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Preface

Bernhard Riemann is one of those few mathematicians whose work made a pro-
found transformation of mathematics and physics. Not only his results are
far-reaching, but his vision and approach to mathematics were directly felt and
appreciated by all the later generations of mathematicians.

To say something original on Riemann’s work is not easy, not because every-
thing about him is known—far from it, but because it requires a profound reading
and understanding of his mathematical writings, which are difficult, involving
hidden geometric arguments, sometimes originating in physics and most of all
relying on his broad intuitive vision. Besides a familiarity with the mathematical
concepts involved, a reader of Riemann’s works must be capable of following his
very terse style. Anyone who has read his habilitation lecture, Über die Hypothesen,
welche der Geometrie zu Grunde liegen, has felt its unusual tone. The mathematical
ideas are expressed there in a broad and unusual language, and the results are
generally stated without supporting proofs or calculations. Furthermore, these ideas
are intertwined with philosophical and historical considerations, which may be
incomprehensible to a reader who is not sensible to history and philosophy. André
Weil mentions this memoir in a letter he wrote to his sister on March 26, 1940, and
published in his Collected Papers (Springer Verlag, New York, Vol. 1, p. 244–
255). He writes the following, talking about algebraic functions of one variable: “It
is generally believed that there is nothing left to do on algebraic functions of one
variable, because Riemann, who discovered almost everything we know about these
functions (I am excepting the works of Poincaré and Klein on uniformization, and
those of Hurwitz and Severi on correspondences) did not leave for us any statement
of a big problem that concerns them. I am without doubt one of the most knowl-
edgeable persons on this subject; certainly because I had the good fortune (in 1923)
to learn it directly from Riemann’s writings, whose memoir is of course one of the
greatest things that a mathematician has ever written; there is not a single word
there that is not of consequence.”

Today, 150 years after Riemann’s death, some of his highly original ideas are
still poorly known to the mathematical community, in spite of the fact that a large
number of books and articles were published on his work. The reason is that these
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books often concentrate on the results that are considered to lead to important
developments, leaving in the dark some of Riemann’s beautiful ideas that deserve
to be contemplated and further exploited. Actualizing these ideas and including
them in the context of current mathematics is a permanent necessity.

Several essays included in the present volume are the result of reading
Riemann’s writings, and the others are motivated by his ideas as they appear in the
scientific literature.

The decision of editing this book was taken after two conferences held in
Strasbourg, the first one on June 12–14, 2014, whose subject was “Riemann,
topology and physics,” and the second one on September 18–20, 2014, whose
subject was “Riemann, Einstein and geometry,” where Riemann’s influence on
relativity theory was emphasized. Consequently, this book contains several chapters
on the latter theory.

Despite the variety of topics contained in this volume, there is one simple and
common purpose, to highlight—hopefully in a new way—some of Riemann’s
original ideas and their subsequent development.

We would like to take this opportunity to thank Elena Griniari from Springer
Verlag for her interest, support and efficient help in this edition, and Manfred Karbe
for his invaluable advice.

Editing such a book required hard work. We consider it an expression of our
gratitude for all that Riemann gave to human knowledge. His ghostly voice still
inspires us all.

Ann Arbor, USA Lizhen Ji
Strasbourg, France and Providence, USA Athanase Papadopoulos
Tokyo, Japan Sumio Yamada
April 2017
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Introduction

The present book is an addition to the living literature on Riemann. It contains a
series of introductory essays in which the authors comment on some of Riemann’s
writings with the goal of making them more accessible, followed by surveys of
some recent research topics rooted in Riemann’s work or strongly motivated by his
ideas. The overall goal is to give a comprehensive overview of Riemann’s work, the
origin of his ideas and their impact on mathematics, philosophy and physics. The
various authors—each one with his own style—get into a great variety of subjects
including Riemann surfaces, elliptic and Abelian integrals, the hypergeometric
series, differential geometry, topology, integration theory, the zeta function, mini-
mal surfaces, uniformization, trigonometric series, electromagnetism, heat propa-
gation, Riemannian Brownian motion, and several other topics to which Riemann
made essential contributions or that were greatly influenced by his work. One
difference between this book and the existing books on Riemann is that it contains a
significant part devoted to Riemann’s impact on philosophy (there are three
chapters on this subject out of a total of twenty chapters in the book), while another
consequential part (again, three chapters) is concerned with the impact of
Riemann’s ideas on the theory of relativity. Let us add that even though part of the
book deals with subjects that are treated in other books on Riemann, it is always
useful to have, in the mathematical literature, surveys on the same subject written
by different persons, each survey reflecting its author’s interests and his ideas on
what is important and what is only secondary material (although in Riemann’s case
secondary material is very rare).

Riemann’s influential habilitation lecture, Über die Hypothesen, welche der
Geometrie zu Grunde liegen (On the hypotheses that lie at the bases of geometry) is
at the center of the discussion in several chapters of the book. The repercussion of
this lecture in mathematics, physics and philosophy is immense. Occurrences of a
single text that had such a profound influence on these three branches of human
knowledge are very rare in history. Other examples may be found in the writings of
very few thinkers: Aristotle, Newton, Leibniz, Descartes and Poincaré are some
of them, and it is difficult to find more names.
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The present introduction has several purposes. The first one is to provide the
reader with a short summary of the topics that he will find in this book. Reading this
summary will give him an idea of the great variety of themes on which Riemann
worked and on the impact of his ideas. Another purpose, on which we stress in the
last part of the introduction, is to transmit a few thoughts, beyond Riemann’s work,
on the intricate relation between mathematics, physics and philosophy.

The volume is organized into a preamble, four main parts, and a concluding
chapter. Each of the four parts contains a series of essays, arranged in chapters.

Chapter 1, which constitutes the preamble, written by the author of the present
introduction, is an overview of the prehistory of some of the main mathematical
fields on which Riemann worked. In other words, the chapter concerns the pre-
decessors of Riemann, more precisely, the mathematicians who started the fields in
which he worked, and those who exerted a major influence on him. It appears
clearly from this overview that for most of the questions which Riemann addressed,
Euler stands in the background, as a dominating figure. This concerns the theory of
functions (in particular algebraic functions and functions of a complex variable), of
elliptic integrals, of Abelian integrals, of the hypergeometric series, of the zeta
function and of Riemann’s ideas on space, as well as his work on topology, dif-
ferential geometry, trigonometric series, and integration, and his use of the tech-
niques of the calculus of variations. Even though Euler was not the initiator of all
these fields, he is, for most of them, the one who brought them to matureness. This
applies in particular to the theories of algebraic and complex functions, to that of
elliptic integrals and to the zeta function. Despite the fact that the history of
topology can be traced back to the Greeks, and then to Leibniz and Descartes, Euler
was the first to solve topological problems with the conviction that these problems
are proper to this field, and that the classical method of analysis and algebra are
insufficient for their solution. Another major figure to whom Riemann has an
enormous debt for what concerns his intellectual and mathematical development, is
his mentor Gauss, who worked on all the topics that Riemann tackled. We also
know, from Riemann’s writings and his correspondence, that he was a dedicated
reader of Euler and Gauss’s works. What we said about mathematics in Riemann’s
writings also holds for physics and philosophy, that is, it is possible to trace back
several important ideas of Riemann in these fields to Euler and to Gauss. This
chapter is also in some sense an essay on historical progression in mathematics and
it is an occasion of revisiting the texts written by several pre-eminent mathemati-
cians of which we are the heirs, and on whose shoulders we stand.

Part I, composed of Chapters 2 to 8, is an exploration of Riemann’s works and
their impact on mathematics and physics. Some of these chapters have a historical
character, and others contain detailed reviews of some of Riemann’s published
works. Some relations with the works of Riemann’s contemporaries are also
highlighted.

Part II, containing Chapters 9 to 11, is more directed towards the philosophical
aspects of Riemann’s work. It focuses in particular on his ideas on space, making
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relations with conceptions of other thinkers on the same subject, and exploring the
impact of these ideas on modern philosophy. The notion of Mannigfaltigkeit
(usually translated as multiplicity, or manifoldness), which existed in the philo-
sophical language, which Riemann introduced in mathematics, and which is an
ancestor of the modern notion of manifold, is thoroughly discussed.

Part III, consisting of Chapters 12 to 16, is a series of five surveys of modern
mathematical research topics that are based on ideas originating in Riemann’s work.
These topics belong to the fields of conformal geometry, algebraic geometry, the
foundations of mathematics, integration, and probability theory.

Part IV, consisting of Chapters 17 to 19, is a collection of surveys on the theory
of relativity and more especially on questions in relativity that are directly inspired
or that rely on Riemann’s work.

Chapter 20, the concluding chapter in this volume, is written by Lizhen Ji and is
meant to give a quick overview of the life and works of Riemann. It contains in
particular a brief summary of each of Riemann’s published articles, together with a
list of notions that Riemann introduced and that are named after him.

We now present in more detail the content of Parts I to IV, chapter by chapter.

Part I

Chapter 2 is written by Jeremy Gray and it starts with a review of some important
aspects of Riemann’s habilitation lecture, On the hypotheses that lie at the bases of
geometry, from the points of view of mathematics, physics, and philosophy,
highlighting the consequences of Riemann’s conception of space. It is a matter of
fact that the philosophical notion of space has also implications on Riemann’s
mathematical works. According to Gray, Riemann’s conception of space is related
to the question of whether objects of geometry are described by coordinates or not.
Following the line of work started by Gauss on the differential geometry of sur-
faces, Riemann formulated in a novel way the question of “determination of
position” in a manifoldness, and that of the difference between intrinsic and
extrinsic properties.

Gray then turns to the more general question of the interaction between the
mathematical ideas expressed in Riemann’s lecture and physics and philosophy.
Riemann claims in his memoir that he was influenced by Herbart, without being
explicit on that. Based on passages from Riemann’s notes on philosophy, Gray
presents some ideas of Herbart’s on space, time, and motion, and he discusses the
way they were received by Riemann. For instance, Herbart addressed the question
of whether or not our knowledge of space, time, and motion is generated by our
experience. Gray explains where Riemann agrees or disagrees with Herbart’s ideas.
Like Newton before him, Riemann disputed the idea of an action at a distance. He
imagined, like Euler did before him, that space is filled with a substance—ether—
whose properties are responsible for the transmission of the forces of nature. This
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philosophico-physical idea was the driving force that led Riemann to the discovery
of what became known as Riemannian geometry. From the physical viewpoint, this
geometry is seen as the study of spaces with infinitesimal physical forces that are
responsible for curvature.

Gray then considers another subject, namely, Riemann’s theory of electrody-
namics, formulated in his article Ein Beitrag zur Elektrodynamik (A contribution to
electrodynamics). The paper was presented to the Royal Academy of Sciences at
Göttingen in 1858, but subsequently withdrawn, and it was published posthu-
mously in 1867. This article by Riemann is also analyzed in Chapter 3 of the
present volume. It is motivated by a question concerning the velocity of electrical
interaction. Riemann argues that this velocity, “within the limits of errors of
observation, is equal to that of light.”

After electrodynamics, Gray comments on Riemann’s theory of heat diffusion,
expressed in another essay known as the Commentatio, whose aim is to find
conditions on the distribution of heat in an infinite, homogeneous, solid body under
which a system of curves remains isothermal for an indefinite period of time.
Riemann formulated this problem in terms of a positive definite quadratic form with
constant coefficients at each point on the solid body, governing the heat flow. He
then interprets the physical problem mathematically, as a problem concerning the
reduction of a quadratic form. Thus, Riemann again places a physical problem at
the heart of Riemannian geometry. In the same chapter, Gray addresses the question
of the influence of the Commentatio on the works of later mathematicians.

Chapter 3, written by Hubert Goenner, deals with Riemann’s work on electro-
magnetism. It is built around Riemann’s paper Ein Beitrag zur Elektrodynamik (A
contribution to electrodynamics) which is also considered in Chapter 2. Goenner
analyzes this paper in some detail. He reminds the reader that the idea that electrical
interaction is not instantaneous was voiced by Gauss already in 1845. Based on it,
Riemann deduced an explanation of the electrodynamic actions of galvanic cur-
rents. Goenner highlights several important points in Riemann’s paper, explaining
how Riemann’s theory anticipates that of Maxwell. He also mentions connections
with later discoveries of Riemann that led him to change some important points in
his theory. Riemann later on addressed these questions in more detail, in a course
entitled “The mathematical theory of gravitation, electricity and magnetism,” that
he gave in summer 1861.

Goenner’s commentary is a useful reading guide to Riemann’s paper. It presents
Riemann’s work in a large perspective comprising the works of Gauss, Weber, and
others. Incidentally, Goenner provides an answer to the question of why Riemann
withdrew his paper, namely, a wrong factor that Riemann included in a function
under an integral sign. According to Goenner, Riemann realized, after submitting
this paper, that a different factor should be there and this led him to withdraw the
paper. There are other conjectural reasons for Riemann’s withdrawal of the paper,
for instance, the fact that Riemann realized that he used a trivially forbidden
interchange of integration—this explanation is the one given by Gray in Chapter 2
of the present volume.
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Chapter 4, by Christian Houzel, concerns Riemann’s solution of Jacobi’s
problem of inversion of Abelian integrals. These are integrals of the
form

R z
z0
Rðw; zÞdz where R(w, z) is a rational function of the two variables w and z

that are related by an algebraic equation f(w,z) = 0. The Jacobi inversion problem,
which was formulated by Jacobi in 1832, generalizes the inversion problem for
elliptic integrals to which Riemann also contributed in an essential way. The
inversion of elliptic integrals leads to the so-called doubly periodic functions, that
is, holomorphic functions defined on the torus. The inversion of Abelian integrals
leads to what became known later on as automorphic functions, on more general
surfaces. Elliptic integrals are in some sense generalizations of inverse trigono-
metric functions (

R x
0

dtffiffiffiffiffiffiffi
1�t2

p represents the arcsine function, a special case of the class

of elliptic integrals of the form
R

dxffiffiffiffiffiffiffiffi
1�xn

p ) and a major idea behind this study is that

inverses of elliptic integrals may behave in some sense like trigonometric functions,
having periods, addition formulae, etc. Weierstrass also worked on the Jacobi
inversion problem. Riemann sketched a solution of this problem in his famous
memoir Theorie der Abel’schen Functionen (Theory of Abelian functions), written
in 1857, without giving a complete proof. He completed the proof in his memoir
Über das Verschwinden der #-Functionen (On the vanishing of # functions),
published 1866. Houzel makes a historical survey of this inversion problem and
gives an outline of Riemann’s proof. This proof uses all the concepts that Riemann
introduced, including the representation of algebraic functions by Riemann surfaces
that are ramified coverings of the Riemann sphere, his formulation of the problem in
terms of periods of differential forms of the first kind on the associated Riemann
surface, and his use of what became known later on as Riemann’s theta functions.
His 1857 memoir concludes with a proof of the fact that integrals of the algebraic
differential forms on a Riemann surface may be expressed as quotients of products
of translated theta functions. Riemann also contributed to the classification and the
study of moduli of Abelian integrals. In the last section, Houzel indicates some later
developments of Riemann’s results by A. Weil (1948) and G. Kempe (1971–73).

Chapter 5 by Sumio Yamada concerns Riemann’s work on minimal surfaces. It
consists of an overview, from a modern viewpoint, of Riemann’s two papers on the
subject, Über die Fläche vom kleinsten Inhalt bei gegebener Begrenzung (On the
surface of least area with a given boundary) and Beispiele von Flächen kleinsten
Inhalts bei gegebener Begrenzung (Examples of surfaces of least area with a given
boundary). Both papers were finalized after Riemann’s death by K. Hattendorff to
whom Riemann had left a set of notes on the subject. At the same time, Yamada
makes a comparison between Riemann’s work and that of Weierstrass on the same
subject. He shows that Riemann’s notes contain several results on minimal surfaces
which are now classical, including the Weierstrass-Enneper representation,
Schwarz’s explicit construction of minimal surfaces, as well as the Schwarz–
Christoffel transformation. He also mentions relations with the works of Euler and
Lagrange and with Riemann’s own work on the Riemann mapping theorem.
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Chapter 6, by the author of this introduction, is a survey of the ideas from
physics that are contained in Riemann’s mathematical papers, and on the mathe-
matical problems that he tackled that were motivated by physics. In fact, it is
sometimes not easy to separate Riemann’s mathematical ideas from physics, and it
is clear that for certain topics, Riemann did not make any difference between
mathematics and physics. Furthermore, Riemann’s philosophical ideas are often in
the background of his work on mathematics and physics. The main goal of
Chapter 6 is to try to convey this general theory, by analyzing several writings of
Riemann. These include his habilitation lecture, his habilitation text on trigono-
metric series, the Commentatio, a paper on differential geometry motivated by the
problem of expressing the temperature at a point of a homogeneous solid body in
terms of time and a system of coordinates on the body, his paper on the equilibrium
of electricity, his paper on the propagation of planar air waves, his paper on the
functions representable by Gauss’s hypergeometric series Fða; b; c; xÞ, and a few
others. The chapter also contains a discussion of some of Riemann’s philosophical
ideas, mentioning several of Riemann’s predecessors in this domain, in particular
the Greek philosophers. The intricate relation between physics and mathematics in
Riemann’s work that is surveyed in this chapter is a vast field.

Chapter 7, also written by the author of the present introduction, is an essay on
the works of Cauchy and Puiseux, the two French predecessors of Riemann on the
theory of functions of a complex variable.

Cauchy started working in this field in 1814, that is, twelve years before
Riemann was born. He introduced several concepts which were useful to Riemann,
including line integrals, the dependence of such an integral on the homotopy class
of the path of integration, and the calculus of residues. Cauchy wrote a large
number of papers on this subject. In 1851, he discovered, for a complex function of
a complex variable, the notion of derivative independent of direction, and he
showed that the real and imaginary parts of such a function must satisfy the two
partial differential equations that became known as the Cauchy–Riemann equations.
At the end of the same year, Riemann submitted his doctoral dissertation, which
contains the same concept of derivative, with the same characterization.

Puiseux was much younger than Cauchy and he followed his lectures on the
theory of functions of a complex variable. He wrote two remarkable papers on this
subject, and in particular on the question of uniformizing (that is, making
single-valued) a multi-valued function defined implicitly by an algebraic equation.
Puiseux’ first paper was published in 1850, that is, one year before Riemann
defended his doctoral dissertation in which he introduced the concept of Riemann
surface. Interpreted in the right setting, this work of Puiseux inaugurates a
group-theoretic point of view on the theory of Riemann surfaces. The second paper
by Puiseux was published in 1851. The notions that Puiseux discovered constitute a
combinatorial version of Riemann surfaces. Hermite made the relation between
uniformization and Galois theory, based on the work of Puiseux. This is also
reported on in Chapter 7.
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Chapter 7 and the next one are also an occasion for the reader to learn about the
lives of several pre-eminent mathematicians who florished at the epoch of Riemann
and who had ideas close to his. Gaining insight into the life of a great mathe-
matician is interesting even if this life has nothing exceptional. It often makes us
understand his motivations and makes his work more familiar.

Chapter 8, again by the author of the present introduction, is concerned with the
reception of the concept of Riemann surface by the French school and how this
concept is presented in the French treatises on analysis published in the few decades
that followed Riemann’s work on this subject.

It took several years for the mathematical community to understand the concept
of Riemann surface that was conceived by Riemann as the base ground for general
meromorphic functions and on which a multi-valued function becomes uniform,
and to accept the validity of some major results that Riemann proved regarding
these surfaces—his theorem saying that a meromorphic function is determined by
its singularities, and other results in the same vein.

At the same time, Chapter 8 is a survey of the remarkable French school of
analysis that started with Lagrange, then Cauchy, and attained a high degree of
maturity in the second half of the nineteenth century. We also comment on the
relations between this school and the German one. The reader will find in this
chapter a survey of works related to the concept of Riemann surface and related
matters (elliptic and Abelian integrals, the topology of surfaces, the uniformization
of multi-valued functions, etc.) by various French authors including Briot, Bouquet,
Appell, Goursat, Picard, Simart, Fatou, Jordan, Halphen, Tannery, Molk, Lacour,
and Hermite.

Part II

The question of space, which was already addressed several times in Part I, is
thoroughly studied in the three chapters that constitute Part II of the present volume.

Elaborate psychological, physical, philosophical and mathematical theories of
space were developed by various thinkers since the birth of philosophy. We live in
a space, even in the few months before we are officially born. Everyone has a
feeling of space, and we are supposed to have the impression that this space is
Euclidean. Making a philosophy of space implies going a step further than these
primary feelings. The Greeks, since the early Pythagoreans, wondered about the
properties of space that go beyond our immediate senses, addressing the questions
of whether space is infinite, whether it is full of matter, whether void exists, etc.
Riemann had his own ideas on space, and these are contained in his habilitation
lecture, and also in unfinished notes that were published pusthumously. The
mathematical notion of manifold was born from Riemann’s reflections on space.
This is the major theme addressed in Chapters 9 to 11.

Chapter 9, by Ken’ichi Ohshika, is essentially concerned with the notion of
manifold, starting from the first introduction by Riemann, in his habilitation lecture,
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in a mathematical context (but still with a high philosophical flavor), of the
word Mannigfaltigkeit, usually translated by multiplicity. The survey takes us until
the modern notion of manifold, developed in the twentieth century, including the
introduction of the specialized notions of Hausdorffness and differentiability. The
contributions of Hilbert, Weyl, Kneser, Veblen–Whitehead, and Whitney are sur-
veyed. Poincaré’s two definitions of a manifold, formulated at the turn of the
nineteenth century, are also presented. The first definition is close to that of a
submanifold, and the other one, using the notion of analytic continuation, is closer
to the modern definition of a manifold using charts. The philosophical background
of Riemann is also discussed, including the influences of Kant and Herbart on his
ideas. Ohshika explains how Riemann’s point of view differs from that of Kant,
who regarded Euclidean space and its geometry as given a priori, thus excluding in
principle the concepts of non-Euclidean geometries, and who apparently never
thought of a possibility of alternative views on space and time.

Chapter 10 by Franck Jedrzejewski is mainly devoted to the influence of
Riemann on two pre-eminent twentieth-century French thinkers, Gilles Deleuze and
Félix Guattari.

Deleuze was a philosopher with a large spectrum of themes, including literature,
politics, psychoanalysis and art. Guattari was a philosopher and a psychoanalyst who
followed during several years the famous seminar led by Lacan, who at the same time
was Guattari’s psychoanalyst. Deleuze and Guattari had a long and fruitful collabo-
ration which culminated in their joint work Capitalism and Schizophrenia, a complex
philosophical essay in two parts entitled Anti-Oedipus1 (1972) and A Thousand
Plateaus2 (1980). In this work, the authors address various questions concerning
political action, desire, psychology, economics, society, history, and culture. As the
name of the first volume suggests, the work is critical of psychoanalysis as it was
conceived by Freud. In fact, throughout his relation with Deleuze, Guattari distanced
himself from Lacan, and Deleuze and Guattari expressed their disagreement with the
fact of reducing the unconscious mind to the family circle of the individual (his relation
with his parents). The second volume of Capitalism and Schizophrenia contains a
discussion, evaluation, and critique of works of Freud, Jung, Reich and Francis Scott
Fitzgerald. The publication of the two volumes generated a large debate in the intel-
lectual milieu in France and sometimes beyond, and the ideas formulated by Deleuze
and Guattari had a non-negligible political influence in the last quarter of the twentieth
century. Their work belongs to the so-called post-structuralist and transcendental
empiricism postmodernist currents.

At this point, the reader may rightly ask: What does all this have to do with
Riemann and with mathematics? Another question will also soon be addressed:
Why were some twentieth-century French philosophers interested in Riemann and

1G. Deleuze and F. Guattari, L’anti-Œdipe, Paris, Éd. de Minuit, 1972. English translation by R.
Hurley, M. Seem and H. R. Lane: Anti-Œdipus, London and New York: Continuum, 2004.
2G. Deleuze and F. Guattari, Mille Plateaux, Paris, Éd. de Minuit, 1980. English translation by B.
Massumi: A Thousand Plateaus, London and New York: Continuum, 2004.
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how were they influenced by him? In Chapter 10, Jedrzejewski brings some answers
to these questions. As a preliminary attitude, the reader has to realize that in the
same way as there are mathematicians interested in philosophy, there are
philosophers interested in mathematics, and this has been so since antiquity. Not
only these philosophers were interested in mathematics, but they brought mathe-
matical notions and ideas into the realm of philosophy, and they used them in their
works, sometimes as essential elements in formulating systems of thought which
they wanted to be coherent and built on a logical basis. We can quote here Jules
Villemin (1920–2001), another pre-eminent French philosopher, from his major
work La Philosophie de l’algèbre3:

There exists an intimate—although less apparent and more uncertain—relationship between
pure mathematics and theoretical philosophy. History of mathematics and of philosophy
shows that a renewal of the methods of one of them, each time had an impact on the other
one.4

There are many instances in the history of ideas of works on philosophy having
an impact on the development of mathematics. We recall for example Plato’s
influence on the development of geometry and Aristotle’s influence on axiomatics
and the foundations of mathematics. The various views from which philosophers
considered the notion of space had also a certain impact on mathematics, and this
theme is considered in the various chapters that constitute the second part of the
present volume. One may also mention the enormous influence of such views on
the research conducted during several centuries on Euclid’s parallel axiom that led
eventually to the discovery of non-Euclidean geometry.

Deleuze’s philosophical theories are rooted in the works of mathematicians like
Riemann, Leibniz, Whitehead, Albert Lautman, and Gilles Châtelet. Already in
1968, in an essay entitled Différence et répétition, he expressed the fact that an idea,
from the point of view of its organization, is the philosophical analogue of a
continuous multiplicity in the sense of Riemann. Guattari developed a philosophical
concept of multiplicity, based on Riemann’s Mannigfaltigkeit, as an alternative to
the notion of substance, which is one of the key concepts in metaphysics. Many
other mathematical terms, like dimension, continuity, variability, order, and metric,
acquired a philosophical significance in Deleuze’s work.

In Chapter 10, Jedrzejewski makes a detailed comparison between some texts of
Riemann and those of Deleuze and Guattari. In fact, many twentieth-century
philosophers addressed questions related to or arising from mathematics, its logic
and its language. Deleuze was particularly fascinated by topology. He was influ-
enced of Leibniz, relying at the same time on his metaphysics, his differential

3Presses universitaires de France, 1962.
4Il existe un rapport intime quoique moins apparent et plus incertain entre les Mathématiques pures
et la Philosophie théorique. L’histoire des mathématiques et de la philosophie montre qu’un
renouvellement des méthodes de celles-là a, chaque fois, des répercussions sur celles-ci.
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calculus and his ideas on topology. Jedrzejewski also mentions the work of another
French philosopher, Henri Bergson.5

Beyond its relation with Riemann, this chapter by Jedrzejewski is an interesting
example of how mathematics meets philosophy. The chapter is written in French,
the reason being that Jedrzejewski wanted to use the original Deleuzian terms. An
extended English summary of the chapter is provided by the author.

Chapter 11, by Arkady Plotnistky, also has a philosophical character. It concerns the
“conceptual” nature of Riemann’s thinking and its implications in mathematics, phy-
sics, and philosophy. The word “concept” is used here in a technical sense explained by
Plotnitsky, who relies on another philosophical essay by Deleuze and Guattari, What is
philosophy? (1994), in which these authors view thought (“la pensée”), with its creative
nature, as a confrontation between the brain and chaos. Plotnitsky’s discourse is at the
level of “concepts of concept,” promoted by Deleuze and Guattari in the realm of
philosophical thinking, transferred (by Plotnitsky) to the physical and mathematical
worlds as well, despite the fact that these authors claim that their concept of concept
pertains uniquely to philosophical thinking. The discussion around this concept of
concept and the confrontation between the ideas of Riemann, Hegel, Deleuze, and
Guattari and others makes Plotnitsky’s essay an original contribution to the realm of
Riemannian philosophy. Understanding the difference between a philosophical and a
mathematical concept is at the center of this essay, like in the previous essay by
Jedrezejewski (Chapter 10). Riemann’s habilitation lecture, On the hypotheses that lie
at the bases of geometry, in which mathematics, physics, and philosophy are merged, is
in the background and provides Plotnitsky with the main material for his argumenta-
tion. The question of whether Riemann’s notion of space belongs to mathematics or to
philosophy is central. A notion like the “plane of immanence” (plan d’immanence) as a
plane of the movement of thought, in Riemann’s approach, is characterized by its
multi-component factor, and it is one of the main ways in which Plotnitsky approaches
Riemann’s work. His essay sheds a new light on Riemann’s dissertation and in par-
ticular his rethinking of geometry in terms of manifoldness. Connections with works of
several philosophers, artists and scientists are highlighted in this chapter. The themes
discussed include Leibniz’s monads, Grothendieck’s topoi, and quantum physics.

Part III

Part III of this volume, consisting of Chapters 12 to 16, is mathematical. It covers
recent developments in mathematics that are closely related to ideas of Riemann.

5The French philosopher and teacher Henri Bergson (1859–1941) was awarded in 1927 the Nobel
prize for literature. He had a mathematical background and there is a famous controversy between
him and Einstein concerning the philosophical notion of time, which might be interesting for the
reader of this book.
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Chapter 12, by Feng Luo, is a variation on the Riemann mapping theorem and,
its generalization, the uniformization theorem. More precisely, it concerns the
discrete version of these theorems.

The interest in a discrete version of the Riemann mapping theorem was given a
strong impetus by W.P. Thurston who, in the 1980s, advertised this subject in
several lectures and made the relation with circle packings. The idea behind this
relation is that a conformal mapping (like the Riemann mapping) is characterized by
the fact that it sends infinitesimal circles to infinitesimal circles. Circle packings
involve smaller and smaller circles, therefore they should give information on
conformal mappings. An idea that emerged was that studying circle packings might
give a new point of view on the Riemann mapping theorem, or even a new proof of
it. In this setting, a precise question concerning the convergence of circle packings
to the Riemann mapping theorem was raised and was eventually solved by Rodin
and Sullivan.

In Chapter 12, after a presentation of Thurston’s ideas on a circle packing
version of the Riemann mapping theorem, Luo reviews his own recent work on the
discrete uniformization theorem for polyhedral surfaces. The proof is variational.
The author highlights relations with approximation theory and with algorithmic and
digitalization techniques.

The material discussed in Chapter 12 may be considered as an illustration of
Riemann’s ideas on the relation between the discrete and the continuous, one of the
major themes in his habilitation lecture.

The next chapter concerns the Riemann–Roch theorem.
The history of the Riemann–Roch Theorem starts with the so-called Riemann

existence theorem, which asserts the existence of meromorphic functions on
Riemann surfaces. The classical Riemann–Roch theorem gives more precise
information. It concerns the dimension of the space of meromorphic functions on a
compact surface having poles of (at most) a certain order at some prescribed set of
points. The theorem is a formula, expressing this dimension in terms of the genus
of the surface and the total order at the ramified points, thus establishing a fun-
damental relation between topological and analytical notions.

There are several classical proofs of this theorem, some of them topological,
others geometric and there are proofs involving abstract algebra, adapted to the case
where the ground field (the field of scalars) is more general than that of the complex
numbers. The result has many applications, and there are several versions and
generalizations of the Riemann–Roch Theorem. Brill and Noether, back in 1874,
already gave an algebro-geometric version of this theorem,6 a version which is
sometimes called the Riemann-Brill-Noether Theorem and which has vast modern
developments. The Riemann-Roch Theorem was widely generalized by Hirzebruch
in 1953, from Riemann surfaces to the setting of projective varieties over complex
numbers. The modern version of this theorem is expressed in the setting of

6A. Brill and M. Noether, Über die algebraischen Functionen und ihre Anwendung in der
Geometrie, Math. Ann. 7 (1874,) No. 2, 269– 316.
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schemes. Grothendieck obtained a very general version of the Riemann–Roch
theorem, formulated in the language of categories and functors, which holds for
algebraic varieties defined over arbitrary ground fields. This was one of
Grothendieck’s major discoveries. In Chapter 2, x2:8 of his Récoltes et semailles,7

he writes: “The year 1957 is the one where I was led to extract the theme
‘Riemann–Roch’ (Grothendieck’s version) which overnight consecrated me ‘great
star’.”8 Grothendieck’s version of the Riemann–Roch theorem was the starting
point of K-theory. In the section called La vision—ou douze thèmes pour une
harmonie (The vision—or twelve themes for a harmony) of Récoltes et semailles
(Chapter 2, x2:8), Grothendieck considers the theme he calls the Riemann–
Roch-Grothendieck Yoga as one of the twelve themes which he describes as his
“great ideas” (grandes idées). There is also a discrete Grothendieck-Riemann–Roch
theorem. The famous Atiyah–Singer index theorem, discovered in 1963, can be
considered as another generalization of the Riemann–Roch theorem.

All this justifies the inclusion of a chapter on the Riemann–Roch theorem, whose
original idea started with Riemann.

Thus, in Chapter 13, Norbert A’Campo, Vincent Alberge and Elena Frenkel
present a modern version of the Riemann–Roch theorem. It concerns the space of
sections of holomorphic line bundles over a Riemann surfaces. The proof uses
Dolbeault cohomology, Serre duality for line bundles, and functional analysis
(Fredholm operator theory). The chapter is intended to be a self-contained proof of
this cohomological version of Riemann–Roch. All the required notions (holomor-
phic line bundle, degree, the Poincaré-Hopf index formula, the Picard group,
sheaves, sheaf cohomology, Chern class, the Cauchy-Riemann operator, Dolbeault
cohomology, Serre duality, the index of a Fredholm operator and divisor) are
introduced and clearly explained, in a concise but sufficiently detailed manner so
that the reader can understand the theorem and its proof.

The modern version of the Riemann–Roch theorem is an important monument of
twentieth-century mathematics.

Chapter 14, by Victor Pambuccian, Horst Struve and Rolf Struve, concerns the
foundations of mathematics. The reader might wonder about the existence of a
relation between Riemann and the foundations of mathematics. This relation is
hinted on by Riemann in his 1854 habilitation lecture. At the beginning of this
lecture, Riemann mentions the axiomatic approach as one of the possible approa-
ches to geometry (the other one, to which he will stick soon after, being the metrical
approach). He does not further develop this idea, but he raises the issue of the
necessity of having a solid foundation of geometry. Riemann’s immediate suc-
cessors knew about his interest in axiomatics. W. A. Clifford, one of the earliest
commentators of Riemann’s works, writes, in a text titled The postulates of space,

7A. Grothendieck, Récoltes et semailles, Réflexions et témoignage sur un passé de mathématicien,
unpublished manuscript, 1985–1986, 929 p.
8L’année 1957 est celle où je suis amené à dégager le thème “Riemann–Roch” (version
Grothendieck) – qui, du jour au lendemain, me consacre “grande vedette”.
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p. 5659: “It was Riemann, however, who first accomplished the task of analysing all
the assumptions of geometry, and showing which of them were independent.”
Helmholtz, in his lecture On the origin and significance of of geometrical axioms10

mentions several times Riemann’s ideas on the axiomatic foundation of mathe-
matics. It is also useful to recall that Hilbert, in an appendix of his Foundations of
Geometry, mentions Riemann. He writes: “The investigations by Riemann and
Helmholtz for the foundations of geometry led Lie to take up the problem of the
axiomatic11 treatment of geometry as introductory to the study of groups.”
Although Riemann did not develop the axiomatic point of view in any of his own
writings, his heirs did, and in particular there were several attempts to axiomatize
Riemannian geometry. This is the subject of Chapter 14 of the present volume.

As a matter of fact, the question of the foundations of geometry, like many other
foundational questions, can be traced back to Aristotle, developed in his Posterior
analytics and his other essays. Geometry, at that time, meant mostly Euclidean
geometry, although spherical geometry was also known. In any case, the question
of the foundations of Riemannian geometry naturally stems from Riemann’s work.
With this idea in mind, in Chapter 14, the authors present a set of approaches to the
axiomatization of metric spaces, developed by several authors, some of them
motivated by Riemann’s work. These authors used new notions from various fields
that were developed in the few decades that followed Riemann’s work: transfor-
mation groups, Lie groups, the foundations of arithmetics, mathematical logic, and
metric geometry. Although the abstract notion of group is absent from Riemann’s
writings, the ideas of homogeneity and symmetry are present at several places in his
work. The discussion involving group theory that is done in the chapter by
Pambuccian, H. Struve and R. Struve is welcome as an important element in the
development of Riemann’s ideas.

In Chapter 15, Toshikazu Sunada surveys some of the impact of the idea of a
Riemann sum—the basic element of Riemann’s integration theory—in various
branches of mathematics. He reviews in particular how Riemann sums are used in
some counting problems in elementary number theory and in the theory of qua-
sicrystals. The chapter contains illuminating examples, and the author makes
interesting connections between works of Riemann Fermat, Dirichlet, Gauss,
Siegel, Delone, and others.

In Chapter 16, which is the last chapter of Part III, Jacques Franchi gives an
exposition of the extension of the theory of Brownian motion to the setting of
Riemannian manifolds and of recent work on relativistic Brownian motion.

We recall that the concept of Brownian motion was introduced initially as a
description of the (random) motion of a particle subject to the action of a multitude
of other particles in a fluid. Einstein published in 1905 a paper on this subject, in the

9Cf. The World of Mathematics, edited by J.R. Newman, Volume 1, Simon and Schuster, 1956,
New York, 552–557.
10Ibid.p. 647–668.
11The emphasis is in the original text.
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setting of his kinetic theory of gases. A rigorous mathematical theory of Brownian
motion was developed later, in particular by N. Wiener, around the 1920s, on a
probabilistic basis and in terms of stochastic processes. We note incidentally that
Brownian motion is closely related to the theory of Riemann surfaces. In particular,
the Riemann mapping theorem can be proved using Brownian motion. Such an
approach was promoted by Sullivan and Thurston. One can also mention, in the
same vein, a probabilistic proof of the Riemann mapping theorem by Patodi (1970)
and two other proofs by Bismut (1984 and 1985) of the Atiyah–Singer theorem.
These proofs are simpler than the original, using only the Gauss–Bonnet theorem.
There is also a probabilistic proof of Picard’s small theorem by B. Davis (1975).12

These are only a few of the instances where probability is used to prove results in
Riemannian geometry. The theory of Brownian motion on Riemannian manifolds
was developed around 1970 by probabilists. This topic, which is the subject of
Chapter 16, is another occasion for understanding the strong relation between
Riemannian geometry and probability theory.

After his exposition of Brownian motion in Riemannian geometry, Franchi
moves on to the extension of Brownian motion to a relativistic framework. This
makes a new relation between Riemannian geometry and relativity theory, and it
adds an element to explain Einstein’s strong interest in this field. As Franchi
explains, the relativistic extension of Brownian motion is a non-trivial theory,
especially because of the relativistic constraint that the particle’s velocity cannot
exceed that of light.

Chapter 16 is also the occasion of following the history of the interesting theory
of diffusion, where the first (negative) results were obtained by Dudley in 1965,
who proved that a Lorentz-covariant Markov diffusion process cannot exist in the
framework of special relativity, in particular because of the same problem of large
velocities. At the same time, Dudley proposed a construction of a relativistic dif-
fusion at the level of the tangent bundle of Minkowski space. He specified the
asymptotic behavior of that diffusion and he showed that it is canonical, given the
constraints of being covariant under the action of the Lorentz group. A similar
approach on the unit tangent bundle of a generic Lorentzian manifold, that is, in the
setting of general relativity, was made by Franchi and Le Jan in 2007. In this
setting, relativistic diffusion becomes a random perturbation of the geodesic flow
over a Lorentzian manifold. Some basic examples are then analyzed to some extent.

The exposition in Chapter 16 follows the gradual move from the Euclidean to the
Riemannian and then to the relativistic worlds. This theory is another instance of the
intricate interaction between geometry, analysis, probability, and physics relying
heavily on Riemann’s ideas. Thus, this chapter makes a natural transition between
Part III and the next part of the book.

12I owe the last two examples to Jacques Franchi.

xxviii Introduction



Part IV

Part IV of this volume concerns physics. It contains three chapters on the extension of
Riemann’s ideas to modern physics, mainly, to relativity theory. Riemann, in his
habilitation lecture Über die Hypothesen, welche der Geometrie zu Grunde liegen,
expressed the fact that physical space might not satisfy the axioms of Euclidean
geometry. This, is, from the philosophical point of view, the starting point of Riemann's
position as a predecessor of modern physics. At a more practical level, the mathe-
matical development of Einstein’s theory of general relativity is, fundamentally, in the
tradition of Riemann’s differential geometry; this is one of the themes of Part IV of the
present volume.

Minkowski geometry is a semi-Riemannian geometry where the metric tensor is not
positive-definite—a mathematical consequence of the physical fact that particles cannot
move at a speed larger than that of light. Although the geometric setting of special
relativity is Minkowski geometry, which is not Riemannian, the basic mathematical
ideas that are used in the development of this geometry are similar to those introduced
by Riemann. In other words, the fact that Minkowski geometry differs from
Riemannian geometry does not affect the fact that it is in the lineage of Riemann’s ideas
on geometry and space. Riemann’s discussion of the invariance properties of a metric,
which he carries in his habilitation lecture, have their analogues as invariance properties
of the Lorentz transformations of special relativity. In fact, many important features of a
four-manifold equipped with a Riemannian metric together with its Riemann’s cur-
vature tensor have their analogue in Minkowski spacetime. In general relativity, the
metric tensor that describes the local geometry of space is the mathematical repre-
sentation of the gravitational potential. This is again in the tradition of Riemann, who
conceived his infinitesimal metric tensor in close relation with physics, the curvature
of the space being seen as a consequence of the physical infinitesimal forces.

Andreas Hermann and Emmanuel Humbert, in Chapter 17 of this volume, study a
variant of the so-called Positive Mass Conjecture for closed Riemannian manifolds.
The conjecture is a statement in general relativity which gives conditions under which
the mass of an asymptotically flat spacetime is non-negative. The relevance of this
theory to the subject of this book is that it is an important instance of a purely physical
problem that can be formulated in terms of Riemannian geometry. The subject dis-
cussed has a long history. Using minimal surfaces and variational methods, Schoen and
Yau proved in 1979 the positive mass conjecture for 3-dimensional Riemannian
manifolds, in the setting of the Hamiltonian formulation of general relativity. Witten
gave a later proof (1981) which holds in any dimension where the mainfold is spin.
Roughly speaking, the positive mass theorem says that if the scalar curvature of a
spacetime is everywhere positive, then its mass is positive. An inequality attributed to
Penrose says that the mass of a spacetime can be estimated by the total area of the black
holes contained in it, and that equality is attained only for a simple model of a black
hole, the so-called Schwarzschild model.

Chapter 18, by Marc Mars, focuses on an important aspect of the rich interaction
between mathematics and physics based on the interplay between differential geometry,
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in the tradition of Riemann, and gravity, in the setting of the theory of relativity. This
aspect is the local characterization of pseudo-Riemannian manifolds, which is central in
general relativity in order to identify spacetime geometries independently of the specific
set of coordinates used to describe them. One of the many groundbreaking contribu-
tions of Riemann to geometry was the introduction of his tensor (the so-called Riemann
tensor) which vanishes if and only if the metric is locally flat. It turns out that this
fundamental local characterization result holds independently of the signature of the
metric, and is the motivation of many other similar characterization theorems.

After reviewing the classical results on the subject, including Élie Cartan’s char-
acterization of Riemannian locally symmetric spaces in terms of the derivative of the
Riemann tensor and Weyl’s characterization of locally conformally flat spaces in terms
of the vanishing of the conformal curvature (i.e., Weyl’s) tensor, the chapter discusses a
selection of various characterization results of physically relevant spacetimes. The
emphasis is primarily on spacetimes describing stationary black holes, both in the static
and in the rotating case. Thus, several characterization results are presented for the
Schwarzschild spacetimes, as well as for the Kerr metric, and its charged and cos-
mological constant generalizations. Local characterization of other spacetimes, such as
for instance pp-waves and related spacetimes, are also described.

The last chapter of Part IV, Chapter 19, by Jean-Philippe Nicolas, contains an
exposition of Penrose’s conformal technique and its application to asymptotic analysis in
general relativity. The setting is again that of Lorentzian geometry considered as an
extension of Riemannian geometry in which space and time are united by an indefinite
metric of signature (1, 3). The author presents Penrose’s approach to general relativity
with the central role played by the light cone structure and he explains its relation with
Riemannian geometry and with Einstein’s theory. The focus is on Penrose’s use of
conformal compactifications in the study he made of the asymptotic properties of
spacetimes and fields. Indeed, Penrose introduced in 1963 a basic geometrical con-
struction which is termed in Chapter 19 a “compactified unphysical” spacetime. This is a
manifold with boundary to which the conformal metric extends smoothly, i.e., there is a
metric in the conformal class that extends as a smooth non-degenerate Lorentzian metric.
Spacetimes that admit smooth conformal compactifications are characterized by a decay
property of their Weyl curvature at infinity. When such a compactification exists, the
boundary of the manifold is equipped with a nice geometric stratified structure.

After surveying Penrose’s theory, Nicolas reviews some of its applications to
questions of scattering and peeling. Scattering theory is a way of studying the evolution
of solutions of a certain equation by a so-called scattering operator, an operator which
associates to the asymptotic behavior of the solutions in the distant past their asymptotic
behavior in the distant future. Peeling is a generic asymptotic behavior discovered by R.
Sachs in the beginning of the 1960s. In the mid 1960s, Penrose proved that this
behavior is equivalent to the boundedness of the rescaled field at infinity, using the
conformal method and the 2-spinor formalism. The question of the genericity of the
peeling behavior is discussed. A new approach to these questions together with results
by L.J. Mason and Nicolas are presented. The two approaches to asymptotic analysis
described in Chapter 19 make a fundamental use of the notion of conformal
compactification.
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Beyond the results presented, the true focus of the essay is on the nature of
spacetime: whereas many modern approaches to general relativity break the sym-
metry between time and space by performing a 3 + 1 splitting of the geometry,
Penrose’s approach truly deals with the 4-dimensional manifold and relies on causal
objects like lightcones instead of Cauchy hypersurfaces.

Reading the texts of the ancient mathematicians always sheds a new light on the
problems that nurture us every day. Regarding Riemann, Weil writes the following
in his Apprenticeship of a Mathematician13:

[…] In the same year, I began to read Riemann. Some time earlier, and first of all in reading
Greek poets, I had become convinced that what really counts in the history of humanity are the
truly great minds, and that the only way to get to know these minds was through direct contact
with their works. I have since learned to modify this judgement quite a bit, though I have never
really let go of it completely. My sister, however, who had come to a similar viewpoint—either
on her own or perhaps partly under my influence—held on to it until the very end of her too short
life. During my year of instruction in philosophy, I had also been struck by a phrase of Poincaré’s
which expresses no less an extreme position: “The value of civilizations lies only in their sciences
and arts.”With such ideas in my mind I had no choice but to dive headlong into the works of the
great mathematicians of the past, as soon as they were materially and intellectually within my
grasp. Riemann was the first; I read his inaugural dissertation and his major work on Abelian
functions. Starting out thus was a stroke of luck of which I have always been grateful. These are
not hard to read as long as one realizes that every word is loaded with meaning: there is perhaps
no other mathematician whose writing matches Riemann’s for density. Jordan’s second volume
was good preparation for studying Riemann. Moreover, the library14 had a good collection of
Felix Klein’s mimeographed lecture notes, a large part of which is simply a rather discursive, but
intelligent, commentary fleshing out of the extreme concision of Riemann’s work.

The theme of the present volume, beyond the reference to Riemann’s work,
belongs to the more general profound interrelation between mathematics, physics
and philosophy. The relation is multiple. Physics may exert an influence on
mathematics and vice versa. Physics has also an impact on philosophy, and phi-
losophy on mathematics. The ancient Greeks, the founders of mathematics as a
deductive science in the way we intend it today, were completely aware of these
interrelations. One may mention here Archimedes, Ptolemy and many others great
figures. Euler, Poincaré and Cauchy were also physicists and philosophers, and they
also wrote on the interrelations and the impact of these fields, each of them with his
own style and according to his own interests. The subject of Euler’s first public
lecture, delivered in Basel in 1724 (the year Immanuel Kant was born), on the
occasion of his obtention of his philosophy diploma, was the comparison between
the philosophical systems of Newton and Descartes. Euler’s philosophy is at some
places religiously oriented and some of his philosophical writings are permeated
with theological considerations. They were influential to his approach to physics.
We allude to this and we give some examples in Chapter 1 of the present volume.
The philosophical writings of Cauchy, who like Euler, was a devote Christian, and

13A. Weil, The Apprenticeship of a Mathematician, Springer, Basel, 1991. Translated from the
French: Souvenirs d’apprentissage, Basel, Birkhäuser, 1991, p. 40.
14The library is meant to be that of the École Normale Supérieure.
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who was furthermore involved in several charities, are also infused with religion. In
several passages, he mentions the limitation of mathematics. For instance, in the
introduction to his Cours d’analyse,15 he writes the following:

[…] Thus, let us be persuaded that there are other truths than those of algebra, realities other
than sensible objects. Let us cultivate ardently the mathematical sciences, without trying to
extend them beyond their domain; and let us not imagine that one can tackle history with
formulae, or use theorems of algebra or of differential calculus as an assent to morals.16

Regarding physics and its development, we quote the following passage, from lec-
tures that Cauchy gave in Turin in 1833, Sept leçons de physique générale, (Seven
lessons on general physics), p. 517:

[…] Among these sciences, there is one in which all the power of analysis is manifested, and in
which calculus, created by man, takes care of teaching him, through a mysterious language, the
links that exist between phenomena which apparently are very different, and between the
particular and the general laws of creation. This science, which we can trace back to the
discovery of the principle of universal gravitation, was successively enriched by the immortal
works of people like Descartes, Huygens, Newton, and Euler. But it is particularly since twenty
years that the rapid improvement of mathematical analysis allowed him to make huge progress.
It is since that epoch that we were able to apply calculus to the theory of elasticity, to that of heat
propagation in solids or in space, of the propagation of waves on the surface of a heavy fluid,
of the transmission of sound through solid bodies; to the theory of dynamical elasticity, to that of
vibration of plates or elastic lamina; and finally to the theory of light including the various
reflection phenomena, simple refraction, double refraction, polarization, colors, etc. Finally, it is
since that epoch that important works of people like Ampère, Fourier, Poisson and of some
others of which I do not need to remind you the names, were published.18

15A.-L. Cauchy, Cours d’analyse de l’École Royale Polytechnique, 1repartie. Analyse algébrique.
Imprimerie royale, Paris, 1821. Œuvres complètes, série 2, tome III.
16[…] Soyons donc persuadés qu’il existe des vérités autres que les vérités de l’algèbre, des réalités
autres que les objets sensibles. Cultivons avec ardeur les sciences mathématiques, sans vouloir les
étendre au-delà de leur domaine ; et n’allons pas nous imaginer qu’on puisse attaquer l’histoire
avec des formules, ni donner pour sanction à la morale des théorèmes d’algèbre ou de calcul
intégral.
17A.-L. Cauchy, Sept leçons de physique générale, Paris, bureau du journal Les Mondes et
Gauthier-Villars, 1868.
18[…] Parmi ces sciences, il est une où se manifeste toute la puissance de l’analyse, et dans
laquelle le calcul créé par l’homme se charge de lui apprendre, par un mystérieux langage, les
liaisons qui existent entre des phénomènes en apparence très divers, entre les lois particulières et
les lois générales de la création. Cette science, qu’on peut faire monter à la découverte du principe
de la gravitation universelle, a été successivement enrichie des immortels travaux des Descartes,
des Huyghens, des Newton, des Euler. Mais c’est particulièrement depuis vingt ans que le
perfectionnement rapide de l’analyse mathématique lui a permis de faire d’immenses progrès.
C’est depuis cette époque qu’on a pu appliquer le calcul à la théorie de l’élasticité, de la
propagation de la chaleur dans des corps ou dans l’espace, de la propagation des ondes à la surface
d’un fluide pesant, de la transmission du son à travers les corps solides ; à la théorie de l’élasticité
dynamique, à celle des vibrations des plaques ou des lames élastiques ; enfin à la théorie de la
lumière comprenant les phénomènes divers de la réflexion, de la réfraction simple, de la double
réfraction, de la polarisation, de la coloration, etc… C’est enfin depuis cette époque qu’ont été
publiés les importants travaux des Ampère, des Fourier, des Poisson et de quelques autres dont il
est inutile de vous rappeler les noms.
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To stay close to the epoch of Riemann, we quote another one of his close
predecessors, Joseph Fourier, from his Théorie analytique de la chaleur (Analytic
theory of heat), published in 1822, a text which was very important for Riemann
who refers to it in his habilitation memoir on trigonometric functions. On the
relation between mathematics and the study of nature, Fourier writes in the
Introduction to his work19:

The thorough study of nature is the most profound productive source of mathematical
discoveries. Not only this study, offering to the researches a specific purpose, has the
advantage of excluding fuzzy questions and dead-end calculations; it is also a secure way of
forming the heart of analysis, and of discovering there the elements whose knowledge is the
most important to us, and which this science must always preserve: these fundamental
elements are those which reproduce themselves in every natural effect. One can see, for
instance that the same expression, which geometers had considered as an abstract property,
and which from this respect belong to general analysis, also represents the motion of light
in the atmosphere, that it determines the laws of diffusion of heat in solid matter, and that it
enters in the main questions of the theory of probability.20

Poincaré was a prototype of the scientist-philosopher, and it was probably under
his influence that most of the pre-eminent French mathematicians of his epoch
became deeply interested in physics and philosophy. We quote him from his 1908
ICM talk (Rome)21:

We cannot forget what our goal should be. As I see it, it is twofold. Our science borders at
the same time on philosophy and on physics, and it is for our two neighbors that we are
working. On the other hand, we have always seen, and we shall also see the mathematicians
walking in two opposite directions. On the one hand, mathematical science must reflect on
itself, and this is useful, because reflecting on itself means reflecting on the human mind
that created it, all the more since this is his creation for which he borrowed the less from
outside. This is why certain mathematical speculations are useful, like the ones which aim
at the study of postulates, of unusual geometries, of functions with strange behavior. The
more these speculations deviate from the most common conceptions, and consequently
of the nature of their applications, the better they will show what human mind is able to do,
when it avoids more and more the tyranny of the external world, and consequently, the

19J. Fourier, Théorie analytique de la chaleur, Paris, Firmin Didot, 1822, Discours préliminaire, p. xiii.
20L’étude approfondie de la nature est la source la plus féconde des découvertes mathématiques.
Non seulement cette étude, offrant aux recherches un but déterminé, a l’avantage d’exclure les
questions vagues et les calculs sans issue ; elle est encore un moyen assuré de former l’analyse
elle-même, et d’en découvrir les éléments qu’il nous importe le plus de connaître, et que cette
science doit toujours conserver : ces éléments fondamentaux sont ceux qui se reproduisent dans
tous les effets naturels. On voit, par exemple, qu’une même expression, dont les géomètres avaient
considéré les propriétés abstraites, et qui sous ce rapport appartient à l’analyse générale, représente
aussi le mouvement de la lumière dans l’atmosphère, qu’elle détermine les lois de la diffusion de la
chaleur dans la matière solide, et qu’elle entre dans les questions principales de la théorie des
probabilités.
21H. Poincaré, l’Avenir des mathématiques, Atti del IV congresso internazionale dei matematici,
Volume 1, Accademia dei Lincei, Rome, 1909, p. 167–182.
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more they will let us know it itself. But on the other hand, it is on the side of nature that we
must direct the greater part of our army.22

Closer to us, Grothendieck,23 who is quoted several times in the present volume
and who at several places declared that he was a heir of Riemann, has a huge
amount of still unpublished philosophical writings. In his Récoltes et semailles,
which we already mentioned in this introduction, expressing his ideas about a
“unitary theory” in physics, and after a long digression involving Euclid, Newton,
Riemann and Einstein, Grothendieck writes (x2:20, Note 71):

To summarize, I foresee that the long-awaited renewal (if ever it comes…) will rather come
from someone who has the soul of a mathematician, who is well informed about the great
problems of physics, rather than from a physicist. But above all, we need a man having the
“philosophical openness” that is required to grasp the crux of the problem. The latter is not
at all of a technical nature, but it is a fundamental problem of “natural philosophy.”24

The present volume is a modest tribute to all those who taught us creative
science.

Athanase Papadopoulos

22Nous ne pouvons oublier quel doit être notre but ; selon moi ce but est double ; notre science confine
à la fois à la philosophie et à la physique, et c’est pour nos deux voisines que nous travaillons ; aussi
nous avons toujours vu et nous verrons encore les mathématiciens marcher dans deux directions
opposées. D’une part, la science mathématique doit réfléchir sur elle-même et cela est utile, parce que
réfléchir sur elle-même, c’est réfléchir sur l’esprit humain qui l’a créée, d’autant plus que c’est celle de
ses créations pour laquelle il a fait le moins d’emprunts au dehors. C’est pourquoi certaines spéculations
mathématiques sont utiles, comme celles qui visent l’étude des postulats, des géométries inaccoutumées,
des fonctions à allures étranges. Plus ces spéculations s’écarteront des conceptions les plus communes,
et par conséquent de la nature et des applications, mieux elles nous montreront ce que l’esprit humain
peut faire, quand il se soustrait de plus en plus à la tyrannie du monde extérieur, mieux par conséquent
elles nous le feront connaître en lui-même. Mais c’est du côté opposé, du côté de la nature, qu’il faut
diriger le gros de notre armée.
23The fact that Grothendieck was not interested in physics is a myth. It suffices to read his
non-mathematical writings to be convinced of the contrary.
24Pour résumer, je prévois que le renouvellement attendu (s’il doit encore venir …) viendra plutôt
d’un mathématicien dans l’âme, bien informé des grands problèmes de la physique, que d’un
physicien. Mais surtout, il y faudra un homme ayant “l’ouverture philosophique” pour saisir le
nœud du problème. Celui-ci n’est nullement de nature technique, mais bien un problème
fondamental de “philosophie de la nature.”
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Looking Backward: From Euler to Riemann

Athanase Papadopoulos

Il est des hommes auxquels on ne doit pas adresser d’éloges,
si l’on ne suppose pas qu’ils ont le goût assez peu délicat

pour goûter les louanges qui viennent d’en bas.
(Jules Tannery, [240] p. 102)

Abstract We survey the main ideas in the early history of the subjects on which
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1 Introduction

More than any other branch of knowledge, mathematics is a science in which every
generation builds on the accomplishments of the preceding ones, and where reading
the oldmasters has always been a ferment for newdiscoveries. Examining the roots of
Riemann’s ideas takes us into the history of complex analysis, topology, integration,
differential geometry and other mathematical fields, not to speak of physics and
philosophy, two domains in which Riemann was also the heir of a long tradition of
scholarship.

Riemann himself was aware of the classical mathematical literature, and he often
quoted his predecessors. For instance, in the last part of his Habilitation lecture,Über
die Hypothesen, welche der Geometrie zu Grunde liegen [230] (1854), he writes1:

The progress of recent centuries in the knowledge of mechanics depends almost entirely on
the exactness of the construction which has become possible through the invention of the
infinitesimal calculus, and through the simple principles discovered by Archimedes, Galileo
and Newton, and used by modern physics.

The references are eloquent: Archimedes, who developed the first differential cal-
culus, with his computations of length, area and volume, Galileo, who introduced the
modern notions of motion, velocity and acceleration, and Newton, who was the first
to give a mathematical expression to the forces of nature, describing in particular
the motion of bodies in resisting media, and most of all, to whom is attributed a
celebrated notion of space, the “Newtonian space.” As a matter of fact, the subject
of Riemann’s habilitation lecture includes the three domains of Newton’s Principia:
mathematics, physics and philosophy. It is interesting to note also that Archimedes,
Galileo and Newton are mentioned as the three founders of mechanics in the intro-
duction (Discours préliminaire) of Fourier’s Théorie analytique de la chaleur ([116],
pp. i–ii), a work in which the latter lays down the rigorous foundations of the theory
of trigonometric series. Fourier’s quote and its English translation are given in Sect.
10 of the present chapter. In the historical part of his Habilitation dissertation, Über
die Darstellbarkeit einer Function durch eine trigonometrische Reihe (On the repre-
sentability of a function by a trigonometric series) [215], a memoir which precisely
concerns trigonometric series, Riemann gives a detailed presentation of the history
of the subject, reporting on results and conjectures by Euler, d’Alembert, Lagrange,
Daniel Bernoulli, Dirichlet, Fourier and others. The care with which Riemann analy-
ses the evolution of this field, and the wealth of historical details he gives, is another
indication of the fact that he valued to a high degree the history of ideas and was
aware of the first developments of the subjects he worked on. In the field of trigono-
metric series and in others, he was familiar with the important paths and sometimes
the wrong tracks that his predecessors took for the solutions of the problems he tack-
led. Riemann’s sense of history is also manifest in the announcement of his memoir
Beiträge zur Theorie der durch die Gauss’sche Reihe F(α,β, γ, x) darstellbaren
Functionen (Contribution to the theory of functions representable by Gauss’s series

1In all this chapter, for Riemann’s habilitation, we use Clifford’s translation [231].
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F(α,β, γ, x)), published in the Göttinger Nachrichten, No. 1, 1857, in which he
explains the origin of the problems considered, mentioning works of Wallis, Euler,
Pfaff, Gauss and Kummer. There are many other examples.

Among Riemann’s forerunners in all the fields that we discuss in this chapter, one
man fills almost all the background; this is Leonhard Euler. Riemann was an heir of
Euler for what concerns functions of a complex variable, elliptic integrals, the zeta
function, the topology of surfaces, the differential geometry of surfaces, the calculus
of variations, and several topics in physics.

Riemann refers to Euler at several places of his work, and Euler was himself a
diligent reader of the classical literature: Euclid, Pappus, Diophantus, Theodosius,
Descartes, Fermat, Newton, etc. All these authors are mentioned all along his writ-
ings, and many of Euler’s works were motivated by questions that grew out of his
reading of them.2 Before going into more details, I would like to say a few words
about the lives of Euler and Riemann, highlighting analogies, but also differences
between them.

Both Euler andRiemann received their early education at home, from their fathers,
whowere protestant ministers, and who both were hoping that their sons will become
like them, pastors.At the age of fourteen, Euler attended aGymnasium inBasel,while
his parents lived in Riehen, a village near the city of Basel.3 At about the same age,
Riemann was sent to a Gymnasium in Hanover, away from his parents. During their
Gymnasium years, both Euler and Riemann lived with their grandmothers.4 They
both enrolled a theological curriculum (at the Universities of Basel and Göttingen
respectively), before they obtain their fathers’ approval to shift to mathematics.

There are also major differences between the lives of the two men. Euler’s pro-
ductive period lasted 57 years (from the age of 19, when he wrote his first paper,
until his death at the age of 76). His written production comprises more than 800
memoirs and 50 books. He worked on all domains of mathematics (pure and applied)
and physics (theoretical and practical) that existed at his epoch. He also published
on geography, navigation, machine theory, ship building, telescopes, the making of
optical instruments, philosophy, theology and music theory. Besides his research
books, he wrote elementary schoolbooks, including a well-known book on the art
of reckoning [64]. The publication of his collected works was decided in 1907, the
year of his bicentenary, the first volumes appeared in 1911, and the edition is still
in progress (two volumes appeared in 2015), filling up to now more than 80 large
volumes. Unlike Euler’s Riemann’s life was short. He published his first work at
the age of 25 and he died at the age of 39. Thus, his productive period lasted only
15 years. His collected works stand in a single slim volume. Yet, from the points
of view of the originality and the impact of their ideas, it would be unfair to affirm
that either of them stands before the other. They both had an intimate and permanent

2Cf. for instance Euler’s Problematis cuiusdam Pappi Alexandrini constructio (On a problem posed
by Pappus of Alexandria), [96], 1780.
3Today,Riehenbelongs to theCantonof the city ofBasel, and it hosts the famousBeyeler foundation.
4In 1842, at the death of his grandmother, Riemann quitted Hanover and attended the Gymnasium
at the Johanneum Lüneburg.
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relation to mathematics and to science in general. Klein writes in his Development
of mathematics in the 19th century ([162], p. 231 of the English translation):

After a quiet preparation Riemann came forward like a bright meteor, only to be extinguished
soon afterwards.

On Euler, I would like to quote André Weil, from his book on the history of
number theory, Number Theory: An approach through history from Hammurapi to
Legendre [255]. He writes, in the concluding section:

[...] Hardly less striking is the fact that Euler never abandoned a problem after it has once
aroused his insatiable curiosity. Other mathematicians, Hilbert for instance, have had their
lives neatly divided into periods, each one devoted to a separate topic. Not so Euler. All his
life, even after the loss of his eyesight, he seems to have carried in his head the whole of the
mathematics of his day, both pure and applied. Once he has taken up a question, not only did
he comeback to it again and again, little caring if at times hewasmerely repeating himself, but
also he loved to cast his net wider and wider with never failing enthusiasm, always expecting
to uncover more and more mysteries, more and more “herrliche proprietates” lurching just
around the next corner. Nor did it matter to him whether he or another made the discovery.
“Penitus obstupui”, he writes (“I was quite flabberggasted”: Eu.I-21.1 in E 506|1777, cf. his
last letter to Lagrange, Eu.IV A-5.505|1775) on learning Lagrange’s additions to his own
work on elliptic integrals; after which he proceeds to improve upon Lagrange’s achievement.
Even when a problem seemed to have been solved to his own satisfaction (as happened with
his first proof of Fermat’s theorem a p ≡ a mod p, or in 1749 with sums of two squares)
he never rested in his search for better proofs, “more natural” (Eu. I-2.510 in E 262|1755;
cf. Sect. VI), “easy” (Eu.1-3.504 in E 522|1772; cf. Sect.VI), “direct” (Eu.I-2.363 in E
242|1751; cf. Sect. VI); and repeatedly he found them.5

Let us say in conclusion that if we had to mention a single mathematician of
the eighteenth century, Euler would probably be the right choice. For the nineteenth
century, it would be Riemann. Gauss, who will also be mentioned many times in the
present chapter, is the main figure astride the two centuries.

Euler’s results are contained in his published and posthumous writings, but also in
his large correspondence, available in several volumes of his Opera Omnia. We shall
mention several times this correspondence in the present chapter. It may be useful
to remind the reader that at the epoch we are considering here, there were very few
mathematical journals (essentially the publications of the few existing Academies
of Sciences). The transmission of open problems and results among mathematicians
was done largely through correspondence. On this question, let us quote the mathe-
matician Paul Heinrich Fuss, who published the first set of letters of Euler, and who
was his great-grandson. He writes in the introduction to his Correspondence [118],
p. xxv6:

Since sciences ceased to be the exclusive property of a small number of initiates, corre-
spondence between scholars was taken over by the periodical publications. The progress is
undeniable. However, this freeness with which ideas and discoveries were communicated in
the past, in private and very confidential letters, we do not find it any more in the ripe and

5InWeil’s book, every piece of historical information is accompanied by a precise reference. Works
that attain this level of scholarship are very rare.
6Unless otherwise stated, the translations from the French in this chapter are mine.
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printed pieces of work. At that time, the life of a scholar was, in someway, all reflected in that
correspondence. We see there the great discoveries being prepared and gradually developed;
no link and no transition is missing; the path which led to these discoveries is followed step
by step, and we can draw there some information even in the errors committed by these great
geniuses who were the authors. This is sufficient to explain the interest tied to this kind of
correspondence.7

In the case of Euler, particularly interesting is his correspondence with Christian
Goldbach, published recently in two volumes of the Opera Omnia [109]. It contains
valuable information on Euler’s motivations and progress in several of the domains
that are surveyed in the sections that follow, in particular, topology, the theory of
elliptic functions and the zeta function. A few lines of biography on this atypical
person are in order.

Christian Goldbach (1690–1764) was one of the first German scholars whom
Euler met at the Saint Petersburg Academy of Sciences when he arrived there in
1827. He was very knowledgeable in mathematics, although he was interested in this
field only in an amateurish fashion, encouraging others’ works rather than working
himself on specific problems. He was also a linguist and thoroughly involved in
politics. Goldbach studied law at the University of Königsberg. In Russia, he became
closely related to the Imperial family. In 1732, hewas appointed secretary of the Saint
Petersburg Academy of Sciences and in 1737 he became the administrator of that
institution. In 1740, he held an important position at the Russian ministry of foreign
affairs and became the official cryptographer there. Goldbach had a tremendous
influence on Euler, by being attentive to his progress, by the questions he asked
him on number theory, and also by motivating him to read Diophantus and Fermat.
Goldbach, who was seventeen years older than Euler, became later on one of his
closest friends and the godfather of his oldest son, Johann Albrecht, the only one
among Euler’s thirteen children who became a mathematician. Paul Heinrich Fuss
writes in the introduction to his Correspondence [118], p. xxii:

It is more than probable that if this intimate relationship between Euler and this scholar, a
relationship that lasted 36 years without interruption, hadn’t been there, then the science of
numbers would have never attained the degree of perfection which it owes to the immortal
discoveries of Euler.8

Goldbach kept a regular correspondence with Euler, Nicolas and Daniel Bernoulli,
Leibniz (in particular on music theory) and many other mathematicians.

7Depuis que les sciences ont cessé d’être la propriété exclusive d’un petit nombre d’initiés, ce
commerce épistolaire des savants a été absorbé par la presse périodique. Le progrès est incontestable.
Cependant, cet abandon avec lequel on se communiquait autrefois ses idées et ses découvertes,
dans des lettres toutes confidentielles et privées, on ne le retrouve plus dans les pièces mûries et
imprimées. Alors, la vie du savant se reflétait, pour ainsi dire, tout entière dans cette correspondance.
On y voit les grandes découvertes se préparer et se développer graduellement ; pas un chaînon, pas
une transition n’y manque ; on suit pas à pas la marche qui a conduit à ces découvertes, et l’on puise
de l’instruction jusque dans les erreurs des grands génies qui en furent les auteurs. Cela explique
suffisamment l’intérêt qui se rattache à ces sortes de correspondances.
8Il me semble plus que probable que si cette liaison intime entre Euler et ce savant, liaison qui dura
36 ans sans interruption, n’eût pas lieu, la science des nombres n’aurait guère atteint ce degré de
perfection dont elle est redevable aux immortelles découvertes d’Euler.
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After Goldbach and his influence onEuler, we turn toGauss, who, among the large
number of mathematicians with whom Riemann was in contact, was certainly the
most influential on him.9 We shall see in the various sections of the present chapter
that this influencewas crucial forwhat concerns thefields of complex analysis, elliptic
integrals, topology, differential geometry—the same list as for Euler’s influence on
Riemann—and also for what concerns his ideas on space. There are other topics in
mathematics and physics which were central in the work of Riemann and where he
used ideas he learned from Gauss: the Dirichlet principle, magnetism, etc.; they are
addressed in several other chapters of the present book.

The first contact between Gauss and Riemann took place probably in 1846, before
Gauss became officially Riemann’s mentor. In that year, in a letter to his father dated
November 5 and translated in [233], Riemann informs the latter about the courses he
plans to follow, and among themhementions a course byGauss on “the theory of least
squares.”10 During his two year stay in Berlin (1847–1849), Riemann continued to
study thoroughly Gauss’s papers. In another letter to his father, dated May 30, 1849,
he writes (translation in [233]):

Dirichlet has arranged to me to have access to the library. Without his assistance, I fear there
would have been obstacles. I am usually in the reading room by nine in the morning, to read
two papers by Gauss that are not available anywhere else. I have looked fruitlessly for a long
time in the catalog of the royal library for another work of Gauss, whichwon the Copenhagen
prize, and finally just got it through Dr. Dale of the Observatory. I am still studying it.

During the same stay in Berlin, Riemann followed lectures by Dirichlet on topics
related to Gauss’s works. Hewrites to his father (letter without date, quoted in [233]):

My own course of specialization is the one with Dirichlet; he lectures on an area of math-
ematics to which Gauss owes his entire reputation. I have applied myself very seriously to
this subject, not without success, I hope.

Regarding his written production, Riemann endorsed Gauss’ principle: pauca sed
matura (few but ripe).

Riemann, as a child, liked history. In a letter to his father, dated May 3, 1840
(he was 14), he complains about the fact that at his Gymnasium there were fewer

9Some historians of mathematics claimed that when Riemann enrolled the University of Göttingen,
as a doctoral student of Gauss, the latter was old and in poor health, and that furthermore, he
disliked teaching. From this, they deduced that Gauss’s influence on Riemann was limited. This is
in contradiction with the scope and the variety of the mathematical ideas of Riemann for which he
stated, in one way or another, but often explicitly, that he got them under the direct influence of
Gauss or by reading his works. The influence of a mathematician is not measured by the time spent
talking with him or reading his works. Gauss died the year after Riemann obtained his habilitation,
but his imprint on him was permanent.
10The other courses are on the Cultural History of Greece and Rome, Theology, Recent Church
history, General Physiology and Definite Integrals. Riemann had also the possibility to choose
courses among Probability, Mineralogy and General Natural History. He adds: “The most useful to
me will be mineralogy. Unfortunately it conflicts with Gauss’s lecture, since it is scheduled at 10
o’clock, and so I’d be able to attend only if Gauss moved his lecture forward, otherwise it looks
like it won’t be possible. General Natural History would be very interesting, and I would certainly
attend, if along with everything else I had enough money.”.
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lessons on history than on Rechnen (computing), cf. [233]. On August 5, 1841, he
writes, again to his father, that he is the best student in history in his class. Besides
history, Riemann was doing very well in Greek, Latin, and German composition
(letters of February 1, 1845 and March 8, 1845). According to another letter to his
father, dated April 30, 1845, it is only in 1845 that Riemann started being really
attracted by mathematics. In the same letter, Riemann declares that he plans to enroll
the University of Göttingen to study theology, but that in reality he must decide for
himself what to do, since otherwise he “will bring nothing good to any subject.”

Besides Euler and Gauss, we shall mention several other mathematicians. Need-
less to say, it would have been unreasonable to try to be exhaustive in this chapter;
the subject would need a book, and even several books. We have tried to present a
few markers on the history of the major questions that were studied by Riemann,
insisting only on the mathematicians whose works and ideas had an overwhelming
impact on him.

The content of the rest of this chapter is the following.
Section2 is essentially an excursion into the realm of Euler’s ideas on the notion

of function, with a stress on algebraic functions and functions of a complex vari-
able. Algebraic functions are multivalued, and Euler included these functions as an
important element of the foundations of the field of analysis, which he laid down in
his famous treatise Introductio in analysin infinitorum (Introduction to the analysis
of the infinite) [61]. Riemann’s work on what became known as Riemann surfaces
was largely motivated by the desire to find a domain of definition for an algebraic
multi-valued function on which it becomes single-valued.11 The study of functions
of a complex variable, which includes as a special case that of algebraic functions,
is one of the far-reaching subjects of Riemann’s investigations, and its development
is one of the few most important achievements of the nineteenth century (probably
the most important one).

Section 3 is concerned with elliptic integrals. These integrals constitute a class of
complex functions with new interesting properties, and the work described in this
section is a natural sequel to that which is reviewed in Sect. 2. We shall mention
works done on this subject by Johann Bernoulli, Fagnano, Euler (who published
thirty-three memoirs on elliptic integrals), Legendre, Abel and Jacobi.

Section4 focusses onAbelian functions, a vast generalization of elliptic functions,
which led to an important problem in which Riemann became interested, namely,
the Jacobi inversion problem, and which he eventually solved using ϑ functions. In
fact, Abelian integrals constitute one of the major topics that Riemann worked on.
He started his investigation on this subject in his doctoral dissertation [214] (1851),
worked on it in his 1854 memoir [217] whose title is quite rightly “The theory of
Abelian functions,” and he never stopped working and lecturing on it during the
few years that were left to him. Some lecture notes and memoirs by Riemann on
Abelian functions were published posthumously. In particular, his memoir Über
das Verschwinden der ϑ-Functionen (On the vanishing on theta functions) [224], in
which he gives a solution to Jacobi’s problem of inversion for the general case of

11As a matter of fact, this is the origin of the use of the word “uniformization” by Riemann.
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integrals of algebraic functions, is analyzed in Chap. 4 of the present volume, written
by Houzel [141].

Section5 is concerned with the so-called Gauss hypergeometric series. These
series, in various forms, were studied by Euler in his Institutiones calculi integralis
(Foundations of integral calculus), a treatise in three volumes [92] (1768–1770), and
in several other papers by him, and by Gauss. The hypergeometric series is a family
of functions of the form

1 + αβ

1.γ
x + α(α + 1)β(β + 1)

1.2γ(γ + 1)
x2 + α(α + 1)(α + 2)β(β + 1)(β + 2)

1.2.3γ(γ + 1)(γ + 2)
x3 + . . .

where α,β, γ are parameters and where the variable is x .
Gauss considered that almost any transcendental function is obtained from a hy-

pergeometric series by assigning special values to the parameters. By providing such
a broad class of functions, the introduction of the hypergeometric series in the field of
analysis opened up new paths. Besides Euler andGauss, the predecessors of Riemann
in this field include Pfaff and Kummer.

In Sect. 6, we deal with the zeta function. The history of this function is sometimes
traced back to the work of Pietro Mengoli (1625–1686) on the problem of finding
the value of the infinite series of inverses of squares of integers. Indeed, it is rea-
sonable to assume that questions about this series were accompanied by questions
about the series of inverses of cubes and other powers. But it was Euler again who

studied
∞∑

1

1

ns
as a function of s (for s real), establishing the functional equation

that it satisfies, and the relation with prime numbers. This was the starting point of
Riemann’s investigations on what became later known as the Riemann zeta function.

In Sect. 7, we make a quick review of some works done by Riemann’s prede-
cessors on the notion of space. This is essentially a philosophical debate, but it has
a direct impact on mathematics and in particular on Riemann’s work on geometry,
more especially on his habilitation dissertation. It is in his reflections on space that
Riemann introduced in mathematics the notion of Mannigfaltigkeit, which he bor-
rowed from the philosophical literature. This notion reflects Riemann’s multi-faced
view on space, and it is an ancestor of the modern notion of manifold. Our review of
space is necessarily very sketchy, since this notion is one of the most fundamental
notions of philosophy, and talking seriously about it would require a whole essay. In
particular, there is a lot to say on the philosophy of space in the works of Newton,
Euler and Riemann and the comparison between them, but it is not possible to do it
in the scope of the present chapter. Our intent here is just to indicate some aspects of
the notion of space as it appears in the works of these authors and those of some other
philosophers, including Aristotle, Descartes and Kant, and, as much as possible in a
short survey, to give some hints on the context in which they emerge.

It is also important to say that the effect of this discussion on space goes far
beyond the limits of philosophy. Euler’s theories of physics are strongly permeated
with his philosophical ideas on space. Gauss’s differential geometry was motivated

http://dx.doi.org/10.1007/978-3-319-60039-0_4


Looking Backward: From Euler to Riemann 9

by his investigations on physical space, more precisely, on geodesy and astronomy,
and, more generally, by his aspiration to understand the world around him. At a more
philosophical level, Gauss was an enthusiastic reader of Kant, and he criticized the
latter’s views on space, showing that they do not agree with the recent discoveries—
his own and others’—of geometry. Riemann, in this field, was an heir of Gauss. In
his work, the curvature of space (geometric space) is the expression of the physical
forces that act on it. These are some of the ideas that we try to convey in Sect. 7 and
in other sections of this chapter.

Section8 is concerned with topology. Riemann is one of the main founders of this
field in the modern sense of the word, but several important topological notions may
be traced back to Greek antiquity and to the later works of Descartes, Leibniz and
Euler. We shall review the ideas of Leibniz, and consider in some detail the works
of Descartes and Euler on the so-called Euler characteristic of a convex polyhedral
surface, which in fact is nothing else but an invariant of the topological sphere, a
question whose generalization is contained in Riemann’s doctoral dissertation [214]
and his paper on Abelian functions [217], from where one can deduce the invariants
of surfaces of arbitrary genus.

Section9 is concerned with the differential geometry of surfaces. We review es-
sentially the works of Euler, Gauss and Riemann, but there was also a strong French
school of differential geometry, operating between the times of Euler and Riemann,
involving, among others, Monge and several of his students, and, closer to Riemann,
Bonnet.

Section10 is a review of the history of trigonometric series and the long contro-
versy on the notion of function that preceded this notion. In his Habilitation memoir,
Riemann describes at length this important episode of eighteenth and nineteenth cen-
tury mathematics which also led to his discovery of the theory of integration, which
we discuss in the next section.

In Sect. 11, we review some of the history of the Riemann integral. From the
beginning of integral calculus until the times of Legendre, passing through Euler,
integration was considered as an antiderivative. Cauchy defined the integral by limits
of sums that we call now Riemann sums, taking smaller and smaller subdivisions of
the interval of integration and showing convergence tomake out of that a definition of
the definite integral, but he considered only integrals of continuous functions, where
convergence is always satisfied. It was Riemann who developed the first general
theory of integration, leading to the notion of integrable and non-integrable function.

The concluding section, Sect. 12 contains a few remarks on the importance of
returning to the texts of the old masters.

Some of the historical points in our presentation are described in more detail than
others; this reflects our personal taste and intimate opinion on what is important in
history and worth presenting in more detail in such a quick survey. The reader will
find at the end of this chapter (before the bibliography) a table presenting in parallel
some works of Euler and of Riemann on related matters.
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2 Functions

VitoVolterra, in his 1900Paris ICMplenary lecture [250], declared that the nineteenth
century was “the century of function theory.”12 In the language of that epoch, the
expression “function theory” refers, in the first place, to functions of a complex
variable. One of the mottos, which was the result of a thorough experience in the
domain, was that a function of a real variable acquires its full strength when it is
complexified, that is, when it is extended to become a function of a complex variable.
This idea was shared by Cauchy, RiemannWeierstrass, and others to whom we refer
now.

On functions of a complex variable, we first quote a letter from Lagrange to
Antonio Lorgna, an engineer and the governor of the military school at Verona who
made important contributions to mathematics, physics and chemistry. The letter is
dated December 20, 1777. Lagrange writes (cf. Lagrange’s Œuvres, [166] t. 14, p.
261):

I consider it as one of the most important steps made by Analysis in the last period, that
of not being bothered any more by imaginary quantities, and to be able to submit them to
calculus, in the same way as the real ones.13

Gauss, who, among other titles he carried, was one of the main founders of the
theory of functions of a complex variable, was also responsible for the introduction
of complex numbers in several theories. In particular, he realized their power in
number theory, and he used this in his Disquisitiones arithmeticae (Arithmetical
researches) [121] (1801), a masterpiece he wrote at the age of 24. In his second
paper on biquadratic residues [120] (Section 30), he writes that “number theory is
revealed in its entire simplicity and natural beauty when the field of arithmetic is
extended to the imaginary numbers.” He explains that this means admitting integers
of the form a + bi . “Such numbers,” he says, “will be called complex integers.”

In the same vein, Riemann, who had a marked philosophical viewpoint on things,
writes, regarding complex functions, in Section 20 of his doctoral dissertation,
Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen com-
plexen Grösse [214] (Foundations of a general theory of functions of a variable com-
plex magnitude) [214] (1851): “Attributing complex values to the variable quantities
reveals a harmony and a regularity which otherwise would remain hidden.”

12The title ofVolterra’s lecture is:Betti, Brioschi, Casorati : Trois analystes italiens et trois manières
d’envisager les questions d’analyse (Betti, Brioschi, Casorati: Three Italian analysts and three
manners of addressing the analysis questions). In that lecture, Volterra presents three different ways
of doing analysis, through the works of Betti, Brioschi and Casorati, who are considered as the
founders of modern Italian mathematics. The three mathematicians had very different personalities,
and contrasting approaches to analysis, but in some sense they were complementing each other. In
particular, Brioschi was capable of doing very long calculations, Betti was a geometer repugnant
to calculations, and Casorati was an excellent teacher and an applied mathematician.
13Je regarde comme un des pas les plus importants que l’Analyse ait faits dans ces derniers temps,
de n’être plus embarrassée des quantités imaginaires et de pouvoir les soumettre au calcul comme
les quantités réelles.
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Finally, let us quote someone closer to us, JacquesHadamard, fromhisPsychology
of invention in the mathematical field [137]. A sentence by him which is often
repeated is that “the shortest and the best way between two truths of the real domain
often passes by the imaginary one.”We quote thewhole passage ([137] pp. 122–123):

It is Cardan, who is not only the inventor of a well-known joint which is an essential part
of automobiles, but who has also fundamentally transformed mathematical science by the
invention of imaginaries. Let us recall what an imaginary quantity is. The rules of algebra
show that the square of any number, whether positive or negative, is a positive number:
therefore, to speak of the square root of a negative number is mere absurdity. Now, Cardan
deliberately commits that absurdity and begins to calculate on such “imaginary” quantities.

One would describe this as pure madness; and yet the whole development of algebra and
analysis would have been impossible without that fundament—which, of course, was, in
the nineteenth century, established on solid and rigorous bases. It has been written that the
shortest and the best way between two truths of the real domain often passes by the imaginary
one.

In the rest of this section, we review some markers in the history of functions, in
particular functions of a complex variable and algebraic functions, two topics which
are at the heart of Riemann’s work on Riemann surfaces, on Abelian functions, on
the zeta function, and on other topics. Before that, wemake a digression on the origin
of the general notion of function.

It is usually considered that Euler’s Introductio in analysin infinitorum [61] is
the first treatise in which one can find the definition of a function, according to
modern standards, and where functions are studied in a systematic way. We take this
opportunity to say a few words on Euler’s treatise, to which we refer several times
in the rest of this chapter.

The Introductio is a treatise in two volumes, first published in 1748, which is
concerned with a variety of subjects, including (in the first volume) algebraic curves,
trigonometry, logarithms, exponentials and their definitions by limits, continued frac-
tions, infinite products, infinite series and integrals. The second volume is essentially
concerned with the differential geometry of curves and surfaces. The importance of
the Introductio lies above all in the fact that it made analysis the branch of mathe-
matics where one studies functions. But the Introductio is more than a treatise with
a historical value. Two hundred and thirty years after the first edition appeared in
print, André Weil considered that it was more useful for a student in mathematics
to study that treatise rather than any other book on analysis. This is reported on by
John Blanton who writes, in his English edition of the Introductio [62]:

In October, 1979, Professor André Weil spoke at the University of Rochester on the life and
work ofLeonhardEuler.One of his remarkswas to the effect that hewas trying to convince the
mathematical community that students of mathematics would profit muchmore from a study
of Euler’s Introductio in analysin infinitorum, rather than the available modern textbooks.

The importance of this work has also been highlighted by several other mathe-
maticians. C. B. Boyer, in his 1950 ICM communication (Cambridge, Mass.) [28],
compares the impact of the Introductio to that of Euclid’s Elements in geometry and
to al-Khwārizmı̄’s Jabr in algebra. He writes:
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The most influential mathematics textbooks of ancient times (or, for that matter, of all
times) is easily named. The Elements of Euclid, appearing in over a thousand editions, has
set the pattern in elementary geometry ever since it was composed more than two and a
quarter millenia ago. The medieval textbook which most strongly influenced mathematical
development is not so easily selected; but a good case can be made out of Al-jabr wal
muqābala of al-Khwārizmı̄, just about half as old as the Elements. From this Arabic work,
algebra took its name and, to a great extent, its origin. Is it possible to indicate a modern
textbook of comparable influence and prestige? Some would mention the Géométrie of
Descartes, or the Principia of Newton or the Disquisitiones of Gauss; but in pedagogical
significance these classics fell short of a work less known. [...] over these well known
textbooks there towers another, a work which appeared in the very middle of the great
textbook age and to which virtually all later writers admitted indebtedness. This was the
Introductio in analysin infinitorum of Euler, published in two volumes in 1748. Here in
effect Euler accomplished for analysis what Euclid and al-Khwārizmı̄ had done for synthetic
geometry and elementary algebra, respectively.

Even though the Introductio is generally given as the main reference for the in-
troduction of functions in analysis, regarding the usage of functions, one can go
far back into history. Tables of functions exist since the Babylonians (some of their
astronomical tables survive). Furthermore, in ancient Greece, mathematicians ma-
nipulated functions, not only in the form of tables. In particular, the chord function
(an ancestor of our sine function)14 is used extensively in some Greek treatises.
For instance, Proposition 67 of Menelaus’ Spherics (1st-2nd century A.D.) says the
following [212]:

Let ABC and DEG be two spherical triangles whose angles A and D are equal, and where
C and G are either equal or their sum is equal to two right angles. Then,

crd 2AB

crd 2BC
= crd 2DE

crd 2EG
.

Youschkevitch, in his interesting survey [260], argues that the general idea of
a dependence of a quantity upon another one is absent from Greek geometry. The
author of the present chapter declares that if in the above proposition of Menelaus
one does not see the notion of function, and hence the general idea of a dependence
of a quantity upon another one, then this author fails to know what mathematicians
mean by the word function.

Leibniz and Johann I Bernoulli, who were closer to Euler, manipulated functions,
even though the functions they considered were always associated with geometrical
objects, generally, curves in the plane. For instance, in a memoir published in 1718
on the isoperimetry problem in the plane, [24] Bernoulli writes:

Here, we call function of a variable magnitude, a quantity formed in whatever manner with
that variable magnitude and constants.15

The functions that Bernoulli considers in this memoir are associated to arbitrary
curves in the plane having the same perimeter, among which Bernoulli looks for the

14The relation between chord and sine is : sin x = 1
2 crd 2x .

15On appelle ici Fonction d’une grandeur variable, une quantité composée de quelque manière que
ce soit avec cette grandeur variable et des constantes. [The emphasis is Bernoulli’s].
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one which bounds the greatest area. This is an example of the general idea that before
Euler, analysis was tightly linked to geometry, and the study of functions consisted
essentially in the study of curves associated to some geometric properties. With the
Introductio, things became different. Analysis started to release itself from geometry,
and functions were studied for themselves. Let us now make a quick review of the
part of this treatise which concerns us here.

The first chapter is called On functions in general. In this chapter, Euler states his
general definition of a function, after a description of what is a variable quantity:

A function of a variable quantity is an analytic expression composed in any way whatsoever
of the variable quantity and numbers or constant quantities.

The word “analytic” means in this context that the function is obtained by some
process that uses the four operations (addition, subtraction, multiplication and di-
vision), together with root extraction, exponentials, logarithms, trigonometric func-
tions, derivatives and integrals. Analyticity in terms of being defined by a convergent
power series is not intended by this definition. The meaning of the word “analytic
function” rather is “a function used in (the field of) analysis.” Concerning the notion
of variable, Euler writes (Sect. 3)16:

[...] Even zero and complex numbers are not excluded from the signification of a variable
quantity.

Thus, functions of a complex variable are included in Euler’s Introductio. We note
however that in this treatise, Euler, in his examples, always deals with functions
that are given by formulae: polynomials, exponentials, logarithms, trigonometric
functions, etc. but also infinite products and infinite sums.

After the definition of a function, we find in the Introductio the definition of an
algebraic function. In Sect. 7, Euler writes:

Functions are divided into algebraic and transcendental. The former are those made up from
only algebraic operations, the latter are those which involve transcendental operations.

And in Sect. 8:

Algebraic functions are subdivided into non-irrational and irrational functions: the former
are such that the variable quantity is in no way involved with irrationality; the latter are those
in which the variable quantity is affected by radical signs.

Concerning irrational functions (Sect. 9), he writes:

It is convenient to distinguish these into explicit and implicit irrational functions.

The explicit functions are those expressed with radical signs, as in the given examples. The
implicit are those irrational functions which arise from the solution of equations. Thus Z
is an implicit irrational function of z if it is defined by an equation such as Z7 = az or
Z2 = bz5. Indeed, an explicit value of Z may not be expressed even with radical signs, since
common algebra has not yet developed to such a degree of perfection.

16We are using the translation from Latin in [61].
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And in Sect. 10:

Finally, we must make a distinction between single-valued and multi-valued functions.

A single-valued function is one for which, no matter what value is assigned to the variable
z, a single value of the function is determined. On the other hand, a multi-valued function is
one such that, for some value substituted for the variable z, the function determines several
values. Hence, all non-irrational functions, whether polynomial or rational, are single-valued
functions, since expressions of this kind, whatever value be given to the variable z, produce
a single value. However, irrational functions are all multi-valued, because the radical signs
are ambiguous and give paired values. There are also among the transcendental functions,
both single-valued and multi-valued functions; indeed, there are infinite-valued functions.
Among these are the arcsine of z, since there are infinitely many circular arcs with the same
sine.

Euler then gives examples of two-valued, three-valued and four-valued functions,
and in Sect. 14 he writes:

Thus Z is a multi-valued function of z which for each value of z, exhibits n values of Z
where n is a positive integer. If Z is defined by this equation

Zn − P Zn − 1 + Q Zn−2 − RZn−3 + SZn−4 − · · · = 0

[...] Further it should be kept in mind that the letters P, Q, R, S, etc. should denote single-
valued functions of z. If any of them is already a multi-valued function, then the function
Z will have many more values, corresponding to each value of z, than the exponent would
indicate. It is always true that if some of the values are complex, then there will be an even
number of them. From this we know that if n is an odd number, there will be at least one
real value of Z .

He then makes the following remarks:

If Z is a multi-valued function of z such that it always exhibits a single real value, then Z
imitates a single-valued function of z, and frequently can take the place of a single-valued
function.

Functions of this kind are P
1
3 , P

1
5 , P

1
7 , etc. which indeed give only one real value, the

others all being complex, provided P is a single-valued function of z. For this reason, an
expression of the form P

m
n , whenever n is odd, can be counted as a single-valued function,

whether m is odd or even. However, if n is even then P
m
n will have either no real value

or two; for this reason, expressions of the form P
m
n , with n even, can be considered to be

two-valued functions, provided the fraction m
n cannot be reduced to lower terms.

From this discussion we single out the fact that algebraic functions are consid-
ered as functions, even though they are multi-valued. They are solutions of algebraic
equations. Since we are talking about history, it is good to recall that the study of
such equations is an old subject that can be traced back to the work done on algebraic
curves by the Greeks. In fact, Diophantus (3rd century B.C.) thoroughly studied inte-
gral solutions of what is now called “Diophantine equations.” They are examples of
algebraic equations.17 Algebraic equations are also present in the background of the

17For what concerns Diophantus’ Arithmetica, we refer the interested reader to the recent and
definitive editions [52–54, 210] by R. Rashed.
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geometric work of Apollonius (3d–2d century B.C.) on conics. In that work, inter-
sections of conics were used to find geometrical solutions of algebraic equations.18

It is true however that in these works, there is no definition of an algebraic function
as we intend it today, and in fact at that time there was no definition of function at all.

The multi-valuedness of algebraic functions gave rise to tremendous develop-
ments by Cauchy and Puiseux, and it was also a major theme in Riemann’s work,
in particular in his doctoral dissertation [214] (1851) and his memoir on Abelian
functions [217] (1857). In fact, the main reason for which Riemann introduced the
surfaces that we call today Riemann surfaces was to find ground spaces on which
multi-valued functions are defined and become single-valued. We discuss the works
of Cauchy and Puiseux in relation with that of Riemann in Chap.7 of the present
volume, [191].

We note for later use that a definition of “continuity” is given in Volume 2 of the
Introductio, where Euler says that a curve is continuous if it represents “one deter-
minate function,” and discontinuous if it is decomposed into “portions that represent
different continuous functions.” We shall see that such a notion was criticized by
Cauchy (regardless of the fact that it is called “continuity”).19

Wenotefinally that it is usually considered that the expressionanalysin infinitorum
in the title of Euler’s treatise does not refer to the field of infinitesimal analysis in
the sense of Newton or Leibniz, but, rather, to the use of infinity (infinite series,
infinite products, continued fractions expansions, integral representations, etc.) in
analysis. Euler was also the first to highlight the zeta function, the gamma function
and elliptic integrals as functions. However, it is good to recall that infinite sums
were known long before Euler. For instance, Zeno of Elea (5th c. B.C.) had already
addressed the question of convergence of infinite series, and to him are attributed
several well-known paradoxes in which the role and the significance of infinite series
and their convergence are emphasized (the paradox of Achilles and the tortoise, the
arrow paradox, the paradox of the grain of millet, etc.). However, infinite series are
not considered as functions in these works. Zeno’s paradoxes are commented in
detail in Aristotle’s Physics [20], but also by mathematicians and philosophers from
the modern period, including Bertrand Russell, Hermann Weyl, Paul Tannery and
several others; cf. [236] pp. 346–354, and [241, 258].

We also recall that convergent serieswere used byArchimedes in his computations
of areas and volumes.

Before leaving this book, let us mention that Euler establishes there a hierarchy
among transcendental functions by introducing a notion close to what we call today
the transcendence degree of a function.

In his later works, Euler dealt with much more general functions. For instance,
in his 1755 memoir [103], entitled Remarques sur les mémoires précédents de M.
Bernoulli (Remarks on the preceding memoirs by Mr. Bernoulli), any mechanical

18For a recent and definitive edition of Apollonius’ Conics, we refer the reader to the volumes
[11–15], again edited by R. Rashed.
19There are other imperfections in the Introductio, even though this book is one of the most inter-
esting treatises ever written on elementary analysis.

http://dx.doi.org/10.1007/978-3-319-60039-0_7
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curve (that is any curve drawn by hand) is associated with a function.20 In his Insti-
tutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum
(Foundations of differential calculus, with applications to finite analysis and series)
[83], also published in 1755, Euler gave again a very general definition of a function
(p. vi):

Those quantities that depend on others in this way, namely, those that undergo a change
when others change, are called functions of these quantities. This definition applies rather
widely and includes all ways in which one quantity could be determined by another.

Likewise, in his memoir [104], De repraesentatione superficiei sphaericae super
plano (On the representation of Spherical Surfaces onto the Plane) (1777), Euler
dealt with “arbitrary mappings” between the sphere and the plane. He writes21:

I take the word “mapping” in the widest possible sense; any point of the spherical surface is
represented on the plane by any desired rule, so that every point of the sphere corresponds
to a specified point in the plane, and inversely.

We shall consider again the question of functions, from the epoch of Euler and
until the work of Riemann, in Sect. 10 concerned with trigonometric functions.

Riemann, in his doctoral dissertation, [214] (1851), also considers arbitrary func-
tions. In fact, the dissertation starts as follows: “If we designate by z a variable
magnitude, which may take successively all possible real values, then, when to each
of these values corresponds a unique value of the indeterminate magnitude w, we
say that w is a function of z [...]” One may also refer to the beginning of Sect. XIX
of the same dissertation, where Riemann states that the principles he is presenting
are the bases of a general theory of functions which is independent of any explicit
expression.

The details of the seventeenth-century debate concerning functions are rather
confusing if one does not include them in their historical context. For instance, the
notion of “continuity” which we alluded to and which is referred to in the debate
is different from what we intend today by this word. In fact, the word “continuity,”
even restricted to the works of Euler, varied in the course of time.

Cauchy, the major figure standing between Euler and Riemann for what con-
cerns the notion of function, in his Mémoire sur les fonctions continues (Memoir on
continuous functions) [37], starts as follows:

20One may recall here that the mathematicians of Greek antiquity (Archytas of Tarentum, Hippias,
Archimedes, etc.) who examined curves formulated a mechanical definition. The curves with which
they dealt were not necessarily defined by equations, they were “traced by a moving point,” some-
times (in theory) using a specificmechanical device. Of some interest here would be the connections
between this subject and the theory of mechanical linkages, which was extensively developed in the
nineteenth century and became fashionable again in the twentieth century. A conjecture by Thurston
says (roughly speaking) that any “topological curve” is drawable by a mechanical linkage. This is
a vast generalization of a result of Kempe stating that any bounded piece of an algebraic curve is
drawable by some linkage, cf. [160]. We refer the reader to Sossinsky’s survey of this subject and
its recent developments [238], in particular the solution of Thurston’s conjecture.
21We are using George Heines’ translation.
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In the writings of Euler and Lagrange, a function is termed continuous or discontinuous
according to whether the various values of this function corresponding to various values of
the variable follow or not the same law, or are given or not by only one equation. It is in these
terms that the continuity of functions was defined by these famous geometers, when they
used to say that “the arbitrary functions, introduced by the integration of partial differential
equations, may be continuous or discontinuous functions.” However, the definitionwhichwe
just recalled is far from offering mathematical accuracy [...] A simple change in notation will
often suffice to transform a continuous fonction into a discontinuous one, and conversely.22

In fact, onemight consider that Euler’s definition of continuity is just one definition
that is different from the new definition which Cauchy had in mind (and which is
the definition we use today). This would have been fine, and it would not be the
only instance in mathematics where the same word is used for notions that are
different, especially at different epochs. But Cauchy showed by an example that in
this particular case Euler’s definition is inconsistent, because the property it expresses
depends on the parametrization that is used. Cauchy continues:

But the non-determinacy will cease if we substitute to Euler’s definition the one I gave in
Chapter II of the Analyse algébrique. According to the new definition, a function of the
variable x will be continuous between two limits a and b of this variable if between two
limits the function has always a value which is unique and finite, in such a way that an
infinitely small increment of this variable always produces an infinitely small increment of
the function itself.23

We quoted these texts in order to give an idea of the progress of the notion of
continuity. We now come to the study of functions of a complex variable.

In his memoir on Abelian functions, Riemann refers explicitly to Gauss for the
fact that we represent a complex magnitude z = x + iy by a point in the plane with
coordinates x and y.

It is not easy to know when the theory of functions of a complex variable started,
and, in fact, the answer depends on whether one studies holomorphic functions, and
what properties of holomorphic functions are meant (before the epoch of Riemann,
they were not known to be equivalent): angle-preservation, power series expansion,
the Cauchy-Riemann equation, etc.

Euler used complex variables and the notion of conformality (angle-preservation)
in his memoirs on geographical maps. He wrote three memoirs on this subject,

22Dans les ouvrages d’Euler et de Lagrange, une fonction est appelée continue ou discontinue,
suivant que les diverses valeurs de cette fonction, correspondantes à diverses valeurs de la variable,
sont ou ne sont pas assujetties à une même loi, sont ou ne sont pas fournies par une seule équation.
C’est en ces termes que la continuité des fonctions se trouvait définie par ces illustres géomètres,
lorsqu’ils disaient que “les fonctions arbitraires, introduites par l’intégration des équations aux
dérivées partielles, peuvent être des fonctions continues ou discontinues.” Toutefois, la définition
que nous venons de rappeler est loin d’offrir une précisionmathématique [...] un simple changement
de notation suffira souvent pour transformer une fonction continue en fonction discontinue, et
réciproquement.
23Mais l’indétermination cessera si à la définition d’Euler on substitue celle que j’ai donnée dans le
chapitre II de l’Analyse algébrique. Suivant la nouvelle définition, une fonction de la variable réelle
x sera continue entre deux limites a et b de cette variable, si, entre ces limites, la fonction acquiert
constamment une valeur unique et finie, de telle sorte qu’un accroissement infiniment petit de la
variable produise toujours un accroissement infiniment petit de la fonction elle-même.
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De repraesentatione superficiei sphaericae super plano (On the representation of
spherical surfaces on a plane) [104], De proiectione geographica superficiei sphaer-
icae (On the geographical projections of spherical surfaces) [105], andDe proiectione
geographica Deslisliana in mappa generali imperii russici usitata (On Delisle’s ge-
ographic projection used in the general map of the Russian empire) [106]. The three
memoirs were published in 1777. In the development of the theory, he used complex
numbers to represent angle-preservingmaps. Lagrange also studied angle-preserving
maps, in his memoir Sur la construction des cartes géographiques (On the construc-
tion of geographical maps) [165], published in 1779.

In fact, the notion of angle-preserving map can be traced back to Greek antiquity,
see the survey [194]. We already recalled that Euler, in his didactical treatise Intro-
ductio in analysin infinitorum, refers explicitly to functions in which the variable is
a complex number. De Moivre, already in 1730, considered polynomials defined on
the complex plane, and it is conceivable that other mathematicians before him did
the same [182]. Remmert, who, besides being a specialist of complex analysis, is
a highly respected historian in this field, writes in his Theory of complex variables
[213] that the theory was born at the moment when Gauss sent a letter to Bessel,
dated December 18, 1811, in which he writes24:

At the beginning I would ask anyone who wants to introduce a new function in analysis to
clarify whether he intends to confine it to real magnitudes (real values of the argument) and
regard the imaginary values as just vestigial—or whether he subscribes to my fundamental
proposition that in the realm of magnitudes the imaginary ones a + b

√−1 = a + bi have
to be regarded as enjoying equal rights with the real ones. We are not talking about practical
utility here; rather analysis is, to my mind, a self-sufficient science. It would lose immea-
surably in beauty and symmetry from the rejection of any fictive magnitudes. At each stage
truths, which otherwise are quite generally valid, would have to be encumbered with all sorts
of qualifications.

In fact, the letter also shows that at that time Gauss was already aware of the concept
of complex integration, including Cauchy’s integral theorem; cf. [126] Vol. 8, p.
90–92.

Cauchy, in his Cours d’analyse [34] (1821), starts by defining functions of real
variables (p. 19), and then passes to complex variables. There are two distinct defi-
nitions in the real case, for functions of one or several variables:

When variable quantities are so tied to each other that, given the value of one of them, we can
deduce the values of all the others, we usually conceive these various quantities expressed
in terms of one of them, which then bears the name independent variable; and the other
quantities expressed in terms of the independent variable are what we call functions of that
variable.

When variable quantities are so tied to each other that, given the values of some of them,
we can deduce the values of all the others, we usually conceive these various quantities
expressed in terms of several of them, which then bear the name independent variables; and
the remaining quantities expressed in terms of the independent variables, are what we call
functions of these same variables.25

24The translation is Remmert’s; cf. [213] p. 1.
25Lorsque des quantités variables sont tellement liées entre elles que, la valeur de l’une d’elles
étant donnée, on puisse en conclure les valeurs de toutes les autres, on conçoit d’ordinaire ces
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Talking about Cauchy’s work on functions of a complex variable, one should also
mention the Cauchy–Riemann equation as a characterization of complex analycity,
which Cauchy and Riemann introduced in the same year, 1851, Cauchy in his papers
[38, 39] and Riemann in his doctoral dissertation [214]. It is important to note also
that the Cauchy–Riemann equations,

∂u

∂x
= ∂v

∂y
and

∂u

∂y
= −∂v

∂x
,

without the complex character, were used by d’Alembert in 1752, in his works on
fluid dynamics, Essai d’une nouvelle théorie de la résistance des fluides (Essay on a
new theory of fluid resistance) [261] p. 27. D’Alembert showed later that functions
u and v satisfying this pair of equations also satisfy Laplace’s equation: �u = 0 and
�v = 0.

The work of Cauchy is also reviewed in the chapter [191] in the present volume,
written by the present author.

Riemann’s doctoral dissertation [214] is in some sense an essay on functions of a
complex variable. Right at the beginning of the dissertation, Riemann states explicitly
what he means by a function. He starts with functions of a real variable:

If we designate by z a variable magnitude, which may take successively all possible real
values, then, if to each of these values corresponds a unique value of the indeterminate
magnitude w, we say that w is a function of z.

He then talks about continuity of functions, in the modern sense of the word (as
opposed to the sense that Euler gave to this word).26 Then he writes:

This definition does not stipulate any law between the isolated values of the function, this
is evident, because after this function has been dealt with for a given interval, the way it is
extended outside this interval remains quite arbitrary.

Riemann then recalls that the possibility of using some “mathematical law” that
assigns to w a value for a given value of z was proper to the functions which Euler
termed functiones continuæ. He writes that “modern research has shown that there
exist analytic expressions by which any continuous function on a given interval can
be represented.” He then declares that the case of functions of a complex variable is
treated differently. In fact, Riemann considers only functions of a complex variable

(Footnote 25 continued)
diverses quantités exprimées au moyen de l’une d’entre elles, qui prend alors le nom de variable
indépendante ; et les autres quantités exprimées au moyen de la variable indépendante sont ce qu’on
appelle des fonctions de cette variable.

Lorsque les quantités variables sont tellement liées entre elles que, les valeurs de quelques unes
étant données, on puisse en conclure celles de toutes les autres, on conçoit ces diverses quantités
exprimées aumoyendeplusieurs d’entre elles, qui prennent alors le nomde variables indépendantes;
et les quantités restantes, exprimées au moyen des variables indépendantes, sont ce qu’on appelle
des fonctions de ces mêmes variables.
26In the Introductio Euler used the expression continuous function for a function that is “given by
a formula.” This is thoroughly discussed in Sect. 10 of the present chapter.
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whose derivative does not depend on the direction, that is, holomorphic functions. He
makes this property part of his definition of a function of a complex variable. Thus,
when he talks about a function in the complex setting, he considers only conformal
maps.

Regarding Riemann’s dissertation, let us note that in a letter to his brother, dated
November 26, 1851 [233], after he submitted his doctoral dissertationmanuscript, he
writes that Gauss took it home to examine it for a few days, and that before reading
it, Gauss told him:

[Riemann speaking] for years he had been preparing an essay, on which today he is still
occupied, whose subject is the same or at least in part the same as that covered by me.
Already in his doctoral dissertation now 52 years ago he actually expressed the intention to
write on this subject.

This is an instance where Gauss was aware of a theory, or part of it, long before
its author; we shall mention several other such instances in what follows.

3 Elliptic Integrals

In the huge class of integrals of functions, the integrals of algebraic functions con-
stitute the simplest and the most natural class to work with. The class of elliptic
integrals (and their Abelian generalizations) which deal with such functions soon
turned out to be enough tractable and at the same time very rich from the point of
view of the problems that they posed. These integrals led to a huge amount of work
by several prominent mathematicians, as we shall see in this section.

Riemann had several reasons to work on Abelian integrals. Motivated by lectures
by Dirichlet, Jacobi and others, he worked on the open problems that these functions
presented, in particular the Jacobi inversion problem.

When Riemann started his work on integrals as functions of a complex variable,
this subject was already well developed. An important challenging problem that he
tackled was the so-called Jacobi inversion problem which we mention below. Most
of all, these functions constituted for Riemann an interesting class of non-necessarily
algebraic functions of a complex variable. The double periodicity of these integrals,
the multi-valuedness of their inverses, the operations that one can perform on them,
constituted a treasure of examples of new functions of a complex variable, and a
context in which his theory of Riemann surfaces may naturally be used.

We start by summarizing someof themain ideas and problems that concern elliptic
functions that were addressed since the time of Euler.

(1) The study of definite integrals representing arcs of conics and of lemniscates,
and the comparison of their properties with those of integrals representing
arcs of circles, which are computable in terms of the trigonometric functions
or their inverses. We recall, by way of comparison, that whereas the integral∫ x

0

dt√
1 − t2

represents arc length along a circle centered at the origin, the



Looking Backward: From Euler to Riemann 21

integral
∫ x

0

dt√
1 − t4

represents arc length along the lemniscate of polar equation

r2 = cos 2θ.
(2) The search for sums and product formulae for such integrals, in the same way

as there are formulae for sums and products of trigonometric functions.
(3) The study of periods, again, in analogy with those of trigonometric functions.

In fact, some of the first questions concerning elliptic integrals can be traced back
to Johann I Bernoulli who tried to use the newly discovered integral calculus to obtain
formulae for lengths of arcs of conic sections and some other curves. Bernoulli found
the first addition formulae for such integrals. Finding general addition theorems for
elliptic integrals remained one of themajor problems for the following hundred years,
involving the works of several major figures including Euler, Legendre, Abel, Jacobi
and Riemann. Bernoulli also discovered that the lengths of some curves, expressed
using integrals, may be expressed using infinite series [23].

Johann Bernoulli was Euler’s teacher, and it is not surprising that the latter be-
came interested in these problems early in his career. In his first paper on the subject,
Specimen de constructione aequationum differentialium sine indeterminatarum sep-
aratione (Example of the construction of differential equations without separation of
variables) [70] written in 1733, Euler gives a formula for arc lengths of ellipses. He
obtains them by first writing a differential equation satisfied by these arcs. Generally
speaking, Euler systematically searched for differential equations that describe the
various situations that he was studying.

Between thework ofBernoulli and that of Euler,wemustmention that of Fagnano,
who, around the year 1716, in a study he was carrying on the lemniscate, discovered
some results which Euler considered several years later as outstanding. These results
included an addition formulae for a class of elliptic integrals [111], and the fact
that on an ellipse or a hyperbola, one may find infinitely many pairs of arcs whose
difference is expressible by algebraic means. The word used by Euler and others for
such arcs (or differences of arcs) is that they are “rectifiable.” Fagnano managed to
reduce the rectifiability of the lemniscate to that of the ellipse and hyperbola. A few
words on Fagnano one in order.

Giulio Carlo de’ Toschi di Fagnano (1682–1766) was a noble Italian interested in
science, who worked during several decades in isolation, away from any scientific
environment. Weil’s authoritative book on the history of number theory [255] starts
with the following:

Accroding to Jacobi, the theory of elliptic functions was born between the twenty-third of
December 1751 and the twenty-seventh of January 1752. On the former date, the Berlin
Academy of Sciences handed over to Euler the two volumes of Marchese Fagnano’s Pro-
duzioni Mathematiche, published in Pesaro in 1750 and just received from the author; Euler
was requested to examine the book and draft a suitable letter of thanks. On the latter date,
Euler, referring explicitly to Fagnano’s work on the lemniscate, read to the Academy the first
of a series of papers, eventually proving in full generality the addition and multiplication
theorems for elliptic integrals.

On p. 245 of the same treatise, Weil writes:
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On 23 December 1751 the two volumes of Fagnano’s produzioni Mathematiche, just pub-
lished, reached the Berlin Academy and were handed over to Euler; the second volume
contained reprints of pieces on elliptic integrals which appeared between 1714 and 1720 in
an obscure Italian journal and had remained totally unknown. On reading these few pages
Euler caught fire instantly; on 27 January 1752 he was presenting to the Academy a memoir
[88] with an exposition of Fagnano’s main results, to which he was already adding some of
his own.

The most striking of Fagnano’s results concerned transformations of the “lemniscate differ-
ential”

w(z) = dz√
1 − z4

;
how he had reached them was more than even Euler could guess. “Surely his discoveries
would shed much light on the theory of transcendental functions,” Euler wrote in 1753, “if
only his procedure supplied a sure method for pursuing these investigations further; but it
rests upon substitutions of a tentative character, almost haphazardly applied ...”27

In a letter dated October 17, 1730 ([109], p. 624), well before being aware of
Fagnano’s work, Euler informed Goldbach that “even admitting logarithms,”28 he

could by no means compute the integral
∫

a2dx√
a4 − x4

, that “expresses the curve

element of the rectangular elastic curve, or rectify this ellipse.” Fagnano, instead of
giving explicit values, established equalities between such integrals which paved the
way to a new series of results by Euler and others. In a letter to Goldbach, dated May
30, 1752, that is, about six months after reading Fagnano’s work, Euler writes (see
[109] p. 1064): “Recently some curious integrations occurred to me.” He first notes
that three differential equations

dx√
1 − x2

= dy√
1 − y2

,

dx√
1 − x4

= dy√
1 − y4

,

and
dx√
1 − x3

= dy√
1 − y3

can be integrated explicitly, and lead respectively to

y2 + x2 = c2 + 2xy
√
1 − c2,

27The reference is to Euler’s memoir Specimen novae methodi curvarum quadraturas et rectifica-
tiones aliasque quantitates transcendentes inter se comparandi (An example of a new method for
the quadurature and rectificaiton of curves and of comparing other quantities which are transcen-
dentally related to each other) [89].
28The reference to logarithms comes from the fact that dt

t and some more general rational functions
can be integrated using logarithms.
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Fig. 1 A picture from
Euler’s calculation of the
length of a segment of an
ellipse, from Euler’s letter to
Goldbach dated May 30,
1752.

y2 + x2 = c2 + 2xy
√
1 − c4 − c2y2

and
y2 + x2 + c2x2y2 = 4c − 4c2(x + y) + 2xy − 2cxy(x + y).

Headds that from these andother formulae of the samekind, he deduced the following
theorem (see Fig. 1):

If, in the quadrant AC B of an ellipse, the tangent V T M at an arbitrary point M is drawn
which meets one of the axes, C B, at T , if T V is taken equal to C A and from V , V N is
drawn parallel to C B, and if finally C P is the perpendicular on the tangent through the
center C , then I say the difference of the arcs B M and AN will be rectifiable, namely,
B M − AN = M P .

In the following letter to Goldbach, dated June 3rd, 1752, Euler gave a proof of
this theorem and clarified a formula that Fagnano had given in his 1716 paper [110].

About five weeks after Euler received the work of Fagnano, he presented to
the Berlin Academy a memoir entitled Observationes de comparatione arcuum
curvarum irrectificibilium (Observations on the comparison of arcs of irrectifiable
curves) [88] in which he expands on what he had announced in his correspondence
with Goldbach, generalizing Fagnano’s duplication result on the lemniscate to a gen-
eral multiplication result and giving examples of arcs of an ellipse, hyperbola and
lemniscate whose differences are rectifiable. This was the beginning of a system-
atic study by Euler of elliptic integrals. The year after, he presented to the Saint
Petersburg Academy of Sciences a memoir entitled De integratione aequationis

differentialis
mdx√
1 − x4

= ndy√
1 − y4

(On the integration of the differential equation

mdx√
1 − x4

= ndy√
1 − y4

) [87] which starts with the sentence29:

When, prompted by the illustrious Count Fagnano, I first considered this equation, I found
indeed an algebraic relation between the variables x and y which satisfied the equation.

Several years later, in his famous treatise Institutiones calculi integralis [92], Euler
included a section on the addition and multiplication of integrals of the form

29The translation is by S. G. Langton.
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∫
Pd Z√

A + 2B Z + C Z2 + 2DZ3 + E Z4
.

Fagnano’s works, in three volumes, were edited in 1911–1912 by Gambioli, Loria
and Volterra [112].

Among the large number of memoirs that Euler wrote on elliptic integrals,30 we
mention the short memoir [82],Problema, ad cuius solutionem geometrae invitantur;
theorema, ad cuius demonstrationem geometrae invitantur (A Problem, to which a
geometric solution is solicited; a theorem, to which a geometric proof is solicited),
published in 1754, containing his result on the rectification of the difference of two
arcs of an ellipse. We also mention the memoir [90], Demonstratio theorematis et
solutio problematis in actis erud. Lipsiensibus propositorum (Proof of a theorem and
solution of a theorem proposed in the Acta Eruditorum of Leipzig) [90], in which he
studies the division by 2 of an arc of ellipse. The memoir [93], entitled Integratio ae-
quationis dx√

α+βx+γx2+δx3+εx4
= dy√

α+βy+γy2+δy3+εy4
(The integration of the equation

dx√
α+βx+γx2+δx3+εx4

= dy√
α+βy+γy2+δy3+εy4

), written in 1765 and published in 1768,

is mentioned by Jacobi in a letter to Legendre which we quote below.
Besides Euler, onemaymention d’Alembert. In a letter dated December 29, 1746,

Euler writes to his Parisian colleague (see [107] p. 251):

I read with as much profit as satisfaction your last piece with which you honored our Acad-
emy. [...] But what pleasedmemost in your piece is the reduction of several integral formulae
to the rectification of the ellipse and the hyperbola; a matter to which I had also already given
my thoughts, but I was not able to get entirely to the formula

dx√
α + βx + γx2 + δx3 + εx4

and I regard your formula as a masterpiece of your expertise.31

Lagrange, whose name is associated with that of Euler in several contexts, studied
elliptic integrals in his famous Théorie des fonctions analytiques (Theory of analytic

30The Euler archive lists thirty-three memoirs by him under the heading “Elliptic integrals,” pub-
lished between 1738 and 1882. It is sometimes hard to know exactly the year where Euler wrote
his memoirs. For several of them, the date of publication was much later that the date of writing,
and there are several reasons for that, including the huge backlog of the publication department of
the Academies of Sciences of Saint Petersburg and Berlin, the main reason being that Euler used
to send them too many papers.
31J’ai lu avec autant de fruit que de satisfaction votre dernière pièce dont vous avez honoré notre
académie. [...] Mais ce qui m’a plu surtout dans votre pièce c’est la réduction de plusieurs formules
intégrales à la rectification de l’ellipse et de l’hyperbole ; matière à laquelle j’avais aussi déjà pensé,
mais je n’ai pu venir à bout de la formule

dx√
α + βx + γx2 + δx3 + εx4

et je regarde votre formule comme un chef-d’œuvre de votre expertise.
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functions) [164] (first edition 1797). In particular, he discovered a relation between
Euler’s addition formula and a problem in spherical trigonometry.

After Euler, d’Alembert and Lagrange, we must talk about Legendre, who inves-
tigated these integrals for almost forty years. He wrote two famous treatises on the
subject, his Exercices de calcul intégral sur divers ordres de transcendantes et sur
les quadratures (Exercises of integral calculus on various orders of transcendence
and on the quadratures) [171] (1811–1816) and his Traité des fonctions elliptiques
et des intégrales eulériennes (Treatise of elliptic functions and Eulerian integrals)
[172] (1825–1828), both in three volumes. In the introduction to the latter (p. 1ff.),
Legendre makes a brief history of the subject, from its birth until the moment he
started working on it. According to his account, elliptic functions were first studied
by MacLaurin and d’Alembert who found several formulae for integrals that repre-
sent arcs of ellipses or arcs of hyperbolas.32 Legendre declares that their results were
too disparate to form a theory. He then mentions Fagnano, recalling that his work
was the starting point of the profound analogy between elliptic integrals and trigono-
metric functions. After describing Fagnano’s work, Legendre talks about some of the
main contributions of Euler, Lagrange and Landen on the subject. His treatise starts

with a detailed study of integrals of the form
∫

Pdx

R
investigated by Euler, where

P is an arbitrary rational function of x and R =
√

α + βx + γx2 + δx3 + εx4. The
expression Eulerian integral contained in the title of Legendre’s treatise was coined
by him. He writes:

Although Euler’s name is attached to almost all the important theories of integral calculus, I
nevertheless thought that I was allowed to give more especially the name Eulerian integral
to two sorts of transcendants whose properties constituted the subject of several beautiful
memoirs of Euler, and form the most complete theory on definite integrals which exists up to
now [...] 33

After Legendre, and among the immediate predecessors of Riemann on elliptic
functions, we find Abel, Jacobi, and Gauss. The last two were his teachers in Berlin
and Göttingen respectively. With this work, the emphasis in the study of elliptic
integrals shifted to that of their inverses. Considering inverses is naturally motivated
by the analogy with trigonometric functions, as one may see by recalling that the

integral
∫ x

0

dt√
1 − t2

represents the arcsine function, and therefore, its inverse is the

more tractable sine function. The periodic behavior of inverses of elliptic integrals

like
∫ x

0

dt√
1 − t4

and others, which became later one of the main questions in that

theory, is in some sense a generalization of that of trigonometric functions.

32See e.g. [5, 179].
33Quoique le nom d’Euler soit attaché à presque toutes les théories importantes du calcul inté-
gral, cependant j’ai cru qu’il me serait permis de donner plus spécialement le nom d’Intégrales
Eulériennes à deux sortes de transcendantes dont les propriétés ont fait le sujet de plusieurs beaux
mémoires d’Euler, et forment la théorie la plus complète que l’on connaisse jusqu’à présent sur les
intagrales définies [...].



26 A. Papadopoulos

Abel and Jacobi developed simultaneously the theory of elliptic integrals, and
separating their results has always been a difficult task. It is also well established that
Gauss discovered several results of Abel and Jacobi before them, but never published
them. This is attested in his notebook and in his correspondence, published in his
Collected Works. Gauss started his notebook in 1796, at the age of 19, and he wrote
his last note there in 1814. The notes consist of 146 statements, most of them very
concise, and they fill up a total of 20 pages in his Collected Works (vol. 10). This
edition of the notebook published in Gauss’s Collected Works is accompanied by
detailed comments by Bachmann, Brendel, Dedekind, Klein, Lœwy, Schlesinger
and Stäckel. There is a French translation of the notebook [125]. Among the notes
contained in this diary, several concern elliptic functions. For instance, in Notes 32
and 33, Gauss studies the inverse of the lemniscate integral

∫
dx√
1−x4 , as a particular

case of the elliptic integral
∫

dx√
1−xn . In Note 53, he mentions that he is studying the

general integral
∫

dx
n√1−xn , which was already considered by Euler in his Institutiones

calculi integralis. In Note 54, he states that he has an easy method for determining
the integral

∫
xndx
1+xm , again an integral that was considered by Euler. There are several

other notes on elliptic integrals in Gauss’s notebook.
Jacobi read Euler’s works while he was in high school. He obtained his PhD at the

age of 21, and at the age of 22, he started a correspondence with Legendre, who was
74, informing him about his results on elliptic integrals. This correspondence became
famous. It is reproduced in Crelle’s Journal34 and in Jacobi’s Collected Works.35 The
beginning of this correspondence is touching. Jacobi sends his first letter to Legendre
on August 5, 1827, expressing his great respect for the work of his older French
colleague. He writes ([146] vol. 1, p. 390):

A young geometer dares to present you a few discoveries in the theory of elliptic functions,
to which he was led by a diligent study of your beautiful writings. It is to you, Sir, that this
brilliant part of analysis owes the highest degree of perfection to which it has been elevated,
and it is only in following the footsteps of such a great master that the geometers will be
able to push it beyond limits which have been so far prescribed. Thus, it is to thee that I must
offer the following, as a fair tribute of admiration and gratefulness.36

In his response, dated November 30, 1827, Legendre, referring to one of the
theorems that Jacobi communicated to him, writes ([146] vol. 1, p. 396):

I checked this theorem by my own methods and I found it perfectly correct. Even though I
regret that this discovery escaped me, the joy I experienced was most vivid when I saw the

34Crelle’s Journal, 80 (1875), p. 205–279.
35Collected Works, t. I, pp. 385–46.
36Un jeune géomètre ose vous présenter quelques découvertes faites dans la théorie des fonctions
elliptiques, auxquelles il a été conduit par la lecture assidue de vos beaux écrits. C’est à vous,
Monsieur, que cette partie brillante de l’analyse doit le haut degré de perfectionnement auquel elle
a été portée, et ce n’est qu’en marchant sur les vestiges d’un si grand maître, que les géomètres
pourront parvenir à la pousser au-delà des bornes qui lui ont été prescrites jusqu’ici. C’est donc à
vous que je dois offrir ce qui suit comme un juste tribut d’admiration et de reconnaissance.
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significant improvement that was added to the beautiful theory of which I am the creator and
which I developed almost alone during more than forty years.37

In another letter, sent on January 12, 1828, Jacobi informs Legendre about Abel’s
discoveries, in particular on the division of the lemniscate ([146], vol. 1, p. 401):

Sincemy last letter, researches of the highest importancewere published on elliptic functions
by a young geometer, who may be personally known to you.38

Legendre sent his response on February 9, informing his correspondent that he
knew about Abel’s work, but that he was happy to see it summarized in a language
which was closer to his own.39

Regarding Gauss’s work on elliptic functions, we mention an excerpt of the first
letter from Jacobi to Legendre [146] pp. 393–394:

These researches were born only very recently. However, they are not the only ones that are
conducted in Germany on the same object.Mr. Gauss, when he learned about them, informed
me that he had developed, already in 1808, the cases of 3 sections, 5 sections and 7 sections,
and that he found at the same time the corresponding new scales of modules. It seems to me
that this information is very interesting.40

Legendre was outraged by Gauss’s reaction. In his response to Jacobi, dated
November 30, 1827, he writes ([146] p. 398):

How is it possible thatMr. Gauss dared telling you that most of your theoremswere known to
himand that he discovered themback in 1808?This excess of impudence is unbelievable from
a man who has enough personal merit so as he does not need to appropriate the discoveries
of others... But this is the same man who, in 1801, wanted to attribute to himself the law of
reciprocity published in 1785 and who wanted, in 1809, to take hold of the method of least
squares that was published in 1805.41

37J’ai vérifié ce théorème par les méthodes qui me sont propres et je l’ai trouvé parfaitement exact.
En regrettant que cette découverte m’ait échappée je n’en ai pas moins éprouvé une joie très vive
de voir un perfectionnement si notable ajouté à la belle théorie, dont je suis le créateur, et que j’ai
cultivé presque seul depuis plus de quarante ans.
38Depuis ma dernière lettre, des recherches de la plus grande importance ont été publiées sur les
fonctions elliptiques de la part d’un jeune géomètre, qui peut-être vous sera connu personnellement.
39[J’avais déjà connaissance du beau travail de M. Abel inséré dans le Journal de Crelle. Mais
vous m’avez fait beaucoup de plaisir de m’en donner une analyse dans votre langage qui est plus
rapproché du mien.] ([146], t. 1, p. 407).
40Il n’y a que très peu de temps que ces recherches ont pris naissance. Cependant elles ne sont pas
les seules entreprises en Allemagne sur le même objet. M. Gauss, ayant appris de celles-ci, m’a fait
dire qu’il avait développé déjà en 1808 les cas de 3 sections, 5 sections et de 7 sections, et trouvé
en même temps les nouvelles échelles de modules qui s’y rapportent. Cette nouvelle, à ce qui me
paraît, est bien intéressante.
41Comment se fait-il que M. Gauss ait osé vous dire que la plupart de vos théorèmes lui étaient
connus et qu’il en avait fait la découverte dès 1808 ? Cet excès d’impudence n’est pas croyable
de la part d’un homme qui a assez de mérite personnel pour n’avoir pas besoin de s’approprier les
découvertes des autres... Mais c’est le même homme qui en 1801 voulut s’attribuer la découverte
de la loi de réciprocité publiée en 1785 et qui voulut s’emparer en 1809 de la méthode des moindres
carrés publiée en 1805.



28 A. Papadopoulos

It was only at the publication of Gauss’s Collected Works,42 containing in par-
ticular his famous notebook, that it became clear that Gauss’s assertion concerning
the fact that he had discovered before Abel most of the properties of elliptic func-
tions, including their double periodicity, was correct. One of the first results of Abel
concerns integrals of arcs of lemniscate, a curve which he showed to be divisible by
ruler and compass into n equal parts, for the same values of n for which the circle
is divisible into n equal parts. The same result was stated without proof in Gauss’s
Disquisitiones arithmeticae [121].

Abel’s first major results on elliptic functions are contained in his 1827 paper
Recherches sur les fonctions elliptiques (Researches on elliptic functions) [1]. He
explains there the double periodicity of these functions, as well as theirmultiplication
and division properties. The analogy with circular functions is again highlighted. At
the beginning of his paper, Abel talks about his famous predecessors, Euler, Lagrange
and Legendre. He writes (p. 101):

The first idea of these [elliptic] functions were given by the immortal Euler, who showed
that the separable equation

∂x√
α + βx + γx2 + δx3 + εx4

+ ∂y√
α + βy + γy2 + δy3 + εy4

= 0

is algebraically integrable. After Euler, Lagrange added something, when he gave his elegant
theory of the transformation of the integral

∫
Rdx√

(1 − p2x2)(1 − q2x2)
,

where R is a rational function of x . But the first, if I am not mistaken, who went thoroughly
into the nature of these functions, isMr. Legendre,who, first in amemoir on elliptic functions,
and then in his excellentExercices de mathématiques, developed numerous elegant properties
of these functions, and showed their usefulness.43

Riemann was already interested in elliptic functions while he was a student in
Berlin. Klein, in his Development of mathematics in the 19th century [162] (Chap-

42Gauss’s collected works, Carl Friedrich Gauss’ Werke, in twelve volumes, were published be-
tween 1863 and 1929.
43La première idée de ces fonctions a été donnée par l’immortel Euler, en démontrant que l’équation
séparée

∂x√
α + βx + γx2 + δx3 + εx4

+ ∂y√
α + βy + γy2 + δy3 + εy4

= 0

est intégrable algébriquement. Après Euler, Lagrange y a ajouté quelque chose, en donnant son
élégante théorie de la transformation de l’intégrale

∫
Rdx√

(1 − p2x2)(1 − q2x2)
,

où R est une fonction rationnelle de x . Mais le premier, et si je ne me trompe, le seul, qui ait
approfondi la nature de ces fonctions, est M. Legendre, qui d’abord dans un mémoire sur les
fonctions elliptiques, et ensuite dans ses excellents exercices demathématiques, a développé nombre
de propriétés élégantes de ces fonctions, et a montré leur application.



Looking Backward: From Euler to Riemann 29

ter VI) writes that the latter, since the end of the 1840s, was interested in elliptic
functions because this subject was fashionable in Germany. From a letter to his fa-
ther, dated May 30, 1849, we know that Riemann was following in Berlin Jacobi’s
and Eisenstein’s lectures on elliptic functions. He writes (cf. [233]): “Jacobi has just
begun a series of lectures in which he leads off once again with the entire system
of the theory of elliptical functions in the most advanced, but elementary way.” In
another letter (without date), also written in Berlin, Riemann writes: “I enrolled with
five other students into a private class (Privatissumum) with Eisenstein, who was
promoted in the course of this semester to a Privatdozent with a paper on the theory
of elliptic functions.”

We already mentioned Euler’s impact on Jacobi. Eisenstein is another promi-
nent mathematician on which Euler exerted a crucial influence. In his biography
of Eisenstein [237], M. Schmitz writes that during the period 1837–1842, while he
was a Gynmasium pupil, Eisenstein attended lectures by Dirichlet at the University
of Berlin, and that he studied on his own Gauss’s Disquisitiones Arithmeticae as
well as papers and books by Euler and Lagrange. We quote Eisenstein, from his
autobiography translated in [237]:

After I had acquired the fundamentals by private study (I never had a private tutor) I proceeded
to advanced mathematics and studied, besides other books containing advanced material,
the brilliant work of Euler and Lagrange about differential and integral calculus. I was able
to commit this material securely to my memory and to master it entirely, because I made it
a rule to compose every theory in writing as soon as I understood it.

In his ICM communication [254], Weil declares (p. 233) that “Eisenstein fell in
love with mathematics at an early age by reading Euler and Lagrange.”

We shall conclude this section with two other quotes of Weil. Before that, let us
recall that elliptic integrals are studied in number theory in relation with the theory
of elliptic curves. Weil writes in an essay on the history of number theory, [253], p.
15, that Fermat, in his work on number theory, had already dealt with elliptic curves
(without the name), in particular in his proof of the non-existence of integer solutions
for the equation x4 − y4 = z2. We quote him from his book on the history of number
theory that we already mentioned ([255] p. 242):

What we call now “elliptic curves” (i.e. algebraic curves of genus 1) were considered by
Euler under two quite different aspects without ever showing an awareness of the connec-
tion between them, or rather of their substantial identity. On the one hand, he must surely
have been familiar, from the very beginning of his career, with the traditional methods for
handling Diophantine equations of genus 1. [...] On the other hand he had inherited from
his predecessors, and notably from Johann Bernoulli, a keen interest in what we know as
“elliptic integrals” because the rectification of the ellipse depends upon integrals of that type;
they were perceived to come next to the integrals of rational functions in order of difficulty.

Eisenstein and Dirichlet were mostly interested in elliptic functions because of
their use in number theory, contrary to Riemann, who, even though hewas introduced
to elliptic functions through Eisenstein’s lectures, was not excited by that field. Weil
writes in his essays [253], p. 21:



30 A. Papadopoulos

[...] The case of Riemann is more curious. Of all the great mathematicians of the last century,
he is outstanding formany things, but also, strangely enough, for his complete lack of interest
for number theory and algebra. This is really striking,when one reflects howclose hewas, as a
student, to Dirichlet and Eisenstein, and, at a later period, also to Gauss and to Dedekind who
became his most intimate friend. During Riemann’s student days in Berlin, Eisenstein tried
(not without some success, he fancied) to attract him to number theory. ln 1855, Dedekind
was lecturing in Göttingen on Galois theory, and one might think that Riemann, interested as
he was in algebraic functions, might have paid some attention. But there is not the slightest
indication that he ever gave any serious thoughts to such matters.

We shall mention the work of Dirichlet on number theory (in particular on the
prime number theorem) in Sect. 6 below. In Chap.8 [192] of the present book, we
report on several treatises on elliptic functions that were published in France during
the few decades that followed Riemann’s early work on the subject. In the next
section, we review the more general Abelian functions.

4 Abelian Functions

A few years before Riemann started his work on elliptic functions and elliptic in-
tegrals, the general interest moved towards the more general Abelian integrals, and
their inversion. The term Abelian function, first introduced by Jacobi in honor of
Abel, is generally given to the functions obtained by inverting an arbitrary algebraic
integral or a combination of such integrals. An algebraic integral is an integral of the
form

∫
R(x, y)dx where R is a rational function of the two variables x and y and

where x and y satisfy furthermore a polynomial equation f (x, y) = 0. In his 1826
memoir submitted to the Paris Academy, Abel extended Euler’s addition formula for
elliptic integrals to Abelian integrals. He proved that the sum of an arbitrary number
of such integrals can be written as the sum of p linearly independent integrals, to
which is added an algebraic-logarithmic expression. Here p is the so-called genus
of the algebraic curve defined by the equation f (x, y) = 0. After he learned about
Abel’s work, Jacobi formulated a generalized inversion problem for a system of p
hyperelliptic integrals. His ideas were pursued by several mathematicians, and in
particular by Riemann, who gave a solution to the inversion problem in terms of ϑ
functions.

Abel also discovered that the inverse functions of elliptic integrals are doubly
periodic functions defined on the complex plane. This property was at the basis of
the later introduction of group theory in the theory of elliptic curves.

In the passage from elliptic functions to Abelian functions, one must also mention
Galois. The day before his death, Galois sent a letter to his friend Auguste Chevalier
in which he described his thoughts, saying that one could write a memoir based on
his ideas on integrals. The letter is analyzed by Picard in his article [196].44 Picard
writes:

44This article constituted the preface to the CollectedWorks of Galois which were published shortly
after.

http://dx.doi.org/10.1007/978-3-319-60039-0_8


Looking Backward: From Euler to Riemann 31

All what we know about these researches is contained in what he says in this letter. Several
points remain obscure in some statements of Galois; however, we can have a precise idea
of some of the results he reached in the theory of integrals of algebraic functions. We thus
acquire the certainty that he possessed the most essential results on Abelian integrals that
Riemann was led to obtain twenty-five years later. We see without surprise Galois talking
about the periods of an Abelian integral relative to an arbitrary algebraic function [...] The
statements are precise; the famous author makes the classification of Abelian integrals into
three kinds, and he declares that if n denotes the number of linearly independent integrals of
the first kind, the number of periods is 2n. The theorem relative to the parameter inversion
in the integrals of the third type is clearly marked, as well as the relations with the periods of
Abelian integrals. Galois also talks about a generalization of Legendre’s classical equation
where the periods of elliptic integrals appear, a generalization which probably led him to the
important relation that was discovered later on by Weierstrass and Mr. Fuchs.45

In his paper on Abelian functions [217], Riemann establishes existence results for
Abelian functions and more generally their determination in terms of the points of
discontinuity and the information on the ramification at these points. It is in that paper
that Riemann introduces the notion of birational equivalence and number of moduli,
both of which played an essential role in mathematics. In the same paper, he presents
Abel’s addition theorem for elliptic integrals, and he solves Jacobi’s inversion prob-
lem in terms of p variable magnitudes, for a (2p + 2)-connected surface. It is also
in this paper that Riemann gives his well known classification of Abelian integrals
into three types, a classification which depends on the existence and the nature of the
singularities (poles or logarithmic). Riemann mentions in his paper several works on
the inversion problem, in particular the successful attempt by Weierstrass in the case
of hyperelliptic integrals.

On thework ofRiemann onAbelian integrals, the reader is also referred toChap.4,
by Houzel, in the present volume [141]. For a comprehensive survey on the work of
Abel, the interested reader is referred to the article [142] by Houzel.

45Nous ne connaissons de ces recherches que ce qu’il en dit dans cette lettre ; plusieurs points
restent obscurs dans quelques énoncés de Galois, mais on peut cependant se faire une idée précise
de quelques-uns des résultats auxquels il était arrivé dans la théorie des intégrales de fonctions
algébriques. On acquiert ainsi la conviction qu’il était en possession des résultats les plus essentiels
sur les intégrales abéliennes que Riemann devait obtenir vingt-cinq ans plus tard. Nous voyons sans
étonnement Galois parler des périodes d’une intégrale abélienne relative à une fonction algébrique
quelconque [...] Les énoncés sont précis ; l’illustre auteur fait la classification en trois espèces des
intégrales abéliennes, et affirme que, si n désigne le nombre des intégrales de première espèce
linéairement indépendantes, les périodes seront en nombre 2n. Le théorème relatif à l’inversion
du paramètre dans les intégrales de troisième espèce est nettement indiqué, ainsi que les relations
entre les périodes des intégrales abéliennes ; Galois parle aussi d’une généralisation de l’équation
classique de Legendre, où figurent les périodes des intégrales elliptiques, généralisation qui l’avait
probablement conduit à l’importante relation découverte depuis par Weierstrass et par M. Fuchs.
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5 Hypergeometric Series

The theory of the hypergeometric series is another topic which Riemann tackled and
whose roots involve in an essential way the works of Euler and Gauss. Riemann’s
main paper on the subject is Beiträge zur Theorie der durch die Gauss’sche Reihe
F(α,β, γ, x) darstellbaren Functionen (Contribution to the theory of functions rep-
resentable by Gauss’s series F(α,β, γ, x)) [222], published in 1857. The work in
this paper was used by Riemann later in his development of the theory of analytic
differential equations. There are also fragments on the same subject published in
Riemann’s Collected works.

The hypergeometric series is a function of the form

F(α, β, γ, x) = 1 + αβ

1.γ
x + α(α + 1)β(β + 1)

1.2γ(γ + 1)
x2 + α(α + 1)(α + 2)β(β + 1)(β + 2)

1.2.3γ(γ + 1)(γ + 2)
x3 + . . .

where x is the variable.
The term “hypergeometric series” appears in Euler’s Institutiones calculi inte-

gralis [92] (1769), Chapter XI. The series is a solution of the so-called Euler hyper-
geometric differential equation which appears in Chapters VIII and XI of the same
treatise.As amatter of fact, this namewas given to several different but closely related
objects. Euler, in one of his earliestmemoir De progressionibus transcendentibus seu
quarum termini generales algebraice dari nequeunt (On transcendental progressions,
that is, those whose general terms cannot be given algebraically) [65], published in
1738, starts by mentioningWallis’s “hypergeometric series” 1! + 2! + 3! + 4! + · · ·
(without the factorial notation). The terminology here refers to the fact that in anal-
ogy with the case of geometric progressions, where each term is obtained from the
preceding one by multiplying it by a constant, one defined a hypergeometric pro-
gression as a progression in which each term is obtained from the preceding one by
multiplying it by a factor which increases by a unit at each step. Wallis’s papers on
this subject include [251] (1, Scholium to Proposition 190) and [252] (p. 315).

Gauss mentions a hypergeometric series in his doctoral dissertationDemonstratio
nova theorematis omnem functionem algebraicam rationalem integram unius vari-
abilis in factores reales primi vel secundi gradus resolvi posse [119] (New proof
of the theorem that every rational integral algebraic function of one variable can be
resolved into real factors of the first or second degree) (1799).

We refer the reader to the paper [59] for a comprehensive history of the hyperge-
ometric series.

At the beginning of his announcement of his memoir [222], Riemann states: “This
memoir treats a class of functionswhich are useful to solve various problems inmath-
ematical physics.” As a matter of fact, these functions are still commonly used today
inmathematical physics.Riemannnotes that the namehypergeometric serieswasfirst
proposed by Pfaff, for a more general series, whereas Euler, after Wallis, used such a
name for a series which is slightly different. Pfaff was Gauss’s friend, and had been
his teacher. He studied this function in his book Disquisitiones analyticae maxime
ad calculum integralem et doctrinam serierum pertinentes (Analytic investigations
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most relevant for integral calculus and the doctrine of series) [195] (1797). Gauss has
a series of unpublished results on the hypergeometric series, which he communicated
to the astronomer Bessel, whowas also his friend, in a letter dated September 3, 1805.
The results were used by Gauss in his later works. In his writings on the subject,
Gauss used continued fractions in his study of the quotient of two hypergeometric
series. He developed these ideas in his paper Disquisitiones generales circa serium
1 + αβ

1.γ x + α(α+1)β(β+1)
1.2γ(γ+1) xx + α(α+1)(α+2)β(β+1)(β+2)

1.2.3γ(γ+1)(γ+2) x3 + . . . etc. (General investiga-

tions on the series 1 + αβ
1.γ x + α(α+1)β(β+1)

1.2γ(γ+1) xx + α(α+1)(α+2)β(β+1)(β+2)
1.2.3γ(γ+1)(γ+2) x3 + . . . etc.)

[122]. The same year, he wrote another paper on the same subject which he never
published but which is contained in his Collected Works edition [123]. Riemann,
in his paper [222], proved that these fractions converge in the complex plane cut
along the subset [2,+∞] of the x-axis. In the same memoir, he introduced in the
study of the hypergeometic functions a new method, which applies to all functions
that satisfy linear differential equations with algebraic coefficients. He recalls in the
announcement of that memoir, published in the Göttinger Nachrichten, No. 1, 1857,
that Euler and Gauss made a thorough study of these functions from the theoretical
point of view.

In the introduction to his paper [122] Gauss declares that practically any tran-
scendental function that appears in analysis may be obtained as a special case of
the hypergeometric series. In fact, it is known that functions like log(1 + z), arcsin z
and several orthogonal polynomials, including Legendre polynomials and Cheby-
shev polynomials, can be expressed using hypergeometric functions. The so-called
confluent hypergeometric function (or Kummer’s function) is a limit of the hyperge-
ometric function.

The introduction of the hypergeometric series brought a whole new class of new
functions to the field of analysis which, at least in the times of Euler, consisted in the
study of functions.

6 The Zeta Function

This section is concerned with Riemann’s article Über die Anzahl der Primzahlen
unter einer gegebenen Grösse (On the number of primes less than a givenmagnitude)
[219]. This memoir, which is only 8 pages long, changed the course of mathematics.
Riemann wrote it at the occasion of his election to the Berlin Academy of Sciences,
on August 11, 1859. Every newly elected member at that academy was asked to
report on his most recent research, and Riemann chose this topic. A short history of
the subject will show that the list of predecessors of Riemann in this field includes
names which are familiar to us now: Euler, as always, then Legendre, Dirichlet and
Gauss.

Riemann starts his memoir by recalling that Gauss and Dirichlet had been inter-
ested in this subject several years before him. He displays the following formula,
which he recalls was noted by Euler, and which was his own departure point:
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∏ 1

1 − 1
ps

=
∑ 1

ns
.

Here, p takes all the prime values and n all the integer values. Riemann considers the
function represented by these two expressions as a function of a complex variable s
as long as the two series converge, and he denotes this function by ζ(s).46 He then
gives an integral formula for this function, and he notes that this integral is “uniform”
(uni-valued), that it is defined and finite for any value of s except for s = 1 and that
it vanishes when s is a negative odd integer.

The distribution of primes, which is the subject of Riemann’s paper, may be traced
back to Greek antiquity. The reader may recall that there are several results on prime
numbers in Euclid’s Elements. In particular, Proposition 20 of Book IX says that
there are infinitely many primes. It is also known that the Greeks had a method to
list effectively the sequence of primes (Eratosthenes sieve). Without any doubt, the
general question of the distribution of primes kept busy the mathematicians of that
epoch. It is also good to recall, right at the beginning, that Euler, in his paper Variae
observationes circa series infinitas (Various observations about infinite series) [76],
showed that the series of inverses of primes,

1

2
+ 1

3
+ 1

5
+ 1

7
+ 1

11
+ . . . ,

diverges, which in some sense is a wide generalization of the fact that the number of
primes is infinite.

Euler was fascinated by the question of the distribution of primes. We quote him
from a paper entitled Découverte d’une loi tout extraordinaire des nombres par
rapport à la somme de leurs diviseurs (Discovery of a very extraordinary law of
numbers in relation to the sum of their divisors) [80], written in 1747 and published
in 1751:

Mathematicians tried in vain, until now, to discover some or other order in the sequence
of prime numbers, and we have reasons to think that this is a mystery which human mind
will never be able to penetrate. To be convinced, it suffices to take a look at the tables of
prime numbers, that a few persons have taken the trouble to continue beyond one hundred
thousand: one will primarily notice that there is no order and no rule there.47

Let us return now to the zeta function.

46Even though the notation ζ(s) and the name zeta function first appear in Riemann’s paper, we
shall commit the usual anachronism of using the notation ζ(s) for the series

∑∞
n=1

1
ns even when

we talk about the work done on this series before Riemann.
47Les mathématiciens ont tâché jusqu’ici en vain à découvrir un ordre quelconque dans la progres-
sion des nombres premiers, et on a lieu de croire, que c’est un mystère auquel l’esprit humain ne
saurait jamais pénétrer. Pour s’en convaincre, on n’a qu’à jeter les yeux sur les tables des nombres
premiers, que quelques personnes se sont donné la peine de continuer au-delà de cent mille : et on
s’apercevra d’abord qu’il ne règne aucun ordre ni règle.
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The history of the zeta function in Euler’s works naturally starts with the question

of the value of the sum of the series of reciprocals of squares, ζ(2) =
∞∑

1

1

n2
. Before

Euler, this series was known to be convergent, and the determination of its value was
an open question whose formulation can be traced back at least to Pietro Mengoli
in his treatise Novae quadrature arithmeticae, seu de additione fractionum48 (New
arithmetic quadratures, or the addition of fractions) [180] (1650). Several math-
ematicians worked on the problem, including Wallis, Leibniz, Stirling, de Moivre,
Goldbach and several Bernoullis. In fact, the question of computing infinite sumswas
already a fashionable subject at that epoch. Mengoli, Huygens and Leibniz indepen-
dently computed the sum of reciprocals of the triangular numbers, that is, numbers
of the form (n)(n+1)

2 . Leibniz’s computation of the series of inverses of triangular
numbers uses the classical “telescopic method” known to students, so its level of dif-
ficulty has nothing to do with Euler’s computation of ζ(2). The problem of finding
the value of ζ(2) became widely known among mathematicians after it was asked
explicitly by Jakob Bernoulli in his series of papers Positiones de seriebus infinitis
(Positions of an infinite series) (1689).49 In the same work, Bernoulli considered the
series for an arbitrary rational number s.

Euler published several papers on various aspects of the zeta function. In partic-
ular, he was the first to discover a formula establishing a relation between this series
and prime numbers. It is interesting to recall that Euler has been investigating the
convergence of infinite series and infinite products since his early days as a mathe-
matician.50 His first letter addressed to Goldbach, dated October 13, 1729, concerns
the � function, a function that interpolates the factorials. Goldbach had asked the
opinion of several mathematicians on that problem. Euler writes [109]51:

When lately I came across a few ideas that apparently could contribute to the interpolation of
series having a variable law—as you are wont to call it—I took a closer look and discovered
many things regarding that subject. As Mr. Bernoulli hinted that these results might please
you, Sir, I decided to write to you and submit them to your judgment. For the series 1, 2, 6,
24, 120, …, which you have treated extensively, as I see, I have found the general term [...]

The letter ends with:

You, Sir, who have already enriched the theory of series by so many important discoveries,
will therefore judge for yourself what else may be expected from this novel way to deal
with series. It would certainly acquire its greatest utility and perfection if you could bring
yourself to investigate how the differential calculus can be most conveniently applied to
these questions. For up to now my method has the drawback that I cannot find what I want,
but rather have to be content with wanting what I find.

48Mengoli’s treatise is entirely devoted to the theory of infinite series, despite the word quadrature
(that is, computation of areas) in the title.
49See the comments of this work of Bernoulli in Weil’s article [256] p. 4.
50One should note that power series representations of functions already appear in the works of
Newton, in the 1660s.
51In this volume of the Opera Ominia, the letters are translated into English.
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In his paper De summatione innumerabilium progressionum (The summation of
an innumerable progression) [66], Euler starts by giving a 7-digit approximate value
of ζ(2), namely, 1.644934. Needless to say, such a computation needed from his part
a large amount of computing, because the series converges very slowly. Before that,
Wallis had given, in his Arithmetica infinitorum (Arithmetic of the infinite), 1655,
a 3-digit approximation of that series. Goldbach and Daniel Bernoulli also gave 3-
digit approximations, in 1728.52 The reader may find interesting information on that
subject in the correspondence between Euler, Bernoulli and Goldbach.

In 1735, Euler, who was 28 years old, obtained the summation formula for ζ(2)

and,more generally, for the infinite series ζ(2ν) =
∞∑

1

1

n2ν
for any positive integer ν.

He found the values ζ(2) = π2/6 and ζ(2ν) = rνπ
2ν , where rν are rational numbers

which are closely related to the Bernoulli numbers. In the introduction to his memoir
De summis serierum reciprocarum (On the sums of series of reciprocals) [72] (1735),
he writes53:

So much work has been done on the series ζ(n) that it seems hardly likely that anything new
about them may still turn up ... I too, in spite of repeated efforts, could achieve nothing more
than approximate values for their sums ... Now, however, quite unexpectedly, I have found
an elegant formula for ζ(2), depending upon the quadrature of the circle.54

Euler’s discovery made him famous, perhaps for the first time, among mathemati-
cians in all Europe.When the news of Euler’s discovery reached the city of Basel, the
first reaction of his teacher, Johann Bernoulli, was to exclaim that the most burning
desire of his deceased older brother Jakob was now fulfilled. Seen all the work he
has done on the subject, there is no doubt that throughout his life, Euler tried (without
success) to find a formula for ζ(s) for s an odd integer.

It was not unusual for Euler to publish several proofs of the same result, and his
result on the convergence on ζ(2) is one instance of this fact. In particular, there are
proofs of this fact in his memoirs [72] (presented to the Saint Petersburg Academy on
December 5, 1735 and published in 1740) and [76] (presented to the Saint Petersburg
Academy on April 25, 1727 and published in 1744), and an account is given in his
Introductio [61] (first edition 1748).

In a letter to Goldbach dated August 28, 1742 (Letter 54 in [109]), Euler expresses
ζ(2) in terms of dilogarithms. We recall that the dilogarithm function55 is defined as

Li(x) =
∞∑

k=1

xk

k2
.

52In a letter to Goldbach, sent in 1728, Daniel Bernoulli writes that the value of the series ζ(2) “is
very nearly 8/5,” andGoldbach answers that ζ(2) − 1 lies between 16233/25200 and 30197/46800;
cf. Weil [255] p. 257 for more details on this history.
53The translation from the Latin is by André Weil, [255] p. 261.
54Weil adds: [i.e., upon π].
55This name was still not given to that function in the work of Euler mentioned.
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We have Li(1) = ζ(2). In his paper [66], presented to the Saint Petersburg Academy
in 1731 and published in 1738, Euler had already used the dilogarithm function to
find numerical approximations for ζ(2).

In his memoir Remarques sur un beau rapport entre les séries des puissances tant
directes que réciproques (Remarks on a beautiful relation between direct as well as
reciprocal power series), [94], written in 1749 and published in 1768, Euler found
the functional equation satisfied by the zeta function. The relation is not explicitly
written by Euler but it follows from a relation he writes, as pointed out by Weil in
[253] p. 10, who deduces it immediately from the following formula which Euler
writes:

1 − 2n−1 + 3n−1 − 4n−1 + 5n−1 − 6n−1 + etc.

1 − 2−n + 3−n − 4−n + 5−n − 6−n + etc.

= −1.2.3...(n − 1)(2n − 1)

(2n−1 − 1)πn
cos

nπ

2
.

Weil comments on this formula:

In the left hand side, we have formally the quotient ζ(1 − n)ζ(n), except that Euler had
written alternating signs to make the series more tractable; the effect of this is merely to
multiply ζ(n) by 1 − 21−n , and ζ(1 − n) by 1 − 2n . In the right hand side we have the
gamma function, which Euler had invented. Euler proves the formula for every positive
integer n (using the so-called Abel summation to give a meaning to the divergent series in
the numerator of the left hand side), and conjectures its validity for all n.

It was Riemannwho showed later on that this equation is valid for any real number
�= 0, 1.

In his paper Variae observationes circa series infinitas which we already men-
tioned, [76], Euler found, for s > 1, the formula

ζ(s) = 1

�(s)

∫ ∞

0

xs−1dx

ex − 1
.

Here � is the Euler gamma function, which is an extension of the factorial:

�(s) =
∫ ∞

0
e−uus−1du.

In the same paper, he obtained the following formula, valid for real s > 1:

ζ(s) =
∏

p

1

1 − 1
ps

where the product is over all prime numbers p. (Weil explains Euler’s derivation of
this formula in [255] pp. 265–266.) This equality was the starting point of Riemann’s
investigations in his paper [219], and it became at the basis of the field called “analytic
number theory.” Incidentally, it gives a new proof of the fact that there are infinitely
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many prime numbers (taking s = 1 in the formula). We note by the way that Euler
gave another proof of the existence of infinitely many prime numbers, using the
divergence of the harmonic series

∑ 1
n .

After Euler, the next substantial work on the zeta function, ζ(s), was done more
than a century later, by Riemann. Indeed, in the history of number theory that he
wrote, Weil considers (see [255] p. 278) that after Euler, the subject was dead, and
that Riemann resurrected it. He conjectures that in 1859, Riemann started working
on this subject after he seized a remark by Eisenstein, see [256] for the details. Let
us summarize some of the major ideas that Riemann brought in his short paper:

(1) Using analytic continuation, Riemann showed that the zeta function can be ex-
tended to a holomorphic function defined on the complex plane, except at the
point 1 where the function has a simple pole with residue 1.

(2) He discovered the relation between the zeros of the zeta function and the asymp-
totic distribution of prime numbers. In fact, Riemann gave the principal term in
the asymptotic law of the so-called counting function π(x) which measures the
number of prime numbers ≤ x . More precisely, Riemann gave the formula

π(x) ∼ x

log x
, x → ∞

with a sketch of a proof. The result became known as the “prime number theo-
rem.” Complete proofs of this theorem were given later by Hadamard and de la
Vallée Poussin in 1896.

(3) Starting from the functional equation discovered by Euler—and of which Rie-
mann provided two new proofs adapted to the newly extended function—
Riemann showed that the set of zeros of the zeta function contains the even
negative integers, and conjectured that all the other zeros are situated on the line
Im(s) = 1

2 . This is the famous Riemann hypothesis.
(4) Riemann obtained a new functional equation satisfied by the zeta function:

ζ(s) = 2sπs−1 sin(
πs

2
)�(1 − s)ζ(1 − s)

for s �= 0, 1.

Finding the asymptotic behavior of the prime counting function π(x) was, at the
epoch of Riemann, one of themajor problems in number theory. Legendre, Gauss and
Dirichlet had already investigated this problem, andmore precisely, theyworked on a
conjecture saying that π(x) is asymptotic to a function of the size of x

ln x . Riemann’s
main contribution was the introduction of complex analysis in this study, and his
intuition that the distribution of primes is related to the zeros of the zeta function
extended to the complex plane. The works by de la Vallée Poussin and Hadamard
rely heavily on Riemann’s ideas, and the outlines of their proofs are based on his
sketch. We talk about Hadamard’s work on the zeta function and the prime number
theorem in Chap.8 of the present volume, [192]. Let us add here a few historical

http://dx.doi.org/10.1007/978-3-319-60039-0_8
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notes on the counting function; it will give us the occasion to mention again the work
of Legendre.

In 1798, Legendre published his Essai sur la théorie des nombres (Essay on
number theory) [170], a long essay (about 472 pages without the tables) in which,
based on numerical evidence, he proposed a conjecture on the form of the counting
function π(x). He writes (p. 19):

Moreover, it is likely that the rigorous formula which gives the value of b when a is very large

is of the form b = a

A log a + B
, A and B being constant coefficients, and log a denoting

a hyperbolic logarithm. The exact determination of these coefficients would be a curious
problem, worth of training the expertise of the analysts.56

Legendre also gave an approximate value of the constant A(x). Let us note inci-
dentally that Legendre, in the preface to his essay, makes a short history of the
development of number theory, starting with the Greeks (Euclid and Diophantus),
and passing by Viète, Bachet, Fermat, Euler and Lagrange.

In the second edition of his essay (1808), Legendre formulated another conjec-
ture, saying that there are infinitely many primes in any arithmetic progression, that
is, primes of the form l + kn for any natural integer n. This conjecture is at the foun-
dations of the theory of Dirichlet series, and it was at the basis of several approaches
on the prime number theorem. The conjecture was proved by Dirichlet in 1837 [56],
in a paper which brought new tools on how to approach the prime number theorem.
In particular, Dirichlet introduced in this paper his famous L-function.

Besides Dirichlet and Legendre, one has to mention Gauss, who, at the age of 15
or 16, started an extensive investigation on the distribution of prime numbers. Based
mostly on empirical data (tables of prime numbers that he compiled), he observed
that the density of prime numbers around a fixed number x is inversely proportional
to log x , and he deduced that the counting function π(x) should bewell approximated
by the integral

∫ x
2

dt
log t . Gauss never published this work, but he described it in an

1849 letter to his friend and former student, the astronomer J. F. Encke. Gauss, in
that letter, makes a comparison between his results and those of Legendre. The letter
is included in Gauss’s correspondence, edited in his Complete Works, and it is also
translated and commented in the article [128] by L. J. Goldstein.

Finally, one has to mention the work of Chebyshev in his two papers [42, 43],
done slightly before Riemann (the papers are published in 1851 and 1852), in which
he gave precise approximate values for the prime number counting function, making
use of the zeta function in the study of the counting function, as Riemann did in
his 1859 paper. Chebyshev’s paper [43] contains the proof of the so-called Bertrand

56Au reste, il est vraisemblable que la formule rigoureuse qui donne la valeur de b lorsque a est très

grand, est de la forme b = a

A log a + B
, A et B étant des coefficients constants, et log a désignant

un logarithme hyperbolique. La détermination exacte de ces coefficients serait un problème curieux
et digne d’exercer la sagacité des Analystes.
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postulate stating that for any integer n ≥ 3, there exists a prime number p satisfying
n < p < 2N .57

The question of the zeros of the zeta function was proposed by Hilbert in one of
the problems he offered at the Paris 1900 ICM.

Riemann’s memoir [219] had a major influence on several later mathematicians,
including Weil, Siegel, and Selberg.

We conclude this section by quoting Weil, from an obituary article by A. Knapp
[163]:

A substantial portion of Weil’s research was motivated by an effort to prove the Riemann
hypothesis concerning the zeroes of the Riemann zeta function. He was continually looking
for new ideas from other fields that he could bring to bear on a proof. He commented on
this matter in a 1979 interview58: Asked what theorem he most wished he had proved,
he responded, “In the past it sometimes occurred to me that if I could prove the Riemann
hypothesis, which was formulated in 1859, I would keep it secret in order to be able to reveal
it only on the occasion of its centenary in 1959. Since in 1959, I have felt that I am quite far
from it, I have gradually given up, not without regret.”59

One of the famousWeil conjectures is known as the “Riemann hypothesis over finite
fields.”

7 On Space

Riemann’s habilitation lecture contains a discussion on the nature of physical space
and its relation with geometry. The concepts on which Riemann dwells there make
it clear that the theme of space belongs to his profound thought. One of the main
ideas on which he stresses is the possibility that physical space is different from the
space of Euclidean geometry, a point of view that makes Riemann in some sense a
predecessor of modern physics.

57The work of Chebyshev deserves to be much more developed than in these few lines. Like his
famous Swiss-Russian predecessor, Leonhard Euler Chebyshev published on most of the fields of
pure and applied mathematics. In 1852, he made a stay in France, whose aim was essentially to visit
factories and industrial plants, but during his stay he also met several French mathematicians and
discussedwith them. The list includes Bienaymé, Cauchy, Liouville, Hermite, Lebesgue, Poulignac,
Serret and others. A detailed report on this stay, written by Chebyshev himself, is contained in his
Collected works [45]. Chebyshev used to published in French journals and his relations with French
mathematicians remained constant over the years. In 1860, he was elected corresponding member
of the Paris Academy of Sciences, and in 1874 foreign member. We learn from his report that at the
end of his 1852 stay in France, on his way back to Russia, Chebyshev stopped in Berlin and had
several discussions with Dirichlet. It is conceivable that during that meeting the twomathematicians
talked about the problems related to the prime number counting function. We refer the reader to the
article [193] where some of Chebyshev’s works are compared with works of Euler.
58Pour la Science, November 1979.
59Autrefois, il m’est quelquefois venu à l’esprit que, si je pouvais démontrer l’hypothèse de Rie-
mann, laquelle avait été formulée en 1859, je la garderais secrète pour ne la révéler qu’à l’occasion
de son centenaire en 1959. Comme en 1959, je m’en sentais encore bien loin, j’y ai peu à peu
renoncé, non sans regret.



Looking Backward: From Euler to Riemann 41

In speculating on space, Riemann follows a long tradition which includes the
Greeks, Newton, Descartes, Kant and many others, a tradition which survived un-
til the modern period; one may mention, among the mathematicians of the post-
Riemannian period, HermannWeyl, René Thom, Alexandre Grothendieck, and there
are many others. It is therefore natural to have, in this chapter, a section on space, in
which, not only we review Riemann’s ideas—this is done in several chapters of the
present volume–but where we mention some of the ideas on this subject that were
expressed by his predecessors. Our exposition will necessarily be succinct. Writing
a serious essay on the notion of space needs a whole volume.

Space is one of the first very few basic philosophico-epistemological notions. It
appears at several places in the works of Aristotle: there are sections on space in the
Categories, [18], the Physics [20], the Metaphysics [19], the treatise On the heavens
[21], etc. Furthermore, like for many other subjects, we learn from Aristotle’s works
the opinions of his predecessors on space: the Meletians, the Pythagoreans, Plato,
etc.

In the Categories (5a, 8-14), Aristotle explains that space, like time, belongs to
the category of continuous quantity.60 In Book IV of his Physics, he writes about the
difference between “space” and “place.” This is a fundamental distinction, with an
impact in physics, and it had a huge influence on later thinkers.61 The question has
also implications in the history of topology. The Greek origin for the word place is
topos (τ óπoς), and is translated into Latin by situs. The expression analysis situs,
which was used by Leibniz and the Western founders of topology, finds its origin
there.

Among the Western thinkers whose work on the theme of space emerges amid
the classical philosophical monuments, we mention Galileo, Newton, Descartes,
Leibniz, Huygens and Kant. Most of them are quoted by Riemann.

We start by quoting a text from Greek antiquity. This is a fragment by Archytas of
Tarentum which is often referred to in the literature on Pythagorean philosophy, to
show the kind of questions on space and on place that the ancient Greeks addressed,
e.g., whether space is bounded or not, and the paradoxes to which this question leads
(see [143] p. 541):

60In the Categories, (4b 20-5b 11) Aristotle distinguishes seven different types of quantities, which
he classifies as continuous and discrete.Discrete quantity comprises number and speech.Continuous
quantity comprises the line, the surface, the body, time, and space. Needless to say, although this
classification may appear limited from a modern point of view, it has the great merit of existing,
may be for the first time. Aristotle asked the pertinent questions.
61This theme of space and its relation to place was particularly expanded by Aristotle’s commen-
tators. We mention in particular the medieval Andalusian polymath Averroes (1126–1198). The
third chapter of Rashed’s book Les mathématiques infinitésimales du IXème au XIème siècle [211]
contains a critical edition together with a translation and commentaries of the treatise On space
by the Arabic scientist Ibn al-Haytham (known in the West under the name al-Hazen) in which
this author criticizes Aristotle’s theory of space developed in his Physics, and where he defines
subsets of space by metric properties. There is also a rich discussion on the notion of space in Greek
philosophy in the multi-volume encyclopedic work of P. Duhem [57], see in particular vol. I, p.
197ff.
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“But Archytas,” as Eudemus says, “used to propound the argument in this way: ‘If I arrived
at the outermost edge of the heaven [that is to say at the fixed heaven], could I extend my
hand or staff into what is outside or not?’ It would be paradoxical not to be able to extend
it. But if I extend it, what is outside will be either body or place. It doesn’t matter which,
as we will learn. So then he will always go forward in the same fashion to the limit that is
supposed in each case and will ask the same question, and if there will always be something
else to which his staff [extends], it is clear that it is also unlimited. And if it is a body, what
was proposed has been demonstrated. If it is place, place is that in which body is or could
be, but what is potential must be regarded as really existing in the case of eternal things, and
thus there would be unlimited body and space.” (Eudemus, Fr. 65 Wehrli, Simplicius, In Ar.
Phys. iii 4; 541)

The most basic question that was addressed by many of the philosophers of the
modern period that we mentioned is probably the following: Does space have an ob-
jective existence or is it only a construction of human mind? Before trying to answer
this question, or to have an opinion on it, it is helpful to make it precise what notion
of space it refers to: three-dimensional physical space? the three-dimensional space
of Euclidean geometry? an abstract notion of space? Other related questions are: Is
Euclid’s three-dimensional geometry a pure logical construction or is it a mathe-
matical formulation of the properties of external nature? Is the space of (theoretical)
physics the same as the mathematicians’ space? Does void exist, and what function
does it have? These are some of the questions which obviously obsessed Riemann,
and before him, many others.

In Descartes’ doctrine, space depends on matter, therefore void cannot exist.
Leibniz and Euler after him shared the same opinion. Newton had a notion of
“absolute space” and “relative space.” Furthermore, following the ancient Greeks,
Descartes made a difference between space and place. We quote some passages fom
his Principes de la philosophie (Principles of philosophy) [50] (1644).

Principle XIV. How place and space differ: However, place and space are different in names,
because place indicates more expressly situation than magnitude or figure, and that on the
contrary, we think about that one when we talk about space; for we say that a thing entered
at the place of another, even though it does not have exactly neither the same magnitude
nor figure, and for that we do not mean that it occupies the same space that this other thing
occupies; and when the situation is changed, we say that the place has also changed, even
though it has the same magnitude and figure than before: in this sort, if we say that a thing is
in some place, we only mean that it is situated in such a way with respect to other things; but
if we add that it occupies a certain space, or place, then we mean that it has such magnitude
and figure that it can occupy it exactly.62

62Principe XIV. Quelle difference il y a entre le lieu et l’espace: Toutefois le lieu et l’espace sont
différents en leurs noms, parce que le lieu nous marque plus expressément la situation que la
grandeur ou la figure, et qu’au contraire nous pensons plutôt à celles-ci lorsqu’on nous parle de
l’espace ; car nous disons qu’une chose est entrée en la place d’une autre, bien qu’elle n’en ait
exactement ni la grandeur ni la figure, et n’entendons point qu’elle occupe pour cela le même
espace qu’occupait cette autre chose ; et lorsque la situation est changée, nous disons que le lieu
est aussi changé, quoiqu’il soit de même grandeur et de même figure qu’auparavant : de sorte que
si nous disons qu’une chose est en un tel lieu, nous entendons seulement qu’elle est située de telle
façon à l’égard de quelques autres choses ; mais si nous ajoutons qu’elle occupe un tel espace, ou
un tel lieu, nous entendons outre cela qu’elle est de telle grandeur et de telle figure qu’elle peut le
remplir tout justement.
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Principle XV: How the surface surrounding a body can be taken as its exterior place: Thus,
we never make a distinction between space and extent, for what regards length, width and
depth; but we sometimes consider place as if it were within the thing which is placed, and
sometimes also as if it were outside it. By no means the interior differs from space; but
sometimes we take the exterior to be either the surface surrounding immediately the thing
which is placed (and one has to notice that by surface we must not intend any part of the
body surrounding it but only the extremity which is between the body which surrounds and
the one which is surrounded which is only a mode or a way), or to be the surface in general,
which is not part of a body rather than another one, and which always seems to be the same,
provided it has the same magnitude and the same figure; because even if we see that the
body that surrounds another body passes somewhere else with its surface, we are not used to
say that what was surrounded by it has changed its place for this reason, it stays at the same
situation regarding the other bodies that we consider as still. Thus, we say that a boat which
is carried away by the stream of a river, and which is at the same time pushed away by the
wind by a force which is so equal that it does not change its situation regarding the shores,
stays at the same place, even though we see that all the surface that surrounds it changes
permanently.63

Euler had also a strong philosophical background and, needless to say, a tendency
for abstraction. We recall that the subject of his first public lecture, delivered at the
University of Basel at the occasion of his graduation,was the comparison between the
philosophical systems of Newton and Descartes. The notions of space, of motion and
of force are discussed in several of his papers on physics. His most important work
related to thesematters is hisMechanica, in two volumes of 500 pages each, [63]with
its systematic use of analysis (differential equations) in the field of mechanics, as op-
posed to Newton’s geometric point of view developed in his Principia. In his memoir
Recherches sur l’origine des forces (Research on the origin of forces) [78] (1750),
Euler uses an argument involving a notion of “impenetrability of bodies” fromwhich
he deduces the law of shock of bodies.We alsomention hisAnleitung zur Naturlehre,
worin die Gründe zu Erklärung aller in der Natur sich ereignenden Begebenheiten
und Veränderungen festgesetzet wedren (Introduction to natural science establishing
the fundamentals for the explanation of the events and changes that occur in nature),
[98], a long memoir written in 1745, but never completed and published in 1862.
HermannWeyl says ([258] p. 42) about this memoir that Euler “inmagnificent clarity

63Principe XV. Comment la superficie qui environne un corps peut être prise pour son lieu exterieur:
Ainsi nous ne distinguons jamais l’espace d’avec l’étendue en longueur, largeur et profondeur ; mais
nous considérons quelquefois le lieu comme s’il était en la chose qui est placée, et quelquefois aussi
comme s’il en était dehors. L’intérieur ne diffère en aucune façon de l’espace ; mais nous prenons
quelquefois l’extérieur ou pour la superficie qui environne immédiatement la chose qui est placée
(et il est à remarquer que par la superficie on ne doit entendre aucune partie du corps qui environne,
mais seulement l’extrémité qui est entre le corps qui environne et celui qui est environné, qui n’est
rien qu’un mode ou une façon), ou bien pour la superficie en général, qui n’est point partie d’un
corps plutôt que d’un autre, et qui semble toujours la même, tant qu’elle est de même grandeur
et de même figure ; car encore que nous voyions que le corps qui environne un autre corps passe
ailleurs avec sa superficie, nous n’avons pas coutume de dire que celui qui en était environné ait
pour cela changé de place lorsqu’il demeure en la même situation à l’égard des autres corps que
nous considérons comme immobiles. Ainsi nous disons qu’un bateau qui est emporté par le cours
d’une rivière, et qui en même temps est repoussé par le vent d’une force si égale qu’il ne change
point de situation à l’égard des rivages, demeure en même lieu, bien que nous voyions que toute la
superficie qui l’environne change incessamment.
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summarizes the foundations of the philosophy of nature of his time.” In this memoir,
Euler discusses notions like the extent of material bodies, the infinite divisibility of
these bodies, motion, space, place magnitude, aether and gravity. His memoir Essai
d’une démonstration métaphysique du principe général de l’équilibre (Essay on a
metaphysical demonstration of the general principle of equilibrium) [81] concerns
again, force, equilibrium, motion and gravity. In his memoir Réflexions sur l’espace
et le temps (Reflections on space and time) [79], he makes a comparison between the
mathematicians’ and the philosophers’ (which he calls the “metaphysicians”) points
of view. He describes position as the relation of a body with other bodies around it.
He declares that the metaphysicians are wrong in claiming that the notions of space
and place are abstract constructions of the mind, and he argues to show the reality
of space and time. He claims that both absolute space and time, as mathematicians
represent them, are real and exist beyond human imagination. He discusses inertia
and the relativity of motion, the ideas of place and position, supported by notions
from mechanics.

Euler’s philosophical ideas, and their impact on Riemann, have not yet been
seriously discussed in the literature.

Immanuel Kant is among the commanding figures that preceded Riemann on the
subject of philosophy of space. As a matter of fact, space was already a major theme
in Kant’s Inaugural dissertation (1770). Kant expresses there his doctrine of the a
priori nature of space and of geometric objects, that is, the belief that they are not
derived from an outside experience. The following excerpt contains an expression
of this point of view, which, as we shall recall, Gauss criticized later ([159] Sect. 15,
A–D):

The concept of space is not abstracted from external sensations. For I am unable to conceive
of anything posited without me unless by representing it as in a place different from that in
which I am, andof things asmutually outside of eachother unless by locating them indifferent
places in space. Therefore the possibility of external perceptions, as such, presupposes and
does not create the concept of space, so that, although what is in space affects the senses,
space cannot itself be derived from the senses.

The concept of space is a singular representation comprehending all things in itself, not an
abstract and common notion containing them under itself. What are called several spaces
are only parts of the same immense space mutually related by certain positions, nor can you
conceive of a cubic foot except as being bounded in all directions by surrounding space.

The concept of space, therefore, is a pure intuition, being a singular concept, not made up
by sensations, but itself the fundamental form of all external sensation. This pure intuition
is in fact easily perceived in geometrical axioms, and any mental construction of postulates
or even problems. That in space there are no more than three dimensions, that between
two points there is but one straight line, that in a plane surface from a given point with a
given right line a circle is describable, are not conclusions from some universal notion of
space, but only discernible in space as in the concrete. Which things in a given space lie
toward one side and which are turned toward the other can by no acuteness of reasoning be
described discursively or reduced to intellectual marks. There being in perfectly similar and
equal but incongruous solids, such as the right and the left hand, conceived of solely as to
extent, or spherical triangles in opposite hemispheres, a difference rendering impossible the
coincidence of their limits of extension, although for all that can be stated inmarks intelligible
to the mind by speech they are interchangeable, it is patent that only by pure intuition can
the difference, namely, incongruity, be noticed. Geometry, therefore, uses principles not
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only undoubted and discursive but falling under the mental view, and the obviousness of
its demonstrations—which means the clearness of certain cognition in as far as assimilated
to sensual knowledge—is not only greatest, but the only one which is given in the pure
sciences, and the exemplar and medium of all obviousness in the others. For, since geometry
considers the relations of space, the concept of which contains the very form of all sensual
intuition, nothing that is perceived by the external sense can be clear and perspicuous unless
by means of that intuition which it is the business of geometry to contemplate. Besides, this
science does not demonstrate its universal propositions by thinking the object through the
universal concept, as is done in intellectual disquisition, but by submitting it to the eyes in
a single intuition, as is done in matters of sense.

Space is not something objective and real, neither substance, nor accident, nor relation; but
subjective and ideal, arising by fixed law from the nature of the mind like an outline for the
mutual co-ordination of all external sensations whatsoever. Those who defend the reality
of space either conceive of it as an absolute and immense receptacle of possible things,
an opinion which, besides the English, pleases most geometricians, or they contend for its
being the relation of existing things itself, which clearly vanishes in the removal of things
and is thinkable only in actual things, as besides Leibniz, is maintained by most of our
countrymen. The first inane fiction of the reason, imagining true infinite relation without any
mutually related things, pertains to theworld of fable. But the adherents of the second opinion
fall into a much worse error. Whilst the former only cast an obstacle in the way of some
rational or monumental concepts, otherwise most recondite, such as questions concerning
the spiritual world, omnipresence, etc., the latter place themselves in fiat opposition to the
very phenomena, and to the most faithful interpreter of all phenomena, to geometry. For, not
to enlarge upon the obvious circle in which they become involved in defining space, they cast
forth geometry, throwndown from the pinnacle of certitude, into the number of those sciences
whose principles are empirical. If we have obtained all the properties of space by experience
from external relations only, geometrical axioms have only comparative universality, such
as is acquired by induction. They have universality evident as far as observed, but neither
necessity, except as far as the laws of nature may be established, nor precision, except what
is arbitrarily made. There is hope, as in empirical sciences, that a space may some time be
discovered endowed with other primary properties, perchance even a rectilinear figure of
two lines.

The reader will notice that Kant talks about “geometrical axioms,” and mentions
axioms of Euclidean geometry such as the fact that “between two points there is but
one straight line.” Kant was by no means a mathematician, but he had a sufficient
knowledge, as a philosopher, of several basic principles of mathematics.

It appears fromGauss’s correspondence, published inVolumeVII of hisCollected
Works (p. 200ff.) that hewasmeditating on the nature of space since a very young age,
probably from the age of 16. It is from these meditations that he became interested in
the parallel postulate and in non-Euclidean geometry, spherical and (the hypothetical)
hyperbolic. Unlike most of the geometers that preceded him, Gauss was convinced,
at a very early stage of his life, that the parallel postulate was not a consequence
of the others, and he spent a lot of time and energy pondering on the principles of
hyperbolic geometry, a geometry resulting from the negation of this postulated.

Gauss was also thoroughly interested in philosophy, and, in particular, he read
Kant. He became very critical of the latter’s conception of space, exemplified in the
text we just quoted as being “not something objective and real, neither substance, nor
accident, nor relation, but subjective and ideal, arising by fixed law from the nature
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of the mind.” On Kant, Gauss had the advantage of being a mathematician. In a letter
to his friend Bessel, dated April 9, 1830, Gauss writes (translation from [30] p. 13):

We must confess in all humility that a number is solely a product of our mind. Space, on the
other hand, possesses also a reality outside of our minds, the laws of which we cannot fully
prescribe a priori.

In another letter, sent to Wolfgang Bolyai on March 6, 1832 and published in his
Collected Works, Gauss writes, concerning the two hypotheses on the angle sum in
a triangle, that it is precisely in the difficulty of this decision that “lies the clearest
proof that Kant was wrong in asserting that space is just a form of our perception.”

Gausswas also very critical ofKant’s argument based on symmetries in the textwe
quoted above (“There being in perfectly similar and equal but incongruous solids,
such as the right and the left hand, conceived of solely as to extent,…it is patent
that only by pure intuition can the difference, namely, incongruity, be noticed”). We
further discuss this in Chap.6 of the present volume [190].

It is not surprising that Riemann declares, in his habilitation lecture, that, con-
cerning his ideas on space, he is influenced by Gauss.

Riemann’s ideas on space were discussed by Clifford, the first mathematician who
translated into English Riemann’s habilitation text, cf. [46].

8 Topology

Poincaré, who is certainly the major founder of the modern field of topology,64

declares in his “Analysis of his own works” (Analyse des travaux scientifiques de
Henri Poincaré faite par lui-même), [202] p. 100, that he has two predecessors in the
field, namely, Riemann and Betti. The latter, in his correspondence with his friend
and colleague Placido Tardy reports on several conversations he had with Riemann
on topology. Two letters from Betti to Tardy on this subject are reproduced and
translated in the book [206] by Pont, in the article [257] by Weil, and prior to them,
by Loria in his obituary on Tardy [178].

The first of these two letters by Betti, datedOctober 6, 1863, starts with the follow-
ing (Weil’s translation): “I have newly talked with Riemann about the connectivity
of spaces, and have formed an accurate idea of the matter,” and he goes on explaining
to his friend the notion of connectivity and that of the order of connectivity. Betti
then writes:

What gave Riemann the idea of the cuts was that Gauss defined them to him, talking about
other matters, in a private conversation. In his writings one finds that analysis situs, that is,
this consideration of quantities independently from their measure, is “wichtig”; in the last

64We may quote P. S. Alexandrov, who declared in a talk he gave at a celebration of the centenary
of Poincaré’s birth [9]: “To the question of what is Poincaré’s relationship to topology, one can
reply in a single sentence: he created it.” On Poincaré and Riemann, Alexandrov, in the same talk,
says the following: “The close connection of the theory of functions of a complex variable, which
Riemann has observed in embryonic form, was first understood in all its depth by Poincaré."

http://dx.doi.org/10.1007/978-3-319-60039-0_6
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years of his life he has been much concerned with a problem in analysis situs, namely: given
a winding thread and knowing, at every one of its self-intersections, which part is above and
which below, to find whether it can be unwound without making knots; this problem he did
not succeed in solving except in special cases ...

The second letter, dated October 16, 1863, starts with: “Riemann proves quite easily
that every space can be reduced to an SC space by means of 1-cuts and SC 2-
cuts.” In the same letter, Betti elaborates on this subject, giving many examples in
n dimensions. He concludes the letter by noting that the number of line sections
is equal to the number of periodicity moduli of an (n − 1)-integral, the number of
simply connected surface sections to the number of periodicity moduli of an (n − 2)-
integral, and so on.

This should make clear the parentage, for what concerns topology, from Riemann
to Poincaré, potentially including Betti. In this section, we go further back in the
history of topological ideas, and we review some of the important works done before
Riemann in this field.

René Thom considers that topology was born in ancient Greece. He expanded on
this idea in several articles, cf. [246, 247]. This is a perfectly reasonable theory. In
fact, the question depends onwhat sensewe give to theword “topology.” If thematter
concerns the notions of limit and convergence, then the roots of this field are indeed
inGreek antiquity, andmore especially, in thewritings of Zeno, which do not survive,
but which were quoted by his critics and commentators, including Plato, Aristotle
and Simplicius. Likewise, if the question concerns the notion of space, and the related
notion of place, then the roots also are in Greek science. We already alluded to this
fact in the previous section. The Greeks made a distinction between space and place
and the notion of place (situs) is at the basis of topology. The three words place, situs
and τ óπoς are synonyms. To the best of our knowledge, a systematic investigation
of the origin of topology in Greek antiquity has never been conducted. A whole book
may be written on that subject. Failing to do this now, we shall start our exposition
of the roots of topology with Leibniz, as it is usually done. Indeed, it is commonly
accepted that the first explicit mention of topology as a mathematical field was made
by him.

