will no longer write its
axioms in symbolic language, as it is by now plain how the English of the axiom
systems expressed inside group theory with a distinguished set of generators can
be translated into first-order logic, provided that every element of the group can be
written as the composition of an a priori bounded number of generators.

The fundamental assumption of n-dimensional metric geometry thus on (G, S) is
that G is a group (written multiplicatively) and that S is a set of involutory elements
of S which generates G, and such that bab ∈ S, for all a, b ∈ S. The elements
of S will be denoted by lowercase Latin letters and will be called reflections in
hyperplanes (also referred to simply as hyperplanes). As before, we will write, for
any two involutory elements of G, α and β, α |β whenever αβ is involutory. We also
write α11, . . . α1n1 |α21, . . . , α2n2 | . . . |αm1, . . . αmnm to mean that, for all i < k, we
have αi j |αkl . An involutory product a1a2 . . . an , with a1 |a2 | . . . |an will be referred
to as a point reflection (or simply as a point), and will be denoted by uppercase Latin
letters. In addition to the fundamental assumption, Kinder postulates the following:

K 1 Given a1, . . . an−1, A, there is an a such that a |a1, . . . , an−1, A.
K 2 Given a1, . . . an−2, A, B, with a1 | . . . |an−2 | A, B there is an a such that

a |a1, . . . , an−2, A, B.
K 3 If a1 | . . . |an−2 |a, b | A, B, then a = b or A = B.
K 4 Given a1, . . . an−2, A, a, b, c, with a1 | . . . |an−2, A |a, b, c and an−2 �= A,

there is a d with ab = dc.
K 5 Given a1, . . . an−1, a, b, c, with a1 | . . . |an−1 |a, b, c, there is a d with

ab = dc.
K 6 There are n hyperplane reflections a1, . . . an with a1 | . . . |an .
K 7 Given a1, . . . an , with a1 | . . . |an , there is an a with a |a1, . . . , an−1,

as well as a �= an and a �an .

For n = 2 this axiom system is equivalent to M, and for n = 3 to the axiom
system of Ahrens.

As in the 2-dimensional case, one can add additional axioms to specify the nature
of the metric (i.e., the nature of the symmetric bilinear form). Thus two hyperplanes
a and b will be called non-connectable if there is neither a point A with A |a, b, nor
a line Γ with Γ |a, b. Here a line is a product a1 . . . an−1 of n − 1 many hyperplanes,
with a1 | . . . |an−1.

Among the additional axioms we have

Pn (Existence of a polar simplex) There are a1, . . . an+1, with a1 | . . . |an+1.
En (Existence of a rectangle) There are a1, . . . an−2, a, b, c, d, with

a1 | . . . |an−2 |a, b |c, d.
Hn (The hyperbolic metric axiom) There are non-connectable hyperplanes.
Cn (The completeness axiom) If a1 | . . . |an−2 |a, b1, b2, b3, P , as well as

b1, b2, b3 | P , and, for i = 1, 2, 3, the hyperplanes a and bi are
non-connectable, then one of b1 = b2, b2 = b3, b3 = b1 must hold.
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In the presence of the fundamental assumption, of K1–K7 (the models of which
will be referred to as n-dimensional metric spaces) and of Cn: (i) adding En we get
n-dimensional Euclidean geometry17; (2) adding Hn we get n-dimensional hyper-
bolic geometry; (3) adding Pn we get n-dimensional elliptic geometry (which has
received an alternative axiomatization in [41]). These names are meant to express
the fact that these are the n-dimensional generalizations of the 2-dimensional cases
presented in Sects. 2.1.1–2.1.3 (the hyperbolic case being the n-dimensional gen-
eralization of Klingenberg’s generalized hyperbolic geometry, in which, just like
in the 2-dimensional case, the coordinate fields needs only be ordered). More on
these geometries and those obtained in the absence of Cn , as well as models of
n-dimensional Euclidean geometries, are found in [39].

As in the 2-dimensional case, these metric spaces can be seen as subspaces of
projective-metric spaces, but, just like in the 2-dimensional case (if not more so), the
question of describing algebraically the possible point-sets of metric spaces within
the projective-metric space is hopeless.

In the important special case in which we add free mobility axioms, the order
axioms Z1–Z8, as well as Peano’s form of the Pasch axiom (which asks that a line
l that intersects the extension of side AB of a triangle ABC in D, with Z(ABD),
and side BC in E , must also intersect side AC in a point F) to the axiom system for
metric spaces, the models are, as shown by Klopsch [44], similar to the models in
Pejas’s [71] characterization of models of Hilbert planes. A more in-depth analysis
of the Umkehrproblem for metric spaces can be found in [30].

The question we raised in the 2-dimensional case, regarding the revolutionary
nature of this approach, the complete change of perspective, is best illustrated with
two examples.

The first looks at the following theorem of 3-dimensional Euclidean geometry:
“The points of tangency of a skew quadrilateral, whose sides are tangent to a sphere,
are co-planar.” This statement is, as can be easily seen, one of the 3-dimensional
metric space axiomatized by Ahrens and Scherf (and the n = 3 case of Kinder’s
axiom presented above). It is likely that it holds in all 3-dimensional metric spaces.

