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Abstract  Knowledge of the vastness of microbial diversity associated with plants 
is still limited. Plant microbiome structure and functions are shaped by several fac-
tors, including host genotype and developmental stage, the presence or absence of 
diseases, and environmental conditions. These factors may lead to distinct microbial 
communities in the rhizosphere, endosphere, and phyllosphere. Studies directed to 
microbial interactions in plant compartments are fundamental for understanding the 
microbial ecology of phytobiomes, enabling the development of microbiome-based 
technologies in the search for sustainable agriculture. In this chapter, we describe 
plant compartments, i.e., the rhizosphere, phyllosphere and endosphere, and the 
more common bacterial composition of each compartment. We also discuss manip-
ulation of the plant microbiome toward improved plant health. Advances in this 
field will lead to strategies where the manipulation of the plant microbiome will 
allow the reduction of pesticide and fertilizer use in field crops, paving the way to a 
more sustainable agriculture.

�Introduction

The concept of the microbiome was described for the first time as the "ecological 
community of commensal microorganisms, symbionts or pathogens, which literally 
occupy a space in our body" [1]. Recently, this term has been used for different 
environments inhabited by microorganisms [2–4]. This term has also been used in 
the plant context as "an environment, which consists of the plant and all microbes 
associated with it" [3].

The relationship between plants and their surroundings, especially those plant-
microbe interactions with a beneficial output, has been the center of attention of 
various studies [5]. Traditionally, many researchers have tried to understand these 
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interactions, looking to individual plant-microbe relationships, i.e., a one vs. one 
approach, but these interactions are much more complex, as they involve a vast 
diversity of microbes and environmental factors [6].

Plant, soil, soil-borne microbes, and environmental factors together influence the 
various changes that cooperate to create plant health and productivity. Recent 
advances in “-omics” research have shed light on microbiome compositions and 
interactions with the environment [7]. These advances have contributed to the devel-
opment of novel approaches that seek to improve plant fitness through the artificial 
selection of microbes with specific effects on host performance. The selection of 
microbial communities occurs indirectly through host traits that have coevolved 
together with the microorganisms and influence the microbiomes [8].

In this chapter, firstly, we define each plant compartment, i.e., the rhizosphere, 
phyllosphere, and endosphere, and within each compartment we describe “who” is 
there (microbiome structure), “what” they are doing (microbiome functions), and 
what are the major drivers shaping the assembly of the microbiome. Finally, we 
discuss the advances in microbiome manipulation and the possibilities of using such 
manipulation to improve and optimize crop productivity.

�The Rhizosphere Ecosystem

The term rhizosphere was coined by the soil bacteriologist Lorenz Hiltner in 1904 
[9]. This term is derived from the Greek word rhiza (root) and the Latin word 
sphaera (sphere), referring to an environment or compartment that encloses the 
inhabited “microbial world” on the plant roots. The rhizosphere is the narrow zone 
of soil surrounding the root system where plants and microorganisms interact [10–14] 
(Fig. 1) and it is characterized by a chemical, biological, and physical gradient that 
changes radially and longitudinally along the roots [15].

The idea of microbial colonization of the rhizosphere seems to be supported by 
the niche theory of species diversity, which is driven by various abiotic and biotic 
factors, such as plant genotype and soil [5, 13, 16–19]. Changes in the rhizosphere 
microbial community begin when the soil microbiota is exposed to rhizodeposits, 
which are influenced by the plant genotype, including glucose, amino acids, organic 
acids, polysaccharides, and proteins [10, 13]. Rhizodeposition increases the micro-
bial populations in the rhizosphere, known as the “rhizosphere effect” [11–13, 16]. 
Later, the plant genotype selects and assembles a closely associated microbial com-
munity in the rhizoplane and within the plant roots [13, 16, 20]. It has been hypoth-
esized that each plant species selects specific microbial populations as a result of the 
high degree of host specificity in the coevolution of plants and microbes [5, 13, 21].