Even though no purely topological result can be attributed to Leibniz, he had the
privilege to express for the first time, back in the seventeenth century, the need for
a new branch of mathematics, which would be “a geometry that is more general
than the rigid Euclidean geometry and the analytic geometry of Descartes.” Leibniz
describes his geometry as purely qualitative and concerned with the study of figures
independently of their metrical properties. In a letter to Christiaan Huygens, sent on
September 8, 1679 (cf. [176] pp. 578–569 and [144] vol. VIII no 2192), he writes:

After all the progress I havemade in thesematters, I am still not happywith Algebra, because
it provides neither the shortest ways nor the most beautiful constructions of Geometry.
This is why when it comes to that, I think that we need another analysis which is properly
geometric or linear,which expresses to us directly situm, in the sameway as algebra expresses
magnitudinem. And I think that I have the tools for that, and that we might represent figures



48 A. Papadopoulos

and even engines and motion in character, in the same way as algebra represents numbers in
magnitude.65

In the same letter ([176] p. 570), Leibniz adds:

I found the elements of a new characteristic, completely different from Algebra and which
will have great advantages for the exact and natural mental representation, although without
figures, of everything that depends on the imagination. Algebra is nothing but the charac-
teristic of undetermined numbers or magnitudes. But it does not directly express the place,
angles and motions, from which it follows that it is often difficult to reduce, in a compu-
tation, what is in a figure, and that it is even more difficult to find geometrical proofs and
constructions which are enough practical even when the Algebraic calculus is all done.66

Together with his letter to Huygens, Leibniz included the manuscript of an essay
he wrote on the new subject. He writes, in the same letter ([176] p. 571):

But since I don’t see that anybody else has ever had the same thought, which makes me
fear that it might be lost if I do not get enough time to complete it, I will add here an essay
which seems to me important, and which will suffice at least to rendre my aim more credible
and easier to conceive, so that if something prevents its realization now, it will serve as a
monument for posterity and give the possibility to somebody else to finish it.67

He then explains in more detail his vision of this new domain of mathematics,
and where it stands with respect to algebra and geometry, giving several examples of
a formalism to denote loci, showing how this formalism expresses statements such
that the intersection of two spherical surfaces is a circle, and the intersection of two
planes is a line.

Leibniz’ letter ends with the words ([174] p. 25):

65Après tous les progrès que j’ai faits en ces matières, je ne suis pas encore content de l’Algèbre,
en ce qu’elle ne donne ni les plus courtes voies, ni les plus belles constructions de Géométrie.
C’est pourquoi lorsqu’il s’agit de cela, je crois qu’il nous faut encore une autre analyse proprement
géométrique ou linéaire, qui nous exprime directement situm, comme l’algèbre exprime magni-
tudinem. Et je crois d’en avoir le moyen, et qu’on pourrait représenter des figures et même des
machines et mouvements en caractères, comme l’algèbre représente les nombres en grandeurs. [We
have modernized the French.].
66J’ai trouvé quelques éléments d’une nouvelle caractéristique, tout à fait différente de l’Algèbre,
et qui aura de grands avantages pour représenter à l’esprit exactement et au naturel, quoique sans
figures, tout ce qui dépend de l’imagination. L’Algèbre n’est autre chose que la caractéristique
des nombres indéterminés ou des grandeurs. Mais elle n’exprime pas directement la situation, les
angles et les mouvements, d’où vient qu’il est souvent difficile de réduire dans un calcul ce qui est
dans la figure, et qu’il est encore plus difficile de trouver des démonstrations et des constructions
géométriques assez commodes lors même que le calcul d’Algèbre est tout fait.
67Mais comme je ne remarque pas que quelqu’autre ait jamais eu la même pensée, ce qui me
fait craindre qu’elle ne se perde, si je n’y ai pas le temps de l’achever, j’ajouterai ici un essai qui
me paraît considérable, et qui suffira au moins à rendre mon dessein plus croyable et plus aisé à
concevoir, afin que si quelque hasard en empêche la perfection à présent, ceci serve de monument
à la postérité, et donne lieu à quelque autre d’en venir à bout.
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I have only one remark to add, namely, that I see that it is possible to extend the characteristic
to things which are not subject to imagination. But this is too important and it would lead us
too far for me to be able to explain myself on that in a few words.68

When Leibniz started his correspondence with Huygens, the latter was already a
well established scientist whose achievements were behind him, and it was not easy
to convince him of the usefulness of a new theory. Huygens thought that the theory
was too abstract and he remained skeptical about it. He was above all a geometer
working on concrete geometrical problems.

One may recall that when Leibniz sent him the above letter, Huygens was consid-
ered as a world authority in geometry and physics. He was settled in Paris since 15
years, and he was a leading member of the Académie Royale des Sciences. Leibniz
had studied mathematics with Huygens, who was seventeen years older than him,
and he considered him as his mentor. Huygens responded to Leibniz in a letter dated
November 22, 1679 ([176] p. 577):

I have examined carefully what you are asking me regarding your new characteristic, and
to be frank with you, I cannot not conceive the fact that you have so much expectations
from what you spread on me. Because your example of places concerns only realities which
were already perfectly known, and the proposition saying that the intersection of a plane
and a spherical surface makes the circumference of a circle does not follow clearly. Finally,
I cannot see in what way you can apply your characteristic to which you seem you want
to reduce all these different matters, like the quadratures, the invention of curves by the
properties of tangents, the irrational roots of equations, Diophantus’ problems, the shortest
and the most beautiful constructions of the geometric problems. And what still appears to
me stranger than anything else, the invention and the explanation of machines. I say it to
you unsuspiciously, in my opinion this is only wishful thinking, and I need other proofs in
order to believe that there could be some reality in what you present. I would nevertheless
restrain myself from saying that you are mistaken, knowing the subtlety and the deepness
of your mind. I only beg you that the magnificence of the things you are searching won’t let
you postpone from giving us those which you already found, like this Arithmetic Quadrature
you discovered, concerning the roots of the equations beyond the cubical, if you are still
satisfied with it.69

68Je n’ai qu’une remarque à ajouter, c’est que je vois qu’il est possible d’étendre la caractéristique
jusqu’aux choses, qui ne sont pas sujettes à l’imagination ; mais cela est trop important et va trop
loin pour que je me puisse expliquer là-dessus en peu de paroles.
69J’ai examiné attentivement ce que vous me demandez touchant votre nouvelle caractéristique,
mais pour vous l’avouer franchement, je ne conçois pas parce que vous m’en étalez, que vous y
puissiez fonder de si grandes espérances. Car votre exemple des Lieux ne regarde que des vérités
qui nous étaient déjà fort connues, et la proposition de ce que l’intersection d’un plan et d’une
surface sphérique fait la circonférence d’un cercle, s’y conclut assez obscurément. Enfin, je ne vois
point de quel biais vous pourriez appliquer votre caractéristique à toutes ces choses différentes qu’il
semble que vous y vouliez réduire, comme les quadratures, l’invention des courbes par la propriétés
des tangentes, les racines irrationnelles des Équations, les problèmes de Diophante, les plus courtes
et plus belles constructions des problèmes géométriques. Et ce qui me paraît encore le plus étrange,
l’invention et l’explication des machines. Je vous le dis ingénument, ce ne sont là à mon avis que
de beaux souhaits, et il me faudrait d’autres preuves pour croire qu’il y eût de la réalité dans ce
que vous avancez. Je n’ai pourtant garde de dire que vous vous abusiez, connaissant d’ailleurs la
subtilité et profondeur de votre esprit. Je vous prie seulement que la grandeur des choses que vous
cherchez ne vous fasse point différer de nous donner celles que vous avez déjà trouvées, comme est
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In another letter dated January 11, 1680 ([176] p. 584) Huygens writes:

For what concerns the effects of your characteristic, I see that you insist on being persuaded
of them, but as you say yourself, the examples will be more important than reasonings. This
is why I am asking you much simpler examples, but capable of overcoming my incredulity,
because that of the places, I confess, does not seem to me of that sort.70

The essay that Leibniz sent did not obtain Huygens’ backing and it remained
hidden among other manuscripts in Huygens’ estate. It was published for the first
time in 1833, and drew the attention of several nineteenth-century mathematicians,
including Grassmann (1809–1877), the founder of the theory of vector spaces, who
realized its importance for the new field of topology. There are two recent editions
of this text, both included in doctoral dissertations, by J. Acheverría [175] (1995),
in France, and by de Risi, [234] (2007), in Germany. The two dissertations contain
other texts by Leibniz on the same subject.

Leibniz used several names for the new field, including analysis situs, geometria
situs, characteristica situs, characteristica geometrica, analysis geometrica, spe-
ciosa situs, etc.

The first mathematician who worked consciously on topological questions is
Euler. These questions include the definition and the invariance of the Euler charac-
teristic of a convex polyheron, the problem known as that of the Königsberg seven
bridges, another question related to the Knight’s tour on the chessboard, and a mu-
sical question concerning a graph known as the speculum musicum. This graph was
introduced in Euler’s Tentamen novae theoriae musicae ex certissimis harmoniae
principiis dilucide expositae (A attempt at a new theory of music, exposed in all
clearness according to the most well-founded principles of harmony) [71]. Its ver-
tices are the twelve notes of the chromatic scale, and the edges connect two elements
which differ by a fifth or a major third with the property that one may traverse all the
edges of the graph passing exactly once by each note. The article [189] is a detailed
survey of the work of Euler on these questions. In the present section, we start by
reviewing the work of Euler on the question of the seven bridges of Königsberg.
This work shows that Euler considered himself as the direct heir of Leibniz for what
concerns the field of topology. We shall then describe in detail the works of Euler
and Descartes on the Euler characteristic, a question which is directly related to the
topological classification of surfaces, which was one of Riemann’s major achieve-
ments in topology. We recall that Euler formulated this result for a surface which is
the boundary of a convex polyhedron having F faces, A edges and S vertices; the
formula is then:

F − A + S = 2.

(Footnote 69 continued)
cette Quadrature Arithmétique et que vous avez découvert pour les racines des équations au-delà
du cube, si vous en êtes content vous-même.
70Pour ce qui est des effets de votre caractéristique, je vois que vous persistez à en être persuadé,
mais, comme vous dites vous-même, les exemples toucheront plus que les raisonnements. C’est
pourquoi je vous en demande des plus simples, mais propres à convaincre mon incrédulité, car celui
des lieux, je l’avoue, ne me paraît pas de cette sorte.



Looking Backward: From Euler to Riemann 51

We start with the problem of the Königsberg bridges.
In the eighteenth century, the city of Königsberg71 consisted of four quarters

separated by branches of the river Pregel and related by seven bridges. The famous
“problem of the seven bridges of Königsberg” asks for a path in that city that starts
at a given point and returns to the same point after crossing once and only once each
of the seven bridges. At the time of Euler, this was a popular question among the
inhabitants of Königsberg.

Euler showed that such a path does not exist. He presented his solution to the Saint
Petersburg Academy of Sciences on August 26, 1735, and in the same year he wrote
a memoir on the solution of a more general problem entitled Solutio problematis
ad geometriam situs pertinentis (Solution of a problem relative to the geometry of
position) [74]. Euler learned about the problem from a letter, dated March 7, 1736,
sent to him by Carl Leonhard Gottlieb Ehler, one of his friends who was the mayor of
Danzig72 and who had worked as an astronomer in Berlin. Euler solved the problem
just after he received the letter. In a letter dated March 13, 1736, written to Giovanni
Marioni, an Italian astronomer working at the court of Vienna, Euler declares that
he became interested in this question because he realized that the problem could not
be solved using geometry, algebra or combinatorics, and that therefore he wondered
whether “it belonged to the ‘geometry of position,’ (geometria situs) which Leibniz
has so much sought for.” In the same letter, Euler announced to Marioni that after
some thought, he found a proof which applies not only to that case, but to all similar
problems.

In the introduction of his paper, Euler writes (translation from [29]):

In addition to that branch of geometry which is concerned with magnitudes, and which has
always received the greatest attention, there is another branch, previously almost unknown,
which Leibniz first mentioned, calling it the geometry of position. This branch is concerned
only with the determination of position and its properties; it does not involve measurements,
nor calculations made with them. It has not yet been satisfactorily determined what kind of
problems are relevant to this geometry of position, or whatmethods should be used in solving
them. Hence, when a problem was recently mentioned, which seemed geometrical but was
so constructed that it did not require the measurement of distances, nor did calculation help
at all, I had no doubt that it was concerned with the geometry of position, especially as its
solution involved only position, and no calculation was of any use. I have therefore decided
to give here the method which I have found for solving this kind of problem, as an example
of the geometry of position.

Euler’s work on this problem is commented in several articles and books.
We now come to Euler’s polyhedron formula, and we start with Descartes.
Long before Euler came out with his formula F − A + S = 2 relating the faces

(F), edges (A) and vertices (S) of a convex polyhedron, Descartes obtained an equiv-
alent result, with a geometric proof, involving the solid angles and the dihedral angles
between the faces. Described in modern terms, Descartes’ proof consists in comput-
ing in two different manners the total curvature of the boundary of the polyhedron.

71Today, the city of Königsberg, called Kaliningrad, is part of a Russian exclave between Poland
and Lithuania on the Baltic Sea.
72Today, Danzig is the city of Gdansk, in Poland.
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Descartes wrote that proof at the age of 25, but did not publish it. The story of
Descartes’ manuscript is interesting and we recall it now.

Descartes’ manuscript was discovered in Hanover, among Leibniz’s estate. The
latter had copied Descartes’ proof during a stay in Paris, in 1675 or 1676, presumably
with the intention of publishing it. The original manuscript of Descartes, which
carries the title Progymnasmata de solidorum elementis (Preparatory exercises to
the elements of solids) [47] is mentioned in an inventory of papers which Descartes
left in some chests in Stockholm, the city where he died. The copy, made by Leibniz,
carries the same title, with the additional mention excerpta ex manuscripto Cartesii
(Excerpt from a manuscript of Descartes). After the manuscript was discovered,
a French translation was published by Foucher de Careil in 1859, in a volume of
unpublished works of Descartes. This publication contained errors, because Foucher,
who did it, was not a mathematician. The edition is nevertheless interesting, and in
the introduction to the volume [114], Foucher recalls the story of the discovery. The
story is also told by Adam in the commentaries of the volume of the Adam-Tannery
edition of Descartes’ works containing this theorem ([51] tome X, pp. 257–263).

In 1890, Jonquières presented to the Paris Académie des Sciences two Comptes
Rendus notes entitled Sur un point fondamental de la théorie des polyèdres (On a
fundamental property of the theory of polyhedra) [148] and Note sur le théorème
d’Euler dans la théorie des polyèdres (Note on the theorem of Euler on the theory
of polyhedra) [149], without being aware of the work of Descartes on this subject.
After Jordan pointed out the existence of the work of Descartes in Foucher’s edi-
tion, Jonquières published other Comptes Rendus notes on the work of Descartes, cf.
[150–152]. Poincaré, in his celebrated first memoir on Analysis situs [200] attributes
to Jonquières the generalization of Euler’s theorem to non-necessarily convex poly-
hedral surfaces.

There is a relatively recent (1987) critical edition of Descartes’ Progymnasmata
with a French translation, with notes and commentaries, by P. Costabel [47].

Euler reported on his work on polyhedra in his correspondence with Goldbach.
In a letter dated November 14, 1750, Euler informs his friend of the following two
results which he refers to as Theorems 6 and 11 respectively:

6. In any solid enclosed by plane surfaces the sum of the number of faces and the number of
solid angles is greater by 2 than the number of edges.

11. The sum if all planar angles equals four times as many right angles as the number of
solid angles, decreased by 8.

The term “solid enclosed by plane surfaces” refers to a convex polyhedron. The
first result is the Euler characteristic formula, and the second one is a form of the
Gauss-Bonnet theorem for the sphere. Euler writes:

I am surprised that these general properties in stereometry have not been noticed by anybody,
as far as I know, but still more that the most important of them, viz., Th. 6 and Th. 11, are
so hard to prove; indeed I still cannot prove them in a way that satisfies me.

In the same letter, Euler gives several examples where the two theorems are
satisfied.
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In his memoir [85], entitled Demonstratio nonnullarum insignium proprietatum,
quibus solida hedris planis inclusa sunt praedita (Proof of some of the properties of
solid bodies enclosed by planes) and written one year after [84], Euler gave proofs of
the two results. In the introduction of [85], he declares that his polyhedron formula is
part of a more general research he is conducting on polyhedra. In fact, in the letter to
Goldbach we mentioned, Euler announces a result on volumes of simplices in terms
of their side lengths (a three-dimensional analogue of Heron’s formula for the area of
triangles), which he proves later in his paper Demonstratio nonnullarum insignium
proprietatum, quibus solida hedris planis inclusa sunt praedita [85]. Euler writes73:

Although I had uncovered many properties which are common to all bodies enclosed by
plane faces and which seemed to be completely analogous to those which are commonly
included among the first principles of rectilinear plane figures, still, not without a great deal
of surprise did I realize that the most important of those principles were so recondite that
all the time and effort spent looking for a proof of them had been fruitless. Nor, when I
consulted my friends, who are otherwise extremely versed in these matters and with whom I
had shared those properties, were they able to shed any light from which I could derive these
missing proofs. After the consideration of many types of solids I came to the point where I
understood that the properties which I had perceived in them clearly extended to all solids,
even if it was not possible for me to show this in a rigorous proof. Thus, I thought that those
properties should be included in that class of truths which we can, at any rate, acknowledge,
but which it is not possible to prove.

One advantage of Euler’s proof, compared to the one of Descartes, is that it shows
in a clear way the combinatorial aspect of the problem, highlighting the notion of
edges and faces of the polyhedron.

The proof that Euler gives in [85] is based on an induction on the number of solid
angles, reducing them by one at each step. He writes:

These proofs are in no way inferior to those proofs used in Geometry except that here due to
the nature of solids one must use more imagination, in as much as solids are being depicted
on a flat surface.

At the same time, Euler was laying down the foundations of combinatorial topol-
ogy. He writes (Scholion to Proposition 4):

I admit that I have thus brought to light only the first principles of Solid Geometry, on which
this science should be built as it develops further. No doubt it contains many outstanding
qualities of solids of which we are so far completely ignorant. [...]

Legendre, in his Éléments de géométrie (Note XII) published in 1794 [173], gave
a complete proof of Euler’s theorem based on geometry. This proof is considered as
one of the simplest, and it is repeated in more modern works, e.g. in Hopf [140].

A large number of mathematicians commented on Euler’s polyhedron formula,
expanding some arguments in Euler’s proofs, giving newproofs, and sometimes com-
paring Euler’s work with that of Descartes. To show the diversity of these works, we
mention the papers by Andreiev [10], Bertrand [26], Bougaïev [22], Brianchon [27],
Catalan [31], Cauchy [32, 33], Feil [113], Gergonne, [130], Grunert, [135], Jon-
quières [148–152, 154–156], Jordan [157, 158], Lebesgue [168], Lhuillier [177],

73Translation by C. Frances and D. Richeson.
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Poincaré [199, 200], Poinsot [203, 204], Prouhet [208, 209], Steiner [239], Valat
[249] and Thiel [244]. We shall quote some of these works below. We also men-
tion that in 1858, the Paris Académie des Sciences proposed as a subject for the
1861 Grand prix: “To improve, in some important point, the geometric theory of
polyherda.” Möbius participated and presented a memoir (but did not get the prize).

In 1811, Cauchy brought out a purely combinatorial proof of that theorem. In this
proof, one starts by deleting a face of the polyhedron and reduces the problem to
another one concerning a planar polygon.74 In his articleRecherches sur les polyèdres
(Researches on polyhedra) [32], published in 1813, Cauchy writes:

Euler has determined, in the PetersburgMémoires, year 1758, the relation that exists between
the various elements that compose the surface of a polyhedron; and Mr. Legendre, in his
Éléments de Géométrie, proved in amuch simplermanner Euler’s theorem, by considerations
of spherical polygons. Having been led by some researches to a new proof of that theorem,
I reached a theorem which is much more general than the one of Euler, whose statement is
the following:
Theorem. If we decompose75 a polyhedron in as many others as we wish, by taking at will
new vertices in the interior, and if we represent by P the number of new polyhedra thus
formed, by S the total number of vertices, including those of the initial polyhedron, by F
the total number of faces, and by A the total number of edges, then we will have

S + F = A + P − 1,

that is, the sum of the number of vertices and that of faces will overpass by one the sum of
the number of edges that of polyhedra.76

Poinsot [203], in 1858, published a proof of Euler’s formula using some of
Cauchy’s arguments. He writes: “This relation, which Euler was the first to prove,
does not hold only for convex polyhedra, as one might think, but for polyhedra of
any kind.” In fact, this statement needs some explanation. We are used today to the
fact that Euler’s formula is valid for polyhedra which are homeomorphic to a sphere.
This notion did not exist at that time, neither the word, nor the idea. One had to

74A similar proof is given by Hilbert and Cohn-Vossen [138] p. 290.
75Cauchy “decomposes” the polyhedron by taking new vertices in the interior of the three-
dimensional polyhedron (and not on the boundary surface).
76Euler a déterminé, dans les Mémoires de Pétersbourg, année 1758, la relation qui existe entre
les différents éléments qui composent la surface d’un polyèdre ; et M. Legendre, dans ses Élé-
ments de Géométrie, a démontré d’une manière beaucoup plus simple le théorème d’Euler, par la
considération des polygones sphériques. Ayant été conduit par quelques recherches à une nouvelle
démonstration de ce théorème, je suis parvenu à un théorème plus général que celui d’Euler et dont
voici l’énoncé :
Théorème. Si l’on décompose un polyèdre en tant d’autres que l’on voudra, en prenant à volonté
dans l’intérieur de nouveaux sommets ; que l’on représente par P le nombre de nouveaux polyèdres
ainsi formés, par S le nombre total de sommets, y compris ceux du premier polyèdre, par F le
nombre total de faces, et par A le nombre total des arêtes, on aura

S + F = A + P − 1,

c’est-à-dire que la somme faite du nombre des sommets et de celui des faces surpassera d’une unité
la somme faite du nombre des arêtes et de celui des polyèdres.
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wait for that to the work of Jordan, who set up the precise hypotheses under which
Euler’s formula is valid. In his article [155], he writes that Euler’s theorem is valid
for polyhedra which he calls “simple,” or “Eulerian,” that is, polyhedra ([155] p. 35)
“such that any contour drawn on the surface which does not traverse itself divides this
surface into two separate regions; a category that contains as a particular case convex
polyhedra.”77 A few pages later (p. 38), Jordan makes the following commentary:
“It would have been easy to show that if we can draw on a polyhedron λ different
contours which do not intersect each other and which do not divide the surface into
separate parts, we would have S + F = A + 2 − 2λ.”78 In fact, Jordan had extracted
the notion we call today “topological surface of finite type,” to which the general
theory applies, cf. [154] p. 86:

A surface is said to be of type (m, n) if it is bounded by m closed contours and if furthermore
we can draw on it n closed contours that do not intersect themselves nor mutually, without
dividing it into two distinct regions.79

Then Jordan makes the relation with the polyhedra to which Euler’s formula applies:
“The polyherda of kind (0, 0) are nothing but those which I called Eulerian.”80

It is interesting to read Lebesgues’ comments on some proof of Euler’s theorem,
because it gives us some hints of how the subject of topology was viewed in those
days. Lebesgues’ comments are written in 1924 ([168] p. 319):

I don’t agree at all with thosewho pretend to attribute Euler’s theorem toDescartes. Descartes
did not state the theorem; he did not see it. Euler perceived it and he fully understood its
character. For Euler, the description of the form of a polyhedron must precede the use of the
measures of its elements, and this is why he set his theorem as a fundamental theorem. For
him, like for us, this is a theorem of enumerative Analysis situs; therefore he tried to find it
by considerations independent of any metrical theory, that in effect belong to what we call
the field of Analysis situs. And this is why he left to Legendre the honor of finding a rigorous
proof. None of us who had read a little bit of Euler and who were amazed by his prodigious
technical masterliness will doubt, even for one second, that if Euler had thought of putting
aside his theorem and deducing it from one of its metric corollaries, he would have easily
succeeded. (It should be noted that Euler does not at all restrict his researches to convex
polyhedra.) It seems to me, on the contrary, that the fact that Descartes passed so closely to
the theorem without seeing it, emphasizes Euler’s credit. (At least, this is what we believe,
because Descartes employed in his notebook some algebraic characters which he used before
knowingViète’s characters.) But Leibniz,who foundDescartes’ notebook enough interesting
to copy it, who realized that Descartes’ geometry does not apply to questions involving order
and position relations, who dreamed of constructing the algebra of these relations and who
in advance gave it the name Analysis situs, did not notice, in Descartes’ notebook Euler’s

77[...] tels que tout contour fermé tracé sur leur surface et ne se traversant pas lui-même divise
cette surface en deux régions séparées ; catégorie qui renferme comme cas particulier les polyèdres
convexes.
78Il serait aisé de démontrer que si l’on peut tracer sur un polyèdre λ contours différents, ne
se coupant pas mutuellement et ne divisant pas la surface en parties séparées, on aura S + F =
A + 2 − 2λ.
79Une surface sera dite d’espèce (m, n) si elle est limitée par m contours fermés et si l’on peut
d’autre part y tracer n contours fermés ne se coupant pas eux-mêmes ni mutuellement, sans la
partager en deux régions distinctes.
80Les polyèdres de l’espèce (0, 0) ne sont autres que ceux que j’ai appelés eulériens.
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theorem which is so fundamental in Analysis situs. This theorem really belongs to Euler. As
for the proof, one could, may be with a little bit of unfairness, call it the proof of Legendre
and Descartes. This proof is metrical, and it is fair to blame it for the fact that it uses notions
that are foreign to Analysis situs. But one should not exaggerate the value of this grievance.81

We now give a quick review of some work of Gauss on topology, another field in
which his impact on Riemann was huge.

Gauss was interested in applications of Geometria situs (a term he used in his
writings), in particular in astronomy, geodesy and electromagnetism. In astronomy,
he addressed the question of whether orbits of celestial bodies may be linked (cf.
his short treatise entitled Über die Grenzen der geocentrischen Orter der Planeten).
From his work on geodesy, wemention his letter to Schumacher, 21Nov. 1825, (from
Gauss’s Werke vol. VIII, p. 400):

Some time ago I started to take up again a part of my general investigations on curved
surfaces, which shall become the foundation of my projected work on higher geodesy. [...]
Unfortunately, I find that I will have to go very far afield [...]. One has to follow the tree
down to all its root threads, and some of this costs me week-long intense thought. Much of
it even belongs to geometria situs, an almost unexploited field.

From Gauss’s Nachlaß, we know that he worked on a combinatorial theory of
knot projections, during the year 1825, and again in 1844. (Gauss’s Werke, Vol. VIII,
pp. 271–286). We already mentioned at the beginning of this section, that we learn
from a letter sent by Betti to Tardy that the idea of analyzing a surface by performing
successive cuts was given to Riemann by Gauss, in a private conversation. Besides
Riemann, Gauss had two students who worked on topology and who were certainly
influenced by him: Listing and Möbius.

81Je ne suis pas du tout d’accord avec ceux qui prétendent attribuer à Descartes le théorème d’Euler.
Descartes n’a pas énoncé le théorème ; il ne l’a pas vu. Euler l’a aperçu et en a bien compris le
caractère. Pour Euler, la description de la forme d’un polyèdre doit précéder l’utilisation desmesures
de ses éléments et c’est pourquoi il a posé son théorème comme théorème fondamental. C’est, pour
lui comme pour nous, un théorème d’Analysis situs énumérative ; aussi a-t-il cherché à le démontrer
par des considérations indépendantes de toute propriété métrique, appartenant bien à ce que nous
appelons le domaine de l’Analysis situs. Et c’est pourquoi il a laissé à Legendre l’honneur d’en
trouver la preuve rigoureuse ; aucun de ceux qui ont quelque peu lu Euler, et qui ont été stupéfaits de
sa prodigieuse virtuosité technique, ne doutera un seul instant que si Euler avait pensé à faire passer
son théorème au second plan et à le déduire d’un de ses corollaires métriques, il n’y eût facilement
réussi. (Il convient d’ajouter qu’Euler ne restreint nullement ses recherches aux polyèdres convexes.)
Que Descartes soit passé si près du théorème sans le voir me paraît au contraire souligner le mérite
d’Euler. Encore peut-on dire que Descartes était jeune quand il s’occupait de ces questions. (C’est
du moins ce que l’on croit, parce que Descartes a employé dans son cahier certains caractères
cossiques qu’il utilisait avant de connaître les notations de Viète.) Mais Leibniz qui a trouvé le
cahier de Descartes assez intéressant pour le copier, qui a reconnu que la géométrie de Descartes
ne s’appliquait pas aux questions où interviennent des relations d’ordre et de position, qui a rêvé
de construire l’algèbre de ces relations et l’a nommée à l’avance Analysis situs, n’a pas aperçu,
dans le cahier de Descartes, le théorème d’Euler si fondamental en Analysis situs. Le théorème
appartient bien à Euler ; quant à la démonstration, on pourrait, un peu injustement peut-être, la
dénommer démonstration de Legendre et Descartes. Cette démonstration est métrique ; il est juste
de lui reprocher de faire appel à des notions étrangères à l’Analysis situs. Mais il ne faudrait pas
s’exagérer la valeur de ce grief.
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Riemann introduced the fundamental topological notions for surfaces: connect-
edness, degree of connectivity, the classification of closed surfaces by their genus.
He developed this theory for the purpose of using it in his work on the theory of
functions of a complex variable. In his memoir on Abelian functions, he talks about
analysis situs, referring to Leibniz:

In the study of functions obtained by the integration of exact differentials, a few theorems of
analysis situs are almost essential. Under that name, which was used by Leibniz, although
may be in a slightly different sense, it is permitted to designate the theory of continuous
magnitudes which studies these magnitudes, not as independent of their position and mea-
surable with respect to each other, but by disregarding all idea of measure and studying them
only for what regards their relation of position and inclusion. I intend to treat this subject
later, in a way that is completely independent of any measure.

In his habilitation dissertation, Riemann mentions the possibility of working in
the new field of topology, talking about the notion of “place.” We quote this cryptic
passage:

Measure consists in the superposition of themagnitudes to be compared; it therefore requires
a means of using one magnitude as the standard for another. In the absence of this, two
magnitudes can only be compared when one is a part of the other; in which case we can
only determine the more or less and not the how much. The researches which can in this
case be instituted about them form a general division of the science of magnitude in which
magnitudes are regarded not as existing independently of position and not as expressible in
terms of a unit, but as regions in amanifoldness. Such researches have become a necessity for
many parts of mathematics, e.g., for the treatment of many-valued analytical functions; and
the want of them is no doubt a chief reason for which the celebrated theorem of Abel and the
achievements of Lagrange, Pfaff, Jacobi for the general theory of differential equations, have
so long remained unfruitful. Out of this general part of the science of extended magnitude
in which nothing is assumed but what is contained in the notion of it, it will suffice for
the present purpose to bring into prominence two points; the first of which relates to the
construction of the notion of a multiply extended manifoldness, the second relates to the
reduction of determinations of place in a given manifoldness to determinations of quantity,
and will make clear the true character of an n-fold extent.

He also describes the passage from one dimension to another:

If in the case of a notion whose specialisations form a continuous manifoldness, one passes
from a certain specialisation in a definite way to another, the specialisations passed over form
a simply extendedmanifoldness, whose true character is that in it a continuous progress from
a point is possible only on two sides, forward or backwards. If one now supposes that this
manifoldness in its turn passes over into another entirely different, and again in a definite
way, namely so that each point passes over into a definite point of the other, then all the
specialisations so obtained form a doubly extended manifoldness. In a similar manner one
obtains a triply extended manifoldness, if one imagines a doubly extended one passing over
in a definite way to another entirely different; and it is easy to see how this construction may
be continued. If one regards the variable object instead of the determinable notion of it, this
construction may be described as a composition of a variability of n + 1 dimensions out of
a variability of n dimensions and a variability of one dimension.

Riemann’s ideas on topology are explained in some sections of Klein’s booklet
[161]. For instance, Sect. 8 carries the titleClassification of closed surfaces according
to the value of the integer p. Let us comment on a passage from Klein’s booklet
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concerning the classification of surfaces, as an example of his point of view on
topology.We know that topology, whichwas an emerging subject, plays an important
role in Riemann surface theory. We already mentioned that Riemann introduced
several major notions on surface topology. Klein tried to make a more systematic
exposition of these ideas.His book [161] contains a chapter inwhich the classification
of closed surfaces according to genera is presented. On p. 32, he writes:

That it is impossible to represent surfaces having different p’s82 upon one another, the cor-
respondence being uniform, seems evident. It is not meant, however, that this kind of geo-
metrical certainty needs no further investigation; cf. the explanations of G. Cantor (Crelle,
t. lxxxiv. pp. 242 et seq.). But these investigations are meanwhile excluded from consider-
ation in the text, since the principle there insisted upon is to base all reasonings ultimately
on intuitive relations.

Klein then states the converse: between any two surfaces of the same genus it is
possible to find a “uniform correspondence.” He declares that this statement is more
difficult to prove, and he refers to the 1866 article by Jordan [153].83 This paper is an
important milestone in the history of topology, because it contains the first attempt to
classify surfaces up to homeomorphism, although there was no precise definition of
homeomorphism yet.84 Jordan’s aim, in his paper, is to prove the following theorem,
which he states in the introduction:

In order for two surfaces or pieces of flexible and inextensible surfaces to be be applied onto
each other without tear and duplication, the following is necessary and sufficient:

(1) That the number of separated contours that respectively bound these portions of surfaces
be the same. (If the surfaces considered are closed, this number is zero.)

(2) That the maximal number of closed contours which do not self-intersect or intersect
each other that we can draw on each of the two surfaces without cutting it into two
separate regions be the same on both sides.

Jordan gives the following “definition” of two surfaces being “applicable onto
each other.” For a modern reader, this definition may seem fuzzy, but one has to
remember that this paper was written in the heroic epoch of the foundations of
modern topology, that the notion of homeomorphism seems extremely natural for us
today, but that it was not so in those times. Jordan writes:

82We recall that p denotes the genus.
83Camille Jordan (1838–1922), who is mostly known for his results on the topology of surfaces and
on group theory, also worked on function theory in the sense of Riemann. The title of the second part
of his doctoral thesis is: “On periods of inverse functions of integrals of algebraic differentials.” The
subject was proposed to him by Puiseux, whomwemention in this paper concerning uniformization.
Jordan is among the first who tried to study the ideas of Galois, and he is also among the first who
introduced group theory in the study of differential equations.
84The word “homeomorphism” was introduced by Poincaré in his article [200] but with a meaning
that is different from the one it has today. There is a definition of homeomorphism in the 1909 article
by Hadamard [136], as being a one-to-one continuous map. This is not correct, unless Hadamard
meant, by “one-to-one continuous”, “one-to-one bi-continuous.” We refer the reader to the paper
[183] on the rise and the development of the notion of homeomorphism. This paper contains several
quotes, some of which are very intriguing.
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We shall rely on the following principle, which we can consider as evident, and take it
if necessary as a definition: Two surfaces S, S′ are applicable onto each other if we can
decompose them into infinitely small elements such that to any contiguous elements of S
correspond contiguous elements of S′.

Besides Klein’s booklet, several books and treatises explaining Riemann’s ideas
appeared in the decades that followed Riemann’s work. We mention as examples
Neumann’s Vorlesungen über Riemann’s Theorie der Abel’schen Integrale (Lectures
on Riemann’s theory of Abelian integrals) [186], Picard’s Traité d’Analyse [197],
Appell andGoursat’sThéorie des fonctions algébriques et de leurs intégrales (Theory
of Algebraic functions and their integrals) [16], and there are others. The last two
treatises, together with several other French books on the theory of functions of a
complex variable, are reviewed in Chap.8 of the present volume [192].

Among the other important topological notions that were introduced before Rie-
mann and that were used by him, we must mention the notion of homotopy of paths
and its use in complex analysis (in particular, in the theory of line integrals), espe-
cially by Cauchy and Puiseux. This is discussed in detail in Chap.7 of the present
volume [191]. Cauchy published his first work on the subject in 1825 [36]. This is
also a topic on which Gauss was a forerunner, but he did not publish anything about
it. This is attested in his letter to Bessel, December 18, 1811, published in Volume
VIII of his Collected works (pp. 90–92), a letter in which Gauss makes the important
remark that if one defines integrals along paths in the complex plane, then the value
obtained may depend on the path.

Regarding the history of Riemann’s ideas on topology, we could have also com-
mented on his predecessors regarding the notion of the discreteness and continuity
of space, but this would have taken us too far. We make a few remarks on this matter
in Chap.6 of the present volume [190] .

We end this section by quoting Alexander Grothendieck, from his Récoltes et
semailles (Harvesting and Sowing),85 commenting on Riemann’s reflections on this
theme ([133] Chap.2 Sect. 2.20):

It must be already fifteen or twenty years ago since, skimming themodest volume that consti-
tutes Riemann’s complete works, I was struck by a remark which he made “incidentally.” He
observes there that it might be that the ultimate structure of space is “discrete,” and that the
“continuous” representations which we make of it may be an oversimplification (which may
turn out to be excessive on the long run...) of a more complex reality; that for human thought,
“the continuous” was easier to grasp than “the discontinuous,” and that it serves us, subse-
quently, as an “approximation” for apprehending the discontinuous. This is an amazingly
penetrating remark expressed by a mathematician, at a time where the Euclidean model of
physical space was not questioned. In a strictly logical sense, it was rather the discontinuous
which, traditionally, served as a technical mode of approaching the continuous.

Moreover, the mathematical developments of the last decades showed an even more intimate
symbiosis between continuous and discontinuous structures, which was not yet visualized

85The complete title is: Récoltes et semailles : Réflexions et témoignage sur un passé de mathémati-
cien (Harvesting and Sowing: Reflections and testimony on the past of a mathematician). This is a
long manuscript by Grothendieck in which he meditates on his past as a mathematician and where
he presents without any compliance his vision of the mathematical milieu in which he evolved,
especially the decline in morals, for what concerns intellectual honesty.

http://dx.doi.org/10.1007/978-3-319-60039-0_8
http://dx.doi.org/10.1007/978-3-319-60039-0_7
http://dx.doi.org/10.1007/978-3-319-60039-0_6
http://dx.doi.org/10.1007/978-3-319-60039-0_2
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in the first half of this century. The fact remains that finding a model which is “satisfactory”
(or, if need be, a collection of such models, linked in the most possible satisfying way...),
whether the latter is “continuous,” “discrete,” or of a “mixed” nature—such a task will surely
involve a great conceptual imagination, and a consummate intuition, in order to apprehend
and disclose mathematical structures of a new type. This kind of imagination and “intuition”
seems to me a rare object, not only among physicists (where Einstein and Schrödinger seem
to be among the rare exceptions), but even among mathematicians (and I am talking in full
knowledge of the facts).

To summarize, I foresee that the long-awaited renewal (if ever it comes...) will rather come
from someone who has the soul of a mathematician, who is well informed about the great
problems of physics, rather than from a physicist. But above all, we need a man having the
“philosophical openness” required to grasp the crux of the problem. The latter is not at all
of a technical nature, but it is a fundamental problem of “natural philosophy.”86

9 Differential Geometry

In this section,we shall reviewsomemilestones in thehistoryof differential geometry,
concerning especially the study of geodesics and of curvature, from its beginning
until the work of Riemann.

Differential geometry starts with the study of differentiable curves. The notion of
curvature of planar curves already appears in works of Newton and of Johann I and

86Il doit y avoir déjà quinze ou vingt ans, en feuilletant le modeste volume constituant l’œuvre
complète de Riemann, j’avais été frappé par une remarque de lui “en passant.” Il y fait observer
qu’il se pourrait bien que la structure ultime de l’espace soit “discrète”, et que les représentations
“continues” que nous en faisons constituent peut-être une simplification (excessive, peut-être, à la
longue...) d’une réalité plus complexe; que pour l’esprit humain, “le continu” était plus aisé à saisir
que “le discontinu”, et qu’il nous sert, par suite, comme une “approximation” pour appréhender le
discontinu.C’est là une remarque d’une pénétration surprenante dans la bouche d’unmathématicien,
à un moment où le modèle euclidien de l’espace physique n’avait jamais été mis en cause; au
sens strictement logique, c’est plutôt le discontinu qui, traditionnellement, a servi comme mode
d’approche technique vers le continu.

Les développements en mathématique des dernières décennies ont d’ailleurs montré une sym-
biose bien plus intime entre structures continues et discontinues, qu’on ne l’imaginait encore dans
la première moitié de ce siècle. Toujours est-il que de trouver un modèle “satisfaisant” (ou, au
besoin, un ensemble de tels modèles, se “raccordant” de façon aussi satisfaisante que possible...),
que celui-ci soit “continu,” “discret” ou de nature “mixte”—un tel travail mettra en jeu sûrement
une grande imagination conceptuelle, et un flair consommé pour appréhender et mettre à jour des
structures mathématiques de type nouveau. Ce genre d’imagination ou de “flair” me semble chose
rare, non seulement parmi les physiciens (où Einstein et Schrödinger semblent avoir été parmi les
rares exceptions), mais même parmi les mathématiciens (et là je parle en pleine connaissance de
cause).

Pour résumer, je prévois que le renouvellement attendu (s’il doit encore venir …) viendra
plutôt d’un mathématicien dans l’âme, bien informé des grands problèmes de la physique, que d’un
physicien.Mais surtout, il y faudra un homme ayant “l’ouverture philosophique” pour saisir le nœud
du problème. Celui-ci n’est nullement de nature technique, mais bien un problème fondamental de
“philosophie de la nature.”
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Jakob Bernoulli. We mentioned, in Sect. 2, Johann Bernoulli’s paper [24] published
in 1718 on the isoperimetry problem in the plane.

Differential geometry is also concernedwith geodesics. In 1744, Euler published a
book [73] in which he sets the bases of the calculus of variations. The title is Metho-
dus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio
problematis isoperimetrici lattissimo sensu accepti (Method for finding curved lines
enjoying properties of maximum or minimum, or solution of isoperimetric problems
in the broadest accepted sense). In that book, several applications of the new meth-
ods are presented, among them isoperimetry problems, the problem of finding the
shape of the brachystochrone, the study of the catenoid, and that of finding geodesics
between two points on a surface. With this work of Euler, the methods of differential
calculus, more precisely those of finding minima and maxima, were suddenly gener-
alized to the realm of a variable moving in an infinite dimensional space (even though
the expression “infinite dimensional” was not there yet), namely, in the question of
looking for curves of minimal length or satisfying other geometric properties, among
all curves joining two points.

Riemann’s differential geometry is essentially about curvature, actually, the cur-
vature of space, and we must talk now about the history of curvature, which starts
with curvature of curves and surfaces. The history starts again with Euler.

Volume II of Euler’s Introductio in analysin infinitorum [61], published in 1748,
is concerned with the differential geometry of space curves and surfaces. Curves are
given there by parametric equations of the form x = x(t), y = y(t), z = z(t), and
surfaces by parametric equations of the form x = x(u, v), y = y(u, v), z = z(u, v).
It is possible that this is the first time where such a parametric representation of sur-
faces appears in print. About twenty years after the first edition of this treatise was
published, Euler wrote a memoir entitled Recherches sur la courbure des surfaces
(Researches on the curvature of surfaces) [91] (1767), another work which trans-
formed the subject. The aim of this memoir was to introduce and study the curvature
at a point on a surface. Euler’s idea, which is very natural, was to introduce a notion
of curvature at a point of a differentiable surface based on the curvature of curves
that pass through that point. His intuition was that to understand curvature at a point
of a surface, it suffices to study the curvature of curves that are intersections of that
surface with Euclidean planes. Moreover, he showed that it is sufficient to consider
the planes that are perpendicular to the surface, that is, the planes containing the
normal vector to the surface at that point. Each such curve has an osculating circle,
and the collection of radii of these circles contains all the information about the
curvature of the surface at that point. Furthermore, Euler proved that at any given
point on the surface, the maximal curvature and the minimal curvature associated
to the normal planes determine all the other normal curvatures. To be more precise,
given a point on the surface and a tangent vector v at that point, let us call normal
curvature though v the curvature of a curve obtained by intersecting the surface with
a plane containing the vector v and the normal vector at that point. The maximal
and minimal normal curvature at the given point are the maximum and minimum
of the normal curvatures taken over all the normal planes at that point. Likewise,
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the normal curvature radius at the given point in the direction of the vector v is the
curvature radius of the associated curve. We have a similar notion of maximal and
minimal normal curvature radii at the given point. Euler showed that the directions
of the planes that realize these extremal curvatures (except in very special cases) are
orthogonal to each other, and he proved that at a given point, if ρ1 and ρ2 are the
maximal and minimal normal curvature radii respectively, then the normal curvature
radius ρ of the normal section through an arbitrary tangent vector v is given by the
equation

ρ = 2ρ1ρ2
(ρ1 + ρ2) − (ρ1 − ρ2) cos(2ϕ)

,

where ϕ is the angle between v and the tangent vector to the normal plane with
maximal curvature radius.

It is usual to write Euler’s equation in the following form:

1

ρ
= cos2 ϕ

ρ1
+ sin2 ϕ

ρ2
.

We note that ρ1 and ρ2 may also take negative values and that Euler’s equation has
also a meaning when ρ1 or ρ2 is infinite; in the latter case, the curvature 1

ρ
is zero for

all ϕ. There is a classical local classification of differentiable surfaces at a point in
terms of the signs of ρ1 and ρ2.

Euler writes ([91], Réflexion VI, p. 143):

Thus, the judgement of the curvature of surfaces, however complicated it seems at the
beginning, is reduced for each point to the knowledge of two osculating radii, one of which
is the largest and the other the smallest at that element. These two objects determine entirely
the nature of the curvature, displaying for us the curvature of all the possible sections that
are perpendicular to the proposed element.87

There are other memoirs by Euler on the differential geometry of surfaces. We
mention his Solutio trium problematum difficiliorum ad methodum tangentium inver-
sam pertinentium (Solution of three rather difficult problems pertaining to the inverse
method of tangents) [75] published in 1826, that is, several years after Euler’s death.
In this memoir, Euler addresses “inverse problems” in differential geometry, e.g., to
reconstruct curves from information on their tangents. We also mention Euler’s De
solidis quorum superficiem in planum explicare licet (On solids whose entire surface
can be unfolded onto a plane) [95] in which for the first time the notion of a surface
developable on the plane is introduced. This notion was thoroughly investigated in
the later works of Monge and his students that we mention below, and much later by
Eugenio Beltrami. This paper [95] on developable surfaces also addresses a so-called

87Ainsi le jugement sur la courbure des surface, quelque compliqué qu’il ait paru au commencement,
se réduit pour chaque élément à la conaissance de deux rayons osculateurs, dont l’un est le plus
grand et l’autre le plus petit dans cet élément ; ces deux choses déterminent entièrement la nature de
la courbure en nous découvrant la courbure de toutes les sections possibles qui sont perpendiculaires
sur l’élément proposé.
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“inverse problem,” namely, the question of giving a characterization of the surfaces
that are developable.

Gauss’s development of differential geometry attained a high degree of perfection
in the 1820s, motivated by his works on geography, astronomy and geodesy. He was
probably the first to formulate the question of finding the properties of surfaces which
are independent of their embedding in 3-space. After Euler in [91] highlighted the
role of the maximal and minimal curvature at a point of a surface, it was Gauss’s idea
to take the product of these quantities as a measure of the curvature at that point, and
to show that the result is an isometry invariant of the surface. This is (expressed in
modern terms) the content of Gauss’s Theorema egregium. The result is contained in
Gauss’s Disquisitiones generales circa superficies curvas (General investigations on
curved surfaces) [124] (1828). In the abstract he wrote for his Disquisitiones, Gauss
says (translation from [124] p. 48):

[...] These theorems lead to the consideration of the theory of curved surfaces from a new
point of view, where a wide and still wholly uncultivated field is open to investigation. If
we consider surfaces not as boundaries of bodies, but as bodies of which one dimension
vanishes, and if at the same time we conceive them as flexible but not extensible, we see
that two essentially different relations must be distinguished, namely, on the one hand, those
that presuppose a definite form of the surface in space; on the other hand, those that are
independent of the various forms that the surface may assume. This discussion is concerned
with the latter. In accordance with what has been said, the measure of curvature belongs to
this case. But it is easily seen that the consideration of figures constructed upon the surface,
their angles, their areas and their integral curvatures, the joining of the points by means of
shortest lines, and the like, also belong to this case. All such investigations must start from
this, that the very nature of the curved surface is given by means of the expression of any
linear element in the form

√
Edp2 + 2Fdpdq + Gdq2.

Gauss, in the same memoir, used the so-called Gauss map from a surface to
the unit sphere, defined by sending the normal unit normal vector at a point to the
corresponding point on the sphere and showing that one can recover the curvature
of the surface, which he had defined as the product of the minimal and maximal
curvatures. The curvature, using the Gauss map, is obtained by taking the ratio of
the area of the image of the Gauss map by the area of the surface (the definition of
the curvature at a point needs a passage to the infinitesimal level).

Riemann’s most important articles on differential geometry are his habilitation
lecture Über die Hypothesen welche der Geometrie zu Grunde liegen (1854) which
is mentioned several times in the present chapter and in the other chapters of this
book, and the Commentatio mathematica, qua respondere tentatur quaestioni ab
Illma Academia Parisiensi propositae (A mathematical note attempting to answer
a question posed by the distinguished Paris Academy), a memoir which he wrote
in 1861, at the occasion of his participation to a competition prize set by the Paris
Academy of Sciences, and which we consider in some detail in Chap.6 of the present
volume [190]. These twomemoirs are unusual for opposite reasons: the first one lacks
of formulae, and the second one is full of them. The second memoir contains the
explicit form of the object which we call today the Riemann tensor.

In his habilitation lecture, Riemann makes a clear reference to Gauss’s Disquisi-
tiones as one of hismajor sources of inspiration, a workwhich he includes however in

http://dx.doi.org/10.1007/978-3-319-60039-0_6
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a broad philosophical discussion onmagnitude, measure, quantity and the possibility
of geometric representation. It is always good to read Riemann:

Having constructed the notion of a manifoldness of n dimensions, and found that its true
character consists in the property that the determination of position in it may be reduced
to n determinations of magnitude, we come to the second of the problems proposed above,
viz. the study of the measure-relations of which such a manifoldness is capable, and of the
conditions which suffice to determine them. These measure-relations can only be studied in
abstract notions of quantity, and their dependence on one another can only be represented
by formulæ. On certain assumptions, however, they are decomposable into relations which,
taken separately, are capable of geometric representation; and thus it becomes possible to
express geometrically the calculated results. In this way, to come to solid ground, we cannot,
it is true, avoid abstract considerations in our formulæ, but at least the results of calculation
may subsequently be presented in a geometric form. The foundations of these two parts
of the question are established in the celebrated memoir of Gauss, Disqusitiones generales
circa superficies curvas.

For the case of surfaces, he writes:

In the idea of surfaces, together with the intrinsic measure-relations in which only the length
of lines on the surfaces is considered, there is always mixed up the position of points lying
out of the surface. We may, however, abstract from external relations if we consider such
deformations as leave unaltered the length of lines—i.e., if we regard the surface as bent in
any way without stretching, and treat all surfaces so related to each other as equivalent. Thus,
for example, any cylindrical or conical surface counts as equivalent to a plane, since it may
be made out of one by mere bending, in which the intrinsic measure-relations remain, and
all theorems about a plane—therefore the whole of planimetry—retain their validity. On the
other hand they count as essentially different from the sphere, which cannot be changed into
a plane without stretching. According to our previous investigation the intrinsic measure-
relations of a twofold extent in which the line-element may be expressed as the square
root of a quadric differential, which is the case with surfaces, are characterized by the total
curvature. Now this quantity in the case of surfaces is capable of a visible interpretation,
viz., it is the product of the two curvatures of the surface, or multiplied by the area of a
small geodesic triangle, it is equal to the spherical excess of the same. The first definition
assumes the proposition that the product of the two radii of curvature is unaltered by mere
bending; the second, that in the same place the area of a small triangle is proportional to
its spherical excess. To give an intelligible meaning to the curvature of an n-fold extent at
a given point and in a given surface-direction through it, we must start from the fact that a
geodesic proceeding from a point is entirely determined when its initial direction is given.
According to this we obtain a determinate surface if we prolong all the geodesics proceeding
from the given point and lying initially in the given surface-direction; this surface has at the
given point a definite curvature, which is also the curvature of the n-fold continuum at the
given point in the given surface-direction.

In these passages, Riemann summarizes his ideas on the general metric on (what
became known later on as) an n-dimensional differentiable manifold, defined by a
quadratic formoneach tangent space, a broadgeneralizationofGauss’s investigations
on surfaces in which the quadratic form determines the metric, permits to calculate
distances, angles and the curvature at any point. The curvature is the product of two
quantities and is invariant by bending. The quadratic form represents the square of
the line element. With these tools, one can study geodesic triangles on surfaces,
prove that a geodesic is determined by its initial vector, generalize these matters to
immersed surfaces, etc.
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One may also include in Riemann’s list of works on differential geometry his two
papers on minimal surfaces [220, 221]. They are reviewed in Chap.5 of the present
volume, [259].We also note that in his doctoral dissertation defended in 1880 in Paris
and written under the supervision of Bonnet (cf. [188]), Niewenglowski explains
that Riemann, in his work on minimal surfaces, was inspired by Bonnet; cf. also
the comments in Chap.8 of the present volume [192]. Again, minimal surfaces first
appear in the work of Euler (cf. Chapter V, Sect. 47 of Euler’s first treatise on the
calculus of variations, [73]).

In a longer survey on Riemann’s predecessors in the field of differential geometry,
one would have analyzed the works of several French mathematicians who stand
between Euler and Gauss, in particular Gaspard Monge (1764–1818), Jean-Baptiste
Meusnier (1754–1793), Siméon-Denis Poisson (1781–1840), Charles Dupin (1784–
1873), Olinde Rodrigues (1795–1851) and there are others. We only mention some
of these works.

Monge, who was the founder of a famous school on projective and differential
geometry, continuedEuler’swork on developable surfaces, cf. [184, 185]. Heworked
in particular with two orthogonal line fields that are defined by Euler’s minimal and
maximal directions of curvature radii, and he coined the expression umbilical point
for points where the two curvature radii have the same value. (On the sphere, every
point is umbilical.) Monge expressed several times in his writings his debt to Euler.
In [185], he writes:

Having resumed this matter, at the occasion of a memoir that Mr. Euler gave in the 1771
volume of the Petersburg Academy on developable surfaces, in which this famous geometer
gives formulae to determine whether a given surface may or may not be applied onto a plane,
I reached results on the same subject which seem to me much simpler, and whose usage is
much easier.88

Poisson was a student of Lagrange and Laplace. He wrote a memoir entitled
Mémoire sur la courbure des surfaces (Memoir on the curvature of surfaces) [205]
(1832) in which he studied singular points of the curvature. We mention by the way
that there are several points in the work of Poisson that are related to Riemann’s
works, in particular, concerning definite integrals and Fourier series.

Meusnier was a student of Monge. He gave a formula for the curvature of a curve
obtained by intersecting a surface by a non-normal section, in terms of that of the
normal sections at the given point that were considered by Euler. His paper on the
subject carries almost the same title as Euler’s paper [91], Mémoire sur la courbure
des surfaces [181] (1785). In this paper, Meusnier writes (p. 478):

Mr. Euler treated the same matter in a very beautiful memoir, printed in 1760 among those
of the Berlin Academy. This famous geometer addresses the question in a manner which is
different from the one which we just presented. He makes the curvature of an element of

88Ayant repris cette matière, à l’occasion d’un mémoire que M. Euler a donné dans le volume 1771
de l’Académie de Pétersbourg, sur les surfaces développables, et dans lequel cet illustre géomètre
donne des formules pour reconnaître si une surface courbe proposée jouit ou non de la propriété de
pouvoir être appliquée sur un plan, je suis parvenu à des résultats qui me semblent beaucoup plus
simples, et d’un usage bien plus facile pour le même sujet.

http://dx.doi.org/10.1007/978-3-319-60039-0_5
http://dx.doi.org/10.1007/978-3-319-60039-0_8
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the surface dependent on that of the various sections that one can perform on it by cutting it
with planes.89

Meusnier’s work is surveyed by Darboux in the paper [49].
Dupin is mostly known for the so-called Dupin indicatrix, a geometric device

which characterizes the shape of a surface at a given point and which turned out
to be related to the Gaussian curvature at that point. His famous work on geometry
bears the title Développements de géométrie, avec des applications à la stabilité
des vaisseaux, aux déblais et remblais, au défilement, à l’optique, etc. pour faire
suite à la géométrie descriptive et à la géométrie analytique de M. Monge : Théorie.
(Developments in geometry, with applications to the stability of vessels, cuts and
fills, scrolling, optics, etc. as a sequel to the descriptive and analytic geometry of Mr.
Monge: Theory) [58], 1813.

Rodrigues introduced, before Gauss, the Gauss map, and showed that at a given
point the ratio of the area of the image to the area on the surface is equal (at the
infinitesimal level) to the product of the two principal curvatures (those defined by
Euler), cf. [235]. This result pre-dates that of Gauss, but the fact that curvature is an
isometry invariant is however absent from Rodrigues’ work.

Finally, it is fair to mention that Riemann’s work in high dimensions was prepared
by works of other mathematicians done in higher dimensions, and we mention in
particular Jacobi [145] on the reduction of pairs of quadratic forms, Grassmann
on higher-dimensional linear algebra [131], and Cayley [41] on higher-dimensional
analytic geometry.

10 Trigonometric Series

Riemann’s habilitation dissertation (Habilitationsschrift) is concerned with trigono-
metric series. Its title is Über die Darstellbarkeit einer Function durch eine
trigonometrische Reihe (On the representability of a function by a trigonometric
series) [215]. The dissertation is divided into two parts. The first part is a survey
of the history of the problem of representing by a trigonometric series a function
which is arbitrary, but which—according to Riemann’s words at the beginning of
his memoir—is “given graphically.” It is important to note the last fact, since, for
instance, a function which is discontinuous at a dense set of points cannot be given
graphically. Dealing with the most general functions is part of the subject of the
second part of Riemann’s memoir.

We shall report on the historical part of Riemann’s memoir. It involves several
mathematicians, in particular Euler, although not directly his work on trigonometric
series. We therefore note right away that Euler uses trigonometric series in his two

89M. Euler a traité la même matière dans un fort beau mémoire, imprimé en 1760 parmi ceux
de l’Académie de Berlin. Cet illustre géomètre envisage la question d’une manière différente de
celle que nous venons d’exposer ; il fait dépendre la courbure d’un élément de surface de celle des
différentes sections qu’on peut y faire en le coupant par des plans.
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memoirs on astronomy Recherches sur la question des inégalités du mouvement de
Saturne et de Jupiter (Researches on the question of the inequalities in the motion of
Saturn and Jupiter) [77], and De motu corporum coelestium a viribus quibuscunque
perturbato (On the movement of celestial bodies perturbed by any number of forces)
[86], both presented for competitions proposed by the Paris Académie des Sciences,
in 1748 and 1756 respectively. The two memoirs are analyzed in the paper [129] in
which the authors show that Euler was much more concerned with convergence of
series than what is claimed in several books and articles on his work.

The starting point of Riemann’s historical survey is the controversy between
Euler and d’Alembert which originated in the publication in 1747 of a memoir by
the latter, Recherches sur la courbe que forme une corde tendue mise en vibrations
(Researches on the curve formed by a taut string subject to vibrations) [8]. In this
memoir, d’Alembert gave the partial differential equation that represents the motion
of a point on a vibrating string subject to small vibrations:

∂2y

∂t2
= α2 ∂2y

∂x2
.

In this equation, t represents time, α is a constant and y = y(t) is the oscillation of
the string at a point whose coordinate is x along the string. The main problem, after
this discovery, was to characterize the functions that are solutions of that equation.

One first obvious (but wrong) guess for a necessary condition on the solution is
that it should be order-two differentiable. However, it was soon realized that this
condition is too restrictive. Understanding the exact nature of the solutions of the
vibrating string equation led to a fierce controversy which involved some of the
most brilliant mathematicians of the eighteenth century. Among them are Euler,
d’Alembert, Lagrange and Daniel Bernoulli. There is a large amount of primary
literature concerned with this debate, including several memoirs by each of these
mathematicians and the correspondence between them. Let us recall a few points of
the history of that controversy.

In thememoir [8], d’Alembert wrote that the general solution to thewave equation
is a function of the form

y(x, t) = 1

2
(φ(x + αt) + φ(x − αt)) ,

where φ is an “arbitrary” periodic function whose period is the double of the length
of the string. The problem was to give a meaning to the adjective “arbitrary.”

At the beginning of his memoir [8], d’Alembert declares that he will show that
the problem admits infinitely many other solutions than the usual one represented
by the sine curve (which he calls compagne de la cycloïde allongée). But from his
point of view (like from Euler’s one) the only acceptable functions were those given
by a formula (functions which, as we recall, were termed “analytic” by Euler). The
reason is that it was considered that the powerful methods of analysis can be applied
only to such functions.
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Euler published an article in the next volume of theMemoirs (1748) [68] in which
he gave an exposition of d’Alembert’s results but where he expressed a different
point of view on the nature of the solution of the wave equation.90 He claimed that a
solution is not necessarily given by a formula, but that it might be “discontinuous” in
the sense that it could be a concatenation of functions defined on smaller intervals on
which the restriction of the function is defined by formulae. We already mentioned
this notion of “discontinuity” in Sect. 2 of the present chapter. His assertion was
supported by physical evidence, more precisely, by the fact that the initial form of a
string, in a musical instrument that is pinched in the usuel manner, is a concatenation
of two segments with a corner at their intersection. More than that, Euler pointed out
that one may give an arbitrary initial form to the string, and therefore the solution
may be arbitrary. Euler’s paper introduced some doubts concerning the assertion
made by d’Alembert that the solution must be twice differentiable and given by a
formula.D’Alembert,whodisagreedwithEuler’s claim, published the followingyear
a memoir in which he confirmed his initial ideas. The rest of the controversy on the
notion of function is very interesting and there are several articles on this subject. We
recommend in particular the introduction, by Youschkevitch and Taton, of Volume
V of Series IV A of Euler’s Opera omnia containing Euler’s correspondence with
Clairaut, d’Alembert and Lagrange [261].

The difficulty of defining a general notion of function is never too much empha-
sized. We mention in this respect that in 1787, that is, four years after Euler’s death,
the Academy of Sciences of Saint-Petersburg proposed, as a competition question,
to write an essay on the nature of an arbitrary function.91 The prize went to the
Alsatian mathematician Louis-François-Antoine Arbogast (1759–1803), who, in his
Mémoire sur la nature des fonctions arbitraires qui entrent dans les intégrales des
équations aux différentielles partielles (Memoir on the nature of arbitrary functions
that appear in the integrals of partial differential equations), [17] (1791), adopted
Euler’s point of view: he accepted discontinuous functions in the sense Euler defined
them, as solutions of partial differential equations. It is interesting to note that in
the description of that problem, the Academy starts with the physical problem of
vibrating strings:

The problem of the vibrating strings is without doubt one of the most famous problems
of applied mathematics. The most celebrated geometers of our time, who solved it, have
argued on the legitimacy of their solution, without ever being able to convince each other. It
is not that it is difficult to reduce the problem itself to pure analysis, but as it has given the
first occasion to treat three-variable differential equations which give, by integrating them,
arbitrary and varying functions, the important question which divided the points of view of
these great men is whether these functions are entirely arbitrary, whether they represent all
the arbitrary curves and surfaces, formed by a voluntary motion of the hand, or whether they
include only those that are comprised under an algebraic or transcendental equation. Besides
the fact that on that decision depends the way of terminating the dispute on vibrating strings,
the same question on the nature of arbitrary functions re-emerges each time an arbitrary

90Euler published a Latin and a French version of his memoir, which appeared in the years 1749
and 1748 respectively. (The title of the French version, Sur la vibration des cordes, traduit du latin,
although it was published first, shows that it was written after the Latin one.).
91Histoire de l’Académie Impériale des Sciences, année 1787, p. 4.
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problem leads to differential equations with three or more variables: this happens even very
often, not only when we treat subjects of sublime mechanics, but most of all in the theory of
fluid motion: in such a way that one cannot rigorously sustain that such a problem has been
solved before setting precisely the nature of of arbitrary functions. The Academy invites
then all the geometers to decide:

Whether arbitrary functions, to which we are led by integrating equations with one or
several variables, represent arbitrary curves or surfaces, either algebraic or transcendental,
or mechanical, discontinuous or produced by a voluntary motion of the hand; or whether
these functions only contain continuous curves represented by an algebraic or transcendental
equation.92

We now come to the problem of trigonometric series.
Brook Taylor, in his 1713 memoir entitled De motu nervi tensi (On the motion of

a tense string) [242] (cf. also his Methodus incrementorum directa et inversa (Direct
and Indirect Methods of Incrementation), [243] (first edition 1715), showed that the
vibration problem admits as a solution the sine and cosine functions. For several
reasons which we shall mention below, it was tempting to conjecture then that the
general solution of the problem is obtained by taking an infinite sum of trigonometric
functions. This was done by Daniel Bernoulli (1700–1782).

In 1753, Bernoulli wrote a memoir on the vibration of strings. Bernoulli had
already thought about this question for several years. In his approach to it, like in the
other physical problems he considered, Bernoulli was an adept of Leibniz’ calculus,
rather than Euler’s geometric methods (which were adopted by d’Alembert). As a
physicist, themathematical notion of functionwas not a central theme in his research,
and from his point of view, the function representing the solution of the question was
simply identified with the shape of the vibrating string. While Taylor had considered
each trigonometric solution individually, that is, he noticed that functions of the form

92Le problème des cordes vibrantes est sans contredit un des plus fameux problèmes de la mathé-
matique appliquée. Les plus célèbres géomètres de notre temps, qui l’ont résolu, se sont disputés
sur la légitimité de leurs solutions, sans avoir jamais pu se convaincre l’un l’autre. Ce n’est pas
que le problème en lui-même ne soit pas facilement réduit à l’analyse pure ; mais comme il a
été le premier qui ait donné occasion de traiter des équations différentielles à trois variables, par
l’intégration desquelles on parvient à des fonctions arbitraires et variables, la question importante
qui partagea les avis de ces grands hommes fut : si ces fonctions sont entièrement arbitraires ? si elles
représentent toutes les courbes et surfaces quelconques, formées par un mouvement volontaire de la
main ? ou si elles ne renferment que celles qui sont comprises sous une équation soit algébrique soit
transcendante ? Outre que c’est de cette décision que dépend le moyen de terminer cette dispute sur
les cordes vibrantes, la même question sur la nature des fonctions arbitraires renaît toutes les fois
qu’un problème quelconque conduit à des équations différentielles à trois et plusieurs variables : ce
qui arrive même bien souvent, non seulement lorsqu’on traite des sujets de la mécanique sublime,
mais surtout des mouvements des fluides : de sorte qu’on ne saurait soutenir rigoureusement qu’un
pareil problème ait été résolu, avant qu’on ait fixé exactement la nature des fonctions arbitraires.
L’Académie invite donc tous les géomètres de décider:

Si les fonctions arbitraires, auxquelles on parvient par l’intermédiaire des équations à trois
ou plusieurs variables, représentent des courbes ou surfaces quelconques, soit algébriques soit
transcendantes, soit mécaniques, discontinues, ou produites par un mouvement volontaire de la
main ; ou si ces fonctions renferment seulement des courbes continues représentées par une équation
algébrique ou transcendante?
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y(x, t) = sin
nπx

l
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nπαt
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are solutions of the wave equation, Bernoulli stated that the general solution was
an infinite sum of such functions. Thus, he added to the debate the question of the
convergence of trigonometric series. In the meanwhile, d’Alembert published a first
supplement to his memoir Sur les vibrations des cordes sonores (On the vibration of
sonorous strings) [4] in which, referring to Daniel Bernoulli’s work, he writes:

The question is not to conjecture, but to prove, and it would be dangerous (although, to tell
the truth, this misfortune is unlikely to happen) that this kind of proof which is so odd enters
into geometry. The only thing which seems surprising is that such reasonings are used in
way of a proof by a famous mathematician.93

After the publication of Bernoulli’s memoir, Euler wrote a new memoir in which
he generalizes Bernoulli’s result, Remarques sur les mémoires précédents de M.
Bernoulli (Remarks on the preceding memoirs by Mr. Bernoulli) [103] (1755). He
also confirms his own intuition that a solution of the vibrating string equation may be
an arbitrary function. Today, we know that, in some sense, the solution he proposed
is identical to that of Bernoulli, but the relation between trigonometric series and
arbitrary functions was not yet discovered.

In his memoir, Euler starts by declaring that, without any doubt, Bernoulli devel-
oped the theory of formation of sound infinitely better than any other scientist before
him, that his predecessors stopped at the mechanical determination of the motion of
a tight string without any thorough investigation of the nature of sound, and that it
was still not understood how a single string can emit several sounds at the same time.
He then expresses his doubts about the fact that Bernoulli’s infinite series of sines
could be the general solution of the problem. He writes that it is impossible for the
curve made by a vibrating string to be constituted by an infinite number of trochoïds
(which is the name he used for the sine curves). He declares that there are infinitely
many curves that are not included in that solution.

The solution of this problem was given by Fourier and completed by Dirichlet
and Riemann, in the following century, as we shall discuss below. In the same paper,
Euler insists on the fact that the general solution of the equation of the vibrating
string cannot be given by a formula. He mentions his own conflict with d’Alembert,
saying that he wishes very much that the latter explains why he is mistaken. Based on
partial differential calculus, Euler gives a new explanation of the fact that by varying
the initial shape of a string, any function becomes admissible as a solution of the
problem.

Between November 1, 1759 and the end of the same year, Euler presented three
memoirs, [99–101], on the propagation of sound. In thesememoirs, he studies respec-
tively the propagation in one, two and three dimensions. The differential equations

93Il ne s’agit pas de conjecturer, mais de démontrer, et il serait dangereux (quoi qu’à la vérité ce
malheur soit peu à craindre) qu’un genre de démonstration si singulier s’introduisît en Géométrie.
Ce qui pourra seulement paraître surprenant, c’est que de pareils raisonnements soient employés
comme démonstratifs par un mathématicien célèbre.
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that describe this propagation are the same as those which describe the vibration of
strings. Euler mentions the limitations of the works of “Taylor, Bernoulli and some
others.” Despite the fact that the debate on the vibrating string had already lasted
many years, the relation between the scientists working on that subject was still very
tense.

In a later memoir, titled Mémoire sur les vibrations des cordes d’une épaisseur
inégale (Memoir of the vibration of strings of uneven width) [25] (1767), Bernoulli
gave an additional reason for the use of an infinite sum (p. 283):

When a stringmakes several vibrations at the same time, ofwhatever number, and inwhatever
order, the absolute curvature will always be expressed by the general equation

y = α sin
x

l
π + β sin

2x

l
π + γ sin

3x

l
π + etc.

and since the number of arbitrary coefficients is infinite, one can make the curve pass by
whatever number of points of positions that we wish, which indicates that all the curves
belong to this case, provided we do not oppose the hypotheses. And it would be opposing
them if we do not treat the quantities y, dy and ddy as infinitely smaller, at every point of

the curve, than the quantities x , dx and dx2
l . 94

The interested reader may skim the volume of Euler’s collected works containing
the correspondence between Euler and Lagrange, [108], and the volume containing
the correspondence between Lagrange and d’Alembert, [167], not only in order to
understand more deeply this multi-faced controversy, but also in order to feel the
cultural and scientific atmosphere in Europe during that period. Let us quote, as
examples, two excerpts related to the discussion around the solution of the wave
equation. In a letter to Lagrange, dated Octobre 1759, Euler writes:

I was pleased to learn that you agree with my solution relative to the vibrating strings, which
d’Alembert tried hard to refute using various sophisms, for the only reason that he did not
propose it himself. He announced that he will publish an overwhelming proof of it; I don’t
know whether he did it. He thinks he will be able to impress people by his half-scholar
eloquence. I doubt that he can seriously play such a role, unless he is profoundly blinded
by self-esteem. He wanted to insert in our Memoirs, not a proof, but a simple declaration
according to which my solution was very deficient. On my side, I proposed a new proof
which has all the required rigor.95

94Lorsque la corde fait à la fois plusieurs espèces de vibration, quel qu’en soit le nombre, et de
quelque ordre qu’elles soient, la courbure absolue sera toujours exprimée par cette équation générale

y = α sin
x

l
π + β sin

2x

l
π + γ sin

3x

l
π + etc.

et comme le nombre des coefficients arbitraires est infini, on peut faire passer la courbe par tant
de points donnés de position qu’on voudra, ce qui marque que toutes les courbes se trouvent dans
ce cas, pourvu qu’on ne fasse pas violence aux hypothèses. Et ce serait leur faire violence, si on
ne faisait pas les quantités y, dy et ddy comme infiniment plus petites dans tous les points de la

courbe, que les quantités x , dx et dx2
l .

95J’ai appris avec plaisir que vous approuviez ma solution relative aux cordes vibrantes, que
d’Alembert s’est efforcé de réfuter par divers sophismes, et ceci pour l’unique raison qu’il ne l’a
pas proposée lui-même. Il a annoncé qu’il en publierait une accablante réfutation ; j’ignore s’il
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In a letter to d’Alembert, dated March 20, 1765, Lagrange writes:

Concerning [our discussion] on vibrating strings, it is now reduced to a point which, it seems
to me, escapes any analysis. Moreover, I found, by a completely direct way, that if we admit
in the intial figure the conditions that you ask, the solution reduces to the one ofMr. Bernoulli,
namely, y = α sin πx

a + β sin 2πx
a + ..., and it is difficult for me to believe that this is the

only one that can be found in nature. Besides, the phenomena of sound propagation can be
explained only if we admit discontinuous functions, as I proved in my second dissertation.96

Let us also quote Nicolaus Fuss, the famous biographer of Euler,97 from his
Éloge [117]:

The controversy between Messrs. Euler, d’Alembert & Bernoulli regarding the motion of
the vibrating strings can be of interest only to professional geometers. Mr. D. Bernoulli, who
was the first to develop the physical part which concerns the production of sound generated
by this motion, thought that Taylor’s solution was sufficient to explain it. Messrs. Euler and
d’Alembert, who had exhausted, in this difficult matter, everything exquisite and profound
that an analytic mind may possess, showed that the solution of Mr. Bernoulli, extracted from
Taylor’s Trochoids, is not general, and that it is even deficient. This controversy, which lasted
a long time, with all the consideration that such famous men owe to each other, gave rise to
a quantity of excellent memoirs; it really ended only at the death of Bernoulli.98

D’Alembert eventually accepted functions that are discontinuous (in the sense of
Euler) as solutions of partial differential equations; cf. his 1780 memoir entitled Sur
les fonctions discontinues (On discontinuous functions), published in [3] (t. VIII,
Sect. VI) in which he formulates a Règle sur les fonctions discontinues qui peuvent
entrer dans l’intégration des équations aux dérivées partielles (Rule ondiscontinuous

(Footnote 95 continued)
l’a fait. Il croit qu’il pourra jeter de la poudre aux yeux avec son éloquence de demi-savant. Je doute
qu’il joue ce rôle sérieusement, à moins qu’il ne soit profondément aveuglé par l’amour-propre.
Il a voulu insérer dans nos Mémoires non une démonstration, mais une simple déclaration suivant
laquelle ma solution était très défectueuse ; pour ma part, j’ai proposé une nouvelle démonstration
possédant toute la rigueur voulue.
96à l’égard de [notre discussion] sur les cordes vibrantes, elle est maintenant réduite à un point
qui échappe, ce me semble, à l’Analyse. Au reste, j’ai trouvé par une voie tout à fait directe qu’en
admettant dans la figure initiale les conditions que vous y exigez, la solution se réduit à celle de M.
Bernoulli, savoir : y = α sin πx

a + β sin 2πx
a + ..., et j’ai peine à croire que celle-ci soit la seule qui

puisse avoir lieu dans la nature. D’ailleurs, les phénomènes de la propagation du son ne peuvent
s’expliquer qu’en admettant les fonctions discontinues, comme je l’ai prouvé dans ma seconde
dissertation.
97Nicolaus Fuss (1755–1826) was first hired as Euler’s secretary, then he became successively his
favorite student, his closest friend, his collaborator and colleague at the Saint Petersburg Academy
of Sciences, and eventually his grandson-in-law (the husband of Euler’s grand-daughter Albertine).
98La controverse entre MM. Euler, d’Alembert & Bernoulli au sujet du mouvement des cordes
vibrantes ne peut intéresser proprement que les Géomètres de profession. M. D. Bernoulli, qui
fut le premier à en développer la partie physique qui regarde la formation du son engendré par
ce mouvement, crut la solution de Taylor suffisante de l’expliquer. MM. Euler et d’Alembert, qui
avaient épuisé, dans cette matière difficile, tout ce que l’esprit analytique a de sublime& de profond,
firent voir que la solution de M. Bernoulli, tirée des Trochoïdes Tayloriennes, n’est pas générale,
qu’elle est même insuffisante. Cette controverse qui a été continuée longtemps, avec tous les égards
que des hommes aussi illustres se doivent mutuellement, a donné naissance à quantité d’excellents
mémoires ; elle n’a fini proprement qu’à la mort de M. Bernoulli.
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functions thatmay enter into the integration of partial differential equations).We refer
the interested reader to the papers [147, 245, 260, 261] for more on the history of
the subject.

The confirmation of Bernoulli’s conjecture followed from Fourier’s manuscript
Théorie de la propagation de la chaleur dans les solides (Theory of heat propa-
gation in solids),99 [115] read to the Academy in 1807, that is, twenty-five years
after Bernoulli’s death. The manuscript carries the subtitle: “Mémoire sur la prop-
agation de la chaleur avec notes séparées sur cette propagation—sur la conver-

gence des séries sin x − 1

2
sin 2x + 1

3
sin 3x &c.” (Memoir on the propagation of

heat, with separate notes on that propagation—on the convergence of the series

sin x − 1

2
sin 2x + 1

3
sin 3x etc.). Let us quote an excerpt ([132] p. 183):

It follows from my researches on this object that the arbitrary functions, even discontinuous,
can always be represented by the sine or cosine expansions of multiple arcs, and that the
integrals which contain these developments are precisely as general as those where arbitrary
functions ofmultiple arcs enter.A conclusion that the celebratedEuler has always rejected.100

In 1811, the Paris Académie des sciences proposed a competition whose title was:
Donner la théorie mathématique des lois de la propagation de la chaleur et comparer
les résultats de cette théorie à des expériences exactes (To give the mathematical
theory of the laws of propagation of heat and to compare the results of this theory
with exact experiences). Fourier submitted for the prize a very extensive work which
included his 1807 manuscript. The jury of the competition consisted of Lagrange,
Laplace, Maus, Haüy and Legendre. Darboux, in his review [48], quotes part of the
report on the work of Fourier:

This piece contains genuine differential equations of heat transmission, either in the interior
of bodies, or at their surface. And what is new in the subject, added to its importance, has
led the Class to crown this treatise, while noting however that the manner with which the
author arrives at his equation is not exempt of difficulties, and that his analysis, to integrate
them, still leaves something to be desired, either relative to the generality, or even from the
point of view of rigor.101

The sum of Fourier’s work on the propagation of heat was collected in his mas-
terpiece, Théorie analytique de la chaleur (Analytic theory of heat) [116], published
in 1822. The following result is stated at the end of Chapter III of this memoir, as a
summary of what has been done (art. 235, p. 258):

99This memoir, read to the Academy 1807, was never published, until it was edited with comments
by Grattan-Guinness, see [132].
100Il résulte demes recherches sur cet objet que les fonctions arbitraires même discontinues peuvent
toujours être représentées par les développements en sinus ou cosinus d’arcs multiples, et que les
intégrales qui contiennent ces développements sont précisément aussi générales que celles où entrent
les fonctions arbitraires d’arcs multiples. Conclusion que le célèbre Euler a toujours repoussée.
101Cette pièce renferme de véritables équations différentielles de la transmission de la chaleur, soit
à l’intérieur des corps, soit à leur surface ; et la nouveauté du sujet, jointe à son importance, a
déterminé la Classe à couronner cet Ouvrage, en observant cependant que la manière dont l’Auteur
parvient à ses équations n’est pas exempte de difficultés, et que son analyse, pour les intégrer, laisse
encore quelque chose à désirer, soit relativement à la généralité, soit même du côté de la rigueur.
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It follows from all that was proved in this section, concerning the series expansion of trigono-
metric functions, that if we propose a function f x , whose value is represented on a given
interval, from x = 0 to x = X , by the ordinate of a curves line drawn arbitrarily, one can
always expand this function as a series which will contain only the sines, or the cosines, or
the sines and the cosines of multiple arcs, or only the cosines of odd multiples.102

Trigonometric functions were essential for the solution of the heat equation, as they
were for the wave equation at the time of Bernoulli. What is important for our topic
here is that trigonometric series became an essential tool in the field of complex
analysis, independently of the heat flow. Fourier writes in the same section (art. 235
p. 258):

We cannot entirely solve the fundamental questions of the theory of heat without reducing
to this form the functions that represent the initial state of temperatures.

These trigonometric series, ordered according to the cosines or sines of the multiples of the
arc, pertain to elementary analysis, like the series whose terms contain successive powers
of the variable. The coefficients of the trigonometric series are definite areas, and those of
power series are fractions given by differentiation, in which one also attributes to the variable
a definite value.103

Fourier then summarizes several properties of these series, including the integral
formulae for the coefficients, and he also states the following:

The series, ordered according to the cosines or the sines of the multiple arcs, are always
convergent, that is, when we give to the variable an arbitrary non-imaginary value, the sum
of the terms converges more and more to a unique and fixed limit, which is the value of the
expanded function.104

It is interesting to recall that Fourier, in hisThéorie analytique de la chaleur quotes
Archimedes, Galileo and Newton, the three scientists mentioned by Riemann in the
last part of his Habilitation lecture, Über die Hypothesen, welche der Geometrie zu
Grunde liegen. Fourier writes ([116], pp. i–ii):

The knowledge that the most ancient people could have acquired in rational mechanics did
not reach us, and the history of that science, if we except the first theorems on harmony, does

102Il résulte de tout ce qui a été démontré dans cette section, concernant le développement des fonc-
tions en séries trigonométriques, que si l’on propose une fonction f x , dont la valeur est représentée
dans un intervalle déterminé, depuis x = 0 jusqu’à x = X , par l’ordonnée d’une ligne courbe tracée
arbitrairement on pourra toujours développer cette fonction en une série qui ne contiendra que les
sinus, ou les cosinus, ou les sinus et les cosinus des arcs multiples, ou les seuls cosinus des multiples
impairs.
103On ne peut résoudre entièrement les questions fondamentales de la théorie de la chaleur, sans
réduire à cette forme les fonctions qui représentent l’état initial des températures.

Ces séries trigonométriques, ordonnées selon les cosinus ou les sinus des multiples de l’arc,
appartiennent à l’analyse élémentaire, comme les séries dont les termes contiennent les puissances
successives de la variable. Les coefficients des séries trigonométriques sont des aires définies, et
ceux des séries de puissances sont des fonctions données par la différenciation, et dans lesquelles
on attribue aussi à la variable une valeur définie.
104Les séries ordonnées selon les cosinus ou les sinus des arcs multiples sont toujours convergentes,
c’est-à-dire qu’en donnant à la variable une valeur quelconque non imaginaire, la somme des termes
converge de plus en plus vers une seule limite fixe, qui est la valeur de la fonction développée.
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not go back further than the the discoveries ofArchimedes. This great geometer explained the
mathematical principles of the equilibrium of solids and of fluids. About eighteen centuries
passed before Galileo, the first inventor of the dynamical theories, discovered the laws of
motions of massive bodies. Newton encompassed in that new science all the system of the
universe.105

Riemann claims in his memoir on trigonometric series that the question of finding
conditions under which a function can be represented by a trigonometric series was
completely settled in the work of Dirichlet, “for all cases that one encounters in
nature. [...] The questions to which Dirichlet’s researches do not apply do not occur
in nature.” We quote Dirichlet, from his 1829 memoir Sur la convergence des séries
trigonométriques qui servent à représenter une fonction arbitraire entre des limites
données (On the convergence of trigonometric series used to represent an arbitrary
function between two given bounds) [55] (1829), in which he gives a solution to the
convergence problem, and where he also mentions the work of Cauchy on the same
problem. His paper starts as follows:

The series of sines and cosines, by means of which one can represent an arbitrary function on
a given interval, enjoy among other remarkable properties the one of being convergent. This
property has not escaped the attention of the famous geometer who opened a new field for
the applications of analysis, introducing there the way of expressing the arbitrary functions
which are our subject here. It is contained in the memoir containing his first researches
on heat. But, to my knowledge, nobody up to now gave a general proof. I know only on
this subject a work due to Mr. Cauchy and which is part of his Mémoires de l’Académie
des sciences de Paris pour l’année 1823. The author of this work confesses himself that
his proof fails for certain functions for which convergence is nevertheless indisputable. A
careful examination of that memoir led me to the belief that the proof which is presented
there is insufficient even for the cases to which the authors thinks it applies.106

Riemann, after quoting the work of Dirichlet, gives two reasons for investigating
the cases to which Dirichlet’s methods do not apply directly. The first reason is that
sorting out these questions will bring more clarity and precision to the principles of
infinitesimal calculus. The second reason is that Fourier series will be useful not only

105Les connaissances que les plus anciens peuples avaient pu acquérir dans la mécanique rationnelle
ne nous sont pas parvenues, et l’histoire de cette science, si l’on excepte les premiers théorèmes sur
l’harmonie, ne remonte point au-delà des découvertes d’Archimède. Ce grand géomètre expliqua les
principes mathématiques de l’équilibre des solides et des fluides. Il s’écoula environ dix-huit siècles
avant que Galilée, premier inventeur des théories dynamiques, découvrit les lois du mouvement des
corps graves. Newton embrassa dans cette science nouvelle tout le système de l’univers.
106Les séries de sinus et de cosinus, au moyen desquelles on peut représenter une fonction arbitraire
dans un intervalle donné, jouissent entre autres propriétés remarquables aussi de celles d’être con-
vergentes. Cette propriété n’avait pas échappé au géomètre illustre qui a ouvert une nouvelle carrière
aux applications de l’analyse, en y introduisant la manière d’exprimer les fonctions arbitraires dont
il est question ; elle se trouve énoncée dans le Mémoire qui contient ses premières recherches sur la
chaleur. Mais personne, que je sache, n’en a donné jusqu’à présent une démonstration générale. Je
ne connais sur cet objet qu’un travail dû à M. Cauchy et qui fait partie des Mémoires de l’Académie
des sciences de Paris pour l’année 1823. L’auteur de ce travail avoue lui-même que sa démonstration
tombe en défaut pour certaines fonctions pour lesquelles la convergence est pourtant incontestable.
Un examen attentif du mémoire cité m’a porté à croire que la démonstration qui y est exposée n’est
pas même suffisante pour les cas auxquels l’auteur la croit applicable.
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in physics, but also in number theory. Riemann says that in this field, it is precisely
the functions which Dirichlet did not consider that seem to be the most important.

The so-called Dirichlet conditions for a function defined on the interval [0, 2π] to
have a Fourier trigonometric expansion is now classical. Picard, in [198] (p. 8) writes
that Dirichlet’s memoir on Fourier series remained a model of rigor. We conclude
this section by quoting Riemann. Talking about Dirichlet’s work on trigonometric
series, he writes:

This work of Dirichlet gave a firm foundation to a great number of important analytic
researches. Highlighting a point on which Euler was mistaken, he succeeded in clearing out
a question that had occupied so many eminent geometers for more than seventy years.

Riemann, in the same memoir, developed his integration theory in order to build
a general theory for Fourier series, in particular for functions which have an infinite
number of discontinuity points. This is the subject of the next section.

11 Integration

The second part of Riemann’s memoir on trigonometric functions [215] carries the
title “On the notion of definite integral and on the scope of its applicability.” The
relation between integration and trigonometric series is based on Fourier’s formulae
which give the coefficients of a trigonometric series in the form of integrals. Riemann
starts the second part of the memoir by formulating a question: “First of all, what do
we mean by ∫ b

a
f (x)dx?"

The rest of the memoir is the answer to this question.
We explained at length that one of the fundamental questions in eighteenth century

mathematics was “What is a function,” and how this question led to a celebrated con-
troversy. Riemann had to deal with the same question in his memoir on trigonometric
series, more than a century after the controversy started, and he gave it the definitive
answer. The problem in Riemann’s memoir was addressed in a new context, namely,
his integration theory, which was developed in a few pages at the end of that memoir.
More particularly, the question became in that context: “What are the functions that
can be integrated?” and in particular, whether the known functions were sufficient
for the theory that became known as the Riemann integral or whether a new class of
functions was needed.

We recall that since Newton and Leibniz, and passing by Euler, integration was
defined as an anti-derivarive. Cauchy started an approach to integrals as limits of
sums associated to partitions of the interval of definition, that is, sums of the form

∞∑

k=1

f (xk−1)(xk − xk−1),
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cf. e.g. Cauchy’s Résumé des leçons données à l’École Royale Polytechnique sur
le calcul infinitésimal (Summary of lectures on infinitesimal calculus given at the
École Royale Polytechnique) (1823) [35]. In Cauchy’s setting, the limit always exists
because he considered only continuous functions. It was soon realized that the defi-
nition may apply to more general functions. Dirichlet, in his work on trigonometric
functions, used Cauchy’s theory applied to discontinuous functions. Riemann states
in his memoir that Cauchy’s integration theory involves some random definitions
which cannot make it a universal theory.

Riemann answered the question of how far discontinuity is allowed. He was led
to the most general functions, which he termed “integrable.” In Sects. 7, 8 and 9 of
his memoir, he applies his new integration theory to the problem of representing
arbitrary functions by trigonometric series. The main results are stated in three the-
orems in Sect. 8, and the propositions concerning the representation of functions by
trigonometric series are contained in Sect. 9. Sections10 and 11 contain results on
the behavior of the coefficients of a trigonometric series. The last sections (Sects. 12
and 13) concern particular cases, more precisely, cases where the Fourier series is
not convergent.

It is curious that Riemann mentions Cauchy several times in this memoir on
trigonometric series, but he never refers to him in his dissertation on the theory of
functions of a complex variable.

There is a section on the history of integration in Lebesgue’s book [169]. In
particular, Lebesgue summarizes Cauchy’s theory, as well as an unpublished work
ofDirichlet on the subject, which reached us through a description of Lipschitz ([169]
p. 9). Dirichlet’s work applies to functions with an infinite number of discontinuity
points, but forming a non-dense subset. Riemann, using series, constructed functions
to which the preceding techniques do not apply and which may still be integrated.
These functions of Riemann do not have a graphical representation. We are far from
Euler’s “arbitrary drawable function” which, indeed, he thought exceeded the power
of the calculus (by not being differentiable).

Chapter2 of Lebesgue’s treatise is a survey of the Riemann integral. This theory
allows one to prove theorems such as the fact that a uniformly convergent integrable
sequence of functions is an integrable function (p. 30), and that a uniformly conver-
gent series of integrable functions may be integrated term by term. Lebesgue also
mentions the work of Darboux, involving the notions of upper and lower limits.
He then presents his own geometric theory (as opposed to the analytic theory of
Riemann), based on set theory and measure theory. There are more comments on
Lebesgues’ integration theory in Chap.8 of the present volume [192].

To conclude this section, let us mention that Riemann’s ideas about the general
notion of function in relationwith integration theory underwent several developments
in the twentieth century (one may think about the difficulties in the introduction of
general measurable functions).

Riemann’s memoir on trigonometric series was published 13 years after it was
written. It was translated into French by Darboux and Houël.

It is interesting to note that trigonometric series are used in the proof of the so-
called Poincaré lemma, a lemma which plays an essential role in the proof of the

http://dx.doi.org/10.1007/978-3-319-60039-0_2
http://dx.doi.org/10.1007/978-3-319-60039-0_8
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modern version of the Riemann–Roch theorem which is presented in Chap.13 of the
present volume.

12 Conclusion

In the preceding sections, we reviewed part of the historical origins of Riemann’s
mathematical works. One should write another article about the roots of his ideas in
physics and philosophy. The intermingling between the old and new ideas of physics
and philosophy is yet another subject. In this respect, and since the present book
is also about relativity, we quote Kurt Gödel from his article A remark about the
relationship between relativity theory and idealistic philosophy [127]. Talking about
the insight that this theory brings into the nature of time, he writes:

In short, it seems that one obtains an unequivocal proof for the view of those philosophers
who, like Parmenides, Kant and the modern idealists, deny the objectivity of change and
consider change as an illusion or an appearance due to our special mode of perception.

It would be stating the obvious to say that mathematicians should read the works
of mathematicians from the past, not only the recent past, but most of all the founders
of the theories they are working on. Yet, very few do it. I would like to conclude
the present chapter by quoting some pre-eminent mathematicians who expressed
themselves on this question. I start with Chebyshev.

We learn from his biographer in [207] that Chebyshev’s thoroughly studied the
works of Euler, Lagrange, Gauss, Abel, and other pre-eminent mathematicians. The
biographer also writes that, in general, Chebyshev was not interested in reading the
mathematical works of his contemporaries, considering that spending time on that
would prevent him of having original ideas.

On the importance of reading the old masters, we quote again André Weil, from
his 1978 ICM talk ([254] p. 235):

From my own experience I can testify about the value of suggestions found in Gauss and
in Eisenstein. Kummer’s congruences for Bernoulli numbers, after being regarded as little
more than a curiosity for many years, have found a new life in the theory of p-adic and
L-functions, and Fermat’s ideas on the use of the infinite descent in the study of Diophantine
equations of genus one have proved their worth in contemporary work on the same subject.

Among themore recentmathematicians, Iwould like to quote againGrothendieck.
During his apprenticeship, like most of us, Grothendieck was not encouraged to read
ancient authors. He writes, in Récoltes et semailles (Chap. 2, Sect. 2.10):

In the teaching I received frommy elders, historical referenceswere extremely rare, and Iwas
nurtured, not by reading authorswhichwere slightly ancient, nor even contemporary, but only
through communication, face to face or through correspondencewith othersmathematicians,
and starting with those who were older than me.107

107Dans l’enseignement que j’ai reçu de mes aînés, les références historiques étaient rarissimes,
et j’ai été nourri, non par la lecture d’auteurs tant soit peu anciens ni même contemporains, mais

http://dx.doi.org/10.1007/978-3-319-60039-0_13
http://dx.doi.org/10.1007/978-3-319-60039-0_2
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In the same work, we read (Chap. 2, Sect. 2.5):

I personally feel that I belong to a lineage of mathematicians whose spontaneous mission
and joy is to constantly construct new houses. [...] I am not strong in history, and if I were
asked to give names of mathematicians in that lineage, I can think spontaneously of Galois
and Riemann (in the past century) and Hilbert (at the beginning of the present century).108

Grothendieck’s attitude towards mathematics and mathematicians changed dras-
tically at the time he decided to quit the mathematical milieu, in 1970, twenty years
after he obtained his first job, putting an end to an extraordinarily productive working
life and to his relation with his contemporary mathematicians. One thing which is
not usually mentioned about him is that his writings, during the period that followed,
contain many references to mathematicians of the past, to whom Grothendieck ex-
presses his debt, and among them stands Riemann. In his Récoles et semailles [133],
Grothendieck writes (Chap. 2, Sect. 2.5):

Most mathematicians are led to confine themselves in a conceptual framework, in a “Uni-
verse,” which is fixed once and for all—essentially, the one they found “ready-made” at the
time they were students. They are like the heirs of a big and completely furnished beautiful
house, with its living rooms, kitchens and workshops, its kitchen set and large equipment,
with which there is, well, something to cook and to tinker. How this house was progressively
constructed, over the generations, and why and how such and such tool (and not another)
was conceived and shaped, why the rooms are fit out in such a manner here, and in another
manner there—these are as many questions as these heirs will never think to ask. That is the
“Universe,” the “given” in which we must live, that’s it! Something which will seem great
(and, most often, we are far from having discovered all the rooms), familiar109 at the same
time, and, most of all, unchanging.110

(Footnote 107 continued)
surtout par la communication, de vive voix ou par lettres interposées, avec d’autres mathématiciens,
à commencer par mes aînés.
108Je me sens faire partie, quant à moi, de la lignée des mathématiciens dont la vocation spontanée
et la joie est de construire sans cesse des maisons nouvelles. [...] Moi qui ne suis pas fort en histoire,
si je devais donner des noms de mathématiciens dans cette lignée-là, il me vient spontanément ceux
de Galois et de Riemann (au siècle dernier) et celui de Hilbert (au début du siècle présent).
109The emphasis is Grothendieck’s.
110La plupart des mathématiciens sont portés à se cantonner dans un cadre conceptuel, dans un
“Univers” fixé une fois pour toutes—celui, essentiellement, qu’ils ont trouvé “tout fait” au moment
où ils ont fait leurs études. Ils sont comme les héritiers d’une grande et belle maison toute installée,
avec ses salles de séjour et ses cuisines et ses ateliers, et sa batterie de cuisine et un outillage à tout
venant, avec lequel il y a, ma foi, de quoi cuisiner et bricoler. Comment cette maison s’est construite
progressivement, au cours des générations, et pourquoi et comment ont été conçus et façonnés tels
outils (et pas d’autres...), pourquoi les pièces sont aménagées de telle façon ici, et de telle autre
là—voilà autant de questions que ces héritiers ne songeraient pas à se demander jamais. C’est ça
“l’Univers”, le “donné” dans lequel il faut vivre, un point c’est tout ! Quelque chose qui paraît grand
(et on est loin, le plus souvent, d’avoir fait le tour de toutes ses pièces), mais familier en même
temps, et surtout: immuable.

http://dx.doi.org/10.1007/978-3-319-60039-0_2
http://dx.doi.org/10.1007/978-3-319-60039-0_2
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We conclude with Grothendieck’s reference to Riemann. In his Sketch of a pro-
gram, [134], he writes (p. 240 of the English translation)111:

Whereas in my research before 1970, my attention was systematically directed towards
objects of maximal generality, in order to uncover a general language adequate for the world
of algebraic geometry [...] here I was brought back, via objects so simple that a child learns
themwhile playing, to the beginnings and origins of algebraic geometry, familiar to Riemann
and his followers!

Topic Euler Riemann
Functions of a • Introductio in analysin • Grundlagen für eine
complex variable infinitorum (1748) allgemeine Theorie der

• De repraesentatione Functionen einer veränderlichen
superficiei sphaericae complexen Grösse (1851)
super plano (1777) • Theorie der Abel’schen

Functionen (1857)
Elliptic and • Specimen de constructione • Grundlagen für eine
Abelian integrals aequationum differentialium allgemeine Theorie der

sine indeterminatarum Functionen einer veränderlichen
separatione (1738) complexen Grösse (1851)
• Observationes de comparatione • Theorie der Abel’schen
arcuum curvarum Functionen (1857)
irrectificibilium (1761) • Über das Verschwinden der
• De integratione ϑ-Functionen (1857)
aequationis differentialis

mdx√
1−x4

= ndy√
1−y4

(1761)

Hypergeometric • De summatione innumerabilium • Beiträge zur Theorie der
series progressionum (1738) durch die Gauss’sche Reihe

• Institutionum calculi integralis F(α,β, γ, x) darstellbaren
volumen secundum (1769) Functionen (1857)
• Specimen transformationis
singularis serierum (1778)

The zeta function • Variae observationes circa • Über die Anzahl der
series infinitas (1744) Primzahlen unter einer
• Remarques sur un beau rapport gegebenen Grösse (1859)
entre les series des puissances tant
directes que réciproques (1749)

Integration • Institutionum calculi integralis • Über die Darstellbarkeit
(1768–1770) einer Function durch eine

trigonometrische Reihe (1854)

111The English translation is by Lochak and Schneps.
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Topic Euler Riemann
Space and • Anleitung zur Naturlehre • Grundlagen für eine
philosophy of (1745) allgemeine Theorie der
nature • Reflexions sur l’espace Functionen einer veränderlichen

et le temps (1748) complexen Grösse (1851)
Topology • Solutio problematis ad • Grundlagen für eine

geometriam situs pertinentis allgemeine Theorie der
(1741) Functionen einer veränderlichen
• Elementa doctrinae complexen Grösse (1851)
solidorum (1758) • Theorie der Abel’schen
• Demonstratio nonnullarum Functionen (1857)
insignium proprietatum, • Über die Hypothesen,
quibus solida hedris planis welche der Geometrie
inclusasunt praedita (1758) zu Grunde liegen (1854)

Differential • Introductio in analysin • Über die Hypothesen,
geometry infinitorum (1748) welche der Geometrie

zu Grunde liegen (1854)
• Recherches sur la courbure • Commentatio mathematica,
des surfaces (1767) qua respondere tentatur

quaestioni ab Illma Academia
Parisiensi propositae (1861)
• Ein beitrag zu den
Untersuchungen über die
flüssigen Bewegung eines
gleichartigen Ellipsoides (1861)
• Über die Fläche vom
kleinsten Inhalt bei gegebener
Begrenzung (1867)

Trigonometric • Recherches sur la question • Über die Darstellbarkeit
series des inegalités du mouvement einer Function durch eine

de Saturne et de Jupiter (1748) trigonometrische Reihe (1854)
Acoustics • Dissertatio physica de sono • Über die Fortpflanzung

(1727) ebener Luftwellen von endlicher
• Sur la vibration des cordes Schwingungsweite (1860)
(1748)
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Riemann on Geometry, Physics,
and Philosophy—Some Remarks

Jeremy Gray

Abstract Riemann’s paper ‘On the hypotheses that lie at the foundations of geome-
try’ is one of the fundamental papers in the creation of modern geometry. We analyse
its content, look at the influence the work of Gauss and Herbart exercised on Rie-
mann, and discuss other of Riemann’s papers that shed light on his ideas, in particular
on his appreciation of the concept of curvature.

1 Introduction

Riemann’s paper ‘On the hypotheses that lie at the foundations of geometry’ (hence-
forth, Hypotheses) [24] is generally regarded as one of the most important papers
ever written in mathematics. As such, it was read by generations of mathematicians,
most notably in the Göttingen tradition that reached from him to Hermann Weyl,
and its ideas continue to influence mathematics today. Without it, Einstein’s general
theory of relativity would have been unthinkable.

Unsurprisingly, therefore, it has been worked over by historians of mathematics,
historically-minded mathematicians, and philosophers of mathematics looking for
its key ideas and a historical and intellectual context into which to put them. The
results are intriguingly meagre. The Hypotheses is not the last step in a complicated
chain of arguments involving Riemann with numerous predecessors, nor is it the
response to a perceived crisis. Rather, it is, as it is presented, the next step after the
work of Gauss [12] and, partly, as a response to shifting philosophical ideas about
the nature of geometry that may have also caught Riemann’s attention because of
their implications for physics.
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This paper will first look at the Hypotheses in detail, and then consider its relation
to Gauss’s ideas about differential geometry. Then it will turn to the connections to
physics and philosophy, and conclude by looking at the other relevant paper Riemann
wrote, the Commentatio [27] and the the discussions that it provoked.

2 The Hypotheses

Riemann’s essay [24] was published posthumously in 1867, and is based on the lec-
ture he gave in 1854 as part of the process of obtaining his Habilitation, the necessary
and sufficient qualification for obtaining a teaching position at a German university.
As such it was given to the Philosophy Faculty at Göttingen, of which Mathematics
was a Department, with Gauss as one of the examiners. These circumstances explain
the unfortunate absence of formulae that would otherwise have assisted subsequent
readers.

Riemannbegan by remarking that geometry “takes for granted the notion of space”
as well as the first principles of constructions in space. The basic concepts have only
nominal definitions and the crucial properties are determined from axioms, but this
leaves the relationships between the axioms obscure; in fact, said Riemann, it is not
even clear a priori if the relationships are possible.

This opening paragraphmakes two points. First, that it is not clearwhat the axioms
or postulates of Euclidean geometry are about; second, that it is not even clear that
they are consistent.

But Riemann did not take his analysis in the direction of a more refined study of
the axioms. It is likely that he saw the work of Legendre, whose name he mentions,
as indicative of the poverty of such work, not only because in all the editions of
his Géométrie [16] Legendre had failed to prove the parallel postulate, but because
Riemann thought that the whole axiomatic attempt to give a geometrical account of
physical space was misguided. In unpublished notes from the early 1850s he called
such enquiries “extremely unfruitful” (see Scholz ([30] p. 218)), which, as Scholz
points out, makes it very unlikely that Riemann had seen any of Lobachevskii’s work.

Instead, Riemann began his paper [24] by remarking that the general notion
of quantity was multi-dimensional, and “it emerges from this study that a multi-
dimensional object is capable of being measured in different ways and that space
is only a particular example of a three-dimensional quantity.” Moreover, the prop-
erties that characterise space among all three-dimensional quantities can only be
determined experimentally. From this perspective the axioms of Euclid are only
hypotheses, although highly probable outside “the realms of both the immeasurably
great and the immeasurably small.”

This opening page is one of the first places where a characteristically modern
mathematical approach is taken towhatmany had seen as a straight-forward question.
Riemann did not say that Euclidean geometry needs fixing and offer a proposal. He
stepped back and asked himself: what are we studying when we study geometry?
His answer was quantity, and for him that was a multi-dimensional object—the sort
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of thing that is described, as we shall see, with coordinates. In Riemann’s opinion
a geometer, even a practical one, should not concentrate on the passage from space
to a mathematical theory of space (still less take one for granted) but first build up a
theory of multi-dimensional quantities, and this he turned to do.

He began Part I of the paper by regretting that apart from some ideas of Gauss
[14] published in his second memoir on biquadratic residues and some philosophical
remarks of Herbart [15] there was little to guide him. He indicated that there are
continuous and discrete manifolds depending on how the elements are determined,
and here amanifold is a vague term, littlemore than a collection of elements. Discrete
manifolds in this sense are frequently encountered, said Riemann, but continuous
ones less so, and he gave examples of the location of material objects and their
colours. To make sense of continuous manifolds we rely on measurement, which
presupposes ameasuring unit that can be freely transported.When this is not available
we have only the general concept of a manifold, and this difficulty may be why the
work of Lagrange, Pfaff, and Jacobi on many-valued analytic functions has been so
unfruitful so far.

Riemann had already rewritten the theory of functions of a complex variable in
his doctoral theses [23], published in 1851. It is likely that his ideas about surfaces
were what he was alluding to here, although the great work on Abelian functions
would not be published until 1857.

How then to determine position in a manifold? Riemann explained that if the
manifold has dimension one then position is determined by moving forwards and
backwards using some unspecified concept of length. If this one-dimensional man-
ifold is itself then moved forwards and backwards in a different dimension then a
two-dimensional manifold is obtained, and so on. The converse also holds: one can
break an n-dimensional manifold down into smaller ones along which some function
has a constant value, and exceptional cases aside these sets where the function takes
a fixed value are n − 1-dimensional submanifolds.

In Part II of his paper [24] Riemann explained how to introduce metrical relations
in a manifold on the assumption that lines have a length independent of their position
and every line canbemeasuredby everyother line.Here hewashappy to acknowledge
the work of Gauss [12] on curved surfaces (which we shall look at below).

Riemann now supposed that the position of a point in perhaps some region of
an n-manifold is determined by its n coordinates (x1, x2, . . . , xn). He restricted his
attention to continuous systems in which the coordinates can vary by amounts dx and
sought an expression for the line element ds in terms of the dx1, dx2, . . . , dxn . He
further assumed that the length of a line element is unaltered if all its points undergo
the same infinitesimal displacement. If moreover distance increases as points move
away from the origin and the first and second derivatives are finite then the first
derivative must vanish and the second cannot be negative, so Riemann took it to
be positive. He deduced that the line element ds could be “the square root of an
everywhere positive quadratic form in the variables dx”, as for example we take to
be the case for space when we write



100 J. Gray

ds =
√∑

(dx)2.

Riemann noted that there are other possibilities. For example, ds could be the
fourth root of a fourth power expression, but he did not see many possibilities for
geometry there and he set this aside.

The quadratic form, however, did interest him. It contains n(n + 1)/2 coefficients,
of which n can be altered by a change of variables, so it depends essentially on n(n −
1)/2 coefficients that are determined by the manifold. The example of

√∑
(dx)2 is

therefore special, and Riemann proposed to call such manifolds flat.
To proceed further, Riemann considered the infinitesimal triangle with one vertex

at the origin, one on a geodesic out of the origin to the point (x1, x2, . . . , xn), and
one on a geodesic out of the origin to the point (dx1, dx2, . . . , dxn). The quotient
of

√∑
(dx)2 by the area of this triangle measures the departure of this infinitesimal

region from flatness, and divided by −3/4 is in fact the Gaussian curvature of the
surface. So the curvature of an n-manifold can be understood by knowing n(n − 1)/2
surface curvatures (the sectional curvatures, as we would say).

This led Riemann to explain the difference between intrinsic and extrinsic prop-
erties of a surface. He explained that for a sphere, which has an intrinsic geometry
different from a plane, the Gaussian curvature multiplied by the area of an infinitesi-
mal geodesic triangle is half the excess of the sum of its angles over π . This allowed
him to express the belief that the geometry of an n-dimensional manifold could be
understood by understanding its sectional curvatures.

Flat manifolds, he observed, have every sectional curvature zero. They are there-
fore a special case of the manifolds of constant curvature (that is, having the same
sectional curvatures everywhere) and in these manifolds geometric figures can be
freely moved around without stretching. To give examples of such manifolds he
wrote down the metric

ds = 1

1 + α
4

∑
x2

√∑
(dx)2,

where α is the curvature.
It was evident that the surfaces of constant positive curvature are spheres; the

sphere of radius r has curvature r−2. Riemann gave a complicated description of
how to fit all the surfaces of constant curvature into one family. On this description,
the cylinder is the example of a surface of zero curvature, and surfaces of constant
negative curvature are locally like the saddle-shaped part of a torus.

In the third and final part of his paper [24] Riemann discussed how his ideas might
apply to space. If all the sectional curvatures are zero, the space is Euclidean. But
if we assume only that there is free mobility of bodies then space is described as a
three-dimensional manifold of constant curvature, which can be determined from
the knowledge of the sum of the angles in any triangle. Or, one could assume that
length is independent of position but not direction.
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As for empirical confirmation, the topological structures available to describe
three-dimensional manifolds form a discrete set, so exact statements can be made
about them even if one can never be certain of their truth. As for themetrical relations,
however, these are necessarily inexact because every measurement is imprecise. This
has implications for the immeasurably large and the immeasurably small.

The immeasurably large divided into spaces that are infinite and spaces that are
merely unbounded, as for example a sphere. That said, Riemann regarded questions
about the immeasurably large as irrelevant to the elucidation of natural phenom-
ena, if only because existing astronomical measurements show that any non-zero
sectional curvature of space can only be detected in regions vastly greater than the
range of our telescopes. This seems to belong to a Göttingen tradition going back
to Gauss and extending at least as far as Schwarzschild, who reported on the impli-
cations of measurements of the parallel of stars for the curvature of space in 1899
(see (Epple [7])).

Not so questions about the immeasurably small. Here “the concept of a rigid body,
and the concept of a light ray, cease to be meaningful”. But, Riemann concluded his
lecture, these questions take us into physics “which the nature of today’s occasion
does not allow us to explore”.

3 Influences

3.1 Gauss

It is possible to read Riemann’s paper [24] in various ways. Amodern mathematician
can supply the missing details, or, at the other extreme, regard it as almost incoher-
ent. It is possible for a mathematician to offer a comparably deep vision of new
mathematics today, but it would be couched in a language of possible definitions,
possible methods, and likely theorems that, conjecturally, resolve outstanding prob-
lems. Riemann’s paper is more philosophical–in the good sense of challenging one
to be clear about what is involved in an enquiry–and more speculative.

As Riemann made clear, among the few antecedents he could acknowledge were
two papers by Gauss [11, 12]. The one on differential geometry is easy to appreciate.
In the 1810s and 1820s Gauss had re-defined the subject in two memoirs. In his
Disquisitiones generales circa superficies curvas of 1828 he introduced the concept
of the intrinsic curvature of a surface.Gauss began his exposition by taking his readers
through three definitions of a surface: in the first a surface is given by an expression
of the form z = f (x, y); in the second by an expression of the form f (x, y, z) = 0;
and in the third in the parameterised form (x(u, v), y(u, v), z(u, v)). For each of
these approaches he showed what the implications were calculating the curvatures
of the principal curves at each point, which Euler [8] had showed are a good way to
understand how curved a surface is at each point.
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Gauss then introduced the map later known as the ‘Gauss map’. At each point
P of the surface he supposed there was a vector of unit length and normal to the
surface, P P ′, and he considered the unit vector O Q parallel to P P ′ that has its base
point at the centre of a fixed sphere of unit radius. The image of P ′ on the surface
under the Gauss map is the point Q on the unit sphere.

Gauss then proved that the ‘Gauss map’ has a simple effect on areas: it multiplies
the infinitesimal area around a point by an amount equal to the product of the principal
curvatures. This product he proposed to call the curvature of the surface, and he
showed that it depends only on E , F , and G and their derivatives with respect to u
and v, but not on x(u, v), y(u, v), and z(u, v). It is therefore intrinsic to the surface—
a result that surprised him somuch he called it the Theorema egregium or exceptional
theorem.

One reason Gauss regarded the third form of presenting a surface as not only
the most general but the most important, was because it allows u and v to be used
as coordinates, and because it allows for a study of maps between one surface and
another. In particular, given two surfaces defined by

r = (x(u, v), y(u, v), z(u, v)) and r′ = (x ′(u′, v′), y′(u′, v′), z′(u′, v′))

and a map between them, one can compare the line elements

ds2 = E(u, v)du2 + 2F(u, v)dudv + G(u, v)dv2

and
ds ′2 = E ′(u′, v′)du′2 + 2F ′(u′, v′)du′dv′ + G ′(u′, v′)dv′2,

where E(u, v) = ru .ru, . . . , G ′(u′, v′) = r′
v′ .r′

v′ .
For example, the map is conformal or angle preserving if

ds2 = �(u′, v′)ds ′2,

for some function �, so in particular a map between a plane and a surface with
ds2 = E(u, v)du2 + 2F(u, v)dudv + G(u, v)dv2 is conformal if and only if E =
G and F = 0. Gauss [12] had made a detailed study of maps in connection with the
survey of Hannover and South Denmark on which he worked in the 1820s, and had
explicitly remarked that a map between planes is conformal if and only if it is given
by a complex analytic function; this was only one of several occasionswhen he hinted
at a theory of such functions that he was never to pull together and publish. It is very
likely, however, that Riemann knew some of these ideas, but it is often impossible
to say if he learned of them in discussions with Gauss or only by reading Gauss’s
papers [11, 12] after Gauss died. However, he wrote explicitly in his doctoral paper
(1851) that the conformal nature of a complex analytic map was something that he
learned from Gauss’s paper [12] on conformal maps, and he stressed the importance
of this geometrical aspect of the maps.
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So Riemann took two ideas from Gauss’s work on geometry. The conformal
nature of a complex analytic map (away from any branch points) surely suggested
to Riemann that there was significant geometrical features of a surface as early as
1851. But the idea of the intrinsic curvature of a surface was one Riemann took far
beyond what Gauss had done with it.

Gauss [12] had identified the intrinsic feature of the geometry of a surface in
R

3, but he continued to think of surfaces as lying in R
3. The idea that a region—a

surface—with two coordinates u and v and a metric

ds2 = E(u, v)du2 + 2F(u, v)dudv + G(u, v)dv2

is a fit subject for geometry already, whether or not there an embedding of it in space
given by functions x(u, v), y(u, v), and z(u, v) is due entirely to Riemann. It is
almost certainly what Gauss had in mind when he said to his friend Wilhelm Weber
after listening to Riemann’s lecture that the profundity of the ideas that Riemann had
put forward had greatly astonished him (see (Dedekind [6] 581)).

But, as Riemann’s paltry citations indicate, there was very little done to extend
Gauss’s ideas of the intrinsic geometry of surfaces in the three decades that separate
Gauss’s memoir [12] from Riemann’s lecture. One of the few papers written on the
subject was by H.F. Minding [21], who investigated surfaces of constant negative
curvature in his (1839). Bonnet, and Liouville in (Monge [22]), brought Gauss’s
theory to France, but Riemann went only once to Paris, in 1860, and it is not clear
what he knew of French work before.

Riemann had also mentioned Gauss’s second memoir on biquadratic residues
(Gauss [14]). This is the work in which Gauss introduced what are today called the
Gaussian integers, and explained at some length what he had been less overt in his
Disquisitiones Arithmeticae, that the complex numbers can be thought of as points in
a plane.Here (see §16) he stressed the highly intuitive character of this representation,
and also–which is what Riemann surely picked up on–that this illuminated the true
metaphysics of imaginary quantities.1

Gauss went on (§20) to stress that one goes beyond the positive numbers only
when what is counted has an opposite (a negative) and what is then counted is not
a substance (an object thinkable in itself) but a relation between two objects. More
generally one creates new objects when one has a relation that admits a concept of
opposite. Then (§22) “The mathematician abstracts totally from the nature of the
objects and the content of their relations; he is concerned solely with the counting
and the comparison of the relations among themselves.” Nonetheless, intuitive rep-
resentations are helpful and once an intuitive meaning for

√−1 is completely estab-
lished “one needs nothing further to admit this quantity into the domain of objects of
arithmetic.”

By 1850 Riemann did not need to be told that complex numbers were admitted
into mathematics. Like Gauss, and Cauchy, he knew that the problem was not with
complex numbers but with how to define complex functions. But he may well have

1See also the English translation, Ewald ([9], I, 312–313).
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appreciated the metaphysics, the abstract character of mathematical objects and their
relations, and the connection to intuition that, as we shall now see, was also a theme
of Herbart’s philosophy [15] and Riemann’s physics.2

3.2 Herbart

The emphasis Riemann placed on Herbart’s ideas came from Riemann’s interest
in philosophy. Herbart had been a philosopher at Göttingen from 1805 until his
death in 1841, and his main book, the Psychology as science newly founded on
experience, metaphysics and mathematics [15], appealed strongly to Riemann. But
Riemann was also critical: he wrote in the philosophical passages in his collected
works (1990, 539) that he could agree with almost all of Herbart’s earliest research,
but could not agree with his later speculations at certain essential points to do with
his Naturphilosophie and psychology. He also identified himself as a Herbartian in
psychology and epistemology, but not in ontology and synechology (a discipline
concerned with space, time, and motion, and in particular with intelligible space,
regarded as a mental construct that makes the explanation of matter possible).

In Riemann’s view, natural science is the attempt to comprehend nature by precise
concepts, and if concepts yield inaccurate predictions then the concepts must be
modified. As a result, the more of nature we understand the more it sinks below the
surface of phenomena. Riemann approved of Herbart’s anti-Kantian epistemology,
because Herbart [15] had argued that all our concepts arise by modifying earlier
ones, and the most primitive concepts originate from attempts to understand what
our senses tell us, which is why we have the possibility of forming concepts adequate
for natural science. In particular they need not be a priori, as the Kantian ones are.

Herbart was a powerful source for the idea of varying quantities–ultimately,
manifolds–although Herbart remained fixed on the idea that geometry was neces-
sarily three-dimensional. But Riemann aimed at constructing coherent systems of
concepts that could then be matched against the coherence of the natural world. He
did not agree with Herbart’s account of how our ideas of space are generated from
experience, and went directly to systems of mathematical concepts. The elucida-
tion of fundamental concepts was characteristic of Riemann’s work, and it was an
approach he sharedwithHerbart evenwhen he did not use the same concepts himself.

3.3 Physics: Newton and Euler [8]

In a note Riemann [28] made on his work (Werke, 539) he wrote

My main work consists in a new formulation of the known natural laws – expressing them
in terms of other fundamental ideas – so as to make possible the use of experimental data

2This account draws on Bottazzini and Tazzioli (1995 [2]) and Scholz ([31] 1982b).
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on the exchanges between heat, light, magnetism, and electricity. In researching their inter-
relationship, I have been guided principally by the study of the work of Newton, Euler and
– on the other side – Herbart.

This is a striking assessment; Riemann belongs to a list of brilliant mathematicians
whose lasting contributions are more in mathematics than physics, contrary to their
hope.

Riemann had no sympathy for action at a distance, and Dedekind [6] in his Life of
Riemann (Riemann Werke [28]) tells us that Riemann was very pleased to discover
from Brewster’s biography of Newton that Newton too disliked the idea. Instead,
Riemann imagined space filled with an ether, whose properties were responsible for
the transmission of force and other physical quantities from place to place, and he
hoped to unify in this way the theories of gravitation, electromagnetism, heat, and
light.

Riemann imagined a substance that flowed between and through atoms, being cre-
ated in some and vanishing in others. A point-particle is surrounded in this model by
something like an elastic medium or ether that is described by a system of curvilinear
coordinates centred at the point and varying in time. Deformations in the medium are
captured by the equivalent of the strain tensor in elasticity theory, and variations in
the metric reduce a force that is propagated through space because the point-particle
opposes the deformation.

By 1853 he had brought these very vague ideas to the point where they provided
a framework in which to speculate about how heat, light, and gravitation propagate.
The mechanism was to be entirely through the action of neighbouring points, and
this would involve the point-particle resisting a change in volume and the physical
line element associated with the coordinate frame opposing a change in length (see
[28], p. 564; [29], p. 511).

Both classes of phenomena may be explained, if we suppose that the whole of infinite space
is filled with a uniform substance, and each particle of substance acts only on its immediate
neighbourhood.

The mathematical law according to which this occurs can be considered as divided into

1) the resistance of a particle of substance to alteration in volume;

2) the resistance of a physical line element to alteration in length.

Gravitation and electrostatic attraction and repulsion are foundedon thefirst part; propagation
of light and heat, and electrodynamic or magnetic attraction and repulsion on the second.

He then investigated “the laws of motion of a substance in empty space”. He
regarded the motion as the sum u + v of a term u associated with the propagation of
gravity and of light respectively. The usual separate equations for each process in a
system of equations that Riemann believed gave an account of how the motion of a
particle depends only on the particles around it.

As Speiser [32] (1927) was the first to point out, some of these ideas go back to
Euler [8], who had attempted to formulate a theory of gravitation, light, electricity
and magnetism in terms of an infinite, flowing ether. He had set out this view in his
Letters to a German Princess in the early 1760s, and succeeded in using it to discuss
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the propagation of light. Speiser reported that Euler’s [8] views were well regarded
in his day but have since been largely forgotten.

In 1858 Riemann pushed his ideas further, and came up with a flawed theory of
electrodynamics that is nonetheless interesting. The derivation of the equations rested
at one point on a faulty exchange of the order of integration of two integrals, which
maybewhyRiemannwithdrew it frompublication, and his theory involved a retarded
potential. In this theory electromagnetism travelled at a speed α, which Riemann
related it to the velocity of light, c, by the equation α2 = 1

2c2. In subsequent lectures,
although not in the paper itself, he tried to ground his theory in the propagation of
light between neighbouring particles.

All this gives weight to the observation that Pearson raised when editing (Clifford
1885, 203) and that Bottazzini and Tazzioli usefully repeat (1995, 32): “whether
physicists might not find it simpler to assume that space is capable of varying cur-
vature, and of a resistance to that variation, than to suppose the existence of a subtle
medium pervading an invariable homaloidal [Euclidean] space.”However, there is
no evidence that Riemann took that step.

4 Heat Diffusion and the Commentatio

TheHypotheses paper [24] was far from being helpful to mathematicians, whomight
well have preferred more formulae to help themwork out Riemann’s visionary ideas.
They had, in fact, one other paper to refer to, known as theCommentatio [27] or Paris
memoir, recently and ably discussed in (Cogliati [4] 2014) and (Darrigol [5] 2015).
This was an essay, written in Latin, that Riemann submitted, unsuccessfully, for a
prize competition on the diffusion of heat in 1861, and which was published with
several other of his unpublished papers in the first edition of his collected works
[28].3

The question asked for conditions on the distribution of heat in an infinite, homo-
geneous, solid body so that a system of isothermal curves would remain a system
of isothermal curves for an indefinite period of time, and moreover the temperature
will become a function of time and two other variables.

Riemann viewed the question as concerning a positive definite quadratic form at
each point that governed the flow of heat, and because the body is assumed to be
homogeneous the coefficients entering the quadratic form are constants. He then
looked for the conditions under which a quadratic form with variable coefficients
bi, j can be diagonalised. He wrote the quadratic form as a differential form, so the
question became one of finding

conditions under which the expression
∑

i, j bi, j dsi ds j can be transformed into the form∑
i, j ai, j dxi dx j , with constant coefficients ai, j , by taking the quantities s to be suitable

functions of x .

3See also Spivak ([33] 1970–1975, Chap.6, Add. 2).
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This turned the question into one of reducing the first form to
∑

i dx2
i , because any

positive definite quadratic form with constant coefficients can be so reduced.
A sketchy analysis that was difficult to follow but surely rested on some good

unstated reasons led Riemann to claim that the reduction can be carried out provided
a very complicated expression in the derivatives of the coefficients bi, j , that Riemann
abbreviated to (i, i ′, i ′′, i ′′′) vanishes, so the question became: what is the meaning
of this quantity?

At this point Riemann wrote “In order to understand the structure of these equa-
tions better, we form the expression [X ]”. Here, following Darrigol [5] (2015) we
have introduced the symbol X for a complicated three-term expression that will be
defined below.

A variational argument now gave Riemann a coordinate-free expression for X
that involves (i, i ′, i ′′, i ′′′), and at this point he produced a geometrical analogy. He

wrote that the expression
√∑

i, j bi, j dsi ds j can be interpreted as the line element in

a general n-dimensional space, and the invariant just obtains appears in this setting
as the curvature of the surface at a point. In the case at hand there are three variables,
and so six equations that the bi, j must satisfy, of which only three are independent.
In short, the reduction of the quadratic form in the heat diffusion problem to a sum
of squares with constant coefficients is possible under exactly the same conditions as
the reduction of a metric to the Euclidean case: it depends on the curvature vanishing.

When the paper appeared in Riemann’s Werke [28], Heinrich Weber, one of the
editors, supplied a lengthy commentary based on some remarks by Dedekind [6],
the other editor. In the second edition he replaced these remarks with some new
ones, in which he noticed that several authors had also looked at Riemann’s essay:
Christoffel, Lipschitz, and Beez among them. In fact, Christoffel [3] and Lipschitz
[19] had set themselves the task independently, in attempts to understand the effect
of coordinate transformations on quadratic forms in the wake of the publication of
Riemann’s Hypotheses [24] in 1867. Lipschitz returned to the subject in 1876, and
Richard Beez’s contribution [1] was an attempt write the matter up fully. Thereafter
several mathematicians were drawn to Commentatio [27], notably Levi-Civita in his
paper [17] on parallel displacement (1917).

Much ofWeber’s commentary consists in very helpfully going throughRiemann’s
calculations more slowly and in more detail, first for a geodesic normal system of
coordinates and then by indicating the changes that must be made to deal with
a general coordinate system. It was a sensible strategy, but even so Weber made
mistakes, and admitted that he had not been able to clear up the paper entirely. And
indeed, Riemann had also made a mistake, and attempts to clarify it occupy a fair
number of pages in the subsequent literature. Thus it seems that Levi-Civita [17] was
led astray in his explanation of Riemann’s reasoning, but that Lipschitz [18–20], and
Beez [1] before him had understood it better.

Darrigol (2014) gives a thorough account of the developments from Riemann to
Levi-Civita, and is particularly interested in on howRiemann came to his final results.
It is only too clear that in Riemann’s paper [27] we meet for the first time the sheer
complexity that we handle today with Christoffel symbols, tensor analysis, Bianchi
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identities and the like, and Darrigol [5] investigates whether Riemann took a largely
algebraic path or one guided by some identifiable geometric intuitions. On the basis
of some previously unpublished notes in the Riemann Nachlaß [29] he concludes
that a geometric insight into how curvature varies suggested some algebraic methods
to Riemann.

It is when Riemann turned to the geometric analogy that we have to examine the
symbol X . It is defined as

X = δ2
∑

bi, j dsi ds j − 2dδ
∑

bi, j dsiδs j + d2
∑

bi, jδsiδs j ,

and Riemann immediately wrote it as

∑
(i j, kl)(dsiδs j − ds jδsi )(dskδsl − dslδsk).

The problem here is, as Beez [1] was the first to point out, the deduction is
seemingly invalid, but it becomes valid if the term

2dδ
∑

bi, j dsiδs j

is replaced by
dδ

∑
bi, j dsiδs j + δd

∑
bi, j dsiδs j .

Both Darrigol [5] and Cogliati [4] point out that in fact this disparity disappears
because the second-order terms are contracted with di ds jδskδsl , but Cogliati adds
that Riemann’s expression is a natural one to find if Riemann had worked with a
normal coordinate system and then appealed to the invariance.

From a historian’s point of view, one important point out which Cogliati [4] and
Darrigol [5] agree, against some recent historical interpretations, is that Riemann and
all his mathematical successors interpreted the expression (i, i ′, i ′′, i ′′′) as a curvature
and appreciated the use of geometrical reasoning in a problem on heat conduction.
The alternative view, that much of this work was a species of tensor calculus without
geometrical significance, seems to be an untenable distinction in the period.
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Some Remarks on “A Contribution to
Electrodynamics” by Bernhard Riemann

Hubert Goenner

Abstract Around 1850, the idea originated that electromagnetic forces between
moving charges in circuits are propagated with the velocity of light. After such a
speculation by C. F. Gauss in 1845, B. Riemann, in 1858, suggested the inhomoge-
neous wave equation in 3-dimensional space for themodeling of this propagation. He
found a particular solution replacing Coulomb’s potential, now called the retarded
potential. His attempt failed to derive from this solutionWeber’s action-at-a-distance
potential. Riemann withdrew his pertinent paper before it became printed. After a
description of some aspects of research by Gauss, Weber and Riemann, a likely
reason for Riemann’s withdrawal is specified differing from recent suggestions by
historians of mathematics.

1 Introduction

After James Clerk Maxwell’s equations for electrodynamics, suggested already in
1864, had been generally accepted, the early contributions to this field by other
mathematicians and physicists like Ludvig Lorenz (1829–1891), Franz Neumann
(1798–1895), Rudolf Clausius (1822–1888), Hermann von Helmholtz (1821–1894),
and Carl Neumann (1832–1925) have been largely forgotten by physicists during
the 20th century. It is left to historians of science to maintain the memory of these
men and of their achievements (cf. [7], [15]). The reason for this situation is twofold:
since Maxwell, field theory with its “near”—interaction has supplanted the previous
particle theories with their instantaneous interaction at-a-distance. Secondly, as an
invariance group the Poincaré group has replaced the Galilei group (“relativistic”
theories).

Surprisingly, within the then reigning view of electromagnetism as a particle
theory, we can note a relativistic input, made by the famous mathematician Bern-
hard Riemann (1826–1866): His introduction of the retarded scalar potential into
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theoretical electrodynamics is still valid, but remains unknown to the overwhelm-
ing majority of today’s theoretical physicists (Sect. 2). In this chapter, we will try
to answer several questions: why Riemann has withdrawn the relevant paper from
publication during his lifetime, what brought him to the discovery of the retarded
potential, and why did he not further use this potential in his course on electricity and
magnetism. Up to now, mathematicians have held accountable a trivial mistake in his
paper for the withdrawal by Riemann, i.e., a forbidden interchange of integrations
([1], pp 54–56). Occasionally, it is also claimed that Riemann did make inadmissible
approximations in his calculations ([17], p. 265). After recalling ideas of C. F. Gauss
and W. Weber concerning a possible propagation of what now is called the electro-
magnetic field (Sect. 3), we will point to a more serious flaw in Riemann’s paper,
very likely discovered by the author himself soon after handing in his manuscript
to the Royal Academy of Science in Göttingen (Sect. 4). Some helpful concepts of
Maxwell’s theory, a special relativistic theory of the electromagnetic field, leading
to the retarded potential are introduced in Appendix 1.

2 Riemann’s New Result of 1858: The Retarded Potential

Riemann’s manuscript of 1858 “A contribution to electrodynamics” [25], became
published only after his death in 1867 in the journal Annalen der Physik [24], with the
same volume also containing the paper by L. Lorenz [18] who, in addition, displayed
the retarded vector potential. A footnote in the English translation of Riemann’s note
[23] stated: “This paper was laid before the Royal Academy of Sciences at Göttingen
on the 10th of February 1858, by the author [..], but appears, from a remark added
to the title by the then Secretary to have been subsequently withdrawn.”

The gist of his paper is stated right at its beginning:

I have found that the electrodynamic actions of galvanic currents may be explained by
assuming that the action of one electrical mass on the others is not instantaneous, but is
propagated to themwith a constant velocity which, within the limits of errors of observation,
is equal to that of light.1

Moreover, he concluded that “[..] the differential equation for the propagation of
the electrical force is the same as that for light and of radiant heat.”

His idea was to derive Weber’s law for the force between two pointlike electrical
charges from a partial differential equation in the same way as Coulomb’s potential
V had been a consequence of Poisson’s equation:

∇2V = ∂2V

∂x2
+ ∂2V

∂y2
+ ∂2V

∂z2
= 4πρ , (1)

1The translation is taken from [23], p. 368. If not indicated otherwise, translations are made by
myself.
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whereρ is the electrical charge density.Heknew that in order to allow for propagation,
the PDE ought to be of the hyperbolic type. As to the type of propagation, in the
same lecture course Riemann had also dealt with the parabolic diffusion equation:

α
∂u

∂t
+ ρ + β2[∂

2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2
] = 0 . (2)

Already in the term 1854/55, in his first course on PDEs and their application to
problems of physics, Riemann had studied the 1-dimensional wave equation [28]

∂2u

∂t2
= a2

∂2u

∂x2

(§43, S. 111), oscillations of a strained string in §74, §75 and solutions byD’Alembert
(p. 188).

In §43 the general solution with initial conditions at t = 0

u = f (x) ,
∂u

∂t
= F(x)

is written down:

u = 1/2[ f (x + at) + f (x − at)] + 1

2a

∫ x+at

x−at
F(λ)dλ . (3)

(His formula (III) on p. 113.) It should not have been a problem for Riemann to
generalize the 1-dimensional wave equation to three space-dimensions and to replace
the argument x − at by r − at with r2 = x2 + y2 + z2. However, the new physics
comes from the combination with d’Alembert’s inhomogeneous PDE:

∂2V

∂t2
− α2(

∂2V

∂x2
+ ∂2V

∂y2
+ ∂2V

∂z2
) + α24πρ = 0 , (4)

and this is exactly the equation he wrote down in his paper for the Royal Academy.
Without giving a calculation, he presented as a particular solution of (4) what is now
called the “retarded potential”:

V = f (t − r
α
)

r
, (5)

with r = (x2 + y2 + z2)
1
2 , andα a velocity.2 He thus had chosen the correct physical

solution by leaving aside the advanced potential V = f (t+ r
α )

r .

2In today’s view, he used ρ = f δ(r), where δ is Dirac’s distribution; cf. Appendix 1.
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Maxwell’s reaction to the retarded potentials of Riemann and Lorenz when they
were published in 1867 was entirely negative:

We are unable to conceive of a propagation in time except either as the flight of a material
substance through space or as the propagation of a condition of motion or stress in a medium
already existing in space. (Quoted from [22], p. 185.)

For him, the scalar potential was not an observable of the “state” of the electrical
field unlike Lorentz’s vector potential. Leaving aside the question of observability,
there in fact is an epistemological problem when the switch fromWeber’s theory for
point particles to a field theory lying behind the new concept of propagation is to be
made: the aether problem.3

3 Gauss, Weber, and Riemann on Electrodynamic
Interaction

In the first half of the 19th century, from electrostatics and magnetism as generated
by electrical currents, electrodynamics developed. For the sources of electricity, the
picture of an electrical fluid became replaced by the concept of charged electrical
particles. In a first approach, still within theories with action at-a-distance, potentials
depending on the velocity of such particles were introduced by C. F. Gauss, W.
Weber, F. Neumann, and R. Clausius.4 At the time, from experiments no convincing
conclusion could be drawn as to which of these potentials described the phenomena
best. A comparison by help of thought experiments or exemplary calculations was
rarely tried; the dissertation by a student of Clausius is an example [30].

3.1 Gauss

Riemann attained the idea that a force between electrical currents need not be instan-
taneous but propagates from Gauss via Wilhelm Weber. In fact, in his letter of 19
March 1845 to Weber, Gauss wrote:

Without doubt, I would have given notice of my investigations a long time ago, had I not
missed at the time when I stopped them what I considered the real cap stone. To wit:
the derivation of the additional forces (supervening the forces of the mutual interaction
of electrical parts at rest when they are in motion) from the action which is not instantaneous
but propagated in time (similarly as with light) ([9], p. 627–629.)

3We do not dwell here on Riemann’s ideas about the nature of the medium through which the
electrical forces are propagated. Cf. [20], p. 529, 532, 534 with the pagination after the 2nd edition
of Riemann’s collected papers of (1892).
4Even before R. Clausius, H. Grassmann had suggested the same potential as Clausius [11], ([19],
III, 203–210).
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But Gauss hadmore up his sleeve. In his unpublished notes, we find a remark entitled
“Fundamental law for all interactions of galvanic currents (found in July 1835)” ([9],
p. 616–617). Let, e, e′ be the electric charges, x, y, z and x ′, y′, z′ their coordinates,
r2 = (x ′ − x)2 + (y′ − y)2 + (z′ − z)2. For the mutual action (repulsive force) of
the charges in motion, Gauss then gave the expression:

ee′

r2
{1 + k[(d(x ′ − x)

dt
)2 + (

d(y′ − y)

dt
)2 + (

d(z′ − z)

dt
)2 − 3

2
(
dr

dt
)2]} , (6)

where “
√

1
k represents a determined speed”. The corresponding potential has been

correctly reported in [8] to be:

φ = Q

4πε0r
[1 + (

→
v rel

c
)2 − 3

2c2
(
→
v rel ·

→
x

|→x |
)2] . (7)

Here, Q is the electric charge, c the velocity of light in vacuum, and
→
v rel the relative

velocity of the two charges.Hence it is to be noted, that a velocity-dependent potential
already occurred in the work of Gauss, but remained unpublished during his lifetime.

3.2 Weber

As Gauss had done more than a decade earlier, in 1846 Wilhelm Weber derived his
law for the absolute value of the force between two charges in relative motion from
Ampère’s law5 [37], [35]:

e1e2
r2

{1 + rr̈

c2
− ṙ2

2c2
} , (8)

where r = |→r | = |→r1 − →
r2|. In order to do so, assumptions about the distribution and

velocity of the charges in the currents had to be made such as: (1) positive and
negative charges move with the same speed; (2) In each volume element, always the
same amount of positive and negative charges must be present. (8) can be obtained
from a Lagrangian:

V = 1

c2
e1e2
r

(1 − (
dr

dt
)2) . (9)

Weber’s approach was criticized immediately by H. Helmholtz on the false premise
that it would violate conservation of energy [13] and, with the same argument, by

5Instead of by expression (8), Weber’s force also is given in the form resulting from the substitution

c → √
2c. In Weber’s original paper [37] the coefficient of ṙ2 had been a2

16 . This was changed later

into c2 by Weber, but his c corresponds to (
√
2)−1×velocity of light.
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Thomson and Tait in their influential textbook [34]6 until the mistake became obvi-
ous. Maxwell rejected Weber’s law because it followed from electromagnetism as
described by a theory of particles with interaction at-a-distance; he preferred a field
theoretic description [6].7

Despite his work within a theory of instantaneous action at-a-distance, Weber,
besides Kirchhoff, was first in correctly describing the propagation with the veloc-
ity of light of oscillations of the electric current in wires of negligible resistance
[36], [16]. He also determined the velocity of light in vacuum by electrodynamic
measurements with highest precision [2], [4], [3].

3.3 Riemann

B. Riemann joined Weber in his description of an electric current by moving point-
like electrical charges and the interaction with other currents as an interaction at-
a-distance between two charges (2-body forces). He introduced a further potential
(“Riemann’s potential”) ([28], p. 326) containing only the relative velocity of the
particles:

V ∗ = e1e2
r

{(dx1
dt

− dx2
dt

)2 + (
dy1
dt

− dy2
dt

)2 + (
dz1
dt

− dz2
dt

)2} . (10)

As seen above in (6), Gauss already had thought about this term. Yet, in all likelihood,
Riemann was unaware of the expression given by Gauss. As is clear from letters to
his sister Ida and his brother Wilhelm, he had to guess what the results of Gauss
were. Already on 28 December 1853 he wrote to Wilhelm:

Right after my Habilitationsschrift, I had taken up again my further investigations about the
connection of electricity, galvanism, light and gravity. I reached the point that I can publish
them in this form without risk. But in the course of this work, I became ever more sure that
Gauss works in this field since a couple of years and has told some friends, e.g., A. Weber,
of it under the promise to keep it secret [..]. ([27], p. 547.)

Five years later, when he had submitted his results, he still had not learned more on
the work by Gauss and let Ida know:

I have handed over to the Royal Soc. my discovery about the connection between electricity
and light. From some utterances which I heard, I must conclude that Gauss, in this context,
has set up a theory different from mine. But I am fully convinced that mine is the correct
one, [..]. (Letter to Ida early in 1858 [26], p. 585.)

Thepotential (10) canbe found already inRiemann’s course on “Themathematical
theory of electricity and magnetism” of summer 1858 [33].8

6Translated into German by H. Helmholtz and G. Wertheim [14].
7A comparison between Maxwell’s and Weber’s electrodynamics is presented in [5].
8In fact, in the notes by Eduard Sellin, Riemann’s second course of summer 1858 on Selected
physical problems is also mixed in.
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4 Riemann’s Paper

In his paper “A contribution to electrodynamics,” Riemann set out from “the potential
of the forces exerted by [the circuit] S upon S’:

− 2

c2

∫ ∫
uu′ + vv′ + ww′

r
dSdS′ , (11)

this integral being extended over the whole of the elements dS and dS′ of the conduc-
tors S and S’ .” Here, u, v, w; u′, v′, w′ are the components of the specific intensity
of the currents. In the particle picture, with charges e, e′ and their velocities dr

dt ,
d ′r
dt

in the conductors S and S’, Riemann wrote (11) in the form:

V = 1

c2
��

ee′

r

dd ′(r2)
dt2

. (12)

The summations are taken over the charges e in conductor S and the charges e′ in
conductor S′. (12) is equal to Neumann’s potential [21]. After some manipulations
depending on an assumption concerning the motion of electric charges of different
sign9 Riemann arrived at:

V = 1

c2
��ee′r2

dd ′( 1r )
dt2

. (13)

He intended to derive in a different way the expression integrated over time:

P = 1

c2

∫ t

0
dτ��ee′r2

dd ′( 1r )
dτ 2

. (14)

At this point, Riemann’s new retarded potential came in. By introducing the
function

F(t, t ′) = r(t, t ′)−1 (15)

with r(t, t ′) = [(xt − x ′
t ′)

2 + (yt − y′
t ′)

2 + (zt − z′
t ′)

2] 1
2 , coordinates xt , yt , zt of

charge e at time t and x ′
t ′ , y

′
t ′ , z

′
t ′ of charge e

′ at time t ′, he went over from (14) to

P = 1

c2

∫ t

0
dτ��ee′F(τ − r

α
, τ ) . (16)

9For the motion of the electrical particles I assume that for each part of the conductor the sum of
the fundamental actions exerted by the particles with positive and negative electricity is still almost
the same during a span of time in which a very large flow passes through. It is known that this
assumption is justified as well by experience as by inspection of the electro-motoric forces ([29],
Blatt 10).
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Expression (16) is interpreted by him as: “the potential of the forces exerted by all
masses ε [= e] of conductor S on the masses ε′ [= e′] of conductor S′ during the time
0 to t .” ([29], Blatt 14, verso.) On the same page of these handwritten notes, another
assumption is formulated: “It is now assumed that the electrical masses cover only a
very small distance during the time of the force’s propagation; the effect is considered
during a time span with regard to which the time of propagation is vanishing.”

On the two following pages of his paper of 1858, Riemann replaced F(τ − r
α
, τ )

by − ∫ r
α

0 dσF(τ − σ, τ ), inverted integrations, omited small terms (“it is easily
seen...”) and then claimed “The value of P from our theory agrees with the experi-
mental one (14), if we assume α2 = 1

2c
2.”

The flaw in this argument lies in (16): A comparison with (5) shows that Riemann
has introduced retarded time also in the distance in the denominator. Thus he has lost
his exact solution of the (inhomogeneos) wave equation. It seems that Emil Wiechert
(1861-1828) who, independently from Alfred-Marie Liénard, also introduced the
retarded potential, has seen this. In his paper of 1900 he wrote: “At first, a conjecture
could have been that [..] for a single electron with charge l and velocity v, one could
simply set:

φt=t0 = 1

rt=t0− r
v

, �ν = l(
1

r

vν

v
)t=t0− r

v
, (17)

and in fact this was assumed at the time by Riemann. Yet this approach leads to
contradictions with the fundamental assumptions of our theory.” ([38], p. 563.) In
(17) φ and �ν denote the scalar and vector potentials.

How did Riemann arrive at the expression (15)? This remains unclear even from
Riemann’s handwritten notes. At some point, he looked at

r2 = a2 + 2a(x ′
t ′ − xt ) + (x ′

t ′ − xt )
2 + (y′

t ′ − yt )
2 + (z′

t ′ − zt )
2 (18)

and expanded in terms of r
a ([29], Blatt 11, verso). On another page he suggested

that Poisson’s equation be replaced by the (inhomogeneous) wave equation and in
the next line wrote ([29], Blatt 16, recto, Blatt 17 recto):

rr = (r2) = (x ′
t − xt− r

a
)2 + (y′

t − yt− r
a
)2 + (z′

t − zt− r
a
)2 , (19)

and added “The assumption concerning the electrostatic effect by arbitrarily dis-
tributed electrical masses can be expressed as such.” Riemann’s fallacy thus can be
localized in his notes: When he passed over from Poisson’s PDE, with the particular
solution 1

r written down by him, to the wave equation a particular solution of which
he also had found, for reasons of similarity he was intrigued by the idea that the
time-independent r in Coulomb’s potential must be replaced by (19). Apparently,
he did not check whether this also was a solution of the wave equation, and he did
not see a contradiction with the form of the retarded potential given in the same
paper. Perhaps, he has been in a hurry: some of his calculations were made on sheets
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intended for letters dated January 28 and 29, 1858, i.e., just two weeks before he
handed in his paper to the Academy.

5 Concluding Remarks

What then is the importance of Riemann’s paper of 1858? Three main points were
made by him :

(1) The “electrical force” is propagated with the velocity of light and this propagation
is the same as that for light and of radiant heat;
(2) For moving electrical charges the retarded potential replaces the Coulomb poten-
tial;
(3) Weber’s potential can be derived by help of the retarded potential.

The first two statements correspond precisely to what we accept today as conse-
quences ofMaxwell’s theory and are a remarkable anticipation ofMaxwell. Only the
third point is mistaken; this very likely is the reason why Riemann has withdrawn
his paper from publication. In his attempted proof, Riemann started from an expres-
sion different from the retarded potential and consequently failed to establish a link
between the retarded potential and Weber’s potential. The inadmissible inversion of
two integrals was only a minor additional blemish. In his subsequent course of sum-
mer 1861 on “The mathematical theory of gravitation, electricity and magnetism,”
about which notes by a student are available ([32], pp. 192–199), he changed his
previous proof and derived Weber’s law with the help of energy conservation in the
form of what he called the Lagrange principle—without mentioning the retarded
potential at all (cf. also [15], p. 180–181).10 We do not have the slightest documen-
tary evidence about whether Riemann tried to re-do his calculation with the correct
expression for the retarded potential just to conclude that he could not reachWeber’s
potential in this way.

Another possible reason for the withdrawal might have been that, around the
time of the submission of his paper, he had found his additional velocity-dependent
(Riemann-)potential.11 This would have weakened the importance of the suspected
connection between the retarded potential and Weber’s potential. Some support may
be seen in the report by Riemann’s colleague, the mathematician and astronomer
Ernst Schering (1833–1897), that Riemann had expressed his satisfaction, that [his
manuscript] back then had not been printed, because in the meantime he had found
a specification of his law as a consequence of which it would satisfy certain general
principles like the other fundamental laws for forces [31].

10By the same approach, Riemann’s potential could be derived as well. Thus Riemann had achieved
what Gauss had had in mind, i.e., “the derivation of the additional forces [..] from the action”.
11As mentioned above, he first presented his potential in one of his two summer courses of 1858.
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For Riemann, a possible relation between the retarded potential and Weber’s
potential apparently was more important than the study of the retarded potential for
its own sake. Thus hemissed the discovery of Lorentz invariance of thewave equation
(4) (with ρ = 0). Unfortunately, his handwritten notes for the paper withdrawn do
not reveal calculations showing how he arrived at (5). Perhaps, with his expertise in
the field of PDEs, he had made the calculations already some years earlier; perhaps
he had found the particular solution of the wave equation by pure intuition. That he
failed to relate it to Weber’s potential may have discredited the retarded potential
in his eyes. In accord with his idea that the electromagnetic interaction between
charges is propagated with the velocity of light, Riemann might have believed that
Weber’s potential already reflected this propagation. Despite his ingenuity, Riemann
thus could not pave the way toward a relativistic electrodynamics for physics. This
was left to H. Poincaré and H. A. Lorentz.

Acknowledgements For the invitation to contribute to this volume and for his helpful remarks I
am grateful to A. Papadopoulos, Strasbourg.

Appendix 1

Electric field
→
E and magnetic field

→
B are combined in the the field tensor of the

electromagnetic field F = Fikdxi ∧ dxk (i, k = 0, 1, 2, 3) , which can be expressed

by the 4-potential A = Aidxi as F = d A with (in components) Ai � (φ,−→
A)where

φ is the scalar,
→
A the vector potential. Thus, Fik = ∂i Ak − ∂k Ai , with F0k � →

E =
−→∇φ − 1

c
∂

→
A

∂t , Fμν (μ, ν = 1, 2, 3) → →
B = →∇ × →

A . From the first of Maxwell’s
equations :

∂l F
il = 4π

c
j i , ∂l F

∗il = 0 (20)

with Fik = ηirηks Frs , F∗ik = 1
2 ε

iklm Flm , the Minkowski metric ηik , and the 4-

current J i � (cρ,
→
j ), we obtain:

∂i∂l A
i − ∂l∂

l Ai = 4π

c
j i . (21)

As the vector potential is determined only up to gauge transformations A → A′ =
A + dλ with a scalar function λ, a so-called gauge condition may be added. Taking
the Lorenz gauge ∂l Al = 0, from (2) the inhomogeneous wave equation follows:

�Ai = −4π

c
j i (22)
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with � = ∂s∂
s = ηrs∂r∂s . The Lorentz gauge condition then leads to ∂s j s = 0, i.e.,

to the equation for the conservation of electrical charge. For the scalar potential, then

�φ = 1

c2
∂2φ

∂t2
− →∇ · →∇φ = −4πρ . (23)

For a static electric field, Poisson’s equation follows with the Coulomb potential

φ(x) = 1

4π

∫
d3x ′ ρ(x ′)

|→x − →
x ′|

. (24)

The retarded potential is a particular solution of (23):

φ(x) = 1

4π

∫
d3x ′ ρ(x ′, t − |→x−

→
x ′ |

c )

|→x − →
x ′|

(25)

vanishing at spacelike infinity. It replaces Coulomb’s potential for an arbitrarily time-
dependent charge distribution.
Retarded and advanced solutions are combined in:

Ai = 2

c

∫
d4x ′θ(x ′ − x)δ[(xs − x ′s)(xs − x ′

s)] j i (26)

withDirac’s δ-distribution and the characteristic function θ(x ′ − x) = 0,+1or 0,−1
selecting directions into the future and past lightcone [10]. With the expression for
the electrical current

j i = ce
∫ +∞

−∞
ds uiδ4(x − x ′) , (27)

where ui � γ(c,
→
v ), γ = (1 − v2

c2 )
− 1

2 , and e the electrical charge of a point particle,
then the so-called Liénard-Wiechert potential results:

φ = e

|→x − →
x ′|

(1 − 1

c

→
n · →

v )−1 ,
→
A = e

→
v

|→x − →
x ′|

(1 − 1

c

→
n · →

v )−1 , (28)

with
→
v ,

→
x ′ taken at the retarded time;

→
n = (

→
x −

→
x ′)(|→x −

→
x ′|)−1.

(28) is different fromRiemann’sAnsatz (16) criticized byWiechert; cf. (17) in Sect. 4.
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Riemann’s Memoir Über das Verschwinden
der ϑ-Functionen

Christian Houzel

Abstract In the second part of his great memoir Theorie der Abel’schen Functionen
(1857), Riemann gives a solution to Jacobi’s problem of inversion for the general
case of integrals of algebraic functions, now called Abelian integrals. The case of
hyperelliptic integrals had been treated, for the genus 2, by Göpel and Rosenhain
and, for any genus, by Weierstrass in a series of memoirs between 1848 and 1856.
The proof developed by Riemann in his 1857 paper is not complete and the memoir
Über das Verschwinden der ϑ-Functionen (1865) completes it.

1 Jacobi’s Inversion Problem

In the second part of his great memoir Theorie der Abel’schen Functionen (1857)
[8], Riemann gives a solution to Jacobi’s problem of inversion for the general case
of integrals of algebraic functions, now called Abelian integrals. The case of hyper-
elliptic integrals had been treated, for the genus 2, by Göpel [1] and Rosenhain [10,
11] and, for any genus, byWeierstrass in a series of memoirs between 1848 and 1856
[12, 13]. The proof developed by Riemann in his 1857 paper is not complete and the
memoirÜber das Verschwinden der ϑ-Functionen (1865) [9] completes it; Riemann
had previously exposed this complement in the lectures of 15 to 17 January 1862.1

Let us first explain how Riemann formulates his solution in 1857. A class of alge-
braic functions is represented by a compact Riemann surface T ; if z, s are meromor-
phic functions on T with n andm simple poles respectively, there exists a polynomial
F(s, z) of degree n with respect to s and m with respect to z such that F(s, z) = 0.
In general, F is a power of an irreducible polynomial and, if F itself is irreducible,
the covering z : T → P

1(C) is ramified as the algebraic function s of z and T is the
normalization of the algebraic curve defined by the equation F(s, z) = 0. The space

1According to the notebooks of Prym and Minnigerode.
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126 C. Houzel

of differential forms everywhere regular on T is of dimension p, the genus of T ;
they are called differential forms of the first kind. Each such form may be written as

φdz

∂F/∂s
,

where φ is a polynomial of degree n − 2 with respect to s and degree m − 2 with
respect to z, which vanishes for every pair (s, z) such that

∂F

∂s
(s, z) = ∂F

∂z
(s, z) = 0.

Riemann introduces a system of cuts in order to render T simply connected; it
consists of p pairs of closed cuts (aν, bν) with one origin for each ν, and p − 1
cross-cuts cν linking bν to aν+1. There is a basis (du1, du2, . . . , du p) of the space of
differential forms of the first kind such that the integral

∫
bν
duμ is equal to iπ when

μ = ν and to 0 when μ �= ν; then

∫

aν

duμ = aμν

are the elements of a symmetric matrix of which the real part is negative and not
degenerate. The value of the integral uμ(x) of duμ from a fixed origin xμ to a point
x of T ′ = T − {aν, bν} is defined up to the addition of a period of uμ, that is a
linear combination of πi and the aμν(1 ≤ ν ≤ p) with integral coefficients. Jacobi’s
inversion problem consists in the determination of η1, η2, . . . , ηp ∈ T as functions
of e = (e1, e2, . . . , ep) ∈ C

p in such a way that

p∑

ν=1

uμ(ην) − eμ

be a period of uμ for 1 ≤ μ ≤ p; it is a generalization to the genus p of the inversion of
elliptic integrals (genus 1). The problem is symmetrical with respect to η1, η2, . . . , ηp

so that only the (elementary) symmetric functions of (η1, η2, . . . , ηp) are expected
to be single-valued functions of e; Jacobi [2–4] conjectured that these symmetric
functions might be expressed by means of theta functions of the p variables eμ.

The theta function associated by Riemann to T is defined by the series

ϑ(v1, v2, . . . , vp) =
∑

m∈Zp

exp
( ∑

μ,μ′
aμ,μ′mμmμ′ + 2

∑

μ

mμνμ

)
, (1)

where ν = (ν1, ν2, . . . , νp) ∈ C
p; it is convergent because the real part of (aμν) is

negative and not degenerate. The theta-function is characterized (up to a constant
factor) by the equations
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ϑ(ν) = ϑ(ν + πi Bμ) = exp(2νμ + aμμ)ϑ(ν + Aμ) (1 ≤ μ ≤ p) (2)

where ν = (ν1, ν2, . . . , νp), (Bμ)μ is the canonical basis of Cp and Aμ = (aνμ)ν .
The 2p vectors πi Bμ and Aμ generate a discrete subgroup � of Cp and the factor
group C

p/� = J is called the jacobian of T ; it is a complex torus of dimension
p. In modern terms, ϑ may be interpreted as a section of an invertible sheaf on J .
Riemann’s aim is to prove that the mapping

φ(p) : η = {η1, η2, . . . , ηp} �→ class mod � of
( ∑p

ν=1 uμ(ην)
)

μ
(3)

of the symmetric product Sym pT of p copies of T in J is onto: for every e ∈ C
p, there

exists an η ∈ Sym pT such that φ(p)(η) ≡ e(mod �). For this purpose, he observes
that, if the function ϑe : x �→ ϑ(u1(x) − e1, u2(x) − e2, . . . , u p(x) − ep) = ϑ(u −
e) (where u = (uμ)μ ) is not identically 0 in T ′, it has exactly p zeros: indeed the
integral of the logarithmic derivative of ϑe on each aμ (resp. bμ, cμ) is equal to 2πi
(resp. 0) so that the integral on the boundary of T \ {a, b, c} is 2πi p.

Let η1, η2, . . . , ηp be these zeros and let �μ be a cut joining ημ to the common
origin of aμ and bμ(1 ≤ μ ≤ p), so that logϑe becomes a single-valued function in
T ∗ = T − {aμ, bμ, �μ}. The differences of the values of logϑe when crossing the
cuts �ν, aν and bν are respectively

−2πi, 2πigν, and − 2(uν − eν) − 2πihν,

where gν and hν are integers; then
∫
∂T ∗ logϑeduμ is equal to

2πi
( p∑

ν=1

uμ(ην) +
p∑

n=1

gνaνμ − eμ + πihμ + Kμ

)
, (4)

where the Kμ are constants which depend only on the origins xμ of the integrals uμ

(and not on the choice of e ). A convenient choice of the xμ reduces Kμ to 0.
As logϑe is single-valued in T ∗, the expression (4) must be equal to 0 and this

proves the fact that, when the ϑe is not identically 0, the class of e (mod �) belongs
to φ(p)(Sym pT ) :

eμ ≡
p∑

ν=1

uμ(ην)(mod �). (5)

Now the element {η1, η2, . . . , ηp} of Sym pT such that (5) is satisfied is unique;
indeed, if e ≡ ∑p

ν=1 uμ(η
′
ν)(mod �) for another {η′

1, η
′
2, . . . , η

′
p} ∈ Sym pT with

η′
p �= ηp, ϑ(u − e) vanishes in the p + 1 points η1, η2, . . . , ηp and η′

p, which is
impossible.

The end of the memoir of 1857 is devoted to the proof that the integrals of
the algebraic differential forms on T may be expressed as quotients of products
of translated theta functions.
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2 A Crucial Observation on Theta Functions

Riemann observes that ϑ(u(ηp) − e) = ϑe(ηp) = 0 implies

ϑ
( p−1∑

ν=1

u(ην)
)

= ϑ
(

−
p−1∑

ν=1

u(ην)
)

= 0 (6)

(ϑ is an even function of ν ); this is proved for every system of p − 1 zeros
η1, η2, . . . , ηp−1 of a function ϑ(u − e) supposed not to be identically zero. Con-
versely, if ϑ(r) = 0 for an r ∈ C

p such that ϑ(u − u(η0) + r) is not identically 0,
with η0 ∈ T conveniently chosen, the application of what precedes to e = u(η0) − r
gives r ≡ −(ην)(mod �), where η1, η2, . . . , ηp−1 are the zeros of ϑ(u − u(η0) + r)
other than η0.

Riemann proves in his 1865 memoir [9] that the set ϑ−1(0) ⊂ J is exactly the
image Wp−1 of the mapping

φ(p−1) : η1, η2, . . . , ηp−1 �→ class of
p−1∑

ν=1

uμ(ην)( mod �)

of Symp−1T into J. Let us admit this result and consider an e ∈ C
p such that ϑe =

ϑ(u − e) is identically 0; for each ηp ∈ T , there exist η1, η2, . . . , ηp−1 such that
u(ηp) − e ≡ −(ην)( mod �) so that e ≡ ∑p

ν=1 u(ην)( mod �), but this time not in
a unique way, for ηp is arbitrary. If e is fixed and ηp varies,

∑p
ν=1 duην

= 0; now
Riemann has proved (in the 1857 memoir [8]) that this implies the existence of a
differential form of the first kind which vanishes at η1, η2, . . . , ηp. Such a form has
2p − 2 zeros, so there are p − 2 other zeros ηp+1, . . . , η2p−2 and they are linked by
the equation

∑2p−2
ν=1 u(ην) = 0 from which we get

e ≡ −
2p−2∑

ν=p

u(ην)( mod �). (7)

Conversely, if e satisfies (7), ϑ(u(ηp) − e) = ϑ
( ∑2p−2

ν=p u(ην)
)

= 0 for all ηp ∈
T , which means that ϑ(u − e) is identically 0. In other words, the subset of J above
which φ(p) is not one-to-one is the image of the mapping {η1, η2, . . . , ηp−2} �→
−∑p−2

ν=1 u(ην) of Symp−2T into J .
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3 The First Step of Riemann’s Proof

The 1865 memoir [9], begins with the proof of the fact that ϑ vanishes on Wp−1 =
φ(p−1)(Sym p−1T ); this is a consequence of the principle of analytic continuation.
As ϑ is not identically 0, there exists a non-empty open part E �= ∅ of Cp such
that ϑe = ϑ(u − e) does not vanishes identically when e ∈ E ; the Eq. (7) shows
that E mod � is contained in φ(p)(H) where H ⊂ Sym pT is the corresponding set
of {η1, η2, . . . , ηp} (zeros of ϑe ) and H must be a non-empty open set of Sym pT .
Then ϑ vanishes on φ(p−1)(η1, η2, . . . , ηp−1) for {η1, η2, . . . , ηp} ∈ H , so it vanishes
everywhere.

When ϑe is identically 0, let m be the least integer such that

ϑ
(
u(η0) +

m∑

ν=1

(
u(ην) − u(εν)

) − e
)

(8)

does not vanish for all η0, η1, . . . , ηm, ε1, . . . εm ∈ T : in the sequel of the paper,
Riemann will prove that such an m always exists. The set of (ημ, εν) such that (8) is
different from 0 is a non-empty open part of T 2m+1. The function

x �→ ϑ
(
u(x) +

m∑

ν=1

(
u(ην) − u(εν)

) − e
)

vanishes at the points ε1, . . . , εm so m ≤ p and there are p − m other zeroes
ηm+1, . . . , ηp, which are uniquely determined. Equation (5) applied to e′ = e −∑m

ν=1

(
u(ην) − u(εν)

)
(mod �) gives

p−m∑

ν=1

u(ηm+ν) ≡ e −
m∑

ν=1

u(ην) mod �

or e ≡ ∑p
ν=1 u(ην) (mod �), so Eq. (5) is still valid but the set of η ∈ Sym pT sat-

isfying it is now of dimension m, for η is determined by η1, . . . , ηm : it is a case of
indetermination for Jacobi’s inversion problem.

On the other hand, the function

x �→ ϑ
(
u(η0) +

m∑

ν=1

(
u(ην) − u(εν)

) + u(ηm) − u(x) − e
)

vanishes for x = η0, η1, . . . , ηm som ≤ p − 1 and there are p − m − 1 other zeroes
εm+1, . . . , εp−1 determined in a unique manner; one has

−
m−1∑

ν−1

u(εν) − e ≡
p−m−1∑

ν=1

u(εm+ν)(mod �) or − e ≡
p−1∑

ν=1

u(εν) (mod �),
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with a set of ε ∈ Sym p−1T of dimension m − 1. So, for each class e(mod�) ∈ J ,

dim(φ(p−1))−1(−e(mod �)) = dim(φ(p))−1(e(mod �)) − 1

4 The Second Step of Riemann’s Proof

Consider now an r = (rμ)μ ∈ C
p such that ϑ(r) = 0 and let m be the biggest inte-

ger such that ϑ
( ∑m

ν=1

(
u(εν) − u(ην)

) + r
)
does not vanish for all η1, . . . , ηm, ε1,

. . . , εm ; if η1, . . . , ηm+1, ε1, . . . , εm+1 are given, the function

x �→ ϑ
(
u(x) − u(ηm+1) +

m∑

ν=1

(
u(εν) − u(ην)

) + r
)

vanishes for x = η1, . . . , ηm+1 and it has p − m − 1 other zeroes εm+1, . . . , εp−1,
uniquely determined. Applying (5) to

e = −r −
m∑

ν=1

u(εν) +
m+1∑

ν=1

u(ην),

one gets

−r −
m∑

ν=1

u(εν) ≡
p−1∑

ν=m+1

u(εν) (mod �) or − r ≡
p−1∑

ν=1

u(εν) (mod �).

In the same way, the function ϑ
(
u − u(εm+1) − ∑m

ν=1

(
u(εν) − u(ην)

) − r
)
van-

ishes for x = ε1, . . . , εm+1 and it has p − m − 1 other zeros ηm+1, . . . , ηp−1 uniquely
determined; it implies that r ≡ ∑p−1

ν=1 u(ην) (mod�). So the set (φ(p−1))−1(r mod�)

is non-empty and its dimension is equal to m.

5 The Conclusion of the Proof

The end of Riemann’s paper is devoted to the proof of the fact that, for each r ∈ C
p,

the integerm = dim(φ(p−1))−1(r mod �) is the biggest such that the differential dkϑ
vanishes in r for 0 ≤ k ≤ m; as ϑ is not identically 0 this shows that m exists. When
m ≥ 1, the variety Wp−1 = φ(p−1)(Sym p−1T ) = ϑ−1(0) ⊂ J has a singularity of
multiplicity m + 1 in r .

Assume that

ϑ
( m∑

ν=1

(
u(εν) − u(ην)

) + r
)

= 0
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for all η1, . . . , ηm, ε1, . . . , εm ; if 0 ≤ n ≤ m, making εν = ην for m − n + 1 ≤ ν ≤
m, we see that

ϑ
( m−n∑

ν=1

(
u(εν) − u(ην)

) + r
)

= 0.

By induction on n, Riemann shows that dnϑ vanishes at rn = r + ∑m−n
ν=1

(
u(εν) −

u(ην)
)
; for n = 0 there is nothing to prove so we may suppose that n ≥ 1 and the

result is established for n − 1. Then

0 = dn−1ϑrn−1(rn−1 + u(εm−n) − u(ηm−n)) = dnϑrn ◦ duηm−n (ζ) + o(ζ)

where ζ is the value at εm−n of a uniformizing parameter in the neighborhood of
ηm−n; as the components of uμ of u are linearly independent, the linear application
duηm−n : Cp → C

p is invertible and we have dnϑrn = 0. Making εν = ην for 1 ≤
ν ≤ m − n, we see that dnϑr = 0 for 0 ≤ n ≤ m.

The proof of the converse is a bit tricky. In a first step, Riemann assumes that

ϑ
( k−1∑

ν=1

(
u(εν) − u(ην)

) + r
)

= 0 for all η1, . . . , ηk−1, ε1, . . . εk−1

but that

ϑ
( k∑

ν=1

(
u(εν) − u(ην)

) + r
)

is not identically equal to 0; the first part of the proof shows that

dn−1ϑrn = 0 for 1 ≤ n ≤ k.

Let t = (tμ) ∈ C
p be such that ϑ(t) = 0 but θ(u(ε1) − u(η1) + t) = 0 does not van-

ish for all η1, ε1 ∈ T , and consider the expression

� = ϑ
( k∑

ν=1

(
u(ην) − u(εν)

) + r
)
ϑ
( k∑

ν=1

(
u(εν) − u(ην)

) + r
)

×

�ρ �=ρ′ϑ
(
u(ηρ) − u(ηρ′)

) + t
)
ϑ
(
u(ερ) − u(ερ′)

) + t
)

�k
ρ,ρ′=1ϑ

(
u(ηρ) − u(ερ′)

) + t
)
ϑ
(
u(ερ) − u(ηρ′)

) + t
)

as a function of ημ; as all its periods are 0, it is an algebraic function on T , more
precisely a rational function of (s, z). Such an algebraic function is determined, up to
a factor independent of ημ, by the knowledge of its zeroes and poles; for ημ = ερ, the
numerator and the denominator vanish to order 2, so � is regular at ε1, . . . , εk . The
numerator or the denominator of � vanishes at other points which do not depend
on ε1, . . . , εk but only on r, t and ην, ν �= μ. Thus we see that � is an algebraic
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function of η1, . . . , ηk ; uniquely determined by r and t up to a factor which depends
on ε1, . . . , εk ; exchanging the roles of η and ε, we get

� = ψ(η1, . . . , ηm)ψ(ε1, . . . , εm)

where ψ is an algebraic function.
When ε is close to η , let us write εν = ην + ζν so that

u(εν) = u(ην) + duην
(ζν) + o(ζν)

and, by induction on n,

ϑ
( k∑

ν=1

(
u(εν) − u(ην)

) + r
)

= dnϑrn ◦ (duηk−n+1 ⊗ · · · ⊗ duηk )(ζk−n+1, . . . , ζk) + o(ζk−n+1, . . . , ζk)

= dkϑr ◦ (duη1 ⊗ · · · ⊗ duηk )(ζ1, . . . , ζk) + o(ζ1, . . . , ζk),

and ϑ
(∑k

ν=1

(
u(ην) − u(εν)

) + r
)
is treated in a similar manner. The factors con-

taining t in the numerator of � differ from the corresponding factors in the denom-
inator by negligible terms and, for ε = η, we thus obtain, after computing a square
root,

ψ(η1, . . . , ηk) = ±dkϑr ◦ (duη1 ⊗ · · · ⊗ duηk )

�k
ρdϑt ◦ duηρ

= ±dkϑr (ϕ(η1), . . . ,ϕ(ηk))

�k
ρ=1dϑt (ϕ(ηρ))

,

where ϕ = (ϕ1, . . . ,ϕp) and duμ = ϕμdz
∂F/∂s for 1 ≤ μ ≤ p. Now if dkϑr = 0, ψ = 0

and � = 0 identically, so ϑ
(∑k

ν=1

(
u(εν) − u(ην)

) + r
)

= 0 for all η1, . . . , ηk,

ε1, . . . , εk , contrary to the assumption.

What precedes shows that, when ϑ
(∑k−1

ν=1

(
u(εν) − u(ην)

) + r
)

= 0 identically

and dkϑr = 0, we have ϑ
(∑k

ν=1

(
u(εν) − u(ην)

) + r
)

= 0 identically. This allows

a proof by induction on k ∈ [0,m] of the fact that, whenm is the biggest integer such
that dkϑr = 0 for 0 ≤ k ≤ m, one has

ϑ
( k∑

ν=1

(
u(εν) − u(ην)

) + r
)

= 0 identically for 0 ≤ k < m

For k = 0 there is nothing to prove, so that we may suppose k ≥ 1 and the statement

true for k − 1; thusϑ
( ∑k−1

ν=1

(
u(εν) − u(ην)

) + r
)

= 0 identically and, as dkϑr = 0,

we conclude that
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ϑ
( k∑

ν=1

(
u(εν) − u(ην)

) + r
)

= 0 identically.

For k = m, this completes the proof of Riemann’s theorem.

6 Later Developments

To sum up, Riemann has demonstrated that φ(p) : Sym pT → J is onto but not one-
to-one when p ≥ 2; it only birational. Riemann gave a characterization of the subset
of J above which φ(p) is not one-to-one and, for each e ∈ J , he gave a rule to know
the dimension of (φ(p))−1(e). The other result is that the image Wp−1 of φ(p−1) :
Sym p−1T → J is equal to ϑ−1(0); moreover, the multiplicity of Wp−1 in a point r
is equal to dim(φp−1)−1(r) + 1.

Let us mention some more recent results in the line of Riemann’s research. Weil
[14] exploited the birational character of φ(p) in order to define the jacobian of an
algebraic curve over an abstract commutative field k. The Riemann-Roch theorem
enabled him to define a partial group law U ×U → Sym pT , where U is a Zariski
open set in Sym pT ; then he showed how to obtain an algebraic group J birationally
equivalent to Sym pT , with a group law continuing the partial law of Sym pT .

In the years 1971–73, G. Kempf [5, 6] completed Riemann’s results. He consid-
ered, for each k ∈ [1, p − 1], themappingφ(k) : η1, . . . , ηk �→ ∑k

ν−1 u(ην) (mod�)

of SymkT into J and its image φ(k)(SymkT ) = Wk ; he proved the following results
[7]:

(a) for each r ∈ Wk , (φ(k))−1(r) is isomorphic to a projective space;
(b) the multiplicity of Wk in r is equal to

(
p − k + m

m

)

,

where m is the dimension of (φ(k))−1(r) and the tangent cone to Wk at r is the union
of the images by dφ(k) of the tangent spaces to SymkT at the points η ∈ (φ(k))−1(r);

(c)Wk is a determinental variety;more precisely, in the neighborhood of each point
r , there exists a (m + 1) × (p − k + m)-matrix for holomorphic functions such that
Wk is the set of zeroes of its (m + 1) × (m + 1)-minors.

References

1. G.A. Göpel, Theoriae transcendentium Abelianarum primi ordinis adumbratio levis. Journ. für
die reine und angewandte Math. 35, 277–312 (1847)

2. C.G. Jacobi, Considerationes generales de transcendentibus Abelianis. J. für die r. und a. Math.
9, 394–403, Ges. Werke, t. II, 5–16 (1832)



134 C. Houzel

3. C.G. Jacobi, De functionibus duarum variabilium quadrupliciter periodicis quibus theoria tran-
scendentiumAbelianarum innititur. J. für die r. und a.Math. 13, 55–78, Ges.Werke, t. II, 28–50
(1835)

4. C.G. Jacobi, Note sur les fonctions Abéliennes. J. für die r. und a. Math. 30, 183–184, Ges.
Werke, t. II, 86–87 (1846)

5. G. Kempf, Schubert Methods With an Application to Algebraic Curves (Stichting math. Cen-
trom, Amsterdam, 1971)

6. G. Kempf, On the geometry of a theorem of Riemann. Ann. Math. 98 (1973)
7. D. Mumford, Curves and Their Jacobians, 2nd edn. (The University of Michigan Press, Ann

Arbor, 1975), pp. 1–104. (In the Red Book of Varieties and Schemes, Springer L. N. 1358, pp.
225–304 (2010))

8. B. Riemann, Theorie der Abel’schen Functionen. J. für die r. und a. Math. 54, 115–155 (1857),
Ges. Math. Werke, 88–144

9. B. Riemann, Über das Verschwinden der ϑ-Functionen. J. für die r. und a. Math. 65, 161–172,
Ges. Math. Werke, 212–224 (1866)

10. J.G. Rosenhain, Auszug mehrerer Schreiben des Dr. Rosenhain an Herrn Professor Jacobi über
die hyperelliptischen Transcendenten. J. für die r. und a. Math. 40, 319–360 (1850)

11. J.G. Rosenhain, Sur les Fonctions de deux variables et à quatre périodes, qui sont les intégrales
ultra-elliptiques de la première classe, Ac. des Sc. de Paris, Mémoires présentés par divers
Savants, 2e série 11, 361–468 (1851)

12. K. Weierstrass, J. der Zur Theorie, Abelschen Functionen, für die r. und a. Math. 47, 289–306,
Math. Werke, t. I, 131–133 (1854)

13. K. Weierstrass, J. Theorie der Abelschen, Functionen, für die r. und a. Math. 52, 285–379,
Math. Werke, t. I, 297–355 (1856)

14. A. Weil, Variétés abéliennes et courbes algébriques, 2nd edn (1948). Courbes algébriques et
varieties abéliennes, (Hermann, Paris, 1971), pp. 87–249



Riemann’s Work on Minimal Surfaces

Sumio Yamada

Abstract Three months before his death in 1866, Riemann left a set of notes to
K. Hattendorff, a disciple of his, on minimal surfaces with boundary. Afterwards,
Hattendorff supplied the text to the notes mostly consisting of computations, which
became the two papers on the subject: “On the surface of least area with a given
boundary” and “Examples of surfaces of least area with a given boundary.” We will
go over the expositions and provide an overview from the modern viewpoint, make
some comments on Riemann-Hattendorff’s text, and compare the work with that of
Weierstrass on the same subject.

Keywords Riemann · Minimal surface · Calculus of variations
2000 Mathematics Subject Classication: 53A10 · 30F45

1 Introduction

We first recall the statement of the Riemann mapping theorem,

Theorem 1.1 If � is a non-empty simply connected open proper subset of the com-
plex plane C, then there exists a bi-holomorphic mapping f from � onto the open
unit disk D = {z ∈ C | |z| < 1}.
We remark that the resulting plane region � is a minimal surface spanned by the
boundary ∂� when the complex plane is identified with the xy-plane in the three
dimensional ambient space R3.

It was in Riemann’s thesis [8] in 1851 where the cerebrated Riemann Mapping
Theorem was first presented. There he utilized the Dirichlet principle in order to
obtain a map which is harmonic and conformal from a simply connected region of
the complex plane to the unit disc. Riemann’s proof was incomplete as the existence
of such harmonic functions minimizing the Dirichlet energy functional is not always
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guaranteed, a defect first pointed out by Weierstrass in 1859. The subsequent impor-
tant historical development in analysis and geometry initiated by Riemann’s idea
of using the Dirichlet principle, which led to the wealth of mathematics around the
so-called Plateau problem, is comprehensively described in Courant’s book [2].

Hans Lewy, in his introduction [5] to an edition of collected works of Riemann
(1953), speculates that the work of Riemann on the subject of minimal surfaces
in R

3 [9, 10] may well be an attempt to rectify his own proof of the Riemann
Mapping Theorem, as the inverse map f −1 : D → � ⊂ R

3 of the Riemannmapping
provides a harmonic and conformal parameterization of theminimal surface� ⊂ xy-
plane, where the xy-plane is identified as C. The set of minimal surfaces Riemann
succeeded in constructing, however, have boundary sets only of special types; lines,
line segments, circles, with which one would not be able to approximate an arbitrary
boundary curve ∂� as required by the statement of the Riemann Mapping Theorem.

Having stated this observation about a failed attempt, however, it is important
to recognize the true value of what Riemann created in the field of minimal sur-
faces within the two posthumously published papers [9, 10]. Historically, the study
of minimal surfaces and later minimal submanifolds has led to many interesting
applications, not only in differential geometry, but also in general relativity, material
sciences, industrial design, among others. Riemann was correct to foresee the sci-
entific potential the subject offered. As for the minimal surfaces in R

3, much of the
subsequent development on the subject up to the present day is based on the so-called
Weierstrass-Enneper representation formula, which is comprehensively presented in
[11].

The goal of this chapter is to illustrate that inside the notes Riemann left to Hat-
tendorff, based on the computations Riemann had made over 1860–61, much of the
well-known classical results on minimal surfaces including the Weierstrass-Enneper
representation, Schwarz’s explicit construction of minimal surfaces, as well as the
Schwarz-Christoffel transformation, are contained in essence. We will demonstrate
this by reading the text of [9] through §1–13 with comments added as appropri-
ate. In particular in the second to the last section, we provide a direct comparison
between the Weierstrass-Enneper representation and the much less known Riemann
representation of minimal surface.

2 On the Surface of Least Area with a Given Boundary

Regarding the treatment of surfaces in R
3 in this article, it is safe to assume that

Riemann was fully informed of the surface theory of Gauss [4] where every surface
is locally parameterized by two independent real variables u, v.

In §1 and §2, a disc-type surface � is parameterized by two parameters p, q
which are effectively the polar coordinates in the two-dimensional disc Dr ; p ∈
[0, r ] on the radial set {q = const.} and q ∈ [0, 2πρ) on the circle {p = ρ}. Then a
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change of variable formula is given so that for a new set of parameters φ(u, v) :=
( f (u, v), g(u, v)), the area functional on φ(Dr ) := �with respect to the coordinates
( f, g) is written as

∫∫
�

d f ∧ dg =
∫ ∫

D

(∂ f

∂ p

∂g

∂q
− ∂ f

∂q

∂g

∂ p

)
dp ∧ dq

which then, is shown to be equal to

∫
∂�

f dg = −
∫

∂�

gd f

by using the fact that

∂ f

∂ p

∂g

∂q
− ∂ f

∂q

∂g

∂ p
=

∂
(
f ∂g

∂q

)

∂ p
−

(
f ∂g

∂ p

)

∂q
,

that f and g are periodic in q, and that ∂g
∂q = 0 on {p = 0}, as well as the fundamental

theorem of calculus.
In §3, the surface � in R

3 parameterized by (p, q) is again parameterized by a
different pair of parameters, namely the image of the Gauss map ν : � → S2, or
rather, as introduced in §5, the stereographic projection PS of the image of the Gauss
map ν from the south pole S = (−1, 0, 0) of S2:

η := PS ◦ ν : � → yz-plane.

This new complex variable η becomes useful and indeed central in Riemann’s think-
ing of the conformal geometry of minimal surfaces, as we will see below.

In §4, the Euler-Lagrange equation for the minimal surface is obtained. For each
point P = (x, y, z) of the surface�, let ν(P) be the unit normal vector to� at P . The
unit nornal ν in S2 has the spherical coordinates ν(p, q) = (r,φ) ∈ [0,π] × [0, 2π)

where {r = 0} stands for the point (1, 0, 0) and (r,φ) = (π/2, 0) stands for (0, 1, 0).
Further assume that near P , locally the surface is a graph {(x, y, z) | x = x(y, z)}
over a region �̃ over the yz-plane. Then the tangent plane at P is dx = (∂x/∂y)dy +
(∂x/∂z)dz, from which we deduce the following set of equalities

cos rdx + sin r cosφ dy + sin r sin φ dz = 0, (2.1)

as well as

cos r = ± 1√
1 +

(
∂x
∂y

)2 +
(

∂x
∂z

)2
, (2.2)
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sin r cosφ = ∓
∂x
∂y√

1 +
(

∂x
∂y

)2 +
(

∂x
∂z

)2
, (2.3)

sin r sin φ = ∓
∂x
∂z√

1 +
(

∂x
∂y

)2 +
(

∂x
∂z

)2
, (2.4)

where the double ± signs correspond to each other. Now the point P on the surface
is assigned to the spherical coordinates ν(P(p, q)) = (r(p, q),φ(p, q)) and one
calculates the area of the surface � by integrating over �̃

S =
∫∫

�

1

cos r
dydz =

∫∫
ν(�)

±
√
1 +

(∂x

∂y

)2 +
(∂x

∂z

)2
dydz

where 1
cos r dydz is the area element of the graph {x = x(y, z)}. Note that the original

parameters p and q are suppressed. As for the double signs, we remark that when
r > π/2, the 2-form dydz is of the form dz ∧ dy.

The first variation of the area functional under a variation vector field δx which
is compactly supported on � is then given by

δS =
∫∫

ν(�)

[
∂(δx)

∂y

∂x
∂y√

1 +
(

∂x
∂y

)2 +
(

∂x
∂z

)2
+ ∂(δx)

∂z

∂x
∂z√

1 +
(

∂x
∂y

)2 +
(

∂x
∂z

)2

]
dydz

so that the Euler-Lagrange equation for the area functional is

∂

∂y

( ∂x
∂y√

1 +
(

∂x
∂y

)2 +
(

∂x
∂z

)2

)
+ ∂

∂z

( ∂x
∂z√

1 +
(

∂x
∂y

)2 +
(

∂x
∂z

)2

)
= 0 (2.5)

which, using the Eqs. (2.3) and (2.4), can be rewritten in (r,φ) coordinates as

∂ sin r cosφ

∂y
+ ∂ sin r sin φ

∂z
= 0. (2.6)

Equation (2.5), though it does not appear explicitly in Riemann’s manuscript
(Eq. (2.6) does), is the minimal surface equation for the graph x = x(y, z), first
obtained by Lagrange in “Essai d’une nouvelle méthode pour déterminer les max-
ima et les minima des formules intégrales indéfinies.” (1760–61.) We also note that
the expression on the left hand side is the mean curvature of the graphical surface.
Riemann was under a direct influence of Dirichlet in his Berlin years, and he was



Riemann’s Work on Minimal Surfaces 139

most likelywell informed of the development of the calculus of variations by pioneers
such as Euler and Lagrange.

Equation (2.6) is now regarded as an integrability condition: Namely the 1-form
− sin r sin φdy + sin r cosφdz is exact, and there is a potential function x so that

dx = − sin r sin φdy + sin r cosφdz. (2.7)

On the other hand, Eq. (2.1) is an integrability condition in the sense that x is the
potential for the 1-form:

dx = − tan r cosφdy − tan r sin φdz. (2.8)

We note that the stereographic projection from the south pole of the image of the
Gauss map η = PS ◦ ν is, in terms of (r,φ) ∈ S2,

η = tan
r

2
eφi .

Denoting the complex conjugate of η and s := y + i z respectively by

η′ = tan
r

2
e−φi , s ′ = y − i z,

the pair of integrability conditions (2.7) and (2.8) become

(1 − ηη′)dx + η′ds + ηds ′ = 0

and
i(1 + ηη′)dx − η′ds + ηds ′ = 0.

By introducing a complex coordinate X for the surface �, and its conjugate X ′ by

x + ix =: 2X x − ix =: 2X ′,

the pair of the integrability conditions becomes

ds = ηdX − 1

η′ dX
′ (2.9)

and

ds ′ = −1

η
dX + η′dX ′. (2.10)
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As ds and ds ′ are both exact differentials, this would imply

∂η

∂X ′ = 0,
∂η′

∂X
= 0,

namely the complex analyticity of η as a function of X .
Conversely, provided that the function η is univalent, X = 1

2 (x + ix) is a complex
analytic function of η. In particular, x is a harmonic function, and the new real variable
x stands for the harmonic conjugate of x on �. Clearly the argument above can be
repeated for y and z to conclude that the coordinate functions (x, y, z) as well as
(x, y, z) are all harmonic.