The second example looks at a problem requiring order besides metric notions for
its statement. The problem of the thirteen spheres in Euclidean three-space, going
back, as a conjecture, to Newton (and a disagreeing Gregory), states that the largest
number of non-overlappingunit spheres that canbe arranged such that they each touch
another given unit sphere is 12. This is also called the kissing number in dimension
3. It was proved in [91] (see also [49]). There are two statements the problem makes:
(i) that there are 12 non-overlapping unit spheres that can be arranged such that
they each touch another given unit sphere, and (ii) that no 13 non-overlapping unit
spheres can be arranged such that they each touch another given unit sphere. A similar
question, known as the kissing number problem, can be asked in any finite dimension,
and the precise values are known only for n = 4, 8, 24. This problem can, in any
dimension, be stated inside the theory of ordered metric spaces, raising the question:
“In which 3-dimensional metric spaces is the kissing number 12?” Similarly for

17A different axiomatization for the geometry obtained by adding E3 has been provided in [74].
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higher dimensions. It is very likely that (ii) does not hold in the hyperbolic case. One
can see this by reasoning along the following lines: in three-dimensional hyperbolic
space over the real numbers, (ii) is certainly false, as can be seen from the Pizzetti-
Toponogov triangle comparison theorem, which states that if O is the center of the
original unit sphere U and A and B two points of tangency of outside spheres with U,
and A′ and B ′ the reflections of O in A and B respectively, then the distance between
A′ and B ′ is greater in hyperbolic space than in Euclidean space, and the difference
can be made very large by choosing a large “unit.” One expects this kind of behavior
to be present in the much more austere world of ordered metric spaces satisfying
H3. So, the question would become: “what is part (ii) of the thirteen sphere problem
equivalent to?” Is it ¬H3? Does part (i) hold in all ordered metric spaces? This is by
no means trivial, as the “sphere” in our 3-dimensional metric spaces may have far
fewer points on its “surface” than in the real Euclidean case.

A generalization of n-dimensional metric spaces along the lines of Lingenberg’s
generalization of metric planes was carried out for n = 3 in [55] and for all n ≥ 2
in [56].

There are generalizations ofmetric spaces, in which, just like in the 2-dimensional
case, one asks only for basic orthogonality axioms and for the existence of reflections,
but no three-reflections theorem. They can be obtained in the 3-dimensional case by
dropping the three-reflections axiom in Scherf’s axiom system. In the dimension-free
case, to which we turn, they were considered in [95].

4 The Dimension-Free Case

What if we do not want to specify the dimension of the space, but just know that it
is at least 2?

This question was first raised and answered by Smith [93, 94], in the syn-
thetic tradition—with point, lines, planes, incidence, line-orthogonality, reflections
in points and in lines as primitive notions—by extending the work of Lenz [47] on
incidence and orthogonality. Later, Smith [97], provided another synthetic axiom
system for the non-elliptic case in terms of points, orthocomplemented hyperplanes,
incidence and orthogonality as primitive notions.

The reflection-geometric approach was provided by Ewald’s [19] axiom system
for the groups of motions of such spaces, in terms of point-reflections and line-
reflections. He showed that those geometries can be embedded in projective-metric
spaces. Alternative embeddings were provided in [22, 23]. Ewald’s axiom system
was simplified by Heimbeck [29], and it is that axiom system that we present here.

The fundamental assumption is this time thatG is a groupwith invariant complexes
P and L of involutions, which together generate G.

Here, by “invariant” we mean that, for all g ∈ G, p ∈ P, l ∈ L, we have g−1 pg ∈
P and g−1lg ∈ L. The elements of P are called “points” (or “point-reflections”),
those of L “lines” (or “line-reflections”), the former to be denoted by upper-case
Latin letters, the latter by lower-case Latin letters. The sign | has the samemeaning as
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before, andwe say that line g connects the distinct points P and Q if and only if P, Q |
g and X | P, Q ⇒ g−1Xg = X . We say that P is incident with g (and write P I g)
if and only if g connects P with a point Q �= P . We say that line g is “orthogonal”
to line h (and write g ⊥ h) if and only if g | h and there is a point P incident with
both g and h. We say that the lines g, h, and k lie in a pencil if and only if ghk is
a line and there is a point P incident with each of g, h, k, and ghk. We denote by
〈P, g〉 the set of points X for which X = P or else g connects P and X . We denote
by 〈Pg〉 the set of points X for which X | Pg. The axioms are:

E-H 1 Any two distinct points P and Q have a unique line (P, Q) connecting them.
E-H 2 If P, Q, R, and S are four different points, and if (P, Q), (P, R), (P, S)

lie in a pencil, then so do (R, Q), (R, P), (R, S).
E-H 3 For all Q with Q /∈ 〈P, g〉 there is a point R ∈ 〈P, g〉, with (Q, R) ⊥ g.
E-H 4 If Q and R belong to 〈P, g〉, then PQR is a point.
E-H 5 If P I g, then 〈P, g〉 ∩ 〈Pg〉 = {P}.
E-H 6 There are three different lines. There are three different points incident

with every line.

One gets an axiom system for elliptic geometry by stipulating that

Ell There are different points P and Q with PQ = QP .

To get an axiom system equivalent to that of Ewald one needs an additional axiom,

E-H 7 If P I g, P ′ I g′, 〈Pg〉 = 〈P ′g′〉, then Pg = P ′g′.

If these geometries satisfy an additional, quite technical axiom, stated in [25],
whose intuitive meaning is very simple, namely that all the points should not lie in a
finite-dimensional subspace of the entire space, then G is isomorphic to a subgroup
of a projective-metric space. In the absence of that axiom, the same can be said only
about a factor group of G.

In the dimension-free elliptic case, a mixed synthetic and reflection-theoretic
axiom system can be found in [96], and another reflection-theoretic one in [24].

Axiom systems for the dimension-free Euclidean case can be found in [85, 86].
A broad generalization of the concept of (dimension-free) metric geometry has

been proposed by E. M. Schröder in [87, 88].

5 Projective-Metric Geometry

5.1 Projective-Metric Planes

A projective plane is a triple (P,L, I), consisting of a setP of points, a setL of lines,
and a (symmetric) incidence relation I , with the property that any two distinct points
are incident with a unique line and any two distinct lines are incident with a unique
point. The only existence assumption it must satisfy is that it contains a quadrangle
and a quadrilateral.
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Plane projective geometry enjoys the property referred to as the principle of dual-
ity: Every definition remains valid and every theorem remains true if we consistently
interchange the words “point” and “line” (the incidence relation being symmetric, it
is self-dual, and thus need no change).

