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Abstract. Motivated by message delivery in vehicular ad hoc networks,
we study distributed data replication algorithms for information delivery
in a special completely connected network. To improve the efficiency of
data dissemination, the number of message copies that can be spread
is controlled and a distributed randomized data replication algorithm is
proposed. The key idea is to let the data carrier distribute the data dis-
semination tasks to multiple nodes to speed up the dissemination process.
We show how the network converges and prove that the network can enter
into a balanced status in a small number of stages. Most of the theoretical
results described in this paper are to study the complexity of network
convergence. Simulation results show that the proposed algorithm can
disseminate data to a specific area with low delay.

Keywords: Data replication · Randomized · Complexity of conver-
gence · VANET

1 Introduction

Vehicular ad hoc networks (VANETs) have become an important area of research
with potential applications in various domains such as safety, navigational appli-
cations, in-vehicle infotainment etc. [1]. Lots of researches have been done on
safety and comfort purposes of VANETs. Efficient data dissemination is essen-
tial for such applications, which require that data can be delivered with high
success rate and low delay. Data replication has been recognized as an effective
approach for data dissemination in VANETs [2]. Data replication enables multi-
ple copies of the same data carried by different nodes to be transmitted to most
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of the nodes in the network. Thus, useful data will be distributed to a specific
area in a quick manner [3].

Moreover, as emerging large-scale ad hoc networks are characterized by the
lack of centralized access to information and control, distributed coordination
and consensus problems are fundamental problems in ad hoc network applica-
tions [4]. Motivated by these problems, distributed algorithms are designed, in
which agents can reach consensus on a common decision or achieve a global
objective collectively [5]. The problems also arise in a number of applications
including information delivery in vehicular ad hoc networks. This paper focuses
on the randomized average consensus problem as well as studies the data repli-
cation algorithms [6].

1.1 Primary Motivations

Dynamic data replication in distributed network systems can accelerate infor-
mation spread in a specific area. However, some algorithms, such as epidemic
and gossip algorithms, could cause significant network overhead by essentially
passing around redundant information multiple times. The redundant messages
can also cause congestion issues. Aiming at the problem, this paper proposes
a data replication scheme, in which the number of message copies is bounded,
to reduce unnecessary transmissions. Data replication algorithms also improve
upon the convergence speed of message transmission by increasing the diversity
of pairwise exchanges. As load balancing is an important goal in ad hoc networks,
we hope every node in the network can carry an approximately equal number
of message copies. In this way, the data delivery and network computing burden
will be distributed among the nodes and communication can be managed in a
very quick and efficient way.

1.2 Main Contributions

To overcome the drawbacks of the data replication algorithms, we propose two
conceptions: bounded number of copies and balanced network status. In this
paper, according to the network traffic density, based on graph theory, we divide
the VANET topology into three types of graphs: linear graph, arbitrary graph
and complete graph. In this paper, we propose a distributed randomized algo-
rithm for one certain type of graph, complete graph. We measure the complexity
of convergence by the number of communication stages in a distributed comput-
ing environment. In each stage, every node is involved in at most one message
transmission. If a network can enter into a balanced status in a small number
of stages, it can improve the efficiency of message passing. Following the algo-
rithms, the paper provides mathematical analysis of the proposed randomized
algorithm. It shows how the network converges.

The rest of this paper is organized as follows. Section 2 overviews the related
work. Section 3 describes some definitions used in the paper. In Sect. 4, we pro-
pose a randomized algorithm for complete graph in VANET. Section 5 gives some
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theoretical analysis of the proposed algorithm. Section 6 presents the simulation
results. Finally, Sect. 7 concludes the paper.

2 Related Work

In this section, we give an overview of the related work. First, we review on the
data replication algorithms in vehicular network, then discuss existing studies
about randomized average consensus problem.

As broadcast is the basic mechanism of VANET communication, flooding
is the most common method in data dissemination. While it can achieve the
maximum coverage and rapid data dissemination, flooding can cause broad-
cast storm. In epidemic routing [7], two nodes exchanged the data that they
didn’t hold whenever they met. Yang et al. [8] first challenged the accuracy of
the innovative assumption that is widely adopted in delay performance analy-
sis of network-coding-based epidemic routing in delay-tolerant networks. Some
algorithms delivered data packets with control on the replication rules. Bala-
subramanian et al. [9] proposed RAPID. RAPID explicitly calculated the effect
of replication on the routing metric while considered resource constraints. To
exploit constrained network capacity with data replication, Wu et al. [10] pro-
posed a capacity-constrained replication scheme for data delivery. The authors
explored the residual network capacity for data replication and designed a dis-
tributed algorithm. [11] designed the data dissemination to a desired number of
receivers in VANET scheme, which was inspired by processor scheduling treating
roads as processors to optimize the workload assignment.

