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1 Introduction

The Riemann mapping theorem was formulated by B. Riemann in 1851. It states
that given any two simply connected open sets U1, U2 in the complex plane C with
Ui �= C, there exists an analytic bijection (i.e., conformal) map f : U1 → U2. In
particular, if one takes U2 or U1 to be the open unit disk, then the map f is called
a Riemann mapping. The Riemann mapping theorem is one of the most important
results in complex analysis. It relates geometry (e.g. open sets) to analysis (e.g.
complex analytic functions).

The uniformization theoremof Poincaré andKoebe generalizes theRiemannmap-
ping theorem to Riemann surfaces. By definition, a Riemann surface is a connected
orientable surface � with a special collection of charts (analytic charts) covering
� so that the transitions functions are complex analytic maps. The essential feature
of Riemann surfaces is that one can measure angles between curves on them. Rie-
mann surfaces are ubiquitous in mathematics. For instance connected open sets inC,
smooth orientable surfaces with Riemannian metrics, smooth algebraic curves and
polyhedral surfaces are naturally Riemann surfaces. In 1907, Poincaré and Koebe
independently proved the uniformization theorem which states that any simply con-
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nected Riemann surface is conformally diffeomorphic to the complex plane C, the
open unit diskD, or the Riemann sphere S2. The conformal diffeomorphism is called
a uniformization map. This result is a pillar in mathematics and has a wide range of
applications within and outside mathematics.

Computing the Riemann mapping or the uniformization mapping is not easy.
For instance, the boundary of a tetrahedron is naturally a Riemann surface. Here
the analytic charts consist of unions of two open triangle faces together with their
common open edges and the orientation preserving isometric embedding, and charts
at vertices are of the form (U, z2π/α) where U is a small neighborhood of a vertex of
cone angle α. Using the uniformization theorem, one concludes that it is conformal
to the Riemann sphere S2 with four marked points {0, 1,∞, z} corresponding to the
four vertices. However, there is no algorithm to compute the conformal invariant z
directly from the 6 edge lengths of the tetrahedron. There are powerful algorithms
computing the Riemann mapping for simply connected domains. For instance the
Schwarz–Christoffel algorithm developed by Trefethen and Driscoll [33] and the
circle packing algorithm developed by Thurston and Stephenson [31] are powerful
tools. However, computing the uniformization map for a simply connected surface
with a non-flat Riemannian metric has been difficult. Our recent work [11, 18, 19]
produces an algorithm to compute the uniformization maps, and shows that the
uniformization maps are computable.

Over the years, there have been many research activities on establishing various
discrete versions of the uniformization theorem and the Riemann mapping theorem.
The purpose of this chapter is to introduce some of these works and their proofs. We
will also discuss several open problems in the discrete setting.

The following two topics will be discussed in this chapter. These are: (1) the
Koebe–Andreev–Thurston’s circle packing version of theRiemannmapping theorem
and (2) our recent work with Gu, Sun, Wu and Guo ([11, 12, 18, 19]) on a discrete
uniformization theorem for polyhedral surfaces.

We remark that this is not a survey of works on discrete Riemann mapping theo-
rems and we have left many important works untouched.

The chapter is organized as follows. Section2 discusses circle packings and Sect. 3
covers a discrete uniformization theorem for polyhedral surfaces.

We thank A. Papadopoulos for comments and suggestions on improving the writ-
ing of the paper.

2 Koebe–Andreev–Thurston’s Circle Packing Theorem

Wewill discuss a simple form of the circle packing theorem in this section. For more
details on circle packing, one may consult the nice book by Stephenson [31].

A circle packing on the Riemann sphere or the plane is a collection of closed
round disks D1, ..., Dk with disjoint interiors. Its nerve is a finite graph on the 2-
sphere S2 = C ∪ {∞} or the plane C with one vertex for each disk Di and an edge
between two vertices if the corresponding disks are tangent (Fig. 1).
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Fig. 1 A circle packing and its nerve. The picture is produced by K. Stephenson

Theorem 2.1 (Koebe–Andreev–Thurston) Suppose T is a simplicial triangulation
of the 2-sphere S

2. There exists a circle packing D1, ..., Dn, unique up to Möbius
transformations, on the Riemann sphere S

2 such that its nerve is isomorphic to the
1-skeleton T (1) of T .

The theorems proved by Andreev and Thurston are more general allowing circles
to intersect at angles at most π/2. For more details, see [3, 25, 35] or others.

There are many proofs of Theorem 2.1. See [3, 21, 31, 35] and others. Below we
give a proof using ideas from [7, 21].

Following Marden-Rodin [21], we first reduce the circle packing on S2 to a circle
packing on the plane C. Removing a triangle face τ0 from the triangulation T , one
produces a simplicial triangulation T1 of the (topological) triangle T = S

2 − int (τ0).
To prove Theorem 2.1, it suffices to produce a circle packing on the plane whose
nerve is the 1-skeleton T (1)

1 . Indeed, if D1, ..., Dn is a circle packing on the plane
whose nerve is the 1-skeleton T (1)

1 , then D1, ..., Dn is a circle packing on S
2 whose

nerve is T (1). Conversely suppose D1, ..., Dn is a circle packing on S2 whose nerve is
T (1) such that D1, D2, D3 correspond to the three vertices of τ0. Applying a Möbius
transformation to {D1, ..., Dn} so that infinity is in the triangle region in S

2 − ∪i Di

bounded by the circles ∂D1, ∂D2, ∂D3, then the circle packing {D1, ..., Dn} on the
plane C has nerve T (1)

1 .
It is known that given three pairwise tangent closed disks D1, D2 and D3 in

the plane, there exists a Möbius transformation sending D1, D2 and D3 to three
disks of radii 1. Therefore, Theorem 2.1 is equivalent to producing a circle packing
on C whose nerve is isomorphic to the 1-skeleton of a triangulation T1 of a triangle
T = �v1v2v3 so that the three circles corresponding to three vertices vi are of radii 1.

Thurston’s approach to Theorem 2.1 uses polyhedral metrics on surfaces. Let
V and E be the sets of all vertices and edges in T1 so that v1, v2, v3 ∈ V are the
boundary vertices (i.e., vertices of τ0). To produce a circle packing, Thurston assigns
each vertex v a positive number r(v), called the radius. The radius assignment is a
function r : V → R>0. For each radius assignment r , construct a polyhedral metric
d on the triangulated triangle (T, T1) by making each triangle in T1 a Euclidean
triangle of edge lengths l(vv′) = r(v) + r(v′) where v, v′ ∈ V and vv′ ∈ E . The
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discrete curvature of d is the function Kd : V → (−∞, 2π) sending each vertex
v ∈ V − {v1, v2, v3} to 2πminus the sumof all angles at v and sending vi (i = 1, 2, 3)
to π minus the sum of all angles at vi . It is well known that the Gauss-Bonnet theorem
holds, i.e.,

∑
v∈V Kd(v) = 2π. The goal is to find a radius assignment r ∈ R

V
>0 so

that its discrete curvatures at all v ∈ V − {v1, v2, v3} are zero, i.e., (T, d) is a flat
surface. Since the triangle T is simply connected, the developing map for the flat
structure produces an isometric immersion � : (T, d) → C where the plane has the
standard Euclidean metric. The map � sends the boundary ∂T to a triangle in C.
In particular, �|∂T is injective. This implies that � : (T, d) → C is an isometric
embedding. Let the images of V under � be {v′

1, v
′
2, ..., v

′
m} on the plane C. Then

by the construction, the circle packing {B(v′
1, r(v1)), ..., B(v′

m, r(vm))} has nerve
isomorphic to T (1)

1 where B(c, r) is the ball of radius r centered at c.
The above discussion shows that Theorem 2.1 is a consequence of the following:

Proposition 2.2 Suppose T1 is a triangulation of a triangle T = �v1v2v3 such that
there are only three vertices v1, v2, v3 of T1 in the boundary ∂T . Then there exists
a unique radius assignment r : V → R>0 with r(vi ) = 1 for i = 1, 2, 3 such that
the associated circle packing metric on T has zero discrete curvatures at all v ∈
V − {v1, v2, v3}.