Central problems of the foundations of geometry, such as the introduction of
numbers and the role of three-dimensional space for plane geometry, find conclusive
answers in the projective setting. A projective plane can be coordinatized by a skew
field (resp. a commutative field) of characteristic �=2 if and only if the configuration
theorem of Desargues (resp. Pappus) and the Fano axiom hold. A projective plane
is embeddable in a projective space (of dimension ≥3) if and only if the theorem of
Desargues holds.

Introduction of a metric.

In a projective plane (P,L, I) ametric can be introduced by an orthogonality relation
on the set of lines (which we denote by a, b, ...) and on the set of points (which we
denote by A, B, ...). Let ⊥ be a binary relation on L with a ⊥ b to be read as “a and
b are orthogonal lines” and let � be a relation on P with A�B to be read as “A and
B are orthogonal (or polar) points.”

A point A is a pole of a line a if every line through A is orthogonal to a. Dually,
a line b is a polar of a point B if every point on b is polar to B.

Following Struve and Struve [104], we call (P,L, I,⊥,�) a projective-metric
plane if the following axioms and the dual ones (which we do not explicitly state)
hold:

PM1. Every line a has a pole A.
PM2. Every triangle has altitudes which intersect in a common point.
PM3. A point A is the pole of a line a if and only if a is the polar of A.
PM4. There are lines a, b with a �⊥ b and points A, B with A ��B.

To get the dual axioms, just interchange the words point and line and the relations
⊥ and �. Notice that the axioms PM3 and PM4 are self-dual.

Given that the axiom system is self-dual (i.e., it contains the dual of each of its
axioms), the principle of duality can be extended to projective-metric geometry:
every definition remains valid, and every theorem remains true, if we consistently
interchange the words “point” and “line” and the relations ⊥ and �.

There are seven types of projective-metric planes. They can be classified based
on the properties of the following sets: (i) the set Lr of radical lines (which are
orthogonal to every line), (ii) the set Li of isotropic lines (which are orthogonal to
themselves), (iii) the set Pr of radical points (which are polar to every point), and
(iv) the set Pi of isotropic points (which are polar to themselves):

(1) planes with an elliptic metric: |Lr|= 0 and Li = Lr ;
(2) planes with a hyperbolic metric: |Lr|= 0 and Li �= Lr ;
(3) planes with an Euclidean metric: |Lr|= 1 and Li = Lr ;
(4) planes with aMinkowskian metric: |Lr|= 1 and Li �= Lr ;
(5) planes with a co-Euclidean metric: |Lr|≥ 2 and Pr|≤ 1 and Pi = Pr ;
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(6) planes with a co-Minkowskian metric: |Lr|≥ 2 and Pr|≤ 1 and Pi �= Pr ;
(7) planes with a Galilean metric: |Lr|≥ 2 and Pr|≥ 2.

Algebraic models.

Every projective-metric plane can be represented as a projective-metric coordinate
plane P(K , f) over a field K of characteristic �=2 and a (non-trivial) symmetric
bilinear form f . If V is a three-dimensional vector space over K and f a non-null
symmetric bilinear form on V , then elements x and y of V are called orthogonal if
f (x, y) = 0. If T is a subspace of V , then T⊥ = {x ∈ V : f (x, y) = 0 for all y ∈ T }
is a subspace of V ; subspaces T1 and T2 are called orthogonal, which we denote by
T1 � T2, if T1 ∩ T⊥

2 �= {o} and T⊥
1 ∩ T2 �= {o}, where o stands for be the null vector.

(P,L, I,⊥,�) is a projective-metric coordinate plane if

• P is the set of all i-dimensional subspaces of V with i ∈ {1, 2};
• L is the set of all j-dimensional subspaces of V with j ∈ {1, 2} and j �= i ;
• I is the set-theoretic inclusion restricted to (P × L) ∪ (L × P);
• ⊥ is the relation � restricted to L × L;
• � is the relation � restricted to P × P .

The seven types of projective-metric planes correspond to different dimensions
of the radical and of the Witt index of the vector space V .

5.2 Projective-Metric Spaces of Arbitrary Finite Dimension

There are various ways to axiomatize projective geometry of higher dimensions.
Veblen’s classical axiomatization [112] is based on the terms of “point” and “line”
and a binary relation of incidence. Inside that setting, higher dimensional subspaces
are defined as sets of points.

We will follow Menger [50, 51], who noticed that projective geometry can be
considered as a theory about joins and meets of linear subspaces (Geometrie des
Verbindens und Schneidens). He axiomatized projective spaces in a first-order lan-
guage with one sort of individual variables, to be referred to as “subspaces” or “flats”
and denoted by lowercase Greek letters, two binary operations∨ and∧, called “join”
and “meet”, and two constant symbols 0 and 1, which are called “element zero” and
“element one”.

The axioms are simple postulates about the joining and intersecting of geometric
subspaces. They state that the operations ∨ and ∧ are commutative and associative
with neutral elements 0 and 1, and that the absorption laws hold. The models of this
axiom system, L = (L,∨,∧, 0, 1), are lattices with 0 and 1.

To characterize projective spaces of dimension n ≥ 3, one needs to add to the
above-mentioned axioms the requirements that the lattice L be complemented and
irreducible and that the maximal length of a chain of L be n + 1. In an algebraic
language this can be summarized by the statement that L is an irreducible projective
lattice.
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The dual of each axiomholds, so the principle of duality holds in projective-metric
geometry of arbitrary finite dimension.

The notion of a “point”, which is the basic concept of analytic geometry and
particularly of Riemannian geometry, is not even mentioned in the axiom system.
The complete elimination of the notion of point from geometry was one of the ideas
of von Neumann’s continuous geometries.

In complete harmony with Euclid’s first words in the Elements, “A point is that
which has no part”, the elements α ofL for which ε ≤ α → ε = 0 are called “points”
of a projective space (i.e., the points are precisely the atoms of the projective lattice).