Randomized average consensus gossiping is an asynchronous protocol where a
node contacts a neighbor randomly within its connectivity radius, and exchanges
a state variable to produce a computation update. Wu and Rabbat [12] proposed
and analyzed a family of broadcast gossip algorithms for strongly connected
directed graphs, which were guaranteed to converge to the average consensus. In
[13], the authors analyzed the averaging problem under the gossip constraint for
an arbitrary network graph. [14] proved that the random consensus value was
the average of initial node measurements and that it could be made arbitrarily
close to this value in mean squared error sense under a balanced connectivity
model. Fabio and Sandro [15] allowed to reach consensus in a point which may
be different from the average of the initial states. Nedic and Liu [16] proposed
an algorithm for finite time distributed averaging in the case of a ring net-
work of agents, subject to a gossip constraint on communications. Falsone et al.
[17] investigated the properties of the weighted-averaging dynamic for consensus
problem and established new convergence rate results related to the diameters
of weakly spanning trees contained in the given graphs.

3 Definitions and Models

An ε-balanced status (See Definition 3) will be obtained after a series of average
operations. We define some concepts in this section.
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When a node carries message M and it controls at most a copies of message
M to be distributed over a network, it must have a ≥ 1, and each node with
nonzero value is at least one. The total number of message copies is bounded by
parameter n.

We need to define the concept of potential in order to analyze the number
of stages for the system to enter into a balanced status, and need the following
lemma.

Definition 1. For a set of vehicles, their connected graph is an undirected graph
G(V,E) such that each node represents a vehicle and an edge between two nodes
indicates that the corresponding vehicles are within the distance of communica-
tion. We consider G(V,E) constructed in a high traffic density, such as a parking
lot. Assume every two vehicle nodes are within each other’s communication range
under such condition. G(V,E) is treated as a Complete Graph.

Definition 2. Let M be a message. Let G(V,E) be the connected graph for a
set of vehicles. If each node i has a parameter ni to control the number of copies
of message M that i can replicate, then G(V,E) associated with ni becomes a
graph with a bounded number of message copies.

Definition 3. Let G(V,E) be a connected graph. Each node of G is assigned
a nonnegative number ni. The nodes of G are ε-balanced in the corresponding
bounded message graph if the following conditions are satisfied:

– Each node of G with ni > 0 satisfies ni ≥ 1.
– For every two nodes with ni, nj > 0, |ni − nj | ≤ ε, and
– There is no edge between nodes of values ni and nj in G, respectively, such

that ni ≥ 2 and nj = 0.

Definition 4. Let R be the set of real numbers and N be the set of nonnegative
integers. Define the following concepts:

– A real average function A(., .) is a mapping R × R → R × R, such that for
two numbers a ≤ b, A(a, b) = (a+b

2 , a+b
2 ) if a + b ≥ 2, or A(a, b) = (a, b) if

a + b < 2.
– An integer average function A(., .) is a mapping N × N → N × N such that

for two numbers a ≤ b, A(a, b) = (k, k) if a + b = 2k ≥ 2, A(a, b) = (k, k + 1)
if a + b = 2k + 1 ≥ 2, or A(a, b) = (a, b) if a + b < 2.

– For a list L : a1, a2, · · · , am of numbers, define the potential of L to be P (L) =
a2
1 + a2

2 + · · · + a2
m.

– Let A(., .) be an average function and SA(〈a, b〉) = 2(b − d)(b − c). Assume
that a1, a2, · · · , an is a list of numbers. It is transformed into another list
a′
1, a

′
2, · · · , a′

n by a series of average operations. Define its sum of product
to be S(H) =

∑
(a,b)∈H SA(a, b) = P (L) − P (L′), where H is the set of

tuples (a, b) that take average operations. It is considered as the change of the
potential after taking an average operation.
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Definition 5. A stage of communication is an average operation among a set
of independent edges in the connected graph. Pairs of nodes in the network to
exchange messages in parallel are allowed.