2.1 A Variational Principle Associated to Circle Packing

The following variational principle was first established by Colin de Verdière in [7].

Proposition 2.3 (Colin de Verdière) Let �A1A2 A3 be a Euclidean triangle such
that the length of edge Ai A j is exi + ex j and the angle at Ai is θi = θi (x1, x2, x3).
Let x = (x1, x2, x3). Then

(a)
∑3

i=1 θi (x)dxi is a closed 1-form such that ∂θi
∂x j

> 0 for i �= j ;

(b) the function f (x) = ∫ x
0

∑3
i=1 θi (x)dxi is a well defined concave function in

x ∈ R
3 such that ∂ f

∂xi
= θi and f is strictly concave when restricted to the plane

Pc = {x ∈ R
3|x1 + x2 + x3 = c} for any c ∈ R;

(c) if a1, a2, a3 > 0 such that a1 + a2 + a3 = π, then g(x) = ∫ x
0

∑3
i=1(θi (x) −

ai )dxi satisfies that limmaxi, j |xi −x j |→∞ g(x) = −∞ and g(x + (t, t, t)) = g(x) for
all t ∈ R.

In [6, 17], this variational principle is generalized to the case of three circles
intersecting at angles and more general polyhedral surfaces.

Proof Recall that the cosine law for triangles states that cos(θi ) = y2j +y2k −y2i
2y j yk

where yk

is the length of Ai A j and {i, j, k, } = {1, 2, 3}. Let the area of the triangle�A1A2 A3

be A. Taking derivatives of the cosine law, we obtain (see LemmaA-1 in the appendix
of [6])
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∂θi

∂yi
= yi

2A
> 0, (2.1)

∂θi

∂yk
= −∂θi

∂yi
cos(θ j ). (2.2)

Now to see part (a), it suffices to show that ∂θi
∂x j

= ∂θ j

∂xi
> 0. By definition yi =

exi + exk . Therefore,

∂θi

∂x j
= ∂θi

∂yi

∂yi

∂x j
+ ∂θi

∂yk

∂yk

∂x j
= ∂θi

∂yi
ex j − ∂θi

∂yi
cos(θ j )e

x j = (1 − cos(θ j ))yi ex j

2A
.

Let R be the radius of the inscribed circle in the triangle. Then ex j = R cot(θ j/2).
Using the relation 1 − cos(θ j ) = 2 sin2(θ j/2), we see that

(1 − cos(θ j ))yi ex j

2A
= R sin(θ j )yi

2A
= R

yk
> 0

and that ∂θi
∂x j

is symmetric in i, j .

To see part (b), since
∑3

i=1 θi dxi is closed in R
3, the integral

∫ x
0

∑3
i=1 θi dxi is

independent of the choice of paths and therefore f (x) is well defined. Furthermore,
∂ f
∂xi

= θi follows from the definition of f . The Hessian of f is the 3 × 3 matrix
[hrs] (hrs = ∂θr/∂xs) which satisfies the condition that hi j = h ji > 0 and h1i +
h2i + h3i = ∂(θ1+θ2+θ3)

∂xi
= ∂π

∂xi
= 0. It follows that the matrix −[hrs] is a diagonally

dominatedmatrixwhose kernel consists of vectorsλ[1, 1, 1]t . Hence [hrs] is negative
semi-definite. This implies that the function f (x) is concave in R

3 and is strictly
concave when restricted to the affine plane Pc.

To see part (c), given a1, a2, a3, there exists a Euclidean triangle�B1B2B3 whose
inner angles are a1, a2, a3. Let C be the inscribed circle to �B1B2B3 and eui be the
distance from Bi to C ∩ Bi B j . Then by construction, the length of Bi B j is eui + eu j .
This shows that the point (u1, u2, u3) is a critical point of the function g(x) on R

3

since ∂g
∂xi

(u) = θi − ai = 0. Since g(x) is strictly concave with a critical point in
the plane Pc where c = u1 + u2 + u3, it follows that limx∈Pc,x→∞ g(x) = −∞. On
the other hand, for any b ∈ R, by definition and θi (x + (b, b, b)) = θi (x), we have
g(x + (b, b, b)) = g(x). To see this,

g(x + (b, b, b)) − g(x) =
∫ x+(b,b,b)

x

3∑

i=1

(θi − ai )dxi

=
∫ 1

0

3∑

i=1

(θi (x + t (b, b, b)) − ai )bdt = b
3∑

i=1

(θi (x) − ai ) = 0.
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For each vector v ∈ R
3, let �(v) = v + (t, t, t) ∈ Pc be the orthogonal projec-

tion to Pc. Then a sequence of vectors x(n) = (x1(n), x2(n), x3(n)) ∈ R
3 satis-

fies maxi, j |xi (n) − x j (n)| → ∞ if and only if π(x(n)) → ∞. Thus g(x(n)) =
g(π(x(n)) → −∞ when maxi, j |xi (n) − x j (n)| → ∞. 	


2.2 A Proof of Koebe–Andreev–Thurston’s Theorem

We now prove Proposition 2.2 using Colin de Verdière’s variational principle (see
[7]).

To set up an appropriate variational framework, one needs the concept of an angle
structure on a triangulated surface introduced in [7]. Suppose (S, T ) is a triangulated
surface. An angle structure on (S, T ) assigns each vertex v in each triangle τ ∈ T a
positive number a(v, τ ) ∈ R>0, called the angle, such that (a) the sum of the three
angles in each triangle is π and (b) the sum of all angles at each interior vertex v is
2π. Using linear programming, Colin de Verdière ([7]) proved that each simplicial
triangulation of the triangle admits an angle structure. Another way to see it is to
note that each geometric triangulation of a flat surface has a natural angle structure,
i.e., a(v, τ ) is the angle of the Euclidean triangle τ at v.

Lemma 2.4 If T1 is an abstract simplicial triangulation of a triangle T with three
vertices in ∂T , then there exists a geometric triangulationT ′ of an equilateral Euclid-
ean � such that T ′ is isomorphic to T .

This lemma follows easily from Steinitz’s theorem ([37]) that any 3-connected
graph on S

2 can be realized as the 1-skeleton of a compact convex polytope in R
3.

Indeed, by Steinitz’s theorem, there exists a compact convex polytope P whose
boundary with an open 2-cell Q removed is isomorphic T1. Project ∂P − Q onto a
plane from a point outside P and close to Q. The result is a geometric triangulation
T ′′ of a triangle such that T ′′ is isomorphic to T1. Finally sending the triangle to the
equilateral triangle � by an affine map produces the required T ′.