Since points and lines are no longer distinguished from subspaces of other dimen-
sions, the sentences of projective geometry are statements about finite sets of elements
of the basic class of subspaces, without any need for either a multi-sorted language or
of set-theoretical definitions of subspaces. Unlike the first modern axiomatizations
of geometry, by Pasch, Peano, Pieri, and Hilbert, which were expressed in languages
which contained only relation symbols, but no operation symbol, the above axioma-
tization, with two operation symbols and no relation symbol, is much closer in spirit
to those of arithmetic or of algebraic theories.

Algebraic models.

Every projective space of dimension n ≥ 3 can be represented as the lattice of sub-
spaces of a finite dimensional vector space over a skew field (division ring) with
the set-theoretic inclusion ⊆ as ≤-relation of the associated partially ordered set of
subspaces.

Introduction of a metric.

Much like in the 2-dimensional case, in a projective space of dimension n ≥ 3 a
metric can be introduced by an orthogonality relation. The metric is called singular
if there are radical subspaces and ordinary otherwise.

In the ordinary case, the orthogonality relation is a binary relation,which is defined
on the set of hyperplanes (subspaces of dimension n − 1) and on the set of points,
and which satisfies mutatis mutandis the axioms for projective-metric planes noted
in Sect. 5.1. The orthogonality relation can be described algebraically by a non-
degenerate symmetric bilinear form which is a hyperbolic polarity if there are self-
polar points, an elliptic polarity otherwise.

The classical example of a projective space with a singular metric is the projective
closure of a Euclidean space. The orthogonality relation of Euclidean subspaces
induces on the hyperplane ε at infinity an elliptic metric (in the sense of Sect. 5.1).

In the general case, the hyperplane at infinity may as well be endowed with a
hyperbolic metric (as in Minkowskian geometry) or with a Euclidean metric (as in a
Galilean geometry)—to mention only two alternatives—and the subspace at infinity
need not be a hyperplane but may be a subspace of arbitrary dimension.

This general situation is captured in the following definition which is formulated
in an algebraical setting (an axiomatic definition can be given along the lines of
Sect. 5.1). A metric in a projective space is given by a flag 0 < ε1 < . . . < εr < 1 of
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subspaces and a (hyperbolic or elliptic) polarity on each of the associated intervals
[0, ε1], ..., [εr , 1].

(L, ((ε1, π1), ..., (εr , πr ), (1, πr+1))) with r ≥ 0 is a projective space with
Cayley-Klein metric (or Cayley-Klein space for short) of dimension n ≥ 0 if the
following assumptions hold:

(1) L is a projective lattice of finite dimension n.
(2) ε1, ..., εr are subspaces of L with 0 < ε1 < . . . < εr < 1.
(3) πk is a hyperbolic or elliptic polarity on the interval [εk−1, εk]with 1 ≤ k ≤ r + 1

and ε0 = 0 and εr+1 = 1.

For notational conveniencewe denote aCayley-Klein space byCK(ε0, ..., εr+1), if
the underlying polaritiesπk are of no special concern. If CK(ε0, ..., εr+1) is a Cayley-
Klein space, then the Cayley-Klein space CK(εi , ..., εk) (for 0 ≤ i < k ≤ r + 1) is
called ordinary if k = i + 1 and singular otherwise.

That the principle of duality can be extended from projective geometry to
projective-metric geometry (Cayley-Klein spaces) can be seen by noticing that the
dual of an interval [εk−1, εk] of a projective lattice L is an interval of the dual pro-
jective lattice L∗, and that the dual of a polarity (on an interval of L) is a polarity (on
an interval of L∗).

Of special interest are Cayley-Klein spaces which are self-dual, i.e., isomorphic
to their dual structures. CK(ε0, ..., εr+1) is self-dual if and only if CK(εk, εk+1) and
CK(εr−k, εr+1−k) are isomorphic (for 0 ≤ k ≤ r ).

Every ordinary Cayley-Klein space is self-dual. Further examples are the projec-
tive closure of a Galilean plane over a field of characteristic �=2 and the projective
closure of the Desargues configuration which can be embedded in the projective
plane with an elliptic metric over the field of order 5.

As mentioned in Sect. 5.1, there are seven Cayley-Klein spaces of dimension 2.
There are eighteen Cayley-Klein spaces of dimension 3. For a detailed classification
see Struve and Struve [106].

Metric concepts like the pole-polar-theory of quadratic spaces can be extended to
Cayley-Klein spaces. A subspace β is a polar of a subspace α if the projections of α

and β into the intervals [εk, εk+1]18 map α and β onto polar elements of the ordinary
Cayley-Klein spaces CK(εk, εk+1).

If β is a polar of α, then α is a polar of β. In an n-dimensional Cayley-Klein
space, the sum of the dimensions of a subspace and of its polar is equal to n − 1, a
formula which is well known for projective spaces with an elliptic or a hyperbolic
metric. Every subspace of a Cayley-Klein space has at least one polar. A subspace α

with a unique polar is called regular. This is equivalent to the existence of an integer
k with α ∧ εk = 0 and α ∨ εk+1 = 1.

Subspaces α and β are orthogonal if there are subspaces α∗ and β∗ which are
polar to α respectively β and satisfy α ≤ β∗ and β ≤ α∗.

Let β be a polar of α with α ∧ β = 0 (i.e., let α and β be complements). The
harmonic homology σαβ with α and β as center and axis leaves the subspaces εk

18i.e., the elements (α ∨ εk) ∧ εk+1 and (β ∨ εk) ∧ εk+1 (if ∧ and ∨ denote the lattice operations).
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invariant and induces an automorphism on CK(εk, εk+1). Hence σαβ is an involution
of the group of automorphism of the Cayley-Klein space which we call a (projective)
reflection in α respectively β. The group which is generated by all reflections σαβ is
called the group of motions.

This highlights the special role of reflections in projective geometry: They can be
used to single out motions within the group of all projective collineations.