In modern textbooks on minimal surface (for example [12]) this statement is
expressed as follows.

Theorem 2.1 A surface� is minimal if and only if its coordinate functions (x, y, z)
are harmonic on the surface.

In the last paragraph of §5, it is mentioned that by integrating the 1-forms ds
and ds ′, the variables s and s ′ are expressed as functions of X , X ′ and η. Once η
can be expressed as a function of X , as well as η′ as a function of X ′ by taking the
conjugate, s = y + i z and s ′ = y − i z are represented as functions of X and X ′ only.
By eliminating the imaginary part x, one obtains an equation between x, y and z, an
implicit representation for the minimal surface �.

In §6 and §7, the area functional and the first fundamental form of the minimal
surface are written respectively as an integral and a tensor with respect to the local
coordinate η.

In order to do so, we also introduce the new complex variables

Y =
∫

∂y

∂η
dη and Y ′ =

∫
∂y

∂η′ dη′

and

Z =
∫

∂z

∂η
dη and Z ′ =

∫
∂z

∂η′ dη′

where y = Y + Y ′, y = Y − Y ′ and z = Z + Z ′, z = Z − Z ′, where y and z are
defined as the corresponding potential functions of the exact one forms induced
from the Euler-Lagrange equations of the area functional. By analogous arguments
to the one for X , the complex variables Y and Z are also shown to be complex
analytic in η.
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The ingredients for the calculations are the two integrability conditions (2.9) and
(2.10) as well as the holomorphicity of X and the anti-holomorphicity of X ′ with
respect to η:

dX = ∂X

∂η
dη = ∂x

∂η
dη and dX ′ = ∂X

∂η
dη = ∂x

∂η
dη,

and the corresponding relations for Y,Y ′, Z , Z ′ and η.
The resulting formula for the area functional is

S =
∫∫

1

cos r
dydz = −i

∫∫ (∂x

∂η

∂x

∂η′ + ∂y

∂η

∂y

∂η′ + ∂z

∂η

∂z

∂η′
)
dη ∧ dη′.

It is this expression that made Hans Lewy [5] speculate on Riemann’s motiva-
tion for investigating minimal surfaces with boundary. Namely through the isothe-
mal coordinate η, the area S is expressed as the Dirichlet energy of the map
η 	→ (x(η), y(η), z(η)), and the minimal surface is nothing but the energy mini-
mizing map which was at stake in Riemann’s thesis, especially the argument in
showing the existence of the Riemann mapping.

The area S can also be expressed as

S = −i
∫∫

dX ∧ dX ′ + dY ∧ dY ′ + dZ ∧ dZ ′

= 1

2

∫∫
dx ∧ dx + dy ∧ dy + dz ∧ dz.

The first fundamental form of the minimal surface is given as

dx ⊗ dx + dy ⊗ dy + dz ⊗ dz = 2
(∂x

∂η

∂x

∂η′ + ∂y

∂η

∂y

∂η′ + ∂z

∂η

∂z

∂η′
)
dη ⊗ dη′.

(2.11)

This representation of the first fundamental form, or equivalently, the induced
metric, involves some calculations, which include verifying the equalities

dX ⊗ dX + dY ⊗ dY + dZ ⊗ dZ = 0 (2.12)

and
dX ′ ⊗ dX ′ + dY ′ ⊗ dY ′ + dZ ′ ⊗ dZ ′ = 0, (2.13)

which we will come back to, in reference to the Weierstrass representation.
In particular, it follows from the representation Eq. (2.11) that the η coordinate

induces an isothermal coordinate to the minimal surface �. In modern differential
geometry textbooks, this fact corresponds to the following statement (see [12] for
example):
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Theorem 2.2 TheGaussmap is conformal at P ∈ � either if the surface is umbilical
at P or if the mean curvature vanishes. If restricted to surfaces of Gauss curvature
K ≤ 0 then the surface is minimal if and only if its Gauss map is conformal.

We recall here that the stereographic projection is conformal.
Furthermore, when X , Y and Z are considered as holomorphic functions in η,

Riemann writes down the pull-back metrics of the Euclidean metric on the respective
complex plane as

dX ⊗ dX ′ = ∂x

∂η

∂x

∂η′ dη ⊗ dη′,

dY ⊗ dY ′ = ∂y

∂η

∂y

∂η′ dη ⊗ dη′,

and

dZ ⊗ dZ ′ = ∂z

∂η

∂z

∂η′ dη ⊗ dη′,

all of which, induce isothermal coordinates.
In §8 and §9, Riemann-Hattendorff is concerned with explicit parametrizations

of the minimal surface, not in terms of η which was the Gauss map post-composed
with the stereographic projection, but a new variable u which takes away the gauge
freedom SO(3) arising from the position of the pole of the stereographic projection,
which corresponds to the choices of oriented hyperplanes in R3.

Letα be a point in the yz-plane (or equivalently the η-plane) which is the image by
the stereographic projection PS : S2 \ {S} → yz-plane of a point P−1

S (α) ∈ S2 \ {S}.
(Recall S = (−1, 0, 0).) We introduce a change of variables ηα := eiθ η−α

1+α′η which
represents the transformation law which relates the image η of the stereographic pro-
jection of S2 \ {S} onto the yz-plane to the image ηα of the stereographic projection
of S2 \ P−1

S {−α} onto the hyperplane �α whose unit normal vector is α. Note that
the map η 	→ ηα is conformal. For P ∈ �, we then define xα(P) to be the height of
a point P over the hyperplane �α.

It is shown then that for ηα := eiθ η−α
1+α′η ,

(d log ηα)2
∂xα

∂ log ηα
= (d log η)2

∂x

∂ log η
,

resulting in defining a new variable u

u =
∫ √

i
∂x

∂ log η
d log η, (2.14)

which is independent of the gauge α.
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This new variable u, a function in η, effectively contains all the information about
the minimal surface �. It can be used to recover the three coordinate functions x, y
and z as follows. By rewriting x as a function of u in Eq. (2.14) we obtain

x = −i
∫ ( du

d log η

)2
d log η + i

∫ ( du′

d log η′
)2
d log η′.

Recall that η = η0 is the stereographic projection of S2 \ {S} from the south pole
S = (−1, 0, 0) so that the north pole (1, 0, 0) is sent to α = (0, 0) in the yz-plane,
or the η-plane. And x0 is the height of the point P in � measured from the yz-plane.
Analogously, by choosing α = (1, 0) = 1 + 0i in yz-plane, xα represents the height
of P measured from the xz-plane. Namely by substituting

ηα = η − 1

1 + η

we obtain the representation

y = − i

2

∫ ( du

d log η

)2(
η − 1

η

)
d log η + i

2

∫ ( du′

d log η′
)2(

η′ − 1

η′
)
d log η′.

Similarly, for α = (0, 1) = 0 + 1i ,

ηα = η − i

1 − iη

we have

z = −1

2

∫ ( du

d log η

)2(
η + 1

η

)
d log η − 1

2

∫ ( du′

d log η′
)2(

η′ + 1

η′
)
d log η′

the height of (x, y, z) over the ηα-plane, which is the xy-plane.
In §10, §11 and §12, the three complex-valued functions X,Y and Z are regarded

as holomorphic functions ofη, and alsoofu, and they are locally analytically extended
near a point, either in the interior, or on the boundary set of the minimal surface. As
for the boundary set, it is bounded by Euclidean lines, line segments, or line segments
intersecting at a rational angle qπ with q ∈ Q.

In particular, Riemann makes an important geometric observation in §10, where a
point P in � is regarded as the origin of R3, and the tangent plane TP� is identified
with the yz-plane. Then � is locally the graph of a function x = x(y, z) with

x(P) = 0,
∂x

∂y
(P) = ∂x

∂z
(P) = 0
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and the scalar function x is locally approximated by a harmonic function over the
yz-plane,

∂2x

∂y2
+ ∂2x

∂z2
= 0.

When the second order Taylor expansion terms are nontrivial, the graph at P has
nontrivial curvature, and the eigenvalues of the Hessian of x(y, z) are the principal
curvatures of the surface at P , of opposite signs and of the same magnitude, namely
the mean curvature vanishes. When all the second order Taylor expansion terms
vanish, the complex-valued function X has zeros of higher order.

Namely by supplying the harmonic conjugates x, y, z to the real coordinates x, y
and z, one can consider the relation among the complex valued functions X,Y and Z
in η. As η can be seen as a holomorphic function in the previously introduced complex
variable u, X,Y and Z are in turn holomorphic functions in u. In the consecutive
sections §10, §11 and §12, functional equations of these variables are written down,
at interior points, interior branch points, unramified as well as ramified boundary
points, and at a boundary points where two line segments meet at a rational angle.

In §12, also considered is the situation where the minimal surface is simply con-
nected, unbounded in R

3 and bounded by two non-intersecting infinite lines. In
commenting the setting, another geometric observation is made. When the minimal
surface is bounded by a line �, choose the coordinates in R3 so that the x-axis coin-
cides with the line �. Then the unit normal ν(P) to �, written as a vector in R

3,
has no x component. When the unit sphere is centered at the origin, and the north
pole is on the positive x-axis, the image of the Gauss map ν : � → S2 lies on the
equator {(0, y, z) | y2 + z2 = 1} ⊂ R

3, and consequently the image η of the stere-
ographic projection PS : S2 \ {S} → yz-plane is the equator {|η| = 1} itself. Hence
log η = log |η| + i arg η is purely imaginary along the boundary line of the x-axis.
Then we conclude when x is seen as a function in η instead,

i
∂x

∂ log η

is real along the boundary line. Similarly if we designate another boundary line as
the x̂-axis of another coordinate system (x̂, ŷ, ẑ), then

i
∂ x̂

∂ log η

is real along that boundary line. Now recall that the quantity

u =
∫ √

i
∂x

∂ log η
d log η
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is independent of the coordinate system on R
3, and hence is independent of the

procedure of identifying the x-axis with the boundary line. Namely

du =
√
i

∂x

∂ log η
d log η

is either real or purely imaginary, depending on the sign of the real number i ∂x
∂ log η

.
We recollect the construction here: when the minimal surface is bounded by a

line segment, either bounded or unbounded, the neighborhood of a boundary point
is realized by a conformal map from a region in the unit sphere bounded by a great
circle. This fact is reflected in the observation that the function du/d log η is either
real or purely imaginary.

Up to this point, several choices of complex parameters are presented; η, u, X,

Y, Z , each of which can be used to parameterize the minimal surface � locally. In
§13, the issue of transcribing one by another among those numbers is treated. The
method is effectively what is known as the Schwarz-Christoffel mapping, where in
Eq. (2.11) an explicit map u(t) from the upper half t-plane H to the region in the
u-plane, or to be exact, the region that is a ramified cover over the u-plane bounded
by totally real or totally imaginary lines, is constructed. The coordinate t of the upper
half plane corresponds to u by

t = const.

u − b
+ terms holomophic in u

where b is a value of u corresponding to a boundary point, and where the constant
coefficient of the simple pole u = b is determined by the conditions the imaginary
part of t is (1) zero along the boundary, and (2) positive in the interior of the surface.
By this local information, u is globally defined by the expression of Eq. (2.11) of the
original paper:

u = const. + const.
∫ √

�(t − a)�(t − a′)�(t − b)

�(t − c)

dt

�(t − e)

is obtained, where a = ∪ai denotes the set of branch points in the t-plane, �(t − a)

denotes the product of (t − ai ) over i , a′ the complex conjugates of a, b the branch
points on the real axis, c the pre-images of the vertices of the boundary where two
line segments meet, and e stands for vertices in the unbounded sectors spanned by a
pair of line segments, where each pair is designated with an angle απ between the
projections of the two lines to the plane perpendicular to both lines, as well as the
length of the shortest connecting line segment between the two lines. In the expression
in Eq. (2.11), there appear only square roots due to the fact that Riemann considers
only simple branch points, unlike the general formula of Schwarz-Christoffel’s (cf
[1])where the power of (t − c) could be any number in [0, 1] representing the exterior
angle at a vertex of the polygon.
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Note that the function u above is defined over the entire t-plane. This is explained
in the original article as

In order to form the expression for du
dt we must observe that dt is always real along the

boundary, and du is either real or pure imaginary. Hence (du/dt)2 is real when t is real. This
function can be continuously extended over the line of real values of t by the condition that,
for conjugate values t and t ′ of the variable, the function will also have conjugate values.
Then (du/dt)2 is determined for the whole t-plane and turns out to be single-valued.

Thus it is justified that du/dt is identified with the integrand of the complex line
integral of Eq. (2.11). In this manner, the function u is represented by the complex
variable t on the upper half-space, which then is used to reproduce the minimal
surface � = {(x(t), y(t), z(t))}. The by-product of the construction is the extension
of the domain of u over the entire complex plane. In modern textbooks, this fact is
expressed in the following important statement, often attributed to Schwarz.

Theorem 2.3 (Reflection Principle) Let U (t) be a minimal surface in isothermal
parameters defined in a semi-disk D+ = {|t | < ε | Im(t) > 0 }. Suppose there exists
a line L in R3 such that U (t) → L when Im(t) → 0. Then U (t) can be extended to
a generalized minimal surface defined in the full disk D = {|t | < ε}. Furthermore
this extended surface is symmetric in L.

By utilizing this universal variable t , Riemann-Hattendorff (see also the paper
[10], in addition to [9]) sets up an ansatz in the following geometric settings for the
boundary of the minimal surface �:

• two non-intersecting non-parallel infinite lines, which would produce a part of the
helicoid bounded by a pair of ruling lines;

• two lines which intersect at a point and a line on the plane whose normal vector is
perpendicular to the first two lines;

• four intersecting line segments obtained by removing two edges that do not touch
each other from the one skeleton of an arbitrary tetrahedron. This includes the
so-called Schwarz surface under the additional symmetry;

• three infinite lines mutually skewed and nonintersecting, closely investigated in
the recent work of B. Daniel [3];

• two circles on a pair of parallel planes, which would produce the celebrated “Rie-
mann example” which is a minimal surface bounded by two parallel infinite lines,
and foliated by circles. The example is explained in detail by Meeks-Pérez [6];

• two convex polygons on a pair of parallel planes, with and without symmetries,
which include the so-called Schwarz P-surface and Schwarz H-surface.

A copy of the surface bounded by two circles on a pair of parallel planes can
be extended across the boundary lines via the reflection, which would result in a
complete periodic surface of genus zero. This example has recently received renewed
attention in minimal surface theory ([6]), as the following classification [7] was
demonstrated:

Theorem 2.4 The plane, the helicoid, the catenoid and the Riemann minimal exam-
ples are the only properly embedded minimal surfaces in R

3 with the topology of a
planar domain.



Riemann’s Work on Minimal Surfaces 147

The Schwarz-Christoffel mapping is closely related to the theory of elliptic func-
tions and hypergeometric functions, and those examples Riemann calculated fully
make use of these theories. In this article, we will not go into the discussion of the
papers [9, 10]. Interested readers are directed to Nitsche’s book [11] on the subject,
which records all the post-Riemannian development of the subject.

3 Representation Formulas by Riemann and
Weierstrass-Enneper

In Osserman’s book [12], a generalized minimal surface is defined as follows

Definition 3.1 A generalized minimal surface� inRn is a non-constant map x(p) :
M → R

n , where M is a 2-manifold with a conformal structure defined by an atlas,
such that each coordinate function xk(p) is harmonic on M and furthermore

n∑
k=1

φ2
k(ζ) = 0 (3.1)

where ζ = ξ1 + iξ2 is a complex-valued local coordinae of M , and the embedding
x(p) is given by

φk(ζ) = ∂xk(ζ)

∂ξ1
− i

∂xk
∂ξ2

.

In this article, we are only interested in the case n = 3.
As the map x(p) is non-constant, at least one of the functions xk (k = 1, 2, 3) is

non-constant, which then implies that the corresponding holomorphic function φk(ζ)

can have at most isolated zeros. Thus the singular points of the map x satisfying

n∑
k=1

|φk(ζ)|2 = 0 (3.2)

can exists at most at isolated points on M .
Now the following procedure to specify generalizedminimal surfaces is called the

Weierstrass-Enneper representation, first devised by A. Enneper (1864) and Weier-
strass (1866). First we specify the triplets of holomorphic data:

Lemma 3.2 (cf. [12]) Let D be a domain in the complex ζ plane, η(ζ) an arbitrary
meromorphic function in D and f (ζ) an analytic function in D having the property
that at each point where η(ζ) has a pole of order m, f (ζ) has a zero of order at least
2m. Then the functions

φ1 = f η, φ2 = 1

2
f (1 − η2), φ3 = i

2
f (1 + η2) (3.3)
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are analytic in D and satisfy Eq. (3.1). Conversely every triple of analytic functions
in D satisfying Eq. (3.1) may be represented in the form Eq. (3.3), except for the case
of φ3 = 0, which would imply φ1 = iφ2.

Then every simply connected minimal surface in R3 is represented in the form

xk(ζ) = ck + 
( ∫ ζ

0
φk(z) dz

)
k = 1, 2, 3

where φk are defined by Eq. (3.3). The pair ( f, η) is called the Weierstrass data of x .
We write out for the sake of comparison the Weierstrass-Enneper representation

explicitly:

x = c1 + 
∫

f η dζ,

y = c2 + 
∫

1

2
f (1 − η2) dζ,

z = c3 + 
∫

i

2
f (1 + η2) dζ.

Let us recall the Riemann representation formula

x = c1 − 2
(
i
∫ ( du

d log η

)2
d log η

)
,

y = c2 − 
( i

2

∫ ( du

d log η

)2(
η − 1

η

)
d log η

)
,

z = c3 − 
( ∫ ( du

d log η

)2(
η + 1

η

)
d log η

)
.

We now relate the two representations, Riemann’s and Weierstrass-Enneper’s, to
each other. Calculating the Gauss map of (x, y, z), one verifies that

ν = (
−2η

1 + |η|2 ,
2�η

1 + |η|2 ,
1 − |η|2
1 + |η|2 )

which is the inverse map of the stereographic projection PS : S2 \ {(−1, 0, 0)} →
yz-plane with PS = η. Hence η of the Weierstrass data ( f, η) is the same as the η of
Riemann. Furthermore, we have seen the equation φ2

1 + φ2
2 + φ2

3 = 0, in the form of
Eq. (2.12)

dX ⊗ dX + dY ⊗ dY + dZ ⊗ dZ = 0

which would suggest the following correspondence:

dX = φ1dη, dY = φ2dη, dZ = φ3dη



Riemann’s Work on Minimal Surfaces 149

after identifying the isothermal complex variable ζ with Riemann’s η. In other words,

φ1(η) = ∂X

∂η
= ∂(x + ix)

∂η
= ∂x

∂η
= ∂x

∂η1
− i

∂x

∂η2
,

for η = η1 + iη2. In this way, we recover the definition of the generalized minimal
surface we have seen above.

Lastly, by comparing the two sets of representation formulas, the function f of
the Weierstrass data ( f, η) can be identified with Riemann’s u as follows;

f = i
(du
dη

)2
.

4 Closing Remarks

In the latter half of the 19th century (cf. [11]), the theory of minimal surface devel-
oped rapidly with the Weierstrass-Enneper representation formula, together with the
theory of elliptic integrals, and hypergeometric functions. Consequently Riemann’s
representation was mostly pushed aside and left unacknowledged. In hindsight, the
Weierstrass-Enneper representation is simpler, and though both representations are
local in nature, the Weierstrass-Enneper formula can be modified so that one obtains
a global formula for the minimal surface. Furthermore the Weierstrass holomorphic
data ( f, η) is purely algebraic and formal, while Riemann’s is dependent on the
particular complex coordinate η, which is the value of the Gauss map.

Geometrically both representations rely on the complex analytic method, which
is congenial to minimal surfaces with its boundary being lines and circles, including
the constructions of the Enneper surface, the catenoid, the helicoid and the Schwarz
surfaces. For general boundary sets, however, the procedure is not very useful, and
consequently the complete solution of the Plateau problem by Douglas and Rado
was not obtained until the 1930s (cf. [2].)

However, it is clear, judging from the content of the manuscript Riemann had left
behind, that he had, as of 1860–61, ahead ofWeierstrass, Schwarz and Enneper, cap-
tured the theoretical essence of the Weistrass-Enneper formula, the Schwarz reflec-
tion and the Schwarz-Christoffel transformation as well as the wealth of examples
that are much prized in the following years.
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Physics in Riemann’s Mathematical Papers

Athanase Papadopoulos

Abstract Riemann’s mathematical papers contain many ideas that arise in physics,
and some of them are motivated by problems from physics. In fact, it is not easy
to separate Riemann’s ideas in mathematics from there in physics. Furthermore,
Riemann’s philosophical ideas are often in the background of his work on science.
The aim of this chapter is to give an overview of Riemann’s mathematical results
based onphysical reasoning ormotivated byphysics.Wealso elaborate on the relation
with philosophy. While we discuss some of Riemann’s philosophical points of view,
we review some ideas on the same subjects emitted by Riemann’s predecessors, and
in particular Greek philosophers, mainly the pre-socratics and Aristotle.

Keywords Bernhard Riemann · Space ·Riemannian geometry ·Riemann surface ·
Trigonometric series · Electricity · Physics
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1 Introduction

Bernhard Riemann is one of these pre-eminent scientists who considered mathemat-
ics, physics and philosophy as a single subject, whose objective is part of a continuous
quest for understanding the world. His writings not only are the basis of some of the
most fundamental mathematical theories that continue to grow today, but they also
effected a profound transformation of our knowledge of nature, in particular through
the physical developments to which they gave rise, in mechanics, electromagnetism,
heat, electricity, acoustics, and other topics. In Riemann’s writings, geometry is at
the center of physics, and physical reasoning is part of geometry. His ideas on space
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and time affected our knowledge in a profound way. They were at the basis of several
elaborate theories by mathematicians and physicists, and one can mention here the
names of Hermann Weyl and Albert Einstein. Likewise, Riemann’s speculations on
the infinitely small and the infinitely large go beyond the mathematical and physical
setting, and they had a non-negligible impact on philosophy.

In the present chapter, we survey some of Riemann’s ideas from physics that
are contained in his mathematical works. It is not easy to separate Riemann’s ideas
on physics from those on mathematics. It is also a fact that one cannot consider
the fundamental questions that Riemann addressed on physics without mentioning
his philosophical background. This is why our survey involves philosophy, besides
physics and mathematics. A certain number of papers and fragments by Riemann
on philosophy, psychology, metaphysics and gnosiology were collected by Heinrich
Weber and published in his edition of Riemann’s Collected Works (p. 507–538). We
also mention the name of Gilles Deleuze (1925–1995), a twentieth-century French
philosopher who was influenced by Riemann. The name of Deleuze is not com-
monly known to mathematicians. The relation of his work with Riemann’s ideas is
highlighted in two chapters of the present volume (see [80, 119]).

As a mathematician, physicist and philosopher, Riemann belongs to a long tradi-
tion of thinkerswhich can be traced back to ancientGreece.One of themain outcomes
of his Habilitation lecture Über die Hypothesen, welche der Geometrie zu Grunde
liegen (On the hypotheses that lie at the bases of geometry) [146] (1854), which we
discuss more thoroughly in Sect. 4 of the present chapter, is the merging of philoso-
phy, geometry and physics. The fundamental questions that he addresses explicitly
in this work, on space, form, dimension, magnitude, the infinite and the infinitesimal,
the discrete and the continuous, are precisely the questions that obsessed the Greek
philosophers, starting with the Milesians and the Pythagoreans, and passing through
Plato, Aristotle, Archimedes and several others. One important fact to recall is that
the Greeks had a name for infinity, apeiron. The name was used by Anaximander, in
the sixth century B.C. There is an extensive literature on the word apeiron, whether
it denoted an unlimited extent, or a boundless shape, whether it applies to quantity
or to shape, etc. The Greeks thoroughly considered the question of infinity, both
mathematically and philosophically, and it is often difficult to make the distinction
between the two points of view. A mathematical method of dealing with infinitely
small quantities called “method of exhaustion,” which is very close to what we use
today in infinitesimal calculus, was developed in the fourth century B.C. by Eudoxus
of Cnidus, a student of Plato. This method is used by Euclid in the proofs of sev-
eral propositions of the Elements. Dedekind was inspired by this method when he
introduced the so-called Dedekind cuts. It is also well known that the philosophical
reflections on the infinitely small are not foreign to Leibniz’s and Newton’s work on
the foundations of infinitesimal calculus.

A certain number of these thinkerswondered about the smallest particles ofmatter,
for which they invented a name: atoms, they speculated about their shape and their
arrangement and how they fit in an ambient space, they meditated on characters
of these atoms: cold, waterly, etc. The thinkers belonging to the “atomist” tradition
believed that the universe is amixture of such atoms, that is, uncuttable, or indivisible
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matter, and void. Riemann had his own ideas about matter and void. Klein, in his
Development of mathematics in the 19th century [87] (p. 235), reporting on some
of Riemann’s ideas from his Nachlass (the collection of manuscripts, notes and
correspondence that he left), writes:

Riemann thinks of space as being filled with continuous matter [Stoff], which transmits the
effect of gravity, light, and electricity. He has throughout the idea of a temporal extension
of process. A remark on this topic is found in a personal letter from Gauss to Weber – with
an express request for complete secrecy. And now I again ask, how did these things come
to Riemann? It is just mystical influence, which cannot be defined and yet cannot be clearly
grasped, of the general atmosphere of a receptive spirit.

Long before Riemann, the pre-socratics Parmenides and Zeno (sixth century B.C.),
and then Leucippius and Democritus and other thinkers of the fifth century B.C.,
thoroughly gazed at the notions of atom and indivisible matter. Their opinions are
reported on by Aristotle, who made a systematic study of this matter in several
texts (Metaphysics V, Physics V and VI, Categories IV, etc.). Other Greek thinkers
considered that matter is continuous, rather than atomic, asserting that the atomic
structure requires the existence of a void, and claiming that the existence of a void
contradicts several laws of physics. They stressed instead the geometric structure of
the universe. A theory of chaos, in the sense of unformedmatter arising from the void
had also its supporters—Chaos is an important notion in Greek mythology—but in
general, the Greek philosophers considered that nature is governed by natural laws
which they tried to understand. Concerning these thinkers, let us quote Hermann
Weyl, one of the best representatives of Riemann’s tradition of thought, from the
beginning of his book Philosophy of mathematics and natural science [166] (p. 3):

To the Greeks we owe the insight that the structure of space, which manifests itself in the
relations between spatial configurations and their mutual lawful dependences, is something
entirely rational.

Thus, talking about the origin of Riemann’s ideas, we shall often mention his Greek
predecessors.

One should also recall that the exceptional rise of Greek science that started in
the sixth century B.C., in the form of precise questions whose aim was to understand
the universe, was accompanied by a profound philosophical reflection on the nature
and the goal of sciences, and in particular mathematics. Aristotle, who is probably
the best representative of the Greeks thinkers of the culminating era, in Book VI of
his Metaphysics [11], states that among the sciences, three have the status of being
theoretical:mathematics, physics and theology, the latter, for him, being close towhat
we now understand as philosophy.1 Let us note right away that these are precisely

1Cf. [11] p. 1619: “And since natural science, like other sciences, confines itself to one class of
being, i.e. to that sort of substance which has the principle of its movement and rest present in itself,
evidently it is neither practical nor productive. For the principle of production is in the producer—it
is either reason or art or some capacity, while the principle of action is in the doer—viz. choice,
for that which is done and that which is chosen are the same. Therefore, if all thought is either
practical or productive or theoretical, natural science must be a theoretical, but it will theorize about
such being as admits of beingmoved, and about substance which in respect of its formula is from the
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the three branches of knowledge that constitute the background of Riemann (who,
by the way, was also trained in theology). We also note that although Pythagoras is
supposed to have coined the term φιλoσoφία, communis opinio now seems that its
current meaning (striving for knowledge) goes back to Plato.

In the same work and in others, Aristotle discusses at length the role of each of
these three sciences and the relations among them. He also addresses thoroughly the
question of whether mathematics has a purely ideal character or whether it reflects
the real world. Such interrogations lead directly to the most fundamental questions
that Riemann addressed in his Habilitationsvortrag and in his other writings.We shall
say more on the lineage of Riemann’s ideas to Greek philosophy in Sect. 4 where
we discuss this work.

Riemann’s interest in physics was constant during his lifetime. Since his early
twenties, he tried to develop a theory that would unify electricity, magnetism, light
and gravitation—the same quest that Poincaré, Lorentz and Einstein had after him,
culminating in the theory of general relativity. One of Riemann’s manuscripts, Ein
Beitrag zur Electrodynamik (A contribution to electrodynamics) [140], whose sub-
ject is electrodynamics and which is related to his search for the unification of the
various forces of nature, published posthumously, is discussed in the chapter [68]
by Hubert Goenner in the present volume. In this paper, Riemann develops a theory
of electromagnetism which is based on the assumption that electric current travels
at the velocity of light. Furthermore, he considers that the differential equation that
describes the propagation of electric force is the same as that of heat and light prop-
agation. Goenner, in his paper, mentions the works of other physicists of the same
period, including Maxwell, Lorenz, Helmholtz, Carl Neumann and Franz Neumann.
Being himself a physicist, Goenner writes:

Surprisingly, within the then reigning view of electromagnetism as a particle theory, we
can note a relativistic input, made by the famous mathematician Bernhard Riemann. His
introduction of the retarded scalar potential into theoretical electrodynamics is still valid,
but remains unknown to the overwhelming majority of today’s theoretical physicists.

Several other commentaries on Riemann’s manuscript exist, and some of them are
mentioned in the bibliography of [68]. Enrico Betti, who was Riemann’s friend and
who translated into Italian several of his works and wrote commentaries on them,
had already commented on that paper in 1868, see [18].

It is known that, as a student, in Göttingen and Berlin, Riemann attended more
courses and seminars on (theoretical and experimental) physics than onmathematics.
One may also mention here an essay in Riemann’s Nachlass, entitled Gravitation

(Footnote 1 continued)
most part not separable from matter. Now, we must not fail to notice the nature of the essence of its
formula, for, without this, inquiry is but idle. [...] That natural science, then, is theoretical, is plain
from these considerations. Mathematics also, however, is theoretical; but whether its objects are
immovable and separable from matter, is not at present clear; it is clear, however, that it considers
somemathematical objects qua immovable and qua separable frommatter. But if there is something
which is eternal and immovable and separable, clearly the knowledge of it belongs to a theoretical
science,—not, however, to natural science (for natural science deals with certain movable things)
nor to mathematics, but to a science prior to both.”
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und Licht (Gravitation and light) [141] p. 532–538, whose subject is the theoretical
connection between gravitation and light. Betti also wrote a paper, entitled Sopra una
estensione dei principii generali della dinamica (On the extension of the general prin-
ciples of dynamics) [19], in which he announces several results which are based on
ideas contained in Riemann’s lectures Schwere, Electricität und Magnetismus, edited
by the latter’s student Karl Hattendorf (Hannover, 1880) [143]. Riemann establishes
in these lectures necessary and sufficient conditions under which Hamilton’s princi-
ple on the motion of a free system subject to time-independent forces that depend on
the position and the motion of the system is satisfied. Chapter VII of Picard’s famous
Traité d’analyse [115] contains a chapter called Attraction and potential. The author
declares there (p. 167) that he uses a transformation from Riemann’s posthumous
memoir Schwere, Electricität und Magnetismus. Finally, we note that Maxwell dis-
cussed Riemann’s theory of electrodynamics in his Note on the electromagnetic
theory of light, an appendix to his paper [96].

In talking about Riemann’s background in physics, we take this opportunity to
recall a few facts about Riemann’s studies.

In a letter to his father onApril 30, 1845,while hewas still in high-school,Riemann
informs the latter that he starts being more and more attracted by mathematics. He
also tells him in the same letter that he plans to enroll the University of Göttingen
to study theology, but that in reality he must decide for himself what he shall do,
since otherwise he will not bring anything good to a subject. Cf. [149]. Riemann
entered the University of Göttingen in 1846, as a student in theology. He stayed there
for one year and then moved to the University of Berlin where he spent two years,
attending lectures by Jacobi and Dirichlet. In a letter to his father, dated May 30,
1849, Riemann writes ([149])2: “I had come just in time for the lectures of Dirichlet
and Jacobi. Jacobi has just begun a series of lectures in which he lead off once again
with the entire system of the theory of elliptical functions in the most advanced,
but elementary way.” Jacobi was highly interested in mechanics, and it would not
be surprising if his interest in elliptic functions was motivated by their applications
to mechanics. In another letter, written to his brother, dated November 29, 1847,
Riemann writes:

When I arrived, I found to my great joy that Jacobi, who had announced no course in the
catalog, had changed his mind. He plans to lecture on mechanics. I would, if possible, stay
here for another semester just to attend it. Nothing could be more satisfying to me than this.
[...] The next day I went to see Jacobi in order to enroll in his course. He was very polite and
friendly, because in his previous lecture he had dealt with a subject related to the problem I
had just solved, I brought it up and told him of mywork. He said if it was a nice job, he would
send it to Crelle’s Journal as soon as possible. Unfortunately my time will be somewhat tight
for writing it up. Also I don’t know whether the complete solution of the problem will take
yet more time.3

2We are using the translation by Gallagher and Weissbach.
3It is not clear to the author of the present article what the work that Riemann is talking about is. It
might be that there is a mistake in the date of the letter. Nevertheless, the content is interesting for
us here regardless of the date.
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Dirichlet’s lectures in Berlin, at that epoch, were centered mostly on theoretical
physics (partial differential equations). It is from these lectures that Riemann became
familiar with potential theory, a topic which was about to play an important role in
his later work. Klein, in his Development of mathematics in the 19th century ([87],
p. 234–235), writes:

Dirichlet loved to make things clear to himself in an intuitive substrate; along with this he
would give acute, logical analyses of foundational questions and would avoid long computa-
tions as much as possible. His manner suited Riemann, who adopted it and worked according
to Dirichlet’s methods.

Riemann’s admiration for Dirichlet is expressed at several places of his writings,
for instance in the third section of the historical part of his habilitation dissertation
on trigonometric series which we shall analyse in Sect. 3 below.4

During his stay at Berlin, Riemann also attended lectures by Dove on optics,
which he found very interesting, and by Enke on astronomy (letter without date,
quoted in [149]). About the latter, Riemann says that “his presentation for the most
part is rather dry and boring, however the time that we spend at the observatory once
a week, from 6pm to 8pm, is useful and instructive.”

After the two years spent in Berlin (1847–1849), Riemann returned to Göttingen,
where he attended the lectures and seminars of the newly hired physics professor
Wilhelm Eduard Weber (1804–1891),5 who was also Gauss’s collaborator and close
friend. Klein writes, in his Development of mathematics in the 19th century, ([87],
p. 235): “In Weber, Riemann found a patron and a fatherly friend. Weber recognized
Riemann’s genius and drew the shy student to him. [...] Riemann’s interest in the
mathematical treatment of naturewas awakenedbyWeber, andRiemannwas strongly
influenced by Weber’s questions.”

From Riemann’s posthumous papers, we read6:

4It is also true that Riemann,with his extreme sensibility, was at some point disappointed ofDirichlet
being less amicable with him. In a letter to his brother, dated April 25, 1857, he writes: [...] Also
Dirichlet appeared, if still very polite, yet not so well-disposed towards me as before. This also was
agony for me.
5This was the second time that Weber was hired in Göttingen. The first time was in 1831, at
Gauss’s recommendation (Weberwas27).Weber developed a theoryof electromagnetismwhichwas
eventually superseded by Maxwell’s. Weber and Gauss published joint results and they constructed
the first electromagnetic telegraph (1833), which operated between the astronomical observatory
and the physics laboratory of the University of Göttingen (the locations were 3km apart). In 1837,
as the result of a repression, led by the new King of Hannover Ernest Augustus (who reigned
between 1837 and 1851) and caused by political events, Weber, together with six other leading
professors (including the two brothers Grimm), was dismissed from his position at the University
of Göttingen. He came back to this university in 1849 and served intermittently as the administrator
of the Astronomical Observatory. The position of director had been occupied by Gauss since its
foundation in 1816. Gauss was more than seventy at the time Weber returned to Göttingen.
6Cf. Bernhard Riemann’s Gesammelte mathematische Werke und wissenschaftlicher Nachlass, ed.
H.Weber and R. Dedekind, [141] 2nd edition, Leipzig, 1892, p. 507. The translation of this passage
is borrowed from the English translation of Klein’sDevelopment of mathematics in the 19th century,
([87], p. 233).
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My main work concerns a new conception of the known works of nature – their expression
by means of other basic concepts – whereby it became possible to use the experimental data
on the reciprocal actions between heat, light, magnetism and electricity to investigate their
connections with each other. I was led to this mainly through studying the works of Newton,
Euler, and – from another aspect – Herbart.

The name of Herbart, which appears at the end of this quote, will be mentioned
several times in the present chapter, and it is perhaps useful to say right away a few
words on him.

Johann Friedrich Herbart (1776–1841) started his studies in philosophy in Iena
under Fichte but he soon disagreed with his ideas and went to Göttingen where he
received his doctorate and habilitation, and after that he taught there pedagogy and
philosophy. In 1809, he was offered the chair formerly held by Kant in Königsberg.
His philosophy relies on Leibniz’s theory of monads. Herbart was conservative and
anti-democratic. He was an advocate of the view that the state higher officials should
be appointed among those who have a strong cultural education. He wrote in 1824 a
treatise entitled Psychology as a science newly founded on experience, metaphysics
and mathematics [75]. In his research on psychology, he made use of infinitesi-
mal calculus, and he was probably the first to do this. For him, psychology is a
science which is based at the same time on experimentation, mathematics and meta-
physics, and he made a parallel between this new field and the field of physics in the
way Newton conceived it. Sygmund Freud was profoundly influenced by Herbart.7

Herbart returned to Göttingen in 1833 where he taught philosophy and pedagogy
until his death. Riemann was 15 and it is unlikely that he followed any course of
Herbart. Erhard Scholz, in his paper [152], reports on several sets of notes written
by Riemann and preserved in the Riemann archives in Göttingen, which concern the
philosophy of Herbart. These notes show that Riemann was indeed influenced by
the philosopher, for what concerns epistemology and the philosophy of science, and
in particular for his ideas on space. After analyzing some of Riemann’s fragments,

7From the article on Herbard in the Freud encyclopedia: Theory, therapy and culture ([58] p. 254),
we read: “The ghost of the philosopher Johann Friedrich Herbart hovers over all of Freud’s works,
an inseparable albeit unacknowledged presence. Herbart, the successor of Kant in Königsberg,
arguably exercised a more profound, more persuasive influence on Freud than either Schopenhauer
or Nietzsche, whommany scholars regard as sources for some of his major concepts. FromHerbart,
Freud derived such ideas as the mental activity can be conscious, preconscious, or unconscious,
that unconscious mental activity is a continuous determinant of conscious activity, and that the
present is unceasingly shaped by the past, whether remembered or forgotten. From Herbart, he also
borrowed some essentials of his model, the idea of conflicting conscious and unconscious psychic
forces, the censorship-exercising ego, the threshold of consciousness, ‘resistance,’ ‘repression’ and
much else. [...] It was Herbart’s ambition to contribute to the establishment of ‘a research of the
mind which will be the equal of natural science, insofar as this science everywhere presupposes
the absolutely regular connection between appearances.’ He compared the situation in psychology
with that of astronomy: in the pre-Copernician era, the motions of the planets had seemed irrational;
every so often these heavenly bodies inexplicably seemed to reverse their course; for this reason
they were known as the ‘wanderers.’ These peculiar paths, however, were recognized as entirely
lawful as soon as the heliocentric theory was introduced. The hypothesis of unconscious thought
performed the same service to the mind, Herbart maintained.” We encourage the interested reader
to go through this entire article by R. Sand.
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Scholz writes: “Riemann’s views on mathematics seem to have been deepened and
clarified by his extensive studies of Herbart’s philosophy. Moreover, without this
orientation, Riemann might have never formulated his profound and innovative con-
cept of manifold. This represents an indirect but nevertheless effective influence of
Herbart on Riemann’s mathematical and (in particular) his geometrical thinking.”
The last paragraph we quoted from Riemann’s Gesammelte mathematische Werke
continues as follows:

As for the latter, I could almost completely agree with Herbart’s earliest investigations,
whose results are giving in his graduating and qualifying theses [Promotions – und Habil-
itationsthesen] (of October 22 and 23, 1802), but I had to veer away from the later course
of his speculations at an essential point, thus determining a difference with respect to his
philosophy of nature and those propositions of psychology which concern its connections
with the philosophy of nature.

When Riemann became, in 1854, Privatdozent at the University of Göttingen,
the subject of the first lessons he gave was differential equations with applications
to physics. These lectures became well known even outside Germany. In a letter to
Houël sent in 1869 (see [32] p. 90), Darboux writes:8

I wonder if you know a volume by Riemann on mathematical physics entitled On partial
differential equations. I was very much interested in this small volume, it is clear and could
be put in the hands of the students of our universities. I think that you will appreciate it; if
you are a little bit concerned with mathematical physics it will be of interest to you. Above
all, hydrodynamics seems to me very well treated.9

Three editions of Riemann’s notes from his lectures on differential equations
applied to physics appeared in print, the last one in 1882, edited by his student Karl
Hattendorf. A work in two volumes entitled Die partiellen Differential-Gleichungen
der mathematischen Physik (The partial differential equations of mathematical
physics) [148] appeared in 1912, written by Heinrich Weber.10 This work is con-
sidered as a revised version of Riemann’s lectures on this subject. The applications

8In the present chapter, the translations from the French are mine, except if the contrary is indicated.
9Je ne sais si vous connaissez un volume de Riemann sur la physique mathématique intitulé Sur les
équations aux dérivées partielles. Ce petit volume m’a beaucoup intéressé, il est clair et pourrait
être mis avec avantage entre les mains des auditeurs de nos facultés. Je crois que vous en serez
content ; si vous vous occupez un peu de physique mathématique il vous intéressera,
l’hydrodynamique surtout m’y a paru très bien traitée.
10Heinrich Weber (1842–1913) taught mathematics at the University of Strasbourg—a city which
at that time belonged to Germany—from 1895 till 1913. He is the co-editor, with Dedekind, of
Riemann’s collected works. Dedekind followed Riemann’s lectures in 1855–1856, and they became
friends. Regarding the relation between the two mathematicians, let us mention the following. In
1858, a position of professor of mathematics was open at the Zurich Eidgenössische Technische
Hochschule. Both Riemann and Dedekind applied, and Dedekind was preferred, probably because
he had more experience in teaching elementary courses. Indeed, a Swiss delegation visited Göttin-
gen to examine the candidates, and considered that Riemann was “too introverted to teach future
engineers.” After he left for Zurich, Dedekind remained faithful to Riemann. Klein, in his Lectures
on the history of nineteenth century mathematics, characterized Dedekind as a major representative
of the Riemann tradition. At Riemann’s death in 1866, Dedekind was given the heavy load of
editing Riemann’s works. This is where he asked the help of his friend Heinrich Weber. The first
edition of theCollectedworkswas published in 1876, and it included a biographyofRiemannwritten
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to physics include heat conduction, elasticity and hydrodynamics. Theworkwas used
for many years as a textbook in various universities.11 In a biography of Neugebauer
[151] (p. 16), the author reports that in the 1920s, Courant was using these books in
his teaching:

Courant was hardly a brilliant lecturer, but he did have the ability to spark interest in students
by escorting them on the frontiers of research in analysis. In his course on partial differential
equations, he stressed two sharply opposed types of literature: works that expound general
theory, on the one hand, and those that pursue special problems andmethods, on the other [...]
For the second type of literature, Courant’s background and personal preferences came to the
fore. Here he recommended the Ausarbeitung of Riemann’s lectures on partial differential
equations prepared by Karl Hattendorf together with Heinrich Weber’s subsequent volume
on Riemann’s theory of PDEs in mathematical physics.

Concerning physics in Riemann’s work, let us also quote Klein from his address
delivered at the 1894 general session of the Versammlung Deutscher Naturforscher
und Ärtzte (Meeting of the German naturalists and physicians; Vienna, September
27, 1894), cf. [86]:

I must mention, first of all, that Riemann devoted much time and thought to physical con-
siderations. Grown up under the tradition which is represented by the combinations of the
names of Gauss and Wilhelm Weber, influenced on the other hand by Herbart’s philoso-
phy, he endeavored again and again to find a general mathematical formulation for the laws
underlying all natural phenomena. [...] The point to which I wish to call your attention is that
these physical views are the mainspring of Riemann’s purely mathematical investigations.

Riemann wrote papers on physics (a few, but may be as many as his papers on
mathematics), and they will only be briefly mentioned in the present chapter. Our
main subject is not Riemann’s work on physics, but his ideas concerning physics that
are present in his mathematical papers. In presenting these ideas, we shall comment
on his motivation. Jeremy Gray, the author of the chapter of the present volume enti-
tled Riemann on geometry, physics, and philosophy [69], writes in that chapter that
“Riemann belongs to a list of brilliant mathematicians whose lasting contributions
are more in mathematics than physics, contrary to their hope.” We shall mention

(Footnote 10 continued)
by Dedekind. Before that, Dedekind had edited, in 1868, the two habilitation works of Riemann,
Über die Darstellbarkeit einer Function durch eine trigonometrische Reihe (On the representability
of a function by a trigonometric series) [131] and Über die Hypothesen, welche der Geometrie zu
Grunde liegen [146] which we already mentioned. Klein says in his lectures on the history of 19th
century mathematics [87] that at Riemann’s death, the latter’s heirs entrusted Dedekind with the
edition of the Nachlass, that Dedekind started working on that and wrote illuminating comments,
but that he was not able to continue that work alone. In 1871 he asked the help of Clebsch, but
the latter died soon after (in 1872). He then asked Weber to help him completing the work. In
1882, Dedekind and Weber published a paper entitled Theorie der algebraischen Functionen einer
Veranderlichen (The theory of algebraic functions in one variable) [34] in which they developed
in a more accessible manner Riemann’s difficult ideas on the subject. An analysis of this paper,
including a report on its central place in the history of mathematics, is contained in Dieudonné [35]
p. 29–35. Finally let us mention that Weber is also a co-editor of the famous Klein Encyklopädie
der Mathematischen Wissenschaften.
11See [8] for a review of this book.
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Riemann’s impact of some of his mathematical work on the later development of
physics. At the same time, we shall give an overview of some importantmathematical
works of Riemann, in particular on the following topics:

(1) Riemann surfaces and functions of a complex variable. Riemann approached
complex analysis from the point of view of potential theory, that is, based on the
theory of the Laplace equation

∂2u

∂x2
+ ∂2u

∂y2
= 0.

Here, the function u = u(x, y) represents the potential function that gives rise to
a streaming for an incompressible flow contained between two planes parallel to
the x,y plane (the flowmay be an electric field, in which case u is the electrostatic
potential). The Laplace equation expresses the fact that there is as much fluid
that flows into an element of area per unit time than fluid that flows out. The
bases of the theory of Riemann surfaces are contained in Riemann’s doctoral
dissertation [130] and his paper on Abelian functions [133]. We shall review
the role of physical reasoning in these works. Conversely, Riemann made the
theory of functions of a complex variable, based on his approach using partial
differential equations in the real domain, a basic tool in mathematical physics.
We shallmention below some of the tremendous impact of the theory of Riemann
surfaces in modern theoretical physics.

(2) Trigonometric series: Riemann’s work on trigonometric series is contained in his
habilitation dissertation (Habilitationsschrift) [131]. Hismotivation, asRiemann
himself writes, comes from the theory of sound. The origin of the questions he
tackled lies in seventeenth-century physics and mathematics, and they led then
to a harsh debate that involved several scientists including Euler, Lagrange,
d’Alembert and Daniel Bernoulli (to mention only the most famous ones). From
themathematical point of view, themain issuewas the nature of the functions that
were admitted as solutions of the wave equation. Riemann eventually concluded
the debate, showing the generality of those functions that have to be included as
solutions of these equations. In the same paper, Riemann laid the foundations of
what became known later on as the theory of the Riemann integral. This came
from his effort to clarify the nature of the coefficients of a trigonometric series
associated with a function. These coefficients are indeed given in the form of
integrals.

(3) Riemannian geometry. This is contained in Riemann’s habilitation lecture [146]
and his later paper, the Commentatio [132]. In the development of this theory,
Riemann was motivated in part by physics, and in part by philosophy. In his
habilitation lecture, Riemann’s bond of filiation with Greek philosophy, and in
particular with Aristotle, is clear. We shall comment on this and we shall also
recall the huge impact of these two works of Riemann on the later physical
theories.

(4) Other works. In the last section of this chapter, we shall analyze more briefly
some other papers of Riemann related to our subject.
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To close this introduction, we mention that the fact that Riemann, in his mathe-
matical work, was motivated by physics was also common to other mathematicians
of the eighteenth and the nineteenth centuries. One may recall that Gauss, who was
Riemann’s mentor, considered himself more as a physicist than a mathematician.
We refer to [59] for a review of Gauss’s contribution to geomagnetism. Gauss was
in charge of the practical task of surveying geodetically the German kingdom of
Hannover. In the preface of his paper [61] which we already mentioned, published
in 1825, about the same time he wrote his famous Disquisitiones generales circa
superficies curvas (General investigation of curved surfaces) (1825 and 1827) [66],
Gauss writes that his aim is only to construct geographical maps and to study the
general principles of geodesy for the task of land surveying. Surveying the kingdom
of Hannover took nearly two decades to be completed. It led Gauss gradually to the
investigation of triangulations, to the use of the method of least squares in geodesy,12

and then to his Disquisitiones generales circa superficies curvas. In the latter, we
can read, for instance, in §27 (p. 43 of the English translation [66]): “Thus, e.g., in
the greatest of the triangles which we have measured in recent years, namely that
between the points Hohenhagen, Brocken, Inselberg, where the excess of the sum of
the angles was 14.”85348, the calculation gave the following reductions to be applied
to angles: Hohehagen: 4.”95113; Brocken: 4.”95104; Inselberg: 4.”95131.”

It is also interesting to know that Jacobi, after Gauss, studied similar problems of
geodesy, using elliptic functions. In a paper entitled Solution nouvelle d’un problème
fondamental de géodésie (A new solution of a fundamental problem in geodesy) [79],
he considers, on an ellipsoid having the shape of the earth, a geodesic arc whose
length, the latitude of its origin and its azimuth angle at that point are known. The
question is then to find the latitude, the azimuth angle of the extremity of this arc,
as well as the difference in longitudes between the origin and the extremity. He then
declares: “The problem of which I just gave a new solution has been recently the
subject of a particular care from Mr. Gauss, who treated it in various memoirs and
gave different solutions of it.”13

Riemann was profoundly influenced by Gauss. We emphasize this fact because
it is written here and there that Riemann did not learn a lot from Gauss, since when
Riemann started his studies, Gauss was already old, and that in any case, Gauss was
never interested in teaching. Klein writes in his Development of mathematics in the
19th century ([87], p. 234 of the English translation):

Gauss taught unwillingly, had little interest in most of his auditors, and was otherwise quite
inaccessible. Nevertheless, we call Riemann a pupil of Gauss; indeed he is Gauss’s only
true pupil, entering into his inner ideas, as we now are coming to see in outline from the
Nachlass.

12Gaussfirst publishedhismethodof least squares in an important treatise in twovolumes calculating
the orbits of celestial bodies in 1809 [60], but in that work he claims that he knew the method since
1795. This led to a priority controversy between Gauss and Legendre, who published the first
account of that method in 1805 [92].
13Le problème dont je viens de donner une solution nouvelle a été dans ces derniers temps l’objet
de soins particuliers de la part de M. Gauss, qui en a traité dans différents mémoires et en a donné
plusieurs solutions.
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Before Gauss, Euler, whose work was also a source of inspiration for Riemann,
was likewise thoroughly involved in physics. His work on partial differential equa-
tions was motivated by problems from physics. In fact, Euler tried to systematically
reduce every problem in physics to the study of a differential equation. Euler was
also very much involved in acoustics. The initial attraction by Euler to number the-
ory arose in his work on music theory; cf. [21] where this question is thoroughly
discussed. Later in this chapter, we shall have the occasion to talk about Euler’s and
Riemann’s works related to acoustics. The influence of Euler and Gauss on Riemann
is thoroughly reviewed in Chap.1 of the present volume [104].

2 Function Theory and Riemann Surfaces

Riemann’s work on the theory of functions of a complex variable is developed in
his two memoirs Grundlagen für eine allgemeine Theorie der Functionen einer
veränderlichen complexen Grösse (Foundations of a general theory of functions of a
variable complex magnitude) [130] (1851) and Theorie der Abel’schen Functionen
(Theory of Abelian functions) [133] (1857). The first of these memoirs is Riemann’s
doctoral dissertation. The text of this dissertation was submitted to the University of
Göttingen on November 14, 1851, and the defense took place on December 16 of
the same year. Several ideas introduced in these two papers are further developed in
subsequent works of Riemann. We mention in particular a fragment on the theory of
Abelian functions published posthumously and which is part of Riemann’s collected
papers editions [141, 145]. There are also other works of Riemann that involve in an
essential way functions of a complex variable; a famous example is his extension of
the real zeta function14 to the complex domain, which turned out to be a huge step in
the study of this function. Finally, wemention that there are lecture notes of Riemann
on functions of a complex variable available at Göttingen’s library, and there is an
outline of these lectures in Narasimhan’s article [100]. It is not our intention here
to comment on Riemann’s fundamental work on functions of a complex variable
and its importance for later mathematics; we shall only concentrate on its relation
to physics. However, we start with a few comments on the theory of functions of
a complex variable, before Riemann started working on it, because this will help
including Riemann’s work in its proper context.

The notion of function of a complex variable can be traced back to the beginning
of the notion of function, which, in the form which is familiar to us today, is usually
attributed to Johann Bernoulli and Euler.15 A precise definition of a function, based
on a careful description of the notion of variable, is contained in Euler’s treatise

14The real zeta function was already considered by Euler; cf. in particular his papers [38, 39]. Note
that Euler did not use the notation ζ. In his book, Introductio in analysin infinitorum (Introduction to
the analysis of the infinite) [49], where he considers this function for integer values of the variable,
he denotes it by P .
15One should emphasize that the seventeenth-century infinitesimal calculus of Leibniz and Newton,
which was developed before Euler, dealt with curves, and not with functions.
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Introductio in analysin infinitorum [49] (1748). This book was published one year
after the appearance of the famous memoir of d’Alembert [4] in which the latter gave
the wave equation.Wemention this fact because themainmathematical question that
was motivated by d’Alembert’s memoir turned out to be the question of the nature
of functions that are solutions of the wave equation. Hence, the general question
was addressed: What is a function? Furthermore, this memoir of d’Alembert was the
original motivation for the study of trigonometric series, which was the subject of
Riemann’s Habilitationsschrift which we discuss in Sect. 3. The Introductio consists
of two volumes. In Chap.1 of the first volume, after he defines functions, Euler
writes: “[...] Even zero and complex numbers are not excluded from the signification
of a variable quantity.” Thus, complex functions were considered by Euler from the
very outset of his work on general functions. We shall come back in Sect. 3 to Euler’s
definition of a function. Two years after his Introductio, Euler published his famous
memoir Sur la vibration des cordes (On string vibration) [42] which we shall also
discuss below.

After Euler, one has to mention Cauchy, who made a thorough and profound
contribution to the theory of analytic functions of a complex variable, during the
three decades that preceded Riemann’s work on the subject. In a series of Comptes
Rendus Notes and in other publications, including his Cours d’analyse de l’École
Royale Polytechnique (A course of analysis of the École Royale Polytechnique) [24]
(1821) and hisMémoire sur les intégrales définies prises entre des limites imaginaires
(Memoir on the definite integrals taken between two imaginary limits) [25] (1825),
Cauchy introduced several fundamental notions, such as the disc of convergence of
a power series, and path integrals between two points in the complex plane, with
the study of the dependence on the path.16 He dealt with functions which may take
the value infinity at some points, and he invented the calculus of residues and the
characterization of complex analyticity by the partial differential equations satisfied
by the real and imaginary parts of the function, which were called later the Cauchy–
Riemann equations.

Besides the work of Cauchy, we mention that of his student Puiseux who further
developed some of his master’s ideas and brought new ones, essentially in two papers
[126, 127]. In the 177 pages paper [126], Puiseux uses the methods introduced
by Cauchy on path integration in the study of the problem of uniformization of
an algebraic function u(z). This is a function defined implicitly by an equation of
the form P(u, z) = 0 where P is a two-variable polynomial. The uniformization
problem, in this setting, is to get around the fact that such a function u is multi-
valued and to make it univalued (uniform). In doing this, Puiseux also developed
the theory of functions of a complex variable which are of the form

∫
udz, where

u is as above. He highlighted the role of the critical points of the function u in this
line integral, and the fact that integrating along the loops that contain one such point
one gets different values for the function. Using this fact, he gave an explanation

16One should mention that the idea of integration along paths was present in the works of Gauss
[65] and Poisson [123]. They both considered line integrals in the complex plane and they noticed
that these integrals depend on the choice of a path.

http://dx.doi.org/10.1007/978-3-319-60039-0_1
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for the periodicity of the complex circular functions, of elliptic functions, and of the
functions defined by integrals introduced by Jacobi. He showed that for a given z,
the various solutions u(z) of the equation f (u, z) = 0 constitute a certain number of
“circular systems,” and he gave a method to collect them into groups. In doing this,
he developed a geometric Galois theory, discussing the “substitutions” which act on
the solutions of the algebraic equation. He also gave a method to find expressions
for these solutions as power series with fractional exponents. There is a profound
relation between the results of Puiseux on algebraic functions and Riemann surfaces.
This is also surveyed in the chapter [105] in the present volume.

Since we talked about elliptic functions, whose study was one of Riemann’s main
subjects of interest, let us mention that these functions were also used in physics,
and that this was certainly one of the reasons why Riemann was interested in them.
Already Euler, in his numerous memoirs on elliptic integrals, studied their applica-
tions to the oscillations of the pendulum with large amplitudes, to the measurement
of the earth, and to the three-body problem. In the preface of the treatise Théorie des
fonctions doublement périodiques et, en particulier, des fonctions elliptiques (The-
ory of doubly periodic functions, and in particular elliptic functions) by Briot and
Bouquet which we review in another chapter of the present volume [106] in relation
with Riemann’s work, the authors write:

One encounters frequently elliptic functions in questions of geometry, mechanics, or math-
ematical physics. We quote, as examples, the ordinary pendulum, the conical pendulum, the
ellipsoid attraction, the motion of a solid body around a fixed point, etc. Mr. Lamé pub-
lished last year a very interesting work, where he shows that that elliptic functions enter into
questions relative to heat distribution and of isothermal surfaces.17

Regarding the same subject, we note that the second volume of Halphen’s Traité des
fonctions elliptiques et de leurs applications (Treatise on elliptic functions and their
applications) [73] carries the subtitle: Applications à la mécanique, à la physique, à
la géodésie, à la géométrie et au calcul intégral (Applications to mechanics, physics,
geodesy, geometry and integral calculus).

Riemann adopted a physical approach to functions of a complex variable. This
point of view was new, compared to that of Cauchy, although both men reached
simultaneously the characterization of conformal mappings in terms of the partial
differential equations which are called the Cauchy–Riemann equations.18 Riemann,
just after establishing these equations, notes that the real and imaginary parts of
such a function satisfy the Laplace equation. Ahlfors writes, in [2] p. 4: “Riemann
virtually puts equality signs between two-dimensional potential theory and complex
function theory.” We shall say more about Riemann’s use of the Dirichlet principle,

17On rencontre fréquemment les fonctions elliptiques dans les questions de géométrie, demécanique
ou de physique mathématique. Nous citerons, comme exemples, le pendule ordinaire, le pendule
conique, l’attraction des ellipsoïdes, le mouvement d’un corps solide autour d’un point fixe, etc. M.
Lamé a publié l’année dernière un ouvrage très-intéressant, où il montre que les fonctions elliptiques
s’introduisent dans les questions relatives à la distribution de la chaleur et aux surfaces isothermes.
18Riemann gives this characterization at the beginning of his doctoral dissertation [130], defended
in 1851, and Cauchy in his papers [27, 28], published the same year.
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in particular in his paper on Abelian functions [133], where he solves the question
of the determination of a function of a complex variable by given conditions on
the boundary and the discontinuity points. Klein, in his article on Riemann and his
significance for the development of modern mathematics (1895) [86], recalls the
importance of potential theory and the influence of Dirichlet on Riemann. He writes:

It should also be observed that the theory of the potential, which in our day, owing to its
importance in the theory of electricity and in other branches of physics, is quite universally
known and used as an indispensable instrument of research, was at that time in its infancy.
It is true that Green had written his fundamental memoir as early as 1828; but this paper
remained for a long time almost unnoticed. In 1839, Gauss followed with his researches. As
far as Germany is concerned, it is mainly due to the lectures of Dirichlet that the theory was
farther developed and became known more generally; and this is where Riemann finds his
base of operations.

Among the works in potential theory that had a great impact later on, that of George
Green,19 mentioned byKlein in the last quote, isworth singling out because his author
did it in isolation and never obtained, during his lifetime, the credit he deserves.
Green, in 1828, gave the famous Green formula, in his paper entitled An essay on
the application of mathematical analysis to the theory of electricity and magnetism
[70]. This article contains the basis of what we call now Green’s functions and
Green’s potential. The introductory part of the essay emphasizes the role of a potential
function, and this notion is then used in the setting of electricity and magnetism. The
work also contains an early formofGreen’sTheorem (p. 11–12)which connects a line
integral along a simple closed curve and the surface integral over the region bounded
by that curve.20 There is an analogous theorem which relates volume and surface
integrals contained in Riemann’s 1851 inaugural dissertation. It might be noted that
the result is stated (without proof) in an 1846 paper by Cauchy [26]. Cauchy was

19George Green (1793–1841) was a British mathematician and physicist who was completely self-
taught. His father, also called George, was a baker, and the young George began working to earn
his living at the age of five. He went to school for only one year, between the ages of 8 and 9. While
he was working full-time in his father’s mill, Green used the small amount of time that was left to
him to study mathematics without the help of anybody else. On his own, Green became one of the
main founders of potential theory. The word “potential” was coined by him, although the notion
existed before, e.g. in the works of Laplace and Poisson on hydrostatics. Besides, Green developed
mathematical theories of magnetism and electricity that later on inspired the works of Maxwell and
William Thomson (later known as Lord Kelvin). Green’s father died one year after the publication
of the his son’s Essay on the Application of Mathematical Analysis to the Theories of Electricity
and Magnetism, printed at the author’s own expense. In the meantime, George Sr. Green had gained
some wealth, and what he left was sufficient for his son to put an end to his activities in the mill
and to dedicate himself to mathematics. At the recommendation of some influential acquaintance,
Green was admitted at the University of Cambridge, as an undergraduate, in 1833, at the age of
forty. The difficulties he encountered were not in catching up in the sciences, but in Greek and Latin.
Green sat for the bachelor examination five years later, the same year as Sylvester, who was 21years
younger than him. During his relatively short career, Green wrote, besides the paper we mentioned
above, several others, on optics, hydrodynamics, gravitation, and the theory of sound. He spent the
last part of his life in Cambridge in isolation, addicted to alcohol. His work was rediscovered after
his death by Thomson and his ideas blossomed in physics and mathematics.
20Basically, Green proved Stokes’ theorem for surfaces embedded in 3-space.
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also a physicist. We owe him important works on hydrodynamics, elasticity, celestial
mechanics and several other topics. But unlike Riemann, Cauchy’s mathematical
papers do not contain references to physics. Cauchymade a clear distinction between
the methods of the two subjects. In the introduction to the first volume of his famous
Cours d’analyse de l’École Polytechnique [24], we can read:

Without any doubt, in the sciences which we call natural, the only method which is worth
using with success consists in observing the facts and submitting later on the observations to
calculus. But it would be a big mistake to think that we can only find certainty in geometric
proofs or in the evidence of senses. [...] Let us cultivate with hard work the mathematical
sciences, without intending to extend them beyond their domain; and let us not imagine that
one can address history with formulae, neither giving as sanctions for morals, theorems from
algebra or integral calculus.21

Turning back to the Ancients, we quote a related phrase from Book I of the
Nicomachean Ethics; cf. [9] 1094b22:

[...] for it is the mark of an educated mind to expect that amount of exactness in each kind
which the nature of the particular subject admits. It is equally unreasonable to accept merely
probable conclusions from a mathematician and to demand strict demonstration from an
orator.

At the beginning of his dissertation, Riemann introduces the definition of con-
formality in terms of the existence of a complex derivative. From this point of view,
a function w of a complex variable z is conformal if the derivative dw

dz exists and
is independent of the direction. This is equivalent to the infinitesimal notion of
angle-preservation. As a matter of fact, conformality of maps in the sense of angle-
preservationwas already rooted in physics before Riemann. It is important to remem-
ber that the question of representing conformally the surface of a sphere onto the
plane was already addressed by Hipparchus (second century B.C.), Ptolemy (first
century A.D.), and certainly other Greek geometers and astronomers in their work
on spherical geometry and cartography, see [113] p. 405ff. We refer the reader to the
recent surveys [108, 109] regarding the relation between geography and conformal
and quasiconformal (in the sense of close-to-conformal) mappings. One may men-
tion in particular Euler who studied general conformal maps from the sphere to the
plane in his memoirs [51–53] which he wrote in relation with his work as a cartogra-
pher.23 In these memoirs, Euler expressed the conformality of projection maps from
the sphere onto a Euclidean plane in terms of partial differential equations. Lambert,

21Sans doute, dans les sciences qu’on nomme naturelles, la seule méthode qu’on puisse employer
avec succès consiste à observer les faits et à soumettre ensuite les observations au calcul. Mais
ce serait une erreur grave de penser qu’on ne trouve la certitude que dans les démonstrations
géométriques, ou dans le témoignage des sens [...] Cultivons avec ardeur les sciencesmathématiques,
sans vouloir les étendre au-delà de leur domaine; et n’allons pas nous imaginer qu’on puisse attaquer
l’histoire avec des formules, ni donner pour sanction à la morale des théorèmes d’algèbre ou de
calcul intégral.
22I thank M. Karbe for this reference.
23At the Academy of Sciences of Saint Petersburg, Euler, among his various duties, had the official
charge of cartographer and participated in the huge project of drawing maps of the Russian Empire.



Physics in Riemann’s Mathematical Papers 167

in his paper [91], also formulated problems concerning the projection of subsets of
the sphere onto the Euclidean plane in terms of partial differential equations. Like-
wise, Lagrange used the notion of conformal map in his papers on cartography [88],
and the same notion is inherent in Gauss’s work. The terminology “isothermal coor-
dinates” which the latter introduced, referring to a locally conformal map between a
subdomain of the plane and a subdomain of the surface, indicates the relation with
physics. Riemann, in his dissertation, refers to an 1822 paper by Gauss, published
in the Astronomische Abhandlungen in 1825 (but written several years before).24

The title of that paper is Allgemeine Auflösung der Aufgabe: die Theile einer gegeb-
nen Fläche auf einer andern gegebnen Fläche so abzubilden, daß die Abbildung dem
Abgebildeten in den kleinsten Theilen ähnlich wird (General solution of the problem:
to represent the parts of a given surface on another so that the smallest parts of the
representation shall be similar to the corresponding parts of the surface represented),
a paper presented to a prize question proposed by the Royal Society of Sciences at
Copenhagen, [61]. In this paper, Gauss shows that every sufficiently small neighbor-
hood of a point in an arbitrary real-analytic surface can be mapped conformally onto
a subset of the plane.25

After recalling the definition of a conformalmap,Riemannpasses to the equivalent
condition expressed in terms of partial differential equations. Here, we are given a
function f of a complex variable which is composed of two functions u and v of two
real variables x and y:

f (x + iy) = u + iv.

The functions u and v are differentiable and satisfy the Cauchy–Riemann equations.
They appear as potentials in the space of the two variables x and y. Klein, in his
article on Riemann and his significance for the development of modern mathematics
writes ([86] p. 168):

Riemann’s method can be briefly characterized by saying that he applies to these parts u
and v the principles of the theory of the potential. In other words, his starting point lies in
the domain of mathematical physics.

In the same article (p. 170), after explaining some of Riemann’s tools, Klein adds:

All these new tools andmethods, created byRiemann for the purpose of puremathematics out
of the physical intuition, have again proved of the greatest value for mathematical physics.
Thus, for instance, we now always make use of Riemann’s methods in treating the stationary
flow of a fluid within a two-dimensional region. Awhole series of most interesting problems,
formerly regarded as insolvable, had thus been solved completely. One of the best known
problems of this kind is Helmholtz’s determination of the shape of a free liquid jet.

24The paper won a prize for a question proposed by the Copenhagen Royal Society of Sciences in
1822. The subject of the competition was: “To represent the parts of a given surface onto another
surface in such a way that the representation is similar to the original in its infinitesimal parts.” A
letter from Gauss to Schumacher dated July 5, 1816 shows that the solution was already known to
Gauss at that time; cf. Gauss’s Werke Vol. 8, p. 371.
25Gauss did not solve the problem of mapping conformally an arbitrary finite portion of the surface;
this was one of the questions considered by Riemann. An English translation of Gauss’s paper is
published in [153], Volume 3.
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Klein, who spent a significant part of his time advertising and explaining Rie-
mann’s ideas, completely adhered to his physical point of view. In 1882, he wrote
a booklet entitled Über Riemanns Theorie der algebraischen Funktionen und ihrer
Integrale (On Riemann’s theory of algebraic functions and their integrals: A supple-
ment to the usual treatises) [85] in which he explains the main ideas in Riemann’s
1857 article on Abelian functions. This booklet is a redaction of part of a course that
Klein gave in 1881 at the University of Leipzig, and it had a great influence inmaking
Riemann’s ideas known.26 The excerpts we present here and later in this chapter are
from the English translation [85], published a few years after the German original.

According to Klein, the point of view on analytic functions based on the Cauchy–
Riemann equations is supported by physics. The first paragraph of his exposition [85]
(p. 1) is entitled Steady streaming in the plane as an interpretation of the functions
of x + iy. He writes there: “The physical interpretation of those functions of x + iy
which are dealt with in the following pages is well known.” He refers to Maxwell’s
Treatise of electricity and magnetism (1873), and he adds: “So far as the intuitive
treatment of the subject is concerned, his point of view is exactly that adopted in
the text.” Maxwell, at the beginning of the 1860s, developed a theory of electric-
ity and magnetism and established the partial differential equations that carry his
name, which describe the generation of electric and magnetic fields and the rela-
tion between them. In some sense, Maxwell’s equations are a generalization of the
Cauchy–Riemann equations. Klein is among the first mathematicians who stressed
this point. After he states the Cauchy–Riemann equations, Klein continues:

In these equations we take u to be the velocity-potential, so that ∂v
∂y , ∂u

∂x are the components
of the velocity of a fluid moving parallel to the xy plane [...] For the purposes of this
interpretation it is of course indifferent of what nature we may imagine the fluid to be, but
for many reasons it will be convenient to identify it here with the electric fluid: u is then
proportional to the electrostatic potential which gives rise to the streaming, and the apparatus
of experimental physics provide sufficient means for the production of many interesting
systems of streaming.

Later in the text, in dealing with residues, Klein writes:

The reason that the residue of z0 must be equal and opposite to that of z1 is now at once
evident: the streaming is to be steady, hence the amount of electricity flowing at one point
must be equal to that flowing out at the other.

In another report on Riemann’s work, [86] p. 175, Klein states:

Riemann’s treatment of the theory of function of complex variables, founded on the partial
differential equation of the potential, was intended by him to serve merely as an example
of the analogous treatment of all other physical problems that lead to partial differential
equations, or to differential equations in general. [...] The execution of this programme
which has since been considerably advanced in various directions, and which has in recent
years been taken up with particular success by French geometers, amounts to nothing short
of a systematic reconstruction of the methods of integration required in mechanics and in
mathematical physics.

26Constance Reid reports on p. 178 of her biography of Hilbert [129] that at a meeting of the
Göttingen Scientific Society dedicated to the memory of Klein, held a few months after his death,
Courant declared: “If today we are able to build on the work of Riemann, it is thanks to Klein.”
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It is also interesting to recall that according toKlein [87],Riemann started studying
Abelian functions because of their use in his research on galvanic currents.

An important element in Riemann’s theory of functions of a complex variable is
the so-called Dirichlet problem.27 Stated with a minimal amount of hypotheses, the
problem, from the mathematical point of view, asks for the following: Given an open
subset � of Rn and a continuous function f defined on the boundary ∂� of �, to
find an extension of f to � which is harmonic and continuous on the union � ∪ ∂�.
The problem has more than one facet and there are several ways of dealing with it.
Physicists consider that the problemhas obviously a positive solution under verymild
conditions, and that this solution is unique. In this setting, one thinks of the function
f on ∂� as a time-independent potential (electric, gravitational, etc.). Letting the
system evolve, it will attain an equilibrium state, and the solution will necessarily
satisfy a mean value property, that is, it will be harmonic. The harmonicity property
is also formulated in terms of realizing the minimum of the energy functional

∫ ∫ (

(
∂u

∂x
)2 + (

∂u

∂y
)2

)

dxdy. (1)

All these ideas were known to eighteenth century physicists and in fact, most of them
can be traced back to Newton.

The “Dirichlet principle” is a method for solving the Dirichlet problem. It is
Riemann who coined the term. The principle is based on an assertion he took for
granted, namely, that an infimum of the energy functional is attained. This infimum is
necessarily harmonic and forms a harmonic function u. Riemann used the Dirichlet
principle to construct analytic functions, not only on the disc, but on an arbitrary
Riemann surface, after cutting it along a system of arcs so that it becomes simply-
connected. Riemann also used the Dirichlet principle at other places in his doctoral
dissertation and in his paper on Abelian functions.28 At the time Riemann appealed
to the Dirichlet problem, several other eminent mathematicians used an analogous

27Concerning the terminology, Klein writes in his Development of mathematics in the 19th century
([87], p. 242 of the English translation): “This is the first boundary value problem, which the French,
unhistorical as they are, call the “Dirichlet problem”: to determine a function u if its boundary values
and definite physically possible discontinuities are given—there will be one and only one solution.
28The name “Dirichlet principle” is used in the paper [133] on Abelian functions (§III, IV, Prelim-
inaries), but not in the doctoral dissertation [130]. Riemann, in his existence proof of meromorphic
functions on general Riemann surfaces, defined these functions by their real parts, which are har-
monic functions, using this principle. He also used it in his proof of the RiemannMapping Theorem.
In fact, it is well known today that the Riemann Mapping Theorem, the existence of meromorphic
functions, and the Dirichlet problem, are all equivalent. Riemann writes in §III of the Preliminary
section of his paper on Abelian functions [133] that in the study of integrals of algebraic functions
and their inverses, one can use a principle which Dirichlet used several years before in his lectures
on the forces that act by the inverse of the square of the distance, to solve of a problem related to
a function of three variables satisfying the Laplace equation. He adds that Dirichlet was probably
inspired by an analogous idea of Gauss. In fact, Gauss used such a principle in his 1839 paper [62].
He assumed there without proof that for a given constant potential distribution, an equilibrium state
is attained and is unique and corresponds to the minimum of the energy. It is possible that Riemann
chose to call this principle the “Dirichlet principle” out of faithfulness to the mathematician from
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principle, in physics and in mathematics. This includes Laplace, Fourier and Poisson
in France,Green, Thomson andStokes inEngland, andGauss inGermany.Helmholtz
used this principle in his work on acoustics [74]. Riemann’s use of the Dirichlet
principle was criticized by Weierstrass [162]. Klein writes in his Development of
mathematics in the 19th century ([87], p. 248 of the English translation):

With this attack byWeierstrass on Dirichlet’s principle, the evidence to which Dirichlet, and
after him,Riemann, had appealed, became fragile [...] Themajority ofmathematicians turned
away from Riemann; they had no confidence in the existence theorems, which Weierstrass’s
critique had robbed of their mathematical supports.

The physicists took yet another position: they rejected Weierstrass’s critique. Helmholtz,
whom I once asked about this, told me: “For us physicists the Dirichlet principle remains a
proof.” Thus he evidently distinguished between proofs formathematicians and physicists; in
any case, it is a general fact that physicists are little troubled by the fine points ofmathematics
– for them the “evidence” is sufficient.

The mathematicians’ doubts concerning Riemann’s use of the Dirichlet principle
were removed only several years later. We refer the reader to [99] for the details of
this interesting story.

In the preface to his booklet [85], (p. IX), Klein writes:

[...] there are certain physical considerations which have been lately developed, although
restricted to simpler cases, from various points of view.29 I have not hesitated to take these
physical conceptions as the starting point of my presentation. Riemann, as we know, used
Dirichlet’s Principle in their place in his writings. But I have no doubt that he started from
precisely those physical problems, and then, in order to give what was physically evident
the support of mathematical reasoning, he afterwards substituted Dirichlet’s Principle.

Klein adds:

Anyone who clearly understands the conditions under which Riemann worked in Göttingen,
anyone who has followed Riemann’s speculations as they have come down to us, partly in
fragments, will, I think, sharemy opinion. However that may be, the physical method seemed
the true one for my purpose. For it is well known that Dirichlet’s principle is not sufficient
for the actual foundation of the theorems to be established; moreover, the heuristic element,
which to me was all-important, is brought out far more prominently by the physical method.
Hence the constant introduction of intuitive considerations, where a proof by analysis would
not have been difficult and might have been simpler, hence also the repeated illustration of
general results by examples and figures.

Poincaré was, like Riemann, a pre-eminent representative of a philosophical tradi-
tion of thought in geometry and physics which was invoked at the outset, a tradi-
tion combining mathematical, physical, and philosophical thinking. In his booklet

(Footnote 28 continued)
whom he learned most. Klein writes in [87]: “Riemann was bound to Dirichlet by the strong inner
sympathy of a like mode of thought. Dirichlet loved to make things clear to himself in an intuitive
substrate; along with this he would give acute, logical analyses of foundational questions and
would avoid long computations as much as possible. His manner suited Riemann, who adopted it
and worked according to Dirichlet’s methods.”
29[Klein’s footnote] Cf. C. Neumann, Math. Ann. t. X, pp. 569–771. Kirchoff, Berl. Monatsber.,
1875, pp. 487–497. Töpler, Pogg. Ann. t. CLX., pp. 375–388.
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La valeur de la science (The value of science) [121] (1905), commenting on Klein’s
method, Poincaré writes:

[...] On the contrary, look atMr. Klein: He is studying one of themost abstract questions in the
theory of functions; namely, to knowwhether on a given Riemann surface there always exists
a function admitting given singularities: for instance, two logarithmic singular points with
equal residues of opposite signs.What does the famousGerman geometer do?He replaces his
Riemann surface by a metal surface whose electric conductivity varies according to certain
rules. He puts the two logarithmic points in contact with the two poles of a battery. The
electric current must necessarily pass, and the way this current is distributed on the surface
defines a function whose singularities are the ones prescribed by the statement.30

To end this section, let us mention some of the numerous applications of Riemann
surfaces in modern mathematical physics.

One of the major applications of the theory of Riemann surfaces in physics is the
Atiyah-Singer index theorem. This theorem, obtained in 1963, gives an information
on the dimension of the space of solutions of a differential operator (the analytical
index) in terms of topology (the topological degree). The theorem is used in the
theory of the Einstein equation, the instanton equation, the Dirac operator, etc. It
is considered as a vast generalization of the classical version of the theorem of
Riemann–Roch, which is an equality, half of which contained in Riemann’s paper
on Abelian functions [133], and the other half in the dissertation of his student Roch
[150]. (See [1] in this volume for a review of this theorem.)

We also mention string theory, in which (0-dimensional) particles of physics are
replaced by (1-dimensional) strings. This theory was developed as a framework
that would hopefully solve some problems that cannot be handled by the theory of
relativity. At some point (and it still is, albeit with a more skepticism on physical
and mathematical grounds) string theory was considered as a possible theory for
the unification of the fundamental forces in nature: gravitation and quantum theory,
including electromagnetism—another attempt to realize Riemann’s long-life insight.
In this theory, one follows the history of a closed string, that is, a closed loop in 3-
space. While it propagates, such a loop sweeps out a surface. For reasons that have
to do with the consistency of the theory, the surface turns out to be equipped with a
1-dimensional complex structure, that is, it is a Riemann surface. If the string does
not interact with anything else, then the swept-out surface is a cylinder, but in general,
the string, under some interaction, splits into two other strings, which join again, etc.
creating a Riemann surface of higher connectivity (Figs. 1 and 2). Seen from very
large distances, strings look like ordinary particles, they have mass and charge, but
they can also vibrate. This vibration leads to a hypothetical quantum mechanical

30[...] Voyez au contraire M. Klein: il étudie une des questions les plus abstraites de la théorie des
fonctions; il s’agit de savoir si sur une surface de Riemann donnée, il existe toujours une fonction
admettant des singularités données: par exemple, deux points singuliers logarithmiques avec des
résidus égaux et de signe contraire. Que fait le célèbre géomètre allemand? Il remplace sa surface de
Riemann par une surface métallique dont la conductibilité électrique varie suivant certaines lois. Il
met les deux points logarithmiques en communication avec les deux pôles d’une pile. Il faudra bien
que le courant passe, et la façon dont ce courant sera distribué sur la surface définira une fonction
dont les singularités seront précisément celles qui sont prévues par l’énoncé.
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Fig. 1 A moving string,
sweeping out a cylinder

Fig. 2 A string splitting up
into two pieces sweeping out
a surface of higher
connectivity

particle called graviton, which is supposedly responsible for the gravitational force.
It is in this sense that string theory is a theory of quantum gravity.

Onemay also talk about Polyakov’s perturbative quantum string theory, a physical
theory which involves summations over all Riemann surfaces of arbitrary genus, see
[124, 125].

Riemann surfaces are at the basis of conformal field theories (CFT), in which one
associates to a marked Riemann surfaces a vector space satisfying certain natural
axioms. These surfaces also appear as a major ingredient in the topological quan-
tum field theories (TQFT) developed by Witten and others, which are based on sets
of axioms that provide functors from a certain category of cobordisms to the cate-
gory of vector spaces (Segal and Atiyah gave such sets of axioms). TQFTs lead to
results in physics (relativity, quantum gravity, etc.) and at the same time to results
in mathematics, where they provide quantum invariants of 3-manifolds. They have
applications in symplectic geometry, representation theory of Lie groups and alge-
braic geometry, in particular in the study of moduli spaces of holomorphic vector
bundles over Riemann surfaces. One may also mention that the famous geomet-
ric Langlands correspondence is based on the theory of Riemann surfaces. Stated
loosely, in the geometric Langlands correspondence one assigns to each rank n holo-
morphic vector bundle with a holomorphic connection on a complex algebraic curve,
a Hecke eigensheaf on the moduli space of rank n holomorphic vector bundles on
that curve, cf. [57].

Riemann surfaces are also the main ingredients in the theory of Higgs bundles.
These objects arose in the studymade byNigel Hitchin of the self-duality equation on
a Riemann surface. From the physical point of view, Higgs bundles describe particles
like the Higgs boson. Conversely, the physical methods of Higgs bundle theory are
used in the study of moduli spaces of representation of surface groups. Hitchin’s
motivation arose from his work done in the 1970s with Atiyah, Drinfield and Manin
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on the so-called instanton equation, another theory combining in an essential way
mathematics and physics [13].

Finally, let us mention that Riemann surfaces are used in biology, cf. the recent
survey [114].

3 Riemann’s Memoir on Trigonometric Series

The habilitation degree, which was required in Germany in order to hold a univer-
sity teaching position, involved two presentations: the Habilitationsschrift, a written
original work on a specialized subject, and the Habilitationsvortrag, a lecture on a
subject chosen by the university council. The present section is devoted to Riemann’s
Habilitationsschrift [131]. We shall discuss his Habilitationsvortrag in the next one.

Riemann’s Habilitationsschrift is entitled Über die Darstellbarkeit einer Func-
tion durch eine trigonometrische Reihe (On the representability of a function by a
trigonometric series). It is generally considered that Riemann worked on it during
thirty months. He presented it to the university in December 1853. About this work,
in a letter to Houël, datedMarch 18, 1873, and quoted in [33], Darboux writes: “This
memoir of Riemann is a masterpiece which is similar to these old paintings of which
some small parts in full light make you regret what time has destroyed or what the
author has neglected.”31

This theory of trigonometric series finds its origin in eighteenth century physics,
more precisely, in the introduction by d’Alembert, in 1747, of the vibrating string
equation (also called the wave equation). To understand the context of Riemann’s
contribution, it might be useful to recall a few key events in the history of the sub-
ject. This theory expanded very slowly, and it was eventually put on firm bases in
the nineteenth century, mainly by Joseph Fourier, while he was working on another
problem arising from physics, namely, heat diffusion. In the meantime, many pre-
eminent mathematicians and physicists worked on trigonometric series, and we shall
mention a few of them. Furthermore, the work done during the first decades after
the introduction to the vibrating string equation gave rise to one of the most pas-
sionate controversies in the history of mathematics and physics whose scope was
larger than the subject of trigonometric series, and we shall say a few words about
it. The controversy involved Euler, d’Alembert, Lagrange, Daniel Bernoulli and
other major scientists. In particular, a quarrel between Euler and d’Alembert lasted
from 1748 until 1783 (the year both of them died). Later on, a dispute concerning
the same subject broke out between Fourier and Poisson. The question was about
the “continuity” of the functions representing the solutions. This dispute is thor-
oughly discussed in the introductory part of volume IV of Series A of Euler’s Opera
omnia [48], a volume containing the correspondence between Euler and d’Alembert.

31Ce mémoire de Riemann est un chef-d’œuvre semblable à ces vieux tableaux dont quelques
parties en pleine lumière vous font regretter ce que le temps a détruit ou ce que l’auteur a négligé.
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A comprehensive survey of this controversy is also made in [81] and in Chap. 1 of
the present volume [104].

When d’Alembert discovered the vibrating string equation, Euler immediately
became interested. He had already been dealing with partial differential equations for
several years. In fact, he started working, around the year 1735, on partial differential
equations and their applications in geometry and physics. Furthermore, the theory
of sound was one of his favorite subjects.32 This subject was not new, and, in fact, it
is worth recalling that the physics of vibrating strings was one of the main problems
studied by the Pythagoreans, back in the sixth century B.C. Indeed, most of the
ancient biographers of Pythagoras describe his experiments on pitch production, cf.
[78]. For a recent scholarship on Pythagoras and the early Pythagoreans, the reader
may consult [168].

The heart of the controversy on the vibrating string lies in the question of the
clarification of the notion of function, more precisely, the nature of the functions that
are solutions of the partial differential equation representing the vibration of a string.

We discuss this matter in Chap. 1 of the present volume [104]. Instead, we make
here an excursion to the origin of the theory of sound production, in order to make
fully clear that Riemann’s investigations on trigonometric functions and integration
theory originate in physics.

The first part of Riemann’s Habilitationsschrift is a historical report on the rep-
resentation of a function by a trigonometric series, and in fact, it is motivated by the
theory of theory of the vibrating string. In a letter to his father, written in the autumn
of 1852, Riemann says that he learned the historical details from Dirichlet, who
explained them to him in a two-hour session. (The letter is reproduced in Riemann’s
CollectedWorks, [141] p. 578.) Riemann starts his historical survey by recalling that
this subject is important for physics:

Trigonometric series, which are given this name by Fourier, that is, series of the form

a1 sin x + a2 sin 2x + a3 sin 3x + . . .

+1

2
b0 + b1 cos x + b2 cos 2x + b3 cos 3x + . . .

play a substantial role in the part of mathematics where we encounter functions which are
completely arbitrary.We also have reasons to say that the progress of this part ofmathematics,
which is so important for physics, has been subject to a more precise knowledge of the nature
of these series.

Riemann’s excursion in history is divided into three periods, and we shall say a few
words about each period.

The first period is concerned with the controversies that arose concerning the
notion of function which led to the question of representing arbitrary functions by a

32Euler writes in his memoir [47] that “the most sublime research that scientists successfully under-
took these days is in all respects without question that of propagation of sound.” [La plus sublime
recherche que les géomètres aient entreprise de nos jours avec succès est sans contredit à tous égards
celle de la propagation du son.] We also recall that the subject of Euler’s first published memoir is
the theory of sound [40].

http://dx.doi.org/10.1007/978-3-319-60039-0_1
http://dx.doi.org/10.1007/978-3-319-60039-0_1
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trigonometric series. D’Alembert, in 1747, wrote two papers, which were published
in the Memoirs of the Berlin Academy and under the titles Recherches sur la courbe
que forme une corde tendue mise en vibration (Researches on the curve that is formed
by a stretched vibrating string) [4] and Suite des recherches sur la courbe que forme
une corde tendue mise en vibration (Sequel to the researches on the curve that is
formed by a stretched vibrating string) [5]. In these memoirs, d’Alembert, relying
on the fundamental principle of dynamics, gave the partial differential equation that
represents the motion of a point on a vibrating string subject to small vibrations:

∂2y

∂t2
= α2 ∂2y

∂x2
. (2)

Here, α is a constant and y is the oscillation of the string, a function of time, t , and
distance along the string, x . In the same memoir, d’Alembert wrote the first general
solution to the problem, with the given boundary conditions, in the form

y(x, t) = 1

2
(φ(x + αt) + φ(x − αt)) ,

where φ is an “arbitrary” periodic function whose period is the double of the length
of the string. D’Alembert used a method he attributes to Euler for the integration of
partial differential equations. The problem was to give a meaning to the adjective
“arbitrary,” and this is where the more basic question of What is a function? was
raised.

It is natural to assume that the solution of d’Alembert’s vibration equation should
be (twice) differentiable, since the equation involves second partial derivatives, and
this is what d’Alembert did. Euler was not of the same opinion. The reason he
gave is physical, namely, that one can give a non-smooth initial form to the string
(for example a curve with corners) which is being pinched, therefore the function
that represents the shape of the string could be quite arbitrary. This implies that the
solution may be arbitrary. Euler published his remarks in his memoir Sur la vibration
des cordes (On the vibration of strings)33 [42] inwhich he reviews d’Alembert’s work
on the wave equation. These remarks introduced some doubts concerning the work
of d’Alembert, who wrote a new memoir on the same subject, in which he confirms
his ideas, Addition aux recherches sur la courbe que forme une corde tendue mise en
vibration (Addition to the researches on the curve formed by a stretched vibrating
string) [6].

Another pre-eminent scientist who became involved in these questionswasDaniel
Bernoulli, who was primarily a physicist. Before talking about his contribution to the
subject, one should recall that Brook Taylor, in his memoir De motu nervi tensi (On
the motion of a tense string) [156] (1713) and later in his treatise Methodus incre-
mentorum directa et inversa (Direct and Indirect Methods of Incrementation) [157];
first edition 1715, noted that a trigonometric function like f (x) = sin x represents a

33Euler wrote two versions, one in Latin and one in French, the French version bearing the mention
“Translated from the Latin.”
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periodic phenomenon, a wave. In his work on the subject, Taylor was motivated by
music theory. Bernoulli came out with a formula of the form

∞∑

n=1

sin
nπx

l
cos

nπαt

l
. (3)

Like Taylor, he was motivated by music. In fact, among all the scientists of the
Bernoulli family, Daniel was the most inclined towards physics. His intuition con-
cerning Formula (3) originates in the fact known to all music theorists that the string
vibration produces, together with the fundamental pitch, an infinite sequence of har-
monics. It is interesting to read some excerpts of Bernoulli’s writings on this subject.
In his memoir Mémoire sur les vibrations des cordes d’une épaisseur inégale (Mem-
oir on the vibrations of a string of uneven width), he writes [16] (p. 173):

I showed furthermore in the Berlin Memoirs that the vibrations of various orders, however
one takes them, may coexist in one and the same string, without disturbing each other in any
way, these various kinds of coexisting vibration being absolutely independent of each other.
Hence this multiplicity of harmonic sounds which we hear at the same time and with one and
the same string. If all the modes of vibration start at the same instant, it may happen that the
first vibration of first order, the second vibration of second order, the third vibration of third
order, etc. terminate at the same moment. This is in some sense an apparent synchronism
which is nothing less than general, since there are infinitely many vibrations which do not
terminate at the same instant.34

In his Réflexions et éclaircissements sur les nouvelles vibrations des cordes (Reflec-
tions and clarifications on the new vibrations of strings), Bernoulli writes ([14] p.
152–153):

Indeed, all musicians agree that a long pinched string gives at the same time, besides its
fundamental tone, other tones which are much more acute; most of all they will notice the
mixture of the twelfth and the minor sixteenth: in case they don’t notice as much distinctly
the octave and the double octave, it is only because of the very big resemblance of these
two tones with the fundamental. This is an evident proof that there could occur in one and
the same string a mixture of several sorts of Taylorian vibrations at the same time. In the
same manner, we hear in the sound of large bells a mixture of different tones. If we hold
by the middle a steel stick, and if we hit it, we hear at the same time a confused mixture
of several tones, which, when appreciated by a skilled musician, turn out to be extremely
inharmonious, in such a way that a combination of vibrations is formed, which never start
and finish at the same moment, except by a happenstance: hence we see that the harmony
of sounds, which we hear at the same time in one sonorous body, is not essential to that
material, and should not serve as a principle for systems in music. Air is not free of this
multiplicity of coexisting sounds: it often happens that one extracts two different sounds

34J’ai démontré de plus dans les Mémoires de Berlin, que les vibrations de différents ordres, quels
qu’on les prenne, peuvent coexister dans une seule et même corde, sans se troubler en aucune façon,
ces différentes espèces de vibration coexistantes étant absolument indépendantes les unes des autres.
De là cette pluralité de sons harmoniques qu’on entend à la fois d’une seule et même corde. Si toutes
espèces de vibration commencent au même instant, il arrivera que la première vibration du premier
ordre, la seconde vibration du second ordre, la troisième vibration du troisième ordre etc. finiront
au même instant. C’est là un synchronisme apparent dans un certain sens, et qui n’est rien moins
que général, puisqu’il y a une infinité d’autres vibrations qui ne finissent pas au même instant.
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from a pipe; but the best proof of how much the various air waves may prevent each other is
that we hear distinctly every part of a concert, and that all the waves due to these different
parts are formed from the same mass of air without disturbing each other, very much like
light rays entering in a dark room from a small hole do not disturb each other.35

In the same memoir, Bernoulli writes ([14] p. 151):

My conclusion is that every sonorous body contains essentially an infinity of sounds, and
infinitely corresponding ways of performing their regular vibrations; finally, that in each
different way of vibrating the variations in the parts of the sonorous body are formed in a
different way.36

In the same memoir, Bernoulli writes ([14] p. 148):

[...] without any less esteem for the calculations of Messrs d’Alembert and Euler, which
certainly include the most profound and exquisite things that analysis contains; but which
show at the same time that an abstract analysis, which we follow without any synthetic
examination of the proposed question, may be surprising rather than enlightening for us. It
seems to me that one had only to be attentive to the nature of simple vibrations of a string in
order to foresee without any calculation everything these two geometers found by the most
tricky and abstract calculations with which an analytical mind has been instructed.37

It may seem surprising that Euler, who was as much involved in music theory than
Bernoulli—he had even corresponded with Rameau on overtones back in 1752 (see

35Effectivement tous lesMusiciens conviennent, qu’une longue corde pincée donne enmême temps,
outre son ton fondamental, d’autres tons beaucoup plus aigus; ils remarquent surtout le mélange
de la douzième et de la dix-septième majeure: s’ils ne remarquent pas aussi distinctement l’octave
et la double octave, ce n’est qu’à cause de la trop grande ressemblance de ces deux tons avec le
ton fondamental. Voilà une preuve évidente, qu’il peut se faire dans une seule et même corde un
mélange de plusieurs sortes de vibrations Tayloriennes à la fois. On entend pareillement dans le son
des grosses cloches un mélange de tons différents. Si l’on tient par le milieu une verge d’acier, et
qu’on la frappe, on entend à la fois un mélange confus de plusieurs tons, lesquels étant appréciés par
un habile Musicien se trouvent extrêmement désharmonieux, de sorte qu’il se forme un concours
de vibrations, qui ne commencent et ne finissent jamais dans un même instant, sinon par un grand
hazard: d’où l’on voit que l’harmonie des sons, qu’on entend dans une même corps sonore à la fois,
n’est pas essentielle à cette matière, et ne doit pas servir de principe pour les systèmes de Musique.
L’air n’est pas exempt de cettemultiplicité de sons coexistants : il arrive souvent qu’on tire deux sons
différents à la fois d’un tuyau; mais, ce qui prouve le mieux, combien peu les différentes ondulations
de l’air s’entre-empêchent, est qu’on entend distinctement toutes les parties d’un concert, et que
toutes les ondulations causées par ces différentes parties se forment dans la même masse d’air
sans se troubler mutuellement, tout comme les rayons de la lumière, qui entrent dans une chambre
obscure à travers une petite ouverture, ne se troublent point.
36Ma conclusion est, que tous les corps sonores renferment en puissance une infinité de sons, et
une infinité de manières correspondantes de faire leurs vibrations régulières; enfin, que dans chaque
différentes espèce de vibrations les inflexions des parties du corps sonore se font d’une manière
différente.
37[...] je n’en estime pas moins les calculs de Mrs. d’Alembert et Euler, qui renferment certaine-
ment tout ce que l’Analyse peut avoir de plus profond et de plus sublime ; mais qui montrent en
même temps, qu’une analyse abstraite, qu’on écoute sans aucun examen synthétique de la question
proposée, est sujette à nous surprendre plutôt qu’à nous éclairer. Il me semble à moi, qu’il n’y avait
qu’à faire attention à la nature des vibrations simples des cordes, pour prévoir sans aucun calcul tout
ce que ces deux grands géomètres ont trouvé par les calculs les plus épineux et les plus abstraits,
dont l’esprit analytique se soit encore avisé.
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[21], Vol. II)—did not state this idea before, especially that Euler had already heavily
manipulated infinite series. It is also a fact that the techniques of trigonometric series
are quite different from those of power series.

When Daniel Bernoulli suggested that an “arbitrary” function defined on a finite
interval can be expanded as a convergent trigonometric series, several basic questions
appeared at the forefront of research:

(1) What is the meaning of such an infinite sum, that is, in what sense does it
converge?

(2) In what sense functions possess trigonometric series expansions, and how can
such a result be proved.

(3) What is an “arbitrary” function (a question that had been thoroughly investigated
without reaching any definite conclusion), and more precisely, is there a defini-
tion of an arbitrary function such that it coincides with functions expressible by
such an infinite sum?

The second period of Riemann’s historical report is dominated by Joseph Fourier
(1768–1830) who, in his Théorie analytique de la chaleur (Analytic theory of heat)
[56] (1822), developed the theory of trigonometric series, while he was studying the
heat equation. Let us say a few words about Fourier’s treatise.

The introduction (Discours préliminaire) of this treatise is interesting. It con-
cerns the importance of heat in our universe. Fourier writes, at the beginning of that
introduction (p. i):

Heat, like gravity, penetrates all substances of the universe, its rays occupies all parts of
space. The goal of our work is to present the mathematical laws that govern this element.
From now on, this theory will constitute one of the most important branches of general
physics.38

Fourier then mentions the works of Archimedes, Galileo and Newton, and he com-
ments on the importance of the effect of sun rays on every element of the living
world. It is interesting to note that Archimedes, Galileo and Newton are again men-
tioned, together, in the introduction to Riemann’s habilitation lecture 1854, which
we consider in Sect. 4.

After that, he arrives at the mathematical principles of that theory. The problem,
which turned out to be very difficult to solve, is stated very clearly ([56] p. 2):

When heat is unevenly distributed between the various points of a solid mass, it tends to an
equilibrium position, and it slowly passes from the overheated parts to the ones which are
less heated. At the same time, it dissipates through the surface, and it gets lost in the ambient
space or in void. This tendency towards a uniformdistribution, and this spontaneous emission
which takes place at the surface of bodies, causes a continuous change in the temperature at
the various points. The question of the propagation of heat consists in determining what is

38La chaleur pénètre, comme la gravité, toutes les substances de l’univers, ses rayons occupent
toutes les parties de l’espace. Le but de notre ouvrage est d’exposer les lois mathématiques que suit
cet élément. Cette théorie formera désormais une des branches les plus importantes de la physique
générale.



Physics in Riemann’s Mathematical Papers 179

the temperature at each point of a body at a given time, assuming that the initial temperatures
are known.39

In Chap.2 of his treatise, Fourier establishes (p. 136) the equation which is known
nowadays as the “heat equation”:

∂u

∂t
= k2

(
∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2

)

.

In Chap.3, he gives the solution of this equation in the form of a trigonometric
series. On page 243, he writes: “The preceding analysis gave us the way to develop
an arbitrary function as a series of sines and cosines of multiple arcs.” Then he
announces that he will apply these results to some particular cases which show up
in physics, as solutions of partial differential equations. On page 249, he considers
the problem of the vibrating string, and he declares that the principles he established
solve the difficulties that are inherent in the analysis done by Daniel Bernoulli. He
recalls that the latter gave a solution that assumes that an arbitrary function can be
developed as a trigonometric series, but that of all the proofs that were proposed of
this fact, the most complete is the one where we can determine the coefficients of
such a function. This is precisely what Fourier does. For a given trigonometric series,

f (x) = a1 sin x + a2 sin 2x + . . . − 1

2
b0 + b1 cos x + b2 cos 2x + . . . ,

Fourier provides the (now well-known) integral formula for the coefficients:

an = 1

π

∫ π

−π

f (x) sin nxdx

and

bn = 1

π

∫ π

−π

f (x) cos nxdx .

Picard, in the series of three lectures on the history of analysis that he gave in
America [117], says (p. 7) that these integral formulae were known to Euler, who
mentioned them incidentally. In the same lectures, Picard insists on the fact that
Fourier had an audacious method which involved the solution of an infinite number
of first-order equations, with an infinite number of unknowns.

39Lorsque la chaleur est inégalement distribuée entre les différents points d’une masse solide, elle
tend à se mettre en équilibre, et passe lentement des parties les plus échauffées dans celles qui le
sont moins ; en même temps elle se dissipe par la surface, et se perd dans le milieu ou dans le vide.
Cette tendance à une distribution uniforme, et cette émission spontanée qui s’opère à la surface des
corps, changent continuellement la température des différents points. La question de la propagation
de la chaleur consiste à déterminer quelle est la température de chaque point d’un corps à un instant
donné, en supposant que les températures initiales sont connues.

http://dx.doi.org/10.1007/978-3-319-60039-0_2
http://dx.doi.org/10.1007/978-3-319-60039-0_3
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Fourier also showed that his theory can be applied to functions which may have
discontinuities.40 It is also good to recall that Fourier stated, back in 1807 (the paper
was published in 1808, [55]), the fact that a function, given graphically in an arbitrary
manner, may be expressed by a trigonometric series.

Riemann reports in his memoir on trigonometric functions that at that time
Lagrange vigorously rejected Fourier’s assertion. He also recalls the rivalry between
Fourier and Poisson, and that the latter took the defense of Lagrange. Riemann
analyzes some passages from Lagrange’s work, and he concludes by repeating that
Fourier was the first to understand exactly and completely the nature of trigonomet-
ric series. He adds that after Fourier’s work, these series appear in several ways in
mathematical physics, as representations of arbitrary functions. He declares that in
each particular case one was able to prove that the Fourier series indeed converges to
the value of the function, but that it took a long time before such an important theo-
rem was proved in full generality. He recalls that in 1826 Cauchy attempted a proof
of that result using complex numbers, in a memoir of the Academy of Sciences (t.
VI, p. 603), but that this proof is incomplete, as was shown by Dirichlet.41 Riemann
declares that he completed Cauchy’s proof in his inaugural dissertation.

The third section of the historical part of Riemann’s Habilitationsschrift concerns
the work of Dirichlet. The latter, whom we already mentioned several times and
who had been one of Riemann’s teachers in Berlin, gave a necessary and sufficient
condition under which a periodic function can be expanded as a trigonometric series
([94], 1829). In the samememoir, Dirichlet obtained the general theorem concerning
the convergence of Fourier series after he pointed out some errors in Cauchy’s proof
of that result. Riemann, in his Habilitationsschrift, considers that it is Dirichlet who
closed the controversy. He declares that the latter, in a publication which appeared in
1829 in Crelle’s journal (t. IV),42 gave a “very rigorous” theory of representation by
trigonometric series of general functions under the hypothesis that they are integrable,
that they do not have infinitely many maxima or minima, and that at the points of
discontinuity, the value of the function is the arithmetic mean of its left and right
limits. Dirichlet left open the converse: given a function that does not satisfy the first
two conditions (the third one must obviously be satisfied), under what conditions can
it be represented by a trigonometric series? This is one of the questions that Riemann
solved in his habilitation memoir. For more details, the interested reader is referred
to the exposition in Chap.1 of the present volume [104].

In conclusion, the question of the meaning of a function started with physics:
the vibration equation discovered by d’Alembert, and it ended again with physics:
the study of heat, by Fourier, and the discovery of Fourier series, which are exten-
sively used in mathematical physics. Picard writes in his historical survey [117] that
the development of a function as a series is a remarkable example of the intimate
solidarity that unites at certain points pure analysis and applied mathematics.

40The word “discontinuity” is understood here in the modern sense of the word, and not in the sense
of Euler. Cf. the explanation in Chap.1 of the present volume [104].
41Riemann refers to [94].
42This is Dirichlet’s article [36].

http://dx.doi.org/10.1007/978-3-319-60039-0_1
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4 Riemann’s Habilitationsvortrag 1854—Space and Matter

Riemann’s public lecture, his Habilitationsvortrag, Über die Hypothesen, welche
der Geometrie zu Grunde liegen, which was the final requirement before he was
allowed to teach at the university level, was delivered on June 10, 1854. This lecture
marks the birth of modern differential geometry. It is a difficult text, involving—
like for other writings of Riemann—mathematics, physics and philosophy. It was
commented on bymany philosophers and scientists, and translated several times into
other languages.43 The earliest translation is probably the one that Clifford made in
1873 for the journalNature [30]. This translation is generally considered as too literal.
It is nevertheless interesting because Clifford was at the same time a mathematician,
a physicist and a philosopher. He was knowledgeable in the philosophical issues
raised by Riemann and he was familiar with the specialized language of philosophy
that the latter used.

In a broad sense, the subject of the investigation is geometry, space and the relation
between them. The discussion takes place at several levels, starting from the founda-
tions of geometry: Riemann mentions the axioms at the beginning of his essay. He
introduces several kinds of spaces and the notion of “manifoldness” which we shall
discuss below. He mentions in particular discrete and continuous manifoldnesses,
infinitesimal and large-scale properties, the ambient physical space, mathematical
n-dimensional spaces and n-tuply extended magnitudes. He declares that the propo-
sitions of geometry cannot be derived from the general notion of magnitude (the
word is taken in the Aristotelean sense), and that the properties which distinguish
(physical) space from other conceivable triply extended magnitudes are only to be
deduced from experience.

Several authors commented on Riemann’s dissertation, and we shall make a few
remarks on them below. Riemann’s lecture has three parts (We use a slight modifi-
cation of Clifford’s original headlines in Nature):

(1) The notion of an n-tuply extended magnitude.
(2) Measure-relations ofwhich amanifoldness of n dimensions is susceptible, on the

assumption that lines have a length independent of position, and consequently
that every line may be measured by every other.

(3) Applications to space.

Roughly speaking, the first part is philosophical, the second one is mathematical,
and the third one deals with applications to physics. But to some extent philosophy
and physics are present in the three parts. A detailed explanation of all these notions
would take us too far, and it is also known that several points in this essay are very
cryptic.HeinrichWeber,HermannWeyl andmanyother pre-eminentmathematicians
tried to uncover their meaning. Weyl, who had a great devotion for Riemann, edited

43There are English translations by M. Spivak in his Comprehensive Introduction to Differential
Geometry ([154], Volume 2, pp. 132–153) and by H. S. White in Smith’s Source book mathematics
([153], p. 411–425), and probably others. J. Jost’s edition [147] contains Cayley’s translation.
Italians translations were made by E. Betti, and G. Gabella, and a French one by J. Hoüel.
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the Habilitationsvortrag in 1919, [164], together with a commentary, making the link
with relativity theory. One of the main features of the local geometry conceived by
Riemann is that it is well suited to the study of gravity and more general fields in
physics. Relativity theory, which encompasses the largest part of modern physics,
relies in a crucial way on the notions introduced by Riemann.

From the purely mathematical point of view, the most important contribution of
the Habilitationsvortrag is that it sets the bases of what we call today Riemannian
geometry, with the introduction of the curvature tensor and its consequences, includ-
ing several results such as the fact that the homogeneity (with the inherent notion of
transformation group) corresponds to constant curvature. This new geometry can be
considered as a far-reaching generalization of Gauss’s work on the intrinsic geom-
etry of surfaces, and at the same time it is a generalization of the non-Euclidean
geometry (of constant curvature) discovered by Lobachevsky, Bolyai and Gauss, in
the few decades that preceded Riemann. Furthermore, Riemann sets in this memoir
the bases of several developments made in several directions by Clifford, Christoffel,
Bianchi, Ricci, Beltrami, Levi-Civita, Élie Cartan, Einstein and many others.

It is known that the full importance of the Habilitationsvortrag was not recognized
in the first years after it was delivered. A report by Dedekind on the mathematical
content of the memoir was published only in 1868.44 But it is also known that
Gauss, who, as Riemann’s mentor, was present at the lecture, expressed his complete
satisfaction with it. This reaction to Riemann’s Habilitationsvortrag is described in
Dedekind’s biography of Riemann published in the Collected Works [141]. Gauss’s
praise was certainly a cause for Riemann’s own contentedness, because Gauss was
known to be sparing with compliments.

In the introduction to his dissertation, Riemann declares that he is unexperienced
in philosophical questions, and that in preparing the lecture he could rely only on
some remarks that Gauss made in his second paper on biquadratic residues and in his
Jubilee-book, and some philosophical researches of Herbart. Riemann discusses the
question of space and that of manifoldness and its specialization. This specialization
may be either continuous or discrete. In the chapter [119] contained in the present
volume, Plotnitsly emphasizes that Riemann speaks of discrete manifolds, and then
says that, rather than space itself, it is “the reality underlying space” that may be dis-
crete.45 “Manifolds" as we intend them today are particular cases of manifoldnesses.
Riemann writes:

Manifoldnesses in which, as in the plane and in space, the line-element may be reduced to the
form

√∑
dx2, are therefore only a particular case of the manifoldnesses to be here investi-

gated; they require a special name, and therefore these manifoldnesses in which the square
of the line-element may be expressed as the sum of the squares of complete differentials I
will call flat.

44Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen, 13.
45It may be useful to note that in modern physics, spacetime is studied in its both characters, discrete
(e.g., in lattice gauge theories, which are often considered as mathematical discrete approximations)
or as continuous (e.g., in general relativity).
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Riemann declares that notions whose specializations form a continuous mani-
foldness are the positions of perceived objects (die Orte der Sinnengegenstände) and
colors. It is conceivable that Riemann, in his mention of colors, refers to the fact that
one can continuously move from a color to another one, a color being characterized
by the proportions of red, green and violet it contains. This makes color a three-
dimensional manifoldness. Weyl writes, in his Space, time, matter, that Riemann’s
reference to color “is confirmed by Maxwell’s familiar construction of the color tri-
angle” ([165], p. 84 of the English translation). There are also writings of Helmholtz
and Thomas Young on this matter. There are particular portions of a manifoldness
called quanta,46 whose nature is different from that which is characterized by the
discrete and the continuous. “Their comparison with regard to quantity is accom-
plished in the case of discrete magnitudes by counting, in the case of continuous
by measuring.” The notions of measurement and of dimension are discussed in the
Aristotelean style. The relation between measurement and the axioms of geometry is
said to be fundamental, and in some sense this question concerns the relation between
the axioms of geometry and the reality of space, that is, between mathematical and
empirical truth. Riemann writes:

Either therefore the reality which underlies space must form a discrete manifoldness, or we
must seek the ground of its metric relations outside it, in binding forces which act upon it.47

It is important to recall Riemann’swords.He declares that geometry depends at the
same time on axioms and on observational and experimental physics. He considers
that classical geometry, with the first principles and axioms that it assumes and the
connections between them, does not lead anywhere, because “we do not perceive the
necessity of these connections.” What is missing is a notion of “multiply-extended
magnitude” (mehrfach ausgedehnte Grösse), a notionwhichmakes space a particular
“triply-extended magnitude.” He proposes that the properties that distinguish space
from other conceivable triply-extended magnitudes be deduced from experience.
In particular, the space that Riemann talks about, although built from undefined
notions and axioms connecting them, is not the space of traditional geometry. He
suggests that this space should reflect the material world around us. He formulates
the problem of finding the “simplest matters of fact from which the metric relations
(Massverhältnisse) of space may be determined.” He declares that these matters of
fact are “not of necessity, but only of empirical certainty.” They are the “hypotheses”
that are referred to in the title of the dissertation. He says that he will investigate
the “probability” of these matters of fact, “within the limits of observation,” and see
whether they may be extended “beyond the limits of observation, both on the side
of the infinitely great and of the infinitely small.” The most important among these
matters of fact is related to the work of Euclid. The geometry that Riemann will

46In Aristotle’s language, the latin word quantum is used as the translation of the word πoσóν
(quantity, or “quantified thing”), which is one of Aristotle’s categories. In his Metaphysics, Aristotle
mentions four types of change: of substance, quale, quantum, or place. (Metaphysics, 1069b9–13).
47Es muss also entweder das dem Raume zu Grunde liegende Wirkliche eine discrete Mannig-
faltigkeit bilden, oder der Grund der Massverhältnisse ausserhalb, in darauf wirkenden bindenden
Kräften, gesucht werden.
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construct will be Euclidean at the infinitesimal level.48 We already noted by the way
that the notion of “infinitely small” is treated in several works of the Ancient Greeks.
The same notion is thoroughly discussed by Galileo Galilei in his Discorsi; First
day, to whom Riemann refers in his habilitation, though in a different context.

The rest of the Habilitationsvortrag is a development of the ideas expressed in the
introduction. The first part concerns the notion of n-dimensional Mannigfaltigkeit.
This term is sometimes translated into English by “manifoldness.” Riemann also
talks about a “multiply extended magnitude.” This is an ancestor to the mathematical
notion of manifold. But the meaning of Mannigfaltigkeit, in Riemann’s terminology,
and that of the mathematical notion of manifold, as it is used today, do not coincide,
even though in German the word Mannigfaltigkeit is used for “manifold.”49 There
are discrete and continuous manifoldnesses, and there are manifoldnesses which
are not mathematical. Riemann says that notions with specializations to discrete
manifoldness are very common, but that, by contrast, there are very few notions
whose specialization form a continuous manifoldness. We note incidentally that
Poincaré pondered this terminology. In a letter to the mathematician and historian
of mathematics Gustav Eneström, dated November 19, 1883 (cf. [120] p. 143), he
writes:

I prefer the translation of Mannigfaltigkeit by multiplicity, because the two words have
the same etymological meaning. The word set is more adapted to the Mannigfaltigkeiten
considered by Mr. Cantor and which are discrete. It would be less adapted to those which I
consider and which are discontinuous. What is the opinion of Mr. Mittag on this matter?50

Eneström responds, on November 23:

Mr. Mittag-Leffler thinks that you may be right, and, consequently, one should prefer the
word multiplicity.51

In fact, Poincaré used the word multiplicity in its French form (“multiplicité”) to
denote Riemann’s moduli space.

In the treatise Théorie des fonctions algébriques de deux variables indépendantes
(Theory of algebraic functions of two independent variables) by Picard and Simart

48It may be worth recalling that Lobachevsky, in his various works on non-Euclidean geometry
that he started in the late 1820s, systematically checked that the formulae that obtained in his new
geometry give, at the infinitesimal level, the Euclidean formulae. See e.g. [93] p. 31.
49Jost, in [147], tries to sort out this complex terminology. He writes on p. 29: “The English of
Cliffordmay appear somewhat old-fashioned for amodern reader. For instance, hewrites ‘manifold-
ness’ instead of the simpler modern translation ‘manifold’ of Riemann’s term ‘Mannigfaltigkeit.’
But Riemann’s German sounds likewise somewhat old-fashioned, and for that matter, ‘manifold-
ness’ is the more accurate translation of Riemann’s term. In any case, for historical reasons, I have
selected that translation here.”
50Je préfère la traduction de Mannigfaltigkeit par multiplicité, car les deux mots ont même sens
étymologique. Le mot ensemble convient bien aux Mannigfaltigkeiten envisagés par M. Cantor et
qui sont discrètes; il conviendrait moins à celles que je considère et qui sont discontinues. Qu’en
pense M. Mittag à ce sujet?
51M. Mittag-Leffler pense que vous pouvez avoir raison, et que, par conséquent, il faut préférer le
mot multiplicité.
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Fig. 3 From the Birla Temple of Varanasi, devoted to Shiva. The word Manifold is used as an
attribute of God. The languages are Sanskrit at the top, and Hindi in the middle. The word used in
these texts is viśvarūpa, which is the composite of viśva which stands for universe and rūpa which
corresponds to something like “form.” The word conveys God bearing the form of the universe
itself. The English word “manifold” seems to have been used for want of a better choice for the
context. I thank S. G. Dani for his help in this explanation (Photo A. Papadopoulos)

[116] on which we report in Chap.8 of the present volume [106], the authors use
interchangeably the words “variété,” “multiplicité” and “continuum” to denote “a
certain continuous set of points depending on a number of parameters which is
equal to the dimension of this variety or continuum.” (p. 20) It is interesting to
note that Grothendieck, in his Esquisse de programme (A sketch of a program)
[71], uses the same word. We refer the reader to the chapters [103] by Ohshika and
[119] by Plotnitsky in the present volume for further discussion of the notion of
Mannigfaltigkeit in relation with manifolds. We also note that the word “manifold”
itself is also used in Hinduism, see Fig. 3.

The second part of the habilitation lecture, which concerns metric relations
(Maassverhältnisse), is more mathematically-oriented. It contains, condensed in six
or seven pages, the foundations of Riemannian geometry. The exposition contains
a minimum amount of formulae. In fact, there are essentially two formulae. The
first one gives the line element in (Euclidean) “space” as a square root of squares of
differentials of the coordinates:

ds2 =
∑

dx2
i . (4)

This formula is an “infinitesimal Euclidean Pythagorean theorem.” It expresses the
fact that at the infinitesimal level the metric is Euclidean. The second formula gives
the line element in a curved space:

http://dx.doi.org/10.1007/978-3-319-60039-0_8
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1

1 + α
4

∑
x2

√
∑

dx2

whereα denotes, inRiemann’s notation, the curvature.As iswell known, this formula
gives the oneof thePoincarémetric of the disc in the casewhere the curvature constant
is negative.

After Riemann gives the general expression of the infinitesimal line element as
the square root of a quadratic form, and the curvature representing a deviation from
flatness, he states that to know curvature at a point in a manifoldness of dimension n,
it is sufficient to know it in n(n − 1)/2 surface directions. He notes that if the length
of a line element is independent from its position (that is, the group of motions acts
transitively m line elements), then the space must have constant curvature.

The third part, called “Applications to space,” contains in particular Riemann’s
famous discussion of the difference between unbounded and infinite extent.We quote
him again:

In the extension of space-construction to the infinitely great, we must distinguish between
unboundedness and infinite extent, the former belongs to the extent relations, the latter to the
measure-relations. That space is an unbounded three-fold manifoldness, is an assumption
which is developed by every conception of the outer world; according to which every instant
the region of real perception is completed and the possible positions of a sought object are
constructed, andwhich by these applications is for ever confirming itself. The unboundedness
of space possesses in this way a greater empirical certainty than any external experience.
But its infinite extent by no means follows from this; on the other hand if we assume
independence of bodies from position, and therefore ascribe to space constant curvature, it
must necessarily be finite provided this curvature has ever so small a positive value. If we
prolong all the geodesics starting in a given surface-element, we should obtain an unbounded
surface of constant curvature, i.e., a surface which in a flat manifoldness of three dimensions
would take the form of a sphere, and consequently be finite.

This is a famous passage for which Riemann’s name is associated with the geometry
of the sphere (constant positive curvature). It has been commented on by mathe-
maticians, and also by philosophers, and it is related to the question of whether the
universe has a spherical shape or not. Again, we can quote related texts from Greek
antiquity, e.g. from Empedocles concerning the universe as a round “boundless”
sphere, of which only a few fragments remain [20]:

The Sphere on every side the boundless same,
Exultant in surrounding solitude.

One may also quote Plato, who considers, for philosophical reasons, in the
Timaeus ([112], 33b), that the universe is spherical, and hence, bounded:

He wrought it into a round, in the shape of a sphere, equidistant in all directions from the
center to the extremities, which of all shapes is the most perfect and the most self-similar,
since he deemed that the similar is infinitely fairer than the dissimilar. And on the outside
round about, it was all made smooth with great exactness, and that for many reasons.

Other Greek philosophers considered that the universe is infinite. This is an endless
discussion.
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Riemann wanted his (Riemannian) geometry to represent at the same time the
large-scale and, most of all, the small-scale geometries of space. The progress made
in mechanics in the preceding centuries, he says, is due to the invention of the
infinitesimal calculus and to the simple principles discovered byArchimedes, Galileo
and Newton. The natural sciences, are still in want of simple principles. Let us quote
Riemann again:

The questions about the infinitely great are for the interpretation of nature useless questions.
But this is not the case with the questions about the infinitely small. It is upon the exact-
ness with which we follow phenomena into the infinitely small that our knowledge of their
causal relations essentially depends. The progress of recent centuries in the knowledge of
mechanics depends almost entirely on the exactness of the construction which has become
possible through the invention of the infinitesimal calculus, and through the simple principles
discovered by Archimedes, Galileo, and Newton, and used by modern physics.

The synopsis of the Habilitationsvortrag (Clifford’s translation [30]) ends with
two questions.

(1) How far is the validity of these empirical determinations probable beyond the
limits of observations towards the infinitely great?

(2) How far towards the infinitely small? Connection of this question with the inter-
pretation of nature.

It is interesting to put again in parallel Riemann’s writings with some texts of
Aristotle on related matters, and there are many of them. We choose an excerpt
from the beginning of the treatise On the Heavens [12]. It concerns at the same
time magnitude, continuum, divisibility, infinity, dimension, infinitesimals, and the
importance of these questions for understanding nature:

The science which has to do with nature clearly concerns itself for the most part with bodies
and magnitudes and their properties and movements, but also with the principles of this sort
of substance, as many as they may be. For of things constituted by nature some are bodies
and magnitudes, some possess body and magnitude, and some are principles of things which
possess these. Now a continuum is that which is divisible into parts always capable of
subdivision, and a body is that which is every way divisible. A magnitude if divisible one
way is a line, if two ways a surface, and if three a body. [...] All magnitudes, then, which
are divisible are also continuous. Whether we can also say that whatever is continuous is
divisible does not yet, on our present grounds, appear. [...] The question as to the nature of
the whole, whether it is infinite in size or limited in its total mass, is a matter for subsequent
inquiry. [...] This being clear, we must go on to consider the questions which remain. First,
is there an infinite body, as the majority of the ancient philosophers thought, or is this an
impossibility? The decision of this question, either way, is not unimportant, but rather all-
important, to our search for the truth. It is this problem which has practically always been
the source of the differences of those who have written about nature as a whole. So it has
been and so it must be; since the least initial deviation from the truth is multiplied later a
thousandfold. Admit, for instance, the existence of a minimummagnitude, and you will find
that the minimum which you have introduced, small as it is, causes the greatest truths of
mathematics to totter.

Concerning the particular notion of infinite, we choose two texts from Aristotle’s
Physics [10]. We stress on the fact that even though the Greek philosophers, repre-
sented by Aristotle, did not formulate an axiomatic (in a mathematical sense) notion
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of infinity as we do it today, one should not underestimate the importance of the fact
that they considered this notion as a fundamental philosophical notion, they asked
many questions around it and about its role, and they also regarded it as central in
physics and in mathematics.

The first text we choose is from Book III of Aristotle’s Physics:

[...] But on the other hand to suppose that the infinite does not exist in anyway leads obviously
to many impossible consequences: there will be a beginning and an end of time, a magnitude
will not be divisible into magnitudes, number will not be infinite. If, then, in view of the
above considerations, neither alternative seems possible, an arbiter must be called in; and
clearly there is a sense in which the infinite exists and another in which it does not. We must
keep in mind that the word “is” means either what potentially is or what fully is. Further, a
thing is infinite either by addition or by division. Now, as we have seen, magnitude is not
actually infinite. But by division it is infinite. (There is no difficulty in refuting the theory of
indivisible lines.) The alternative then remains that the infinite has a potential existence.

The second text is from Book V of the Physics:

Now it is impossible that the infinite should be a thing which is in itself infinite, separable
from sensible objects. If the infinite is neither a magnitude nor an aggregate, but is itself
a substance and not an accident, it will be indivisible; for the divisible must be either a
magnitude or an aggregate. But if indivisible, then not infinite, except in the way in which
the voice is invisible. But this is not the way in which it is used by those who say that the
infinite exists, nor that in which we are investigating it, namely as that which cannot be gone
through. But if the infinite is accidental, it would not be, qua infinite, an element in things,
any more than the invisible would be an element of speech, though the voice is invisible.

Further, how can the infinite be itself something, unless both number and magnitude, of
which it is an essential attribute, exist in that way? If they are not substances, a fortiori the
infinite is not.

It is plain, too, that the infinite cannot be an actual thing and a substance and principle. For
any part of it that is taken will be infinite, if it has parts; for to be infinite and the infinite are
the same, if it is a substance and not predicated of a subject. Hence it will be either indivisible
or divisible into infinites. But the same thing cannot be many infinites. (Yet just as part of
air is air, so a part of the infinite would be infinite, if it is supposed to be a substance and
principle.) Therefore the infinite must be without parts and indivisible. But this cannot be
true of what is infinite in fulfillment; for it must be a definite quantity.

Belief in the existence of the infinite comes mainly from five considerations: From the nature
of time—for it is infinite; From the division of magnitudes—for the mathematicians also use
the infinite [...]

Finally, let us note that in Book IV of the Physics [10] there is a long discussion
about time, with its relation to measure and change:

As to what time is or what is its nature, the traditional accounts give us as little light. [...] It
is evident, then, that time is neither movement nor independent of movement. We must take
this as our starting-point and try to discover—since we wish to know what time is—what
exactly it has to do with movement.

Closer to us, another mathematician-philosopher who was fascinated by infinity
is Blaise Pascal. He wrote on this theme, in his mathematical and philosophical
writings. From his Pensées [111], we read:
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Unity added to infinity adds nothing to it, any more than does one foot added to infinite
length. The finite is annihilated in presence of the infinite, and becomes pure nothingness.52

Our soul has been cast into the body, where it finds number, time and dimension. It reasons
thereupon, and calls it nature, necessity, and can believe nothing else.53

The eternal silence of these infinite spaces terrifies me.54

One should also talk about modern physics, where the same kind of questions are
still the basic ones: What is space? What is time? What physical theories describe at
the same time the macroscopic and the microscopic worlds? What are the relations
between these worlds? How do we pass between the discrete and the continuous?

Riemann’s last sentence in the Habilitationsvortrag shows that he modestly con-
sidered that in his work, he did not make any significant advance in the direction of
physics:

This leads us into the domain of another science, of physics, into which the object of this
work does not allow us to go today.

Higher-dimensional spaces, from the mathematical point of view were surely con-
sidered before Riemann. But for the first time, Riemann’s major achievement was
to introduce on these spaces a geometry that was necessary for the development of
modern physics. The physical theories of superstrings and supergravity need ten or
eleven dimensions. The spacetime of special relativity—Minkowski’s spacetime—
is a four-dimensional manifold equipped with a structure that generalizes the one
that Riemann considered. In an address to the 80th Assembly of German Natural
Scientists and Physicians, (Sep 21, 1908), Minkowski declares (cf. [97]):

The views of space and time which I wish to lay before you have sprung from the soil of
experimental physics, and therein lies their strength. They are radical. Henceforth, space by
itself, and time by itself, are doomed to fade away into mere shadows, and only a kind of
union of the two will preserve an independent reality.

In this setting, Riemann’s formula (4) is replaced by the formula

ds2 = c2dt2 − dx2 − dy2 − dz2 (5)

where t is the time component, (x, y, z) the space components and c the velocity
of light. The geometry of Minkowski spacetime is included in the setting of semi-
Riemannian geometry, a geometry in which the metric tensor is not necessarily
positive-definite. This incorporates in the theory the fact that particles cannot move
at a speed which is larger than the speed of light. But the basic features that Riemann
conceived are there. In general relativity, the metric tensor is an expression of the
gravitational potential, in the trend of Riemann’s ideas.

52L’unité jointe à l’infini ne l’augmente de rien, non plus qu’un pied à une mesure infinie, le fini
s’anéantit en présence de l’infini et devient un pur néant.
53Notre âme est jetée dans le corps où elle trouve nombre, temps, dimensions, elle raisonne là-dessus
et appelle cela nature, nécessité, et ne peut croire autre chose.
54Le silence éternel de ces espaces infinis m’effraye.
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Let us nowmention some comments by various authors (especially physicists) on
the Habilitationsvortrag. We quote Clifford and Weyl whom we already mentioned.

On February 21, 1870, Clifford presented a paper to the Cambridge Philosophical
Society whose title is On the space theory of matter [31], in which he stressed the
relation of the new geometry with physics. It is interesting to read the abstract of that
paper, for it gives quite a good idea of its physical background. Clifford writes:

Riemann has shown that as there are different kinds of lines and surfaces, so there are different
kinds of spaces of three dimensions; and that we can only find out by experience to which of
these kinds the space in which we live belongs. In particular, the axioms of plane geometry
are true within the limits of experiment on the surface of a sheet of paper, and yet we know
that the sheet is really covered with a number of small ridges and furrows, upon which (the
total curvature not being zero) these axioms are not true. Similarly, he says that although the
axioms of solid geometry are true within the limits of experiment for finite portions of our
space, yet we have no reason to conclude that they are true for very small portions; and if
any help can be got thereby for the explanation of physical phenomena, we may have reason
to conclude that they are not true for very small portions of space.

I wish here to indicate a manner in which these speculations may be applied to the investi-
gation of physical phenomena. I hold in fact

(1) That small portions of space are in fact of a nature analogous to little hills on a surface
which is on the average flat; namely, that the ordinary laws of geometry are not valid in them.

(2) That this property of being curved or distorted is continually being passed on from one
portion of space to another after the manner of a wave.

(3) That this variation of the curvature of space is what really happens in that phenomenon
which we call the motion of matter, whether ponderable or etherial.

(4) That in the physical world nothing else takes place but this variation, subject (possibly)
to the law of continuity.

I am endeavoring in a general way to explain the laws of double refraction on this hypothesis,
but have not yet arrived at any results sufficiently decisive to be communicated.

It is not superfluous to recall that Gauss, who was Riemann’s mentor, was also
interested in the philosophical implications of the new discoveries of geometry. In
a letter dated March 6, 1832 (see [155] and Gauss’s Collected Works Vol. VI [67]),
Gauss writes to his friend Wolfgang Bolyai that Kant was wrong in declaring that
space is only the form55 of our intuition. These remarks are made amid a discussion
on non-Eucldiean geometry. In the same letter, Gauss refers to an article on the sub-
ject that he published in the Göttingische Gelehre Anzeigen, in 1831. This article is
reproduced in Volume II of Gauss’s Werke. Gauss criticizes an argument, which is
independent of non-Euclidean geometry, which Kant gave in support of his assump-
tion (and his proof) that space is only a form of our exterior intuition. The argument
is in Kant’s Prolegomena zu einer jeden künftigen Metaphysik, die als Wissenschaft
wird auftreten können (Prolegomena to any future metaphysics that will be able to
present itself as a science) [83] §13, and it is based on the existence of symmetries.
Gauss’s position was that, on the contrary, space has a real significance, independent
of our mode of intuition. An excerpt on space of Kant’s inaugural dissertation—

55Gauss’s emphasis.
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in fact an excerpt concerned by Gauss’s critic—is quoted in Chap.1 of the present
volume (in the section concerning space).

The questions of space and of time remained among the major preoccupations
of Kant. They are developed in particular in his habilitation [82] and in his Critik
der reinen Vernunft (Critique of pure reason) [84] (1781), which is one of the most
influential philosophical works ever written. In this work, like in his inaugural dis-
sertation, Kant addresses the fundamental questions that were addressed before him
by Leibniz, Newton and others, namely, What is space? What is time? What is the
relation between space, time and the mind? Is this relation real or ideal? Do space
and time have subjective existence, beyond our intuition of them? Are they empirical
concepts? Are they substances or the product of our mind? Do they exist indepen-
dently of objects and their relation? Are they necessary tools for our understanding?
Kant also analyses our representation of space and its relation to geometry. Elaborat-
ing on these most difficult questions is the subject of the fundamental contribution
of Kant to philosophy.

Weyl’s book Space, time, matter,56 (first edition 1918),57 is an introduction to the
theory of relativity, based on lectures he gave at Zurich’s ETH. This work of Weyl
is a celebration of the idea that Einstein’s theory of relativity is an accomplishment
of Riemann’s geometry. In the introduction, Weyl writes:

It was my wish to present this great subject as an illustration of the intermingling of philo-
sophical, mathematical, and physical thought, a study which is dear to my heart. This could
be done only by building up the theory systematically from the foundations, and by restrict-
ing attention throughout the principles. But I have not been able to satisfy these self-imposed
requirements: the mathematician predominates at the expense of the philosopher.

Themathematician’s role is played essentially byRiemann. InRiemannian geometry,
the space (a manifold) is equipped at each tangent space with a quadratic form
defining a geometry which is Euclidean. Weyl comments on this fact and on its
relation with physics. He writes ([165] p. 91):

The transition from Euclidean geometry to that of Riemann is founded in principle on the
same idea as that which led from physics based on action at a distance to physics based
on infinitely close action. We find by observation, for example, that the current flowing
along a conduction wire is proportional to the difference of potential between the ends of
the wire (Ohm’s Law). But we are firmly convinced that this result of measurement applied
to a long wire does not represent a physical law in its most general form; we accordingly
deduce this law by reducing the measurements obtained to an infinitely small portion of
wire. But this means we arrive at the expression on which Maxwell’s theory is founded.
Proceeding in the reverse direction, we derive from this differential law by mathematical
processes the integral law, which we observe directly, on the supposition that conditions are
everywhere similar (homogeneity). We have the same circumstance here. The fundamental
fact of Euclidean geometry is that the square of the distance between two points is a quadratic
form of the relative co-ordinates of the two points (Pythagoras Theorem.)But if we look upon

56We already recalled that the triadMatter, Space and Time is par excellence an Aristotelean theme.
There are numerous references regarding this subject, and the best way for the reader to get into
this is to skim Aristotle’s works. Some of these works are listed in the bibliography, but there are
many others.
57The book, under the German title Raum, Zeit, Materie, appeared in English translation in 1922.
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this law as being strictly valid only for the case when these two points are infinitely near,
we enter the domain of Riemann’s geometry. [...] We pass from Euclidean “finite” geometry
to Riemann’s “infinitesimal” geometry in a manner exactly analogous to that by which we
pass from “finite” physics to “infinitesimal” (or “contact”) physics.

Weyl continues ([165] p. 92):

Theprinciple of gaining knowledge of the externalworld from the behavior of its infinitesimal
parts is the mainspring of the theory of knowledge in infinitesimal physics as in Riemann’s
geometry, and, indeed, the mainspring of all the eminent work of Riemann, in particular,
that dealing with the theory of complex functions.

In the same book, Weyl writes ([165] p. 98):

Riemann rejects the opinion that had prevailed up to his own time, namely, that the metrical
structure of space is fixed and inherently independent of the physical phenomena for which it
serves as a background, and that the real content takes possession of it as of residential flats.
He asserts, on the contrary, that space in itself is nothing more than a three-dimensional
manifold devoid of all form; it acquires a definite form only through the advent of the material
content filling it and determining its metric relations.

And then ([165] p. 102):

Riemann, in the last words of the above quotation, clearly left the real development of his
ideas in the hands of some subsequent scientist whose genius as a physicist could rise to
equal flights with his own as a mathematician. After a lapse of seventy years this mission
has been fulfilled by Einstein.

Relativity theory is based on the fact that space and time cannot be separated
and form a four-dimensional continuum in one of the senses that Riemann intuited.
Einstein made a profound relation between Riemannian geometry and physics, in
particular in his discovery that gravity is the cause of curvature of physical space.
Einstein’s equation, published for the first time in 1915, which is the main partial
differential equation of general relativity, expresses a relation between energy, grav-
itation and the curvature of spacetime. In this setting, the Lorentzian metric encodes
the gravitational effects, and the notion of curvature plays a central role. At several
places, Einstein expressed his debt to Riemann. Let us quote him from [37] (p. 281):

But the physicists were still far removed from such a way of thinking; space was still, for
them, a rigid, homogeneous something, incapable of changing or assuming various states.
Only the genius of Riemann, solitary and uncomprehended, had already won its way to a
new conception of space, in which space was deprived of its rigidity, and the possibility of
its partaking in physical events was recognized. This intellectual achievement commands
our admiration all the more for having preceded Faraday’s and Maxwell’s field theory of
electricity.

We end this section by quoting Riemann, and his concerns about physics. In
a letter to his father, written February 5, 1852 [149], right after he submitted his
Habilitationsschrift, Riemann writes:

Right after the submission of my Habilitationsschrift I resumed my investigations into the
coherence of the laws of Nature and got so involved in it that I could not tear myself loose.
The continuing preoccupation with it has become bad for my health, in fact, right after
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New Year’s my usual affliction set in which such persistence, that I could only obtain relief
through the strongest remedies. As a result I felt very ill, felt unable to work, and sought to
again put my health in order through long walks.

On June 26 of the next year, he writes to his brother on the same subject:

I had completedmy habilitation paper at the beginning of December, submitted it to the dean,
and soon after once again turned to my investigation on the coherence of the fundamental
laws in physics; also that I so immersed myself in it that when the theme for my examination
lecture was posted at the colloquium, I could not immediately tear myself away. Rightly
after I came down sick, partly, of course, as a result of too much brooding, and partly as a
result of sitting a lot in my room during bad weather.

5 The Commentatio and the Gleichgewicht der Electricität

Riemann developed some of his mathematical ideas introduced in his Habilita-
tionsvortrag in a paper, written in Latin, whose extended title isCommentatio Mathe-
matica, qua respondere tentatur quaestioni ab Illma Academia Parisiensi propositae:
Trouver quel doit être l’état calorifique d’un corps solide homogène indéfini pour
qu’un système de courbes isothermes, à un instant donné, restent isothermes après
un temps quelconque, de telle sorte que la température d’un point puisse s’exprimer
en fonction du temps et de deux autres variables indépendantes (A mathematical
treatise in which an attempt is made to answer the question proposed by the most
illustrious Academy of Paris: To find what must be the thermal state of an indefinite
homogeneous solid body so that a system of isothermal curves, at a given instant,
remain isothermal after an arbitrary time, in such a way that the temperature at a
point can be expressed in terms of time and of two other independent variables). The
memoir, as the name indicates, was presented as a contribution to a problem which
was proposed for competition by the Paris Academy of Sciences in 1861. Part of the
Commentatio is translated and commented by Spivak in Chap.4 of Volume II of his
Comprehensive introduction to differential geometry [154].

The problem concerns heat conduction, more precisely, the determination of the
temperature of a body endowedwith a set of given conductivity coefficients. From the
mathematical point of view, it amounts to finding the solution of a partial differential
equation—an evolution equation. The “solid body” that is referred to in the statement
of the problem becomes, in Riemann’s context, a Riemannian manifold. At the same
time the terms used have a physical significance. It is not surprising that Riemann
got interested in that problem, which combines geometry and potential theory, two
of his favorite subjects. The word “isothermal” is also reminiscent of the work done
by his mentor, Gauss.

While the Habilitationsvortrag is practically devoid of any mathematical formu-
lae, the Commentatio is full of them. In fact, it is in the style of the later papers
on Riemannian geometry, and in particular those on general relativity, with their
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debauchery of indices.58 Riemann’s Commentatio also contains new tools that are
essential to differential geometry. It is in this paper that Riemann introduced his 4-
entry curvature tensor. The authors of [54] consider this paper as a “contribution to
the development of what later became known as tensor analysis.” As is well known,
this topic became an important tool in general relativity. There is a general agree-
ment now that Riemann’s paper contains several results that are usually attributed to
Christoffel, cf. [54, 169], and also the idea of Finsler geometry.

Let us quote from this paper. Riemann starts his paper by a summary, in which he
declares that he will first solve a more general problem:

We shall approach the question proposed by the Academy in such a way that we shall first
solve a more general question: the properties of a body which determine the conduction
of heat and the distribution of heat within it such that there exists a system of lines which
remain isothermal.
From the general solution of this problem we shall distinguish those cases in which the
properties vary from those in which the properties remain constant, that is where the body
is homogeneous.

We recall that in the Habilitationsvortrag, the homogeneity property was proved to
be equivalent to the curvature being constant.

The second part of the paper is concerned with the question under equivalence
of passing from one quadratic form to another. This is essential in the theory of
the transformations that make tensors coordinate-free forms. The reader can find
mathematical commentaries on Riemann’s memoir in the paper [54].

TheCommentatio, like Riemann’s Habilitationsvortrag is difficult to read, but this
time because of the density of its mathematical content. Riemann’s article did not
win the prize, probably because some details in the proofs were missing. (In fact,
the prize was not awarded.) The authors of [54] present a certain number of different
and conflicting interpretations of the Commentatio, a fact which is uncommon for a
mathematical paper. This is another indication of how much Riemann’s writing are
special and cryptic (even today).

The subject of the unfinished paper Gleichgewicht der Electricität auf Cylindern
mit kreisförmigen Querschnitt und parallelen Axen (On the equilibrium of electricity
on cylinders with circular transverse section and whose axes are parallel) (1857)
[142] by Riemann, published posthumously in the second edition of his Collected
works, is related to the one of the Commentatio. It concerns the distribution of
electricity or temperature on infinite cylindrical conductorswith parallel generatrices.
Riemann gives in this paper a solution of the Dirichlet boundary value problem for
plane domains. He declares, at the beginning of the paper, that the physical question
considered will be solved if the following mathematical question is solved: On a
planar connected surface which simply covers the plane and whose boundary may
be arbitrary, to determine a function u of the rectangular coordinates x, y satisfying
the equation

58The expression is due to Élie Cartan, from [23], p. VII: “The distinguished favor that the absolute
differential calculus of Ricci and Levi-Civita did for us, and will continue to do, should not prevent
us of avoiding the over-exclusively formal computations, where the debauchery of indices hides a
geometric reality which is often simple. It is this reality which I tried to bring out.”
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∂2u

∂x2
+ ∂2u

∂y2
= 0

and taking arbitrary values on the boundary. Riemann’s solutionmakes use ofGreen’s
theorem and of Abelian integrals. This work is another illustration of the fact that
Riemann equates potential theory with the theory of Riemann surfaces.

6 Riemann’s Other Papers

We discuss briefly some other papers of Riemann related to our subject. Needless to
say, the fact that we pass rapidly through these papers does not mean they are less
important than those which we discussed more thoroughly in the previous sections.

Darboux, in his famous Leçons sur la théorie générale des surfaces et les applica-
tions géométriques du calcul infinitésimal (A course on the general theory of surfaces
and the geometric applications of infinitesimal calculus), 1896, §358, discussing the
notion of the adjoint equation of a given linear equation, says that the origin of this
notion is contained in Riemann’s memoir Über die Fortpflanzung ebener Luftwellen
von endlicher Schwingungsweite (On the propagation of planar air waves that have
finite vibration amplitude), [136] 1860; cf. [145] p. 177. He declares that P. du Bois-
Reymond, in his work on partial differential equations as well as in a short article
he published in Tübingen, called the attention of geometers on that memoir by Rie-
mann. He then presents the work. The content is mathematical, with applications
to experimental physics. In the introduction, Riemann writes that his research on
this subject is in the lineage of the recent work of Helmholtz on acoustics. He says
that his results, besides their theoretical interest in the theory of the nonlinear partial
differential equations which determine the motion of gases, should give the bases for
experimental research on the subject.59 He starts in his paper by recalling the physical
laws of Boyle, Gay-Lussac and the recent experiments of Regnault, Joule, Thomson
and others. About a hundred years later, commenting on the same memoir in the
new edition of Riemann’s Collected Papers (1990), Peter Lax writes ([141] p. 807):
“In this paper, Riemann lays the foundations of the theory of propagation of non-
linear and linear waves governed by hyperbolic equations. The concepts introduced
here—Riemann invariants, the Riemann initial value problem, jump conditions for
nonlinear equations, the Riemann function for linear equations—are still the basic
building blocks of the theory today.” Riemann states in the announcement of the
paper (cf. Footnote 59) that the solution of that problem would help clarifying a
perennial debate that involved the mathematicians Challis, Airy, Stokes, Pretzval,

59 We note however that in the announcement of this paper, published in the Göttinger Nachrichten,
No. 19 (1859), Riemann begins by stating that he does not claim to give any results that are useful
in experimental research. At the end of that announcement, he mentions connections with acoustics
but he says that their verification seems to be very hard, the reason being that they either involve very
small tone differences, which are not noticeable, or large variations which involvemany parameters,
therefore the causes cannot be separated. He also talks about applications to meteorology.
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Doppler and Ettinghausen. Betti wrote an extensive technical report on that paper,
[17].

We now briefly review some other papers.
Riemann declares in the introduction to the paperEin Beitrag zu den Untersuchun-

gen über die Bewegung eines flüssigen gleichartigen Ellipsoides (A contribution to
the investigation of the movement of a uniform fluid ellipsoid) [138] that he is con-
tinuing the last work of Dirichlet, that this work is surprising and that it opens up
a new path for mathematicians which is independent of the original motivation of
Dirichlet, which originates in a question on the heavenly bodies. This paper is also
discussed in a supplement in the new edition of his Collected Works [29, 141]. Rie-
mann’s motivation originates in a writing of Newton, more precisely in his proof of
the fact that the spheroidal (rather than spherical)60 form of the earth is due to its rota-
tion. Newton gave the following formula for a homogeneous body in gravitational
equilibrium and small rotation:

m = 5

4
ε

where ε is the ellipticity coefficient, equal to the equatorial radius—polar radius/mean
radius, and m the centrifugal acceleration/mean gravitational acceleration on the
surface. The formula was generalized by MacLaurin, who removed the restriction
to small rotations. Later works and clarifications are due to Lagrange and Jacobi.
Dirichlet investigated these problems in his 1856/57 lectures on partial differen-

60Newton, in his Principia (1687), expected a flattening of the earth at the poles, of the order of
1/230. The real shape of the earth was another major controversial issue in the seventeenth and
eighteenth centuries, and it opposed the English scientists, represented by Newton, to the French,
who considered themselves as the heirs of Descartes, and who were represented by the astronomer
Jacques Cassini (1677–1756), the physicist Jean-Jacques d’Ortous de Mairan (1678–1771) and
others who pretended on the contrary that the earth was stretched at the poles. Huygens was on the
side of Newton. Maupertuis tried to convince the French Academy of Sciences that the theory of
Newton concerning the shape of the earth was sound, and he led an expedition to Lapland, whose
aim was to measure the length of a meridian. The expedition, which lasted sixteen months, was
successful, and it confirmed Newton’s ideas. The mathematician Alexis-Claude Clairaut (1713–
1765) and the Swedish astronomer Anders Celsius (1701–1744) were part of the expedition. The
controversy on the form of the earth gave rise to an extensive literature, in the seventeenth and
eighteenth centuries. In the Discours préliminaire (Preliminary discourse) of the Encyclopédie
(1751), d’Alembert praises Maupertuis who dared to take side for the English. He writes: “The first
among us who dared to declare openly that he was Newtonian is the author of the Discours sur la
figure des astres [...]. Maupertuis thought that one could be a good citizen without blindly adopting
the physics of one’s country; to attack this physics, he needed a courage for which we have to be
grateful to him.” Voltaire, who contributed in making Newton’s ideas known in France, was among
the few major figures on the continent who stood up for the English. He presents these polemics in
his famous Lettres philosophiques [161] (1734) (No. XIV): “A Frenchman who arrives in London,
will find philosophy, like everything else, very much changed there. He had left the world a plenum,
and he now finds it a vacuum. At Paris, the universe is seen composed of vortices of subtile matter;
but nothing like it is seen in London. In France, it is the pressure of the moon that causes the tides;
but in England it is the sea that gravitates towards the moon; so that when you think that the moon
should make it flood with us, those gentlemen fancy it should be ebb, which very unluckily cannot
be proved. [...] At Paris you imagine that the earth is shaped like a melon, or of an oblique figure;
at London it has an oblate one.”
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tial equations, which were edited in part by Dedekind in 1860. Chandrasekhar and
Lebowitz, in a commentary on Riemann’s paper [138] which is published in Rie-
mann’s Collected Works edition [29, 141], quote Riemann saying:

In his posthumous paper, edited for publication by Dedekind, Dirichlet has opened up, in
a most remarkable way, an entirely new avenue for investigations on the motion of a self-
gravitating homogeneous ellipsoid. The further development of this beautiful discovery has a
particular interest to themathematician even apart from its relevance to the forms of heavenly
bodies which initially instigated these investigations.

We refer the reader to the analysis of Riemann’s paper contained in [141] p. 811–
820, where the authors consider this paper to be “remarkable for the wealth of new
results it contains and for the breadth of its comprehension of the entire range of
problems. [...] This much neglected paper [...] deserves to be included among the
other great papers of Riemann that are well known.” In their conclusion, they write:
“Avariety of further developments in astronomyandphysics have beenmadepossible
by the existence of Riemann’s work on ellipsoidal figures. [...] The foregoing brief
account of developments in the theory of the classical ellipsoids showhowRiemann’s
investigations, after a lapse of some one hundred years, occupy a central place in
theoretical astrophysics today.”

Let us now say a few words about Riemann’s paper Beiträge zur Theorie der
durch die Gauss’sche Reihe F(α,β, γ, x) darstellbaren Functionen (Contribution
to the theory of functions representable by Gauss’s series F(α,β, γ, x)) [139]. In the
introductory part, Riemann announces that in this paper, he investigates the functions
representable by Gauss’s series using a new method which essentially applies to any
function satisfying a linear differential equation with algebraic coefficients. He also
says that the main reasons for his investigations are the many applications of this
function in physics and astronomy. In the announcement of that memoir, published
in the Göttinger Nachrichten, No. 1, 1857, Riemann recalls that Gauss, in studying
these functions, was motivated by astronomy. Riemann’s announcement starts with
the words: “This memoir treats a class of functions which are useful to solve various
problems in mathematical physics.” These functions are still commonly used today
in mathematical physics.

Finally, we say a few words on Riemann’s paper on minimal surfaces [137],61

Über die Fläche vom kleinsten Inhalt bei gegebener Begrenzung (On surfaces ofmin-
imal area, with a given contour). The problem is to find surfaces with minimal area
and with fixed boundary. This problem is also related to physics. Again, the mathe-
matical field to which this question belongs can be traced back to the Greeks, namely
to works of Archimedes on isoperimetry and isoepiphany. The specific question of
minimal surfaces belongs to the calculus of variations, more precisely the so-called
multi-dimensional calculus of variations. In dimension two, one minimizes area or
the Dirichlet functional over spaces of surfaces with a given boundary (whereas in
the problems of the classical, one-dimensional calculus of variations, one typically
minimizes the length, energy, etc. functional on a space of curves joining two given

61The paper was published posthumously in 1867, and according to Hattendorf, quoted in [145] p.
306, it was written around 1860–1861.



198 A. Papadopoulos

points). It was probably Euler, in 1744, who discovered the first minimal surface, the
catenoid, the surface of least area whose boundary consists of two parallel circles
in space [50]. (The name comes from the fact that this is the surface obtained by
rotating a catenary around a line.) One year after, Lagrange, who was 19years old,
studied the question of finding the graph of a surface in space with least area with
prescribed boundary in the plane. He found a partial differential equation satisfied by
such a surface. This was the birth of the so-called Euler–Lagrange equation. In 1776,
Meusnier62 interpreted Lagrange’s equation as the vanishing of the mean curvature.
Monge also made substantial contributions to the subject of minimal surfaces. Rie-
mann’s contribution (1860–1861) concerns the solution for some given boundary
curves. Riemann gave a one-parameter family of examples of minimal surfaces. It
was proved recently that the plane, the helicoid, the catenoid and the one-parameter
family discovered by Riemann form exactly the set of complete properly embedded,
minimal planar domains in R

3, see [98]. Weierstrass made the relation between the
Euler–Lagrange and the Cauchy–Riemann equations. Schwarz obtained results on
the same question. The extensive study of minimal surfaces based on soap films
was conducted by Plateau63 around the year 1873. Besides the relation with soap
films, minimal surfaces appear in physics, in particular in hydrodynamics. We again
cite Klein, from his article on Riemann and his significance for the development of
modern mathematics (1895) [86]:

Perhaps less attention has been paid to another physical application in which Riemann’s
ways of looking at things are laid under contribution in a most attractive manner. I have in
mind the theory of minimum surfaces [...] the problem is to determine the shape of the least
surface that can be spread out in a rigid frame, – let us say, the form of equilibrium of a fluid
lamina that fits in a given contour. It is noteworthy that, with the aid of Riemann’s methods,
the known functions of analysis are just sufficient to dispose of the more simple cases.

This paper on minimal surfaces is analyzed by Yamada in the present volume, [167].
One could also talk about Riemann’s paper on the zeta function, Über die Anzahl

der Primzahlen unter einer gegebenen Grösse (on the number of prime numbers
less than a given quantity) [135], recalling that the apparent chaotic distribution of
primes has been shown tomatch the classical randommodelswhich describe physical
phenomena.

62Jean-Baptiste Marie Charles Meusnier de la Place (1754–1793) was a Revolution general, a
geometer and an engineer. Together with the mathematicians Gaspard Monge and Alexandre-
Théophile Vandermonde, he belonged to the société patriotique du Luxembourg, a patriotic-
revolutionary movement. In mathematics, he is known for the Meusnier Theorem on the curvature
of surfaces, and for the discovery of the helicoid, a ruled minimal surface.
63Joseph Plateau (1801–1883) obtained a doctorate in mathematics and then became a physicist.
By his experiments on the retina, and for several machines he invented, Plateau is among the first
scientists who contributed to the bases of moving images (cinema).
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7 Conclusion

Beyond Riemann’s work which is the subject of the present chapter, one may wonder
about the interrelation between mathematics and physics. This subject is complex,
much on it has been said, and adding something new is not a trivial task. Instead, we
quote a text by Picard, from his opening address at the 1920 International Congress
of Mathematicians. Picard is one of the main advocates of the theory of functions of
one complex variable, a subject that was dear to Riemann.64 He writes in [118]:

Any physical theory which is sufficiently elaborate takes necessarily a mathematical form;
it seems that the actions and reactions between spirit and objects gradually brought the
formation of moulds where reality could fit, at least in part. For sure, many concepts created
by mathematicians did not find yet any application in the study of physical phenomena, but
history of science shows that it was reckless to assert that such or such notion would never
be used one day. Geometers like to recall the word of the great mathematician Lagrange
who, one day, comparing mathematics to an animal of which every part can be eaten, said:
“Mathematics is like a pig, everything in it is good.”65
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Cauchy and Puiseux: Two Precursors
of Riemann

Athanase Papadopoulos

Abstract In this chapter, we review the works of Cauchy and Puiseux on the theory
of functions of a complex variable that preceded Riemann’s introduction of what
soon became known as Riemann surfaces. The work of the two French mathemati-
cians (especially that of Puiseux) inaugurates a group-theoretic point of view which
complements the topological one discovered by Riemann.

Keywords Riemann surface · Algebraic function · Multi-valued function · Uni-
formization · Monodromy
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1 Introduction

Riemann surfaces were introduced unexpectedly by Riemann in his doctoral thesis,
defended on December 16, 1851. I said “unexpectedly” because it was something
completely new, difficult to apprehend by Riemann’s contemporaries, and it is not
clear whether somebody else would have invented this notion even fifty years after
Riemann, had he failed to do it. Riemann introduced these surfaces as ground spaces
on which holomorphic (or meromorphic) functions are naturally defined. We recall
Klein’s sentence from his monograph [40] in which he surveys Riemann’s ideas (p.
77): “The Riemann surface not only provides an intuitive illustration of the functions
in question, but it actually defines them.” In particular, a multi-valued function given
as the solution of an algebraic equation acquires a new domain of definition, its
associated Riemann surfaces, on which it becomes uniform (single-valued). This
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idea of working with general surfaces equipped with complex structures, instead of
only the sphere or the complex plane, or subsets of them, had a tremendous influence
on the development of complex analysis, but also on geometry and topology.

The notion of Riemann surface, as all mathematical notions, has a history. Its
discovery was motivated by several questions on which many mathematicians spent
their lives. One of the main problems that led to this notion was addressed by the
uniformization of algebraic functions. In fact, the notion of “algebraic function” is
complicated, because such a “function” is generally not a function in the usual sense:
it is multi-valued. In this sense, the uniformization problem asks for a way of getting
around this complication. It is in trying to solve this “uniformization problem” that
the theory of Riemann surfaces was born.

In this chapter, I will explain how the problem of uniformization of algebraic
functions led to results by Puiseux—who was strongly motivated by the work of
Cauchy—which, interpreted in the right perspective, are the algebraic counterpart
of Riemann surfaces. The work of Puiseux, rather than the one of Riemann, was
discussed in the French treatises on analysis during the first decades that followed
these works. We discuss this fact in Chap.8 of the present volume [49].

The outline of the rest of this chapter is the following.
In Sect. 2we recall the notion of algebraic function and the problemof uniformiza-

tion of such functions.
Section3 is the heart of the chapter. We explain there how Puiseux, in his two

articles published in 1850 and 1851, using Cauchy’s theory of path integration,
developed a notion which is a combinatorial analogue of the notion of Riemann
surface. Puiseux’s theory was also rooted in the theory of the uniformization of
algebraic functions, and it makes connections with group theory, in particular with
Galois theory. This section also contains information on the life of Puiseux.

In Sect. 4, we give a summary of the important work of Cauchy that was used
by Puiseux when he developed his theory. This work was also available to Riemann
when he introduced Riemann surfaces.

In Sect. 5, we review Hilbert’s 22nd problem which concerns uniformization. In
this statement, the word uniformization is slightly different from the one we use in
the previous sections, but the two notions are closely related, and the origin of the two
words is the same. Our goal in this concluding section is to indicate the development
of the theory whose bases were laid down by Puiseux and Riemann.

2 Algebraic Functions and Uniformization

An algebraic function u of the complex variable z is defined by an equation

f (u, z) = 0

where f is a polynomial in the two variables u and z. Here, u is considered as
an implicitly defined function of z. For each value of z, there are generally more

http://dx.doi.org/10.1007/978-3-319-60039-0_8
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than one value of u. (If the equation is irreducible, then the number of values is the
highest degree of u in the equation.) The first question that arises is: Can one make
a choice between these values so as to get a bona fide function u(z)? The obvious
answer is clearly “no,” but one wishes to understand more. The first approach to the
question is a case by case analysis. Consider for example the case where f is the
polynomial f (u, z) = u2 − z. Then, for each value of z, we have, except if z = 0, two
different values of u. Setting z = reiθ with r > 0, the two values are u1 = √

reiθ/2

and u2 = −√
reiθ/2. If for some value of z we choose one of the values u1 or u2 and

assign it to u(z), and if we try to extend u as a function defined on the whole complex
plane, we obtain a discontinuous function, which is not desirable. We are then led
to define the function u(z) on a subset of the plane, but there is no natural choice of
such a subset.

Uniformization originates with this problem, that is, the fact that algebraic equa-
tions generally have more than one complex solution. The word “uniformization”, in
the sense of Riemann, refers to the fact that one would like to have a way of making
such a multi-valued function single-valued, or “uniform.” The German adjectives
einwerthig and mehrwerthig used by Riemann are translated, in the 1898 French
version [64], by uniforme and multiforme. In the recent English translation by Jason
Ross, the same words are used: uniform and multiform. Riemann utilises the word
mehrwerthig (multiform) for a function which may assign to a value of the variable
more than one value, and einwerthig (uniform) otherwise. In the preliminary part
(§1) of his memoir on Abelian functions, he addresses the problem of extending a
holomorphic function defined on a piece of the plane. He writes: “From the nature
of the function we wish to extend, this function either will always take, or will not
take, the same value for a given value of z regardless of the path along which we are
extending. In the first case, I will call it uniform: it is then a perfectly determined
function for any value of z, and it will never be discontinuous along a line. In the
second case, where we shall say it is multiform, we first have, in order to understand
the motion of this function, to concentrate our attention on certain points of the z-
plane, around which the function is extended into another function...” A little bit
later, he uses, as an alternative for the word “uniform,” the word “monodromic” (see
our Footnote 10). Likewise, in his memoir [62], Riemann uses the wordmonodromic
as a synonym for uniform. Weyl, in [70] (p. 2), also uses the word “uniform.” We
shall use the word “uniformization” in this original sense of Riemann. There are
other meanings for the word uniformization; see Sect. 5 of the present chapter.

The modern definition of function assumes that a function is single-valued, or
“uniform,” that is, to each value of the variable, the function associates a single value.
But this was not the case at the epoch of Riemann or Cauchy or before them. In fact,
Euler, to whom the first abstract definition of a function is attributed, considered the
possibility that a function is multi-valued. Riemann was a devoted reader of Euler.
He mentions his name at several occasions, when he informs his reader about the
origin of his own ideas, for instance in his doctoral dissertation, in his Habilitation
dissertation [59], in his memoir on Gauss’s hypergeometric series [62], and there
are several references to Euler in Riemann’s memoirs and posthumous papers. The
interested reader may find a thorough report on Riemann’s debt to Euler in Chap.1 of
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the present volume [48]. Among other things, we discuss in that chapter the way the
notions of algebraic and multivalued functions appear in Euler’s treatise Introductio
in analysin infinitorum (Introduction to the analysis of the infinite) (1784) [29].

3 Puiseux and Uniformization

Victor Puiseux (1820–1883) defended a doctoral dissertation on astronomy in 1841.
He attended Cauchy’s courses on analysis and soon became interested in this topic.
At the same time, he became Cauchy’s closest follower and friend, and he always
expressed his respect and admiration for his teacher’s work. Puiseux spent a large part
of his time developing, correcting and refining results of Cauchy who used to publish
very rapidly his ideas, sometimes in rough form. Cauchy’s influence on Puiseux was
enormous.

Motivated byCauchy’swork, Puiseuxwrote two remarkablememoirs,Recherches
sur les fonctions algébriques (Researches on algebraic functions, 1850) [55] and
Nouvelles recherches sur les fonctions algébriques (New researches on algebraic
functions, 1851) [56]. The second memoir appeared in the year Riemann defended
his doctoral dissertation, consisting of his first memoir on the theory of functions
of a complex variable.1 After the publication of Riemann’s dissertation, Puiseux
practically stopped working on this topic.

Below, we shall give a quick review of the content of the two memoirs of Puiseux.
Puiseux taughtmathematics at the École Normale Supérieure. From 1855 to 1859,

heworked at theObservatory of Paris, and in 1859 he became amember of theBureau
des longitudes.2 In 1857, he became the successor of Cauchy on the chair of astron-
omy at the University of Paris, and he taught there until his health became critical,
in 1882, one year before his death. His works included, besides complex analysis,
mechanics, observational astronomy and botanics. Puiseux alsomade important con-
tributions to celestial mechanics. In this field, he solved several difficult questions
which had also been addressed by Cauchy. One of his most influential memoirs in
this domain is the Mémoire sur l’accélération séculaire du mouvement de la lune
(Memoir on the secular acceleration of the motion of the moon) [57] 1873, in which
he contributed to the difficult problem of explaining the acceleration of the mean
motion of the moon. Puiseux is also a precursor of French Alpinism, and a pick
(3946m) in the Alps, which he climbed in 1848, carries his name.

We shall give in the next section several biographical details on Cauchy. Let us
mention that like Cauchy, Puiseux was involved in social issues, that he founded
several charities, including one for the help of the poor at their home. During
his lifetime, Puiseux kept secret most of his philanthropical activity, which was

1It may be useful to recall that Dedekind, in his notes on Riemann’s life published in the Collected
works edition [63], states that Riemann probably conceived his ideas on Riemann surfaces in 1847.
2The Bureau des longitudes is a French institution in charge of geodesy, standardisation of time-
keeping, and astronomical measurements. The names of famous members of the Bureau include
Lagrange, Laplace and Poincaré.
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discovered by his family only after his death [68]. Picard writes about Puiseux as a
teacher ([51] p. v)3:

Victor Puiseux’s modesty was intimidating, and his patience and politeness were admirable.
To a student blundering at some test, he just used to say, with a very sweet tone: “I don’t
know whether I heard well or whether I am mistaken, but it seems to me that what you said
is not completely true.”4

In an article [55] published in 1850, that is, one year before Riemann defended
his doctoral thesis, Puiseux addressed the problem of uniformization. As a result,
he did not introduce Riemann surfaces, but he discovered a notion which is close to
it. We now give a short description of his work on the subject, using the notation of
Sect. 2 above for an algebraic function, which is Puiseux’s notation.

Puiseuxwrites, after introducing the discontinuity problem posed bymulti-valued
functions which we recalled in the introduction ([55] p. 366):

We shall avoid this discontinuity by defining in a different way the function u. Let us consider
again the equation

f (u, z) = 0,

of which we may assume the first side to be integral in u and z; let us give to z an arbitrary
initial value c, and, for the initial value b of u, let us choose any one of the solutions of the
equation

f (u, c) = 0.

Let us now conceive that z varies in an arbitrarymanner starting from the value c, and reaches
another value k. Mr. Cauchy showed (Nouveaux Exercices de Mathématiques, tome II, p.
109) that the different values of u vary simultaneously in a continuous manner. Thus, there
will be one which is first equal to b, which will pass by infinitely small steps to a determinate
value h which it will attain for z = k. For us, this value of u will be a function of z, and, as
we can see, it will be a continuous function. But its determination, for a particular value of
z, will depend at the same time on this same value and on the series of values by which e
passed starting from its initial value.

Thus, Puiseux solves the continuity problem by declaring that the function u(z)
not only depends on the variable z but also on a path that we choose from a basepoint
to the point z. Concerning the choice of the path, he writes:

Let us observe however that the function will stop being determined if, when passing from
the value c to the value k, z takes a value for which the equation

f (u, z) = 0

have equal solutions. But the number of these values being finite, it will always be possible
to avoid this circumstance, for any values c and k.

Thus, the chosen path between the basepoint and this point z avoids a certain
number of singular points. Puiseux investigates in detail the dependence of u(z) on

3In this chapter, all the translations from the French are mine.
4Victor Puiseux était d’une modestie intimidante, d’une patience et d’une politesse admirables.
Quand un élève avait, dans une interrogation, énoncé quelque énormité, il se contentait de lui dire
d’un ton très doux: “Je ne sais pas si j’ai bien entendu ou si je me trompe, mais il me semble que
ce que vous avez dit n’est pas tout à fait exact.”
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the path, highlighting the roles of the singular points, which, he says, are of two types:
pointswhere the function u becomes infinite, and pointswhich correspond tomultiple
solutions of the algebraic equation. Cauchy, in his previous works, misunderstood
the nature of the singularities, since he considered that the singular points are only
those where the algebraic function u becomes infinite. Puiseux presents clearly the
invariance of the value of the function at the point z under homotopy of paths.

To show the close relation with Riemann’s work, we need to recall Riemann’s idea
of a Riemann surface, and we consider again the example of the algebraic function
w2 − z = 0. In this case, w is the “function”

√
z. We take a basepoint z0 �= 0 in

the complex plane. The function
√
z is multi-valued at such a point. We take some

determination of this function in some neighborhood of z0.We continue the definition
of this function along paths starting at z0 (we use analytic continuation). We allow
ourselves the use of modern terminology. A problem arises when the path comes
back at z0 and encloses the origin 0 of the complex plane. If such a path is not simple
(that is, injective), the fact of enclosing the origin means that it has non-zero winding
number with respect to 0. If such a path has odd winding number with respect to
the origin, the value we get at z0 is different from the initial one. At this point,
Riemann introduced the idea that in this case the endpoint of such a path should not
be considered as the basepoint z0, but a point on a different sheet of a new surface
on which the function

√
z should be defined. This is the Riemann surface associated

with the function. At the same time, Riemann introduced the notion of covering
space. In the example considered, the surface obtained is a two-sheeted branched
cover of the complex plane (or of the sphere), and the branching locus is the origin.
This construction is very general, that is, it associates to an arbitrary multi-valued
function defined by an algebraic equation a Riemann surface which is a branched
cover of the sphere and on which the function is defined and becomes single-valued.
The degree of the covering is the number of values of w associated with a generic
value of z. This construction is described for the first time in Riemann’s dissertation
[58] and is further developed in the section on preliminaries in his 1857 paper [60].

It is not hard for a topologist to see that Puiseux’s description of u as a function, not
of z alone, but of a pair (z, γ), where γ a homotopy class of paths joining a basepoint
to the variable point z, the homotopy being relative to some finite set of points on
the surface (namely, the set of singular points of the algebraic equation f (z) = 0), is
equivalent to considering that the function is defined on a Riemann surface which is
a covering of the complex plane, ramified over this set of singular points. In fact, the
usual modern construction of a covering of a surface defines it as a set of equivalence
classes of homotopy classes of paths in the base surface subject to certain conditions
which can be expressed in terms of group theory. (With no condition on the homotopy
classes of paths, we get the universal covering of the base surface.) Let us emphasize
though that we know the relation between the two definitions, the one of Puiseux and
the one using Riemann surfaces and their coverings, initiated by Riemann, because
we are familiar with the theory of surfaces. Thus, we are not claiming that Puiseux
discovered Riemann surfaces. But he came very close to them. In fact, the work of
Puiseux is group-theoretic, before the formal introduction of groups in the theory of
Riemann surfaces. There is a famous result due to Riemann, which he gives in his
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paper on Abelian functions [60]. The result, stated in modern terms, says that given
a finite set of points on the Riemann sphere and a representation of the fundamental
group of the complement of these points into a permutation group, there exists a
Riemann surface which is a branched covering of the sphere having the given points
as branch points and whose monodromy is the given representation. This is one
form of the so-called Riemann existence theorem (there are several other forms).
The general form of the theorem deals with branched covers of surfaces that are
more general than the Riemann sphere. The theorem establishes relations between
topology, group theory and function theory. The permutation representation is that
which Puiseux studies.

It was natural that Puiseux, in considering functions defined using paths from a
basepoint to the variable point, studies line (or path) integrals, especially that the
theory of such integrals was part of Cauchy’s courses he followed. Starting from §8
of his memoir [55], Puiseux considers line integrals of the form

∫ k
c udz where c and

k are points in the complex plane. In §9 (p. 373), he proves the following theorem:

The value of the integral
∫ k
c udz, taken along the line CMK , will not change if, the points c

and k remaining fixed, this line is deformedwithout crossing any point for which the function
u1 becomes infinite or equal to another solution of the equation f (u, z) = 0.5

Puiseux attributes this theorem to Cauchy, like a few others he proves in §9 to 11
of his memoir, as preliminaries for his main results. However, he brings important
complements to Cauchy’s results. He states ([55] Note p. 375):

The theorems in §9, 10, 11 were given by Mr. Cauchy in the Comptes Rendus des séances
de l’Académie des Sciences, year 1846. But the famous geometer [Cauchy] characterizes
the points which must be avoided by the path that is travelled by the fact that at these
points the function becomes discontinuous; but since I restrict here to algebraic functions,
I thought I would give more precision to the statements and the proofs by saying that the
points considered are those for which the function u either becomes infinite or is a multiple
solution of the equation f (u, z) = 0.6

Here, u1 is a fonction obtained by starting with one of the branches of the function
u defined by the equation f (u, z) = 0.

Later in the same paper (§53 to 55), Puiseux considers elliptic integrals and their
dependence on the integration path, and he makes explicit the periods of the inverse
functions. We note incidentally that the study of these integrals was one of the main
subjects of interest of Riemann. We shall consider this question again below.

5L’intégrale
∫ k
c udz, prise le long de la ligne CMK , ne changera pas de valeur, si, les points C et

K restant fixes, cette ligne vient à se déformer, sans franchir toutefois aucun point pour lequel la
fonction u1 devient infinie ou égale à une autre racine de l’équation f (u, z) = 0.
6Les théorèmes de nos 9, 10, 11 ont été donnés parM. Cauchy dans lesComptes Rendus des séances
de l’Académie des Sciences, année 1846. Seulement l’illustre géomètre caractérise les points que le
chemin parcouru ne doit pas franchir en disant que, pour ces points, la fonction devient discontinue:
comme je me borne ici aux fonctions algébriques, j’ai cru donner plus de précision aux énoncés
et aux démonstrations en disant que les points dont il s’agit sont ceux pour lesquels la fonction u
devient infinie ou une racine multiple de l’équation f (u, z) = 0.
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In the second part of his memoir [55] (starting p. 384), Puiseux studies the passage
from one value of u to another one corresponding to the same z. This involves a
detailed analysis of how the various values u1, . . . , u p corresponding to a given z
are interchanged when the point z, seen as a geometric point in the complex plane,
describes a small loop. The result will depend on the behavior of the function at the
singular points enclosed by the loop.

Puiseux discovered the fact that the solutions of an algebraic equation are grouped
into cycles which he called circular systems (systèmes circulaires) and he gave a
method to perform this grouping. This decomposition into circular systems is related
to the fact that the solutions are permuted by following the points geometrically along
closed paths, and that an arbitrary permutation may be decomposed into circular
permutations, a fact already proved by Cauchy in his paper [16], precisely in the
setting of solutions of algebraic equations. In p. 479 of his memoir [55], he writes
that the possibility of grouping into circular systems the various solutions u1, u2, . . .
and of seeing that these values are interchanged around the points where the function
u has multiplicity or takes the value infinity may be deduced from a theorem on
substitutions7 by Cauchy (Journal de l’École Polytechnique, tome X). But he adds
that the method that he gives for this grouping is new.

The third part of the memoir [55] concerns applications of the theory to periods
of integrals. Again, Puiseux refers to Cauchy’s work, declaring that it leads to the
existence of periods, that Cauchy recovered in this way the periods of elliptic inte-
grals, but that Cauchy’s method does not allow one to recover periods of general
integrals. With his results on periods, Puiseux gave an explanation of the periodicity
in the determinations of the complex circular functions, of elliptic functions and of
other functions defined by integrals (in particular those introduced by Jacobi).

On p. 428 of his memoir, Puiseux says that the propositions he established are also
applicable to the casewhere the function u of the variable z, whichwas taken to satisfy
an algebraic equation f (u, z) = 0, is transcendental instead of being algebraic. He
declares that the only property that is used is the continuity of u in terms of z,
and he says that this question was treated by Cauchy in his Nouveaux Exercices de
Mathématiques, tome II, p. 109.

In the following year, Puiseux published a second paper [56] in which he gave a
method for characterizing periods of integrals in the case where the function f in
the equation f (u, z) = 0 is an irreducible polynomial.

Puiseux’s paper [55] also contains the so-called “Newton–Puiseux polygon,” a
method for evaluating the value of an algebraic function near a branch point, using so-
called Pusieux series. These are a generalization of power series where the exponent
may be fractional or negative. In fact, Puiseux did not discover these series, he
rather rediscovered them ([55] p. 399), since they were introduced before him by
Newton, in 1676.8 Puiseux came up with these series in the context of his work on
separating the various branches of functions defined by algebraic equations. He gave

7In this context, a “substitution” means a permutation of letters. This word substitution is used e.g.
in Jordan’s Traité des substitutions et des équations algébriques [39].
8Isaac Newton, Letter to Oldenburg, October 24, 1676.
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an expansion of each of these branches in such a convergent series. The so-called
Newton–Puiseux theorem states that an algebraic equation f (u, z) = 0, the variable
u, seen as a function of z, may be expanded as a series (called now Puiseux series)
that converges in some neighborhood of the origin. Stated differently, the result says
that any branch of an algebraic curve can be represented as a Puiseux series. The
Newton–Puiseux series has a wide generalization to the study of polynomials over
local fields (the classical case being the onewhere the local field is the field of Laurent
polynomials).

The work of Puiseux on solutions of algebraic equations was a forerunner of
works of several mathematicians. It was interpreted and generalized in the setting of
groups by Hermite and others. One should mention here that group theory was still
unborn, or at best, was only in its infancy.9

Hermite presented a paper, in 1849, entitled Sur la théorie des fonctions elliptiques
(On the theory of elliptic functions) [35] where he studies periods of elliptic integrals,
and in which he acknowledges Cauchy’s influence.We shall soon talk about the work
of Hermite in relation with that of Puiseux.

We showed that Puiseux studied how the fact that the roots of an algebraic equation
are interchanged when the variable z describes some loops in the plane leads to a
group factorized into permutations. He used in this context the word “monodromic,”
which was already introduced by Cauchy. Hermite continued using this word in [36]
(1851).10 This led eventually to the notion of monodromy group, which we still use
today. Jordan, in his Traité des substitutions [39] (1870), defined a group he called
the algebraic group, which contains the monodromy group as a normal subgroup.
The paper [36] byHermite in which he studies the solvability of equations by radicals
makes the relation between the work of Puiseux and the Galois group of an algebraic
equation. Hermite’s paper starts as follows:

It seems to me that the propositions given byMr. Puiseux, on the roots of algebraic equations
considered as functions of a variable z which enters rationally in their first member, open
up a wide research field which is intended to shed light on the analytic nature of this kind
of quantities. I propose to give here the principle of these researches, and to show how they
lead to the knowledge of whether an arbitrary equation

F(u, z) = 0

9It is usually considered that the first abstract definition of a group is contained in the 1854 paper by
Arthur Cayley [24]. But the notion of group appears in essence, as a group of permutations of the
roots of an algebraic equation, in works of various people on the solutions of polynomial equations
of degree ≥ 4, in particular the work of Galois. Klein writes, in his Development of mathematics in
the 19th century ([42] p. 316 of the English translation), that “group theory first developed in the
theory of algebraic equations [...] the central significance of group theory for algebraic equations
first appeared in the work of Galois in 1831 (from whom the term ‘group’ also stems).”
10Let us note thatRiemannused theword “monodromic” in hismemoir onAbelian functions [60] for
a function which is uniform, or single-valued. He writes (§1): “To simplify the designation of these
relations, we shall call the various extensions of one function, for some fixed portion of the plane
of the z, the branches of this function, and a point around which a branch of the function extends
in another one a ramification point of the function. Everywhere where there is no ramification, the
function will be monodromic or uniform.”
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is algebraically solvable, that is, whether the unknown u can be expressed by a function of
the variable z, containing only this variable under root extraction signs of integer degree.
The theorems to which we will be led in this way will give, from a completely new point of
view, the beautiful result obtained by Abel on the possibility of expressing algebraically11

sin am
( x
n

)
by sin am(x). I restrict myself here to the question of the resolution by radicals.

Later, I will show how the theorems of Mr. Puiseux lead to a lowering of these equations
in the cases announced by Galois, whose principles will serve as a basis for everything we
shall say.12

Cauchy published two reports [20, 21] on the two memoirs of Puiseux. In the first
report, he reviews in detail his own work on the subject, and then presents Puiseux’s
contribution. He writes in his conclusion:

Not only Mr. Puiseux added new developments and new improvements to the theory of
curvilinear integrals of algebraic functions, but, furthermore, he highlighted, with a lot of
wisdom, the rules according to which the various values of an algebraic function are inter-
changed when the curve which conducts the integration winds around one of the points he
calls principal points. Finally, he was able to determine in general the number of distinct
values and the periods of certain curvilinear integrals which are relative to a very large class
of algebraic functions and which contain as particular cases elliptic and Abelian integrals.13

In the report on the second memoir, Cauchy mentions Puiseux’s new results on the
periods of curvilinear integrals and the use that Hermite made of Puiseux’s results
in his research on the solvability of equations by radicals.

11The notation am is used in the theory of elliptic functions. It denotes the Jacobi amplitude.
12Les propositions données par Mr. Puiseux, sur les racines des équations algébriques considérées
comme fonctions d’une variable z, qui entre rationnellement dans leur premiermembre,me semblent
ouvrir un vaste champ de recherches destinées à jeter un grand jour sur la nature analytique de ce
genre de quantités. Je me propose de donner ici le principe de ces recherches, et de faire voir
comment elles conduisent à reconnaître si une équation quelconque

F(u, z) = 0

est résoluble algébriquement, c’est-à-dire si l’inconnue u peut être exprimée par une fonction de la
variable z, ne contenant cette variable que sous les signes d’extraction de racines de degré entier.
Les théorèmes auxquels nous serons ainsi amenés donneront, et sous un point de vue entièrement
nouveau, le beau résultat obtenu par Abel sur la possibilité d’exprimer algébriquement sin am

( x
n

)

par sin am(x). Je me borne ici à la question de la résolution par radicaux ; plus tard je ferai, au
même point de vue, l’étude des équations modulaires, et je montrerai comment les théorèmes de
Mr. Puiseux conduisent à effectuer l’abaissement de ces équations dans les cas annotés par Galois,
dont les principes serviront d’ailleurs de base à tout ce que nous allons dire.
13Mr. Puiseux a non seulement ajouté de nouveaux développements et des perfectionnements nou-
veaux à la théorie des intégrales curvilignes des fonctions algébriques, mais, de plus, il a mis en
évidence, avec beaucoup de sagacité, les lois suivant lesquelles les diverses valeurs d’une fonction
algébrique se trouvent échangées entre elles quand la courbe qui dirige l’intégration tourne autour
de l’un des points qu’il nomme points principaux; enfin, il est parvenu à déterminer généralement
le nombre de valeurs distinctes et le nombre de périodes de certaines intégrales curvilignes, qui
sont relatives à une classe très étendue de fonctions algébriques, et qui comprennent comme cas
particuliers les intégrales elliptiques et abéliennes.
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The work of Puiseux was acknowledged as important by many mathematicians.
Bertrand,14 in his eulogy of Puiseux [6], writes the following:

Ch. Sturm,15 our benevolent master of all, but above all proud of his pupil of Collège Rollin,
accosted me one day with this question which nobody before Puiseux had addressed: “If
you follow along a closed loop the root of an equation whose parameter represents a point of
the contour, what do you obtain when you come back to the starting point?” – I responded
without hesitation: “I will recover my root.” – “Well, no! you will not recover it: Puiseux
proves this. He did a beautiful memoir!”16

The relation of the work of Puiseux with the notion of Riemann surface has not
been sufficiently emphasized. Riemann defined these surfaces as ramified coverings
of the plane (more precisely, of the Riemann sphere). The work of Puiseux on alge-
braic functions, interpreted from a topological point of view, contains in essence the
combinatorics of such a surface, giving a description of how its sheets are permuted
above a ramification point, and establishing the precise relation between this sheet
permutation and the nature of the singularities of the algebraic equation. At the same
time, Puiseux’s work makes the relation with group theory. At the expense of being
anachronical, let us mention that the theory of Puiseux expresses the so-called mon-
odromy homomorphism from the fundamental group of the Riemann sphere with
a finite set deleted (the singular set of the algebraic equation) into the permutation
group on d symbols. The books on the history of nineteenth-century complex analysis
hardly mention Puiseux. Gray writes in [33] p. 193: “although we know from Laug-
witz [44] that Riemann had read Cauchy’s report on Puiseux’s memoir by December
1851 it seems unlikely that Riemann had anything to learn from Puiseux by the time
he was writing his doctoral thesis.”

The work of Puiseux was thoroughly used in several French treatises and disserta-
tions on complex analysis and Riemann surfaces in a period that lasted more than 50
years after the publication of this work. We refer the reader to Chap. 8 of the present
volume [49].

14Joseph Bertrand (1822–1900) taught mathematics and physics at Lycée Saint-Louis, École Poly-
technique, École Normale Supérieure and then Collège de France. His name is attached to the
“Bertrand series” in analysis and to the “Bertrand postulate” in number theory. He became member
of the Académie des Sciences, in 1856, as the successor of Charles Sturm. He was the secretary
(“secrétaire perpétuel”) of the mathematical section of the Academy from 1874 until his death, after
which Darboux became the secretary. This explains the fact that Bertrand wrote several eulogies.
Bertrand was also the brother-in-law of Hermite. Paul Appell’s wife was a niece of Bertrand and of
Hermite and a cousin of Émile Picard.
15Charles-FrançoisSturm (1803–1855)whosename is associatedwith theSturm-Liouville principle
on linear order-two differential equations with a parameter, was one of Puiseux’s teachers at the
Collège Rollin in Paris, which Puiseux enrolled in 1834.
16Ch. Sturm, notre maître bienveillant à tous, mais fier surtout de son élève du collège Rollin,
m’aborda un jour par cette question que personne avant Puiseux ne s’était proposée: “Si vous
suivez le long d’un contour fermé la racine d’une équation dont un paramètre représente un point
du contour, qu’obtiendrez-vous en revenant au point de départ ?”—“Je retrouverai ma racine,
répondis-je sans hésiter.”—“Eh bien, non ! vous ne la retrouverez pas: ce Puiseux le démontre. Il a
fait un bien beau Mémoire !”.

http://dx.doi.org/10.1007/978-3-319-60039-0_8
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In the next section, we give a summary of some of the tools introduced by Cauchy
that were available to Puiseux. Riemann had the same tools at his disposal.