Label triangles in T ′ by �1,�2, ...,�m , let the vertices of �i be vi1, vi2, vi3 and
the inner angle of �i at vi j be ai j , i.e., {ai j } is an angle structure on T ′. For each
x ∈ R

V , define

W (x) =
m∑

i=1

g�i (x)

where g�i (x) = ∫ (x(vi1),x(vi2),x(vi3))

0

∑3
j=1(θi j − ai j )dx(vi j ) is the Colin de Verdière’s

function in Proposition 2.3 associated to the triangle �i with radius assignment
ex(vi1), ex(vi2), and ex(vi3) such that the angle in �i at vi j is θi j .

By definition and Proposition 2.3, the function W (x) is concave in R
V since

it is a sum of concave functions. Also, W (x + t (1, 1, 1, ..., 1)) = W (x) due to
Proposition 2.3(c). Furthermore, since each g�i is bounded from above, W (x) is
bounded from above. We claim that W is a proper function when restricted to



The Riemann Mapping Theorem and Its Discrete Counterparts 373

P = {x ∈ R
V | ∑v∈V x(v) = 0}, i.e., limx∈P,x→∞ W (x) = −∞. Indeed, if x ∈ P

such that x → ∞, then maxi, j, j ′ |x(vi j ) − x(vi j ′)| converges to ∞. Therefore, by
Proposition2.3(c), we see that W (x) → −∞. This shows that W |P has a critical
point u ∈ P . Since W (x + (t, t, t, ..., t)) = W (x), this shows the point u is a critical
point of W .

For this critical point u, suppose vi , i > 3, is an interior vertex and xi = x(vi ).
Then by Proposition2.3(a), ∂W

∂xi
(u) = ∑

j (θni , j − ani , j ) = −K (vi ) where θni , j and
ani , j are the angles at the vertex vi and

∑
j ani , j = 2π. This shows that the circle

packingmetric associated to u is flat. At vertices vi with i = 1, 2, 3, the same calcula-
tion shows K (vi ) = 2π/3 due to the choices of ai j (i.e., � is an equilateral triangle).
This implies u1 = u2 = u3.

To prove uniqueness, if ũ ∈ R
V
>0 comes from the radii of a circle packing whose

nerve is isomorphic to T1 such that the associated polyhedral surface is an equilateral
triangle, then the above calculation shows that ũ is a critical point of W . Since W is
concave, all critical points of W are maximum points. Therefore, it suffices to prove
that the restriction of the function W to P is strictly concave. Indeed, otherwise there
exist two distinct points x, y ∈ P such that the function h(t) = W (t x + (1 − t)y)

is linear in t ∈ [0, 1]. This implies that for each triangle �i , g�i (t x + (1 − t)y) is
linear in t . By Proposition 2.3, this implies there is a vector ui (1, 1, 1) ∈ R

3, one for
each triangle �i , such that

(x(vi1), x(vi2), x(vi3)) = (y(vi1), y(vi2), y(vi3)) + ui (1, 1, 1). (2.3)

We claim that ui = u j for all i, j . Indeed, consider two triangles �i and � j sharing
a vertex v. Then (2.3) at v shows ui = u j . Since any two triangles �i and � j can be
linked by a sequence of triangles �n1 = �i ,�n2 , ...,�nk = � j such that �nr and
�nr+1 share a common vertex, we see that ui = u j . It follows that the two vectors x, y
differ by a vector of the form t (1, 1, ..., 1) ∈ R

V . On the other hand, both x, y ∈ P ,
therefore t = 0, i.e., x = y which contradicts the choice of x, y.

2.3 Thurston’s Conjecture on Circle Packing And
Rodin-Sullivan’s Work

The relationship between the Koebe–Andreev–Thurston’s theorem and the Riemann
mapping theorem was explored by W. Thurston in early 1980s. The basic idea is
that since conformal maps send infinitesimal circles (circles in the tangent space) to
circles, a circle packing should be a good approximation to conformal maps.

Here is Thurston’s conjecture which was proved by Rodin-Sullivan in [29].
Given a bounded simply connected domain � in the complex planeC and a point

p ∈ �, for each large integer n, let Pn be a maximum (hexagonal) circle packing by
disks of radii 1/n inside � and pn be a circle in Pn within distance 1/n to p. Here
maximum means that one cannot add another 1/n radius disk in � to Pn such that
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Fig. 2 Thurston’s conjecture, Rodin-Sullivan’s theorem, on convergence of circle packing to the
Riemann mapping. The picture is produced by K. Stephenson

its nerve is the 1-skeleton of a topological triangulation Tn of a disk. Let p′
n be the

circle in Pn adjacent to pn from the right. Modify Tn to be a triangulation T ∗
n of the

2-sphere S
2 by adding one vertex v∞ and edges from v∞ to all boundary vertices

of Tn . Now by Koebe–Andreev–Thurston’s theorem, there exists a circle packing
Qn of the Riemann sphere such that (a) its nerve is isomorphic to the 1-skeleton of
T ∗

n ; (b) the disk corresponding to v∞ is the complement of the unit disk D; (c) the
disk corresponding to pn is centered at 0, (d) the disk in Qn corresponding to p′

n is
centered in the positive x-axis (Fig. 2).

Let fn be the piecewise linear map constructed as follows. It sends the center of
a circle in Pn to the center of the corresponding circle in Qn and fn is linear on each
triangles. Thurston’s conjecture, proved by Rodin-Sullivan, is that as n → ∞, fn

converges to the Riemann mapping f : � → D uniformly on compact subsets of�.
Rodin-Sullivan’s proof of convergence is beautiful and elegant. The readers are

strongly recommended to read the original paper [29]. There are two steps involved
in the proof. In the first step, they showed that there exists a constant K > 0 so
that all approximation functions fn are K -quasi-conformal. This is a consequence
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of Rodin-Sullivan’s ring lemma which states that in a hexagonal circle packing,
the ratio of the radii of any two adjacent circles is at most 1000. One can deduce
the ring lemma by inspection. Now uniformK-quasiconformality follows since inner
angles in aEuclidean triangle of edge lengths r1 + r2, r2 + r3, r3 + r1 with

ri
r j

≤ 1000
cannot be too small. Since fn are uniformly K-quasi-conformal, it has a convergent
subsequence. Let f be the limit of the subsequence. The claim is that f is the
Riemann mapping. To establish conformality of f , Rodin-Sullivan proved that the
hexagonal circle packing in the plane is unique. To bemore precise, if {Di } is a locally
finite collection of disks in C with disjoint interiors such that each Di is tangent to
exactly six other disks D j ’s andC − ∪Di is a disjoint union of open triangles whose
boundary are in ∪∂Di , then all Di have the same size.

Rigidity of hexagonal circle packing is the first rigidity theorem proved for infinite
circle packing. This work has inspired and initiated many research activities. For
instance Schramm [30] proved that any locally finite infinite circle packing of C is
rigid. See also the works of He [13], He-Schramm [14] and many others.