We use the number of stages to characterize the complexity to enter into
ε-balanced status.

4 Complete Connected Graph

We consider the case that the connected graph of a set of nodes is a complete
graph, in which every two nodes are within each other’s communication rage.
Our results show fast speed to achieve ε-balanced status by applying randomized
algorithms.

4.1 Distributed Randomized Algorithm for Complete Graph

In this section, we present a distributed randomized algorithm (see Algorithm1).
It is very simple and easy to implement in practice.

Assume each vehicle node has a value to indicate the data distribution task,
trying to achieve a general consensus in the shortest possible time. As we know,
nodes within each other’s communication range can exchange their information.
In the case of complete connected graph, there might be many vehicles in one
vehicle’s communication range. When the vehicle who carries message receives
more than one communication requests, it chooses the vehicle with the largest
gap to take average operation and computes the pairwise average, which then
becomes the new value for both nodes. It will stop iterating this pairwise aver-
aging process until the network enters into ε-balanced status.

Algorithm 1. randomized algorithm for complete graph

Input: bounded message graph G (see Definition 2).
Output: bounded message graph G′.
Let a = 1;
Stage a:

Each vehicle flip a coin;
Each vehicle with coin side 1 randomly selects a vehicle and send request;
Each vehicle with coin side 0 selects the request with the largest gap;
Take average with the selected vehicle;
Enter Stage a + 1 and let a = a + 1;

The analysis of our randomized algorithm uses the well-known Chernoff
bounds, which are described below. All proofs of this paper are self-contained
except the following famous theorems in probability theory and the existence of
a polynomial time algorithm for linear programming.
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Theorem 1 [18]. Let X1, . . . , Xn be n independent random 0-1 variables, where
Xi takes 1 with probability pi. Let X =

∑n
i=1 Xi, and μ = E[X]. Then for any

δ > 0,

1. Pr(X < (1 − δ)μ) < e− 1
2μδ2

, and
2. Pr(X > (1 + δ)μ) <

[
eδ

(1+δ)(1+δ)

]μ

.

We follow the proof of Theorem1 to make the following versions (Theorem 2,
Theorems 3, and Corollary 1) of Chernoff bounds for our algorithm analysis.

Theorem 2. Let X1, . . . , Xn be n independent random 0-1 variables, where Xi

takes 1 with probability at least p for i = 1, . . . , n. Let X =
∑n

i=1 Xi, and
μ = E[X]. Then for any δ > 0, Pr(X < (1 − δ)pn) < e− 1

2 δ2pn.

Theorem 3. Let X1, . . . , Xn be n independent random 0-1 variables, where Xi

takes 1 with probability at most p for i = 1, . . . , n. Let X =
∑n

i=1 Xi. Then for

any δ > 0, Pr(X > (1 + δ)pn) <
[

eδ

(1+δ)(1+δ)

]pn

.

Define g1(δ) = e− 1
2 δ2

and g2(δ) = eδ

(1+δ)(1+δ) . Define g(δ) = max(g1(δ), g2(δ)).
We note that g1(δ) and g2(δ) are always strictly less than 1 for all δ > 0. It is
trivial for g1(δ). For g2(δ), this can be verified by checking that the function
f(x) = (1 + x) ln(1 + x) − x is increasing and f(0) = 0. This is because f ′(x) =
ln(1 + x) which is strictly greater than 0 for all x > 0.

Corollary 1 [19]. Let X1, . . . , Xn be n independent random 0-1 variables and
X =

∑n
i=1 Xi.

(1) If Xi takes 1 with probability at most p for i = 1, . . . , n, then for any 1
3 >

ε > 0, Pr(X > pn + εn) < e− 1
3nε2 .

(2) If Xi takes 1 with probability at least p for i = 1, . . . , n, then for any ε > 0,
Pr(X < pn − εn) < e− 1

2nε2 .

5 Analysis of the Proposed Randomized Algorithm

In this section, we present a detailed analysis of the proposed randomized dis-
tributed algorithm. We will show how a list of numbers shrinks its gap after a
series of random average operations.