Plants release exudates into their direct surroundings to attract, stimulate, or 
repel microorganisms on the roots. The amount and composition of the rhizode-
posits, which structure and modulate the rhizosphere microbial community 
throughout the plant life cycle, may vary among different plant species [22] and 
throughout their growth [23], as well as in different stages of root development [5]. 
Microbial succession starts with the release of carbon from seeds during the 
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germination stage, and microorganisms in the rhizosphere are distributed accord-
ing to root type and zones, as well as according to their movement through the soil 
during root growth [13]. In the early stages of plant development (seedlings), alco-
hol and sugars are released, while in the later stages, amino acids and phenolic 
compounds predominate [23]. This phenomenon suggests the attraction of a large 
diversity of microorganisms in the early stages of plant development, while later 
the release of specific substrates selects certain microorganisms in the rhizosphere 
[5, 21, 23].

The number of microorganisms in the rhizosphere is higher than that in bulk soil, 
due to the carbon availability in the rhizosphere. Generally, gram-negative bacteria 
are stimulated by rhizodeposition, whereas gram-positive bacteria are inhibited [10]. 
Proteobacteria (α, β, γ), Firmicutes, Actinobacteria, Bacteroidetes, Crenarchaeota, 
Acidobacteria, Ascomycota, and Glomeromycota, and also unclassified bacteria, 
represent relatively large groups detected in the rhizosphere [5, 12, 13] (Fig. 1).

Fig. 1  Schematic representation of plant microbiome compartments and frequency of studies 
describing bacterial phyla in each compartment, i.e., phyllosphere, endosphere, and rhizosphere. 
Each pie graph shows the frequency of studies reporting bacterial phyla per plant compartment. 
For example, 18% of 15 studies on the phyllosphere detected Actinobacteria in the bacterial com-
munity. Seventy-one studies were surveyed, 15 for the phyllosphere, 29 for the endosphere, and 27 
for the rhizosphere. Searches were performed in the Scopus database between February 03, 2016 
and March 15, 2016. The search used a combination of words describing plant compartments 
(“rhizosphere”, “phyllosphere”, “endophytic”, “endosphere”) and investigative techniques 
(“sequencing”, “metagenomic”, “next-generation sequencing”). Studies using cultivation-
dependent approaches were not included in the survey. Phyla cited in only one manuscript were 
included in the “Others” category
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The microorganisms found in the rhizosphere can have beneficial or deleterious 
effects on the growth and health of the plant [13]. The beneficial microbes, among 
others, include mycorrhizal fungi and rhizobia, which provide phosphorus and 
nitrogen; siderophore-producing bacteria, which facilitate iron acquisition; and 
plant-growth-promoting rhizobacteria (PGPR), which promote plant growth [12, 
14, 24]. PGPR can suppress disease by mechanisms such as competition for nutri-
ents and microsites, parasitism and antibiosis, or by inducing systemic resistance to 
pathogens in the plant [13]. There are some examples of microorganisms that pro-
mote plant adaptation to abiotic stresses such as drought, flooding, saline stress, 
temperature or pH extremes, and high concentrations of toxic compounds, and these 
cases reveal complex associations of microorganisms with plants as a result of 
coevolution in their native habitats [13, 25]. Biotic stress includes the presence of 
phytopathogenic microorganisms such as nematodes, fungi, and oomycetes, which 
have agronomic importance because they reduce the yields of food, feed, fiber, and 
fuel crops [12].

Given that root exudates are strongly linked to the recruitment of the microor-
ganisms that comprise the rhizosphere microbial community, it can be seen that the 
rhizosphere is closely involved with plant health and growth; therefore, the under-
standing of rhizosphere functioning and ecology is key to increasing crop yield.

�The Phyllosphere

The second compartment of the plant microbiome is the phyllosphere, or aerial 
plant surface, which is characterized as being nutrient poor when compared with the 
rhizosphere [26]. The phyllosphere is composed of microbial cells that are able to 
colonize the aerial plant surfaces [27, 28] that are dominated by the leaves, although 
the term phyllosphere can be used for any aerial part of the plant [29] (Fig. 1).