3 A Discrete Uniformization Theorem

One form of the uniformization theorem states that each Riemann surface admits a
complete Riemannian metric of constant curvature −1, 0, or 1 within its conformal
class. Furthermore, the metric is unique unless the Riemann surface is conformal to
the complex planeC, the punctured planeC − {0}, the sphere S2, or toriC/(Z + τZ)

for some τ /∈ R. In this section, we introduce our recent work on discrete confor-
mal geometry for compact polyhedral surfaces and discuss a discrete version of
uniformization theorem for compact polyhedral surfaces.

Polyhedral surfaces are ubiquitous due to digitization (e.g. 3D scan). Classifying
them according to some discrete conformality should be useful in organizing poly-
hedral surfaces. Circle packing can be considered as a discrete conformality if one
allows the changing of radii. However not all polyhedral surfaces can be canonically
packed by circles. A discrete conformality for all polyhedral surfaces was intro-
duced in [11, 12]. The main features of the discrete conformality are the following.
First, the discrete conformality is algorithmic; second the corresponding discrete
uniformization theorem holds for compact surfaces; third there exists a finite dimen-
sional (convex) variational principle to find the discrete uniformization metric; and
fourth discrete conformality is closely related to the convex ideal hyperbolic poly-
hedra in the 3-dimensional hyperbolic space H

3. Similar to Thurston’s conjecture
on the convergence of circle packing metrics, we have recently proved a conver-
gence result [18] which shows that the discrete conformality converges to smooth
conformality when the triangulations are suitably chosen. Several conjectures about
a discrete uniformization for non-compact polyhedral surfaces will be discussed at
the end of this section.
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3.1 Discrete Conformality of Polyhedral Surfaces

A closed surface S together with a non-empty finite subset of points V ⊂ S will be
called amarked surface. A triangulationT of amarked surface (S, V ) is a topological
triangulation of S such that the vertex set of T is V .We use E = E(T ), V = V (T ) to
denote the sets of all edges and vertices in T respectively. A (Euclidean) polyhedral
metric on (S, V ), to be called aPL metric on (S, V ) for simplicity, is a flat conemetric
on (S, V ) with cone points contained in V . We call the triple (S, V, d) a polyhedral
surface. All PLmetrics are obtained by isometric gluing of Euclidean triangles along
pairs of edges. For instanceboundaries of convexpolytopes arePLmetrics on (S2, V ).
The discrete curvature of a PLmetric d is the function Kd : V → (−∞, 2π) sending
a vertex v to 2π minus the cone angle at v. For a closed surface S, it is well known
that the Gauss-Bonnet theorem

∑
v∈V Kd(v) = 2πχ(S) holds. If T is a triangulation

of (S, V ) with a PL metric d for which all edges in T are geodesic, we say T is
geometric in d and d is a PL metric on (S, V, T ). In this case, we can represent the
PL metric d by the length function ld : E(T ) → R>0 sending an edge to its length.
Thus the polyhedral surface (S, V, d) can be represented by (S, T , l). This is a way
of coding a polyhedral surface by a finite-dimensional vector ld ∈ R

E .
In general, a polyhedral surface (S, V, d) admits infinitelymany different geomet-

ric triangulations. However, each polyhedral surface (S, V, d) has a naturalDelaunay
triangulation Td which is a geometric triangulation with vertices V such that for each
edge, the sumof two angles facing e is atmostπ. Delaunay triangulations are themost
commonly used triangulations in scientific computing. It can be constructed from the
Voronoi decomposition {R(v)|v ∈ V } of (S, V, d) as follows. Here a Voronoi 2-cell
R(v) for v ∈ V is defined to be {x ∈ S|d(x, v) ≤ d(x, v′),∀v′ ∈ V }. The Delau-
nay tessellation of (S, V, d) is the dual cell decomposition of {R(v)|v ∈ V } whose
vertices are V and each 1-dimensional connected component of R(v) ∩ R(v′) corre-
sponds to a (geodesic) edge from v to v′. A Delaunay triangulation is a subdivision
of the Delaunay tessellation into triangles without introducing extra vertices. Any
two Delaunay triangulations of (S, V, d) are related by a sequence of Delaunay tri-
angulations such that adjacent ones differ by a diagonal switch along an edge. See
for instance [4].

Suppose d is a PL metric on a triangulated surface (S, T ) whose edge length
function is ld : E(T ) → R>0. For a positive function u : V (T ) → R>0, the vertex
scaling of ld by u is the new function u ∗ ld : E(T ) → R>0 such that u ∗ ld(vv′) =
u(v)u(v′)ld(vv′)where vv′ is an edgewith end points v, v′. If d, d ′ are twoPLmetrics
on (S, T ), then they differ by a vertex scaling if ld = u ∗ ld ′ for some u : V → R>0.
The notation of vertex scaling change of PL metrics was introduced in [28] and in
[16].

The definition of discrete conformality involves Delaunay triangulations and ver-
tex scaling.

Definition 3.1 ([11]) Two PL metrics d and d ′ on a marked closed surface (S, V )

are discrete conformal if there is a sequence of PL metrics d1 = d, d2, ..., dn = d ′
and a sequence of triangulations T1, T2, ..., Tn of (S, V ) such that
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Fig. 3 Discrete conformal change of PL metrics from an arbitrary tetrahedron to one with constant
curvature π. All triangulations involved are Delaunay

(a) each Ti is Delaunay in di ,
(b) if Ti �= Ti+1, then there is an isometry hi from (S, V, di ) to (S, V, di+1) such

that hi is homotopic to the identity map on (S, V ), and
(c) if Ti = Ti+1, there is a function ui : V → R>0 such that for each edge e = vv′

in Ti , the lengths ldi (vv′) and ldi+1(vv′) of e in di and di+1 are related by

ldi+1(vv′) = ui (v)ui (v
′)ldi (vv′), (3.1)

i.e., ldi+1 = ui ∗ ldi .

The original motivation in [16] for introducing vertex scaling u ∗ ld as an approx-
imation to conformal change is the following. Since a PL polyhedral metric ld on
(S, T ) is a discretization of a Riemannian metric g and a function u : V (T ) → R>0

is a discretization of a positive function λ on S, the conformal Riemannian metric
λg should be approximated by the PL metric defined by u ∗ ld . The deeper reason
for u ∗ ld to be a discrete conformal change is due to the following observation in
Riemannian geometry ([18]). Given a Riemannian metric g on a compact connected
manifold M and λ : M → R>0, there exists a constant C = C(M, g,λ) such that
for any p, q ∈ M , we have

|dλ4g(p, q) − λ(p)λ(q)dg(p, q)| ≤ Cdg(p, q)3

where dg(p, q) is the distance between p, q in the metric g.
The relationship between discrete conformal geometry and hyperbolic geometry

is the following [5, 11]. Given a Delaunay triangulated polyhedral surface (S, T , d)

with V = V (T ), one can naturally associate to d a cusped hyperbolic metric d∗ on
S − V . Here is the construction. Take a Euclidean triangle τ in (T , d) considered as
the Euclidean convex hull of vertices v1, v2, v3 ∈ C. Let τ ∗ be the hyperbolic convex
hull CH(v1, v2, v3) of v1, v2, v3 in the hyperbolic 3-space H3. Here we consider C
to be in the sphere at infinity of the upper half-space model C × R>0 of H3. Now if
σ and τ are two Euclidean triangles in T glued by a Euclidean isometry f along an
edge, since each isometry f ofC extends naturally to an isometry f ∗ ofH3, we glue
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τ ∗ and σ∗ along the corresponding edge by the isometry f ∗. In this way, we obtain a
complete finite area hyperbolic metric d∗ on S − V . It follows from the construction
that d∗ is independent of the choices of the Delaunay triangulations T used in the
construction. It is proved in [11, Theorem 43] that two PL metrics d1 and d2 on a
closed marked surface (S, V ) are discrete conformal in the sense of Definition 3.1 if
and only if their associated hyperbolic metrics d∗