4 Cauchy and His Work on Functions of a Complex
Variable

When Riemann started working on his doctoral dissertation, functions of a complex
variable were already studied by various authors. In particular, such functions were
considered by Euler in his 1748 treatise Introductio in analysin infinitorum [29].
In 1777, Euler, in a memoir on geographical maps [30], uses complex numbers
in his study of maps from the sphere to the complex plane. See also [25] for a
commentary on thatmemoir.More importantly, by the timeRiemann started his study
of such functions, Cauchy had introduced several of the tools that were needed for the
development of the theory of Riemann surfaces. In particular, in a series of articles he
published in the 1830s and the 1840s, Cauchy studied line integrals in the complex
domain and their dependence of homotopy classes of paths. This inaugurated the use
of topological methods in the study of functions of a complex variable.17 Riemann,
whoknew the importance ofCauchy’swork,was certainly following his publications.
Klein, who was probably the most enthusiastic representative of Riemann, in his
essay Riemann and his significance for the development of modern mathematics
[41] (1895), recalls that the foundations of the theory of functions of a complex
variable are due to Cauchy. He writes (p. 168):

The founder of this theory is the great French mathematician Cauchy; but only later, in
Germany, did this theory assume its modern aspect which has made it the central point
of our present views of mathematics. This was the result of the simultaneous efforts of
two mathematicians whom we shall have to name together repeatedly, – of Riemann and
Weierstrass.18

Weierstrass, who is mentioned in this passage, based on Cauchy’s theory, devel-
oped the theory of functions of a complex variable in a way different from that of
Riemann. He is known for a multitude of interesting works related to the theory
of functions. To him is attributed the definition of an analytic function of a com-

17One should remember though that the topological notions that appear in Cauchy’s work (paths,
homotopy, etc.) were still not rigorously defined, and that part of this theory was based on intuitive
grounds. One of the earliest rigorous definitions of a path is contained in the much later Jordan’s
Cours d’Analyse de l’École Polytechnique, in three volumes, written between 1882 and 1887 (cf.
[38], 2nd. edition, vol. 1, p. 90).
18Klein writes in a footnote: “In the text I refrained from mentioning Gauss, who being in advance
of his time in this and in other fields, anticipated many discoveries without publishing what he had
found. It is very remarkable that in the papers of Gauss we find occasional glimpses of methods in
the theory of functions which are completely in line with the later methods of Riemann, as if uncon-
sciously a transfer of leading ideas has taken place from the older to the younger mathematician.”
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plex variable using convergent power series,19 which he developed around the year
1841 in a work which was essentially unpublished.20 This led him to a concept of
Riemann surface using the principle of analytic continuation.

One of the facts that emanates from an analysis of Cauchy’s work is that although
he had most of his ideas early in his career, the fact that his results became precise
and rigorous was progressive. Before our exposition of Cauchy’s work, we shall say
a few words on his life.

Cauchy was born in the year of the French revolution. He belonged to a family
who escaped Paris during the revolution and had to remain discreet during the so-
called Terror regime which followed it. Later, and due to a sequence of political
events, Cauchy had to leave his country several times.

LikeEuler andRiemann,Cauchy received his education at home, fromhis father.21

Laplace and Lagrange were family friends, and they encouraged Cauchy’s father in
the education of his son. Like Euler and Riemann, Cauchy was a devout Christian,
and this had some effect on his relation with others, in particular, with Puiseux
and Hermite who shared the same faith and with whom he had excellent relations,
but others considered Cauchy’s extreme religiousness problematic. Cauchy founded
several charities, in particular the famousŒuvre d’Orient, which still operates today.
Valson, in his Vie et travaux du Baron Cauchy [69], writes that “Cauchy was par
excellence a man of charities. For them he never bargained his time and effort.”
The list of mathematicians who were openly hostile to him includes Poinsot, Abel,
Poisson, Fourier and there are others.We also learn from his biographers that Cauchy
was often sick and had a depressive character. In a letter to Holmboë, dated October
24, 1826, the young Abel, who was visiting Paris, writes: “Cauchy is crazy and it is
impossible to deal with him.” In the same letter, Abel writes about Cauchy that he is
extremely Catholic and bigoted, which Abel finds strange for a mathematician. He
adds about him: “he is the only one actively working on pure mathematics. Poisson,
Fourier, Ampère, etc. work exclusively on magnetism and other parts of physics.”22

(The text of the letter is contained in [1] p. 45–49.)
Between 1816 and 1830, Cauchy lectured regularly on analysis in Paris, at the

École Polytechnique, at the Collège de France and at the Faculté des Sciences. Like

19Lagrange defined complex functions using power series, but for him the notion of convergence
was a secondary issue.
20Weierstrass, at that time was working in isolation, as a high-school teacher.
21In one of his writings, quoted by Bertrand [4] p. 187, Cauchy says: “If I know something, it is
only through the care of my father.” [Si je sais quelque chose, c’est uniquement à cause des soins
que mon père a pris de moi.
22Picard, in his historical survey [52] (p. 15) describes this epoch, saying that one must not profess
opinions which are too much systematic, on this parallel between pure theory and applications,
like, he says, Laplace, Fourier, Poisson and the brilliant French school of mathematical physics
of the beginning of the nineteenth century. “For them, he says, pure analysis was only the instru-
ment, and Fourier, when he announced to the Academy of sciences the works of Jacobi, said that
natural philosophy must be the main object of meditation of geometers.” Picard says that such an
exclusiveness would mean ignoring the philosophical and artistic value of mathematics.
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Euler, Cauchy had a very close relation with his students. Valson, in [69] p. 253 of
Vol. I, describes this relation:

His position of professor did not offer only the satisfaction of that feeling of generous
expansion which led him to be in intimate connection with the young men of the schools he
liked, whom he admitted into his study like in a lounge, with whom he was used to converse
informally as a friend rather than as a master.23

UnlikeRiemann and Puiseux, Cauchywas very prolific in terms of volume ofwrit-
ings. In this respect, he was also close to Euler. His list of publications includes more
than 800 articles, and his collected works edition consists of 28 large volumes, whose
publication took almost a century (1882–1974). Cauchy used to publish quickly, and
it is rather common knowledge that he made mistakes which for us today seem
trivial. For instance, it is considered that he thought he proved that a function of
several variables is continuous provided it is continuous separately in each variable
(Cours d’analyse (1821), [10] p. 37–38; Œuvres, Série II, 3, p. 45–47).24 Cauchy
also “proved” that a convergent series of continuous functions can be integrated term
by term ([12] p. 157; Œuvres, Série 2, t. 4, p. 237–238). Chebyshev, who had a
lot of respect for French mathematicians, and in particular for Cauchy, pointed out
some mistakes of the latter. In one of his first papers, written in 1844, whose title
is Note sur la convergence de la série de Taylor [26], he writes, after he proves a
theorem concerning Taylor expansions of functions: “This theorem is only a simple
conclusion of the remarkable discoveries of Mr. Cauchy; but in part, it is contrary to
the rule for convergence of series that was given by this famous geometer,” and he
states the rule25:

If x denotes a real or imaginary variable, a real or complex function of x can be expanded into
increasing powers of x provided the value of the modulus of x stays less than the smallest
value for which the function or its derivative stop being finite and continuous.

Chebyshev declares that it seems that the inadequacy of this rule comes from the fact
that Cauchy assumed that a definite integral may be expanded as a convergent series
when the differential between the two limits of integration may be expanded as a
convergent sequence. Chebyshev says that “this happens only in particular cases.”

Some mathematicians argued however that Cauchy’s so-called errors are in fact
correct theorems when interpreted in the right setting, using his own concepts. For
instance, and especially in the first period of his mathematical works, when Cauchy
considers a functions, hemeans analytical expressions in the sense of Euler where the
existence of a derivative follows from the assumptions; see e.g. [32, 45]. We recall

23Les fonctions de professeur ne lui offraient pas seulement la satisfaction de ce sentiment
d’expansion généreuse qui le portait à se mettre en communication intime avec les jeunes gens
des écoles qu’il aimait, qu’il admettait dans son cabinet de travail comme dans son salon, avec
lesquels il s’entretenait familièrement en ami plutôt qu’en maître.
24The first definition of a continuous function of two variables, in the sense we intend it today, using
a Euclidean norm on the plane, was given by Darboux in 1872, [28].
25Cauchy’s Exercices d’Analyse et de Physique Mathématique, Tome I, p. 29.
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incidentally that there are also gaps and mistakes in some of Riemann’s works,26 and
there are also gaps and inconsistencies in the works of several other great mathemati-
cians. Fortunately, mathematicians are not evaluated by their mistakes, but only by
their achievements. Mentioning the mistakes does not undervalue their work. Some-
times, on the contrary, it shows how subtle was the new material they were working
with, even though today their mistakes seem obvious. Picard, in one of his famous
historical talks that he gave in the United States [52], says (p. 5) that “error is some-
times useful, and in epochs of real creativity, an incomplete or approximate truth
may be more productive than the same truth accompanied by the necessary restric-
tions.”27 He gives the examples of Newton and Leibniz, saying that if they knew that
there exist continuous function with no derivative, differential calculus would not
have been born. Likewise, he says, the false ideas of Lagrange onTaylor expansions
were extremely useful. One can find many examples in mathematics where gaps and
mistakes led to important developments. Talking about Riemann, we mention that in
1892, Hadamard obtained the Grand Prix of the Académie des Sciences for an article
on Riemann’s zeta function [34], and that the subject of that contest was to fill in a
gap in Riemann’s work on that function.28

Cauchy submitted his first paper on definite integrals of a complex variable, the
Mémoire sur les intégrales définies, in 1814 [8]. The paper is 188 pages long. Cauchy,
at the time he wrote this paper, was 25, the same age at which Riemann submitted
his doctoral dissertation, thirty-six years later. This was not Cauchy’s first result.
Cauchy found in 1805 (he was 16) a solution to a problem of Apollonius concerning
a circle tangent to three circles. In 1811, he wrote two articles on polyhedra, general-
izing Euler’s formula, solving a rigidity problem that Lagrange asked him. Cauchy’s
name is now attached to this rigidity result. In Chap.1 of the present volume [48],
we comment on the work of Cauchy on polyhedra in relation with Euler’s work.
Legendre, in a later edition of his Éléments de géometrie, included the new proofs
and the results of Cauchy on polyhedra. In 1812, Cauchy submitted a memoir on
symmetric functions. In 1816, he won a prize for a contest set by the Paris Academy
of Sciences concerning the propagation of water waves. The paper he presented for

26For instance, Riemann “proved” in a course he gave on complex variables that if a series of
functions is convergent, then one can integrate it term by term; cf. [27] p. 13, where Riemann’s
proof is analyzed.
27On peut dire que l’erreur est quelquefois utile, et que, dans les époques vraiment créatrices,
une vérité incomplète ou approchée peut être plus féconde que la vérité même accompagnée des
restrictions nécessaires.
28The subject of the competition was: “The determination of the number of primes smaller than a
given quantity” (which is the title of Riemann’s article [61]), but in the comments following the
problem, it was asked to fill the gaps in Riemann’s work on the zeta function. The subject of the
contest was chosen byHermite, with his friend Stieltjes inmind, who had announced in 1885 a proof
of the Riemann hypothesis. In the meantime Stieltjes withdrew his “proof,” and the prize went to
Hadamard [34]. See the details of this story in [46], and also in Chap.8 of the present volume [49].
Hadamard’s contribution followed from the work he did in his doctoral thesis, Essai sur l’étude des
fonctions données par leur développement de Taylor (Essay on the study of the functions given by
their Taylor expansion), devoted to complex function theory and written under Émile Picard and
Jules Tannery.
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that competition is 300 pages long. Cauchy did these works while he was working
as an engineer, at the construction site of the port of Cherbourg (between 1810 and
1813). Bertrand [4] writes that during these three years where he worked as an engi-
neer, “Cauchy reserved several hours every day to the study of Lagrange and Laplace,
but original and new ideas were perturbing him at every moment. After they stole
from him his sleep, formulae were haunting him on the construction site.”29 After
these three years, Cauchy decided to stop working as an engineer and to come back
to university.

The 1814 paper [8] of Cauchy is considered as one of his most important. It
inaugurated a long series of papers on the theory of definite integrals and on complex
functions, two subjects that accompanied Cauchy for the rest of his life. In this paper,
Cauchy studies definite integrals in which the limits of integration are real numbers,
but where the function that is integrated may be real or complex. Using the standard
terminology of his epoch, Cauchy calls such a function “imaginary.” Furthermore the
function is allowed to become infinite at somepoints between the limits of integration.
This led him to develop a notion of integrals he called singular. The 1814 memoir
contains in an embryonic form the theory of line integrals in the complex planewhich
he developed later.

In two memoirs written in 1825, [13, 14], Cauchy initiated the theory of definite
integrals taken between complex values. He proved that such an integral can take
more than one value, depending on the choice of a path between the (now complex)
numbers x0 and X . Again, this happens in particular when the function f takes the
value infinity at some points. Cauchy also gave amethod of calculating the difference
between two such values in terms of a finite number of “singular integrals.” It might
be important to note that one of the main reasons for which Cauchy studied integrals
of functions of complex variables is that he knew that passing to complex values
of the variable and using his residue calculus will also lead to results on definite
integrals of functions of a real variable; see e.g. [17]. In fact, getting formulae for
definite integrals was a fashionable subject at that time.

It is not possible to mention here the totality of Cauchy’s later papers and books
on functions of a complex variable (there are too many), and we shall say only a
few words on some of them. For a comprehensive exposition of Cauchy’s work on
functions of a complex variable, the reader may refer to [7, 33]. We give though a
list of a few important concepts in the theory of functions that we owe to Cauchy.
Our list is very far from being exhaustive, but some of the concepts we present here
were crucial in the work of Riemann.

(1) The notion of path (“chemin”), in relation with functions of a complex variable,
and the notion of path integral.

29Cauchy à Cherbourg réservait des heures réglées pour l’étude de Lagrange et de Laplace; mais
les idées originales et nouvelles le troublaient à toute heure. Après avoir usurpé sur son sommeil,
les formules le poursuivaient sur les chantiers.
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(2) Rigorous definitions of limits,30 of integrals (as limits of sums) and of conver-
gence of series. In the introduction to his Cours d’analyse de l’École Royale
Polytechnique [10], written in 1821, Cauchy writes:

[...] Thus, before carrying out the summation of any series, I was led to examine in what
cases these series may be summed, or, in other words, what are the conditions of their
convergence. And in this respect, I established general rules which I think are worth of
some attention.31

In particular we owe to Cauchy the espsilon-delta and the epsilon-N definitions
of limits and convergence32 aswell as the notion of Cauchy sequence. In this con-
text, Cauchy is considered as one of the main founders of the rigorous methods
in analysis as we conceive them today, for what concerns convergence, infinite
series, integration, etc.

(3) The notion of circle of convergence of a power series. One might note also that
power series were studied by Euler and Lagrange long before Cauchy (and, in
fact, the notion of power series, in Lagrange’s sense was part of his definition
of a function), but that it was Cauchy who considered that a power series makes
sense only if it is convergent.

(4) A theorem for local existence results for differential equations (known today as
Cauchy’s theorem).

(5) The definition of a holomorphic function through the partial differential equa-
tions which became known as the Cauchy–Riemann equations.
In 1851, Cauchy discovered the notion of a derivative independent of direction
and he called a functionwith such a property “fonctionmonogène.”33 He showed
that the real and imaginary parts of such a function must satisfy the Cauchy–
Riemann equations; cf. his papers [19, 22].34 This was the same year (1851)
that Riemann defined analytic functions using the Cauchy–Riemann equations.
In fact, starting from 1831 (see [15]), Cauchy was interested in the question of
when a function can be developed as a convergent power series. He introduced,
rather unsuccessfully, several conditions, including the fact that the function has

30Cauchy had rigorous definitions of limit and continuity, although, in some sense, it is difficult to
have such rigorous definitions without a rigorous development of the notion of real number, which
was done much later.
31[...] Ainsi, avant d’effectuer la sommation d’acucune série, j’ai dû examiner dans quels cas les
séries peuvent être sommées, ou, en d’autres termes, quelles sont les conditions de leur convergence;
et j’ai, à ce sujet, établi des règles générales qui me paraissent mériter quelque attention.
32On this subject, besides Cauchy, one has to mention the work of Bolzano, done around the same
period.
33The Greek roots of the French word “monogène” used by Cauchy reflect the fact that this function
has a unique derivative. The Greek word “monogenes” has a theological connotation. It is used in
the Septuagint translation of the Bible (Hebrews 11–17), for Isaac as Abraham’s “only begotten
son” and in the Gospel of John (20–31) for Jesus as the “only begotten son” of God.
34It is interesting to note that in his doctoral dissertation, Riemann includes in the definition of a
function of a complex variable the fact of having a derivative independent of direction. The fact
that every complex function satisfies the Cauchy–Riemann equations becomes a theorem. Cf. §4
of Riemann’s dissertation.
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a continuous derivative. It was only at the beginning of the 1850s that he came
up with the condition saying that the function has a (unique) complex derivative,
which is equivalent to conformality. These hesitations of Cauchy are analyzed
in the thesis [50].
It is important to emphasize that even though the Cauchy–Riemann equations
were known before Cauchy and Riemann,35 it is thanks to these two authors
that these equations became at the forefront of the theory of functions of one
complex variable, and at the same time made the connection between analysis
and mathematical physics.

(6) The notion of period of a definite integral [18].
(7) The Cauchy integral formula and the calculus of residues which became known

as the Cauchy formula. (An early version appears in his paper [9]).
(8) The notion of monodromy associated with a function on a given domain which

attains the same value independently of the path chosen in that domain. Cauchy
made the relation between this notion and that of being monogenic (having a
derivative independent of direction) [23].

Cauchy, like Riemann, was also a physicist. He made important contributions to
hydrodynamics, elasticity and astronomy. His name is also attached to a hypersur-
face in spacetime which intersects every inextensible causal curve exactly once. We
mention this fact because it is related to relativity theory, a field on which the ideas
of Riemann have a large impact and which is the subject of the last three chapters of
the present volume.

We review now a major treatise of Cauchy on analysis, his Cours d’analyse de
l’École Royale Polytechnique [10], written in 1821. This treatise was conceived
as a textbook for the first-year students of the École Polytechnique, accompanying
Cauchy’s lectures whose aimwas to present the bases of analysis in themost possible
rigorous way.36 An English translation of Cauchy’s Cours is available (see [11]). In

35The Cauchy–Riemann equations are, in themselves, much older than Cauchy and Riemann. They
already occur in d’Alembert’sworks on fluid dynamics,Essai d’une nouvelle théorie de la résistance
des fluides, Paris, 1752. Klein, in his Development of mathematics in the 19th century ([42] p. 239)
writes that “perhaps they occur even earlier.”
36There is a long French tradition of Cours d’Analyse for the students of the École Polytechnique.
One may mention Lagrange’s Cours whose complete title is Théorie des fonctions analytiques,
contenant les principes du calcul différentiel, dégagés de toute considération d’infiniment petits
ou d’évanouissans, de limites ou de fluxions, et réduits à l’analyse algébrique des quantités finies
(Theory of analytic functions containing the principles of differential calculus, without any consid-
eration of infinitesimal or vanishing quantities, of limits or of fluxions, and reduced to the algebraic
analysis of finite quantities), written in 1797, three years after the foundation of the École. Cauchy
started to teach his course two years after Lagrange’s death. One should also mention the Résumé
des leçons données à l’École Royale Polytechnique sur le calcul infinitésimal (Summary of lectures
on infinitesimal calculus given at the École Royale Polytechnique) (1823), a treatise which Cauchy
wrote for the use of his students, after he modified his lectures because of a change in the official
program. One may also mention the Résumé des cours d’analyse by Charles Hermite, in two parts
(1867–1868 and 1868–1869), the Cours d’analyse de l’École Polytechnique by Charles Sturm, the
Cours d’Analyse by Jacques Hadamard, the more recent Cours d’analyse by Laurent Schwartz
(1967), and there are several others.
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fact, Cauchy published only the first part of his Cours, to which he gave the name
Analyse algébrique. It is conceivable that the sequel of this treatise never appeared
because of a change in the curriculum, after which Cauchy published his Résumé
des leçons [12].

In his Cours, Cauchy starts with the notion of variable and constant, then he
considers infinitely small quantities, the various kinds of functions of a real or com-
plex variable, logarithms, powers, trigonometric functions, limits of functions and of
sequences, convergent and divergent series, methods of solving equations, decom-
position of rational functions, continuity, convergence and divergence criteria and
many other items that are still taught to students today. In Chap. 1, Sect. 3, Cauchy
discusses functions which assign to a given value of the variable more than one value.
An example is when the function is defined by a limiting procedure, and the limits
are not unique. He calls such values singular values of the function. He says that
such values can be obtained when the variable takes the value infinity. He writes
that “the search of the singular values of functions is one of the most important and
delicate questions in analysis.”

Between the years 1826 and 1830, Cauchy published, on a monthly basis, a
series of papers in volumes which he called Exercices de Mathématiques. Between
1840 and 1847, he published another set of four volumes, which he called Exercices
d’analyse et de physique mathématique. The Exercices appeared in the form of a
periodical of which Cauchy was the unique author. In several papers published in
the Exercices, Cauchy rewrites, corrects, improves previous results.37 In a report that
Bertrand wrote on Cauchy’s biography by Valson [5], he says (p. 110):

The genius of Cauchy is worthy of all our respect. But why should we refrain from recalling
that the great profusion of his works, which often reduces their precision, has more than one
time hidden their force? The dangerous easiness of an immediate publicity was for Cauchy
a compelling temptation, and often, a pitfall. His sprit, always in motion, used to bring each
week to the Academy works that were barely sketched, projects of memoirs and attempts

37In his Éloge of Cauchy, Bertrand writes ([4] p. 114) about the Exercices: No mathematical
publication, with whatever excellency and number of collaborators, may compete with the eight
volumes of the Exercices. Avidly expected in their novelty, they are nowadays classical among
the masters. No page of the Exercices is unknown to any geometer. When Cauchy had to refer to
himself, he gladly referred to himself as the author of the Exercices. This title was sufficient. If some
geometer today dared to publish an Exercices de mathématiques, we would be surprised by such a
boldness, in the sameway, and I am not exaggerating at all, as if a poet, whose name is not Lamartine
or Victor Hugo, had dared to publish someOrientales orMéditations poétiques [Aucune publication
mathématique, quelle que fût l’excellence et le nombre de ses collaborateurs, ne pourrait rivaliser
avec les huit volumes des Excercices. Avidement attendus dans leur nouveauté, ils sont aujourd’hui
classiques parmi lesmaîtres ; aucune page desExcercices n’est inconnue à aucun géomètre. Lorsque
Cauchy avait à se citer lui-même, il se nommait volontiers: l’auteur des Exercices. Ce titre suffisait.
Si un géomètre osait aujourd’hui publier des Exercices de mathématiques, on s’étonnerait d’une
telle audace, tout autant, je n’exagère rien, que si un poète, sans se nommer Lamartine ou Victor
Hugo, osait publier des Orientales ou desMéditations poétiques]. We note that the name Exercices
for a publication was already used by Legendre, who published a famous multi-volume Exercices
de calcul intégral (1811–1817) [43], a treatise whose main subject is elliptic integrals and their
applications to geometry and analysis, which incidentallywas one of the favorite subjects of research
of Riemann.
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which were sometimes unsuccessful. Even when a brilliant discovery came to crown his
efforts, he used to force his reader to follow him in ways that were often infertile and which
were tested and abandoned alternately without any prior notice. Let us take as an example
the theory of substitutions and the number of values of a function. To whom does it owe its
greatest advances? To Cauchy, without any doubt, and it is true that his name, in the history
of this beautiful question, rises to a great hight above all the others. But on that theory,
which owes him a lot, Cauchy composed more than twenty memoirs. Two among them are
masterpieces. What can we say of the eighteen others? Nothing, except for the fact that their
author is searching a new way, follows it for some time, catches a glimpse of light, tries
hard pointlessly to attain it, and at the end quits, without showing any embarrassment, the
avenues of the edifice which he renounces to build.38

We quote now Bertrand, from his Éloge of Cauchy ([4] p. 101):

He was exploring new regions, whose hights were known, but nobody was able to guess the
extent, the consistency, and their inexhaustible fertility.39

An Éloge funèbre is an homily in which the departed person is praised for his life
and achievements, and it is natural to find in Bertrand’s Éloge such laudatory words.
Other people, historians of mathematics, made also very laudatory statements. We
quote Bruno Belhoste, from the end of his exquisite biography of Cauchy [3]:

Thus ended the life of the greatest French mathematician of his times scarcely two years had
passed since Gauss had died in Germany. A new age was now opening in the long history
of mathematics, an age in which the leading figures in the mathematical sciences would
be Germans. Between 1854 and 1859, Riemann, Weierstrass, and Kronecker came onto the
scene on the other side of the Rhine. Meanwhile, however, in France, there was a blossoming
of works on Cauchy’s theory.

Laugwitz notes in his article [44] p. 80 that Cauchy’s Cours d’analyse, remained
for a long time the only treatise containing a complete theory of real and complex
power series. He also reports that according to the Göttingen library borrowing list,
Riemann, during the years 1846/47, while he was a student, borrowed this book,
together with the Exercices de mathématiques and other works of Cauchy. Further-
more, in the draft for the defense of his doctoral thesis, Riemann refers to the works

38Le génie deCauchy est digne de tous nos respects;mais pourquoi d’abstenir de rappeler que la trop
grande abondance de ses travaux, en diminuant souvent leur précision, en a plus d’une fois caché la
force ? La dangereuse facilité d’une publicité immédiate a été pour Cauchy une tentation irrésistible
et souvent un écueil. Son esprit, toujours en mouvement, apportait chaque semaine à l’Académie
des travaux à peine ébauchés, des projets de Mémoire et des tentatives parfois infructueuses, et
lors même qu’une brillante découverte devrait couronner ses efforts, il forçait le lecteur à le suivre
dans les voies souvent stériles essayées et abandonnées tour à tour sans que rien vint l’en avertir.
Prenons pour exemple la théorie des substitutions et du nombre de valeurs d’une fonction. À qui
doit-elle ses plus grands progrès ? à Cauchy sans aucun doute, et il est véritable que son nom, dans
l’histoire de la belle question, s’élève à une grande hauteur au-dessus de tous les autres. Mais, sur
cette théorie qui lui doit tant, Cauchy a composé plus de vingt mémoires. Deux d’entre eux sont des
chefs d’œuvre. Que dire des dix-huit autres ? rien, sinon que le lecteur y cherche une voie nouvelle,
la suit quelque temps, entrevoit la lumière, s’efforce inutilement de l’atteindre et quitte enfin, sans
marquer aucun embarras, les avenues de l’édifice qu’il renonce à construire.
39Il explorait des régions nouvelles, on savait à quelle hauteur : nul n’en pouvait deviner l’étendue,
la consistance et l’inépuisable fécondité.
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of Cauchy concerning the definition of an analytic function [47]. Neuenschwander
adds the following:

Riemann was suitable, as no other German mathematician was, to effect the first synthesis of
the “French” and the “German” approaches in function theory. In his introductory lectures
on complex function theory (cf. [65–67]; 1861), Riemann dealt with the Cauchy Integral
Formulae, the operations on infinite series, the power series expansion, the Laurent series,
the analytic continuation by power series, the argument principle, the product representation
of an entire function with arbitrarily prescribed zeros, the evaluation of definite integrals by
residues, etc., besides the subjects known from his published papers.

Riemann does not mention Cauchy in his doctoral dissertation [58]. It is not sure
that Riemann, even though he borrowed from the library Cauchy’s work, really read
them. It is possible that he only skimmed them and reconstructed the theory on
his own. Riemann however mentions Cauchy’s name twice in his paper on Abelian
functions [60], at the end of §2 and in §6, for a result on the expansion of a function in
power series, but he adds, both times, that the result may also be proved using Fourier
series. Riemann also mentions Cauchy’s work three times in his Habilitation memoir
on trigonometric functions [59]. The first time is in §2, in the historical part of his
paper, where Riemann quotes a result where Cauchy was mistaken, and which he
says, can be proved using Fourier series.40 The second time is in §3 of this memoir,
where Riemann says that Cauchy’s attempt to prove the convergence of a certain
series is unsuccessful. The third time is in §4, where Riemann introduces his famous
theory of integration. He criticizes again Cauchy’s attempts to develop a general
concept of definite integral. It is possible that Riemann was disturbed by Cauchy’s
mistakes and for this reason he was not so much inclined to quote him. Cauchy was
also hardly quoted by the Germans during the same period. On the contrary, Cauchy
was very generous in quoting others. Freudenthal writes his biography [31]:

Of all the mathematicians of his period he is the most careful in quoting others. His reports
on his own discoveries have a remarkably naïve freshness because he never forgot to sum
up what he owed to others. If Cauchy were found in error, he candidly admitted his mistake.

We elaborate on the relation between the way Riemann’s work on Riemann sur-
faces was received by the French school in Chap.8 of the present volume [49].
Hermite, in the introduction to the treatise Théorie des fonctions algébriques et de
leurs intégrales (Theory of algebraic functions and their integrals) by Appell and
Goursat [2], published in 1895, makes a summary of the influence of the ideas of
Puiseux, 44 years after their appearence. He writes the following:

The Memoir on algebraic functions by Puiseux, published in 1854,41 opened the research
ground which led to the great mathematical discoveries of our epoch. These discoveries
gave the science of calculus necessary and fruitful principles which were missing until that
time. They replaced the notion of function, which was still obscure and incomplete, by
a precise conception which transformed analysis by giving it a new basis. Puiseux is the
first who shed complete light onto the insufficiency and the defect of the point of view
where we represent, in the same way as polynomials and rational fractions, the algebraic

40Riemann adds that it was Dirichlet who showed Cauchy’s mistake.
41The year should be 1851.
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irrationals and all the quantities in infinite numberwhich have their origin in integral calculus.
Following the path of Cauchy, considering the succession of imaginary values, the paths
described simultaneously by the variable and the roots of an equation, the eminent geometer
highlighted, in its essential character, their analytic nature. He discovered the role of critical
points, and the circumstances of the exchange of the initial values of the roots, when the
variable returns to its starting point, describing a closed loop containing one or several of
these roots. He resumed the consequences of these results in the study of the integrals of
algebraic differentials. He noticed that the various integration paths give rise to multiple
determinations, which led him to the origin – which till then was completely hidden – of the
periodicity of circular functions, of elliptic functions, and of themulti-variable transcendants
defined by Jacobi as inverse functions of hyperelliptic integrals.42

5 Uniformization Again

In the previous sections, we used the word “uniformization” in the original sense
intended by Riemann, as finding a ground space on which a multi-valued func-
tion defined by an algebraic equation becomes uniform (that is, single-valued). We
showed that the question of uniformization, in this sense, was a major factor in the
development of the theory of Riemann surfaces. Later on, the word uniformization
acquired several newmeanings, albeit variations on the original one. One of the alter-
native formulations of the uniformization problem is the following: Given an alge-
braic equation f (z, w) = 0 as in Sect. 2 above, to find two single-valued functions
z(t) and w(t) of one variable t such that the equation f (z(t), w(t)) = 0 is satisfied.
This is the form in which Poincaré used this word. Besides his formulation of the
problem, Poincaré introduced automorphic functions in the study of uniformization.
In an 1882 Comptes Rendus note [53], he announces a result saying that for any
algebraic curve of genus ≥ 2 defined by an algebraic equation f (z, w) = 0 there
exists two Fuchsian functions F(u) and G(u) satisfying f (F(u),G(u)) = 0. One

42Le mémoire de Puiseux sur les fonctions algébriques, publié en 1854, a ouvert le champ de
recherches qui a conduit aux grandes découvertes mathématiques de notre époque. Ces découvertes
ont donné à la science du calcul des principes nécessaires et féconds qui, jusqu’alors, lui avaient
manqué; elles ont remplacé la notion de fonction, restée obscure et incomplète, par une conception
précise qui a transformé l’analyse en lui donnant de nouvelles bases. Puiseux a le premier mis
en lumière l’insuffisance et le défaut de ce point de vue où l’on se représente, à l’image des
polynômes et des fractions rationnelles, les irrationnelles algébriques et toutes les quantités en
nombre infini qui ont leur origine dans le calcul intégral. En suivant la voie deCauchy, en considérant
la succession des valeurs imaginaires, les chemins décrits simultanément par la variable et les
racines d’une équation, l’éminent géomètre a fait connaître, dans ses caractères essentiels, leur
nature analytique. Il a découvert le rôle des points critiques, et les circonstances de l’échange
des valeurs initiales des racines, lorsque la variable revient à son point de départ, en décrivant un
contour fermé comprenant un ou plusieurs de ces points. Il a poursuivi les conséquences de ces
résultats dans l’étude des intégrales de différentielles algébriques. Il a reconnu que les divers chemins
d’intégration donnent naissance à des déterminations multiples, ce qui l’a conduit à l’origine,
jusqu’alors restée entièrement cachée, de la périodicité des fonctions circulaires, des fonctions
elliptiques, des transcendantes à plusieurs variables définies par Jacobi comme fonctions inverses
des intégrales hyperelliptiques.
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year later, in his paper [54], he stated a general uniformization theorem, in which the
reference to algebraic functions disappeared:

Let y be an analytic function of x , which is non-uniform. We can always find a variable z
such that x and y are uniform functions of z.43

This is the general form of the uniformization problem. It took several years for
Poincaré to provide a proof of this theorem. The attempts to prove this general
statement made the subject of uniformization, for several decades, a vast subject
of research. Whereas from the French side only one name comes to the fore-
front: Poincaré, on the German side, a multitude of prominent mathematicians were
involved in this uniformization program (Christoffel, Hilbert, Klein, Koebe, Osgood,
Schwarz, and there are others). It is not our aim here to enter into this immense
research ground, but we would like to recall Hilbert’s Problem 22, a problem con-
cerning specifically this general uniformization. This is one of the problems that
Hilbert presented in his lecture, delivered on August 1900, at the Second Interna-
tional Congress of Mathematicians held in Paris. The lecture is entitled The future
problems of mathematics, and the problems he presented became a guide for a sub-
stantial part of themathematical research that was conducted in the twentieth century.
Several slightly different versions of Hilbert’s problems were published by Hilbert
after that lecture, in various journals and in several languages. Moreover, the number
of problems is not the same in all these versions. The paper published in the Bulletin
of the American Mathematical Society ([37], 1901) contains a commented set of
twenty-three problems. Problem 22 is entitled Uniformization of analytic relations
by means of automorphic functions. Hilbert presents the problem completely in the
tradition of Poincaré, as the one of reducing a two-variable relation to a one-variable
one, by introducing automorphic forms. In his statement of and his comments on
the problem, Hilbert mentions several times Poincaré and no other mathematician,
except for Picard, whom he mentions at the end of his text, when he suggests a more
general uniformization problem, involving algebraic (and, more generally, analytic)
equations of three or more variables. Let us review precisely Hilbert’s statement:

As Poincaré was the first to prove, it is always possible to reduce any algebraic relation
between two variables by the use of automorphic functions of one variable. That is, if any
algebraic equation in two variables be given there can always be found for these variables two
such single valued automorphic functions of a single variable that their substitution renders
the given algebraic equation an identity. The generalization of this fundamental theorem
to any analytic non-algebraic relations whatever between two variables has likewise been
attempted with success by Poincaré,44 though by a way entirely different from that which
served him in the special problem first mentioned. From Poincaré’s proof of the possibility
of reducing to uniformity an arbitrary analytic relation between two variables, however, it
does not become apparent whether the resolving functions can be determined to meet certain
additional conditions. Namely, it is not shown whether the two single valued functions of the
one new variable can be so chosen that, while this variable traverses the regular domain of
these functions, the totality of all regular points of the given analytic field are actually reached

43Soit y une fonction analytique de x , non uniforme. On peut toujours trouver une variable z telle
que x et y soient fonctions uniformes de z.
44[Hilbert’s footnote:] Bull. Soc. Math. de France, vol. 11 (1883).
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and represented. On the contrary it seems to be the case, from Poincaré’s investigations, that
there are beside the branch points certain others, in general infinitely many other discrete
exceptional points of the analytic fields, that can be reached only by making the new variable
approach certain limiting points of the function. In view of the fundamental importance of
Poincaré’s formulation of the question it seems to me that an elucidation and resolution of
this difficulty is extremely desirable.

In conjunctionwith this problemcomes up the problemof reducing to uniformity an algebraic
or any other analytic relation among three or more complex variables – a problem which
is known to be solvable in many particular cases. Toward the solution of this the recent
investigations of Picard on algebraic functions of two variables are to be regarded aswelcome
and important preliminary studies.

The uniformization problem in its general formwas solved eventually by Poincaré
and Koebe. There are several modern books and articles that report on this problem
and its solution. The interested reader should go through the original papers, guided
by the modern reports.

Acknowledgements I would like to thank Vincent Alberge, Ken’ichi Ohshika and François Lau-
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1 Introduction

The notion of Riemann surface, discovered by Riemann and introduced in his doc-
toral dissertation (1851), is the culmination of a series of investigations done before
him, by Cauchy and others, on the theory of functions of a complex variable. With
this discovery, Riemann made a complete transformation of the field of complex
analysis, merging it with topology and algebraic geometry. He also paved the way
to the methods of hyperbolic geometry combined with group theory that gave rise
to automorphic forms, developed by Poincaré, Klein and others, and to many other
developments.

In Chap.7 of the present volume (cf. [77]), we discussed the results of Cauchy and
Puiseux on line integrals and their dependence on homotopy classes of paths, and we
also mentioned other related results that were available to Riemann when he wrote
his doctoral dissertation. Although the problems he addressed were in the continuity
of the works of his predecessors, the complete novelty of his ideas, with proofs
that rely largely on geometric intuition, sometimes with arguments from physics,
led to the fact that these ideas were sometimes poorly understood by Riemann’s
contemporaries and immediate successors. In particular, this led Klein to spend a
substantial part of his life explaining Riemann’s work and trying to make it more
accessible. He did this in numerous lectures and books, including the well-known
treatise Über Riemanns Theory der algebraischen Funktionen und ihrer Integrale
(On Riemann’s theory of algebraic functions and their integrals) (1882) [58].

France, in the few years preceding the publication of Riemann’s first memoir, saw
the rise of a remarkable school of analysis whose major representative was Cauchy.
Among the immediate followers of Cauchy, one has to mention Liouville, Puiseux,
Hermite, Briot, andBouquet, and then came another generation of analysts, including
Jordan, Halphen, Goursat, Appell, Tannery, Lacour, Molk, Picard, Darboux, Simart,
Fatou, and there are others. All these mathematicians had a great admiration for
Riemann and had no doubt about the importance of his ideas, even if they did not fully
make use of them in their works. Riemann’s collected papers, translated into French,
appeared in 1889, with a preface by Hermite [98], who starts with the following1:

The work of Bernhard Riemann is the most beautiful and greatest one in analysis in our
epoch. It has been consecrated by a unanimous admiration and will leave an imperishable
mark in Science. [...] Never before that, in anymathematical publication, the gift of invention
appearedwithmore power, never had anybody asked for such beautiful conquests in themost
difficult questions in analysis.2

One notion which was particularly painful to accept by the French analysts is that
of Riemann surface. Most of the treatises on the theory of functions of a complex

1In the present chapter, the translations from the French are mine.
2L’œuvre de Bernhard Riemann est la plus belle et la plus grande de l’Analyse à notre époque: elle a
été consacrée par une admiration unanime, elle laissera dans la Science une trace impérissable. [...]
Jamais, dans aucune publication mathématique, le don de l’invention n’était apparu avec plus de
puissance, jamais on n’avait demandé autant de belles conquêtes dans les plus difficiles questions
de l’analyse.

http://dx.doi.org/10.1007/978-3-319-60039-0_7
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variable that were used in teaching in the French universities or at the École Poly-
technique, in the few decades that followed Riemann’s death, were based exclusively
on the methods of Cauchy, missing the essential relevance of Riemann surfaces. As a
general rule, Riemann’s ideas were absorbed very slowly, and it was only around the
turn of the twentieth century that the French treatises included the theory of Riemann
surfaces in their full strength.

In the present chapter, we review this fascinating page of the history of complex
analysis. This will also give us the occasion of surveying briefly the lives and works
of several prominent mathematicians from this exceptional period, and of discussing
the relations between the French and the German mathematical schools.

The plan of the rest of this chapter is the following.
In Sect. 2, we comment on the notion of Riemann surface and on Riemann’s

existence theorem and how these concepts were received when Riemann introduced
them.

In Sect. 3, we review the way Riemann’s ideas on this subject are presented in
the famous French treatises on analysis, including those of Briot-Bouquet, Briot,
Hermite, Jordan, Appell-Goursat, Goursat, Picard, Picard-Simart, Appel-Goursat-
Fatou, Halphen, Tannery-Molk and Appell-Lacour. Elliptic functions constitute the
central theme of several of these treatises. At the same time, we give some bio-
graphical information on the authors of these treatises, highlighting relations among
them. The overall picture is that of a coherent group, forming a “school,” which was
probably the first French school of mathematics. Several doctoral dissertations were
written under the same advisor, and the dissertation committees often consisted of
the same persons: Darboux, Hermite, Bouquet, with some small variations.

In Sect. 4, we review the content of the doctoral dissertation of Georges Simart,
which is entirely dedicated to a presentation of Riemann’s work on Riemann surfaces
and Abelian functions. To complete the picture, we have included a section, Sect. 5,
in which we review a few French doctoral dissertations and other works of the period
considered which contributed to the diffusion of other major ideas of Riemann: the
zeta function, minimal surfaces and integration.

In Sect. 6, we take the opportunity of the topic discussed in this chapter to say
a few words on the relationship between the French and the German schools of
mathematics, in particular in the fewyears that followed the 1870 devastating French-
German war.

The concluding section, Sect. 7, contains some additional notes on the relationship
between the French and the German schools in the period considered.
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2 Riemann Surfaces

In his doctoral dissertation [92], Riemann introduced Riemann surfaces as ramified
coverings of the complex plane or of the Riemann sphere. He further developed his
ideas on this topic in his paper on Abelian functions [94]. This work wasmotivated in
particular by problems posed by multi-valued functions w(z) of a complex variable
z defined by algebraic equations of the form

f (w, z) = 0, (1)

where f is a two-variable polynomial in w and z.
Cauchy, long before Riemann, dealt with such functions by performing what he

called “cuts” in the complex plane, in order to obtain surfaces (the complement
of the cuts) on which the various determinations of the multi-valued functions are
defined. Instead, Riemann assigned to a multi-valued function a surface which is
a ramified covering of the plane and which becomes a domain of definition of the
function such that this function, defined on this new domain, becomes single-valued
(or “uniform”). Riemann’s theory also applies to transcendental functions. He also
considered ramified coverings of surfaces that are not the plane.

Together with introducing Riemann surfaces associated with algebraic functions,
Riemann considered the inverse problem: Given a Riemann surface obtained geo-
metrically by gluing a certain finite number of pieces of the complex plane along
some curves (which are equivalent to the “cuts” in the sense of Cauchy), can we find
an algebraic relation such as (1) with which this Riemann surface is associated? This
can also be formulated as the problem of finding on an arbitrary Riemann surface a
meromorphic function with prescribed position and nature of its singularities (poles
and branch points). The idea, contained in Riemann’s 1851 dissertation [92], is nat-
ural, since a polynomial is described by its roots, and a rational function by its zeros
and poles. Riemann showed that the general question has a positive answer, and in
his solution to the problem, he proved that a meromorphic function is determined
by its singularities. This result is one form of what is usually called the Riemann
existence theorem, a theorem that had a tremendous impact on complex geometry.
For instance, it was the main motivation for what became known as the Riemann–
Roch theorem. In his paper on Abelian functions [94], Riemann proved one part of
that theorem, namely, that given m points on a closed Riemann surface of genus
p, the dimension of the complex vector space of meromorphic functions on this
surface having at most poles of first order at the m points is ≥ m − p + 1. In his
paper [101] (1865), Gustav Roch, a student of Riemann, transformed this inequality
into an equality, which became known as the Riemann–Roch theorem. Riemann’s
result relies on his existence theorem, the description of a meromorphic function
by its singularities allowing a dimension count. The proof that Riemann gave of his
inequality relies on the Dirichlet principle and it was considered non-rigorous. This
initiated works by several mathematicians, some of them with the aim of finding
alternative proofs Riemann’s results that are based on this principle, and others with
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the goal of giving a solid foundation to the Dirichlet principle. Thus, an important
activity was generated as an indirect consequence of Riemann’s existence theorem.

The discussion around Riemann’s existence theorem is spread in several sections
of Riemann’s doctoral dissertation [92] and his paper on Abelian function, [94], in
particular in Section III of the preliminary part of the latter, entitled Determination
of a function of a complex variable magnitude by the conditions it fulfills relatively to
the boundary and to the discontinuities. Later in the same paper, an existence result
is given in the case of functions defined by integrals of algebraic functions.

Riemann’s use of the Dirichlet principle was harshly criticized by Weierstrass
[109], and these critiques spread a doubt not only on the validity of Riemann’s proof
of his existence theorem but also of other theorems. It is important to emphasize this
fact, because it explains in part why Riemann’s results on Riemann surfaces were not
used by his immediate followers. Klein writes in his Development of mathematics in
the 19th century ([59] p. 247 of the English translation):

With this attack byWeierstrass on Dirichlet’s principle, the evidence to which Dirichlet, and
after him, Riemann, had appealed, became fragile: Riemann’s existence theorems3 were left
in the air.

It is interesting to observe the positions mathematicians took with respect to Riemann’s
existence theorem and Weierstrass’s critique.

The majority of mathematicians turned away from Riemann; they had no confidence in the
existence theorems, whichWeierstrass’s critique had robbed of their mathematical supports.
They sought to salvage their investigations of algebraic functions and their integrals by again
proceeding from a given equation F(ζ, z) = 0 [...] Riemann’s central existence theorem for
algebraic functions on a given Riemann surface fell from its place, leaving only a vacuum.

It is also interesting to note Riemann’s attitude toward Weierstrass’s critique as
recorded by Klein in the same book ([59] pp. 247–48 of the English translation):

Riemann had a quite different opinion. He fully recognized the justice and correctness of
Weierstrass’s critique; but he said, as Weierstrass once told me “that he appealed to the
Dirichlet principle only as a convenient tool that was right at hand, and that his existence
theorems are still correct.”

Concerning the notion of Riemann surface, Klein writes, in the same work ([59]
p. 245 of the English translation):

The most important point is that, according to Riemann’s considerations, to any given Rie-
mann surface there corresponds one (and only one) class (a “field”) of algebraic functions
(with their Abelian integrals). For Riemann a “class” of algebraic functions means the total-
ity of functions R(ζ, z) that can be rationally expressed in terms of ζ and z; the term “field”
was introduced later by Dedekind. This is a theorem that could not have been obtained in
another way. At this point Riemann’s theory remained, for the time being, ahead of all the
others which started from the equation F(ζ, z) = 0.

Riemann not only considered Riemann surfaces as associated with individual
multi-valued functions or with meromorphic function in general, but he also con-
sidered them as objects in themselves, on which function theory can be developed

3The plural will be explained later, when we shall talk about Picard’s work.
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Fig. 1 A drawing of a Riemann surface, from the treatise Théorie des fonctions algébriques (1895)
by Goursat and Appell

in the same way as the classical theory of functions is developed on the complex
plane. Riemann’s existence theorem for meromorphic functions with specified sin-
gularities on a Riemann surfaces is also an important factor in this setting of abstract
Riemann surfaces. Riemann conceived the idea of an abstract Riemann surface, but
his immediate followers did not. During several decades after Riemann, mathemati-
cians (analysts and geometers) perceived Riemann surfaces as objects embedded
in three-space, with self-intersections, instead of thinking of them abstractly. They
tried to build branched covers by gluing together pieces of the complex plane cut
along some families of curves, to obtain surfaces with self-intersections embedded
in three-space. In his 1913 book Idee der Riemannschen Fläche (The concept of a
Riemann surface), [110] (p. 16 of the English translation), Weyl writes about these
spatial representations:

In essence, three-dimensional space has nothing to do with analytic forms, and one appeals
to it not on logical-mathematical grounds, but because it is closely associated with our
sense-perception. To satisfy our desire for pictures and analogies in this fashion by forcing
inessential representations on objects instead of taking them as they are could be called an
anthropomorphism contrary to scientific principles.

Hilbert, in his 1903 paper [50], considers surfaces that are not embedded in a Euclid-
ean space.4

The example of a Riemann surface in Fig. 1 is extracted from the treatise Théorie
des fonctions algébriques (Theory of algebraic functions) by Paul Appell and
Edouard Goursat (1895) in which the authors explain Riemann’s ideas and on which
we shall comment later in the present chapter. The authors explain that in the picture,
the “sheets traverse each other,” but that the reader should imagine that these “sheets
are infinitely close to each other.” We shall survey the treatise by Appell and Goursat
in Sect. 3 below.

4I thank K. Ohshika for this reference.
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Fig. 2 A drawing from Riemann’s paper on Abelian functions

In 1909, Hadamard, in his survey on topology entitledNotions élémentaires sur la
géométrie de situation (Elementary notions of geometry of situation),5 talking about
Riemann surfaces, still considers lines along which the leaves cross each other (cf.
[39] p. 204).

It was difficult to conceive these surfaces without the intersections of the sheets in
3-dimensional space. One had to wait several years before these surfaces were freed
from their three-dimensional prison. Weyl, writes in his 1913 book ([110] p. 16 of
the English translation): “The concept of ‘two-dimensional manifold’ or ‘surface’
will not be associated with points in three-dimensional space; rather it will be a
much more general abstract idea.” Figure2 represents a more abstract drawing in the
tradition of Riemann. It is extracted from the French version of Riemann’s works
[98].

Klein considers that around the year 1881, at least some of Riemann’s important
ideas were already understood in France. He writes in his Development of mathe-
matics in the 19th century [59] p. 258:

Working on the subject of automorphic functions, from 1881 on, I came into close touch
with Poincaré; this was also the time when Riemann’s modes of thoughts were transplanted
to France and there found firm ground.

In the next section, we review the way Riemann surfaces are treated in some of the
major French treatises on complex analysis that were published in the few years that
followed Riemann’s work.

5“Geometry of situation” was one of the various names given to topology, before the word “topol-
ogy” became universally accepted.
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3 The Nineteenth-Century French Treatises on Analysis

In this section, we review some of the nineteenth-century French treatises on analy-
sis, in relation with the notion of Riemann surface and some associated notions like
elliptic and Abelian integrals and their periods. As we shall see, there was a great
variety of important treatises of various levels of difficulty, covering a large spectrum
of topics. Let us note that independently of the work of Riemann, it is interesting to
review these treatises, because these were the textbooks in which the French mathe-
maticians of that epoch were trained. These mathematicians constituted a consistent
and very strong school of analysis whose imprint is still felt today. The next table is
a list of the treatises that we shall mention, in an approximate chronological order. It
is difficult to make a precise chronological order, because several of these treatises
consist of several volumes, with a time lapse of several years between the first and the
last volume. In the commentary that follows this table, the order takes into account
the connections between the ideas rather than the chronology.

Author Title Year
(1st ed.)

Ch.-A. Briot Théorie des fonctions doublement 1859
and J.-C. Bouquet périodiques et, en particulier,

des fonctions elliptiques
Ch. Hermite Cours d’analyse 1873

de l’École Polytechnique
Ch.-A. Briot Théorie des fonctions Abéliennes 1879
C. Jordan Cours d’analyse 1882–1897

de l’École Polytechnique
Ch. Hermite Cours à la faculté 1882

des sciences de Paris
G.-H. Halphen Traité des fonctions elliptiques 1886–1891

et de leurs applications
É. Picard Traité d’analyse 1891–1896
J. Tannery Éléments de la théorie 1893–1902
and J. Molk des fonctions elliptiques
P. Appell Théorie des fonctions algébriques 1895
and É. Goursat et de leurs intégrales
É. Picard Théorie des fonctions algébriques 1897–1906
and G. Simart de deux variables indépendantes
P. Appell Principes de la théorie 1897
and É. Lacour des fonctions elliptiques

et applications
É. Goursat Cours d’analyse mathématique 1902–1905
P. Appell, Étude des fonctions analytiques 1929
É. Goursat sur une surface de Riemann
and P. Fatou
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Briot and Bouquet

We start with the treatise Théorie des fonctions doublement périodiques et, en parti-
culier, des fonctions elliptiques (Theory of doubly periodic functions, and in partic-
ular, elliptic functions) [17] by Briot and Bouquet. This treatise, whose first edition
appeared in 1859, became one of the major references on the theory of functions of
a complex variable in France during the second half of the nineteenth century. As
the name of the treatise indicates, the stress is on elliptic functions and their gen-
eralizations to doubly periodic functions. We recall that elliptic functions have (at
most) two independent periods; they are essentially functions defined on the torus.
We start by recalling a few facts about these functions. For a glimpse into the history
of elliptic integrals, which are at the origin of the general theory of elliptic functions,
the reader is referred to Chap. 1 of the present volume [75].

Before Riemann, elliptic functions had occupied the greatest mathematicians:
Euler, Gauss, Dirichlet, Legendre and others. In France, the first mathematician who
made a thorough study of these functions is Legendre, who wrote treatises compris-
ing several volumes on the subject, cf. [63, 64]. The subject became fashionable
in France only after his death. It is interesting in this respect to quote a letter from
Legendre to Jacobi, dated February 9, 1828, in which Legendre complains that in
France, mathematicians, at his time, were not enough interested in elliptic functions.
Responding to a letter in which Jacobi makes for him a summary of Abel’s arti-
cle Recherches sur les fonctions elliptiques (Researches on elliptic functions) [1]
published in 1827, Legendre writes ([54], t. 1, p. 407):

I was already aware of the beautiful work of Mr. Abel inserted in Crelle’s Journal. But I was
very pleased by the analysis you have given me in your own language, which is closer to
mine. Forme, it is a big satisfaction to see two young geometers, like you and him, cultivating
with success a branch of analysis which has been for such a long time my favorite subject
of study, and which is not as much welcome in my own country as it deserves to be.6

By the time of Briot and Bouquet published their treatise, that is, thirty years after
this letter was written, the study of elliptic functions was already a very active field
in France. Cauchy has already introduced line integrals in the field of functions of
a complex variable, and elliptic integrals constituted a new class of functions with
interesting properties. The known functions of a complex variable, before this class,
were limited to polynomials, exponentials, logarithms, trigonometric functions, and
some other special functions introduced by Euler. Several questions concerning these
functions, motivated by the work of Legendre, Abel and Jacobi, constituted the
basis of several research topics. Furthermore, elliptic functions were known to have
numerous applications in geometry, number theory, mechanics and physics.

6J’avais déjà connaissance du beau travail de M. Abel inséré dans le Journal de Crelle. Mais vous
m’avez fait beaucoup de plaisir dem’en donner une analyse dans votre langage qui est plus rapproché
du mien. C’est une grande satisfaction pour moi de voir deux jeunes géomètres, comme vous et lui,
cultiver avec succès une branche d’analyse qui a fait si longtemps l’objet de mes études favorites
et qui n’a point été accueillie dans mon propre pays comme elle le méritait.

http://dx.doi.org/10.1007/978-3-319-60039-0_1
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A few words about Briot and Bouquet may be useful, before talking about their
treatise. Although they were great analysts and remarkable teachers, their names are
rather unknown today.

In 1842,Charles-AugusteBriot (1817–1882) submitted at theFaculté desSciences
de Paris, a dissertation on mechanics whose title was Sur le mouvement d’un corps
solide autour d’un point fixe (On themotion of a solid body around a fixed point) [15].
The aim of this dissertation was to provide complete proofs of results on mechanics
that were stated by Poinsot in his memoir Théorie nouvelle de la rotation des corps
(A new theory for the rotation of bodies) [91]. Briot then taught at the Sorbonne
and at the École Normale Supérieure, but also, for several years, in two lycées7 in
Paris: Bourbon and Saint-Louis. These were among the famous lycées preparing
for the highly competitive entrance examination of the École Polytechnique and
the École Normale Supérieure. Having good teachers in such lycées was a tradition
in France, and some of these teachers were excellent mathematicians.8 Briot, like
Riemann, Cauchy and many mathematicians of his generation, was highly interested
inphysics, in particular, heat, light and electricity, three topicswhichwereparticularly
dear to Riemann. Briot’s research in these fields was based on his theories of aether,
and in his research on these topics he was strongly influenced by Louis Pasteur.
He wrote a large number of textbooks for students, encompassing analysis, algebra,

7The lycées where Briot (and several other mathematicians we encounter in the present chapter)
taught are high-schools whose curricula included an additional year of study after the high-school
diploma (baccalauréat). During that year, called Mathématiques spéciales, the élèves (pupils) are
prepared for the entrance examinations (concours d’entrée) to some highly competitive schools
which, in the period we are interested in, were essentially the École Polytechnique and the École
Normale Supérieure. In principle, only gifted andhard-working élèveswere admitted in such classes.

Only a small percentage of the élèves were accepted into these schools (2–5%) at the first trial.
The others usually returned to the lycée and spent another year in the class of Mathématiques
spéciales where they deepened their knowledge and their training. The chances of entering one of
the two schools after this second year were about 25%. Some of the élèves, after a second failure,
repeated a third time the class ofMathématiques spéciales, and the chances of success, for thosewho
tried the concours d’entrée after a third year, were about 50%. (These figures are extracted from the
article [85] by Pierpont in which the author compares the French and the American mathematical
education systems by the end of the nineteenth century.)

These classes still exist today in France, they are called Classes préparatoires aux Grandes
Écoles, and include two years, Mathématiques supérieures and mathématiques spéciales. They
prepare to the entrance examinations of a large number of schools.
8The list includes Briot, Bouquet, Darboux, Bertrand, Hoüel, Valiron, Châtelet, Tannery, Boutroux,
Lacour, Lucas, Lichnerowicz, and there are others. The following story is related by Picard, in
his Eulogy of Jules Tannery [84]: “Bouquet used to relate that after he graduated from the École
[Normale Supérieure], and while he was in charge of the class of “mathématiques spéciales” at
Marseille’s lycée, he received the visit of the father of one of his élèves, who wanted that his son be
prevented from working in mathematics, because they lead to noting good. He asked for a professor
whowould give a course which is enough bad so that his son does not enter the École Polytechnique,
after which one gains less money than in business. [Bouquet aimait à raconter que, chargé à sa sortie
de l’École, du cours de mathématiques spéciales au Lycée de Marseille, il avait eu la visite du père
d’un de ses élèves, qui voulait qu’on empêchât son fils de travailler lesmathématiques qui nemènent
à rien de bon. Il demandait que le professeur fit un assez mauvais cours pour que son fils n’entrât
pas à l’École Polytechnique au sortir de laquelle on gagne moins d’argent que dans le commerce.]
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analytic geometry, mechanics and physics. Having textbooks written by outstanding
and devoted teachers was traditional in France in that period.

Jean-Claude Bouquet (1819–1885) defended his doctoral dissertation in 1842, the
same year as Briot. The subject was the calculus of variations, and the title was Sur la
variation des intégrales doubles (On the variation of double integrals) [14]. Bouquet
first taught at a lycée in Marseille and then became, at the age of 26, professor at the
University of Lyon. Seven years later hemoved to Paris where he became professor at
Lycée Bonaparte, and then Lycée Louis-le-Grand. In 1868, he became the successor
of Puiseux at the École Normale Supérieure, and in 1885 the successor of Serret at
the Chair of differential and integral calculus of the Faculté des Sciences de Paris.
Bouquet’s successor at that chair was Émile Picard.

Briot and Bouquet published, separately and as co-authors, several important
articles and treatises on the theory of functions of a complex variable and on elliptic
and Abelian functions. It might be useful to recall that in the period considered, joint
mathematical works were rare, and for this reason the long-term collaboration of
Briot and Bouquet stands as a singular spot in the history of mathematics. In 1856,
Briot and Bouquet published a joint paper entitledÉtude des fonctions d’une variable
imaginaire (Study of functions of an imaginary variable) [16] in which they present
in a comprehensive way Cauchy’s theory of functions of a complex variable. In the
introduction to that memoir, they write:

This first memoir contains the principles of Cauchy’s theory of an imaginary variable. We
shall adopt the definition given by Mr. Cauchy, and we shall explain it by examples. We then
study the properties of the functions defined by series ordered according to the increasing
integer powers of the variable. This will allow us to establish, in a clear and precise manner,
the necessary and sufficient conditions for a function to be expanded as a convergent series
according to the increasing integer powers of the variable. In this way, we shall get rid of
the clouds that still obfuscate the beautiful theorem of Mr. Cauchy.9

This paper, together with two other papers by Briot and Bouquet, became the bulk of
their famous treatise Théorie des fonctions doublement périodiques et, en particulier,
des fonctions elliptiques which we consider now. In that treatise, Cauchy’s work is
at the forefront. This treatise became famous especially by its second edition (1875),
which carried the simpler name Théorie des fonctions elliptiques, cf. [19]. In the
preface, the authors start by pointing out the importance of transcendental functions,
recalling that Legendre spent almost all his life in trying to understand them. They
then mention the works of Abel and Jacobi, declaring that Abel, around the year
1826, was the first to consider elliptic functions from the right point of view and to
realize that these functions are doubly periodic. According to their account, Jacobi’s
Fundamenta nova theoriæ functionum ellipticarum [52], published three years later,

9Ce premier mémoire contient les principes de la théorie des fonctions d’une variable imaginaire.
Nous adoptons la définition donnée par M. Cauchy, et nous l’expliquons par des exemples. Nous
étudions ensuite les propriétés des fonctions définies par des séries ordonnées suivant les puissances
entières et croissantes de la variable. Ceci nous permet d’établir, d’une manière nette et précise, les
conditions nécessaires et suffisantes pour qu’une fonction se développe en série convergente suivant
les puissances entières et croissantes de la variable. Nous faisons disparaître ainsi les nuages qui
obscurcissent encore le beau théorème de M. Cauchy.
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contains nothing essential which Abel had not discovered before. They declare that
the difference between the two mathematicians is that Abel tried to prove the main
results on the theory of elliptic functions from their double periodicity prorperty,
whereas Jacobi did the same using algebraic reasonings which have the disadvan-
tage of hiding the reason behind the results and which do not lead to interesting
developments. Briot and Bouquet then write ([19] p. xviii of the Preface):

Despite the remarkable works of these two great geometers, the theory of elliptic functions
was still in the dark, and very complicated. Neither the double periodicity was recognized
clearly, not the function itself was defined rigorously. To shed light on this theory, one had to
introduce a newmathematical idea, and it is to the famous Cauchy that we owe this important
progress.10

In this treatise, single-valued functions are called monotropic (monotropes) and
multi-valued ones are called polytropic (polytropes). This terminology is introduced
in the first pages of the second edition of the treatise (p. 9 and 11 of the 1875 edition).
It indicates clearly that the authors think of these functions in terms of paths. (The
word “tropos” in Greek means path.) Riemann’s work (or, at least, its existence) is
known to the authors, but they prefer to rely on Cauchy, completed by Puiseux. They
write in the preface of the 1875 edition:

In Cauchy’s theory, the excursion of the imaginary variable is represented by the motion of
a point in the plane. To represent the functions which acquire several values for the same
value of the variable, Riemann used to look at the plane as composed of several sheets which
are superposed and joined by weldings, in such a way that the variable can pass from a sheet
to another by passing a junction line (“ligne de raccordement”). The conception of many-
sheeted surfaces presents some difficulties; in spite of the beautiful results that Riemann
reached by this method, it appeared to us that it has no advantage regarding the object we
have in mind. Cauchy’s idea is very well fit to the presentation of multiple functions; it
suffices to attach to the value of the variable the corresponding value of the function, and,
when the variable describes a closed curve and the value of the function changes, to indicate
this change by an index.11

The authors acknowledge in the preface that they were influenced by Liouville’s
course at the Collège de France on elliptic functions, based on the double periodicity

10Malgré les remarquables travaux de ces deux grands géomètres, la théorie des fonctions elliptiques
restait fort obscure et très-compliquée; ni la double périodicité n’avait été reconnue d’une manière
nette, ni la fonction elle-même définie d’unemanière rigoureuse. Il fallait, pour éclairer cette théorie,
l’introduction d’une idée nouvelle en mathématiques, et c’est à l’illustre Cauchy que l’on doit cet
important progrès.
11Dans la théorie de Cauchy, la marche de la variable imaginaire est figurée par le mouvement d’un
point sur un plan. Pour représenter les fonctions qui acquièrent plusieurs valeurs pour une même
valeur de la variable, Riemann regardait le plan comme formé de plusieurs feuillets superposés
et réunis par des soudures, de manière que la variable puisse passer d’un feuillet à un autre en
traversant une ligne de raccordement. La conception des surfaces à feuillets multiples présente
quelques difficultés; malgré les beaux résultats auxquels Riemann est arrivé par cette méthode, elle
ne nous a paru présenter aucun avantage pour l’objet que nous avions en vue. L’idée de Cauchy
se prête très bien à la représentation des fonctions multiples; il suffit de joindre à la valeur de la
variable la valeur correspondante de la fonction, et, quand la variable a décrit une courbe fermée et
que la valeur de la fonction a changé, d’indiquer ce changement par un indice.
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of these functions. A set of notes by Liouville on lectures he gave in 1847 on doubly
periodic functions were published 33 years later,12 cf. [66]. It seems that Liouville
considered that Briot and Bouquet stole his ideas, and he treated them as “unworthy
robbers,” see [78], p. 232.

Bottazzini reports in [55] (p. 244) that in 1861, Riemann lectured on complex
function theory followingCauchy’s point of view as contained inBriot andBouquet’s
treatise. A German translation of this treatise was published in 1862 [18].

Briot

In 1879, Briot published a treatise entitled Théorie des fonctions abéliennes (Theory
of Abelian functions) [20]. His goal in this new book is to explain Riemann’s theory
of Abelian functions. These are integrals of algebraic differentials on Riemann sur-
faces that generalize elliptic functions (which are defined on surfaces of genus one,
that is, tori), and they played amajor role in the development of complex analysis and
of algebraic geometry. In the introduction to his treatise, Briot recalls that Riemann
was the first to study these functions, and that he found beautiful theorems concern-
ing them. He nevertheless declares that the methods of Riemann present enormous
difficulties and he describes them as lacking of clearness and rigor. He announces
that, in his treatise, he relies on the works of Clebsch and Gordan,13 but leaving aside
some of their geometric considerations. Sofia Kovalevskaya did not like Briot’s trea-
tise. In a letter to Mittag-Leffler, sent on January 8, 1881 quoted by the latter in his
1900 Paris ICM talk [67], she writes:

Isn’t it surprising how, at the time being, the theory of Abelian functions with all the par-
ticularities of its own method and which make it rightly one of the most beautiful branches

12The notes were taken by C. W. Borchardt, the editor of the Journal für die reine und angewandte
Mathematik. In a footnote to the article, Borchardt writes about these notes: “When, in the first half
of the year 1847 I stayed in Paris at the same time of my late friend Ferdinand Joachimstahl, Mr.
Liouville accepted to give, at his home, for the two of us, a few lessons on his method for treating the
theory of doubly periodic functions. I collected Mr. Liouville’s lessons, and when, back in Berlin,
I have completed writing them up, I sent him a copy of my manuscript which he authorized me
to communicated to Jacobi and Lejeune-Dirichlet. [...] In communicating to the geometers a work
done more than thirty years ago and without the intention of publishing it, I think nevertheless that I
can assure that in general my redaction reproduces faithfully the lessons of Mr. Liouville. [Lorsque
dans la première moitié de l’année 1847 j’ai fait un séjour à Paris en même temps que mon ami
bien regretté Ferdinand Joachimstahl, M. Liouville a bien voulu nous faire chez lui à nous deux
quelques leçons sur sa méthode de traiter la théorie des fonctions doublement périodiques. [...] En
communiquant aux géomètres un travail fait il y a plus de trente ans et sans l’intention de le faire
imprimer, je crois néanmoins pouvoir assurer qu’en général ma rédaction reproduit fidèlement les
leçons de M. Liouville.
13The work of Clebsch and Gordan which was a major reference at that time is their treatise Theorie
der Abelschen Funktionen (Theory of Abelian functions), 1866 [24]. One of the major results of
Clebsch is a classification of algebraic curves using Riemann’s theory of Abelian functions and
based on his notion of birational transformation. Clebsch’s ideas were further developed by Brill
and Noether.
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of analysis, is still poorly studied and poorly understood everywhere else than in Germany?
I was really outraged in reading, for instance, the Traité des fonctions abéliennes by Briot,
which I had not seen before. How can one present such beautiful material in such a dry and
with so little benefits for the students? I am almost not surprised any more that our Russian
mathematicians, who know this theory only through Neumann’s14 book and that of Briot,
profess such a profound indifference to the study of these functions.15

This book by Briot is the only treatise that he authored alone. The book won the
Poncelet prize.

The works of Briot and Bouquet were influential on Poincaré who, in his Analysis
of his own works (Analyse des travaux scientifiques de Henri Poincaré faite par lui-
même), [88], declares that the starting point of his research on differential equations—
which was his first topic of investigation—were the works of Cauchy, Fuchs, Briot,
Bouquet and Kovalevskaya.

Appell and Goursat

We now consider the treatise Théorie des fonctions algébriques et de leurs intégrales
(Theory of Abelian functions and their integrals) by Appell and Goursat, [4]. This
treatise was published in 1895, that is, thirty-six years after the first edition of Briot
and Bouquet’s Théorie des fonctions doublement périodiques et, en particulier, des
fonctions elliptiques. The treatise carries the subtitle Étude des fonctions analytiques
sur une surface de Riemann (A study of analytic functions on a Riemann surface).
A few biographical notes on the authors are in order; both of them are important
representatives of the nineteenth century French school of analysis.

Paul Appell (1855–1930) was born in Strasbourg. He started studying mathemat-
ics at the University of this city, but had to flee from there, in order to remain French,
after the annexion of Alsace by Germany, in 1870.16 His brother, who stayed in
occupied Alsace, was later convicted for “anti-German activities.” Appell wrote his

14The book by Neumann which is referred to in this quote is certainly his treatise Vorlesungen über
Riemann’s Theorie der Abel’schen Integrale (Lectures on Riemann’s theory of Abelian integrals),
published in 1865, [69]. Unlike the French treatises, Neumann’s book was written in the spirit of
Riemann.
15N’est-il pas étonnant vraiment comme, à l’heure qu’il est, la théorie des fonctions abéliennes avec
toutes les particularités de laméthode qui lui sont propres et qui en font justement une des plus belles
branches de l’Analyse, est encore peu étudiée et peu comprise partout ailleurs qu’en Allemagne ?
J’ai été vraiment indignée en lisant, par exemple, le Traité des fonctions abéliennes par Briot, qui
jusqu’à présent ne m’était pas tombé sous les yeux. Peut-on exposer une aussi belle matière d’une
manière aussi aride et aussi peu profitable pour l’étudiant ? Je ne m’étonne presque plus que nos
mathématiciens russes, qui ne connaissent toute cette théorie que par le livre de Neumann et celui
de Briot, professent une indifférence aussi profonde pour l’étude de ces fonctions.
16In a chronicle on Appell which appeared in Le petit parisien (18/02/1929) it is reported that when
he came back to Strasbourg, after the Second World War, he whispered: “I thought I was becoming
crazy when I saw the French flag fleeting on our old cathedral. On that day, my life was filled. I
could well have died.” [Je croyais devenir fou en voyant le drapeau tricolore flotter sur notre chère
cathédrale, murmure-t-il. Ce jour-là, ma vie était comblée. J’aurais pu mourir.]
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doctoral dissertation under Chasles, on projective geometry. The title of this disserta-
tion is Sur la propriété des cubiques gauches et le mouvement hélicoïdal d’un corps
solide (On the properties of skew cubics and on the helocoidal motion of a solid
body) [2]. The thesis was published in the Annales de l’École Normale Supérieure,
[3]. Besides being a mathematician, Appell was the rector of the Académie de Paris
from 1920 to 1925, and he became secretary general of France at the League of
Nations. He is also the founder of the Paris Cité Universitaire Internationale. He
married a niece of Bertrand and Hermite, and his daughter became the wife of Emile
Borel. Appell, like many other French mathematicians of his generation (see Chap. 7
of the present volume, [77]), was profoundly religious.17 There is an interesting
correspondence between Appell and Poincaré, see [86].

Édouard Goursat (1858–1936) had as teachers Briot, Bouquet and Darboux.
Goursat started as a teaching assistant (“agrégé préparateur”) at the École Normale
Supérieure in 1879, and one year later he was appointed at the Faculté des Sci-
ences de Paris, taking over the position of Picard who was appointed at Toulouse. In
1881 he submitted a doctoral dissertation bearing the title Sur l’équation différen-
tielle linéaire qui admet pour intégrale la série hypergéométrique (On the linear
differential equation that admits as integral the hypergeometric series), [32]. The
thesis committee consisted of Bouquet, Darboux and Tannery. It was published in
the Annales de l’École Normale Supérieure [33]. This dissertation, written under
Darboux, is based on results of Jacobi and Riemann, and it uses Cauchy’s theory.
Among other things, Goursat simplifies a proof of a theorem given by Riemann in his
memoir of the hypergeometric function [97] (Second part of Goursat’s dissertation).
After his dissertation, he took a position at the Faculté des Sciences de Toulouse, as
the successor of Picard who returned to Paris. In 1885, he came back to the École
Normale Supérieure, replacing Bouquet. In 1897, he took over again Picard’s posi-
tion at the Chair of Differential and Integral Calculus at the Faculté des Sciences
de Paris. The name of Goursat is attached to a theorem in complex function theory,
which is usually referred to as the Cauchy-Goursat theorem. It says that given a
holomorphic function on a simply connected domain in the plane, the integral of this
function over a loop contained in the interior of the domain is zero. The first step
of the proof is a lemma, called the Goursat lemma, which is a particular case of the
theorem in which the loop bounds a rectangle. The result is contained in the 1814
paper of Cauchy [23] but under some unnecessary strong hypotheses on the function.
Goursat’s proof is contained in a paper that appeared in Acta Mathematica entitled
“Proof of Cauchy’s theorem” [36].

Unlike the case of the treatise of Briot and Bouquet, Riemann’s theory is well
present in the treatise Théorie des fonctions algébriques et de leurs intégrales by
Goursat and Appell. Hermite wrote the preface of that treatise. In this preface, he
starts by giving an overall summary of the work of Puiseux on algebraic functions,

17In a biography of Hermite, written by his grand-daughter (the manuscript, kept in the Archives
of the Académie des Sciences de Paris) quoted in [48] p. 79, we read that Hermite told Appell
once, “Can you imagine, my dear Appell, that after our death, we shall at last contemplate, face
to face, the number π and the number e?” [Songez-vous, mon cher Appell, qu’après la mort nous
contemplerons enfin face à face le nombre π et le nombre e ?].
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which, he says “opened the field of research which led to the great discoveries of our
epoch.” He declares that this work transformed the field of analysis by giving it new
bases.18 Hermite, in his introduction, also mentions the influence of Cauchy. After
that, he passes to the work of Riemann, praising this work and announcing that the
treatise is based on the latter’s ideas. Hermite writes in this introduction:

The works of Puiseux were followed, in 1857, by those of Riemann, received with a unani-
mous admiration, as themost considerable event in analysis of our times. The present treatise
is dedicated to the exposition of the work of this great geometer, and to the researches and
the discoveries to which it led.

A remarkably original concept is at their foundation. These are the surfaces to which is
attached the name of their discoverer. They are constituted of superposed planes, whose
number is equal to the degree of an algebraic equation, connected among themselves by
crossing lines, which we obtain by joining in a certain manner the critical points. The
establishment of these lines is a first question of great importance, which later on was made
much simpler and easier by a beautiful theorem of Mr. Lüroth. After that, we are offered the
notion of connected surfaces, their order of connection, the theorems on the lowering, using
cuts, which lead the surface to a simply connected one. From these profound and delicate
considerations follows a geometric representation, which is an element of the greatest power
for the study of the algebraic functions. It would be too long to recall all the discoveries that
carry the seal of the greatest mathematical genius, to which it led Riemann. [...]19

In their treatise, Goursat and Appell present Riemann’s topological theory of
surfaces and their dissection, his theory of the complex-analytic Riemann surfaces,
and his theory of Abelian integrals. Cauchy’s calculus of residues is used, as well as
Puiseux’ method of dealing with multiple branch points of algebraic functions. The
treatise also contains an exposition of Riemann–Roch’s theorem, of the Brill-Noether
law of reciprocity, of Abel’s theorem and of the theory of moduli of algebraic curves.
Jacobi’s inversion problem of Abelian integrals, and a problem of Briot and Bouquet
on the uniformization of solutions algebraic differential equations are addressed.
W. F. Osgood published an extensive review of Appell and Goursat’s treatise in the
Bulletin of the AMS, see [72].

18The reader may find details on the work of Puiseux, and its relations to the works of Cauchy,
Hermite and others, in Chap.7 of the present volume [77].
19Aux travaux de Puiseux succèdent, en 1857, ceux de Riemann accueillis par une admira-
tion unanime, comme l’événement le plus considérable dans l’analyse de notre temps. C’est à
l’exposition de l’œuvre du grand géomètre, des recherches et des découvertes auxquelles elle a
donné lieu qu’est consacré cet ouvrage.

Une conception singulièrement originale leur sert de fondement, celle des surfaces auxquelles est
attaché le nom de l’inventeur, formées de plans superposés, en nombre égal au degré d’une équation
algébrique, et reliés par des lignes de passage, qu’on obtient en joignant d’une certaine manière
les points critiques. L’établissement de ces lignes est une première question de grande importance,
rendue depuis beaucoup plus simple et plus facile par un beau théorème deM.Lüroth. S’offre ensuite
la notion des surfaces connexes, de leurs ordres de connexion, les théorèmes sur l’abaissement par
des coupures qui ramènent la surface à être simplement connexe. De ces considérations profondes et
délicates résulte une représentation géométrique, qui est un instrument de la plus grande puissance
pour l’étude des fonctions algébriques. Il serait trop long de rappeler toutes les découvertes portant
l’empreinte du plus grand génie mathématique, auxquelles elle conduit Riemann [...].
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Goursat

Goursat is mostly known today for his Cours d’analyse mathématique (A course in
mathematical analysis) [34], a treatise which became a reference for all French stu-
dents in mathematics. The first edition of that book, in two volumes, was published
in 1902 and 1905.A second edition, in three volumes, appeared between 1910 and
1915, a third edition in 1917–1923, a fourth edition in 1923–1927, a fifth edition
in 1933–1942, and there were several later editions after Goursat’s death in 1936.
The treatise was translated into English, cf. [35]. The whole treatise is a systematic
treatment of analysis, including integration and differential equations. The subti-
tles of the various volumes of Goursat’s Cours give an idea of the content. They
are (in the final three-volume version): Volume I: Dérivées et différentielles. Inté-
grales définies. Développements en séries. Applications géométriques. (Derivatives
and differentials. Definite integrals. Series expansions. Geometrical applications).
Volume II: Théorie des fonctions analytiques. Equations différentielles. Equations
aux dérivées partielles du premier ordre. (Theory of analytic functions. Differential
equations. First order partial differential equations). Volume III: Intégrales infiniment
voisines. Équations aux dérivées partielles du second ordre. Équations intégrales.
Calcul des variations (Infinitely close integrals. Second order partial differential
equations. Integral equations. Calculus of variations).

In his treatise, Goursat, in presenting the theory of functions of a complex variable,
relies on Cauchy’s methods on the theory of complex integration and on the existence
of solutions for ordinary and partial differential equations. Weierstrass’s methods are
also presented, in particular for what concerns singular points and series of analytic
functions, and the calculus of variations. Riemann’s theories are briefly addressed in
Volume III,Chap.XXVII, in relationwith theLaplace equation. The author discusses,
besides the methods of Riemann, those of Neumann, Schwarz and others, in relation
with conformal mappings.

Osgood wrote two reviews for the Bulletin of the AMS, [73, 74], on Goursat’s
first edition (two volumes) of his treatise. As a conclusion to his review of Volume
I, Osgood writes the following:

When the future historian inquires how the calculus appeared to the mathematicians of the
close of the nineteenth century, he may safely take Professor Goursat’s book as an exponent
of that which is central in the calculus conceptions and methods of this age.

Goursat’s treatise lost its prestige with the advent of Bourbaki, and it was replaced
in the French university curricula by the more rigorous (in the modern standards)
treatises of Dieudonné, Cartan, Schwartz, etc.

Picard

Emile Picard (1856–1941) was one of those mathematicians whose work, encom-
passing a period straddling the nineteenth and the twentieth centuries, exerted an
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important influence on mathematics by giving it a new direction. In 1877, he sub-
mitted a doctoral dissertation on the geometry of Steiner surfaces, written under the
guidance of Darboux. The title of the dissertation is Application de la théorie des
complexes linéaires à l’étude des surfaces et des courbes gauches (Application of the
theory of linear complexes to surfaces and skew curves) [80]. Picard’s thesis was also
published in the Annales de l’École Normale, [81]. Picard had a long career during
which he worked on ordinary and partial differential equations, algebraic geometry,
algebra, mechanics, elasticity, heat, electricity, relativity, astronomy and on other
subjects of mathematics and theoretical physics. But he was above all an analyst. His
name is attached in particular to two theorems he obtained in 1879 which exerted a
tremendous influence on analysis. One of these theorems says that a non-constant
entire function takes every complex value an infinite number of times, possibly with
one exception. Picard’s proof of this result uses Hermite’s theory of elliptic modular
functions. It is short, elegant but indirect. Giving simpler proofs and generalizations
of that theorem gave rise to a large number of works done by several generations
of mathematicians, including Borel, Hadamard, Montel, Julia, Bloch, Carathéodory,
Landau, Lindelöf, Milloux, Schottky, Valiron, Nevanlinna, Ahlfors and several oth-
ers. These works resulted in a thorough investigation of the nature of holomorphic
functions and they led to a whole field of mathematics called value distribution the-
ory. When the young Picard (he was 23) published his two theorems, he attracted the
attention of Hermite, and they soon became friends. Two years later (in 1881), Picard
married Hermite’s daughter. Between 1895 and 1937, Picard taught mechanics at an
engineering school in Paris, the École Centrale des Arts et Manufactures. Picard was
also a philosopher and a historian of science. In 1917, Picard lost his son (who was
therefore Hermite’s grand-son) at the war.

In 1891, Picard published the first volume of his Traité d’analyse (Treatise on
analysis) [79], a treatise in three volumes (the second volume was published in
1893 and the third one in 1896). This treatise was acclaimed as one of the impor-
tant writings of its epoch. In a 27-page review of the first two volumes published
by T. Craig in the Bulletin of the AMS, the author writes:

One of the ablest of American mathematicians said to the writer not long ago, ‘we have
waited fifty years for the book!’

Cauchy’s theory and all the introductory material on functions of a complex
variable are presented in Volume I of Picard’s Traité (1891). Riemann’s ideas play a
central role in Volume II (1893). Picard writes in the introduction to that volume:

This volume contains the lessons I gave at the Sorbonne during the last two years. It is
primarily dedicated to harmonic and to analytic functions. Without leaving aside Cauchy’s
point of view on the theory of analytic functions, I mainly dwell on a thorough study of
harmonic functions, i.e., of the Laplace equation; a large section of this volume is dedicated
to that famous equation, on which depends all the theory of analytic functions. I also dwell
at length on the principle of Dirichlet, which plays such a big role in the works of Riemann,
and which is as much important for mathematical physics as for analysis.

Among the particular functions I study, I note the algebraic functions and the Abelian inte-
grals. A chapter deals with Riemann surfaces, whose study has been too much left over in
France. It is possible, by a convenient geometric representation, to make intuitive the main
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results of this theory. Once this clear view of the Riemann surface is obtained, all the appli-
cations are conducted with the same facility as the classical Cauchy theory relative to the
ordinary plane. But it is important to judge according to its real value the beautiful concep-
tion of Riemann. It would be an incomplete view to regard it only as a simplified method of
presenting the theory of algebraic functions. No matter how important is the simplification
brought in this study by the consideration of surfaces with many leaves, it is not there that the
interest of Riemann’s ideas lies. The essential point of his theory is the a priori conception
of the connected surface formed by a finite number of plane leaves, and in the fact that to
such a surface conceived in full generality corresponds a class of algebraic curves. Thus, we
did not want to mutilate the profound thought of Riemann, and we have dedicated a chapter
to the capital and difficult question of the existence of analytic functions on an arbitrarily
given Riemann surface. The problem itself is susceptible of generalization, if we take an
arbitrary closed surface in space and if we consider the corresponding Beltrami equation.20

Riemann surfaces are introduced in Chap. XIII of Volume II. They are associated
with algebraic equations of the form f (u, z) = 0 where f is a polynomial in the
two variables u and z. Their construction uses the method of paths and the analysis
of permutations of roots developed by Puiseux which we describe in Chap.7 of the
present volume [77]. On the resulting Riemann surface, we have a single-valued
function u of z. Picard writes that “the algebraic function u is uniform: to each point
on that surface is associated a single value of u, which is the value corresponding
to the leaf on which we find the point that we consider.” He proves that the surface
obtained by this construction is connected, and he spends some time explaining
how one obtains a simply-connected surface from an arbitrary Riemann surface by
performing a certain number of cuts. Picard refers to Riemann’s article on Abelian
functions [94], to Simart’s dissertation [103] which we consider below, and to papers

20Ce second volume contient les leçons que j’ai faites à la Sorbonne ces deux dernières années. Il
est principalement consacré aux fonctions harmoniques et aux fonctions analytiques. Sans négliger
le point de vue de Cauchy dans la théorie de ces dernières fonctions, je me suis surtout attaché à une
étude approfondie des fonctions harmoniques, c’est-à-dire de l’équation de Laplace; une grande
partie de ce volume est consacrée à cette équation célèbre, dont dépend toute la théorie des fonctions
analytiques. Je me suis arrêté longuement sur le principe de Dirichlet, qui joue un si grand rôle
dans les travaux de Riemann, et qui est aussi important pour la physique mathématique que pour
l’analyse.

Parmi les fonctions particulières que j’étudie, je signalerai les fonctions algébriques et les inté-
grales abéliennes. Un chapitre traite des surfaces de Riemann, dont l’étude a été laissée un peu trop
de côté en France; on peut, par une représentation géométrique convenable, rendre intuitifs les prin-
cipaux résultats de cette théorie. Cette vue claire de la surface de Riemann une fois obtenue, toutes
les applications se déroulent avec la même facilité que dans la théorie classique de Cauchy relative
au plan simple. Mais il importe de juger à sa véritable valeur la belle conception de Riemann. Ce
serait une vue incomplète que de la regarder seulement comme une méthode simplificative pour
présenter la théorie des fonctions algébriques. Si importante que soit la simplification apportée dans
cette étude par la considération de la surface à plusieurs feuillets, ce n’est pas là ce qui fait le grand
intérêt des idées de Riemann. Le point essentiel de sa théorie est dans la conception a priori de la
surface connexe formée d’un nombre limité de feuillets plans, et dans le fait qu’à une telle surface
conçue dans toute sa généralité correspond une classe de courbes algébriques. Nous n’avons donc
pas voulu mutiler la pensée profonde de Riemann, et nous avons consacré un chapitre à la question
difficile et capitale de l’existence des fonctions analytiques sur une surface de Riemann arbitraire-
ment donnée; le problème même est susceptible de se généraliser, si l’on prend une surface fermée
arbitraire dans l’espace et que l’on considère l’équation de Beltrami qui lui correspond.

http://dx.doi.org/10.1007/978-3-319-60039-0_7
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by Clebsch and Lüroth. Chapter XIV of Volume II of Picard’s treatise concerns
periods of Abelian integrals, another topic which was dear to Riemann. Chapter XVI
contains several results on meromorphic functions on Riemann surfaces, including
the Riemann–Roch theorem. These are the famous Riemann existence theorems.21

The title of this chapter is: “General theorems relative to the existence of functions on
Riemann surfaces.” Picard summarizes first the work he did in the previous chapters
([79], Vol. II, beginning of Chap. XVI). To an algebraic equation f (x, y) = 0 as
above, a Riemann surface is associated, and on that surface, functions and integrals
are studied. The problem addressed now is the converse: one starts with a connected
Riemann surface which, Picard says, is defined a priori and “in a purely geometrical
manner,” taking a certain number of leaves and joining them by a certain number
of “intersection curves” (lignes de croisement). One wishes to associate with such
an abstract surface a class of algebraic curves, and to show a priori the existence of
the functions of the type considered before. After formulating this problem, Picard
writes: “We thus enter in the profound thought of Riemann.” He declares that the
previous chapters diverged from Riemann’s ideas, in that one started there from a
curve, or from an algebraic relation, whereas now, “the starting point is them-sheeted
Riemann surface.” He adds (p. 459):

Unfortunately, Riemann’s method, which was so simple for establishing general existence
theorems, does not have the rigor which we require today in the theory of functions. It relies
on the consideration of the minimum of certain integrals which are very similar to those we
already studied in the Dirichlet problem, and the same objections were addressed to him.
Anotherway had to be found, andMr.Neumann andMr. Schwarz reached it independently.22

Picard mentions the references [69] (pp. 388–471) and [102] (p. 303), and from there
he reconstructs completely the proof. In Sects. 6–13 of this chapter, the author studies
the existence of harmonic functions on Riemann surfaces. These functions are used
in the proof of the existence theorem. We note incidentally that for several decades,
all the proofs of Riemann’s existence theorem were based, like the one of Riemann,
on potential theory. Picard states the main result of that chapter as a “fundamental
theorem” ([79] Tome II, Chap.XVI, §18):

To an arbitrary Riemann surface there corresponds a class of algebraic curves.

Another “fundamental theorem” is stated in §28 of the same chapter:

To a surface in space having p holes, corresponds uniformly an algebraic curve of genus p.

Without entering into the technical definition of the genus of an algebraic curve,
let us simply say that this is a birational invariant and that the equality between a

21Picard indeed uses the plural for Riemann’s existence theorems.
22Malheureusement, la méthode si simple de Riemann pour établir les théorèmes généraux
d’existence ne présente pas la rigueur qu’on exige aujourd’hui dans la théorie des fonctions. Elle
repose sur la considération du minimum de certaines intégrales tout à fait analogues à celles que
nous avons déjà étudiées dans le problème de Dirichlet et on lui a adressé les mêmes objections. Il
a donc fallu chercher dans une autre voie. M. Neumann et M. Schwarz y sont parvenus, chacun de
son côté.
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notion from birational geometry and a topological notion is one of the major ideas
of Riemann. It is interesting to read Picard’s footnote to the theorem:

This theorem was stated by Mr. Klein in his work which we quoted several times on the
Theory of Riemann surfaces. The method of proof ofMr. Klein is extremely interesting, even
though it does not pretend to be rigorous from the analytical viewpoint. The author borrows
the elements of his proof to a fictive electrical experience performed on the surface. Thus,
the existence of potential functions together with their various singularities is, in some way,
proved experimentally.23

Section5 of Chap.XVI concerns moduli of algebraic curves. Picard starts by
addressing a preliminary question raised by Riemann: Suppose we are given in the
complex plane of the variable z, the 2(m + p − 1) ramification points of a Riemann
surface of genus p with m sheets. (The count was carried on in §19 of Chap.XIII of
Picard’s treatise.) The question is to find the number of such surfaces. Picard notes
that this number is finite, and thatHurwitz found it for small values ofm. The question
then is to find the number of arbitrary parameters on which a Riemann surface of
some fixed genus p “essentially” depends. This is the famous moduli problem raised
by Riemann and solved in a satisfactory manner by Teichmüller in his seminal paper
[108]. Picard describes two methods, which are both due to Riemann, for computing
these moduli. One of them relies on the Riemann–Roch theorem, and the other one
uses a conformal representation of a Riemann surface onto a polygon, using an
integral of the first kind, and a count of the number of periods of such integrals. The
result of each of these methods is Riemann’s count of the number of moduli, that is,
3p − 3, for a closed surface of genus p.

Picard concludes this important chapter by explaining how these ideas are used
in the conformal representation of multiply-connected surfaces.

Picard-Simart

Wenow consider Picard and Simart’sThéorie des fonctions algébriques de deux vari-
ables indépendantes (Theory of algebraic functions of two independent variables)
[83], a treatise in two volumes, published in 1897 and 1906 respectively. The level of
difficulty is higher than most of the other French treatises of the same period on the
same subject, and the topics treated are more specialized. The introduction in each
volume is written by Picard. In the introduction to the first volume, Picard declares
that since a long time he had the intention to resume his ancient research on algebraic
functions of two variables and to present them in a didactical form. He writes that he
realized that, for more clarity, it was necessary to take into account the classical work

23Ce théorème a été énoncé par M. Klein dans son ouvrage déjà bien des fois cité sur la Théorie des
surfaces de Riemann. Lemode de démonstration deM.Klein est extrêmement intéressant, quoi qu’il
ne prétende pas à être rigoureux au point de vue analytique. C’est à une expérience électrique fictive
faite sur la surface que l’illustre auteur emprunte les éléments de ses démonstrations. L’existence
des fonctions potentielles avec leurs singularités diverses se trouve ainsi démontrée en quelque sorte
expérimentalement.
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of Mr. Noether as well as several works done in Italy on the same subject. The book
contains indeed sections on invariants of algebraic surfaces and integrals of total
differentials, including a study of the invariants introduced by Clebsch and Noether,
and an exposition of the works of Castelnuovo and Enriques. Picard declares that his
co-author and himself by all means “do not have the pretentiousness of going deeply
into all the questions that are addressed in this “very difficult theory,” but that their
unique goal is “to give the state of the art on a question that deserves the effort of
several researches.”24

In the first volume, the authors develop Riemann’s ideas on integrals of Abelian
differentials and onRiemann surfaces, from the topological viewpoint. The title of the
first chapter is On multiple integrals of functions of several variables. The theories of
multiple integrals and integrals of total differentials constitute a link between several
questions addressed in this treatise. They are generalizations of the Abelian integrals
that were studied byRiemann, and they lead Picard and Simart to study hypersurfaces
in a five-dimensional space. This is why the authors are led, in Chap.2, to questions
of topology in an n-dimensional space. Indeed, the second chapter is dedicated to
geometry of situation (topology). By the timePicard andSimart’s treatisewaswritten,
Poincaré had already published his famous paper with this title, two years before, in
the Journal de l’École Polytechnique [87]. Picard and Simart show in particular that
the genus of a Riemann surface is determined by the number of linear independent
integrals of the first kind on such a surface. At the beginning of this chapter, they
write (p. 19):

This theory was founded by Riemann, who gave the name. In his study of Abelian functions,
the great geometer considers only two-dimensional spaces, but later on he generalized his
researches to an arbitrary number of dimensions, as is shown by his notes published after
his death in the volume containing his Complete Works. Independently of Riemann, Betti
studied various orders of connectivity in n-dimensional spaces, and he published a funda-
mental memoir on this subject.25 In his memoir on algebraic functions of two variables, Mr.
Picard showed the usefulness of such considerations in the study of algebraic surfaces. Very
recently, Mr. Poincaré26 took up in a general manner this question of Analysis situs, and
after completing it and making more precise the results obtained by Betti, he drew atten-
tion to the considerable differences that the theories present, the two-dimensional and the
higher-dimensional ones.27

24Nous n’avons certes pas la prétention d’approfondir toutes les questions qui se posent dans cette
théorie difficile; notre seul but est de donner une idée de l’état actuel de la science sur un sujet dont
l’étude mérite de tenter l’effort de nombreux chercheurs.
25Annali di Mathematica, t. IV (1870–71).
26Journal de Mathématiques (1899).
27Cette théorie a été fondée par Riemann, qui lui a donné ce nom; dans ses études sur les fonctions
abéliennes, le grand géomètre ne considère que les espaces à deux dimensions, mais il a ensuite
généralisé ses recherches pour un nombre quelconque de dimensions, comme le montrent les notes
publiées après sa mort dans le volume renfermant ses œuvres complètes. Indépendamment de Rie-
mann, Betti avait de son côté étudié les divers ordres de connexion dans les espaces à n dimensions,
et publié un mémoire fondamental sur ce sujet. Dans son mémoire sur les fonctions algébriques,
M. Picard avait montré l’intérêt que présentent des considérations de ce genre dans l’étude des
surfaces algébriques. Tout récemment, M. Poincaré a repris d’une manière générale cette question

http://dx.doi.org/10.1007/978-3-319-60039-0_2
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Fig. 3 Simple closed curves on surfaces, from the treatise by Picard and Simart [83]

On p. 22 of the same volume, the authors consider a Riemann surface as “a
2-dimensional manifold in 3-dimensional space,” allowing the surfaces to traverse
each other. The authors show that a surface defined by algebraic equations and
inequalities is necessarily orientable. They introduce boundaries, Betti numbers, and
their relations with multiple integrals. Homotopy classes of simple closed curves on
orientable topological surfaces are drawn (cf. Fig. 3). The authors prove, at the end
of Chap.2, that for a general closed “multiplicity” (a word used by Riemann), the
first and the last Betti numbers are equal, which is a special case of the result of
Poincaré saying that two Betti numbers which are equidistant from the extreme ones
are equal.

The 3rd chapter is dedicated to the extension of Cauchy’s theorem to double
integrals of functions of two variables, an extension due to Poincaré, and to residues
of double integrals of rational functions. The 4th chapter concerns the reduction of
singularities of an algebraic surface, and the study of its topological invariants. The
authors prove in particular that any algebraic surface is birationally equivalent to a
nonsingular surface embedded in the 5-dimensional space. Chapters5 and 6 concern
integrals of total differentials, and Chap. 7, double integrals.

In Volume II of the treatise, published nine years after the first one, the authors
present the recent results, obtained by Picard, Castelnuovo, Enriques and others,
on questions that were already addressed in the first volume and their extensions. In
particular, the reduction theory for singularities of an algebraic surface is revisited, as
well as the theory of double integrals of the second kind, in particular, their invariants
and their periods.

(Footnote 27 continued)
dans l’Analysis situs, et, après avoir complété et précisé les résultats obtenus par Betti, a appelé
l’attention sur les différences considérables que présentent ces théories, suivant qu’il s’agit d’un
espace à deux dimensions ou d’un espace à un plus grand nombre de dimensions.

http://dx.doi.org/10.1007/978-3-319-60039-0_2
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Appel-Goursat-Fatou

Riemann surfaces are also thoroughly studied in the first volume of the treatise
Théorie des fonctions algébriques et de leurs intégrales et des transcendantes qui
s’y rattachent (Theory of algebraic functions and their integrals, and their related
transcendentals) [6] byAppell, Goursat and Fatou,which appeared in 1929. In reality,
the treatise is a revised edition, by Fatou, of the treatise [4] by Appell and Goursat.
Fatou was at the same time amathematician and an astronomer. In 1906, he defended
a thesis entitled Séries trigonométriques et séries de Taylor (Trigonometric series
and Taylor series), [29, 30], whose subject is Lebesgue’s integration theory, which
in some sense is a refinement of Riemann’s integration theory (see Sect. 5 below).
It is in this thesis that we find the famous Fatou Lemma (also called the Fatou-
Lebesgue Lemma) on the comparison between the integral of a lower limit of positive
measurable functions and the lower limit of their integrals. The lemma is a key
element in the proof of the Dominated Convergence Theorem. In the same year,
Fatou started his work on the iteration of rational maps of the plane, a work that was
revived in the last two decades of the twentieth century by Sullivan, Thurston and
others. Fatou also worked on the dynamics of transcendental functions.

The title of the first volume of the treatise by Appell, Goursat and Fatou is Étude
des fonctions analytiques sur une surface de Riemann (Study of analytic functions on
a Riemann surface) [6]. In that treatise, Riemann surfaces are still represented, like in
the 19th-century treatises, in an anthropomorphic fashion, (usingWeyl’s expression;
see Sect. 2 of the present article). Figure4 is extracted from that volume, and is
already contained in the first edition by Appell and Goursat (Fig. 1 in Sect. 2 above).
The authors declare, concerning the surface considered: “This surface is analogous
to that represented in Fig. 10, with the difference that, in reality, the two leaves are
infinitely close and the apertures are infinitely narrow.

Chapter III of this volume is entitled Connexion des surfaces à deux feuillets.
Périodicité des intégrales hyperelliptiques (Connectivity of two-sheeted surfaces
and periodicity of hyperelliptic integrals). The authors start by saying (p. 99):

In what follows, we consider surfaces as leaves without thickness, in such a way that a point
or a line drawn on that surface will be visible for a observer situated on one side or the other.
These surfaces will be considered as perfectly elastic and rip-stop.28

Halphen

Among the other treatises that are related toRiemann surfaces,wementionHalphen’s
Traité des fonctions elliptiques et de leurs applications (A treatise on elliptic fonc-
tions and their applications) in 3 volumes, published in 1886, 1888 and 1891 [41].

28Dans ce qui suit, nous considérons des surfaces comme des feuillets sans épaisseur, de sorte qu’un
point ou une ligne tracée sur la surface seront visibles pour un observateur placé d’un côté ou de
l’autre. Les surfaces seront en outre regardées comme parfaitement élastiques et indéchirables.

http://dx.doi.org/10.1007/978-3-319-60039-0_10
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Fig. 4 A picture from the treatise by Appell, Goursat and Fatou [6]. One can read in the text above
the figure: “This surface is analogous to the one presented in Fig. 10, with the difference that, in
reality, the two sheets are infinitely close, etc.,” and, below the figure: “We have represented the
surface in the way an observer standing on the upper sheet would see it.”

This treatise had a certain impact on students in algebra and analysis. Georges-Henri
Halphen, was a graduate of the École Polytechnique,29 and he started with a career
in the army. He submitted a doctoral dissertation on 1878, titled Sur les invariants
différentiels (On differential invariants) [40], in which he determined the invariants
of planar or skew curves under projective transformations. His thesis committee con-
sisted of Hermite, Bouquet and Darboux. Haplhen participated to the 1870 French-
German war. In 1872, he was appointed répétiteur30 at the École Polytechnique. He
was a specialist, among other things, of differential invariants, elimination theory,
and singularities of algebraic curves. Picard, in biography of Halphen [82], writes
the following (p. x of the Introduction):

Riemann, in his theory of Abelian functions, had introduced the major notion of genus of
elliptic curves, and he classified them into different classes, two curves being in the same
class whenever there is a uniform correspondence between them. The famous geometer,
who liked the great horizons, passed quickly on more than one difficult point, in particular,
for what concerns higher singularities. Halphen gave a general formula, which applies to
all cases, for the determination of the genus of an algebraic curve. Then, passing to the
study of curves belonging to the same class, he went deeper into a remarkable proposition of

29We remind the reader that the École Polytechnique is a military school.
30A kind of a teaching assistant.

http://dx.doi.org/10.1007/978-3-319-60039-0_10
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Mr. Nœther according to which one may find in every class curves that have only ordinary
singularities [...]31

The first part of Halphen’s treatise concerns the general theory of elliptic func-
tions. The second part makes this treatise special compared to the other treatises
on the same subject: it concerns the applications of elliptic functions to various
branches of mathematics and physics. The subtitle of that volume is Applications
à la mécanique, à la physique, à la géodésie, à la géométrie et au calcul intégral
(Applications to mechanics, physics, geodesy, geometry and integral calculus). It
was known since the eighteenth century, that is, since the birth of the theory of ellip-
tic functions, that these functions have many applications in physics. It suffices to
recall in this respect that these functions are in some sense generalizations of the
familiar trigonometric functions, and that they can be used to represent a large class
of periodic phenomena. For instance, whereas the small oscillations of a pendulum
are represented by the sine functions (which is the inverse function of the elliptic

integral
∫ x

0

dt√
1 − t2

), for large oscillations, one needs (inverses of) more general

elliptic integrals. By the time of Riemann, elliptic integrals were used in problems of
gravitation and electromagnetism.We recall in this respect that the famous treatise of
Legendre, Exercices de calcul intégral (Exercises of integral calculus) [63] contains
a substantial part on elliptic integrals and their applications to problems in geometry
and mechanics. We also note that the subtitle of the first volume of Legendre’s Traité
des fonctions elliptiques et des intégrales eulériennes (Treatise on elliptic functions
and Eulerian integrals) [64] is: Contenant la théorie des fonctions elliptiques et son
application à différents problèmes de géométrie et de mécanique (Containing the
theory of elliptic functions and its application to various problems of geometry and
mechanics). One may also mention in this respect that expressions of the lengths
of arcs of an ellipse (which are precisely given by elliptic integrals) are obviously
useful in celestial mechanics, since Kepler’s first law says that orbits of planets in
the solar system are ellipses with the Sun at one of their two foci. His second law
says that a segment joining a planet and the Sun sweeps out equal areas during equal
intervals of time. We also recall that Gauss was also an astronomer, and his interest
in elliptic functions was motivated by his work on the trajectories of planets. Finally,
Abel’s 1827 famous paper on elliptic functions that we already mentioned, starts by
mentioning the “beautiful properties” of Abelian functions “and their applications.”
He writes ([1] p. 101):

Since a long time, the logarithmic functions, and the exponential and circular functions were
the only transcendental functions that attracted the attention of the geometers. It is only in

31Riemann, dans sa théorie des fonctions abéliennes, avait introduit la notion capitale du genre des
courbes algébriques, et partagé celles-ci en différentes classes, deux courbes étant de lamême classe
quand elles se correspondent uniformément. L’illustre géomètre, qui aimait les grands horizons,
avait peu insisté sur plus d’un point difficile, en particulier sur ce qui concerne les singularités
élevées. Halphen donne une formule générale, applicable à tous les cas, pour la détermination du
genre d’une courbe algébrique; puis, passant à l’étude des courbes d’unemême classe, il approfondit
une proposition remarquable donnée par M. Noether, d’après laquelle on peut trouver dans toute
classe des courbes n’ayant que des singularités ordinaires [...].
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recent times that some other functions started to be considered. Among them one has to
distinguish the so-called elliptic functions, at the same time because of their beauty and of
their use in the various branches of mathematics.”32

The applications to geodesy mentioned by Halphen concern the geodesics on an
ellipsoid of revolution whose ratio of major to minor axis is close to 1. Such a body
is a representation of the shape of the Earth. It is also well known that Gauss was
highly interested in geodesy. The applications of elliptic functions to geodesy were
also considered by Jacobi in his paper [53]. In that paper, Jacobi solves a problem in
geodesy which was addressed by Gauss. More details on elliptic functions are given
in Chap.1 of the present volume [76].

The third volume of Halphen’s treatise contains fragments on elliptic functions
which were collected after Halphen’s death and published by Stieltjes.33 The volume
also contains Picard’s biography of Halphen [82] which we already quoted. Picard
declares there that Halphen was “one of the most eminent geometers in Europe.”

Tannery and Molk

We now review the 4-volume treatise Éléments de la théorie des fonctions elliptiques
(Elements of the theory of elliptic functions) [107] byTannery andMolk.A fewwords
on the authors are in order.

Jules Tannery (1848–1910) was a geometer, philosopher and writer. He edited the
correspondence between Lagrange and d’Alembert.

In 1874, Tannery defended a doctoral dissertation whose title is Propriétés des
intégrales des équations différentielles linéaires à coefficients variables (Properties
of the integrals of linear differential equations with variable coefficients) [105] and
[106]. The thesis committee consisted of Hermite, Briot and Bouquet. The disserta-
tion starts with the following:

The study of functions of an imaginary variable defined by an equation, a study which was
substituted to the research, often unworkable, of the explicit form of these functions, pro-
foundly renewed analysis in this century. It is well known that the glory of having shown
this new way goes to Cauchy. The works of Mr. Puiseux on the solutions of algebraic equa-
tions, those of Messrs. Briot and Bouquet on doubly periodic functions and on differential
equations, have largely proved the fertility of the idea of Cauchy in France. In Germany, the

32Depuis longtemps les fonctions logarithmiques, et les fonctions exponentielles et circulaires ont
été les seules fonctions transcendantes qui ont attiré l’attention des géomètres. Ce n’est que dans les
derniers temps qu’on a commencé à en considérer quelques autres. Parmi celles-ci il faut distinguer
les fonctions, nommées elliptiques, tant pour leurs belles propriétés analytiques que pour leur
application dans les diverses branches des mathématiques.
33Thomas Johannes Stieltjes (1856–1894) was Dutch but he decided to live in France. He acquired
the French citizenship and in 1886 he became professor at the Faculté des Sciences de Toulouse.
Stieltjes is known for several works on analysis and number theory, in particular on the so-called
Stieltjes integral, elliptic functions, Dirichlet series, and is considered as the founder of the analytic
theory of continued fractions. Stieltjes is also remembered for a failed attempt to prove the Riemann
hypothesis, which he announced in his paper [104].
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beautiful discoveries of Riemann have accelerated the scientific movement which, since that
time, did not slow down.

Those who love science and who have too many reasons for distrusting their invention
capacities, still have a useful role to play, that of clarifying the others’ researches and dis-
seminating them. This is what I tried to do in the present work.34

There is a beautiful biography of Tannery by Picard [84]. The latter, as the secré-
taire perpétuel of the Académie des Sciences had to write several such biographies
and reports, and many of them give us a lively image of the French mathematical life
in France at his epoch. In his report on Tannery, describing his teachers—Puiseux,
Bouquet and Hermite—at the École Normale, Picard writes, concerning the latter:

What stroke Tannery above all in the teaching of Hermite is that he was able to give to
mathematical abstractions color and life. He used to show how functions transform into one
another, like a naturalist would do, in recounting the evolution of human beings.35

Jules Tannery was the thesis advisor of Hadamard. His brother, Paul Tannery, (1843-
1904) was also a mathematician and (probably the most important French) historian
of mathematics.

Jules Molk was Alsacian. He was born in 1857 in Strasbourg, where he stud-
ied at the Protestant Gymnasium founded by Jean Sturm in 1538. From 1874 to
1877 he studied at Zürich’s Eidgenössische Technische Hochschule. His teachers
there included Méquet, Geiser and Frobenius. After obtaining his diploma he went
to Paris, where he followed courses by Hermite, Bouquet, Bonnet, Tisserand and
Tannery. In 1882, he moved to Berlin, where he followed the courses of Weierstrass,
Helmholtz, Kirchhoff and Kronecker. He obtained his doctorate in 1884 in Berlin
under Kronecker. The title of his doctoral dissertation is: Sur une notion qui com-
prend celle de la divisibilité et sur la théorie générale de l’élimination (On a notion
which included that of divisibility and on the general theory of elimination). The dis-
sertation was published in Acta Mathematica, [68]. In the introduction, Molk writes
that his goal is to unravel some points of Kronecker’s memoirGründzüge einer arith-
metischen Theorie der algebraischen Grössen (Principles of an arithmetic theory of
algebraic magnitudes) [51] published in 1882. He declares that this memoir seems to
have been designed to give a new direction to algebra, and that his aim in his thesis is

34L’étude des fonctions d’une variable imaginaire définies par une équation, étude qui s’est substi-
tuée à la recherche, souvent impraticable, de la forme explicite de ces fonctions, a, dans notre siècle,
profondément renouvelé l’analyse. C’est, comme on le sait, à Cauchy que revient la gloire d’avoir
frayé cette voie nouvelle. Les travaux de M. Puiseux sur la recherche des racines des équations
algébriques, ceux de MM. Briot et Bouquet sur les fonctions doublement périodiques et sur les
équations différentielles ont, en France, amplement prouvé la fécondité de l’idée de Cauchy. En
Allemagne, les belles découvertes de Riemann ont accéléré un mouvement scientifique qui, depuis
lors, ne s’est pas ralenti.

Ceux qui aiment la science et qui ont trop de raisons pour se défier de leurs facultés d’invention,
ont encore un rôle utile à jouer, celui d’élucider les recherches des autres et de les répandre: c’est
ce que j’ai essayé de faire dans ce travail.
35Ce qui frappa surtout Tannery dans l’enseignement d’Hermite, c’est qu’il donnait aux abstractions
mathématiques la couleur et la vie; il montrait les fonctions se transformant les unes dans les autres,
comme l’eût fait un naturaliste retraçant l’évolution des êtres vivants.
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to call the geometers to go thoroughly into Kronecker’s difficult memoir. Molk died
in Nancy in 1914. He was a specialist of elliptic functions, but he is mostly known
for his collaboration with Klein to the edition of an encyclopedia of mathematics,
which appeared in two versions, a German and a French one. The first volume of
the German edition appeared in 1898 (Teubner, Leipzig) and the first volume of the
Frenchone in 1904 (Gauthier-Villars, Paris). TheGermannameof the encyclopedia is
Encyklopädie der mathematischen Wissenschaften mit Einschluss ihre Anwendungen
(Encyclopedia of mathematical sciences including their applications). The French
title is Encyclopédie des sciences mathématiques pures et appliquées (Encyclope-
dia of the pure and applied mathematical sciences). The French version comprises
22 volumes. More than a hundred mathematicians and physicists from Germany,
France, Italy and England collaborated to the project. Their names include Abraham,
Appell, Bauer, Borel, Boutroux, É. Cartan, Darwin, Ehrenfest, Enriques, Esclangon,
Fano, Fréchet, Furtwängler, Goursat, Hadamard, Hilbert, Klein, Langevin, Montel,
Painlevé, Pareto, Perrin, Runge, Schoenflies, Schwarzschild, Sommerfeld, Steinitz,
Study, Vessiot, Zermelo, and there are others. The publication of the encyclopedia
is a remarkable example, at the turn of the twentieth century, of a trans-border col-
laboration between mathematicians, especially French and German. The publication
date also corresponds to the period where the International Congresses of Mathe-
maticians started. The French edition is modeled on the German one, but it is not an
exact translation of it. It contains several original articles, and several of the German
articles, in the French version, are expanded. It is interesting to quote some excerpts
from a letter from Molk to Poincaré, sent on December 12, 1901; cf. [90] pp. 188–
189, in which he describes the project. This is also a testimony of the collaboration
between mathematicians of the two countries.

Our Encyclopedia will not be a translation of the German edition; it will be a new edition
of that encyclopedia. We shall be free to insert new articles, to present the German articles
according to our French habits, to add to them notes and complements. Each article will be
published with the mark: exposed by (the French author) following (the German author), and
the notes [or complemets] added by the French author will be, furthermore, mentioned in a
special way, with the goal of reserving our rights, in the case where the French edition will
be followed – which is most probable – by an English-American one, or a German one, or
even other editions. [...] The Germans have very remarkable qualities in careful scholarship;
we shall take advantage of those that they highlight in their German edition. Their exposition
qualities may be less remarkable; we shall try to do our best in this regard. We shall may
be succeed in helping them: this would be something! In any case, it would be dangerous to
not to have in our country a research tool which is analogous to the one which is spreading
more and more rapidly in their country [...] But there are also articles which manifestly are
missing in the German edition. For instance, researches on the law of great numbers are
hardly mentioned. Here, an additional article seems to be appropriate; the researches of Mr.
Darboux, your own researches, those of Hadamard, should find their place in our edition.
You will tell me if it is convenient for you to talk yourself about this subject, or if you find
it appropriate to entrust this article to others.36

36NotreEncyclopédie ne sera pas une traduction de l’édition allemande; ce sera une nouvelle édition
de cette encyclopédie. Nous serons libres d’intercaler de nouveaux articles, d’exposer, d’après nos
habitudes françaises, les articles allemands, d’y ajouter des notes, des compléments. Chaque arti-
cle sera publié avec lamention: exposé par (l’auteur français) d’après (l’auteur allemand), et les notes
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Unfortunately, the French edition was interrupted during the First World War and
the project was never resumed. We refer the reader who wishes to know more about
this project to the article [31] by H. Gispert.

Wenow review the four volumesof the treatiseÉléments de la théorie des fonctions
elliptiques by Tannery andMolk [107]. They appeared in 1893, 1896, 1898 and 1902.

In the introduction, the authors explain why they “dared writing a book on elliptic
functions, such a short time after the publication of Halphen’s treatise.” They say that
they do not have any pretension of replacing or equating the work of the Master. But
Halphen’s work remained incomplete after his early death, and the missing part was
long-awaited from the public. Tannery and Molk declare that the fragments edited
by Stieltjes are difficult to be read by students and that their treatise is meant to
compensate this fact. They write that their aim is that the student, after reading this
treatise, becomes able to work on the applications—in particular those contained in
the second volume of Halphen’s treatise, and of reading without difficulty Schwarz’s
Formeln und Lehrsäte zum Gebrauche der elliptischen Functionen (Formulae and
propositions for the use of elliptic functions)37 which is based on the lessons and
notes of Weierstrass, the fundamental memoirs of Abel and Jacobi, and the rest of
the “rich and admirable literature on elliptic functions,” in particular the researches
of Kronecker and Hermite.

The first volume of the treatise by Tannery and Molk contains an exposition of
infinite series and sums, with details on results of Weierstrass. The authors declare
right at the beginning that they assume that Cauchy’s theory of line integrals is
known. The second volume is an exposition of ϑ functions and the general results
on doubly periodic functions, deduced from the work of Hermite. The third volume
is concerned with the problem of inversion of elliptic functions. One may recall
here that the inverse functions of elliptic integrals are considered in some sense as
a generalization of the familiar trigonometric functions. (The reader might recall

that the the integral
∫ x

0

dt√
1 − t2

represents the inverse sine function.) The fourth

(Footnote 36 continued)
[ou compléments] ajoutées par l’auteur français seront, en outre, mentionnées d’une façon spéciale,
afin de réserver nos droits, dans le cas où à l’édition française succéderait, ce qui est fort probable,
une édition anglo-américaine, une nouvelle édition allemande, ou d’autres éditions encore. [...] Les
Allemands ont des qualités d’érudition minutieuses très remarquables; nous profiterons de celles
qu’ils ont mises en évidence dans leur édition allemande. Leurs qualités d’exposition sont peut-
être moins remarquables; nous essayerons de faire mieux à cet égard. Nous parviendrons peut-être
ainsi à leur rendre service; c’est quelque chose. Il serait en tous cas dangereux de ne pas avoir
chez nous un instrument de recherche analogue à celui qui se répand de plus en plus rapidement
chez eux. [...] Mais il y a aussi des articles qui manquent manifestement dans l’édition allemande.
C’est à peine si l’on mentionne, par exemple, les recherches sur les lois des grands nombres. Là
un article additionnel semblerait peut-être indiqué; les recherches de M. Darboux, les vôtres, celles
d’Hadamard devraient trouver place dans notre édition. Vous me direz s’il vous convient d’en parler
vous-même, ou si vous croyez bon de confier à d’autres cet article.
37Schwarz’s treatise was also published in French, under the title Formules et propositions pour
l’emploi des fonctions elliptiques, d’après des leçons et des notes manuscrites de M. K. Weierstrass,
translated by Henri Padé, Gauthier-Villars, Paris, 1894. The translation was offered to Charles
Hermite at the occasion of his seventieth birthday.
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chapter of that volume is concerned with the applications. The authors declare in the
introduction to Volume I (which serves as an introduction to the whole series) that the
notation they use is that ofWeierstrass. The fourth volume endswith a reprint of a long
letter (9 pages), dated September 24, 1900, from Hermite to Tannery, preceded by a
commentary (12 pages) by the authors on that letter. Hermite, in his letter, explains
to the authors (at their demand) a result which he had published without proof in
1858, in two articles both entitled Sur la résolution de l’équation du cinquième degré
[42, 43]. The authors refer to Hermite’s result in their treatise, but they rely there on
proofs by Weber and Dedekind, instead of the one of Hermite which was difficult to
follow. They declare in their commentary that the reason for which they reproduce
Hermite’s proof is its beauty, and this explains the inclusion of that letter.

Jordan

We shall review Jordan’sCours d’analyse de l’École Polytechnique (Course in analy-
sis of the École Polytechnique) [57] in three volumes, entitled respectively Calcul
différentiel (Differential calculus), Calcul intégral (Integral calculus) and Equations
différentielles (Differential equations). The first edition was published in 1882, 1883
and 1887 respectively. The courses given at the École Polytechnique had a large
impact, because several French mathematicians were trained at that school. On the
other hand, theCours were intended to the students and had to comply with a specific
official program, therefore they cannot be considered as a testimony of the research
inmathematics that was conducted at that time. Still, theCours by Jordan, like that by
Hermite which we also consider below, contains enough interesting material related
to the ideas of Riemann.

Jordan has been himself a student of theÉcole Polytechnique (graduating in 1855).
In 1860, he defended a doctoral dissertation entitled Sur le nombre des valeurs des
fonctions (On the number of values of functions) [56]. The jury consisted ofDuhamel,
Serret and Puiseux. His second thesis38 is entitled Sur les périodes des fonctions
inverses des intégrales des différentielles algébriques. (On the periods of inverse
functions of integrals of algebraic differentials). The subject was proposed to him
by Puiseux. Jordan is mostly known for his results on topology and group theory,
but he also worked on the theory of functions of a complex variable, and he was
well aware of Riemann’s work. Furthermore, he was among the first mathematicians
to understand the impact of Galois’ ideas, and he was also among the first who
introduced group theory in the study of differential equations. Jordan was appointed
examiner at the École Polytechnique in 1873, and then professor, at the chair of

38The French doctorate (until a reform which took place at the end of the 1980s) always involved
a second thesis, on a subject which was proposed by the jury, about 3 months before the date of
the thesis defense. The work done for that second thesis was not necessarily original, but it was
an occasion for the student to familiarize himself with a subject which was not his main research
subject.
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analysis, in 1876. His last years were saddened by the loss of three of his sons in
World War I.

Part of Jordan’s Cours d’analyse de l’École Polytechnique is related to Riemann’s
theory. In fact, Jordan’s treatise is concerned essentially with the (new) foundations
of real analysis, but half of Volume II is on complex analysis. This volume is entitled
Calcul intégral (Integral calculus). Chapter V (pp. 305–376) is on complex integra-
tion, Chap. VI (pp. 378–621) on elliptic functions, and Chap. VIII (pp. 619–693) on
Abelian integrals.

Chapter V is an exposition of Cauchy’s theory of integration, included in the
new rigorous setting of analysis, with applications to algebraic functions. The theory
is developed in the complex plane, and Riemann surfaces are not introduced. We
refer the reader to Chap.7 [77] of the present volume for a discussion of the relation
between Cauchy’s and Riemann’s theories.

In Chap. VI, Jordan studies elliptic functions. He starts with the fact they have at
most two (independent) periods. Group theory (in the language of “substitutions”) is
introduced in the study of linear transformations, and the language of determinants is
used. Elliptic functions are considered, as in the modern point of view, as defined on
the torus. Hermite’s decomposition of elliptic functions into elementary functions is
presented. This is an analogue of the decomposition theory of rational functions, and
it is used in integration. Operations on elliptic functions (multiplication and division)
are discussed in detail.

We now review Chap. VIII, on Abelian integrals. Jordan starts with a proposition
which he attributes to Lüroth, concerning a canonical way of associating to an alge-
braic function a cut system of curves in the plane. He then introduces the connectivity
of a Riemann surface in terms of such a canonical cut systems. The curves of such
a system are called retrosections. The fact that a simple closed curves on a simply
connected surface is homotopic to a point (Jordan says: “is equivalent to zero”) is
presented as a theorem. The definition of the genus of a surface is also given. The
adjective monodromic (“one-path”) for functions on a piece of a Riemann surface
is introduced. A synectic function is monodromic with no critical point. A function
is said to be uniform if it is synectic on the whole surface. Integrals of functions on
Riemann surfaces are then introduced and studied. Using integrals, a function which
is synectic on the whole Riemann surface is shown to be constant. A general expres-
sion is given for functions which are uniform on a Riemann surface and whose only
critical points are poles. Abelian integrals are then studied, as integrals of the form∫

Fdz where F is a rational function of two variables. Periods of these integrals are
introduced, as integrals along certain paths. The number of times a rational function
F takes a given value is independent of that value and is equal to the number poles
of the function. From that, a proposition, called Abel’s theorem, on the determina-
tion of Abelian integrals along some paths, is proved. Jordan gives then a theorem
saying that an Abelian integral is determined up to a constant by some periods he
calls the first p cyclic periods, and the location of its critical points together with
some finite part of its expansion at each such point. Integrals of the first, second and
third kind are introduced, and a strong form of Riemann’s existence theorem, which
Jordan calls the Riemann–Roch theorem, is obtained. ϑ functions and the inversion
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problem are introduced, and the solution of the inversion problem is presented. In
particular, an expression of elementary integrals of the second and third type in terms
of ϑ functions are given.

Appell and Lacour

In the treatise Principes de la théorie des fonctions elliptiques et applications (Prin-
ciples of the theory of elliptic functions and applications) [5] (1897) by Appell and
Lacour, the ideas of Riemann are hardly mentioned, but we include it in our series of
commentaries because this treatise complements naturally those that we considered
before.

Émile Lacour (1854–1913) was one of those good mathematicians who taught in
the French lycées, namely, at the famous lycée Saint-Louis and at the fancy Parisian
lycée Janson-de-Sailly. In 1895, he defended a thesis entitled Sur des fonctions d’un
point analytique à multiplicateurs exponentiels ou à périodes rationnelles (On func-
tions of an analytic point with exponential multipliers or with rational periods) [60].
The second thesis concerns the heat equation. The theory of Riemann surfaces of
algebraic curves is used in this dissertation. The “analytic points” that are mentioned
in the title are points on the Riemann surfaces of the functions considered. The “mul-
tipliers” are related to Riemann’s theory of Abelian integrals, and they refer to the
factors with which such an integral is multiplied when one traverses the cuts of a Rie-
mann surface on which it is defined. In other words, they are periods. The functions
considered (those that are referred to in the title) are generalizations of functions
introduced by Appell which are analogues of the so-called doubly periodic functions
of the third type. On of the simply connected surfaces obtained—in the tradition of
Riemann—by cutting the Riemann surface along 2p arcs called “cuts”, the multi-
plicative constants of the functions along the cuts are exponential, with an exponent
being a linear function of p Abelian integrals of the first kind. The thesis contains
results that make relations between, on the one hand, theorems of Abel on the zeros
and singularities of algebraic functions and ofAppell on the so-called “functionswith
multipliers,” and on the other hand, results of Riemann on ϑ functions. We recall
by the way that Riemann’s solution of the inversion problem, given in his paper on
Abelian functions, is based on the properties of the ϑ function in which the variables
are replaced by the corresponding integrals of the first kind. The resulting functions
become uniform when they are defined on their Riemann surfaces. In the last part of
his dissertation, Lacour shows that the new functions he introduces are solutions of
certain linear differential equations whose coefficients are rational functions.

In 1886, Lacour had Élie Cartan among his students, at the lycée Janson-de-Sailly.
At the same time, he taught at the Faculté des Sciences de Paris. In 1901, he held
the chair of differential and integral calculus at the University of Nancy, and he later
moved to the University of Rennes. After Lacour left Nancy, he was replaced there
by his former student Élie Cartan.
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Appell and Lacour conceived their treatise as an elementary introduction to the
subject, and as a preparation for the more advanced treatises (they refer to them as
the “great treatises”) of Briot-Bouquet, Halphen and Tannery-Molk. The treatise of
Appell and Lacour also includes simple applications to geometry, mechanics and
mathematical physics. The authors consider the theory of elliptic functions as a
“higher-order trigonometry,” in reference to the generalizations of the complex sine
and cosine functions.

Hermite

Toend this sequence of treatises,we say a fewwords on a treatise ofHermite,whowas
alreadymentioned several times in this chapter. This is hisCours d’analyse de l’École
Polytechnique. We first mention a few biographical facts on Hermite, extracted from
the Preface to Volume I of his collected works [49], written by Picard.

Charles Hermite (1822–1901) studied at the famous lycées Henri IV and Louis-
le-Grand. His teacher at Louis-le-Grand was Richard, who, fifteen years before, had
the young Galois as élève. Hermite, while he was still at Louis-le-Grand, used to go
to the nearby library, the famous Bibliothèque Sainte-Geneviève, to read Lagrange’s
Traité de la résolution des équations numériques. He bought with his savings, in
French translation, Gauss’s Recherches arithmétiques. Later on, Hermite used to say
that it wasmainly in these twoworks that he learned algebra. In 1842, at the age of 20,
Hermite entered the École Polytechnique, and the same year he published two papers
in the new journal Nouvelles annales de mathématiques. One of these papers is on
the impossibility of solving the fifth degree equation. A few months later, in January
1843, Hermite wrote to Jacobi, presenting his work on Abelian functions in which he
extends results of Abel on the division of the argument of elliptic functions.The next
year he sent another letter to Jacobi, on transformations on elliptic functions which
included results on ϑ functions. Jacobi was so pleased by the letters of the young
Hermite that he inserted them in his Collected Works. Later on, Hermite became
mostly interested in number theory, and elliptic and Abelian functions continued to
occupy his mind for the rest of his life. Jacobi’s Fundamenta nova were always on
his worktable. According to Picard, Hermite used to say that he will be until his last
day a disciple of Gauss, Jacobi and Dirichlet.

Hermite taught at the École Polytechnique and he wrote, like many other pro-
fessors at that school, a Cours d’analyse de l’École Polytechnique (1873) [44]. He
also taught at the University of Paris, and lecture notes from his teaching, for the
year 1882–1883, exist [45]. A large part of his course at the university is on elliptic
integrals. The topics include the rectification of the parabola, ellipse and hyperbola,
results of Fagnano, Graves and Chasles on arcs of ellipses whose difference is rec-
tifiable (see Chap.1 in the present volume for the work done on the rectifiability
of these curves), and hyperelliptic integrals. Several results of Chebyshev are also
presented together with Cauchy’s theory on the dependence of a path integral on the
homotopy class of the path. Riemann’s method for the construction of holomorphic

http://dx.doi.org/10.1007/978-3-319-60039-0_1


Riemann Surfaces: Reception by the French School 271

functions is also discussed, together with Green’s theorem. Hermite also included in
his course Riemann surfaces associated to multi-valued functions, periods of elliptic
functions, doubly periodic functions, the transformation theory of elliptic functions,
the ϑ function and other functions introduced by Jacobi.

4 Simart’s Dissertation

Georges Simart (1846–1921) studied at the École Polytechnique. After that, he
became a mathematician but he also worked as an officer in the Navy.39 On the
cover page of his doctoral dissertation, he is described as Capitaine de vaisseau.40

On the one of his book with Picard, he is described as Capitaine de frégate41 et
répétiteur42 à l’École Polytechnique. His dissertation is entitled Commentaire sur
deux mémoires de Riemann relatifs à la théorie générale des fonctions et au principe
de Dirichlet (A commentary on two memoirs of Riemann relative to the general the-
ory of functions and to the principle of Dirichlet). It was defended on May 1, 1882,
with a jury consisting of Hermite (acting as the president), Darboux and Bouquet.
Simart had personal relationswith Picard. In the introduction toVolume I of hisTraité
d’analyse [79], Picard writes that the volume was proof-read by Simart, “a dedicated
friend and an invaluable collaborator” (un ami dévoué et un précieux collaborateur).
We already mentioned the treatise that Picard and Simart wrote together, the Théorie
des fonctions algébriques de deux variables indépendantes (Sect. 3). In the introduc-
tion to that work, Picard indicates that he wrote that book “with his friend, Georges
Simart, who had helped him a lot in his Traité d’analyse.”

Simart’s thesis is a commentary on the twomemoirs of Riemann on functions of a
complex variable, namely, his doctoral dissertation [92] and his memoir on Abelian
functions [94].

The first sentences of the thesis give us some hints on the status of Riemann’s
work among the French mathematicians at that epoch:

We know the magnificent results obtained by Riemann in his two memoirs on the general
theory of functions and on the theory of Abelian functions; but the methods he used, may be
too briefly presented, are poorly known in France. On the other hand, reading these memoirs
is particularly difficult and requires a heavy amount of work. Furthermore, the methods used
by the famous geometer, and in particular his use of the Dirichlet principle, gave rise to
several criticisms, whether in Germany or in France.43

39We remind the reader that the École Polytechnique is primarily a military school.
40A Captain in the Navy.
41A Frigate Captain. The progress is unusual because the rank of Capitaine de frégate is lower than
that of Capitaine de vaisseau.
42See Footnote 30. From 1900 to 1906, Simart worked as a répétiteur at the École Polytechnique.
43On connaît les magnifiques résultats auxquels Riemann est parvenu dans ses deux mémoires
relatifs à la théorie générale des fonctions et à la théorie des fonctions abéliennes; mais les méthodes
qu’il a employées, peut-être trop succinctement exposées, sont peu connues en France. La lecture
de ces mémoires est d’ailleurs singulièrement difficile et demande un travail approfondi. De plus,
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The author then declares that his exposition is based on the works published in
Germany by Königsberger, Neumann, Klein, Dedekind, Weber, Prym, Fuchs and a
few others.44 He declares that “reading thesememoirs requires a knowledge of the so-
called Riemann surfaces, whose use became classical in some German universities.”
He writes, at the end of the introduction, that at the moment he was achieving his
work, he learnt about the existence of a booklet byKlein45 inwhich the latter develops
Riemann’s ideas. Simart declares that Klein explains in that booklet that it is not
necessary that Riemann surfaces be coverings of the plane (“des surfaces à plusieurs
feuillets étendues sur le plan”), but that complex functionsmaybe studied on arbitrary
curved surfaces, in the same way as we do it on the plane. Simart also uses the work
of Puiseux. We refer the reader to the description of the work of Puiseux given in
Chap.7 of the present volume, [77].

At the beginning of the dissertation, Simart shows how a Riemann surface is
associated with an irreducible algebraic equation F(s, z) = 0 defining implicitly an
algebraic function s of z. This surface is obtained using the distribution of the critical
points and the poles, and it depends on the combinatorics of the (multi-)values of
the function s(z) at these points. This is considered as “the Riemann surface of the
function s.” This is the new domain on which the function s becomes uniform (that
is, no more multi-valued). The construction of the surface is described on pp. 5–7 of
the thesis. To the critical points (points z for which the given equation has multiple
roots s) are associated products of cyclic transformations (permutations) obtained by
winding around these values, in the tradition of Cauchy and Puiseux (see the review
in [77]). TheRiemann surface is obtained by gluing pieces of the complex plane using
this combinatorial data. The pieces constitute the various “sheets” of the Riemann
surface, which becomes a branched covering of the sphere. Each critical point gives
rise to a certain number of ramification points of the covering, their number depending
on the number of cyclic systems associated with the critical point. A ramification
point of order μ corresponds to a cyclic permutation of μ + 1 roots of the algebraic
equation. Examples of gluing patterns for the various sheets are represented in Fig. 5.
In this figure, the surface to the left (called Fig. 1 in the original drawing) represents a
critical point of order 3, having a unique cycle. It corresponds to a unique ramification
point of order 2. The surface in the middle (called Fig. 2) represents a critical point
of order 4 having two cycles. It corresponds to two ramification points of order 1
each. The surface to the right (called Fig. 3) represents a critical point of order 4
having three cycles. It corresponds to three ramification points, one of order 1, and
two others of order 0. The Riemann surface associated with the algebraic equation
satisfies the following properties:

(Footnote 43 continued)
les procédés employés par l’illustre géomètre, en particulier l’application qu’il a faite du principe
de Dirichlet, ont donné lieu à de nombreuses critiques tant en Allemagne qu’en France.
44Klein, in his Development of mathematics in the 19th century [59], gives a concise report on the
contribution of these authors to the diffusion of Riemann’s work.
45This should be Klein’s Über Riemanns Theorie der algebraischen Funktionen und ihrer Integrale
[58].

http://dx.doi.org/10.1007/978-3-319-60039-0_7
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Fig. 5 Picture from Simart’s thesis [103]

(1) Any rational function of s and z, when it is defined on the Riemann surface, is
also a uniform function of z.

(2) The various integrals of the function s on this surface differ by a constant.

The rest of Part I of the dissertation is also purely topological. Simart recalls
Riemann’s definition and classification of surfaces according to their connectivity,
and how an n + 1-connected surface may be transformed into an n-connected one
by performing cuts. He declares that this theory was outlined by Riemann, but that
the details were worked out by Königsberger. Simart then proves that a connected
(n + 1)-connected surface is transformed by an arbitrary cut into an n-connected
surface.

Part II of the dissertation concerns the study of the Laplace equation. We recall
that Riemann, at the beginning of his doctoral dissertation, showed that if a function
w = u + iv of a complex variable z = x + iy has the property that its derivative
is independent of direction, then its real and imaginary parts satisfy the Laplace
equation.This is oneof themajor tools thatRiemannuses in the rest of hiswork.Using
a system of coordinates that Riemann introduced in his dissertation and his memoir
on Abelian functions, Simart proves an extension of Green’s theorem to a region
contained in an arbitrary Riemann surface bounded by an arbitrary finite number of
curves. Riemann’s use of the Dirichlet principle relies on that theorem. Simart gives
the precise hypotheses on the functions which are concerned by Green’s theorem,
taking into account points of discontinuity and the points at infinity. The points of
discontinuity of a function u are arranged, following Riemann’s classification in §10
of his dissertation, into two species, according to whether the surface integral

∫ ∫ (
(
∂u

∂x
)2 + (

∂u

∂y
)2

)
dT

is finite or not on a piece of surface containing this point.
Simart proves the following theorem, which he attributes to Riemann (§10 of

Riemann’s dissertation):
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Let u be a function defined on a simply connected Riemann surface with boundary satisfying
the differential equation

∂2u

∂x2
+ ∂2u

∂y2
= 0

and suppose that the function satisfies furthermore the following conditions:

(1) The set of points where this differential equation is not satisfied has dimension ≤ 1.

(2) The number of points where u, ∂u
∂x , ∂u

∂y are discontinuous is finite.

(3) At these discontinuity points, the magnitudes ρ ∂u
∂x , ρ ∂u

∂y are infinitely small compared
with ρ, where ρ is the distance to the singular point.

(4) There are no isolated discontinuities of u which correspond to an instantaneous change
in value.

Then u as well as its partial derivatives are necessarily finite and continuous.

Simart then proves (§11 of Riemann’s dissertation) the uniqueness of a function
u satisfying the Laplace equation on the interior of a domain, with a given value on
the boundary.

Part III of Simart’s dissertation concerns the Dirichlet principle (§16–18 of Rie-
mann’s disssertation), in connection with Riemann’s determination of the functions
discussed in Part II. We recall that Riemann uses this principle in his proof of the so-
called Riemann mapping theorem, stated as follows (§21 of Riemann’s dissertation
and p. 78 of Simart’s dissertation):

Given a simply connected Riemann surface T with boundary, there exists a function ζ(z)
defined on this surface such that the image by ζ of T is the unit disc.

Part IV concerns Abelian integrals, as an approach to the Riemann existence
problem: “To determine a function knowing its ramification points, its discontinuity
points and the way in which it is discontinuous.” The analytic forms of the so-called
integrals of the first kind are given as well as the Riemann–Roch theorem.

More precisely, Simart addresses in this part the following two problems, for
which he gives a complete solution:

Problem 1 (p. 80) Given an irreducible algebraic equation F(s, z) = 0 defining a
multi-valued algebraic function s of z, find the associated Riemann surface, that is:

(1) determine the critical points of the function s, the number of ramification points
that are above these critical points, and the order of each of these ramification
points;

(2) transform this surface, using Riemann’s “cuts,” into a simply connected surface,
evaluate the number of cuts, and then determine the connection of the surface.

Problem 2 (p. 97) Let T be the closed surface associated with the function s(z)
defined in Problem 1, and assume it is 2p + 1-connected. Let T ′ be the simply
connected surface obtained from s using 2p cuts. Find a function w(z) which is
uniform on T , continuous on T ′ except at certain points and along certain lines, and
satisfying the following:
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(1) Along each cut, the difference of the function from one side of the cut to the
other is a constant; the real parts of these constants are given in advance.

(2) The function is discontinuous at a certain finite number of points, and at such
points it has a finite expression of the form

A log r + Br−1 + Cr−2 + · · ·

where the constants A, B, . . . are given and r is an arbitrary function of z which
at the given point is infinitely small of the first order.

(3) With the set of points in (2), the surface is no more closed, and one has to draw
new cuts joining these points to the boundary of the surface T ′. The difference
of the function w along both sides of each of these new cuts is constant for each
such cut and equal to 2π A.

In the solution of Problem 1, the Puiseux expansions and the techniques of the
Puiseux-Newton polygon are thoroughly used.

The second problem is one of the main problems that were addressed by Riemann
in his memoir on Abelian functions. The proof that Simart gives uses, in the tradition
of Riemann, the Dirichlet principle.

To each critical point corresponds a certain number of ramification points which
are determined by the system of circular points formed around that point. A ramifica-
tion point of orderμ is a point aroundwhichμ + 1 roots are permuted. A ramification
point of order 1 is a point around which 2 roots are permuted, and it is called a simple
ramification point. There is a relation between the order and the degree of a critical
point, and the orders of the corresponding ramification points above it. These con-
siderations are in the tradition of the work of Puiseux; cf. the exposition in Chap.7
of the present volume [77].

Simart’s dissertation is one of the important French writings that contributed to
the understanding of Riemann’s ideas by the French mathematicians.

5 Other French Dissertations and Other Works of Riemann

In this section,we reviewbrieflya fewotherworks done inFrance inwhich the authors
explain some major ideas of Riemann, including his work on the zeta function, on
minimal surfaces, and on integration.

The Zeta Function

Eugène Cahen, defended in 1895, at the Faculté des Sciences de Paris, a doctoral
dissertation titled Sur la fonction ζ(s) de Riemann et sur des fonctions analogues
(On Riemann’s ζ(s) function and on analogous functions) [21]. The dissertation is

http://dx.doi.org/10.1007/978-3-319-60039-0_7


276 A. Papadopoulos

dedicated to a generalization of Riemann’s zeta function to functions of the form∑ αn

ns
, in particular for sequences αn which are periodic, and to the development

of a theory of Dirichlet series. The dissertation was criticized as being faulty, but
it contains the kind of mistakes which were a ferment for further research. For
instance, Cahen gives, with an incomplete proof, an asymptotic value of the sum
of the logarithms of prime numbers which are smaller than x . In his paper [38],
Hadamard writes:

In his memoir which was previously quoted, Mr. Cahen presents a proof of the theorem
stated by Halphen: The sum of the logarithms of the prime numbers which are at most x is
asymptotic to x . However, his reasoning depends on Stieltjes’ proposition concerning the
realness of the roots of ζ( 12 + ti) = 0. We shall see that by modifying slightly the author’s
analysis, we can establish the same result in all rigor.46

The mistakes in Cahen’s dissertation are analyzed in E. Landau’s review [61].
Landau corrected some of them. Cahen’s dissertation was published in the Annales
de l’École Normale, [22].

It is interesting to recall that in 1891, the Paris Académie des Sciences announced
a prize for a competition whose subject was: “The determination of the number of
prime numbers smaller than a given quantity.”When the competitionwas announced,
it was thought that the prize would be attributed to Stieltjes, who had claimed a proof
of the Riemann hypothesis, but his proof turned out to be wrong. The prize went in
1892 to Hadamard, for completing Riemann’s proof of the prime number theorem.
Here is how Hadamard relates his discoveries, in his report on his own works [37]:

The last ring in the chain of deductions which started in my thesis and continued in my
crowned memoir led to the clarification of the most important properties of Riemann’s ζ(s)
function.

By considering this function, Riemann determines the frequency asymptotic law of prime
numbers. But his reasoning assumes: 1) that the function ζ(s) has finitely many zeros; 2)
that the successive moduli of these zeros grow roughly like n log n; 3) that, in the expression
of the auxiliary function ξ(t) in prime factors, no exponential factor is introduced.

Since these propositions remained without proof, Riemann’s results remained completely
hypothetical, and it was not possible to find others in the same trend. As a matter of fact,
no effort has been attempted in this respect since Riemann’s memoir, with the exception of:
(1) Halphen’s note which I mentioned earlier, which was, after all, a research project for the
case where Riemann’s postulates would be established; (2) a note by Stieltjes in which this
geometer announced a proof of the realness of the roots of ζ(t), a proof which was never
produced since.

Nevertheless the propositionswhose statements I recalled before are only a trivial application
of general theorems contained in my memoir.

Once these propositions are established, the analytic theory of prime numbers was able, after
a break which lasted thirty years, to take a new boom; since that time, it continued to grow
rapidly.

46Dans sonmémoire précédemment cité,M. Cahen présente une démonstration du théorème énoncé
par Halphen: La somme des logarithmes des nombres premiers inférieurs à x est asymptotique à
x . Toutefois son raisonnement dépend de la proposition de Stieltjes sur la réalité des racines de
ζ( 12 + ti) = 0. Nous allons voir qu’en modifiant légèrement l’analyse de l’auteur on peut établir le
même résultat en toute rigueur.
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This is how the knowledge of the genus47 of ζ(s) allowed, first,Mr. vonMangoldt to establish
in all rigor the final result of Riemann’s memoir. Before that, Mr. Cahen had made a first
step towards the solution of the problem addressed by Halphen; but he was not able to
attain completely his goal: indeed, it was necessary, in order to achieve in an irrefutable
way Halphen’s reasoning, to prove once again that the ζ function has no zero on the line
R(s) = 1.

I was able to overcome this difficulty in 1896, while Mr. de la Vallée-Poussin reached
independently the same result. But the proof which I gave is much quicker and Mr. de la
Vallée-Poussin adopted it in his later publications. It uses only the simple properties of ζ(s).

At the same time, I extended the reasoning toDirichlet series and, consequently, I determined
the distribution law for prime numbers in an arbitrary arithmetic progression, then I showed
that this reasoning may be used as such for quadratic forms with negative determinant. Since
then, the same general theorems on entire functions allowed Mr. de la Vallée-Poussin to
complete this cycle of proofs by treating the case of forms with positive b2 − ac.48

47Hadamard was studying, at the same period, a notion of genus for entire functions. In particular,
he gave a formula for the growth of the moduli of the roots of such functions in terms of their power
series expansion.
48Le dernier anneau de la chaîne de déductions commencée dans ma Thèse et continuée dans mon
Mémoire couronné aboutit à l’éclaircissement des propriétés les plus importantes de la fonction
ζ(s) de Riemann.

Par la considération de cette fonction, Riemann détermine la loi asymptotique de fréquence des
nombres premiers. Mais son raisonnement suppose: (1) que la fonction ζ(s) a des zéros en nombre
infini; (2) que les modules successifs de ces zéros croissent à peu près comme n log n; (3) que,
dans l’expression de la fonction auxiliaire ξ(t) en facteurs primaires, aucun facteur exponentiel ne
s’introduit.

Ces propositions étant restées sans démonstration, les résultats de Riemann restaient complète-
ment hypothétiques, et il n’en pouvait être recherché d’autres dans cette voie. De fait, aucun essai
n’avait été tenté dans cet ordre d’idées depuis le Mémoire de Riemann, à l’exception: (1) de la
Note précédemment citée d’Halphen, qui était, en somme, un projet de recherches pour le cas où
les postulats de Riemann seraient établis; (2) d’une Note de Stieltjes, où ce géomètre annonçait une
démonstration de la réalité des racines de ξ(t), démonstration qui n’a jamais été produite depuis.

Or les propositions dont j’ai rappelé tout à l’heure l’énoncé ne sont qu’une application évidente
des théorèmes généraux contenus dans mon Mémoire.

Une fois ces propositions établies, la théorie analytique des nombres premiers put, après un
arrêt de trente ans, prendre un nouvel essor; elle n’a cessé, depuis ce moment, de faire de rapides
progrès.

C’est ainsi que la connaissance du genre de ζ(s) a permis, tout d’abord, à M. von Mangoldt
d’établir en toute rigueur le résultat final duMémoire deRiemann.Auparavant,M.Cahen avait fait un
premier pas vers la solution du problème posé par Halphen; mais il n’avait pu arriver complètement
au but: il fallait, en effet, pour achever de construire d’une façon inattaquable le raisonnement
d’Halphen, prouver encore que la fonction ζ n’avait pas de zéro sur la droite R(s) = 1.

J’ai pu vaincre cette dernière difficulté en 1896, pendant que M. de la Vallée-Poussin parvenait
de son côté au même résultat. La démonstration que j’ai donnée est d’ailleurs de beaucoup la plus
rapide et M. de la Vallée-Poussin l’a adoptée dans ses publications ultérieures. Elle n’utilise que les
propriétés les plus simples de ζ(s).

Enmême temps j’étendais le raisonnement aux séries deDirichlet et, par conséquent, déterminais
la loi de distribution des nombres premiers dans une progression arithmétique quelconque, puis je
montrais que ce raisonnement s’appliquait de lui-même aux formes quadratiques à déterminant
négatif. Les mêmes théorèmes généraux sur les fonctions entières ont permis, depuis, à M. de la
Vallée-Poussin d’achever ce cycle de démonstrations en traitant le cas des formes à b2 − ac positif.
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Minimal Surfaces

Regarding Riemann’s work on minimal surfaces (see [95, 96] cf. also Chap.5 of the
present volume [111]), we mention the thesis defended at the Faculté des Sciences
de Paris on May 27, 1880, by Boleslas-Alexandre Niewenglowski [71]. The title is
Exposition de la méthode de Riemann pour la détermination des surfaces minima de
contour donné (Exposition of Riemann’s method for the determination of minimal
surfaces with a given contour). The thesis committee consisted of Hermite, Bonnet
andTannery.The author declares there thatRiemann, in hisworkonminimal surfaces,
was inspired by Bonnet. He writes, in his introduction:

I would like to clarify, if I can, a remarkable memoir of Riemann, relative to minimal
surfaces. The famous author had briefly indicated most of the results he obtained; I hope that
I established them in a satisfactory way.

Riemann makes use of imaginary variables which we immediately reduce to the variables
that were used before him by Mr. O. Bonnet, in several important memoirs on the general
theory of surfaces. Indeed, the logarithm of the variable μ, chosen by Riemann, is equal to
y + x

√−1 and, therefore, the logarithm of the conjugate variable μ′ is equal to y − x
√−1,

where x et y are the independent variables adopted by Mr. O. Bonnet. I think that I am not
exaggerating at all in claiming that the scholarly research of Mr. O. Bonnet inspired that of
Riemann.49

In §6 of his dissertation, Niewenglowski recalls the partial differential equation that
Riemann obtains to show that a surface is minimal (that is, has zero mean curva-
ture), and he shows that this equation is contained in Bonnet’s memoir [7]. We note
by the way that Bonnet wrote several other articles on minimal surfaces; cf. e.g.
[8–12]. In the first section of the second part of his dissertation, titled Applications,
Niewenglowski considers the special case of minimal surfaces that contain two non-
planar surfaces. He notes that the only such surface that Riemann indicates in his
article is a surface that was known since a long time (a surface Niewenglowski calls
“hélicoïde gauche à plan directeur.”) Niewenglowski notes that Serret showed that
there are other surfaces that satisfy this requirement and he describes them. Other
examples of minimal surfaces given by Riemann are described from a new point of
view.Niewenglowski’s dissertationwas published in theAnnales de l’ÉcoleNormale
Supérieure, [70].

49Je me propose d’élucider, s’il m’est possible, un mémoire remarquable de Riemann, relatif aux
surfaces minima. L’illustre auteur a brièvement indiqué la plupart des résultats qu’il a obtenus;
j’espère les avoir établis d’une manière satisfaisante.

Riemann se sert de variables imaginaires que l’on ramène immédiatement aux variables
employées avant lui par M. O. Bonnet, dans plusieurs mémoires importants sur la théorie générale
des surfaces. En effet, le logarithme népérien de la variable μ, choisie par Riemann, est égal à
y + x

√−1 et le logarithme de la variable conjuguéeμ′ est égal, par suite, à y − x
√−1, x et y étant

les variables indépendantes adoptées par M. O. Bonnet. Je pense ne rien exagérer en affirmant que
les recherches savantes de M. O. Bonnet ont inspiré celles de Riemann.

http://dx.doi.org/10.1007/978-3-319-60039-0_5
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The Riemann Integral

Finally, we talk about the fate of the Riemann integral in the French treatises on
analysis of the period considered. It seems that it is only in the second edition of
Jordan’s Cours d’analyse, published in 1893, that this topic was considered for the
first time. We note by the way that this second edition contains Jordan’s theorem
saying that a simple closed curve in the plane separates the plane into two regions.

Riemann introduced his theory of integration in his habilitation memoir on
trigonometric series, Über die Darstellbarkeit einer Function durch eine
trigonometrische Reihe (On the representability of a function by a trigonometric
series) [93]. The text was written in 1853 but was published only after Riemann’s
death. Darboux, in a letter to Hoüel, who had just translated Riemann’s memoir into
French, dated March 30, 1873 and quoted in [28], writes the following:

It is very kind of you to have finished the Riemann. There is a pearl which everybody will
discover there, I hope. This is the definition of the definite integral. It is from here that I
extracted a large quantity of functions which do not have a derivative.50

Darboux and Hoüel were the two editors of the Bulletin des sciences mathé-
matiques et astronomiques, and we mention incidentally that Hoüel translated into
French, and published, other memoirs of Riemann, including his two Habilitation
works, Über die Darstellbarkeit einer Function durch eine trigonometrische Reihe
(On the representability of a function by a trigonometric series) [93] and Über die
Hypothesen, welche der Geometrie zu Grunde liegen (On the hypotheses that lie at
the bases of geometry) [99].

Two years after hewrote that letter, Darboux published amemoir on discontinuous
functions [25] in which he uses Riemann’s ideas. His memoir starts as follows:

Until the appearance Riemann’s memoir on trigonometric series, no doubts were raised on
the existence of a derivative for continuous functions. Excellent and famous geometers,
among whom one must count Ampère, had tried to provide rigorous proofs for the existence
of a derivative. These attempts were without doubt far from being satisfying. But I repeat it:
no doubt was even formulated on the existence of a derivative for continuous functions.

The publication of Riemann’s memoir concluded the question in the opposite way. At the
occasion of trigonometric series, the famous geometer presents his ideas on the principle of
infinitesimal calculus: he generalizes, with one of these views that belong only to first order
minds, the notion of definite integral; he shows that it applies to discontinuous functions on
any interval, and he states the necessary and sufficient conditions under which a function,
continuous or discontinuous, can be integrated. As we shall see, the sole fact that there exist
discontinuous functions that can be integrated suffices to prove that there are discontinu-
ous functions that have no derivative, and this consequence of Riemann’s works was soon
admitted by the German geometers.

50Vous êtes bien aimable d’avoir fini le Riemann. Il y a une perle que tout le monde y découvrira,
je l’espère. C’est la définition de l’intégrale définie. C’est de là que j’ai tiré une foule de fonctions
qui n’ont pas de dérivées.
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[...] In the work that will be read, I resume, providing all the necessary developments, the
definitions of Riemann’s definite integral after Riemann, and I show how this definition must
lead to infinitely many continuous functions which have no derivative.51

Picard, in his Notice on Darboux, reports that the latter declared later on that his
memoir “was poorly received by several among those who usually are interested
by his works. They had dissuaded him to further cultivate this unproductive field of
functions which do not have a derivative.”52

Lebesgue, in a letter to Borel dated April 28, 1909, writes ([65] p. 189):

I appreciate the last works of Riemann (I think he died young) as much as his dissertation
on functions of a complex variable, whose importance, it seems to me, was exaggerated.53

One may mention here that the main idea that Lebesgue wanted to convey in
that letter is that, from his point of view, the work of a mature mathematician is
generally more important than the work he did when he was young. It is also true
that Lebesgue found in Riemann’s memoir on trigonometric series [93], which was
written three years after his doctoral dissertation [92] (that is, he was more mature,
in Lebesgue’s wording), the bases of his integration theory, the work for which the
name of Lebesgue is mostly remembered.

Lebesgue is the founder of measure theory, and he was inspired by Riemann’s
integration theory. In the introduction to his famous Leçons sur l’intégration et la
recherche des fonctions primitives (Lessons on integration and on the search for
primitive functions) [62], Lebesgue writes:

[...] It is for the resolution of these problems, and not by love of complications, that I
introduced in this book a definition of the integral which ismore general than that of Riemann
and which includes the latter as a special case.

51Jusqu’à l’apparition dumémoire deRiemann sur les séries trigonométriques aucun doute ne s’était
élevé sur l’existence de la dérivée des fonctions continues. D’excellents, d’illustres géomètres, au
nombre desquels il faut compter Ampère, avaient essayé de donner des démonstrations rigoureuses
de l’existence de la dérivée. Ces tentatives étaient loin sans doute d’être satisfaisantes; mais je
le répète, aucun doute n’avait été formulé sur l’existence même d’une dérivée pour les fonctions
continues.

La publication du mémoire de Riemann a décidé la question en sens contraire. À l’occasion des
séries trigonométriques, l’illustre géomètre expose ses idées sur le principe duCalcul Infinitésimal: il
généralise, par une de ces vues qui n’appartient qu’aux esprits de premier ordre, la notion d’intégrale
définie; il montre qu’elle est applicable à des fonctions discontinues dans tout intervalle, et il
énonce les conditions nécessaires et suffisantes pour qu’une fonction, continue ou discontinue,
soit susceptible d’intégration. Ce seul fait, qu’il existe des fonctions discontinues susceptibles
d’intégration, suffit à prouver, comme on le verra, qu’il y a des fonctions continues n’ayant pas de
dérivée, et cette conséquence des travaux de Riemann n’a pas tardé à être admise par les géomètres
allemands.

[...] Dans le travail qu’on va lire, je reprends, en donnant tous les développements nécessaires,
les définitions de l’intégrale définie d’après Riemann, et je montre comment cette définition doit
conduire à une infinité de fonctions continues n’ayant pas de dérivée.
52CeMémoire avait été froidement accueilli par plusieurs de ceux qui habituellement s’intéressaient
à ses travaux. Ils l’avaient dissuadé de labourer plus longtemps le champ stérile des fonctions qui
n’ont pas de dérivée.
53J’apprécie autant les derniers travaux de Riemann (mort jeune je crois) que sa dissertation sur les
fonctions de variable complexe dont l’importance m’a semblé parfois exagérée.
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I think that those who will read me carefully, even if they regret that things are not simpler,
will grant me that this definition is necessary and natural. I dare say that in a certain sense it is
simpler than that of Riemann, as much easy to grasp, and that only some previously acquired
mental habits can make it appear more complicated. It is simpler because it highlights the
most important properties of the integral, whereas Riemann’s definition only highlights a
computational mechanism. For this reason, it is almost always as much easy, and even easier,
using the general definition of the integral, to prove a property for all the functions to which
this definition applies, that is, the summable functions, than to prove it for all the integrable
functions, relying onRiemann’s definition. Even if one is only interested in the results relative
to simple functions, it is therefore useful to be familiar with the notion of summable function
because it suggests fast methods of proof.54

Chapter II of Lebesgue’s treatise is entirely dedicated to Riemann’s theory.

6 On the Relations Between the French and German
Mathematicians

The impact of Riemann’s work on the French mathematical school naturally leads to
the question of the relation between the French and German schools of mathematics.
We already addressed this issue, in particular in Sect. 3 above. The question has
several sides, ranging from the attitude towards the so-called German tendency to
abstraction, to the political aspect, taking into account the ravagingwar that broke out
20 years after Riemann defended his dissertation.We recall that in 1870, a devastating
war erupted between France andGermany, which resulted in the German annexion of
the French provinces of Alsace and Moselle. This war clearly affected the relations
between the two countries, but the French kept the great admiration they had for
Riemann, Weierstrass and the German school of function theory. One must add that
despite this admiration, some of Riemann’s methods remained foreign to the French
geometers. Darboux, in a letter to Hoüel, dated March 5, 1870, complains of the fact
that the French mathematicians were still relying on the old methods. He writes ([26]
p. 109):

54[...] C’est pour la résolution de ces problèmes, et non par amour des complications, que j’ai
introduit dans ce livre une définition de l’intégrale plus générale que celle deRiemann et comprenant
celle-ci comme cas particulier.

Ceuxquime liront avec soin, tout en regrettant peut-être que les choses ne soient pas plus simples,
m’accorderont, je le pense, que cette définition est nécessaire et naturelle. J’ose dire qu’elle est, en
un certain sens, plus simple que celle de Riemann, aussi facile à saisir que celle-ci et que, seules,
des habitudes d’esprit antérieurement acquises peuvent faire paraître plus compliquée. Elle est plus
simple parce qu’elle met en évidence les propriétés les plus importantes de l’intégrale, tandis que la
définition de Riemann ne met en évidence qu’un procédé de calcul. C’est pour cela qu’il est presque
toujours aussi facile, parfois même plus facile, à l’aide de la définition générale de l’intégrale, de
démontrer une propriété pour toutes les fonctions auxquelles s’applique cette définition, c’est-à-
dire pour toutes les fonctions sommables, que de la démontrer pour toutes les fonctions intégrables,
en s’appuyant sur la définition de Riemann. Même si l’on ne s’intéresse qu’aux résultats relatifs
aux fonctions simples, il est donc utile de connaître la notion de fonction sommable parce qu’elle
suggère des procédés rapides de démonstration.
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All our geometers, although very distinguished, seem to belong to another age. They are
eminent scientists, belonging to a science which is twenty or thirty years old which they
improve and develop with a lot of success, but all the modern branches remain inaccessible
to them.55

One may naturally address the question of quoting the German mathematical
literature by the French, and vice-versa, independently of the question of the difficulty
of Riemann’s ideas. Darboux, in another letter to Hoüel, complains about the fact
that the Germans never quote Cauchy. In a letter written around the year 1870 (the
letter does not carry a date), he writes (see [26] p. 89, Letter No. 3):

People in France start studying extensively complex variables. It is odd that this theory, born
in France with the work of Cauchy, received its most beautiful developments abroad, but, I
don’t know if you will be of the same opinion as me, I find that the Germans are not fair for
what regards Cauchy. They take advantage of his work but never quote him.56

In another letter to Hoüel, talking again about the Germans ([26] p. 96, Letter No. 7,
again with no date), Darboux writes:

Their behavior concerning Cauchy is unworthy. All the copies of Cauchy[’s writings] leave
for Germany. Gauthier-Villars quite rightly said this to me. Nevertheless his work is never
quoted.57

How was the situation in France? It is sometimes claimed that Poincaré was not
keen on quoting theGermans. In a letter toHermite (August 20, 1881),Mittag-Leffler
([46] p. 251, also quoted in Dugac [28], pp. 156–157), writes:

Weiserstrass’s work is prior to that of Merss. Briot and Bouquet, but Mr. Poincaré, who
should have known this from the memoir of Mme Kowalewski—if ever he did not know
about the work Analytische Facultäten—never said a word about it. Monsieur de Ramsey
told me that he heard from Mr. Molk—the French student following Weierstrass’s course in
Berlin—that Mr. Poincaré hates the Germans, which I find very natural, and that he made it
a principle to never quote any German author, which I find very bad if it were true.58

It is possible that Poincaré’s passing over the German literature is simply due to
his general ignorance about others’ writings. Dieudonné, writes, in his article on
Poincaré in the Dictionary of Scientific Biography ([27] Vol. 11, pp. 51–61):

55Tous nos géomètres, quoique tous fort distingués, semblent appartenir à un autre âge. Ce sont des
savants éminents restés à la science d’il y a vingt ou trente ans qu’ils perfectionnent, développent
avec beaucoup de succès, mais toutes les branches modernes sont pour eux très accessoires.
56[...] on commence à s’occuper beaucoup en France des variables complexes. Il est singulier que
cette théorie née en France par le travail de Cauchy ait reçu les plus beaux développements à
l’étranger, mais je ne sais si vous serez de mon avis, je trouve que les Allemands ne sont pas justes
envers Cauchy. Ils profitent de ses travaux mais ne le citent presque jamais.
57Leur conduite vis à vis de Cauchy est indigne. Tous les exemplaires de Cauchy partent pour
l’Allemagne. Gauthier-Villars me l’a bien dit et cependant il n’est jamais cité.
58Le travail de Weierstrass est antérieur à celui de Messieurs Briot et Bouquet, mais M. Poincaré
qui devait savoir ça par le mémoire de Madame Kowalewski—s’il n’a pas connu le travail Ana-
lytische Facultäten—n’en dit pas un mot. Monsieur de Ramsey m’a raconté qu’il a entendu par M.
Molk—l’étudiant français qui suit le cours de M. Weierstrass à Berlin—que M. Poincaré déteste
les Allemands, ce que je trouve fort naturel, et qu’il a pour principe de ne jamais citer un auteur
allemand ce qui serait fort mal si c’était vrai.
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Poincaré’s ignorance of the mathematical literature, when he started his researches, is almost
unbelievable. He hardly knew anything on the subject beyondHermite’s work on themodular
functions; he certainly had never read Riemann, and by his own account had not even heard
of the Dirichlet principle.

This may also be due to Poincaré’s lack of time, although the contrary may also
be supported, that is, Poincaré had so much energy that it is unlikely that he could
not find time to read others’ writings, especially on topics on which he was working.
The explanation may come from the fact that Poincaré belongs to this small category
of a mathematician who reconstructs his background by himself, without reading
others’ works.

As we already mentioned, despite the war, the French mathematicians had an
immense admiration for German mathematics, even though they considered it too
abstract. Let us quote a fewpassages on this subject from the correspondence between
Hermite and Mittag-Leffler. Hermite writes in a letter dated October 6, 1884, [47]:

Abstraction, which is a charm for the Germans, is bothering us; it draws a kind of veil on
the consequences which stays hidden to us in part, until we have taken, to attain it, a path
which is more adapted to us.59

In other letters, Hermite expresses his highest esteem for the German mathemati-
cians. For example, on January 14, 1892, he writes [48]:

History of science keeps for ever the memory of the relations between Legendre and Jacobi;
something good and affectionate emerges from the correspondence between these great
geometers, which exerted its influence on their heirs.60 No division ever emerged among
mathematicians of these two countries. It is in entertaining friendly relations that they fol-
lowed the same path in their works, and Appell’s mémoire couronné61 is a shining example,
by its exceptional merit, by the new light it sheds on Riemann, of the ultimate alliance of
the genius of the two nations, for the advancement of science.”62

In another letter to Mittag-Leffler, dated July 10, 1893, Hermite writes [48]:

I wrote to the French ambassador a letter which Appell read, at my request, with great
care, and to which he gave his complete assessment. I was expressing, in a natural way, the

59L’abstraction, qui est un charme pour les Allemands, nous gêne et jette sur les conséquences
comme un voile qui nous dérobe une partie jusqu’à ce que nous ayons fait pour y parvenir un
chemin plus à notre convenance.
60The correspondence is reproduced in Jacobi’s Collected Works, [54] t. I, pp. 385–461, and in
Crelle’s Journal, 80 (1875), pp. 205–279.
61This is Paul Appell’s memoir Sur les intégrales de fonctions à multiplicateurs et leur application
au développement des fonctions Abéliennes en séries trigonométriques (mémoire couronné par S.
M. le roi Oscar II, le 21 janvier 1889).
62L’histoire de la science garde à jamais le souvenir des relations de Legendre et de Jacobi; quelque
chose de bon et d’affectueux se dégage de la correspondance entre ces grands géomètres, qui
a exercé son influence sur leurs successeurs. Aucune division ne s’est jamais montrée entre les
mathématiciens des deux pays; c’est en entretenant des relations d’amitié qu’ils ont suivi la même
voie dans leurs travaux, et le mémoire couronné d’Appell est un témoignage éclatant, par son mérite
hors ligne, par le lustre nouveau qu’il jette sur Riemann, de l’intime alliance des génies des deux
nations, pour la marche en avant de la science.
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sympathy and the admiration that all of us vow to the geometers that are the pride and the
glory of German science.63

We quote, as the last example (there are many others) a letter from Hermite to
Poincaré, dated November 27, 1880. We already mentioned that Poincaré was not
keen on reading other’s mathematical papers. Hermite writes ([89] pp. 169-170):

[...] Allowme to urge youmost of all to familiarize yourself with the works ofMr. Kronecker
who infinitely surpassedme in this kind of research and towhomweowe themost remarkable
and the most productive discoveries. The notions of class and of genus in the theory of
quadratic forms were entirely linked to analysis by the eminent geometer [...] Some of the
beautiful results discovered by Mr. Kronecker, and published in the Monatsbericht, were
translated into French, at my request, and they appeared, around 1859 or 1860 in the Annales
de l’École Normale Supérieure. But you must read in the same issue of the Monatsbericht
of the Academy of Sciences of Berlin, and without omitting anythings of them, everything
written by the hand of the great geometer.64

It is well known that Klein, at several places of his published talks, classifies
mathematicians into logicians, formalists, and intuitives, and he claims that this has
to dowith the fact they are of Latin, Hebraic orGerman descent. Jules Tannery, whom
we mentioned several times in this chapter, says that “Klein modestly related the gift
of envisioning, whichwas so generously allocated to him, to the Teutonic race, whose
natural power for intuition is supposed to be a pre-eminent attribute.”65 (quoted by
Picard in [84] p. xxviii). This is an indication of the admiration that the French had
for Klein. There are many other examples. Thus, to the question of whether French
and German mathematicians ignored each other because of that war, the answer is
clearly no.

7 In a Way of Conclusion

In this chapter, we tried to convey the idea that it took a certain amount of time for
the notion of Riemann surface to be understood and used by French mathematicians.
We also wanted to give a broad picture of the French mathematical community,

63[...] J’ai écrit à l’ambassadeur de France une lettre qu’Appell a lue avec grande attention à ma
demande, et à laquelle il a donné son plus complet assentiment. J’exprimais naturellement les
sentiments que nous éprouvons tous de sympathie et d’admiration pour les géomètres qui sont à
l’honneur et la gloire de la science allemande.
64[...] Permettez-moi de vous engager à prendre surtout connaissance des travaux de Mr. Kronecker
qui m’a infiniment dépassé dans ce genre de recherches et à qui l’on doit les découvertes les plus
remarquables et les plus fécondes. Les notions de classes et de genres dans la théorie des formes
quadratiques ont été entièrement rattachées à l’analyse par l’éminent géomètre [...] Quelques uns
des beaux résultats découverts par Mr. Kronecker, et publiés dans les Monatsbericht, ont été à ma
demande traduits en français et ont paru, vers 1859 ou 1860, dans les Annales de l’École Normale
Supérieure. Mais il faut lire dans ce même recueil des Monatsbericht de l’Académie des Sciences
de Berlin, et sans en rien omettre, tout ce qui est sorti de la plume du grand géomètre.
65Le don de voir, qui lui a été départi si généreusement, M. Klein le rapporte modestement à la race
teutonique, dont la puissance naturelle d’intuition serait un attribut prééminent.
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especially the branch on analysis, in the few decades following Riemann’s work, and
of the relations between the Frenchmathematicians and their German colleagues. Let
us quote again Hermite, from his preface to the French edition of Riemann’s works
[98], published in 1898. This is an interesting passage in which he summarizes the
passage from Cauchy’s ideas to Riemann’s notion of Riemann surface.

The notion of integration along a curve has been presented, in its simplest and easiest form,
with numerous and important applicationswhich showed their scope, since 1825, in amemoir
by Cauchy entitled Sur les intégrales définies prises entre des limites imaginaires (On the
definite integrals taken between imaginary limits). But it stays a property of the famous
author. One had to wait for twenty-five years, until the works of Puiseux, Briot and Bouquet,
so that it soars up and shines in Analysis. The profound notion of Riemann surface, whose
access is very difficult, was soon introduced and it dominated Science, so as to remain there
for ever.66

It is important to recall that in Germany, although Riemann’s ideas were inves-
tigated since the beginning by several pre-eminent mathematicians, these ideas
remained, to many, very cryptic.Wemay add that in Germany, Riemann’s ideas were
not always unanimously praised, and they were even subject to criticism. Bottazzini,
in his ICM 2002 communication [13], reports on some notes written by Casorati
during a visit he made to Berlin in 1864, at the time when Riemann was staying, for
health reasons, in Italy (Pisa). Casorati writes ([13] p. 919) that “Riemann’s things
are creating difficulties in Berlin [...]” Bottazini quotes Casorati:

Weierstrass claimed that “he understood Riemann, because he already possessed the results
of his [Riemann’s] research.” As for Riemann surfaces, they were nothing other than “geo-
metric fantasies.” According to Weierstrass, “Riemann’s disciples are making the mistake
of attributing everything to their master, while many [discoveries] had already been made
by and are due to Cauchy, etc.; Riemann did nothing more than to dress them in his manner
for his convenience.”

The mathematician and historian of science Leo Könisbsberger, who taught at
the University of Heidelberg, recalls in his autobiography, Mein Leben (My life)
published in 1919, that at the time he was a student in Berlin, the mathematics taught
byWeierstrass was considered as the only mathematics that was rigorous. He writes:
“All of us, the younger generation, had the impression that the ideas and methods
of Riemann were not part of the rigorous mathematics of Euler, Lagrange, Gauss,
Jacobi and Dirichlet” (p. 59). In his last course at the University of Berlin (1866),
Weierstrass also declared that the theory of Riemann surfaces was a “pure fantasy.”
(From the manuscript course in the Humbolt-University in Berlin, quoted in [90], p.
131.) Regarding the same theory, Klein writes in his Development of mathematics in
the 19th century (1926) ([59] p. 241):

66La notion de l’intégration le long d’une courbe avait été exposée, sous la forme la plus simple
et la plus facile, avec de nombreuses et importantes applications qui en montraient la portée, dès
1825, dans un Mémoire de Cauchy ayant pour titre Sur les intégrales définies prises entre des
limites imaginaires; mais elle reste dans les mains de l’illustre Auteur; il faut attendre vingt-cinq
ans, jusqu’aux travaux de Puiseux, de Briot, de Bouquet, pour qu’elle prenne son essor et rayonne
dans l’Analyse. La notion profonde des surfaces de Riemann, qui est d’un accès difficile, s’introduit
sans retard et domine bientôt la Science pour y rester à jamais.
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Even today, the beginning student of Riemann surfaces faces great difficulties: The “winding
points,” aroundwhich the various “sheets” hang together, are essential; the curves proceeding
from these points along which the sheets intersect, are not—they can be arbitrarily shifted,
as long as their ends remain fixed, and in any case, they occur only because we involuntarily
make the construction in three-dimensional space.

Riemann visited Paris in April 1860, on the invitation of French mathematicians. In
a letter to his sister Ida, he describes a social atmosphere that was not in accord with
his restrained character. He writes67:

In general I am satisfied with the results of my trip, even if my expectations which I had
earlier attached to the journey must remain unfulfilled, necessitated by the shortness of time.
In this regard it would have been of little value if I had remained one or two weeks longer
in Paris. And so I preferred to return to Göttingen at the right time.

I can not complain at all about a lack of friendliness on the part of the Parisian scholars.
The first social occasion, in which I took part, was a tea at Herr Serret’s, who had become
a member of the institute a few weeks before. Such a tea or “Réunion” contrasts sharply
with our socials. It begins at 9:00 pm, really gets going at 10:00 and goes till 1 o’clock in
the morning. During this time guests continually come and go; many come right from the
theatre, which in Paris seldom closes before 12:30. They consist of nothing but teal ice cream
and a variety of sweet-meats (?), namely, glazed fruits and other sweets of that sort. It cannot
be denied that this unrestrained manner has perverted many.

The social gathering at Serret’s consisted of 30 to 40 ladies and gentlemen, among whom
were also several Germans or rather speakers of German. I conversed chiefly with them.

Bottazzini declares in [55] p. 244 that during that stay in Paris, Riemann met,
among others, Hermite, Puiseux, Briot and Bouquet.

The German mathematicians had in general a great consideration for the French.
We quote a passage from a letter from Weierstrass to Kovalevskaya, sent on June
14, 1882, after the latter informed him that she met Hermite (the letter is reproduced
in Mittag-Leffeler’s ICM lecture [67]): “You should now also enter into a relation-
ship with other mathematicians: the young ones, Appell, Picard, Poincaré will be
extremely interesting for you.”
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Philosophy



The Origin of the Notion of Manifold:
From Riemann’s Habilitationsvortrag
Onward

Ken’ichi Ohshika

1 Introduction

It goes without saying that the notion of manifold is a very important foundation
of modern geometry, or even of modern mathematics in general. The invention of
this notion is usually attributed to Riemann. In fact, the term “Mannigfaltigkeit”,
of which the word “manifold” is an English translation, appeared for the first time
in the world of mathematics in Riemann’s famous Habilitationsvortrag. There are
other English translations such as “multiplicity” or “variety” in the literature. Prior
to Riemann, the word “Mannigfaltigkeit” was already used in a non-mathematical
context. There is even a poem by Schiller entitled “Mannigfaltigkeit.” Still, if we
read the text of Riemann today, we find that his description of manifolds is rather
literary, and there is no clear, rigorous definition. On the other hand, his text is very
suggestive and has fertile content. This is one of the reasons why his text inspired
many mathematicians, and also philosophers. Even today, we can learn something
new reading his text although it is not so easy to reach its depth.

New notions in mathematics quite often take much time for their maturation and
consolidation. The notion of manifold is one such example, and it took nearly half
a century from the first invention by Riemann to get to the modern definition we
know today. The purpose of this article is to give an overview of this slow process
where the notion of manifold was born, clarified and developed, taking a look at
both mathematical and philosophical aspects. We shall start with the philosophical
background of the time when Riemann’s Habilitationsvortrag was written, focusing
on Kant’s metaphysics. Then we shall turn to Riemann’s paper, showing how he
described manifolds there and quoting some passages from his text directly. We
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shall also see how Riemann’s worldview diverges from the Kantian. It was Poincaré
who put for the first time Riemann’s idea into clear mathematical terms. We shall
look at Poincaré’s celebrated paper “Analysis Situs”, where he gave two definitions
ofmanifold, and also at his philosophical position, conventionalism. Finally, we shall
see the process in which the notion ofmanifold becamemathematically rigorous, and
reached the notion we understand today. There are many mathematicians involved
in this process, but we just pick up prominent ones among them, looking at the work
of Hilbert, Weyl, Kneser, Veblen-Whitehead and Whitney.

The author would like to express his gratitude to Athanase Papadopoulos, who
invited him to write this article, and drew his attention to Grothendieck’s mention of
“multiplicité modulaire” and to the Kantian use of the word “Mannigfaltigkeit.”

2 Kantian Worldview

At the timewhenRiemann gave birth to the notion ofmanifold in theworld, or before,
what should be called a Kantian worldview was prevailing. This view was widely
held by scientists andmathematicians. To understand the philosophical aspects of the
papers of Riemann and Poincaré, it is very helpful first to take a glance at Immanuel
Kant’s work.

It is well known that Kant tried to give philosophical foundations to mathematics
and the natural science. His position was quite different from naïve empiricism or
even a “sceptical empiricism” à la David Hume, and also from continental rational-
ism. If we allow ourselves to use modern jargon, his work should be regarded as a
trial to “aufheben” both.

He supposed that there are a priori things in human thinking which make natural
science possible. In the Kritik der reinen Vernunft [7] (we use the abbreviation
KrV from now on), he included space, which should be understood to be a three-
dimensional Euclidean space or as subset of it, or the human recognition of space,
into the category of ‘synthetic a priori.’ (Here the qualifier “synthetic” is opposed
to “analytic”, the latter referring to a tautological kind of propositions.) In spite
of his non-empiricist view, in contrast to conventionalism which was to become
preponderant afterwards, Kant regards space as neither a human invention nor a
framework which we created, but something given to us from the beginning and
preceding all other form of recognition and knowledge.

Let us take a look at how Kant describes “space” in the first chapter of KrV. For
English translations of all quotations from KrV, we use the Cambridge version [8].

Der Raum ist kein empirischer Begriff, der von äußeren Erfahrungen abgezogen worden.

Space is not an empirical concept that has been drawn from outer experiences.

This is an outright negation of the empiricists’ view that our notion of space and
its perception derive from our experiences and observations. Moreover, he regarded
space as a foundation of all our perceptions.
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Der Raum ist eine notwendige Vorstellung a priori, die allen äußeren Anschauungen zum
Grunde liegt.

Space is a necessary representation, a priori, which is the ground of all outer intuitions.

Der Raum ist kein diskursiver oder, wie man sagt, allgemeiner Begriff von Verhältnissen der
Dinge überhaupt sondern eine reine Anschauung. Denn erstlich kann man sich nur einen
einigen Raum vorstellen, und wenn man von vielen Räumen redet, so versteht man darunter
nur Teile eines und desselben alleinigen Raumes.

Space is not a discursive or, as is said, general concept of relations of things in general,
but a pure intuition. For, first, one can only represent a single space, and if one speaks of
many spaces, one understands by that only parts of one and the same unique space.

The preceding claim is remarkable for us, mathematicians, although the present
author is not sure whether Kant allowed this “unique space” to be disconnected.

Der Raum wird als eine unendliche gegebene Größe vorgestellt.

Space is represented as a given infinite magnitude.

The meaning of infinity for Kant is rather ambiguous if we consider it from a mathe-
matical viewpoint, but it may be most natural to interpret this notion as the unbound-
edness of space with respect to some metric. Kant gave these claims with some
justification, which looks like a kind of reductio ad absurdum.

In addition to these basic theses on space by Kant, it is worthwhile to look at what
he claimed to be antinomies regarding the nature of space. He posed the following
two theses which contradict each other.

1. Die Welt hat einen Anfang in der Zeit, und ist dem Raum nach auch in Grenzen
eingeschlossen.
The world has a beginning in time, and in space it is also enclosed in boundaries.

2. Die Welt hat keinen Anfang, und keine Grenzen im Raume, sondern ist, sowohl in
Ansehung der Zeit, als des Raumes, unendlich.
The world has no beginning and no bounds in space, but is infinite with regard to both
time and space.

For today’smathematicians,whatKantmeans bywords like “infinite” or “bounds”
may seem rather cryptic. For instance, we may wonder in the same way as for the
previous quotation if he meant by ‘infinite’ space non-compactness of a topological
space or unboundedness of a metric space. Since the notion of topological space did
not exist in the time of Kant and nometrics were known except for the Euclidean one,
it is more natural to interpret this notion of infinity as unboundedness with respect
to the Euclidean metric. Still, we are allowed to imagine that if Kant had known the
existence of closed 3-manifolds, then he would have posed his antinomies in a quite
different way.

It should be mentioned here that Kant also used the term “Mannigfaltigkeit” in
KrV. For him, however, this word is an abstract noun which means a condition
of things being “manifold” rather than an object, and hence may be translated as
“manifoldness.” In contrast, the word “Mannigfaltige,” which is a noun derived from
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the adjective “mannigfaltig,” appears in KrV in a sense a bit closer to the later use of
“Mannigfaltigkeit” by Riemann etc., although its meaning is not mathematical. We
cite here a couple of passages from KrV. The first is taken from a section where he
talks about “time,” and there he poses an infinite line as an analogy of time. The use
of the word “Mannigfaltige” in this passage is comparable to Riemann’s description
of one-dimensional “Mannigfaltigkeit.”

Und, eben weil diese innere Anschauung keine Gestalt gibt, suchen wir auch diesen Mangel
durchAnalogien zu ersetzen, und stellen die Zeitfolge durch eine insUnendliche fortgehende
Linie vor, in welcher das Mannigfaltige eine Reihe ausmacht, die nur von einer Dimension
ist, und schließen aus den Eigenschaften dieser Linie auf alle Eigenschaften der Zeit, außer
dem einigen, daß die Teile der ersteren zugleich, die der letzteren aber jederzeit nacheinander
sind.

And just because this inner intuition yields no shape we also attempt to remedy this lack
through analogies, and represent the temporal sequence through a line progressing to infinity,
in which the manifold constitutes a series that is of only one dimension, and infer from the
properties of this line to all the properties of time, with the sole difference that the parts of
the former are simultaneous but those of the latter always exist successively.

The second passage is taken from a section where Kant explains what the tran-
scendental logic means. Here the meaning of the word “Mannigfaltige” is more
abstract.

Dagegen hat die transzendentale Logik ein Mannigfaltiges der Sinnlichkeit a priori vor sich
liegen, ... Raum und Zeit enthalten nun einMannigfaltiges der reinen Anschauung a priori, ...

Transcendental logic, on the contrary, has a manifold of sensibility that lies before it a priori,
... Now space and time contain a manifold of pure a priori institution, ...

In the paragraph next to the one containing this passage, Kant also uses the word
“Mannigfaltigkeit.” In the Cambridge English translation, this word is translated as
“manifoldness” as below.

Ichverstehe aber unter Synthesis in der allgemeinstenBedeutungdieHandlung, verschiedene
Vorstellungen zueinander hinzuzutun, und ihre Mannigfaltigkeit in einer Erkenntnis zu
begreifen.

By synthesis in the most general sense, I understand the action of putting different represen-
tations together with each other and comprehending their manifoldness in one cognition.

To sum up, as can be seen from these examples, Kant’s use of the word “Man-
nigfaltige” or “Mannigfaltigkeit” is close to our daily use of words like “variety”
and “diversity”, and it does not indicate some concrete mathematical object as in
Riemann’s paper. Still, we can imagine that this notion motivated Riemann’s choice
of the word “Mannigfaltigkeit”, presumably via the work of Herbart, who was an
indirect successor of Kant in Königsberg.

3 Riemann’s Habilitationsvortrag

Riemann’s Habilitationsvortrag, which was published only posthumously in 1867,
is the content of his habilitation lecture given in 1854. It was required for Riemann
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to submit three different topics for his habilitation, from which the faculty would
choose one. Riemann proposed one work on trigonometric series, another one on a
system of quadratic equations, and a third one entitled ‘Über Hypothesen, welche
der Geometrie zu Grunde liegen’, and Gauss chose the last one.

3.1 Philosophical Aspects

Reading Riemann’s Habilitationsvortrag [18] today, it is clear that this work has a
strong philosophical connotation. Although Riemann did not mention the name of
Kant there, he talked about the philosophyofHerbart. In the introduction of this paper,
Riemann writes the following. (There are several English translations of Riemann’s
text. We shall mainly use the one by Spivak [20], but also refer to the one by Clifford
[19] occasionally.)