The microbial habitat on the surfaces of leaves may be one of the largest micro-
bial habitats on earth, with the terrestrial leaf surface area estimated to exceed 
108 km2 globally [30]. The phyllosphere microbiome is composed of viruses, bacte-
ria, filamentous fungi, yeasts, algae, and, occasionally, protozoa and nematodes 
[26]. Bacteria are the most abundant of the cellular organisms in the phyllosphere 
community, present in numbers between 106 and 107 cells cm−2 of leaf tissue [26, 
29]. Fungi and archaea are apparently less abundant; however, their population has 
not been estimated yet [26, 30, 31].

Overall, species richness in phyllosphere communities is high [32]; however, 
the bacterial community diversity is lower than the diversity of the communities 
in the rhizosphere or bulk soil [31, 33]. Advances in sequencing technologies have 
vastly expanded our understanding of plant microbiome structure, including that 
in the phyllosphere [34]. At the phylum level, the phyllosphere bacterial com-
munities are composed mainly of Actinobacteria, Bacteroidetes, Firmicutes, and 
Proteobacteria [35], with a predominance of the classes Alphaproteobacteria and 
Gammaproteobacteria [36, 37] (Fig. 1). Further analysis of community composition 
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at the genus level suggests that Pseudomonas, Sphingomonas, Methylobacterium, 
Bacillus, Massilia, Arthrobacter, and Pantoea are consistently found as part of the 
phyllosphere microbiome across a wide range of plant species [35].

The colonization of plant leaf surfaces, in large part, occurs through the immi-
gration of bacteria, fungi, and other microorganisms from air, soil, water, seeds, or 
through animal sources [29]. Furthermore, studies have shown that some of these 
microorganisms of the foliar microbiome can be transferred not only through envi-
ronmental exchange, but also vertically, through generations of plants [38]. 
Neighboring environmental ecosystems can also randomly contribute to the assem-
bly of the foliar microbiome [39]. Even after the stabilization of phyllosphere 
microbial communities, variations may occur, caused by nutritional heterogeneity 
in different regions on the leaf surface, where the carbon sources (e.g., glucose, 
fructose, and sucrose) are spatially heterogeneous, leading to distinct microbial 
assemblages on the leaf veins, which are regions near the stomata and surface 
appendages [26, 29]. Large fluxes in temperature, moisture, and radiation through-
out the day and night also cause changes in the phyllosphere microbiome structure 
[26, 29, 40]. In some cases, this spatial heterogeneity is promoted by the organiza-
tion of microbial cells into biofilms, which are a common feature of organisms in 
the phyllosphere, acting as aggregators and protectors of the microbial cells under 
the frequently inhospitable conditions [26, 41].

The microbial communities found in the phyllosphere may perform key pro-
cesses related to plant development; for example, nitrogen fixation [42, 43], protec-
tion from invading pathogens [44], modification of metabolites, and the biosynthesis 
of phytohormones [45]. Metagenomic and metaproteomic studies showed that 
microbes in the phyllosphere could produce proteins that promote substrate uptake, 
via porins and ABC transporters; resistance to stresses, including reactive oxygen 
species (ROS); and nutrient cycling [31]. Methylobacteria are involved in methanot-
rophy and are often detected in phyllosphere communities [46, 47].

The interactions between the plant and the phyllosphere microbial communities, 
and the variations in their distinct environmental factors, modulate the assemblage 
of these microbial communities in the phyllosphere and contribute to the hetero-
geneity in their abundance and structure in distinct plant species. New molecular 
technologies have shown the importance of microbial functions in the phyllosphere 
and have provided new insights into the major drivers of microbial community 
composition. The combination of multiple “omics” technologies will lead us to a 
system-level understanding of the phyllosphere microbial communities and their 
physiological potential.

�The Endosphere

The endosphere consists of the inner plant tissues, inhabited by microorganisms 
intimately interacting with the host plant [28, 48, 49]. This compartment is com-
posed of the internal root tissue (endorhizosphere), internal shoot and leaf tissue 
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(endophyllosphere), internal plant reproductive tissue, and the internal seed tissue 
[50–55]. Endophytic microorganisms are organisms that reside internally in plant 
tissues for at least part of their life cycle [48] without causing visible disease symp-
toms [56] and they can be accessed from the plant after surface disinfection by 
cultivation-dependent and/or molecular approaches [57–59] (Fig. 1). Although this 
concept is one of the most commonly accepted ones and is currently applied, it is 
important to note that there are niches on the surfaces of aerial parts and roots where 
microorganisms may remain protected from the action of the chemical products 
usually used for surface disinfection. Recent studies have used sonication to remove 
surface layers of the plant tissue and to access the endophytic microorganisms on 
the remaining tissue [17, 20].