1 and d∗
2 are isometric by an isometry

homotopic to the identity (respecting V ). Conversely, if S is a closed surface and d̂
is a complete finite area hyperbolic metric on S − V , then there exists a polyhedral
metric d on (S, V ) such that d∗ = d̂. Thus for closed surfaces, there exists a bijection
between the space of all discrete conformal classes of polyhedral metrics on (S, V )

and the Teichmüller space of cusped metrics on S − V .
By this construction, if T is a Delaunay triangulation of the plane (C, dst ) with

V = V (T ) and dst being the standard flat metric onC, then the associated hyperbolic
metric d∗

st is the boundary of the convex hull CH(V ) of V in H
3. To see this, we

note that codimension-1 faces of CH(V ) correspond to the circum-disks of triangles
τ ∈ T due to the Delaunay condition. This shows the relationship between discrete
conformal geometry and convex hull construction in the hyperbolic 3-space H3 and
the essential role of Delaunay condition in discrete conformality.

The main theorems proved in [11, 12] are:

Theorem 3.2 ([11]) Given any PL metric d on a closed marked surface (S, V ) and
any K ∗ : V → (−∞, 2π) such that

∑
v∈V K ∗(v) = 2πχ(S), there exists a PL metric

d∗ on (S, V ), unique up to scaling and isometries homotopic to the identity map on
(S, V ), such that

(a) d∗ is discrete conformal to d, and
(b) the discrete curvature Kd∗ is equal to K ∗.
Furthermore, the PL metric d∗ can be found by a finite-dimensional variational

principle.

For the constant function K ∗ = 2πχ(S)/|V | in Theorem 3.2, we obtain a constant
curvature PLmetric d∗, unique up to scaling and isometries homotopic to the identity,
discrete conformal to d. We call d∗ the discrete uniformization metric associated to
d. The existence and uniqueness of d∗ is a discrete version of the uniformization
theorem for closed surfaces.

Theorem 3.2 for the torus S = S
1 × S

1 with K ∗ = 0 is equivalent to a theorem of
Fillastre [9]. Theorem 3.2 shows that every polyhedral torus (S1 × S

1, V, d) is dis-
crete conformal to a flat torus (S1 × S

1, V, d f lat ). Translating it into the language of
hyperbolic metrics, we can replace d by any cusped hyperbolic metric d̂ on the punc-
tured torus S1 × S

1 − V . The hyperbolic metric associated to (S1 × S
1, V, d f lat ) is

constructed as follows. Take a lattice L = Z + τZ in C and consider the boundary
∂CH(V ∗) of the convex hull of V ∗ in H

3 where V ∗ is a discrete set in C invariant
under the action of L. Then by the discussion above, d∗

f lat is isometric to the cusped
hyperbolic metric ∂CH(V ∗)/L . Furthermore, the lattice L is unique up to complex
linear transformations. This is the result proved in [9]. To be more precise, Fillastre
proved the following version of convex embedding theorem. For any cusped hyper-
bolic metric d̂ on S

1 × S
1 − V , there exist a lattice L ⊂ C and a finite set V ′ in the
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conformal infinite of the hyperbolic manifold H
3/L such that d̂ is isometric to the

boundary of the convex hull of V ′ in H3/L .
This shows a close connection between discrete conformal geometry and the

convex isometric embedding program of Weyl, Alexandrov, Nirenberg, Pogorelov
and others.

Theorem 3.3 ([12]) Given two PL metrics on a closed marked surface (S, V ) such
that the lengths of edges are algebraic numbers, there exists an algorithm to decide
if they are discrete conformal.

Theorem 3.3 is proved in our joint work with Ren Guo in [12]. The counterpart
of Theorem 3.2 for hyperbolic polyhedral surfaces is also proved in [12].

An important question is whether discrete conformality defined above approxi-
mates smooth conformality. To this end, let us recall discrete conformalmaps between
polyhedral surfaces [5, 18]. Given a closed polyhedral surface (S, V, d). Let d∗ be
the hyperbolicmetric on S − V associated d constructed using ideal hyperbolic trian-
gles associated to Euclidean triangles. The vertical projection of the ideal hyperbolic
triangle τ ∗ = CH(v1, v2, v3) to the Euclidean triangle τ = CE(v1, v2, v3) produces
a piecewise projective homeomorphism �d from (S − V, d∗) to (S − V, d|S−V ). If
d1, d2 are two discrete conformal PL metrics on (S, V ), then the discrete confor-
mal map from (S, V, d1) to (S, V, d2) is defined to be (the extension to S) of the
composition �d2 ◦ � ◦ �−1

d1
where � : (S − V, d∗

1 ) → (S − V, d∗
2 ) is the isometry

homotopic to the identity. Discrete conformal maps are piecewise projective.
Our recent work with Sun and Wu [18] shows that discrete conformality does

converge to the smooth conformality. Given a simply connected marked polygonal
domain with a PL metric (D, V, d) and three boundary vertices p, q, r ∈ V , let the
metric double of (D, V, d) along the boundary be the marked polyhedral 2-sphere
(S2, V ′, d ′). Using Theorem 3.2, one produces a new polyhedral surface (S2, V ′, d∗)
such that (1) (S2, V ′, d∗) is discrete conformal to (S2, V ′, d ′), (2) the discrete curva-
tures of d∗ at p, q, r are 4π/3, (3) the discrete curvatures of d∗ at all other vertices
are zero and (4) its area is

√
3/2. Thus (S2, V ′, d∗) is the metric double of an equi-

lateral triangle �ABC of edge length 1. Here A, B, C correspond to p, q, r . Let
F : (S2, V ′, d ′) → (S2, V ′, d∗) be the associated discrete conformal map sending
{p, q, r} to {A, B, C} respectively. Due to the uniqueness part of Theorem 3.2, we
see that f = F |D : D → �ABC sending p, q, r to the vertices A, B, C respectively.
We call f the discrete uniformization map associated to (D, T , l, {p, q, r})
Theorem 3.4 ([18]) Suppose � is a Jordan domain in the complex plane with three
distinct points p, q, r in the boundary of �. There exists a sequence of simply con-
nected polygonal domains (�n, Tn, {pn, qn, rn})with triangulationsTn by equilateral
triangles of edge lengths converging to 0 where pn, qn, rn are three boundary vertices
such that the following hold

(i) �n ⊂ �n+1 and � = ∪∞
n=1�n,

(ii) the discrete uniformization maps fn associated to (�n, Tn, {pn, qn, rn}) con-
verge uniformly on compact sets to the Riemann mapping f : (�, {p, q, r}) →
(�ABC, {A, B, C}).
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3.2 Vertex Scaling and Its Associated Variational Principle

A key property established in [16] for the vertex scaling is the following variational
principle (See Lemma3.5(a) below).