Diese Dunkelheit wurde auch von Euklid bis auf Legendre, um den berühmtesten neueren
Bearbeiter der Geometrie zu nennen, weder von den Mathematikern, noch von den
Philosophen, welche sich damit beschäftigten, gehoben. Es hatte dies seinen Grund wohl
darin, dass der allgemeineBegriffmehrfach ausgedehnterGrössen, unterwelchemdieRaum-
grössen enthalten sind, ganz unbearbeitet blieb.

From Euclid to Lagrange, the most famous of the modern reformers of geometry, this dark-
ness has been dispelled neither by the mathematicians nor by the philosophers who have
concerned themselves with it. This is undoubtedly because the general concept of a multiply
extended quantities, which includes spatial quantities, remains unexplored.

It is quite natural to imagine that Kant was included among the philosophers
whom Riemann was talking about. With these words, Riemann began to elucidate
the concept of space underlying geometry. The “multiply extended quantities” men-
tioned here would turn out to be “manifolds (Mannigfaltigkeiten)”, whose study was
supposed to be the subject of this Habilitationsvortrag.

There are phrases in Riemann’s text which should be regarded as “anti-Kantian.”
The following is one example.

…, dass die Sätze derGeometrie sich nicht aus allgemeinenGrössenbegriffen ableiten lassen,
sondern dass diejenigen Eigenschaften, durch welche sich der Raum von anderen denkbaren
dreifach ausgedehnten Grössen unterscheidet, nur aus der Erfahrung entnommen werden
können.
…, it is a necessary consequence that the theorems of geometry cannot be deduced from
general notions of quantity, but that those properties that distinguish space from other con-
ceivable triply extended quantities are only to be deduced from experience.

Riemann claimed that there are more possibilities for multiply extended quantities
than we can usually imagine and that the space as we intuitively grasp it is just one
of them. Consequently, this choice is not a priori, but based on our experience. This
position should be contrasted with the Kantian ‘a priorism’, and has rather a flavour
of empiricism. We shall see later that this position is also significantly different from
that of Poincaré, whose doctrine is explicitly anti-empiricist.
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3.2 Mannigfaltigkeit

Now we proceed to look at the main part of the Habilitationsvortrag. Riemann intro-
duced the notion of “Mannigfaltigkeit” (manifold or multiplicity) as a kind of set
which “Bestimmungsweisen” (instances or specialisations) form and he said that this
Mannigfaltigkeit can be either discrete or continuous. Here is the quotation of the
part where the word “Mannigfaltigkeit” appears for the first time in the text.

Grössenbegriffe sind nur da möglich, wo sich ein allgemeiner Begriff vorfindet, der ver-
schiedene Bestimmungsweisen zulässt. Je nachdem unter diesen Bestimmungsweisen von
einer zu einer andern ein stetiger Uebergang stattfindet oder nicht, bilden sie eine stetige
oder discrete Mannigfaltigkeit; ...

Notions of quantity are possible only when there already exists a general concept that admits
particular instances. These instances form either a continuous or a discretemanifold, depend-
ing on whether or not a continuous transition of instances can be found between any two of
them; ...

Therefore, in modern terminology, this notion of manifold should be interpreted
as a set parametrised by n-tuples of real numbers. There is no formal definition
in this part, such as the one using charts contained in modern textbooks. We can
interpret what Riemann had in mind in several ways. For instance, it is possible to
imagine that he allowed singularities to exist in a Mannigfaltigkeit. Riemann talked
about the set of colours as an example of a Mannigfaltigkeit, which was said to have
three dimensions. Of course he also mentioned a “Riemann” surface as an example
in mathematics. It would not be so anachronic to expect that he also regarded the
moduli space ofRiemann surfaces as an example. In fact,Grothendieck referred to the
“mulitiplicités modulaires” in [3], apparently in homage to Riemann. Unfortunately
we cannot find any hint of Riemann’s thinking along this line in his papers.

To justify the possibility of thinking ofn-fold extendedMannigfaltigkeit, Riemann
gave a detailed explanation on how to construct the entity of dimension n as follows.
He started from a one-dimensional manifold:

Geht man bei einem Begriffe, dessen Bestimmungsweisen eine stetige Mannigfaltigkeit
bilden, von einer Bestimmungsweise auf eine bestimmte Art zu einer andern über, so bilden
die durchlaufenen Bestimmungsweisen eine einfach ausgedehnte Mannigfaltigkeit, deren
wesentliches Kennzeichen ist, dass in ihr von einem Punkte nur nach zwei Seiten, vorwärts
order rückwärts, ein stetiger Fortgang möglich ist.

In a concept whose instances form a continuous manifold, if one passes from one instance to
another in a well-determined way, the instances through which one has passed form a simply
extended manifold, whose essential characteristic is that from any point in it a continuous
movement is possible in only tow directions, forwards and backwards.

Then he observed that it is possible to increase the dimension one by one, and to
construct an n-dimensional Mannigfaltigkeit inductively. Thus he wrote:
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Wennman, anstatt denBegriff als bestimmbar, seinenGegenstand als veränderlich betrachtet,
so kann diese Construction bezeichnet werden als eine Zusammensetzung einer Veränder-
lichkeit von n + 1Dimensionen aus einer Veränderlichkeit von n Dimensionen und aus einer
Veränderlichkeit von Einer Dimension.

If one considers the process as one in which the objects vary, instead of regarding the concept
as fixed, then this construction can be characterised as a synthesis of a variability of n + 1
dimensions from a variability of n dimensions and a variability of one dimension.

Here again the description is rather intuitive, and there is no formal definition
of dimension. Still, we can see that Riemann understood dimension as a number
of parameters which can vary independently. It should be noted that n-dimensional
Euclidean space itself had already been introduced by Grassmann [2] in 1844, as a
vector space, using a basis. What is new in Riemann’s argument lies in the fact that
he considered dimension as something which can be applied to much more general
spaces.

Riemann’s definition of metrics on manifolds is more explicit than that of mani-
folds themselves. He considered how the lengths of curves can be measured, and he
used the symbol ds to denote the length element in manifolds, as we still do today.
He also defined (rather intuitively) the sectional curvature by considering a surface
spanned by geodesics in the manifold, as follows.

Um die Krümmungsmass einer n-fach ausgedehnten Mannigfaltigkeit in einem gegebenen
Punkte und einer gegebenen durch ihn gelegten Flächenrichtung eine greifbare Bedeutung
zu geben, muss man davon ausgehen, dass eine von einem Punkte ausgehende kürzeste
Linie völlig bestimmt ist, wenn ihre Ansfangsrichtung gegeben ist. Hienach wird man eine
bestimmte Fläche erhalten, wenn man sämmtliche von dem gegebenen Punkte ausgehenden
und in dem gegebenene Flächenelement liegenden Anfangsrichtungen zu kürzesten Linien
verlängert, und diese Fläche hat in dem gegebenen Punkte ein bestimmtes Krümmungsmass,
welches zugleich das Krümmungsmass der n-fach ausgedehnten Mannigfaltigkeit in dem
gegebenen Punkte und der gegebenen Flächenrichtung ist.

To give a tangible meaning to the curvature of an n-fold extended manifold, at a given point,
and in a given surface direction, we first mention that a shortest line emanating from a point
is completely determined if its initial direction is given. Consequently, we obtain a certain
surface if we prolong all the initial directions from the given point which lie in the given
surface element, into shortest lines; and this surface has a definite curvature at the given
point, which is equal to the curvature of the n-fold extended manifold at the given point, in
the given surface direction.

4 Poincaré’s Analysis Situs

In contrast to Riemann’s paper, the definition of a manifold by Poincaré is clear-
cut. In his celebrated paper “Analysis situs” which was published in the Journal
d’Ecole Polytechnique in 1895 [13], Poincaré gave explicitly twodifferent definitions
of manifolds. This paper begins with an audacious declaration which reads (the
translation is by the present author):
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La Géométrie à n dimensions a un objet réel; personne n’en doute aujourd’hui. Les êtres de
l’hyperespace sont susceptibles de définitions précises comme ceux de l’espace ordinaire,
et si nous ne pouvons nous les représenter, nous pouvons les concevoir et les étudier. Si
donc, par exemple, la Mécanique à plus de trois dimensions doit être condamnée comme
dépourvue de tout objet, il n’en est pas de même de l’Hypergéométrie.

The geometry of n-dimensions has a real object, nobody doubts this today. The things
in hyperspace are susceptible of precise definitions in the same way as those in the ordinary
space, and even if we cannot represent them, we can conceive and study them. So if, for
instance, Mechanics in more than three dimensions should be condemned as lacking any
object, it is not the case for hypergeometry.

4.1 Poincaré’s Definitions of Manifold

In the first two sections after the introduction, Poincaré gives his definitions of man-
ifolds. The first definition is as follows. We consider the n-dimensional Euclid-
ean space with coordinates x1, . . . , xn . Suppose that we are given p + q functions
F1, . . . , Fp;ϕ1, . . . , ϕq with p ≤ n, which are assumed to be continuous and have
continuous derivatives. Assume moreover that the rank of the Jacobian matrix

⎛
⎜⎜⎜⎜⎝

∂F1
∂x1

∂F1
∂x2

. . . ∂F1
∂xn

∂F2
∂x1

∂F2
∂x2

. . . ∂F2
∂xn

...
. . .

∂Fp

∂x1

∂Fp

∂x2
. . .

∂Fp

∂xn

⎞
⎟⎟⎟⎟⎠

is p at every point in the domain where the Fi are defined. We then consider a system
of equations and inequalities as follows,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1(x1, . . . , xn) = 0
...

Fp(x1, . . . , xn) = 0

ϕ1(x1, . . . , xn) > 0
...

ϕq(x1, . . . , xn) > 0.

Poincaré defines a manifold of dimension n − p as the set of points satisfying the
above system of equations and inequalities. By the implicit function theorem, such a
set constitutes a differentiable manifold in the modern sense. In fact, Poincaré him-
self showed that a manifold according to this definition is automatically a manifold
according to the second definition which we shall describe below, using an argument
involving a kind of implicit function theorem. Notice that the first definition does not
use charts and local coordinates.
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Now we turn to the second definition. Again, we work in the n-dimensional
Euclidean space with coordinates x1, . . . , xn . We consider n functions θi of m vari-
ables y1, . . . , ym such as the following,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1 = θ1(y1, . . . , ym)

x2 = θ2(y1, . . . , ym)

....................

xn = θn(y1, . . . , ym).

These functions θn are assumed first to be continuous, but Poincaré claims that they
can be assumed to be analytic, by approximating the original functions arbitrarily
closely by analytic ones. Furthermore, the Jacobian matrix of these functions is
assumed to have rank m at every point. We cut out from this an open region denoted
by V by adding inequalities ψ j (y1, . . . , ym) > 0. For convenience, let us call such a
V a local manifold.

Poincaré next considers another system of functions xi = θ ′
i (y1, . . . , ym) for i =

1, . . . , n which defines another local manifold V ′, supposing that V ∩ V ′ is non-
empty. Then he claims that we can extend V to a larger manifold V ∪ V ′ by analytic
continuation. He also observes that in the same way, we can continue the process by
gluing local manifolds V1, . . . , Vn .

This definition is closer to the modern one which usually starts with charts, but
it is not clear whether Poincaré assumed that two local manifolds which are not
adjacent to each other are disjoint. Without such an assumption, this is a definition
of an immersed manifold rather than an embedded manifold. Anyway, it should be
noted that in both definitions, a manifold always lies in a Euclidean space. Manifolds
without this environment were to appear later, in the 20th century.

4.2 Poincaré’s Conventionalism

It is well known that Poincaré’s position regarding the philosophical aspects of geom-
etry is radical. His position is often labelled as “conventionalism,” which opposes
him to both empiricists and neo-Kantians. Generally, conventionalism refers to a
philosophical doctrine which regards (both judicial and natural) laws and morals as
mere conventions. We can think of Poincaré’s views as conventionalism with regard
to geometry. This can be seen typically in his text on the foundation of geometry
[16]. (Its English translation by T. J. McCormack, which we use here together with
the original, appeared in [14] a long time before the original French version.)

La géométrie n’est pas une science expérimentale; l’expérience n’est pour nous que
l’occasion de réfléchir sur les idées géométriques qui préexistent en nous.

Geometry is not an experimental science; experience forms merely the occasion for our
reflecting upon the geometric ideas which pre-exist in us.
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This shows that Poincaré’s position is far from the empiricists’ view. On the
other hand, the following passage shows that his thinking is also quite different from
Kantians (or neo-Kantians). It is about how we choose one geometry, say Euclidean
geometry, among other possible geometries.

Notre choix ne nous est donc pas imposé par l’expérience. Il est simplement guidé par
l’expérience. Mais il reste libre: nous choisissons cette géométrie-ci plutôt que celle-là, non
parce qu’elle est plus vraie, mais parce qu’elle est plus commode.

Our choice is therefore not imposed by experience. It is simply guided by experience. But
it remains free: we choose this geometry rather than that geometry, not because it is more
true, but because it is more convenient.

Therefore, for him, geometry is something like a tool, and our preference of one
geometry over another does not depend on its validity, but on its usefulness. His view
is quite close to our modern thinking, and we have little difficulty in understanding
it. But we can imagine that for people at the turn of the 20th century, this view should
have been outrageous, as we explain now.

To see the impact and the novelty of his view, it is worthwhile to take a look at the
debate between him andB.Russell. (SeeNabonnand’s paper [11] formore details and
for the significance of this debate in wider contexts.) Russell, who was in his mid 20s
at that time, published a book entitled “An essay on foundation of geometry” in 1897
[21], which was based on his doctoral dissertation. In this book, although Russell
criticised Kantian a-priority of geometry, he tried to separate what is given a priori
and what should be tested empirically in geometry. For Russell, a-priority means
what precedes every experience and what makes experiences possible. To make a
clear distinction between what is a priori and what depends on experience, he gave
axioms for projective geometry, which is a common ground for both Euclidean and
non-Euclidean geometries, and those of “metric geometry.” Russell considered that
axioms of projective geometry (except for the one concerning the dimension of space)
and some of metric geometry are a priori, but there are others in metric geometry,
for instance those which distinguish Euclidean geometry from non-Euclidean, which
can be verified or falsified by experiences.

Poincaré criticised this approach of Russell in two ways, in his review of the book
[15]. The first criticism is purely mathematical: he pointed out the insufficiency of
Russell’s axioms on projective geometry. The second criticism ismore philosophical:
he denied the a-priority of these axioms. Poincaré examined the axioms proposed
by Russell one by one, and gave a harsh judgement declaring that for most of the
cases, Russell failed to show that they were indispensable for experience. He said
that although Russell’s statements with unclear termsmade it difficult to see through,
once it was cleared, then the illusion he gave would also disappear.

Poincaré also criticised Russell’s claim that some of his axioms (for metric geom-
etry) are empirical. In particular Poincaré argued, in opposing Russell’s claim that
Euclidean geometry can be empirically tested, that none of our experiences verifies
Euclidean geometry and falsifies hyperbolic geometry.
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As can be seen in this polemic, Poincaré’s view on the foundations of geometry
was quite clearly posed, andwe can say that it was quite ahead of time, even compared
with that of a much younger philosopher like Russell.

5 Definitions Using Local Charts According to Hilbert,
Weyl, Kneser and Veblen-Whitehead

As we saw in the previous section, although Poincaré gave two clear definitions of
manifold, they are both different from the definition which we are familiar with. In
this section, we shall see when and how the modern-day definition of topological
manifold appeared for the first time.

Historically, the definitionof a two-dimensionalmanifold precedes that for general
dimensions. We first look at Hilbert’s paper entitled “Ueber die Grundlagen der
Geometrie” published in 1902 [5], where he tried to give axioms for a surface which
he called “Ebene” i.e. a plane rather than a surface. Here are his axioms. A surface is
defined to be a point set with bijections onto domains in the Cartesian plane with the
following conditions. (The itemisation and the translation are by the present author.)

1. Zu jedem Punkte A unserer Ebene giebt es Jordan’sche Gebiete, in welchen der
Bildpunkt von A liegt und deren sämmtliche Punkte ebenfalls Punkte unserer Ebene
darstellen. Diese Jordan’schen Gebiete heissen Umgebungen des Punktes A.

2. Jedes in einer Umgebung von A enthaltene Jordan’sche Gebiet, welches den Punkt A
einschliesst, ist wiederum eine Umgebung von A.

3. Ist B irgend ein Punkt in einer Umgebung von A, so ist diese Umgebung auch zugleich
eine Umgebung von B.

4. WennA und B irgend zwei Punkte unserer Ebene sind, so giebt es stets eine Umgebung,
die zugleich eine Umgebung von A und eine Umgebung von B ist.

1. For every point A on our surface, there is a Jordan domain in which the point corre-
sponding to A lies and all of whose points represent points in our surface. These Jordan
domains are called neighbourhoods of A.

2. Every Jordan domain contained in a neighbourhood of A which contains A is in turn a
neighbourhood of A.

3. If B is any point contained in a neighbourhoodU of A, thenU is also a neighbourhood
of B at the same time.

4. If A and B are any two points on our surface, then there is always a neighbourhood of
A which is at the same time a neighbourhood of B.

We should keep in mind that this paper of Hilbert precedes the work of Hausdorff
on abstract topological spaces, which appeared in his book “Grundzüge der Men-
genlehre” [4]. Therefore, Hilbert could not start from a topological space, but from
just a point set. Consequently, his axioms include those for neighbourhood systems
in a topological space. Setting this part aside, these axioms are equivalent to the
modern definition of topological manifold using charts. Thus we can say that two-
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dimensional topological manifolds as we know them today were formally defined
for the first time by Hilbert in 1902.

There is one more remark which we should make: the last axiom implies that the
surface is a Hausdorff space. This should be contrasted with the following definition
by Weyl. (This subtle difference was also pointed out by Scholtz [22].)

Now, we turn to Weyl’s book on Riemann surface [27]. A formal definition of
a topological surface (a topological 2-dimensional manifold) which is close to the
modern one is given in §4 of this book. It is somehow more common to attribute the
first formal definition of a manifold using charts to this book rather than to Hilbert’s
paper. In Weyl’s definition, the setting is quite similar to Hilbert’s. We are given a
point set F, and for each point p of F, there is a system of subsets U containing p
which are called neighbourhoods of p. For every neighbourhood U0 of a point p0 of
F, there is a bijection from U0 to an Euclidean open disc K0 taking p0 to the centre
of K0, and the following conditions hold.

1. ist p irgend ein Punkt vonU0 undUeine nur aus Punkten vonU0 bestehende Umgebung
von p auf F, so enthält das (durch jene Abbildung in K0 entworfene) Bild von U den
Bildpunkt von p im Innern; d. h. es läßt sich um den Bildpunkt p von peine Kreisfläche
k beschreiben, sodaß jeder Punkt von k Bild eines Punktes von U ist;

2. ist K das Innere irgend eines ganz in K0 gelegenen Kreises mit dem Mittelpunkt p, so
gibt es stets eine Umgebung U von p auf F, deren Bild ganz in K liegt.

1. If p is any point of U0 and U is a neighbourhood of p consisting only of points of U0,
then the image of U (under the map from U0 to K0) contains that of p as an interior
point, i.e., there is an open disc k around the point p which is the image of p, such that
every point of k is the image of a point of U.

2. If K is any circle with centre p contained entirely in K0, then there is always a neigh-
bourhood U of p on Fwhose image entirely lies in K .

We see that if we define a topology on F using the given neighbourhood systems,
then these two conditions guarantee that themap fromU0 to K0 is a homeomorphism.
Thus, this definition is equivalent to amodern definition of topological two-manifold.
There is one subtle point: the definition does not contain the axiom of separability,
which means that the surface defined as such may not be a Hausdorff space. In
a later revised version of the same book and its English translation, this part was
substantially revised. The definition has been divided into two parts: the first part
is the definition of a Hausdorff space using neighbourhood systems whereas the
second part is almost the same as the two conditions above. In particular the subtlety
concerning the separability disappeared.

There is one more difference with Hilbert’s definition. Weyl assumed the image
of the map from a neighbourhood to be an open disc in the plane, not a general
Jordan domain. In fact Schoenflies proved that any Jordan domain is homeomorphic
to an open disc in 1906; this was after Hilbert’s paper was published but before Weyl
wrote his book.

As we have seen above, the definitions by Hilbert and Weyl only deal with two-
dimensional manifolds. The same kind of definition for higher dimensional man-
ifolds was given for the first time by Kneser [9] in 1926. After giving axioms of
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neighbourhood systems for a Hausdorff space, Kneser added the following two con-
ditions as axioms for an n-dimensional manifold.

(a) Zu jedem Punkt gibt es eine Umgebung, die sich topologisch auf die offene Vollkugel
des n-dimensionalen Zaahlenraumes: x21 + · · · + x2n < 1 abbilden läßt.

(b) Unter den Umgebungen des den topologischen Raum definierenden oder eines äquiv-
alenten Systems befinden sich nur abzählbar unendlich viele verschiedene Mengen.

(a) For every point there exists a neighbourhood which is mapped homeomorphically to
an open ball x21 + · · · + x2n < 1 in the n-dimensional Euclidean space.

(b) Among neighbourhoods defining the topological space or those of an equivalent system,
there are only countably many different sets.

Thus, Kneser defined a topological manifold of general dimension with an axiom
of countability, which is precisely what we do today. This definition appears at the
beginning of Kneser’s paper. The main topic of the paper is rather the triangulabil-
ity of manifolds and the uniqueness of triangulations (up to subdivision), i.e., the
Hauptvermutung. Of course he did not prove this result, but he posed the conjecture
in clear terms for topological manifolds and gave a precise definition of combinator-
ial manifolds, which made the meaning of the conjecture clear. The Hauptvermutung
itself for simplicial complexes had been given earlier by Steinitz [23] and Tietze [24],
and a definition of a manifold using simplices was first given by Brouwer [1]. The
originality of Kneser was to consider this problem for topological manifolds, and to
try to unify the approach using neighbourhood systems with the simplicial approach
pioneered by Brouwer.

Up to this point, we only talked about the definition of a topological manifold.
Although Weyl’s book contains the notion of differentiability or analyticity of func-
tions on the surface, hence also differentiable structures and complex structures, we
did not touch upon this part. In the rest of this section, we shall see how the definition
of a differentiable manifold as we understand it today appeared.

Veblen and Whitehead published a paper entitled “A set of axioms for differen-
tial geometry” in 1931 [25], whose aim was to define a space axiomatically where
differential geometry can be developed without the aid of global coordinates as in
Euclidean space. (An expanded and detailed version of this theory can be found in
their book [26].) There they gave a set of axioms of Cu (class u) manifolds. This
was done by defining a set of coordinate systems, which they call allowable coordi-
nate systems, such that the transition between any two of them with an overlapping
domain is Cr . They did not assume the manifold to be a topological space at the
beginning, but they gave a topology using the domains of coordinate systems, which
are assumed to satisfy the Hausdorff separability.

From this definition of a differentiable manifold, it became possible for the first
time to define differentiation, etc. on manifolds without assuming they lie in Euclid-
ean spaces. From the work of Whitney [28], it follows that every differentiable
manifold can be regarded as lying in a Euclidean space. In fact Whitney showed
that every n-dimensional Cr -manifold can be embedded into a 2n + 1-dimensional
Euclidean space by a Cr -map. This showed the equivalence between Poincaré’s
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definition of manifolds and the modern one using charts. He also defined notions
like submanifolds, Cr -maps between manifolds and so on. Thus we can say that at
this stage the foundations of the notion of manifold were really consolidated.

6 Conclusion: Philosophical Significance

Now, we return to the philosophical viewpoint, with which we started our exposition.
It is obvious that thanks to the development ofmanifold theory, ourworldview (both in
a cosmological sense and in a more practical sense) has been widened. If we take into
account the possibility that our universe is compact, then Kantian antinomies must
be seriously reconsidered, even in the framework of classical physics. The possibility
of a non-simply connected universe poses further problems of epistemology. In fact,
we do not have any way to distinguish a non-simply connected universe and its
(non-trivial) coverings, only by observations.

It is quite well known that Einstein used Riemannian geometry for his theory of
general relativity. Modern physics makes use of much more sophisticated manifold
theory, typically seen in string/super-string theory. Such a development might lead
to the necessity to redefine the “universe” and distinguish the world where physical
theory should work from the three-dimensional manifold in which we believe that
we live in our day-to-day recognition. On the other hand, what is striking is that there
still remains a longway to go to the complete solution of a naïve question askingwhat
is the topological structure of our day-to-day universe. By virtue of the resolution
of Thurston’s geometrisation conjecture by Perelman, once we know the (average)
sectional curvature of the universe, we can make our list of possible topologies of the
universe shorter. Still, to the author’s knowledge, it is not known even whether the
universe is compact or not, and although there is some data bounding the sectional
curvature of our universe (see e.g. [12]), it is a far cry from determining the geomet-
ric structure of the universe. On the other hand, the development of manifold theory
started by Riemann gave a strong impact and an inspiration to contemporary philos-
ophy, which is often dubbed “post-modern”. Some aspects of this kind of influence
on philosophy are illustrated in Jedrzejewski [6] and Plotnitsky [17] in this volume.

The epistemological revolution with regard to the universe started by Riemann’s
Habilitationsvortrag is not completely achieved yet. It is still going on.
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Deleuze et la Géométrie Riemannienne:
Une Topologie des Multiplicités

Franck Jedrzejewski

1 Introduction

Bernhard Riemann est sans doute le mathématicien qui a eu la plus grande influence
sur l’œuvre de Deleuze et Guattari. Non pas que ces philosophes aient commenté
les textes de Riemann, mais ils les ont intégrés à leur pratique et à leur écriture à tel
point que leur philosophie apparaît comme un modelage topologique de concepts,
dans lequel le lieu des points, des voisinages, le support des singularités, l’ordre
des plis, la dialectique du discret et du continu, du local et du global sont autant de
points d’ancrage essentiels pour le cheminement de la pensée. Deleuze façonne ses
concepts comme des objets mathématiques pris dans le maelstrom d’espaces dont la
topologie échappe à notre connaissance. Dans le texte deleuzien, la référence à des
notions de mathématiques est toujours présente à tel point que certains ont vu dans le
concept de plan d’immanence une variété riemannienne. Cette notion de variété est
esquissée dans le texte d’habilitation de Riemann qui commence par le constat que
la géométrie assume à la fois la définition de l’espace et l’exposé axiomatique des
principes de construction de cet espace sans toutefois exposer leur articulation1[15].

Depuis Euclide jusqu’à Legendre, pour ne citer que le plus illustre des réformateurs mod-
ernes de la géométrie, nous dit Riemann, personne, parmi les mathématiciens, ni parmi des
philosophes, n’est parvenu à éclaircir ce mystère. La raison en est que le concept général
des grandeurs de dimensions multiples, comprenant comme cas particulier les grandeurs
étendues, n’a jamais été l’objet d’aucune étude. [17]

C’est donc l’espace qui est au centre de la réflexion riemannienne, sa nature
philosophique et ses implications structurales, mais aussi à travers l’espace, le con-

1Je ne parlerai pas ici des relations à la philosophie kantienne, ni de la notion de variété telle
qu’elle apparaît dans l’ Analysis situs de Poincaré. Elles sont étudiées de manière détaillée et
exhaustive dans le chapitre écrit par Ken’ichi Ohshika.
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cept d’une grandeur de dimensionsmultiples qui donnera naissance à la notion de var-
iété. Parmi ses sources, Riemann cite de “brèves indications dans le secondMémoire
sur les résidus biquadratiques” de Gauss, mais déplore qu’il n’y ait pas eu de travaux
antérieurs. Toutefois, et contrairement à Gauss, Riemann ne plonge pas les surfaces
qu’il étudie dans l’espace tridimensionnel euclidien pour décider de leurs propriétés
de dépendance, mais se place directement sur la surface et fait l’économie d’un
plongement dans un espace euclidien, ce qui lui permet d’envisager le passage au
local indépendamment de tout caractère euclidien. Toutes les notions de distances,
de géodésiques prennent alors un sens intrinsèque et ne dépendent que de la variété
sur laquelle elles ont été définies.

Dans cette branche générale de la théorie des grandeurs étendues, où l’on ne suppose rien
de plus que ce qui est déjà renfermé dans le concept de ces grandeurs, il nous suffira, pour
notre objet actuel, de porter notre étude sur deux points, relatifs: le premier, à la génération
du concept d’une variété de plusieurs dimensions; le second, au moyen de ramener les
déterminations de lieu dans une variété donnée à des déterminations de quantité, et c’est
ce dernier point qui doit faire clairement ressortir le caractère essentiel d’une étude de n
dimensions. ([17], 283).

Pour que les concepts de grandeur soient possibles, il faut selon Riemann qu’il
“existe un concept général qui permette différents modes de détermination”, et qu’il
soit possible de passer d’un de ces modes de détermination à un autre de manière
continue. ([17], 282) À partir de ce constat, Riemann construit, par intégration suc-
cessive des dimensions entières, le concept d’une variété de dimension quelconque.
Il trouve que la détermination du lieu se ramène à n déterminations de grandeur
et pose la question des rapports métriques dans une variété. Il se place sous deux
hypothèses. La première est que les “lignes” sont indépendantes de leur position,
et que toute ligne est mesurable par toute autre ligne. La seconde est que l’élément
infinitésimal linéaire ds est “exprimable par la racine carrée d’une expression dif-
férentielle du second degré, c’est-à-dire que l’espace est une grandeur plane dans ses
parties infinitésimales” ([17], 294).

2 Variété et multiplicité

Cette notion de variété qui naît dans le texte de Riemann, Deleuze l’appelle multi-
plicité traduisant l’allemand mannigfaltigkeit (pluralité, variété, que l’on traduit en
anglais par manifold). Il le dit explicitement dans Différence et répétition:

Les Idées sont des multiplicités, chaque Idée est une multiplicité, une variété [Je souligne].
Dans cet emploi riemannien du mot “multiplicité” (repris par Husserl, repris aussi par Berg-
son), il faut attacher la plus grande importance à la forme substantive: la multiplicité ne doit
pas désigner une combinaison de multiple et d’un, mais au contraire une organisation propre
au multiple en tant que tel, qui n’a nullement besoin de l’unité pour former un système. ([6],
236)

Plus loin, il ajoute:
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Une Idée est une multiplicité définie et continue, à n dimensions. La couleur, ou plutôt l’Idée
de couleur est une multiplicité à trois dimensions. Par dimensions, il faut entendre les vari-
ables ou coordonnées dont dépend le phénomène; par continuité, il faut entendre l’ensemble
des rapports entre les changements de ces variables, par exemple une forme quadratique des
différentielles des coordonnées; par définition, il faut entendre les éléments réciproquement
déterminés par ces rapports, qui ne peuvent pas changer sans que la multiplicité ne change
d’ordre et de métrique. ([6], 236–237)

On pourra rapprocher ce passage du texte de Riemann: “Au contraire, les occa-
sions qui peuvent faire naître les concepts dont les modes de détermination forment
une variété continue sont si rares dans la vie ordinaire, que les lieux des objets sen-
sibles et les couleurs sont à peu près les seuls concepts simples dont les modes de
détermination forment une variété de plusieurs dimensions” ([17], 282). Parmi les
exemples de variété cités par Deleuze, deux exemples, à savoir l’espace des sons
et celui des couleurs sont cités par Hermann Weyl dans son livre Espace, Temps,
Matière [20]. Il donne en outre la dimension de chaque variété: la variété des ellipses
à isométrie près dont les dimensions sont les deux axes de l’ellipse, la variété des con-
figurations physiques d’un gaz parfait dont les deux dimensions sont la température
et la pression, la variété des sons purs avec pour dimension la fréquence et l’intensité
et la variété des couleurs de dimension trois.

Mais c’est aussi en référence à Bergson que Deleuze parle de “multiplicité”. Il
reconnaît que le mot a été employé dès le chapitre 2 de l’Essai sur les données immé-
diates ([8], 604). Bergson y distingue deux multiplicités: “celle des objets matériels,
qui forme un nombre immédiatement, et celle des faits de conscience, qui ne saurait
prendre l’aspect d’un nombre sans l’intermédiaire de quelque représentation sym-
bolique où intervient nécessairement l’espace” ([1], 65).

Si Bergson aborde la multiplicité dans son rapport au nombre, Riemann, quant à
lui, classe les variétés en deux catégories. Il affirme: “Suivant qu’il est, ou non, pos-
sible de passer de l’un de ces modes de détermination à un autre, d’une manière con-
tinue, ils forment une variété continue ou une variété discrète” ([17], 282). Implicite-
ment, c’est aussi une relation au nombre à laquelle renvoie le partage du continu et
du discret, deux sortes de nombres réel ou entier, pris dans un continuum ou égrenés,
solitaires. Comme le note Deleuze, “Bergson dégageait donc deux espèces bien dif-
férentes de multiplicité, l’une qualitative et de fusion, continue; l’autre, numérique
et homogène, discrète” ([8], 604). La question qui se pose ici très certainement dans
l’esprit de Deleuze est de savoir si la notion de variété topologique peut se passer du
concept de nombre et représenter des parties de l’espace sensible indépendamment
de tout nombre. Dans la même direction, Deleuze se demande si cette notion de
variété topologique a besoin de structures logiques. Lorsqu’il se réfère au texte de
Riemann, il sort la multiplicité de la logique et écrit sans équivoque:

Ce fut un événement décisif lorsque le mathématicien Riemann arracha le multiple à son
état de prédicat, pour en faire un substantif “multiplicité”. C’était la fin de la dialectique, au
profit d’une typologie et d’une topologie des multiplicités. Chaque multiplicité se définissait
par n déterminations, mais tantôt les déterminations étaient indépendantes de la situation,
tantôt en dépendaient. ([8], 602-603).
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Pour comparer des sous-multiplicités entre elles, c’est-à-dire dans le vocabu-
laire de Riemann, pour comparer des parties de variétés—Ce que Riemann appelle
des quanta—Il faut avoir un moyen de les mesurer. Si ce moyen n’existe pas, Rie-
mann reconnaît que ces parties ne sont pas indépendamment de leur position, ni
“exprimables au moyen d’une unité, mais sont comme des régions dans une variété”
([17], 283). On croise ici le point nodal où se coupent les interprétations de Deleuze,
Bergson et Riemann et qui, pour Deleuze, se fondent sur la distinction entre espace
lisse et espace strié. L’espace musical est un espace lisse structuré par des paramètres
musicaux de différente nature. Deleuze écrit:

Par exemple, on peut comparer la grandeur de la ligne verticale entre deux points et la
grandeur de la ligne horizontale entre deux autres; on voit ici que la multiplicité est métrique,
en même temps qu’elle se laisse strier, et que ces déterminations sont des grandeurs. En
revanche, on ne peut comparer la différence entre deux sons de hauteur égale et d’intensité
distincte avec deux sons d’intensité égale et de hauteur distincte; on ne peut dans ce cas
comparer deux déterminations. ([8], 603).

La notion d’espace lisse apparaît à plusieurs endroits dans Mille plateaux.
Contrairement aux mathématiciens qui emploient l’adjectif “lisse” pour désigner
l’indéfiniment différentiable, Deleuze lui réserve le non-métrique. Est lisse ce qui
ne peut se réduire au métrique. Dans un espace lisse, les règles glissent les unes
sur les autres et il est impossible de comparer les lignes entre elles. Le désert, la
steppe, la glace ou la mer, le champ de blé de Cézanne sont des espaces lisses, tout
comme les objets fractals. “Ce sont des ensembles dont le nombre de dimensions
est fractionnaire ou non entier, ou bien entier, mais avec variation continue de direc-
tion” ([8], 607). L’espace lisse n’a pas de structure interne ou d’excroissance qui
viendrait le strier. “L’espace lisse se définit dès lors en ce qu’il n’a pas de dimen-
sion supplémentaire à ce qui le parcourt ou s’inscrit en lui: c’est en ce sens une
multiplicité plate” ([8], 609). Ce que Deleuze appelle un agencement est “précisé-
ment cette croissance de dimensions dans unemultiplicité qui change nécessairement
de nature à mesure qu’elle augmente ses connexions” ([8], 15). Plus encore, l’espace
lisse est l’objet d’une zone d’indiscernabilité où le hasard peut s’engouffrer: “un tel
espace lisse, amorphe, se constitue par accumulation de voisinages, et chaque accu-
mulation définit une zone d’indiscernabilité propre au “devenir” (plus qu’une ligne
et moins qu’une surface, moins qu’un volume et plus qu’une surface)” ([8], 609).

Le geste deleuzien consistant à strier l’espace lisse est à mettre en regard de celui
du mathématicien qui définit d’abord une variété topologique, où l’espace est pensé
par les notions d’ouverts, de fermés et de voisinages, sans aucune considération de
nombre (un espace lisse), puis munit (c’est-à-dire strie l’espace lisse) cette variété
d’une structure différentielle pour en faire une variété différentiable, et par ajout d’un
appareillage de mesures (justement une métrique) lui donne la possibilité de mesurer
les longueurs entre les objets et la transforme en variété riemannienne. En ce sens,
la variété topologique est un espace lisse, strié ensuite par des structures métriques
et différentielles.

Dans le Traité de nomadologie, Deleuze reprend cette idée d’un espace strié par
la matière et la gravitation. Il écrit:
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L’espace homogène n’est nullement un espace lisse, c’est au contraire la forme de l’espace
strié. L’espace des piliers. Il est strié par la chute des corps, les verticales de pesanteur, la
distribution de la matière en tranches parallèles, l’écoulement lamellaire ou laminaire de ce
qui est flux. Ce sont ces verticales parallèles qui ont formé une dimension indépendante,
capable de se communiquer partout, de formaliser toutes les autres dimensions, de strier tout
l’espace dans toutes ses directions, et par là de le rendre homogène. ([8], 458)

Dans l’espace physique ordinaire, nous savons que la présence dematière déforme
le trajet des rayons lumineux2[16]. Les lignes tracées par la lumière se courbent
naturellement au voisinage des grosses masses dont la présence modifie la structure
de l’espace-temps. Celui-ci n’est plus euclidien et la non-nullité de la courbure de
l’espace mesure sa non-platitude. Cette courbure s’impose par la gravité, le jeu
des forces qui strie, selon Deleuze, l’espace ordinaire, homogène et isotrope. Au
voisinage de chaque point, en se rapprochant indéfiniment du point, l’espace se
confond localement avec un espace euclidien, ressemblant de plus en plus à son
espace tangent en ce point. C’est pourquoi la courbure mesure le défaut des variétés
riemanniennes d’être des espaces euclidiens. “L’espace euclidien dépend du célèbre
postulat des parallèles, mais les parallèles sont d’abord gravifiques, et correspondent
aux forces que la pesanteur exerce sur tous les éléments d’un corps supposé remplir
cet espace” ([8], 458). Dans le cas où la courbure est constante, les mathématiciens
ont établi que si la courbure est identiquement nulle, alors la variété de Riemann est
localement isométrique à un espace euclidien. Si cette courbure est positive, la variété
riemannienne est localement isométrique à une sphère et à un espace hyperbolique
lorsqu’elle est négative. La courbure détermine essentiellement la nature géométrique
de l’espace de Riemann. Dans le cas favorable où l’espace est simplement connexe,
c’est-à-dire est un espace dans lequel tout lacet peut être déformé continûment en un
point, sans trou ni poignée, alors la métrique est unique à un difféomorphisme près
et l’isométrie est globale.

Pour ramener les déterminations de lieu aux déterminations de quantité, Riemann
pose les conditions de la mesure: pour pouvoir mesurer, c’est-à-dire comparer les
lignes entre elles, il faut “avoir un moyen de transporter la grandeur qui sert d’étalon
pour les autres.” Cette notion de transport est fondamentale en géométrie riemanni-
enne. Elle a permis le développement de l’idée de parallélisme et de ce qu’on appelle
le “transport parallèle”. Lorsqu’un vecteur est transporté d’un point à un autre sur une
variété selon deux chemins différents, les deux vecteurs obtenus au point terminal
ne sont pas identiques et forment entre eux un angle qui caractérise la courbure de
la variété. Cette notion a donné naissance à celle de connexion qui a été développée
dans les années 1920 par Elie Cartan et Hermann Weyl. Non seulement la var-
iété riemannienne est pourvue d’un ensemble de données géométriques comme les
métriques, mais ces métriques g(x) elles-mêmes induisent l’existence d’une mesure
canonique, qui est grosso modo l’intégrale des mesures de Lebesgue sur les espaces
tangents en un point x . Tout ceci n’est possible que grâce à une topologie qui est
précisément donnée par les éléments géométriques de la variété riemannienne. Mais

2 Il y aurait beaucoup àdire sur la conceptionde l’espace telle qu’elle est envisagée par les physiciens,
mais aussi à travers la notion de topos introduite par Grothendieck. On pourra se référer à ce sujet,
dans ce livre, au chapitre d’Arkady Plotnitsky.
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les liens entre la topologie et la courbure, ou plus précisément entre la topologie
et tout autre invariant que l’on peut construire, entre la courbure et les nombres de
Betti, révèlent une situation bien plus profonde qu’il n’y paraît et l’étude des liens
est souvent fort compliquée. Le plus souvent, il s’agit de contrôler la topologie par la
construction de fonctions de ces invariants, autrement dit de passer du local au global
et d’induire certaines propriétés à partir des propriétés d’invariants. La connaissance
du signe de la courbure (donc de la nature géométrique de la variété riemannienne
considérée) peut-elle, par exemple, nous renseigner sur le signe de cette variété ?
Ces questions ont été étudiées par Heinz Hopf dans les années 1930 [11], et plus
tard par d’autres. La plupart des résultats obtenus en géométrie riemannienne sup-
posent que la variété est compacte ou qu’il existe des bornes sur certains paramètres,
comme sur la courbure. Mais on peut se demander ce qui se passe lorsque la courbure
tend vers l’infini. Les généralisations et les recherches actuelles, qui portent sur les
variétés kählériennes, les variétés d’Alexandrov, les orbi-variétés, et bien d’autres
objets encore, fournissent des résultats nouveaux sur les variétés riemanniennes et
des applications importantes à la physique mathématique comme celle des variétés
de Calabi-Yau et de la symétrie miroir.

3 Espaces, mesures et multiplicités

Sous cet appareillage conceptuel naissent des interrogations ontologiques en relation
avec les mathématiques. Une des interrogations concerne les propriétés intrinsèques
de la variété et son rapport à l’espace ambiant. Peut-on rapporter les propriétés
induites par l’espace ambiant à une variété riemannienne à des propriétés purement
intrinsèques à la variété ? Cette réduction de l’espace ambiant à l’intrinsèque où
les propriétés de l’espace tendent à s’inscrire dans les structures de la variété par
un procédé de décalque, d’osmose ou d’induction conduit à restaurer, comme le
remarque A. Lautman, la vision de la monade leibnizienne ([13], 152).

La notion de connexion a été inventée par Ricci et Levi-Civita au début du XXe
siècle [5]. En 1918, Hermann Weyl généralisa la notion de déplacement parallèle
dans une variété riemannienne de Levi-Civita à celle d’une connexion affine, qui sera
appelée plus tard par Cartan “connexion linéaire sans torsion”. Comme Weyl, Élie
Cartan a généralisé le transport parallèle à une classe de connexions infinitésimales
[3]. Il a mis au point une méthode de recollement de voisinages infinitésimaux par
la connexion donnant naissance à des structures qui ont été appelées, plus tard, les
“géométries de Cartan”.

Dans l’article de 1918 et dans son livre Espace - Temps - Matière, HermannWeyl
[21] conçoit l’espace comme une forme homogène, et se distingue de la tradition
algébrique de Félix Klein et du programme d’Erlangen qui pensaient l’espace à
travers son groupe de symétrie, c’est-à-dire comme un groupe de transformations
agissant sur un ensemble de points et préservant ses structures. Weyl considère que
le temps est la “forme du flux de la conscience” et l’espace “la forme de la réal-
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ité corporelle.” Pour Weyl, l’homogénéité de l’espace est une propriété du monde
extérieur. Si une chose physique est déplacée dans l’espace, aucune de ses propriétés
essentielles n’est modifiée. Mais pour Weyl, l’homogénéité de l’espace n’est pas
seulement relative à ses points, mais plus singulièrement, est relative à ses différents
systèmes de coordonnées locales. De ce point de vue, l’espace et les relations spa-
tiales deviennent des structures intuitives liées à la place du sujet en situation. C’est
ainsi que l’espace peut devenir le cadre de la mesure physique que Weyl appelle le
“principe de relativité du mouvement ” ( Prinzip der Relativität der Bewegung). Il
pose que “les relations métriques ne sont pas des propriétés de l’espace en soi, mais
de l’espace dans sa relation à son contenu matériel. ” Dans une variété riemanni-
enne, Weyl montre qu’il devient possible de choisir une échelle indépendamment de
chaque point de l’espace, ce qui correspond à ce que nous appelons aujourd’hui une
jauge, notion qui sera largement utilisée dans les développements de physique math-
ématique. Changer de cordonnées, recoller les systèmes de coordonnées, définir une
mesure, une jauge, utiliser des mesures physiques sont des questions qui paraissent
anodines dans l’espace ordinaire, mais qui ne le sont pas dans les variétés. Comme on
le voit, à une conception de l’espace homogène s’oppose une conception de l’espace
hétérogène, induite par la métrique de Riemann-Einstein et de l’espace physique,
dans lequel la matière strie l’espace lisse du mathématicien. Si Einstein cherche une
théorie qui réponde à l’exigence d’une métrique entièrement déterminée par la dis-
tribution de matière, Weyl, quant à lui, cherche à résoudre le conflit entre un espace
naturel homogène et un espace hétérogène dépendant d’une métrique. L’idée que la
mise en œuvre d’une mesure sur un espace produirait une déformation de la nature
de cet espace est avancée sans être réellement comprise.

En opposant le concept qualitatif de distance à celui quantitatif de grandeur,
Deleuze s’éloigne des thèses de Riemann, qui voyait dans la distance une sorte de
grandeur. Selon Deleuze, les distances se laissent diviser, “mais, contrairement aux
grandeurs, elles ne se divisent pas sans changer de nature à chaque fois” ([9], 603).
L’allure d’un cheval que l’on divise en galop, trot et pas est une distance qui change
de nature selon le type de division, sans qu’un de ces types entre dans la composi-
tion de l’autre. Pourtant, le passage d’un type (de moment dit Deleuze) à un autre
se fait de façon continue: il n’y a pas de rupture dans la vitesse du cheval. C’est
pourquoi Deleuze distingue les multiplicités de distance “inséparables d’un proces-
sus de variation continue” et lesmultiplicités de grandeur (oumultiplicitésmétriques)
qui contrairement à celles de distance, “répartissent des fixes et des variables.” Cette
distinction est à rapprocher de celle deRiemann qui distingue les variétés continues et
les variétés discrètes “suivant qu’il est possible de passer d’unmode de détermination
à un autre.” Mais aussi à rapprocher de celles de Bergson qui distinguait, lui aussi,
deux types demultiplicités. La durée deBergson est justement ce queDeleuze appelle
une multiplicité de distance, qualitative, “qui ne se divise pas sans changer de nature
à chaque division”, tandis que l’étendue homogène est une multiplicité métrique,
quantitative. Le physicien, lui, distingue des grandeurs intensives, indépendantes de
la quantité comme la température, et des grandeurs extensives, proportionnelles à la
quantité de la chose mesurée, comme la masse ou le volume. Seules les grandeurs
extensives sont additives. Si l’on place une deuxièmemasse sur une première, le poids
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résultant sera la somme des deux masses. Alors que si l’on considère deux objets
allant à la même vitesse, l’ensemble formé par les deux objets aura la même vitesse,
et non une vitesse double. On dit que la vitesse est une grandeur intensive. Deleuze
parle d’intensité, plutôt que de grandeur intensive, avec parfois le même sens que le
physicien. Une intensité comme la température ou la pression n’est pas “composée
de grandeurs additionnables et déplaçables.” En appliquant les notions physiques de
grandeurs intensives et extensives au champ philosophique, Deleuze les croise avec
la qualité et la quantité. Dans Différence et répétition, il explique que l’intensité a
trois caractères ([6], 299) et que, dans l’intensité, il appelle différence “ce qui est
réellement impliquant, enveloppant” et distance “ce qui est réellement impliqué ou
enveloppé.” L’intensité est donc à la fois impliquante et impliquée, enveloppante et
enveloppée. “C’est pourquoi l’intensité n’est ni divisible comme la quantité exten-
sive, ni indivisible comme la qualité” ([6], 305–306). Ainsi se croisent les notions
de distance, de grandeur et d’intensité, de qualité et de quantité, que Deleuze résume
dans ce passage et plonge comme le dit joliment Anne Sauvagnargues “la critique
kantienne transcendantale dans le bain dissolvant d’un empirisme renouvelé” [18]:

L’espace en tant qu’intuition pure, spatium, est quantité intensive; et l’intensité comme
principe transcendantal, n’est pas simplement l’anticipation de la perception, mais la source
d’une quadruple genèse, celle des extensio comme schèmes, celle de l’étendue comme
grandeur extensive, celle de la qualitas comme matière occupant l’étendue, celle du quale
comme désignation d’objet. ([6], 298).

Il y a donc des multiplicités qualitatives, de distances, non métriques, faites de
grandeurs intensives, correspondant à des espaces lisses et des multiplicités quan-
titatives, métriques, faites de grandeurs additives extensives, correspondant à des
espaces striés. Il se pourrait que ce qui les distingue soit justement que le nombre
appartienne uniquement aux seules multiplicités métriques. Mais Deleuze répond
qu’il n’en est rien, que le nombre est bien “le corrélat de la métrique”, mais qu’il
pénètre aussi l’espace lisse dans des opérations locales, et qu’il peut aussi changer
de nature: il distingue deux aspects du nombre: un nombre nombrant et un nombre
nombré.

Le nombre se distribue lui-même dans l’espace lisse, il ne se divise plus sans changer de
nature à chaque fois, sans changer d’unité, dont chacune représente une distance et une
grandeur. C’est le nombre articulé, nomade, directionnel, ordinal, le nombre nombrant qui
renvoie à l’espace lisse, comme le nombre nombré renvoyait à l’espace strié. Si bien que,
de toute multiplicité, on doit dire: elle est déjà nombre, elle est encore unité. Mais ce n’est
ni le même nombre dans les deux cas, ni la même unité, ni la même manière dont l’unité se
divise. ([8], 605).

Aristote distinguait déjà le nombre nombrant qui demeure extérieur à ce qu’il
nombre, sans égards à l’espèce dénombrée. C’est une simple référence numérique
abstraite qui indique un décompte d’unités. Mais si l’on cherche à savoir ce que sont
ces unités, si on pense au nombre comme à une mesure, à un moyen de dénombrer
des unités par rapport à une unité référente, le nombre dépend de la chose que l’on
compte, il devient mesure de décompte, nombre de quelque chose, c’est-à-dire nom-
bre nombré.Le nombre nombré renvoie à l’espace strié, car il est associé à lamétrique
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qui autorise la mesure et la comparaison des longueurs entre elles, la mesure de la
courbure de l’espace. Le nombre nombrant, abstrait, sans mesure de référence autre
que le compte-pour-un renvoie à l’espace lisse, nonmétrique. Dans l’exemple du Sta-
girite “dix chevaux et dix chiens”, “dix” est un nombre nombrant et “dix chevaux” un
nombre nombré, différent de cet autre nombre nombré que sont “dix chiens.” Chez
Deleuze, il y a plus. Le nombre nombré de l’espace lisse rend compte des opérations
locales et du divers des objets. Une expression comme “dix chevaux, trois vaches
et deux picotins d’avoine” est un exemple simple de nombre nombré défini sur la
variété de la ferme sans que l’on puisse précisément le caractériser par une suite de
nombres réels, si ce n’est par (10, 3, 2), qui n’est pas suffisamment précis puisqu’on
ne puisse attribuer au picotin une valeur précise. Le nombre nombré devient difficile-
ment divisible lorsqu’on considère des déterminations comme la douleur. Il semble
que chaque douleur soit propre à chaque individu, et que les divisions proposées,
périphérique ou centrale, cyclique, persistante, aiguë, permanente ou intermittente,
ne soient que des parties aux intersections instables et mouvantes. D’où l’idée d’un
nombre nomade qui affecte les multiplicités lisses.

4 Typologies des multiplicités

De cette division en nombre nombré et en nombre nombrant, des quantités intensives
et des quantités extensives, Deleuze déduit qu’il n’existe que deux types demultiplic-
ités, aux ramifications plurielles: “les multiplicités implicites et les explicites, celles
dont la métrique varie avec la division et celles qui portent le principe invariable de
leur métrique” ([6], 307).

Cette idée qu’il n’existe que deux types de détermination se trouve déjà chez
Husserl (Philosophie de l’arithmétique ) et chez Bergson (Essai sur les données
immédiates de la conscience). Remarquant que les sons d’une cloche que l’on entend
ne se comptent pas, mais que l’on retient des impressions successives, qualitatives,
Bergson distingue la multiplicité d’un nombre qui représente une collection d’unités
et celle plus “confuse de sentiments et de sensations”, comme celle des sons de
cloche, qui bien que formant une unité n’en est pas moins une succession d’instants
plus ou moins distincts. “D’où résulte enfin qu’il y a deux espèces de multiplicité:
celle des objets matériels, qui forment un nombre immédiatement, et celle des faits
de conscience, qui ne saurait prendre l’aspect d’un nombre sans l’intermédiaire de
quelque représentation symbolique, où intervient nécessairement l’espace” ([1], 65).

Il y a donc deux multiplicités: une multiplicité quantitative et homogène (du nom-
bre en acte dans le vocabulaire d’Aristote) et unemultiplicité qualitative et hétérogène
(qui serait en quelque sorte, une multiplicité du nombre en puissance) caractéristique
de la durée, deux conceptions, qui ne peuvent se défaire de la médiation de l’espace
et naissent de leur rapport différent entre l’un et le multiple. Mais, chez Deleuze, la
différence entre ces multiplicités a bien d’autres caractéristiques.
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Il nous est souvent arrivé de rencontrer toutes sortes de différences entre deux types de
multiplicités: métriques, et non métriques; extensives, et qualitatives; centrées, et acentrées;
arborescentes, et rhizomatiques; numéraires, et plates; dimensionnelles, et directionnelles;
de masse, et de meute; de grandeur, et de distance; de coupure, et de fréquence; striées, et
lisses. Non seulement, ce qui peuple un espace lisse, c’est une multiplicité qui change de
nature en se divisant – ainsi les tribus dans le désert: distances qui se modifient sans cesse,
meutes qui ne cessent pas de se métamorphoser – mais l’espace lisse lui-même, désert,
steppe, mer ou glace, est une multiplicité de ce type, non métrique, acentrée, directionnelle,
etc. ([8], 604).

Deleuze envisage deux aspects des multiplicités lisses ou non métriques. Le pre-
mier aspect renvoie à la question: “Comment une détermination peut être en situ-
ation de faire partie d’une autre, sans qu’on puisse assigner de grandeur exacte, ni
d’unité commune, ni d’indifférence à la situation. C’est le caractère enveloppant ou
enveloppé de l’espace lisse” ([8], 605). Et le second aspect se pose “quand la situ-
ation même de deux déterminations exclut leur comparaison” ([8], 606). Ces deux
aspects déterminent, dit-il, le nomos de l’espace lisse.

Nous définissons donc un double caractère positif de l’espace lisse en général: d’une part,
lorsque les déterminations qui font partie l’une de l’autre renvoient à des distances envelop-
pées ou à des différences ordonnées, indépendamment de la grandeur; d’autre part, lorsque
surgissent des déterminations qui ne peuvent pas faire partie l’une de l’autre, et qui se con-
nectent par des processus de fréquence ou d’accumulation, indépendamment de la métrique.
([8], 606)

Deleuze caractérise le lisse et le strié, non seulement selon les critères
d’intensivité, mais aussi par recollement comme le fait Riemann. Il cite d’ailleurs
Albert Lautman, qui lui-même cite Cartan:

Les espaces de Riemann sont au contraire dépourvus de toute espèce d’homogénéité. Chacun
d’eux est caractérisé par la forme de l’expression qui définit le carré de la distance de deux
points infiniment voisins. Cette expression est ce qu’on appelle une forme quadratique qui
généralise la formule euclidienne de la distance de deux points: ds2 = du21 + du22. Le ds

2

riemannien à deux dimensions est de la forme suivante

ds2 = g11du
2
1 + g12du1du2 + g21du2du1 + g22du

2
2

Dans une variété à n dimensions, on a la formule générale:

ds2 =
n∑

i, j

gi j dui du j

Les gi j sont des coefficients absolument quelconques et qui varient de point en point. Il
en résulte, comme dit M. Cartan, que “deux observateurs voisins peuvent repérer dans un
espace de Riemann les points qui sont dans leur voisinage immédiat, mais ils ne peuvent pas
sans convention nouvelle se repérer l’un par rapport à l’autre” [2] Chaque voisinage est donc
comme un petit bout d’espace euclidien, mais le raccordement d’un voisinage au voisinage
suivant n’est pas défini et peut se faire d’une infinité de manières; l’espace de Riemann le
plus général se présente ainsi comme une collection amorphe de morceaux juxtaposés sans
être rattachés les uns aux autres. [13]

Cette idée de recollements de domaines d’un espace pour en créer un autre plus
vaste est souvent prise par Deleuze comme la caractérisation des espaces rieman-
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niens. Deleuze soutient qu’il est difficile d’utiliser des déterminations scientifiques
hors de leur contexte, qui se résument souvent à une “métaphore arbitraire” et
dangereuse, mais conçoit une autre voie d’utilisation des concepts scientifiques. Il
l’explique dans Cinéma 2:

Mais peut-être, ces dangers sont conjurés si l’on se contente d’extraire des opérateurs sci-
entifiques tel ou tel caractère conceptualisable qui renvoie lui-même à des domaines non
scientifiques, et converge avec la science sans faire application ni métaphore. C’est en ce
sens qu’on peut parler d’espaces riemanniens chez Bresson, dans le néo-réalisme, dans
la nouvelle vague, dans l’école de New-York, d’espaces quantiques chez Robbe-Grillet,
d’espaces probabilitaires et topologiques chez Resnais, d’espaces cristallisés chez Herzog
et Tarkovski. Nous disons par exemple qu’il y a espace riemannien lorsque le raccordement
des parties n’est pas prédéterminé, mais peut se faire de multiples façons: c’est un espace
déconnecté, purement optique, sonore ou même tactile (à la manière de Bresson). ([9], 169)

Ce qui caractérise donc un espace riemannien est bien qu’il y ait raccordement,
mais que de surcroit ce raccordement soit non prédéterminé.Deleuze ne dit pas que ce
raccordement est aléatoire, mais simplement joue de son caractère non prédéterminé.
Le mathématicien comprend ce raccordement de manière inverse à sa construction.
C’est un atlas, un ensemble de cartes qui ont été recollées, mais rien ne dit comment
ces cartes ont été confectionnées. Le découpage aurait pu être un peu plus à l’Ouest
ou un plus au Nord. Rien ne prédétermine la façon dont l’atlas a été fait. D’ailleurs,
le mathématicien en accord avec les principes de la topologie ne s’en soucie guère.
Pour le mathématicien, que la Chine, les États-Unis, la Russie ou l’Afrique soient au
centre de l’atlas n’a pas l’importance que lui accorde le géographe ou le philosophe,
car le caractère riemannien du recollement qui caractérise ces espaces agit de lamême
manière quel que soit le découpage. Pour prendre un exemple cinématographique,
la caractéristique des films de Bresson et de la Nouvelle vague est bien de morceler
à l’extrême le récit sans que les recollements qui s’opèrent au fil du temps ne soient
prédéterminés. C’est en cela qu’ils sont riemanniens. Chez Bresson, dit Deleuze, le
dialogue “est traité comme s’il était rapporté par quelqu’un d’autre: d’où la célèbre
voix bressonienne, la voie du “modèle”, par opposition à la voix de l’acteur de
théâtre” ([9], 315). Cette distance qui s’institue entre le dialogue et l’autre est le
garant de la non-prédétermination du recollement.

Dans les recollements entre les parties d’espaces, il y a très certainement chez
Deleuze une complexité du collage qui s’inspire des théories mathématiques. Pour
Deleuze, le principe de connexion et d’hétérogénéité des espaces riemanniens peut
induire des collages entre structures rhizomiques. Dans l’ordre des discours ciné
matographiques, les espaces narratifs et non narratifs déterminent des chaînes séman-
tiques qui elles-mêmes déterminent des séries de gestes, de phonèmes, et de divers
éléments qui se recollent comme les parties d’un espace riemannien.

Le rhizome devient chez Deleuze le symbole de la complexité topologique des
espaces philosophiques et de leurs recollements. Des espaces non euclidiens avec des
structures rhizomiques jalonnent tout l’espace de réflexion de Deleuze et Guattari.
Le rhizome est une structure complexe qui balaye à la fois les structures en arbre et
en table, et dans laquelle toutes les connexions entre parties existent.



322 F. Jedrzejewski

N’importe quel point d’un rhizomepeut être connecté avec n’importe quel autre, et doit l’être.
C’est très différent de l’arbre ou de la racine qui fixent un point, un ordre. L’arbre linguistique
à la manière de Chomsky commence encore à un point S et procède par dichotomie. Dans
un rhizome au contraire, chaque trait ne renvoie pas nécessairement à un trait linguistique:
des chaînons sémiotiques de toute nature y sont connectés à des modes d’encodage très
divers, chaînons biologiques, politiques, économiques, etc., mettant en jeu non seulement
des régimes de signes différents, mais aussi des statuts d’états de choses. ([8], 13).

Pour Deleuze, le rhizome consiste en des multiplicités qui s’agencent pour con-
necter et produire du nouveau. Du coup, le rhizome devient une méthode (ou une
anti-méthode) pour penser l’ontologie des multiplicités, c’est-à-dire les modalités
d’être de ces objets ou de ces variétés. Les mathématiques offrent de nombreux
exemples d’un objet qui peut se dire de plusieurs manières, sans que l’on per-
coive de prime abord la similitude de ces façons de l’approcher. C’est le cas de la
sphère d’homologie de Poincaré qui se définit par un procédé de recollement d’une
figure géométrique, mais aussi de bien d’autres manières dont nous n’en citerons que
trois (R.C. Kirby et M.G. Scharlemann donnent huit manières de la construire dans
[12]). Un objet et trois modalités d’être. Dans la variété de Poincaré, les faces du
dodécaèdre sont des pentagones réguliers que l’on recolle deux à deux par leurs faces
opposées. La variété ainsi obtenue est un espace topologique quotient qui a été pris
par certains astrophysiciens commemodèle global d’univers [14]. Lorsqu’on sort par
une des faces du dodécaèdre, on rentre par la face opposée, mais en ayant subi une
rotation de π /5 due au recollement des pentagones. Cet espace est la représentation
de la sphère de Poincaré qui est l’une des sphères d’homologie en dimension 3 (tous
ses nombres de Betti sont nuls sauf b0 et b3 et n’a pas de coefficient de torsion).
Lorsque tous les pentagones ont été recollés, le recollement s’arrête de lui-même
puisque toutes les faces ont été traitées. La sphère de Poincaré se construit aussi par
le quotient du groupe SO(3) par le groupe alterné A5 ou par chirurgie de Dehn le
long du nœud de trèfle. Comme on le voit sur ces exemples mathématiques, un objet
peut se dire d’une multitude de points de vue.

Deleuze généralise ces espaces à la sphère philosophique et les prolonge à travers
les plissements du monde ou le feuilletage induit par les plis d’un espace ou d’une
région. Dans son cours sur Leibniz, il dit que le monde est plié, que le pli a une
certaine inflexion ou courbure et que cette courbure, comme dans le cas des foyers
d’une ellipse, détermine un ou plusieurs points de vue. “La courbure des choses exige
le point de vue.” Et le point de vue devient du coup, la “condition de surgissement ou
de manifestation d’une vérité dans les choses.” Il s’ensuit que le pli pensé comme un
réseau de lieux singuliers, de points de vue, induit en retour, une vérité monadique
des choses. Mais ce que cherche Deleuze est précisément d’échapper à ce dualisme
de l’un et du multiple, qu’il dénonce chez Bergson, de la monade où se nouent les
turbulences dumonde et les représentations de l’être et de l’âme, mais aussi échapper
à toute axiomatique. Il le dit clairement dans le livre sur Foucault:

C’est Riemann qui a formé la notion de “multiplicité”, et de genres de multiplicités, en
rapport avec la physique et les mathématiques. L’importance philosophique de cette notion
apparaît ensuite chez Husserl dans Logique formelle et Logique transcendantale, et chez
Bergson dans l’Essai (quand Bergson s’efforce de définir la durée comme un genre de
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multiplicité qui s’oppose aux multiplicités spatiales, un peu comme Riemann distinguait les
multiplicités discrètes et continues). Mais dans ces deux directions, la notion avorta, soit
parce que la distinction des genres venait la cacher en restaurant un simple dualisme, soit
parce qu’elle tendait vers le statut d’un système axiomatique. L’essentiel de la notion, c’est
pourtant la constitution d’un substantif tel que “multiple” cesse d’être un prédicat opposable
à l’Un, ou attribuable à un sujet repéré comme un. ([10], 22-23)

Mais qu’on ne s’y trompe pas: la notion philosophique avorta dans ses deux accep-
tions, l’une bergsonienne et l’autre husserlienne et logiciste. Deleuze ne condamne
pas lamultiplicité riemannienne.Au contraire, il revient sur cet aspect que nous avons
déjà vu, que Riemann sort la multiplicité de la logique en faisant du “multiple” un
substantif. Il ajoute:

La multiplicité reste tout à fait indifférente aux problèmes traditionnels du multiple et de
l’un, et surtout au problème d’un sujet qui la conditionnerait, la penserait, la dériverait
d’une origine, etc. Il n’y a ni un ni multiple, ce qui serait, de toute manière, renvoyer à une
conscience qui se reprendrait dans l’un et se développerait dans l’autre. Il y a seulement
des multiplicités rares, avec des points singuliers, des places vides pour ceux qui viennent
un moment y fonctionner comme sujets, des régularités cumulables, répétables et qui se
conservent en soi. La multiplicité n’est ni axiomatique ni typologique, mais topologique.
([10], 23)

Soulignons ce caractère topologique, sous lequel se place la philosophie de
Deleuze et fera la fortune des variétés riemanniennes. Car il s’agit de la pâte des
variétés et de leur forme, que la philosophie entend travailler, et pas seulement leur
horizonmathématique. “Il y a tant de multiplicités. Non seulement le grand dualisme
des multiplicités discursives, et non discursives ; mais, parmi les discursives, toutes
les familles ou formations d’énoncés, dont la liste est ouverte et varie à chaque
époque” ([10], 27). Ces multiplicités sont au cœur de cette science que Deleuze
appelle la “science nomade”. Elle se distingue de la “science royale” par la manière
qu’elle a de participer à l’organisation du champ social. Toute science participe de
ce champ, mais de manière différente. La science royale est liée à ce modèle hylé-
morphique qui a été étudié par Gilbert Simondon [19]. Deleuze y voit “une forme
organisatrice pour la matière, et une matière préparée pour la forme” ([8], 457) où en
suivant la dichotomie hjelmslévienne de l’expression et du contenu, croisée à celle
de matière et forme, “toute la matière est mise du côté du contenu, tandis que toute la
forme passe dans l’expression” ([8], 457). La science nomade est, quant à elle, plus
sensible “à la connexion du contenu et de l’expression pour eux-mêmes, chacun de
ces deux termes ayant forme et matière” ([8], 457).

Ainsi, du point de vue de cette science qui se présente aussi bien comme art et comme
technique, la division du travail existe pleinement, mais n’emprunte pas la dualité forme-
matière (même avec des correspondances biunivoques). Elle suit plutôt les connexions entre
des singularités dematière et des traits d’expression, et s’établit au niveau de ces connexions,
naturelles ou forcées. C’est une autre organisation du travail, et du champ social à travers le
travail. ([8], 457)

C’est donc deux modèles différents que Deleuze oppose, qu’il appelle l’un com-
pars et l’autre dispars. Le compars correspond à l’espace homogène strié, tandis que
le dispars est associé à l’espace hétérogène, lisse.
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Le compars est le modèle légal ou légaliste emprunté par la science royale. La recherche
des lois consiste à dégager des constantes, même si ces constantes sont seulement des rap-
ports entre variables (équations). Une forme invariable des variables, une matière variable
de l’invariant, c’est ce qui fonde le schéma hylémorphique. Mais le dispars comme élément
de la science nomade renvoie à matériau-forces plutôt qu’à matière-forme. Il ne s’agit plus
exactement d’extraire des constantes à partir de variables, mais de mettre les variables elles-
mêmes en état de variation continue. S’il y a encore des équations, ce sont des adéquations,
des inéquations, des équations différentielles irréductibles à la forme algébrique, et insépara-
bles pour leur compte d’une intuition sensible de la variation. Elles saisissent ou déterminent
des singularités de la matière au lieu de constituer une forme générale. ([8] 457–458).

5 Conclusion

On n’insistera sans doute jamais assez sur l’importance dans la philosophie de
Deleuze de ces singularités qui structurent les multiplicités, et qui, comme chez
Gilles Châtelet [4], forment autant de points de passage entre l’actuel et le virtuel.
Ces singularités, par un processus d’auto-unification, forment des séries, et souvent
par groupement, des séries de séries, qui bifurquent sous l’effet de comportements
aléatoires, et par leur nature topologique, expliquent cette synthèse de l’hétérogène,
que l’on trouve dans cette version philosophique des variétés riemanniennes de la
science nomade. La pensée deDeleuze se constitue donc autour de notions de topolo-
gie, de compréhension des multiplicités, qu’il puise tant dans les mathématiques, que
chez d’autres philosophes, Husserl et Bergson, mais aussi Simondon et Foucault. Il
reconnaît que l’Archéologie du savoir “représente le pas le plus décisif dans une
théorie-pratique des multiplicités” ([10], 23). Chez Deleuze, tout le savoir et son
cortège de points singuliers sont aussi des multiplicités:

Bref, une science se localise dans un domaine de savoir qu’elle n’absorbe pas, dans une
formation qui est, par elle-même, objet de savoir et non pas de science. Le savoir n’est pas
science, ni même connaissance, il a pour objet les multiplicités précédemment définies, ou
plutôt la multiplicité précise qu’il décrit lui-même, avec ses points singuliers, ses places et
ses fonctions. ([10], 28)

Tout le savoir, y compris le savoir de Deleuze, se fractionne en multiplicités. Ce
savoir est lui-même une multiplicité, c’est-à-dire dans le vocabulaire très connoté
de termes physico-mathématiques employés, une variété indépendante de l’espace
dans lequel il est plongé. Il sera donc étudié pour lui-même et les singularités seront
autant de points de jonction de cette théorie rationalisée du sujet connaissant que l’on
trouve déjà chez Simondon. Deleuze va plus loin encore: il emprunte à la physique
la notion de champ qu’il trouve chez Monge ([8], 459) et qui épouse les variétés
riemanniennes.

L’espace lisse est justement celui du plus petit écart: aussi n’a-t-il d’homogénéité qu’entre
points infiniment voisins, et le raccordement des voisinages se fait indépendamment de
toute voie déterminée. C’est un espace de contact, de petites actions de contact, tactile ou
manuel, plutôt que visuel comme était l’espace strié d’Euclide. L’espace lisse est un champ
sans conduits ni canaux. Un champ, un espace lisse hétérogène épouse un type particulier
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de multiplicités: les multiplicités non métriques, acentrées, rhizomatiques, qui occupent
l’espace “sans compter”, et qu’on ne peut “explorer qu’en cheminant sur elles” . Elles ne
répondent pas à la condition visuelle d’être observées d’un point de l’espace extérieur à
elles: ainsi le système des sons, ou même des couleurs, par opposition à l’espace euclidien.
([8], 459-460)

Deleuze déploie de nouveau le cortège des multiplicités et de leurs singularités
dans l’espace hétérogène lisse, où elles forment un réseau rizhomatique caractéris-
tique du dispar, qui ne peut s’observer que de l’intérieur. Le monde s’organise autour
de singularités nomades, et les individus se constituent au voisinage de ces singular-
ités. Seule, dit Deleuze, une théorie des singularités peut dépasser “la synthèse de
la personne et l’analyse de l’individu telles qu’elles sont (ou se font) dans la con-
science” ([7], 125). Le champ transcendantal, préindividuel et impersonnel explique
ainsi la genèse des individus et des sujets. Pour Deleuze, les singularités sont les
vrais événements transcendantaux. Elles sont plongées dans un potentiel, qui “ne
comporte ni Moi, ni Je, mais qui les produit en les actualisant” ([7], 125). Ce sont
des séries hétérogènes organisées en système métastable dont la surface est le lieu
du sens.

Tels sont sommairement esquissés, quelques éléments de mathématiques ou
d’inspiration mathématique que l’on trouve dans la philosophie de Deleuze. Le con-
cept de multiplicité y est présenté comme un concept qui n’est “ni axiomatique, ni
typologique, mais topologique”. Il décrit une longue courbe, dont l’origine remonte
à la notion de variété riemannienne, métamorphosée au contact de Bergson et de
Husserl, puis au voisinage de Simondon et de Foucault, qui toujours croise plusieurs
niveaux, actualise des unités possibles dans le divers des singularités.

6 Extended English Abstract

Bernhard Riemann is arguably the mathematician who had the greatest influence
upon the work of Deleuze and Guattari. I would like, in this essay, to explore some
reasons for this influence and in particular for the genesis of the Deleuzian concept
of “multiplicity”, its links with smooth and striated spaces, and the Riemannian con-
cept of “manifold” (mannigfaltigkeit). In the book about Foucault, Deleuze says: “It
was Riemann in the field of physics and mathematics who dreamed up the notion
of multiplicity and different kinds of multiplicities. The philosophical importance
of this notion then appeared in Husserl’s Formal and Transcendental Logic, and in
Bergson’s Essay on the Immediate Given of Awareness (where he tries to define
duration as a type of multiplicity to be contrasted with spatial multiplicities, rather
as Riemann had distinguished between discrete and continuous multiplicities). But
the notion died out in these two areas, either because it became obscured by a newly
restored simple dualism arising from a distinction made between genres, or because
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it tended to assume the status of an axiomatic system.”3 In Différence et répétition,
Deleuze argues that ideas aremultiplicities, and each idea is amultiplicity, amanifold
in the sense of Riemann. Following Riemann and Weyl, he gives two examples: the
space of sounds and the space of colours. He recognizes that modes of determina-
tion are important for the definition of a manifold, and wonders whether the concept
of number is also useful to define a manifold. In the same way, he asks if logical
structures are essential for manifolds. We know that Deleuze did not like logic very
much. Hewrites: “It was a decisive event when themathematician Riemann uprooted
the multiple from its predicate state.” Given the philosophical developments of the
twentieth century, much of which is dedicated to logic and language, we under-
stand why Deleuze prefers the mathematical concept of manifold to the concept of
Grothendick topos used by Alain Badiou. Deleuze chooses topology, because Rie-
mann “marked the end of dialectics and the beginning of a typology and topology of
multiplicities.” Each multiplicity is defined by n determinations. Some multiplicities
are metric because the magnitude between two points from a line with the magnitude
of two other points from another line can be compared. In this case, the underlying
space is said to be striated. Some others multiplicies are not metric, because they
can only be measured by indirect means. Two sounds of equal pitch and different
intensity cannot be compared with two sounds of equal intensity and different pitch.
In this case, the underlying space is said to be smooth. The smoothness is not the infi-
nitely differentiability of mathematicians. For Deleuze, smooth means non-metric.
The desert, steppe, ice, sea, Cézanne’s wheat field and fractal objects are smooth
spaces. At this point, in relation with smoothness, we try to comment this extract,
involving the Aristotelician notions of numbering number and numbered number:
“The number distributes itself in smooth space; it does not divide without changing
nature each time, without changing units, each of which represents a distance and not
a magnitude. The ordinal, directional, nomadic, articulated number, the numbering
number, pertains to smooth space, just as the numbered number pertains to striated
space. So wemay say of every multiplicity that it is already a number, and still a unit.
But the number and the unit, and even the way in which the unit divides, are differ-
ent in each case.”4 Summarizing all kinds of multiplicities, the concepts of striated
and smooth spaces in connection with the thought of Riemann is questioned. “We
have on numerous occasions—says Deleuze—encountered all kinds of differences
between two types of multiplicities: metric and nonmetric; extensive and qualitative;
centered and acentered; arborescent and rhizomatic; numerical and flat; dimensional
and directional; of masses and of packs; of magnitude and of distance; of breaks and
of frequency; striated and smooth. Not only is that which peoples a smooth space
a multiplicity that changes in nature when it divides—such as tribes in the desert:
constantly modified distances, packs that are always undergoing metamorphosis—
but smooth space itself, desert, steppe, sea, or ice, is a multiplicity of this type,

3G. Deleuze, Foucault, Translated by Seán Hand, University of Minnesota Press, 1988, 13.
4G. Deleuze, F. Guattari, A Thousand Plateaus, Translation and foreword by Brian Massumi, Uni-
versity of Minnesota Press, 1987, 484.
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non-metric, acentered, directional, etc.”5 It is also instructive to follow Deleuze’s
distinction between the royal science and the nomad science, two models of science,
inspired from Plato’s Timaeus, called by Deleuze the Compars and the Dispars. The
Compars corresponds to the homogeneous striated space, and the Dispars is linked
to the heterogeneous smooth space. “The compars is the legal or legalist model
employed by royal science. The search for laws consists in extracting constants,
even if those constants are only relations between variables (equations). An invari-
able form for variables, a variablematter of the invariant: such is the foundation of the
hylomorphic schema. But for the dispars as an element of nomad science the relevant
distinction is material-forces rather than matter-form. Here, it is not exactly a ques-
tion of extracting constants from variables but of placing the variables themselves
in a state of continuous variation. If there are still equations, they are adequations,
inequations, differential equations irreducible to the algebraic form and inseparable
from a sensible intuition of variation. They seize or determine singularities in the
matter, instead of constituting a general form.”6 Compars and Dispars are linked
to nomos and logos, but also to singularities. For Deleuze, the world is organized
around nomad singularities, and individuals are in the vicinity of these singulari-
ties. The problem of multiplicities and their singularities has a lot of philosophical
consequences. Deleuze moves the philosophic thought from logic to topology. This
is a breakthrough and its most innovative aspect. “Multiplicity remains completely
indifferent to the traditional problems of themultiple and the one, and above all to the
problem of a subject who would think through this multiplicity, give it conditions,
account for its origins, and so on. There is neither one nor multiple, which would
at all events entail having recourse to a consciousness that would be regulated by
the one and developed by the other. There are only rare multiplicities composed of
particular elements, empty places for those who temporarily function as subjects,
and cumulable, repeatable and self-preserving regularities. Multiplicity is neither
axiomatic nor typological, but topological.”7
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Comprehending the Connection of Things:
Bernhard Riemann and the Architecture
of Mathematical Concepts

Arkady Plotnitsky

Abstract This chapter is an essay on the conceptual nature of Riemann’s thinking
and its impact, as conceptual thinking, on mathematics, physics, and philoso-
phy. In order to fully appreciate the revolutionary nature of this thinking and of
Riemann’s practice of mathematics, one must, this chapter argues, rethink the nature
of mathematical or scientific concepts in Riemann and beyond. The chapter will
attempt to do so with the help of Deleuze and Guattari’s concept of philosophical
concept. The chapter will argue that a fundamentally analogous concept of concept
is also applicable in mathematics and science, specifically and most pertinently to
Riemann, in physics, and that this concept is exceptionally helpful and even neces-
sary for understanding Riemann’s thinking and practice, and creative mathematical
and scientific thinking and practice in general.

1 Introduction

This chapter is an essay on the conceptual nature of BernhardRiemann’s thinking and
its impact, as conceptual thinking, on mathematics, physics, and philosophy. In order
to fully appreciate the revolutionary nature of this thinking and of Riemann’s practice
of mathematics, one must, I argue, rethink the nature and structure, architecture, of
mathematical or scientific concepts in Riemann and beyond. I shall attempt to do so
here with the help of Gilles Deleuze and Félix Guattari’s concept of philosophical
concept, as defined in What Is Philosophy? [8], the culminating work of Deleuze’s
philosophy, on which I shall comment presently. I argue that a fundamentally analo-
gous concept of concept is also applicable in mathematics and science, specifically
and most pertinently to Riemann, in physics, and that this concept is exceptionally
helpful and even necessary for understanding Riemann’s thinking and practice, and
creative mathematical and scientific thinking and practice in general. While I shall
address Riemann’s work in physics, I shall, given my scope, be less concerned with
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physical concepts as such.1 The concept of concept in question here is discussed
in Sect. 2, which follows this Introduction. Section3 considers Riemann’s concept
of manifold(ness) [Mannigfaltigkeit] and his understanding of space and geometry,
grounded in this concept. Finally, Sect. 4 addresses the relationships between math-
ematics and physics in Riemann. Thus, Sect. 2 is more philosophical, Sect. 3 is more
mathematical, and Sect. 4 more physical. When it comes to Riemann, however, phi-
losophy, mathematics, and physics are never far from each other; and the workings
of all three in Riemann’s thought will be addressed throughout this article.

I would like to begin, by way of a prologue, with the 1907 article, “La logique
et lintuition en mathématique,” by Émile Borel, who questioned the logicists’
philosophy of mathematics, which theorized mathematics as an extension of logic
and which, championed by, among others, Bertrand Russell, was in vogue at the
time. Borel opens his argument by considering polynomial identities, such as
(x + 1)(x − 1) = x2 + 1 familiar to all of us since our school days. One can imag-
ine such identities to be produced mechanically and entirely correctly, by a log-
ical mechanism or machine. One can then imagine one of these identities, say,
number 35,427, being 4P3 = Q2 + 27R2, satisfied when P = x2 − x + 1, Q =
(2x − 1)(x + 1)(x − 2), and R = x(x − 1). While the previous or the following one
in this sequence may be entirely uninteresting mathematically, this one is interesting
and even special, first, because it expresses a cube as a (weighted) sumof two squares,
and, although Borel did not mention this fact, this identity is also important in the
theory of elliptic functions [2, pp. 273–274] [12, pp. 402–403]. Logic, Borel argues,
cannot capture the importance of this identity. Borel gave other examples of this
failure of logic to capture the essence of mathematical thought, such as the fact that
the formula expressing the invariance of the cross-ratio of four points on a line under
a perspectivity is easy to find, but it took a Chasles to see in it the key to projective
geometry. Borel also considered, with the same aim, the case of another polynomial
identity (the icosahedral equation) that could only have been found to be valuable
if discovered by a nonmechanical route, namely through Felix Klein’s unification
of Evariste Galois’s theory with the theory of the symmetries of the icosahendron.
This is, I think, one of those findings in which the essence of modern mathematics
is manifested, not the least because it brings together concepts and calculation, very
much in the spirit of Riemann, which often guided Klein’s work. This finding and its
generalizations have profound connections to Riemann’s ideas concerning Riemann
surfaces, in the so-called Belyi theorem andGrothendieck’sDessin d’Enfants theory.
Borel’s view, then, was that a truly fertile invention in mathematics consists of the
discovery of a new point of view from which to classify and interpret the facts, fol-
lowed by a search for the necessary proofs by plausible reasoning (later considered
by George Pólya [30]), and only in the third and final stage does logic take over. As
Jeremy Gray notes, “Borel’s criticisms are not quite the staples they might seem, and
not just because they had a specific resonance in the France of the time. They point
quite clearly toward a problem that has not gone away in philosophers’ treatment
of mathematics: a tendency to reduce it to some essence that not only deprives it of

1I have considered physical concepts from this perspective in [27, pp. 2–11].
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purpose but is false to mathematical practice. The logical enterprise, even if it had
succeeded, would only have been an account of part of mathematics—its deductive
skeleton” [11, pp. 202–203].

Nor, I would contend, would one do much better on that score by using the
axiomatic approach to foundations of mathematics, sometimes juxtaposed to logi-
cism, or by using formalism, which assumes that mathematics is not a body of propo-
sitions representing an abstract sector of reality but is much more akin to a game,
and as such, allows one to capture more of creative mathematical thinking [34].
Henri Poincaré, it is worth noting, was as skeptical as Borel, and on similar grounds,
concerning the capacity of these approaches to capture creative mathematical think-
ing [11, 29, pp. 261–265, 390–391]. However, as I argue here, things are different
when it comes to the conceptual aspects of mathematics, which may well be primar-
ily, even if not solely, responsible for truly fertile inventions in mathematics, if we
understand properly what mathematical concepts are and how they work. Riemann’s
thinking and practice provide a particularly helpful guidance for this understanding,
especially, I would like to propose, if one sees Riemann’s understanding and practice
of concepts through the optics of Deleuze and Guattari’s concept of a philosophical
concept in What Is Philosophy? [8]. Gilles Deleuze (1925–1995), the main driving
force behind this concept of concept, was one of themost creative, as well as themost
controversial, French philosophers of the second half of the twentieth century, both
in his own work and in his collaboration with Félix Guattari (1930–1992). Deleuze’s
thinking, including that concerning the nature of concepts, was influenced by Rie-
mann, especially by Riemann’s concept of manifold and the resulting rethinking of
spatiality, which Deleuze saw as heralding a revolutionary change in philosophy,
mathematics, and physics alike, and, I would add, in the relationships among them
[7, p. 483].2

Deleuze and Guattari’s concept of philosophical concept can and here will be
transferred, partially and against their own grain, into our understanding of mathe-
matical or scientific, such as physical, concepts. Riemann’s contribution to physics
in this regard and in general was, if more limited, nearly as revolutionary as his
contribution to mathematics. In this chapter, I shall primarily focus on Riemann’s
mathematics, to which I shall mainly refer at the moment as well. Most of my argu-
ment concerning concepts, will equally apply to Riemann’s physics, which I shall
consider in Sect. 4, or, by definition, to Riemann’s philosophical thinking. Riemann’s
mathematical thinking was, I argue, fundamentally defined by the invention of new
concepts in Deleuze and Guattari’s sense, now applied to mathematical rather than
philosophical concepts. This transfer of their concept of concept to mathematics is
partial because mathematics cannot be defined only by the invention of mathemat-
ical concepts, given the roles of other aspects of mathematical thinking, such as
logical and axiomatic reasoning, which Deleuze and Guattari see as most defining
in mathematics. Accordingly, it becomes a matter of the relative precedence of these
components at different junctures, with, however, the invention of concepts having

2On this influence, see F. Jedrzejewski’s contribution to this volume [14] and an earlier article by
the present author [26].
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themain role in creativemathematical or scientific thought. But then, one could argue
that philosophy cannot be limited to the invention of new concepts either, and that
there, too, it is a matter of the relative precedence of different aspects of philosophi-
cal thinking at different junctures, with the invention of concepts having the primary
role in creative philosophical thought. This transfer is against Deleuze and Guattari’s
own grain, because, following Georg W. F. Hegel and other post-Kantians, Deleuze
and Guattari associate their concept of concept primarily and even uniquely with
philosophical thinking. The concept [in this sense], they say, belongs to philosophy
and only to philosophy [8, pp. 11–12, 33–34].

At the same time, as noted above, Riemann’s ideas and specifically his concept
of manifoldness had a major impact on their philosophy, in part in juxtaposition to
Hegel, in a different context, that of dialectical thinking, overturned, they argued,
by thinking in terms of manifold-like concepts in philosophy [7, p. 483]. This is not
inconsistent. Hegel is close to Riemann when it comes to their respective concepts of
concept, although Hegel, too, associates his concept of concept [Begriff ] primarily
and even uniquely with philosophical thought. My argument here, however, is only
against Deleuze and Guattari’s, or Hegel’s, own grain, not against their thinking.
Neither Deleuze and Guattari nor Hegel (who made an even stronger claim to this
effect) are ultimately able to deny mathematical and scientific concepts most of the
essential features of the architecture that they associate with philosophical concepts,
and are,more expressly,Deleuze andGuattari, compelled to reinstate this architecture
to mathematical and scientific concepts [8, pp. 217–218]. Riemann, by contrast,
fuses philosophy, mathematics, and physics in his thinking and in the architecture
of his concepts, and thus also offers us a better way of understanding the nature and
workings of concepts in all three domains, and in the relationships among them.

The conceptual character of Riemann’s mathematics has been noted and even
emphasized in commentaries on Riemann, especially in contrast to mathematics
based in calculations (e.g. [9, 16]). These commentaries have not, however, paid
sufficient attention to the architecture of Riemann’s concepts, or of fundamental
mathematical concepts in general. They have not asked the question “What is a con-
cept?” They either take the concept of concept for granted or adopt a conventional
view of concepts as generalizations from particulars. As a result, they miss the archi-
tectural complexity of Riemann’s concept of concepts and, along with it, the deeper
nature of Riemann’s conceptual thinking, which was not defined most essentially by
its juxtaposition to calculation, but rather by his concept of concept.3 It is not, it is
worth noting, that Riemann did not do calculations. But he gave priority to concepts
(in his sense), even in doing calculations, grounded in and made more effective by
his use of concepts. This is manifested, for example, in his work on functions of
a complex variable, where the invention of new concepts, such as that of Riemann
surface, created new possibilities for calculations, the potential of which has been
explored throughout the subsequent history and is still far from exhausted. It may
indeed be inexhaustible.

3K. Ohshika’s chapter in this volume [20] is a notable exception as a reflection on the architecture
of Riemann’s concepts.
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Although arising fromRiemann’swork in general,myargument here is basedmost
essentially on Riemann’s Habilitation lecture, “On the Hypotheses That Lie at the
Foundations of Geometry” [Ueber die Hypothesen, welche der Geometrie zu Grunde
liegen] [31], given in 1854 but first published by Richard Dedekind only in 1868, two
years after Riemann’s death.4 The lecture offered a radical rethinking of space and
geometry, as against the precedinghistory of both, frombeforeEuclid to the discovery
of non-Euclidean geometry around 1830. This rethinking was based on the concept
of manifold or manifoldness [Mannigfaltigkeit], a major mathematical innovation.
Establishing the possibility of non-Euclidean geometry was a great mathematical
discovery, with profound implications for mathematics, physics, and philosophy,
and indeed culture. However, as Riemann argued in his lecture, the pre-Riemannian
conceptions of non-Euclidean geometry did not sufficiently depart from previous
thinking concerning space and geometry, with a possible exception of certain ideas
ofKarl FriedrichGauss,Riemann’s teacher andprecursor. The role of the discovery of
the non-Euclidean geometry of Nikolai Lobachevsky and János Bolyai in Riemann’s
thinking is not clear, and the consensus appears to be that it was not important.
Indeed, part of my argument here concerns some of the reasons why it might not
have been. Lobachevsky’s and Bolyai’s work did not figure in Riemann’s lecture
and, unlike Gauss, neither was mentioned there. The question of the fifth (parallel)
postulate of Euclid, central to the history that led to the discovery of non-Euclidean
geometry, played no role in Riemann’s argument either. Riemann pursued a different
way of thinking, in part following Gauss’s ideas concerning the curvature of two-
dimensional surfaces. Riemann’s thinking was also, and correlatively, problematic
rather than axiomatic-theorematic (as was that of Lobachevsky and Bolyai), the
juxtaposition that I explain below, merely noting for the moment that the axioms
of geometry were neither Riemann’s starting point nor figured significantly, if at
all, in his investigation. Riemann’s approach led him beyond a single alternative to
Euclidean geometry to an uncontainable multiplicity of geometries and, in principle,
to an even greater multiplicity of possible spaces, because some among them would
not admit geometry. The latter circumstance became important for the development
of topology, which, unlike geometry, deals with the architecture of a given space and
associating numerical and algebraic entities with this architecture, rather than, as
geometry, with the measurement of distances. Riemann’s ideas, beginning with his
concept of Riemann surfaces, which are two-dimensional manifolds with a particular
type of topological structure, played a major role in the emergence of topology as a
mathematical discipline.

The implications for physics, extending those of the discovery of a single non-
Euclidean geometry, were dramatic as well, and as indicated above and as will be
discussed in detail in Sect. 4, Riemann’s contribution to physics in the lecture was
nearly as revolutionary as his contribution tomathematics. For themoment, before the
discovery of non-Euclidean geometry, one and only one geometry would be available
for a geometrical description of physical space (which is, again, how the term space

4On Riemann’s subsequent developments of his geometrical ideas and their application to physics
and beyond, see Athanase Papadopoulos’s contribution to this volume [22].
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was understood at the time) if one assumes that space or, in Riemann’s more rigorous
phrasing, “the reality underlying space” could be described geometrically [31, p.
33]. This had been a grounding assumption of modern physics, from Galileo and
Newton on, or of modern philosophy, from Descartes on. Kant’s epistemology of
phenomena (referring to appearances or representations constructed by our minds)
vs. noumena or things-in-themselves (referring to how things, material or mental,
exist independently of how we perceive or represent them) qualified this assumption
[15]. While important, this qualification did not change the essential import of this
assumption for physics.Kant’s epistemology does not affectmeasurements that allow
us to ascertain the observable properties of space, specifically whether the observable
space is Euclidean (flat) or non-Euclidean (curved), or is three-dimensional (the
only space we can phenomenally imagine) or not. Kant’s epistemology even helps.
Possible deviations from the flatness of physical space (or in any event, from what
we refer to as physical space) could be established indirectly by using measuring
instruments, while our phenomenal experience of space could still be Euclidean.
Riemann reflected on this situation in his lecture, leaving the question of the ultimate
nature of physical space or of the reality underlying space to the future physics.
Kant, by contrast, ultimately assumed that physical space (or, again, whatever can
be possibly referred to as physical space) is Euclidean and three-dimensional, or
again, that it was unlikely to be anything else. He allowed that such alternatives are
logically possible, but saw them as improbable, in part on theological grounds [23,
pp. 3–4, 7]. These grounds have not deterred Riemann, who was originally trained in
theology, which might, however, have affected his mathematical and philosophical
thinking otherwise, possibly even his concept of manifold.5 In Riemann’s view, that
spacewas a three-dimensional Euclideanmanifoldwas a hypothesis, reasonablywell
confirmed by the measurements performed at the time, but a hypothesis nevertheless,
the truth of which cannot be ascertained by reason alone, as Kant ultimately thought
possible, although his position has further complexities, which cannot be addressed
here.

In any event, the situation changed with the discovery of non-Euclidean geometry.
That actual physical space may not be Euclidean (the three-dimensional nature of
spacewas not contested)made this discovery amajor event, even though nomeasure-
mentsmade at the time showed any deviation fromEuclidean geometry. The situation
changed even more radically with Riemann, because his argument implied that an
infinite number of possible geometries or, in principle, even topologies (some of
which or rather the corresponding mathematical entities, which we now call spaces,
would not possess geometry) could be associated with physical space or, again, the
reality underlying space, that is, the reality underlying what appears to us as physical

5Although the term “Mannigfaltigkeit” was not uncommon in German philosophical literature,
including in Leibniz and Kant, it is worth noting that the German word for the Trinity is
“Dreifaltigkeit,” thus, etymologically, suggesting a kind of “three-folded-ness,” which could not
have been missed by Riemann, or, for that matter, Leibniz and Kant. See [20] on the use of the term
“Mannigfaltigkeit” in Kant vs. Riemann.
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space.6 Any such association is a hypothesis (this iswhat the hypotheses ofRiemann’s
title refers to) and as such is subject to testing, verification, qualification, refinement,
and so forth, which can rule out some among possible geometries or require dif-
ferent geometries at different scales, as indeed happens in modern physics. Thus,
with the help of Einstein’s general relativity (his non-Newtonian theory of gravity),
we know reasonably well certain local physical geometries, say, the one, curved,
in the vicinity of the solar system, and even more global geometries, say, that (on
average flat) in the Milky Way. Or, to speak more rigorously and, arguably, closer to
Riemann’s way of thinking, the corresponding argumentation works well in physics
and astronomy as things stand now. It is, however, much more difficult to be sure
concerning the ultimate geometry of the Universe, although the current data seems to
suggest that it is, on the average, flat, as far as we can observe it. Locally, space could
be curved by gravity, in accordance with general relativity. This disregards possible
quantum aspects of the reality underlying space, for example, as permeated by quan-
tum fields, which may make this reality discrete, the possibility Riemann entertained
in his lecture. This discreteness remains conjectural and it is not inherent in quantum
field theory as currently constituted (in most interpretations), but it is envisioned in
some versions of it, or its extrapolations beyond its current scope, for example, to
the Planck scale. Still other versions or interpretations of quantum field theory or
even quantum mechanics (the currently standard nonrelativistic, low energy, form
of quantum theory) suggests that the reality of the ultimate constitution of nature,
including possibly the reality underlying space are beyond representation or even
conception, discrete or continuous, the possibility on which I shall further comment
below. It is also possible (there are physical considerations that suggest this as well)
that there are other Universes with different geometries and topologies. Riemann
did not envision this possibility, which in part arises from quantum considerations
concerning the Big-Bang origin of the Universe that we observe. In fact, he rejected,
perhaps too hastily, any consideration of the Universe on such a scale, “in the infi-
nitely large,” as an idle speculation [31, p. 23]. However, his discovery of an infinite
number of possible geometries is in accord with this idea, the genealogy of which
goes back to Leibniz’s concept of (com)possible worlds, although for Leibniz there
is only one, the best one, in which we live and which is monadologically reflected in
our thought. On the other hand, Riemann argued that “the reality underlying space”
“in the infinitely small” is an important question: this reality may have a dimension
higher than three (possibly even be infinite-dimensional), be discrete rather than con-
tinuous, and so forth. This question, he argued, could only be answered by physics,
because this reality is defined by matter and forces acting upon it, rather than on the
basis of purely philosophical considerations or “traditional prejudices” [31, p. 33].
This question, which was given new dimensions by quantum theory, is still with us,

6It is true that Riemann never considered or evenmentioned this possibility, arguably, first expressly
investigated by Poincaré, and it is not my aim to make a historical claim to the contrary. My point
instead is that this possibility and, as will be explained below, the concept of topological space may
be seen as conceptual implications of his argument. It is conceivable, especially given his concept
of a Riemann surface, that Riemann entertained this type of idea, just as he (admittedly, expressly)
entertained the idea that the reality underlying space may be discrete.
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testifying to the remarkable reach and lasting significance of Riemann’s thought for
mathematics, physics, and philosophy.

2 Philosophy: Planes of Thought and the Architecture
of Concepts

InWhat Is Philosophy?Deleuze andGuattari view thought [la pensée] as a confronta-
tion between the brain and chaos. On the surface, this view is hardly surprising: much
of our thinking (in the sense of mental states and processes) may be understood as
this type of confrontation. Deleuze and Guattari, however, have in mind a special
form of this confrontation, defined by their conception of thought as different from
merely thinking and manifested especially in philosophy, art, and mathematics and
science. While unremittingly at war with chaos, thought is also working together
with chaos, rather than only protecting us against chaos, as do certain other forms
of thinking, in particular, opinion. Deleuze and Guattari see chaos (which they also
understand in a particular way, explained below) not only as an enemy but also as
a friend of thought, its greatest friend and its best ally in a yet greater struggle, that
against opinion, an enemy only, “like a sort of umbrella that protects us from chaos.”
As they say:

[The] struggle against chaos does not take place without an affinity with the enemy, because
another struggle develops and takes on more importance—the struggle against opinion,
which claims to protect us from chaos... [T]he struggle with chaos is only the instrument in a
more profound struggle against opinion, for the misfortune of people comes from opinion...
But art, science, and philosophy require more: they cast planes over chaos. These three
disciplines are not like religions that invoke dynasties of gods, or the epiphany of a single
god, in order to paint the firmament on the umbrella, like the figures of an Urdoxa from
which opinions stem. Philosophy, science, and art want us to tear open the firmament and
plunge into chaos. And what would thinking be if it did not confront chaos? [8, pp. 203, 206,
202].

Chaos itself is “defined [by them] not so much by its disorder as by the infinite
speed with which every form taking shape in it vanishes. It is a void that is not a noth-
ingness but a virtual, containing all possible particles and drawing out all possible
forms, which spring up only to disappear immediately, without consistency or refer-
ence, without consequence. Chaos is an infinite speed of birth and disappearance” [8,
p. 118]. This is an unusual conception of chaos. Indeed, it does not appear to have been
previously used in philosophy. It originates in quantumfield theory and the concept of
virtual particle formation there, as is suggested by the terms “particle” and “virtual,”
although “virtual” is also Deleuze’s own philosophical concept [24]. This conception
gives a particular form to thought’s interaction with chaos. Thought extracts more
stable forms of order from speedily disappearing forms of order inhabiting chaos,
analogously to the way our measuring technology in high-energy physics extracts
“real particles,” as they are called, from the “foam” of continuously transforming
“virtual particles”: electrons into positrons or electron-positron pairs, either to pho-
tons, and for forth, in the case of quantum electrodynamics. The picture becomes still
more complex (involving neutrinos, electroweak bosons, quarks, Higgs bosons, and
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so forth) in higher-energy quantum regimes, governed by other forms of quantum
field theory [27, pp. 226–238].

Given the essentially creative nature of thought, thus defined, it is not surprising
that philosophy, art, and science are among the primary means, and for Deleuze
and Guattari are even the primary means, for thinking to become thought [8, p. 208].
Philosophy engageswith chaos by creating concepts and planes of immanence; art by
creating affects and planes of composition; and mathematics and science by creating
functions and propositions, and planes of reference or coordination in science. These
conceptions are intricate, and their fuller meaning will become apparent in the course
of the discussion to follow. It suffices to say for the moment that the corresponding
planes of immanence, composition, and reference, are defined by the movement of
thought in each field,while concepts in philosophy, compositions in art, and functions
(or other mathematical entities) and propositions in mathematics and science emerge
from and are created by this movement.

The specificity of the workings of thought in each field makes them different
from each other; and part of the project of What Is Philosophy? is to explore this
specificity and this difference, in order to answer or (it might not be possible to
ever answer it) to pose the title question of the book more sharply. However, the
affinities and relationships among art, science, and philosophy are just as significant,
and reflect a more complex landscape of thought, in which these fields and the
interactions among them are positioned. Here, I shall address conceptual thought
in philosophy and mathematics and science. I argue, again, against the grain of
Deleuze and Guattari’s argument, that creative thought in mathematics and science,
and Riemann’s thought in particular, are defined as much by the invention of new
mathematical and scientific (in Riemann’s case, specifically physical) concepts as
is creative thought in philosophy by the invention of new philosophical concepts.7

This argumentation does not negate that of Deleuze and Guattari. First of all, planes
of reference, and mathematical entities, such as functions, or logical propositions,
are unavoidable in and crucial to mathematics and science. Secondly, as noted from
the outset, Deleuze and Guattari are ultimately unable to unconditionally maintain
this distinction either. In particular, they are compelled to address the interferences
among philosophy, art, and science, interferences essential even for the workings of
any single field itself [8, pp. 216–218]. The present argument, which moves beyond
only such interferences (found in Riemann’s thinking as well), makes this distinction
even less definitive and by doing so becomes even more open to the interactions
between these fields (again, leaving art aside for the moment).

I shall now explain Deleuze and Guattari’s concept of a philosophical concept. A
concept is not only a generalization from particulars (which is commonly assumed to
define concepts) or merely “a [single] general or abstract idea,” although a concept
may contain such generalizations and abstract ideas [8, pp.11–12, 24]. (Abstract

7Mathematics, science, and philosophy also involve the creation of compositions, found in artistic
thought, and the latter may, conversely, involve planes of immanence and the creation of concepts,
or planes of reference. For one thing, concepts thus defined are composed. More pertinently here,
Riemann’s concept of manifold is compositional because it defines a manifold as composed of local
spaces [26].
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ideas invoked here are not the same as abstract mathematical formations, which
are, in the present view, concepts in Deleuze and Guattari’s sense.) A concept is
a multi-component entity, defined by the specific organization of its components,
which may be general or particular, and some of these components are concepts in
turn: “there are no simple concepts. Every concept has components and is defined by
them. It is a multiplicity. There is no concept with only one component” [8, p. 16].
Each concept is a multi-component conglomerate of concepts (in their conventional
senses), figures, metaphors, and so forth, which are conjoint in a heterogeneous, but
interactive, architecture, and this multiplicity that does not amount to a unity, even
if it is the unity of the multiple [8, pp.12–13]. It is the relational organization of a
concept’s components that defines it. The role of the multiple in the architecture of
concepts is thus crucial. Some unification could take place within the architecture of
a concept, but, again, without necessarily fully encompassing themultiplicity, at least
a potential multiplicity, of this architecture. It is rare for a concept to have only one
component, and ultimately impossible to do so. A single-component concept is only
a product of a provisional cut-off of its multi-component organization. In practice,
there are always cut-offs in delineating a concept, which results from assuming
some of the components of this concept to be primitive entities whose structure is not
specified. These components could, however, be specified by alternative delineations,
leading to a new overall concept, containing a new set of primitive (unspecified)
components. The history of a concept, and every concept has a history, is a history
of such successive specifications and changes in previous specifications [8, p.17].

Consider the concept of “bird,” beginning with its use in daily life. On the one
hand, it may be seen as a single generalization. On the other hand, what makes this
concept that of “bird” is the implied presence of components or sub-concepts, such
as “wings,” “feathers,” and “beak,” and the relationships among them. The concept
acquires further features and components, and thus becomes a different concept,
in zoology or biology (as reflected, for example, in the evolutionary relationships
between birds and theropod dinosaurs). A philosophical concept of a bird is yet
something else. According to Deleuze and Guattari: “a [philosophical] concept of a
bird is found not in its genus or species but in the composition of its postures, colors,
and songs, something indiscernible that is not so much synesthetic as syneidetic” (a
product of the synthesis of the eidos, form, of each concept it absorbs) [8, p. 20].

Each concept is also defined as a problem (as multifaceted as the concept is), a
definition that has a mathematical genealogy. A problem is not something that, like a
theorem (in the direct sense of the term), is derived from assumed axioms by means
of strict logical rules, but is something that is posed, created, along with a concept. A
mathematical theorem could also be a problem, when it arises, as in Riemann, from
mathematical concepts, rather than from axioms. A problem in this sense, while it
must be solved, does not disappear in its solutions: it is “determined at the same
time as it is solved” and is “at once both transcendent and immanent in relation to
its solution,” insofar as it leads to ever-new problems and concepts [6, p. 163]. This
persistence helps to make a problem and the concept associated to it “always new,”
to live on [8, p. 5]. The invention and exploration of new, “always new,” concepts,
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has, Deleuze and Guattari argue, defined the practice of philosophical thought from
the pre-Socratics on.

I contend that the same type of argument could be made for the concepts invented
in creative mathematics and science. Each mathematical concept (1) emerges from
the cooperative confrontation between mathematical thought and chaos; (2) is multi-
component; (3) is related to or is a problem; and (4) has a history. Thus, consider the
concept of space, historically suspended between mathematics and physics (pro-
visionally putting its philosophical aspects aside), with its constitutive concept-
components, point, line, plane, distance, and so forth, each of which, just as the
overall concept of space, has a long history of modifications, transformations, redef-
initions, and so forth. Tomark someof its junctures, by symbolically placingRiemann
at the center of this history, this history extends from Euclid (who does not define
space, but defines the components just listed) to René Descartes (a coordinate space)
to Riemann (a space defined as a manifold) to Felix Hausdorff (topological space)
to Alexandre Grothendieck (topos).

It is sometimes difficult to perceive this multi-component architecture of concepts
in mathematics and science, because this complexity could be circumvented in their
technical practice, in this respect in contrast to philosophy. A more conventional
understanding of concepts (such as a generalization from particulars), joined with
mathematical and scientific formulas and propositions, tends to suffice. This may be
one of the reasons why Deleuze and Guattari (almost) deny that concepts in their
sense are found in mathematics and science. They even declare (I think, quite mis-
leadingly) that “it is pointless to say that there are concepts in science [including
mathematics]” and adding “even when science is concerned with the same ‘objects’
[as philosophy] it is not from the view point of the concept; it is not by creating
concepts” [8, p. 33]. This includes Riemann’s thinking concerning manifolds and
spatiality, even as they, at the same time, invoke “a Riemannian concept of space
peculiar to philosophy,” possibly also in Riemann’s philosophical thought, but not,
as I argue here, his mathematical or physical thought [8, p. 61]. For them, mathemat-
ical and scientific thought is limited to planes of reference, linked to the invention
of functions (or other mathematical entities, for example, again, in Riemann) and
propositions, and lacks planes of immanence, which make philosophical concepts
possible [8, pp. 33–34, 132, 161]. Although their view is more ambivalent and com-
plex than this brief summary and these unequivocal statements by them suggest,
they do not extend their concept of concept or their conception (it is not quite a
concept in their sense) of the plane of immanence to mathematics and science. By
contrast, I argue that planes of immanence and the creation of concepts in this type of
sense play central roles not only in creative philosophical thought but also in creative
mathematical and scientific thought. In fact, very little of what they say about the
architecture of philosophical concepts does not apply to mathematical and scientific
concepts. Mathematics or science, certainly that of Riemann, is concerned with its
objects (shared with philosophy or not) from the viewpoint of concepts, by creating
concepts.

I am not disputing that mathematical and scientific thought also works with planes
of reference, and, via planes of reference, with functions, propositions, and so forth.
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Planes of reference give rise to these formations, which define the disciplinary nature
of mathematics and science, and essentially shape mathematical and scientific think-
ing and practice—essentially, but, I would argue, not completely or even most cen-
trally, at least in creative mathematics and science. One might say that creative or,
to adopt Thomas Kuhn’s language, revolutionary, thought in philosophy and mathe-
matics or science alike is defined by planes of immanence and creation of concepts
in Deleuze and Guattari’s sense, which always carry individual signatures under-
neath them [8, p. 50]. Just as there are Plato’s ideas, Descartes’s cogito, and Leib-
niz’s monads, there are Gauss’s curvature, Riemann’s manifolds, Dedekind’s ideals,
and Grothendieck’s topoi in mathematics, or Einstein’s spaces curved by gravity
in general relativity and Heisenberg’s matrix variables or Dirac’s spinors in quan-
tum physics. This is true even though the functioning of mathematical and scientific
concepts does require planes of reference, functions (or other formal mathematical
entities), propositions, and so forth.

The difference between philosophy andmathematics or sciencemay instead be, to
stay with Kuhn’s idiom, in the nature of normal, rather than revolutionary, practice in
each domain. In philosophy, the normal practice consists primarily in understanding,
interpreting, and commenting on concepts,while inmathematics and science, the nor-
mal practice consists primarily in creating, by means of planes of references, frames
of reference, functions and other mathematical or scientific formations, propositions,
and so forth. It is true that for Deleuze and Guattari creative, revolutionary philo-
sophical practice is the only true philosophy. However, leaving aside an arguably too
restrictive character of this view of philosophy, this is not in conflict with the view
of creative mathematics or science advocated here.

Deleuze and Guattari do allow that creative mathematical and scientific thought,
such as that of Riemann (one of their primary examples), could have philosoph-
ical or artistic, compositional, aspects. But they appear to associate these aspects
with philosophical or, in Deleuze’s language, inexact (but philosophically rigor-
ous) thought within mathematical or scientific thought. This philosophical thought
is either operative alongside mathematical and scientific thought or enters by way of
interference (in the positive sense of interfering wave fronts rather than in the more
negative sense of inhibition) between mathematics and philosophy [8, pp. 217–218].
Both types of association are pertinent and important, certainly in Riemann’s case.
My argument is different, however. I argue that creative technical, exact mathemat-
ical and scientific thought is defined by planes of immanence and multi-component
mathematical or scientific concepts, the architecture of which is analogous to that of
philosophical concepts in Deleuze andGuattari’s sense. That is, even apart from their
philosophical strata,mathematical and scientific planes of immanence and the nature
of mathematical or scientific concepts are analogous to philosophical thought. It is
not only a matter of mathematical and scientific thought becoming philosophical at
certain junctures, but amatter of themathematical and philosophical thought creating
parallel homomorphic (partially corresponding to each other), although not isomor-
phic (fully corresponding to each other), architectures of mathematical and philo-
sophical concepts. They are not isomorphic because of technical, exact, aspects of
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mathematical and scientific concepts, demanded by the disciplinary nature of math-
ematics and science, aspects, generally, not found in philosophical concepts.

To bring this point home, I need to saymore about Deleuze and Guattari’s concep-
tions of planes of immanence and reference. The plane of immanence, as the plane
of the movement of thought, is not “a concept that is or can be thought,” but is “the
image of thought, the image that thought gives itself of what it means to think” [8, p.
37]. As they say: “Concepts are like multiple waves, rising and falling, but the plane
of immanence is the single wave that roles them up and unrolls them” [8, p. 36].
The present argument aims to extend, rather than to juxtapose, the plane of imma-
nence (and the relationship between it and concepts) to mathematical and scientific
thought, and to join this plane with the plane of reference. For Deleuze and Guattari,
mathematics or science “relinquishes the infinite, infinite speed [of thought], in order
to a gain a reference able to actualize the virtual [of chaos]. [It] gives reference to the
virtual, a reference that actualizes the virtual through functions [or other mathemat-
ical objects]” [8, p. 118; translation modified]. Thought’s enactment of this process
constitutes a plane of reference. Planes of reference do play a major, indeed irre-
ducible, role in mathematical and scientific thinking, especially in the disciplinary
functioning of mathematics and science. This, however, is not inconsistent with the
view that planes of immanence and the creation of concepts are found inmathematics
and science. Mathematical and scientific thought combines both planes (sometimes,
as does philosophy, also adding planes of composition) and creates its concepts from
this fusion. The processes of thought defined the plane of immanence and specifi-
cally the creation of concepts (in Deleuze and Guattari’s sense) are equally found in
mathematics and science, and, again, define creative thinking there most essentially,
analogously to the way it happens in philosophy. Suchmathematical planes of imma-
nence and the concepts they give rise to may coexist and interact with philosophical
planes of immanence and concepts, but they are not reducible to philosophical planes
and concepts. This is because of the equally irreducible interaction between these
mathematical planes and concepts with technical, exact aspects of mathematical and
scientific thinking.

Thus, in his rethinking of spatiality and geometry, Riemann, not only laid out a
philosophical plane of immanence that gives rise to philosophical concepts and archi-
tectures, as Deleuze and Guattari rightly argue [7, pp. 483–486] but also introduced
a new mathematical plane of immanence, which gives rise to multicomponent math-
ematical concepts, alongside a mathematical plane of reference. Riemann’s thought
shaped the plane of immanence of modern mathematical thought arguably more
than that of any other mathematician (although Newton, Gauss, and Galois before
Riemann, and Poincaré and Hilbert after him offer some competition). This plane
extends well beyond geometry. Riemann made major transformative contributions,
especially of a conceptual nature, to many areas of modern mathematics: geometry,
topology, analysis, algebra, and number theory–not the least by bringing these fields
to bear on each other, and his contributions to physics or philosophy were part of
this interactive thinking and practice.

The interactive heterogeneity of Riemann’s practice is a crucial aspect of Rie-
mann’smathematics, and it extends beyondmathematics and shapes itsmathematical
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operation from this exterior. Thus, the plane of immanence of Riemann’s thought also
has a more strictly philosophical dimension and thus creates more strictly philosoph-
ical concepts, emphasized by Deleuze and Guattari, rather than only mathematical
concepts analogous to philosophical concepts by virtue of their multi-component
architecture, stressed here. Riemann’s philosophical thought was uncommonly and
even nearly uniquely significant for his mathematical or physical thought, although
one could think of a few competing cases, such as Weyl, who might have been
inspired by Riemann in this respect as well, as he was by many other aspects of Rie-
mann’s thought. So were the physical dimensions of Riemann’s thought, and this,
too, is shared by Weyl, or, earlier Gauss, although this is more common. This role
of physics in their work is also essentially connected to the role of philosophy there,
which is, again, uncommon, if one speaks of such essential connections,making one’s
philosophical thinking a constitutive part of one’s mathematical thinking, rather than
of general philosophical reflections concerning mathematics and science, on the part
of mathematicians and scientists.8 The creation of new mathematics in Riemann
was enabled by all three dimensions—mathematical, physical, and philosophical—
of Riemann’s thought and concepts. Riemann lays out a new plane of immanence of
mathematical thought by changing both how to think about geometry or space and
how to pursue thinking differently mathematically, via bringing together different
mathematical fields and combining them with physical and philosophical concepts.
A similar claim could also be made about his thinking concerning physics.

Riemann’s Habilitation lecture is a magnificent unfolding of this plane (a geo-
metrical metaphor of “plane” is fitting here). It is a major contribution not only
to mathematics but also to physics and philosophy, especially to the philosophy of
mathematics and physics, but far from exclusively so, as, for example, Deleuze and
Guattari’s use of Riemann’s concepts shows. It is difficult to overestimate the sig-
nificance and impact of Riemann’s thinking concerning spatiality and geometry in
mathematics and physics, in shaping the planes of immanence of thought of both. In
mathematics the list of even major areas of impact is nearly inexhaustible, and I shall
only mention a few of, arguably, the most important ones. First of all, Riemann’s
rethinking of geometry in terms of manifoldness crucially expanded the idea of the
multiplicity of spaces and geometries themselves. Riemann’s view of geometry as,
in Deleuze and Guattari’s language, topology and typology of manifolds led from the
late-nineteenth century on to the extraordinary (a still ongoing) progress of geometry,
beginning with the work of Sophus Lie and Felix Klein, and a bit later Élie Cartan
[7, p. 483]. This work also connected differential geometry of manifolds and the
theory of groups, specifically Lie groups. These connections eventually proved to
have a major significance for quantum theory, especially in the theory of elementary

8Poincaré’s extensive (much more extensive than Riemann’s) philosophical works (e.g. [28, 29]),
while influenced, as were his mathematical works in geometry, by Riemann’s Habilitation lecture,
may be seen along these lines. I realize that this claim may be challenged, and make it with caution.
I would, nevertheless, argue that Riemann’s philosophical thinking plays a greater constitutive role
in his mathematical thinking than Poincaré’s philosophical thinking in his mathematical thinking.
The situation is of course different when it comes to physics, which is a major part of Riemann’s
and Poincaré’s mathematical thinking alike, and both made major contributions to physics.



Comprehending the Connection of Things: Bernhard Riemann … 343

particles, which are classified by using Lie groups as symmetry groups, although in
connection with the infinite-dimensional spaces. The concept of manifold was also
crucial for the development of topology. Initially, it was Riemann’s earlier work on
Riemann surfaces that had a greater impact. Eventually, topology came to be defined
by understanding, which, as I shall explain, follows Riemann, of topological spaces
as composed of local neighborhoods of points and (open) subspaces of a given space.
It is true that Riemann did not have a concept of topological space. Mymain concern,
however, is the development, transformation of Riemann’s concepts (such as man-
ifold) leading to new concepts, such as topological space, which makes Riemann’s
concepts alive, makes them “live on” in new concepts.

3 Mathematics: Space, Geometry, and the Concept
of Manifold

The significance of Riemann’s lecture for mathematics, physics, and philosophy,
and its impact in all three fields were immense. This impact was delayed until its
publication, in 1868, two years after Riemann’s death, and fourteen years after it
was presented in 1854, although some of Riemann’s key ideas contained there and in
Riemann’s related works became known and had their impact earlier. One can only
surmise (a tantalizing surmise!) the consequences for the history of mathematics and
physics if the lecture was published more immediately. Riemann opens as follows:

As is well known, geometry presupposes the concept of space, as well as assuming the basic
principles for construction in space. It gives only nominal definitions of these things, while
their essential specification appears in the form of axioms. The relationship between these
presuppositions is left in the dark; we do not see whether, or to what extent, any connection
between them is necessary, or a priori whether any connection between them is even possible.

From Euclid to Lagrange this darkness has been dispelled neither by the mathematicians nor
the philosophers who have concerned themselves with it. The reason [ground] [Grund] for
this is undoubtedly because the general concept of multiply extended magnitudes [Grösse],
which includes spatial magnitudes, remains completely unexplored. I have therefore first set
myself the task of constructing the concept of a multiply extended magnitude from general
notions of magnitude. It will be shown that a multiply extended magnitude is susceptible
of various metric relations, so that space constitutes only a special case of a triply extended
magnitude. From this, however, it is a necessary consequence that the theorems of geometry
cannot be deduced from general notions of magnitude, but that those properties that distin-
guish space from other conceivable triply extended magnitudes can only be deduced from
experience. Thus arises the problem of seeking out the simplest data from which the metric
relations of space can be determined, a problem that by its very nature is not completely
determined, for theremay be several systems of simple data that suffice to determine themet-
ric relations of space; for the present purposes, the most important system is that laid down as
a foundation of geometry by Euclid. These data are—like all data—not logically necessary,
but only of empirical certainty, they are hypotheses [Hypothesen]; one can therefore inves-
tigate their likelihood, which is certainly very great within the bounds of observation, and
afterwards decide on the legitimacy of extending them beyond the bounds of observation,
both in the direction of the immeasurably large [Unmessbargrosse] and in the direction of
the immeasurably small [Unmessbarkleinen]. [31, p. 23; translation modified]
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These introductory reflections are already profound and far-reaching, and Rie-
mann develops the ideas suggested here quite a bit further in the lecture. First of
all, Riemann does not appear to be interested in the axiomatic approach to geometry
and is even suspicious of axioms of geometry. In contrast to most previous works
on non-Euclidean geometry, the parallel postulate is not the starting point of his
investigation. The reason is clearly that the concepts of space and of measuring dis-
tances in space are not adequately defined. This is what leaves “the relationships
between [axioms] in the dark. We do not see whether, or to what extent, any connec-
tion between them is necessary, or a priori whether any connection between them
is even possible.” This questioning of the axioms of geometry was unusual at Rie-
mann’s time, and it was much deeper than customary doubts concerning the parallel
postulate. The axiomatic approach to non-Euclidean geometry is, thus, abandoned
and even implicitly questioned by Riemann, even though it was this approach that
led to the discovery of non-Euclidean geometry by Lobachevsky and Bolyai. This
may have been one of the reasons why only Gauss, rather than either Lobachevsky
(highly regarded by Gauss) or Bolyai, was expressly invoked in the lecture.9 It is true
that Gauss was ultimately unable to establish a possible existence (in the sense of
logical consistency) of non-Euclidean geometry, because, unlike Lobachevsky and
Bolyai, he did not do this for the three-dimensional case. In spirit, however, Gauss’s
work on the geometry of two-dimensional surfaces and his concept of curvature as
intrinsic to a given surface was much closer to Riemann. For Riemann, Gauss was
pursuing a trajectory of thought better suited for the foundations of geometry and
more fruitful for its conceptual development. In his famous extraordinary theorem
(theorema egrerium, as he called it), Gauss proved that the curvature of a surface,
which he defined as well, was intrinsic to the surface. More precisely, the theorem
states that the Gaussian curvature of a surface does not change if one only bends the
surface but does not stretch it. This means that curvature can be fully determined by
measuring angles and distances on the surface itself, without considering the way it
is embedded in the ambient (three-dimensional) Euclidean space or, in Riemann’s
terms, manifold, whichmakes the Gaussian curvature an intrinsic invariant of a given
surface.

One nearly has here a two-dimensional conceptual architecture that suggests and
even approaches that of Riemann, although major additional thinking is necessary to
give this architecture the type of generality Riemann is able to do. Gauss’s theorem
suggests that one could see the surface as an independent curvedmanifold and then to
generalize this concept to higher dimensions via “the concept of a multiply extended
magnitude,” mentioned in this passage and the concept of manifold, which is what
Riemann did. These concepts also helped him to generalize to higher dimensions
Gauss’s concept of curvature. To do so required yet another new concept, another

9There were other, more extrinsic, reasons, beginning with the fact that Gauss was Riemann’s
mentor and the chair of his Habilitation committee. Indeed, Gauss selected this topic among three
proposed by Riemann (following the rules). The philosopher R. H. Lotze, a fervent opponent of
non-Euclidean geometry, was a member of the philosophy faculty, to which Riemann’s Habilitation
was presented. Later on, Lotze criticized Riemann’s approach anyway, as part of his general critique
of non-Euclidean geometry (see [16, pp. 222–226] and [33, pp. 97–112]).



Comprehending the Connection of Things: Bernhard Riemann … 345

great invention of Riemann, the tensor of curvature, and a new form of differential
calculus, tensor calculus on manifolds, a generalization of differential calculus. This
calculus was fully developed later on, and it played a major role in Einstein’s general
relativity. The independence of the curvature or of geometry of a given manifold of
any dimension from its embedding also allows one to determine, at least in principle,
intrinsically whether this space is flat or curved, which is crucial for determining the
nature of the physical space we inhabit. For example, as indicated earlier, space is
curved in the immediate vicinity of the solar system, because of the gravity of the Sun,
planets, and other material entities in the solar system (or locally around other stars),
but appears to be on the overage flat on the scale of the observable Universe.10 In any
event, by virtue of inventing his concepts and by using them, Riemann provided a
general rigorous grounding to all geometry, Euclidean or non-Euclidean, rather than
merely establishing, as Lobachevsky and Bolyai did, the logical possibility of the
non-Euclidean geometry of (constant) negative curvature in three dimensions. The
absence of a concept, such as that of manifold, leaves us in “the dark,” because “we
do not see whether, or to what extent, any connection between [axioms] is necessary,
or a priori whether any connection between them is even possible.”

Riemann’s thinking is conceptual-problematic rather than axiomatic-theorematic:
he grounds mathematics, as well as physics, in hypotheses and concepts, concepts-
problems, such as the concept of manifold and its subconcepts (distance, curvature,
tensor, and so forth). The problem of space and geometry is now posed in terms
of finding concepts that are necessary to define space and to give it geometry. A
general concept of manifold was assumed to be applicable to any possible space,
while specific manifolds, flat or curved, define different spaces or subspaces. In this
respect, as foundational thinking, that of Riemann is different from that conforming
to Hilbert’s concept of “foundations” [Grundlagen] in the sense of axiomatic foun-
dations, an idea that Hilbert also tried to apply to physics. One of the problems of
his famous 1900 list (Problem 6) was in fact that of the development of (mathema-
tized) axiomatic foundations, system(s) of axioms, for physics, on the model of his
own Foundations of Geometry [13].11 That such a system is possible is inevitably
a hypothesis. It became clear subsequently that the existence of such a system is a
hypothesis even in mathematics, and in view of Gödel’s incompleteness theorems in
1931, ultimately a wrong hypothesis, insofar as such a system cannot be proven to
be free of contradiction, once it is large enough to include arithmetic, as geometry is.

10As I qualified earlier, at least this is a workable and widely accepted view, widely but not uni-
versally. It has never been established definitively or, in any event, agreed upon whether such a
determination is ever rigorously possible, as opposed to having a practically effective and possibly,
within its proper limits, the best available theory or, as Poincaréwould have it, “convention,” without
making a real claim concerning “the reality underlying space” [31, p. 33]. Einstein had his doubts
too, although he was ultimately inclined to accept the possibility of such a determination, at least in
principle, as, it appears, was Riemann, but not Poincaré, with whose position Einstein, nevertheless,
had to contend and which he tried to accommodate within his own (e.g. [11, pp. 324–328]).
11For the development of Hilbert’s ideas, as reflected in different editions of the Grundlagen, see
[4]. In the first version of the book, Hilbert was closer to Riemann, and he later returned to a
more Riemannian view of geometry in the wake of general relativity to which he made important
contributions.
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While Hilbert’s foundational thinking aimed to bring physics closer to mathematics,
even to make it mathematics, by giving physics an axiomatic form, that of Riemann
brings mathematics closer to physics by grounding it in hypotheses and concepts,
rather than in axioms.12

Riemann’s approach and his concepts arise from the plane of immanence, at once,
mathematical, physical, and philosophical, a plane defined by thinking in terms of
multi-component concepts, such as that of multiply extended magnitude and man-
ifoldness, rather than in terms of axioms and propositions, an approach that has
defined most thinking concerning geometry before and even after Riemann. Rie-
mann’s thought is defined by a plane of immanence by virtue of giving rise to mul-
ticomponent concepts, rather than only creating frames of reference, functions, or
propositions, from a plane of reference, although this is necessary as well. In Rie-
mann, both planes are joined, as they must be in the creation of mathematical or
scientific concepts. Thus, functions define both local neighborhoods (as infinitesi-
mally Euclidean) and how local spaces are connected or pass into each other, and
metrical relations and curvature, although curvature is ultimately defined by tensors,
which are more complex entities.

The parallel postulate is, again, never mentioned in the lecture, although Euclid-
ean geometry is invoked there as the geometry of “flat space,” merely a particular
and very special case of geometry, where metrical relations take an especially simple
form, defined by the Pythagorean theorem. In Gray’s words, “[In Riemann] geome-
try no longer starts with Euclidean geometry” [11, p. 52]. It is the metrical relation
characterizing a given space that defines a possible geometry. In other words, the
character of this relation is a hypothesis on which a geometry could be based, a
hypothesis to be tested physically in order to establish whether such a space cor-
responds to the actual physical space. Non-Euclidean geometry (Riemann, again,
does not use the term) is introduced as such a possible case of geometry, that of a
curved, rather than flat, space of either negative or positive curvature, defined by
Riemann by the corresponding type of quadratic form determining the metric. Rie-
mann, thus, not only introduces a more general concept of geometry, but also gives a
more rigorous conceptual grounding to non-Euclidean geometry of either negative or
positive curvature. While the non-Euclidean geometry of negative curvature (hyper-
bolic geometry) was discovered before Riemann, Riemann’s lecture introduced the
three-dimensional non-Euclidean geometry of positive curvature (elliptical geom-
etry), keeping in mind that space for Riemann meant the three-dimensional phys-
ical space. (The two-dimensional spherical geometry was considered well before
Riemann.) Although eclipsed by Riemann’s overall achievement in the lecture, this

12One might challenge this argument on historical grounds because it would have been difficult,
if not impossible, to present a concept such as that of manifold in axiomatic form at the time of
Riemann’s lecture. That may be true. My point, however, is that Riemann’s alternative, conceptual-
problematic rather than axiomatic-theorematic, thinking, could still be contrasted to that of Hilbert
and lead to a different type of mathematical thinking. It is difficult to say how Riemann would
have approached the foundations of geometry if he had means of axiomatizing his concepts. On
the other hand, it is possible to argue, as I do here, on historical grounds, that Riemann, unlike his
predecessors, Lobachevsky and Bolyai, was not pursuing an axiomatic approach to geometry.
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was a major mathematical discovery with important cosmological implications, for
example, in its anticipation of the idea, later considered by Einstein, that the universe
may be unbounded and yet finite.13

Riemann defines the concept of space, again, understood as physical space (as
against, the concept of manifold, which is mathematical), as a three-dimensional
instance of the concept of continuous manifoldness, in accordance with the hypothe-
ses that he assumed as likely given the experimental data then available. (There is
still no definitive data to refute this view, unless perhaps in the very small, say, at the
Planck scale.) While a manifold, as defined by Riemann, may be either discrete or
continuous, the concept of continuous manifoldness has a richer and more complex
architecture, and most of Riemann’s lecture is devoted to it. Technically, continuous
manifolds considered by Riemann were differentiable manifolds, which means that
one can define differential calculus on them. Indeed, they aremetricalmanifolds, now
called Riemannian, which allow for the concept of distance between any two points
and thus for geometry.14 I shall, however, speak of continuous manifolds, follow-
ing Riemann and his juxtaposition between continuous and discrete manifoldness.
In modern use, the term manifold more customarily refers to continuous (but not
necessarily differentiable) manifolds, although one also refers to discrete manifolds,
which have topological dimension zero, as zero-manifolds. As defined by Riemann,
discrete and continuous manifolds do not appear to have that much in common, and
in effect form two different concepts.15

Riemann’s concept of continuous manifoldness was a new concept of geomet-
rical multiplicity. It is a multiplicity of local subspaces, most specifically those,
“neighborhoods,” associated with each point, out of which a given space is com-

13It would be similar to the three-dimensional sphere. As I explained, the currently dominant view
or hypothesis (which appears to be confirmed by cosmological measurements) is that the universe
is on average flat and is expanding.
14As most of his contemporaries, Riemann did not distinguish continuous and differentiable man-
ifolds. It became eventually clear, however, that not all continuous (also called topological) man-
ifolds are differentiable. There are topological manifolds with no differentiable structure, and
some with multiple non-diffeomorphic differentiable structures. Thus, there is a continuum of
non-diffeomorphic differentiable structures of R4.
15These two concepts could, especially in modern understanding, be subsumed under the same con-
cept. This is because all zero-dimensional manifolds, which are discrete manifolds in Riemann’s
terms, are continuous (topological) manifolds. In fact they are also differentiablemanifolds, because
transition functions for them are constant functions, which are continuous and even differentiable.
In modern terminology, the distinction between continuous and discrete manifolds in Riemann’s
lecture would be interpreted as that of zero-dimensional manifolds and positive dimensional mani-
folds. I am grateful to Ken’ichi Ohshika for helping to clarify this point. It is not inconceivable that
Riemann’s thought along similar lines, whichwould explain his choice of the termmanifold for both
discrete and continuous manifolds, although the term had a more general use at the time. (Georg
Cantor, possibly influenced by Riemann’s lecture, initially referred to sets as Mannigfaltigkeiten
but eventually switched to Mengen.) It is, however, difficult to be certain on the basis of his lecture
or his other writings. I would argue that the difference between these two types of manifolds is still
crucial, both in general and for Riemann, especially for his analysis of physical space and geome-
try. Riemann stressed the significance of the relationships between continuity and discontinuity for
mathematics, physics, and philosophy (e.g. [32, pp. 515–524]; [9, pp. 77–80]).
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posed. A continuous (differentiable) manifold is understood by Riemann on the
model of two-dimensional surfaces, which, as explained earlier, were defined by
Gauss in terms of their intrinsic geometry. Riemann defines first the concept of “n-
dimensional magnitude,” which allows one to determine a position in a manifold by
n numerical determinations, in the same way a position is determined by coordinates
in the Euclidean space of n dimensions. Riemann is rigorous to extend (scale down)
the concept of manifold to one-dimensional manifolds, curves, which, however, also
helps him to built up the concept n-dimensional manifold by analogy. He starts
with the concept of “a simply extended [one-dimensional] manifold, whose essential
characteristic is that from any point in it a continuous movement is possible in only
two directions, forwards and backwards.” Then, he defines a two-dimensional or
“a doubly-extended manifold” by saying that “if one now imagines that this [one-
dimensional manifold] passes to another, completely different one, and once again in
a well-determined way, that is, so that every point passes to a well-determined point
of the other, then the instances for, similarly, a double extendedmanifold” [31, p. 25].
In other words, one continuously “fills” a surface with curves. Then, one similarly
defines a triply extended manifold by imagining a similar continuous passing of a
doubly extended manifold to another, thus continuously filling a three-dimensional
object with two dimensional-ones, and so forth. “This construction,” Riemann says,
“can be characterized as a synthesis of a variability of n + 1 dimensions from a
variability of n dimensions and a variability of one dimension” [31, p. 25]. This
construction may have been one of the reasons for his use of the term: a manifold
is literally a continuous fold(er) of manifolds of lower dimensions. Conversely, one
can unfold a variability of n dimensions, which allows one to determine a position
in a manifold by n numerical determinations, generalizing the way a position is
determined by coordinates in the Euclidean space of n dimensions.

The most defining feature of the concept of manifold (under the assumption than
one canmeasure the length of line-segments, straight or curved) is that it is conceived
as infinitesimally Euclidean. This makes a continuous manifold into a conglomerate
of local, continuously connected, small open neighborhoods around each point. The
concept of neighborhood, again, assumed to be infinitesimally flat and Euclidean, is
a component-concept of the concept of manifoldness. This concept of manifold as
composed out of local neighborhoods is extendable to a still more general concept
of topological space, in which case local neighborhood need no longer be Euclidean
and can be defined with a great degree of generality. It is true that Riemann did not
have a concept of topological space, in contrast to his concept of a Riemann surface,
which had a more direct and immediate impact on the development of topology as
an independent mathematical discipline. I would argue, however, that the conceptual
architecture defining topological spaces is a generalization of that of Riemann’s
conceptual architecture of manifoldness as a “space” composed of neighborhoods,
or generalizing it even further to other “spaces,” a conception that, as will be seen
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presently, extends to Grothendieck’s topos theory.16 Admittedly, this architecture is
presented here in the spirit of modern axiomatic thinking rather than in the spirit of
Riemann’s conceptual-problematic thinking, but it does, I think, inherit Riemann’s
conceptual architecture defining his concept of manifold. The theory of Riemann
surfaces, too, came to be recast in terms of manifolds. Weyl, who, as his title The
Concept of a Riemann Surface stated, considered a Riemann surface to be a concept,
was the first to expressly define Riemann surfaces as manifolds [20, 35]. Riemann,
however, undoubtedly realized that they were manifolds, and they were part of the
genealogy of the concept of manifold.

In the case of Riemannian manifolds, while each neighborhood is infinitesimally
flat, Euclidean, the manifold as a whole is, in general, not, except in the special case
of flat, Euclideanmanifolds. Amanifold may be negatively or positively curved, and,
which is another major innovation of Riemann, this curvature can also be variable.
Riemann defined the metric form as a quadratic differential form, by the only for-
mula in his lecture (discounting the coordinate expression for the line element), and
assumed that the transition from one local coordinate system to another was differ-
entiable. Thus, he, again, de facto, considered differentiable manifolds with positive
definite metrics, Riemannian manifolds. In modern terms, such a manifold is defined
by using a differentiable section of positive-definite quadratic forms on the tangent-
bundle. While, however, modern technical language can bring out deeper mathe-
matical aspects of Riemann’s concepts, it can also displace how Riemann thought,
mathematically, physically, and, especially, philosophically, a displacement some-
times found in twentieth-century English translations of Riemann’s works, including
his Habilitation lecture. One is, accordingly, always in complex negotiations between
Riemann’s and contemporary technical language, even though and because Riemann
is so often ahead of his time, so much our contemporary.

Another important and equally future-oriented conceptual aspect of Riemann’s
approach is that it allows one to define a geometrical or, more generally, topolog-
ical space (in modern terminology) not as a multiple, say, a set of points, but as a
space that could be covered by maps (Euclidean in the case of manifolds) and in its
relation to other spaces. As just explained, in part following Riemann’s way of think-
ing, topology describes a given space not only in terms of its points, continuously
connected to each other, but also and most essentially in terms of its open neighbor-
hoods around each point. These neighborhoods are subspaces of this space, the idea
that, again, underlies Riemann’s concept of manifold, in this case, however, giving
each neighborhood a Euclidean geometry. The approach, again, enabled Riemann
to define manifolds of any dimension, even infinite-dimensional ones, in terms of
its inner properties rather than in relation to the ambient Euclidean space, where a
manifold could be placed, against the flat Euclidean background. It is true that, if
one appeals, as is usual even in considering Riemann, to open sets, this concept of

16It is also worth recalling in this connection that Grothendieck’s initial primary areas of mathe-
matical research concerned topological vector spaces, which suggests yet another genealogical line
in the history of the (broadly) Riemannian problematics in question here.
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space retains the concept of set (of points) as a primitive concept.17 Riemann’s way
of thinking concerning manifolds, however, also suggests a possibility of thinking of
and even defining a space in terms of its relations to other spaces, which allows one
to use this structure as more primordial by replacing covering a space by open sets
(of points) with covering it by open spaces. A topological space, defined above in
set-theoretical terms, becomes a collection of open spaces as sub-spaces with certain
(algebraic) rules for the relationships between them.

This way of defining space by its relation to other spaces (as opposed to their
constitution as sets of points) leads all the way to Grothendieck’s topos theory,
inspired by Riemann’s ideas of manifolds and of the so-called covering spaces,
originating in Riemann’s theory of Riemann surfaces. Although it extends far beyond
the question of spatiality, including mathematical logic, topos theory is arguably the
farthest and most abstract extension of the concept of spatiality available, if one can
rigorously speak of spatiality in this case, given an essentially algebraic nature of
the concept. It does, however, give important new dimensions to our understanding
of spatiality, when we deal in mathematics and elsewhere with objects or concepts
that are considered in spatial terms.

It would not be possible here to present topos theory in its proper abstractness
and rigor, sometimes prohibitive even for those not trained in the field of algebraic
geometry or mathematical logic, where the concept is used as well (e.g. [18]). The
essential philosophical ideas involved may, however, be sketched, as an example
of both a rich mathematical concept in its own terms and of Riemann’s influence
on modern mathematics.18 First, very informally, consider the following way of
endowing a space with a structure, generalizing the definition of topological space.
One begins with an arbitrarily chosen space, X, potentially any given space, which
may initially be left unspecified in terms of its properties and structure. What would
be specified are the relationship between spaces applicable to X, such as mapping
or covering one or a portion of one, by another. One calls this structure the arrow
structure Y → X (X is the space under consideration), where the arrow designates the
relationship(s) in question. One can also generalize the notion of neighborhood or of
an open subspace of (the topology of) a topological space in this way, by defining it
as a relation between a given point and space (a generalized neighborhood or open
subspace) associated with it. This procedure enables one to specify a given space not

17Thus, Ferreirós’s discussion of Riemann in [11, pp. 39–80] appears to me to displace Riemann’s
thinking into the axiomatic and set-theoretical register, dominant in the wake of Cantor, a displace-
ment arguably due to Ferreirós’s insufficient attention to the nature of Riemann’s mathematical
concepts, to Riemann’s concept of mathematical concept. In fairness, Ferreirós does relate Rie-
manns view of axioms to his concept of “hypothesis” and distinguishes it from the understanding
of axioms developed in the twentieth-century philosophy of mathematics and mathematical logic.
It does not appear to me, however, that Riemann thinks either in terms of axioms or, especially,
in terms of sets (of points), as Ferreirós contends, although it could be and subsequently has been
translated into these terms (e.g. [22]). See also Note 12 above.
18It would be instructive on both counts, to consider, as part of this genealogy, Dedekind’s and
Noether’s work in algebra, reflecting the impact of Riemann’s work on modern algebra, and even
apart from his work on the distribution of primes and his famous hypothesis concerning the ζ -
function. See [19] on Noether’s work in this connection.
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in terms of its intrinsic structure (e.g., a set of points with relations among them) but
sociological[ly], throughout its relationships with other spaces of the same category,
say, that of Riemannian spaces as manifolds [17], p. 7]. Some among such spaces
may play a special role in defining the initial space, X, and algebraic structures (such
as homotopy and cohomology, as Riemann realized in the case of covering spaces
over Riemann surfaces. Indeed, the concept of covering space was one of the main
inspirations for Grothendieck’s concept of topos. The so-called étale topos (of a
scheme), one of the main motivations for the concept of topos, is directly linked to
the concept of covering space, as the term étale suggests.

To make this scheme more rigorous and to explain (albeit still quite informally)
the concept of topos, I need to explain in my own words category theory. It was
introduced in as part of the cohomology theory in algebraic topology in 1940 and
later extensively used byGrothendieck in his approach to algebraic geometry, leading
to the concept of topos. Category theory considers multiplicities (which need not be
sets) of mathematical objects conforming to a given concept, such as the category of
Riemannian manifolds, and the arrows or morphisms, the mappings between these
objects that preserve this structure. Studyingmorphisms allows one to learn about the
individual objects involved, often to learn more than we would by considering them
only or primarily individually. In a certain sense, by appealing to the conceptual
determination of each manifold, Riemann already thinks categorically. Thus, one
does not have to, and Riemann does not, start with a Euclidean space, whether
seen in terms of sets of points or otherwise. Instead the latter is just one specifiable
object of a large categorical multiplicity, here that of the category of Riemannian
manifolds, an objectmarkedby a particularly simplewaywe canmeasure the distance
between any two points. Categories themselves may be viewed as such objects, and
in this case one speaks of “functors” rather than “morphisms.” Topology relates
topological or geometrical objects, such as manifolds, to algebraic ones, especially,
as in the case of homotopy and cohomology theories, groups, a concept, it is true,
not used by Riemann, as against Poincaré, who made it central to his geometrical
and topological thinking, which established his uniquely significant role in the rise of
algebraic topology.Thus, in contrast to geometry (which relates its spaces to algebraic
aspects of measurement), topology, almost by its nature, deals with functors between
categories of topological objects, such as manifolds, and categories of algebraic
objects, such as groups.

Now, a topos in Grothendieck’s sense is a category of spaces and arrows over a
given space, used especially for the purpose of allowing one to define richer algebraic
structures associated with this space, as explained above. There are certain additional
conditions such categoriesmust satisfy, but this is not essential at themoment. To give
a simple example, for any topological space S, the category of sheaves on S is a topos.
The concept of topos is, however, very general, and extends far beyond spatial or
space-like mathematical objects (thus, the category of finite sets is a topos); indeed it
replaces the latter with amore algebraic structure of categorical and topos-theoretical
relationships between objects. On the other hand, it derives from the properties of
and (arrow-like) categorical relationships between properly topological objects, such
as Riemann surfaces or manifolds. The conditions, mentioned above, that categories
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that form topoimust satisfy have to dowith these connections. The concept of topos is
especially suited to deal in the way we do with standard manifolds with objects, such
as certain (discrete) algebraic varieties, which are solutions of polynomial equations
and are space-like, that cannot be meaningfully defined otherwise sufficiently anal-
ogously to continuous spaces, specifically in order to define nontrivial cohomology
or homotopy groups for them. This had been an outstanding problem of algebraic
geometry, arising from the so-called Weil conjectures for algebraic varieties over
finite fields, which was solved with the help of topos theory, specifically the concept
of étale topos, mentioned above (e.g. [1]). What both types of objects now share
are analogously defined topoi associated with them and, as a result, analogously
defined algebraic structures associated with them, equally enabling the necessary
functoriality in both cases.

Topos theory allows for such esoteric constructions as non-trivial or non-punctual
single-point “spaces” or, conversely, spaces (topoi) without points (first constructed
by Pierre Deligne), sometimes slyly referred to by mathematicians as “pointless
topology.” Philosophically, this notion is far from pointless, especially if consid-
ered within the overall topos-theoretical framework. In particular, it amplifies a Rie-
mannian idea that “space,” especially is defined by its relation to other spaces, as
a more primary object than a “point” or, again, a “set of points.” Space becomes a
Leibnizean, “monadological” concept, insofar as points in such a space (when it has
points) may themselves be seen as a kind of monads, thus also giving a non-trivial
structure to single-point spaces. These monads are certain elemental but structured
entities, spaces, rather than structure-less entities (classical points), or at least as
entities defined by (spatial) structures associated to and defining them [3]. Natu-
rally, my appeal to monads here is qualified and metaphorical. Leibniz’s monads
are elemental souls, the atoms of soul-ness, as it were. But one might say that the
space thus associated to a given point is the soul of this point, which defines its
nature or structure, not unlike an infinite-dimensional Hilbert space associated with
an elementary particle, such as an electron, in quantummechanics and enabling us to
predict its behavior. In other words, not all points are alike insofar as the mathemat-
ical (and possibly philosophical) nature of a given point may depend on the nature
or structure of the space or topos to which it belongs or with which it is associated
in the way just described. This approach also gives a much richer architecture to
spaces with multiple points, such as Riemann’s manifold (in which this architecture
is inherent), and one might see (with caution) such spaces as analogous to Leibniz’s
universe composed by monads. It also allows for different (mathematical) universes
associated with a given space, possibly a single-point one, in which case a monad
and a universe would coincide. Grothendieck’s topoi are such possible universes,
possible worlds, or even com-possible worlds in Leibniz’s sense, without assuming,
like Leibniz (in dealing with the physical world), the existence of only one of them,
the best possible one.

The outcome of Riemann’s investigation into the foundations of geometry was,
thus, a new mathematics of great generality, power, and potential, which involved
not only new geometry, but also new topology and analysis (the tensor calcu-
lus on manifolds). Although it was Riemann’s theory of continuous or, again,
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differentiable manifolds that had the greatest impact, the concept of discrete man-
ifolds was important for Riemann’s argument, and it is important for the modern
understanding of both spatiality and geometry in mathematics, physics, and philos-
ophy. While a discrete manifold has topological dimension zero, it may still be seen
as multiply extended, if defined as forming a very fine lattice with very small inter-
vals between points, which can be “filled,” as it were, to form a continuous space of
the corresponding topological dimensions. It is also possible to introduce metrical
relations for discrete manifolds. This concept is important in the context of the rela-
tionships between physical, dynamical forces in nature and the nature of space or,
to return to Riemann’s terms, the physical “reality underlying space,” although Rie-
mann is cryptic on such metrical relations. Crucially, however, he does allow for the
possibility that the physical “reality underlying space”might be “a discretemanifold”
[31, p. 33]. This possibility has been entertained even before Riemann and has been
even more often considered since, especially more recently. Also, mathematically,
finite geometries were beginning to be developed, usually in more axiomatic ways,
around Riemann’s time as well, later on also under the impact of his geometrical
thinking.19 As indicated earlier, Riemann saw the relationships between continuity
and discontinuity as foundationally central to mathematics, physics, and philoso-
phy (e.g., [32, pp. 515–524]; [10, pp. 77–80]), a view confirmed by the subsequent
developments in the foundations of mathematics, from Dedekind and Cantor on, and
quantum physics. The latter uses continuous (technically, differential) mathematics
to predict, in probabilistic terms, irreducibly discrete phenomena, that is, phenomena
that are not, and that possibly cannot be, assumed to be connected to each other by
a continuous physical process [27, pp. 232].

4 Physics: “The Reality Underlying Space”

As noted from the outset, Riemann’s contribution to physics in his lecture was as
important as his contribution tomathematics there. Riemann’s terms space and geom-
etry refer to the three-dimensional space and its geometry, in accordance with the
use of these terms at the time, although this was soon to change. We now speak not
only of manifolds of any dimensions, as Riemann does, but also of their geometry
and refer to them as “spaces,” or of discrete spaces and geometries, without necessar-
ily assuming any connections between these objects and physical (or phenomenal)
spatiality. While Riemann allows that “the reality underlying space” may prove to
be discrete at a very small scale, this is not the same as extending, as was done
subsequently, the terms “space” and “geometry” to finite entities defined by certain
geometrical-like properties. On the other hand, closer to Riemann’s view of what
“the reality underlying space” could in principle be, some physical theories, dealing
with such connections, suggest that the ultimate reality underlying space might be
discrete or, as in superstring and brane theories, that physical space has a dimension

19For the discussion of some of these developments, see the chapter by V. Pambuccian, H. Struve,
and R. Struve [21] and other chapters in the part of this volume that addresses later developments
of Riemann’s work.
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higher than three (most commonly nine). While there is no experimental evidence
thus far to support either claim, there are legitimate theoretical considerations in
their favor.20 Quantum theory also uses spaces of infinite dimensions, Hilbert spaces
over complex numbers, although, as indicated above, for the purposes of predicting
quantum events without representing physical space or physical processes in space
and time. This is, admittedly, not the type of the relationships between mathematics
and physics that Riemann appears to have entertained, but it may still be seen as
in the spirit of Riemann’s thinking concerning these relationships.21 All this was to
come later, however.

In Riemann’s view, mathematically, one can define a general concept of manifold
and the concept of metric relations in this manifold. These relations define a flat or
curved nature of a given manifold, unless a manifold is discrete, in which case the
metric relations, which could be defined for them, are no longer related to flatness
or curvature of the manifold. This concept can then be used, suitably specified, to
represent physical space and geometry there. Riemann considers this situation in
more detail in the last chapter of the lecture, entitled “Applications to Space.” As
we have seen, however, he makes clear from the outset of the lecture that any such
use can only be based on hypotheses that we form concerning space, and which we
can then test. These hypotheses ground our thinking concerning space and geome-
try, although they may also reciprocally arise from this thinking from our previous
hypotheses that we have tested or what we assumed, axiomatically, as self-evident.
Hence, the fact “that a multiply extended magnitude is susceptible of various metric
relations, so that space constitutes only a special case of a triply extended magni-
tude” implies that “those properties that distinguish space from other conceivable
triply extended magnitudes [manifolds] can only be deduced from experience” [31,
p. 23]. By “experience” Riemann means an experimental determination of the nature
of physical space, rather than our phenomenal experience, although the latter may
and even must play a role in this determination.

In other words, Riemann argues as follows, by both, in a very modern or even,
avant la lettre, “modernist” way, separating mathematics from physics, making it
independent, and then reconnecting them, an approach adopted byEinstein, expressly
following Riemann, in creating general relativity [11, pp. 325–327]. There is math-

20The higher-dimensional spaces of superstring theory have been extensively discussed in literature
and can be safely bypassed here, pertinent as their geometrical and topological features are. I
would like, however, to mention a recent investigation, along quantum-informational lines, of the
possibility that the reality underling space is discrete at the Planck scale, with a radical implication
that the Lorentz invariance and hence special relativity is broken at the Planck scale as well [5] [27,
pp. 259–262]. The article is also innovative mathematically in its use of geometric group theory,
which emerged from Gromov’s realization, Riemannian in spirit, that mathematical objects, such
as groups, defined in algebraic terms, can be considered as geometric objects and studied with
geometric techniques. This argument is still hypothetical, however, as, again, are all arguments thus
far to the effect that the reality underlying space is discrete. If one accept what may be called the
strong Copenhagen view, following Bohr, this “reality” may be beyond conception altogether and,
hence, be neither continuous nor discontinuous [27, pp. 11–22]. I return to this possibility below.
21I have discussed the connections between Riemann’s Habilitation lecture and quantum theory
in [25].
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ematics, which he introduced in the lecture, suitable for our description of physical
space, via our phenomenal experience. This suitability allows one to have a geometry
based on this mathematics. However, as grounded in the concept of manifold, this
mathematics, the conceptual architecture of this mathematics, is sufficiently general
both to be developed independently in mathematics itself quite apart from physics
(it is has done subsequently as well) and to account for various possible forms of
physical spatiality. This mathematics then needs to be adjusted in accordance with
the hypotheses that we make concerning physical space, some of which may acquire
the status of experimental evidence, possibly long-standing but not guaranteed to
be permanent. Thus, such hypotheses may concern whether physical space is flat or
curved, or whether this curvature is positive or negative, or (a question, again, never
posed before Riemann) whether this curvature is constant or variable, or whether the
ultimate (small-scale) “reality underlying space” is continuous or discrete, “beyond
the bounds of observation.”We can then “investigate the likelihood [of such hypothe-
ses], which [in the case of Euclidean geometry] is certainly very great within the
bounds of observation [in Riemann’s time], and afterwards decide on the legitimacy
of extending them beyond the bounds of observation, both in the direction of the
immeasurably large and in the direction of the immeasurably small.”

Riemann’s line of reasoning here both follows and goes beyond Kant, in part by
adopting Johann Herbart’s argument, which questioned Kant’s view (e.g. [11], pp.
77–99). Riemann follows Kant insofar as he sees our observations, always defined by
our phenomenal experiences, as the basis of possible hypotheses concerning nature,
the truth of which is possible but is not assured. He goes beyond Kant insofar as he
views these hypotheses as only having an established validity within the bounds of
observation with one or another degree of certainty. These hypotheses may not be
applicable at all if we extend our investigation of the nature of space arbitrarily far in
either direction, that of the infinitely large and that of the infinitely small. Kant, by
contrast, believes in the absolute validity of (the hypothesis of) Euclidean geometry
or Newton’s physics. On the other hand, as already noted, unlike Riemann or Herbart,
Kant does not believe that space, or time, is an empirical concept, whose validity,
either as a general concept or in any of its instantiation, is established by experience.22

Kant sees it as an a priori given concept that we use to frame our experience, a
claim persistently challenged from the time it was made, including by Herbart and
Riemann. Nature may have a different form of spatiality from what our phenomenal
concept of space tells us, or nature may not have spatial aspects to it at all. By the end
of the lecture, in considering the question of space in the infinitely small, Riemann
comes closer to amore Kantian (although not quite Kant’s own) view that “the reality
underlying space” may be different from our phenomenal intuition of spatiality or
may not be spatial in our phenomenal sense. For example, this reality may be discrete
or be beyond the reach of any concept, discrete or continuous, available to us. In this
latter view, this reality, while still real, would be beyond any representation and thus

22How our phenomenal experience of space emerges is separate question, psychological, physi-
ological, or now neurological. Remarkably, Riemannian geometry is used in recent neurological
research, as in the work of Jean Petitot (neurogeometry).
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beyond realism [27, pp. 11–22]. It is, as indicated earlier, doubtful that Riemann
entertained, anymore than did Kant [27, pp. 17–21], so radical a hypothesis, which
emerged only in the wake of quantummechanics. This hypothesis may, nevertheless,
be seen as an implication of Riemann’s closing reflections in the lecture and possibly
Kant’s epistemology [25].23

Thus far, Riemann only spoke of physical space rather than of physics in the
sense of material forces, bodies, and motion. In closing, however, he brings physics
into consideration. He argues that it is physics that defines the nature of space in
the immeasurably small. Thus, while space may be assumed—this was a plausible
hypothesis at the time and still is now–to be a three-dimensional manifold, what kind
of manifold it is will be defined by physics. According to Weyl: “Riemann rejects
the opinion that had prevailed up to his own time, namely, that the metrical structure
of space is fixed and is inherently independent of the physical phenomena for which
it serves as a background, and that the real [physical] content takes possession of it
as a residential flat” [36, p. 98]. This was a revolutionary move on Riemann’s part,
later furthered by Einstein, who rigorously connected Riemannian geometry to the
physics of gravity. For Riemann and Einstein, on this point following Leibniz (who,
it is true, did not appear to have contemplated non-Euclidean geometry), matter
defines the character of space, say, as flat or curved, while for Newton, space pre-
exists matter, as an absolute space, a flat residential flat. Earlier arguments for non-
Euclidean geometry had only changed the Newtonian view of space insofar as they
imply that space might not be flat, which, however, still leaves open whether or not
the Euclidean or non-Euclidean nature of space is defined by matter. Weyl adds:
“[Riemann] asserts, on the contrary, that space is itself nothing more than a three-
dimensional manifold devoid of all form; it acquires a definite form only through
the advent of the material content filling it and determining its metric relations” [36,
p. 98; Weyl’s italics]. This is not quite what Riemann says. Weyl’s statement may
suggest (although Weyl does not appear to intend this) that space, as “a manifold,
devoid of all form,” preexists a given form, which form is then determined by matter,
“through the advent of the material content filling it and determining its metric
relations.” For Riemann, as for Leibniz and Einstein, and ultimately forWeyl, matter
preexists space, or, more accurately, it reciprocally co-exists with space and defines
its character as amanifold. In addition, to return to Riemann’smore precise language,
“the reality underlying space” may be different from our phenomenal or, depending
on scale, even physical experience of space, in particular, as flat, Euclidean space
[31, p. 33]. It may reveal itself to be curved and have a varying curvature (which
is to say, to be assumed to conform to the corresponding hypothesis), as in general
relativity, which proved Riemann’s insights especially prescient, and his concept
of manifold especially capacious. Physics may also find that this reality requires
manifolds of different types (including possibly, discrete) on different scales. One
may, accordingly, modify Weyl’s statement by saying that a general form of space
may be assumed, hypothesized, to be, say, a three-dimensional continuous manifold

23Cf. [20], on the epistemological differences between Kant and Riemann.



Comprehending the Connection of Things: Bernhard Riemann … 357

or a three-dimensional discrete lattice, while its specific form (local or global) is
determined by matter and forces acting upon it.

In approaching the subject, Riemann first states that “the questions about the
immeasurably large [Unmessbargrosse] are idle questions for the explanation of
nature [die Naturerklärung],” an assessment, for which Riemann offers no further
justification andwhich onemight question now, at least insofar as very large scales as
concerned [31, p. 32]. From the present-day perspective, the question of the character
of space on a very large cosmic scale is far from idle, although the idea, the hypothesis,
of the infinite cosmic space poses conceptual difficulties, and it is possible that
Riemann sensed some of them in making his assessment.24 Be it as it may, the
subject could be put aside, given that these are Riemann’s reflections concerning “the
questions about the immeasurably small [Unmessbarkleine]” that are most important
for the present argument. These questions, Riemann argues, are “not idle ones:”

Upon the exactness with which we pursue phenomena into the infinitely small [Unendlichk-
leine] does our knowledge of their causal connections essentially depends. The progress of
recent centuries in understanding the mechanisms of Nature depends almost entirely on the
exactness of construction which has become possible through the invention of the analysis
of the infinite and through the simple principles discovered by Archimedes, Galileo, and
Newton, which modern physics makes the use of. By contrast, in the natural sciences where
the simple principles for such constructions are still lacking, to discover causal connections
one follows phenomenon into the spatially small, just so far as the microscope permits.
Questions about the metric relations of space in the immeasurably small are thus not idle
ones [31, p. 32].

Riemann, thus, sees the mathematical representation of space, or time, or phys-
ical processes in space and time, offered by classical physics, as defined by the
kinematical and dynamical principles established by the figures he mentions here.
Riemann also sees physics as based, mathematically, on the principles of differen-
tial calculus, which is an analysis of the infinitely small. This is not the same as
the immeasurably small [Unmessbarkleine], but it provides the proper mathematical
representation of the physical concepts just mentioned, which explains Riemann’s
shift in this paragraph from “the immeasurably small” [Unmessbarkleine] to “the
infinitely small” [Unendlichkleine]. More generally, as Weyl noted, “The principle
of gaining knowledge of the external world from the behavior of its infinitesimal parts
is the mainspring of the theory of knowledge in infinitesimal physics as in Riemann’s
geometry, and, indeed, the mainspring of all the eminent work of Riemann” [36, p.
92]. As the mathematics of the infinitely small, differential calculus also allows one
to relate classical physics to causality, indeed is correlative to causality (which is
one of the physical principles in question, defined by the fact that the state of a given
system at a givenmoment of time determines its state at any other moment of time).25

Riemann was, again, aware, as was Weyl, that the reality underlying space, in the
immeasurable small, may be discrete and hence, at that scale, no longer subject to a
continuous analysis. Hence, again, there is the difference between the immeasurably

24On some of these difficulties, see [12, pp. 31–42].
25Riemann offered important reflections on causality, which he linked to continuity [32, p. 522].
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small [Unmessbarkleine], also in its direct sense of that which cannot be measured,
and the infinitely small [Unendlichkleine], which is an important point, especially, as
became apparent later, in the context of quantum theory. As noted above, however,
quantum theory, while dealing with discrete phenomena, does not generally assume
or imply that “the reality underlying space” is discrete, and if anything, suggests
that the ultimate reality of nature may be beyond any possible representation of even
conception (discrete or continuous) [27, pp. 11–22].26 By the same token, the theory
is no longer causal, but is irreducibly probabilistic even in dealing with elemental
individual quantum processes (always assumed to be causal in classical physics or
relativity). This fact is reflected in Heisenberg’s uncertainty relations, which prevent
us from ever simultaneously determining both the position and the momentum of
a quantum object, which is necessary in order to maintain causality. In any event,
it is clear that “questions about the metric relations of space in the immeasurably
small are not idle ones.” They connect the hypotheses that lie at the foundations of
geometry to those that lie at the foundations of physics. Riemann says next:

If one assumes that bodies exist independently of position, then the curvature is everywhere
constant, and it then follows from astronomical measurements that it cannot be different
from zero; or at any rate its reciprocal must be an area in comparison with which the range of
our telescopes can be neglected. But if such an independence of bodies from position does
not exist, then one cannot draw conclusions frommetric relations in the infinitely small from
those in the large; at every point the curvature can have arbitrary values in three directions,
provided only that the total curvature of every measurable portion of space is not perceptibly
different from zero [31, p. 32].

It took Einstein’s general relativity to give, for the first time, a rigorous physical con-
tent to these insights by bringing together the physics of gravitation and Riemannian
geometry. The curvature of a manifold representing the physical reality underlying
space not only may not be zero, but may also not be constant, which is, again, a
powerful newmathematical concept and, as possible physics is concerned, a tremen-
dous physical insight of Riemann. It is generally not constant in a gravitational field,
and establishing this fact in rigorous terms is an equally tremendous contribution
of Einstein. We do know now that the hypothesis of Euclidean geometry or even
non-Euclidean geometry of constant curvature, do not apply to the ultimate nature
of space, or again, the physical reality underlying space, except perhaps on average
on a very large scale, as current observations suggest. Nor, in part correlatively, do
the hypotheses of classical physics, specifically those that ground Newton’s law of
gravity, apply at any scale, except as an approximation, workable within very large
limits as this approximation is. Newton’s law of gravity is incorrect even within its
proper scope, as was first exemplified by the aberrant precession of the perihelion of

26We cannot conceive of entities that are simultaneously continuous and discontinuous, the difficulty
handled in quantum mechanics by means of Bohr’s concept of complementarity. Complementar-
ity reflects the fact that continuous and discontinuous quantum phenomena (defined by what is
observed in measuring instruments) are always mutually exclusive, while quantum objects them-
selves, responsible for these phenomena through their impacts onmeasuring instruments, are, again,
assumed to be beyond any representation or even conception, continuous or discontinuous. For a
full treatment, see [27, pp. 107–172].
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Mercury. Theprinciples of calculus, used in tensor calculus, still apply in the infinitely
small in general relativity as a way of providing the mathematics, the mathematical
model, of space as defined by gravity. Riemann then adds:

Still more complicated relations can occur if the line element cannot be represented, as was
presupposed, as the square root of a differential expression of the second degree. Now it
seems that the empirical notions on which the metrical determinations of space are based,
the concept of a solid body and that of a ray of light, lose their validity in the infinitely small;
it is therefore quite definitely conceivable that the metric relations of space in the infinitely
small do not conform to the hypotheses of geometry; and in fact one ought to assume this
as soon as it permits a simpler way of explaining phenomena [31, p. 32].

Riemann, thus, envisions not only that space in the infinitely small, or, as it
would, again, be more accurate to say, the immeasurably small may not conform
to the hypothesis of Euclidean geometry, but also that it may not conform even
to Riemannian geometry, used by Einstein in general relativity. In the latter case,
the concept of metric relations still applies, although they are non-Euclidean and
allow for a variable curvature. Relativity merely modifies, albeit radically, Euclidean
concepts in view of the relativistic contraction of bodies and of the curving of light in
the vicinity of a heavy body, such as the Sun. Bringing together gravity and quantum
theory (a still outstanding problem) may change this. Riemann is about to suggest
that “the reality underlying space” may be “a discrete manifold:”

The question of the validity of the hypotheses of geometry in the infinitely [the immeasur-
ably?] small is bound up with the question of the basis for the metric relations of space. In
connection with this question, which may indeed still be ranked as part of the study of space,
the above remark is applicable, that in a discrete manifold the principle of metric relations
is already contained in the concept of the manifold, but in a continuous one it must come
from something else. Therefore, either the reality underlying space must form a discrete
manifold, or the basis for the metric relations must be sought outside it, in binding forces
that act upon it.

An answer to these questions can be foundonly by starting from the conception of phenomena
which has hitherto been approved by experience, and for which Newton laid the foundation,
and gradually modifying it under the compulsion of facts that cannot be explained by it.
Investigations like the one just made here, which begin from general concepts, can only
serve to insure that this work is not hindered by unduly restricted concepts and that progress
in comprehending the connection of things is not obstructed by traditional prejudices. This
leads us away into the domain of another science, the realm of physics, into which the nature
of the present occasion does not allow us to enter. [31, p. 33]

Riemann, again, differs from Kant, insofar as Riemann assumes that this reality
must at least be established by physical experiments, even if not perceived phe-
nomenally, rather than is given a priori, indeed by definition because we do not
phenomenally perceive space as discrete. On the other hand, as explained earlier,
Kant, who is often misunderstood on this point, does not assume that the physical
reality underlying space is given a priori or is phenomenal otherwise. With this qual-
ification in mind, Riemann’s formulation becomes close to Kant, except perhaps that
Riemann believes that our hypotheses concerning the character of “the reality under-
lying space” could be tested so as to bring us closer to knowing this reality. I qualify
by “perhaps,” because Kant might have even agreed on this point as well. In addition,
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as also explained earlier, just as Riemann, Kant would likely have been hesitant to
call this reality space, if it is different from the continuous three-dimensional space
of our phenomenal experiences. The main point here is that one needs physics, as an
experimental-mathematical science of nature, to establish the facts that would enable
us to test and, to begin with, to form hypotheses concerning the reality underlying
space, and have geometry of this space, possibly a higher-dimensional or discrete
geometry.

Einstein’s relativity justified Riemann’s view that we must proceed “by starting
from the conception of phenomena which has hitherto been approved by experience,
and for which Newton laid the foundation, and gradually modifying this conception
under the compulsion of facts that cannot be explained by it.” The facts at stake in
relativity can no longer be explained by the conception of physical phenomena pro-
vided by Newton’s physics; and, as is clear from this elaboration, Riemann saw this
conception as likely to be insufficient. This is not surprising given his investigations
into electromagnetism and the contemporary development of this field and of physics
in general, even though Maxwell’s electromagnetic theory was not yet in place at
the time of the lecture [22]. Riemann’s subsequent work on electromagnetism sug-
gests intriguing affinities with that of Maxwell and then that of Einstein (e.g. [16,
pp. 257–271]). The subject would require a separate treatment. It may, however,
be fitting to note that, extending its role in general relativity, Riemannian geometry
also served as the basis for several early projects of establishing a unification of
gravity and electromagnetism, the first form of the unified field theory, pursued, in
particular, by Einstein, Hilbert, and Weyl. While they set into motion the program
that still dominates fundamental physics, these attempts, all essentially along the
lines of classical-like field theory (on the model of Maxwell’s electromagnetic the-
ory), were unsuccessful. This was in part because such a theory appears unlikely to
be developed without taking into account quantum aspects of electromagnetism or,
by now, of other strong and weak forces, covered by quantum field theory, within
the so-called standard model of all known forces of nature, except for gravity, with
which the standard model is incompatible. Both Einstein and Weyl made attempts,
again, unsuccessful, to incorporate Dirac’s 1928 relativistic theory of the electron
into their unified-field-theoretical schemes, still governed, however, by a classical-
like field theoretical thinking, which was in a manifested conflict with the principles
behind Dirac’s theory [27, pp. 207-226].27 It is, accordingly, not surprising, at least
in retrospect, that these attempts did not succeed. Unsuccessful as they have been,
they, nevertheless, showed the fruitfulness of Riemann’s thinking in geometry for
foundational thinking in physics, and Riemann’s foundational thinking in geometry
was, again, also a foundational thinking in physics.

27Dirac’s famous equation also introduced spinors into physics. Although the name itself was coined
(by Paul Ehrenfest) in 1929, following Dirac’s theory, the concept, still enigmatic and uneasily
suspended between geometry and algebra, existed in mathematics previously and was extensively
studied byCartan, for example. It belongs to the post-Riemannian evolution of geometrical thinking,
also as extending beyond geometry, for example, to algebra, although spinors are important for
geometry as well.
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The search for such a unified theory is still ongoing, now in attempting to unify
all forces of nature, although, thus far, even within the standard model, we only have
the electroweak unification, which is, besides, quite different in nature from the way
such a unification was envisioned previously. As indicated above, the incompatibil-
ity between the standard model, as quantum theory, and general relativity is one of
the great outstanding problems of the present-day fundamental physics, perhaps the
greatest one. Superstring and brane theories, which have been around for quite a
while now, are still generally seen as the best candidate, although the skepticism that
has always shadowed them has become, for both mathematical and physical reasons,
even more pronounced more recently. But then, that currently available alternatives,
such as loop quantum gravity, will succeed appears no more likely. Both programs,
that of superstring and brane and that of loop quantum gravity, have Riemannian
genealogies, loop quantum gravity more immediately, via Einstein’s general relativ-
ity, and superstring and brane theories, which originated in quantum field theory, via
a more complex history of development, by virtue of using the so-called Calabi-Yau
manifolds.28 Which among these or other currently available programs, such as those
along the lines of quantum information theory, are likely to succeed in approaching
the reality underlying, to borrow Weyl’s famous title, “space, time, and matter” is
impossible to predict, perhaps none of them, given, thus far, the immense physical
and mathematical difficulties they pose. These difficulties, however, also open new
possibilities, both inside these programs, which might succeed after all, and for new,
possibly as yet unimaginable, alternatives. Whatever the future holds, just as does
mathematics, fundamental physics continues to return us toRiemann and to show that
the manifold of connection[s] of things, mathematical, physical, and philosophical,
that Riemann’s thought brought into existence is inexhaustible.

5 Conclusion

I return, in closing, to Riemann’s assessment of his own project in his lecture: “Inves-
tigations like the one just made here, which begin with general concepts, can only
serve to insure that this work [of developing new physics] is not hindered by unduly
restricted concepts and that progress in comprehending the connection of things is
not obstructed by traditional prejudices” (emphasis added). “Only” is hardly neces-
sary here. We do need physics to test and indeed to form our hypotheses concerning
space. But we also need—physics proves that we do!—mathematical and philo-
sophical plane of thought and new, richer concepts to counteract “unduly restricted
concepts” and to be able “in comprehending the connection of things,” which is the
aim of thought in its cooperative confrontation with chaos, and not to be obstructed
by traditional prejudices or rigid, dogmatic opinions, the danger of which is, Deleuze
and Guattari warn us, as Riemann does here, a constant threat to thought. Riemann
created such planes and such concepts. This does not mean that we need to stop with
Riemann, who never stopped. The subsequent history of mathematics and physics

28On these connections, see [22].
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has proven that we need to go beyond Riemann. Otherwise, his concepts cannot
continue to live on, to remain “always new,” to be concepts of the future.

Acknowledgements I am grateful to Franck Jedrzejewski, Ken’ichi Ohshika, and Athanase
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Part III
Some Recent Developments



The Riemann Mapping Theorem
and Its Discrete Counterparts

Feng Luo

Abstract We introduce some of the recent work on discrete versions of the Riemann
mapping theorem and the uniformization theorem.

Keywords Conformal maps ·Riemannmapping ·Uniformization theorem ·Circle
packing · Discrete conformality · Polyhedral surfaces
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1 Introduction

The Riemann mapping theorem was formulated by B. Riemann in 1851. It states
that given any two simply connected open sets U1, U2 in the complex plane C with
Ui �= C, there exists an analytic bijection (i.e., conformal) map f : U1 → U2. In
particular, if one takes U2 or U1 to be the open unit disk, then the map f is called
a Riemann mapping. The Riemann mapping theorem is one of the most important
results in complex analysis. It relates geometry (e.g. open sets) to analysis (e.g.
complex analytic functions).

The uniformization theoremof Poincaré andKoebe generalizes theRiemannmap-
ping theorem to Riemann surfaces. By definition, a Riemann surface is a connected
orientable surface � with a special collection of charts (analytic charts) covering
� so that the transitions functions are complex analytic maps. The essential feature
of Riemann surfaces is that one can measure angles between curves on them. Rie-
mann surfaces are ubiquitous in mathematics. For instance connected open sets inC,
smooth orientable surfaces with Riemannian metrics, smooth algebraic curves and
polyhedral surfaces are naturally Riemann surfaces. In 1907, Poincaré and Koebe
independently proved the uniformization theorem which states that any simply con-
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nected Riemann surface is conformally diffeomorphic to the complex plane C, the
open unit diskD, or the Riemann sphere S2. The conformal diffeomorphism is called
a uniformization map. This result is a pillar in mathematics and has a wide range of
applications within and outside mathematics.

Computing the Riemann mapping or the uniformization mapping is not easy.
For instance, the boundary of a tetrahedron is naturally a Riemann surface. Here
the analytic charts consist of unions of two open triangle faces together with their
common open edges and the orientation preserving isometric embedding, and charts
at vertices are of the form (U, z2π/α) where U is a small neighborhood of a vertex of
cone angle α. Using the uniformization theorem, one concludes that it is conformal
to the Riemann sphere S2 with four marked points {0, 1,∞, z} corresponding to the
four vertices. However, there is no algorithm to compute the conformal invariant z
directly from the 6 edge lengths of the tetrahedron. There are powerful algorithms
computing the Riemann mapping for simply connected domains. For instance the
Schwarz–Christoffel algorithm developed by Trefethen and Driscoll [33] and the
circle packing algorithm developed by Thurston and Stephenson [31] are powerful
tools. However, computing the uniformization map for a simply connected surface
with a non-flat Riemannian metric has been difficult. Our recent work [11, 18, 19]
produces an algorithm to compute the uniformization maps, and shows that the
uniformization maps are computable.

Over the years, there have been many research activities on establishing various
discrete versions of the uniformization theorem and the Riemann mapping theorem.
The purpose of this chapter is to introduce some of these works and their proofs. We
will also discuss several open problems in the discrete setting.

The following two topics will be discussed in this chapter. These are: (1) the
Koebe–Andreev–Thurston’s circle packing version of theRiemannmapping theorem
and (2) our recent work with Gu, Sun, Wu and Guo ([11, 12, 18, 19]) on a discrete
uniformization theorem for polyhedral surfaces.

We remark that this is not a survey of works on discrete Riemann mapping theo-
rems and we have left many important works untouched.

The chapter is organized as follows. Section2 discusses circle packings and Sect. 3
covers a discrete uniformization theorem for polyhedral surfaces.

We thank A. Papadopoulos for comments and suggestions on improving the writ-
ing of the paper.

2 Koebe–Andreev–Thurston’s Circle Packing Theorem

Wewill discuss a simple form of the circle packing theorem in this section. For more
details on circle packing, one may consult the nice book by Stephenson [31].

A circle packing on the Riemann sphere or the plane is a collection of closed
round disks D1, ..., Dk with disjoint interiors. Its nerve is a finite graph on the 2-
sphere S2 = C ∪ {∞} or the plane C with one vertex for each disk Di and an edge
between two vertices if the corresponding disks are tangent (Fig. 1).
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Fig. 1 A circle packing and its nerve. The picture is produced by K. Stephenson

Theorem 2.1 (Koebe–Andreev–Thurston) Suppose T is a simplicial triangulation
of the 2-sphere S

2. There exists a circle packing D1, ..., Dn, unique up to Möbius
transformations, on the Riemann sphere S

2 such that its nerve is isomorphic to the
1-skeleton T (1) of T .

The theorems proved by Andreev and Thurston are more general allowing circles
to intersect at angles at most π/2. For more details, see [3, 25, 35] or others.

There are many proofs of Theorem 2.1. See [3, 21, 31, 35] and others. Below we
give a proof using ideas from [7, 21].

Following Marden-Rodin [21], we first reduce the circle packing on S2 to a circle
packing on the plane C. Removing a triangle face τ0 from the triangulation T , one
produces a simplicial triangulation T1 of the (topological) triangle T = S

2 − int (τ0).
To prove Theorem 2.1, it suffices to produce a circle packing on the plane whose
nerve is the 1-skeleton T (1)

1 . Indeed, if D1, ..., Dn is a circle packing on the plane
whose nerve is the 1-skeleton T (1)

1 , then D1, ..., Dn is a circle packing on S
2 whose

nerve is T (1). Conversely suppose D1, ..., Dn is a circle packing on S2 whose nerve is
T (1) such that D1, D2, D3 correspond to the three vertices of τ0. Applying a Möbius
transformation to {D1, ..., Dn} so that infinity is in the triangle region in S

2 − ∪i Di

bounded by the circles ∂D1, ∂D2, ∂D3, then the circle packing {D1, ..., Dn} on the
plane C has nerve T (1)

1 .
It is known that given three pairwise tangent closed disks D1, D2 and D3 in

the plane, there exists a Möbius transformation sending D1, D2 and D3 to three
disks of radii 1. Therefore, Theorem 2.1 is equivalent to producing a circle packing
on C whose nerve is isomorphic to the 1-skeleton of a triangulation T1 of a triangle
T = �v1v2v3 so that the three circles corresponding to three vertices vi are of radii 1.

Thurston’s approach to Theorem 2.1 uses polyhedral metrics on surfaces. Let
V and E be the sets of all vertices and edges in T1 so that v1, v2, v3 ∈ V are the
boundary vertices (i.e., vertices of τ0). To produce a circle packing, Thurston assigns
each vertex v a positive number r(v), called the radius. The radius assignment is a
function r : V → R>0. For each radius assignment r , construct a polyhedral metric
d on the triangulated triangle (T, T1) by making each triangle in T1 a Euclidean
triangle of edge lengths l(vv′) = r(v) + r(v′) where v, v′ ∈ V and vv′ ∈ E . The
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discrete curvature of d is the function Kd : V → (−∞, 2π) sending each vertex
v ∈ V − {v1, v2, v3} to 2πminus the sumof all angles at v and sending vi (i = 1, 2, 3)
to π minus the sum of all angles at vi . It is well known that the Gauss-Bonnet theorem
holds, i.e.,

∑
v∈V Kd(v) = 2π. The goal is to find a radius assignment r ∈ R

V
>0 so

that its discrete curvatures at all v ∈ V − {v1, v2, v3} are zero, i.e., (T, d) is a flat
surface. Since the triangle T is simply connected, the developing map for the flat
structure produces an isometric immersion � : (T, d) → C where the plane has the
standard Euclidean metric. The map � sends the boundary ∂T to a triangle in C.
In particular, �|∂T is injective. This implies that � : (T, d) → C is an isometric
embedding. Let the images of V under � be {v′

1, v
′
2, ..., v

′
m} on the plane C. Then

by the construction, the circle packing {B(v′
1, r(v1)), ..., B(v′

m, r(vm))} has nerve
isomorphic to T (1)

1 where B(c, r) is the ball of radius r centered at c.
The above discussion shows that Theorem 2.1 is a consequence of the following:

Proposition 2.2 Suppose T1 is a triangulation of a triangle T = �v1v2v3 such that
there are only three vertices v1, v2, v3 of T1 in the boundary ∂T . Then there exists
a unique radius assignment r : V → R>0 with r(vi ) = 1 for i = 1, 2, 3 such that
the associated circle packing metric on T has zero discrete curvatures at all v ∈
V − {v1, v2, v3}.

2.1 A Variational Principle Associated to Circle Packing

The following variational principle was first established by Colin de Verdière in [7].

Proposition 2.3 (Colin de Verdière) Let �A1A2 A3 be a Euclidean triangle such
that the length of edge Ai A j is exi + ex j and the angle at Ai is θi = θi (x1, x2, x3).
Let x = (x1, x2, x3). Then

(a)
∑3

i=1 θi (x)dxi is a closed 1-form such that ∂θi
∂x j

> 0 for i �= j ;

(b) the function f (x) = ∫ x
0

∑3
i=1 θi (x)dxi is a well defined concave function in

x ∈ R
3 such that ∂ f

∂xi
= θi and f is strictly concave when restricted to the plane

Pc = {x ∈ R
3|x1 + x2 + x3 = c} for any c ∈ R;

(c) if a1, a2, a3 > 0 such that a1 + a2 + a3 = π, then g(x) = ∫ x
0

∑3
i=1(θi (x) −

ai )dxi satisfies that limmaxi, j |xi −x j |→∞ g(x) = −∞ and g(x + (t, t, t)) = g(x) for
all t ∈ R.

In [6, 17], this variational principle is generalized to the case of three circles
intersecting at angles and more general polyhedral surfaces.

Proof Recall that the cosine law for triangles states that cos(θi ) = y2j +y2k −y2i
2y j yk

where yk

is the length of Ai A j and {i, j, k, } = {1, 2, 3}. Let the area of the triangle�A1A2 A3

be A. Taking derivatives of the cosine law, we obtain (see LemmaA-1 in the appendix
of [6])
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∂θi

∂yi
= yi

2A
> 0, (2.1)

∂θi

∂yk
= −∂θi

∂yi
cos(θ j ). (2.2)

Now to see part (a), it suffices to show that ∂θi
∂x j

= ∂θ j

∂xi
> 0. By definition yi =

exi + exk . Therefore,

∂θi

∂x j
= ∂θi

∂yi

∂yi

∂x j
+ ∂θi

∂yk

∂yk

∂x j
= ∂θi

∂yi
ex j − ∂θi

∂yi
cos(θ j )e

x j = (1 − cos(θ j ))yi ex j

2A
.

Let R be the radius of the inscribed circle in the triangle. Then ex j = R cot(θ j/2).
Using the relation 1 − cos(θ j ) = 2 sin2(θ j/2), we see that

(1 − cos(θ j ))yi ex j

2A
= R sin(θ j )yi

2A
= R

yk
> 0

and that ∂θi
∂x j

is symmetric in i, j .

To see part (b), since
∑3

i=1 θi dxi is closed in R
3, the integral

∫ x
0

∑3
i=1 θi dxi is

independent of the choice of paths and therefore f (x) is well defined. Furthermore,
∂ f
∂xi

= θi follows from the definition of f . The Hessian of f is the 3 × 3 matrix
[hrs] (hrs = ∂θr/∂xs) which satisfies the condition that hi j = h ji > 0 and h1i +
h2i + h3i = ∂(θ1+θ2+θ3)

∂xi
= ∂π

∂xi
= 0. It follows that the matrix −[hrs] is a diagonally

dominatedmatrixwhose kernel consists of vectorsλ[1, 1, 1]t . Hence [hrs] is negative
semi-definite. This implies that the function f (x) is concave in R

3 and is strictly
concave when restricted to the affine plane Pc.

To see part (c), given a1, a2, a3, there exists a Euclidean triangle�B1B2B3 whose
inner angles are a1, a2, a3. Let C be the inscribed circle to �B1B2B3 and eui be the
distance from Bi to C ∩ Bi B j . Then by construction, the length of Bi B j is eui + eu j .
This shows that the point (u1, u2, u3) is a critical point of the function g(x) on R

3

since ∂g
∂xi

(u) = θi − ai = 0. Since g(x) is strictly concave with a critical point in
the plane Pc where c = u1 + u2 + u3, it follows that limx∈Pc,x→∞ g(x) = −∞. On
the other hand, for any b ∈ R, by definition and θi (x + (b, b, b)) = θi (x), we have
g(x + (b, b, b)) = g(x). To see this,

g(x + (b, b, b)) − g(x) =
∫ x+(b,b,b)

x

3∑

i=1

(θi − ai )dxi

=
∫ 1

0

3∑

i=1

(θi (x + t (b, b, b)) − ai )bdt = b
3∑

i=1

(θi (x) − ai ) = 0.