Bachmann (see [7, §20,11]) carried this idea a step further. He showed that
projective-metric geometry can be formulated in the group ofmotions of a projective-
metric space (a quadratic space). Geometric relations like incidence and orthog-
onality correspond to group-theoretical relations between elements of the group
of motions (e.g., projective subspaces are orthogonal respectively incident if the
product of the associated reflections is involutory). This correspondence allows not
only the proof of geometric theorems by group-theoretical calculations but also
group-theoretical characterizations of orthogonal groups (see Bachmann [7, §20,8
and §20,11]).

The full group G of projective automorphisms of a Cayley-Klein space has been
analyzed in Struve and Struve [107]. In the ordinary case, G can be represented as
the orthogonal group of the associated quadratic space.

In the singular case, an element ϕ of G is called a dilatation19 if ϕ is the identity
on the ordinary Cayley-Klein spaces CK(εk, εk+1) with 0 ≤ k ≤ r . The group of
dilatations is a normal subgroup of G.

Every element ofG is up to a dilatation uniquely determined by its operation on the
ordinary Cayley-Klein spaces CK(εk, εk+1), and conversely every automorphism of a
Cayley-Klein spaceCK(εk, εk+1) canbe extended to an element ofG (in a trivialway).
Hence the group G is the semi-direct product of the (normal) group of dilatations
and the subgroup of G which is generated by the (extensions) of the automorphisms
of the Cayley-Klein spaces CK(εk, εk+1).

This representation theorem of G generalizes theorems which are well-known in
metric affine geometry (i.e., in Euclidean, Minkowskian, and Galilean geometry).

6 Cayley-Klein Geometries

In the approach of Cayley and Klein non-Euclidean geometries are introduced as
geometries living inside of a projective space which is endowed with a projective
metric.

Following this approach we consider in this section real projective spaces, which
are endowed with a Cayley-Klein metric, and single out substructures which define
Cayley-Klein geometries.

19This concept of a dilatation generalizes the notion of a dilatationwhich is given in incidence geom-
etry (as a transformation which preserves direction) and in similarity geometry (as a transformation
which preserves circles resp. the angular measure).
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Following Klein, these substructures are called Eigentlichkeitsbereiche20 and the
associated points, lines, planes etc. “proper subspaces”. Geometric relations such as
incidence and orthogonality are inherited from the associated Cayley-Klein space.

There are different ways to distinguish substructures of a projective-metric space.
Klein’s famous model of hyperbolic geometry, for example, is defined as a substruc-
ture of the real projective plane P2, where a projective metric is given by a hyperbolic
polarity π . Points of the hyperbolic plane H2 are the points of P2 which are interior
to the “absolute conic” of self-conjugate points of π . Lines of H2 are the lines of P2

which are incident with at least one interior point. The projective reflections in points
and in lines of H2 generate the group of motions of H2 (which is in fact isomorphic
to the full group of automorphisms of P2).

The set of points of P2 which are exterior to the “absolute conic” of the polarity
π (any two of these points have according to Klein a real positive distance) are the
set of points of the co-hyperbolic geometry (see Sect. 6.1).

This shows that to a given Cayley-Klein space there may exist several substruc-
tures which are Cayley-Klein geometries. Necessary conditions for a substructure to
be an n-dimensional Cayley-Klein geometry are:

(1) Subspaces with the same dimension are “of the same kind”.
(2) The substructure contains with a subspace all subspaces which have the same

dimension and which are of the same kind.
(3) There is a flag which contains subspaces of dimension 0, 1, 2, ..., n.

A classification of subspaces of a Cayley-Klein space into elements “of the same
kind” can be done in various ways. For example, in a projective space with a hyper-
bolic polarity—as in Klein’s model of a hyperbolic plane—the set of points is the
union of the set of isotropic points (which form a conic κ) and the set of points which
are internal resp. external with respect to κ . A point which is not incident with a
tangent to κ is an internal point. A point which is not an internal point and not on
κ is an external point. The geometric classification into internal and external points
corresponds on the algebraic side to the distinction between points with signature 0
or 1 (signature21 of a point with respect to the bilinear form which describes κ).

Similarly, the set of lines is the union of the set of isotropic lines (tangents to
κ) and the sets of lines which are incident with two resp. none of the points of κ

(secants and non-secants), a classification which corresponds on the algebraic side
to the distinction between lines with signature 1 or 2.

Condition (2) ensures that a Cayley-Klein geometry is maximal with respect to
the property which defines the classification of subspaces of equal dimension. So, in
Klein’s model of a hyperbolic plane, every interior point of the absolute conic κ is a
point of the model.

20cp.Klein [42], Bachmann [7], Klopsch [44], Hessenberg andDiller [32] andKarzel andKroll [38].
21According to Sylvester’s law of inertia all maximal positive definite subspaces of a (real) quadratic
space V , i.e., of a vector space endowed with a quadratic form, have the same dimension, which is
called the signature of the quadratic space (the term “signature” is used in the literature in different
ways; we follow Snapper and Troyer [99]). The signature of a subspace U of V is the signature of
U with respect of the restriction of the quadratic form of V to U , see [108].
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According to condition (3), there is a chain of subspaces which contains elements
of every dimension of the projective space. This ensures that the dimension of the
Cayley-Klein geometry is n.

These considerations lead to the following model-theoretic definition of (real)
ordinary Cayley-Klein geometries:

If 0 < α1 < ... < αn < 1 is a maximal flag of subspaces of an ordinary Cayley-Klein space,
then the set of subspaces β which have the same dimension and signature as one of the
elements αk is the set of subspaces of a Cayley-Klein geometry.

The general (not necessarily ordinary) case can be reduced to the ordinary one
since a Cayley-Klein space CK(ε0, ..., εr+1) is build up from the ordinary Cayley-
Klein spaces CK(εk, εk+1). This leads to the following general model-theoretic def-
inition of (real) Cayley-Klein geometries :

If 0 < α1 < ... < αn < 1 is a maximal flag of subspaces of a Cayley-Klein space CK(ε0, ...,

εr+1) which contains ε0, ..., εr+1 as subspaces, then the set of subspaces β which have a
polar with the same dimension and signature as one of the elements αk is the set of subspaces
of a Cayley-Klein geometry.