Lemma 3.5 Suppose �v1v2v3 is a Euclidean triangle of edge lengths l1, l2, l3 such
that vi is opposite to the edge of length li . Let l1ex2+x3 , l2ex1+x3 , l3ex1+x2 be the
edge lengths of a vertex scaled Euclidean triangle whose inner angle at vi is θi =
θi (x1, x2, x3).

(a)([16]) There exists a locally concave function F(x1, x2, x3) such that

∂F

∂xi
= θi (3.2)

and the kernel of the positive semidefinite symmetric matrix [ ∂θi
∂x j

]3×3 consists of

column vectors (a, a, a)t and
(b) If ex1 → ∞ and ex2 is bounded, then ex3 is bounded and θ1(x) → 0.

Proof To see part (a), it suffices to show that the 3 × 3 matrix [ ∂θr
∂xs

]3×3 is symmetric
and negative semi-definite. Let the area of the triangle�v1v2v3 beA and yi = li ex j +xk

be the length of the edge v jvk where {i, j, k} = {1, 2, 3}. Note that ∂yi

∂x j
= yi and

y j = yk cos(θi ) + yi cos(θk). By (2.1) and (2.2), we have

∂θi

∂x j
= ∂θi

∂yi

∂yi

∂x j
+ ∂θi

∂yk

∂yk

∂x j
= yi (yi − yk cos(θ j ))

2A
= yi y j cos(θk)

2A
= cot(θk)

and

∂θi

∂xi
= ∂θi

∂y j

∂y j

∂xi
+ ∂θi

∂yk

∂yk

∂xi
= −∂θi

∂yi
(y j cos(θk) + yk cos(θ j )) = − y2i

2A
− sin θi

sin(θ j ) sin(θk)
.

This shows that the matrix [ ∂θr
∂xs

]3×3 is symmetric and can be written as −DG Dt

where G = [grs ]3×3 is the Gram matrix of the triangle and D is a diagonal matrix.
Here gi i = −1 and gi j = − cos(θk). Let ni be the unit outward normal vector to the
triangle at edge v j vk and (u, v) be the inner product in R

3. Then the Gram matrix
G is the same as [(nr , ns)]3×3 which is well known to be positive semi-definite with
kernel (t, t, t). Thus part (a) follows.

To see part (b), note that the triangle of edge lengths ex2+x3 l1, ex1+x3 l2, ex1+x2 l3 is
similar to the Euclidean triangle of edge lengths l1e−x1 , l2e−x2 , l3e−x3 . In particular,
we have the triangle inequality that l2e−x2 < l1e−x1 + l3e−x3 . This implies that x3
must be bounded. Since l1e−x1 → 0 and l2e−x2 , l3e−x3 are bounded away from 0, it
follows θ1 → 0. 	


The identity in Lemma3.5(a) can be considered as a 2-dimensional analogue of
the Schlaefli formula. This variational principle has been generalized in the work



The Riemann Mapping Theorem and Its Discrete Counterparts 381

of [5]. In particular, an explicit formula for the function F was found in [5] using
Lobachevsky function − ∫ x

0 ln(|2 sin(t)|)dt .

3.3 Basic Idea of the Proof of Theorem 3.2

There are two steps involved in the proof. The first step is to understand discrete
conformality using hyperbolic metrics. The goal is to show that given any PL metric
d on (S, V ), the space DC([d]) of all PL metrics on (S, V ) discrete conformal to d
is C1-diffeomorphic to the Euclidean space RV . The second step is to show that the
discrete curvature map K : DC([d]) → {x ∈ (−∞, 2π)V | ∑v∈V K (v) = 2πχ(S)}
is a bijection up to scalings. This is achieved by showing that the discrete curvature
map K is the gradient of a convex function using Lemma 3.5(a) and the work of [1].

The first step is achieved by using Penner’s theorey of decorated Teichmüller
space. Let us first recall that two PL metrics on (S, V ) are Teichmüller equiva-
lent if they are isometric by an isometry homotopic to the identity in (S, V ). For
instance the condition (b) in Definition 3.1 says that (S, V, di ) is Teichmüller equiv-
alent to (S, V, di+1). The PL Teichmüller space Tpl = Tpl(S, V ) is the space of
all Teichmüller equivalence classes of PL metrics on (S,V). The space Tpl(S, V )

is known to be a real analytic manifold diffeomorphic to a Euclidean space by
the work of Troyanov [34]. The discrete conformality is an equivalence relation
on Tpl(S, V ). The discrete curvature K : Tpl(S, V ) → (−∞, 2π)V is a real ana-
lytic map. There exists a natural action of the set of positive real numbers R>0 on
Tpl(S, V ) by scaling. The discrete curvature is well defined on the quotient space
K : Tpl(S, V )/R>0 → {x ∈ (−∞, 2π)V | ∑v∈V x(v) = 2πχ(S)}.

Given a metric [d] ∈ Tpl(S, V ), let DC([d]) = {[d ′] ∈ Tpl | d ′ is discrete confor-
mal to d} be the discrete conformal class associated to [d]. Theorem 3.2 is equivalent
to the statement that the restriction of the discrete curvature map K to DC([d])/R>0

is a bijection from DC([d])/R>0 onto {x ∈ (−∞, 2π)V | ∑v x(v) = 2πχ(S) }. We
prove that K is a C1 diffeomorphism.

Let T (S − V ) be the Teichmüller space of complete hyperbolic metrics of finite
area on S − V and TD = T (S − V ) × R

V
>0 be Penner’s decorated Teichmüller space

[23]. Recall that a decorated hyperbolic metric on S − V is a complete finite area
hyperbolic metric together with a horoball at each cusp. By measuring the lengths
of the boundaries of the horoballs, one can write a decorated hyperbolic metric
as a pair (d, u) where u ∈ R

V
>0. This shows that the space of all decorated hyper-

bolicmetricsmodulo the natural equivalence relation is T (S − V ) × R
V
>0. Decorated

hyperbolic metrics on an ideal triangulated surface (S − V, T ) can be constructed by
isometrically gluing decorated ideal hyperbolic triangles along edges. Here a dec-
orated ideal hyperbolic triangle is an ideal triangle with a horoball at each vertex.
Since all ideal hyperbolic triangles are isometric, a decorated ideal triangle is deter-
mined up to isometries preserving decoration by the three lengths of horocycles
inside it. Another way to parameterize a decorated ideal triangle is to use the edge
lengths. If e is an edge of a decorated ideal triangle, then the length l(e) of e is
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the distance between the two horoballs B1, B2 at its end points if B1 ∩ B2 = ∅, and
is the negative of the length of the interval e ∩ (B1 ∩ B2) if B1 ∩ B2 �= ∅. Penner
defines the λ-length of an edge e is defined to be el(e)/2. Given any three positive
real numbers, there exists a unique decorated ideal triangle whose λ-lengths are the
given numbers. In particular, given any Euclidean triangle σ of edge lengths l1, l2, l3,
one can associate a decorated ideal triangle σ∗ of λ-length l1, l2, l3 to σ. Given a PL
metric d represented as (S, T , l) (i.e., T is geometric in d), one assigns a decorated
hyperbolic metric �T (d) on S − V as follows. Each Euclidean triangle σ ∈ T is
replaced by its decorated ideal triangle counterpart σ∗. These decorated ideal tri-
angles are glued along edges by isometries preserving decorations. The resulting
decorated hyperbolic metric is �T (d). See [5]. We prove the following theorem.