Lemma 1. Let r(.) be a function from S → S that r(x) generates a random
element in S. Assume that A and B are two subsets of S. Assume that |A| ≤ |B|,
and R(A) = {x : x ∈ A, r(x) ∈ B}, H(A) = {r(x) : x ∈ A, r(x) ∈ B}. Then with
a probability at most

g(ε)
|A||B|

|S| + ((1 − γ))(2γ−1)(1−ε)· |B|
|S| ·|A|,

we have

|H(A)| ≤ (1 − γ)(1 − ε) · |B|
|S| · |A|,

where γ is a constant in (0, 1). Furthermore, if |B| ≥ δ|S| for some fixed δ ∈
(0, 1), then the failure probability is at most 2(1− a)|A| for some fixed a ∈ (0, 1).
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Proof. Let m = |R(A)|. For each element in A, with probability |B|
|S| , it sends a

request to an element in B. By Chernoff bound, we have m < (1 − ε) · |B|
|S| · |A|

with a small probability

ζ1 ≤ g(ε)
|A||B|

|S| . (1)

For each x ∈ A, define r(x) to be the element that x sends.
Let γ have e(1 − γ) ≤ 1 and γ ∈ (0, 1).
Let n = |B|. The probability that |H(A)| ≤ (1 − γ)m is

ζ2 ≤
(

n

(1 − γ)m

)

· (
(1 − γ)m

n
)m (2)

≤ n(1−γ)me(1−γ)m

((1 − γ)m)(1−γ)m
· (

(1 − γ)m
n

)m (3)

≤ e(1−γ)m(
(1 − γ)m

n
)γm (4)

≤ (
e(1 − γ)m

n
)(1−γ)m(

(1 − γ)m
n

)(2γ−1)m (5)

≤ (
(1 − γ)m

n
)(2γ−1)m (6)

≤ ((1 − γ))(2γ−1)m. (7)

From above analysis, the total failure probability is at most ζ1 + ζ2 ≤
g(ε)

|A||B|
|S| + ((1 − γ))(2γ−1)(1−ε)· |B|

|S| ·|A| by inequalities (1) and (7). This proves
the lemma.

Definition 6. Let L = a1, · · · , ak be a list of real numbers. Define gap(L) to be
max1≤i,j≤k |ai − aj |.
Definition 7. Let α > 0, and K = a1, · · · , ak be a list of real numbers. Assumed
K is transformed into another list K ′ = a′

1, · · · , a′
k after a series of average

operations. If gap(K ′) ≤ (1 − α)gap(K), then K ′ is called α-shrink of K.

Definition 8. Let c, d, δ be parameters. A series of c stages is α-successful if
the gap of a list of numbers is shrinked by a factor of at least α. The failure
probability of an α shrink of the list is denoted by δ.

Lemma 2. Let c be a parameter. All stages are partitioned into multiple groups
of c stages G1, G2, · · · , Gk. Then there are k independent 0, 1 random variables
ri for each group Gi such that

1. Prob(Gi is α-successful) ≥ Prob(ri = 1)
2. Prob(ri = 1) ≥ 1 − δ.
3. Prob(there are at least t Gi to be α-successful) ≥ Prob(r1 + r2 + · · ·+ rk ≥ t).
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Proof. First, let S1, S2, ..., Sm ∈ {1, 2, · · · ,m} denote the m random numbers in
the range {1, 2, · · · ,m}. Let ai ∈ {0, 1} denote the status that whether a vehicle
is receiving or sending requests.

Then, we have the 0,1 string Wj = a1S1, a2S2, ..., amSm, which denotes an
average operation among the m vehicles.

Let Di = W1...Wz, z = O(log m). It means after O(log m) stages, the string
Di will get an α shrink. There are O(log n) stages of Di which will get an α
shrink.

Each Gi corresponds to a random sequence Di. Let T be the total number
of random paths for group Gi.

Let D1,D2, · · · ,DT be an rearrangement of all the random paths such
that D1, · · · DHi

are all α-successful sorted by lexicographic order. In the same
way, DHi+1+1, · · · ,DT are also sorted by lexicographic order. For each random
sequence Di to be α-successful, make it correspond to an integer in [1, T ]. Assume
that Gi is α-successful for Hi random paths with Hi ≥ T · (1 − δ). Without loss
of generality, each α-successful sequence corresponds to a unique integer in the
range [1,Hi]. Then Gi is α-successful if and only if ri is an event with a random
number si in [1, T ] with s ≤ T · (1 − δ).