The dual structure of a Cayley-Klein geometry is a Cayley-Klein geometry, i.e.,
the principle of duality can be extended to metric geometry. So, for example, the dual
geometry of n-dimensional hyperbolic geometry is co-hyperbolic geometry. Elliptic
geometry is self-dual.

The number of real Cayley-Klein geometries of dimension n is 3n (with n ≥ 1).
For a more detailed discussion of plane Cayley-Klein geometries we refer to Sect. 4.
The number of real ordinary Cayley-Klein geometries of dimension n is 2n .

Cayley-Klein geometries have properties which are well known from Euclidean,
hyperbolic and elliptic geometry: Every subspace α of a Cayley-Klein geometry
is regular. There exists one and only one projective reflection σα in α. The set of
reflections σα generates the group of motions and the calculus of reflections allows
the axiomatization and the coordinatization of a Cayley-Klein geometry.

Remark This definition of a Cayley-Klein geometry is based on the algebraic notion
of the signature of a subspace. This corresponds, as we indicated above, to geometric
properties which are more complex (like a classification in interior and exterior
points or in secants and non-secants) and which may depend on properties of the
underlying field of coordinates. The algebraic notion of signature of a subspace
allows, on the other hand, a simple definition, which only assumes that the field of
coordinates allows the introduction of a half-order (i.e., of a homomorphism from the
multiplicative group of K into the cyclic group ({1,−1}, ·) of order two; see [108]).
This is satisfied in particular by all fields which are orderable or of finite order. The
concept of a Cayley-Klein geometry is hence not restricted to the real or complex
case.
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6.1 Plane Cayley-Klein Geometries

Let P3(R) be the 3-dimensional projective space over the field of real numbers andQ
a non-degenerate quadric of P3(R), i.e., a quadric with the property that there exists
a plane section which is a non-degenerate conic.

As is well known, up to projective equivalence, there are three quadrics of this
kind, namely, the sphere, which has no generators (there are no lines lying entirely in
the quadric), the cone, where every point (with the exception of the vertex) is incident
with exactly one generator, and the ruled surface, where every point is incident with
exactly two generators. The vertex of a cone is incident with all generators and is
called a singular point.

We call a line g a secant (or secant line) of Q if g is incident with exactly two
points of Q. The line g is called a tangent (or a tangent line) of Q if g and Q have
one and only one non-singular point of intersection.

A plane ε is called a secant plane of Q if the points of intersection of ε and Q
are the points of a non-degenerate conic. The secant planes through a point A of
the projective space can be divided into three classes, depending on whether they
contain one, two or no tangent line to Q.

In every secant plane ε of Q there is a projective reflection, i.e., an involutory
projective collineation leaving Q invariant, and ε and the pole of ε (with respect to
Q) pointwise fixed. In every secant line g of Q there is a projective reflection, i.e.,
an involutory projective collineation leaving Q invariant, and g and the polar of g
(with respect to Q) pointwise fixed.

With these concepts in mind we now give a model-theoretic characterization of
all nine plane Cayley-Klein geometries.

(P,L,G) is called a plane Cayley-Klein geometry if there is a point A and a
non-degenerate quadric Q of P3(R) and a number n ∈ {0, 1, 2} such that

• P is the set of secant lines through A.
• L is the set of secant planes through A which contain n tangents to Q.
• G is the group of projective collineations generated by reflections in the elements
of P and L (restricted to P ∪ L).
The elements of P are the points and the elements of L are the lines of the plane

Cayley-Klein geometry. The incidence relation between points and lines is inherited
from the projective space.

The elements of G are called motions. In each point A and in each line g of the
plane Cayley-Klein geometry there exists a unique reflection, which is the restriction
of the associated projective reflection in A (resp. g) to P ∪ L.

Metric concepts can be defined in the followingway: Two pairs (B,C) and (D, E)

of points (which can be thought of as segments) are called congruent if there is a
motion α with Bα = D and Cα = E . Dually, two pairs (b, c) and (d, e) of lines
(which can be thought of as angles) are called congruent if there is a motion α with
bα = d and cα = e.

The type of a planeCayley-Klein geometry is a pair of natural numbers (m, n)with
m, n ∈ {0, 1, 2} where m denotes the number of generators through a non-singular
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point of the quadric Q and n the number of lines of the elements of L which are
incident with A and tangent to Q.

The value of m is 0, 1 or 2 depending on whetherQ is a sphere, a cone, or a ruled
surface. If A is a point ofQ then n = 1. If A is an interior point ofQ then n = 0 and
if A is an exterior point then n = 2.

According to Struve and Struve [102] there are nine real plane Cayley-Klein
geometries which are presented (name and type) in the following table.

elli ptic Euclidean hyperbolic
(0, 0) (0, 1) (0, 2)

co − Euclidean Galilean co − Minkowskian
(1, 0) (1, 1) (1, 2)

co − hyperbolic Minkowskian doubly hyperbolic
(2, 0) (2, 1) (2, 2)

The points and lines of a plane Cayley-Klein geometry (P,L,G) are lines and
planes through a point A of a projective space P. Hence (P,L,G) can be extended
to a projective ideal plane: ideal points are the lines through A, ideal lines are the
planes through A, and the incidence relation is inherited from P. The motions of a
plane Cayley-Klein geometry (which are induced by collineations of P, which have
A as a fixed point) can be extended to collineations of the projective ideal plane.

To represent the points and lines of (P,L,G) by points and lines of Pwe consider
the intersection of the elements of P and L with a secant plane of Q which is not
incident with A. In this way one gets Klein models of the Cayley-Klein geometries.

1. The Klein model of an elliptic plane is a projective plane.
2. The Klein model of a Euclidean plane is an affine plane.
3. The Klein model of a hyperbolic plane contains the interior points of a non-

degenerate conic κ and the lines which are incident with at least one interior
point of κ .

4. The Klein model of a co-Euclidean plane is obtained from a projective plane by
the removal of a point A and of all lines which are incident with A.