Theorem 3.6 ([11]) For any closed marked surface (S, V ) such that (S, V ) �=
(S2, {p}) or (S2, {p, q}), there exists a C1 smooth diffeomorphism � from the PL
Teichmüller space Tpl(S, V ) to the decorated Teichmüller space T (S − V ) × R

V
>0

such that two PL metrics d and d ′ are discrete conformal if and only if the projections
of �(d) and �(d ′) to the Teichmüller space T (S − V ) are the same.

The map � is constructed in a piecewise smooth manner on the natural cell
decompositions of Tpl and TD . For each triangulation T of (S, V ), define Dpl(T )

(and D(T )) to be the set of all PL metrics (and decorated hyperbolic metrics) [d] in
Tpl (and TD) such that T is isotopic to a Delaunay triangulation in d. The important
works of Rivin [26] and Penner [23] show that Dpl(T ) and D(T ) are cells and Tpl =
∪T Dpl(T ) and TD = ∪T D(T ) are cell decompositions of the Teichmüller spaces
invariant under the action of the mapping class group. The definition of � goes as
follows. For each triangulation T , define�T : Dpl(T ) → TD(S, V ) by sending a PL
metric (S, T , l) to�T (S, T , l). By definition the two decoratedmetrics�T (S, T , l)
and �T (S, T , w ∗ l) have the same underlying hyperbolic metrics and differ only in
decorations.

It is a straightforward calculation to see that Euclidean Delaunay condition
is mapped to hyperbolic Delaunay condition, i.e., �T (Dpl(T )) ⊂ D(T ). Penner
observed that hyperbolic Delaunay condition implies the triangle inequality for
(Euclidean) edge lengths, i.e., �T (Dpl(T )) = D(T ). Furthermore, Penner’s result
that the Ptolemy identity holds for λ-lengths of decorated ideal quadrilaterals implies
that for different triangulations T and T ′ of (S, V ),

�T |Dpl (T )∩Dpl (T ′) = �T ′ |Dpl (T )∩Dpl (T ′).

Thus these maps �T can be glued together to produce a homeomorphism � =
∪T �T : Tpl → TD . Note that the complete finite area hyperbolicmetric dH on S − V
associated to a PL metric d on (S, V ) is P ◦ �([d]) where P : T (S − V ) × R

V
>0 →

T (S − V ) is the projection.
We prove that� is a C1 diffeomorphism by using the following lemma on quadri-

laterals.
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Lemma 3.7 Let Q be a convex Euclidean quadrilateral whose four edge lengths are
x, y, z, w labelled cyclically and the length of a diagonal be u. Let A(x, y, z, w, u) be
the length of second diagonal and B(x, y, z, w, u) = xz+yw

u . If a point (x, y, z, w, u)

satisfies A(x, y, z, w, u) = B(x, y, z, w, u), i.e., Q is inscribed in a circle, then
D A(x, y, z, w, u)= DB(x, y, z, w, u) where D A is the derivative of A.

In the second step, we examine the restriction K | of the discrete curvature map
to the space of discrete conformal classes DC([d]). By Theorem 3.6, DC([d])
is naturally a Euclidean space. Using Lemma 3.5(a), we show that the discrete
curvature map on DC([d])/R>0 is the gradient of a strictly convex function.
Thus, K | : DC([d])/R>0 → Y := {x ∈ (−∞, 2π)V | ∑v x(v) = 2πχ(S) } is injec-
tive. On the other hand, by using Lemma 3.5(b) and a result of Akiyoshi [1] we show
that the image K (DC([d])) is closed in Y . Since both DC([d])/R>0 and Y are con-
nected manifolds of the same dimension, we conclude that K | is a homeomorphism
and thus prove Theorem 3.2.

3.4 Basic Ideas of the Proof of Theorem 3.3

Suppose d, d ′ are two PL metrics on a marked closed surface (S, V ) such that d, d ′
are given by the edge length functions ld : E(T ) → A and ld ′ : E(T ′) → A where
A is the set of all real algebraic numbers. Our goal is to use these two vectors ld and
ld ′ to decide whether d, d ′ are discrete conformal or not.

Using a well-known algorithm from computational geometry, we may assume
that both T and T ′ are Delaunay in d and d ′ respectively. Now consider the asso-
ciated decorated hyperbolic metrics y = �T (d) and y′ = �T ′(d ′) in Penner’s dec-
orated Teichmüller space. By Theorem 3.6, it suffices to check if y, y′ have the
same underlying hyperbolic metric. To this end, we use a theorem of Thurston and
Mosher [22] that there is an algorithm which produces a sequence of triangulations
T1 = T , T2, ..., Tn = T ′ of (S, V ) such that for each i , Ti and Ti+1 differ by a diag-
onal switch. Combining with Penner’s Ptolemy identity, we find algorithmically the
λ-length coordinates z (= y) and z′ of the decoratedmetrics y, y′ in the same triangu-
lation T . For a triangulation T , it is known by Penner’s work that z, z′ represent the
same underlying hyperbolic metric if and only if their associated shear coordinates
in the triangulation T are the same. Here the shear coordinate of z : E(T ) → R>0 is
the function φ(z) : E(T ) → R given by φ(z)(e) = ab

cd where a, b, c, d are the values
of z at the four edges, ordered cyclically, of the quadrilateral in T formed by the two
triangles adjacent to e. Therefore, we can check algorithmically if z and z′ have the
same underlying hyperbolic structure.
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3.5 Basic Idea of the Proof of Convergence Theorem 3.4

The proof of Theorem 3.4 follows the basic strategy appeared in Rodin-Sullivan’s
work [29]. Namely, we prove that the approximating discrete conformal maps fn

are K-quasi-conformal for some K independent of n and a rigidity result about the
hexagonal triangulations of the plane. Finally since Delaunay triangulations may
change due to flip operations, we choose the approximation triangulations nicely to
ensure that no flips occur.

The K-quasi-conformality is relatively easy to establish and is based on a ratio
lemma first appeared in [36] and a non-degeneration lemma. The conditions which
ensure no flips are technical and will not be addressed here. We will discuss the
rigidity result in more details.

The rigidity theorem that we proved is the following,

Theorem 3.8 ([18]) Suppose (C, T , l) is a geometric Delaunay triangulation
of an open set in the complex plane C such that (i) each vertex is adjacent to
exactly six triangles and (ii) there exists a function w : V (T ) → R>0 satisfying
l(vv′) = w(v)w(v′) for all edges vv′. Then the triangulation is the regular hexago-
nal triangulation, i.e., w is a constant function.

This should be comparedwithRodin-Sullivan’s rigidity theorem for circle packing
metric which can be stated as,

Theorem 3.9 (Rodin-Sullivan [29]) Suppose (C, T , l) is a geometric triangulation
of an open set in the complex plane C such that (i) each vertex is adjacent to exactly
six triangles and (ii) there exists a function w : V → R>0 satisfying l(vv′) = w(v) +
w(v′) for all edges vv′. Then the triangulation is the regular hexagonal triangulation,
i.e., w is a constant function.