372 F. Luo

For each vector v ∈ R
3, let �(v) = v + (t, t, t) ∈ Pc be the orthogonal projec-

tion to Pc. Then a sequence of vectors x(n) = (x1(n), x2(n), x3(n)) ∈ R
3 satis-

fies maxi, j |xi (n) − x j (n)| → ∞ if and only if π(x(n)) → ∞. Thus g(x(n)) =
g(π(x(n)) → −∞ when maxi, j |xi (n) − x j (n)| → ∞. 	


2.2 A Proof of Koebe–Andreev–Thurston’s Theorem

We now prove Proposition 2.2 using Colin de Verdière’s variational principle (see
[7]).

To set up an appropriate variational framework, one needs the concept of an angle
structure on a triangulated surface introduced in [7]. Suppose (S, T ) is a triangulated
surface. An angle structure on (S, T ) assigns each vertex v in each triangle τ ∈ T a
positive number a(v, τ ) ∈ R>0, called the angle, such that (a) the sum of the three
angles in each triangle is π and (b) the sum of all angles at each interior vertex v is
2π. Using linear programming, Colin de Verdière ([7]) proved that each simplicial
triangulation of the triangle admits an angle structure. Another way to see it is to
note that each geometric triangulation of a flat surface has a natural angle structure,
i.e., a(v, τ ) is the angle of the Euclidean triangle τ at v.

Lemma 2.4 If T1 is an abstract simplicial triangulation of a triangle T with three
vertices in ∂T , then there exists a geometric triangulationT ′ of an equilateral Euclid-
ean � such that T ′ is isomorphic to T .

This lemma follows easily from Steinitz’s theorem ([37]) that any 3-connected
graph on S

2 can be realized as the 1-skeleton of a compact convex polytope in R
3.

Indeed, by Steinitz’s theorem, there exists a compact convex polytope P whose
boundary with an open 2-cell Q removed is isomorphic T1. Project ∂P − Q onto a
plane from a point outside P and close to Q. The result is a geometric triangulation
T ′′ of a triangle such that T ′′ is isomorphic to T1. Finally sending the triangle to the
equilateral triangle � by an affine map produces the required T ′.

Label triangles in T ′ by �1,�2, ...,�m , let the vertices of �i be vi1, vi2, vi3 and
the inner angle of �i at vi j be ai j , i.e., {ai j } is an angle structure on T ′. For each
x ∈ R

V , define

W (x) =
m∑

i=1

g�i (x)

where g�i (x) = ∫ (x(vi1),x(vi2),x(vi3))

0

∑3
j=1(θi j − ai j )dx(vi j ) is the Colin de Verdière’s

function in Proposition 2.3 associated to the triangle �i with radius assignment
ex(vi1), ex(vi2), and ex(vi3) such that the angle in �i at vi j is θi j .

By definition and Proposition 2.3, the function W (x) is concave in R
V since

it is a sum of concave functions. Also, W (x + t (1, 1, 1, ..., 1)) = W (x) due to
Proposition 2.3(c). Furthermore, since each g�i is bounded from above, W (x) is
bounded from above. We claim that W is a proper function when restricted to
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P = {x ∈ R
V | ∑v∈V x(v) = 0}, i.e., limx∈P,x→∞ W (x) = −∞. Indeed, if x ∈ P

such that x → ∞, then maxi, j, j ′ |x(vi j ) − x(vi j ′)| converges to ∞. Therefore, by
Proposition2.3(c), we see that W (x) → −∞. This shows that W |P has a critical
point u ∈ P . Since W (x + (t, t, t, ..., t)) = W (x), this shows the point u is a critical
point of W .

For this critical point u, suppose vi , i > 3, is an interior vertex and xi = x(vi ).
Then by Proposition2.3(a), ∂W

∂xi
(u) = ∑

j (θni , j − ani , j ) = −K (vi ) where θni , j and
ani , j are the angles at the vertex vi and

∑
j ani , j = 2π. This shows that the circle

packingmetric associated to u is flat. At vertices vi with i = 1, 2, 3, the same calcula-
tion shows K (vi ) = 2π/3 due to the choices of ai j (i.e., � is an equilateral triangle).
This implies u1 = u2 = u3.

To prove uniqueness, if ũ ∈ R
V
>0 comes from the radii of a circle packing whose

nerve is isomorphic to T1 such that the associated polyhedral surface is an equilateral
triangle, then the above calculation shows that ũ is a critical point of W . Since W is
concave, all critical points of W are maximum points. Therefore, it suffices to prove
that the restriction of the function W to P is strictly concave. Indeed, otherwise there
exist two distinct points x, y ∈ P such that the function h(t) = W (t x + (1 − t)y)

is linear in t ∈ [0, 1]. This implies that for each triangle �i , g�i (t x + (1 − t)y) is
linear in t . By Proposition 2.3, this implies there is a vector ui (1, 1, 1) ∈ R

3, one for
each triangle �i , such that

(x(vi1), x(vi2), x(vi3)) = (y(vi1), y(vi2), y(vi3)) + ui (1, 1, 1). (2.3)

We claim that ui = u j for all i, j . Indeed, consider two triangles �i and � j sharing
a vertex v. Then (2.3) at v shows ui = u j . Since any two triangles �i and � j can be
linked by a sequence of triangles �n1 = �i ,�n2 , ...,�nk = � j such that �nr and
�nr+1 share a common vertex, we see that ui = u j . It follows that the two vectors x, y
differ by a vector of the form t (1, 1, ..., 1) ∈ R

V . On the other hand, both x, y ∈ P ,
therefore t = 0, i.e., x = y which contradicts the choice of x, y.

2.3 Thurston’s Conjecture on Circle Packing And
Rodin-Sullivan’s Work

The relationship between the Koebe–Andreev–Thurston’s theorem and the Riemann
mapping theorem was explored by W. Thurston in early 1980s. The basic idea is
that since conformal maps send infinitesimal circles (circles in the tangent space) to
circles, a circle packing should be a good approximation to conformal maps.

Here is Thurston’s conjecture which was proved by Rodin-Sullivan in [29].
Given a bounded simply connected domain � in the complex planeC and a point

p ∈ �, for each large integer n, let Pn be a maximum (hexagonal) circle packing by
disks of radii 1/n inside � and pn be a circle in Pn within distance 1/n to p. Here
maximum means that one cannot add another 1/n radius disk in � to Pn such that
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Fig. 2 Thurston’s conjecture, Rodin-Sullivan’s theorem, on convergence of circle packing to the
Riemann mapping. The picture is produced by K. Stephenson

its nerve is the 1-skeleton of a topological triangulation Tn of a disk. Let p′
n be the

circle in Pn adjacent to pn from the right. Modify Tn to be a triangulation T ∗
n of the

2-sphere S
2 by adding one vertex v∞ and edges from v∞ to all boundary vertices

of Tn . Now by Koebe–Andreev–Thurston’s theorem, there exists a circle packing
Qn of the Riemann sphere such that (a) its nerve is isomorphic to the 1-skeleton of
T ∗

n ; (b) the disk corresponding to v∞ is the complement of the unit disk D; (c) the
disk corresponding to pn is centered at 0, (d) the disk in Qn corresponding to p′

n is
centered in the positive x-axis (Fig. 2).

Let fn be the piecewise linear map constructed as follows. It sends the center of
a circle in Pn to the center of the corresponding circle in Qn and fn is linear on each
triangles. Thurston’s conjecture, proved by Rodin-Sullivan, is that as n → ∞, fn

converges to the Riemann mapping f : � → D uniformly on compact subsets of�.
Rodin-Sullivan’s proof of convergence is beautiful and elegant. The readers are

strongly recommended to read the original paper [29]. There are two steps involved
in the proof. In the first step, they showed that there exists a constant K > 0 so
that all approximation functions fn are K -quasi-conformal. This is a consequence
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of Rodin-Sullivan’s ring lemma which states that in a hexagonal circle packing,
the ratio of the radii of any two adjacent circles is at most 1000. One can deduce
the ring lemma by inspection. Now uniformK-quasiconformality follows since inner
angles in aEuclidean triangle of edge lengths r1 + r2, r2 + r3, r3 + r1 with

ri
r j

≤ 1000
cannot be too small. Since fn are uniformly K-quasi-conformal, it has a convergent
subsequence. Let f be the limit of the subsequence. The claim is that f is the
Riemann mapping. To establish conformality of f , Rodin-Sullivan proved that the
hexagonal circle packing in the plane is unique. To bemore precise, if {Di } is a locally
finite collection of disks in C with disjoint interiors such that each Di is tangent to
exactly six other disks D j ’s andC − ∪Di is a disjoint union of open triangles whose
boundary are in ∪∂Di , then all Di have the same size.

Rigidity of hexagonal circle packing is the first rigidity theorem proved for infinite
circle packing. This work has inspired and initiated many research activities. For
instance Schramm [30] proved that any locally finite infinite circle packing of C is
rigid. See also the works of He [13], He-Schramm [14] and many others.

3 A Discrete Uniformization Theorem

One form of the uniformization theorem states that each Riemann surface admits a
complete Riemannian metric of constant curvature −1, 0, or 1 within its conformal
class. Furthermore, the metric is unique unless the Riemann surface is conformal to
the complex planeC, the punctured planeC − {0}, the sphere S2, or toriC/(Z + τZ)

for some τ /∈ R. In this section, we introduce our recent work on discrete confor-
mal geometry for compact polyhedral surfaces and discuss a discrete version of
uniformization theorem for compact polyhedral surfaces.

Polyhedral surfaces are ubiquitous due to digitization (e.g. 3D scan). Classifying
them according to some discrete conformality should be useful in organizing poly-
hedral surfaces. Circle packing can be considered as a discrete conformality if one
allows the changing of radii. However not all polyhedral surfaces can be canonically
packed by circles. A discrete conformality for all polyhedral surfaces was intro-
duced in [11, 12]. The main features of the discrete conformality are the following.
First, the discrete conformality is algorithmic; second the corresponding discrete
uniformization theorem holds for compact surfaces; third there exists a finite dimen-
sional (convex) variational principle to find the discrete uniformization metric; and
fourth discrete conformality is closely related to the convex ideal hyperbolic poly-
hedra in the 3-dimensional hyperbolic space H

3. Similar to Thurston’s conjecture
on the convergence of circle packing metrics, we have recently proved a conver-
gence result [18] which shows that the discrete conformality converges to smooth
conformality when the triangulations are suitably chosen. Several conjectures about
a discrete uniformization for non-compact polyhedral surfaces will be discussed at
the end of this section.
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3.1 Discrete Conformality of Polyhedral Surfaces

A closed surface S together with a non-empty finite subset of points V ⊂ S will be
called amarked surface. A triangulationT of amarked surface (S, V ) is a topological
triangulation of S such that the vertex set of T is V .We use E = E(T ), V = V (T ) to
denote the sets of all edges and vertices in T respectively. A (Euclidean) polyhedral
metric on (S, V ), to be called aPL metric on (S, V ) for simplicity, is a flat conemetric
on (S, V ) with cone points contained in V . We call the triple (S, V, d) a polyhedral
surface. All PLmetrics are obtained by isometric gluing of Euclidean triangles along
pairs of edges. For instanceboundaries of convexpolytopes arePLmetrics on (S2, V ).
The discrete curvature of a PLmetric d is the function Kd : V → (−∞, 2π) sending
a vertex v to 2π minus the cone angle at v. For a closed surface S, it is well known
that the Gauss-Bonnet theorem

∑
v∈V Kd(v) = 2πχ(S) holds. If T is a triangulation

of (S, V ) with a PL metric d for which all edges in T are geodesic, we say T is
geometric in d and d is a PL metric on (S, V, T ). In this case, we can represent the
PL metric d by the length function ld : E(T ) → R>0 sending an edge to its length.
Thus the polyhedral surface (S, V, d) can be represented by (S, T , l). This is a way
of coding a polyhedral surface by a finite-dimensional vector ld ∈ R

E .
In general, a polyhedral surface (S, V, d) admits infinitelymany different geomet-

ric triangulations. However, each polyhedral surface (S, V, d) has a naturalDelaunay
triangulation Td which is a geometric triangulation with vertices V such that for each
edge, the sumof two angles facing e is atmostπ. Delaunay triangulations are themost
commonly used triangulations in scientific computing. It can be constructed from the
Voronoi decomposition {R(v)|v ∈ V } of (S, V, d) as follows. Here a Voronoi 2-cell
R(v) for v ∈ V is defined to be {x ∈ S|d(x, v) ≤ d(x, v′),∀v′ ∈ V }. The Delau-
nay tessellation of (S, V, d) is the dual cell decomposition of {R(v)|v ∈ V } whose
vertices are V and each 1-dimensional connected component of R(v) ∩ R(v′) corre-
sponds to a (geodesic) edge from v to v′. A Delaunay triangulation is a subdivision
of the Delaunay tessellation into triangles without introducing extra vertices. Any
two Delaunay triangulations of (S, V, d) are related by a sequence of Delaunay tri-
angulations such that adjacent ones differ by a diagonal switch along an edge. See
for instance [4].

Suppose d is a PL metric on a triangulated surface (S, T ) whose edge length
function is ld : E(T ) → R>0. For a positive function u : V (T ) → R>0, the vertex
scaling of ld by u is the new function u ∗ ld : E(T ) → R>0 such that u ∗ ld(vv′) =
u(v)u(v′)ld(vv′)where vv′ is an edgewith end points v, v′. If d, d ′ are twoPLmetrics
on (S, T ), then they differ by a vertex scaling if ld = u ∗ ld ′ for some u : V → R>0.
The notation of vertex scaling change of PL metrics was introduced in [28] and in
[16].

The definition of discrete conformality involves Delaunay triangulations and ver-
tex scaling.

Definition 3.1 ([11]) Two PL metrics d and d ′ on a marked closed surface (S, V )

are discrete conformal if there is a sequence of PL metrics d1 = d, d2, ..., dn = d ′
and a sequence of triangulations T1, T2, ..., Tn of (S, V ) such that
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Fig. 3 Discrete conformal change of PL metrics from an arbitrary tetrahedron to one with constant
curvature π. All triangulations involved are Delaunay

(a) each Ti is Delaunay in di ,
(b) if Ti �= Ti+1, then there is an isometry hi from (S, V, di ) to (S, V, di+1) such

that hi is homotopic to the identity map on (S, V ), and
(c) if Ti = Ti+1, there is a function ui : V → R>0 such that for each edge e = vv′

in Ti , the lengths ldi (vv′) and ldi+1(vv′) of e in di and di+1 are related by

ldi+1(vv′) = ui (v)ui (v
′)ldi (vv′), (3.1)

i.e., ldi+1 = ui ∗ ldi .

The original motivation in [16] for introducing vertex scaling u ∗ ld as an approx-
imation to conformal change is the following. Since a PL polyhedral metric ld on
(S, T ) is a discretization of a Riemannian metric g and a function u : V (T ) → R>0

is a discretization of a positive function λ on S, the conformal Riemannian metric
λg should be approximated by the PL metric defined by u ∗ ld . The deeper reason
for u ∗ ld to be a discrete conformal change is due to the following observation in
Riemannian geometry ([18]). Given a Riemannian metric g on a compact connected
manifold M and λ : M → R>0, there exists a constant C = C(M, g,λ) such that
for any p, q ∈ M , we have

|dλ4g(p, q) − λ(p)λ(q)dg(p, q)| ≤ Cdg(p, q)3

where dg(p, q) is the distance between p, q in the metric g.
The relationship between discrete conformal geometry and hyperbolic geometry

is the following [5, 11]. Given a Delaunay triangulated polyhedral surface (S, T , d)

with V = V (T ), one can naturally associate to d a cusped hyperbolic metric d∗ on
S − V . Here is the construction. Take a Euclidean triangle τ in (T , d) considered as
the Euclidean convex hull of vertices v1, v2, v3 ∈ C. Let τ ∗ be the hyperbolic convex
hull CH(v1, v2, v3) of v1, v2, v3 in the hyperbolic 3-space H3. Here we consider C
to be in the sphere at infinity of the upper half-space model C × R>0 of H3. Now if
σ and τ are two Euclidean triangles in T glued by a Euclidean isometry f along an
edge, since each isometry f ofC extends naturally to an isometry f ∗ ofH3, we glue
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τ ∗ and σ∗ along the corresponding edge by the isometry f ∗. In this way, we obtain a
complete finite area hyperbolic metric d∗ on S − V . It follows from the construction
that d∗ is independent of the choices of the Delaunay triangulations T used in the
construction. It is proved in [11, Theorem 43] that two PL metrics d1 and d2 on a
closed marked surface (S, V ) are discrete conformal in the sense of Definition 3.1 if
and only if their associated hyperbolic metrics d∗

1 and d∗
2 are isometric by an isometry

homotopic to the identity (respecting V ). Conversely, if S is a closed surface and d̂
is a complete finite area hyperbolic metric on S − V , then there exists a polyhedral
metric d on (S, V ) such that d∗ = d̂. Thus for closed surfaces, there exists a bijection
between the space of all discrete conformal classes of polyhedral metrics on (S, V )

and the Teichmüller space of cusped metrics on S − V .
By this construction, if T is a Delaunay triangulation of the plane (C, dst ) with

V = V (T ) and dst being the standard flat metric onC, then the associated hyperbolic
metric d∗

st is the boundary of the convex hull CH(V ) of V in H
3. To see this, we

note that codimension-1 faces of CH(V ) correspond to the circum-disks of triangles
τ ∈ T due to the Delaunay condition. This shows the relationship between discrete
conformal geometry and convex hull construction in the hyperbolic 3-space H3 and
the essential role of Delaunay condition in discrete conformality.

The main theorems proved in [11, 12] are:

Theorem 3.2 ([11]) Given any PL metric d on a closed marked surface (S, V ) and
any K ∗ : V → (−∞, 2π) such that

∑
v∈V K ∗(v) = 2πχ(S), there exists a PL metric

d∗ on (S, V ), unique up to scaling and isometries homotopic to the identity map on
(S, V ), such that

(a) d∗ is discrete conformal to d, and
(b) the discrete curvature Kd∗ is equal to K ∗.
Furthermore, the PL metric d∗ can be found by a finite-dimensional variational

principle.

For the constant function K ∗ = 2πχ(S)/|V | in Theorem 3.2, we obtain a constant
curvature PLmetric d∗, unique up to scaling and isometries homotopic to the identity,
discrete conformal to d. We call d∗ the discrete uniformization metric associated to
d. The existence and uniqueness of d∗ is a discrete version of the uniformization
theorem for closed surfaces.

Theorem 3.2 for the torus S = S
1 × S

1 with K ∗ = 0 is equivalent to a theorem of
Fillastre [9]. Theorem 3.2 shows that every polyhedral torus (S1 × S

1, V, d) is dis-
crete conformal to a flat torus (S1 × S

1, V, d f lat ). Translating it into the language of
hyperbolic metrics, we can replace d by any cusped hyperbolic metric d̂ on the punc-
tured torus S1 × S

1 − V . The hyperbolic metric associated to (S1 × S
1, V, d f lat ) is

constructed as follows. Take a lattice L = Z + τZ in C and consider the boundary
∂CH(V ∗) of the convex hull of V ∗ in H

3 where V ∗ is a discrete set in C invariant
under the action of L. Then by the discussion above, d∗

f lat is isometric to the cusped
hyperbolic metric ∂CH(V ∗)/L . Furthermore, the lattice L is unique up to complex
linear transformations. This is the result proved in [9]. To be more precise, Fillastre
proved the following version of convex embedding theorem. For any cusped hyper-
bolic metric d̂ on S

1 × S
1 − V , there exist a lattice L ⊂ C and a finite set V ′ in the



The Riemann Mapping Theorem and Its Discrete Counterparts 379

conformal infinite of the hyperbolic manifold H
3/L such that d̂ is isometric to the

boundary of the convex hull of V ′ in H3/L .
This shows a close connection between discrete conformal geometry and the

convex isometric embedding program of Weyl, Alexandrov, Nirenberg, Pogorelov
and others.

Theorem 3.3 ([12]) Given two PL metrics on a closed marked surface (S, V ) such
that the lengths of edges are algebraic numbers, there exists an algorithm to decide
if they are discrete conformal.

Theorem 3.3 is proved in our joint work with Ren Guo in [12]. The counterpart
of Theorem 3.2 for hyperbolic polyhedral surfaces is also proved in [12].

An important question is whether discrete conformality defined above approxi-
mates smooth conformality. To this end, let us recall discrete conformalmaps between
polyhedral surfaces [5, 18]. Given a closed polyhedral surface (S, V, d). Let d∗ be
the hyperbolicmetric on S − V associated d constructed using ideal hyperbolic trian-
gles associated to Euclidean triangles. The vertical projection of the ideal hyperbolic
triangle τ ∗ = CH(v1, v2, v3) to the Euclidean triangle τ = CE(v1, v2, v3) produces
a piecewise projective homeomorphism �d from (S − V, d∗) to (S − V, d|S−V ). If
d1, d2 are two discrete conformal PL metrics on (S, V ), then the discrete confor-
mal map from (S, V, d1) to (S, V, d2) is defined to be (the extension to S) of the
composition �d2 ◦ � ◦ �−1

d1
where � : (S − V, d∗

1 ) → (S − V, d∗
2 ) is the isometry

homotopic to the identity. Discrete conformal maps are piecewise projective.
Our recent work with Sun and Wu [18] shows that discrete conformality does

converge to the smooth conformality. Given a simply connected marked polygonal
domain with a PL metric (D, V, d) and three boundary vertices p, q, r ∈ V , let the
metric double of (D, V, d) along the boundary be the marked polyhedral 2-sphere
(S2, V ′, d ′). Using Theorem 3.2, one produces a new polyhedral surface (S2, V ′, d∗)
such that (1) (S2, V ′, d∗) is discrete conformal to (S2, V ′, d ′), (2) the discrete curva-
tures of d∗ at p, q, r are 4π/3, (3) the discrete curvatures of d∗ at all other vertices
are zero and (4) its area is

√
3/2. Thus (S2, V ′, d∗) is the metric double of an equi-

lateral triangle �ABC of edge length 1. Here A, B, C correspond to p, q, r . Let
F : (S2, V ′, d ′) → (S2, V ′, d∗) be the associated discrete conformal map sending
{p, q, r} to {A, B, C} respectively. Due to the uniqueness part of Theorem 3.2, we
see that f = F |D : D → �ABC sending p, q, r to the vertices A, B, C respectively.
We call f the discrete uniformization map associated to (D, T , l, {p, q, r})
Theorem 3.4 ([18]) Suppose � is a Jordan domain in the complex plane with three
distinct points p, q, r in the boundary of �. There exists a sequence of simply con-
nected polygonal domains (�n, Tn, {pn, qn, rn})with triangulationsTn by equilateral
triangles of edge lengths converging to 0 where pn, qn, rn are three boundary vertices
such that the following hold

(i) �n ⊂ �n+1 and � = ∪∞
n=1�n,

(ii) the discrete uniformization maps fn associated to (�n, Tn, {pn, qn, rn}) con-
verge uniformly on compact sets to the Riemann mapping f : (�, {p, q, r}) →
(�ABC, {A, B, C}).



380 F. Luo

3.2 Vertex Scaling and Its Associated Variational Principle

A key property established in [16] for the vertex scaling is the following variational
principle (See Lemma3.5(a) below).

Lemma 3.5 Suppose �v1v2v3 is a Euclidean triangle of edge lengths l1, l2, l3 such
that vi is opposite to the edge of length li . Let l1ex2+x3 , l2ex1+x3 , l3ex1+x2 be the
edge lengths of a vertex scaled Euclidean triangle whose inner angle at vi is θi =
θi (x1, x2, x3).

(a)([16]) There exists a locally concave function F(x1, x2, x3) such that

∂F

∂xi
= θi (3.2)

and the kernel of the positive semidefinite symmetric matrix [ ∂θi
∂x j

]3×3 consists of

column vectors (a, a, a)t and
(b) If ex1 → ∞ and ex2 is bounded, then ex3 is bounded and θ1(x) → 0.

Proof To see part (a), it suffices to show that the 3 × 3 matrix [ ∂θr
∂xs

]3×3 is symmetric
and negative semi-definite. Let the area of the triangle�v1v2v3 beA and yi = li ex j +xk

be the length of the edge v jvk where {i, j, k} = {1, 2, 3}. Note that ∂yi

∂x j
= yi and

y j = yk cos(θi ) + yi cos(θk). By (2.1) and (2.2), we have

∂θi

∂x j
= ∂θi

∂yi

∂yi

∂x j
+ ∂θi

∂yk

∂yk

∂x j
= yi (yi − yk cos(θ j ))

2A
= yi y j cos(θk)

2A
= cot(θk)

and

∂θi

∂xi
= ∂θi

∂y j

∂y j

∂xi
+ ∂θi

∂yk

∂yk

∂xi
= −∂θi

∂yi
(y j cos(θk) + yk cos(θ j )) = − y2i

2A
− sin θi

sin(θ j ) sin(θk)
.

This shows that the matrix [ ∂θr
∂xs

]3×3 is symmetric and can be written as −DG Dt

where G = [grs ]3×3 is the Gram matrix of the triangle and D is a diagonal matrix.
Here gi i = −1 and gi j = − cos(θk). Let ni be the unit outward normal vector to the
triangle at edge v j vk and (u, v) be the inner product in R

3. Then the Gram matrix
G is the same as [(nr , ns)]3×3 which is well known to be positive semi-definite with
kernel (t, t, t). Thus part (a) follows.

To see part (b), note that the triangle of edge lengths ex2+x3 l1, ex1+x3 l2, ex1+x2 l3 is
similar to the Euclidean triangle of edge lengths l1e−x1 , l2e−x2 , l3e−x3 . In particular,
we have the triangle inequality that l2e−x2 < l1e−x1 + l3e−x3 . This implies that x3
must be bounded. Since l1e−x1 → 0 and l2e−x2 , l3e−x3 are bounded away from 0, it
follows θ1 → 0. 	


The identity in Lemma3.5(a) can be considered as a 2-dimensional analogue of
the Schlaefli formula. This variational principle has been generalized in the work
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of [5]. In particular, an explicit formula for the function F was found in [5] using
Lobachevsky function − ∫ x

0 ln(|2 sin(t)|)dt .

3.3 Basic Idea of the Proof of Theorem 3.2

There are two steps involved in the proof. The first step is to understand discrete
conformality using hyperbolic metrics. The goal is to show that given any PL metric
d on (S, V ), the space DC([d]) of all PL metrics on (S, V ) discrete conformal to d
is C1-diffeomorphic to the Euclidean space RV . The second step is to show that the
discrete curvature map K : DC([d]) → {x ∈ (−∞, 2π)V | ∑v∈V K (v) = 2πχ(S)}
is a bijection up to scalings. This is achieved by showing that the discrete curvature
map K is the gradient of a convex function using Lemma 3.5(a) and the work of [1].

The first step is achieved by using Penner’s theorey of decorated Teichmüller
space. Let us first recall that two PL metrics on (S, V ) are Teichmüller equiva-
lent if they are isometric by an isometry homotopic to the identity in (S, V ). For
instance the condition (b) in Definition 3.1 says that (S, V, di ) is Teichmüller equiv-
alent to (S, V, di+1). The PL Teichmüller space Tpl = Tpl(S, V ) is the space of
all Teichmüller equivalence classes of PL metrics on (S,V). The space Tpl(S, V )

is known to be a real analytic manifold diffeomorphic to a Euclidean space by
the work of Troyanov [34]. The discrete conformality is an equivalence relation
on Tpl(S, V ). The discrete curvature K : Tpl(S, V ) → (−∞, 2π)V is a real ana-
lytic map. There exists a natural action of the set of positive real numbers R>0 on
Tpl(S, V ) by scaling. The discrete curvature is well defined on the quotient space
K : Tpl(S, V )/R>0 → {x ∈ (−∞, 2π)V | ∑v∈V x(v) = 2πχ(S)}.

Given a metric [d] ∈ Tpl(S, V ), let DC([d]) = {[d ′] ∈ Tpl | d ′ is discrete confor-
mal to d} be the discrete conformal class associated to [d]. Theorem 3.2 is equivalent
to the statement that the restriction of the discrete curvature map K to DC([d])/R>0

is a bijection from DC([d])/R>0 onto {x ∈ (−∞, 2π)V | ∑v x(v) = 2πχ(S) }. We
prove that K is a C1 diffeomorphism.

Let T (S − V ) be the Teichmüller space of complete hyperbolic metrics of finite
area on S − V and TD = T (S − V ) × R

V
>0 be Penner’s decorated Teichmüller space

[23]. Recall that a decorated hyperbolic metric on S − V is a complete finite area
hyperbolic metric together with a horoball at each cusp. By measuring the lengths
of the boundaries of the horoballs, one can write a decorated hyperbolic metric
as a pair (d, u) where u ∈ R

V
>0. This shows that the space of all decorated hyper-

bolicmetricsmodulo the natural equivalence relation is T (S − V ) × R
V
>0. Decorated

hyperbolic metrics on an ideal triangulated surface (S − V, T ) can be constructed by
isometrically gluing decorated ideal hyperbolic triangles along edges. Here a dec-
orated ideal hyperbolic triangle is an ideal triangle with a horoball at each vertex.
Since all ideal hyperbolic triangles are isometric, a decorated ideal triangle is deter-
mined up to isometries preserving decoration by the three lengths of horocycles
inside it. Another way to parameterize a decorated ideal triangle is to use the edge
lengths. If e is an edge of a decorated ideal triangle, then the length l(e) of e is
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the distance between the two horoballs B1, B2 at its end points if B1 ∩ B2 = ∅, and
is the negative of the length of the interval e ∩ (B1 ∩ B2) if B1 ∩ B2 �= ∅. Penner
defines the λ-length of an edge e is defined to be el(e)/2. Given any three positive
real numbers, there exists a unique decorated ideal triangle whose λ-lengths are the
given numbers. In particular, given any Euclidean triangle σ of edge lengths l1, l2, l3,
one can associate a decorated ideal triangle σ∗ of λ-length l1, l2, l3 to σ. Given a PL
metric d represented as (S, T , l) (i.e., T is geometric in d), one assigns a decorated
hyperbolic metric �T (d) on S − V as follows. Each Euclidean triangle σ ∈ T is
replaced by its decorated ideal triangle counterpart σ∗. These decorated ideal tri-
angles are glued along edges by isometries preserving decorations. The resulting
decorated hyperbolic metric is �T (d). See [5]. We prove the following theorem.

Theorem 3.6 ([11]) For any closed marked surface (S, V ) such that (S, V ) �=
(S2, {p}) or (S2, {p, q}), there exists a C1 smooth diffeomorphism � from the PL
Teichmüller space Tpl(S, V ) to the decorated Teichmüller space T (S − V ) × R

V
>0

such that two PL metrics d and d ′ are discrete conformal if and only if the projections
of �(d) and �(d ′) to the Teichmüller space T (S − V ) are the same.

The map � is constructed in a piecewise smooth manner on the natural cell
decompositions of Tpl and TD . For each triangulation T of (S, V ), define Dpl(T )

(and D(T )) to be the set of all PL metrics (and decorated hyperbolic metrics) [d] in
Tpl (and TD) such that T is isotopic to a Delaunay triangulation in d. The important
works of Rivin [26] and Penner [23] show that Dpl(T ) and D(T ) are cells and Tpl =
∪T Dpl(T ) and TD = ∪T D(T ) are cell decompositions of the Teichmüller spaces
invariant under the action of the mapping class group. The definition of � goes as
follows. For each triangulation T , define�T : Dpl(T ) → TD(S, V ) by sending a PL
metric (S, T , l) to�T (S, T , l). By definition the two decoratedmetrics�T (S, T , l)
and �T (S, T , w ∗ l) have the same underlying hyperbolic metrics and differ only in
decorations.

It is a straightforward calculation to see that Euclidean Delaunay condition
is mapped to hyperbolic Delaunay condition, i.e., �T (Dpl(T )) ⊂ D(T ). Penner
observed that hyperbolic Delaunay condition implies the triangle inequality for
(Euclidean) edge lengths, i.e., �T (Dpl(T )) = D(T ). Furthermore, Penner’s result
that the Ptolemy identity holds for λ-lengths of decorated ideal quadrilaterals implies
that for different triangulations T and T ′ of (S, V ),

�T |Dpl (T )∩Dpl (T ′) = �T ′ |Dpl (T )∩Dpl (T ′).

Thus these maps �T can be glued together to produce a homeomorphism � =
∪T �T : Tpl → TD . Note that the complete finite area hyperbolicmetric dH on S − V
associated to a PL metric d on (S, V ) is P ◦ �([d]) where P : T (S − V ) × R

V
>0 →

T (S − V ) is the projection.
We prove that� is a C1 diffeomorphism by using the following lemma on quadri-

laterals.
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Lemma 3.7 Let Q be a convex Euclidean quadrilateral whose four edge lengths are
x, y, z, w labelled cyclically and the length of a diagonal be u. Let A(x, y, z, w, u) be
the length of second diagonal and B(x, y, z, w, u) = xz+yw

u . If a point (x, y, z, w, u)

satisfies A(x, y, z, w, u) = B(x, y, z, w, u), i.e., Q is inscribed in a circle, then
D A(x, y, z, w, u)= DB(x, y, z, w, u) where D A is the derivative of A.

In the second step, we examine the restriction K | of the discrete curvature map
to the space of discrete conformal classes DC([d]). By Theorem 3.6, DC([d])
is naturally a Euclidean space. Using Lemma 3.5(a), we show that the discrete
curvature map on DC([d])/R>0 is the gradient of a strictly convex function.
Thus, K | : DC([d])/R>0 → Y := {x ∈ (−∞, 2π)V | ∑v x(v) = 2πχ(S) } is injec-
tive. On the other hand, by using Lemma 3.5(b) and a result of Akiyoshi [1] we show
that the image K (DC([d])) is closed in Y . Since both DC([d])/R>0 and Y are con-
nected manifolds of the same dimension, we conclude that K | is a homeomorphism
and thus prove Theorem 3.2.

3.4 Basic Ideas of the Proof of Theorem 3.3

Suppose d, d ′ are two PL metrics on a marked closed surface (S, V ) such that d, d ′
are given by the edge length functions ld : E(T ) → A and ld ′ : E(T ′) → A where
A is the set of all real algebraic numbers. Our goal is to use these two vectors ld and
ld ′ to decide whether d, d ′ are discrete conformal or not.

Using a well-known algorithm from computational geometry, we may assume
that both T and T ′ are Delaunay in d and d ′ respectively. Now consider the asso-
ciated decorated hyperbolic metrics y = �T (d) and y′ = �T ′(d ′) in Penner’s dec-
orated Teichmüller space. By Theorem 3.6, it suffices to check if y, y′ have the
same underlying hyperbolic metric. To this end, we use a theorem of Thurston and
Mosher [22] that there is an algorithm which produces a sequence of triangulations
T1 = T , T2, ..., Tn = T ′ of (S, V ) such that for each i , Ti and Ti+1 differ by a diag-
onal switch. Combining with Penner’s Ptolemy identity, we find algorithmically the
λ-length coordinates z (= y) and z′ of the decoratedmetrics y, y′ in the same triangu-
lation T . For a triangulation T , it is known by Penner’s work that z, z′ represent the
same underlying hyperbolic metric if and only if their associated shear coordinates
in the triangulation T are the same. Here the shear coordinate of z : E(T ) → R>0 is
the function φ(z) : E(T ) → R given by φ(z)(e) = ab

cd where a, b, c, d are the values
of z at the four edges, ordered cyclically, of the quadrilateral in T formed by the two
triangles adjacent to e. Therefore, we can check algorithmically if z and z′ have the
same underlying hyperbolic structure.
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3.5 Basic Idea of the Proof of Convergence Theorem 3.4

The proof of Theorem 3.4 follows the basic strategy appeared in Rodin-Sullivan’s
work [29]. Namely, we prove that the approximating discrete conformal maps fn

are K-quasi-conformal for some K independent of n and a rigidity result about the
hexagonal triangulations of the plane. Finally since Delaunay triangulations may
change due to flip operations, we choose the approximation triangulations nicely to
ensure that no flips occur.

The K-quasi-conformality is relatively easy to establish and is based on a ratio
lemma first appeared in [36] and a non-degeneration lemma. The conditions which
ensure no flips are technical and will not be addressed here. We will discuss the
rigidity result in more details.

The rigidity theorem that we proved is the following,

Theorem 3.8 ([18]) Suppose (C, T , l) is a geometric Delaunay triangulation
of an open set in the complex plane C such that (i) each vertex is adjacent to
exactly six triangles and (ii) there exists a function w : V (T ) → R>0 satisfying
l(vv′) = w(v)w(v′) for all edges vv′. Then the triangulation is the regular hexago-
nal triangulation, i.e., w is a constant function.

This should be comparedwithRodin-Sullivan’s rigidity theorem for circle packing
metric which can be stated as,

Theorem 3.9 (Rodin-Sullivan [29]) Suppose (C, T , l) is a geometric triangulation
of an open set in the complex plane C such that (i) each vertex is adjacent to exactly
six triangles and (ii) there exists a function w : V → R>0 satisfying l(vv′) = w(v) +
w(v′) for all edges vv′. Then the triangulation is the regular hexagonal triangulation,
i.e., w is a constant function.

Recall that a PL metric on a triangulated surface (S, T ) can be represented by the
edge length function l : E(T ) → R>0 so that the triangle inequality l(ei ) + l(e j ) >

Fig. 4 Convergence of discrete conformality and approximation of the Riemann mapping
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l(ek) holds for three edges ei , e j , ek of a triangle. A generalized PL metric on (S, T )

is map l : E(T ) → R>0 so that l(ei ) + l(e j ) ≥ l(ek) holds for three edges ei , e j , ek

of a triangle. Since the edge lengths l(e) > 0 in a generalized PL metric, the inner
angles, discrete curvatures and Delaunauy conditions are still defined for generalized
PLmetrics. A generalized PLmetric is called flat if its curvature is zero at each vertex
(Fig. 4).

The idea of the proof of Theorem 3.8 is as follows. Suppose otherwise that w is
not a constant, we will derived a contradiction by using a maximum principle and a
spiral lemma.

Let V = Z + e2πi/3
Z be the set of vertices of the standard hexagonal triangulation

Tst with lst : V → {1} being the edge length function. Consider those u : V → R>0

so thatu ∗ lst are generalizedPLmetrics, i.e.,u ∗ l(v1v2) + u ∗ l(v2v3) ≥ u ∗ l(v3v1)
for vertices {v1, v2, v3} of a triangle. The maximum principle says if u : V → R>0 is
a function so that u ∗ lst is a flat generalized PLmetric and has amaximumpoint, then
u is a constant. This is essentially a consequence of Lemma 3.5(a). The ratio lemma
says if u ∗ lst is flat, then

u(v)

u(v′) ≤ 6 for each edge vv′ ∈ T . The spiral lemma says for
any non-constant linear function ln(u) : V → R so that u ∗ lst is a generalized PL
metric, then the metric eu ∗ lst is flat and furthermore, if u ∗ lst contains a triangle of
positive area, then the developingmap for the u ∗ lst metric sends two triangles to two
triangles in C with overlapping interiors. Using these lemmas, one proves Theorem
3.8 as follows. We may assume without loss of generality that λ = sup{ w(v)

w(v±1) |v ∈
V } > 1. By the ratio lemma, we know λ < ∞. Choose a sequence of vertices vn ∈ V
so that, say, w(vn)

w(vn+1) → λ. Now using the symmetry of the lattice Z + e2πi/3
Z, we

produce a new sequence of function wn : V → R>0 obtained by shifting vn ∈ V to
0 and re-scaling so that {wn} contains a convergent subsequence converging to w∞ :
V → R>0. The generalized PL metric w∞ ∗ lst is still flat since flatness is a closed
condition. By the maximum principle applied to the generalized flat PL metricw′∞ ∗
lst where α′(v) = α(v)/α(v + 1) : V → R>0, we see that w∞(v) = λw∞(v + 1)
for all v ∈ V . By the same argument applied to δ = sup{ w(v)

w(v±e2πi/3)
|v ∈ V } and taking

subsequence of the subsequence, we can improve the result to a limit function w∞ :
V → R>0 so that w∞(v) = λw∞(v + 1) and w∞(v) = δw∞(v + e2πi/3) for all v.
Therefore, ln(w∞) : V → R is a non-constant linear function. We show that there
exists a triangle inw∞ ∗ lst of positive area. By the spiral lemma, the developing map
for the flat generalized PL metric w∞ ∗ lst sends two triangles to two triangles with
overlapping interiors. On the other hand, by the construction, w∞ ∗ lst is the limit
of wn ∗ lst which is a geodesic triangulation of C obtained from (C, T , w ∗ lst ) by
shifting base points and re-scaling. In particular, the developing map D∞ ofw∞ ∗ lst

is the limit of injective maps where the convergence is uniform on compact sets. This
shows that D∞ cannot send two triangles to two triangles with overlapping interiors.
The contradiction shows Theorem 3.8 holds.

Our proof of Theorem 3.8 also gives a new proof of Rodin-Sullivan’s Theorem
3.9 since the similar maximum principle, the ratio lemma and the spiral lemma hold
in the circle packing case. The spiral lemma in the circle packing case was first
discovered by Peter Doyle and the phenomena is called the Doyle spiral.
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The rigidity theorem proved in [18] also holds for any lattice in C instead of the
regular hexagonal lattice.

3.6 Discrete Uniformization for Non-compact Simply
Connected Polyhedral Surfaces

An essential step in Poincaré’s andKoebe’s proofs of the uniformization theorem is to
establish that every simply connected non-compact Riemann surface is conformal to
the plane C or the unit disk D. The corresponding statement for discrete uniformiza-
tion is that every non-compact simply connected polyhedral surface (S, V, d) is
discrete conformal to (C, V ′, dst ) or (D, V ′, dst ) for some discrete set V ′ ⊂ C or
V ′ ⊂ D and the set V ′ is unique up to Möbius transformations. Here dst is the stan-
dard flat Euclidean metric. Given a closed set X ⊂ S

2, the convex hull of X in the
hyperbolic 3-space H3 is denoted by CH(X). Using geometry, discrete uniformiza-
tion is equivalent to the statement that a hyperbolic metric d∗ on S − V (with cusp
ends at each v ∈ V ) is isometric to the boundary of the convex hull ∂CH(V ′) or
∂CH(V ′ ∪ (S2 − D)). Furthermore, the set V ′ is unique up to Möbius transforma-
tions.

Recall that a closed set X in the Riemann sphere S
2 is of circle type if each

connected component of X is either a point or a closed round disk. For instance
if V ′ is a discrete subset of D, then (S2 − D) ∪ V ′ is a circle type closed set. The
generalization of the above discrete uniformization conjecture is the following. For
any complete hyperbolic surface (�, g) of genus zero, there exists a circle type
closed set Y , unique up to Möbius transformations, such that (�, g) is isometric
to the boundary of the convex hull of CH(Y ) in H

3. This can be rephrased using a
theorem of Alexandrov [2] that any genus zero hyperbolic surface (�, g) is isometric
to ∂CH(X) for some closed set X ⊂ S

2. Therefore, we have,

Conjecture 1 ([18]) Given any closed set X ⊂ S
2 with S

2 − X connected, there
exists a circle type closed set Y such that the boundaries of CH(X) and CH(Y ) are
isometric.

In particular, Conjecture 1 for X to be V ∪ {∞} or (S2 − D) ∪ V where V is
discrete inC orD is the existence part of the discrete uniformization for non-compact
simply connected polyhedral surfaces. In [19] we proved that

Theorem 3.10 Conjecture 1 holds if the given closed set X has countably many
connected components. In particular, the existence part of the discrete uniformization
theorem holds.

Conjecture 1 is a geometric form of the Koebe conjecture that any genus zero
Riemann surface S is conformal to S2 − Y for a circle type closed set Y .



The Riemann Mapping Theorem and Its Discrete Counterparts 387

Conjecture 2 ([18]) Suppose X and Y are two circle type closed sets in S
2 such

that the boundary of CH(X) is isometric to the boundary of CH(Y ). Then X and Y
differ by a Möbius transformation.

Here are some evidences supporting Conjectures 1 and 2. If the given set X
is finite, Rivin [27] proved that both Conjectures 1 and 2 hold. If X is a disjoint
union of a finite number of closed round disks, then Schlenker [30] proved that both
Conjectures 1 and 2 hold. See also [20] for the case of a union of a closed round disk
with a finite set of points. Theorem 3.8 is a very special case of Conjecture 2.
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The Riemann–Roch Theorem

Norbert A’Campo, Vincent Alberge and Elena Frenkel

Abstract We sketch here a proof of the Riemann–Roch theorem.

1 Introduction

The aim of this chapter is to provide the general idea of the proof of a modern
version of the Riemann–Roch theorem in the case of closed Riemann surfaces of
genus at least 2. This version, as the original one, combines the concepts of topology
and analysis. We shall recall and apply notions of holomorphic line bundle, sheaf
cohomology and divisor that are used in the statement and in the proof of this modern
version.

Let us recall briefly the story of the Riemann–Roch theorem. It is Riemann who
first established in [8] an inequality in order to prove the existence of non-constant
meromorphic functions on closed Riemann surfaces. This inequality is now called the
Riemann inequality and says that the dimension of the vector space of meromorphic
functions on a closed Riemann surface of genus g with at most d simple poles is at
least d − g + 1. The reader may deduce that if d is large enough, that is, d > g, then
the existence of non-constant meromorphic functions follows. Moreover, it maybe
important to add that Riemann obtained such an inequality by using the so-called
Riemann theorem (see Theorem 17 below) which asserts that the genus can be seen as
the dimension of the vector space of holomorphic 1-forms on such a Riemann surface.

N. A’Campo (B)
Mathematisches Institut, Universität Basel, Spiegelgasse 1, 4051 Basel, Switzerland
e-mail: norbert.acampo@unibas.ch

V. Alberge
Mathematics Department, Fordham University, 441 East Fordham Road,
Bronx, NY 10458, USA
e-mail: valberge@fordham.edu

E. Frenkel
Université de Strasbourg et CNRS, IRMA, 7 rue René Descartes,
67084 Strasbourg Cedex, France
e-mail: frenkel@math.unistra.fr

© Springer International Publishing AG 2017
L. Ji et al. (eds.), From Riemann to Differential Geometry and Relativity,
DOI 10.1007/978-3-319-60039-0_13

389



390 N. A’Campo et al.

After Riemann proved his inequality, Gustav Roch, one of his students, extended
this result in his doctoral thesis to an equality by giving a correction term which is
the dimension of a certain subspace of holomorphic forms (cf. [9]). Furthermore,
according to J. Gray in [5], the term Riemann–Roch theorem was first used by Brill
and Noether in [4]. We also refer the reader to Chap. 2 of [10] for more descriptions
and details.

First, let us give here two equivalent versions of the Riemann–Roch theorem. The
notions used in the following statements will become clearer later on in this chapter.

Theorem 1 Let X be a closed Riemann surface of genus g ≥ 2 and L
π→ X a holo-

morphic line bundle over X. Then

dim H 0
(
X, L

) − dim H 1
(
X, L

) = deg (L) − g + 1. (1)

Theorem 1 highlights an equality between an analytic quantity (the left-hand side
of (1)) and a topological quantity. This statement uses the formalism of sheaf the-
ory, introduced by Leray, which was developed much later than the Riemann–Roch
theorem. Before giving a (more) classical statement of this theorem, we mention
that the formalism of sheaves permits to generalize this theorem to any finite dimen-
sional compact complex manifold. This generalisation is known as the Hirzebruch–
Riemann–Roch theorem (cf. [7]).1 Furthermore, as we shall see, the analytic quantity
is the index of an elliptic differential operator and then Theorem 1 (as well as the
Hirzebruch–Riemann–Roch theorem) is a particular case of the so-called Atiyah–
Singer index theorem. Now, let us state an equivalent statement.

Theorem 2 Let X be a closed Riemann surface of genus g ≥ 2 and D a divisor on
X. Then

l (D) − l (K X − D) = deg (D) − g + 1. (2)

Theorem 2 is a more classical statement that uses the notion of divisors on a
Riemann surface. It is “classical” in the sense that in most books on the subject, the
Riemann–Roch theorem appears in that form. The notion of divisor originates in
algebraic geometry.

This chapter is organized as follows. The main part is devoted to ideas that form
the background of Theorem 1. In particular, we shall start by recalling the notion of
line bundle and, based on this notion, we shall introduce sheaf cohomology. Then,
we shall restate Theorem 1 (cf. Theorem 19 below) and give a sketch of its proof.
After that we shall recall the notion of divisor on a Riemann surface and show
the equivalence between the two theorems stated above. Finally, we shall close this
chapter by explaining the importance of the Riemann–Roch theorem in Teichmüller’s
work. This was one of the earliest uses of this theorem in geometry.

1In 1957 Grothendieck gave in Princeton another generalization of Riemann–Roch’s theorem that
includes the result of Hirzebruch (cf. [3]). This generalisation is known as the Grothendieck–
Hirzebruch–Riemann–Roch theorem.
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We assume throughout this chapter that X is a closed Riemann surface of genus
g ≥ 2, when no other specifications are made.

2 Line Bundles

2.1 General Setting

Recall that X is a Riemann surface if it is a Hausdorff topological space and if
there exist an open covering {Ui }i and a system of charts {φi : Ui → φi (Ui ) ⊂ C}i

such that for every non-empty intersection Ui ∩ U j the transition functions φi j =
φ j ◦ φ−1

i : φi (Ui ∩ U j ) → φ j (Ui ∩ U j ) are biholomorphic.
Given an onto mapping f : Y → X between two spaces Y and X , then for any

subset U ⊂ X , we set Y|U = f −1(U ) and we call for any x ∈ X , Y|x = f −1(x) the
fiber of f at x . We use this notation in the following definition.

Definition 3 A holomorphic line bundle over X is a pair (L , π ), where L is a complex
manifold and π : L → X a holomorphic surjective mapping such that the following
two properties are satisfied:

(1) (Local triviality) There exist an open covering {Vi }i∈I of X and a system of
biholomorphisms {hi : L |Vi

→ Vi × C}i such that the following diagram is com-
mutative:

L |Vi

hi

π

Vi × C

pr1

Vi

where pr1 : Vi × C → Vi is the canonical projection onto the first coordinate.
(2) For each p ∈ X , the fiber L |p has the structure of a 1-dimensional complex vector

space such that the restriction of hi to L |p is a vector space isomorphism.

We denote a line bundle by L
π→ X , and we say that the space L is the total space,

X the base and {Vi , hi }i a system of local trivializations. Moreover, it can be easily
seen that such a system implies that L is a complex surface.

Important examples of holomorphic line bundles are the trivial line bundle X ×
C

pr1→ X , the holomorphic tangent bundle T X and the holomorphic cotangent bundle
T ∗ X . In order to keep our notation close to conventions in complex geometry, let us
call the cotangent bundle the canonical line bundle2 over X and denote it by K X .

2This label is more meaningful for the case of complex manifolds of higher dimensions. In this
case, the canonical bundle is the determinant bundle of T ∗ X .
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Let {Vi , hi }i be a system of local trivialization of L
π→ X . The definition above

implies that the coordinate changes are of the following form:

hi j = h j ◦ h−1
i : (Vi ∩ Vj ) × C → (Vi ∩ Vj ) × C

(p, u) 	→ (p, ci j (p) · u), (3)

where Vi ∩ Vj 
 p 	→ ci j (p) ∈ C
∗ is holomorphic. We call {ci j }i j a system of tran-

sition functions of L
π→ X associated with the covering {Vi }i . Moreover, we observe

that such a system {ci j }i j satisfies the so-called cocycle relation

ci j · c jk = cik (4)

whenever Vi ∩ Vj ∩ Vk �= ∅. Any system of functions satisfying this relation is called
a cocycle.

It is interesting to note that from a cocycle, we can construct a line bundle over X .
Indeed, if a covering {Vi }i of X is given and if a system of holomorphic non-vanishing
functions {ci j : Vi ∩ Vj → C

∗}i, j satisfying Relation (4) is given, then

L =
(

∐

i

(Vi × C)

)

/ ∼c (5)

defines a holomorphic line bundle over X , where for p ∈ Vi and q ∈ Vj

(p, u) ∼c (q, v) ⇐⇒ p = q and v = ci j (p) · u. (6)

Let us consider some examples of line bundles using this construction. For a
fixed p ∈ X , we define a line bundle Z p in the following way. We take an open
neighbourhood of p ∈ X , denoted by U0, sufficiently small such that it is entirely
contained in an open chart of X . We then consider the open covering of X formed
by U0 and U1 = X − {p}. We set c01 : U0 ∩ U1 
 q 	→ z(q) ∈ C

∗, where z is the
coordinate of U0 centered at p. Hence, Z p is the holomorphic line bundle obtained
by the cocycle {c01}. Analogously, we define Pp as the line bundle determined by
the same covering and the cocycle d01, given by q 	→ 1

z(q)
.

Another example of line bundle arises from taking the tensor product L1 ⊗ L2 of
two line bundles L1

π1→ X and L2
π2→ X . Taking a sufficiently small covering, we can

assume that {Ui }i is a covering of X which induces trivialization systems for these
two line bundles. We then denote the transition functions of L1

π1→ X and L2
π1→ X

that are defined on Ui ∩ U j by
{
ai j

}
i j and

{
bi j

}
i j , respectively. By (5), we define

L1 ⊗ L2 as the holomorphic line bundle determined by the cocycle
{
ai j bi j

}
i j .

Let L
π→ X be a line bundle whose transition functions are given by

{
ci j

}
i j . Then

we define L⊗−1 as the line bundle determined by
{

1
ci j

}

i j
. For example, we can then

see for any p ∈ X , the line bundle Pp as Z⊗−1
p .
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2.2 Isomorphism and Section

Let us turn to the definition of morphism between two line bundles over the same
Riemann surface.

Definition 4 A line bundle morphism between two line bundles L1
π1→ X and L2

π2→
X is a mapping f : L1 → L2 such that:

(1) f is fiber-preserving, i.e. π2 ◦ f = π1,
(2) f is C-linear on each fiber.

Moreover, f is called a line bundle isomorphism if f is an invertible line bundle
morphism.

More concretely, if {ai j }i j and {bi j }i j are transition functions for L1
π1→ X and

L2
π1→ X , respectively, then an isomorphism f determines a set { fi }i of non-vanishing

holomorphic functions satisfying the following relation:

a−1
i j · fi · bi j = f j ⇐⇒ fi

f j
= ai j

bi j
. (7)

Conversely, if for transition functions {ai j }i j and {bi j }i j , there exists a collection
of non-vanishing holomorphic functions { fi }i which satisfies Relation (7), then the
two line bundles determined by {ai j }i j and {bi j }i j are isomorphic. In particular, this
proves that L ⊗ L⊗−1 is isomorphic to the trivial line bundle X × C.

We can equip the set of holomorphic line bundles up to isomorphism with a group
structure by taking the tensor product as composition law and the equivalence class
of the trivial line bundle as the identity element. This group is called the Picard group
of X and is denoted by Pic (X). Using notions introduced in Sect. 3, we shall see
that Pic (X) is isomorphic to H 1

(
X,O∗

X

)
, the first cohomology group with values

in the sheaf of holomorphic functions without zeros.
Let us now introduce the notion of section of a line bundle.

Definition 5 We say that s is a section of the line bundle L
π→ X , if s : X → L

satisfies π ◦ s = idX .

Since locally a line bundle looks like the trivial line bundle, the image of p ∈ X
by a section s can be thought as a pair (p, s(p)).

Moreover, as we did for isomorphisms between line bundles, we can describe a
section in terms of a system of transition functions. Indeed, if

{
ci j

}
i j is a system

of transition functions for L
π→ X , then a section s can be seen as a collection of

functions {si }i which satisfy the following relation:

s j = ci j si . (8)

Furthermore, a section s is said to be holomorphic if the functions {si }i are holo-
morphic. We denote the set of such sections by �hol (X, L). In an analogous way, we
can define a meromorphic section or a C∞-section.
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Now let us make an important remark.

Remark 6 By Relations (7) and (8), a line bundle is isomorphic to the trivial bundle
if and only if it admits a holomorphic section that never vanishes.

Let us explain the meaning of the set �hol
(
X, L ⊗ Z p

)
for p ∈ X . Taking if

needed sufficiently small trivializing open sets {Vi }i , we can assume that V0 is the
only set of the covering that contains p and is entirely contained in an open chart.
We denote by z a local coordinate on V0 centered at p. Therefore, a holomorphic
section σ of L ⊗ Z p is given by a collection of holomorphic functions {σi }i such
that for any non-empty intersection Vi ∩ Vj we have

σ j = ci jσi ,

and
σi = c0i · z · σ0.

Setting σ̃ = {̃σi }i where σ̃0 = z · σ0 and σ̃i = σi for any i �= 0, we get an element
of �hol (X, L), which vanishes at p with order at least 1. Conversely, in the same
way we obtain that a holomorphic section of L with zero at p defines an element
of �hol

(
X, L ⊗ Z p

)
. Hence, �hol

(
X, L ⊗ Z p

)
is in one-to-one correspondence with

the set of holomorphic sections that vanish at p. Due to this fact, the notation Z p for
“zero at p” makes sense.

Arguing in the same manner, we show that �hol
(
X, L ⊗ Pp

)
is in one-to-one

correspondence with the set of meromorphic sections of L that have a pole at p of
order at most 1.

We can introduce now the notion of degree of a line bundle, the last notion of this
section.

2.3 Degree

Throughout this chapter, we shall meet three definitions of the degree of a line
bundle L

π→ X . The first is the analytical one that uses a meromorphic section of
L . The second one is a purely topological definition that uses the C∞-structure of
L . In particular, the presence of the second definition justifies the fact that on the
right-hand side of the Riemann–Roch theorem (Relation (1)) we see a topological
quantity. The third one arises from cohomology theory. We shall give it in Sect. 3
(cf. Relation (19)).

Let L be a line bundle and let σ a meromorphic section of L . The existence of
such a section will be justified in Sect. 6. Since the section σ is meromorphic and
X is supposed to be closed, it has a finite number of poles and zeros with order (or
multiplicity). It then leads to the first definition of degree.
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Definition 7 Given a meromorphic section σ of a line bundle L
π→ X , the degree

of L , denoted by deg (L) is

deg (L) = #Z(σ ) − #P(σ ), (9)

where Z (σ ) and P (σ ) are the sets of zeros and poles of σ counted with multiplicity,
respectively.

We first need to check that such a definition does not depend on the meromorphic
section σ . This is clear because if δ is another meromorphic section of L , then using
Relation (8) we deduce that σ

δ
is a meromorphic function on X , which by compactness

of X has the same number of poles and zeros.
This definition of degree implies directly that for p ∈ X

deg
(
Pp

) = −deg
(
Z p

) = +1. (10)

Indeed, it suffices to consider a meromorphic section σ of Z p given by {σi }i=0,1,
where σ1 ≡ 1 and σ0(q) = 1

z(q)
(where z is a coordinate of U0 centered at p). Due to

the transition function for Z p, it is indeed a meromorphic section of Z p. Furthermore,
this section has one simple pole at p, which implies that the degree of Z p is −1.
Using the same strategy for Pp, we can set τ1 ≡ 1 on U1 and τ0(q) = z(q) on U0

and observe that {τi }i=0,1 is a holomorphic section of Pp with a zero at p of order 1.
This implies that the degree of Pp is 1.

As we mentioned before, there exists another definition of the degree of a line
bundle, which involves only the differentiable structure of that line bundle. We know
that if L

π→ X is a holomorphic line bundle, then it can be interpreted as a C∞-vector
bundle of rank 2 over X , where X is considered as an orientable smooth manifold of
dimension 2. The orientation is given by the complex structure of X .

Let us choose a C∞-section s : X → L . Such a section always exists because
of the existence of partitions of unity for paracompact manifolds. We say that the
image of s intersects transversally the zero section s0 at p, if s (p) = (p, 0) and
dsp : Tp X → R

2 is one-to-one. Furthermore, since an orientation on L is prescribed
by the one of X , we assign +1 (resp. −1) at p if dsp preserves (resp. reverses) the
orientation.

We are now able to give the topological definition of the degree.

Definition-Theorem 8 Let L
π→ X , and s : X → L be a C∞-section. We call

degree of L
π→ X , the integer

deg (L) =
∑

y∈Im(s) |∩Im(s0)

±1.

We admit that this definition does not depend on the choice of the transverse
section.



396 N. A’Campo et al.

An immediate application of this definition is

deg (TX ) = χ (X) = 2 − 2g, (11)

which is also known as the Poincaré-Hopf index formula.
Moreover, let us give the idea for the passage from the meromorphic definition

of the degree to the topological one. We will restrict our arguments to the case
of the line bundle Z p. For this purpose, we deal with the meromorphic section
σ = {σi }i=0,1, which was used earlier, in order to prove that the degree of Z p is −1.
Let us recall that σ1 ≡ 1, and σ0(q) = 1

z(q) , where z is a local coordinate centered at
p. We define a C∞-section σ̃ as follows. We modify σ0 in order to obtain something
which is well-defined at p. Since p is a pole, |σ0(q)| diverges to +∞ as q → p
and then (up to rescaling) we can assume that U0 contains the unit disc. We set
σ̃0(q) = z(q) whenever |z(q)| ≤ 1 and σ̃0(q) = σ0(q), otherwise. We set σ̃1 such
that on U0 ∩ U1, σ̃1 = z · σ̃0 and on X\(U0 ∩ U1), σ̃1 ≡ 1. It is then elementary
to check that σ̃ = {̃σi }i=0,1 is a C∞-section, which intersects transversally the zero
section at p and reverses the orientation.

3 Sheaf Cohomology

This section is just a reminder about sheaf cohomology and is essentially based on
Sect. 3 of Chap. 0 from [6].

3.1 General Definition

We give here the general definition of a sheaf along with a few examples.

Definition 9 A sheaf F of abelian groups on X is a mapping which associates to
every non-empty open set U of X an abelian group F(U ) such that

(1) for every pair of open sets V ⊂ U in X there exists a group homomorphism
rU

V : F (U ) → F (V ), called the restriction morphism, satisfying

{
rU

U = idU ,

rU
W = r V

W ◦ rU
V for all open sets W ⊂ V ⊂ U in X,

(2) for every collection of non-empty open sets {Ui }i of X , setting U = ⋃
i Ui we

have the following:
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(a) given a collection (si )i of si ∈ F(Ui ), satisfying the compatibility relations,
namely, that if for any pair (si , s j ) corresponding to open sets with non-
empty intersection Ui ∩ U j �= ∅ we have

rUi
Ui ∩U j

(si ) = r
U j

Ui ∩U j

(
s j

)
,

then there exists s ∈ F (U ) such that rU
Ui

(s) = si for all i ;
(b) if s, t ∈ F (U ) are such that rU

Ui
(s) = rU

Ui
(t) for all i , then s = t .

We call an element of F (U ) a section of F over U .

Following the same pattern, we can define the notion of sheaves of vector spaces,
modules, rings etc. In our exposition, for simplicity, we shall use the term “sheaf”
for sheaf of abelian groups, as well as for sheaf of vector spaces or modules.

An important class of examples are sheaves of functions, i.e. we considerF(U ) as
a space of functions on U and the restriction morphisms rU

V as the usual restrictions
of functions to the subset V of U . The second condition in the definition of a sheaf
says that given a family of locally defined functions { fi }i , as long as the natural
conditions for existence of a global function f on U are satisfied, the global function
f exists and is unique. Note that the definition of a sheaf is “neutral” in the sense
that it does not require the existence of such a global function in F(U ).

Let us introduce sheaves that we will use in our setting. We denote by Z the sheaf
of locally constant functions on X taking values in Z, EX (resp. E∗

X ) the sheaf of
smooth functions on X with values in C (resp. C∗) and analogously, OX (resp. O∗

X )
the sheaf of (non-vanishing) holomorphic functions on X . More precisely, the sheafZ
is defined by setting Z(U ) = Z, the sheaf OX is defined by setting OX (U ) = O(U ),
where O(U ) denotes the set of holomorphic functions on U with values in C and
so on.

Let us close this subsection by introducing two more sheaves. For a fixed p ∈ X ,
we define Sp, the so-called skyscraper sheaf at p, by setting for any open set U of X

Sp (U ) =
{
C if p ∈ U,

{0} otherwise.

The last but important example arises from line bundles. Let L
π→ X be a line bundle.

We define the sheaf of holomorphic sections with values in L and denote it by L , by
setting

L (U ) = {s : U → L | π ◦ s = idU and s holomorphic} .
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3.2 Sheaf Cohomology

Let F be a sheaf on X . Fix U = {Ui }i∈I , an open covering of X . For k ∈ N, we define
the group Ck (U ,F) of k-cochains as the set of s = {

si0···ik

}
i0···ik∈I k+1 such that

si0···ik ∈ F (
Ui0 ∩ · · · Uik

)

and
∀σ ∈ Sk+1, siσ(0)···iσ(k)

= ε (σ ) si0···ik ,

where Sn is the group of all permutations on the first n integers and ε (·) is the
signature. We define the coboundary operator as the group morphism

qd : Ck (U ,F) → Ck+1 (U ,F)

such that for any s ∈ Ck (U ,F)

(
qds

)

i0···ik+1

=
k+1∑

j=0

(−1) j r
Ui0 ∩···∩Ûi j ∩···∩Uik+1

Ui0 ∩···∩Uik+1

(
si0···î j ···ik+1

)
.

For k ∈ N, we introduce the group of k-cocycles

Zk (U ,F) =
{

s ∈ Ck (U ,F) | qds = 0
}

,

and the group of k-coboundaries

Bk (U ,F) =
{{0} if k = 0,{

s ∈ Ck (U ,F) | ∃̃s ∈ Ck−1 (U ,F) with qds̃ = s
}

if k ≥ 1.

We can check that for all k ∈ N, Bk (U ,F) ⊂ Zk (U ,F). We now have all the ele-
ments for the following definition.

Definition 10 Let k ∈ N. We call the k-th cohomology group of F relative to U , the
quotient

qH k (U ,F) = Zk (U ,F)
/

Bk (U ,F) .

This definition depends on the choice of the covering. For this reason we define an
order relation ≤ on the set R of open coverings of X . Given two elements U = {Ui }i

and V = {
Vj

}
j of R, we say that V ≤ U if V is finer than U , meaning that for any i ,

there exists j so that Ui ⊂ Vj . This relation allows us to define cohomology groups
which do not depend on the choice of the covering. This definition is as follows.
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Definition 11 Let k ∈ N. We call the k-th cohomology group of F on X , the pro-
jective limit

H k (X,F) = lim−→
U∈R

qH k (U ,F) .

In practice, in order to compute a cohomology group of a sheaf, it suffices to consider
a sufficiently fine covering. This is justified by the following theorem that we admit.

Theorem 12 (Leray) Let U = {Ui }i∈I ∈ R such that

∀k > 0 and ∀i0 · · · iq , H k
(
Ui0 ∩ · · · ∩ Uiq

) = {0} .

Then
∀k ∈ N, H k (X,F) = H k (U ,F) . (12)

3.3 Examples of Cohomology Groups

The easiest cohomology group to compute is the zero cohomology group. Indeed, if
we consider the sheaf L associated with the line bundle L

π→ X , then

H 0 (
X, L

) = �hol (X, L) . (13)

The cohomology groups of skyscraper sheaves Sp for p ∈ X are also easy to
understand. Indeed, by taking a covering of X determined by two open sets such that
one of them does not contain p, we show that

H 0
(
X,Sp

) = C and ∀k ≥ 1, H k
(
X,Sp

) = {0} . (14)

We can also show, using the existence of partitions of unity that for any k > 0,

H k (X, EX ) = {0} . (15)

Still, again by the existence of partitions of unity, Eq. (15) remains true if one replaces
EX by an arbitrary sheaf of EX -modules.

Moreover, for any holomorphic line bundle L
π→ X , we define for p ∈ N, the

C-vector space of smooth (0, p)-forms with values in L , denoted by 

0,p
X (L). We

note that if p ≥ 2, then such a vector space is reduced to 0. Moreover, such a vector
space can be seen as a sheaf of EX -modules over X , denoted by 


0,p
X (L) and then

whenever q ≥ 1, we have

Hq
(

X,

0,p
X (X, L)

)
= {0} . (16)
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4 Further Preparations

4.1 Properties of Cohomology Groups

We can justify now that Pic (X) is canonically isomorphic to H 1
(
X,O∗

X

)
. Indeed,

Relation (5) shows that a cocycle, i.e. an element of H 1
(
X,O∗

X

)
, determines a line

bundle; and Relation (7) shows that two isomorphic line bundles define two identical
cocycles up to a coboundary. In other terms, two holomorphic line bundles that are
isomorphic define the same element in H 1

(
X,O∗

X

)
. By an analogous argument we

can show that H 1
(
X, E∗

X

)
represents the isomorphism classes (in the C∞-sense) of

line bundles of class C∞.
Recall that a sequence of groups and group homomorphisms

G0
g0−→ G1

g1−→ ...
gn−1−−→ Gn

is called exact, if Im gk−1 = ker gk holds for all k = 1 · · · n. A short exact sequence

is a sequence of the form 0 → A
f−→ B

g−→ C → 0. In this case, f is injective and
g is surjective. The long exact sequence is a sequence with infinitely many groups
and group homomorphisms. Similarly to sequences of groups, we define sequences
of sheaves.

Let us recall, without proof, an important result on group cohomology.

Property 13 (Snake Lemma) Let F , G and H be three sheaves such that

0 F G H 0

is an exact sequence of sheaves. Then we have a long exact cohomology sequence,
that is,

· · · H k (X,F) H k (X,G) H k (X,H)

H k+1 (X,F) H k+1 (X,G) H k+1 (X,H) · · · .

4.2 Chern Class and Degree of a Line Bundle

One of the immediate applications of Property 13 is the definition of the Chern class
of a holomorphic line bundle. Indeed, we have the following short exact sequence

O Z OX
exp(2 i π ·)O∗

X 0 (17)
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that induces the following long exact sequence

0 H 1 (X,OX ) H 1
(
X,O∗

X

) c
H 2

(
X,Z

) · · · . (18)

Thus, for any holomorphic line bundle L
π→ X , we can consider its class in

Pic (X), denoted by [L], which can be seen as an element of H 1
(
X,O∗

X

)
. The

Chern class of L is then

c1 (L) = c ([L]) ∈ H 2 (
X,Z

)
. (19)

It is known that H 2
(
X,Z

)
is identical to Z. Recalling that H 1 (X, EX ) represents the

C∞-isomorphism classes of complex line bundles over X , we define in an analogous
way the Chern class of a complex line bundle over X . This is justified by the following
short exact sequence

O Z EX
exp(2 i π ·)E∗

X 0. (20)

The Chern class is a topological invariant for line bundles in the sense that two
complex (not necessarily holomorphic) line bundles have the same Chern class if
and only if they are isomorphic in the C∞ sense. Indeed, since all holomorphic
functions are C∞, using (15), (17) and (20), we obtain the following diagram

H 1 (X,OX ) H 1
(
X,O∗

X

)

�

Z H 2 (X,OX )

0 H 1
(
X, E∗

X

)
Z 0.

(21)

Finally, we admit here that the Chern class corresponds to the degree defined in
Sect. 2.

4.3 Cauchy–Riemann Operator and Dolbeault Cohomology

We recall that for any holomorphic line bundle L
π→ X , we can define the Cauchy–

Riemann operator, denoted by ∂L and the operator ∂L . With such notation, the
associated exterior operator dL is equal to ∂L + ∂L . Some properties of the Cauchy–
Riemann operator will be recalled in the following section, but one of the main
properties is that this operator induces a short exact sequence of sheaves, that is,

0 L 
0,0
X (L)

∂L

0,1

X (L)
∂L

0. (22)
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The exactness of the sequence is given by the following lemma:

Lemma 14 (∂-Poincaré Lemma) Let U be an open subset of C and f ∈ C∞ (U ).
Then for all p ∈ U, there exist an open subset Vp ⊂ U containing p and g ∈ C∞ (

Vp
)

such that

∀z ∈ Vp, f (z) = ∂g

∂z
(z) .

Even if this theorem is well known to the reader, we shall give here a sufficiently
original proof.

Proof For simplicity, we assume that U = C. We will show this lemma only in the
case of p = 0. Let R be the square centered at 0, whose sides are of lengths 1 and
parallel to the axes. By a classical construction, we can find a C∞ function ρ on C

such that
∀ |z| < r1, ρ (z) = 1

and
∀ |z| > r2 > r1, ρ (z) = 0

with r1 < r2 < 1. Identifying the parallel sides of R, we can consider ρ · f as a C∞
function on the torus S1 × S

1. By general results on Fourier series we can say that

∀z = x + iy ∈ R, (ρ · f ) (z) =
∑

(n,m)

an,me2iπnx e2iπmy .

We then define for any z = x + iy ∈ R,

g (z) = a0,0z +
∑

(n,m) �=(0,0)

an,m

iπn − πm
e2iπnx e2iπmy .

Recalling that ∂
∂z = 1

2

(
∂
∂x + i ∂

∂y

)
, we have

∀|z| < r1,
∂g

∂z
(z) = f (z)

and then the lemma. �

The zero cohomology group being the set of global sections, applying Property
13 to Sequence (22), we obtain
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Theorem 15 (Dolbeault Theorem) Let L
π→ X be a holomorphic line bundle over

X. Then
H 1

(
X, L

) � H (0,1) (X, L) ,

where H (0,1) (X, L) = 
0,1
X (X)

/

∂L

(

0,0

X (L)
)

is called the (0, 1)-Dolbeaut coho-

mology group of the line bundle L
π→ X.

Furthermore, we note that there exists a natural “pairing” between 
0,1
X (L) and

�hol
(
X, K X ⊗ L⊗−1

)
defined in the following manner:


0,1
X (L) × �hol

(
X, K X ⊗ L⊗−1

) → C (23)

(s1, s2) 	→
∫

X
s1 ∧ s2.

Indeed, we can see an element of 
0,1
X (L) as the product σ × ω, where σ is a

C∞-section of the line bundle L
π→ X and ω is a (0, 1)-form on X . In the same

manner, an element of �hol
(
X, K X ⊗ L⊗−1

)
can be seen as the product δ × ν, where

δ ∈ �hol
(
L⊗−1

)
and ν is a holomorphic 1-form on X . We then have by Relation (8)

and the definition of L⊗−1 that σ × δ ∈ C∞ (X). Therefore, if s1 ∈ 
0,1
X (L) and s2 ∈

�hol
(
X, K X ⊗ L⊗−1

)
, then locally s1 ∧ s2 can be written as s1 (z, z) × s2 (z) dz ∧

dz. The map given by (23) is then well defined. Moreover, we note that if s1 =
∂Lσ where σ ∈ 
0,0

X (L), then applying the Stokes theorem we have for any s ∈
�hol (X, L) ∫

X
∂Lσ ∧ s = 0.

Hence, the map passes to the quotient, and by Theorem 15 we obtain the well-defined
map

H 1
(
X, L

) × H 0
(
X, K X ⊗ L⊗−1

) → C. (24)

We shall recall below that the operator ∂L is Fredholm. This implies that the con-
sidered cohomology groups are of finite dimension. However, we can prove that the
map (24) is non-degenerate in order to obtain

Theorem 16 (Serre Duality)

H 1
(
X, L

) � H 0
(
X, K X ⊗ L⊗−1

)
.

Another result that we shall use for the proof of Theorem 1 is the following.

Theorem 17 (Riemann Theorem)

H 0
(
X, K X

) � C
g.
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This theorem is justified in the following way. Knowing the de Rham cohomology,
we know that H 1

dR (X) � R
2g . Moreover, we can show that this group is canonically

isomorphic (in the real sense) to the vector space of harmonic 1-forms on X .3 Thus,
the vector space of harmonic 1-forms is isomorphic to the vector space of holomor-
phic 1-forms on X . The latter vector space corresponds by (13) to H 0

(
X, K X

)
, and

therefore Theorem 17 follows.

4.4 Index of the Cauchy–Riemann Operator

We have introduced for a line bundle L
π→ X , the differential operator ∂L . Theorem

15 can be restated in the form of the following exact sequence

0 �hol (X, L) 
0,0 (X, L)
∂L


0,1 (X, L)

H 1
(
X, L

)
0.

(25)

In other terms, we have ker ∂L = �hol (L) = H 0
(
X, L

)
and coker ∂L = H 1

(
X, L

)
.

Moreover, it is known that this operator is elliptic and thus is Fredholm.
We recall that given two vector bundles E and F over X , a differential operator

D : C∞ (X, E) → C∞ (X, F), where C∞ (X, E) (resp. C∞ (X, F)) denotes the set
of C∞-sections with values in E (resp. F), is Fredholm if

• ker D and coker D are of finite dimension,
• Im (D) is closed.

To such an operator D, we can associate an integer called the index of D which is
defined as follows:

Ind (D) = ker D − coker D.

Moreover, and we assume it here, adding an operator of sufficiently small norm to a
Fredholm operator does not change the index.

The Cauchy–Riemann operator ∂L being a Fredholm operator, its kernel and
cokernel are of finite dimension and thus by (25), we have

Ind ∂L = dim H 0
(
X, L

) − dim H 1
(
X, L

)
. (26)

Another important result is the following.

3In the literature, this result, also true in higher dimensions, is called the Hodge theorem.
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Property 18 Let L0
π0→ X and L1

π1→ X be two line bundles such that

deg (L0) = deg (L1) .

Then
Ind ∂L0 = Ind ∂L1 .

Indeed, if L0
π0→ X and L1

π1→ X have the same degree, then they belong to the
same connected component of Pic (X). We can thus find a family depending on a
parameter {Lt }0≤t≤1 of holomorphic line bundles of the same degree. We can thus
consider for all t ∈ [0, 1], the operator ∂Lt . We can show that for t sufficiently close
to 0, the norm of the operator ∂Lt is very close to the one of ∂L0 and thus since
the operators are Fredholm, the corresponding indices do not change. Choosing as
needed a sufficiently fine subdivision of [0, 1], we deduce Property 18.

5 The Riemann–Roch Theorem

Now we are ready to state and prove Theorem 1.

Theorem 19 Let X be a closed Riemann surface of genus g ≥ 2 and L
π→ X a

holomorphic line bundle over X. Then

Ind ∂L = deg (L) − g + 1. (27)

Proof We will argue by induction on the degree of the line bundle. If the holomor-
phic line bundle is of degree 0, then by Property 18, the index of the corresponding
Cauchy–Riemann operator is the same as the one associated with the trivial bundle
X × C. We can thus assume that L is the trivial bundle. Since X is closed and holo-
morphic sections with values in the trivial bundle are exactly holomorphic functions
on X , they are constants. Hence, we obtain H 0

(
X, X × C

) = C. Moreover, by Serre
duality (see Theorem 16), H 1

(
X, X × C

) � H 0
(
X, K X

)
and thus by Theorem 17

we deduce that

dimC H 0
(
X, X × C

) − dimC H 1
(
X, X × C

) = 1 − g.

The degree of the trivial bundle being zero, the theorem is verified.
We fix from now on some p ∈ X .
Let us assume that the theorem is true for all line bundles of degree n ≥ 0. Let

L
π→ X be a holomorphic line bundle of degree n + 1. Due to notions that were

introduced in the previous sections, we have a short exact sequence of sheaves

0 L ⊗ Z p L v Sp 0, (28)
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where v is the map which assigns for any open set U and any holomorphic section
σ , the complex number σ(p) if p ∈ U , and 0 otherwise. Sequence (28) induces a
long exact cohomology sequence and then using Relations (14) we have

Ind ∂L = Ind ∂L⊗Z p + 1. (29)

Moreover, by the additivity of the degree (or of the Chern class) we have by (10)

deg
(
L ⊗ Z p

) = deg (L) − 1. (30)

Applying the induction hypothesis to the line bundle L ⊗ Z p, we have

Ind ∂L⊗Z p = deg
(
L ⊗ Z p

) − g + 1

and then by (29) and (30) we deduce that

Ind ∂L = deg (L) − g + 1,

and then the theorem.
Let us assume finally that the theorem holds for all line bundles of degree n ≤ 0.

We will argue as before, except for the fact that we shall consider for L
π→ X a line

bundle of degree n − 1, and the following short exact sequence:

0 L L ⊗ Pp
Res Sp 0, (31)

where Res is the mapping that assigns to every locally holomorphic section of L ⊗ Pp

(and then to every meromorphic section with at most one simple pole at p), the
residue at p. This sequence allows us to increase the index by 1 and then, again by
the additivity of the degree, we conclude the proof of Theorem 19. �

We can justify now that the set M (X) of meromorphic functions is non-trivial.
Indeed, we have:

Proposition 20 Any Riemann surface of genus g ≥ 2 admits an infinite number of
non-constant meromorphic functions.

In particular, any holomorphic line bundle over a Riemann surface of genus g ≥ 2
admits an infinite number of meromorphic sections.

Proof For some arbitrary p ∈ X and for some holomorphic line bundle L
π→ X , we

have, taking if necessary k ∈ N big enough, that

deg
(
L ⊗ P⊗k

p

) − g + 1 ≥ 2
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and then by the Riemann–Roch theorem

dim H 0
(

X, L ⊗ P⊗k
p

)
≥ 2.

By (13), we deduce that there exist two linearly independent meromorphic sections
σ1 and σ2 of L , which proves the second statement of the proposition. Furthermore,
σ1/σ2 defines a meromorphic (non-constant) function on X . �

6 Divisors and the Riemann–Roch Theorem

In this section we shall restate Theorem 1 in a formalism more familiar to algebraic
geometers. For this purpose, we shall recall the notion of a divisor on X and how the
notions of holomorphic line bundle and divisor on X are related to each other.

We recall that a divisor D on X is a formal sum

D =
∑

p∈X

n p · (p) ,

where
(
n p

)
p ⊂ Z are zero except for a finite number of points.

The set of divisors on X , denoted by Div (X), is naturally equipped with a com-
mutative group structure.

To a divisor D = ∑
p∈X n p · (p) we define its degree deg (D), as

deg (D) =
∑

p∈X

n p.

We shall say that a divisor D is effective, if its coefficients n p are non-negative.
We shall denote this by D ≥ 0.

The first examples of divisors on X are given by meromorphic functions on X .
Indeed, if f is such a function, then

( f ) =
∑

p∈X

ordp ( f ) · (p)

defines a divisor.
We call a principal divisor, a divisor that arises from a meromorphic function and

we denote by Div P (X) the subgroup of such divisors. Let us recall again that by
compactness of X , any principal divisor has degree 0.
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There exists a “natural” correspondence between divisors on X and line bundles
over X . Such a correspondence is given by the following construction. Let D =∑

i ni pi be a divisor on X . We set

L D =
⊗

i

Pni
pi

=
⊗

n p>0

P
⊗n p
p

⊗ ⊗

n p<0

Z
⊗−n p
p , (32)

which is a line bundle over X whose degree is exactly the same as D.
This correspondence descends to a group homomorphism between

Div (X)
/

Div P (X) and the group of holomorphic line bundles up to isomorphism,
that is, Pic (X). Actually, we shall see that thanks to the two following properties
this homomorphism is an isomorphism.

Proposition 21 L D is isomorphic to a trivial line bundle if and only if D is a prin-
cipal divisor.

Proof Assume that L D is isomorphic to a trivial line bundle via g. Using Relation
(32) and a similar construction as what we did in order to prove Relation (10), we
can construct a meromorphic section σD of L D with (σD) = D. Therefore, g ◦ σD

can be seen as a meromorphic function on X with zeros and poles prescribed by D,
and then D = (g ◦ σD) is a principal divisor.

Conversely, let D = ( f ) be a principal divisor associated with the meromorphic
function f . In addition, as previously, L D admits a meromorphic section σD such
that (σD) = D = ( f ), i.e. σD and f have the same number of zeros and poles. Then,
f/σD defines an isomorphism between L D and X × C. �

Proposition 22 Any line bundle induces a divisor.

Proof Let L
π→ X be a line bundle. By Proposition 20, there exists a meromorphic

section σ with values in this line bundle. Similarly as in the case of functions, we
can assign to σ a divisor (σ ) and then another line bundle, denoted by L(σ ). Using
the same method as previously, we show that σ induces an isomorphism between
L(σ ) and L . Indeed, let us assume for simplicity that σ admits a simple zero at p and
a pole of order 2 at q. Taking sufficiently small open sets, we can assume that the
covering {Ui }i induces a system of trivializations of L with transition functions

{
ci j

}

such that U1 et U2 are two disjoint open sets containing p and q respectively. We
thus have a family of meromorphic functions {σi }i such that whenever Ui ∩ U j �= ∅,

σ j = ci jσi .

By hypothesis on the section σ , we have σ1 (z) = zσ̃1 (z) and σ2 (z) = 1
z2 σ̃2 (z). Let

us set for all i > 2, σ̃i = σ|Ui
. We then have, by Relation (7), that the family {̃σi }

defines an isomorphism between L(σ ) = Pp ⊗ Z⊗2
q and L . �
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Let us show now that Theorems 1 and 2 are equivalent. In order to do this, let us
fix a divisor D on X . We define the C-vector space

L (D) = { f ∈ M (X) | ( f ) + D ≥ 0} ∪ {0} (33)

and we set
l (D) = dim L (D) . (34)

We have a natural isomorphism between L (D) and H 0
(
X, L D

)
. Indeed, even

if the argument that follows has already been used, it may be important to recall
it. For simplicity, we suppose that D = (p). We then have two open sets U0 and
U1 that define the line bundle L D = Pp. Let us consider a meromorphic function f
from the set L (D). Therefore, f admits at most one simple pole at p, from where
on U1, f (z) = 1

z f̃ (z), with f̃ holomorphic. The set of {gi }i=1,2, where g1 = f̃
and g2 = f|U2

defines a holomorphic section of L D and justifies the isomorphism.
Furthermore, let us take a meromorphic 1-form ω0, that is an element of K X and set
for any divisor D

l (K X − D) = l ((ω0) − D) .

This is well defined since the quotient of two meromorphic 1-forms is a meromorphic
function. We then deduce that

l (K X − D) = dim H 0
(

X, L K X −D

)
= dim H 0

(
X, L K X ⊗ L⊗−1

D

)

which by Theorem 16 proves the second version of the Riemann–Roch theorem,
namely Theorem 2.

7 The Use of the Riemann–Roch Theorem in Teichmüller’s
Work

Let us close this chapter by writing a few words about Teichmüller’s work. For this
purpose we assume that X is a closed Riemann surface of genus g ≥ 0, with n distin-
guished inner points, b boundary components, and k distinguished boundary points.
For such a Riemann surface, Teichmüller introduced in [11] the set of topologically
determined principal regions which is now called Teichmüller space and which is a
non-singular covering of the so-called moduli space. He proved that it is a differen-
tiable manifold and justified4 (using extremal quasiconformal mappings) that such a
space is homeomorphic to a space of quadratic differentials.

4We say “justified” because there is a gap in his justification in [11] which is filled in for closed
Riemann surfaces in his other paper [13].
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By using the same formalism as in Sect. 6 for the Riemann–Roch theorem, namely
Theorem 2, Teichmüller first deduced in Chap. 13 (named the Rieman–Roch theo-
rem) the (real) dimension of the Teichmüller space of a closed Riemann surface of
genus g ≥ 2 is exactly 6g − 6, confirming an assertion5 made by Riemann about the
number of parameters which entirely caracterizes the moduli space of such a surface.
Then, by a “doubling” process he deduced the dimension of the Teichmüller space
of X at the last part of Chap. 21. The dimension is deduced by the following sentence
(see p. 409 of the English translation):

The difference between the maximal number of real-linearly independent quadratic dif-
ferentials that have at most first-order poles at the distinguished points and the maximal
number of real-linearly independent everywhere finite inverse differentials that vanish at the
distinguished points is always equal to

−6 + 6g + 2n + 3b + k.

Indeed, the real vector space of such quadratic differentials is homeomorphic to the
Teichmüller space and the dimension of the vector space of such inverse differentials
can be seen as the “number of parameters for the continuous group of conformal
self-mappings” of X . This consititutes one of the first major applications of the
Riemann–Roch theorem.

We finally say that Teichmüller in [12] gave a generalization of the Riemann–Roch
theorem using Lie theory. See [2] for the corresponding commentary.
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1 Introduction

With hisHabilitationsvortrag of 1854, Riemann opened up a great number of vistas.
Its first paragraph indicates Riemann’s disagreement with the conventional, Euclid-
ean approach to the foundations of geometry:

Bekanntlich setzt die Geometrie sowohl den Begriff des Raumes, als die ersten Grundbe-
griffe für die Constructionen im Raume als etwas Gegebenes voraus. Sie giebt von ihnen
nur Nominaldefinitionen, während die wesentlichen Bestimmungen in Form von Axiomen
auftreten. Das Verhältniss dieser Voraussetzungen bleibt dabei in Dunkeln; man sieht weder
ein, ob und in wie weit ihre Verbindung nothwendig, noch a priori, ob sie möglich ist.1

Here we find, for the first time (as noticed by Ferreirós [21, p. 69]), a statement
of the requirement that the consistency of an axiom system be proved (“ob ihre
Verbindung [die Verbindung der Voraussetzungen] möglich ist” (“whether their [the
assumptions’] association is possible”). Expressed in a modern language unavailable
in his time, Riemann would ask, given axioms α1, . . . , αn , for a proof that their
Verbindung (“association”) α1 ∧ . . . ∧ αn is satisfiable. There is a requirement of
the independence of the axioms implicit in the phrase “ob […] ihre Verbindung
nothwendig ist” (“whether […] their association is necessary”), as well as one asking
for the structure of the models of independence of an axiom, implicit in the request
to find out “in wie weit ihre Verbindung nothwendig [ist]” [“to what extent their
association is necessary”].

It will become apparent during this survey that Riemann’s critique no longer
applies to the modern axiomatization of geometry, that the “assumptions” have been
weakened, producing a very general notion of “geometry,” and that the “relations
between” these “assumptions” are no longer “obscure.”

The great breakthroughs theHabilitationsvortrag contains, pertaining to the con-
cept of a differentiable manifold and to that of Riemannian geometry, have been
analyzed in detail in [11–14, 21, 54, 82–84], and will not be referred to in the
sequel.

There is no doubt in our minds regarding the visionary value of the Habilita-
tionsvortrag or of its importance for the foundations of geometry. Our goal is to
indicate how the aims Riemann had in mind when he provided a solid foundation for
geometry, leading to spaces of constant curvature, can be reached from a different
point of view, using advances in abstract algebra, logic, and our understanding of the
structure of the Universe, none of which were present in any usable form in 1854.

Riemann’s overall aim can be read from his critique of past attempts, and from
his own proposal. What he dislikes in the old axiomatic approach is the fact that one
lonely geometry appears at the end of a list of axioms, making it very hard, if not

1“As is well known, geometry assumes as given both the notion of space and the fundamental
notions for constructions in space. If offers merely nominal definitions for these notions, whereas
the essential determinations appear in the form of axioms. In the process, the relation between these
assumptions remains obscure; we neither realize whether and to what extent their association is
necessary, nor a priori, whether it is possible.” (all translations are by V. Pambuccian).
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impossible, to judge the contribution of the individual axioms. Nor is there a funda-
mental concept of space available, which allows, by adding new axioms, (hypotheses
as Riemann would say, to emphasize their arbitrary nature, as opposed to axioms,
which were thought to be true), to obtain a wide variety of geometries. It wasn’t quite
true that this did not exist at all in 1854, but it is apparent that Riemann had no knowl-
edge of it, since he cites only Euclid and Legendre as precursors in the foundations of
geometry. In §15 of his Appendix of 1832, J. Bolyai had defined absolute geometry,
a geometry worthy of being considered a scientiam spatii, that did allow the addition
of further hypotheses to reach more specific geometries. Riemann’s aim, of starting
with an n-dimensional manifold, and then adding a metric, is certainly much more
bold, and offers a far more general notion of space. However, that approach, although
very general from one point of view, is extraordinarily restrictive from another point
of view. It stipulates that space be continuous, and be modeled by the real numbers.
Riemann is very well aware that this is a hyothesis, i.e., that it is not a self-evident
truth. He writes:

Die Frage über die Gültigkeit der Voraussetzungen der Geometrie im Unendlichkleinen
hängt zusammen mit der Frage nach dem innern Grunde der Massverhältnisse des Raumes.
Bei dieser Frage, welche wohl noch zur Lehre vom Raume gerechnet werden darf, kommt
die obige Bemerkung zur Anwendung, dass bei einer discreten Mannigfaltigkeit das Princip
der Massverhältnisse schon in dem Begriffe dieser Mannigfaltigkeit enthalten ist, bei einer
stetigen aber anders woher hinzukommen muss. Es muss also entweder das dem Raume
zu Grunde liegende Wirkliche eine discrete Mannigfaltigkeit bilden, oder der Grund der
Massverhältnisse ausserhalb, in darauf wirkenden bindenen Kräften, gesucht werden.2

This concernwith the discrete in the context of “metric relations” is highly unusual
for the prevailing zeitgeist. Riemann very likely expressed it due to the acknowledged
influence the philosopher Johann Friedrich Herbart (1776–1841) had on his own
philosophical outlook (the only other acknowledged influence being that of Gauß).3

Among the five ideas from Herbart’s works that “gave rise to many of Riemann’s
epoch-making speculations,” ([77, p. 63]) Bertrand Russell lists Herbart’s “general
preference for the discrete above the continuous.” ([77, pp. 62–63]).

Riemann was interested in the connection between geometry and physics, in
particular the spatial structure of the Universe. The recent realization that space very
likely exhibits a granular structure (see [76] for a contemporary point of view, and
[35, p. 705] for the same realization a century ago, in Hilbert’s words “ein homogenes
Kontinuum, das die fortgesetzte Teilbarkeit zuliesse und somit das Unendlich-Kleine
realiseren würde, [wird] in der Wirklichkeit nirgends angetroffen. Die unendliche

2The question of the validity of the hypotheses of geometry in the infinitely small is connected
with the question of the intrinsic reasons for the metric relations of space. It is in this last question,
which may still be regarded as belonging to the doctrine of space, that the remark made above finds
its application, viz. that in the case of a discrete manifold, the principle of its metric relations are
already contained in the very notion of this manifold, whereas in the case of a continuous manifold,
this principle must come from somewhere else. Thus either the underlying reality of space must
form a discrete manifold, or else we must seek the reason for its metric relations outside it, in
binding forces acting upon it.
3See [111, 2.2.10] for more on the influence of Herbart.
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Teilbarkeit eines Kontinuums ist nur eine in Gedanken vorhandene Operation, nur
eine Idee, die durch unsere Beobachtungen der Natur und die Erfahrungen der Physik
und Chemie widerlegt wird.”4) makes a search for a foundation of geometry that
would not be completely dependent on the real numbers desirable from this point of
view as well.

Most mathematicians, in Riemann’s time and at present, work inside well-
established theories and objects, inside a social consensus of what is acceptable
and what not. A very small minority, among whose ranks one could, in his own time,
consider J. Bolyai and N. I. Lobachevsky to belong, develop a firm belief in the valid-
ity of a well-reasoned vision that does not yet have a place in the world of socially
accepted mathematical practice. An idealist strain is at work here, one for which
what is born of exact thought is primordial, one for which “in the beginning was
the word.” This approach looks at mathematics as the art of producing new insights
from a few basic principles, that have been singled out as “hypotheses,” central to
the envisioned realm of discourse. The idealist approach originates with the ancient
Greeks, and it is no wonder that some of its early practitioners in modern times, in
particular Russell and Hilbert, were under their spell.

As the author of the Habilitationsvortrag, Riemann is an accomplished idealist.
He emphasizes the hypothetical character of the assumptions, finds it necessary to
justify at length the choice of continuous rather than discrete scales, and—much
like Lobachevsky and Bolyai before him—has no problem believing in the truth of
his “Riemannian manifolds” more than 100 years before they were shown to exist
globally in the sense concretemathematical practicewould deem convincing, namely
as submanifolds of a Euclidean space with the induced metric. That was the way 2-
dimensional manifolds had been first considered by Gauß and the representation of
a part of the hyperbolic plane in that manner by Beltrami in 1868 was the turning
point eventually leading to the social acceptance of hyperbolic geometry.

Few abstractly existing entities, without a concrete model, had been put forward
before (such as complex numbers), and certainly none of that level of complexity.

Approaches that were not accessible in 1854 were those involving groups, whose
abstract concept had only appeared that same year, in Cayley’s papers. Nor was there
any awareness of the complexities involved in providing a foundation ex nihilo for
the real numbers. With our current knowledge, we know that the real numbers, if
they are to receive a foundation from the ground up, in the idealist manner, require
the language of set theory and its axioms. As Skolem had emphasized since 1923,
and as has become commonly accepted (see [18]) for the past 70 years or so, in the
words of J. Ferreirós,“if we are interested in producing an axiomatic system, we can
only use first-order logic.” [20, p. 472]) Andwithin first-order logic, the real numbers

4A homogeneous continuum, that would allow indefinite divisibility and would thus achieve the
infinitely small, cannot be encountered anywhere in nature. The infinite divisibility of the continuum
is an operation existing only in thought, only an idea, which is refuted by our observations of nature
and by the experience drawn from physics and chemistry.
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cannot be axiomatized on the basis of addition, multiplication, some constants, and
the order relation. They do require all of set theory, which means the foundation for
all of mathematics.

Riemann had no reason to doubt the fundamental nature of the real numbers, as
their only competition in the world of Grössenbegriffe, which Riemann mentions
when referring to discrete or continuous Bestimmungsweisen, were the natural num-
bers. In that foundationally innocent time before 1854, the notion of a field was
non-existent, nor was there any doubt that Archimedeanity is a fundamental attribute
of any Grössenbegriff.

We should mention from the start of our alternative approach—one that bears no
direct relation to Riemann’sHabilitationsvortrag—that no elementary account of the
foundations of geometry (i.e., no first-order axiomatization) can ever hope to provide
a foundation for the bewildering variety of Riemannian manifolds, i.e., to have all
of them among its models. What we can do inside our elementary approach is to do
justice to Riemann’s desire of starting with a very general notion of space that allows,
through a step by step process (often referred to as a Stufenaufbau in German), for the
foundation of the essentially geometric scaffolding of spaces of constant curvature
(the differential geometric story of which has been told elsewhere, see [114]).

Despite the apparent differences in these two approaches, there are historical
connections inexorably leading from Riemann to Hilbert, and then to Hjelmslev, to
Hilbert’s student Arnold Schmidt, and finally to Bachmann. In the fourth appen-
dix to his Grundlagen der Geometrie, Hilbert starts with “the studies of Riemann
and Helmholtz on the foundations of geometry”,5 which have led (“veranlaßten”)
Lie to approach the problem by using the concept of a group. He then proposes
his own version of what we call today the Riemann-Helmholtz-Lie space problem
in both topological and group-theoretical terms. On the last page of that appendix,
Hilbert points out that the difference between the approach mixing topology with
group theory and that of the “main part” (“Hauptteil”) of the book lies in the place
occupied by the axiom of continuity in the scaffolding of the axiom system. In the
fourth appendix Über die Grundlagen der Geometrie, continuity is assumed from
the start, so comes first, whereas in the axiom system of theGrundlagen der Geome-
trie it comes last, to allow for a continuity-independent development of elemen-
tary geometry. Bachmann’s approach, which will be followed closely in this survey,
can be seen as combining the group-theoretical aspect present in Hilbert’s fourth
appendix, and originating in the Riemann-Helmholtz-Lie space problem, with the
continuity-independent approach found in the elementary foundation of geometry—
along ancient Greek lines going back toAristotle’sPosterior Analytics—in the “main
part” of the Grundlagen der Geometrie. It was precisely the Aristotelian approach
that had been completely forgotten, and was nowhere present in the mathematics of
the first half of the 19th century. Up until the modern axiomatization of arithmetic
and geometry, the zeitgeist was one of the belief in the unity of all mathematics,
in the spirit of Plato (see [46]). There was no sense to be made out of Aristotle’s

5Die Untersuchungen von Riemann und Helmholtz über die Grundlagen der Geometrie.
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Posterior Analytics, A 7, 75a38-b20, the first half of which reads (in the translation
of Theophilos Kouremenos):

It follows that it is impossible to prove something by passing to it from another kind, e. g.
to prove a geometrical truth with arithmetic. For there are three elements in demonstration:
what is proved, the conclusion (which is an attribute belonging to a kind in itself); the axioms
(which are premises of the proof); third, the underlying kind whose attributes and properties
that hold of it in itself are revealed by the demonstration. The axioms, which are premises of
demonstration, may be identical in two or more sciences: in the case of two different kinds
such as arithmetic and geometry, however, you cannot fit arithmetical demonstration to the
attributes of magnitudes, unless the magnitudes in question are numbers; how this is possible
in certain cases I will explain later. Arithmetical proof always has its own kind, and so do the
proofs in the other sciences. Thus, if a proof is to cross from one science to another, the kind
must be the same absolutely or to some extent. Otherwise crossing is evidently impossible
since the extreme and the middle terms must come from the same kind; for, if they do not
hold in themselves, they hold incidentally.

At the start of the modern axiomatic approach we have Pasch, who in 1882 pro-
vided a modern axiomatic foundation for ordered geometry (see [67] for details
on their possible axiomatizations). These can be considered, in a certain sense, the
elementary version of differentiable manifolds, given that there is only a topology
present (the one induced by the order relation), but no metric, i.e., no notion of
orthogonality or congruence. In dimensions ≥3, these spaces are, however, much
more rigidly structured than manifolds, given that they have to be Desarguesian, i.e.,
that they can be embedded in projective spaces over ordered skew fields. In trying
to mimic Riemann’s approach, one could start with ordered spaces and then add a
notion of orthogonality or congruence to obtain elementary versions of spaces of con-
stant curvature. This would roughly correspond to the approach present in Hilbert’s
Grundlagen der Geometrie of 1899. There the axioms are divided into groups. The
first group consists of incidence axioms, the second group of order axioms, the third
group of congruence axioms. Taken together, the three groups axiomatize an ele-
mentary (i.e., first-order) version of J. Bolyai’s absolute geometry.

We will follow instead a different Stufenaufbau, that starts with a bare bones
orthogonality structure, in which there is neither order nor the various forms of
free mobility that Riemann asks of his geometry, nor the possibility of embedding
the structures in Euclidean spaces over the real numbers. This originates, to a cer-
tain extent, in Hilbert’s work (see also [68]), for he states, in the conclusion of his
Grundlagen der Geometrie, that he was led throughout by the fundamental principle
(Grundsatz):

eine jede sich darbietende Frage in der Weise zu erörtern, daß wir zugleich prüften, ob ihre
Beantwortung auf einem verschiedenen Wege mit gewissen eingeschränkten Hilfsmitteln
möglich ist.6

6To treat any question that might arise in a manner which also allowed us to check whether its
answer is possible by a different route with certain restricted means.
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This purelymetric7 treatment of geometry startedwith the 2-dimensional case, and
is due, in large measure, to J. Hjelmslev. It was he who, in [36], had the deep insight
that line-reflections have certain properties that are independent of any assumption
regarding parallels, and thus absolute. Line-reflections—and with them the crucial
three-reflection theorem, stating that the composition of three reflections in lines
which have a common perpendicular or a common point must be a line-reflection—
had been the subject of earlier studies, such as [31, 33, 89, 113]. However, in these
works, line-reflectionswere treated inside the particular geometry at hand (Euclidean,
hyperbolic, or elliptic), and not independently of it, as they were by Hjelmslev, who
carried on this line of research in [37]. Many more geometers—whose contributions
are chronicled in [7, 38]—have helped build up geometry in terms of line-reflections.
Their work helped remove order or free mobility assumptions. What is left after the
removal work was done consists of the three-reflections theorem, beside very basic
axioms stating that there are at least two points, that there is exactly one line incident
with two distinct points, that perpendicular lines intersect, and that through every
point there is a perpendicular to any line, which is unique if the point and the line are
incident. The final touch in carving this austere axiom system came from Bachmann
[4], who showed that two axioms from the axiom system ofHilbert’s student Schmidt
[80] are superfluous.

Later, several ofBachmann’s students andother geometers extended the reflection-
geometric axiomatization to higher-dimensional and to dimension-free geometries.
It is these geometries that we consider to be the elementary (first-order) counterpart
of Riemannian manifolds. They share the following characteristics: (i) they are both
defined as abstract structures, which can be shown—with great effort—to be embed-
dable in some Euclidean space (in the case of Riemannian manifolds) or in some
projective-metric space (in the case of reflection geometries); (ii) they both allow the
definition of a notion of orthogonality (in the case of Riemannian manifolds on the
tangent space of each point), defined by a bilinear symmetric map (which is given
a priori in the Riemannian case, while it is discovered through the hard work of a
representation theorem in the case of reflection geometries). Since the symmetric
bilinear map is left unspecified, except for the restriction that the radical (orthogonal
complement) of the quadratic space it determines be ≤1, in the case of reflection
geometries, the notion of space thus created is one of wide generality.

Much like in the case of Riemannian manifolds, some of which were known in
the 2-dimensional case as surfaces in 3-dimensional Euclidean space, variants of the
reflection-geometrically defined geometries had been studied earlier as inhabitants of
projective-metric spaces. Understanding a metric geometry inside a projective space
originated in the discovery of Cayley [15] and Klein [42] that projective geometry
allows the introduction of metric concepts. By distinguishing an absolute figure (the
absolute) in a real projective manifold, they were able to introduce a projective
measure (Maßbestimmung). Metrical properties became properties of the relation of

7Throughout this paper metric will always refer to a structure with an orthogonality relation or in
which one such relation can be defined. It is in no way related to metrics defined as distances with
real values.
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a figure to the absolute and the projectiveMaßbestimmung “blazed a convenient road
through [the] jungle undergrowth of Lobachevsky’s computations.”8

In the Euclidean case the absolute is a degenerate imaginary conic, consisting of
a couple of complex points, called “the circular points at infinity” (see [92, II §8] or
[42]). If the two complex circular points are replaced by a real non-degenerate conic
then the associated geometry is the geometry of Bolyai and Lobachevsky, commonly
referred to, following Klein, as hyperbolic. If the absolute non-degenerate conic is
imaginary, then the associated geometry is, again following Kleinian terminology,
elliptic. Elliptic geometry is the spherical geometry of Riemann if antipodal points
are identified, so that any two points have a unique joining line. The incidence
structure of an elliptic plane, i.e., an elliptic plane in which one “forgets” the metric
structure, is a projective plane. Elliptic lines are unbounded9 but of finite length—a
distinction which Riemann emphasized in section III.2 of his Habilitationsvortrag
with the words:

Bei der Ausdehnung der Raumconstructionen in’s Unmessbargrosse ist Unbegrenztheit und
Unendlichkeit zu scheiden; jene gehört zu den Ausdehnungsverhältnissen, diese zu den
Massverhältnissen.10

Klein made a systematic analysis to determine all projective measures of a pro-
jective space and described the associated Euclidean and non-Euclidean geometries
which are nowadays commonly referred to as Cayley-Klein geometries. He himself
was initially reluctant to refer to them as geometries, for although they have “from
a logical point of view equal rights beside Euclidean geometry”,11 “they are in part
not usable for measurements in the outside world”,12 so he preferred to refer to them
asMaßbestimmungen. With the advent of relativity theory, he changed his mind and
pointed out that all the geometries underlying the newly proposedmodels of “space”,
be they Minkowski space or de Sitter space, were among the “geometries” for which
he had reserved the more modest term “projective measure”.

Cayley and Klein showed that both Euclidean and hyperbolic geometry are subor-
dinate to projective geometry, and that the only difference—from a projective point
of view—is in the choice of the absolute. Moreover, all Cayley-Klein geometries
are independent entities in their own right, in the sense that they do not need to be
considered as geometries embedded in projective geometry. The fact that, even if the

8“bahnt eine bequeme Straße durch…[das] Urwaldgestrüpp der Lobatschefskijschen Rechnungen”
[42, p. 277].
9In the sense that there are no boundaries to a line, that one can travel along one without ever
reaching anything remotely resembling an end, or, in Euclid’s own formulation, in Postulate 2 of
Book I of the Elements, it is always possible “To produce a finite straight line continuously in a
straight line.”.
10When space-constructions are extended toward the unmeasurably large, one must distinguish
between unboundedness and infinitude; the former belongs to the realm of extension, the latter to
the that of measure.
11“stellen sich vom logischen Standpunkte aus gleichberechtigt neben die euklidische Geometrie”
[42, p. 164].
12“da sie zum Teil nicht für Messungen in der Außenwelt verwendbar sind.” [42, p. 164].
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Cayley-Klein geometries are abstractly defined, they end up being embeddable in a
projective space with a projective metric, is a remarkable result, referred to as the
Begründung (grounding) of a geometry. It is worth mentioning that such a Begrün-
dung cannot proceed by constructing a model in Euclidean space, such as a sphere
model of elliptic geometry, for such constructions presuppose Euclidean geometry
rather than happen inside the neutrality of the projective setting.

This Cayley-Klein approach was not without its critics from an epistemological
point of view. Its fundamental problem, as pointed out by Russell in his Foundations
of Geometry [77, p. 31], was one of circularity (see also [26, Chaps. 1–3]):

But what are projective coordinates, and how are they introduced? This question was not
touched upon inCayley’sMemoir, and it seemed, therefore, as if a logical errorwere involved
in using coordinates to define distance. For coordinates, in all previous systems, had been
deduced from distance; to use any existing coordinate system in defining distance was,
accordingly, to incur a vicious circle.13

This criticism asks one to justify in a purely geometrical manner the introduction
of coordinates in geometry to validate the Cayley-Klein approach. This problem had
been left unanswered for a very long time afterDescartes showed that geometry canbe
practised inside a coordinate structure without providing reasons why synthetically
given geometry can be coordinatized. In other words, the problems was to indicate
how numbers or magnitudes show up in a realm like that of synthetic geometry, in
which they do not belong to the vocabulary of its axiom system. This question was
first answered by Schur [89, 90], and made widely known for Euclidean geometry
by Hilbert in the Grundlagen der Geometrie with his arithmetic of line segments
(Streckenrechnung). It is also addressed in [42, Kap. V] for the projective case to
ensure that the construction of non-Euclidean geometries does not depend upon the
specifically Euclidean coordinatization process. For absolute geometry, where the
task is significantly more complex, it was Hjelmslev and Bachmann who provided
the coordinatization of an abstractly presented geometry by means of their calculus
of reflections. This method turns out to be applicable to all Cayley-Klein geometries.

Our aim is to survey results of what can be considered the modern axiomatic
foundation of geometry. This will bring to light the little known fact that this is
a field of research with its own challenging problems, rather than one of largely
historical interest.

Given the axiomatic nature of our undertaking, one needs a language in which to
write the axioms, and a logic by means of which to deduce consequences from those
axioms. Based on the work of Skolem, Hilbert and Ackermann, Gödel, and Tarski,
a consensus had been reached by the end of the first half of the 20th century that, as
Skolem had emphasized since 1923, “if we are interested in producing an axiomatic
system, we can only use first-order logic” (cp. [20, p. 472]).

Given that symbolic logic is not within the comfort zone of a majority of present-
day mathematicians, each axiom that is phrased in formal logic is followed by a plain

13Russell’s question is rhetorical in nature. He answers it on the next page, pointing out that the
work of von Staudt, with its introduction of coordinates in a metric-free manner, removes all doubts
regarding the independence of projective coordinates from distances.
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English description of what it says. This allows the reader to skip the formal part of
an axiom without losing the thread of the story.

We will proceed by first presenting the theory of metric planes in its group-
theoretical axiomatization in Sect. 2.1, followed by a more traditional, synthetic
geometric, axiomatization in Sect. 2.2, and a partial algebraic characterization of
the models in Sect. 2.3. Next come the introduction of order and free mobility in
Sects. 2.4 and 2.5, turning metric planes into Hilbert planes (planes satisfying the
axioms for absolute geometry presented by Hilbert in [34]), as well as Pejas’s alge-
braic characterization of Hilbert planes. We next pause to reflect in Sect. 2.6 on
the methodological advantages of this approach, and mention the generalizations of
metric planes proposed in the literature in Sect. 2.7. Sections3 and 4 are devoted
to n-dimensional and dimension-free generalizations of metric planes. Given that
the orthogonality relation of metric planes or of higher-dimensional metric spaces
is induced by a polarity defined on a subspace of a projective plane or space, we
turn in Sect. 5 to the study of all possible orthogonality relations that are induced
by polarities. The 2-dimensional case is treated in Sect. 5.1, the finite-dimensional
case in Sect. 5.2. While the 2-dimensional case has a venerable history, going back
to Cayley [15] and Klein [42], the higher-dimensional case has been systematically
dealt with only recently in [106, 108], and offers a better understanding of themanner
in which Cayley-Klein geometries, which are dealt with in Sect. 6, come into exis-
tence. The 2-dimensional case of Cayley-Klein geometries is treated in greater detail
in Sect. 6.1, with a novel reflection-geometric axiomatization presented in Sect. 6.3.
Remarks concerning finite plane Cayley-Klein geometries and on the connection
between Cayley-Klein spaces and differential geometry can be found in Sects. 6.2
and 6.4. We append a reasonably comprehensive list of references.

2 Metric Planes

2.1 The Group-Theoretical Approach

We now present metric planes as they appear in [7]. There, however, they are
presented as structures living inside groups generated by a set of involutions. This is
not a first-order axiomatization (a fact Bachmann knew all too well, having written
his thesis and done research in formal logic), but rather a convenient language in
which the theory should be presented to a wider audience. That the theory could be
phrased in first-order logic he no doubt knew. We choose to present the theory of
metric planes in formal logic just to show that it can be done, that it is an elementary
theory, far removed from the concept of set.14 Our language will be a one-sorted
one, with variables to be interpreted as “rigid motions,” containing a unary predicate
symbolG, withG(x) to be interpreted as “x is a line-reflection,” a constant symbol 1,

14The axiom system inside group theory can be found, with n = 2, in Sect. 3.
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to be interpreted as “the identity,” and a binary operation ◦, with ◦(a, b), which we
shall write as a ◦ b, to be interpreted as “the composition of a with b.”

To improve the readability of the axioms, we introduce the following
abbreviations:

a2 = a ◦ a,

ι(g) :⇔ g �= 1 ∧ g2 = 1,

a |b :⇔ G(a) ∧ G(b) ∧ ι(a ◦ b),

J (abc) :⇔ ι((a ◦ b) ◦ c),

pq |a :⇔ p |q ∧ G(a) ∧ J (pqa).

Thus ι(g) stands for “g is an involutory element;” a |b for “a and b are orthogonal
lines;” J (abc) stands for “a, b, and c lie in a pencil;” pq |a stands for “the line a
and the orthogonal lines p and q lie in a pencil.” The axioms are (we omit universal
quantifiers whenever the axioms are universal sentences):

M 1 (a ◦ b) ◦ c = a ◦ (b ◦ c)
M 2 (∀a)(∃b) b ◦ a = 1
M 3 1 ◦ a = a
M 4 G(a) → ι(a)

M 5 G(a) ∧ G(b) → G(a ◦ (b ◦ a))

M 6 (∀abcd)(∃g) a |b ∧ c |d → G(g) ∧ J (abg) ∧ J (cdg)
M 7 ab |g ∧ cd |g ∧ ab |h ∧ cd |h → (g = h ∨ a ◦ b = c ◦ d)

M 8
∧3

i=1 pq |ai → G(a1 ◦ (a2 ◦ a3))
M 9

∧3
i=1 g |ai → G(a1 ◦ (a2 ◦ a3))

M 10 (∃ghj) g |h ∧ G( j) ∧ ¬ j |g ∧ ¬ j |h ∧ ¬J ( jgh)

M 11 (∀x)(∃ghj)G(g) ∧ G(h) ∧ G( j) ∧ (x = g ◦ h ∨ x = g ◦ (h ◦ j))

Since a ◦ b with a |b represents a point-reflection, we may think of an unordered
pair (a, b) with a |b as a point, an element a with G(a) as a line, two lines a and b
for which a |b as a pair of perpendicular lines, and say that a point (p, q) is incident
with the line a if pq |a. With these figures of speech in mind, the above axioms make
the following statements: M1, M2, and M3 are the group axioms for the operation
◦; M4 states that line-reflections are involutions; M5 states the invariance of the set
of line-reflections, M6 states that any two points can be joined by a line, which is
unique according to M7; M8 and M9 state that the composition of three reflections
in lines that have a common point or a common perpendicular is a line-reflection;
M10 states that there are three lines g, h, and j , such that g and h are perpendicular,
j is perpendicular to neither g nor h, nor does j go through the intersection point
of g and h; M11 states that every motion is the composition of two or three line-
reflections. It is this fact, that every element of the group generated by line-reflections
can be written as the product of at most three line-reflections, that made the first-
order axiomatization of the group of motions of a metric plane possible. Notice that,
in the presence of M11, M4, M1, and M3, the statement regarding the existence



424 V. Pambuccian et al.

of the inverse, M2, becomes superfluous. We have listed it nevertheless, given that
M1–M3 will be used in axiom systems that appear later. We will denote by M the
axiom system {M1–M11} for metric planes.

From here on, there are two options, according to the answer the question “Is
it possible for a product of an odd number of line-reflections to be the identity?”
receives. If the answer is yes, whichmeans—given that any product of an odd number
of line-reflections can be reduced to a product of three line-reflections—that

El 1 (∃abc)G(a) ∧ G(b) ∧ G(c) ∧ a ◦ (b ◦ c) = 1

then we have an axiom system for elliptic planes (the geometry first mentioned by
Riemann in hisHabilitationsvortrag as a geometry with positive constant curvature).
El1 states that the composition of three line-reflections can be the identity.

If the answer is no, meaning that ¬El1 holds, then we have a non-elliptic metric
plane. The presence of ¬El1 ensures that the perpendicular from a point not on a
line to that line is unique.

Within the theory of metric planes we can separate the hypotheses regarding the
nature of the metric (Euclidean or non-Euclidean (hyperbolic, elliptic)) from those
regarding free mobility (with subdivisions into the free mobility of points (every
point-pair has a midpoint) and the free mobility of lines (every pair of intersecting
lines has an angle bisector)), and from those regarding the order of the plane. These
three requirements are almost completely distinct, in the sense that a metric plane
may satisfy, within limits, a variety of combinations of them. The two cases in which
one hypothesis leads to another are the case in which the metric is hyperbolic, in
which the order comes for free, and the case of a Euclidean metric, in which the free
mobility of points, i. e., the universal existence of midpoints, is ensured.

2.1.1 The Elliptic Case

There are simpler axiom systems for elliptic planes than M ∪ {El1}. The first in-
depth study of an axiomatization in terms of reflections for elliptic planes goes back
to Baer [10]. After proving that one of Baer’s axioms is superfluous and re-writing
Baer’s axiom system, Heimbeck [28] showed that {M1–M3, El2, El3, El4} is an
axiom system for elliptic planes in a one-sorted language with one binary operation
symbol ◦. The specifically elliptic axioms are:

El2 (∀g)(∃i)(∀x) g �= 1 → (ι(i) ∧ (ι(x) → (ι(x ◦ g) ↔ ι(x ◦ i)))
El3 (∀g)(∃h) ι(g) → g ◦ h �= h ◦ g
El4 (∃g) g �= 1

El2 states that, for all elements g �= 1 of the group, there is an involution i of that
group, such that the set of all involutions x for which x ◦ g is an involution coincides
with the set of all involutions x for which x ◦ i is an involution. El3 states that no
involution commutes with all elements of the group, and El4 that the group is not
trivial.
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2.1.2 The Hyperbolic Case

Two lines a and b are called non-connectable, to be denoted by ω(a, b) if a and b
neither intersect nor have a common perpendicular, i.e.,

ω(a, b) ⇔ (∀gh)¬(gh |a ∧ gh |b) ∧ ¬(g |a ∧ g |b).

To obtain an axiom system for hyperbolic planes from metric planes, one just
needs to add two axioms to {M1–M11}, namely (addition in the indices being
modulo 3)

H 1 (∃ab) ω(a, b)
H 2 (∀a1a2a3mng) (

∧3
i=1 mn |ai ∧ ω(ai , g)) → (

∨3
i=1 ai = ai+3)

H1 states that there are two lines that are non-connectable.H2 states that through
a given point (m, n) there can be at most two lines ai that are non-connectable with a
given line g. The theory axiomatized byM ∪ {H1,H2} was studied by Klingenberg
[43], who showed that all of its models are isomorphic to Beltrami-Cayley-Klein unit
disk models of hyperbolic geometry built over arbitrary ordered fields. To get to the
elementary version of plane hyperbolic geometry, first axiomatized by Hilbert [33],
one needs to add to M ∪ {H2} an axiom stronger than H1, namely one that states
that from a point (p1, p2) to a line g not through (p1, p2) there are two distinct lines
non-connectable with g, i.e.,

H 3 (∀p1 p2g)(∃a1a2) p1 | p2 ∧ ¬(p1 p2 |g) → a1 �= a2 ∧ ∧2
i=1(p1 p2 |ai ∧

ω(ai , g))

It forces the arbitrary ordered coordinate field of the models ofM ∪ {H1,H2} to be
Euclidean, i.e., one in which all positive elements must have square roots. As shown
in [43, 4.5], one can replace H3 with the requirement that every point-pair has a
midpoint

H 4 (∀a1a2b1b2)(∃c1c2) a1 |a2 ∧ b1 |b2
→ c1 |c2 ∧ ((c1 ◦ c2) ◦ (a1 ◦ a2)) ◦ (c1 ◦ c2) = b1 ◦ b2

to get another axiom system, M ∪ {H1, H2, H4}, for Hilbert’s plane elementary
hyperbolic geometry. Another, simpler axiom system in terms of line-reflections and
their composition can be found in [9, Satz 7].

2.1.3 The Euclidean Case

There are two particular behaviors that may be deemed as Euclidean. One is purely
metric and can be expressed by either requiring the existence of a rectangle, i.e.,

E 1 (∃abcd) a |c ∧ b |c ∧ a |d ∧ b |d ∧ a �= b ∧ c �= d

or by asking that a quadrilateral with three right angles is a rectangle,

E 2 a |c ∧ b |c ∧ a |d → b |d
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It turns out that, in the presence ofM, E1 and E2 are equivalent (see [7, p. 306]).
Alternatively, one may think of the behavior of parallels as being quintessen-

tially Euclidean and ask that two distinct lines either intersect or have a common
perpendicular, i.e.,

E3 (∀ab)(∃mn) a �= b → (mn |a ∧ mn |b) ∨ (m |a ∧ m |b)
That E1 (or E2) describe a phenomenon different from thatE3 postulates became

apparent only after Dehn’s [16] investigation, at Hilbert’s suggestion, of the matter.
Dehn found out that, even if both order and free mobility were present, E1 and E2
do not imply E3. On the either hand, neither is the reverse implication E3→E1 valid
in the presence of M (see [7, p. 124]).

Put differently, a metric plane satisfies both E1 and E3 if and only if Playfair’s
form of the Euclidean parallel postulate—“There is exactly one line through P that
does not intersect l, whenever P is a point not on the line l”—holds in it.

2.2 The Synthetic Approach

The axiom system M we have presented for metric planes appears to be one for its
group of motions, not for the geometry itself. It turns out, however, that the informa-
tion contained in the group of motions of a metric plane, in which we know which
of the involutory elements are to be considered as line-reflections, contains enough
information to enable the recovery of the underlying geometry. That underlying
geometry can be axiomatized, as shown in [7, §2,3], in a more traditional, synthetic,
manner, in which the individual variables are the usual points and lines, and the
primitive notions are incidence, line orthogonality, and reflections in lines. Techni-
cally speaking, the axiom system is one inside a bi-sorted logic, given that there are
two distinct kinds of variables, with points and lines to be denoted by upper-case,
respectively lower-case letters of the Latin alphabet. Point-line incidence, a binary
relation with point variables in the first place and line variables in the second, will
be denoted by I, and we will write P I l instead of I (P, l). Line orthogonality, a
binary relation among lines, will be denoted by ⊥, and we will write g ⊥ h instead
of ⊥ (g, h). Reflections in lines are binary operations—the first argument of which
are line variables, whereas the second argument and its value are of the same sort
(that is, both line variables or both point variables)—are denoted by σ .

An axiom system logically equivalent toM thus is (addition in the indices being
modulo 3):

O 1 (∃AB) A �= B
O 2 (∀g)(∃A1A2A3)

∧3
i=1 Ai �= Ai+1 ∧ ∧3

i=1 Ai I g
O 3 (∀AB)(∃=1g) A �= B → A I g ∧ B I g
O 4 (∀ab) a ⊥ b → b ⊥ a
O 5 (∀ab)(∃P) a ⊥ b → P I a ∧ P I b
O 6 (∀Pg)(∃h) P I h ∧ h ⊥ g
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O 7 P I g ∧ P Im ∧ g ⊥ m ∧ P I n ∧ g ⊥ n → m = n
O 8 σ(g, σ (g, h)) = h ∧ σ(g, σ (g, P)) = P
O 9 (P I h → σ(g, P) I σ(g, h)) ∧ (m ⊥ n → σ(g,m) ⊥ σ(g, n))

O 10 (∀Pga1a2a3)(∃b)(∀Xx) [(∧3
i=1 P I ai ) ∨ (

∧3
i=1 g ⊥ ai )]

→ σ(a1, σ (a2, σ (a3, x)) = σ(b, x) ∧ σ(a1, σ (a2, σ (a3, X)) = σ(b, X)

Here O1 states that there are two distinct points; O2 that every line has at least
three points on it;O3 that any two distinct points are incident with a unique line;O4
that line-orthogonality is a symmetric relation; O5 that orthogonal lines intersect;
O6 and O7 that there is, through any given point P a perpendicular h to any given
line g, which is unique if P is on g; O8 states that, for each line g, the mapping
αg(·), defined by αg(·) := α(g, ·) is an involution (and thus a bijection) on the set
of points and lines; O9 states that, for any line g, σg preserves both incidence and
orthogonality; O10 is the three-reflection theorem, stating that the composition of
reflections in three lines with a common point or a common perpendicular is a line
reflection.

There is also, as shown in [64], an axiom system for metric planes that can be
expressed, in terms of ∀∃-axioms (axioms in which all universal quantifiers precede
all existential quantifiers) stated in a language with points and the single ternary
relation of orthogonality—with ⊥ (abc) to be read as abc is a right triangle with
right angle at a—as primitive notions.

Another synthetic axiomatization, as well as one in terms of groups operating
on sets (all in first-order logic) have been proposed for non-elliptic metric planes in
[61] and in [52], and their logical equivalence to the group theoretic axiomatization
M ∪ {¬El1 was spelled out in [63].

2.3 Algebraic Characterization

Metric planes, being embeddable in projective planes satisfying the Pappus axiom,
can be, to a certain degree, characterized algebraically. To do so we recall a few
notions from analytic projective geometry.

By a projective-metric coordinate plane P(K , f) over a field K of characteristic
�=2, with f a symmetric bilinear form, which may be chosen to be defined by

f(x, y) = λx1y1 + μx2y2 + νx3y3, (1)

with λμ �= 0, for x, y ∈ K 3 (where u always denotes the triple (u1, u2, u3), line or
point, according to context), we understand a set of points and lines—the former
to be denoted by (x, y, z) the latter by [u, v,w] (determined up to multiplication
by a non-zero scalar, not all coordinates being allowed to be 0)—endowed with a
notion of incidence—point (x, y, z) being incident with line [u, v,w] if and only if
xu + yv + zw = 0—and an orthogonality of lines defined by f, under which lines g
and g′ are orthogonal if and only if f(g, g′) = 0.
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The reflection of a line u = [u1, u2, u3] in a line v = [v1, v2, v3] is the line

2v
f(v,u)

f(v, v)
− u.

Everymodel of ametric plane (i.e., ofM) can be represented as a locally-complete
subplane (i.e., one containing with every point all the lines of the projective-metric
plane that are incident with it) that contains the point (0, 0, 1) of a projective-metric
coordinate plane P(K , f), from which it inherits the collinearity and orthogonality
relations.

The problem of conveniently describing algebraically the possible point-sets of
metric planes inside projective-metric planes, also known as the Umkehrproblem, is
hopeless in this generality.15 For several classes ofmetric planes satisfying additional
axioms, however, the Umkehrproblem was solved.

If themetric plane satisfiesE1 andE3 (inwhich case it is called aEuclideanplane),
then the point-set is precisely the affine plane over some field K of characteristic
�=2 (i.e., the projective plane mentioned above, from which the line [0, 0, 1] has
been removed), and in (1) we have ν = 0 and f(x, x) �= 0 for x �= 0. The models can
be described more conveniently in terms of a constant k, with −k not a square in
K , as having the point and line set of the affine plane over K , i.e., points are pairs
(x, y) of elements from K , lines are triples [u, v,w], point-line incidence is given
by ux + vy + w = 0, whereas the orthogonality of the lines [u, v,w] and [u′, v′,w′]
is given by

kuu′ + vv′ = 0. (2)

If a metric plane satisfies only E1 (in which case it is called a metric-Euclidean
plane), then it can be embedded in a Euclidean plane. There is a large literature
providing alternative axiomatization of Euclidean planes [27, 57, 60, 81] and of
metric-Euclidean planes [3, 7, 59], as well as a detailed description of their models.

In a metric plane which satisfies El1, we have λμν �= 0 and f(x, x) = 0 holds
only for x = 0 in (1).

In a metric plane which satisfiesH1, we have that K is an ordered field, λμν �= 0,
there is x �= 0 such that f(x, x) = 0 in (1). The points of the metric plane are all the
points inside the absolute (which is the set of solutions of f(x, x) = 0).

2.3.1 Free Mobility

A metric plane is said to possess free mobility if any two intersecting lines g and h
have an angle bisector w (i.e., if (w ◦ g) ◦ w = h holds), and any two points (a1, a2)
and (b1, b2) (recall that points are pairs of orthogonal lines) have a midpoint (c1, c2)

15In [7, p. 339] one finds the only known algebraic characterization and in [7, Satz 1 on p. 286]
a geometric characterization of these point-sets. Both are far from the specificity obtained in the
actual solution of the Umkehrproblem for restricted classes of metric planes.
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(i.e., if ((c1 ◦ c2) ◦ (a1 ◦ a2)) ◦ (c1 ◦ c2) = b1 ◦ b2 holds). The rather intricate alge-
braic structure of these metric planes has been described in [17].

2.4 Order

To introduce order in metric planes, we need an additional predicate, a ternary one,
Z , among points, with Z(ABC) standing for “B lies between A and C .” To simplify
the statement of the axioms, it is useful to have a name for the collinearity predicate,
so we introduce the following abbreviation

L(ABC) ⇔ (∃g) A I g ∧ B I g ∧ C I g,

with L(ABC) to be read as “A, B, and C are collinear points.”

Z 1 If A, B, and C are three different collinear points, then Z(ABC)

or Z(BCA) or Z(BCA).
Z 2 If Z(ABC), then A, B, and C are collinear points.
Z 3 If Z(ABC), then Z(CBA).
Z 4 If Z(ABC), then Z(ACB) does not hold.
Z 5 If Z(ACB) and Z(ABD), then Z(CBD).
Z 6 If Z(CAB) and Z(ABD), then Z(CBD).
Z 7 If C �= D, Z(ABC), and Z(ABD), then Z(BCD) or Z(BDC)).
Z 8 For all A �= B there exists a point C such that Z(ABC).
Z 9 If A, B, and C are three non-collinear points and D and E are two points

such that Z(ADC), E is such that it is neither collinear with A and C
nor with D and B, then there exists a point F collinear with E and D,
such that Z(AFB) or Z(BFC).

Z1 ensures that any three points on any line are in some order; Z2 that only
collinear points are ordered, Z3–Z7 are linear order axioms, Z8 states that the order
is unending. Z9 is the Pasch axiom, stating that the line determined by D and E ,
which intersects the side AC of triangle ABC , must intersect one of the sides AB or
BC as well. Ordered metric planes, i.e., the models of {O1–O10, Z1–Z9}, are well-
understood in case the metric is Euclidean, that is, whenever the plane satisfies E1.
There is an algebraic characterization of ordered metric planes with a non-Euclidean
metric, due to Pejas [72], which is, however, not very helpful in establishing the
validity of a given statement.

2.5 Order and Free Mobility

Metric planes endowed with both order and free mobility are, historically speaking,
at the origin of the term absolute, coined by J. Bolyai. They are the models of the
plane axioms of the groups I, II, and III (of incidence, order, and congruence) in
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the second and in all later editions of Hilbert’s Grundlagen der Geometrie. One of
the greatest achievements of the reflection-geometric foundation of geometry has
been the algebraic characterization of the models of these planes, also called Hilbert
planes. It happens to be a very useful characterization, in the sense that one can often
accomplish much more and much easier with the algebraic description than with
synthetic geometry.

Let K be again a field of characteristic �=2, and k an element of K , to be referred
to as the orthogonality constant (or the metric constant). By the affine-metric plane
A(K , k) (cf. [32, p. 215]) we mean the projective planeP(K ) over the field K from
which the line [0, 0, 1], as well as all the points on it have been removed (and we
write A(K ) for the structure with the remaining point-set, the corresponding line-
set, with their incidence and orthogonality relations), for whose points of the form
(x, y, 1) we shall write (x, y) (which is incident with a line [u, v,w] if and only if
xu + yv + w = 0), together with a notion of orthogonality, the lines [u, v,w] and
[u′, v′,w′] being orthogonal if and only if

uu′ + vv′ + kww′ = 0. (3)

If K is an ordered field, then one can order A(K ) in the usual way.
The algebraic characterization of the Hilbert planes consists in specifying a point-

set E of an affine-metric plane A(K , k), which is the universe of the Hilbert plane.
The Hilbert plane will thus inherit the order relation Z from A(K ). We can also
define a notion of congruence of two segments ab and cd, which will be given, in
case E ⊂ A(K , 0), by the usual Euclidean formula

(a1 − b1)
2 + (a2 − b2)

2 = (c1 − d1)
2 + (c2 − d2)

2

and, in case E ⊂ A(K , k) with k �= 0, by

F(a,b)2

Q(a)Q(b)
= F(c,d)2

Q(c)Q(d)
, (4)

where

F(x, y) = k(x1y1 + x2y2) + 1, Q(x) = F(x, x), and x = (x1, x2), y = (y1, y2).

Let now K be an ordered Pythagorean field, R the ring of finite elements, i.e.,
R = {x ∈ K : (∃n ∈ N) |x | < n} and P the ideal of infinitely small elements of K ,
i.e., P = {0} ∪ {x ∈ K : x−1 /∈ R}. All Hilbert planes are isomorphic to a plane of
the following three types:



Metric Geometries in an Axiomatic Perspective 431

Type 1 E = {(a, b) : a, b ∈ M} ⊂ A(K , 0), where M is an R-module �= (0);
Type 2 E = {(a, b) : a, b ∈ M} ⊂ A(K , k) with k �= 0, where M is an R-module

�= (0) included in {a ∈ K | ka2 ∈ P}, that satisfies the condition

a ∈ M ⇒ ka2 + 1 ∈ K 2;

Type 3 E = {x : Q(x) > 0, Q(x) /∈ J } ⊂ A(K , k) with k < 0, where J ⊆ P is a
prime ideal of R that satisfies the condition

ka2 + 1 > 0, ka2 + 1 /∈ J ⇒ ka2 + 1 ∈ K 2,

with K satisfying

{a ∈ K : ka2 ∈ R \ P} �= ∅.

The meaning of k in this context can be best described by mentioning that its sign
is the same as that of α + β + γ − π , where α, β, and γ are the measures of the
three angles of a triangle.

Thus, a Hilbert plane is either (i) a part of an ordered Euclidean plane with
free mobility (Type 1), thus a plane of Dehn-type, as these were first described
in [16], or (ii) an infinitely small neighborhood of the origin in a plane with an
arbitrary orthogonality constant, or (iii) a generalized Beltrami-Cayley-Klein model,
consisting of the interior of a circle, with, possibly, an infinitely small collar around
its circumference removed.

This characterization, due to Pejas [71], may be considered to be one of the
most impressive early applications of the reflection-geometric approach. It may look
strange that a first-order theory (the geometry of Hilbert planes) has models that
require second-order notions (such as R and P which occur in the representation
theorem) for their description. These models can, indeed, be expressed completely
inside first-order logic, but we chose the original expression of Pejas for its intuitive
character.

2.6 Methodological Reflections

One may, at this point, ask what is gained by this approach, other than Pejas’s
representation theorem,which answered an existing open question. Dometric planes,
in themselves, have an interesting geometry, the way Riemannian manifolds have?

There are, indeed, a wide variety of universal statements σ , expressed solely
in terms of incidence, orthogonality, and segment congruence, that are commonly
encountered as theorems in Euclidean geometry, and which turn out to be either true
in all metric planes or else logically equivalent to E1 (i.e. we have eitherM � σ or
M � σ ↔ E1). In the first category we have the theorem stating the concurrence of
the altitudes of a triangle (a concurrence re-interpreted to mean that the composition
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of the reflections in the three altitudes is a line-reflection16)— in fact, less is needed
for that theorem, as shown in [6]—and the one stating that the medians of a triangle
lie in a pencil. In the same category is the theorem stating that a triangle with two
congruent medians is isosceles (see [69]). These theorems are significantly harder to
prove inside the theory of metric planes than inside Euclidean geometry. However,
their proofs reveal the true reasons for the validity of these theorems, which their
better-known proofs in an affine setting obscure.

In the second category, that of statements equivalent to E1, we have, as shown
in [66], the statement that, in a non-isosceles triangle ABC , with AB �≡ AC , with
M , N and P the midpoints of AB, AC , and BC respectively, and R the midpoint
of MN , the points A, R, and P are collinear. In the “not yet decided” category is
a theorem that raised Hilbert’s interest (see [68]), called Three Chord Theorem. It
states that, if three circles pairwise intersect in two points, then the three lines joining
those two points (to be referred in the sequel as “chords”) lie in a pencil. It probably
belongs to the first category, theorems true in M. What is important, though, is the
profoundly changed nature of the questions asked. Whereas previously the question
was whether a statement σ holds in Euclidean geometry, or, more generally holds in
M ∪ {E1}, the question is now whether that statement is one of metric geometry or
whether its validity is characterizing the Euclidean nature of the metric of the metric
plane. There is no theorem stating that a purely metric universal statement σ , true in
Euclidean geometry, must be in one of the two categories. It just so happens that this
is the case for all known instances in which the question has been answered.

If we are presented with a universal statement σ , true in Euclidean geometry, but
involving order, then there are more options. One of them is that the statement holds
without additional assumptions regarding the nature of the metric. In that case, an
additional question arises, namely whether the statement is true in all ordered metric
planes, or whether it holds only inside all standard ordered metric planes, which are
those in which the foot of the altitude to the hypotenuse of a right triangle always lies
between the endpoints of the hypotenuse. While the number of universal statements
involving both order and metric notions known to be true in Hilbert planes is large,
there are very few known to hold in all ordered metric planes. A version of the
Steiner-Lehmus theorem holds in all standard metric planes, as shown in [69]. It is
very likely that all universal statements that hold in all Hilbert planes are true in all
standard ordered metric planes, but no such theorem has been proved. Candidates for
sentences that are likely true in all ordered metric planes are: (i) Urquhart’s theorem,
usually referred to as “the most ‘elementary’ theorem of Euclidean geometry” (see
[70, 110]), when stated as a universal sentence; (ii) Gergonne’s theorem, stating that
the lines joining the vertices of a triangle with the points of tangency of the inscribed
circle are concurrent; (iii) the Steiner-Lehmus theorem. A candidate for a universal
statement which, given the theory of ordered metric planes, is equivalent to E1, is
Morley’s trisector theorem.

Another option is that σ holds in some Hilbert planes and not in others. For
example, its validity may depend on the sign of the orthogonality constant k, as is the

16This kind of “concurrence” of three lines will be referred to as “the three lines lie in a pencil”.
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case of the Erdős-Mordell inequality, whose validity is equivalent to the statement
that k ≤ 0 (as shown in [65]). Or it may hold only in planes of Type 1 and 2, as is
the case with the universal statement equivalent to Bachmann’s Lotschnittaxiom (“A
quadrangle with three right angles closes,” see [5]), stated in [58]. Yet the change in
perspective is the same as in the case ofmetric planes without order. Instead of asking
for the truth of a certain statement, we are asking for its relative strength vis-à-vis
the theory of ordered metric planes, for its strength as a hypothesis, in case it is not
a theorem holding in all ordered metric planes.

2.7 Generalizations of Metric Planes

There are even more general notions than that of a metric plane, in which the above
questions can be asked. The weakest is that of a generalized metric plane, whose
properties are analyzed in [7, §2,4–5], and which can be considered as axiomatized
by the axiomsO1–O9 (so no form of the three reflections axiom is assumed). Hardly
any theorem of interest holds in them, although it is not easy to prove that a certain
theorem does not hold in generalized metric planes, given that there is no useful
description of their models. The theorem stating that the altitudes of a triangle lie
in a pencil is known not to hold in them, as it is equivalent to the validity of the
three reflections theorem for lines with a common perpendicular, as shown in [6].
Generalized metric planes that do satisfy the three reflections theorem for lines with
a common perpendicular, referred to in [9] as semi-absolute planes, are the next stage
in the hierarchy of generalizations of metric planes. It is not easy to determine which
particular theorems that hold in metric planes already do so in semi-absolute planes.

Another generalization is that of theHjelmslev planes, in which both the existence
and the uniqueness of the line joining two points may be omitted. Their properties
have been studied in [8] and they are reasonably well understood. Closely related
are the plane Cayley-Klein geometries, that we will turn to in Sect. 6. A further
generalization, to pre-Hjelmslev groups, can be found in [78] (see also [45]).

An independent level of generalization is that of the S-planes, introduced by
Lingenberg, which are based on a certain relaxation of the three reflections axiom.
Their properties were presented in monograph form in [48], and most theorems valid
in metric planes, sometimes with slight modifications, hold in S-planes as well.

3 Higher-Dimensional Metric Spaces

The question regarding higher-dimensional analogues of metric planes was first
raised for the 3-dimensional case. The first reflection-geometric axiom system, in the
style ofM, was put forward in [1]. One in the style of the O-axioms in Sect. 2.2, in
terms of points, planes, point-plane incidence, plane orthogonality, and reflections
in planes, logically equivalent to that in [1], was put forward in [79].
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Ahrens’s [1] axiom system has been extended by Kinder [40] to one for n-
dimensional metric spaces, for any n ≥ 2. In analogy to the 2-dimensional case,
their models can be embedded in projective-metric n-dimensional spaces, where the
metric is given, again, by a symmetric bilinear form. We will no longer write its
axioms in symbolic language, as it is by now plain how the English of the axiom
systems expressed inside group theory with a distinguished set of generators can
be translated into first-order logic, provided that every element of the group can be
written as the composition of an a priori bounded number of generators.

The fundamental assumption of n-dimensional metric geometry thus on (G, S) is
that G is a group (written multiplicatively) and that S is a set of involutory elements
of S which generates G, and such that bab ∈ S, for all a, b ∈ S. The elements
of S will be denoted by lowercase Latin letters and will be called reflections in
hyperplanes (also referred to simply as hyperplanes). As before, we will write, for
any two involutory elements of G, α and β, α |β whenever αβ is involutory. We also
write α11, . . . α1n1 |α21, . . . , α2n2 | . . . |αm1, . . . αmnm to mean that, for all i < k, we
have αi j |αkl . An involutory product a1a2 . . . an , with a1 |a2 | . . . |an will be referred
to as a point reflection (or simply as a point), and will be denoted by uppercase Latin
letters. In addition to the fundamental assumption, Kinder postulates the following:

K 1 Given a1, . . . an−1, A, there is an a such that a |a1, . . . , an−1, A.
K 2 Given a1, . . . an−2, A, B, with a1 | . . . |an−2 | A, B there is an a such that

a |a1, . . . , an−2, A, B.
K 3 If a1 | . . . |an−2 |a, b | A, B, then a = b or A = B.
K 4 Given a1, . . . an−2, A, a, b, c, with a1 | . . . |an−2, A |a, b, c and an−2 �= A,

there is a d with ab = dc.
K 5 Given a1, . . . an−1, a, b, c, with a1 | . . . |an−1 |a, b, c, there is a d with

ab = dc.
K 6 There are n hyperplane reflections a1, . . . an with a1 | . . . |an .
K 7 Given a1, . . . an , with a1 | . . . |an , there is an a with a |a1, . . . , an−1,

as well as a �= an and a �an .

For n = 2 this axiom system is equivalent to M, and for n = 3 to the axiom
system of Ahrens.

As in the 2-dimensional case, one can add additional axioms to specify the nature
of the metric (i.e., the nature of the symmetric bilinear form). Thus two hyperplanes
a and b will be called non-connectable if there is neither a point A with A |a, b, nor
a line Γ with Γ |a, b. Here a line is a product a1 . . . an−1 of n − 1 many hyperplanes,
with a1 | . . . |an−1.

Among the additional axioms we have

Pn (Existence of a polar simplex) There are a1, . . . an+1, with a1 | . . . |an+1.
En (Existence of a rectangle) There are a1, . . . an−2, a, b, c, d, with

a1 | . . . |an−2 |a, b |c, d.
Hn (The hyperbolic metric axiom) There are non-connectable hyperplanes.
Cn (The completeness axiom) If a1 | . . . |an−2 |a, b1, b2, b3, P , as well as

b1, b2, b3 | P , and, for i = 1, 2, 3, the hyperplanes a and bi are
non-connectable, then one of b1 = b2, b2 = b3, b3 = b1 must hold.
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In the presence of the fundamental assumption, of K1–K7 (the models of which
will be referred to as n-dimensional metric spaces) and of Cn: (i) adding En we get
n-dimensional Euclidean geometry17; (2) adding Hn we get n-dimensional hyper-
bolic geometry; (3) adding Pn we get n-dimensional elliptic geometry (which has
received an alternative axiomatization in [41]). These names are meant to express
the fact that these are the n-dimensional generalizations of the 2-dimensional cases
presented in Sects. 2.1.1–2.1.3 (the hyperbolic case being the n-dimensional gen-
eralization of Klingenberg’s generalized hyperbolic geometry, in which, just like
in the 2-dimensional case, the coordinate fields needs only be ordered). More on
these geometries and those obtained in the absence of Cn , as well as models of
n-dimensional Euclidean geometries, are found in [39].

As in the 2-dimensional case, these metric spaces can be seen as subspaces of
projective-metric spaces, but, just like in the 2-dimensional case (if not more so), the
question of describing algebraically the possible point-sets of metric spaces within
the projective-metric space is hopeless.

In the important special case in which we add free mobility axioms, the order
axioms Z1–Z8, as well as Peano’s form of the Pasch axiom (which asks that a line
l that intersects the extension of side AB of a triangle ABC in D, with Z(ABD),
and side BC in E , must also intersect side AC in a point F) to the axiom system for
metric spaces, the models are, as shown by Klopsch [44], similar to the models in
Pejas’s [71] characterization of models of Hilbert planes. A more in-depth analysis
of the Umkehrproblem for metric spaces can be found in [30].

The question we raised in the 2-dimensional case, regarding the revolutionary
nature of this approach, the complete change of perspective, is best illustrated with
two examples.

The first looks at the following theorem of 3-dimensional Euclidean geometry:
“The points of tangency of a skew quadrilateral, whose sides are tangent to a sphere,
are co-planar.” This statement is, as can be easily seen, one of the 3-dimensional
metric space axiomatized by Ahrens and Scherf (and the n = 3 case of Kinder’s
axiom presented above). It is likely that it holds in all 3-dimensional metric spaces.

The second example looks at a problem requiring order besides metric notions for
its statement. The problem of the thirteen spheres in Euclidean three-space, going
back, as a conjecture, to Newton (and a disagreeing Gregory), states that the largest
number of non-overlappingunit spheres that canbe arranged such that they each touch
another given unit sphere is 12. This is also called the kissing number in dimension
3. It was proved in [91] (see also [49]). There are two statements the problem makes:
(i) that there are 12 non-overlapping unit spheres that can be arranged such that
they each touch another given unit sphere, and (ii) that no 13 non-overlapping unit
spheres can be arranged such that they each touch another given unit sphere. A similar
question, known as the kissing number problem, can be asked in any finite dimension,
and the precise values are known only for n = 4, 8, 24. This problem can, in any
dimension, be stated inside the theory of ordered metric spaces, raising the question:
“In which 3-dimensional metric spaces is the kissing number 12?” Similarly for

17A different axiomatization for the geometry obtained by adding E3 has been provided in [74].
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higher dimensions. It is very likely that (ii) does not hold in the hyperbolic case. One
can see this by reasoning along the following lines: in three-dimensional hyperbolic
space over the real numbers, (ii) is certainly false, as can be seen from the Pizzetti-
Toponogov triangle comparison theorem, which states that if O is the center of the
original unit sphere U and A and B two points of tangency of outside spheres with U,
and A′ and B ′ the reflections of O in A and B respectively, then the distance between
A′ and B ′ is greater in hyperbolic space than in Euclidean space, and the difference
can be made very large by choosing a large “unit.” One expects this kind of behavior
to be present in the much more austere world of ordered metric spaces satisfying
H3. So, the question would become: “what is part (ii) of the thirteen sphere problem
equivalent to?” Is it ¬H3? Does part (i) hold in all ordered metric spaces? This is by
no means trivial, as the “sphere” in our 3-dimensional metric spaces may have far
fewer points on its “surface” than in the real Euclidean case.

A generalization of n-dimensional metric spaces along the lines of Lingenberg’s
generalization of metric planes was carried out for n = 3 in [55] and for all n ≥ 2
in [56].

There are generalizations ofmetric spaces, in which, just like in the 2-dimensional
case, one asks only for basic orthogonality axioms and for the existence of reflections,
but no three-reflections theorem. They can be obtained in the 3-dimensional case by
dropping the three-reflections axiom in Scherf’s axiom system. In the dimension-free
case, to which we turn, they were considered in [95].

4 The Dimension-Free Case

What if we do not want to specify the dimension of the space, but just know that it
is at least 2?

This question was first raised and answered by Smith [93, 94], in the syn-
thetic tradition—with point, lines, planes, incidence, line-orthogonality, reflections
in points and in lines as primitive notions—by extending the work of Lenz [47] on
incidence and orthogonality. Later, Smith [97], provided another synthetic axiom
system for the non-elliptic case in terms of points, orthocomplemented hyperplanes,
incidence and orthogonality as primitive notions.

The reflection-geometric approach was provided by Ewald’s [19] axiom system
for the groups of motions of such spaces, in terms of point-reflections and line-
reflections. He showed that those geometries can be embedded in projective-metric
spaces. Alternative embeddings were provided in [22, 23]. Ewald’s axiom system
was simplified by Heimbeck [29], and it is that axiom system that we present here.

The fundamental assumption is this time thatG is a groupwith invariant complexes
P and L of involutions, which together generate G.

Here, by “invariant” we mean that, for all g ∈ G, p ∈ P, l ∈ L, we have g−1 pg ∈
P and g−1lg ∈ L. The elements of P are called “points” (or “point-reflections”),
those of L “lines” (or “line-reflections”), the former to be denoted by upper-case
Latin letters, the latter by lower-case Latin letters. The sign | has the samemeaning as
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before, andwe say that line g connects the distinct points P and Q if and only if P, Q |
g and X | P, Q ⇒ g−1Xg = X . We say that P is incident with g (and write P I g)
if and only if g connects P with a point Q �= P . We say that line g is “orthogonal”
to line h (and write g ⊥ h) if and only if g | h and there is a point P incident with
both g and h. We say that the lines g, h, and k lie in a pencil if and only if ghk is
a line and there is a point P incident with each of g, h, k, and ghk. We denote by
〈P, g〉 the set of points X for which X = P or else g connects P and X . We denote
by 〈Pg〉 the set of points X for which X | Pg. The axioms are:

E-H 1 Any two distinct points P and Q have a unique line (P, Q) connecting them.
E-H 2 If P, Q, R, and S are four different points, and if (P, Q), (P, R), (P, S)

lie in a pencil, then so do (R, Q), (R, P), (R, S).
E-H 3 For all Q with Q /∈ 〈P, g〉 there is a point R ∈ 〈P, g〉, with (Q, R) ⊥ g.
E-H 4 If Q and R belong to 〈P, g〉, then PQR is a point.
E-H 5 If P I g, then 〈P, g〉 ∩ 〈Pg〉 = {P}.
E-H 6 There are three different lines. There are three different points incident

with every line.

One gets an axiom system for elliptic geometry by stipulating that

Ell There are different points P and Q with PQ = QP .

To get an axiom system equivalent to that of Ewald one needs an additional axiom,

E-H 7 If P I g, P ′ I g′, 〈Pg〉 = 〈P ′g′〉, then Pg = P ′g′.

If these geometries satisfy an additional, quite technical axiom, stated in [25],
whose intuitive meaning is very simple, namely that all the points should not lie in a
finite-dimensional subspace of the entire space, then G is isomorphic to a subgroup
of a projective-metric space. In the absence of that axiom, the same can be said only
about a factor group of G.

In the dimension-free elliptic case, a mixed synthetic and reflection-theoretic
axiom system can be found in [96], and another reflection-theoretic one in [24].

Axiom systems for the dimension-free Euclidean case can be found in [85, 86].
A broad generalization of the concept of (dimension-free) metric geometry has

been proposed by E. M. Schröder in [87, 88].

5 Projective-Metric Geometry

5.1 Projective-Metric Planes

A projective plane is a triple (P,L, I), consisting of a setP of points, a setL of lines,
and a (symmetric) incidence relation I , with the property that any two distinct points
are incident with a unique line and any two distinct lines are incident with a unique
point. The only existence assumption it must satisfy is that it contains a quadrangle
and a quadrilateral.
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Plane projective geometry enjoys the property referred to as the principle of dual-
ity: Every definition remains valid and every theorem remains true if we consistently
interchange the words “point” and “line” (the incidence relation being symmetric, it
is self-dual, and thus need no change).

Central problems of the foundations of geometry, such as the introduction of
numbers and the role of three-dimensional space for plane geometry, find conclusive
answers in the projective setting. A projective plane can be coordinatized by a skew
field (resp. a commutative field) of characteristic �=2 if and only if the configuration
theorem of Desargues (resp. Pappus) and the Fano axiom hold. A projective plane
is embeddable in a projective space (of dimension ≥3) if and only if the theorem of
Desargues holds.

Introduction of a metric.

In a projective plane (P,L, I) ametric can be introduced by an orthogonality relation
on the set of lines (which we denote by a, b, ...) and on the set of points (which we
denote by A, B, ...). Let ⊥ be a binary relation on L with a ⊥ b to be read as “a and
b are orthogonal lines” and let � be a relation on P with A�B to be read as “A and
B are orthogonal (or polar) points.”

A point A is a pole of a line a if every line through A is orthogonal to a. Dually,
a line b is a polar of a point B if every point on b is polar to B.

Following Struve and Struve [104], we call (P,L, I,⊥,�) a projective-metric
plane if the following axioms and the dual ones (which we do not explicitly state)
hold:

PM1. Every line a has a pole A.
PM2. Every triangle has altitudes which intersect in a common point.
PM3. A point A is the pole of a line a if and only if a is the polar of A.
PM4. There are lines a, b with a �⊥ b and points A, B with A ��B.

To get the dual axioms, just interchange the words point and line and the relations
⊥ and �. Notice that the axioms PM3 and PM4 are self-dual.

Given that the axiom system is self-dual (i.e., it contains the dual of each of its
axioms), the principle of duality can be extended to projective-metric geometry:
every definition remains valid, and every theorem remains true, if we consistently
interchange the words “point” and “line” and the relations ⊥ and �.

There are seven types of projective-metric planes. They can be classified based
on the properties of the following sets: (i) the set Lr of radical lines (which are
orthogonal to every line), (ii) the set Li of isotropic lines (which are orthogonal to
themselves), (iii) the set Pr of radical points (which are polar to every point), and
(iv) the set Pi of isotropic points (which are polar to themselves):

(1) planes with an elliptic metric: |Lr|= 0 and Li = Lr ;
(2) planes with a hyperbolic metric: |Lr|= 0 and Li �= Lr ;
(3) planes with an Euclidean metric: |Lr|= 1 and Li = Lr ;
(4) planes with aMinkowskian metric: |Lr|= 1 and Li �= Lr ;
(5) planes with a co-Euclidean metric: |Lr|≥ 2 and Pr|≤ 1 and Pi = Pr ;
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(6) planes with a co-Minkowskian metric: |Lr|≥ 2 and Pr|≤ 1 and Pi �= Pr ;
(7) planes with a Galilean metric: |Lr|≥ 2 and Pr|≥ 2.

Algebraic models.

Every projective-metric plane can be represented as a projective-metric coordinate
plane P(K , f) over a field K of characteristic �=2 and a (non-trivial) symmetric
bilinear form f . If V is a three-dimensional vector space over K and f a non-null
symmetric bilinear form on V , then elements x and y of V are called orthogonal if
f (x, y) = 0. If T is a subspace of V , then T⊥ = {x ∈ V : f (x, y) = 0 for all y ∈ T }
is a subspace of V ; subspaces T1 and T2 are called orthogonal, which we denote by
T1 � T2, if T1 ∩ T⊥

2 �= {o} and T⊥
1 ∩ T2 �= {o}, where o stands for be the null vector.

(P,L, I,⊥,�) is a projective-metric coordinate plane if

• P is the set of all i-dimensional subspaces of V with i ∈ {1, 2};
• L is the set of all j-dimensional subspaces of V with j ∈ {1, 2} and j �= i ;
• I is the set-theoretic inclusion restricted to (P × L) ∪ (L × P);
• ⊥ is the relation � restricted to L × L;
• � is the relation � restricted to P × P .

The seven types of projective-metric planes correspond to different dimensions
of the radical and of the Witt index of the vector space V .

5.2 Projective-Metric Spaces of Arbitrary Finite Dimension

There are various ways to axiomatize projective geometry of higher dimensions.
Veblen’s classical axiomatization [112] is based on the terms of “point” and “line”
and a binary relation of incidence. Inside that setting, higher dimensional subspaces
are defined as sets of points.

We will follow Menger [50, 51], who noticed that projective geometry can be
considered as a theory about joins and meets of linear subspaces (Geometrie des
Verbindens und Schneidens). He axiomatized projective spaces in a first-order lan-
guage with one sort of individual variables, to be referred to as “subspaces” or “flats”
and denoted by lowercase Greek letters, two binary operations∨ and∧, called “join”
and “meet”, and two constant symbols 0 and 1, which are called “element zero” and
“element one”.

The axioms are simple postulates about the joining and intersecting of geometric
subspaces. They state that the operations ∨ and ∧ are commutative and associative
with neutral elements 0 and 1, and that the absorption laws hold. The models of this
axiom system, L = (L,∨,∧, 0, 1), are lattices with 0 and 1.

To characterize projective spaces of dimension n ≥ 3, one needs to add to the
above-mentioned axioms the requirements that the lattice L be complemented and
irreducible and that the maximal length of a chain of L be n + 1. In an algebraic
language this can be summarized by the statement that L is an irreducible projective
lattice.
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The dual of each axiomholds, so the principle of duality holds in projective-metric
geometry of arbitrary finite dimension.

The notion of a “point”, which is the basic concept of analytic geometry and
particularly of Riemannian geometry, is not even mentioned in the axiom system.
The complete elimination of the notion of point from geometry was one of the ideas
of von Neumann’s continuous geometries.

In complete harmony with Euclid’s first words in the Elements, “A point is that
which has no part”, the elements α ofL for which ε ≤ α → ε = 0 are called “points”
of a projective space (i.e., the points are precisely the atoms of the projective lattice).

Since points and lines are no longer distinguished from subspaces of other dimen-
sions, the sentences of projective geometry are statements about finite sets of elements
of the basic class of subspaces, without any need for either a multi-sorted language or
of set-theoretical definitions of subspaces. Unlike the first modern axiomatizations
of geometry, by Pasch, Peano, Pieri, and Hilbert, which were expressed in languages
which contained only relation symbols, but no operation symbol, the above axioma-
tization, with two operation symbols and no relation symbol, is much closer in spirit
to those of arithmetic or of algebraic theories.

Algebraic models.

Every projective space of dimension n ≥ 3 can be represented as the lattice of sub-
spaces of a finite dimensional vector space over a skew field (division ring) with
the set-theoretic inclusion ⊆ as ≤-relation of the associated partially ordered set of
subspaces.

Introduction of a metric.

Much like in the 2-dimensional case, in a projective space of dimension n ≥ 3 a
metric can be introduced by an orthogonality relation. The metric is called singular
if there are radical subspaces and ordinary otherwise.

In the ordinary case, the orthogonality relation is a binary relation,which is defined
on the set of hyperplanes (subspaces of dimension n − 1) and on the set of points,
and which satisfies mutatis mutandis the axioms for projective-metric planes noted
in Sect. 5.1. The orthogonality relation can be described algebraically by a non-
degenerate symmetric bilinear form which is a hyperbolic polarity if there are self-
polar points, an elliptic polarity otherwise.

The classical example of a projective space with a singular metric is the projective
closure of a Euclidean space. The orthogonality relation of Euclidean subspaces
induces on the hyperplane ε at infinity an elliptic metric (in the sense of Sect. 5.1).

In the general case, the hyperplane at infinity may as well be endowed with a
hyperbolic metric (as in Minkowskian geometry) or with a Euclidean metric (as in a
Galilean geometry)—to mention only two alternatives—and the subspace at infinity
need not be a hyperplane but may be a subspace of arbitrary dimension.

This general situation is captured in the following definition which is formulated
in an algebraical setting (an axiomatic definition can be given along the lines of
Sect. 5.1). A metric in a projective space is given by a flag 0 < ε1 < . . . < εr < 1 of
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subspaces and a (hyperbolic or elliptic) polarity on each of the associated intervals
[0, ε1], ..., [εr , 1].

(L, ((ε1, π1), ..., (εr , πr ), (1, πr+1))) with r ≥ 0 is a projective space with
Cayley-Klein metric (or Cayley-Klein space for short) of dimension n ≥ 0 if the
following assumptions hold:

(1) L is a projective lattice of finite dimension n.
(2) ε1, ..., εr are subspaces of L with 0 < ε1 < . . . < εr < 1.
(3) πk is a hyperbolic or elliptic polarity on the interval [εk−1, εk]with 1 ≤ k ≤ r + 1

and ε0 = 0 and εr+1 = 1.

For notational conveniencewe denote aCayley-Klein space byCK(ε0, ..., εr+1), if
the underlying polaritiesπk are of no special concern. If CK(ε0, ..., εr+1) is a Cayley-
Klein space, then the Cayley-Klein space CK(εi , ..., εk) (for 0 ≤ i < k ≤ r + 1) is
called ordinary if k = i + 1 and singular otherwise.

That the principle of duality can be extended from projective geometry to
projective-metric geometry (Cayley-Klein spaces) can be seen by noticing that the
dual of an interval [εk−1, εk] of a projective lattice L is an interval of the dual pro-
jective lattice L∗, and that the dual of a polarity (on an interval of L) is a polarity (on
an interval of L∗).

Of special interest are Cayley-Klein spaces which are self-dual, i.e., isomorphic
to their dual structures. CK(ε0, ..., εr+1) is self-dual if and only if CK(εk, εk+1) and
CK(εr−k, εr+1−k) are isomorphic (for 0 ≤ k ≤ r ).

Every ordinary Cayley-Klein space is self-dual. Further examples are the projec-
tive closure of a Galilean plane over a field of characteristic �=2 and the projective
closure of the Desargues configuration which can be embedded in the projective
plane with an elliptic metric over the field of order 5.

As mentioned in Sect. 5.1, there are seven Cayley-Klein spaces of dimension 2.
There are eighteen Cayley-Klein spaces of dimension 3. For a detailed classification
see Struve and Struve [106].

Metric concepts like the pole-polar-theory of quadratic spaces can be extended to
Cayley-Klein spaces. A subspace β is a polar of a subspace α if the projections of α

and β into the intervals [εk, εk+1]18 map α and β onto polar elements of the ordinary
Cayley-Klein spaces CK(εk, εk+1).

If β is a polar of α, then α is a polar of β. In an n-dimensional Cayley-Klein
space, the sum of the dimensions of a subspace and of its polar is equal to n − 1, a
formula which is well known for projective spaces with an elliptic or a hyperbolic
metric. Every subspace of a Cayley-Klein space has at least one polar. A subspace α

with a unique polar is called regular. This is equivalent to the existence of an integer
k with α ∧ εk = 0 and α ∨ εk+1 = 1.

Subspaces α and β are orthogonal if there are subspaces α∗ and β∗ which are
polar to α respectively β and satisfy α ≤ β∗ and β ≤ α∗.

Let β be a polar of α with α ∧ β = 0 (i.e., let α and β be complements). The
harmonic homology σαβ with α and β as center and axis leaves the subspaces εk

18i.e., the elements (α ∨ εk) ∧ εk+1 and (β ∨ εk) ∧ εk+1 (if ∧ and ∨ denote the lattice operations).
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invariant and induces an automorphism on CK(εk, εk+1). Hence σαβ is an involution
of the group of automorphism of the Cayley-Klein space which we call a (projective)
reflection in α respectively β. The group which is generated by all reflections σαβ is
called the group of motions.

This highlights the special role of reflections in projective geometry: They can be
used to single out motions within the group of all projective collineations.

Bachmann (see [7, §20,11]) carried this idea a step further. He showed that
projective-metric geometry can be formulated in the group ofmotions of a projective-
metric space (a quadratic space). Geometric relations like incidence and orthog-
onality correspond to group-theoretical relations between elements of the group
of motions (e.g., projective subspaces are orthogonal respectively incident if the
product of the associated reflections is involutory). This correspondence allows not
only the proof of geometric theorems by group-theoretical calculations but also
group-theoretical characterizations of orthogonal groups (see Bachmann [7, §20,8
and §20,11]).

The full group G of projective automorphisms of a Cayley-Klein space has been
analyzed in Struve and Struve [107]. In the ordinary case, G can be represented as
the orthogonal group of the associated quadratic space.

In the singular case, an element ϕ of G is called a dilatation19 if ϕ is the identity
on the ordinary Cayley-Klein spaces CK(εk, εk+1) with 0 ≤ k ≤ r . The group of
dilatations is a normal subgroup of G.

Every element ofG is up to a dilatation uniquely determined by its operation on the
ordinary Cayley-Klein spaces CK(εk, εk+1), and conversely every automorphism of a
Cayley-Klein spaceCK(εk, εk+1) canbe extended to an element ofG (in a trivialway).
Hence the group G is the semi-direct product of the (normal) group of dilatations
and the subgroup of G which is generated by the (extensions) of the automorphisms
of the Cayley-Klein spaces CK(εk, εk+1).

This representation theorem of G generalizes theorems which are well-known in
metric affine geometry (i.e., in Euclidean, Minkowskian, and Galilean geometry).

6 Cayley-Klein Geometries

In the approach of Cayley and Klein non-Euclidean geometries are introduced as
geometries living inside of a projective space which is endowed with a projective
metric.

Following this approach we consider in this section real projective spaces, which
are endowed with a Cayley-Klein metric, and single out substructures which define
Cayley-Klein geometries.

19This concept of a dilatation generalizes the notion of a dilatationwhich is given in incidence geom-
etry (as a transformation which preserves direction) and in similarity geometry (as a transformation
which preserves circles resp. the angular measure).
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Following Klein, these substructures are called Eigentlichkeitsbereiche20 and the
associated points, lines, planes etc. “proper subspaces”. Geometric relations such as
incidence and orthogonality are inherited from the associated Cayley-Klein space.

There are different ways to distinguish substructures of a projective-metric space.
Klein’s famous model of hyperbolic geometry, for example, is defined as a substruc-
ture of the real projective plane P2, where a projective metric is given by a hyperbolic
polarity π . Points of the hyperbolic plane H2 are the points of P2 which are interior
to the “absolute conic” of self-conjugate points of π . Lines of H2 are the lines of P2

which are incident with at least one interior point. The projective reflections in points
and in lines of H2 generate the group of motions of H2 (which is in fact isomorphic
to the full group of automorphisms of P2).

The set of points of P2 which are exterior to the “absolute conic” of the polarity
π (any two of these points have according to Klein a real positive distance) are the
set of points of the co-hyperbolic geometry (see Sect. 6.1).

This shows that to a given Cayley-Klein space there may exist several substruc-
tures which are Cayley-Klein geometries. Necessary conditions for a substructure to
be an n-dimensional Cayley-Klein geometry are:

(1) Subspaces with the same dimension are “of the same kind”.
(2) The substructure contains with a subspace all subspaces which have the same

dimension and which are of the same kind.
(3) There is a flag which contains subspaces of dimension 0, 1, 2, ..., n.

A classification of subspaces of a Cayley-Klein space into elements “of the same
kind” can be done in various ways. For example, in a projective space with a hyper-
bolic polarity—as in Klein’s model of a hyperbolic plane—the set of points is the
union of the set of isotropic points (which form a conic κ) and the set of points which
are internal resp. external with respect to κ . A point which is not incident with a
tangent to κ is an internal point. A point which is not an internal point and not on
κ is an external point. The geometric classification into internal and external points
corresponds on the algebraic side to the distinction between points with signature 0
or 1 (signature21 of a point with respect to the bilinear form which describes κ).

Similarly, the set of lines is the union of the set of isotropic lines (tangents to
κ) and the sets of lines which are incident with two resp. none of the points of κ

(secants and non-secants), a classification which corresponds on the algebraic side
to the distinction between lines with signature 1 or 2.

Condition (2) ensures that a Cayley-Klein geometry is maximal with respect to
the property which defines the classification of subspaces of equal dimension. So, in
Klein’s model of a hyperbolic plane, every interior point of the absolute conic κ is a
point of the model.

20cp.Klein [42], Bachmann [7], Klopsch [44], Hessenberg andDiller [32] andKarzel andKroll [38].
21According to Sylvester’s law of inertia all maximal positive definite subspaces of a (real) quadratic
space V , i.e., of a vector space endowed with a quadratic form, have the same dimension, which is
called the signature of the quadratic space (the term “signature” is used in the literature in different
ways; we follow Snapper and Troyer [99]). The signature of a subspace U of V is the signature of
U with respect of the restriction of the quadratic form of V to U , see [108].
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According to condition (3), there is a chain of subspaces which contains elements
of every dimension of the projective space. This ensures that the dimension of the
Cayley-Klein geometry is n.

These considerations lead to the following model-theoretic definition of (real)
ordinary Cayley-Klein geometries:

If 0 < α1 < ... < αn < 1 is a maximal flag of subspaces of an ordinary Cayley-Klein space,
then the set of subspaces β which have the same dimension and signature as one of the
elements αk is the set of subspaces of a Cayley-Klein geometry.

The general (not necessarily ordinary) case can be reduced to the ordinary one
since a Cayley-Klein space CK(ε0, ..., εr+1) is build up from the ordinary Cayley-
Klein spaces CK(εk, εk+1). This leads to the following general model-theoretic def-
inition of (real) Cayley-Klein geometries :

If 0 < α1 < ... < αn < 1 is a maximal flag of subspaces of a Cayley-Klein space CK(ε0, ...,

εr+1) which contains ε0, ..., εr+1 as subspaces, then the set of subspaces β which have a
polar with the same dimension and signature as one of the elements αk is the set of subspaces
of a Cayley-Klein geometry.

The dual structure of a Cayley-Klein geometry is a Cayley-Klein geometry, i.e.,
the principle of duality can be extended to metric geometry. So, for example, the dual
geometry of n-dimensional hyperbolic geometry is co-hyperbolic geometry. Elliptic
geometry is self-dual.

The number of real Cayley-Klein geometries of dimension n is 3n (with n ≥ 1).
For a more detailed discussion of plane Cayley-Klein geometries we refer to Sect. 4.
The number of real ordinary Cayley-Klein geometries of dimension n is 2n .

Cayley-Klein geometries have properties which are well known from Euclidean,
hyperbolic and elliptic geometry: Every subspace α of a Cayley-Klein geometry
is regular. There exists one and only one projective reflection σα in α. The set of
reflections σα generates the group of motions and the calculus of reflections allows
the axiomatization and the coordinatization of a Cayley-Klein geometry.

Remark This definition of a Cayley-Klein geometry is based on the algebraic notion
of the signature of a subspace. This corresponds, as we indicated above, to geometric
properties which are more complex (like a classification in interior and exterior
points or in secants and non-secants) and which may depend on properties of the
underlying field of coordinates. The algebraic notion of signature of a subspace
allows, on the other hand, a simple definition, which only assumes that the field of
coordinates allows the introduction of a half-order (i.e., of a homomorphism from the
multiplicative group of K into the cyclic group ({1,−1}, ·) of order two; see [108]).
This is satisfied in particular by all fields which are orderable or of finite order. The
concept of a Cayley-Klein geometry is hence not restricted to the real or complex
case.
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6.1 Plane Cayley-Klein Geometries

Let P3(R) be the 3-dimensional projective space over the field of real numbers andQ
a non-degenerate quadric of P3(R), i.e., a quadric with the property that there exists
a plane section which is a non-degenerate conic.

As is well known, up to projective equivalence, there are three quadrics of this
kind, namely, the sphere, which has no generators (there are no lines lying entirely in
the quadric), the cone, where every point (with the exception of the vertex) is incident
with exactly one generator, and the ruled surface, where every point is incident with
exactly two generators. The vertex of a cone is incident with all generators and is
called a singular point.

We call a line g a secant (or secant line) of Q if g is incident with exactly two
points of Q. The line g is called a tangent (or a tangent line) of Q if g and Q have
one and only one non-singular point of intersection.

A plane ε is called a secant plane of Q if the points of intersection of ε and Q
are the points of a non-degenerate conic. The secant planes through a point A of
the projective space can be divided into three classes, depending on whether they
contain one, two or no tangent line to Q.

In every secant plane ε of Q there is a projective reflection, i.e., an involutory
projective collineation leaving Q invariant, and ε and the pole of ε (with respect to
Q) pointwise fixed. In every secant line g of Q there is a projective reflection, i.e.,
an involutory projective collineation leaving Q invariant, and g and the polar of g
(with respect to Q) pointwise fixed.

With these concepts in mind we now give a model-theoretic characterization of
all nine plane Cayley-Klein geometries.

(P,L,G) is called a plane Cayley-Klein geometry if there is a point A and a
non-degenerate quadric Q of P3(R) and a number n ∈ {0, 1, 2} such that

• P is the set of secant lines through A.
• L is the set of secant planes through A which contain n tangents to Q.
• G is the group of projective collineations generated by reflections in the elements
of P and L (restricted to P ∪ L).
The elements of P are the points and the elements of L are the lines of the plane

Cayley-Klein geometry. The incidence relation between points and lines is inherited
from the projective space.

The elements of G are called motions. In each point A and in each line g of the
plane Cayley-Klein geometry there exists a unique reflection, which is the restriction
of the associated projective reflection in A (resp. g) to P ∪ L.

Metric concepts can be defined in the followingway: Two pairs (B,C) and (D, E)

of points (which can be thought of as segments) are called congruent if there is a
motion α with Bα = D and Cα = E . Dually, two pairs (b, c) and (d, e) of lines
(which can be thought of as angles) are called congruent if there is a motion α with
bα = d and cα = e.

The type of a planeCayley-Klein geometry is a pair of natural numbers (m, n)with
m, n ∈ {0, 1, 2} where m denotes the number of generators through a non-singular
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point of the quadric Q and n the number of lines of the elements of L which are
incident with A and tangent to Q.

The value of m is 0, 1 or 2 depending on whetherQ is a sphere, a cone, or a ruled
surface. If A is a point ofQ then n = 1. If A is an interior point ofQ then n = 0 and
if A is an exterior point then n = 2.

According to Struve and Struve [102] there are nine real plane Cayley-Klein
geometries which are presented (name and type) in the following table.

elli ptic Euclidean hyperbolic
(0, 0) (0, 1) (0, 2)

co − Euclidean Galilean co − Minkowskian
(1, 0) (1, 1) (1, 2)

co − hyperbolic Minkowskian doubly hyperbolic
(2, 0) (2, 1) (2, 2)

The points and lines of a plane Cayley-Klein geometry (P,L,G) are lines and
planes through a point A of a projective space P. Hence (P,L,G) can be extended
to a projective ideal plane: ideal points are the lines through A, ideal lines are the
planes through A, and the incidence relation is inherited from P. The motions of a
plane Cayley-Klein geometry (which are induced by collineations of P, which have
A as a fixed point) can be extended to collineations of the projective ideal plane.

To represent the points and lines of (P,L,G) by points and lines of Pwe consider
the intersection of the elements of P and L with a secant plane of Q which is not
incident with A. In this way one gets Klein models of the Cayley-Klein geometries.

1. The Klein model of an elliptic plane is a projective plane.
2. The Klein model of a Euclidean plane is an affine plane.
3. The Klein model of a hyperbolic plane contains the interior points of a non-

degenerate conic κ and the lines which are incident with at least one interior
point of κ .

4. The Klein model of a co-Euclidean plane is obtained from a projective plane by
the removal of a point A and of all lines which are incident with A.

5. The Klein model of a Galilean plane is obtained from an affine plane by the
removal of a pencil of parallel lines.

6. The Klein model of a co-Minkowskian plane contains exactly all points of an
affine plane which lie between two parallel lines a and b as well as all lines
which are not parallel to a or b.

7. The Klein model of a co-hyperbolic plane contains exactly the exterior points of
a non-degenerate conic κ and the lines which have no common point with κ .

8. The Klein model of aMinkowskian plane is obtained from an affine plane by the
removal of two pencils of parallel lines.

9. The Klein model of a doubly hyperbolic plane contains exactly the exterior points
of a non-degenerate conic κ and the lines which are incident with at least one
interior point of κ .
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As mentioned above, in each point A and in each line g of a plane Cayley-Klein
geometry there exists a unique reflection, which is the restriction of the associated
projective reflection in A (resp. g) to P ∪ L. This shows that metric geometry in
the sense of Cayley and Klein can be formulated in the group of motions. For an
axiomatization and coordinatization of plane Cayley-Klein geometries over fields of
characteristic �=2 we refer to Sect. 6.3.

The geometry of plane sections of a quadricQ is the circle geometry of Möbius,
Laguerre or Minkowski depending on whether Q is a sphere, a cone, or a ruled
surface. The points of the circle geometries are the non-singular points ofQ and the
circles are the plane sections of Q. The points and lines of a plane Cayley-Klein
geometry can be represented as point-pairs and circles of the above-mentioned circle
geometries. The group of motions of a Cayley-Klein geometry is isomorphic to a
group of circle transformations. In this way one gets Poincaré models of the Cayley-
Klein geometries.

6.2 Finite Cayley-Klein Geometries

The model-theoretic characterization of plane Cayley-Klein geometry, given in
Sect. 6.1, allows the transfer of Riemann’s idea of an elliptic plane to the realm
of finite geometries.

In the 3-dimensional projective space over the finite field GF(n) of order n there
exist three non-degenerate quadricsQ (i.e., quadricswith the property that there exists
a plane section which is a non-degenerate conic): the sphere without generators, the
cone with one generator through every point distinct from the vertex, and the ruled
surface with two generators through every point of the quadric.

Let A be an arbitrary point of the projective space. The set of secant lines through A
and the set of secant planes through Awith n tangents toQ for a number n ∈ {0, 1, 2}
are the setP of points and the setL of lines of a plane Cayley-Klein geometry (if both
sets are non-empty). The group of projective collineations generated by reflections
in the elements of P and L (restricted to P ∪ L) is the group of motions of the
Cayley-Klein geometry.

As in the real case, there are nine plane Cayley-Klein geometries over any finite
field of characteristic �=2. Among these finite geometries there are well-known con-
figurations: The configurations ofDesargues, Pappus, and Petersen (with their groups
of automorphisms) can be represented by the elliptic plane overGF(5), the Galilean
plane over GF(3), and the hyperbolic plane over GF(5). This is in stark contrast to
the theory of metric planes, presented in Sect. 2.1, for which there are finite models
only in the case of the Euclidean metric, i.e., only if E1 holds (see [7, §6,12]).

Every finite plane Cayley-Klein geometry can be represented as a Klein model
and as a Poincaré model. For the number of points and lines of a finite Cayley-Klein
geometry and a uniform representation of the groups of motions we refer to Struve
and Struve [103].
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6.3 Cayley-Klein Geometries and Reflection Geometry

According to the table (in Sect. 6.1) there are nine types of plane Cayley-Klein
geometries. Elliptic, Euclidean, and hyperbolic planes are metric planes in the sense
of Bachmann, which were characterized in Sect. 2.1.

For a characterization of all types of plane Cayley-Klein geometries, several
aspects of Bachmann’s notion of a metric plane have to be broadened. The most
important aspect is the principle of duality: the dual of a Cayley-Klein geometry is
also a Cayley-Klein geometry.

Thus the set S of line reflections will no longer play a distinguished role in
the group of motions G. S no longer needs to be a set of generators of G, and
the set P of point reflections can no longer be defined as the set of involutions of
S2 = {ab : a, b ∈ S}.

This corresponds to new geometric phenomena which are unknown in the setting
of classical plane absolute geometry. In a Cayley-Klein geometry there may be
motions which are involutions without being point or line reflections. A rotation
which is not the identity (the product of the reflections in lines a and b with a unique
point of intersection) may have several fixed points, and the product of the reflections
in three lines a, b, c which are the sides of a non-degenerate triangle may be a line
reflection.

On the other hand, well known axioms of classical plane absolute geometry, such
as the uniqueness of a joining line, the existence of a perpendicular (in a self-dual
form), and the three reflections theorems (in a dual form), continue to hold.

We generalize the axiom system for metric planes based on the following princi-
ples:

• The axiom system is satisfied by the metric planes of Sect. 2.1.
• The axiom system is satisfied by all types of plane Cayley-Klein geometries (for
reasons of simplicity with the exception of the doubly hyperbolic case).

• The axiom system allows a formulation in a first-order language.
• The axioms are statements about points and lines with a direct geometric interpre-
tation and without any non-geometric assumptions about the type or structure of
the underlying group G (such as Z(G) = 1).

• The axiom system contains with each axiom the dual one.

(G, S, P) is called a Cayley-Klein group22 if the following Basic Assumption
and axioms hold (see [109])23:

22or more precisely a non-doubly hyperbolic Cayley-Klein group.
23We recall from Sect. 3: Elements a, b, c, . . . of S are called lines and elements A, B,C, . . . of P
points. The “stroke relation” α |β is an abbreviation for the statement that α, β and αβ are involutory
elements (i.e., group elements of order 2). The statement α, β | δ is an abbreviation of α |δ and β |δ.
A point A and a line b are incident if A |b. Lines a, b ∈ S are orthogonal if a |b. A quadrangle is a
set of four points A, B,C, D and four lines a, b, c, d with a | A, B and b | B,C and c | C, D and
d | D, A.
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Basic Assumption Let G be a group and S and P invariant subsets of involutions
of G such that

N 1 If a |b then ab ∈ P .
N 2 If A | B then AB ∈ S.
N 3 For every pair (A, b) there exists (a, B) with a | A and B |b and Aa = bB

and if A �= b then (a, B) is unique.
N 4 If A, B |c, d then A = B or c = d.
N 5 If A, B,C |d then ABC ∈ P .
N 6 If a, b, c |D then abc ∈ S.
N 7 If A |a and B |b and C |c and Aa = Bb = Cc then ABC ∈ P and abc∈ S.
N 8 There exists a quadrangle.

According to axiom N1, orthogonal lines a, b intersect in the point ab. N2 is the
dual axiom which states that polar points A, B are incident with the line AB. Axiom
N3 states that, if A is a point and b a line, then there exists a line a through A and
a point B on b with Aa = bB (a “perpendicular” from A to b with foot B) and that
(a, B) is unique if A is not the pole of b. According to N4, two different points have
at most one joining line and two different lines have at most one common point. N5
states that, if A, B,C are collinear points, then ABC is a point (the fourth reflection
point). N6 is the dual axiom, which states that, if a, b, c are copunctual lines, then
abc is a line, the fourth reflection line. N7 is a self-dual axiom which is a special
generalization of the theorem of three reflections. According to N8, there exists at
least a quadrilateral (the assumption of the existence of a triangle—cp. axiomM10 in
Sect. 2.1—does not hold in every Cayley-Klein geometry, e. g., in the Minkowskian
plane over GF(3)).

The metric planes of Sect. 2 are exactly those plane Cayley-Klein geometries
which satisfy the axiom of the existence of a joining line (as Euclidean, hyperbolic
and elliptic planes). The Galilean, co-Minkowskian, and co-Euclidean planes satisfy
the dual parallel axiom.

If A is not incident with b, then there is a unique point on b which has no joining line with A.

By dualization one gets the following two statements: The elliptic, co-Euclidean
and co-hyperbolic planes are dual metric planes, i.e., plane Cayley-Klein geometries
with the property that any two lines have a point of intersection. The Euclidean,
Galilean and Minkowskian planes satisfy the parallel postulate

If A is not incident with b, then there is a unique line through A which has no point of
intersection with b.

A plane Cayley-Klein geometry which satisfies the parallel axiom is singular,
i.e., the set of translations forms a group (or equivalently, in any quadrilateral with
three right angles the fourth angle is a right one).

The hyperbolic and co-Minkowskian planes satisfy the hyperbolic parallel axiom
which states that through a given point A there are at most two lines a and b that
have neither a common point nor a common line with a given line g (cp. axiom H2 in
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Sect. 2.1.2). The co-hyperbolic and Minkowskian planes satisfy the dual hyperbolic
parallel axiom.

For axiomatizations of Cayley-Klein geometries in terms of reflections we refer
for Minkowskian planes to Wolff [115], for Galilean planes to Struve [100], for co-
Minkowskian and co-Euclidean planes to Struve and Struve [101, 105] (cp. Bach-
mann [8]), and for metric planes to the references in Sect. 2.1.

Methodological reflections.