5. The Klein model of a Galilean plane is obtained from an affine plane by the
removal of a pencil of parallel lines.

6. The Klein model of a co-Minkowskian plane contains exactly all points of an
affine plane which lie between two parallel lines a and b as well as all lines
which are not parallel to a or b.

7. The Klein model of a co-hyperbolic plane contains exactly the exterior points of
a non-degenerate conic κ and the lines which have no common point with κ .

8. The Klein model of aMinkowskian plane is obtained from an affine plane by the
removal of two pencils of parallel lines.

9. The Klein model of a doubly hyperbolic plane contains exactly the exterior points
of a non-degenerate conic κ and the lines which are incident with at least one
interior point of κ .



Metric Geometries in an Axiomatic Perspective 447

As mentioned above, in each point A and in each line g of a plane Cayley-Klein
geometry there exists a unique reflection, which is the restriction of the associated
projective reflection in A (resp. g) to P ∪ L. This shows that metric geometry in
the sense of Cayley and Klein can be formulated in the group of motions. For an
axiomatization and coordinatization of plane Cayley-Klein geometries over fields of
characteristic �=2 we refer to Sect. 6.3.

The geometry of plane sections of a quadricQ is the circle geometry of Möbius,
Laguerre or Minkowski depending on whether Q is a sphere, a cone, or a ruled
surface. The points of the circle geometries are the non-singular points ofQ and the
circles are the plane sections of Q. The points and lines of a plane Cayley-Klein
geometry can be represented as point-pairs and circles of the above-mentioned circle
geometries. The group of motions of a Cayley-Klein geometry is isomorphic to a
group of circle transformations. In this way one gets Poincaré models of the Cayley-
Klein geometries.

6.2 Finite Cayley-Klein Geometries

The model-theoretic characterization of plane Cayley-Klein geometry, given in
Sect. 6.1, allows the transfer of Riemann’s idea of an elliptic plane to the realm
of finite geometries.

In the 3-dimensional projective space over the finite field GF(n) of order n there
exist three non-degenerate quadricsQ (i.e., quadricswith the property that there exists
a plane section which is a non-degenerate conic): the sphere without generators, the
cone with one generator through every point distinct from the vertex, and the ruled
surface with two generators through every point of the quadric.

Let A be an arbitrary point of the projective space. The set of secant lines through A
and the set of secant planes through Awith n tangents toQ for a number n ∈ {0, 1, 2}
are the setP of points and the setL of lines of a plane Cayley-Klein geometry (if both
sets are non-empty). The group of projective collineations generated by reflections
in the elements of P and L (restricted to P ∪ L) is the group of motions of the
Cayley-Klein geometry.

As in the real case, there are nine plane Cayley-Klein geometries over any finite
field of characteristic �=2. Among these finite geometries there are well-known con-
figurations: The configurations ofDesargues, Pappus, and Petersen (with their groups
of automorphisms) can be represented by the elliptic plane overGF(5), the Galilean
plane over GF(3), and the hyperbolic plane over GF(5). This is in stark contrast to
the theory of metric planes, presented in Sect. 2.1, for which there are finite models
only in the case of the Euclidean metric, i.e., only if E1 holds (see [7, §6,12]).

Every finite plane Cayley-Klein geometry can be represented as a Klein model
and as a Poincaré model. For the number of points and lines of a finite Cayley-Klein
geometry and a uniform representation of the groups of motions we refer to Struve
and Struve [103].



448 V. Pambuccian et al.

6.3 Cayley-Klein Geometries and Reflection Geometry

According to the table (in Sect. 6.1) there are nine types of plane Cayley-Klein
geometries. Elliptic, Euclidean, and hyperbolic planes are metric planes in the sense
of Bachmann, which were characterized in Sect. 2.1.

For a characterization of all types of plane Cayley-Klein geometries, several
aspects of Bachmann’s notion of a metric plane have to be broadened. The most
important aspect is the principle of duality: the dual of a Cayley-Klein geometry is
also a Cayley-Klein geometry.

Thus the set S of line reflections will no longer play a distinguished role in
the group of motions G. S no longer needs to be a set of generators of G, and
the set P of point reflections can no longer be defined as the set of involutions of
S2 = {ab : a, b ∈ S}.

This corresponds to new geometric phenomena which are unknown in the setting
of classical plane absolute geometry. In a Cayley-Klein geometry there may be
motions which are involutions without being point or line reflections. A rotation
which is not the identity (the product of the reflections in lines a and b with a unique
point of intersection) may have several fixed points, and the product of the reflections
in three lines a, b, c which are the sides of a non-degenerate triangle may be a line
reflection.

On the other hand, well known axioms of classical plane absolute geometry, such
as the uniqueness of a joining line, the existence of a perpendicular (in a self-dual
form), and the three reflections theorems (in a dual form), continue to hold.

We generalize the axiom system for metric planes based on the following princi-
ples:

• The axiom system is satisfied by the metric planes of Sect. 2.1.
• The axiom system is satisfied by all types of plane Cayley-Klein geometries (for
reasons of simplicity with the exception of the doubly hyperbolic case).

• The axiom system allows a formulation in a first-order language.
• The axioms are statements about points and lines with a direct geometric interpre-
tation and without any non-geometric assumptions about the type or structure of
the underlying group G (such as Z(G) = 1).

• The axiom system contains with each axiom the dual one.