Recall that a PL metric on a triangulated surface (S, T ) can be represented by the
edge length function l : E(T ) → R>0 so that the triangle inequality l(ei ) + l(e j ) >

Fig. 4 Convergence of discrete conformality and approximation of the Riemann mapping
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l(ek) holds for three edges ei , e j , ek of a triangle. A generalized PL metric on (S, T )

is map l : E(T ) → R>0 so that l(ei ) + l(e j ) ≥ l(ek) holds for three edges ei , e j , ek

of a triangle. Since the edge lengths l(e) > 0 in a generalized PL metric, the inner
angles, discrete curvatures and Delaunauy conditions are still defined for generalized
PLmetrics. A generalized PLmetric is called flat if its curvature is zero at each vertex
(Fig. 4).

The idea of the proof of Theorem 3.8 is as follows. Suppose otherwise that w is
not a constant, we will derived a contradiction by using a maximum principle and a
spiral lemma.

Let V = Z + e2πi/3
Z be the set of vertices of the standard hexagonal triangulation

Tst with lst : V → {1} being the edge length function. Consider those u : V → R>0

so thatu ∗ lst are generalizedPLmetrics, i.e.,u ∗ l(v1v2) + u ∗ l(v2v3) ≥ u ∗ l(v3v1)
for vertices {v1, v2, v3} of a triangle. The maximum principle says if u : V → R>0 is
a function so that u ∗ lst is a flat generalized PLmetric and has amaximumpoint, then
u is a constant. This is essentially a consequence of Lemma 3.5(a). The ratio lemma
says if u ∗ lst is flat, then

u(v)

u(v′) ≤ 6 for each edge vv′ ∈ T . The spiral lemma says for
any non-constant linear function ln(u) : V → R so that u ∗ lst is a generalized PL
metric, then the metric eu ∗ lst is flat and furthermore, if u ∗ lst contains a triangle of
positive area, then the developingmap for the u ∗ lst metric sends two triangles to two
triangles in C with overlapping interiors. Using these lemmas, one proves Theorem
3.8 as follows. We may assume without loss of generality that λ = sup{ w(v)

w(v±1) |v ∈
V } > 1. By the ratio lemma, we know λ < ∞. Choose a sequence of vertices vn ∈ V
so that, say, w(vn)

w(vn+1) → λ. Now using the symmetry of the lattice Z + e2πi/3
Z, we

produce a new sequence of function wn : V → R>0 obtained by shifting vn ∈ V to
0 and re-scaling so that {wn} contains a convergent subsequence converging to w∞ :
V → R>0. The generalized PL metric w∞ ∗ lst is still flat since flatness is a closed
condition. By the maximum principle applied to the generalized flat PL metricw′∞ ∗
lst where α′(v) = α(v)/α(v + 1) : V → R>0, we see that w∞(v) = λw∞(v + 1)
for all v ∈ V . By the same argument applied to δ = sup{ w(v)

w(v±e2πi/3)
|v ∈ V } and taking

subsequence of the subsequence, we can improve the result to a limit function w∞ :
V → R>0 so that w∞(v) = λw∞(v + 1) and w∞(v) = δw∞(v + e2πi/3) for all v.
Therefore, ln(w∞) : V → R is a non-constant linear function. We show that there
exists a triangle inw∞ ∗ lst of positive area. By the spiral lemma, the developing map
for the flat generalized PL metric w∞ ∗ lst sends two triangles to two triangles with
overlapping interiors. On the other hand, by the construction, w∞ ∗ lst is the limit
of wn ∗ lst which is a geodesic triangulation of C obtained from (C, T , w ∗ lst ) by
shifting base points and re-scaling. In particular, the developing map D∞ ofw∞ ∗ lst

is the limit of injective maps where the convergence is uniform on compact sets. This
shows that D∞ cannot send two triangles to two triangles with overlapping interiors.
The contradiction shows Theorem 3.8 holds.

Our proof of Theorem 3.8 also gives a new proof of Rodin-Sullivan’s Theorem
3.9 since the similar maximum principle, the ratio lemma and the spiral lemma hold
in the circle packing case. The spiral lemma in the circle packing case was first
discovered by Peter Doyle and the phenomena is called the Doyle spiral.
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The rigidity theorem proved in [18] also holds for any lattice in C instead of the
regular hexagonal lattice.

3.6 Discrete Uniformization for Non-compact Simply
Connected Polyhedral Surfaces

An essential step in Poincaré’s andKoebe’s proofs of the uniformization theorem is to
establish that every simply connected non-compact Riemann surface is conformal to
the plane C or the unit disk D. The corresponding statement for discrete uniformiza-
tion is that every non-compact simply connected polyhedral surface (S, V, d) is
discrete conformal to (C, V ′, dst ) or (D, V ′, dst ) for some discrete set V ′ ⊂ C or
V ′ ⊂ D and the set V ′ is unique up to Möbius transformations. Here dst is the stan-
dard flat Euclidean metric. Given a closed set X ⊂ S

2, the convex hull of X in the
hyperbolic 3-space H3 is denoted by CH(X). Using geometry, discrete uniformiza-
tion is equivalent to the statement that a hyperbolic metric d∗ on S − V (with cusp
ends at each v ∈ V ) is isometric to the boundary of the convex hull ∂CH(V ′) or
∂CH(V ′ ∪ (S2 − D)). Furthermore, the set V ′ is unique up to Möbius transforma-
tions.

Recall that a closed set X in the Riemann sphere S
2 is of circle type if each

connected component of X is either a point or a closed round disk. For instance
if V ′ is a discrete subset of D, then (S2 − D) ∪ V ′ is a circle type closed set. The
generalization of the above discrete uniformization conjecture is the following. For
any complete hyperbolic surface (�, g) of genus zero, there exists a circle type
closed set Y , unique up to Möbius transformations, such that (�, g) is isometric
to the boundary of the convex hull of CH(Y ) in H

3. This can be rephrased using a
theorem of Alexandrov [2] that any genus zero hyperbolic surface (�, g) is isometric
to ∂CH(X) for some closed set X ⊂ S

2. Therefore, we have,

Conjecture 1 ([18]) Given any closed set X ⊂ S
2 with S

2 − X connected, there
exists a circle type closed set Y such that the boundaries of CH(X) and CH(Y ) are
isometric.

In particular, Conjecture 1 for X to be V ∪ {∞} or (S2 − D) ∪ V where V is
discrete inC orD is the existence part of the discrete uniformization for non-compact
simply connected polyhedral surfaces. In [19] we proved that

Theorem 3.10 Conjecture 1 holds if the given closed set X has countably many
connected components. In particular, the existence part of the discrete uniformization
theorem holds.

Conjecture 1 is a geometric form of the Koebe conjecture that any genus zero
Riemann surface S is conformal to S2 − Y for a circle type closed set Y .
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Conjecture 2 ([18]) Suppose X and Y are two circle type closed sets in S
2 such

that the boundary of CH(X) is isometric to the boundary of CH(Y ). Then X and Y
differ by a Möbius transformation.

Here are some evidences supporting Conjectures 1 and 2. If the given set X
is finite, Rivin [27] proved that both Conjectures 1 and 2 hold. If X is a disjoint
union of a finite number of closed round disks, then Schlenker [30] proved that both
Conjectures 1 and 2 hold. See also [20] for the case of a union of a closed round disk
with a finite set of points. Theorem 3.8 is a very special case of Conjecture 2.
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