In the axiomatic approach to geometry, a Begründung has the important function
of providing a convenient means of ensuring the consistency of that geometry’s
axiom system. The latter can be reduced by means of an embedding in a projective-
metric space (with respect to both the incidence and the metric structure) to the
consistency of the algebraic structure that coordinatizes that projective-metric space.
Those algebraic structures are fieldswith some additional properties. Since the axiom
systems of those fields can be extended to that of the theory of real-closed fields,
which we know to be consistent (see [62, p. 68]), any fragment thereof must be
consistent as well.

Begründungen in this sense were provided first by Hilbert in his Grundlagen
der Geometrie [34] and then in Neue Begründung der Bolyai-Lobatschefskyschen
Geometrie [33], then by Hjelmslev in Neue Begründung der ebenen Geometrie [36],
by Podehl and Reidemeister in Eine Begründung der elliptischen Geometrie [73],
by Bachmann in Eine Begründung der absoluten Geometrie in der Ebene [2] and by
many other geometers who worked in the foundations of geometry.

It is worth emphasizing that a geometry’s Begründung (i.e., its embedding in a
projective-metric space) not only ensures its “existence” from a logical point of view
in Hilbert’s sense, but also its authenticity from a projective-geometric point of view
championed byKlein, as a geometry in its own right, in noway inferior or subservient
to the Euclidean one.

6.4 Cayley-Klein Spaces and Differential Geometry

Cayley-Klein manifolds.

There are many natural connections between Riemannian manifolds and Cayley-
Klein spaces. The tangent space of an n-dimensional Riemannian manifold is an
n-dimensional vector space endowed with a (positive definite) quadratic form, which
corresponds—from a geometric point of view—to an (n − 1)-dimensional Cayley-
Klein space with an elliptic metric. The elements of the Cayley-Klein space can be
represented by the set of Euclidean subspaces through the point of contact of the
tangent space (if the manifold is embedded in a Euclidean space). If the quadratic
form of a manifold is not positive definite, then the metric of the associated Cayley-
Klein space is hyperbolic and the manifold is called pseudo-Riemannian.

The second connection we want to point to is that a Riemannian manifold which
is embedded in a Euclidean space is also embeddable in the projective closure of
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that Euclidean space. This means that the concept of a Riemannian manifold can
be generalized by considering manifolds which are embedded in arbitrary Cayley-
Klein spaces (and whose tangent spaces can be Cayley-Klein spaces of any type).
Such manifolds are called by Rosenfeld [75] quasi-Riemannian or quasipseudo-
Riemannian (see also [116]). Perhaps a more appropriate name would be Cayley-
Klein manifold. The groups of motions of Cayley-Klein spaces are examples for
Cayley-Klein manifolds.
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Generalized Riemann Sums

Toshikazu Sunada

Abstract The primary aim of this chapter is, commemorating the 150th anniver-
sary of Riemann’s death, to explain how the idea of Riemann sum is linked to other
branches of mathematics. The materials I treat are more or less classical and elemen-
tary, thus available to the “common mathematician in the streets”. However one may
still see here interesting inter-connection and cohesiveness in mathematics.

Keywords Constant density · Coprime pairs · Primitive pythagorean triples ·Qua-
sicrystal · Rational points on the unit circle

1 Introduction

On Gauss’s recommendation, Bernhard Riemann presented the paper Über die
Darstellbarkeit einer Function durch eine trigonometrische Reihe to the Council
of Göttingen University as his Habilitationsschrift at the first stage in December
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of 1853.1 As the title clearly suggests, the aim of his essay was to lay the foundation
for the theory of trigonometric series (Fourier series in today’s term).2

The record of previous work by other mathematicians, to which Riemann devoted
three sections of the essay, tells us that the Fourier series had been used to represent
general solutions of the wave equation and the heat equation without any convincing
proof of convergence. For instance, Fourier claimed, in his study of the heat equation
(1807, 1822), that if we put

an = 1

π

∫ π

−π

f (x) sin nx dx, bn = 1

π

∫ π

−π

f (x) cos nx dx, (1)

then

f (x) = 1

2
b0 + (a1 sin x + b1 cos x) + (a2 sin 2x + b2 cos 2x) + . . . (2)

without any restrictions on the function f (x). But this is not true in general as is well
known. What is worse (though, needless to say, the significance of his paper as a
historical document cannot be denied) is his claim that the integral of an “arbitrary”
function is meaningful as the area under/above the associated graph.

L. Dirichlet, a predecessor of Riemann, was the first who gave a solid proof for
convergence in a special case. Actually he proved that the right-hand side of (2)

converges to
1

2

(
f (x + 0) + f (x − 0)

)
for a class of functions including piecewise

monotone continuous functions (1829). Stimulated by Dirichlet’s study, Riemann
made considerable progress on the convergence problem. In the course of his dis-
cussion, he gave a precise notion of integrability of a function,3 and then obtained
a condition for an integrable function to be representable by a Fourier series. Fur-
thermore he proved that the Fourier coefficients for any integrable function an, bn

converge to zero as n → ∞. This theorem, which was generalized by Lebesgue later
to a broader class of functions, is to be called the Riemann-Lebesgue theorem, and
is of importance in Fourier analysis and asymptotic analysis.

What plays a significant role in Riemann’s definition of integrals is the notion of
Riemann sum, which, if we use his notation (Fig.1), is expressed as

S = δ1 f (a + ε1δ1) + δ2 f (x1 + ε2δ2) + δ3 f (x3 + ε3δ3) + · · · + δn f (xn−1 + εnδn).

1Habilitationsschrift is a thesis for qualification to become a lecturer. The famous lecture Über die
Hypothesen welche der Geometrie zu Grunde liegen delivered on 10 June 1854 was for the final
stage of his Habilitationsschrift.
2The English translation is “On the representability of a function by a trigonometric series”. His
essay was published only after his death in the Abhandlungen der Königlichen Gesellschaft der
Wissenschaften zu Göttingen (Proceedings of the Royal Philosophical Society at Göttingen), vol.
13, (1868), pages 87–132.
3See Sect. 4 in his essay, entitled “Über der Begriff eines bestimmten Integrals und den Umfang
seinerGültigkeit” (On the concept of a definite integral and the extent of its validity), pages 101–103.
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Fig. 1 Riemann’s paper

Here f (x) is a function on the closed interval [a, b], a = x0 < x1 < x2 < · · · <

xn−1 < xn = b, and δi = xi − xi−1 (i = 1, 2, . . . , n). If S converges to A as maxi δi

goes to 0 whatever εi with 0 < εi < 1 (i = 1, . . . , n) are chosen (thus xk−1 + εkδk ∈
[xk−1, xk]), then the value A is written as

∫ b

a
f (x)dx , and f (x) is called Riemann

integrable. For example, every continuous function is Riemann integrable aswe learn
in calculus.

Compared with Riemann’s other supereminent works, his essay looks unglam-
orous. Indeed, from today’s view, his formulation of integrability is no more than
routine. But the harbinger must push forward through the total dark without any
definite idea of the direction. All he needs is a torch of intelligence.

The primary aim of this chapter is not to present the subsequent development
after Riemann’s work on integrals such as the contribution by C. Jordan (1892),4 G.
Peano (1887), H. L. Lebesgue (1892), T. J. Stieltjes (1894), and K. Ito (1942),5 but

4Jordan introduced a measure (Jordan measure) which fits in with the Riemann integral. A bounded
set is Jordan measurable if and only if its indicator function is Riemann integrable.
5Ito’s integral (or stochastic integral) is a sort of generaization of the Stieltjes integral. Stieltjes

defined his integral
∫

f (x)dϕ(x) by means of a modified Riemann sum.
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to explain how the idea of Riemann sum is linked to other branches of mathematics;
for instance, some counting problems in elementary number theory and the theory
of quasicrystals, the former having a long history and the latter being an active field
still in a state of flux.

I am very grateful to Xueping Guang for drawing attention to Ref. [10] which
handles some notions closely related to the ones in the present chapter.

2 Generalized Riemann Sums

The notion of Riemann sum is immediately generalized to functions of several vari-
ables as follows.

Let � = {Dα}α∈A be a partition ofRd by a countable family of bounded domains
Dα with piecewise smooth boundaries satisfying

(i) mesh(�) := sup
α∈A

d(Dα) < ∞, where d(Dα) is the diameter of Dα ,

(ii) there are only finitely many α such that K ∩ Dα �= ∅ for any compact set
K ⊂ R

d .

We select a point ξα from each Dα , and put � = {ξα| α ∈ A}. The Riemann sum
σ( f,�, �) for a function f on Rd with compact support is defined by

σ( f,�, �) =
∑
α∈A

f (ξα)vol(Dα),

where vol(Dα) is the volume of Dα . Note that f (ξα) = 0 for all but finitely many α

because of Property (ii).
If the limit

lim
mesh(�)→0

σ( f,�, �)

exists, independently of the specific sequence of partitions and the choice of {ξα},
then f is said to be Riemann integrable, and this limit is called the (d-tuple) Riemann

integral of f , which we denote by
∫
Rd

f (x)dx.

In particular, if we take the sequence of partitions given by�ε = {εDα| α ∈ A}
(ε > 0), then, for every Riemann integrable function f , we have

lim
ε→+0

∑
α∈A

εd f (εξα)vol(Dα) =
∫
Rd

f (x)dx, (3)

where we should note that vol(εDα) = εdvol(Dα).
Now we look at Eq.3 from a different angle. We think that ω(ξα) := vol(Dα) is a

weight of the point ξα , and that Eq.3 is telling how the weighted discrete set (�, ω)

is distributed inRd ; more specifically we may consider that Eq.3 implies uniformity,
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in a weak sense, of (�, ω) in R
d . This view motivates us to propose the following

definition.
In general, a weighted discrete subset in R

d is a discrete set � ⊂ R
d with a

function ω : � → C\{0}. Given a compactly supported function f onRd , define the
(generalized) Riemann sum associated with (�, ω) by setting

σ( f, �, ω) =
∑
z∈�

f (z)ω(z).

In addition, we say that (�, ω) has constant density c(�, ω) �= 0 (Marklof and Ström-
bergsson [9]) if

lim
ε→+0

σ( f ε, �, ω)
(

= lim
ε→+0

∑
z∈�

εd f (εz)ω(z)
)

= c(�, ω)

∫
Rd

f (x)dx (4)

holds for any bounded Riemann integrable function f on Rd with compact support,
where f ε(x) = εd f (εx); thus the weighted discrete set associated with a partition
{Dα} and {ξα} has constant density 1. In the case ω ≡ 1, we write σ( f, �) for
σ( f, �, ω), and c(�) for c(�, ω) when � = (�, ω) has constant density.

In connection with the notion of constant density, it is perhaps worth recalling the
definition of a Delone set, a qualitative concept of “uniformity”. A discrete set � is
called a Delone set if it satisfies the following two conditions (Delone [3]).

(1) There exists R > 0 such that every ball BR(x) (of radius R whose center is x)
has a nonempty intersection with �, i.e., � is relatively dense;

(2) there exists r > 0 such that each ball Br (x) contains at most one element of
�, i.e., � is uniformly discrete.

The following proposition states a relation between Delone sets and Riemann
sums.

Proposition 2.1 Let � be a Delone set. Then there exist positive constants c1, c2
such that

c1

∫
Rd

f (x)dx ≤ lim
ε→+0

σ( f ε, �) ≤ lim
ε→+0

σ( f ε, �) ≤ c2

∫
Rd

f (x)dx

for every nonnegative-valued function f .

Proof In view of the Delone property, one can find two partitions {Dα} and {D′
β}

consisting of rectangular parallelotopes satisfying

(i) Every Dα has the same size, and contains at least one element of �;
(ii) every D′

β has the same size, and contains at most one element of �.

Put c1 = vol(Dα)−1 and c2 = vol(D′
β)−1. We take a subset �1 of � such that

every Dα contains just one element of �1, and also take �2 ⊃ � such that every D′
β

contains just one element of �2. We then have σ( f ε, �1) ≤ σ( f ε, �) ≤ σ( f ε, �2).
Therefore using Eq.3, we have
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c1

∫
Rd

f (x)dx = lim
ε→+0

σ( f ε, �1) ≤ lim
ε→+0

σ( f ε, �)

≤ lim
ε→+0

σ( f ε, �) ≤ lim
ε→+0

σ( f ε, �2) = c2

∫
Rd

f (x)dx,

where we should note that σε( f, �1) and σε( f, �2) are ordinary Riemann sums. �

One might ask “what is the significance of the notions of generalized Riemann
sum and constant density?” Admittedly these notions are not so much profound (one
can find more or less the same concepts in plural references). It may be, however,
of great interest to focus our attention on the constant c(�, ω). In the subsequent
sections, we shall give two “arithmetical” examples for which the constant c(�) is
explicitly computed.

3 Classical Example 1

Let Zd
prim (d ≥ 2) be the set of primitive lattice points in the d-dimensional standard

lattice Zd , i.e., the set of lattice points visible from the origin (note that Z2
prim is the

set of (x, y) ∈ Z
2 such that (|x |, |y|) is a coprime pair of positive integers, together

with (±1, 0) and (0,±1)).

Theorem 3.1 Z
d
prim has constant density ζ(d)−1; that is,

lim
ε→+0

∑
z∈Zd

prim

εd f (εz) = ζ(d)−1
∫
Rd

f (x)dx.

Here ζ(s) =
∞∑

n=1

n−s is the zeta function.

The proof, which is more or less known as a sort of folklore, will be indicated in
Sect.5.

Noting that ζ(2) = π2/6 and applying this theorem to the indicator function f
for the square {(x, y)| 0 ≤ x, y ≤ 1}, we obtain the following well-known statement
(Fig. 2).

Corollary 3.1 The probability that two randomly chosen positive integers are
coprime is 6/π2. More precisely

lim
N→∞

1

N 2

∣∣{(a, b) ∈ N × N| gcd(a, b) = 1, a, b ≤ N
}∣∣ = 6

π2
,

where gcd(a, b) stands for the greatest common divisor of a, b.
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Fig. 2 Coprime pairs

Remark 3.1 (1) Gauss’sMathematisches Tagebuch6 (Mathematical Diary), a record
of the mathematical discoveries of C. F. Gauss from 1796 to 1814, contains 146
entries,most ofwhich consist of brief and somewhat cryptical statements. Someof the
statements which he never published were independently discovered and published
by others often many years later.7

The entry relevant to Corollary 3.1 is the 31st dated 1796 September 6:
“Numero fractionum inaequalium quorum denomonatores certum limitem non

superant adnumerumfractionumomniumquarumnum[eratores] aut denom[inatores]
sint diversi infra limitem in infinito ut 6 : ππ”

This vague statement about counting (irreducible) fractions was formulated in an
appropriate way afterwards and proved rigorously by Dirichlet (1849) and Ernesto
Cesàro (1881). As a matter of fact, because of its vagueness, there are several ways
to interpret what Gauss was going to convey.8

(2) In connection with Theorem 3.1, it is perhaps worthwhile to make reference
to the Siegel mean value theorem ([14]).

Let g ∈ SLd(R). For a bounded Riemann integrable function f on Rd with com-
pact support, we consider

Φ(g) =
∑

z∈Zd\{0}
f (gz), �(g) =

∑
z∈Zd

prim

f (gz).

6See vol. X in Gauss’s Werke.
7The first entry, the most famous one, records the discovery of the construction of a heptadecagon
by ruler and compass. The diary was kept by Gauss’s bereaved until 1899. It was Stäckel who
became aware of the existence of the diary.
8For instance, see Ostwald’s Klassiker der exakten Wissenschaften; Nr. 256. The 14th entry dated
20 June, 1796 for which Dirichlet gave a proof is considered a companion of the 31st entry. The
Yagloms [21] refer to the question on the probability of two random integers being coprime as
“Chebyshev’s problem”.
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Both functions Φ and � are SLd(Z)-invariant with respect to the right action of
SLd(Z) on SLd(R), so that these are identified with functions on the coset space
SLd(R)/SLd(Z). Recall that SLd(R)/SLd(Z) has finite volume with respect to the
measure dg induced from the Haar measure on SLd(R). We assume∫
SLd (R)/SLd (Z)

1 dg = 1. Then the Siegel theorem asserts

∫
SLd (R)/SLd (Z)

( ∑
z∈Zd\{0}

f (gz)
)

dg =
∫
Rd

f (x)dx,

∫
SLd (R)/SLd (Z)

( ∑
z∈Zd

prim

f (gz)
)

dg = ζ(d)−1
∫
Rd

f (x)dx.

�

4 Classical Example 2

A Pythagorean triple,9 the name stemming from the Pythagorean theorem for
right triangles, is a triple of positive integers (�, m, n) satisfying the equation
�2 + m2 = n2. Since (�/n)2 + (m/n)2 = 1, a Pythagorean triple yields a rational
point (�/n, m/n) on the unit circle S1 = {(x, y)| x2 + y2 = 1}. Conversely any ratio-
nal point on S1 is derived from a Pythagorean triple. Furthermore the well-known
parameterization of S1 given by x = (1 − t2)/(1 + t2), y = 2t/(1 + t2) tells us that
the set of rational points S1(Q) = S1 ∩ Q

2 is dense in S1 (we shall see later how
rational points are distributed from a quantitative viewpoint).

A Pythagorean triple (x, y, z) is called primitive if x, y, z are pairwise coprime.
“Primitive” is so named because any Pythagorean triple is generated trivially from
the primitive one, i.e., if (x, y, z) is Pythagorean, there are a positive integer � and a
primitive (x0, y0, z0) such that (x, y, z) = (�x0, �y0, �z0).

The way to produce primitive Pythagorean triples (PPTs) is described as follows:
If (x, y, z) is a PPT, then there exist positive integers m, n such that

(i) m > n,
(ii) m and n are coprime,
(iii) m and n have different parity,
(iv) (x, y, z) = (m2 − n2, 2mn, m2 + n2) or (x, y, z) = (2mn, m2 − n2, m2 + n2).

Conversely, if m and n satisfy (i), (ii), (iii), then (m2 − n2, 2mn, m2 + n2) and
(2mn, m2 − n2, m2 + n2) are PPTs.

9Pythagorean triples have a long history since the Old Babylonian period in Mesopotamia nearly
4000years ago. Indeed, one can read 15 Pythagorean triples in the ancient tablet, written about 1800
BCE, called Plimpton 322 (Weil [19]).
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In the table below, due toM. Somos [15], of PPTs (x, y, z) enumerated in ascend-
ing order with respect to z, the triple (xN , yN , zN ) is the N -th PPT (we do not
discriminate between (x, y, z) and (y, x, z)).

N xN yN zN

1 3 4 5
2 5 12 13
3 15 8 17
4 7 24 25
5 21 20 29
6 35 12 37
7 9 40 41
8 45 28 53
9 11 60 61

10 63 16 65

N xN yN zN

11 33 56 65
12 55 48 73
13 77 36 85
14 13 84 85
15 39 80 89
16 65 72 97
17 99 20 101
18 91 60 109
19 15 112 113
20 117 44 125

· · ·

N xN yN zN

1491 4389 8300 9389
1492 411 9380 9389
1493 685 9372 9397
1494 959 9360 9409
1495 9405 388 9413
1496 5371 7740 9421
1497 9393 776 9425
1498 7503 5704 9425
1499 6063 7216 9425
1500 1233 9344 9425

Whatwe have interest in is the asymptotic behavior of zN as N goes to infinity. The
numerical observation tells us that the sequence {zN } almost linearly increases as N
increases. Indeed z100/100 = 6.29, z1000/1000 = 6, 277, z1500/1500 = 6.28333 . . .,
which convinces us that lim

N→∞ zN /N exists (though the speed of convergence is very

slow), and the limit is expected to be equal to 2π = 6.2831853 . . .. This is actually
true as shown by Lehmer [8] in 1900, though his proof is by no means easy.

We shall prove Lehmer’s theorem by counting coprime pairs (m, n) satisfying the
condition that m − n is odd. A key of our proof is the following theorem.

Theorem 4.1 Z
2,∗
prim = {(m.n) ∈ Z

2
prim| m − n is odd} (= {(m.n) ∈ Z

2
prim| m − n ≡

1 (mod 2)}) has constant density 4/π2; namely

lim
ε→+0

∑
z∈Z2,∗

prim

ε2 f (εz) = 2

3
ζ(2)−1

∫
R2

f (x)dx = 4

π2

∫
R2

f (x)dx. (5)

We postpone the proof to Sect. 5, and apply this theorem to the indicator function
f for the set {(x, y) ∈ R

2|x ≥ y, x2 + y2 ≤ 1}. Since
∑

z∈Z2,∗
prim

ε2 f (εz) = ε2
∣∣{(m, n) ∈ N

2| gcd(m, n) = 1, m > n,

m2 + n2 ≤ ε−2, m − n is odd
}∣∣,

we obtain

lim
N→∞

1

N

∣∣{(m, n) ∈ N
2| gcd(m, n) = 1, m > n, m2 + n2 ≤ N , (6)

m − n is odd
}∣∣ = 2

3
· 6

π2
· π

8
= 1

2π
.
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Note that
∣∣{(m, n) ∈ N

2| gcd(m, n) = 1, m > n, m2 + n2 ≤ N , m − n is odd
}∣∣

coincides with the number of PPT (x, y, z) with z ≤ N . This observation leads us to

Corollary 4.1 (Lehmer) lim
N→∞

zN

N
= 2π .

Remark 4.1 Fermat’s theorem on sums of two squares,10 together with his little
theorem and the formula (a2 + b2)(c2 + d2) = (ac ± bd)2 + (ad ∓ bc)2, yields the
following complete characterization of PPTs which is substantially equivalent to
the result stated in the letter from Fermat to Mersenne dated 25 December 1640
(cf.Weil [19]).

An odd number z is written as m2 + n2 by using two coprime positive integers
m, n (thus automatically having different parity) if and only if every prime divisor
of z is of the form 4k + 1. In other words, the set {zN } coincides with the set of
odd numbers whose prime divisors are of the form 4k + 1. Moreover, if we denote
by ν(z) the number of distinct prime divisors of z, then z = zN in the list is repeated
2ν(z)−1 times. �

Theorem 4.1 can be used to establish

Corollary 4.2 For a rational point (p, q) ∈ S1(Q)(= S1 ∩ Q
2), define the height

h(p, q) to be the minimal positive integer h such that (hp, hq) ∈ Z
2. Then for any

arc A in S1, we have

∣∣{(p, q) ∈ A ∩ Q
2| h(p, q) ≤ h

}∣∣ ∼ 2 · length(A)

π2
h (h → ∞),

and hence rational points are equidistributed on the unit circle in the sense that

lim
h→∞

∣∣{(p, q) ∈ A ∩ Q
2| h(p, q) ≤ h

}∣∣∣∣{(p, q) ∈ S1 ∩ Q2| h(p, q) ≤ h}∣∣ = length(A)

2π
.

In his paper [4], W. Duke suggested that this corollary can be proved by using
tools from the theory of L-functions combined with Weyl’s famous criterion for
equidistribution on the circle ([20]). Our proof below relies on a generalization of
Eq.6.

Given α, β with 0 ≤ α < β ≤ 1, we put

P(N ;α, β) = {
(m, n) ∈ N × N| gcd(m, n) = 1, α ≤ n/m ≤ β,

m − n is odd, m2 + n2 ≤ N
}
.

Namely we count coprime pairs (m, n) with odd m − n in the circular sector

{(x, y) ∈ R
2| x, y > 0, αx ≤ y ≤ βx, x2 + y2 ≤ N }.

10Every prime number p = 4k + 1 is in one and only one way a sum of two squares of positive
integers.
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Since the area of the region {(x, y) ∈ R
2| x, y > 0, αx ≤ y ≤ βx, x2 + y2 ≤ 1} is

1

2
arctan

β − α

1 + αβ
, applying again Eq. 5 to the indicator function for this region, we

obtain

lim
N→∞

1

N

∣∣P(N ;α, β)
∣∣ = 2

π2
arctan

β − α

1 + αβ
.

Nowwe sort points (p, q) �= (±1, 0), (0, ±1) in S1(Q) by 4 quadrants containing
(p, q), and also by parity of x when we write |p| = x/z, |q| = y/z with a PPT
(x, y, z). Here we should notice that h(p, q) = z = m2 + n2. Thus counting rational
points with the height function h(p, q) reduces to counting PPTs.

Put

S1
Q
(odd) = {

(p, q) ∈ S1(Q)| x is odd
}
,

S1
Q
(even) = {

(p, q) ∈ S1(Q)| x is even
}
.

Then
S1(Q) = S1

Q
(odd) ∪ S1

Q
(even) ∪ {(±1, 0), (0,±1)

}
(disjoint).

Note that the correspondence (p, q) �→ (q, p) interchanges S1
Q
(odd) and S1

Q
(even).

Therefore, in order to complete the proof, it is enough to show that

∣∣{(p, q) ∈ S1
Q
(odd)| θ1 ≤ θ(p, q) < θ2, h(p, q) ≤ h

}∣∣
∼ 1

π2
(θ2 − θ1)h (h → ∞),

where (p, q) = (
cos θ(p, q), sin θ(p, q)

)
. Without loss of generality, one may

assume 0 ≤ θ1 < θ2 ≤ π/2. Since

tan θ(p, q) = q

p
= 2mn

m2 − n2
=

2
n

m

1 −
( n

m

)2 ,

if we define �(m, n) ∈ [0, π/2) by tan�(m, n) = n/m, then tan θ(p, q) =
tan 2�(m, n), and hence θ(p, q) = 2�(m, n). Therefore

∣∣{(p, q) ∈ S1
Q
(odd)| θ1 ≤ θ(g) < θ2, h(p, q) ≤ h

}∣∣
= ∣∣P(h; arctan θ1/2, arctan θ2/2)

∣∣
∼ 1

π2
(θ2 − θ1)h,

as required.
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Remark 4.2 Interestingly, S1(Q) (and hence Pythagorean triples) has something to
dowith crystallography. Indeed S1(Q)with the natural group operation is an example
of coincidence symmetry groups that show up in the theory of crystalline interfaces
and grain boundaries11 in polycrystalline materials (Ranganathan [11], Zeiner [22]).
This theory is concerned with partial coincidence of lattice points in two identical
crystal lattices. See [17] for the details, and also [16] for the mathematical theory of
crystal structures. �

5 The Inclusion-Exclusion Principle

The proof that the discrete sets Zd
prim and Z

2,∗
prim have constant density relies on the

identities derived from the so-called Inclusion-Exclusion Principle (IEP), which is a
generalization of the obvious equality |A ∪ B| = |A| + |B| − |A ∩ B| for two finite
sets A, B. Despite its simplicity, the IEP is a powerful tool to approach general
counting problems involving aggregation of things that are not mutually exclusive
(Comtet [1]).

To state the IEP in full generality, we consider a family {Ah}∞h=1 of subsets of
X where X and Ah are not necessarily finite. Let f be a real-valued function with
finite support defined on X . We assume that there exists N such that if h > N , then
Ah ∩ supp f = ∅, i.e. f (x) = 0 for x ∈ Ah . In the following theorem, the symbol
Ac means the complement of a subset A in X .

Theorem 5.1 (Inclusion-Exclusion Principle)

∑
x∈⋂∞

h=1 Ac
h

f (x) =
∞∑

k=0

(−1)k
∑

h1<···<hk

∑
x∈Ah1∩···∩Ahk

f (x) (7)

⎛
⎝=

N∑
k=0

(−1)k
∑

h1<···<hk

∑
x∈Ah1∩···∩Ahk

f (x)

⎞
⎠ ,

where, for k = 0, the term
∑

h1<···<hk

∑
x∈Ah1∩···∩Ahk

f (x) should be understood to be

∑
x∈X

f (x).

For the proof, one may assume, without loss of generality, that X is finite, and it
suffices to handle the case of a finite family {Ah}N

h=1. The proof is accomplished by
induction on N .

Making use of the IEP, we obtain the following theorem (this is actually an easy
exercise of the IEP; see Vinogradov [18] for instance).

11Grain boundaries are interfaces where crystals of different orientations meet.
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Theorem 5.2 ∑
z∈Zd

prim

f (z) =
∞∑

k=1

μ(k)
∑

w∈Zd\{0}
f (kw),

where f is a function on R
d with compact support (thus both sides are finite sums),

and μ(k) is the Möbius function:

μ(k) =

⎧⎪⎨
⎪⎩
1 (k = 1)

(−1)r (k = ph1 · · · phr ; h1 < · · · < hr )

0 (otherwise),

where p1 < p2 < · · · are all primes enumerated into ascending order.

The proof goes as follows. Consider the case that

X = Z
d\{0}, Ah = {(x1, . . . , xd) ∈ X | ph |x1, . . . , ph |xd}.

Then
∞⋂

h=1

Ac
h = Z

d
prime. We also easily observe

Ah1 ∩ · · · ∩ Ahk = ph1 · · · phk X.

Applying Eq.7 to this case, we have

∑
z∈Zd

prime

f (z) =
∞∑

k=0

(−1)k
∑

h1<···<hk

∑
w∈Zd\{0}

f (ph1 · · · phkw)

=
∞∑

k=1

μ(k)
∑

w∈Zd\{0}
f (kw).

Proof of Theorem 3.1 Applying Theorem 5.2 to f ε , we have

∑
z∈Zd

prim

εd f (εz) =
∞∑

k=1

μ(k)
∑

w∈Zd\{0}
εd f (εkw),

What we have to confirm is the exchangeability of the limit and summation:

lim
ε→+0

∞∑
k=1

⎛
⎝μ(k)

∑
w∈Zd\{0}

εd f (εkw)

⎞
⎠ =

∞∑
k=1

lim
ε→+0

⎛
⎝μ(k)

∑
w∈Zd\{0}

εd f (εkw)

⎞
⎠ .
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If we take this for granted, then we easily get the claim since

lim
ε→+0

∑
w∈Z2\{0}

εd f (εkw) = k−d lim
δ→+0

∑
w∈Zd\{0}

δd f (δw) = k−d
∫
Rd

f (x)dx,

and
∞∑

k=1

μ(k)k−d = ζ(d)−1. As a matter of fact, the exchangeability does not fol-

low from Weierstrass’ M-test in a direct manner. One can check it by a careful
argument. �

In the case of Theorem 4.1, we consider

(
Z
odd)2prim = {

(m, n) ∈ Z
odd × Z

odd| gcd(m, n) = 1
}
,

where Zodd is the set of odd integers. Then

Z
2,∗
prim = Z

2
prim\(Zodd)2prim.

Therefore it suffices to show that
(
Z
odd)2prim has constant density 2/π2. This is done

by using the following theorem for which we need a slightly sophisticated use of the
IEP.

Theorem 5.3

∑
z∈(Zodd)2prim

f (z) =
∞∑

k=1

μ(k)

∞∑
h=0

∑
w∈(Zodd)2

f (k2hw).

For the proof, we put

X =
∞∐

�=1

�(Zodd)2prim, Ah = {
(x, y) ∈ X | ph |x and ph |y

}
.

Lemma 5.1 Ah1 ∩ · · · ∩ Ahk =
∞∐

h=0

ph1 · · · phk2
h(Zodd)2.

Proof It suffices to prove that Ah1 ∩ · · · ∩ Ahk = ph1 · · · phk X since any positive
integer � is expressed as 2i × odd. Clearly Ah1 ∩ · · · ∩ Ahk ⊃ ph1 · · · phk X . Let
(x, y) ∈ Ah1 ∩ · · · ∩ Ahk . Then one can find (a, b) ∈ Z

2 such that x = ph1 · · · phk a
and y = ph1 · · · phk b. Moreover there exist � ∈ N and (m, n) ∈ (Zodd)2prim such that
x = �m, y = �n, so ph1 · · · phk |gcd(�m, �n) = �. Therefore (x, y) ∈ ph1 · · · phk X .
�

Lemma 5.2

( ∞⋃
h=1

Ah

)c

= (Zodd)2prim.
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Proof Obviously
∞∐

�=2

�(Zodd)2prim =
∞⋃

h=1

Ah , from which the claim follows. �

Theorem 5.3 is a consequence of the above two lemmas.
Now using Theorem 5.3, we have

∑
z∈(Zodd)2prim

ε2 f (εz) =
∞∑

k=0

(−1)k
∑

h1<···<hk

∞∑
h=0

∑
w∈(Zodd)2

ε2 f (εph1 · · · phk2
hw)

=
∞∑

k=1

μ(k)

∞∑
h=0

∑
w∈(Zodd)2

ε2 f (εk2hw).

We also have

lim
ε→+0

∑
z∈(Zodd)2

ε2 f (εz) = 1

4

∫
R2

f (x)dx,

since the left-hand side is the ordinary Riemann sum associated with the partition by
the squares with side length 2, and hence

lim
ε→+0

∑
w∈(Zodd)2

ε2 f (εk2hw) = 1

(k2h)2

1

4

∫
R2

f (x)dx.

Thus

lim
ε→+0

∑
z∈(Zodd)2prim

ε2 f (εz)

= ζ(2)−1
∞∑

h=0

1

4h

∫
R2

f (x)dx = 6

π2
· 1
3

∫
R2

f (x)dx = 2

π2

∫
R2

f (x)dx,

as desired (this time, the exchangeability of the limit and summation is confirmed
by Weierstrass’ M-test). �
Remark 5.1 Historically IEPwas, for the first time, employed by Nicholas Bernoulli
(1687–1759) to solve a combinatorial problem related to permutations.12 More
specifically he counted the number of derangements, that is, permutations such
that none of the elements appears in its original position.13 His result is pleasingly
phrased, in a similar fashion as in the case of coprime pairs, as “the probability that
randomly chosen permutations are derangements is 1/e” (e is the base of natural
logarithms). �

12The probabilistic form of IEP is attributed to de Moivre (1718). Sometimes IEP is referred to as
the formula of Da Silva, or Sylvester.
13This problem (“problème des rencontres”) was proposed by Pierre Raymond de Montmort in
1708. He solved it in 1713 at about the same time as did N. Bernoulli.
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6 Generalized Poisson Summation Formulas

Generalized Riemann sums appear in the theory of quasicrystals, a form of solid
matter whose atoms are arranged like those of a crystal but assume patterns that do
not exactly repeat themselves.

The interest in quasicrystals arose when in 1984 Schechtman et al. [12] discov-
ered materials whose X-ray diffraction spectra had sharp spots indicative of long
range order. Soon after the announcement of their discovery, material scientists and
mathematicians began intensive studies of quasicrystals from both the empirical and
theoretical sides.14

At the moment, there are several ways to mathematically define quasicrystals (see
Lagarias [7] for instance). As a matter of fact, an official nomenclature has not yet
been agreed upon. In many reference, however, the Delone property for the discrete
set� representing the location of atoms is adopted as a minimum requirement for the
characterization of quasicrystals. In addition to the Delone property, many authors
assume that a generalized Poisson summation formula holds for �, which embodies
the patterns of X-ray diffractions for a real quasicrystal.

Let us recall the classical Poisson summation formula. For a lattice group L , a
subgroup ofRd generated by a basis ofRd , we denote by L∗ the dual lattice of L , i.e.,
L∗ = {η ∈ R

d | 〈η, z〉 ∈ Z for every z ∈ L}, and also denote by DL a fundamental
domain for L . We then have

∑
z∈L

f (z)e2π i〈z,η〉 = vol(DL)−1
∑
ξ∈L∗

f̂ (ξ − η) (i = √−1), (8)

in particular, ∑
z∈L

f (z) = vol(DL)−1
∑
ξ∈L∗

f̂ (ξ), (9)

which is what we usually call the Poisson summation formula. Here f̂ is the Fourier
transform of a rapidly decreasing smooth function f :

f̂ (ξ) =
∫
Rd

f (x)e−2π i〈x,ξ 〉dx.

Note that the left-hand side of Eq.8 is the Riemann sum σ( f, L , ωη) for the weighted
discrete set (L , ωη), where ωη(z) = e2π i〈z,η〉.

14As will be explained below, the theoretical discovery of quasicrystal structures was already made
by R. Penrose in 1973. See Senechal and Taylor [13] for an account on the theory of quasicrystals
at the early stage.
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Having Eq. 9 in mind, we say that a generalized Poisson formula holds for � if
there exist a countable subset � ⊂ R

d and a sequence {a(ξ)}ξ∈� such that

∑
z∈�

f (z) =
∑
ξ∈�

a(ξ) f̂ (ξ) (10)

for every compactly supported smooth function f .
What we must be careful about here is that the set � is allowed to have accumu-

lation points, so that one cannot claim that the right-hand side of Eq. 10 converges
in the ordinary sense. Thus the definition above is rather formal. One of the possible
justifications is to assume that there exist an increasing family of subsets {�N }∞N=1
and functions aN (ξ) defined on �N such that

(i)
∞⋃

N=1

�N = �,

(ii)
∑
ξ∈�N

aN (ξ) f̂ (ξ) converges absolutely,

(iii) lim
N→∞ aN (ξ) = a(ξ),

(iv)
∑
z∈�

f (z) = lim
N→∞

∑
ξ∈�N

aN (ξ) f̂ (ξ).

We shall say that a discrete set � is a quasicrystal of Poisson type if a generalized
Poisson formula holds for �.15

A typical class of quasicrystals of Poisson type is constructed by the cut and
project method.16 Let L be a lattice group in R

N = R
d × R

N−d (N > d), and let
W be a compact domain (called a window) in R

N−d . We denote by pd and pN−d

the orthogonal projections of RN onto R
d and R

N−d , respectively. We assume that
pN−d(L) is dense, and pd is invertible on pd(L). Then the quasicrystal (called a
model set) � associated with L and W is defined to be pd

(
L ∩ (Rd × W )

)
.

We put � = pd(L∗). It should be remarked that for each ξ ∈ �, there exists a
unique ξ ′ ∈ R

N−d such that (ξ , ξ ′) ∈ L∗. Indeed, if (ξ , ξ ′′) ∈ L∗, then (0, ξ ′ − ξ ′′) ∈
L∗, and hence Z � 〈(0, ξ ′ − ξ ′′),α〉 = 〈ξ ′ − ξ ′′, pN−d(α)〉 for every α ∈ L . Since
pN−d(L) is dense, we conclude that ξ ′ − ξ ′′ = 0.

Let us write down a generalized Poisson formula for � in a formal way. Let
f be a compactly supported smooth function on R

d , and let χW be the indicator
function of the window W ⊂ R

N−d . Define the compactly supported function F on
R

N by setting F(x, x′) = f (x)χW (x′) (x ∈ R
d , x′ ∈ R

N−d ). Applying the Poisson
summation formula to F , we obtain

∑
z∈�

f (z) =
∑
α∈L

F(α) = vol(DL)−1
∑
β∈L∗

F̂(β),

15Some people use the term “Poisson comb” in a bit different formulation.
16This method was invented by de Bruijn [2], and developed by many authors.
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which is, of course, a “formal” identity because the right-hand side does not neces-
sarily converge. Pretending that this is a genuine identity and noting

F̂(β) = f̂ (ξ)χ̂W (ξ ′) (β = (ξ , ξ ′) ∈ R
d × R

N−d),

we get ∑
z∈�

f (z) =
∑
ξ∈�

a(ξ) f̂ (ξ), (11)

where, for ξ ∈ �, we put

a(ξ) = vol(DL)−1χ̂W (ξ ′) ((ξ , ξ ′) ∈ L∗).

We may justify Eq.11 as follows. Let U1/N (W ) be the 1/N -neighborhood of W ,
and take a smooth function gN on RN−d satisfying 0 ≤ gN (x′) ≤ 1 and

gN (x′) =
{
1 (x′ ∈ W )

0 (x′ ∈ U1/N (W )c)
.

Put FN (x, x′) = f (x)gN (x′). Ifwe take N � 1,wehave (supp f × U1/N (W )) ∩ L =
(supp f × W ) ∩ L , so that, if f (z)gN (z′) �= 0 for α = (z, z′) ∈ L , then (z, z′) ∈
(supp f × U1/N (W )) ∩ L = (supp f × W ) ∩ L , and hence z ∈ � and FN (α) =
f (z). We thus have

∑
z∈�

f (z) =
∑
α∈L

FN (α) = vol(DL)−1
∑
β∈L∗

F̂N (β)

= vol(DL)−1
∑

(ξ ,ξ ′)∈L∗
f̂ (ξ)ĝN (ξ ′)

=
∑
ξ∈�

aN (ξ) f̂ (ξ),

where aN (ξ) = vol(DL)−1ĝN (ξ ′). Obviously lim
N→∞ aN (ξ) = a(ξ).

A typical example of model sets is the set of nodes in a Penrose tiling discovered
by R. Penrose in 1973/1974, which is a remarkable non-periodic tiling generated by
an aperiodic set of prototiles (see de Bruijn [2] for the proof of the fact that a Penrose
tiling is obtained by the cut and projection method) (Fig. 3).
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Fig. 3 A Penrose tiling

7 Is Zd
prim a Quasicrystal?

It is natural to ask whether Zd
prim is a quasicrystal. The answer is “No.” However

Z
d
prim is nearly a quasicrystal of Poisson type.
To see this, take a look again at the identity

∑
z∈Zd

prim

f (z) =
∞∑

k=1

μ(k)
∑

w∈Zd\{0}
f (kw).

Suppose that supp f ⊂ BN (0). Then applying the Poisson summation formula, we
obtain

∑
z∈Zd

prim

f (z) =
∞∑

k=1

μ(k)
∑

w∈Zd\{0}
f (kw)

=
N∑

k=1

μ(k)
[ ∑
w∈Zd

f (kw) − f (0)
]

=
N∑

k=1

μ(k)k−d
∑

ξ∈k−1Zd

f̂ (ξ) −
( N∑

k=1

μ(k)
)

f (0).

Now for ξ ∈ Q
d , we write

ξ =
(b1

a1
, . . . ,

bd

ad

)
, gcd(ai , bi ) = 1, ai > 0,

and put n(ξ) = lcm(a1, . . . , ad). Then ξ ∈ k−1
Z

d ⇐⇒ n(ξ)|k, and hence

∑
z∈Zd

prim

f (z) =
N∑

k=1

μ(k)k−d
∑
ξ∈Qd

n(ξ)|k

f̂ (ξ) −
( N∑

k=1

μ(k)
)

f (0),
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where we should note that the first term in the right-hand side is an absolutely
convergent series. To rewrite the right-hand side further, consider

Q
d
N = {ξ ∈ Q

d |n(ξ) ≤ N },
A = {(k, ξ)|k = 1, . . . , N , ξ ∈ Q

d , n(ξ)|k},
B = {(�, ξ)|1 ≤ � ≤ Nn(ξ)−1, ξ ∈ Q

d
N }.

Then the map (k, ξ) �→ (kn(ξ)−1, ξ) is a bijection of A onto B. Therefore we get

∑
z∈Zd

prim

f (z) =
∑
ξ∈Qd

N

∑
1≤�≤N/n(ξ )

μ(�n(ξ))

(�n(ξ))d
f̂ (ξ) −

( N∑
k=1

μ(k)
)

f (0).

Clearly

μ(�n(ξ)) =
{

μ(�)μ(n(ξ)) (gcd(�, n(ξ)) = 1)

0 (gcd(�, n(ξ)) > 1).

Therefore putting

aN (ξ) = μ(n(ξ))

n(ξ)d

∑
1≤�≤N/n(ξ )

gcd(�,n(ξ ))=1

μ(�)

�d
,

�N = {ξ ∈ Q
d
N |μ(n(ξ)) �= 0},

we get
∑

z∈Zd
prim

f (z) =
∑
ξ∈�N

aN (ξ) f̂ (ξ) −
( N∑

k=1

μ(k)
)

f (0).

Furthermore, if we put

� = {ξ ∈ Q
d |μ(n(ξ)) �= 0},

a(ξ) = μ(nξ )

n(ξ)d
ζ(d)−1

∏
p|n(ξ )

(
1 − p−d

)−1
(ξ ∈ �),

then

� =
∞⋃

N=1

�N , lim
N→∞ aN (ξ) = μ(n(ξ))

n(ξ)d

∞∑
�=1

gcd(�,n(ξ))=1

μ(�)

�d
= a(ξ).
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This implies that if the “extra term”
( N∑

k=1

μ(k)
)

f (0) is ignored, then the set Zd
prim

looks like a quasicrystal of Poisson type. This is the reason why we say that Zd
prim is

nearly a quasicrystal of Poisson type.

Remark 7.1 (1) Applying Theorem 5.3, we obtain

∑
z∈(Zodd)2prim

f (z) =
∑

ξ∈Q2
2N

( k2h≤N∑
k≥1,h≥0

n(ξ)|k2h+1

μ(k)

k2

1

22h+2
eπ ik2h+1〈ξ ,1〉

)
f̂ (ξ),

where supp f ⊂ BN (0) and 1 = (1, 1). This implies that (Zodd)2prim is a quasicrystal
of Poisson type. The reason why no extra terms appear in this case is that (Zodd)2 =
2Z2 + 1 is a full lattice.

(2) In much the same manner as above, we get

∑
z∈Zd

prim

f (z)e2π i〈z,η〉 =
∑
ξ∈�N

aN (ξ) f̂ (ξ − η) −
( N∑

k=1

μ(k)
)

f (0).

Using this identity, we can show

lim
ε→+0

σ( f ε,Zd
prim, ωη) = a(η)

∫
Rd

f (x)dx,

that is, (Zd
prim, ωη) has constant density for η with μ(n(η)) �= 0.

(3) An interesting problem related to quasicrystals comes up in the study of non-
trivial zeros of the Riemann zeta function (thus we come across another Riemann’s
work,. which were to change the direction of mathematical research in a most sig-
nificant way).

We put
�zero = {Ims ∈ R| ζ(s) = 0, 0 < Res < 1}.

Under the Riemann Hypothesis (RH), one may say that �zero is nearly a qua-
sicrystal of Poisson type of 1-dimension (cf.Dyson [5]). Actually a version of Rie-
mann’s explicit formula looks like a generalized Poisson formula (see Iwaniec and
Kowalski [6]):
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∑
ρ

f

(
ρ − 1/2

i

)
= f

( 1

2i

)
+ f

(
− 1

2i

)

+ 1

2π

∫ ∞

−∞
f (u)Re

�′

�

(1
4

+ iu

2

)
du

− 1

2π
f̂ (0) logπ − 1

2π

∞∑
m=1

∑
p

log p

pm/2

(
f̂
( log pm

2π

)
+ f̂

(
− log pm

2π

))
.

where {ρ} is the set of zeros of ζ(s)with 0 < Reρ < 1,
∑

p

is the sum over all primes,

and �′/� is the logarithmic derivative of the gamma function. Notice that, under the
RH, the sum in the left-hand side is written as

∑
z∈�zero

f (z).17 What we should stress

here is that the test function f (s) is not arbitrary, and is supposed to be analytic in
the strip |Ims| ≤ 1/2 + ε for some ε > 0, and to satisfy | f (s)| ≤ (1 + |s|)−(1+δ) for
some δ > 0 when |Re s| → ∞. This restriction on f together with the extra terms
in the formula above says that �zero is not a genuine quasicrystal of Poisson type.
Furthermore �zero does not have the Delone property. �
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From Riemannian to Relativistic Diffusions

Jacques Franchi

Abstract We first introduce Euclidean and Riemannian Brownian motions. Then
considering Minkowski space, we present the Dudley relativistic diffusion. Finally
we construct a family of covariant relativistic diffusions on a generic Lorentz man-
ifold, the quadratic variation of which can be locally determined by the curvature
(which allows the interpretation of the diffusion effect on a particle by its interaction
with the ambient space-time). Examples are considered, in some classical space-time
models: Schwarzschild, Gödel and Robertson-Walker manifolds.

1 Introduction

One of the four celebrated brilliant articles Einstein published in 1905was devoted to
Brownian Motion. He was seeing it as a consequence of the kinetic theory of gases:
infinitely many small shocks on a given tiny particle move it in a Brownian way.
Together with Langevin, Einstein then made the relation with the heat transport.

The mathematical construction of BrownianMotion, especially in terms of its law
on R

d -valued continuous paths, was performed by N. Wiener (1925–30). Namely,
since Wiener this is a rigorously defined continuous stochastic process which has
independent and homogeneous Gaussian increments, also called theWiener process.
Its trajectories are nowhere differentiable, which corresponds to the infinitely many
small shocks specified by Einstein.

This gave rise to a huge literature, by among so many others P. Lévy, K. Itô, G. A.
Hunt, J. L.Doob, S. R. S.Varadhan,M.Yor, to quote only very few probabilists, about
R

d -valued Brownian Motion and its relations to martingales, potential theory, heat
equation andkernel, etc.Defining stochastic (Itô) integrals and then solving stochastic
differential equations led in particular to the larger notion of so-called “diffusion”
(after the physical corresponding phenomenon), namely continuousMarkov process:
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the evolution of such a process, from a given state, depends only on this precise state
and on the underlying law, but not on the past.

Thus Brownian Motion appeared soon as a very important physical and math-
ematical object, related to several theories as well as having its own interest. It
originated in Biology (and was named after the biologist Brown) and soon enough,
after Bachelier, progressively took a big importance in mathematical finance (and
then insurance) too.

A following stepwas the extension ofBrownianMotion toRiemannianmanifolds.
This was performed around 1970 by D. Elworthy (with J. Eells) and P. Malliavin,
using Itô’s Calculus and the Cartanmoving framemethod. It is worth underlining that
this construction yields the stochastic parallel transport as well, and also stresses the
intimate relation between Brownian Motion and the Laplace-Beltrami operator �.
An important feature is that the latter makes the Riemannian BrownianMotion into a
geometrical object, which is covariant with respect to the isometries of the underlying
manifold, as well as a physical one, in the sense of Einstein (and Langevin).

A considerable amount of work has been achieved since, and still goes on, to
exploit this relationship between probability theory and Riemannian geometry. To
give only some examples and references: functional inequalities—such as isoperi-
metric, concentration or log-Sobolev—curvature-dimension inequalities, the study
of harmonic maps [10], estimates about the heat kernel and its gradient [3, 16, 17],
geometry of paths [9], gradient flows, optimal mass transportation [25], new proofs
of the Gauss-Bonnet and Atiyah-Singer index Theorems (by Patodi, Bismut). Time-
evolving Riemannian metrics are also considered now [2], in connection with Ricci
flows.

Thus the extension of Brownian motion from a Euclidean to a Riemannian object
allows us to understand it as a geometrical object, and explains its repeated use as
a geometrical tool. To a certain extent, at this stage it remains a physical object too,
as Einstein had in mind already in 1905, since its description in terms of kinetics of
gases remains valid in a Riemannian context as well.

In this spirit, it is fairly natural to ask what counterpart Brownian motion might
have in the relativistic framework, thereby bringing together two brilliant contribu-
tions by Einstein in 1905. The answer is not obvious, since a priori the property
of Brownian paths to have an unbounded mean velocity (without any instantaneous
velocity in the strict sense, since Brownian paths are nowhere differentiable) looks
contradictory with the relativistic constraint of never exceeding the velocity of light.

During a long time several attempts were made, without any success, in order
to define a reasonable “relativistic Brownian motion”. The first real progress in this
direction arrived in 1965, when R. M. Dudley showed that a relativistic diffusion,
i.e., a Lorentz-covariant Markov diffusion process, cannot exist on the base space,
even in the Minkowski framework of special relativity. This is indeed the precise
mathematical counterpart of the fact that in a relativistic setting a Brownian motion
cannot be physical any longer, since it can run at arbitrary large mean velocities.
On the contrary, Dudley [8] showed that a relativistic diffusion makes sense at the
level of the tangent bundle of Minkowski space, and he then specified the asymptotic
behaviour of his (Dudley) diffusion.Moreover he showed that his relativistic diffusion
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is unique (in law), hence canonical as well as in the Euclidean setting, under the
natural (at least geometrically) constraint to be covariant under the action of the
Lorentz group.

A similar construction in the generic framework of General Relativity, that is,
on the unit tangent bundle of a generic Lorentzian manifold, thereby attempting to
relate further two major contributions by Einstein, was then made by Y. Le Jan and
the author ([13], 2007). The related relativistic diffusion can be seen as a random
perturbation of the geodesic flow, as well as the stochastic geometric development
of the Dudley diffusion over a fixed tangent space of the Lorentzian manifold. It still
enjoys the covariance with isometries, but therefore cannot be seen as resulting from
a kinetic theory of gases, contrary to the maybe more physical process of [7], which
is not covariant.

As in theRiemanniannon-flat case, other intrinsic diffusions exist in theLorentzian
non-flat case. They enjoy the same geometrical invariance in law as the basic one,
and could maybe be seen as more physical, as their quadratic variation is locally
determined by their velocity and the curvature of the space, and vanishes in flat or
in Ricci-flat (empty) regions ([14], 2011).

An important difference between the Riemannian and the Lorentzian (i.e., rela-
tivistic) settings is that the former gives naturally rise to elliptic and often self-adjoint
infinitesimal generators, whereas the latter produces only hypoelliptic and non-self-
adjoint generators, the analysis ofwhich ismuchharder.Moreover, in theRiemannian
framework the fibre of the frame bundle is compact, whereas it is not any longer in
the Lorentzian one.

Lorentzian geometry is also at the heart of [19, 23, 24], in this same volume.
Namely, in this relativistic framework, Hermann and Humbert and Nicolas address
equations of hyperbolic type ([24] deals mainly with the wave equation) and elliptic
type ([19] deals with the Yamabe equation); whereas the present chapter is concerned
by equations of parabolic type, since diffusion processes are strongly associated with
heat equations. Of course, tensor fields on space-time and the same Einstein equation
are central for these four chapters.

In order to understand what relativistic diffusions look like, the best is to study
them in some basic examples of General Relativity models, which exactly solve
the Einstein equations, beyond the Minkowski space. The maybe most known such
models are the following ones: the Schwarzschild space-time, which is intended
to describe the physical space surrounding an isolated black hole or very massive
star; the Robertson-Walker manifolds, which are intended to model an expanding
(or shrinking) universe resulting from a “Big-Bang”, as ours; the Gödel universe,
which is a striking model where global causality does not hold (rending theoretically
possible to return into the past after a long trajectory). Note that [19, 23, 24] (in
this same volume) also particularize at some extend to the same basic examples of
Minkowski and Schwarzschild.

Theuseof relativistic diffusions to address geometrical questions aboutLorentzian
geometry or analysis is still at its very beginning [4, 6, 12], and seems to be much
harder than in the elliptic (Riemannian) case.
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This chapter is intended to be a survey, relying mainly on [11, 13–15], written on
the kind request of the editors Lizhen Ji, Athanase Papadopoulos and SumioYamada,
for the volume of Springer “From Riemann to differential geometry and relativity”.
It is addressed not only to probabilists, and hopefully could also interest geometers
and mathematical physicists. The proofs are omitted here, but can be found in the
above quoted references.

2 Euclidean Brownian Motion

Basically, this is a continuous Rd -valued stochastic process which has independent
and homogeneous Gaussian increments. A precise definition (for d = 1 first) is as
follows.

Definition 2.1 A real Brownian motion (or Wiener process) is a real valued con-
tinuous process (Bt )t≥0 such that for any n ∈ N

∗ and 0 = t0 < · · · < tn , the
random variables (Bt j − Bt j−1) are independent, and the law of (Bt j − Bt j−1) is
N (0, t j − t j−1), i.e., centred Gaussian with variance (t j − t j−1).

A slightly different formulation of the second part of the definition is:

The increments of (Bt ) are independent, and stationary: (Bt − Bs)
law≡ Bt−s for any

s ≤ t ∈ R
∗+, and moreover the law of Bt is N (0, t).

The construction of (Bt ) can be done either as a limit of symmetrical conveniently
normalized random walks, or by means of a multi-scale series, for example the
Fourier expansion

(
in terms of independent standard N (0, 1) Gaussian variables

(ξk , k ∈ N)
)
:

Bt = ξ0 t +
√
2

π

∑

k∈N∗
ξk

sin(πkt)

k
, for any 0 ≤ t ≤ 1 .

The (probability) law of such a process is clearly unique, and is known as the
Wiener measure on the space of real continuous functions indexed by R+ and van-
ishing at 0.

The following property is straightforward from the definition, since the law of a
Gaussian process is prescribed by its mean and its covariance.

Proposition 2.2 The standard real Brownian motion (Bt ) is the unique real process
which is Gaussian centred with covariance function R

2+ � (s, t) 	−→ E(Bs Bt ) =
min{s, t}.

The processes t 	→ Ba+t − Ba , t 	→ c−1Bc2t , t 	→ t B1/t , and t 	→ (BT −
BT−t ) (for 0 ≤ t ≤ T ) satisfy the same conditions. We therefore deduce the fol-
lowing properties:

Corollary 2.3 The standard real Brownian motion (Bt ) satisfies
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(1) the Markov property: for all a ∈ R+ , (Ba+t − Ba) is also a standard Brownian
motion, and is independent from the “past” σ-field Fa := σ{Bs | 0 ≤ s ≤ a} ;
(2) the self-similarity: for any c > 0, (c−1Bc2t ) is also a standard real Brownian
motion ;
(3) (−Bt ) and (t B1/t ) are also standard real Brownian motions;
(4) for any fixed T > 0 , (BT − BT−t )0≤t≤T is also a standard real Brownianmotion.

An R
d -valued process Bt := (

B1
t , . . . , B

d
t

)
made of d independent standard

Brownian motions (B j
t ) is called a d-dimensional Brownian motion. For v ∈ R

d ,
(v + Bt ) is also called a d-dimensional Brownian motion, starting at v . The law of
a d-dimensional Brownian motion is covariant with respect to Euclidean isometries
of Rd : if f is such an isometry then f (v + Bt ) is another d-dimensional Brownian
motion, starting at f (v).

The fundamental formula of Stochastic Calculus is due to K. Itô (around 1945).

Theorem 2.4 (Itô’s Formula) Let B ≡ (B1, . . . , Bd) be a Brownian motion in
R

d , and F a C2 function on R
d . Then F ◦ B is a so-called semi-martingale, and

precisely, we almost surely have: for all t ∈ R+,

F(Bt ) = F(B0) +
d∑

j=1

∫ t

0
∂ j F(Bs) dB

j
s + 1

2

∫ t

0
�F(Bs) ds .

The half Laplacian 1
2� appears naturally here, as a particular case of infinitesimal

generator, namely that of the Brownian motion B. The stochastic so-called Itô inte-

grals
∫ t

0
∂ j F(Bs) dB

j
s constitute the (local)martingale part of the above right hand

side. They are pairwise orthogonal in L2, and obey the following fundamental iso-
metric Itô identity (physicists often understand “(dB j

s )
2 = ds ”):

E

[(∫ t

0
ϕ j (Bs) dB

j
s

)2
]

= E

[∫ t

0
ϕ j (Bs)

2 ds

]
.

Accordingly, the finite-variation process
∫ t

0
ϕ j (Bs)

2 ds is called the quadratic vari-

ation of the martingale
∫ t

0
ϕ j (Bs) dB

j
s

(
which can be approached by stochastic

Riemann-like sums of type
∑

k Zsk−1(B
j
sk − B j

sk−1), where each Zsk−1 is a functional
of {B j

s | 0 ≤ s ≤ sk−1}
)
.

Furthermore, the above class of semi-martingales, i.e., the sums of a (local) con-
tinuous (Brownian) martingale and of a drift term having finite variation, is closed
under C2 mappings, and a similar Itô formula holds, with a second order elliptic
differential operator (generalizing 1

2�) as the infinitesimal generator. A given infin-
itesimal generator, together with a given starting point, specify the whole law of an
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associated diffusion. See for example [20] (for an exhaustive exposition) or [15] (for
a shorter one).

3 Riemannian Brownian Motion

Let M be a d-dimensional oriented smooth Riemannian manifold, equipped with
its Levi-Civita connection ∇. Denote by OM its direct orthonormal frame bundle,
whosefibers aremodelled on the special orthogonal groupSO(d). Let H1, . . . , Hd be
the canonical horizontal vector fields on OM, and π denote the canonical projection

from OM ontoM. The Bochner horizontal Laplacian is G :=
d∑

j=1

H 2
j . The proofs

relating to this section can be found for example in [9, 17, 22]. The following simple
fact is crucial.

Lemma 3.1 The Bochner horizontal Laplacian G acts on C2 functions onM, and
induces the Beltrami Laplacian �: for any F ∈ C2(M), we have G(F ◦ π) =
(�F) ◦ π on OM. Besides, in local coordinates (xi , ekj ) , with e j = ekj

∂
∂xk ,

denoting by ��
jk the Christoffel coefficients of the Levi-Civita connexion ∇, for

0 ≤ i, j ≤ d we have:

∇ ∂

∂xi

∂

∂x j
= �k

i j (x)
∂

∂xk
and Hj = ekj

∂

∂xk
− ekj e

m
i ��

km(x)
∂

∂e�
i

.

The construction of the Riemannian Brownian motion uses the Cartan moving
frame method, by means of a stochastic development, to produce a stochastic flow
on the frame bundle OM, putting white noises dB j

s on the horizontal (velocity)
vectors. The resulting diffusion will project to a diffusion on the base manifold M,
due to Lemma 3.1.

To proceed, let us fix �0 ∈ OM and an R
d -valued Brownian motion B = (B j

s ).
The following theorem defines the Riemannian Brownianmotion (Xs), with possibly
some positive explosion time.

Theorem 3.2 (see [9, 17, 22]) (i) The OM-valued Stratonovitch stochastic differ-
ential equation

(∗) �s = �0 +
∫ s

0

d∑

j=1

Hj (�t ) ◦ dB j
t

defines a Riemannian Brownianmotion (Xs) := π(�s) onM (starting fromπ(�0)):
this is a continuous Markovian (i.e., diffusion) process whose infinitesimal generator
is 1

2 � .
(i i) The stochastic parallel transport of a vector V0 ∈ TX0M along the Brownian
path (Xs) is given by Vs = �sV0 ∈ TXsM.
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Remark 3.3 (o) The Stratonovitch integral (using it, Itô’s Formula takes on the usual
chain rule form of classical calculus) is deduced from the Itô one by the following
defining rule:

∫ t

0
ϕ(B1

s , . . . , B
d
s ) ◦ dB j

s :=
∫ t

0
ϕ(B1

s , . . . , B
d
s ) dB j

s + 1
2

∫ t

0
∂ jϕ(B1

s , . . . , B
d
s ) ds .

(i) In local coordinates (xi , ekj ), �s = (
Xs ; e1(s), .., ed(s)

)
, Equation (∗) reads:

dXi
s = eij (s) ◦ dB j

s ; dekj (s) = −�k
il(Xs)e

i
j (s)e

l
m(s) ◦ dBm

s .

Thismeans that the RiemannianBrownianmotion (Xs) is the stochastic development
of the TX0M -valued Brownian motion (�0Bs).
(i i) The OM-valued diffusion (�s) admits the half Bochner horizontal Laplacian
1
2 G as its infinitesimal generator: for any F ∈ C2

b (OM), F(�s) − 1
2

∫ s

0
GF(�t ) dt

is a martingale.
(i i i) In the Itô form and in local coordinates, we have the following differential
equation:

dXi
s = (g−1/2)ij (Xs) dB

j
s − 1

2 gkl(Xs) �i
kl(Xs) ds .

(iv) The Riemannian Brownian motion (Xs) is covariant with respect to the isome-
tries of M : for any such isometry f , the process ( f ◦ Xs) is another Riemannian
Brownian motion, starting at f (X0).
(v) This construction offers the strong advantage of providing the stochastic parallel
transport (�s) along the Brownian curve (Xs) together with the Brownian motion
itself.

4 The Relativistic Dudley Diffusion in Minkowski Space

Let us consider an integer d ≥ 2, the Minkowski space R
1,d := {ξ = (ξo, ξ ) ∈

R × R
d}, endowed with its canonical basis (e0, . . . , ed) and the Minkowski pseudo-

metric 〈ξ, ξ〉 := |ξo|2 − ‖ξ ‖2 .
Let G = PSO(1, d) denote the Lorentz-Möbius group, i.e., the connected com-

ponent of the identity in the pseudo-orthogonal group O(1, d) (of linear mappings
preserving 〈·, ·〉), and denote by H

d := {p ∈ R
1,d | po > 0 and 〈p, p〉 = 1} the

positive half of the unit pseudo-sphere.
The opposite of the Minkowski pseudo-metric induces a Riemannian metric

on H
d , namely the hyperbolic one, so that H

d is a model for the d-dimensional
hyperbolic space. A convenient parametrization of H

d is (�, θ) ∈ R+ × S
d−1,

given by � := argch(po) and θ := p
/√|po|2 − 1 . In these polar coordinates
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the hyperbolic metric reads d�2 + sh2� |dθ|2 , and the hyperbolic Laplacian is

�H := ∂2

∂�2
+ (d − 1)coth �

∂

∂�
+ sh−2� × �θ , �θ denoting the Laplacian of

S
d−1 . The associated volume measure is |sh �|d−1d� dθ .
The group G acts isometrically on R

1,d and on H
d , and the Casimir operator C

on G induces the hyperbolic Laplacian on H
d .

Fix σ > 0 , and denote by Lσ the σ-relativistic Laplacian, defined on R
1,d × H

d

by

Lσ f (ξ, p) := po
∂ f

∂ξo
(ξ, p) +

d∑

j=1

p j ∂ f

∂ξ j
(ξ, p) + σ2

2 �H

(p) f (ξ, p) ,

that is to say,
Lσ f := 〈p, grad(ξ) f 〉 + σ2

2 �H

(p) f .

This is a hypoelliptic operator.
Given any (ξ0, p0) ∈ R

1,d × H
d , there exists a unique (in law) diffusion process

(ξs, ps) , s ∈ R+, such that for any compactly supported f ∈ C2(R1,d × H
d),

f (ξs, ps) − f (ξ0, p0) −
∫ s

0
Lσ f (ξt , pt ) dt is a martingale.

Note that ps is a hyperbolic Brownian motion, and that ξs = ξ0 +
∫ s

0
pt dt .

Remark 4.1 (1) The relativistic trajectories (ξs | s ∈ R+)we get inMinkowski space
are fully causal: since their spacetime velocities dξs

ds = ps belong to H
d , they are

timelike, hence locally causal; moreover they satisfy dξos
ds = pos > 0 , which ensures

that t (s) = ξos increases always strictly. Hence they are globally causal: in the ter-
minology of [18], they satisfy the “causality condition”: they cannot be closed.
(2) Note that ξs is parametrized by its arc length. Mechanically, ξs describes the
trajectory of a relativistic particle of small mass indexed by its proper time, submitted
to a white noise acceleration (in proper time). Its law is invariant under any Lorentz
transformation.

If we denote by (e∗
j ) the dual base of the canonical base (e0, e1, .., ed) (with

respect to 〈 , 〉), the matrices E j := e0 ⊗ e∗
j + e j ⊗ e∗

0 belong to the Lie algebra
so(1, d)ofG, and generate the so-calledboost transformations.Given d independent
real Wiener processes w

j
s , ps = (pos , ps) can be defined by ps := �se0 , where the

matrix �s ∈ G is defined by the following stochastic differential equation:

�s = �0 + σ

d∑

j=1

∫ s

0
�t E j ◦ dw

j
t .

Thismeans that the relativistic diffusion process (ξs, ps) is in fact the projection of
some diffusion process having independent increments, namely a Brownian motion
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with drift, living in the Poincaré group. This group is the analogue in the present
Lorentz-Minkowski setup of the classical group of rigid motions, and can be seen

as the group of (d + 2, d + 2) real matrices having the form

(
� ξ
0 1

)
, with � ∈ G ,

ξ ∈ R
1,d (written as a column), and 0 ∈ R

1+d (written as a row). Its Lie algebra is the

set of matrices

(
β x
0 0

)
, with β ∈ so(1, d) and x ∈ R

1,d . The Brownian motion with

drift we consider on the Poincaré group solves the stochastic differential equation

d

(
�s ξs
0 1

)
=

(
�s ξs
0 1

)
◦ d

(
βs e0 s
0 0

)
, where

(
βs = σ

∑d
j=1 E j w

j
s
)
is a Brownian

motion on so(1, d). This equation is equivalent to d�s = �s ◦ dβs and dξs =
�se0 ds , so that (�s) is a Brownian motion on G . On functions of p = �e0 , its
infinitesimal generator

∑d
j=1(LE j )

2 coincides with a Casimir operator, and induces
the hyperbolic Laplacian, so that (ps = �se0) is a Brownian motion on H

d , as
required.

Then it is well known that θs := ps
/√|pos |2 − 1 converges almost surely in

S
d−1 to some random limit θ∞ , and that pos increases to infinity. We also set

�s := argch(pos ) .
The Euclidean trajectory Z(t) is defined by ξs(t) , where s(t) is determined by

ξos(t) = t .
Let us note that the Euclidean velocity dZ(t)/dt = θs(t) th �s(t) has norm <1, 1
being here the velocity of light, beyondwhich the relativistic diffusion cannot actually
go. Moreover we have the following.

Remark 4.2 Themean Euclidean velocity Z(t)/t converges almost surely to θ∞ ∈
S
d−1.

Proof We have lim
t↗∞ s(t) = +∞ , so that th �s(t) =

√
1 − (pos(t))

−2 approaches 1.

Thus we get almost surely lim
t→∞

dZ(t)

dt
= θ∞ , and the result follows easily. �

The Poisson boundary of Minkowski’s space has been determined, as follows.

Theorem 4.3 ([4]) (i) As proper time s goes to infinity, the quantity 〈ξs , e0 + θ∞〉
converges almost surely to a random variable ζ∞.
(i i) The limiting random variable (θ∞ , ζ∞) contains all the asymptotic informa-
tion regarding the Dudley diffusion (ξs, ξ̇s ≡ ps), that is, generates its invariant
σ-field and its tail σ-field as well. Equivalently, the bounded Lσ-harmonic functions
are precisely the functions which admit a Choquet representation
(ξ, p) 	→ E(ξ,p)

[
h(θ∞ , ζ∞)

]
, for some bounded measurable function h.
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5 The Lorentzian Frame Bundle G(M) over (M, g)

We aim at presenting the extension of the relativistic diffusion, from the Minkowski
space to a generic Lorentzianmanifold, framework for anyGeneral Relativitymodel.
This will be as well the Lorentzian counterpart of the Riemannian Brownian motion,
as the Dudley diffusion was the relativistic counterpart of the Euclidean Brownian
motion.

The leading idea is to proceed similarly aswhat was done to get from the Euclidian
setting to the Riemannian one, that is to say, to rely again on the Cartan moving
frame method (recall Sect. 3). To begin, in this section we introduce the necessary
geometricalmaterial andbackground, the frames and the canonical vector fields being
somewhat more complicated in the Lorentzian (or pseudo-Riemannian) setting than
in the Riemannian one.

Let M be a C∞ time-oriented (1 + d)-dimensional Lorentz manifold, with
pseudo-metric g having signature (+,−, . . . ,−), Levi-Civita connection ∇, and
let T 1M denote the positive half of its pseudo-unit tangent bundle. Let G(M) be
the bundle of direct pseudo-orthonormal frames, with first element in T 1M and
with fibers modelled on the Lorentz-Möbius group G. Let π1 : u 	→ (

π(u), e0(u)
)

denote the canonical projection from G(M) onto the unit tangent bundle T 1M ,
which to each frame

(
e0(u), . . . , ed(u)

)
associates its first vector e0(u).

The action of SO(d) on (e1, . . . , ed) induces the identification T 1M ≡ G(M)/

SO(d).
Let H0, H1, . . . , Hd be the canonical horizontal vector fields on G(M), and

Vei∧e j (for 0 ≤ i < j ≤ d) the canonical vertical vector fields onG(M). In particular,
we have Tπ(Hk) = ek . To abbreviate the notation, we shall write Vj for Ve0∧e j ,
i.e., the vector field associated with the previous matrix E j ∈ so(1, d).

The canonical vectors Hk , Vei∧e j span TG(M), the horizontal (resp. vertical)
sub-bundle of TG(M) being spanned by the Hks (resp. the Vei∧e j s). Note that
H0 generates the geodesic flow, that V1, . . . , Vd generate the boosts, and that the
Vei∧e j (1 ≤ i,< j ≤ d) generate rotations. We have:

[Vei∧e j , Hk] = 〈ei , ek〉 Hj − 〈e j , ek〉 Hi , for 0 ≤ i, j, k ≤ d ,

and
[Hi , Hj ] =

∑

0≤k<�≤d

Ri j
k� Vek∧e�

,

where the ((Ri j
k�)) are the entries of the Riemann curvature tensor. The associated

curvature operator satisfies: for any C1 vector fields X,Y, Z , A ,

〈R (X ∧ Y ) , A ∧ Z〉 = 〈([∇X ,∇Y ] − ∇[X,Y ]
)
Z , A

〉
g
.

The Ricci tensor and Ricci operator are defined, for 0 ≤ i, k ≤ d , by:
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Rk
i :=

d∑

j=0

Ri j
k j , and Ricciξ

(
ei (u)

) :=
d∑

k=0

Rk
i ek(u) , for any u ∈ π−1(ξ) .

The scalar curvature is: R :=
d∑

k=0

Rk
k .

The indices of the curvature tensor ((Ri j
k�)) and of the Ricci tensor ((Rk

i )) are lowered
or raised by means of the Minkowski tensor ((ηab := 〈ea, eb〉)) and its inverse ((ηab)).
For example, we have: Ri j = Rk

i ηk j .
The energy-momentum tensor ((T k

j )) and operator Tξ are defined as:

T k
j := Rk

j − 1
2 R δkj and Tξ := Ricciξ − 1

2 R . (1)

Note that
d∑

j=0

T j
j = − d−1

2 R . The energy at any line-element (ξ, ξ̇) ∈ T 1M is

E(ξ, ξ̇) := 〈Tξ(ξ̇), ξ̇〉g(ξ) = T00(ξ, ξ̇) . (2)

Theweak energy condition (see [18]) stipulates that E(ξ, ξ̇) ≥ 0 on thewhole T 1M.
This is also the content of ([21], (94, 10)).

5.1 Expressions in Local Coordinates

Consider local coordinates (ξi , ekj ) for u = (ξ, e0, . . . , ed) ∈ G(M), with

e j = ekj
∂

∂ξk
.

As in the Riemannian case, for 0 ≤ i, j ≤ d we have:

∇ ∂

∂ξi

∂

∂ξ j
= �k

i j (ξ)
∂

∂ξk
and Hj = ekj

∂

∂ξk
− ekj e

m
i ��

km(ξ)
∂

∂e�
i

.

TheChristoffel coefficients of∇ are computed by:�k
i j = 1

2 gk�
(∂g�j

∂ξi
+ ∂gi�

∂ξ j
− ∂gi j

∂ξ�

)
,

or equivalently, by the fact that geodesics solve ξ̈k + �k
i j ξ̇i ξ̇ j = 0 .

Then Vei∧e j = eki
∂

∂ekj
− ekj

∂

∂eki
and Vj = ek0

∂

∂ekj
+ ekj

∂

∂ek0
, for 1 ≤ i, j ≤ d .

The curvature operator is expressed in a local chart as: for 0 ≤ m, n, p, q ≤ d ,

R̃mnpq :=
〈
R

(
∂

∂ξm ∧ ∂
∂ξn

)
, ∂

∂ξ p ∧ ∂
∂ξq

〉

g
= gmr

(
�r
ps �s

nq − �r
qs �s

np + ∂�r
nq

∂ξ p
− ∂�r

np

∂ξq

)
. (3)
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Then, the Ricci operator can be computed similarly, as: for 0 ≤ m, p ≤ d ,

R̃mp :=
〈
Ricci( ∂

∂ξm
) , ∂

∂ξ p

〉

g
= R̃mnpq gnq = �n

nq�
q
mp − �n

pq �q
mn + ∂�n

mp

∂ξn
− ∂�n

mn

∂ξ p
.

(4)
The scalar curvature and the energy-momentum operator can be computed by:

R = R̃i j g
i j and T̃�m = R̃�m − 1

2 R g�m (Einstein equations). (5)

To summarize, the Riemann curvature tensor ((Ri j
k�)) is made of the coordinates

of the curvature operator R in an orthonormal moving frame, and its indices are
lowered or raised by means of the Minkowski tensor ((ηab)), while the curvature
tensor ((R̃mnpq)) is made of the coordinates of the curvature operator in a local chart,
and its indexes are lowered or raised by means of the metric tensor ((gab)).
To go from one tensor to the other, note that by (3) we have
R(

∂
∂ξm

∧ ∂
∂ξn

) = 1
2 R̃mn

ab ∂
∂ξa

∧ ∂
∂ξb

, whence: eki e
�
j R̃k�

pq = Ri j
mn epm eqn , or equiv-

alently:

Ri jab = R̃k�rs e
k
i e

�
j e

r
a e

s
b , or also : R̃rspq = Rabmn era e

s
b e

p
m eqn .

5.2 Example of a Perfect Fluid

The energy-momentum tensor T (of (1), or equivalently T̃ , recall (5)) is associated
to a perfect fluid (see [18]) if it has the form:

T̃k� = q Uk U� − p gk� , (6)

for some C1 field U in T 1M (which represents the velocity of the fluid), and some
C1 functions p, q on M . By Einstein’s equations (5), (6) is equivalent to:

R̃k� = q Uk U� + p̃ gk� , with p̃ = (2p − q)/(d − 1), (7)

or also, by (4), to:

〈Ricci(V ), V 〉η = q × g(U, V )2 + p̃ × g(V, V ) , for any V ∈ TM . (8)

The quantity 〈U (ξs), ξ̇s〉 is the hyperbolic cosine of the distance, on the unit hyper-
boloid at ξs identifiedwith the hyperbolic space, between the space-time velocities of
the fluid and of the path; it will be denoted by As or A(ξs, ξ̇s). Note that necessarily
As ≥ 1 . By Formulas (2) and (6), the energy equals:

E(ξ, ξ̇) = q(ξ)A(ξ, ξ̇)2 − p(ξ). (9)
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The energy of the fluid is simply: T̃k� Uk U � = q − p , and the scalar curvature
equals R = 2 [(d + 1) p − q]/(d − 1). By (9), theweak energy condition reads here:
q ≥ p+.

6 The Basic Relativistic Diffusion

The following (where C denotes the Casimir operator) is analogous to Lemma 3.1.

Lemma 6.1 The operators H0 ,
∑d

j=1 V
2
j , C , H0 + σ2

2

∑d
j=1 V

2
j do act on C2

functions on the pseudo-unit tangent bundle T 1M , inducing respectively: the vector
field L0 generating the geodesic flow on T 1M , the so-called vertical Laplacian
�v

(
i.e., the Laplacian on T 1

ξ M equipped with the hyperbolic metric induced by

g(ξ)
)
, �v again, and the generator H1 := L0 + σ2

2 �v . More precisely, for any
F ∈ C2(T 1M), on G(M) we have:

(L0F) ◦ π1 = H0(F ◦ π1) , (�vF) ◦ π1 = C(F ◦ π1) .

Besides, in local coordinates (xi , ekj ) such that e j = ekj
∂

∂xk we have Vj = ekj
∂

∂ek0
+

ek0
∂

∂ekj
, and denoting the inverse matrix of the pseudo-Riemannian metric of M by

(gkl) in these coordinates, we have:

(�vF) ◦ π1 =
d∑

j=1

V 2
j (F ◦ π1) =

(
(ek0e

l
0 − gkl)

∂2

∂ek0∂e
l
0

+ d ek0
∂

∂ek0

)
F ◦ π1 .

Now, according to Sect. 4, the relativistic motion we will consider lives on T 1M
and admits as infinitesimal generator the operator H1 = L0 + σ2

2 �v of Lemma 6.1
above. If M is the Minkowski flat space of special relativity, it coincides with the
(Dudley) diffusion defined in Sect. 4 above.

To construct this general relativistic diffusion, we use a kind of stochastic devel-
opment to produce a stochastic flow on the bundle G(M), as for the Riemannian
Brownian motion in Sect. 3. But we have now to project on T 1M and no longer on
the base manifold M (this cannot work here), and to put the white noises on the
acceleration, i.e., on the vertical vectors, and no longer on the velocity, i.e., on the
horizontal vectors.

To proceed, let us fix �0 ∈ G(M) and an R
d -valued Brownian motion w =

(w
j
s ) . By Lemma 6.1, the stochastic flow (�s) defined by (∗∗) in the theorem below,

possibly till some explosion time, commutes with the action of SO(d) on G(M),
thereby allowing to project it on T 1M. This projection is precisely the relativis-
tic diffusion we intended to define and construct. The vector field L0 denotes the
generator of the geodesic flow, which operates on the position ξ-component, and
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�v denotes the vertical Laplacian (restriction to T 1M of the Casimir operator on
G(M)), which operates on the velocity ξ̇-component.

Theorem 6.2 ([13]) (i) The G(M)-valued Stratonovitch stochastic differential
equation

(∗∗) �s = �0 +
∫ s

0
H0(�t ) dt + σ

∫ s

0

d∑

j=1

Vj (�t ) ◦ dw
j
t

defines a diffusion (ξs, ξ̇s) := π1(�s) on T 1M, with generator H1 = L0 + σ2

2 �v .

(i i) If
←−
ξ (s) : TξsM → Tξ0M denotes the inverse parallel transport along the C1

curve (ξs ′ | 0 ≤ s ′ ≤ s), then ζs := ←−
ξ (s) ξ̇s is a hyperbolic Brownian motion on

Tξ0M .
Therefore the path (ξs) is almost surely the development of a relativistic (Dudley)
diffusion path in the Minkowski space Tξ0M .

The infinitesimal generator of the G(M)-valued relativistic diffusion (�s) is
H0 + �2

2

∑d
j=1 V

2
j , which by Lemma 6.1 projects under π1 to the infinitesimal gen-

erator of the relativistic diffusion (ξs, ξ̇s) ; namely the relativistic operator expressed
by:

H1 = L0 + �2

2 �v = ξ̇k
∂

∂ξk
+

(
d �2

2 ξ̇k − ξ̇i ξ̇ j �k
i j (ξ)

) ∂

∂ξ̇k
+ �2

2 (ξ̇k ξ̇� − gk�(ξ))
∂2

∂ξ̇k∂ξ̇�
. (10)

The relativistic diffusion (ξs, ξ̇s) is parametrized by proper time s ≥ 0 (since
gξs (ξ̇s, ξ̇s) = 1), possibly till some positive explosion time.

As in the Riemannian case (recall Remark 3.3), on the one hand this construction
uses the Cartan moving frame method and provides the stochastic parallel transport
(�s) along the relativistic Brownian curve (ξs, ξ̇s) together with the curve itself,
and on the other hand, the relativistic Brownian motion (ξs, ξ̇s) is covariant with
respect to the isometries of M: for any such (Lorentzian) isometry f , the process(
f ◦ (ξs, ξ̇s)

)
is another relativistic Brownian motion, starting at f (ξ0, ξ̇0).

In local coordinates (ξi , ekj ), setting �s = (ξis, e
k
j (s)), Equation (∗∗) becomes

locally equivalent to the following system of Itô equations:

dξks = ξ̇ks ds = ek0(s) ds ; d ξ̇ks = −�k
i�(ξs ) ξ̇is ξ̇�

s ds + �

d∑

i=1

eki (s) dwi
s + d �2

2 ξ̇ks ds , and

dekj (s) = −�k
i�(ξs) e

�
j (s) ξ̇is ds + � ξ̇ks dw

j
s + �2

2 ekj (s) ds , for 1 ≤ j ≤ d , 0 ≤ k ≤ d .
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Furthermore, on T 1M we have:

d∑

j=1

V 2
j E = 2(d + 1) E − 2 Tr(T ) = 2(d + 1) E + (d − 1) R .

As an application, a direct computation yields the following evolution of the energy.

Remark 6.3 The random energy process Es = E(ξs, ξ̇s) associated to the basic rel-
ativistic diffusion π1(�s) = (ξs, ξ̇s) satisfies the following equation (where ∇V :=
V j∇ j ):

dEs = ∇ξ̇s
Es ds + �2

[
(d + 1)Es + d−1

2 R(ξs)
]
ds + dME

s ,

with the quadratic variation of its martingale part dME
s given by:

[dEs, dEs] = [dME
s , dME

s ] = 4�2 [E2
s − 〈T̃ ξ̇s, T̃ ξ̇s〉] ds .

Note that generally the energy Es is not a Markov process.

6.1 Example: The Schwarzschild Solution (After [13])

This space-time is commonly used in physics tomodel the complement of a spherical
body, star or black hole; see for example ([21], Sect. 97). It is a basic example of
space-time, i.e., of exact solution to the Einstein equations. This is actually the unique
such solutionwhich is both radial and empty (the latter amounts to having a vanishing
Ricci tensor); see ([23], Theorems 3.1, 3.4, 3.7) for more specific statements in this
direction.

Take M = S0 :=
{
ξ = (t, r, θ) ∈ R × [R,+∞[×S

2
}
,where R ∈ R+ is a para-

meter of the central body, endowed with the radial pseudo-metric:

(1 − R
r ) dt2 − (1 − R

r )−1dr2 − r2|dθ|2 .

The coordinate t represents the absolute time, and r the distance from the origin.
The Ricci tensor vanishes, the space S0 being empty. A theorem by Birkhoff asserts
that there is no other radial pseudo-metric in S0 which satisfies this constraint.
Take as local coordinates the global spherical coordinates: ξ ≡ (ξ0, ξ1, ξ2, ξ3) :=
(t, r,ϕ,ψ) .According to the above, the systemof Itô stochastic differential equations
governing the relativistic diffusion (ξs, ξ̇s) becomes:

dts = e00(s) ds , drs = e10(s) ds , dϕs = e20(s) ds , dψs = e30(s) ds ,

de00(s) = 3σ2

2 e00(s) ds − R
rs (rs−R)

e00(s) e
1
0(s) ds + dM0

s ,
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de20(s) = 3σ2

2 e20(s) ds − 2
rs
e10(s) e

2
0(s) ds + sinϕs cosϕs e

3
0(s)

2 ds + dM2
s ,

de30(s) = 3σ2

2 e30(s) ds − 2
rs
e10(s) e

3
0(s) ds − 2 cotgϕs e

2
0(s) e

3
0(s) ds + dM3

s ,

where the martingale Ms := (M0
s , M

1
s , M

2
s , M

3
s ) has the following rank 3 quadratic

covariation matrix: Ks = σ2 (e0(s)
te0(s) − g−1(ξs)) .

Let us introduce the angular momentum b := r2 θ ∧ θ̇ , the energy a := (1 −
R
r ) ṫ , and the norm of b: b := |b| = r2U , with U := |θ̇| . Let us also set T := ṙ ,
and accordingly

Ts := ṙs = e10(s) , Us := |θ̇s | =
√
e20(s)

2 + sin2 ϕs e30(s)
2 , and D := min{s > 0 | rs = R} .

Standard stochastic calculus computations yield the following:

Proposition 6.1.1 (i) The unit pseudo-norm relation (which expresses that the
parameter s is precisely the arc length, i.e., the so-called proper time) is given by

T 2
s = a2s − (1 − R/rs)(1 + b2s /r

2
s ) .

(i i) The process (rs, as, bs, Ts) is a degenerate diffusion, with lifetime D, which
solves the following system of stochastic differential equations:

drs = Ts ds , dTs = dMT
s + 3σ2

2 Ts ds + (rs − 3
2 R)

b2s
r4s

ds − R

2r2s
ds ,

das = dMa
s + 3σ2

2 as ds , dbs = dMb
s + 3σ2

2 bs ds + σ2 r2s
2 bs

ds ,

with quadratic covariation matrix of the local martingale (Ma, Mb, MT ) given by

K ′
s := σ2

⎛

⎝
a2s − 1 + R

rs
as bs as Ts

as bs b2s + r2s bs Ts
as Ts bs Ts T 2

s + 1 − R
rs

⎞

⎠ .

We get in particular the following statement, in which the dimension is reduced.

Corollary 6.1.2 The process (rs, bs, Ts) is a diffusion, with lifetime D and infini-
tesimal generator

G ′ := T
∂

∂r
+ σ2

2
(b2 + r2)

∂2

∂b2
+ σ2

2b
(3b2 + r2)

∂

∂b
+ σ2bT

∂2

∂b∂T

+ σ2

2

(
T 2 + 1 − R

r

) ∂2

∂T 2
+

(3σ2

2
T + (r − 3

2 R)
b2

r4
− R

2r2

) ∂

∂T
.
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In the geodesic case σ = 0 five types of behaviour can occur, owing to the
trajectory of (rs) ; it can be:

• running from R to +∞, or in the opposite direction;
• running from R to R in finite proper time;
• running from +∞ to +∞;
• running from R to some R1 or from R1 to +∞, or idem in the opposite direction;
• running endlessly in a bounded region away from R.

Though the stochastic case σ �= 0 can be seen as a perturbation of the geodesic
case σ = 0 , the asymptotic behaviour classification regarding it is quite different.

Theorem 6.1.3 ([13]) (i) For any initial condition, the radial process (rs) almost
surely hits R within a finite proper time D or goes to +∞ as s → +∞.
(i i) Both events in (1) occur with positive probability, from any initial condition.
(i i i) Conditionally on the event {D = ∞} of non-hitting the central body, the
Schwarzschild relativistic diffusion (ξs, ξ̇s) goes almost surely to infinity in some
random asymptotic direction of R3, asymptotically with the velocity of light.

In particular, the relativistic diffusion almost surely cannot explode before a finite
proper time D.

The Schwarzschild relativistic diffusion has been analyzed further in [13], using
the (Kruskal-Szekeres) maximal extension of the Schwarzschild spacetime (also
considered by [23, 24]): not only its behaviour till the hitting of the singularity
can be thoroughly specified, but also a continuation of the diffusion thereafter makes
sense, at least mathematically, and can be analyzed for proper time running the whole
R+.

6.2 Example: The Gödel Universe (After [11])

The Gödel universe was intended by K. Gödel to object to the Einstein general
theory of 1915: while being an exact solution to the Einstein equations, it presents
the striking particularity of excluding global causality, since it has closed future-
directed timelike continuous paths, which makes theoretically possible to access to
one’s own past after a long travel. That particular feature soon made this universe
famous, and it is still the object of numerous developments.

The Gödel universe G is the manifold R
4, endowed with coordinates ξ :=

(t, x, y, z), and with the pseudo-metric g defined for some positive constant ω, by:

ds2 := dt2 − dx2 + 1
2 e

2
√
2ω x dy2 + 2 e

√
2ω x dt dy − dz2 .

Along any timelike curve (ts, xs, ys, zs), the unit pseudo-norm relation, defining
proper time s , is:

1 + ṫ2s + ẋ2s + ż2s = 1
2

[
e
√
2ω xs ẏs + 2 ṫs

]2
.
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Gödel’s universe can be viewed as a matrix group, on which Gödel’s metric g
happens to be the left-invariant metric generated by the Lorentz metric g0 on the
Lie algebra G: 〈LA,LA〉g = 〈A, A〉g0 for any A ∈ G. This group structure is given
by the following: for any ξ0 = (t0, x0, y0, z0), ξ = (t, x, y, z) ∈ G, ξ0 × ξ = (t +
t0, x + x0, y e−√

2ω x0 + y0, z + z0).

Proposition 6.2.1 The Gödel universe G is piece-wise geodesically transitive:
any two points of it can be linked by a piece-wise geodesic future-directed timelike
continuous path.

The relativistic diffusion (ξs, ξ̇s), in coordinates ξ = (t, x, y, z), solves the fol-
lowing system of stochastic differential equations:

dts = ṫs ds ; dxs = ẋs ds ; dys = ẏs ds ; dzs = żs ds ;

dṫs = −2
√
2ω ṫs ẋs ds − √

2ω e
√
2ω xs ẋs ẏs ds + 3σ2

2 ṫs ds + σ dMt
s ;

dẋs = −√
2ω e

√
2ω xs ṫs ẏs ds − (ω/

√
2 ) e2

√
2ω xs ẏ2s ds + 3σ2

2 ẋs ds + σ dMx
s ;

d ẏs = 2
√
2ω e−√

2ω xs ṫs ẋs ds + 3σ2

2 ẏs ds + σ dMy
s ;

dżs = 3σ2

2 żs ds + σ dMz
s ;

where the R
4-valued martingale Ms := (Mt

s , M
x
s , My

s , Mz
s ) has (rank 3) quadratic

covariation matrix:

((K i j
s )) := 〈dMi

s , dM
j
s 〉

ds
=

⎛

⎜⎜
⎝

ṫ2s + 1 ṫs ẋs ṫs ẏs − 2 e−√
2ω xs ṫs żs

ṫs ẋs ẋ2s + 1 ẋs ẏs ẋs żs
ṫs ẏs − 2 e−√

2ω xs ẋs ẏs ẏ2s + 2 e−2
√
2ω xs ẏs żs

ṫs żs ẋs żs ẏs żs ż2s + 1

⎞

⎟⎟
⎠.

The following quantities, as żs , are constant along each geodesic:

as := ṫs + e
√
2ω xs ẏs and bs := e

√
2ω xs (2 ṫs + e

√
2ω xs ẏs) .

The quantity a2s represents an energy. Then we have:

das = 3σ2

2 as ds + σ dMa
s = 3σ2

2 as ds + σ (dMt
s + e

√
2ω xs dMy

s ) ;

and

dbs = 3σ2

2 bs ds + σ dMb
s = 3σ2

2 bs ds + σ e
√
2ω xs (2 dMt

s + e
√
2ω xs dMy

s ) .

Moreover we have:
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dẋs = (ω/
√
2 ) e−2

√
2ω xs b2s ds − √

2ω e−√
2ω xs as bs ds + 3σ2

2 ẋs ds + σ dMx
s ,

and the R
4-valued martingale M̃s := (Ma

s , Mb
s , M

x
s , Mz

s ) has (rank 3) quadratic
covariation matrix:

((K̃ i j
s )) =

⎛

⎜⎜
⎝

a2s − 1 as bs − 2 e
√
2ω xs as ẋs as żs

as bs − 2 e
√
2ω xs b2s − 2 e2

√
2ω xs bs ẋs bs żs

as ẋs bs ẋs ẋ2s + 1 ẋs żs
as żs bs żs ẋs żs ż2s + 1

⎞

⎟⎟
⎠.

From this, we deduce the following, which allows the asymptotic study, as proper
time s goes to infinity, of relativistic paths.

Corollary 6.2.2 The (7-dimensional) relativistic diffusion (ξs, ξ̇s) admits the fol-
lowing sub-diffusions: (as) ; (żs) ; (as, żs); (xs, ẋs, as, bs).

The unit pseudo-norm relation can bewritten as: 1 + ẋ2s + ż2s + 1
2 (2 as − e−√

2ω xs bs)2 =
a2s .

Hence the phase space E of the relativistic diffusion (ξs, ξ̇s) can be written equiva-
lently:

E =
{
(t, x, y, z, a, b, ẋ, ż) ∈ R

8
∣
∣∣ 1 + ẋ2 + ż2 + 1

2 (2 a − e−√
2ω x b)2 = a2

}
,

in which the particular phase subspace E0 has to be distinguished:

E0 = E ∩
{
a2 = 1 + ż2 ; 2 a = e−√

2ω x b ; ẋ = 0
}

= E ∩
{
a2 = 1 + ż2

}
.

Remark 6.2.3 The phase space E splits into two connected components: E =
E+ � E−, with E+ := E ∩ {a ≥ 1, b > 0} and E− := E ∩ {a ≤ −1, b < 0}. Sim-
ilarly, E0 = E+

0 � E−
0 , with E+

0 := E0 ∩ E+ and E−
0 := E0 ∩ E−. Note that since

2 ṫs + e
√
2ω xs ẏs = e−√

2ω xs bs , the paths in E+ are always future-directed. Since
the symmetry (a, b) 	→ (−a,−b) exchanges (E+, E+

0 ) and (E−, E−
0 ), from now on,

we can restrict the phase space of the relativistic diffusion (ξs, ξ̇s) to E+ (its behaviour
on E− being trivially related).

Recall that in a strongly causal space-time, it seems natural to use the causal
boundary, in the sense of Penrose (see the conformal compactification considered in
Sect. 2 of [24]), to classify lightlike geodesics by gathering in an equivalence class,
called a beam, all geodesics which converge to a given causal boundary point (having
asymptotically the same past, see ([18], Sect. 6.8)). On the contrary, in the present
setting (recall Proposition 6.2.1) such a classification is totally inoperative. It seems
that no alternative classification has been proposed before [11], which is relevant
in a non-causal setting. Now, owing to the analysis of lightlike geodesics of G, the
following alternative classification of lightlike geodesics into beams was adopted
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in [11], viewing then the 3-dimensional space of beams as an alternative notion of
(non-causal, however conformal) boundary, as follows.

Definition 6.2.4 Let us call beam, or boundary point, of Gödel’s universe, any
equivalence class of lightlike geodesics, identifying those which have the same
impact parameter B = (�, �,Y ) ∈ B = [−1, 1] × R

∗+ × R . Thus B will be the
boundary of Gödel’s universe.

Here the definition of the impact parameter B is exactly as in the following main
result, though it is of course by far easier to obtain in the case of a lightlike geodesic.

Theorem 6.2.5 (i) The relativistic diffusion is irreducible on its phase space
E+\E+

0 .
(i i) Almost surely, the relativistic diffusionpath possesses a3-dimensional asymp-

totic random variable B = (�, �,Y ) ∈ B . Namely, it converges to this beam B in
the sense that, as proper time s goes to infinity, we almost surely have:

żs/as −→ � ∈ ] − 1, 0[ ∪ ]0, 1[ ; bs/as −→ � ∈ ]0,∞[ ; Ys :=
√
2 ẋs

ω bs
+ ys −→ Y ∈ R ;

[�

2
e−√

2ω xs − 1
]2 +

[ω �

2
(ys − Y )

]2 −→ 1
2 (1 − �2) .

(i i i) The asymptotic random variable (�, �,Y ) can be arbitrarily close to any
given (�0, �0, y) ∈ ] − 1, 1[×]0,∞[×R, with positive probability. Hence, the whole
boundary (space of beams) B is the support of beams the relativistic diffusion can
converge to.

It remains an open question to establish whether the limiting random variable
B = (�, �,Y ) contains all asymptotic information, i.e., generates the invariant or
the tail σ-field of the whole Gödel relativistic diffusion, and thereby is enough to
represent all bounded harmonic functions (i.e., thePoisson boundary, recall Theorem
4.3) of the Gödel universe.

7 Covariant �-relativistic Diffusions

We present here other intrinsic Lorentz-covariant diffusions, taking advantage of the
curvature tensor (recall Sect. 5). They could be seen as maybe more physical than the
basic relativistic diffusion presented till now, as their quadratic variation is locally
determined by their velocity and the curvature of the space, and vanishes in flat or
in Ricci-flat (empty) regions.

Let � denote a non-negative smooth function onG(M), invariant under the right
action of SO(d) (so that it is identified with a function on T 1M).
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Our basic non-constant examples will be � = −σ2R and � = σ2E (for a constant
σ > 0).

We start with the following Stratonovitch stochastic differential equation on
G(M) (for a given R

d -valued Brownian motion (w
j
s )):

d�s = H0(�s) ds + 1
4

d∑

j=1

Vj � (�s)Vj (�s) ds +
d∑

j=1

√
�(�s) Vj (�s) ◦ dw j

s .

(11)
Note that all coefficients in this equation are clearly smooth, except

√
� on its vanish-

ing set �−1(0). However,
√

� is a locally Lipschitz function; see ([20], Proposition
IV.6.2). Hence, Equation (11) does define a unique G(M)-valued diffusion (�s).
We have the following theorem, which defines the �-relativistic diffusion (or �-
diffusion) (�s) on G(M) and (ξs, ξ̇s) on T 1M, possibly till some positive explosion
time.

Theorem 7.1 (see [14]) (i) The Stratonovitch stochastic differential equation (11)
has a unique solution (�s) = (ξs; ξ̇s , e1(s), . . . , ed(s)), possibly defined till some
positive explosion time. This is a G(M)-valued covariant diffusion process, with
generator

H� := H0 + 1
2

d∑

j=1

Vj � Vj . (12)

(i i) Its projection π1(�s) = (ξs, ξ̇s) defines a covariant diffusion on T 1M, with
SO(d)-invariant generator

H1
� := L0 + 1

2 ∇v � ∇v , (13)

∇v denoting the gradient on T 1
ξ M equipped with the hyperbolic metric induced by

g(ξ).
(i i i) Moreover, the adjoint of H� with respect to the Liouville measure of G(M)

is

H∗
� := −H0 + 1

2

d∑

j=1
Vj � Vj . In particular, if there is no explosion, then the Liou-

ville measure is invariant. Furthermore, if � does not depend on ξ̇ , i.e., is a func-
tion onM, then the Liouville measure is preserved by the stochastic flow defined by
Eq. (11).

We specify right away how this looks in a local chart.

Corollary 7.2 The T 1M-valued �-diffusion (ξs, ξ̇s) satisfies dξs = ξ̇s ds , and in
any local chart, the following Itô stochastic differential equations: for 0 ≤ k ≤ d ,
(denoting �s ≡ �(ξs, ξ̇s))
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d ξ̇ks = dMk
s − �k

i j (ξs) ξ̇is ξ̇ j
s ds + d

2 �s ξ̇ks ds + 1
2

[
ξ̇ks ξ̇�

s − gk�(ξs)
] ∂�

∂ξ̇�
(ξs, ξ̇s) ds ,

(14)
with the quadratic covariation matrix of the martingale term (dMs) given by:

[
d ξ̇ks , d ξ̇�

s

] = [
ξ̇ks ξ̇�

s − gk�(ξs)
]
�s ds , for 0 ≤ k, � ≤ d .

Remark 7.3 (i) The vertical terms could be seen as an effect of the matter or the
radiation present in the space-timeM. The �-diffusion (�s) reduces to the geodesic
flow in the regions of the space where � vanishes, which happens in particular for
empty space-times M in the cases � = −σ2 R(ξ), or � = σ2 E(ξ, ξ̇), or also
� = −σ2 R(ξ) eκE(ξ,ξ̇)/R(ξ) (for any positive constant κ) for example.

(i i) As for the basic relativistic diffusion, the law of the �-relativistic diffusion
is covariant with respect to any isometry of (M, g). The basic relativistic diffusion
corresponds to � ≡ σ2 > 0 , and the geodesic flow to � ≡ 0 .

(i i i) In [5] is considered a general model for relativistic diffusions, which may be
covariant or not. Up to enlarging it by allowing the “rest frame” (denoted by z in [5])
to have space vectors of non-unit norm, this model includes the generic �-diffusion(
compare the above Eq. (11) to (2.5), (3.3) in [5]

)
.

7.1 Example 1: The R-diffusion

We assume here that the scalar curvature R = R(ξ) is everywhere non-positive on
M, which is physically relevant: this is the strong energy condition, in the case
where the energy-momentum tensor T has a timelike eigenvector (the so-called
type I, e.g., a perfect fluid); see ([18] page 95); this is also the dominant energy
condition in the terminology used by ([19], Sect. 2.2); up to the convention used
for the sign. Consider the particular case corresponding to � = −σ2 R(ξ), with a
constant positive parameter σ .
In this case, as its central term clearly vanishes, Eq. (11) takes on the simple form:

d�s = H0(�s) ds + σ

d∑

j=1

√−R(�s) Vj (�s) ◦ dw j
s .

7.2 Example 2: The E-diffusion

We assume that the Weak Energy Condition (recall Sect. 5) holds (everywhere on
T 1M), which is physically relevant

(
see ([21], (94, 10)), [18]: this means that the

energy has to be non-negative everywhere in the space-time
)
, and consider the par-

ticular case corresponding to � = σ2 E = σ2 E(ξ, ξ̇) = σ2 T00 .
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We call energy relativistic diffusion or E-diffusion the G(M)-valued diffusion
process (�s) we get in this way, as well as its T 1M-valued projection π1(�s).
The following computational lemma implies that the central drift term in Eq. (11) is
a function of the Ricci tensor alone when � is.

Lemma 7.2.1 We have Vj Rk
i = δ0i Rk

j − ηi j Rk
0 + δk0 Ri j − δkj R0i , for 0 ≤ i, k ≤

d and 1 ≤ j ≤ d . In particular, Vj R = 0 , and VjE = VjT00 = Vj R00 = 2R0 j .

Lemma 7.2.1 and some more computation lead to the following, to be compared
with Corollary 6.3. The notation (T̃ ξ̇)k ≡ T̃ k

m ξ̇m below has the meaning of a matrix
product.

Remark 7.2.2 The randomenergy Es := E(ξs, ξ̇s) associated to theE-diffusion (�s)

satisfies the following equation (where ∇V := V j∇ j ):

dEs = ∇ξ̇s
E(ξs, ξ̇s) ds + (d + 2)σ2 E2

s ds − 2σ2 g(T̃ ξ̇s, T̃ ξ̇s) ds + 2σ dME
s ,

with the quadratic variation of its martingale part dME
s given by:

[dEs, dEs] = 4σ2 [dME
s , dME

s

] = 4σ2 [E2
s − g(T̃ ξ̇s, T̃ ξ̇s)

] Es ds.

Remark 7.2.3 The case of Einstein Lorentz manifolds.
The Lorentz manifoldM is said to be Einstein if its Ricci tensor is proportional to

its metric tensor. Bianchi’s contracted identities (see for example [18]), which entail
the conservation equations ∇k T̃ jk = 0, force the proportionality coefficient p̃ to be
constant onM. Hence: R̃�m(ξ) = p̃ g�m(ξ) , for any ξ in M and 0 ≤ �,m ≤ d .

Then the scalar curvature is R(ξ) = (d + 1) p̃ , and by Einstein’s Equations (5)
we have:

T̃�m(ξ) = (� − d−1
2 p̃) g�m(ξ) =: −p g�m(ξ) .

Hence Eq. (6) holds, with q = 0: we are in a limiting case of a perfect fluid.
Moreover, R and E are constant, so that in an Einstein Lorentz manifold, the R-
diffusion and the E-diffusion coincidewith the basic relativistic diffusion (of Sect. 6).

8 Example of Robertson-Walker (R-W) Manifolds

These important manifolds are intended to model an expanding (or shrinking) uni-
verse resulting from a “Big-Bang”, as ours is believed to be. They admit an absolute
time coordinate t ; in the classical terminology used in particular by ([19], Sect. 2),
they are “globally hyperbolic”.

They are particular cases of warped product: they can be written as M = I × M ,
where I is an open interval of R+ and M ∈ {S3,R3,H3}, with spherical coordinates
ξ ≡ (t, r,ϕ,ψ) (which are global in the case of R3,H3, and are defined separately
on two hemispheres in the case of S3), and are endowed with the pseudo-norm:
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g(ξ̇, ξ̇) := ṫ2 − α(t)2
(

ṙ2

1 − kr2
+ r2ϕ̇2 + r2 sin2ϕ ψ̇2

)
, (15)

where the constant scalar spatial curvature k belongs to {−1, 0, 1} (note that r ∈
[0, 1] for k = 1 and r ∈ R+ for k = 0,−1), and the expansion factor α is a positive
C2 function on I . The so-called Hubble function is: H(t) := α′(t)/α(t) .
Note that we necessarily have ṫ ≥ 1 everywhere on T 1M . The curvature operator
is given (denoting by X,Y,A,Z vectors over M and by h the metric tensor of M) by:

〈
R ((u∂t + X) ∧ (v∂t + Y )) , (a∂t + A) ∧ (w∂t + Z)

〉

η

= αα′′ h(uY − vX, aZ − wA) − α2(α′ 2 + k) [h(X, A)h(Y, Z) − h(X, Z)h(Y, A)] .

The Ricci tensor ((R̃�m)) is diagonal, with diagonal entries:

(
− 3

α′′(t)
α(t)

,
A(t)

1 − kr2
, A(t) r2, A(t) r2 sin2ϕ

)
, where A(t) := α(t) α′′(t) + 2α′(t)2 + 2k ,

and the scalar curvature is R = −6 [α(t)α′′(t) + α′(t)2 + k] α(t)−2.
The Einstein energy-momentum tensor R̃�m − 1

2 R g�m = T̃�m is diagonal as well,
with diagonal entries:

(
3

α′(t)2 + k

α(t)2
,

− Ã(t)

1 − kr2
, − Ã(t) r2, − Ã(t) r2 sin2ϕ

)
, with Ã(t) := 2α(t)α′′(t) + α′(t)2 + k .

Hence, we have

T̃�m − α(t)−2 Ã(t) g�m = 2 [k α(t)−2 − H ′(t)] 1{�=m=0} .

Thus, we have here an example of perfect fluid: Eq. (6) holds, with

Uj ≡ δ0j , −p(ξ) = k α(t)−2 + 2H ′(t) + 3H2(t) , q(ξ) = 2 [k α(t)−2 − H ′(t)] , (16)

p̃(ξ) = −2 [2k α(t)−2 + H ′(t) + 3H 2(t)]/(d − 1) .

Note that

As = Ui (ξs) ξ̇is = ṫs and Es = 2 [k α(ts)
−2 − H ′(ts)] ṫ2s − p(ξs) . (17)

The weak energy condition is equivalent to: α′ 2 + k ≥ (α α′′)+.
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We shall consider only eternal Robertson-Walker space-times, which have their
future-directed half-geodesics complete. This amounts to I = R

∗+ , together with∫ ∞ α√
1 + α2

= ∞ . In the case of the basic relativistic diffusion (within such a

Robertson-Walker model), we have in particular:

dṫs = σ
√
ṫ2s − 1 dws + 3σ2

2 ṫs ds − H(ts)[ṫ2s − 1] ds . (18)

8.1 �-relativistic Diffusions in an Einstein-De Sitter-Like
Manifold

We consider henceforth the particular case I =]0,∞[ , k = 0 , and α(t) = t c ,
with exponent c > 0 . Note that such expansion functions α can be obtained by
solving a proportionality relation between p and q (see [18] or [21]).
Thus q = 2c t−2 , p = (2 − 3c)c t−2, R = −6 c (2c − 1) t−2 , E = c t−2 (2 ṫ2 +
3c − 2) .
Note that the weak energy condition holds. The scalar curvature is non-positive if
and only if c ≥ 1/2 , and the pressure p is non-negative if and only if c ≤ 2/3 .

Note that the particular case c = 2
3 corresponds to a vanishing pressure p , and

is precisely known as that of Einstein-de Sitter universe (see for example [18]). And
the analysis of [21] shows precisely both limiting cases c = 2

3 and c = 1
2 .

8.1.1 Basic Relativistic Diffusion in an Einstein-De Sitter-Like Manifold

In order to compare with the other relativistic diffusions, we mention, first for the
basic relativistic diffusion (of Sect. 6), the stochastic differential equations satisfied
by the main coordinates ṫs and ṙs , appearing in the 4-dimensional sub-diffusion
(ts, ṫs, rs, ṙs). By (18), we have, for independent standard real Brownian motions
w, w̃:

dṫs = σ
√
ṫ2s − 1 dws + 3σ2

2 ṫs ds − c

ts
(ṫ2s − 1) ds ; (19)

dṙs = σ ṫs ṙs√
ṫ2s − 1

dws + σ

√
1

t2cs
− ṙ2s

ṫ2s − 1
dw̃s + 3σ2

2 ṙs ds +
[
ṫ2s − 1

t2cs
− ṙ2s

]
ds

rs
− 2c

ts
ṫs ṙs ds .

(20)
Almost surely (see [1]), lim

s→∞ ṫs = ∞ ; moreover xs/rs and ẋs/|ẋs | converge in S2,
to the same random limit.

Further results are established in [1], where the whole diffusion is thoroughly
considered. In particular, the Poisson boundary is determined in some sub-cases of
interest, yielding in such a curved framework an analogue of Theorem 4.3.
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8.1.2 R-diffusion in an Einstein-De Sitter-Like Manifold

With the above, Sect. 7.1 gives here, for the R-relativistic diffusion, when c ≥ 1/2:

d ξ̇s = σ dMs + 9c (2c − 1)σ2 t−2
s ξ̇s ds − �·

i j (ξs) ξ̇is ξ̇ j
s ds , (21)

with the quadratic covariation matrix of the martingale part dMs given by:

σ−2
[
d ξ̇ks , d ξ̇�

s

] = 6c (2c − 1)
[
ξ̇ks ξ̇�

s − gk�(ξs)
]
t−2
s ds , for 0 ≤ k, � ≤ d .

In particular, we have for independent standard real Brownian motions w, w̃:

dṫs = σ

ts

√
6 c (2c − 1)(ṫ2s − 1) dws + 9σ2c (2c − 1)

t2s
ṫs ds − c

ts
(ṫ2s − 1) ds ;

(22)

dṙs = σ
√
6c (2c − 1)

ts

[
ṫs ṙs√
ṫ2s − 1

dws +
√

1

t2cs
− ṙ2s

ṫ2s − 1
dw̃s

]

(23)

+ 9σ2c (2c − 1)

t2s
ṙs ds +

[
ṫ2s − 1

t2cs
− ṙ2s

]
ds

rs
− 2c

ts
ṫs ṙs ds .

As the scalar curvature Rs = 6c (1 − 2c)/t2s vanishes asymptotically, we expect
that almost surely the R-diffusion behaves eventually as a timelike geodesic, and in
particular that lim

s→∞ ṫs = 1 .

8.1.3 E-diffusion in an Einstein-De Sitter-Like Manifold

Similarly, using (16) and (17), we have here E ξ̇ − T̃ ξ̇ = 2(0 − H ′)(ṫ2ξ̇ − ṫ U ) , so
that Sect. 7.2 reads here, for the E-diffusion:

d ξ̇s = σ dMs + 3σ2c
2 t−2

s (2 ṫ2s + 3c − 2) ξ̇s ds + 2σ2c t−2
s (ṫs ξ̇s −Us) ṫs ds − �·

i j (ξs) ξ̇is ξ̇
j
s ds ,

(24)
with the quadratic covariation matrix of the martingale part dMs given by:

σ−2 [d ξ̇ks , d ξ̇�
s ] = c [ξ̇ks ξ̇�

s − gk�(ξs)] (2 ṫ2s + 3c − 2) t−2
s ds , for 0 ≤ k, � ≤ d .

In particular, we have for some standard real Brownian motion w:

dṫs = σ
√
c

ts

√
(2 ṫ2s − 2 + 3c)(ṫ2s − 1) dws + c

[
5σ2(ṫ2s − 1 + 9c

10 )
ṫs
t2s

− ṫ2s − 1

ts

]
ds ;

(25)
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dṙs = σ
√
c

ts

√
2 ṫ2s − 2 + 3c

[
ṫs ṙs√
ṫ2s − 1

dws +
√

1

t2cs
− ṙ2s

ṫ2s − 1
dw̃s

]

(26)

+σ2c (5 ṫ2s − 3 + 9c
2 )

ṙs
t2s

ds − 2c

ts
ṫs ṙs ds +

[
ṫ2s − 1

t2cs
− ṙ2s

]
ds

rs
.

Remark 8.1.4 Comparison of �-diffusions in an Einstein-de Sitter-like manifold.
Along the preceding Sects. 8.1.1, 8.1.2, 8.1.3, we specified the various �-diffusions
we considered successively in Sects. 6, 7.1, 7.2 to an Einstein-de Sitter-likemanifold.
Restricting to the only equation related to the hyperbolic angle As = ṫs , or in other
words, to the simplest sub-diffusion (ts, ṫs), this yields Equations (19), (22), (25)
respectively. We observe that even in this simple case, all these covariant relativistic
diffusions differ notably, having pairwise distinct minimal sub-diffusions (with 3
non-proportional diffusion factors).

8.2 Asymptotic Behavior of the R-diffusion in an
Einstein-De Sitter Manifold

We present here the asymptotic study of the R-diffusion of an Einstein-de Sitter-
like manifold (recall Sects. 8.1, 8.1.2). We will focus our attention on the simplest
sub-diffusion (ts, ṫs), and on the space component xs ∈ R

3 . Recall from (17) that
ṫs = As equals the hyperbolic angle, measuring the gap between the ambient fluid
and the velocity of the diffusing particle. Recall also that, by the unit pseudo-norm
relation, ṫs controls the behavior of the whole velocity ξ̇s . We get as a consequence
the asymptotic behavior of the energy Es . As quoted in Sect. 8.1.2, we must here
have c ≥ 1

2 .
Note that for c = 1

2 , the scalar curvature vanishes, and the R-diffusion reduces
to the geodesic flow, whose equations are easily solved and whose time coordinate
satisfies (for constants a and s0):

s − s0 =
√
ts (ts + a2) − a2 log[√ts +

√
ts + a2 ] , whence ts ∼ s .

The proofs in this section (and in the following one) repeatedly use the elementary
fact that almost surely a continuous local martingale cannot go to infinity.

The following confirms a conjecture stated at the end of Sect. 8.1.2.

Proposition 8.2.1 The process ṫs goes almost surely to 1, and Es → 0 , as s → ∞ .

The following reveals the asymptotic behavior of the space component (xs) for
c > 1

2 .
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Proposition 8.2.2 For c > 1
2 , the space component converges almost surely (as

s → ∞):

xs → x∞ ∈ R
3.

This does not hold in the geodesic flow limiting case c = 1
2 , since then we have

rs = √
b2/a2 + (a + o(1)) log s ∼ √

a log s as s → ∞ .

To compare the R-diffusion with geodesics, note that (as is easily seen; see for

example [1]) along any timelike geodesic, we have xs = x1 + ẋ1
|ẋ1|

∫ s

1

a dτ

t2cτ

(
and

ẋs
|ẋs | = ẋ1

|ẋ1|
)
, which converges precisely for c > 1

2 ; and along any lightlike geodesic,

we have xs = x1 + ẋ1
|ẋ1|

∫ ts

t1

dτ

τ c
∼ V × s

1−c
1+c

(
and ẋs

|ẋs | = ẋ1
|ẋ1|

)
, which converges

only for c > 1 .
On the other hand, for c ≤ 1 , the behavior of the basic relativistic diffusion is

shown to satisfy (see [1]): rs ∼
s→∞

∫ s

1

aτ dτ

t2cτ

−→ ∞ (exponentially fast, at least

for c < 1).
Hence, the R-diffusion behaves asymptotically more like a (timelike) geodesic

than like the basic relativistic diffusion. However due to other facts, the asymptotic
behavior of the R-diffusion seems to be somehow intermediate between those of the
geodesic flow and of the basic relativistic diffusion.

8.3 Asymptotic Energy of the E-diffusion in an Einstein-De
Sitter Manifold

We consider here the case of Sect. 8.1.3, dealing with the energy diffusion in an
Einstein-de Sitter-like manifold, and more precisely, with its absolute-time minimal
sub-diffusion (ts, ṫs) satisfying Eq. (25), and with the resulting random energy:

Es = c t−2
s (2 ṫ2s + 3c − 2) = 2c (ṫs/ts)

2 + O(s−2).

Let us denote by ζ the explosion time:ζ := sup{s > 0 | ṫs < ∞} ∈ ]0,∞] .
Lemma 8.3.1 We have almost surely: either lim

s→ζ
ṫs = 1 and ζ = ∞ , or

lim
s→ζ

ṫs = ∞ .

The asymptotic behavior can, with positive probability, be partly opposite to that
of the preceding R-diffusion:
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Proposition 8.3.2 From any starting point (ts0 , ṫs0), there is a positive probability
that both As ≡ ṫs and the energy Es explode. This happens with arbitrarily large
probability, starting with ṫs0/ts0 sufficiently large and t0 bounded away from zero.

On the other hand, there is also a positive probability that the hyperbolic angle
As = ṫs does not explode and goes to 1, and then that the random energy Es goes to
0. This happens actually with arbitrarily large probability, starting with sufficiently
large ts0/ṫs0 .

9 Sectional Relativistic Diffusion

We turn now our attention towards a different class of intrinsic relativistic genera-
tors on G(M), whose expressions derive directly from the commutation relations
of Sect. 5, on canonical vector fields of TG(M). They all project on the unit tan-
gent bundle T 1M onto a unique relativistic generator H1

curv , whose expression
involves the curvature tensor. Semi-ellipticity of H1

curv requires the assumption of
non-negativity of timelike sectional curvatures. Note that in general H1

curv does not
induce the geodesic flow in an empty space.

We shall actually consider, among these generators, those which are invariant
under the action of SO(d) on G(M). To this aim, we introduce the following dual
vertical vector fields, by lifting indexes: V i j := ηim η jn Vem∧en , so that V j ≡ V 0 j =
−Vj and V i j = Vei∧e j for 1 ≤ i, j ≤ d . We again fix a positive parameter σ .

Theorem 9.1 (i) The following four SO(d)-invariant differential operators define
the same operator H1

curv on T 1M :

H0 − σ2

2

d∑

j=1

(
[H0, Hj ]V j + V j [H0, Hj ]

)
; H0 + σ2

d∑

j=1

[Hj , H0]V j ;

H0 + σ2
d∑

j=1

R j
0 Vj − σ2

∑

1≤ j,k≤d

R0
j0k Vj Vk ; H0 − σ2

4

∑

1≤i, j≤d

(
[Hi , Hj ] V i j + V i j [Hi , Hj ]

)
;

(i i) (H1
curv − L0) is self-adjoint with respect to the Liouville measure of T 1M.

(i i i) In local coordinates, the so-defined second order operator H1
curv on T 1M is

given by:

H1
curv = ξ̇ j ∂

∂ξ j
− ξ̇i ξ̇ j �k

i j

∂

∂ξ̇k
+ σ2

2 ξ̇n R̃k
n

∂

∂ξ̇k
− σ2

2 ξ̇ p ξ̇q R̃p
k
q
� ∂2

∂ξ̇k∂ξ̇�

= ξ̇ j ∂

∂ξ j
− ξ̇i ξ̇ j �k

i j

∂

∂ξ̇k
+ σ2

2 ξ̇m R̃mnpq

(
gnq g pk ∂

∂ξ̇k
− ξ̇ p gnkgq� ∂2

∂ξ̇k∂ξ̇�

)
.
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The generator H1
curv defined on T 1M by Theorem 9.1 is covariant with respect

to any Lorentz isometry of (M, g). Hence, it is a candidate to generate a covariant
“sectional” relativistic diffusion on T 1M. Now, a necessary and sufficient condition,
in order that such an operator be the generator of a well-defined diffusion, is that it
be subelliptic.
We are thus led to consider the following negativity condition on the curvature:

〈R(u ∧ v), u ∧ v
〉
η

≤ 0 , for any timelike u and any spacelike v . (27)

This condition is equivalent to the following lower bound on sectional curvatures of
timelike planes Ru + Rv :

〈R(u ∧ v), u ∧ v〉η
g(u ∧ v, u ∧ v)

≥ 0 ,

since g(u ∧ v, u ∧ v) := g(u, u)g(v, v) − g(u, v)2 < 0 for such planes.
When this negativity condition is fulfilled, we call the resulting covariant diffusion

on T 1M, which has generator H1
curv given by Theorem 9.1, the sectional relativistic

diffusion. Note that the sectional curvature classically plays a significant role in
Lorentzian geometry, see for example ([23], Theorems 2.2 and 2.3).

Remark 9.2 Consider a Lorentz manifold (M, g) having the warped product form,
for example a Robertson-Walker one. Then the sign condition (27) is equivalent to:
α′′ ≤ 0 on I , together with the following lower bound on sectional curvatures of
the Riemannian factor (M, h) :

inf
X,Y∈T M

〈K (X ∧ Y ) , X ∧ Y 〉
h(X, X) h(Y,Y ) − h(X,Y )2

≥ sup
I

{α α′′ − α′ 2}.

In an Einstein-de Sitter-like manifold (recall Sect. 8.1), the sign condition (27)
holds if and only ifα′′ ≤ 0 , i.e., if and only if c ≤ 1 . The generator H1

curv is fully
computable, but has a complicated expression, even in such a simple example.
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On the Positive Mass Theorem for Closed
Riemannian Manifolds

Andreas Hermann and Emmanuel Humbert

Abstract The Positive Mass Conjecture for asymptotically flat Riemannian man-
ifolds is a famous open problem in geometric analysis. In this article we consider
a variant of this conjecture, namely the Positive Mass Conjecture for closed Rie-
mannian manifolds. We explain why the two positive mass conjectures are equiv-
alent. After that we explain our proof of the following result: If one can prove the
Positive Mass Conjecture for one closed simply-connected non-spin manifold of
dimension n ≥ 5 then the Positive Mass Conjecture is true for all closed manifolds
of dimension n.

1 Introduction

General Relativity is a geometrical theory: the background is a 4-Lorentzianmanifold
(M,G) whose metric satisfies:

RicG − 1

2
sGG = 8πT . (1)

where RicG and sG denote the Ricci curvature and the scalar curvature of the met-
ric G respectively. The tensor T is the energy momentum tensor and contains all the
information on the matter and Formula (1) explains how the physical objects (the
tensor T ) are related to the geometrical background (the curvature). After Gauss’
work on the curvature of surfaces which resulted in his famous theorema egregium,
it was Riemann who generalized the notion of curvature to higher dimensions by
introducing a quantity which today is called the Riemann curvature tensor. In this
way he founded the language of modern differential geometry which was later used
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by Einstein to formulate the field Eq. (1). Many physical laws can be read through
this formula: in particular, it describes gravitation in terms of curvature which at the
beginning of the 20th century was the real breakthrough of the theory. This formula-
tion completely denies the existence of a global time which nevertheless has a strong
meaning for each human being. One way to overcome this difficulty is to consider
an appropriate space-type hypersurface M , which is a Riemannian manifold when
equipped with the restriction of the metric G. This manifold M is called a Cauchy
hypersurface and can be interpreted as a picture of the universe at some fixed time.
General Relativity is a deterministic theory: specifying enough data on the chosen
Cauchy hypersurface allows to reconstruct the whole spacetime: this is a result by
Choquet-Bruhat and Geroch [7]. This is one reason for which many problems can
be formulated in terms of Riemannian geometry.

In this survey, we present the Positive Mass Theorem which illustrates what is
explained above: the physical question of whether a local positive energy density of
an isolated system gives rise to a positive total energy can be formulated as a problem
of pure Riemannian geometry. So it is not surprising that in this context, geometrical
tools were crucial to (partially) answer this question. On the other hand it is really
surprising that the Positive Mass Theorem was the key point in the final argument of
R.Schoen for the solution of the Yamabe problem, which was a challenging question
in Riemannian geometry and partial differential equations for more than 20years and
which has nothing to do with General Relativity.

In the paper, we will start by introducing the ADMmass of an asymptotically flat
manifold and we will explain the reason why it can be interpreted as the total energy
of an isolated system. The approach we choose in this text is inspired by the book
of Vaugon and the second author [14] where the reader will find many more details.
The ADMmass measures how an isolated system affects the trajectories of massless
particles evolving far from the system. Note that in the chapter written by Jacques
Franchi [8], it is explained how such a system also perturbs Brownian motions (see
e.g. the study on Schwarzschild solution). A famous open problem is to know if,
under natural physical assumptions, the ADM mass is non-negative together with a
rigidity result (for many other interesting rigidity results, the reader may refer to the
chapter written by Marc Mars [12]): it should vanish if and only if the spacetime
does not contain any matter nor gravity fields and hence is flat.

We will formulate the Positive Mass Conjecture for asymptotically flat manifolds
whichhas been solved in the context ofGeneralRelativity (that is, in dimension3), but
which is still considered as open in dimension greater or equal to 8 if the manifold
is not spin. Then we will study the mass of closed manifolds, more precisely of
manifolds which are compactifications of some asymptotically flat manifolds. As
in the chapter written by Jean-Philippe Nicolas [13], the situation appears much
clearer in the compact setting giving rise to new applications. We will explain how
Schoen defined the mass of a closed Riemannian manifold which can be regarded
as the ADM mass of a blown-up manifold. This will give rise to a Positive Mass
Conjecture for closed manifolds which was the main point in the last argument for
solving the Yamabe problem. It is well known that the Positive Mass Conjectures for
closed and for asymptotically flat manifolds are actually equivalent: the proof of this



On the Positive Mass Theorem for Closed Riemannian Manifolds 517

equivalence is essentially contained in the work of Schoen, Lohkamp or Lee-Parker
[16, 17, 19]. But, even if all the ingredients of the proof are in the literature, it is quite
difficult to find a reference where this equivalence is explicitly stated and proved.
We do it in this paper.

In the last paragraph we present our recent results which reduce the Positive Mass
Conjecture to proving that it holds for every metric on one fixed closed non spin and
simply connected manifold in each dimension.

2 ADMMass in General Relativity

The goal of this paragraph is to explain how we can define the energy of an isolated
system in General Relativity. We will not be very precise in this section: our goal
is mainly to explain the physical considerations which lead to the definition of the
ADM Mass. For more information on this subject, the reader may refer to [14].

2.1 Modeling Isolated Systems in General Relativity

An isolated system is a physical system contained in a “bounded region”. Obviously,
the notion of “bounded region” should be understood in the sense “bounded in space”
and not in time. The general idea is that the gravitational field induced by the system
decreases as the distance to the system increases and vanishes at infinity.

It is generally considered as natural that the spacetime (M,G) (a 4-Lorentzian
manifold satisfying Eq. 1) is globally hyperbolic, i.e. possesses a Cauchy hypersur-
face M , whichmeans that any inextensible causal curve ofMmeets M exactly once.
ThemanifoldM is then homeomorphic toM × R and the hypersurfacesM × {t} can
be interpreted as “pictures of the universe” at some time t as was proved by Geroch
[9]. Bernal-Sánchez [6] were able to strengthen this result by showing that M is
diffeomorphic to M × R. With this assumption, it is natural to impose that:

• the energy-momentum tensor T is compactly supported in each hypersurface M ×
{t} which means that the system is contained in a bounded region of space;

• the metric g becomes flat at infinity, in a sense to be made precise, which means
that the gravitational field decreases far from the system.

The first assumption is in general too strong. For example it is not satisfied for the
Reissner-Nordström metric. Actually, in all physical applications, we just need to
consider the second assumption: it does not imply the first one but implies that the
energy-momentum tensor T vanishes at infinity. A good way to take into account
these considerations is to assume that the spacetime (M,G) is asymptotically flat:
there exists a coordinate system (t, x, y, z) such that the hypersurfaces t = constant
correspond to Cauchy hypersurfaces and such that in these coordinates we have
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lim
r→∞ |Gab − ηab| = O(r−1)

lim
r→∞ |∂pGab| = O(r−2)

lim
r→∞ |∂pqGab| = O(r−3)

where r2 = x2 + y2 + z2 and η is the Minkowski metric on R4. We should be more
precise on the domain where these coordinates are defined but this will not be crucial
in what follows. Note that the convergence speeds we require in this definition are
chosen to make the gravitational field energy density decay in a sensible way. As
explained above, this assumption can be weakened.

For the problems presented in this text, we will restrict to Cauchy hypersurfaces
and we will omit the possible contributions of the second fundamental forms (which
cannot be neglected in some other contexts).More precisely, wewill consider asymp-
totically flat Cauchy hypersurfaces:

Definition 2.1 A Cauchy hypersurface M of (M,G) is called asymptotically flat if
there exists a compact subset K ⊂ M and a diffeomorphism

η :
∣
∣
∣
∣

M\K → R
3\B

p �→ (x, y, z)

where B is the standard unit ball in R
3, such that for the restriction of the metric G

to T M , which is denoted by g (and which is a Riemannian metric on M), we have

lim
r→∞ |gab − δab| = O(r−1)

lim
r→∞ |∂pgab| = O(r−2)

lim
r→∞ |∂pqgab| = O(r−3)

where again r2 = x2 + y2 + z2 and where δ is the Euclidean metric on R3.

Note that this definition imposes that each Cauchy hypersurface has the topology
ofR3\B outside a ball which is quite restrictive. One can also consider amore general
definition of asymptotically flat Cauchy hypersurfaces with several “asymptotically
flat ends”. Note also that the definition above is intrinsic and does not involve the
metric G which allows to talk about asymptotically flat manifolds of dimension 3.
For themathematical problems studied in this text, it will be convenient not to restrict
to dimension 3 and to weaken the speeds of convergence. This leads to the following
definition:

Definition 2.2 A Riemannian manifold (M, g) of dimension n is called asymptoti-
cally flat of order τ > 0 if there exists a compact subset K ⊂ M and adiffeomorphism

η :
∣
∣
∣
∣

M\K → R
n\B

p �→ (x1, · · · , xn)
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where B is the standard unit ball in Rn , such that in these coordinates we have

lim
r→∞ |gab − δab| = O(r−τ )

lim
r→∞ |∂pgab| = O(r−τ−1)

lim
r→∞ |∂pqgab| = O(r−τ−2)

where again r2 = x21 + · · · + x2n and where δ is the Euclidean metric on Rn .

The speeds of convergence will be chosen the smallest possible to ensure that all
the quantities studied are well defined. It may depend on the situation but the right
assumption for the setting of this paper is to ensure that

τ >
n − 2

2

as we will explain in the next section. The simplest example of such a manifold
isRn equippedwith its canonical Euclideanmetric ξn . Another fundamental example
(but which does not fit in this form to the previous definition since the manifold
has a non-empty boundary) is the Schwarzschild metric which is (R3\B(0, m

2 ), g)

where m > 0, B(0, m
2 ) is the Euclidean ball of radius m

2 centered at 0 and where g is
a metric conformal to the Euclidean metric ξn on R

3 and is defined by

g :=
(

1 + m

2|x |
)4

ξn. (2)

In General Relativity, the Schwarzschild space is a model for a static black hole of
mass m whose horizon coincides with the boundary.

2.2 ADM Mass and Positive Mass Conjecture

We start by giving the

Definition 2.3 Let (M, g) be an asymptotically flat manifold of dimension n ≥ 3,
of order τ > n−2

2 and such that sg ∈ L1(M). The ADM mass of (M, g) is defined by

mADM(M, g) := lim
r→∞

1

4ωn−1

∫

Sr

(∂igi j − ∂ jgi i )ν
j dsξn .

Here the coordinates are given by the definition of asymptotic flatness, ωn−1 is the
volume of the (n − 1)-dimensional unit sphere in R

n with the standard metric, i.e.
with the Riemannian metric induced by the Euclidean metric on Rn , Sr is the sphere
of radius r > 0 in Rn and ν is the outward unit normal vector field on Sr .
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It is known from a result by Bartnik that the conditions τ > n−2
2 and sg ∈ L1(M)

ensure that the limit in the definition ofmADM(M, g) exists and is independent of the
choice of asymptotic coordinates ([5, Theorem 4.2], see also [16, Theorem 9.6]). In
his article Bartnik also quotes results showing that the bound on τ is optimal.

In General Relativity, the ADMmass represents the energy of an isolated system.
In the following paragraphs we will explain the origin of this definition. First we
formulate the

Positive Mass Conjecture: Let (M, g) be an asymptotically flat manifold of dimen-
sion n ≥ 3 and of order τ > n−2

2 .We assume that the scalar curvature is integrable
and non-negative. Then

mADM(M, g) ≥ 0

with equality if and only if (M, g) is isometric to (Rn, ξn).
The assumption of non-negativity of the scalar curvature is the reformulation

in this particular situation of the dominant energy condition, which is a natural
hypothesis in General Relativity preventing information to travel faster than light.
Under this condition, the energy of an isolated system should be non-negative and
it should vanish if and only if the spacetime is empty (i.e. (M,G) = (Rn+1, η)).
This conjecture is actually a theorem in the context of General Relativity, i.e. in
dimension 3: indeed, the conjecture has been proven by Schoen and Yau in [20] if
3 ≤ n ≤ 7. Witten [25] found another proof for spin manifolds of any dimension
greater or equal to 3. Note that every oriented manifold of dimension 3 is spin. The
general statement is still a conjecture.

2.3 The Origin of the ADM Mass

The notion of ADMmass arises naturally in the Hamiltonian formulation of General
Relativity. The basic idea is to assume that the spacetime has the special form M =
M × I where I is a real interval. Solving theEq. (1), i.e. finding ametricG solving (1)
can be done by setting gt := G|M×{t}, t ∈ I , and then studying (gt )t∈I as a dynamical
system. This approach yields some conserved quantities with respect to time t : one
of these, namely the ADM mass, is scalar and hence is interpreted as the energy
of the system under consideration. Its definition is not physical but many physical
reasons indicate that this interpretation is sensible (see the references at the end of
this section).

2.3.1 Lagrangian Formulation of General Relativity

Obtaining a Hamiltonian formulation of a problem is a general principle in physics.
A first step, much easier, is to find a Lagrangian formulation of the problem.
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Lagrangian formulation of a physical problem: Assume for instance that we have
to find a tensor ψ over M satisfying some equation (E). The Lagrangian formulation
of the problem consists in finding a functional, called the action functional, having
the form

L :
∣
∣
∣
∣

T → R

ψ �→ ∫

M L(ψ,∇ψ)dvG
(3)

where T is the space of tensors in which we seek ψ, G is a metric on the domain of
definition of ψ and where L is such that ψ satisfies equation (E) if and only if ψ is
a critical point of L . The function L, called the Lagrangian, can be generally found
by physical considerations. Let us consider for instance the problem of describing
the position x(t) of a particle of mass m in R

3 subject to a potential V . Then its
Lagrangian is given by

L(x, x ′) = 1

2
m(x ′)2 − V (x).

Here, x is a function from an interval [a, b] with values inR3. This choice is natural:
the particle will try to spend the smallest possible amount of energy and hence will
tend to minimize its kinetic energy and maximize the contribution of V .

In the context of General Relativity, the tensor ψ is the metric itself and the
equation (E) is the Einstein equation (1). The Lagrangian formulation of General
Relativity is constructed from the following calculation: let (ga)a be a family of
metrics such that g0 = g and d

da |a=0ga = h. Let � be a relatively compact domain
of M . Then, one can compute that

d

da

∣
∣
∣
a=0

∫

�

sga dvga =
∫

�

hkl E
kl
g dvg +

∫

∂�

K (h)dvg (4)

where Eg := Ricg − 1
2 sgg is the Einstein tensor of the metric g and where K (h) is a

quantity constructed from h and its derivatives. If now h is compactly supported in�,
then the boundary term above vanishes. Hence, g is a solution of the vacuum Einstein
equation (i.e. Einstein equation with T = 0) if and only if g is a critical point of the
functional g′ �→ ∫

M sg′dvg′ defined on the space of all metrics onM with integrable
scalar curvature. This Lagrangian formulation does not have the form (3): indeed,
the volume element depends on the metric g which is the unknown variable. This
could appear as a minor point since Eq. (4) allows to recover General Relativity (in
the vacuum context). However, we recall that the goal here is to obtain a Hamiltonian
formulation of General Relativity for which the exact form (3) is needed in order
to apply the procedure described in Sect. 2.3.2. So the trick consists in fixing any
metric G on M (actually, as explained in Sect. 2.3.2, a suitable choice of G will
simplify the situation) and setting

L(g,∇g,∇2g) = sg

√−det (g)√−det (G)
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and

L(g) =
∫

M
L(g,∇g,∇2g)dvG

which has the desired form (3). Obviously,

L(g) =
∫

M
sgdvg

and formula (4) implies that g is a critical point of L if and only if g is a solution of
the vacuum Einstein equation.

The same procedure could be applied to get a Lagrangian formulation of General
Relativity with a non-vanishing T by a convenient modification of the Lagrangian.

2.3.2 Hamiltonian Formulation of General Relativity

This paragraph is mainly inspired by Wald’s famous book [24]. The goal here is to
explain how, once a Lagrangian formulation for a problem is found, there is a natural
procedure to deduce the Hamiltonian formulation, which consists in constructing
some quantities whose conservation with time is equivalent to the Einstein equation.
We explain it very briefly.

We assume that M is a product M × I , where I is a real interval and M is a
Cauchy hypersurface. Let us denote Mt := M × {t}, t ∈ I . This formulation will
help in considering General Relativity as an evolution problem: instead of seeking g
solution of the Einstein equation on M , we will seek its restriction gt , t ∈ I on Mt as
the solution of a dynamical system described by a suitable Hamiltonian formulation.

Let us now describe the procedure. We recall that our goal here is to present the
general method to build a Hamiltonian formulation from a Lagrangian formulation
but not to describe the explicit computations in the special context of General Rel-
ativity, which would require to be much more precise than in what follows. So the
situation is the following: we want to find a tensor ψ satisfying some equation (E)

on M . We have to keep in mind that in the context of General Relativity, ψ would be
the metric itself while (E) is the Einstein Equation. As above, instead of seeking ψ,
we will describe the evolution of its restriction on Mt . A Hamiltonian formulation
of the problem consists in constructing some quantities whose conservation with
respect to t is equivalent to solving Equation (E).

Weproceed in the followingway:wefirst seek a functional, called theHamiltonian
depending on two tensorial variables π, q of the form

H(π, q) =
∫

Mt

H(π(x), q(x))dvG0

where π, q do depend on t (this dependence is omitted in the notation), whereG0 is a
fixed metric independent of t when considered as a metric on M ≡ Mt and whereH
is a real function called the Hamiltonian density and chosen such that
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q ′ = ∂H

∂π
(π, q) and π′ = −∂H

∂q
(π, q), (5)

where the derivatives are taken with respect to t .
The variables π and q are in fact tensor fields on Mt such that if q is a tensor

of type (k, l) then π is a tensor of type (l, k). This allows to give a meaning to
Formula (5): q ′ and ∂H

∂π
(π, q) are both considered as linear forms on the space of

tensor fields of type (l, k) via the formulas

q ′(η) =
∫

Mt

(q ′) j1··· jli1···ik η
i1···ik
j1··· jl dvG0 (6)

and
∂H

∂π
(π, q)(η) = d

da

∣
∣
∣
a=0

H(π + aη, q).

Such a formulation can be constructed fromaLagrangian formulation of the problem.
Indeed, let us assume that the action functional

L :
∣
∣
∣
∣

T → R

ψ �→ ∫

M L(ψ,∇ψ)dvG

is given where the notation is the same as in the previous paragraph. Here, it is
convenient to assume that the metric G has the form G := G0 − dt2. Note that it is
not a restriction in the context of General Relativity since the metric G is arbitrary.
The expression∇ is not precise in this general context: it means thatL depends on the
derivatives of ψ. When the situation is explicit, these notations should be precisely
specified: in particular, in many situations, a convenient choice is to assume that ∇
denotes the Levi-Civita connection associated to the metric G but it can also denote
the derivatives of ψ with respect to some system of local coordinates. Then for a
fixed ψ ∈ T , we set:

q = ψ|Mt

π = ∂L
∂q ′ .

We then obtain a Hamiltonian formulation of the problem by defining

H(π, q) = πq ′ − L(q, q ′). (7)

This expression needs some explanation: In the definitionL(ψ,∇ψ) above, the deriv-
atives of ψ in tangential directions to Mt can be considered as operators on q while
the derivatives of ψ with respect to t are contained in the variable q ′ and hence L
can be considered as a function of q and q ′ only. Now, we prove:
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Proposition 2.4 The tensor ψ is a critical point of L if and only if Eq. (5) are
satisfied.

Proof First, let us assume that ψ is a critical point of L . Let us set

H(π, q) =
∫

Mt

H(π, q) dvG0 .

Then, recalling the definition (7) of H:

∂H

∂π
=

∫

Mt

q ′ · dvG0

since L is independent of π. From (6), the linear map η �→ ∫

Mt
q ′ηdvG0 is equal to

the quantity q ′ in the Eq. (5). As a consequence,

∂H

∂π
= q ′.

Since ψ is a critical point of L we have for all compactly supported β onM

0 = d

da

∣
∣
∣
a=0

∫

M
L(ψ + aβ,ψ′ + aβ′) dvG

=
∫

M

(∂L
∂q

β + ∂L
∂q ′ β

′
)

dvG

=
∫

M

(∂L
∂q

− d

dt

∂L
∂q ′

)

β dvG .

It follows that
∂L
∂q

= d

dt

∂L
∂q ′ = π′

and thus
∂H

∂q
= −

∫

Mt

∂L
∂q

dvG0 = −
∫

Mt

π′ dvG0 .

Conversely, let us assume that Eq. (5) hold. More exactly let us consider a fam-
ily (ψa)a∈(−ε,ε) such that δψa is compactly supported in ]t1, t2[×M , where δ means
d
da |a=0. Let us denote by πa and qa the associated quantities. We assume that π0

and q0 satisfy (5). Then we set

J (ψa) =
∫ t2

t1

∫

Mt

H(πa, qa) dvG0 dt =
∫ t2

t1

∫

Mt

(πaq
′
a − L(qa, q

′
a)) dvG0 dt.

Since δL(qa, q ′
a) is compactly supported in ]t1, t2[×M it follows that
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δJ (ψa) =
∫ t2

t1

∫

Mt

(πaδq
′
a + (δπa)q

′
a) dvG0 dt − δL(qa, q

′
a).

Integrating by parts and using Eq. (5), it follows that:

δJ (ψa) =
∫ t2

t1

∫

Mt

(−π′
aδqa + (δπa)q

′
a) dvG0 dt − δL(qa, q

′
a)

=
∫ t2

t1

∫

Mt

δ(H(πa, qa)) dvG0 dt − δL(qa, q
′
a).

Let us notice that the first term on the right is exactly equal to δJ (ψa). We then get
δL(qa, q ′

a) = 0 which proves that ψ0 is a critical point of L . This ends the proof of
Proposition 2.4. �

In the particular context of General Relativity, the Eq. (5) are complicated: we do
not write them here but they can be computed explicitly (see e.g. [24, p. 465]).

Remark 2.5 The construction of the Hamiltonian formulation of a problem provides
in a natural way some conserved quantities: the ADM mass introduced in the next
paragraph is an example of this fact.

2.3.3 ADM Mass of an Isolated System

We are now ready to define the ADM mass of an isolated system. Again we assume
that M = M × I where I is a real interval and where for all t , Mt := M × {t} is a
Cauchy hypersurface. As explained in Sect. 2.1, we also make the assumption that
each Mt is an asymptotically flat Riemannian manifold of dimension 3.

Let us consider a domain outside the system i.e. a domain where the energy
momentum tensor T vanishes. Following the last paragraph, one can construct the
Hamiltonian H as well as the quantities π and q so that Eq. (5) hold. Choose a
family of metrics (ga) satisfying g0 = g and whose variation at a = 0 is compactly
supported. Let us denote the corresponding quantities by qa and πa . Equations (5)
tell us that

δH(ga) = ∂H

∂π
δπa + ∂H

∂q
δqa = q ′

aδπa − π′
aδqa .

In the computation of the Hamiltonian should appear some boundary terms which
actually turn out to vanish when integratingH on Mt since their support is compact.
Nowwe assume that the family (ga) describes somemetrics on each slice: we denote
it by (gt ) instead of (ga) to indicate that gt is a metric on Mt . To fit the model we
constructed for an isolated system where each Mt is asymptotically flat, there is no
reason to assume that its first variation at t = 0 is compactly supported. But we may
assume that it has the property to preserve the asymptotic flatness. For this type of
variations, the boundary terms no longer vanish. A (quite long) computation (see
[24, p. 469] and the reference given there) leads to
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δH(gt ) = q ′
tδπt − π′

tδqt − δCt

where, in the coordinates (x1, x2, x3) given by the asymptotic flatness of Mt ,

Ct = lim
R→∞

∫

SR

(∂i (gt )i j − ∂ j (gt )i i )ν
j dsξn .

Here SR denotes the sphere SR = {(x1, x2, x3)|r = R} and ν is the outward unit
normal on SR . Furthermore dsξn is the volume element induced by the Euclidean
metric ξn := (dx1)2 + (dx2)2 + (dx3)2 on SR .

This indicates that we should construct a new Hamiltonian H̃ by setting

H̃ = H + Ct

which is not of the form
∫

Mt
Hdvg but this turns out not to be a problem. This choice

allows the following formula to be true:

δ H̃(gt ) = q ′
tδπt − π′

tδqt

even for this type of variations and leads again to Eq. (5). Unfortunately, until now,
we have neglected the matter, i.e. we are only allowed to consider variations which
are supported in the domain where T vanishes. To take into account this problem,
we should modify the Hamiltonian density H where T does not vanish. Finally, we
will work with the Hamiltonian

H =
∫

Mt

Hdvg + Ct

where H is the new Hamiltonian density which allows all variations preserving the
asymptotic flatness.

We are now able to show:

Proposition 2.6 Let G be an asymptotically flat metric on M = M × I , solution of
Einstein’s equation (1) in presence of an isolated system, then t �→ Ct is a constant
function.

Proof We first compute d
dt H(gt ). Note that this variation preserves asymptotic flat-

ness. Let us fix t0 ∈ I . From Eq. (5):

d

dt

∣
∣
∣
t=t0

H(gt ) = ∂H

∂π
π′ + ∂H

∂q
q ′ = q ′π′ − π′q ′ = 0. (8)

We also have
d

dt

∣
∣
∣
t=t0

H(gt ) = d

ds

∣
∣
∣
s=0

H(gt0 + sg′
t0).
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We write g′
t0 = hr + h′

r , where hr = ηg′
t0 , h

′
r = (1 − η)g′

t0 , η ∈ [0, 1] being a cut-off
function equal to 1 on Mt0\B2r and vanishing on Br where Br is a ball with large
radius r . By linearity of the differential,

d

dt

∣
∣
∣
t=t0

H(gt ) = d

ds

∣
∣
∣
s=0

H(gt0 + shr ) + d

ds

∣
∣
∣
s=0

H(gt0 + sh′
r ).

Let us recall that

H =
∫

Mt

HdvG + Ct .

One checks that

lim
r→∞

d

ds

∣
∣
∣
s=0

H(gt0 + shr ) = d

dt

∣
∣
∣
t=t0

Ct + o(1)

where o(1) tends to 0 as r tends to +∞. This comes from the fact that matter is
almost entirely supported outside the support of hr and hence, only the boundary
term remains when r tends to +∞. Since h′

r is compactly supported,

lim
r→∞

d

ds

∣
∣
∣
s=0

H(gt0 + sh′
r ) = 0.

This last equality is obtained in the same way as (8). Finally, with (8),

d

dt

∣
∣
∣
t=t0

Ct = 0

which ends the proof of Proposition 2.6. �

This proposition shows that Ct or at least a multiple of it is a good candidate to be
the energy of the system, or at least a multiple of it, but there exist other reasons: for
instance, its value coincides with the Komar mass which is a physical definition of
the energy in the stationary case (see for instance [15] for the definition of the Komar
mass and [3] for its comparison with the ADM mass). This explains the definition
of the ADM mass. The constant 1

4ωn−1
in Definition 2.3 is a normalization constant

which makes the ADM mass coincide with the energy of some particular isolated
systems for which the exact energy is known: in particular, a static black hole of
massm modeled by the Schwarzschild metric (2) has ADMmass exactly equal tom.

3 The Mass of a Closed Manifold

In this section, we introduce the mass of a closed manifold and make the link with
the last section.
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3.1 Yamabe Operator and Yamabe Problem

Let (M, g) be a closed Riemannian manifold of dimension n ≥ 3. The operator

Lg = 4(n − 1)

n − 2
�g + sg

is called the conformal Laplace operator or Yamabe operator for the metric g.
Here �g denotes the Laplace operator with non-negative eigenvalues and sg is
the scalar curvature for the metric g. If ϕ is a smooth positive function on M and
h := ϕ4/(n−2)g is a metric on M which is conformal to g, then for all u ∈ C∞(M)

we have
Lh(ϕ

−1u) = ϕ−(n+2)/(n−2)Lg(u) (9)

(see e.g. [16], p. 43). This equation is interesting inmany aspects. First of all, choosing
u = ϕ and noticing that Lh(1) = sh , we obtain

Lg(ϕ) = shϕ
(n+2)/(n−2). (10)

In particular, any positive solution ϕ of the Yamabe equation

Lg(ϕ) = μϕ(n+2)/(n−2) (11)

provides a metric h := ϕ4/(n−2)g conformal to g with constant scalar curvature μ.
This problem - finding a metric with constant scalar curvature in a given conformal
class - is known as the Yamabe problem and was an open challenging problem for
more than twenty years. It was solved by the works of Yamabe [26], Trudinger [23],
Aubin [4] and Schoen [18]. Let us describe briefly the most famous method for
solving this problem: it suffices to find a minimizer ϕ of the Yamabe functional

Yg(u) =
∫

M uLgudvg

‖u‖2
L

2n
n−2

.

Indeed, any such minimizer is a solution of the Euler equation associated to Yg which
is exactly Eq. (11) with

μ = Yg(ϕ)‖ϕ‖− 4
n−2

L
2n
n−2

.

Standard elliptic theory finally implies that u is smooth and positive. So the problem
reduces to finding a minimizer u of Yg . Aubin [4] showed in 1976 that this is always
possible if

μ(M, g) < μ(Sn,σn) (12)

where μ is a conformal invariant called the Yamabe invariant and defined by
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μ(M, g) = inf{Yg(u)| u ∈ C∞(M), u �≡ 0}

and where (Sn,σn) denotes the n-dimensional unit sphere with the standard metric.
Solving the Yamabe problem is now reduced to showing Inequality (12) except
when (M, g) is conformally equivalent to the sphere with the standard metric where
of course this inequality is an equality. In this special case, the Yamabe problem
becomes trivial since the conformal class contains the standard metric of the sphere
which has constant scalar curvature. Many cases were solved by Aubin but the case
where both conditions

• n ∈ {3, 4, 5} or (M, g) is locally conformally flat
• Lg has only positive eigenvalues

hold was much more difficult. This case was solved by Schoen in 1984 using the
Positive Mass Theorem as explained in the next paragraph.

The condition that Lg has only positive eigenvalues is actually equivalent to each
of the following conditions:

• The operator Lg : C∞(M) → C∞(M) is positive and invertible.
• There exists a metric h in the conformal class of g with positive scalar curvature.

3.2 Positive Mass Conjecture for Closed Manifolds

Let us start by defining the Green function for Lg . We keep the same notation as in
the previous paragraphs.

Definition 3.1 Let p ∈ M . We say that G ∈ C∞(M\{p}) ∩ L1
loc(M) is a Green

function for Lg at p if in the sense of distributions, LgG = δp where δp is the
Dirac distribution at p. This means that for any u ∈ C∞

c (M),

∫

M
GLgudvg = u(p).

Note that, in the sense of smooth functions,

LgG = 0 (13)

on M\{p}.
Example 3.2 ConsiderRn with the Euclidean metric ξn and let r denote the function
which gives the distance to 0. Then 1

4(n−1)ωn−1rn−2 is a (actually unique up to a constant)

Green function for Lξn = 4(n−1)
n−2 �ξn at 0.

The following proposition is a crucial result
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Proposition 3.3 Assume that M is closed and that Lg has only positive eigenvalues.
Then the following holds.

1. At every point p ∈ M there exists a unique Green function G for Lg. Moreover G
is strictly positive on M \ {p}.

2. Let p ∈ M and assume that there exists an open neighborhood U of p such that g
is flat on U. Then the function G has the following expansion as x → p

G(x) = 1

4(n − 1)ωn−1rn−2
+ A + o(1),

where r := dg(p, ·) is the distance function to p,ωn−1 is the volume of the (n − 1)-
dimensional unit sphere with the standard metric and A is a real number called
the mass of (M, g) at p.

Proof 1. The proof is classical and we omit it here.
2. Let η be a smooth function onM such that η ≡ 1

4(n−1)ωn−1
on B(p, δ) and supp(η) ⊂

U . The function Fη: M → R defined by

Fη(x) =
{

�g(ηr2−n)(x), x �= p
0, x = p

is smooth on M . Since Lg has only positive eigenvalues, Lg is invertible on C∞(M).
Let v := L−1

g (Fη). The function G := ηr2−n − v is smooth on M\{p}, is in L1(M)

and satisfies LgG = 0 on M\{p}. Moreover, near p we have

G(x) = 1

4(n − 1)ωn−1rn−2
− v(x)

and Lgv = 4(n−1)
n−2 �gv = 0. Since there is an open neighborhood of p in M which is

flat and thus isometric to a neighborhood of 0 inRn and since the Green function for
4(n−1)
n−2 �ξn on R

n at 0 is 1
4(n−1)ωn−1rn−2 , we get that Lgv = δp and thus G is a Green

function for Lg . This proves the existence.
If now G and G ′ are Green functions for Lg then Lg(G − G ′) = 0 in the sense

of distributions. By standard regularity theorems, G − G ′ is smooth and hence, by
invertibility of Lg we obtain G = G ′. �

We come back to the Yamabe problem. Schoen used the Green function at some
point p to construct a family of test functions (uε)ε>0 such that as ε → 0

Yg(uε) = μ(Sn,σn) − cn Aε2 + o(ε2)

where cn is an explicit positive constant depending only on n and A is the real number
appearing in the expansion of G at p given by the last proposition. Hence proving
Inequality (12) and thus solving the Yamabe problem reduces to proving that A > 0.
Now it was Schoen’s very interesting observation that by setting M ′ := M\{p},
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g′ := G
4

n−2 g one obtains an asymptotically flat manifold (M ′, g′) with vanishing
scalar curvature (compare 10 and 13) whose ADM-mass is exactly A up to a positive
multiplicative constant. Since for 3 ≤ n ≤ 7 the Positive Mass Conjecture had been
proved by Schoen and Yau [20], Schoen was able to show that for n ∈ {3, 4, 5} we
have A ≥ 0 with equality if and only if (M ′, g′) is isometric to (Rn, ξn). The latter
condition is equivalent to the condition that (M, g) is conformally diffeomorphic
to (Sn,σn).Moreover for locally conformallyflatmanifolds of anydimensionSchoen
andYauwere able to showananalogous resultwithout using aPositiveMassTheorem
for asymptotically flat manifolds [22]. This concluded the solution of the Yamabe
problem.

This explains why the number A denoted from now on bym(M, g), orm(g)when
there is no ambiguity on M , is called the mass of (M, g) at p. So the expansion of G
at p now reads

G(x) = 1

4(n − 1)ωn−1rn−2
+ m(g) + o(1).

Sincem(g) is exactly equal to an ADM-mass, it is natural to state a Positive Mass
Conjecture for closed manifolds:

Conjecture 3.4 (Positive Mass Conjecture for closed manifolds) Let (M, g) be a
closed Riemannian manifold of dimension n ≥ 3.

(1) Assume that g is flat on an open neighborhood of a point p ∈ M and that Lg

has only positive eigenvalues. Then the mass m(M, g) at p is non-negative.
(2) If there exist a point p ∈ M and a metric g on M which is flat on an open

neighborhood of p such that Lg has only positive eigenvalues and the mass
m(M, g) at p is zero, then (M, g) is conformally diffeomorphic to (Sn,σn).

As was mentioned above this conjecture is a theorem if (M, g) is locally confor-
mally flat by thework of Schoen andYau [22].Moreover by considering the blown-up
manifold (M \ {p},G 4

n−2 g) one has a proof of Conjecture 3.4 whenever the Posi-
tive Mass Theorem for asymptotically flat manifolds is available. This includes for
example the cases where 3 ≤ n ≤ 7 by the work of Schoen-Yau [20] or where M is
a spin manifold by Witten’s result [25]. Note that simple proofs of the Positive Mass
Theorem for spin manifolds can also be found in [1] or [11].

At a first glance itwould seem that thePositiveMassConjecture for asymptotically
flat manifolds is stronger than Conjecture 3.4 since not every asymptotically flat
manifold can be obtained by blowing up a closed Riemannian manifold at a point.
In addition, the assumption in Conjecture 3.4 that the metric is flat on an open
neighborhood of a point is very strong. However it turns out that both conjectures
are in fact equivalent, as we will prove in the next section. For this reason it is not
restrictive to consider the mass of a closed Riemannian manifold at a point p only
for metrics which are flat on an open neighborhood of p.
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4 Equivalence of the Two Positive Mass Conjectures

In this paragraph, we prove

Proposition 4.1 The Positive Mass Conjecture for closed manifolds is equivalent to
the Positive Mass Conjecture for asymptotically flat manifolds.

This result is well known: it is essentially contained in the work of Schoen,
Lohkamp or Lee-Parker. However, it is quite difficult to find it in the literature stated
as above and proven with all details. This is what we do here.

Proof It remains to show that under the assumption that Conjecture 3.4 is true the
Positive Mass Conjecture for asymptotically flat manifolds follows. Assume that
there exists an asymptotically flat Riemannian manifold (M, g) of order τ > n−2

2
with sg ≥ 0 and sg ∈ L1(M) and such that mADM(M, g) is negative. For example by
Proposition 4.1 in [19] or Sect. 5 in [17] there exists a Riemannian metric g̃ on M
and there exists a smooth positive function u on M such that the following holds:

(a) There exists a compact subset K ⊂ M such that g̃ is flat on M \ K ,
(b) L g̃u = 0 and u → 1 as |x | → ∞, in particular su4/(n−2)g̃ = 0 on M ,
(c) (M, u4/(n−2)g̃) is asymptotically flat and mADM(M, u4/(n−2)g̃) < 0.

Let p be a formal point and denote byM := M � {p} the one-point-compactification
of M with the usual topology. Then M has the structure of a smooth manifold and
by (a) there exists a smooth positive function ϕ on M such that the Riemannian
metric ϕ4/(n−2)g̃ on M extends to a metric h on M . Moreover we can choose ϕ in
such a way that (M, h) is flat on an open neighborhood of p and such that

ϕ(x) ∼ (1 + |x |2)(2−n)/2 as |x | → ∞.

Then there exists a positive constant C such that for the Riemannian distance
on (M, h) we have

dh(x, p) ∼ C |x |−1 as |x | → ∞.

Since u → 1 as |x | → ∞ we conclude that

u(x)

ϕ(x)
∼ (1 + |x |2)(n−2)/2 ∼ |x |n−2 ∼ Cn−2dh(x, p)

2−n as |x | → ∞. (14)

Moreover by the conformal transformation law (9) of L g̃ and by (b) we obtain

Lh(ϕ
−1u) = ϕ−(n+2)/(n−2)L g̃u = 0 (15)

on M ⊂ M . From (14) and (15) we conclude that there exists a positive constant C
such that

Lh(ϕ
−1u) = Cδp (16)
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in the sense of distributions, where δp is the Dirac distribution at p. By (14) it is clear
that ϕ−1u is integrable on (M, h).

We now prove that all eigenvalues of Lh are positive. Let λ be the first eigenvalue
of Lh and let w be a corresponding eigenfunction. It is a classical result that w does
not change its sign, so we may assume that w is strictly positive on M . From (16)
we obtain

λ

∫

M
ϕ−1uw dvh =

∫

M
ϕ−1uLhw dvh = Cw(p) > 0.

Since the integral on the left hand side is positive we conclude that λ > 0.
Thus all eigenvalues of Lh are positive and ϕ−1u is a positive multiple of the

Green function of Lh at p. It follows that (M, u4/(n−2)g̃) is up to a constant rescaling
the blow-up of (M, h) at p by the Green function of Lh and thus by Schoen’s
result [18] the mass m(M, h) at p is a positive multiple of mADM(M, u4/(n−2)g̃).
By (c) we conclude that m(M, h) is negative which contradicts the assertion (1) of
Conjecture 3.4. We conclude that the ADM mass of an asymptotically flat manifold
satisfying the assumptions of the Positive Mass Conjecture is always non-negative.
The equality case of the Positive Mass Conjecture for asymptotically flat manifolds
can now be proven exactly as in the proof of Lemma 10.7 in the article [16]. Namely
assuming thatmADM(M, g) = 0 one first shows that (M, g) is Ricci flat and then uses
the Bochner formula for 1-forms. This proof uses the non-negativity ofmADM(M, g)

but it doesn’t require any further restrictions on (M, g). �

5 Some Recent Results on the Positive Mass Conjecture

In this section, we present some results we recently obtained on the Positive Mass
Conjecture. We start by defining:

Definition 5.1 We say that a closed manifold M of dimension n ≥ 3 satisfies PMT
(for “Positive Mass Theorem”) if for every Riemannian metric g on M such that Lg

is a positive operator and for every point p ∈ M such that g is flat on an open
neighborhood of p we have m(M, g) ≥ 0 at p.

With this definition, proving the Positive Mass Conjecture is thus equivalent to
proving that each closed manifold of dimension n satisfies PMT. In the following all
simply-connected manifolds are understood to be connected. We are now ready to
state

Theorem 5.2 ([11]) Assume that there exists a closed simply-connected non-spin
manifold of dimension n ≥ 5 satisfying PMT. Then every closed manifold of dimen-
sion n satisfies PMT.
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This theorem reduces thePositiveMassConjecture tofinding for each dimensionn
greater or equal to 8 (since the conjecture is already proven for 3 ≤ n ≤ 7 by Schoen
and Yau [20]) a closed manifold M satisfying PMT and which is

(1) non spin,
(2) simply connected.

The condition that M is spin only depends on the topology of M . Namely M is spin
if and only if its second Stiefel-Whitney class vanishes. This can also be interpreted
as a kind of orientability condition of order 2. Indeed a manifold is oriented if the
normal bundle of any embedded closed curve (and thus any 1-sphere) is trivial. This
should be compared with: a simply-connected manifold is spin if the normal bundle
of any embedded 2-sphere is trivial.

A first glance to the statement of Theorem5.2 leads to two natural questions:

(1) Does the Theorem apply if we find a manifold M which is simply connected,
not spin, and which does not possess any metric g such that Lg has only positive
eigenvalues?

(2) Is it possible to find even one example of manifold satisfying PMT?

The first question is far from being naive: one easily shows that a closed manifold M
possesses a metric such that Lg is positive if and only if it possesses a metric with
positive scalar curvature but the classification of such manifolds, despite the fact
that it has attracted many interests, is still an open question. Nevertheless, a result of
Schoen-Yau [21] and Gromov-Lawson [10] shows that the property of possessing a
metric of positive scalar curvature is preserved by surgery of dimension k ≤ n − 3
(see the next paragraph) with the striking consequence that any closed non-spin sim-
ply connected manifold of dimension n ≥ 5 possesses such a metric.

For the second question, the answer is yes. More precisely, it is easy to find in
any dimension a manifold which satisfies PMT and which is non spin or simply
connected but of course the question of finding even one manifold satisfying PMT
and both conditions is much more difficult. Let us make it precise:

• The sphere Sn is simply connected, spin and satisfies PMT. The latter follows since
the Positive Mass Conjecture is true for spin manifolds.

• Let M = RPk × Sm with k = 1 mod 4. Then M is non-spin due to the restriction
on k and satisfies PMT, but it is not simply connected.

The fact that such M satisfies PMT comes from the following proposition using
arguments which can be found in [22]. Since the proof is instructive, we give it here.

Proposition 5.3 Let M be a closed manifold of dimension n ≥ 3 satisfying PMT.
Then every finite quotient of M satisfies PMT.

Proof Let N be a finite quotient of M and let π: M → N be the quotient map. Let h
be a Riemannianmetric on N which is flat on an open neighborhood of a point p ∈ N
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and such that Lh is a positive operator. Let g be the Riemannian metric on M such
that π is a Riemannian covering. Since the first eigenvalue λ0 of Lg is simple and
the corresponding eigenfunctions do not change their sign, λ0 is also an eigenvalue
of Lh . It follows that Lg is a positive operator. Now if wewrite π−1(p) = {p1, ..., pk}
and if G1, ...,Gk denote the Green functions for Lg at p1, ..., pk respectively, then
for the Green function G of Lh at p we have G ◦ π = ∑k

j=1 G j . In particular if
mp1(M, g) denotes the mass of (M, g) at p1, then for the mass of Lh at p we have
m(N , h) = mp1(M, g) + ∑k

j=2 G j (p1) ≥ 0. �

6 An Idea of the Proof of Theorem5.2

We now sketch the proof of Theorem5.2 given in [11]. It is based on surgery argu-
ments.

6.1 Proofs by Surgery

Let us describe briefly what a proof by surgery is. First, surgery is a procedure
to construct a new manifold from a given manifold M . As an example, “adding a
handle” as in the figure below is a surgery (a more precise definition will be given
in the following paragraphs).

old manifold M new manifold M ′

To give an example, assume that we want to prove that any oriented surface M
possesses some property P , then, it suffices to

(1) prove it for the sphere S2;
(2) prove that the property P is preserved by adding a handle.

Indeed, the first assumption says that P holds on the surfaces of genus 0 while the
second one ensures that if P holds on surfaces of genus g ∈ N, then P holds on
surfaces of genus g + 1. Then we finish the proof by induction on the genus.

This type of proof can be carried over to dimension greater or equal to 3, but two
things essentially are different:
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• some generalizations of “adding a handle” have to be considered: they are called
surgeries and will be defined in the next paragraph.

• Any oriented surface of genus g is obtained by g surgeries from the sphere. In
dimension greater or equal to 3, this is no longer true but the cobordism theory we
will not define here allows to obtain any manifold by a finite number of surgeries
from some particular manifolds on which some properties are known.

So again, if a property P is preserved by surgery, some important conclusions can
be obtained. An example is the result of Schoen-Yau and Gromov-Lawson described
in the last paragraph: they prove that the property

P : possesses a metric with positive scalar curvature

is preserved by surgeries of dimensions k ≤ n − 3. As a conclusion, they obtain that
any non-spin simply connected manifold M of dimension n ≥ 5 possesses such a
metric. The proof for this corollary runs exactly as described above: the assumptions
allow to say that M can be obtained by a finite number of surgeries of dimension
k ≤ n − 3 from a manifold which possesses the property P .

6.2 Surgery

Let M be a manifold of dimension n, let k ∈ {0, ..., n − 1} and assume that there
exists an embedding

Sk × B
n−k

↪→ M

where Sk is the sphere of dimension k and Bn−k is the open unit ball of dimension
n − k. In the following we will not distinguish Sk × Bn−k and its image under the
embedding. Then the manifold

M\(Sk × Bn−k)

has boundary Sk × Sn−k−1. Observe that the manifold B
k+1 × Sn−k−1 has the same

boundary Sk × Sn−k−1.This allows us to glue these twomanifolds along their bound-
aries to obtain a new manifold M ′. It is not obvious but true that a differentiable
structure can be constructed on M ′ around the gluing part in a canonical way.

Definition 6.1 We say that M ′ is obtained from M by surgery of dimension k.

Examples:
• If k = 0, since S0 = {±1}, then Sk × Bn−k is two copies of an n-dimensional

ball. Then, to obtain M ′, we first remove two balls and then glue along the boundary

B
1 × Sn−1 = [−1, 1] × Sn−1
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which is a cylinder of section Sn−1. This corresponds exactly to what we called
“adding a handle” in the last paragraph.

Note that if M1, M2 are two manifolds, the connected sum M1#M2 is obtained
from the disjoint union M1 ∪ M2 by surgery of dimension 0. We just consider the
embedding

S0 × B
n

↪→ M1 ∪ M2

by taking one ball ({+1} × Bn) in M1 and the other one ({−1}} × Bn) in M2.
• If k = n − 1, then Sn−1 × B1 is removed from M and replaced by two balls. In

other words, a surgery of dimension n − 1 consists in “removing a handle”. More
generally, a surgery of dimension k is canceled by a surgery of dimension n − 1 − k.

Remark 6.2 It is useful to recall that the subset which we remove while performing
surgery (i.e. Sk × Bn−k) is in fact a tubular neighborhood of Sk in M . Also, notice
that any embedding

Sk × B
n−k

↪→ M

provides an embedding

Sk × B
n−k

(a) ↪→ M

for all small a > 0where Bn−k(a) is the open ball of radius a inRn−k . Again, one can
apply the same procedure: we get a new manifold by removing Sk × Bn−k(a) from

M and gluing B
k+1 × Sn−k−1 along the boundaries (since the manifolds M\(Sk ×

Bn−k) and M\(Sk × Bn−k(a)) have the same boundaries). It is obvious that the new
manifold M ′

a obtained in this way is diffeomorphic to the original surgery manifold
M ′ but removing a smaller and smaller neighborhood of Sk will be important for
what follows.

Remark 6.3 In many results presented in this paper, the property of being spin or
not plays a crucial role. We do not give here the exact reason, but just try to give
a feeling of why this is important for surgery techniques: as explained above, for a
simply connected manifold, being spin is equivalent to the fact that each embedded
2-sphere has a trivial normal bundle. This means that every 2-sphere in M admits
a tubular neighborhood diffeomorphic to S2 × Bn−2 and can be used as a surgery
sphere. Note that this seems to go in the wrong direction compared to the statement
of Theorem5.2 since it could appear that being spin helps while being non-spin does
not help. It is actually the property of being non-spin which helps: the reason is that
forming a connected sum of two 2-spheres with non trivial normal bundles gives a
2-sphere with a trivial normal bundle which allows to perform surgeries.
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7 Preservation of Mass by Surgery

As explained before, Schoen-Yau and Gromov-Lawson proved that the property of
admitting a metric with positive Lg (or equivalently, with positive scalar curvature)
is preserved by surgery of dimension less or equal to n − 3 with the consequence
that any non-spin closed simply connected manifold admits such a metric. Actually,
we need a more precise statement. Let (M, g) be a closed manifold such that Lg is
a positive operator and perform now a surgery by removing a smaller and smaller
neighborhood of some embedded Sk as explained in Remark6.2. Then, the surgery
manifold M ′ = M ′

a is equal to

M ′ = (M\(Sk × Bn−k(a)) ∪ (B
k+1 × Sn−k−1))/#

where # indicates that we glue the boundaries. Therefore, we may consider metrics
g(a) on M ′ which are equal to g on M\(Sk × Bn−k(a)) and glued to some suitable

metric h(a) on B
k+1 × Sn−k−1. We are now in a position to give a more precise

statement of Schoen-Yau and Gromov-Lawson’s result:

Theorem 7.1 ([10, 21]) With this notation, there exists a sequence of metrics g(a)

such that for a small enough, Lg(a) is a positive operator.

Actually, this theorem has been also proven by Ammann-Dahl and the second
author in [2] with another sequence of metrics g(a) to improve the consequences we
can get from this result. We will not describe these consequences here but from now
on, the metrics g(a) will refer to the metrics introduced in [2].

Now, assume that p is a fixed point outside the surgery sphere and hence in
M\(Sk × Bn−k(a)) when a is small enough and assume also that the metric g is flat
around p. Then, the mass m(M ′, g(a)) is well defined. The natural question is then:
can we compare the mass m(M ′, g(a)) with the mass m(M, g)? The answer is yes:

Theorem 7.2 ([11])We have:

m(M ′, g(a)) −→ m(M, g)

as a goes to 0.

In particular, if m(M, g) > 0 then the mass m(M ′, g(a)) > 0 for small a. It is
natural to first think of this obvious application but much more interesting is the
following: if m(M, g) < 0 then the mass m(M ′, g(a)) < 0 for small a. Indeed, it
proves that if there exists a metric on M with negative mass preventing M from
satisfying PMT, then the same holds on M ′. This can be summarized in the following
corollary:
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Corollary 7.3 Consider for a closed manifold M the property

P : does not satisfy PMT.

Then, the property P is preserved by surgery of dimension less or equal to n − 3.

p

g flat around p gluing of h(a) and g

suitable metrics h(a)
on the handle

metric g

the metrics g(a) on M ′

Then, together with some tricks using cobordism theory, we obtained Theorem5.2.
Corollary7.3 could also be obtained by working on an asymptotically flat manifold.
However the above formulation says more: it describes precisely the behavior of the
Green function of Lg(a) as a tends to 0.
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On Local Characterization Results
in Geometry and Gravitation

Marc Mars

Abstract An important problem in differential geometry and in gravitation is to
identify metrics in a fully coordinate independent manner. In fact, the very founda-
tion of Riemannian geometry is based on the existence of a tensor, the Riemann or
curvature tensor, which vanishes if and only if the metric is locally flat. Many other
such local characterizations of metrics are known. The aim of this article is to present
a brief selection of them as an example of the fruitful interplay between differential
geometry and gravity.

1 Introduction

Albert Einstein’s great insight was that the gravitational interaction was a manifes-
tation of the curvature of spacetime. With this radically new point of view, Einstein
gave physical reality to non-euclidean geometries, introduced inBernhardRiemann’s
inaugural lecture “Über die Hypothesen, welche der Geometrie zu Grunde liegen”
in 1854 [47], about sixty years before Einstein’s theory of general relativity was
founded. It is most remarkable that Riemann himself, in the last paragraphs of his
dissertation, had already realized that the grounds for the metric relations in physical
space had to come from binding forces that act upon it, in a view that was already
radically different from Newton’s conception of space and time as a fixed and invari-
able entity completely unaffected by physical processes occurring within it. Building
on Riemann’s mathematical ideas, Einstein could transform his outstanding physi-
cal intuition into one of the most elegant physical theories of all times. One of the
fundamental consequences of this theory is that differential geometry is not only a
fundamental branch of mathematics but also a basic tool for doing physics, and the
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interplay between these two aspects has given a tremendous boost to this scientific
discipline.

One of the basic questions that differential geometry has to address is: when
are two Riemannian manifolds1 isometric? Obviously this is also a fundamental
question in general relativity, as it addresses the question: when two spacetimes are
physically equivalent? This question can be stated, and it is relevant, also at the local
level: When are two Riemannian manifolds locally isometric? In fact, answering
this question in the case of Euclidean space led Riemann to the introduction of his
curvature tensor and to the statement that the vanishing of the curvature at every
point is the necessary and sufficient condition for the metric being (locally) flat. The
vanishing of the Riemann curvature tensor as a local characterization of Euclidean
space is one of the most fundamental results in Riemannian geometry. A natural
question is whether similar local characterizations for other geometries also exist.
A satisfactory local characterization of a geometry is a very useful tool both in
geometry and in general relativity (or any other geometric theory of gravitation).
Many results along those lines are known, some coming from pure geometry and
some from gravitational theory. The purpose of this chapter is to review a selection
of such characterizations as an example of the fruitful interplay between differential
geometry and gravity. It must be emphasized that I have no intention of presenting a
comprehensive review of known results in this area of research. This would require
much more space and a more knowledgeable author. The selection is based solely on
my own taste, so many interesting local characterizations will be left out, for which
I apologize in advance.

2 Classical Characterizations

Local characterizations involve the notion of local isometry, in the following standard
sense. Two Riemannian manifolds (M1, g1) and (M2, g2) are locally isometric if
given any point p ∈ M1, there exist a connected, open neighbourhood Up of p and
a smooth map �p : (Up, g1|Up ) −→ (M2, g2) which is an isometry onto its image.
Often it is necessary to extend this definition to a situation when (M2, g2) is not a
single space but belongs to a class {(Ma

2 , g
a
2 )}. In this case, the target of the local

isometry �p is allowed to depend on p. All manifolds considered here are finite
dimensional, smooth, Hausdorff and connected.

As already mentioned, the most important local characterization of a geometry is
that of Euclidean space or, more generally, of flat space of signature (p, q),Mp,q :=
(Rp+q , η(p,q) = −∑p

i=1(dx
i )2 + ∑p+q

i=p+1(dx
i )2). Depending on the point of view,

the Riemann tensor can be defined in several ways. The modern approach is to define
the curvature operator as

1My convention here is that a Riemannian metric is not necessarily positive definite, but can have
any non-degenerate signature. The term strictly Riemannian is reserved for the positive definite
case.
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Curvg(X,Y )Z = (∇X∇Y − ∇Y∇X − ∇[X,Y ]
)
Z , X,Y, Z ∈ X(M)

where ∇ is the metric-compatible, torsion-free connection associated to g

Riemg(W, Z , X,Y ) = 〈W,Curvg(X,Y )Z〉, W, X,Y, Z ∈ X(M)

where 〈 , 〉 denotes scalar product with g. In terms of this tensor Riemann’s charac-
terization of flat space is

Theorem 2.1 (Local characterization of flat space, Riemann [47]) A Riemannian
manifold (M, g) is locally isometric to the flat space with the same dimension and
signature if and only if Riemg = 0.

Being intended to all faculty members, Riemann’s lecture contains hardly any
formula (see Chap.4 in Spivak’s comprehensive treatise [73] for a detailed exposition
of Riemann’s lecture) so no detailed proof of this claim is given there. Not even an
explicit form of the Riemann tensor in a general coordinate system appears there.
Following Spivak [73], such an explicit expression, and a proof of the fact that
its non-vanishing is an obstruction for a metric being locally flat, appeared first in
an unpublished paper, known as the Commentatio, submitted in 1861 to the Paris
Academyandwhich appeared in the second edition of the collectedworks ofRiemann
[62]. However, as emphasized in [26] (see also [34]), this unpublished paper was
primarily concerned with a problem of heat conduction proposed by the Academy
in 1858, so its primary concern was not in Geometry, and it is debatable whether our
modern understanding of the field might be biasing the interpretation of its results
(see the interesting discussion on this Commentatio in [34] and references therein).
In any case, an explicit expression of what we now know as the Riemann tensor
appeared for the first time in this unpublished paper by Riemann. The first explicit
proof that the vanishing of this tensor is sufficient for a metric being (locally) flat
was given by Elwin Bruno Christoffel [17]. The proof of Theorem2.1 is so central in
differential geometry that many different proofs have been given. Spivak’s treatise
includes seven explicit proofs, which very nicely illustrate how differential geometry
has evolved over the years from a discipline where the use of coordinates was central,
to a mature theory where geometric objects fully independent of coordinates are the
basic entities.

Another fundamental local characterization of Riemannian manifolds involves
manifolds of constant sectional curvature. Recall that the sectional curvature of a
two-plane � ⊂ TpM, p ∈ (M, g) with non-degenerate induced first fundamental
form h is defined as

K (p;�) = Riemg(X,Y, X,Y )

h(X, X)h(Y,Y ) − h(X,Y )2
, {X,Y } any basis of �.

The sectional curvature K (p;�) agrees with the Gauss curvature at p of the surface
ruled by geodesics starting at p with tangent vector X ∈ �. A Riemannian manifold
has constant curvature k if K (p;�) = k for all p ∈ M and all non-degenerate
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plane � ∈ TpM. A well-known lemma by Friedrich Schur [70] asserts that any
Riemannian manifold with sectional curvature K (p,�) = k(p) independent of �

is in fact of constant curvature.
For any k ∈ R, define the manifold M

(p,q)

k as the subset B(K ) ⊂ R
p+q

B(K ) := {x ∈ R
p+q; 1 + k

4
(η

(p,q)

i j x i x j ) > 0},

endowed with the metric gk given by

gk := 1
(
1 + k

4 (ηi j x
i x j )

)2 η
(p,q)

i j dxidx j ,

η(p,q) := diag(−1, . . . ,−1
︸ ︷︷ ︸

p

, 1, . . . , 1
︸ ︷︷ ︸

q

)

(it is easily seen that B(K ) is connected for all values of k and all signatures (p, q)).
Spaces of constant curvature are all isometric to this space. This is alreadymentioned
without proof in Riemann’s inaugural lecture [47] and it was also known to Eugenio
Beltrami [4].

Theorem 2.2 Let (M, g) be a Riemannian manifold of constant sectional curvature
k and signature (p, q). Then (M, g) is locally isometric toM(p,q)

k .

Riemannian manifolds of constant curvature are also locally characterized by the
condition that the Killing algebra of (M, g) has maximal dimension. Recall that a
Killing vector is a vector field ξ ∈ X(M) satisfying Lξg = 0 where L denotes Lie
derivative. The set of Killing vectors K in a manifold defines a finite-dimensional
algebra (with respect to the Lie bracket) called Killing algebra. If the manifold
has dimension n, the Killing algebra has dimension dim(K) ≤ n(n+1)

2 and whenever
equality is attained, the manifold is called maximally symmetric. A classical result
by Luigi Bianchi [6] asserts that maximally symmetric spaces are precisely those of
constant sectional curvature.

Theorem 2.3 (Bianchi [6]) A Riemannian manifold (M, g) is maximally symmetric
if and only if it has constant sectional curvature.

Another important class of Riemannian manifolds singled out by the properties
of its isometry group is the class of Riemannian symmetric spaces. These are defined
as Riemannian manifolds (M, g) such that, at any point p ∈ M there exists an
isometry�p : M → M,��

p(g) = g satisfying�p(p) = p and d�p|p = −Id|p, i.e.
this isometry leaves p invariant and reverses any vector at p. Riemannian symmetric
spaces can be locally characterized in terms of the Riemann tensor, as first proved
by Élie Cartan.

Theorem 2.4 (Locally symmetric spaces, Cartan [12]) A Riemannian manifold
(M, g) is locally isometric to a Riemannian symmetric space if and only if the
curvature tensor satisfies
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∇Riemg = 0.

The Riemann tensor can be decomposed in its trace and its trace-free parts. The
trace part defines the Ricci tensor Ricg(X,Y ) = trg Curvg(X, ·)Y from which the
scalar curvature is defined as Scalg = trg Ricg . Useful tensors defined in terms of
the Ricci tensor are the Schouten tensor Schg (in dimension n > 2) and the Einstein
tensor Eing:

Schg := 1

n − 2

(

Ricg − 1

2(n − 1)
Scalgg

)

, Eing = Ricg − 1

2
Scalg.

The Weyl tensor is the trace-free part of the Riemann tensor, defined as

Weylg = Riemg − Schg 	 g

where 	 is the Kulkarni-Nomizu product on symmetric tensors

(A 	 B)(X1, X2, X3, X4) =A(X1, X3)B(X2, X4) − A(X1, X4)B(X2, X3)

+ A(X2, X4)B(X1, X3) − A(X2, X3)B(X1.X4).