It is proved by an induction on the number of groups k. It is trivial for the case
k = 1. Assume that it is true for k. Consider the case k + 1. For each random
sequence D1D2 · · · Dk, we consider the extension D1D2 · · · DkD for a random
sequence D for Gk+1. The number of cases of D that Gk+1 is α-successful for
D random paths is Hk+1 ≥ T · (1 − δ). Then Gk+1 is α-successful if and only if
rk+1 is an event with a random number sk+1 in [1, T ] with sk+1 ≤ T · (1 − δ).

6 Performance Evaluation

In this section, we first introduce the simulation environment, then present
the compared algorithms, performance metrics and finally give the simulation
results.

6.1 Simulation Setup

To evaluate the performance of the proposed algorithm, we have conducted
extensive simulations. In simulation, the following default settings are used.
Compromised to the complexity of simulations, we select a bounded 3 km*4 km
regional area for our simulations. Each road segment has two lanes with the bidi-
rectional traffic. For each simulation run, different number of vehicle nodes are
involved in the message delivery. The number varies from 100 to 500. The mobil-
ity of vehicles is generated by VANET-Mobisim [20], in which the destination of
each transmission is randomly selected. The coverage of V2V communications
is set to be 300 m. Transmission frame duration is set as 1ms. The number of
allowed maximum data copies varies from 200 to 800.
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6.2 Compared Algorithms

We compare the proposed algorithm with the following data dissemination
algorithms.

– Epidemic: It is flooding-based in nature, as nodes continuously replicate and
transmit messages to newly discovered relays that do not possess a data copy.

– Randomized flooding or Gossiping (random-flood): Similar to epidemic rout-
ing, but a message only gets copied with some probability.

– Bounded copied in arbitrary graph (arbitrary): Vehicles randomly choose the
vehicle to take average.

– Bounded copied in linear graph (linear): Vehicles randomly choose the vehicle
to take average.

– Bounded copied in complete graph (randomized): A vehicle randomly selects
another vehicle within its communication range and sends request. The vehi-
cle selects the request with the largest gap among all the requests it has
received.

6.3 Performance Metrics

We choose the total number of average operations as a measure of overhead and
choose the dissemination delay and the actual number of vehicles reached as
measures of effectiveness.

The following performance metrics will be taken into account for purpose of
algorithms evaluation in the simulation experiments.

Number of stages: Average operations that characterize the complexity to enter
into a balanced status among a set of nodes whose communication are based on
their connected graph.

Dissemination delay: It denotes the average time between the sending and receiv-
ing times for packets received. In this paper, it indicates the time for the network
to enter into a balanced status.

6.4 Simulation Results

In this section, we will evaluate the effect of the number and velocity of vehicles
on the performance of different algorithms.

(1) The effect of the number of vehicles on routing performance

Figures 1 and 2 respectively depict the number of stages and dissemination delay
as the number of vehicles changes from 100 to 500. As is evident by these fig-
ures, the distributed randomized algorithm performs significantly fewer trans-
missions than other compared algorithms. Assume that traffic loads are low with
enough network capacity, in terms of dissemination delay, as epidemic has close-
to-optimal delays under these conditions, the proposed distributed randomized
algorithm manages to achieve delays that are quite close to those of flooding-
based schemes. Meanwhile, if traffic starts increasing, it actually outperforms all
schemes in terms of delay.
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(2) Effect of different velocities on the performance of different algorithms

As the number of message copies varies from 800 to 200, Figs. 3 and 4 compare
the number of communication stage and dissemination delay of all the compared
algorithms.

As can be seen from Fig. 3, when the number of allowed maximum copies
decreases all the way from 800 to 200, the averaging time for the network to enter
into a balanced status decreases in all the compared algorithms. It is obvious
that the proposed randomized algorithm consumes fewer communications than
other algorithms. Figure 4 shows that proposed randomized algorithm performs
better dissemination delay when there are more message copies in the network.

Fig. 1. Stages VS. number of nodes Fig. 2. Delay VS. number of nodes

Fig. 3. Stages VS. number of copies Fig. 4. Delay VS. number of copies

7 Conclusion

To facilitate message delivery in ad hoc networks, we study distributed data
replication algorithms in a connected network. We use graph theory to describe
network topology, then propose a distributed randomized data replication algo-
rithm for complete graph. We show how the network converges after a series of
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random average operations. Most of the results in the paper are to study the
network convergence speed. Extensive simulations show that the performance of
the proposed algorithm is superior to the other approaches.

Acknowledgements. The authors are very grateful to the anonymous reviewers for
their helpful comments on an earlier version of this paper.
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