(G, S, P) is called a Cayley-Klein group22 if the following Basic Assumption
and axioms hold (see [109])23:

22or more precisely a non-doubly hyperbolic Cayley-Klein group.
23We recall from Sect. 3: Elements a, b, c, . . . of S are called lines and elements A, B,C, . . . of P
points. The “stroke relation” α |β is an abbreviation for the statement that α, β and αβ are involutory
elements (i.e., group elements of order 2). The statement α, β | δ is an abbreviation of α |δ and β |δ.
A point A and a line b are incident if A |b. Lines a, b ∈ S are orthogonal if a |b. A quadrangle is a
set of four points A, B,C, D and four lines a, b, c, d with a | A, B and b | B,C and c | C, D and
d | D, A.
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Basic Assumption Let G be a group and S and P invariant subsets of involutions
of G such that

N 1 If a |b then ab ∈ P .
N 2 If A | B then AB ∈ S.
N 3 For every pair (A, b) there exists (a, B) with a | A and B |b and Aa = bB

and if A �= b then (a, B) is unique.
N 4 If A, B |c, d then A = B or c = d.
N 5 If A, B,C |d then ABC ∈ P .
N 6 If a, b, c |D then abc ∈ S.
N 7 If A |a and B |b and C |c and Aa = Bb = Cc then ABC ∈ P and abc∈ S.
N 8 There exists a quadrangle.

According to axiom N1, orthogonal lines a, b intersect in the point ab. N2 is the
dual axiom which states that polar points A, B are incident with the line AB. Axiom
N3 states that, if A is a point and b a line, then there exists a line a through A and
a point B on b with Aa = bB (a “perpendicular” from A to b with foot B) and that
(a, B) is unique if A is not the pole of b. According to N4, two different points have
at most one joining line and two different lines have at most one common point. N5
states that, if A, B,C are collinear points, then ABC is a point (the fourth reflection
point). N6 is the dual axiom, which states that, if a, b, c are copunctual lines, then
abc is a line, the fourth reflection line. N7 is a self-dual axiom which is a special
generalization of the theorem of three reflections. According to N8, there exists at
least a quadrilateral (the assumption of the existence of a triangle—cp. axiomM10 in
Sect. 2.1—does not hold in every Cayley-Klein geometry, e. g., in the Minkowskian
plane over GF(3)).

The metric planes of Sect. 2 are exactly those plane Cayley-Klein geometries
which satisfy the axiom of the existence of a joining line (as Euclidean, hyperbolic
and elliptic planes). The Galilean, co-Minkowskian, and co-Euclidean planes satisfy
the dual parallel axiom.

If A is not incident with b, then there is a unique point on b which has no joining line with A.

By dualization one gets the following two statements: The elliptic, co-Euclidean
and co-hyperbolic planes are dual metric planes, i.e., plane Cayley-Klein geometries
with the property that any two lines have a point of intersection. The Euclidean,
Galilean and Minkowskian planes satisfy the parallel postulate

If A is not incident with b, then there is a unique line through A which has no point of
intersection with b.

A plane Cayley-Klein geometry which satisfies the parallel axiom is singular,
i.e., the set of translations forms a group (or equivalently, in any quadrilateral with
three right angles the fourth angle is a right one).

The hyperbolic and co-Minkowskian planes satisfy the hyperbolic parallel axiom
which states that through a given point A there are at most two lines a and b that
have neither a common point nor a common line with a given line g (cp. axiom H2 in
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Sect. 2.1.2). The co-hyperbolic and Minkowskian planes satisfy the dual hyperbolic
parallel axiom.

For axiomatizations of Cayley-Klein geometries in terms of reflections we refer
for Minkowskian planes to Wolff [115], for Galilean planes to Struve [100], for co-
Minkowskian and co-Euclidean planes to Struve and Struve [101, 105] (cp. Bach-
mann [8]), and for metric planes to the references in Sect. 2.1.

Methodological reflections.

In the axiomatic approach to geometry, a Begründung has the important function
of providing a convenient means of ensuring the consistency of that geometry’s
axiom system. The latter can be reduced by means of an embedding in a projective-
metric space (with respect to both the incidence and the metric structure) to the
consistency of the algebraic structure that coordinatizes that projective-metric space.
Those algebraic structures are fieldswith some additional properties. Since the axiom
systems of those fields can be extended to that of the theory of real-closed fields,
which we know to be consistent (see [62, p. 68]), any fragment thereof must be
consistent as well.

Begründungen in this sense were provided first by Hilbert in his Grundlagen
der Geometrie [34] and then in Neue Begründung der Bolyai-Lobatschefskyschen
Geometrie [33], then by Hjelmslev in Neue Begründung der ebenen Geometrie [36],
by Podehl and Reidemeister in Eine Begründung der elliptischen Geometrie [73],
by Bachmann in Eine Begründung der absoluten Geometrie in der Ebene [2] and by
many other geometers who worked in the foundations of geometry.

It is worth emphasizing that a geometry’s Begründung (i.e., its embedding in a
projective-metric space) not only ensures its “existence” from a logical point of view
in Hilbert’s sense, but also its authenticity from a projective-geometric point of view
championed byKlein, as a geometry in its own right, in noway inferior or subservient
to the Euclidean one.

6.4 Cayley-Klein Spaces and Differential Geometry

Cayley-Klein manifolds.

There are many natural connections between Riemannian manifolds and Cayley-
Klein spaces. The tangent space of an n-dimensional Riemannian manifold is an
n-dimensional vector space endowed with a (positive definite) quadratic form, which
corresponds—from a geometric point of view—to an (n − 1)-dimensional Cayley-
Klein space with an elliptic metric. The elements of the Cayley-Klein space can be
represented by the set of Euclidean subspaces through the point of contact of the
tangent space (if the manifold is embedded in a Euclidean space). If the quadratic
form of a manifold is not positive definite, then the metric of the associated Cayley-
Klein space is hyperbolic and the manifold is called pseudo-Riemannian.

The second connection we want to point to is that a Riemannian manifold which
is embedded in a Euclidean space is also embeddable in the projective closure of
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that Euclidean space. This means that the concept of a Riemannian manifold can
be generalized by considering manifolds which are embedded in arbitrary Cayley-
Klein spaces (and whose tangent spaces can be Cayley-Klein spaces of any type).
Such manifolds are called by Rosenfeld [75] quasi-Riemannian or quasipseudo-
Riemannian (see also [116]). Perhaps a more appropriate name would be Cayley-
Klein manifold. The groups of motions of Cayley-Klein spaces are examples for
Cayley-Klein manifolds.
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