Hermann Weyl introduced [79] the tensor named after him in an attempt to find a
theory of gravitation invariant under scale (conformally invariant). The Weyl tensor
has the fundamental property thatWeyl�2g = Weylg where� ∈ C∞(M,R+). Thus,
it vanishes automatically in any locally conformally flat space. Schouten [66] proved
that the vanishing of this tensor is also sufficient in dimension n ≥ 4 (in dimension
n = 2 theWeyl tensor is not defined and in n = 3 it vanishes identically). As is well-
known, in dimension n = 2 any space is locally conformally flat. In dimension three,
the necessary and sufficient condition for local conformal flatness was obtained by
Émile Cotton [16] in terms of the vanishing of the so-called Cotton tensor, which in
dimension n > 2 is defined as

Cott(X,Y, Z) = (n − 2) ((∇ZSch)(X,Y ) − (∇YSch)(X, Z)) ,

where X,Y, Z ∈ X(M). This tensor is conformally invariant in any space with van-
ishing Weyl tensor (hence always in dimension three). Summarizing the discussion
above, we have

Theorem 2.5 (Locally conformally flat spaces, Cotton, Weyl and Schouten) A Rie-
mannian manifold (Mn, g) n ≥ 3 of signature (p, q) is locally isometric to a con-
formally flat space (Rn,�2η(p,q)), � ∈ C∞(Rn,R+) if and only if

(i) If n = 3, the Cotton tensor vanishes.
(ii) If n ≥ 4, the Weyl tensor vanishes.
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3 Local Characterizations of the Schwarzschild
and Kruskal Spacetimes

Among indefinite Riemannian manifolds, the Lorentzian ones (i.e. with signature
(−,+, . . . ,+)) play a fundamental role in physics, as they describe spacetimes. For
the purposes of this article by spacetime we simply mean a Lorentzian manifold2

(M, g) of dimension n ≥ 2. In Einstein’s theory of General Relativity the spacetime
geometry is linked to the energy-momentum contents of the non-gravitational fields
via the Einstein field equations

Eing = χT

where χ is a coupling constant depending on Newton’s gravitational constant G and
T is the energy-momentum tensor of the fields. In particular, a spacetime is vacuum
whenever its Einstein tensor (or equivalently its Ricci tensor) vanishes.

With the exception of the flat Minkowski spacetime, perhaps the most important
spacetime in general relativity is the Schwarzschild spacetime of mass M ∈ R found
by Karl Schwarschild [67] shortly after the Einstein field equations were proposed
(see [77] for the corresponding solution in higher dimensions). To be specific, by this
solutionwemean themanifoldMSch := R × (r0,∞) × S

m−1 m ≥ 3, where r0 = 0 if
M ≤ 0 and r0 = (2M)

1
m−2 if M > 0, endowed with the metric (in global coordinates

(t, r) ∈ R × (r0,∞))

gSch = −
(

1 − 2M

rm−2

)

dt2 +
(

1 − 2M

rm−2

)−1

dr2 + r2γ S
m−1

(1)

in units where 8πG = (m − 1)ωm−1 and γ S
k
is the standardmetric of the k-sphere Sk

and ωk the corresponding total volume. The Schwarzschild spacetime is spherically
symmetric and vacuum. Spherically symmetric means that the spacetime admits
an action of SO(m) as a group of isometries with orbits being either spacelike
codimension-two surfaces or points. The fact that the metric (1) is defined also in
another manifold, namelyR × (0, r0) × S

2 was found (form = 3) independently by
Droste [20] and Hilbert [40].

The Schwarzschild spacetime of mass M �= 0 admits a maximal extension
that keeps the properties of being spherically symmetric and vacuum. This is the
Kruskal spacetime, which is defined as follows. LetMKr = U × S

m−1 whereU ⊂ R
2

is an open set defined by the inequality U := {(u, v) ∈ R
2; r(u · v) > 0} where

r := (a, b) ⊂ R → R is the maximal solution of the differential equation

dr

dx
= 1

(m − 2) x
(2|M |) 1

m−2

(

1 − 2M

rm−2

)

. (2)

2Usually, the notion of spacetime requires also time-orientability, but this is irrelevant for the local
characterization theorems we are describing here.
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For M < 0, the maximal domain of definition does not include x = 0. However,
for M > 0, the solution to this equation extends smoothly through x = 0 and has a
non-zero gradient at x = 0. The Kruskal metric gKr is defined on MKr = U × S

m−1

and reads

gKr = 4

(m − 2)2
|2M | 2

m−2
1 − 2Mr(u · v)2−m

uv
dudv + r(u · v)2γ S

m−1
.

The case m = 3 is best known, as it corresponds to the original extension by Martin
Kruskal [46] (also found independently by Georges Szekeres [75]) of the Schwarz-
schild spacetime of dimension n = 4. In this case the ODE (2) for M > 0 can be
integrated in simple terms as

uv =
(
1 − r

2M

)
e

r
2M =⇒ gKr = −32M3

r(uv)
e− r

2M dudv + r2(uv)γ S
m−1

.

The original Schwarzschild spacetime corresponds to the domain {v > 0} ∩ {u < 0}
and describes the exterior of the black hole spacetime. The conformal diagram of
this exterior domain can be found in [56] along with interesting results on scattering
and peeling of test fields on this and other backgrounds. The process of relativistic
diffusion on the Schwarzschild spacetime is discussed in [30].

The most important local characterization theorem in gravitational theory is the
Birkhoff theorem [7]. This theorem appears in the literature in two different guises,
either as a local characterization theorem of the Kruskal spacetime, or as a statement
that under suitable circumstances, a spherically symmetric spacetime must admit an
additional Killing vector.3 The two guises appear because the Schwarzschild space-
time was obtained under the assumptions of vacuum, spherically symmetry, time-
independence and the implicit assumption that∇r is spacelike. Birkhoff’s proof that
any vacuum, spherically symmetric spacetime admits an additional Killing vector
and the fact that this Killing is timelike whenever ∇r is spacelike, provides there-
fore a local characterization theorem for the Schwarzschild metric among vacuum
spherically symmetric spacetimes. In fact, the first result concerning the existence
of an additional static symmetry is due to Jebsen [42] in a work virtually forgotten
for a long time despite the fact that due credit was given e.g. in [33, 69]. This work
has been brought back to light in more recent times, first in [64] and later in [19], see
[43] and references therein for further details on the discovery of the Schwarzschild
spacetime and Birkhoff’s theorem.

Historical remarks aside, the fact of the matter is that the Schwarzschild and
Kruskal spacetimes are unique among vacuum spherically symmetric n-dimensional
Lorentzian spacetimes. This result has enormous physical significance as it means
that, like in Newtonian theory, a spherically symmetric gravitational field outside its
sources depends on a single constant, namely the total mass of the configuration. It

3The second guise is sometimes stated that spherically symmetric, say vacuum, spacetimes are
static, but this is clearly not true in this generality as the Kruskal extension admits no global
timelike Killing vector, see [22] where this fact is discussed in some more detail.
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also states that spherical sources cannot emit gravitational radiation, even if they are
themselves evolving. The precise local characterization result is as follows.

Theorem 3.1 (Local characterization of the Kruskal spacetime) Let (Mn, g) be a
Lorentzian n-dimensional space such that the group SO(n − 1) acts as a group
of isometries with orbits which are either codimension-two spacelike submanifolds
or points. If (M, g) is vacuum, then there exists M ∈ R such that (M, g) is locally
isometric to the Kruskal spacetime (MKr, g Kr) of mass M. Let r : M → R be defined
as

r(p) =
( |Op|

ωn−2

) 1
n−2

whereOp is the orbit of SO(n − 1) containing p, |Op| its (n − 2)-volume and ωn−2

the (n − 2)-volume of the round unit sphere Sn−2. If 〈∇r,∇r〉p �= 0, then (M, g) is
locally isometric near p to the Schwarzschild spacetime (MSch, gSch) of mass M.

Analogous local characterization theorems of spherically symmetry spacetimes
exist for many other matter models, including -vacuum (i.e. Ricg = (n − 1)g,
 ∈ R), electrovacuum, Einstein-Maxwell-dilaton and many others. A detailed
description of all such result is beyond the scope of this note, see [68] and refer-
ences therein for results in this direction.

3.1 Characterization of Spherically Symmetric Spacetimes
with an Additional Killing Vector

As already mentioned, the Birkhoff theorem for the vacuum spherically symmetric
spacetime can be viewed as a local characterization result of the Kruskal spacetime
or as a statement that spherically symmetric vacuum spacetimes admit an additional
local isometry with generator orthogonal to the spherically symmetric orbits and
which is timelike on regions where ∇r is spacelike. Viewed from this perspective,
the Birkhoff theorem is a particular case of a result proved by Eiesland in [23] (and
announced at the EasternMeeting of the AmericanMathematical Society at Chicago
in 1921 [24] shortly before the result byBirkhoff appeared). The theorembyEiesland,
although correct, uses a rather strange convention of the Einstein tensor. In terms of
the usual definition Eing = Ricg − 1

2Scal
gg this theorem has been recently quoted in

[76]. We follow the notation in this reference (with a couple of typo corrections).

Theorem 3.2 (Eiesland [23]) The necessary and sufficient conditions that a locally
spherically symmetric Lorentzian manifold with line-element

ds2 = −A2dt2 + B2dr2 + C2
(
dθ2 + sin2 θdφ2

)
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A, B and C being arbitrary, non-zero functions of t and r, and C not a constant,
shall admit a one-parameter group of isometries generated by a vector field K =
k0(t, r)∂t + k1(t, r)∂r are

A2Eintr = 2� ′

C
∂rC∂tC,

A2B2
(
Eintt − Einrr

) = 2� ′

C

[
A2(∂rC)2 + B2(∂tC)2

]
,

where � = �(C) is some differentiable function of C, or a constant, and Einrt ,Ein
t
t

etc. denote the components of the Einstein tensor (with one index raised) in the
coordinate basis {∂t , ∂r , ∂θ , ∂φ}. Under these conditions the Killing field K is, up to
a constant multiple, given by

k0(t, r) = − 1

e� AB
∂rC, k1(t, r) = 1

e� AB
∂tC.

This theorem has been extended in [65] to Einstein spaces which are locally
warped products g = h + r2γ , where h is a Lorentzian metric and r a positive
non-constant function on a two-dimensional space Q, and γ is a metric on an m-
dimensional manifold �m , m ≥ 2. Let us state and prove a theorem that generalizes
Eiesland’s result to arbitrary warped space with two-dimensional base.

Theorem 3.3 Let (M, g) be locally isometric to a warped product space (Q ×
�m, g) (m ≥ 2), i.e. g = h + r2γ , where r is a smooth positive function and h a met-
ric on a two-dimensional manifoldQ and (�, γ ) is a (pseudo-)Riemannianmanifold.
Let ε = 1 if h is Lorentzian and ε = −1 if h is positive or negative definite.

Assume that there is no open set in Q where |∇r |2h vanishes identically. Then
(M, g) admits a Killing vector K ∈ X(Q) if and only if, away from the points where
|∇r |2h = 0, there exists a smooth, nowhere-zero, function H(r) such that

Ricg|Q − 1

2
trh

(
Ricg|Q

)
h = (m − 1)H ′

2Hr

(
dr ⊗ dr + εdr � ⊗ dr �

)

where Ricg|Q is the restriction of the Ricci tensor of g to the tangent planes ofQ and �

is the Hodge dual in (Q, h). Moreover, the one-form K := h(K , ·) is K = H(r)dr �

Proof It is immediate to check that a vector field K tangent to theQ factor is Killing
if and only if K is Killing for (Q, h) and K (r) = 0. On the open set where dr
is not null for the metric h (which is dense on Q by assumption), dr and dr � are
a basis of the cotangent space of any point in Q. We work on this open (possibly
disconnected) set from now on. Note that 〈dr, dr �〉 = 0 and 〈dr, dr〉 = −ε〈dr �, dr �〉
where 〈· , · 〉 denotes scalar product with h. The condition K (r) = 0 is equivalent to
the existence of a function H ∈ C∞(Q,R) such that K = Hdr � or, in index notation
Ki = Hηi j∇ j r where η is the volume form of h and ∇ denotes the Levi-Civita
derivative of h. It is known (and follows e.g. by explicit computation) that
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Ricg|Q = Khh − m − 1

r
Hesshr

where the Hessian of a functions is, as usual, defined by (Hess f )(X,Y ) = 〈∇Xgrad
f,Y 〉 and where Kh is the Gauss curvature of h. Let us denote by R̊ic

g

Q
the trace-free

part of Ricg|Q so that we have

Hesshr = − r

m − 1
R̊ic

g

Q
+ f h (3)

where f is a scalar function whose form does not concern us. The Killing equations
for K read

0 = ∇i K j + ∇ j Ki = η jl∇i H∇lr + Hη l
j ∇i∇lr + ηil∇ j H∇lr + Hη l

i ∇ j∇lr

= η jl

(

∇i H∇lr − Hr

m − 1
(R̊ic

g

Q
)l i

)

+ ηil

(

∇ j H∇lr − Hr

m − 1
(R̊ic

g

Q
)l i

)

after inserting (3) and noticing that the term proportional to f drops. An endomor-
phism Ai

j satisfying η jl Al
i + ηil Al

j = 0 must be proportional to the identity. Thus,
there exists a function F on Q such that

∇i H∇ j r − Hr

m − 1
(R̊ic

g

Q
)i j = Fhi j =⇒ A = 1

2
〈∇H,∇r〉 (4)

where the implication follows simply by taking trace. The antisymmetric part of (4)
implies that there exists a function Ĥ : I → R such that H = Ĥ ◦ r . We make the
usual abuse of notation of writing simply H(r). Note that H cannot vanish anywhere
(on the open set |∇r |2h �= 0) because if H = 0 at one point p, then (4) implies that H ′
also vanishes at that point, and the Killing K vanishes at p together with its covariant
derivative, which can only happen if K is identically zero.

A basis for trace-free symmetric tensors is given by dr ⊗ dr + εdr � ⊗ dr � and
dr ⊗ dr � + dr � ⊗ dr . Expanding R̊ic

g

Q
in this basis and using h = 1

|∇r |2h (dr ⊗ dr −
εdr � ⊗ dr �) it follows that

R̊ic
g

Q
= (m − 1)H ′

2Hr

(
dr ⊗ dr + εdr � ⊗ dr �

)
,

as stated in the theorem. �

Eiesland’s Theorem3.2 follows from this result because on open connected sets
where |∇r |2h �= 0, we can choose H > 0 (possible after reversing the Killing K ).
Writing H = e−� , Theorem3.2 is recovered after a straightforward calculation.
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3.2 Characterization of Schwarzschild Within Static Vacuum
Spacetimes

Let us define a static, vacuum spacetime as a product manifold R × �m endowed
with a metric g = −N 2dt2 + h, where h is a strictly Riemannian metric on � and
N > 0 is a smooth positive function on �, called static potential, satisfying

NRich = Hessh N , �h N = 0. (5)

Static spacetimes in this sense can be equivalently defined in terms of the data
(�m, h, N ). The data corresponding to the Schwarzschild spacetime of mass M
(and dimension m + 1) can be written as

�Sch = R
m \ B

(
(|M |/2) 1

m−2

)
, gSch =

(

1 + M

2|x |m−2

) 4
m−2

gE ,

NSch = 1 − M
2|x |m−2

1 + M
2|x |m−2

. (6)

where B(a) is a centered closed ball of radius a.
Note that the Eq. (5) admit a trivial rescaling N ′ = cN , where c �= 0 is a constant.

Thus, two vacuum, static data will be said to be isometric if the corresponding
Riemannian manifolds are isometric and, under the isometry, the static potentials are
transformed to each other except for a non-zero multiplicative constant.

In this section we discuss two local characterizations of the Schwarzschild static
data. Both have played a role in establishing the fundamental black hole uniqueness
result that static, asymptotically flat static initial datawith a totally geodesic boundary
are isometric to Schwarzschild data (proved so far for dimensions 3 ≤ m ≤ 7, as the
proof relies on the positive energy theorem). The first characterization involves the
conformal flatness of the metric h with a specific conformal factor constructed from
N . As far as I know, it has been stated (and used) in dimension three and in the
asymptotically flat context, but it can be generalized to a truly local statement in any
dimension (we add a sketch of proof, since it does not seem to have appeared in the
literature).

Theorem 3.4 Let (�m, h, N > 0) be static vacuum initial data. The data is isomet-
ric to a domain of Schwarzschild data of mass M in an open, connected neighbour-
hood Up of p ∈ � if and only if the metric

ĥ := �
4

m−2 h

is flat in Up, where� = 1+cN
2 for some constant c > 0 with the property |1 − cN | >

0 on Up.
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Sketch of proof. The “only if” part is immediate from (6) with the choice c = 1
if M �= 0 and c �= 1 if M = 0. For the “if” part we work on Up and scale N so that
c = 1. The fact that Ricĥ = 0 and the properties of how the Ricci tensor and Hessian
transform under a conformal rescaling turn out to imply the following equation onUp

Hessĥ

(∣
∣
∣
∣
1 + N

1 − N

∣
∣
∣
∣

) 2
m−2

= 2F(N )|∇N |2
ĥ
ĥ

where F(N ) is amanifestly positive and explicit function of N whichwe do notwrite.
It follows that either N is constant (and the data is Minkowski, hence Schwarzschild
ofmassM = 0), or F(N )|∇N |2n̂ = ( 2

|M | )
2

m−2 for a positive constant |M |. The solution
of the hessian equation

Hessĥ

(∣
∣
∣
∣
1 + N

1 − N

∣
∣
∣
∣

) 2
m−2

= 2

(
2

|M |
) 2

m−2

ĥ

is, after a suitable choice of Cartesian coordinates {x} for ĥ:
∣
∣
∣
∣
1 + N

1 − N

∣
∣
∣
∣

2
m−2

= A +
(

2

|M |
) 2

m−2

|x |2

where A is a constant. Inserting this expression into F(N )|∇N |2
ĥ

= ( 2
|M | )

2
m−2 , one

concludes that A = 0, so the solution is

∣
∣
∣
∣
1 + N

1 − N

∣
∣
∣
∣ = 2

|M | |x |
m−2.

Choosing now the sign of M (which is still free) to satisfy sign(M) = sign(1 − N ),
the Schwarzschild data (6) follows readily. �

The second local characterization of Schwarzschild among static vacuum ini-
tial data has been obtained by Reiris in [60] and provided a new way of showing
the uniqueness of static, asymptotically flat black holes with connected horizon,
via comparison geometry. The characterization involves integrable geodesic congru-
ences, meaning congruences F = {γ (s)} parametrized by arc-length s and such that
s = const defines a smooth surface �s orthogonal to the geodesics γ . Recall that the
expansion θ of a congruenceF is equal to the mean curvature of the surfaces �s and
coincides with �s, where s is viewed as a scalar function on the domain covered
by F .

Given any static vacuumdata set (�3, h, N > 0), it is often convenient to consider
the naturally conformally rescaled space (�3, ĥ = N 2h). Integrable, geodesic con-
gruences F in (�3, ĥ) have the following interesting property [60]: at each γ ∈ F
and for any real number a, the function Ma(s) along γ (s), defined by



On Local Characterization Results in Geometry and Gravitation 553

Ma(s) = (θ

2
(s + a)2 − (s + a)

)
N 2, (7)

(θ = θ(γ (s)) and N = N (γ (s)), is monotonically decreasing as s increases. For
radial geodesics in Schwarzschild this function is constant (and equal to the mass
for a suitable choice of a). This property is also true for the so-called Levi-Civita
static solutions [49], labelled as classes A1, A2 and A3 in [21], and which can be
collectively written as (�3

κ,M , hκ,M , Nκ,M ), κ ∈ {1,−1, 0}, M ∈ R

�3
κ,M = I × S2κ , N 2

κ,M = κ − 2M

r
, hκ = dr2

N 2
κ,M

+ r2γκ

and I ⊂ R is an open interval and (S2κ , γκ) is either the standard sphere (κ = 1),
the Euclidean plane (κ = 0) or the hyperbolic plane (κ = −1). Remarkably, the
constancy ofMa characterizes locally these metrics [60, 61].

Theorem 3.5 (Reiris) Let (�3, h, N > 0) be a static, vacuum, three-dimensional
initial data set and let ĥ = N 2h. Then, (�, h, N ) is locally isometric to a Levi-Civita
static solution if and only if around every point there exists an integrable geodesic
congruence F of (�, ĥ) and a (not-necessarily continuous) function a : F → R

such that Ma(γ )(s) is constant along each geodesic γ (s).
The data is locally isometric to the Schwarzschild data (i.e. to the subcase κ = 1

of the Levi-Civita static class) if and only if, in addition, θ > 1/(s + a) in at least
one point.

3.3 Local Characterization of Kruskal Without Spherical
Symmetry

The Kruskal and Schwarzschild spacetime are locally unique among vacuum spher-
ically symmetric Lorentzian n−dimensional spacetimes. An interesting issue that
has been raised in the literature is whether the assumption of spherical symmetry can
be replaced by suitable local conditions on the curvature which, a posteriori, ensure
that the space is locally spherically symmetric, i.e. that a local isometric group action
of SO(n − 1) with codimension-two spacelike orbits (or points) exists. As far as I
know, this has only been achieved in dimension n = 4 [28]. Before stating the theo-
rem proved in this reference, we introduce some notation.We note that the definitions
used here differ slightly from the definitions in [28].

For a double two-form, i.e. a four-covariant tensor Wαβμν satisfying Wαβμν =
W[αβ]μν = Wαβ[μν] we write �W for the Hodge dual with respect to the first pair
of indices. The square of W is defined as W 2

αβμν = WαβρσW ρσ
μν . This obviously

defines a double two-form, so any power Wk can be defined iteratively. For any pair
of two-forms F and H , F ⊗ H is clearly a double two-form. The total trace of F
and of W are defined respectively as
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Tr(F2) := FαβF
αβ, Tr(W ) := W αβ

αβ .

A symmetric double two-form satisfies in addition Wαβμν = Wμναβ . Given one such
W and a symmetric two-covariant tensor B, the product W · B is the symmetric
tensor

(W · B)αβ := WαμβνB
μν.

Finally, for any covariant tensor Uα1···αp we write |U |2g := Uα1···αpU
α1···αp .

Theorem 3.6 (Ferrando and Sáez [28]) Let (M, g) be a 4-dimensional spacetime
with Weyl tensor Weylg satisfying

ρ := −
(

1

96
Tr((Weylg)

3)

) 1
3

�= 0.

Define the Riemann tensor concomitants

S := 1

3ρ
Weylg − 1

6
g 	 g

B := (Ricg) − S · Ricg − Scalg

2
g,

F := −2ρ + 1

12
Scalg + 1

4
|�|2g + ε

4

√
|B|2g

where �α := 1
2 S

αβ
μν∇ρS μν

ρβ , ε = 0 if B = 0 and ε = − B(u,u)

|B(u,u)| if B �= 0, u being
an arbitrary unit timelike vector field. Then (M, g) is locally spherically symmetric
if and only if it satisfies:

S2 + 2S = 0,

2∇αS
α
βμν + 3

2
S ρσ

μν ∇αSαβρσ − gβμ�ν + gβν�μ = 0,

�S(·,�, ·,�) = 0, 2S(�, u,�, u) − |�|2g > 0,

�αis an exact one-form.

In combination with the Birkhoff theorem, a local characterization of the Kruskal
spacetime directly in terms of curvature concomitants can be obtained [28, 29].

Theorem 3.7 (Ferrando and Sáez [28, 29]) Let (M, g) be a 4-dimensional space-
time with Weyl tensor Weylg satisfying

ρ := −
(

1

96
Tr((Weylg)

3)

) 1
3

�= 0.
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Let S := 1
3ρWeylg − 1

6g 	 g. Then (M, g) is locally isometric to the Kruskal space-
time if and only if

Ricg = 0, S2 + 2S = 0,

1

9ρ2
|∇ρ|2g − 2ρ > 0,

S�(·,∇ρ, ·,∇ρ) = 0, 2S(∇ρ, u,∇ρ, u) − |∇ρ|2g > 0

where u is an arbitrary timelike unit vector field.

The general idea of this theorem can be understood as follows. The equalities
involving S in the theorem restrict the Weyl tensor pointwise. This, in combination
with the Ricci flat condition, provices sufficient information on the Riemann tensor
so as to show that the local isometry group of the spacetime is three dimensional
with two-dimensional orbits. The inequality conditions of the theorem are then used
to make the Lie algebra of Killing vectors isomorphic to the Lie algebra of the
rotation group (as opposed to the the Lie algebra of isometries of the Euclidean
or hyperbolic planes). Thus, the spacetime is locally spherically symmetric and the
Birkhoff theorem implies that it is locally isometric to the Kruskal spacetime.

This local characterization theorem has been used in [32] to derive a local charac-
terization theorem for initial data sets ofKruskal, i.e. triples (�, γ, K ), where (�3, γ )

is a strictly Riemannian manifold and K a symmetric (0, 2)−tensor such that there
exists an isometric embedding � : (�, γ ) �→ (MKr, g Kr) with second fundamental
form equal to K .

4 Local Characterization of pp-Waves and Related
Spacetimes

Brinkmann spaces are, by definition, Riemannian spaces admitting a parallel (also
called covariantly constant) null vector field, i.e. a vector field ξ satisfying 〈ξ, ξ 〉 = 0
and∇ξ = 0. Theywere considered byBrinkmann [11] in his study of Einstein spaces
(M, g) admitting a non-constant positive function � ∈ C∞(M,R+), d� �≡ 0 for
which (M,�2g) is also Einstein.4 In this work a local coordinate system for any
such spaces was also found. This provides a local characterization of spaces, which
can be phrased a follows:

In order to discuss the local characterization results of Brinkmann spaces, it is
useful to consider the manifold MB := R × R × �, where � is a k ≥ 1 manifold,
endowed with a Riemannian metric gB of the form

gB = −2du (dv + Hudu + Wu) + gu .

4The term Einstein space to denote Riemannian manifolds of dimension m ≥ 3 with Ricci tensor
of pure trace appears to originate in Brinkmann’s earlier work [10], see [5].
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Here (u, v) are global coordinates on (R × R), and Hu , Wu and gu are, respectively,
a u-dependent function, one-form and Riemannian metric on�. The signature of the
space is (p + 1, q + 1) if the signature of gu is (p, q). The vector field ξ := ∂v is
null and parallel, hence this Riemannian manifold is a Brinkmann space. The value
of (MB, gB) is that, as found by Brinkmann [11], the converse is also locally true

Theorem 4.1 (Brinkmann [11]) A Brinkmann space is locally isometric to a Rie-
mannian manifold (MB, gB).

In fact, a stronger result was found by Schimming [63].

Theorem 4.2 (Schimming [63]) A Brinkmann space is locally isometric to a Rie-
mannian manifold (MB, gB) with Wu = 0 and Hu = 0.

An important class of spacetimes is the class of pp-waves, or plane fronted waves
with parallel rays, which physically describe waves far away from bounded sources.
There is no universally accepted definition of pp-wave, although all of them require
the space to admit a parallel null vector field. Some authors do not require any extra
condition, and hence identify pp-waves with Brinkmann spaces. Other authors add
an algebraic condition of the curvature tensor. Here we follow [63] and define pp-
waves as Brinkmann spaces of Lorentzian signature (and arbitrary dimension) with
the Riemann tensor satisfying the trace condition

Tr((Riemg)2) = 0.

Schimming [63] found the following local characterization of pp-waves.

Theorem 4.3 (pp-waves, Schimming [63]) A Lorentzian spacetime (Mn, g) of
dimension n ≥ 3 is a pp-wave if and only if it is locally isometric to (MB =
R × R × R

n−2, gB) with metric

gB = −2dudv + H(u, xi )du2 +
n−2∑

i=1

dx2i .

The algebraic conditions on the Riemann tensor that define pp-waves can be stated
in several equivalent forms, as proved by Schimming [63] and Leistner [48].

Theorem 4.4 (Equivalent algebraic conditions for pp-waves) A Lorentzian
Brinkmann space (M, g) is a pp-wave if and only if one of the following condi-
tions holds:

(i) [63] ξαRiem
g
βγμν + ξαRiem

g
βγμν + ξαRiem

g
βγμν = 0.

(ii) [63] There exists a symmetric 2-covariant tensor V satisfying V (ξ, ·) = 0 such
that

Riemg
αβμν = ξαVβμξν − ξβVαμξν + ξβVανξμ − ξαVβνξμ.
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(iii) [63] There exists a function f ∈ C∞(M,R) such that

(Riemg)αβμν(Riem
g)νρσα = f ξβξμξρξσ .

(iv) [48] For all U, V ∈ X(M) and any pair of vectors X,Y ∈ X(M) orthogonal
to ξ :

Curvg(U, V )X ∈ span(ξ) or, equivalently Riemg(·, ·, X,Y ) = 0,

where ξ is the parallel null vector of (M, g).

The Ricci tensor of any pp-wave with parallel null vector ξ is of the form Ricg =
�ξ ⊗ ξ , where � ∈ C∞(M, g) and ξ := g(ξ, ·). Thus, a pp-wave is an Einstein
space only if it is vacuum. The case of dimension n = 4 is particularly interesting
for physics. In this case the condition Ricg = �ξ ⊗ ξ turns out to be equivalent to a
Brinkmann space being a pp-wave. This follows from the fact that Riemg(ξ, ·, ·, ·) =
0 (which is a direct consequence of ∇ξ = 0), implies Weylg(ξ, ·, ·, ·) = 0 when
Ricg = �ξ ⊗ ξ . In dimension n = 4 this means that the Weyl tensor is of Petrov
type N (from Bel’s characterization [3] of the Petrov type [59]) and the Riemann
tensor necessarily satisfies item (iii) of Theorem4.4.

According to Ehlers and Kundt [21], the notion of pp-wave in general relativity
was discovered independently by Robinson (unpublished work) in 1956 and by Hély
[37] and Peres [58], Robinson being the first to discuss its physical significance. In
four dimensions, additional characterization results exist, see [21, 74, 81] for further
details. Here we mention only one for pp-waves that is genuinely four-dimensional
[21].

Theorem 4.5 (Ehlers andKundt [21])A four-dimensional vacuumspacetime (M, g)
is a pp-wave if and only if it admits a covariantly constant null two-form, i.e. a two-
form F satisfying

∇F = 0, Tr(F2) = 0 Tr(F ⊗ F�) = 0

where F� is the Hodge dual of F.

As already said, in four dimensions vacuum pp-waves are simply vacuum
Brinkmann spaces. Sufficient conditions similar to this theorem ensuring the exis-
tence of a parallel null vector exist in arbitrary dimension, seeLemma3.1 andRemark
iv in [71].

Brinkmann spaces have arisen also in connection to generalizations of locally
symmetric spaces. As discussed before, locally symmetric spaces are defined by the
condition that the Riemann tensor is covariantly constant. It is natural to consider
k-th order symmetric spaces k ≥ 1, as those with a curvature tensor satisfying

∇ · · · ∇︸ ︷︷ ︸
k

Riemg = 0. (8)
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However, in the strictly Riemannian case (g positive definite) a classical theorem
asserts that these spaces are automatically locally symmetric (see [50, 57] under
additional restrictions and [78] for the general case, attributed there to unpublished
work by Nomizu). Moreover, Tanno [78] also proves under a non-degeneracy con-
dition for the Riemann tensor that condition (8) k ≥ 2 implies locally symmetric in
arbitrary signature. However, k-th order symmetric (k ≥ 2) indefinite Riemannian
spaces which are not locally symmetric do exist and their systematic study in the
Lorentzian case and for k = 2 was initiated by Senovilla [71] as late as 2008, where
the nomenclature of k-th order symmetric spaces was introduced and the following
result was proved.

Theorem 4.6 (Senovilla [71]) Let (M, g) be a proper second order symmetric
space, i.e. an n-dimensional Lorentzian space satisfying

∇∇Riemg = 0 ∇Riemg �≡ 0.

Then (M, g) admits a parallel null vector (i.e. it is a Brinkmann space).

Obviously, not all Brinkmann spaces are proper second order symmetric, so it is
natural to determine them. This has been achieved recently in [8] (announced in [9]),
where the following local characterization result is proven.

Theorem 4.7 (Second order symmetric Lorentzian spaces [8]) Let (Mn, g) be an
n-dimensional proper second order symmetric Lorentzian space. Then (M, g) is
locally isometric to a direct product (M1 × R

d+2, g1 ⊕ g2), (d ≥ 0) where (M1, g1)
is a non-flat symmetric space with positive definite metric and g2 is, in Cartesian
coordinates for Rd+2,

g2 = −2dudv +
⎛

⎝
d+1∑

i, j=2

pi j (u)xi x j

⎞

⎠ du2 +
d+1∑

i=2

(dxi )2

where pi j = (H1)i j u + (H0)i j and (H0)i j , (H1)i j are symmetric real matrices, with
H1 not identically zero.

This classification result has also been proved independently and about the same
time in [2] using an approach fully based on holonomy groups. This holonomy
method has been extended recently in [31], where the following classification result
for third order Lorentzian spaces is proved.

Theorem 4.8 (Third order symmetric Lorentzian spaces [31]) Let (Mn, g) be an
n-dimensional third order symmetric Lorentzian space which is not second order
symmetric. Then the same conclusion as in Theorem4.7 holds, except that the metric
g2 is now
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g2 = −2dudv +
⎛

⎝
d+1∑

i, j=2

pi j (u)xi x j

⎞

⎠ du2 +
d+1∑

i=2

(dxi )2

where pi j = (H2)i j u2 + (H1)i j u + (H0)i j and (Ha)i j , (a = 0, 1, 2) are symmetric,
real matrices, with H2 not identically zero.

5 Local Characterizations of the Kerr, Kerr-Newman
and Kerr-De Sitter Metrics

The class of Kerr spacetimes is one of themost important classes in general relativity.
It was discovered by Roy Kerr [44] as the first family of stationary and axially sym-
metric vacuum spacetimes and depends on two real parameters a andm. For a suitable
subset of the parameters, it represents a stationary asymptotically flat black hole. A
fundamental conjecture in general relativity states that the exterior region of the Kerr
black hole class is the unique class of stationary vacuum, asymptotically flat exterior
black hole regions. This conjecture is known to be true under suitable conditions,
mainly of technical nature (see [14, 39]). Thus, the Kerr class of spacetimes enjoys a
privileged position among the very many possible stationary and asymptotically flat
vacuum spacetimes. Obviously, the condition of being a black hole is essentially of
global nature, and it is therefore of interest to find local characterizations of the Kerr
class of spacetimes.

To be explicit, by Kerr spacetime we mean the maximal analytic extension of the
Kerr exterior region, as obtained by Carter [13]. For parameter values a · m �= 0, the
manifold outside a countable collection of smooth closed, codimension-two surfaces,
which correspond to the set of zeros of a Killing vector, can be covered by a countable
union of patches of Kerr-Schild type, each one of them isometric to (Ma, gm,a) given
by

Ma := R × (
R

3 \ {x2 + y2 ≤ a2, z = 0})

gm,a := −dt2 + dx2 + dy2 + dz2 + 2mr3

r4 + a2z2
� ⊗ �,

� := dt + r

r2 + a2
(xdx + ydy) + a

r2 + a2
(ydx − xdy) + zdz

r
,

r : Ma �→ R
+ defined by

x2 + y2

r2 + a2
+ z2

r2
= 1

where t is the coordinate in the R factor and (x, y, z) are Cartesian coordinates
in the other factor. The metric is of Kerr-Schild type [45] because it is locally of
the form g = η + � ⊗ � where η is the Minkowski metric and � is a null one-form
with respect to η (and also g). The parameters m and a are called respectively mass
and specific angular momentum. The mass parameter m is the ADM mass of the
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spacetime, see [38] for the definition of ADM mass and for a thorough discussion
on its positivity properties and the interesting relationship it has with a concept of
mass in closed manifolds by means of a conformal blow-up of a point.

Natural generalizations of the Kerr class exist to the case of electrovacuum space-
times with cosmological constant, i.e. spacetimes (M, g) with a two-form H (the
electromagnetic field) and a constant  (the cosmological constant) satisfying the
field equations

Eing + g = 2 tr2,4(H ⊗ H) − 1

2
Tr(H 2)g, dH = 0, dH � = 0. (9)

The pure electrovacuum (i.e. with = 0) generalization is called Kerr-Newman and
also plays a fundamental role in the classification of stationary black holes in four
dimensions [14, 39]. The spacetime depends on three parameters {m, a, q} where
q is called electric charge. Similarly as for the Kerr spacetime above, whenever
a · m �= 0, the Kerr-Newman spacetime can be covered outside a countable, disjoint,
union of closed, spacelike, totally geodesic codimension-two surfaces byKerr-Schild
patches (Ma, gm,a,q) where Ma is as before and the metric is given by

gm,a,q := −dt2 + dx2 + dy2 + dz2 + r2
(
2mr − q2

)

r4 + a2z2
� ⊗ �,

with � and r defined exactly as in the Kerr class.
The Einstein space generalization (i.e. with vanishing electromagnetic field H and

 �= 0) is called Kerr-NUT-(anti-)de Sitter spacetime and depends on four real para-
meters {,m, a, l}. The spacetime can no longer be covered by Kerr-Schild patches.
However, it does admit a double Kerr-Schild form [15], i.e. the metric can be locally
written as g = g0 + f1� ⊗ � + f2k ⊗ k, where k and � are null in the base metric
g0 which in this case is the spacetime of constant curvature 

3 . For the purposes of
this article, we describe the spacetime in advanced Eddington-Finkelstein coordi-
nates as follows. The Kerr-NUT-(A) de Sitter spacetime of parameters {,m, a, l}
is the maximal spacetime (MK NdS, gKNdS) for which any point p ∈ MKNdS where
no Killing vector vanishes admits an open, connected neighbourhood Up and local
coordinates {u, r, θ, φ} such that gKNdS takes the form

gKNdS = − � − a2 sin2 θ�θ

ρ2

(
du − (a sin2 θ + 4l sin2(θ/2))dφ

)2

+ 2
(
dr − a sin2 θ�θdφ

) (
du − (a sin2 θ + 4l sin2(θ/2))dφ

)

+ ρ2

(
dθ2

�θ

+ �θ sin
2 θdφ2

)
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where

ρ2 := r2 + (l + a cos θ)2,

� := a2 − l2 − 2mr + r2 − 

3
(3l2(a2 − l2) + (a2 + 6l2)r2 + r4).

For other expressions of the local form of this metric see [35, 36]. The case  = 0
of this metric defines the Kerr-NUT spacetime. The case  = l = 0 corresponds
precisely to the Kerr spacetime.

Note that all the spacetimes discussed in this section admit a Killing vector ξ = ∂t
which turns out to have very distinctive features. The characterizations we shall
describe in this section exploit essentially the existence of this Killing vector. This
fits well with the problem of stationary black hole spacetimes and in fact these
characterizations have had useful applications in the black hole uniqueness context
([1] and references therein). The characterization is also specific to four dimensions,
which again fits well with the fact that the classification of black holes in higher
dimensions is necessarily of a very different nature than in four dimensions, given
the plethora of already known examples, starting with the celebrated black ring of
Emparan and Reall [25], see [14, 41] for results on stationary black hole in higher
dimensions.

Consider any four-dimensional spacetime (M, g) admitting a Killing vector ξ .
Assume (M, g) to be orientable with volume form ηg and let � denote the corre-
sponding Hodge operator. For a real two-form U , we define U := U + iU �, which
satisfies U � = −iU and it is hence called self-dual (the term anti self-dual is also
common in the literature). Conversely, any (necessarily complex) self-dual two form
U can be written as U = Re(U) + i(Re(U))� where Re denotes the real part. A two-
form is called non-degenerate at p ∈ M if U2 := Tr(U ⊗ U) satisfies U2|p �= 0.
A non-degenerate two-form at p admits precisely two linearly independent real
eigenvectors �± ∈ TpM, i.e. solutions of (U − λ±g)|p(�±, ·) = 0 with λ± ∈ R. The
eigenvectors �± are necessarily null and the two-dimensional timelike plane they
span TU := span{�+, �−} is called the timelike eigenplane of U at p.

Given a Killing vector ξ , the tensor F := ∇ξ defines a two-form. The correspond-
ing two-form F := F + i F� is called self-dual Killing form of ξ and the so-called
Ernst one-form of ξ is defined by χ := 2F(ξ, ·).

For a tensorW with the same symmetries as theWeyl-tensor, define the left-Hodge
dual W � as the Hodge dual in the second pair of indices and the self-dual of W as
W = W + iW �. The self-dual of the Weyl tensor is denoted by Weylg. The space
of self-dual two-forms admits a natural metric, denoted by Ig and defined by

Ig = 1

8

(
g 	 g + i (g 	 g)�

)
.

The Kerr spacetime has the algebraic property that the self-dual Weyl tensor and the
self-dual Killing form are related to each other by the following simple relation



562 M. Mars

Weylg = Q

(

F ⊗ F − 1

3
F2Ig

)

(10)

where Q is a smooth complex function on M. It turns out that this algebraic prop-
erty is useful to characterize locally the Kerr class among all vacuum spacetimes
admitting a Killing vector ξ . Although not explicitly stated in this form, the follow-
ing local characterization theorem is proved in [51]. The idea of the theorem stems
from a previous characterization result for the Kerr metric in the so-called quotient
formalism by Simon [72].

Theorem 5.1 (Mars [51])Let (M, g)bea smooth, vacuum, four-dimensional space-
time admitting a Killing vector ξ . Assume the following two conditions hold:

(i) There exists a smooth complex function Q : M �→ C such that the self-dualWeyl
tensor Weylg of g and self-dual Killing form F of ξ satisfy

Weylg = Q

(

F ⊗ F − 1

3
F2Ig

)

. (11)

(ii) There exist p ∈ M where QF2|p �= 0.

Then, the Ernst one-form χ is exact χ = dχ and Q,F2 take the form Q = −6/(c −
χ), F2 = A(c − χ)4 where A �= 0 and c are complex constants.

If, in addition, Re(c) > 0, A is real and negative and ξ is somewhere not orthogo-
nal to the timelike eigenplane TF ofF , then the spacetime (M, g) is locally isometric
to a Kerr spacetime.

This result was quoted in [52]with the unfortunate omission of one of the hypothe-
ses, namely the condition that the Killing vector ξ is somewhere not orthogonal to
the timelike eigenplane of F . In the proof of [51] this condition was automatically
true as the Killing vector was assumed to be timelike somewhere. See [55] for a
detailed discussion of this issue.

The main assumption (11) imposes algebraic restrictions on the Weyl tensor at
each point. Recall that the self-dualWeyl tensorWeylg defines an endomorphism on
the space of self-dual two-forms. The algebraic classification of this endomorphism
leads to the so-called Petrov classification [3, 59] of spacetimes, which plays an
important role in studying the geometric properties of spacetimes. Details can be
found e.g. in [74]. The Petrov type of a Weyl tensor can be I , I I , I I I , N , D or 0
and Condition (11) restricts the Weyl tensor, at each point, to be of Petrov types D,
N or O , with F being an eigenvector of Weylg. Thus, Theorem5.1 identifies the
Kerr spacetime essentially as the only vacuum spacetime satisfying this Petrov-type
restriction everywhere and, moreover, being of Petrov type exactly D at least at one
point (by assumption (ii)). The proof proceeds by solving the Einstein equations and
Bianchi identities in a frame constructed geometrically fromF and the Killing vector
ξ . The word “essentially” above refers to the fact that, besides ξ being somewhere
not orthogonal to TF , conditions on the constants A and c need to be imposed in
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order to select the Kerr spacetime among the larger class of Kerr-NUT spacetimes
with either spherical, plane and hyperbolic topologies, which is the class that arises
when the conditions on A and c are dropped. In fact a complete classification can be
obtained [55] when Condition (ii) is dropped and, in addition, no a priori assumption
on ξ at any point is made.

In the case of the Kerr-Newman spacetime, the spacetimes does not only satisfy
the alignment condition (10) but, in addition, the self-dual electromagnetic field
H := H + i H � is proportional to the self-dual Killing form F . As proved by W.
Wong in [80], this double alignment, together with suitable additional restrictions,
characterizes theKerr-Newman class of spacetimes (for a complex number A, A is the
complex conjugate, |A|2 = AA and A = Re(A) + iIm(A), with Re(A), Im(A) ∈ R)

Theorem 5.2 (Wong [80]) Let (M, g, H) be a simply connected, smooth elec-
trovacuum spacetime admitting a Killing vector ξ satisfying Lξ H = 0. Assume that
ξ is timelike somewhere and that the self-dual two form H := H + i H � satisfies
H2 := Tr(H ⊗ H) �= 0 everywhere. Assume that

(i) The self-dual Killing form F is proportional to H: F = uH, where u ∈
C∞(M,C)

(ii) The function u satisfies du = H(ξ, ·).
(iii) There exists a non-zero complex constant C1 such that the self-dual Weyl tensor

satisfies

Weylg = 3P

(
1

2
(F ⊗ H + H ⊗ F) − 1

3
Tr(F ⊗ H)Ig

)

where P :=
(

−4
C2
1H2

) 1
4
.

Then, there exists a complex constant C2 such that P−1 − u = C2 and a real constant
C4 such that 〈ξ, ξ 〉 + |u|2 = C4.

If C2 further satisfies thatC1C2 is real andC4 = |C2|2 − 1, then there exists a non-
negative real constant U such that |C1|2|P|2〈Im(C1∇P), Im(C1∇P)〉 +
(Im(C1P))2 − U = 0 everywhere and (M, g) is locally isometric to the Kerr-
Newman spacetime of charge q = |C1|, specific angular momentum

√
U and mass

C1C2.

Remark 5.3 Note that this theoremdoes not immediately admit a vacuum limit, since
H2 is assumed to be non-zero by hypotheses. Also, the proportionality functions �

and P in items (i) and (iii) are linked by hypothesis to the electromagnetic field
H. Comparing with the characterization theorem in vacuum Theorem5.1, where the
proportionality function between the self-dual Weyl tensor and the self-dual Killing
form is not fixed a priori, this raises the question whether a stronger characterization
result exists with weaker a priori conditions on � and P . In view of the result in
vacuum and in the case of cosmological constant below, we conjecture that such a
stronger characterization should indeed exist. Interesting steps towards finding this
generalized characterization have been obtained in [18].
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A local characterization result for the Kerr-(A)de Sitter class among -vacuum
spacetimes (i.e. satisfying (9) with H = 0) and admitting a Killing vector ξ along the
same lines as before has been recently obtained in [54]. The method of proof is much
more geometric than for the two results mentioned above (strongly based on a tetrad
construction) and is based on the presence of a second Killing vector constructed in
terms of geometric information arising solely from ξ and an underlying geometric
structure in terms of a Riemannian submersion of a conformal metric. The following
theorem has been proved in [54]. Unfortunately, the statement of the result as given
in [54] contains a few typos and, more importantly, has the same missing hypothesis
as in the vacuum case discussed above. We provide the correct version here.

Theorem 5.4 (Mars and Senovilla [54]) Let (M, g) be a -vacuum spacetime
admitting a Killing vector ξ with self-dual Killing form F . Assume there exists
Q ∈ C∞(M,C) such that the self-dual Weyl tensor of g satisfies

(i) Weylg = Q

(

F ⊗ F − 1

3
F2Ig

)

(ii) There exists p ∈ M such that QF2|p �= 0,

(iii) There exists p′ ∈ M such that (QF2 − 4)|p′ �= 0.

ThenF2 �= 0 and QF2 − 4 �= 0 everywhere. Assuming further that (iv) ξ is some-
where not orthogonal to the timelike eigenplane TF of F , then there exist constants
b1, b2, c, k ∈ R such that

36Q(F2)
5
2 + (b2 − ib1) (QF2 − 4)3 = 0 (12)

〈ξ, ξ 〉g + Re

(
6F2

(
QF2 + 2

)

(QF2 − 4)2

)

+ c = 0

−k +
∣
∣
∣
∣

36F2

(QF2 − 4)2

∣
∣
∣
∣

2

|∇Z |2g − b2Z + cZ2 + 

3
Z4 = 0

where Z := Im
(

6i
√
F2

QF2−4

)
. Moreover, |∇Z |2g ≥ 0 everywhere.

If these constants are such that the polynomial V (ζ ) := k + b2ζ − cζ 2 − 
3 ζ 4

can be factored as
V (ζ ) = V̂ (ζ )(ζ − ζ0)(ζ1 − ζ ) (13)

with ζ0 ≤ ζ1 and V̂ (ζ ) > 0 on [ζ0, ζ1] and Z : M → [ζ0, ζ1] then (M, g) is locally
isometric to the Kerr-NUT-(A)dS spacetime with parameters {,m, a, l} where

m = b1
2v0

√
v0

, a = ζ1 − ζ0

2
√

v0
, l = ζ1 + ζ0

2
√

v0

and v0 := V̂ (
ζ0+ζ1
2 ).
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The statement of this theorem is somewhat long.However, the core of the hypothe-
ses lies in items (i), (ii) and (iii) which are fully analogous to the vacuum case before.
All the rest of conditions deal with identifying a number of constants, and then select-
ing the subset of values for which the spacetime is locally isometric to Kerr-NUT-de
Sitter. A full classification of spacetimes satisfying (i), (ii) can be found in [54].

It should be emphasized that this theorem includes vacuum as a particular case.
In fact, the proof in [54] applies equally well to the case  = 0. It is instructive
to see how the vacuum characterization Theorem5.1 follows from this theorem.
First note that when  = 0, assumption (iii) follows from (ii). Thus, under (i), (ii)
and (iv) in Theorem5.4, the function V ◦ Z : M �→ R is necessarily non-negative
everywhere (because |∇Z |2g ≥ 0). If we assume c > 0 and given that V must be
non-negative somewhere (in order to fulfill the condition V ◦ Z ≥ 0), it follows that
V (ζ )must have two real zeroes ζ0 ≤ ζ1 and Z ∈ [ζ0, ζ1]. The polynomial V̂ is simply
V̂ = c > 0, so all required conditions hold and the following corollary follows (the
only if part holds because the Kerr-NUT class does have c > 0).

Corollary 5.5 Let (M, g) be a vacuum spacetime admitting a Killing vector ξ with
self-dual two-form F . Assume that hypotheses (i), (ii) and (iv) in Theorem5.4 hold
and define the constants b1, b2, k and c as in Theorem5.4). Then the spacetime is
locally isometric to the Kerr-NUT spacetime if and only if c > 0.

This result was proved in [53] by exploiting the local characterization Theorem5.1
for Kerr and the action of a so-called Ehlers transformation group on vacuum space-
times admitting a Killing vector ξ which, as shown in [53], happens to preserve
conditions (i) and (ii).

Concerning vacuumwith vanishing NUT parameter, the condition l = 0 is equiv-
alent to ζ0 + ζ1 = 0which, in turn, is equivalent to b2 = 0. Since Eq. (12)with = 0
is

Q4F2(b2 − ib1)
2 = 362

it follows that b2 = 0 is equivalent to Q4F2 being real and negative. Thus, the
conditions c > 0, Re(Q4F2) < 0, Im(Q4F2) = 0 and (iv) characterize locally the
Kerr metric, and we recover Theorem5.1.

As already mentioned above, there exists a spacetime that naturally generalizes
both the Kerr-NUT-(anti) de Sitter and the Kerr-Newman spacetimes into a single
five parametric family of -electrovacuum spacetimes, called Kerr-Newman-NUT-
(anti) de Sitter spacetime. In view of the various characterization theorems of this
section, we conjecture that a local characterization result along these lines also exists
for the Kerr-Newman-(A)de Sitter spacetime, which includes both Theorems5.1, 5.2
and 5.4 as special cases.
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5.1 Local Characterization of Kerr Without Killing Vector

The local characterization of the Kerr spacetime and its charged and cosmologi-
cal constant in the previous section all require the existence of a Killing vector ξ .
In Sect. 3.3 a characterization of the Kruskal spacetime without assuming a priori
spherical symmetry has been discussed. Similarly, it is of interest to obtain local
characterizations of the Kerr spacetime without the need of assuming a priori the
existence of a Killing vector. This has been achieved in [27]. In order to state the the-
orem, we need to introduce some additional notation concerning double two-forms.

We have introduced above the self-dual Weyl tensor Weylg = Weylg + iWeyl�g.
A spacetime (M, g) is of Petrov type D [3, 59] at a point p if there exists a non-zero
constant ω such that

Weyl2g + 4ωWeylg − 32ω2Ig|p = 0.

This equation is equivalent to the existence of a self-dual two-form U at p satisfying
U2 = −2 and such that

Weylg
∣
∣
p

= 6 ω

(

U ⊗ U + 2

3
Ig

)∣
∣
∣
∣
p

.

The two-formU can be computed algorithmically fromWeylg simply by contracting
Weylg − 4ωIg with a self-dual two-formW not lying in its kernel. For a two-form
V , its divergence is defined as (divV )β := ∇αVαβ .

Theorem 5.6 (Ferrando and Sáez [27]) Let (M, g) be a smooth, vacuum, four-
dimensional spacetime. Assume that there exists a smooth, nowhere vanishing func-
tion ω : M → C such that

Weyl2g + 4ωWeylg − 32ω2Ig = 0.

Let U be the unique self-dual two-form satisfying

U2 = −2 and Weylg = 6ω

(

U ⊗ U + 2

3
Ig

)

. (14)

Let ζ := div(U) and decompose it in real and imaginary parts ζ = ζR + iζI . Let
M̂ := {p ∈ M; ζR is non-null} and assume thatM \ M̂ has empty interior. On M̂
define λ := 〈ζR, ζI 〉〈ζR, ζR〉−1. If the following conditions are satisfied
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(i) ζR ∧ ζI = 0,

(i i) Im
(
ωWeylg(·, ζR, ·, ζR, ·)) �= 0 on a dense set,

(i i i) Im(ω(1 − iλ)3) = 0 somewhere on M̂,

(iv)
2Re(ω)

3λ2 − 1
− 1

4
〈ζR, ζR〉 > 0 somewhere onM̂,

then (M, g) is locally isometric to aKerr spacetime (Mm,a, gm,a)with non-vanishing
specific angular momentum a.

Note the similarity between (14) and (10). The fundamental difference is that U
is not a priori related to any Killing vector. This condition is replaced by Condition
(i), which is of algebraic nature, so much more natural from a local characterization
point of view. On the other hand, the assumption ω �= 0 and (14) impose that the
Petrov type is D everywhere. In view of the characterization result in Theorem5.1,
which a priori allows for Petrov degenerations (namely N and 0), it seems plausible
that the restrictionω �= 0 in the hypotheses can be relaxed. Determining whether this
is possible, and to which extent, is an interesting open problem that, in my opinion,
deserves consideration.

Acknowledgements I would like to thank José M.M. Senovilla for useful comments on the manu-
script and to Martín Reiris for various clarifications concerning Theorem3.5 and for providing the
detailed statement of this result.
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The Conformal Approach to Asymptotic
Analysis

Jean-Philippe Nicolas

Abstract Albert Einstein’s general theory of relativity is a geometric theory of grav-
ity, using the framework of Lorentzian geometry: an extension of Riemannian geom-
etry in which space and time are united in a real 4-dimensional manifold endowed
with an indefinite metric of signature (1, 3) or (3, 1). The metric allows to distin-
guish between timelike and spacelike directions in an intrinsic manner and, provides
a description of gravity via its curvature. The introduction by Minkowski in 1908 of
the notion of spacetimewas a decisive change of viewpoint which opened the road for
Einstein to develop the geometrical framework for the fully covariant theory he was
after. Instead of discussing the history of this development and the crucial influence
of Riemannian geometry through the help of Marcel Grossmann, this essay explores
Roger Penrose’s approach to general relativity which bears a remarkable kindred
of spirit with Einstein’s and perpetuates the geometrical view of the universe initi-
ated by Riemann and Einstein. More specifically, Penrose’s approach to asymptotic
analysis in general relativity, which is based on conformal geometric techniques, is
presented through historical and recent aspects of two specialized topics: conformal
scattering and peeling. Other essays in this volume are related to general relativ-
ity: Jacques Franchi [15] discusses relativistic analogues of the Brownian motion
on various Lorentzian manifolds; Andreas Hermann and Emmanuel Humbert [23]
discuss the positive mass theorem, which is closely related to the Yamabe prob-
lem in Riemannian geometry; Marc Mars [28] presents some local intrinsic ways of
characterizing a spacetime.

1 Introduction

HermannMinkowski, in his famous speech at the 80th Assembly of German Natural
Scientists and Physicians in Köln in 1908, cast in a rather emphatic way themould for
what would, from then on, be the framework of relativistic mathematical physics:
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“The views of space and time which I wish to lay before you have sprung from
the soil of experimental physics, and therein lies their strength. They are radical.
Henceforth space by itself, and time by itself, are doomed to fade away into mere
shadows, and only a kind of union of the two will preserve an independent reality.”
The last sentence is the founding principle of the geometrical description of special
relativity and by extension one of the founding principles of general relativity. The
new framework was to retain the essential features of Riemannian geometry, but
to incorporate time into the picture and provide an indefinite metric as an intrinsic
geometrical way of comparing the speed of a particle to that of light. Minkowski was
not merely attempting to introduce a convenient geometrical framework for special
relativity, one which was to become known as the Minkowski spacetime. He was
advocating, in view of physical evidence, to give up the notion of simultaneity; to
give up the picture of the universe as a space that changes with time; to replace it by
a spacetime that is not to be understood as the succession of instants glued together,
but as a global object.

When in 1917 Karl Schwarzschild discovered his famous static spherically sym-
metric solution of the Einstein vacuum equations, it was misunderstood as having
a spherical singularity. It is precisely the change of viewpoint urged by Minkowski
that allowed to replace the Schwarzschild coordinate system, tied in with a foliation
by spacelike slices in the exterior region, by the Eddington-Finkelstein coordinates,
based on principal null geodesics,1 thus leading to our present understanding of
the nature of the event horizon. But of course, the nature of a truly 4-dimensional
reality goes against our intuition and our experience of space and time. This is prob-
ably the reason why even though we use spacetimes every day in relativity, we are
also tempted to do away with a founding principle by breaking them into a succes-
sion of spaces, what we call a 3 + 1, or an n + 1, decomposition. We are attached
to such notions of simultaneity. The Cauchy problem, the related notion of global
hyperbolicity, the constraints for the Einstein equations or for other overdetermined
systems of equations such as Maxwell, Rarita-Schwinger, are all based on this type
of decomposition. In fact, and I mention this at the risk of appearing dogmatic, even
the choice of signature − + ++, as opposed to + − −−, is prompted by similar
motivations: the reason why people choose the latter is usually because the metric
allows to measure the proper time along causal curves (i.e. curves that are timelike
or null at each point), which is in the spirit of Minkowski’s geometrical approach;
the standard reason for choosing the former is that the induced metric on a spacelike
slice is positive, rather than negative, definite.

The objects that our senses, our eyes in particular, allow us to observe in nature,2

are causal and in most cases in fact null. Of course we have access to spacelike
structures but as cuts of causal objects, a topological spacelike sphere as a cut of

1These coordinate systems are now called Eddington-Finkelstein coordinates, as they were discov-
ered first by Eddington in 1924 then re-discovered by Finkelstein in 1958.
2A question that is related to that of observability is whether or not it is possible to identify a
spacetime by local observations; some spacetimes can be locally or pseudo-locally recognized, see
the discussion and examples in the article by Mars [28] in this volume.
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a light-cone for example, and these cuts have a degree of arbitrariness. In a truly
4-dimensional approach to general relativity, it seems that causal objects should be
given a certain preference. As an illustration, the Cauchy problem can be replaced
by the Goursat problem. The Cauchy problem in the framework of general relativity
is the usual one for hyperbolic partial differential equations, where the data is set
on a Cauchy hypersurface, i.e. a spacelike hypersurface such that any inextendible
timelike curve intersects it exactly once, in other words, a slice of simultaneity. The
Goursat problem is similar to the Cauchy problem with the important difference
that the data are now set on a null hypersurface, typically a null cone. One must be
wary of a “perversion” of this notion whereby the initial null hypersurface is the
union of two intersecting null slices meeting on a spacelike submanifold. This type
of hypersurface, insofar as it is based on a spacelike structure, is not more natural
than a Cauchy hypersurface. The reason why this type of problem is considered at all
is because of its relative simplicity compared to the light-cone case; the singularity
of the hypersurface is very mild by comparison and the situation has advantageous
similarities with the 1 + 1 dimensional case. The drawback of the Goursat problem
on a lightcone is that it is usually a local problem in the neighbourhood of the vertex,
lightcones in generic spacetimes tending to develop caustics. Scattering theory is a
global problem that can be understood as an analogue of the Goursat problem for
a light-cone at infinity. The whole evolution of the field is then summarized in an
operator acting between null asymptotic structures, by-passing the Cauchy problem
as an unnecessary intermediate stage.

Some of us are less than others prone to thinking in 3 + 1 dimensions. Roger
Penrose certainly seems to have remained very faithful to Minkowski’s viewpoint.
His view of relativity appears to be truly 4-dimensional. He has not systematically
avoided 3 + 1 decompositions and indeed has had major inputs within this approach,
particularly in relation to the notion of mass (see the survey by Hermann and Hum-
bert in this volume [23] which discusses Penrose’s positive mass theorem and its
remarkable role in the resolution of the a priori unrelated Yamabe problem in Rie-
mannian geometry), but a very significant proportion of his research is concerned
with the light-cone structure (i.e. the conformal structure) of spacetime. His geomet-
rical ideas have yielded new methods for analysis in general relativity. In this paper,
I will focus on his notion of conformal compactification and how it can be used to
study two types of asymptotic analytic questions: peeling and scattering.

This paper is organized as follows. Section2 is devoted to the description of
the principles of conformal compactification, the explicit treatment of the case of
Minkowski spacetime and how it provides asymptotic information on a large class of
solutions of conformally invariant field equations. Section3 starts with a historical
presentation of the notion of peeling, proposes a different way of looking at the
question and an alternative approach to studying it, which are strongly inspired by
the ideas of Penrose, and finally presents the recent results in the field. Scattering,
or rather a version of scattering based on conformal compactifications, is the object
of Sect. 4: the history of the topic is described from the founding idea by Penrose to
the first actual construction by F. G. Friedlander; a new approach is proposed which,
by giving up some of the analytic niceties of Friedlander’s results, allows to extend
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the construction to much more general situations; finally the recent results following
this approach are reviewed. Section5 contains concluding remarks.

2 Conformal Compactification

2.1 The Principles of Conformal Compactification

The notion of conformal compactification in general relativity was introduced by
Penrose in a short note [35] in Physical Review Letters in 1963. Its usage as a
tool for studying asymptotic properties is clearly mentioned but not developed. The
year after, in Les Houches, he gave a series of three lectures [36] explaining the
technique in details and the differences depending on the sign of the cosmological
constant �. In 1965, specializing to the case where � = 0, he published a long and
thorough study of the asymptotic behaviour of zero rest-mass fields by means of the
conformal technique [37]. Another reference where a clear and detailed description
of the method can be found is Spinors and Spacetime vol. 2 [38].

There are two essential ingredients. The first is a geometrical construction: the
conformal compactification itself. It can be presented in a very general manner as
follows.

• The “physical” spacetime is the spacetime on which we wish to study asymptotic
properties, of test fields for example. It is a smooth, 4-dimensional, real, Lorentzian
manifold (M, g).

• The “unphysical,” or “compactified,” spacetime is a smooth manifold M̄ with
boundary B and interior M.

• The link between the boundary and the physical spacetime is provided by a bound-
ary defining function �; it is a positive function on M, smooth on M̄, such that
�|B = 0 and d�|B �= 0.

• The metric ĝ := �2g extends as a smooth non degenerate Lorentzian metric on
M̄ (hence the name “conformal factor” for �).

This conformal “compactification”3 is not always possible. The property for a space-
time to admit a smooth conformal compactification can be characterized in terms
of the decay of the Weyl curvature at infinity. When such a compactification exists,
the boundary B will have a structure: different parts corresponding to different ways
of going to infinity in the physical spacetime. Different parts of the boundary will
play a role in relation to different types of asymptotic properties: for example time-
like decay and scattering, when studied by means of the conformal method, will not
involve the same parts of the conformal boundary.

3The word compactification is a little misleading since in general the unphysical spacetime will
not be compact, there will be holes in the boundary. Only in exceptional cases such as Minkowski
spacetime will the rescaled spacetime be compact.
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The second ingredient is the equation we wish to study on the physical spacetime.
It is important that it admits some rather explicit transformation law under conformal
rescalings, so that we can study it on the rescaled spacetime and gain information
on its behaviour in the physical spacetime. Conformally invariant equations are the
natural class to consider, but not the only possible class.

2.2 Conformal Compactification of Minkowski Spacetime

Let us now present the conformal method in more detail on an explicit example: the
simple case of the wave equation on flat spacetime. The contents of this section, and
much more, can be found in [37].

2.2.1 The Geometrical Construction

The Minkowski metric in spherical coordinates is expressed as

η = dt2 − dr2 − r2dω2 , dω2 = dθ2 + sin2 θ dϕ2 .

We choose the advanced and retarded coordinates

u = t − r , v = t + r . (1)

The metric η in terms of these coordinates takes the form

η = dudv − (v − u)2

4
dω2 , v − u ≥ 0 .

Then we introduce new null coordinates that allow to describe the whole of
Minkowski spacetime as a bounded domain:

p = arctan u , q = arctan v . (2)

The expression of the Minkowski metric in the coordinates (p, q,ω) is given by

η = (1 + u2)(1 + v2)dp dq − (v − u)2

4
dω2 .

From p and q we can define new time and space coordinates as follows,

τ = p + q = arctan(t − r) + arctan(t + r) ,

ζ = q − p = arctan(t + r) − arctan(t − r) ,
(3)



576 J.-P. Nicolas

and we get

η = (1 + u2)(1 + v2)

4

(
dτ 2 − dζ2

) − (v − u)2

4
dω2 .

We choose the conformal factor

� = 2
√

(1 + u2)(1 + v2)
= 2

√
(1 + tan2 p)(1 + tan2 q)

= 2 cos p cos q , (4)

i.e. we rescale the metric by 1/r2 in null directions, 1/r4 in spacelike directions and
1/t4 in timelike directions. We obtain

e := �2η = dτ 2 − dζ2 − (v − u)2

(1 + u2)(1 + v2)
dω2

= dτ 2 − dζ2 − ((tan q − tan p) cos p cos q)2 dω2

= dτ 2 − dζ2 − (sin q cos p − sin p cos q)2 dω2

= dτ 2 − dζ2 − (sin(q − p))2 dω2

= dτ 2 − dζ2 − (sin ζ)2 dω2

= dτ 2 − σ2
S3 ,

where σ2
S3 is the euclidean metric on the 3-sphere. Minkowski spacetime is now

described as the diamond

M = {|τ | + ζ < π , ζ ≥ 0 , ω ∈ S2} .

The metric e is the Einstein metric; it extends analytically to the whole Einstein
cylinder E = Rτ × S3ζ,θ,ϕ. The full conformal boundary of Minkowski spacetime
can be defined in this framework. It is described as

∂M = {|τ | + ζ = π , ζ ≥ 0 ,ω ∈ S2} .

Several parts can be distinguished.

• Future and past null infinities:

I + = {
(τ , ζ , ω) ; τ + ζ = π , ζ ∈]0,π[ , ω ∈ S2

}
,

I − = {
(τ , ζ , ω) ; ζ − τ = π , ζ ∈]0,π[ , ω ∈ S2

}
.

Proposition 2.1 The hypersurfaces I ± are smooth null hypersurfaces for e. Their
null generators are respectively the vector fields

∂τ − ∂ζ for I
+ and ∂τ + ∂ζ for I

− .
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Proof They are clearly smooth hypersurfaces since e is analytic up toI ± and does
not degenerate there: its determinant

det (e) = − sin4 ζ . sin2 θ

does not vanish onI ± (except for the usual singularity due to spherical coordinates).
Now the vector fields ∂τ − ∂ζ and ∂τ + ∂ζ are null and tangent respectively to I +
and I −. They are orthogonal to the two other generators of I ±: ∂θ and ∂ϕ. They
are therefore normal to I + and I − respectively. This proves the proposition. �

• Future and past timelike infinities:

i± = {
(τ = ±π , ζ = 0 , ω) ; ω ∈ S2

}
.

They are smooth points for e (2-sphereswhose area is zero because they correspond
to ζ = 0).

• Spacelike infinity:

i0 = {
(τ = 0 , ζ = π , ω) ; ω ∈ S2

}
.

It is also a smooth point for e.

Note that the Einstein spacetime (E, e) is static: in the coordinates τ , ζ, θ,ϕ, it is
obvious that ∂τ is a global timelike Killing vector field,4 orthogonal to the level
hypersurfaces of τ , which are 3-spheres.

In Fig. 1, the conformal boundary of Minkowski spacetime is represented with its
different parts. In Fig. 2, we display the Penrose diagram of compactifiedMinkowski
spacetime, i.e. a representation of M = M ∪ ∂M quotiented by the group of isome-
tries inherited from the group of rotations in M: the spherical degrees of freedom
do not appear, the advantage is that the causal structure is clearly readable on the
resulting 2-dimensional diagram.

2.2.2 An Application for a Conformally Invariant Equation

Let us consider a simple example of conformally invariant equation, the conformal
wave equation

(�g + 1

6
Scalg)φ = 0 . (5)

Its conformal invariance can be expressed precisely as follows: we consider a space-
time (M, g) and a metric ĝ in the conformal class of g with conformal factor �, i.e.
ĝ = �2g. Then we have the equality of operators acting on scalar fields onM

4A Killing vector field is a vector field Ka whose flow is an isometry, i.e. LK gab = 0, which is
equivalent to the Killing equation ∇(aK b) = 0.
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Fig. 1 Compactified
Minkowski spacetime, i0 is
merely a point, just like i±

Fig. 2 Penrose diagram of
compactified Minkowski
spacetime with spacelike,
timelike and null geodesics

�g + 1

6
Scalg = �3

(
�ĝ + 1

6
Scalĝ

)
�−1 , (6)

which also entails the expression of the scalar curvature of ĝ in terms of that of g

Scalĝ = �−2Scalg + 6�−3�g� . (7)
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Minkowski spacetime is flat, its scalar curvature vanishes, whereas the scalar curva-
ture of the metric e is equal to 6. Hence, a distribution φ ∈ D′(R4) satisfies the wave
equation

∂2
t φ − �φ = 0 , (8)

if and only if φ̃ := �−1φ (� defined by (4)) satisfies

�eφ̃ + φ̃ = 0 , (9)

where
�e = ∂2

τ − �S3 .

Since the Einstein cylinder is globally hyperbolic,5 for smooth data on S3, the Cauchy
problem for (9) has a unique smooth solution on the whole of Rτ × S3 (see Leray
[27]). Let us consider data φ0 , φ1 at t = 0 for the Cauchy problem for (8), i.e.

φ0 = φ|t=0 , φ1 = ∂tφ|t=0 . (10)

From these, we can easily calculate the corresponding data at τ = 0 for φ̃, i.e.

φ̃0 = φ̃|τ=0 , φ̃1 = ∂τ φ̃|τ=0 , (11)

using the fact that on M, t = 0 is equivalent to τ = 0. First it is immediate that

φ̃0 = (�|t=0)
−1 φ0 = 1 + r2

2
φ0 .

Concerning the other part of the data,

∂tφ = (∂t�) φ̃ + �
∂τ

∂t
∂τ φ̃ + �

∂ζ

∂t
∂ζφ̃

and
∂�

∂t
|t=0 = 0 ,

∂τ

∂t
|t=0 = 2

1 + r2
,

∂ζ

∂t
|t=0 = 0 ,

which gives

∂tφ|t=0 = 4

(1 + r2)2
∂τ φ̃|τ=0 = 4

(1 + r2)2
φ̃1 .

Hence the relation between the data (11) for the rescaledfield and (10) for the physical
field:

φ̃0 = 1 + r2

2
φ0 , φ̃1 = (1 + r2)2

4
φ1 . (12)

5A spacetime is said to be globally hyperbolic if it admits a Cauchy hypersurface.
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Let us make the assumption that φ̃0 and φ̃1, which are naturally defined only on the
3-sphere at τ = 0 with the point i0 removed, extend as smooth functions on S3. Then
the rescaled solution φ̃ = �−1φ extends as a smooth function on M and by simple
explicit calculations, we can infer precise pointwise decay rates of the unrescaled
field in all causal directions. All we need is to use the continuity of φ̃ at the boundary
of M and the behaviour of the conformal factor � along null and timelike geodesics
(easily obtained from (4)).

1. Decay along null directions. There exist smooth functions φ̃± ∈ C∞(R × S2)
such that for all u, v,ω,

lim
r→+∞ rφ(t = r + u, r,ω) = 1√

1 + u2
φ̃+(u,ω) , (13)

lim
r→+∞ rφ(t = −r + v, r,ω) = 1√

1 + v2
φ̃−(v,ω) . (14)

The functions φ̃± are simply the restrictions of φ̃ on I ±; the two limits above
are referred to as the future and past asymptotic profiles, or radiation fields, of φ.

2. Decay along timelike directions. There exist two constants C± such that for all
r,ω,

lim
t→±∞ t2φ(t, r,ω) = 2C± .

These constants areC± = φ̃(i±) (recall that i± are points on the Einstein cylinder,
not 2-spheres).

In other words, the physical solution φ decays like 1/r along radial null geodesics
and like 1/t2 along the integral lines of ∂t . These decay rates are valid for solutions
φ of the wave equation on Minkowski spacetime such that φ̃ = �−1φ extends as
a smooth function on E. Implicit in this hypothesis are some requirements on the
fall-off of initial data for φ. Using (12), the smoothness of φ̃0 and φ̃1 on S3 entails
that there exist two constants C0,C1 such that for all ω,

lim
r→+∞ r2φ(0, r,ω) = 2C0 ,

lim
r→+∞ r4∂tφ(0, r,ω) = 4C1 ,

the constants C0 and C1 being the respective values of φ̃0 and φ̃1 at i0 (which, like
i± is a point on E).

The crucial observationwhich allowed us to derive the above decay rates is that the
information on the pointwise decay of φ at infinity is equivalent to the continuity of
the rescaled field at the conformal boundary. It is possible to go further. In the next two
sections, we present two refinements of this first use of conformal compactification
for asymptotic analysis.
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3 Peeling

The peeling, or peeling-off of principal null directions, is a generic asymptotic behav-
iour discovered by R. Sachs for spin 1 and 2 fields in the flat case [39] and in the
asymptotically flat case [40]. A zero-rest-mass field of spin s is described as a sym-
metric spinor of rank 2s. Such an object possesses 2s principal null directions at each
point, which are analogous to the roots of a polynomial of degree 2s. An outgoing
zero rest-mass field of spin s, along a null geodesic going out to infinity, can be
expressed as an expansion in powers of 1/r . This expansion is such that the part of
the field falling-off like r−k , 1 ≤ k ≤ 2s, has 2s − k of its principal null directions
aligned along the null geodesic. The notion was explored further by Newman and
Penrose [33] and by Penrose [35, 37], using the spin-coefficient formalism (now
referred to as the Newman-Penrose formalism) and the conformal method. In [37],
the conformal method is used in order to show that the peeling-off of principal null
directions is equivalent to a very simple property: the boundedness of the rescaled
field at null infinity. The question I will focus my attention on is that of the genericity
of the peeling behaviour. It is a delicate question which remained controversial for
some years. The reason for this controversy was the logarithmic divergence observed
when comparing the asymptotic structures of Minkowski and Schwarzschild space-
times. This is expected to be generic since a physically relevant asymptotically flat
spacetime ought to be a short-range perturbation of a Schwarzschild spacetime. The
questionwas however answered in the affirmative in [30, 31] by treating the Schwarz-
schild case. The key idea was to reformulate the peeling property in terms of energy
estimates instead of pointwise behaviour along outgoing null geodesics. This section
is a description of these results and of the path that led to them.

3.1 A New Approach to the Peeling

As we saw above, the peeling in its original form is equivalent to the boundedness
of the rescaled field at null infinity. It is naturally tempting to define a notion of
peeling of higher order, corresponding to higher degrees of regularity at the confor-
mal boundary. This is exactly what Penrose did when he defined k-asymptotically
simple spacetimes as a generic model for asymptotic flatness (see [38] Vol. 2). A 4-
dimensional, globally hyperbolic, Lorentzian space-time (M , g),M � R

4, is called
k asymptotically simple if there exists a globally hyperbolic Ck+1 Lorentzian mani-
fold (M̂ , ĝ) with boundary I and a scalar field � on M̂ such that:

(i) M is the interior of M̂ ;
(ii) ĝab = �2gab on M ;
(iii) � and ĝ are Ck on M̂ ;
(iv) � > 0 on M ; � = 0 and d� �= 0 on I ;
(v) every null geodesic inM acquires a future endpoint onI + and a past endpoint

on I −.
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However, when defining peeling of higher order for zero rest-mass fields, it is not
convenient to use Ck spaces to characterize their regularity at I . The reason is that
the Cauchy problem for hyperbolic equations is not well-posed in Ck spaces.

In a large portion of the litterature concerned with the peeling and particularly
its genericity, what seems to have been lacking is a precise definition of what one is
really trying to prove or disprove. For example, saying that on a given asymptotically
flat spacetime there is no peeling would not make much sense, because, unless
the asymptotic flatness is too week to even define I as a conformal boundary,
the chances are that there will always be conformally rescaled fields that extend
continuously atI ; smooth compactly supported initial data would usually guarantee
such a behaviour. Also finding examples of data for which the rescaled field does not
extend continuously at I is no proof that the asymptotic structure of the spacetime
is radically different from that ofMinkowski spacetime. Indeed, in the flat case, if we
take for the wave equation smooth initial data that are, say, exponentially increasing
at spacelike infinity, the rescaled field will not even be bounded atI . An important
information however, would be, on a given asymptotically flat spacetime, to have
data such that the associated solution does not peel, but whose regularity and decay
at spacelike infinity is enough to entail peeling in Minkowski spacetime. As we shall
see below, such a situation is however very unlikely, certainly it is not possible on
the Schwarzschild metric for the wave equation, Dirac or Maxwell fields. Here is a
precise way of addressing the question of the genericity of the peeling, or rather its
higher order version, in the form of a scheme in two steps:

Step 1. Characterize, on a given asymptotically flat spacetime, the class of data that
ensures a given regularity of the rescaled field at I .

Step 2. Compare such classes between different spacetimes, in particular, compare
them with the corresponding classes in the case of Minkowski spacetime.

It remains to decide how to measure the regularity of the rescaled field at I and
how to proceed to obtain the optimal classes of data ensuring such regularity. I shall
adopt four main guiding principles to do so.

1. Work on the compactified spacetime: formulate the peeling in terms of regu-
larity at I , not in terms of an asymptotic expansion along null directions. The
reason for this is that pointwise regularity atI can be precisely controlled, with-
out loss of information, in terms of regularity and decay of initial data. This is less
true of the asymptotic behaviour of fields described in terms of finite asymptotic
expansions, particularly when we are after a one to one correspondance between
an order of expansion and a class of data.

2. Work in a neighbourhood of spacelike infinity. Once the regularity is estab-
lished atI near spacelike infinity, it can easily be inferred further upI provided
the solution is smooth enough in the bulk. What we wish to avoid is singularities
creeping up I due to insufficient decay assumptions on the data.

3. Avoid the use of Ck spaces. The first natural idea is to consider that a field peels
at order k if the rescaled field is Ck at I . This is a perfectly valid definition
but, because of the ill-posedness of the Cauchy problem in Ck spaces, it makes
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it difficult to characterize this behaviour by a class of initial data. Instead, I will
characterize the order of peeling using Sobolev spaces whose norms are energy
fluxes and for which the Cauchy problem is naturally well-posed. The optimal
class of data for which fields peel at a given order can then be studied using
geometric energy estimates.

4. Avoid Sobolev embeddings. A common approach in the study of decay of fields
is to use integrated energy estimates and to turn them into pointwise estimates
via Sobolev embeddings: by means of geometric energy estimates, one controls
weighted Sobolev norms in the bulk, then Sobolev inequalities, by providing an
embedding of the relevant weighted Sobolev space into a weighted Ck space, give
locally uniform pointwise decay rates. The problem is that Sobolev embeddings
lose derivatives. Besides, they are valid for an open set of regularities so estimates
in fact always lose a little more derivatives than necessary. The method is there-
fore not adapted to finding the optimal class of data ensuring a certain regularity
at the conformal boundary. The solution is to define the peeling of a given order as
a Sobolev regularity of the rescaled field atI . It is precise, does not involve con-
version with loss between Sobolev and Ck regularities and allows optimal control
in terms of the regularity of the data by means of energy estimates. The kind of
estimates we will use here are not integrated estimates, but estimates between
the energy fluxes on I and on a Cauchy hypersurface. Their optimality will be
ensured by imposing that they be valid both ways. This essentially means that we
prove the equivalence of the energies on I and the Cauchy hypersurface. The
fact that we work in a neighbourhood of spacelike infinity and not on the whole
spacetime merely requires to have an added term in the estimates, corresponding
to the flux of energy leaving the neighbourhood of i0.

3.2 A First Natural Framework in the Flat Case

For a first approach, we use the complete regular conformal compactification on
Minkowski spacetime to perform global energy estimates. These estimates provide
us with a definition and characterization of the peeling at any order for the wave
equation.

Let us consider the stress energy tensor for Eq. (9)

T̃ab = ∂aφ̃∂bφ̃ − 1

2
eabe

cd∂cφ̃∂d φ̃ + 1

2
φ̃2eab . (15)

It is symmetric and divergence-free when φ̃ is a solution of (9) since

∇̃a T̃ab = (�eφ̃ + φ̃)∂bφ̃ ,
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where ∇̃ denotes the Levi-Civita connection associated with the Einstein metric e.
Hence, contracting T̃ab with theKilling vector field K = ∂τ , we have the conservation
law

∇̃a
(
KbT̃ab

)
= 0 . (16)

The vector field Ja := KbT̃ a
b is the energy current that we shall use for the estimates.

On a given oriented piecewise C1 hypersurface S, the flux of J is given by

EK ,S(φ̃) =
∫

S
Jan

a(l�dVol) ,

where la is a vector field transverse to S compatible with the orientation of S and na

a normal vector field to S such that lana = 1.
For instance, denoting Xτ = {τ } × S3 the level hypersurfaces of the function τ ,

EK ,Xτ (φ̃) = 1

2

∫

Xτ

(
(∂τ φ̃)2 +

∣
∣∣∇S3 φ̃

∣
∣∣
2 + φ̃2

)
dμS3 = 1

2

(
‖φ̃‖2H1(Xτ )

+ ‖∂τ φ̃‖2L2(Xτ )

)
.

(17)
Also, parametrizing I + as τ = π − ζ,

EK ,I +(φ̃) = 1√
2

∫

I +

(
−2∂τ φ̃ ∂ζ φ̃ + (∂τ φ̃)2 +

∣∣∣∇S3 φ̃
∣∣∣
2 + φ̃2

)
dμS3

= 1√
2

∫

I +

(∣∣∣∂τ φ̃ − ∂ζφ̃
∣∣∣
2 + 1

sin2 ζ

∣∣∣∇S2 φ̃
∣∣∣
2 + φ̃2

)
dμS3 . (18)

This is a natural H 1 norm of φ̃ on I +, involving only the tangential derivatives of
φ̃ along I +.

Now consider a smooth solution φ̃ of (9) on E. The conservation law (16) tells us
that the flux of J across the closed hypersurface made of the union of X0 andI + is
zero. Hence,

EK ,I +(φ̃) = EK ,X0(φ̃) . (19)

Moreover, since ∂τ is a Killing vector, for any k ∈ N, ∂k
τ φ̃ satisfies Eq. (9), whence

EK ,I +(∂k
τ φ̃) = EK ,X0(∂

k
τ φ̃) .

Using Eq. (9), for k = 2p, p ∈ N, we have

2EK ,X0(∂
k
τ φ̃) = ‖∂2p

τ φ̃‖2H 1(X0)
+ ‖∂2p+1

τ φ̃‖2L2(X0)

= ‖(1 − �S3)
pφ̃‖2H 1(X0)

+ ‖(1 − �S3)
p∂τ φ̃‖2L2(X0)

� ‖φ̃‖2H 2p+1(X0)
+ ‖∂τ φ̃‖2H 2p(X0)

, (20)

and for k = 2p + 1, p ∈ N,
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2EK ,X0(∂
k
τ φ̃) = ‖∂2p+1

τ φ̃‖2H 1(X0)
+ ‖∂2p+2

τ φ̃‖2L2(X0)

= ‖(1 − �S3)
p∂τ φ̃‖2H 1(X0)

+ ‖(1 − �S3)
p+1φ̃‖2L2(X0)

� ‖φ̃‖2H 2p+2(X0)
+ ‖∂τ φ̃‖2H 2p+1(X0)

. (21)

Hence, we have for each k ∈ N:

‖φ̃‖2Hk+1(X0)
+ ‖∂τ φ̃‖2Hk (X0)

� EK ,X0(∂
k
τ φ̃) = EK ,I +(∂k

τ φ̃) � ‖∂k
τ φ̃‖2H 1(I +)

and using the fact that the Hk norm controls all the lower Sobolev norms, this gives
us the apparently stronger equivalence

‖φ̃‖2Hk+1(X0)
+ ‖∂τ φ̃‖2Hk (X0)

�
k∑

p=0

‖∂ p
τ φ̃‖2H 1(I +) . (22)

Remark 3.1 In principle, this equivalence should not be understood as providing
a solution to a Goursat problem on I +. Indeed, in Lars Hörmander’s paper on
the Goursat problem for the wave equation [22], it is made very clear that such an
equivalence only provides us with a trace operator on I + that is a partial isometry.
It is then necessary to prove the surjectivity of this operator in order to solve the
Goursat problem. However, we know from the same paper that the Goursat problem
for Eq. (9) with data φ̃|I+ ∈ H 1(I +) is well posed and gives rise to solutions φ̃ ∈
C0(Rτ ; H 1(S3)) ∩ C1(Rτ ; L2(S3)). Hence (22) indeed provides uswith a regularity
result for the Goursat problem: data onI + for which the norm on the right-hand side
is finite give rise to solutions that are in Cl(Rτ ; Hk+1−l(S3)) for all 0 ≤ l ≤ k + 1.
This is however stronger than the information we are interested in.We simply extract
from (22) the fact that for smooth solutions, the control of the transverse regularity
on I + described by EI +(∂ p

τ φ̃), 0 ≤ p ≤ k, is equivalent to that of the Hk+1 norm
of the restriction of φ̃ to X0 and the Hk norm of the restriction of ∂τ φ̃ to X0. By
a standard density argument, this shows that if we wish to guarantee, by means of
some control on the initial data, that the restriction to I + of ∂ p

τ φ̃, 0 ≤ p ≤ k, is in
H 1(I +), the optimal condition to impose is that φ̃0 ∈ Hk+1(X0) and φ̃1 ∈ Hk(X0).
This is our first definition of a peeling of order k and its characterization by a function
space of initial data.

Definition 3.1 A solution φ of (8) is said to peel at order k ∈ N if the traces on
I + of ∂ p

τ φ̃, 0 ≤ p ≤ k, are in H 1(I +). The optimal function space of initial data
(φ̃0 , φ̃1) giving rise to solutions that peel at order k is Hk+1(S3) × Hk(S3).

Expressing the space of data in terms of the physical field φ using (12) gives us
the exact function space of physical data giving rise to solutions of (8) that peel at
order k.
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3.3 The “Correct” Version in the Flat Case

The previous construction is very natural but its drawback is that very few spacetimes
admit such a complete and regular compactification. As a consequence, wemay have
a valid definition of the peeling at any order in the flat case, but we will not be able to
compare with other asymptotically flat spacetimes, whose natural compactifications
are associatedwithmuchweaker conformal factors. On the Schwarzschild spacetime
for instance, we cannot hope to compactify the exterior of the black hole in as
complete a manner as Minkowski spacetime. Timelike and spacelike infinities will
be singularities of the conformal structure. The natural compactification is associated
to � = 1/r , which also has the pleasant property that we have the same symmetries
before and after rescaling. Since the conformal factors 1/r and (4) are not uniformly
equivalent at infinity in the flat case, it would not make sense to compare the peeling
on theSchwarzschildmetric constructedwith 1/r , to the version aboveonMinkowski
spacetime constructedwith (4).Wemust therefore redefine the peeling in the flat case
using 1/r as a conformal factor. Then we can perform similar constructions on the
Schwarzschild metric and compare the results. Besides, on most asymptotically flat
spacetime, it will be possible to define an analogous conformal factor that will allow
to constructI . This choice of conformal factor will therefore make the comparison
with Minkowski spacetime relatively easy for a large class of asymptotically flat
geometries.

We perform the construction on M purely for future null infinity. The analogous
construction for I − is obtained by a straightforward modification. We write the
Minkowski metric in terms of the variables u = t − r , r , and ω:

η = du2 + 2dudr − r2dω2 .

Then putting R = 1/r , we get

η̂ := R2η = R2du2 − 2dudR − dω2 . (23)

This rescaled metric extends analytically on Ru × [0,+∞[R×S2ω , which is
Minkowski spacetime minus the r = 0 coordinate line, with the added boundary
Ru × {0}R × S2ω . This boundary can easily be seen to beI

+ since for u and ω con-
stant, we move on an outgoing radial null geodesic and the boundary is reached as
r → +∞ along such lines. In the new coordinates u, R,ω, the vector field ∂u is the
timelike Killing vector field for η that used to be ∂t in the t, r,ω coordinates. It turns
out that ∂u is still Killing for the rescaled metric η̂. The scalar curvature of η̂ vanishes

1

6
Scalη̂ = R−3�ηR = 0 , (24)

so φ ∈ D′(M) satisfies (8) if and only if φ̂ := R−1φ = rφ is a solution of
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�η̂ φ̂ = 0 , �η̂ = −2∂u∂R − ∂R R
2∂R − �S2 . (25)

We work in a neighbourhood of i0 of the following form

�u0 = {(u, R,ω) ; u ≤ u0 , R ≥ 0 , t ≥ 0} ,

for u0 << −1. The boundary of �u0 is made of three parts:

I +
u0 = I + ∩ �u0 ,

�
u0
0 = �0 ∩ �u0 ,

Su0 = {u = u0} ∩ �u0 .

The usual stress-energy tensor for the wave equation

T̂ab = ∂aφ̂ ∂bφ̂ − 1

2
η̂abη̂

cd∂cφ̂ ∂d φ̂ (26)

is symmetric and divergence-free for solutions of (25) since

∇̂a T̂ab = (�η̂ φ̂)∂bφ̂ ,

where ∇̂ denotes the Levi-Civita connection associated with the metric η̂.
We need to find an analogue of ∂τ on the Einstein cylinder with which to define

an energy current: a vector field that extends smoothly at the conformal boundary as
a transverse vector field to I and that is as close as possible to being Killing. We
could simply re-express ∂τ in terms of the coordinates u, R,ω but its flow would not
be an isometry. It turns out that a modification of ∂τ by a multiple of ∂t is a Killing
vector field for η̂ and is transversal to I : it is the Morawetz vector field introduced
by Kaithleen Morawetz in 1961 [32] in order to prove decay estimates for the wave
equation on Minkowski spacetime. It is defined in terms of the variables u and v as

T = u2∂u + v2∂v, i.e. T = (t2 + r2)∂t + 2tr∂r .

and is therefore timelike everywhere on M except on the lightcone of the origin,
where it is null. It is future-oriented on M, except at the origin where it vanishes. In
terms of the variables u and R, it reads

T = u2∂u − 2(1 + uR)∂R . (27)

It extends smoothly atI + where it takes the expression u2∂u − 2∂R which is the sum
of two future-oriented null vector fields, one tangent to I and the other transverse.
Moreover, T satisfies the Killing equation for η̂:

∇̂(aT b) = 0 ,
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so we immediately get the following energy identity, for a smooth solution φ of (8)
with compactly supported initial data,

ET,I +
u0

(φ̂) + ET,Su0
(φ̂) = ET,�

u0
0

(φ̂) , (28)

where

E
T,�

u0
0

(φ̂) =
∫

�
u0
0

(
u2(∂u φ̂)2 + R2u2∂u φ̂∂R φ̂

+R2

(
(2 + uR)2

2
− (1 + uR)

)

(∂R φ̂)2 +
(
u2R2

2
+ 1 + uR

) ∣∣
∣∇S2 φ̂

∣∣
∣
2
)

dud2ω

�
∫

�
u0
0

(
u2(∂u φ̂)2 + R2(∂R φ̂)2 +

∣∣∣∇S2 φ̂
∣∣∣
2
)
dud2ω , (29)

ET,I+
u0

(φ̂) =
∫

I+
u0

(
u2(∂u φ̂)2 + |∇S2 φ̂|2

)
dud2ω , (30)

ET,Su (φ) =
∫

Su

1

2

(
(2 + uR)2(∂R φ̂)2 + u2|∇S2 φ̂|2

)
dRd2ω . (31)

The next thing towork out is how to obtain higher order estimates from (28).We could
simply commute T into the equation; since it is Killing, wewould immediately obtain
identitites similar to (28) for T k φ̂. Although this would again be a perfectly valid
definition, it would not extend naturally to other spacetimes such as Schwarzschild,
because in these spacetimes, the Killing form of T induces terms that are delicate to
handle in the higher order estimates (see [30] for details). Another vector field that
we can use is ∂R . It is a null vector field, as can be seen from (23), it is transverse to
I + and has the following expression in terms of the variables t, r (which we shall
use later on):

∂R = −r2(∂t + ∂r ) . (32)

The vector field ∂R is not Killing for η̂ but it is nonetheless easy to control the error
terms in the higher order estimates, since they merely involve polynomials in R.
Moreover, this vector field will turn out to be just as easy to use in the Schwarzschild
framework, for the same reason.UsingGronwall’s inequality,we obtain the following
estimates both ways: for each k ∈ N, there exists a positive constant Ck such that,
for any smooth solution φ̂ of (25) with compactly supported initial data,

ET,I +
u0

(∂k
Rφ̂) ≤ Ck

k∑

p=0

ET,�
u0
0

(∂
p
Rφ̂) , (33)

ET,�
u0
0

(∂k
Rφ̂) ≤ Ck

k∑

p=0

(
ET,I +

u0
(∂

p
Rφ̂) + ET,Su0

(∂
p
Rφ̂)

)
. (34)

Using the spherical symmetry, we can also add angular derivatives in the estimates
above. These higher order estimates give us a definition of the peeling at any order
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on Minkowski spacetime, that is different from the one above, but that extends to
other asymptotically flat spacetimes.

Definition 3.2 We say that a solution φ̂ of (25) peels at order k ∈ N if for all poly-
nomial P in ∂R and ∇S2 of order lower than or equal to k, we have ET,I +

u0
(Pφ̂) <

+∞. This means than for all p ∈ {0, 1, ..., k} we have for all q ∈ {0, 1, ..., p},
ET,I +

u0
(∂

q
R∇ p−q

S2 φ̂) < +∞.

In view of Estimates (33), (34) the condition on initial data that guarantees peeling
at order k is therefore that

∀p ∈ {0, 1, ..., k} , ∀q ∈ {0, 1, ..., p} , ET,�
u0
0

(∂
q
R∇ p−q

S2 φ̂) < +∞ .

This can easily be re-expressed, using the equation, purely in terms of initial data.
First, note that Equation (25) can be written in terms of the variables (t, r,ω) as

(∂t + ∂r )(∂t − ∂r )φ̂ − 1

r2
�S2 φ̂ = 0 .

Whence,

∂R

(
φ̂

∂t φ̂

)

= −r2 (∂t + ∂r )

(
φ̂

∂t φ̂

)

= −r2
(

∂r 1
∂2
r + 1

r2 �S2 ∂r

) (
φ̂

∂t φ̂

)

=: L
(

φ̂

∂t φ̂

)

.

The operator L purely involves spacelike derivatives. Now, we can express the spaces
of initial data that entail peeling at a given order.

Definition 3.3 Given φ̂0, φ̂1 ∈ C∞
0 ([−u0,+∞ [

r∗ × S2ω ), we define the following
squared norm of order k:

∥∥∥∥
∥

(
φ̂0

φ̂1

)∥∥∥∥
∥

2

k

:=
k∑

p=0

p∑

q=0

ET,�
u0
0

(

Lq∇ p−q
S2

(
φ̂0

φ̂1

))

, (35)

where we have denoted by ET,�
u0
0

(
φ̂0

φ̂1

)

the energy ET,�
u0
0

(φ̂), given in (29), where

φ̂ is replaced by φ̂0 and ∂t φ̂ = ∂uφ̂ is replaced by φ̂1.

Theorem 1 The space of initial data (on [−u0,+∞ [
r × S2ω ) for which the asso-

ciated solution peels at order k is the completion of C∞
0 ([−u0,+∞ [

r × S2ω ) ×
C∞
0 ([−u0,+∞ [

r × S2ω ) in the norm (35). The fact that we have estimates both
ways at all orders guarantees that this setting is optimal for our definition.



590 J.-P. Nicolas

3.4 Results on the Schwarzschild Metric

The Schwarzschild metric expressed in terms of Schwarzschild coordinates is

g =
(
1 − 2m

r

)
dt2 −

(
1 − 2m

r

)−1

dr2 − r2dω2

where m > 0 is the mass of the black hole and dω2 is the Euclidean metric on the
unit sphere S2. We work on the exterior of the black hole

M = Rt×]2m,+∞[r×S2ω .

The associated d’Alembertian is

�g =
(
1 − 2m

r

)−1 ∂2

∂t2
− 1

r2
∂

∂r
r2

(
1 − 2m

r

)
∂

∂r
− 1

r2
�S2 ,

where �S2 is the Laplacian on S2 endowed with the Euclidean metric. We perform
a conformal rescaling that is similar to the partial compactification of Minkowski
spacetime: we consider the variables

R = 1/r , u = t − r∗ , with r∗ = r + 2m log(r − 2m) ,

and rescale the metric g as follows

ĝ = R2g = R2(1 − 2mR)du2 − 2dudR − dω2 .

In these coordinates,
I + = {0}R × Ru × S2ω .

The scalar curvature of ĝ is given by

Scalĝ = 12mR

and the conformally invariant wave equation on the metric ĝ has the following form

(
�ĝ + 2mR

)
φ̂ = (−2∂u∂R − ∂R R

2 (1 − 2mR) ∂R − �S2 + 2mR
)
φ̂ = 0 . (36)

As in the case of flat spacetime, the two following properties are equivalent:

1. φ ∈ D′(M) satisfies �gφ = 0;
2. φ̂ := R−1φ = rφ satisfies (36) on M.
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The situation is now slightlymore complicated because Equation (36) does not admit
a conserved stress-energy tensor. We choose to use the stress-energy tensor for the
free wave equation

T̂ab = T̂(ab) = ∂aφ̂ ∂bφ̂ − 1

2
ĝabĝ

cd∂cφ̂ ∂d φ̂ , (37)

which satisfies
∇a T̂ab = �ĝ φ̂ ∂bφ̂ = −2mRφ̂ ∂bφ̂ . (38)

Then we adapt the flat spacetime Morawetz vector field to construct a timelike vec-
tor field transverse to I +: this is a classic construction (it was first introduced by
Inglese and Nicolò [24] and then used by other authors, for instance by Dafermos
and Rodnianski in [10]), one chooses a coordinate system in Minkowski spacetime,
obtains the expression of the Morawetz vector field in these coordinates, then keeps
the expression in an analogous coordinate system on the Schwarzschild spacetime.
So in a sense, there are several Morawetz vector fields onM, depending on the coor-
dinate system one chooses. The usual choice is to work with u = t − r , v = t + r ,
ω and then to transpose the expression in the coordinates u = t − r∗, v = t + r∗, ω
onM. Instead, we use the expression (27) and define on M the vector field

T := u2∂u − 2(1 + uR)∂R (39)

in the coordinate system u = t − r∗, R = 1/r , ω. This is now no longer a Killing
vector field, but its Killing form has a rather fast decay at infinity:

∇̂(aTb)dx
adxb = 4mR2(3 + uR)du2 .

Theassociated energy currentwill satisfy an approximate conservation law,with error
terms coming both from the equation and the Killing form of T . More precisely,

Ja := TbT̂
ab ; ∇̂a J

a = −2mR∇T φ̂ + ∇(aTb)T̂
ab .

Then, it simply remains to apply the method we have developed in the flat case and
to check that all error terms can be controlled via a priori estimates of Gronwall
type. The details can be found in [30] for the wave equation and [31] for Dirac and
Maxwell fields. We now express the definition of the peeling at any order on the
Schwarzschild metric and its characterization in terms of classes of initial data. As
before, we work on a domain {u ≤ u0} for u0 << −1 and we consider the energy
fluxes through the three parts of its boundary (with the same notation as in the flat
case)
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ET,�
u0
0

(φ̂) =
∫

�
u0
0

(
u2(∂uφ̂)2 + R2(1 − 2mR)u2∂uφ̂∂Rφ̂

+R2(1 − 2mR)

(
(2 + uR)2

2
− mu2R3 − (1 + uR)

)
(∂Rφ̂)2

+
(
u2R2(1 − 2mR)

2
+ 1 + uR

) ∣∣
∣∇S2 φ̂

∣∣
∣
2
)
dud2ω

�
∫

�
u0
0

(
u2(∂uφ̂)2 + R

|u| (∂Rφ̂)2 +
∣∣∣∇S2 φ̂

∣∣∣
2
)
dud2ω ,

ET,I +
u0

(φ̂) =
∫

I +
u0

(
u2(∂uφ̂)2 + |∇S2 φ̂|2

)
dud2ω ,

ET,Su (φ) =
∫

Su

1

2

((
(2 + uR)2 − 2mu2R3

)
(∂Rφ̂)2 + u2|∇S2 φ̂|2

)
dRd2ω .

We obtain Estimates (33) and (34) in the Schwarzschild framework and the spherical
symmetry once again allows us to get analogous estimates for angular derivatives.
Hence the following definition of the peeling at any order on the Schwarzschild
metric:

Definition 3.4 We say that a solution φ̂ of (36) peels at order k ∈ N if for all poly-
nomials P in ∂R and ∇S2 of order lower than or equal to k, we have ET,I +

u0
(Pφ̂) <

+∞. This means than for all p ∈ {0, 1, ..., k} we have for all q ∈ {0, 1, ..., p},
ET,I +

u0
(∂

q
R∇ p−q

S2 φ̂) < +∞. This condition can be re-expressed as the finiteness of

the following norm of the data for φ̂ at t = 0:

∥∥∥
∥∥

(
φ̂0

φ̂1

)∥∥∥
∥∥

2

k

:=
k∑

p=0

p∑

q=0

ET,�
u0
0

(

Lq∇ p−q
S2

(
φ̂0

φ̂1

))

, (40)

the operator L now reading

L = − r3

r − 2m

(
∂r∗ 1

∂2
r∗ − 2m(r−2m)

r4 + r−2m
r3 �S2 ∂r∗

)
.

Theorem 2 The space of initial data (on [−u0,+∞ [
r∗ × S2ω ) for which the asso-

ciated solution peels at order k is the completion of C∞
0 ([−u0,+∞ [

r∗ × S2ω ) ×
C∞
0 ([−u0,+∞ [

r∗ × S2ω ) in the norm (40). This is optimal for our definition.

The remaining task is to compare the characterizations of peeling at the same given
order between the flat case and the Schwarzschild case. After the care we took to
make sure that our constructions would be as close to one another as possible, it turns
out that not only is comparison between our classes of data natural, but also these
classes are almost trivially equivalent in the following sense: the classes are defined
by weighted Sobolev norms; the weights intervening in the flat and Schwarzschild
cases have equivalent behaviours at infinity when using r for the radial variable in
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M and r∗ inM.6 The essential reason for this is that the norms in the Schwarzschild
situation are uniform in the mass m of the black hole on any given bounded interval
]0, M]. The details can be found in [30, 31].

4 Conformal Scattering

Scattering theory is awayof summarizing thewhole evolution of solutions to a certain
equation by a scattering operator that, to their asymptotic behaviour in the distant
past, associates their asymptotic behaviour in the distant future. These asymptotic
behaviours are usually solutions to a simpler equation, a comparison dynamics. A
complete scattering theory will not only show the existence of a scattering operator
but will also establish that the solutions are completely and uniquely characterized
by their past (resp. future) asymptotic behaviours, which entails in particular the
invertibility of the scattering operator. Different choices of comparison dynamics
are always possible, giving different scattering operators that are not necessarily
defined on the same function spaces. Some simplified dynamics can be described
geometrically as transport equations along congruences of null geodesics defining
null infinity; the fields that they propagate then correspond to functions defined on
I . Using such comparison dynamics for scattering theories on asymptotically flat
spacetimes means that the scattering data, i.e. the large time asymptotic behaviours,
are merely radiation fields.

The idea of using a conformal compactification in order to obtain a time-dependent
scattering theory formulated in terms of radiation fields is due to Penrose. His discus-
sion of the topic in [37] clearly indicates that it was one of themainmotivations of the
conformal technique. The first actual conformal scattering theory appeared fifteen
years later in Friedlander’s founding paper [19] as a combination of Friedlander’s own
work on radiation fields [16–18] and the Lax-Phillips approach to time-dependent
scattering [26]. This first paper treated the case of the conformal wave equation. The
geometrical background was a static asymptotically flat spacetime with a fast decay
at infinity, too fast for allowing for the presence of energy when considering solu-
tions of the Einstein vacuum equations, but fast enough to ensure a smooth conformal
compactification including at spacelike and timelike infinities. The principle of the
constructionwas first to re-interpret the scattering theory as the well-posedness of the
Goursat problem for the rescaled equation at null infinity, then to solve this Goursat
problem. Friedlander’s main goal was then, it seems to me, to extend the results of
Lax and Phillips, in all their analytic precision, to a curved situation. In particular, he
wanted to recover the fundamental structure in the Lax-Phillips theory: the so-called
“translation representer” of the solution. The existence of such an object requires a
timelike Killing vector field that extends as the null generator ofI . This is probably

6In fact, the choice of r∗ in the Schwarzschild situation is not crucial for the comparison of the
asymptotic behaviour of the weights, simply because r∗ � r at infinity. This choice is however the
natural one because the radial derivatives appearing in the norms are ∂r on M and ∂r∗ on M.
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what motivated the choice of a static background, even though the conformal scatter-
ing construction itself can be performed on non stationary geometries. Friedlander’s
method was then applied to nonlinear equations, but still for static geometries, by J.
C. Baez, I. E. Segal and ZhouZ. F. in 1989–1990 [1–5]. Friedlander himself at the end
of his life came back to conformal scattering in a posthumously published note [20].
Lars Hörmander published in 1990 a short paper, in the form of a remark prompted
by [4], entitled “A remark on the characteristic Cauchy problem” [22], in which he
presented a general method for solving the initial value problem on a weakly space-
like hypersurface, for a general wave equation on spatially compact spacetimes. The
method is entirely based on energy estimates and compactness methods. Using this
approach, a conformal scattering theory on generically non stationnary backgrounds
was developed by L.J. Mason and the author [29]. Then, more recently, J. Joudioux
obtained the first result for a non linear wave equation [25] in non stationary situa-
tions. I came back to the topic a couple of years ago to propose an extension of these
methods to black hole spacetimes [34], describing the construction in the Schwarz-
schild spacetime, which is static, and discussing the case of the Kerr metric and the
associated difficulties.

This section starts by a brief description of the Lax-Phillips theory in a simplified
setting. Thenwe describe the conformal scattering construction for thewave equation
in the flat case and move on to extensions to non stationary and black hole situations.

4.1 A Simple Overview of Lax-Phillips Theory

The Lax-Phillips theory describes the scattering of a massless scalar field by an
obstacle. We present here a version of the theory without obstacle, i.e. for the free
wave equation. Spectral analysis is used to construct a translation representer of the
free wave equation, which is then re-interpreted geometrically as a radiation field.
We describe the construction of the translation representer and its geometrical rein-
terpretation. It is usual to consider that in the case of a free equation, there is no
scattering. Indeed the existence of the translation representer can be understood in
this manner. But this statement is not invariant, it merely corresponds to chosing
the equation itself as comparison dynamics. The geometrical re-interpretation of the
translation representer describes asymptotic behaviours as radiation fields. For this
choice of comparison dynamics, the scattering process is non trivial even on flat
spacetime. Moreover the resulting scattering operator can be defined geometrically
without resorting to the spectral analytic part of the Lax-Phillips theory. The con-
struction thus modified can be easily generalized to a large class of curved situations.
This will be the object of Sects. 4.2, 4.3 and 4.4.
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4.1.1 Finite-Dimensional Case

Let us first describe the essential ideas on a finite-dimensional toy model. Consider
the following equation for a time-dependent vector in C

n:

∂t V (t) = i AV (t) (41)

where A is an n × n Hermitian matrix A with n distinct eigenvalues σ1, ..., σn . Let
{e1 , ... , en} be an orthonormal basis of eigenvectors of A. The Cauchy problem for
(41) is solved by the propagator eit A, i.e. if V is a solution of (41),

V (t) = ei(t−s)AV (s) , ∀t, s ∈ R

and the matrices eit A are unitary.
Instead of considering V as an element of C

n , we represent it as a function
on the spectrum of A, which is square integrable for the natural spectral measure
μ = ∑n

i=1 δσi :
C

n → L2(R ; dμ)

V �→ Ṽ (σi ) = 〈V, ei 〉 .

This is a spectral representation in the sense that the action of A is now described
simply by multiplication by the spectral parameter:

ÃV (σ) = σṼ (σ) .

Then taking the Fourier transform,

ˆ̃V := Fσ Ṽ ,

we obtain a new representation for which the evolution is described by a simple
translation of t :

Fσ

(
ẽi t AV

)
(s) = Fσ(eitσ Ṽ )(s) = ˆ̃V (s − t) .

This is called a translation representer of the solution of (41). A similar construction
can be performed for the wave equation on Minkowski spacetime and is at the heart
of the Lax-Phillips theory.

4.1.2 The Wave Equation

We now consider the wave equation on Minkowski spacetime:

∂2
t φ − �φ = 0 . (42)
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It can be written formally as Eq. (41) in the following manner:

∂tU = i AU , U :=
(

φ
∂tφ

)
, A = −i

(
0 1
� 0

)
.

The operator A is self-adjoint onH = Ḣ 1(R3) × L2(R3), where Ḣ 1(R3) is the first-
order homogeneous Sobolev space on R

3, completion of C∞
0 (R3) in the norm

‖ψ‖2Ḣ 1(R3)
=

∫

R3
|∇ψ|2d3x .

The spectrum of A is the whole real axis and is purely absolutely continuous. In
particular the point spectrum of A is empty. The equation AU = σU for σ ∈ R,
which reads ⎧

⎨

⎩

u2 = iσu1 ,

�u1 = iσu2 ,

= −σ2u1 ,

(43)

does not have any finite energy solution, bywhichwemean a solution inH. However,
for each σ ∈ R

∗, A has a whole 2-sphere worth of generalized eigenfunctions which
are plane waves:

eσ,ω(x) =
(

e−iσx .ω

iσe−iσx .ω

)
, ω ∈ S2 .

For σ = 0, the 2-sphere collapses to a point and the only solution is

e0,ω(x) = e0(x) =
(
1
0

)
.

We now proceed exactly as in the finite dimensional case. Consider U ∈ C∞
0 (R3) ×

C∞
0 (R3), we represent it as a function on Rσ × S2ω by taking its inner product with

plane waves, suitably normalized:

Ũ (σ,ω) := 1

(2π)3/2
〈U, eσ,ω〉H

= 1

(2π)3/2

∫

R3
(∇u1∇e−iσx .ω + u2iσe−iσx .ω)d3x

= 1

(2π)3/2

∫

R3
(u1(−�e−iσx .ω) + u2iσe−iσx .ω)d3x

= 1

(2π)3/2

∫

R3
(σ2u1 − iσu2)e

iσx .ωd3x

= σ2û1(−σω) − iσû2(−σω) ,
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where “ ˆ” denotes the Fourier transform on R
3. Although the intermediate calcula-

tions do not, the final formula extends toH and themap that toU associates Ũ extends
as an isometry fromH onto L2(Rσ × S2). This provides a spectral representation of
A and its propagator:

ÃU = σŨ , ẽi t AU = eitσŨ .

Then we take the Fourier transform in σ to obtain the new representation R:

RU (r,ω) := Fσ(Ũ (.,ω))(r) .

Then just as in the finite-dimensional case,R is a translation representation; we have

R(eit AU )(r,ω) = (RU )(r − t,ω) .

This representation is of course also an isometry fromH onto L2(R × S2).
In a sense, the existence of a translation representer can be interpreted as the fact

that there is no scattering; the evolutionmerely corresponds to the translation,without
deformation, of a function representing the initial data. The Lax-Phillips theory does
not stop there however. The representation R can be expressed as follows

RU = 1

4π
(−∂2

s Ru1 + ∂s Ru2)(s,ω) ,

where R is the Radon transform R defined for f ∈ C∞
0 (R3) by

R f (s,ω) =
∫

x .ω=s
f (x)d2σ(x) .

This observation and the knowledge of the inverse Radon transform

R∗ψ(x) =
∫

S2
ψ(x .ω,ω)d2ω

give an explicit converse map toR:

Ik = 1

2π
(R∗k , − R∗∂sk) .

Lax and Phillips then use this to establish the asymptotic profile property which
essentially re-interprets the translation representer as a future radiation field:

RU (s,ω) = − lim
r→+∞ r∂tφ(r, (r + s)ω) . (44)

In addition, the fact that I is the inverse ofR gives immediately an integral formula
for the solution in terms of its translation representer



598 J.-P. Nicolas

φ(t, x) = 1

2π

∫

S2
RU (x .ω + t,ω)d2ω .

This is precisely Whittaker’s formula from 1903 [42] for the solutions to the wave
equation, which the Lax-Phillips theory allowed to reinterpret as providing the solu-
tion to the Goursat problem for the wave equation at null infinity.

Performing a similar construction for −A instead of A, we obtain new represen-
tations Ř and Ǐ which relate the solution to its past radiation field. The scattering
operator, which to the past radiation field associates the future radiation field, is then
given by

S = RǏ .

4.2 Conformal Scattering on Minkowski Spacetime

The Lax Phillips theory provides a scattering operator turning past radiation fields
into future radiation fields and which is therefore naturally understood as acting
on compactified Minkowski spacetime. However the construction leading to this
operator is entirely performed on M, not on the compactified spacetime. Besides the
techniques used require a static, or at least a stationary, background. We provide here
an alternative construction of a similar scattering operator described in terms of the
radiation field for φ instead of that for ∂tφ. Our construction is performed on the
compactified spacetime using essentially the regularity of the conformal boundary.
It follows the approach of [22] for the resolution of the Goursat problem and is done
in three main steps. We adopt the full compactification of Minkowski spacetime and
the notation of Sect. 3.2, i.e. the rescaled field is denoted φ̃.

Step 1. We define the trace operator T+ that to the data for φ̃ at τ = 0 associates
the trace of φ̃ on I +. This operator is well defined for data that extend as
smooth functions on S3, in particular for φ̃0, φ̃1 ∈ C∞

0 (R3). The image of
such data is a smooth function on I +.7

Step 2. We prove energy estimates both ways between the data and their image
through T+. In the case of Minkowski spacetime, we have a stronger result
which is the energy equality (19), saying that for φ̃0, φ̃1 ∈ C∞(S3),

EK ,I +(φ̃) = EK ,X0(φ̃) .

This implies that T+ extends as a partial isometry from H 1(S3) × L2(S3)
into H 1(I +) (see (17) and (18) for the energy norms on Xτ and I +) and
is one-to-one with closed range.

7Note that in the case of Minkowski spacetime, we could straight away consider data φ̃0, φ̃1 ∈
C∞(S3) to define T+. However, this cannot be extended to more general situations. Hence we
prefer to use a more flexible approach that is very common in scattering theory: to start with smooth
compactly supported data and extend the operators by density using uniform estimates.
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Step 3. In order to prove that the trace operator is onto, we only need to establish
that its range is dense in H 1(I +) since we already know that it is a closed
subspace of H 1(I +). This is done by solving the Goursat problem for a
dense subset of H 1(I +). We must be able to find a solution of the rescaled
equation for which we have access to the trace onI + in the strong sense and
to check that this trace is the data we started from. For the Goursat problem
onI + for the rescaled wave equation on the Einstein cylinder, this follows
from [22] for data in H 1(I +), so we prove directly the surjectivity without
resorting to the closed range property.

After these three steps, we have established that the operator T+ is an isometry from
H 1(S3) × L2(S3) onto H 1(I +). A similar construction can be performed in the
past for the trace operator T−. Then the scattering operator that maps past radiation
fields to future radiation fields8 is simply given by

S := T+(T−)−1 .

The above construction does not use any of the symmetries of Minkowski spacetime.
All it requires is a regular conformal compactification. This is in fact quite strong.
When dealing with asymptotically flat solutions to the Einstein vacuum equations,
one does not expect that the conformal metric will be smooth at i0 unless the ADM
mass is zero and the spacetime is flat. In the case of black hole spacetimes, the
situation is even worse since timelike infinities are rather strong singularities of
the conformal metric. The method needs to be modified in order to deal with these
singularities. The treatment of the difficulty at i0 can be found in [29] and a conformal
scattering on the Schwarzschild metric was developed in [34] with a way of dealing
with timelike infinities. We give in the next two subsections the essential ingredients
of the extension on the conformal scattering construction to spacetimes with singular
i0 and to black hole spacetimes.

4.3 The Case of Asymptotically Simple Spacetimes

4.3.1 Geometrical Background

We work on smooth globally hyperbolic asymptotically simple spacetimes that con-
tain energy (the ADM energy is not zero) and such that i± are regular points of the
conformal structure. The fact that the ADM energy does not vanish means in particu-
lar that the conformal structure is singular at i0.More precisely, the type of spacetimes

8Here we call radiation fields the traces of the rescaled solution at I ±. This is not quite the way
the radiation fields were defined in (13) and (14). The two notions of radiation fields only differ by
the presence of factors independent of the solution, which are the limits at I ± of the ratio of the
two conformal factors 1/r and �. We shall use in this section the more flexible definition as traces
of the rescaled field for the conformal factor we choose to work with.
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we work on are as follows: a 4-dimensional, globally hyperbolic, Lorentzian space-
time (M , g),M � R

4, such that there exists another globally hyperbolic, Lorentzian
space-time (M̂ , ĝ) and a smooth scalar function � on M̂ satisfying:

(i) M is the interior of M̂ , its boundary is the union of two points i− and i+ and a
smooth null hypersurface I , which is the disjoint union of the past light-cone
I + of i+ and of the future light-cone I − of i−;

(ii) � > 0, ĝ = �2g on M , � = 0 and d� �= 0 on ∂M ;
(iii) every inextendible null geodesic inM acquires a future endpoint onI + and a

past endpoint on I −.
Since null unparametrized geodesics are conformally invariant objects and since
from any point ofI we can find a null geodesic for ĝ that enters the spacetime,
the definition above implies thatI + (resp.I −) is the set of future (resp. past)
end-points of null geodesics. Spacelike infinity, i0, is the boundary of Cauchy
hypersurfaces in M ; it does not belong to M̂ therefore the definition remains
somewhat abstract but we shall not need to make it more precise here.
In the results that have appeared sofar (i.e. [25, 29]), the following additional
symmetry assumption was imposed:

(iv) M is diffeomorphic to Schwarzschild’s spacetime outside the domain of influ-
ence of a given compact subset K of a Cauchy hypersurface �0. In particular,
we assume that outside the domain of influence of K , � = 1/r where r is the
radial variable in the Schwarzschild coordinates.

The reason for this additional hypothesis is that (i)–(iii) do not give enough control
on the geometry of (M̂ , ĝ) near i0 to perform energy estimates in that region. In order
to gain this control, we can either impose some symmetry, or specify the decay in
spacelike and null directions of ĝ and its derivatives of order up to 2. The first solution
has the advantage of simplicity. Besides, there are large classes of solutions to the
Einstein vacuum equations whose behaviour is generically non stationary within the
domain of influence of K and which satisfy assumptions (i)–(iv) (see [6–9]).

4.3.2 Dealing with Spacelike Infinity

On the class of asymptotically simple spacetimes defined above, we adopt the same
strategy as on Minkowski spacetime in order to construct a conformal scattering the-
ory. We describe the construction towards the future. A similar one can be performed
towards the past and, put together, they provide the scattering operator. We choose a
Cauchy hypersurface �0 and denote by M̂+ the part of M̂ in the future of �0.

Step 1. We take smooth compactly supported initial data on �0: φ̂0, φ̂1 ∈ C∞
0 (�0)

and consider φ̂ ∈ C∞(M ), the associated solution of

(
�ĝ + 1

6
Scalĝ

)
φ̂ = 0 . (45)
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Fig. 3 Future of �0 in M̂ , then a 2D-cut with a choice of global timelike vector field

As a simple consequence of the finite propagation speed (which implies that
the support of φ̂ remains away from i0) and of the regularity of ĝ up to the
boundary of M̂ , φ̂ extends as a smooth function on M̂ . We can therefore
define the trace operator T+ that to data φ̂0, φ̂1 ∈ C∞

0 (�0) associates the
trace of the associated solution φ̂ on I +.

Step 2. We establish estimates both ways between the energy of the data and that of
their image through T+. First, we need to choose a timelike vector field with
which to define the energies. We use the symmetry assumption (iv). Outside
the domain of influence of K , we have a Morawetz vector field associated
to the Schwarzschild metric by the construction done in Sect. 3.3 and we
extend it as a smooth timelike vector field T a over M̂ (the decomposition
of the future of �0 into the domain of influence of K and its complement
as well as the construction of T a are shown in Fig. 3). Let us denote by S
the boundary of the future domain of influence of K inM , by I +

+ the part
of I + in the future of S and by I +

− the part of I + in the past of S .
Thanks to the regularity of the conformal metric atI + and i+, the estimates
both ways between I +

+ and K ∪ S are straightforward, simply requiring
standard Gronwall estimates. We have

ET,I ++ (φ̂) � ET,S (φ̂) + ET,K (φ̂) , (46)

the constants in the equivalence depending only on the geometry and not
on the solution considered. Outside the domain of influence of K , we have
estimates both ways between the energies onI +

− ∪ S and on�0 \ K using
the peeling results:

ET,I +− (φ̂) + ET,S (φ̂) � ET,�0\K (φ̂) . (47)

Putting (46) and (47) together, we obtain the estimates both ways between
the energies on I + and �0:

ET,I +(φ̂) � ET,�0(φ̂) . (48)
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This implies that T+ extends in a uniquemanner as a linear bounded operator

defined on the completionH�0 of C∞
0 (�0) × C∞

0 (�0) in the norm
√
ET,�0(φ̂)

with values in the completionHI + of C∞
0 (I +) in the norm

√
ET,I +(φ̂); the

resulting operator is one-to-one and has closed range. Here C∞
0 (I +) denotes

smooth functions onI + supported away from both i+ and i0. Since I + is
of dimension 3 and i+ is merely a point, assuming the functions supported
away from i+ does not impose that the elements of the completion vanish at
i+.

Step 3. In order to show that T+ is onto, we merely need to establish that its range
is dense in HI + . We do this by solving the Goursat problem from I + for
data φ̂∞ ∈ C∞

0 (I +). We know from [22] that (45) has a unique solution
φ̂ ∈ C∞(M̂+) whose restriction to I + is φ̂∞. The difficulty is to see that

(φ̂0 , φ̂1) := (φ̂|�0 , ∇T φ̂|�0) ∈ H�0 , (49)

which will then automatically entail that φ̂∞ = T+(φ̂0 , φ̂1) as well as the
density of the range of T+. The idea is to choose a spacelike hypersurface
S in M̂ , crossing I + in the past of the support of φ̂∞ (see Fig. 4). The
restrictions to S of φ̂ and∇T φ̂ are smooth and the crucial observation is that,
due to the location of S below the support of the data on I +, φ̂|S vanishes
at the boundary of S, i.e. at S ∩ I +. The energy norm on S associated with
the vector field T is equivalent to the natural H 1 × L2 norm on S for the
rescaled metric ĝ. Therefore, φ̂|S ∈ H 1

0 (S). It follows that (φ̂|S , ∇T φ̂|S)

can be approached, in the energy norm, by a pair of sequences (φ̂n
0 , φ̂n

1)

of smooth functions on S, supported away from I +. We denote by φ̂n the
solution of (45) in C∞(M̂ ) such that

φ̂n|S = φ̂n
0 , ∇T φ̂n|S = φ̂n

1 .

Since by finite propagation speed φ̂n is supported away from i0, we have
estimates both ways between the energies of φ̂n on S and on �0, uniformly
in n. The convergence of (φ̂n|S , ∇T φ̂n|S) towards (φ̂|S , ∇T φ̂|S) in the
energy norm on S together with the uniform energy estimates imply that
(φ̂n|�0 , ∇T φ̂n|�0) is a Cauchy sequence inH�0 . This entails that (φ̂0 , φ̂1) ∈
H�0 .

Therefore the trace operator T+ extends as an isomorphism fromH�0 ontoHI + .
We can construct T− in a similar manner and the scattering operator S = T+(T−)−1

is then an isomorphism from HI − onto HI + .
Compared to the case of Minkowski spacetime, the essential change is just the

loss of the regularity of the conformal metric at i0, the loss of symmetry is of no
importance for our construction. This loss of regularity at i0 is dealt with in a simple
manner using essentially the finite propagation speed.
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Fig. 4 A choice of
intermediate hypersurface S
for estimating the energy on
�0 of the solution to the
Goursat problem

4.4 Conformal Scattering on the Schwarzschild Metric

For spacetimes describing isolated black holes in an asymptotically flat universe, the
conformal compactification of the exterior is more complicated than for asymptot-
ically simple spacetimes. The singularity at i0 is the same as in the asymptotically
simple case, but now the conformalmetric is also singular at timelike infinities. This is
a much more serious difficulty than the singularity at spacelike infinity. The reason is
that finite propagation speed cannot help us here, whatever hypothesis we may make
on the supports of the data, i+ will be in their domain of influence. The crucial step is
to establish estimates both ways between the energy of the data and that of the trace
of the rescaled solution at the conformal boundary. Since the solutions propagate into
i+ and the conformal structure is singular there, the regularity of the rescaled field
at i+, which allowed to apply Stokes’s theorem for the energy current, needs to be
replaced by asymptotic information on the behaviour of the field at timelike infinity,
typically a sufficiently fast and uniform decay rate in timelike directions. Once this is
done, the rest of the construction is mostly unchanged because the behaviour of the
conformal metric at i+ has no influence on the propagation of solutions from their
future scattering data into the spacetime. We give in this subsection the essential
features of the conformal scattering theory developed on the Schwarzschild metric
in [34]. For more technical details as well as a discussion of the additional difficulties
in the case of the Kerr metric, see [34] and references therein, in particular the recent
work by Dafermos et al. [11].

When we considered the conformal compactification of the exterior of the
Schwarzschild metric in Sect. 3.4, we were only interested in constructing I + and
in working in the neighbourhood of i0. We are now attempting to develop a confor-
mal scattering theory; this requires to understand the global geometry of the exterior
of the black hole. We still perform the compactification using the simplest confor-
mal factor � = 1/r , but we look at the rescaled metric using different coordinate
systems in order to construct all the components of the boundary. Recall that the
Schwarzschild metric is given on Rt×]0,+∞[r×S2ω by
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g = Fdt2 − F−1dr2 − r2dω2 , F = 1 − 2m/r

and the change of radial variable r∗ = r + 2m log(r − 2m) maps the exterior of the
black hole Rt×]2m,+∞[r×S2ω to the domain Rt × Rr∗ × S2ω with the new expres-
sion for g

g = F(dt2 − dr2∗ ) − r2dω2 .

Using coordinates u = t − r∗, R = 1/r , ω, the rescaled metric ĝ = R2g reads

ĝ = R2(1 − 2mR)du2 − 2dudR − dω2 .

In this coordinate system, I + and the past horizon H − appear as the smooth null
hypersurfaces

I + = Ru × {0}R × S2ω , H − = Ru × {1/2m}R × S2ω .

Similarly, using the coordinates v = t + r∗, R,ω, the metric ĝ takes the form

ĝ = R2(1 − 2mR)dv2 + 2dvdR − dω2 .

Wenowhave access to past null infinityI − and to the future horizonH +, appearing
respectively as the smooth null hypersurfaces

I − = Rv × {0}R × S2ω , H + = Rv × {1/2m}R × S2ω .

At the past and future horizons, not only the rescaled metric, but also the physical
metric g, extends analytically as a non degenerate metric; H + and H − meet at a
2-sphere S2c , called the crossing sphere, at which both g and ĝ extend analytically
and are non degenerate. The construction of S2c can be done using Kruskal-Szekeres
coordinates (see for example [21] or [41]). The Penrose diagram of the compactified
exterior is given in Fig. 5. Instead of two null hypersurfaces diffeomorphic toR × S2,
the boundary of our compactified spacetime now contains four such hypersurfaces.

Remark 4.1 Note that the different components of the boundary of the rescaled
exterior of the black hole are of two quite different natures. Null infinitiesI ± on the
one hand are genuinely part of the conformal boundary of the spacetime, describing
“points at infinity.” The horizons H ± on the other hand do not describe points at
infinity for g but the finite boundary of the exterior of the black hole. They are part
of the boundary of our compactified spacetime only because we restrict our study to
the exterior of the black hole. This is justified by the fact that our scattering theory is
assumed to reflect the point of view of an observer static at infinity, whose perception
does not go beyond the horizon.
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Fig. 5 The conformal
compactification of the
exterior of the black hole

We consider the Cauchy hypersurface

�0 = {0}t × Rr∗ × S2ω .

In order to establish estimates both ways between �0 and I + ∪ H +, we proceed
in two steps.

1. For T > 0, we consider the three hypersurfaces9 (see Fig. 6)

ST =
{
(t, r∗,ω) ∈ R × R × S2 ; t = T +

√
1 + r2∗

}
, (50)

I +
T = I + ∩ {u ≤ T } =] − ∞, T ]u × {0}R × S2ω , (51)

H +
T = S2c ∪ (H + ∩ {v ≤ T }) = S2c ∪ (] − ∞, T ]v × {1/2m}R × S2ω) . (52)

We establish energy estimates both ways between �0 andH
+
T ∪ ST ∪ I +

T , uni-
formly in T > 0. We use the stress-energy tensor (37) for the wave equation (36)
associated with ĝ. We recall its conservation law (38) for φ̂ solution of (36):

∇̂a T̂ab = −2mRφ̂∇̂bφ̂ .

9We give here an explicit choice of hypersurface ST , but the only important properties that ST
needs to satisfy are that it is achronal for the rescaled metric and that �0 ∪ H +

T ∪ ST ∪ I +
T forms

a closed hypersurface (except where I + and �0 meet i0).
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Fig. 6 The main
hypersurfaces represented on
the compactified exterior

This entails that the energy current

Ĵa = KbT̂ab , K = ∂t ,

is not conserved but satisfies instead

∇̂a Ĵa = −2mRφ̂∂t φ̂ .

However, thanks to the symmetries of Schwarzschild’s spacetime, this equation
can easily be seen as the exact conservation law

∇̂a

(
Ĵ a + V a

)
= 0 , with V = mRφ̂2∂t . (53)

Since V is causal and future oriented, we still have that the flux of the modified
current J + V defines a positive definite (resp. non negative) quadratic form on
spacelike (resp. achronal) hypersurfaces. We introduce the modified energy on
an oriented hypersurface S

Ê∂t ,S =
∫

S
( Ĵa + Va)n

a(l�dVol) ,

where la is a vector field transverse to S compatible with the orientation of S and
na a normal vector field to S such that ĝ(l, n) = 1. For any T > 0, we have

Ê∂t ,�0 = Ê∂t ,I
+
T

+ Ê∂t ,H
+
T

+ Ê∂t ,ST . (54)
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2. We take T to +∞. The modified energies on H +
T and I +

T tend to Ê∂t ,H + and
Ê∂t ,I + respectively. The last thing we need in order to conclude is to show that
Ê∂t ,ST tends to zero. On the Schwarzschild metric, we know enough on the decay
of solutions to the wave equation to infer this (see Dafermos and Rodnianski
[10]). Generally for this type of approach, the expected generic decay known as
Price’s law will be sufficient to establish that Ê∂t ,ST tends to zero.

As mentioned above, the rest of the construction is essentially unchanged.

5 Concluding Remarks

We have described two approaches to asymptotic analysis making a fundamental
use of conformal compactifications. Both constructions in fact rely on a choice of
spacelike hypersurface as an intermediate tool. In the case of conformal scattering, the
Cauchy hypersurface is used to construct the trace operators T±, which play the role
of inversewave operators. The object that the theory aims to construct is the scattering
operator, mapping the past radiation field to the future radiation field. This operator is
independent of the choice of spacelike hypersurface from which the trace operators
are defined and the theory is in fact truly covariant. For our approachof the peeling, the
choice of Cauchy hypersurface is more fundamental since we study the asymptotic
properties of Cauchy data that entail a certain transverse regularity of the rescaled
solution at null infinity. However, provided we only work with asymptotically flat
Cauchy hypersurfaces, these asymptotic properties ought to be independent of the
choice of Cauchy hypersurface and in this sense the theory could also be understood
as covariant. An interesting alternative (and much more delicate) approach to the
peeling would be to characterize the transverse regularity at I + in terms of the
function space of past scattering data.
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Bernhard Riemann and His Work

Lizhen Ji

Abstract This chapter attempts to give a brief summary of the life and work of
Riemann. It tries to address the following issues: the influence of his education and
early life on his work, and a summary of his major works and an overview of his
work, and the general impact of his work through the concepts and terminology
named after him.

1 Introduction

Bernhard Riemann (1826–1866) was one of the most original mathematicians in the
history of mathematics. Though he had written only a small number of papers, he
changed the way we view and do mathematics. For example, to get a taste of his
impact, it suffices to think of several concepts named after him: Riemann surfaces,
Riemann-Roch theorem, Riemann zeta function, and Riemannian geometry.

Specifically, before Riemann, complex functions were studied on domains of the
complex plane C, and the issue of analytic continuation and the ensuing problem of
multi-valuedness were complicated. Now after the work of Riemann, the proper way
to understand a complex analytic function and its analytic continuation, in particu-
lar to understand properly an algebraic function defined by an algebraic equation,
is to consider its associated Riemann surface. One can even turn things around so
that Riemann surfaces become the more basic spaces, and holomorphic functions on
them can be viewed as maps between Riemann surfaces. (In the language of cate-
gories, Riemann surfaces become objects and holomorphicmaps becomemorphisms
between the spaces.) This thinking led to the Riemann mapping theorem, which in
turn led to the uniformization theorem for Riemann surfaces, which is one of themost
important theorems in mathematics. Consequently, geometry and analysis are now
intimately connected. Riemann proved the crucial part of Riemann’s inequality in
the Riemann-Roch Theorem. In doing this, he initiated the theory of algebraic topol-
ogy and made topology an essential part of geometric function theory and geometric
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analysis. The Riemann-Roch theorem also motivated the important index theories
for higher dimensional manifolds and algebraic varieties.

Similarly, the Riemann zeta function brought the methods of complex analysis
into analytic number theory, and it is now hard to imagine what remains if we remove
ideas of complex analysis, for example, the Riemann zeta function and generalized
Riemann zeta functions, from analytic number theory. Generalized Riemann zeta
functions include L-functions which are also crucial in algebraic number theory and
arithmetic geometry. For example, without them, it is almost impossible to formulate
the celebrated Langlands program.

In differential geometry, the idea of Riemannian metric, Riemannian connections
and their non-positive definite generalizations in the theory of relativity are indispens-
able to most people working in the subject, and higher dimensional generalizations
of the Riemannian mapping theorem can also be expressed in terms of Riemannian
geometry.

Besides his geometric and global view, Riemann’s work has several other fea-
tures. Riemann’s intuitive reasoning played a crucial role in his work. It might fall
somewhat short of a rigorous proof, but the brilliant ideas in his works are so much
clearer, because hiswork is not overly filledwith lengthy computations (though heavy
computations were important for him to gain his understanding and intuition). One
example of Riemann’s intuitive reasoning is his application of Dirichlet’s principle
to various problems such as the Riemann mapping theorem and the Riemann-Roch
theorem.

Integration between mathematics and physics runs through a large part of Rie-
mann’s work. According to Klein [8, p. 167], this integration is the source of inspi-
ration for Riemann:

he endeavored again and again to find a general mathematical formulation for the laws
underlying all natural phenomena.... these physical views are the mainspring of Riemann’s
purely mathematical investigations.

Riemann had a bigger perspective and was a better philosopher than most math-
ematicians. For example, his paper on the hypothesis which lies at the basis of
geometry contains a substantial philosophic part. Not only the intrinsic geometry is
important to him, its relation to reality, or to the real spacewe live in, is also important
to him. According to Freudenthal [4], Riemann was

one of the most profound and imaginative mathematicians of all time, he had a strong
inclination to philosophy, indeed, was a great philosopher. Had he lived and worked longer,
philosophers would acknowledge him as one of them.

Riemann was also capable of doing very extensive and heavy calculations. This
can be confirmed by some existing calculating sheets or scratching papers used
by him at the Nachlass of Riemann in the Historical Library of the University of
Göttingen. This is consistent with Riemann’s ability and joy in doing computation
when he was a young boy. Riemann resembled Gauss in the aspect of powerful
computation. Computation was crucial to Riemann, and his intuition, deep insights
and understanding might result from, but is certainly supported by, his extensive
computations.
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Besides his originality, Riemann was also broad. His work covered almost all
major subjects in mathematics. It is important and interesting to get an overview
of the work of Riemann. This task is probably beyond the ability of any single
person, though several people including Klein [8], the editor of the Russian edition
of Riemann’s Collected works, and the author of the book [9], had tried. Narasimhan
edited the 1990 edition of Riemann’s collected works [16]. In the preface, he also
summarized and commented on some of Riemann’s major works after writing “No
one person is capable of a full analysis ofRiemann’swork, its history, its development
and its influence on mathematics.”

In this book, there are several chapters devoted to summarizing and analyzing
some aspects of Riemann’s works, for example, [5, 12–14, 18]. On the other hand,
in this chapter, we want to give a brief overview of all major aspects of Riemann’s
work and life. Given the long lasting impact of Riemann on the development of
mathematics, it is worthwhile to view Riemann and his work from different perspec-
tives. This chapter should complement other chapters of this book. We also hope to
understand better, or give some explanation for, his work from the perspective of his
education and interaction with others.

2 Riemann’s Work I: His Best Known Works

As we mentioned earlier, Riemann made deep contributions to many different sub-
jects. In the opinion of most mathematicians, he is probably best known for his work
in the following four subjects:

1. Complex analysis.
2. Real analysis.
3. Riemannian geometry.
4. Number theory.

We will start with the most famous result of his work during his life time, and
then summarize some of his major results in the above four subjects.

1.a. Abelian functions and the Jacobian inversion problem.
Given what most people know about Riemann, it might be surprising to point out
that during Riemann’s life time, he first became famous and probably was best
known for his solution of the Jacobi inversion problem for Riemann surfaces (or
algebraic functions) of higher genus.1 Though this particular result of Riemann is

1As it is known, the theory of elliptic integrals motivated the theory of Abelian integrals. One basic
insight in the theory of elliptic integrals is to consider the inverse of an elliptic integral. The general
framework for Abelian integrals on a fixed compact Riemann surface is the map via integration of
holomorphic 1-forms from the group of divisors of degree 0 to the Jacobian variety of the Riemann
surface. To invert this map, we need to identify its image. One version of the Jacobi inversion
problem, as presented in most modern textbooks on Riemann surfaces, asks to prove that this map
is surjective. The full version asks, in addition, for a precise description of the inverse images of
this map.
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still important, it is probably fair to say that it is not the most noticeable achievement
of Riemann to many mathematicians today. According to Klein [8, p. 172]:

It must always be regarded as one of the greatest achievements of Jacobi that, by a sort of
inspiration, he established for these integrals a problem of inversion which furnishes single-
valued functions just as the simple inversion does in the case of the elliptic integrals. The
actual solution of this problem of inversion is the central task performed at the same time,
but by different methods, by Weierstrass and Riemann. The great memoir on the Abelian
functions in which Riemann published his theory in 1857 has always been recognized as
the most brilliant of all the achievements of his genius. Indeed, the result is here reached,
not by laborious calculations, but in the most direct way, by a proper combination of the
geometrical considerations just referred to....

The second half, which is concerned with the theta-series, is perhaps still more remarkable.
The important result is here deduced that the theta-series required for the solution of Jacobi’s
problem of inversion are not the general theta-series; and this leads to the new problem of
determining the position of the general theta-series in our theory.

This solution to the famous inversion problem of Jacobi was contained in Rie-
mann’s paper Theory of Abelian functions in 1857, which continued where his doc-
toral dissertation had left off and developed further the idea of Riemann surfaces and
their topological properties. He examined multi-valued functions as single valued
over a special Riemann surface and used these results to solve general inversion
problems which had been solved for the special case of elliptic integrals by Abel and
Jacobi.

1.b. Complex analysis and Riemann surfaces.
The title of Riemann’s thesis, “Foundations for a general theory of functions of a
complex variable”, is very appropriate, and this paper is most important to peo-
ple in complex analysis. He made systematic use of the Cauchy-Riemann equation,
explained the special feature of functions of complex variables versus real vari-
ables, introducedRiemann surfaces as the natural domains of holomorphic functions,
pointed out the right geometric meaning of such functions as conformal mappings,
the relevance of topology in analysis, and proposed the Riemann mapping theorem
and outlined a proof. If we take a moment and think of how many new concepts,
directions, perspectives Riemann introduced and approaches to understand them, it
is totally astonishing. It is hard to imagine modern mathematics without them.

Six years after his thesis, Riemann published his paper on Abelian functions,
which was instantly considered or recognized as a masterpiece, as mentioned in the
quote from Klein above. It was the result of work carried out over several years and
contained in a lecture course he gave to only three people in 1855–56, including
Dedekind. This paper also contained many groundbreaking ideas and results: for
example, Riemann’s inequality on the dimension of spaces of meromorphic func-
tions with prescribed singularities which is a crucial part of the Riemann-Roch the-
orem, basic results on Jacobian varieties and Riemann theta functions, the Riemann-
Hurwitz formula, a solution of the Jacobi inversion problem on Abelian integrals
(as mentioned at the beginning of this section), the birational geometry of algebraic
curves and the notion of moduli of Riemann surfaces (or algebraic curves).
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Most of the results which were proved and of the problems raised in this paper are
still very central in mathematics. For example, Riemann’s moduli space is arguably
the most important space in algebraic geometry. For more details about the history
and development of moduli space of Riemann surfaces, see [1, 6]. The extensive and
influential subject of index theories was motivated by the Riemann-Roch theorem,
and various index theorems can be viewed as higher dimensional generalizations of
the Riemann-Roch theorem. See the informal and historical discussions in [19] and
the references there.

It is perhaps helpful to point out that one of the main motivations for Weierstrass
to develop complex analysis was to solve the Jacobi inversion problem. According
to Klein [7, p. 263],

Weierstrass now had a life goal: Through rigorous, methodical work on power series (also
of several variables) to master the inversion problem for hyperelliptic integrals of arbitrarily
high rank, as it had been set by the divinatory Jacobi–perhaps even for the most general
Abelian integrals.

It is on this path that what is called Weierstrass’s theory of analytic functions appeared, to
to speak, as a mere by-product.

Klein continued [7, p. 264]:

when Weierstrass submitted a first treatment of general Abelian functions to the Berlin
Academy in 1857, Riemann’s paper on the same theme appeared in Crelle’s Journal, Volume
54. It contained so many unexpected, new concepts that Weierstrass withdrew his paper and
in fact published no more. It must have caused Weierstrass extraordinary agitation.

In any case, in the winter of 1859/60 he showed traces of overwork, and these were followed
in 1861 by a complete nervous breakdown, ...

The Dirichlet principle was a crucial tool in both Riemann’s thesis and his paper
on Abelian functions. But that is probably also the most famous shortcoming in Rie-
mann’s work: a non-rigorous application of Dirichlet principle. The problem can be
described as follows. It is well-known that if a functional (or function) has a lower
bound, its infimummay not be realized. Weierstrass showed that a minimizing func-
tion was not guaranteed by the Dirichlet Principle, and this made people doubtful
about Riemann’s methods, though not about his results. For example, Weierstrass
firmly believed in Riemann’s results, and asked his student Hermann Schwarz to try
to find other proofs of Riemann’s existence theorems which do not use the Dirichlet
Principle. Schwarz succeeded in 1869–70. Finally, in 1901 Hilbert mended Rie-
mann’s approach by giving the correct form of the Dirichlet Principle through the
so-called direct methods of calculus of variations. Thus, he succeeded in making
Riemann’s proofs rigorous, and at the same time, he contributed substantially to
development of the theory of the calculus of variation.

It is also important to note that the search for a rigorous proof of Riemann’s
theorems had been fruitful in other subjects too. For example, many important ideas
in algebraic geometry were discovered by Clebsch, Dedekind, Gordan, Brill and
Max Noether, Weber while they tried to reprove Riemann’s results using algebraic
methods. One striking publication is the long paper by Dedekind and Weber [2].
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2. Fourier series and Riemann integral.
In his Habilitation dissertation, the degree which would allow him to become a lec-
turer, Riemann studied the problem of the representability of functions by trigono-
metric series. To do this, he introduced the notion of Riemann integral and gave the
necessary and sufficient conditions in terms of the subset of discontinuity for a func-
tion to have an integral. This is now called the condition of Riemann integrability.

After this preparation, Riemann studied conditions on functions so that they can
be represented by a Fourier series. He wrote [15, pp. 234–235]:

The previous work on this topic served the purpose of proving the Fourier series for the
cases occurring in nature. Hence the proofs could start for an arbitrary function, and later
for the purposes of the proof one could impose arbitrary restrictions on the function, when
they did not impair the goal. For our purposes we only impose conditions necessary for the
representation of the function. Hence we must first look for necessary conditions for the
representation, and from these select sufficient conditions for the representation. While the
previous work showed: ‘If a function has this or that property then it is represented by a
Fourier series’, we must start from the converse question: If a function is represented by
a Fourier series, what are the consequences for the function, regarding the changes of its
values with a continuous change of the argument?

This paper of Riemann had a huge impact on the subject of Fourier series. (See the
book [20] for a systematic exposition of the subject, where Riemann’s work is clearly
visible.). One particular example is the Riemann-Lebesgue Lemma which appeared
in Sect. 9 of [15, p. 243]. This paper also led to the work of Cantor on the uniqueness
of the representation by trigonometric series, which in turn led to Cantor’s famous
set theory.

3. Riemannian geometry.
Though Riemann wrote only few papers on geometry, his geometric way of thinking
permeated all his work. To complete his Habilitation, Riemann had to give a trial
lecture. As it will be discussed below, Gauss picked the unexpected third topic:
On the hypotheses that lie at the foundations of geometry. There were two parts
to Riemann’s lecture. In the first part he posed the problem of how to define an
n-dimensional space and he ended up giving a definition of what today we call a
Riemannian space. One of the main points of this part of Riemann’s lecture was the
definition of the curvature tensor. The second part of Riemann’s lecture posed deep
questions about the relationship of geometry to the world we live in. For example,
he asked what the dimension of real space was and whether geometry described real
space.

As we all know, there is not a big jump from calculus of functions in two vari-
ables to calculus of functions of more variables. In some sense, Riemann’s paper on
the foundation of geometry is less original in view of Gauss’ work on the intrinsic
geometry of surfaces in space. On the other hand, besides the technical difficulties
in higher dimension, for example, arriving at the right formulation of Riemannian
curvature, Riemann changed people’s ways of thinking of spaces and geometry.
Manifolds are not necessarily sitting in some standard ambient spaces. This perspec-
tive and his emphasis on the relation between mathematical geometry and reality is
also profound. (One should note that when Riemann entered the subject, the newly
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discovered non-Euclidean geometry weighed heavily on people. Riemann changed
people’s mode of thinking of such matters.) All these aspects have had huge impact
on both mathematics and physics, in particular on the theory of general relativity of
Einstein. It is helpful to note that the philosophical nature of his lecturewas consistent
with the whole perspective of Riemann. According to Klein [7, p. 233],

I would like to direct particular attention to the beginning of paragraph 3.“My main work”
Riemann says there. Therefore he himself values his natural-philosophical speculations sig-
nificantly higher thanhis, to us classical,works on the theory of complex functions f (x + iy).

4. Riemann zeta function.
The best known open problem in mathematics now is the Riemann hypothesis con-
cerning the nontrivial zeros of Riemann zeta function. This came from his single
paper in number theory. This paper on the zeta function might seem incidental, but it
fits into his mathematics world. As a newly elected member of the Berlin Academy
of Sciences, Riemann had to report on his most recent research, and he sent a report
titled On the number of primes less than a given magnitude. This is another master-
piece of Riemann which has been a pillar of number theory since its inception and
will probably continue to be so.

Though this zeta function

ζ(s) =
∑

n≥1

1

ns
=

∏

p

(1 − p−s)−1

was considered before by Euler as a function of the real variable s ∈ R, Riemann
considered a very different question and its implication. He studied the zeta function
as a complex function of the complex variable s ∈ C rather than a real one and
brought his results in and understanding of complex analysis to bear on the problem.
In particular, he extended ζ(s) to a function of one complex variable, proved the
existence of a meromorphic continuation and found the functional equation, and
established a relation between its zeros and the distribution of prime numbers.

The Riemann zeta function is the most basic example of L-functions in number
theory (in analytic and algebraic number theory, and in arithmetic geometry), which
are crucial for many applications. For example, the basic reciprocity laws in class
field theory and the vast generalization via the Langlands program make essential
use of L-functions.

3 Riemann’s Work II: Some Little Known or Even
Unknown Works

The previous section listed four major areas of Riemann’s work, which clearly can-
not cover the broad contribution of Riemann to many subjects of mathematics and
sciences. Besides his less known work in mathematics, Riemann’s results in physics
and philosophy are probably less known to mathematicians in general.
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To complement the discussion in the previous section, we highlight in this section
some deep works of Riemann which are probably not so well-known to many math-
ematicians.

1. Riemann initiated the study of birational algebraic geometry of algebraic curves
in the paper hewrote in 1857 onAbelian functions.Many basic problems and their
solutions in algebraic geometry, for example, relations between affine varieties
and commutative algebras were considered and solved by Riemann in this paper.
See [3] for some explanation.

2. The notion of manifolds was formally defined by Weyl in his classical book on
Riemann surfaces. But Weyl was influenced by Klein’s understanding of Rie-
mann surfaces as abstract spaces rather than coverings of the complex plane or
the complex sphere, and Klein believed that Riemann had the abstract notion
of manifolds already. As pointed out before, this was one important difference
between the works of Gauss and of Riemann on geometry.

3. His paper on the propagation of waves of finite amplitude in a compressible two-
dimensional medium started the now comprehensive theory of shock waves and
the theory of hyperbolic partial differential equations.

4. After Riemann introduced and counted the number of moduli for Riemann sur-
faces, a proper definition and an understanding of moduli spaces of Riemann
surfaces (or algebraic curves) has been pursued intensively by many people. The
impact of this subject has gone much beyond the subject of complex analysis
and algebraic geometry, for example, through Teichmüller space and mapping
class groups and their applications in low dimensional geometry, topology and
geometric group theory, developed in the twentieth century.

5. One approach to understand Riemann’s moduli space is to use the period (or Jaco-
bian) map from this moduli space to the moduli space of principally polarized
Abelian varieties. One famous problem on characterizing the locus of Jacobian
varieties was often attributed to Schottky, the so-called Schottky problem. Actu-
ally, Riemann raised this question and discussed it in special caseswhen he studied
the Jacobi inversion problem via theta functions.

6. Riemann’s work on minimal surfaces is still yielding most recent new results:
every properly embeddedminimal planar domain inR3 is either aminimal surface
constructed byRiemann, a catenoid, a helicoid or a plane. (See [10, 18] for detail.)

7. Riemannmade deep contributions to electrodynamics.We quote a good summary
from [9, pp. 269–270]:

... at the dawn of the 20th century, in 1905, before the appearance of the fundamental
papers of Einstein and Plank, prominent physicists took Riemann seriously as one of
their own. This comes through with particular clarity in the articles in the second half of
the fifth volume (physics) of Encyklopädie der Mathematischen Wissenschaften. Issue
1 appeared on 16 June 1904 and was devoted to electricity. The article V. 12, by R. Reiff
and A. Sommerfeld, presented an historical account titled “The standpoint of action at
a distance. The elementary laws” (pp. 3–62)....
The subsection devoted to Gauss and Riemann begins with the words (p. 45): “While
Weber consistently championed the standpoint of action at a distance, diametrically
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opposite tendencies were put forward in his immediate milieu by his teacher Gauss and
by his student Riemann”....
the paper “Ein Beitrag zur Elektrodynamik”, presented by Riemann to the Göttingen
Society of Sciences on 10 February 58, made him a forerunner of Maxwell, and that
the “recent electron theory” had, in a certain sense, led back to Riemann’s form of a
(retarded) elementary potential.
In fact, Riemann was the first to formulate the differential equation

1

c2
∂2U

∂t2
= �U + 4πρ

for the potential U and the charge density ρ that was later deduced from Maxwell’s
theory, and to observe that his results agreed with experience if c was taken to be the
velocity of light....

The book then quoted Riemann’s own words [9, p. 270]:

I have found that the electrodynamic actions of galvanic currents can be explained
if one assumes that the action of one electrical mass on others is not instantaneous
but propagates itself towards them with constant speed (equal, within the limits of
observational errors, to that of the speed of light). Under this assumption, the differential
equation of the electrical force is the same as that for the propagation of light and radiant
heat.

It may be interesting to note that Riemann gave his talk in 1858, and his paper
was posthumously published in 1867. In the meantime, Maxwell published his
comprehensive paper titled “A dynamical theory of the electromagnetic field” in
1865. One could ask whether Maxwell might have known Riemann’s result.

4 Riemann’s Publications and his Impact

In the previous two sections, we summarized some major works of Riemann and
explained how they affected many subjects in mathematics. Surprisingly, Riemann
had only a small number of publications. In his lifetime, he published formally nine
papers. If we can also add his thesis and a report for a conference, then the list of
eleven papers is as follows:

1. Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen
complexen Grösse, (Inauguraldissertation, Göttingen, 1851).
Foundations for a general theory of functions of a complex variable, (Inaugural
dissertation, Göttingen, 1851).
In this paper, Riemann sets up the foundation of complex analysis. For example, a
holomorphic function can be characterized by theCauchy-Riemann equation and
can be viewed as a conformal map. These approaches and results of Riemann fit
well the modern points of view of differential equations and geometric function
theory. The proper domain of definition of a holomorphic function is a Riemann
surface, instead of being a domain of C. Riemann stated and outlined a proof of
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the Riemannmapping theorem, and introduced theDirichlet principle to produce
harmonic functions on domains in Riemann surfaces.

2. Ueber die Gesetze der Vertheilung von Spannungselectricität in ponderabeln
Körpern, wenn diese nicht als vollkommene Leiter oder Nichtleiter, sondern
als dem Enthalten von Spannungselectricität mit endlicher Kraft widerstrebend
betrachtet werden, (Amtlicher Bericht über die 31. Versammlung deutscher
Naturforscher und Aerzte zu Göttingen im September 1854).
About the laws of distribution of electric electricity in ponderable bodies, if these
are not considered perfect conductors or insulators, rather than may be viewed
as resisting the holding of electric charge with finite power, (Official Report on
the 31st meeting of German natural scientists and physicians to Göttingen in
September 1854)
This is a summary of Riemann’s first work in mathematical physics. Its long title
explains its contents to a certain extent. A detailed version was later published
in his collected works with the title New theory of residual charge in apparatus
for static charge.

3. Zur Theorie der Nobili’schen Farbenringe, (Annalen der Physik und Chemie,
95 (1855), 130–139).
On the theory of Nobili’s color rings, (Annals of Physics and Chemistry, 95
(1855), 130–139).
The side of Riemann as a physicist is not so well-known to mathematicians.
This paper shows clearly that Riemann was well versed in experimental physics
and used mathematics effectively to understand experiments. This paper [15,
pp. 49–50] started with the following words: “Nobili’s color rings represent a
valuable tool for the experimental study of the laws of current flow in a body
made conducting by decomposition....”

4. Beiträge zur Theorie der durch die Gauss’sche Reihe F(α, β, γ, x) darstellbaren
Functionen, (Abhandlungen der Königlichen Gesellschaft der Wissenschaften
zu Göttingen, 7 (1857), 3–32).
Contributions to the theory of represented by the Gaussian series F(α, β, γ, x)

functions, (Memoirs of the Royal Society of Sciences in Göttingen, 7 (1857),
3–32).
Hypergeometric functions are important special functions. They were studied
by Euler, Gauss and Kummer before Riemann. In this paper, Riemann brought
in a completely new perspective: the monodromy group of differential equations
with algebraic coefficients which are singular. In [15, p. 57], Riemann writes:
“In the present work I have treated these transcendental functions by a new
method, which essentially applies to any function that satisfies a linear differ-
ential equation with algebraic coeffficients. The method yields results almost
directly from the definition, that were formerly obtained only after somewhat
troublesome calculations.”
This paper is also one of the first papers where the topology has played a crucial
role.

5. Selbstanzeige: Beiträge zur Theorie der durch die Gauss’sche Reihe F(α, β,

γ, x) darstellbaren Functionen, (Göttinger Nachrichten, 1857, 6–8)
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Voluntary disclosure: contributions to the theory of represented by the Gaussian
series F(α, β, γ, x) functions, (Göttingen News, 1857, 6–8)
This paper is a short announcement of results in the previous paper. It also gave
some motivations of that paper. For example, Riemann wrote [15, p. 77]:
“This memoir deals with a class of functions which are used for solving many
of the problems of mathematical physics. The series formed from them perform
the same roles in the more difficult problems as are served in the easier ones by
the trigonometrical series, now so frequently employed, which proceed in terms
of sines and cosines of multiples of a variable.
These applications, particularly in astronomy, appear to have led Gauss—
following Euler who had already frequently concerned himself with these func-
tions because of their theoretical interest—to undertake his researches into the
series which he denoted by F(α, β, γ, x).”

6. Theorie der Abel’schen Functionen, (Journal für die reine und angewandteMath-
ematik, 54 (1857), 101–155).
Theory of Abelian functions, (Crelle’s Journal, 54 (1857), 101–155).
This is one of the most important papers written by Riemann. The reason why
this paper is titled Theory of Abelian functions is that the essential point of this
paper is to understand Abelian integrals, i.e., integrals of rational functions on
algebraic curves, which were first proposed by Abel. This paper contains many
new ideaswhich have had long lasting impact. For example, it establishes a direct
correspondence between plane algebraic curves and compact Riemann surfaces,
introduces the idea of homology groups of surfaces to produce meromorphic
functions, and proves the Riemann inequality in the Riemann-Roch theorem. It
also introduces the notion of moduli spaces of compact Riemann surfaces and
algebraic curves, and the Riemann theta function to solve the Jacobi inversion
problem. The Riemann-Hurwitz formula also appears here. It is probably less
known to people in complex analysis that this paper is also the starting point of
algebraic geometry and birational geometry of algebraic varieties.

7. Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse, (Monats-
berichte der Berliner Akademie, November 1859, 671–680).
The number of primes below a given size, (Monthly reports of the Berlin Acad-
emy, November 1859, 671–680).
This is probably the most famous paper of Riemann. It deals with the Riemann
zeta function and the distribution of prime numbers. Though this paper is con-
cerned with problems in number theory, Riemann’s work on complex analysis
is a crucial ingredient in this work.

8. Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite,
(Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen,
8 (1860), 43–65).
Concerning propagation of plane air waves of finite amplitude (Memoirs of the
Royal Society of Sciences in Göttingen, 8 (1860), 43–65).
Waves play an important role in our life. A particular type of waves, called shock
waves, which occur when the waves move faster than the local speed of sound
in the fluid. It may not be well-known to people who do not work in nonlinear
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differential equations and wave theory that Riemann was one of the originators
of theory of shock waves and he introduced some fundamental notions and
problems in this paper. See [17] for more detail and references.

9. Selbstanzeige: Ueber die Fortpflanzung ebener Luftwellen von endlicher
Schwingungsweite, (Göttinger Nachrichten, 1859, 192–197)
Voluntary disclosure: concerning propagation of plane air waves of finite ampli-
tude, (Göttingen News, 1859, 192–197)
This announcement of results of the previous paper also explains Riemann’s
perspective on differential equations. For example, he wrote [15, p. 167]:
“For the solution of linear partial differential equations, themost fruitfulmethods
have not been found by developing the general idea of the problem, but rather
from the treatment of special physical problems. In the same way, the theory of
nonlinear partial differential equations seems generally to demand a thorough
treatment of particular physical problems, taking into account all the secondary
factors. Indeed, the solution of the quite special problem that is the subject of this
work requires new methods and concepts, and leads to results that will probably
play a role in more general problems.”

10. Ein Beitrag zu den Untersuchungen über die Bewegung eines flüssigen gle-
ichartigen Ellipsoides, (Abhandlungen der Königlichen Gesellschaft der Wis-
senschaften zu Göttingen, 9 (1860), 3–36)
A contribution to the studies of the motion of a homogeneous liquid ellipsoid,
(Memoirs of the Royal Society of Sciences in Göttingen, 9 (1860), 3–36)
This paper was motivated by the problem on the shape of the earth. Due to its
rotation, the earth is not a sphere, but rather an ellipsoid. This problem was stud-
ied before by Newton, Jacobi, Dirichlet et al. The beginning of this paper [15,
p. 171] explains the paper and the problem addressed:
“Dirichlet investigated the motion of a homogeneous fluid ellipsoid, whose ele-
ments are attracted to one another by the lawof gravity.His approach is surprising
and opens a new path. The continuation of this fine research has a special appeal
for mathematicians, quite apart from the question of the form of heavenly bodies
which was the occasion for the investigation. Dirichlet himself carried through
the solution of the problem completely only in the simplest cases. For the con-
tinuation of the investigation, it is convenient to give a form of the differential
equation for the motion of a fluid body that it independent of the time-origin
chosen.”

11. Ueber das Verschwinden der Theta-Functionen, (Journal für die reine und ange-
wandte Mathematik, 65 (1866), 161–172)
About the vanishing of theta functions, (Crelle’s Journal, 65 (1866), 161–172)
This paper is a continuation of the paper 6 on Abelian functions above. Riemann
introduced his theta functions earlier. By understanding better the vanishing of
his theta functions, he used them in this paper to solve the Jacobi inversion prob-
lem.
Seven more papers of Riemann based on his manuscripts and extracts of Rie-
mann’s correspondence were posthumously published:
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12. Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe.
(Habilitationsschrift, 1854, Abhandlungen der Königlichen Gesellschaft der
Wissenschaften zu Göttingen, 13 (1868))
Concerning the representability of a function by a trigonometric series. (Habili-
tationsschrift, 1854 Memoirs of the Royal Society of Sciences in Göttingen, 13
(1868))
This paper studies the question of when periodic functions can be written as
sums of sine and cosine functions. To do this, Riemann needed to introduce the
so-called Riemann integrals and give sufficient and necessary conditions for a
function to be integrable. This is one of the long papers by Riemann. It consists
of two parts: a history of Fourier series in three periods (from Euler to Fourier,
from Fourier to Dirichlet, after Dirichlet), and then his own new work.

13. Ueber die Hypothesen, welche der Geometrie zu Grunde liegen. (Habilitation-
sschrift, 1854, Abhandlungen der Königlichen Gesellschaft der Wissenschaften
zu Göttingen, 13 (1868))
On the Hypotheses which lie at the bases of Geometry. (Habilitationsschrift,
1854 Memoirs of the Royal Society of Sciences in Göttingen, 13 (1868))
This is the famous article which set the foundation for Riemannian geometry.
Since it was the written version of an address towards the general faculty of Göt-
tingen University, it is not a technical mathematical paper, and does not contain
formulas and precise definitions. It also contains a philosophical discussion on
geometry and its applications in reality.

14. Ein Beitrag zur Elektrodynamik. (1858, Annalen der Physik und Chemie, 131
(1867), 237–243)
A contribution to electrodynamics. (1858, Annals of Physics and Chemistry, 131
(1867), 237–243).
One important conclusion in this paper is the importance of the propagation
at the speed of light. It also includes one equation in Maxewell’s systems of
equations for electromagnetism.

15. Beweis des Satzes, dass eine einwerthige mehr als 2nfach periodische Function
von n Veränderlichen unmöglich ist. (26. October 1859, Journal für die reine und
angewandte Mathematik, 71 (1870), 197–200)
A Proof of the proposition that a single-valued periodic function of n variables
cannot be more than 2n-fold periodic. (Crelle’s Journal, 71 (1870), 197–200)
The title describes the content. This is one part of a letter from Riemann to
Weierstrass on October 26, 1859.

16. Estratto di una lettera scritta in lingua Italiana il di 21 Gennaio 1864 al Sig.
Professore Enrico Betti. (Annali di Matematica, 7 (Ser. 1, 1865), 281–283)
Extract from a letter written in Italian on the day January 21, 1864 to Mr Pro-
fessor Enrico Betti. (Annals of Mathematics, 7 (Ser. 1, 1865), 281–283)
The letter starts with [15, p. 283]: “... To find the attraction due to any homo-
geneous right ellipsoidal cylinder, I consider the infinite cylinder whose points,
in rectangular Cartesian co-ordinates x, y, z are those satisfying the inequality
....”. Riemann went on to compute the partial derivatives of the potential.
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17. Ueber die Fläche vom kleinsten Inhalt bei gegebener Begrenzung. (Abhandlun-
gen der Königlichen Gesellschaft der Wissenschaften zu Göttingen, 13 (1868))
On the surface of least area with a given boundary. (Memoirs of the Royal Soci-
ety of Sciences in Göttingen, 13 (1868))
One may note that this paper on minimal surfaces was used recently in the paper
[10] to finish the classification of properly embedded noncompact, connected
and genus zerominimal surfaces inR3, which are also called properly embedded
minimal planar domains.

18. Mechanik des Ohres, (Aus Henle und Pfeuffer’s Zeitschrift für rationelle Medi-
cin, dritte Reihe. BD. 29)
Mechanics of the ear, (From Henle and Pfeuffer’s magazine for rational medi-
cine, third vol. Vol. 29)

Various editions of Riemann’s collected works contain additional papers or notes
based on his writings. The English translation of Riemann’s collected works in [15]
contains almost all the papers of Riemann in the 1892 edition of Riemann’s collected
works edited by Weber with the help of Dedekind.

Among the 11 papers published in his lifetime, the papers 1, 4, 5, 6, 7, 11 in our
list above are in mathematics, and the papers 2, 3, 8, 9, 10 are in physics.

Among the posthumously published papers, the papers 12, 13, 15, 16, 17 are in
mathematics, the paper 14 is in physics, and the paper 18 is special and belongs to
medicine.
Topics affected by Riemann’s work.

We have emphasized that Riemann contributed to many different subjects. What-
ever subject he touched, he changed the subject and people’s perspective of it. Let
us summarize a list of of topics to which Riemann made substantial contribution:

1. Analysis: integration theories and trigonometric series.
2. Functions of one complex variable.
3. The Riemann mapping theorem, uniformization theorem for Riemann surfaces

and generalizations.
4. Riemann surfaces and complex manifolds.
5. Moduli spaces of Riemann surfaces and related varieties.
6. Birational geometry of algebraic curves and varieties.
7. The Riemann-Roch theorem and index theories.
8. Topology of surfaces and the Riemann-Hurwitz formula.
9. Hypergeometric functions and generalizations.
10. The Riemann zeta functions and analytic number theory.
11. Riemannian geometry and general relativity.
12. Calculus of variations, in particular the Dirichlet principle.
13. Partial differential equations: shock waves.
14. Differential equations: the Riemann-Hilbert problem.
15. Monodromy groups and the Riemann–Hilbert correspondence.
16. Physics: electrodynamics.
17. Physics: motion of a homogeneous liquid ellipsoid.
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18. Philosophy.

The book [9] contains some overview and development of Riemann’s mathemat-
ics. It concentrates onmore classical topics and does not discussmuch ofmore recent
development.
Concepts, methods and results named after Riemann.

Given the depth of Riemann’s work, it is not surprising that many things in math-
ematics are named after Riemann:

1. The Riemann sphere.
2. Riemann surfaces.
3. Riemann’s moduli space.
4. The Cauchy-Riemann equations.
5. The tangential Cauchy-Riemann equation.
6. The tangential Cauchy-Riemann equation complex.
7. The Riemann mapping.
8. The Measurable Riemann mapping theorem.
9. Riemann’s theorem on removable singularities, or Riemann extension theorem.
10. The Riemann theta function.
11. The Riemann vanishing theorem.
12. The Riemann-Siegel theta function.
13. The Riemann bilinear relations.
14. The Riemann form.
15. The Riemann matrix.
16. The Riemann singularity theorem on the theta divisor.
17. The Riemann-Hilbert correspondence.
18. The Riemann zeta function.
19. The Riemann Xi function, a variant of the Riemann zeta function, and is defined

so as to have a particularly simple functional equation.
20. The Riemann hypothesis.
21. The generalized Riemann hypothesis.
22. The grand Riemann hypothesis.
23. The Riemann’s explicit formula, an explicit formula for the normalized prime-

counting function of prime numbers.
24. The Riemann-Siegel formula, an asymptotic formula for the error of the approx-

imate functional equation of the Riemann zeta function.
25. The Riemann-von Mangoldt formula on the distribution of the zeros of the Rie-

mann zeta function.
26. The Riemann operator in a spectral theory approach to Riemann hypothesis.
27. The Riemann hypothesis for curves over finite fields.
28. The Riemann integral.
29. Riemann integrability.
30. The Riemann sum.
31. The generalized Riemann integral.
32. The Riemann-Stieltjes integral.
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33. The Riemann multiple integral.
34. The Riemann-Lebesgue lemma.
35. The Riemann-Liouville integral.
36. The Riemann series theorem.
37. The Riemann-Hurwitz formula.
38. The Riemann-Roch theorem.
39. The arithmetic Riemann-Roch theorem.
40. The Riemann-Roch theorem for smooth manifolds.
41. The Grothendieck-Hirzebruch-Riemann-Roch theorem.
42. The Hirzebruch-Riemann-Roch theorem.
43. The Zariski-Riemann space.
44. The Riemann geometry.
45. Riemannian manifolds.
46. The Riemann curvature tensor also called Riemann tensor.
47. The Riemann-Cartan geometry.
48. The Riemannian metric.
49. The Riemannian distance.
50. The Riemannian bundle metric on vector bundles over manifolds.
51. The Riemannian connection.
52. The Riemannian volume form.
53. The Fundamental theorem of Riemannian geometry.
54. The Riemannian holonomy.
55. Riemannian submanifolds.
56. The Riemannian submersion.
57. Sub-Riemannian manifolds.
58. Pseudo-Riemannian manifolds.
59. Riemannian symmetric spaces.
60. Pseudo-Riemannian symmetric spaces.
61. The Riemannian circle in metric geometry.
62. The Riemannian-Penrose inequality.
63. The Riemann-Hilbert problem.
64. The Riemann initial value problem.
65. The Riemann’s differential equation, a generalization of the hypergeometric

differential equation.
66. The Riemann’s existence theorem on ramified coverings of a compact Riemann

surface.
67. Riemann’s minimal surface.
68. The Riemann invariant for systems of conservation equations.
69. The free Riemann gas, also called primon gas.
70. The Riemann solver, a numerical method to solve a Riemann problem.
71. The Riemann problem for initial value problems of conservation equations.
72. The Riemann-Silberstein vector, a complex vector that combines the electric

field and the magnetic field in electromagnetism.
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5 How Riemann Developed

There is no book length biography about Riemann,2 and the best and relatively short
biography about him was written by his friend Dedekind for the first edition of
Riemann’s collected works. All subsequent descriptions of Riemann’s life such as
those in the books [7, 9, 11] and the article [4] follow this biography by Dedekind.

Let us give a short summary of some of the main points of his life and educa-
tion to see how they might have affected his mathematics or made Riemann the
mathematician as we know.

Riemann was born on September 17, 1826, in a small village in the kingdom of
Hanover. At that time, his father was a local Lutheran pastor. His mother, Charlotte
Ebell, died when Riemann was 20. Riemann was the second of six children. The
family was loving and happy. Due to his sheltered upbringing, Riemann was shy and
had a fear of speaking in public. He suffered from numerous nervous breakdowns
throughout his life, and he took refuge in solitude and the world of his imagination,
where he displayed the greatest boldness and open-mindedness.

Riemann’s father acted as a teacher to his children and taught Riemann until he
was ten years old. At the age of five, Riemannwas very interested in history. But soon
after that Riemann exhibited exceptional calculation abilities. There was nothing he
liked better than to discover by himself hard problems and then solve them. On the
other hand, he was not too good with writing and expressing himself. This might
explain that Riemann had written and published relatively little later in life.

Between the age of ten and thirteen and a half, Riemann was taught by a tutor,
who gave him a solid training in arithmetic and geometry. But soon the tutor found
that Riemann surpassed him. Riemann surprised him with solutions to problems he
assigned.

In school, Riemann didwell in all subjects, but he excelled inmathematics. In high
school, his exceptional talent formathematicswas recognizedby the headmaster,who
allowed him to study mathematics texts from his own library. It is possible he lent
Riemann Legendre’s book on the theory of numbers. Riemann read the 900 page
book and understood it. This might have buried the seed of Riemann’s future work
on prime numbers.

Riemann also read Euler, and gained solid knowledge of advanced analysis and
great skill in computation and manipulative ingenuity.

In high school, Riemann also studied the Bible intensively, but he was often
distracted bymathematics. He was religious and later saw his life as a mathematician
as another way to serve God.

At the age of nineteen and a half, in the spring of 1846, Riemann enrolled at the
University of Göttingen. His father had encouraged him to study theology and so
he entered the theology faculty. At the same time, he attended some mathematics

2One explanation was given by Klein [8, p. 167]: “The outward life of Riemannmay perhaps appeal
to your sympathy; but it was too uneventful to arouse particular interest. Riemann was one of those
retiring men of learning who allow their profound thoughts to mature slowly in the seclusion of
their study.”
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lectures of Stern on numerical solution of equations, lectures on terrestrialmagnetism
by Goldschmidt, lectures of Gauss on the method of least square. Soon he found
that he could not resist the attraction of mathematics and asked his father if he could
transfer to the faculty of philosophy so that he could studymathematics. Riemannwas
always very close to his family and he would never have changed courses without his
father’s permission. Since Riemann’s parents always regarded the proper education
of their children as their main duty, his father granted his permission.

It may be thought that Riemann was in just the right place to study mathematics at
Göttingen, since Gauss was the acknowledged greatest mathematician in the world
for the past half century and was teaching there. Gauss did lecture to Riemann
but he was only giving elementary courses. It is not clear whether at this time he
recognized Riemann’s genius. Another teacher of Riemann, Moritz A. Stern did
realize Riemann’s talent and said that at this time Riemann “already sang like a
canary.”

Since Riemann had taught himself quite advanced mathematics already and felt
that he couldnot learnmuchnewmathematics inGöttingen, hemoved fromGöttingen
to Berlin University in the spring of 1847. During his time of studying there, Jacobi,
Lejeune Dirichlet, and Steiner were teaching their newest results and their struggles
in obtaining them, and hence they attracted a large number of students from all over
Germany. He also met and interacted with Eisenstein, who was regarded by Gauss
as one of the few geniuses in mathematics. They discussed how complex numbers
should be introduced into the theory of functions and held very different points:
Eisenstein emphasized the formal algorithmic approach, while Riemann emphasized
understanding holomorphic functions by the partial differential equation, which was
the basic and starting point of his thesis in 1851 on the foundation of complex analysis
of one variable.

Riemann was attracted to Dirichlet’s approach to mathematics and his style of
thinking. According to Klein [7, pp. 234–235],

Riemann was bound to Dirichlet by the strong inner sympathy of a like mode of thought.
Dirichlet loved to make things clear to himself on an intuitive level; along with this he would
give acute, logical analyses of foundational questions and would avoid long computations
as much as possible. His manner suited Riemann, who adopted it and worked according to
Dirichlet’s methods.

In 1849 Riemann returned to Göttingen, and things had changed in Göttingen.
Wilhelm Weber had returned to a chair of physics at Göttingen from Leipzig during
the time that Riemann was in Berlin, and Listing had been appointed as a professor
of physics in 1849.

Before he submitted his Ph.D. thesis, supervised by Gauss in 1851, Riemann
attended courses on experimental physics given by Weber, and joined in the Fall of
1850 the recently formed seminar on mathematical physics led by Weber, Ulrich,
Stern and Listing. He took part in the experimental work. Riemann was the assistant
to Weber for eighteen months. Listing was one of the founders of topology and
Riemann interacted with him. All these scientists had a huge impact on Riemann’s
future work.
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Due to his various interests, it was not until November 1851, at the age of 26, that
Riemann submitted his thesis, which was grounding breaking for complex analysis.
This has been proved both by the ultimate test of time and Gauss’ evaluation3:

The dissertation submitted by Herr Riemann offers convincing evidence of the author’s
thorough and penetrating investigations in those parts of the subject treated in the dissertation,
of a creative, active, truly mathematical mind, and of a gloriously fertile originality. The
presentation is perspicuous and concise and, in places, beautiful. The majority of readers
would have preferred a greater clarity of arrangement. The whole is a substantial, valuable
work, which not only satisfies the standards demanded for doctoral dissertations, but far
exceeds them.

At that time, Riemann thought that he could finish his habilitation thesis fairly
soon, but it took him two and half years to finish it. After he finished and submitted
his habilitation thesis in early December 1853, he wrote to his brother on December
28 about the trial lecture [15, p. 523]:

My work is now in a reasonable state; I handed in my habilitation thesis at the beginning of
December, and I must now propose three subjects for the trial lecture, one of which is then
chosen by the faculty. I had already prepared the first two, and I had hoped that one of these
would be chosen, but Gauss chose the third, and so I am again in something of a tight spot,
as I now have to do some more work on it.

The topic Gauss picked is on the hypothesis which lies at the foundation of
geometry. One reason is that Gauss wanted to see how the talented Riemann could
handle this difficult issue. The first two topics were associated with his investigations
on electricity which Riemann had been working on.

Riemann tried to prepare his lecture so that members of the faculty without math-
ematical training could understand it and hence suppressed all the detailed mathe-
matical computation. The lecture was well beyond Gauss’ expectations. Gauss was
completely astonished and excitedly told Weber so after Riemann’s lecture.

From the letter of Riemann to his brother, we may imagine that Riemann worked
hard on this lecture and the written notes. This is supported by the reworking and
correction on his manuscripts from his Nachlass at the University of Göttingen.

The success of the trial lecture was followed by a successful presentation on
the distribution of electricity in non-conductors at a meeting of the Association for
Scientific Research in September 1854. He wrote to his father [15, p. 526]:

The fact that I had spoken in public to this particular gathering before gave me a bit more
courage to give my lecture, but I now see that there is a vast difference between, on the one
hand, having thought about a subject for a long time and having sorted everything out, and
on the other having only just prepared the subject-matter immediately before the lecture.

This was followed by his successful first lectures which attracted a large number
of students. Then several tragedies followed. In 1855, his father and one of his

3It might be interesting to compare this with Gauss’ evaluation on Dedekind’s thesis: “The paper
submitted by Mr. Dedekind deals with problems in calculus which are by no means commonplace.
The author not only shows very good knowledge in this field but also an independence which
indicates favorable promise for his future achievements. As paper for admission to the examination
this text is fully sufficient”.
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sisters died. Near the end of 1857, his brother died and he assumed responsibility of
providing for his three sisters. In March 1858, another of his sister died.

Though Riemann’s talents were recognized right away after his thesis in 1951, it
was only in 1857 that he became an extraordinary (or associate) professor. In 1859, at
the age of 33, Riemann became a full professor and got the chair used to be occupied
by Gauss and then Dirichlet, after the death of Dirichlet in 1859.A few days later
he was elected to the Berlin Academy of Sciences. He had been proposed by three
of the Berlin mathematicians, Kummer, Borchardt and Weierstrass. Their proposal
read [11, p. 51]:

Prior to the appearance of his most recent work [Theory of Abelian functions], Riemann
was almost unknown to mathematicians. This circumstance excuses somewhat the necessity
of a more detailed examination of his works as a basis of our presentation. We considered
it our duty to turn the attention of the Academy to our colleague whom we recommend
not as a young talent which gives great hope, but rather as a fully mature and independent
investigator in our area of science, whose progress he in significant measure has promoted.

In June 1862, Riemann married Elise Koch who was a friend of his sister. They
had one daughter. In the autumn 1862, Riemann caught a heavy cold which turned
to tuberculosis. Riemann tried to fight the illness by going to the warmer climate of
Italy.

The winter of 1862–63 was spent in Sicily, and he then traveled through Italy,
spending timewithBetti and other Italianmathematicianswho had visitedGöttingen.
He returned toGöttingen in June 1863 but his health soon deteriorated and once again
he returned to Italy.Having spent fromAugust 1864 toOctober 1865 in northern Italy,
Riemann returned to Göttingen for the winter of 1865–66, then returned to Selasca
on the shores of Lake Maggiore on June 16, 1866. Riemann died on July 20, 1866
in Selasca, and was buried in Italy. According to Dedekind [15, p. 533]:

His strength declined rapidly, and he himself felt that his end was near. But even on the
day before his death, he was working quietly under a fig-tree, filled with a great joy looking
out over the beautiful landscape, on his last, and alas unfinished work. His life ended very
peacefully, without any struggle or fear of death; ... His wife had to give him bread and wine;
he gave his blessing to those he loved at home and said to her: kiss our child. She recited
the Lord’s Prayer, but he could not speak; at the words “forgive us our trespasses"his eyes
looked upwards, she felt his hand in hers grow colder, and after a few breaths his pure and
noble heart ceased to beat.

6 People Who Influenced Riemann

As we have emphasized, Riemann’s work has influenced many generations of math-
ematicians. It is interesting to see who had influenced him and in what ways. Though
Riemann is usually described as shy and keeping to himself, his interaction with oth-
ers had been crucial to his development and achievement, in spite of his originality.

1. Dirichlet. Among all teachers of Riemann, Dirichlet was the most inspiring to
Riemann. Riemann took courses in the theory of numbers and analysis with him
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in Berlin. Dirichlet’s interests in mathematical physics also influenced Riemann.
Riemann named the powerful guiding principle, the Dirichlet principle, after him.
Dirichlet was also personally close to Riemann. Indeed, in 1852, in a letter to his
father, Riemann wrote [15, p. 523]:

The other morning, Dirichlet was with me for about two hours; he gave me some notes
which I needed for my habilitation thesis, which were so comprehensive that it will
significantly lighten my work; otherwise I might have had to spend a lot of time in the
library searching for all kinds of things. He also went through my dissertation with me
and, in general, was extremely friendly towards me, which I scarcely expected because
of the great gap in standing. I have hopes that he will not forget me later.

2. Gauss. Gauss’ influence on Riemann probably did not come from his courses.
According to Klein [7, p. 233],

Quite wonderful and almost engimatic to us is Riemann’s close relation to Gauss in
his scientific ideas. He cannot have attended many lectures by the then 70 year old
Gauss, who lectured little anyway. And surely the young, shy student could not form
social relations with Gauss. Gauss taught unwillingly, had little interest in most of his
auditors, and was otherwise quite inaccessible. Nevertheless, we call Riemann a pupil
of Gauss; indeed, he is Gauss’s only true pupil, entering into his inner ideas....

The fact that Gauss picked the third topic of the trial lecture made Riemann to
work and think more about geometry, which was an extension of Gauss’ work.
Riemann’s work on prime numbers was also influenced by Gauss’ work on the
prime number theorem. They also shared many similarities: their points of view
connecting holomorphic functions with conformal maps and harmonic functions,
and their work on hypergeometric functions. Furthermore, to both of them, math-
ematics was always connected with physics.

3. Eisenstein. He was only 3 years older than Riemann but was an established math-
ematician when Riemann met him in Berlin as a student. The fact that Riemann
discussed with him and held his own different perspective about functions of one
complex variable before he developed his own theory gave Riemann confidence.
This encounter might have been very important for a shy person like Riemann.

4. Weber. Riemann contributed to both mathematics and physics, and the interaction
between these two subjects gave Riemann a lot of motivation and inspiration.
Weber contributed substantially to Riemann’s training both as an experimental
and theoretical physicist. Furthermore, according to Klein [7, p. 235], “In Weber,
Riemann found a patron and fatherly friend. Weber recognized Riemann’s genius
and drew the shy student to him.”

5. Dedekind. He was both a friend and colleague of Riemann and probably one of
the very few people with whom Riemann could chat and discuss mathematics,
and who really appreciated Riemann’s mathematics. When Riemann lectured
on his masterpiece on Abelian functions, there were only three listeners: two
students plus Dedekind. This is not surprising, given the difficulty of the subject.
Dedekind’s biography of Riemann is essentially the only reliable source about
Riemann and his life, and he was one of the first editors of Riemann’s collected
works.
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6. Jacobi. He was one of the inspiring teachers of Riemann during his stay in Berlin.
Riemann’s solution of the Jacobi inversion problem immediately established Rie-
mann as a first rate mathematician.

7. Stern. He was the first mathematics university teacher whose many lectures moti-
vated Riemann to major in mathematics. He noticed very early Riemann’s talent.

8. Listing. He came up with the name of “topology” and published in 1847 the
first book on topology titled Vorstudien zur Topologie. He probably influenced
Riemann to introduce highly original and powerful topological methods into the
theory of functions of one complex variable. According to Klein [7, p. 234],

We cannot regard this otherwise than that the Göttingen atmosphere was then saturated
with these geometric interests and exerted a compelling force on the very gifted and
receptive Riemann. How important is a man’s spiritual environment, influencing him
more strongly than the facts and concrete knowledge offered him.

9. Friedrich Herbart. He was a philosopher and education-scientist. Riemann’s phi-
losophy was greatly influenced by his teaching, even though they never met.
Herbart was born in 1776, and spent a major portion of his life in Göttingen.
He died in 1841, five years before Riemann arrived there. He led the renewed
19th-century interest in realism and is considered as one of the founders of mod-
ern scientific pedagogy. Riemann wrote essays on philosophy. His interest in this
subject is also reflected, for example, in his famous paper on the foundation of
geometry. As Riemann wrote [7, p. 233], “My main work concerns a new con-
ception of the known laws of nature.... I was led to this mainly through studying
the works of Newton, Euler, and–from another aspect–Herbart.”
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