Endophytes are beneficial or commensal, and they can shift between parasitic 
and mutualistic life strategies [60, 61]. Their beneficial role in plant development 
and health can be mediated and is characterized by metabolic interactions, includ-
ing the production of plant growth hormones [62–64], antibiotics, and toxicants 
[65, 66]; the improvement of nutrient uptake; and/or increasing the plant tolerance 
to biotic and abiotic stresses [62, 67, 68]. In addition to these characteristics, the 
lifestyle of endophytes can also involve altering/inducing the gene expression of 
plants’ defense and metabolic pathways [66, 69, 70], and, depending on the type of 
interaction, members of the endosphere microbiome can induce both local and 
systemic alterations in the host [71]. As an example of these alterations, genome 
analysis of Bacillus pumilus INR7, an endophytic bacterium that promotes plant 
growth and induces systemic resistance against several plant patogens, revealed the 
presence of non-ribosomal peptide synthetase gene clusters for the production of 
antibacterial compounds such as surfactin, bacillibactin, and bacilysin, as well as 
genes for the biosynthesis of growth promoters such as indole-3-acetaldehyde and 
2,3-butanediol [72].

The endosphere microbiome structure is driven by soil type, host phylogeny, 
and/or microbes. The soil traits that affect microbial recruitment from bulk soil are 
soil type [20, 53, 73], soil pH [53, 74], local edaphic conditions [75], and anthropo-
genic management factors, such as fertilizer and pesticide application and soil prep-
aration [76, 77] The endosphere microbiome structure is also variously affected by 
plant species [78], plant life stage [77, 79], and plant health, as a result of the differ-
ences in root architecture and types of exudates [16]. Finally, the capacity of 
microbes to reach inner plant tissues and establish themselves there also affects the 
microbial composition of the endosphere. Endophytes need to have the capacity to 
reach the root surface, and to express genes for the invasion of plant tissue and the 
colonization of a niche within the plant tissue [80]. Studies have shown that the 
endosphere is mainly composed of bacterial phyla, such as Proteobacteria, 
Actinobacteria, Bacteriodetes, and Firmicutes [17, 20, 77, 81], and fungi, including 
Ascomycota and Basidiomycota [35, 82–84] (Fig. 1).

Endophytes are classified as systemic/true and transient/nonsystemic [56] or as 
obligate and facultative [48]. Systemic or obligate endophytes are dependent on the 
plant metabolism, and are disseminated among plants by vertical transmission or by 
vector activity [48]. In addition, systemic endophytes do not produce any visible 
symptoms of disease in the host at any life stage [56]. Because they live in a low-
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competition and low-predation environment, obligate endophytes have evolved to 
produce specific metabolites that support their interaction with the host [85]. In 
contrast, facultative or transient endophytes live inside plant tissues for at least part 
of their life cycle, without producing any apparent disease symptoms in the plants, 
but they become pathogenic when the host plant faces resource-limited conditions 
[86]. Transient endophytes vary both in diversity and abundance, depending on 
changes in the environment [83] and they face high levels of competition in the 
rhizosphere before entering the plant [80], therefore producing many metabolites 
that are involved in both their defense and in interactions with the plant [85].

The microbiomes associated with above-ground (phyllosphere), below-ground 
(rhizosphere), and internal (endosphere) tissues are distinct, especially considering 
that the endosphere is where specific metabolic capacities are required to survive. 
Endophytes have a significant effect on the host plant by modulating its health, 
growth, and development. Naveed et al. [87] observed that Enterobacter sp. strain 
FD17 promoted the growth and health of maize grown under natural conditions, 
increasing grain yield by 42% and reducing the time until flowering. Mendes et al. 
[62] reported that the endophytic Burkholderia spp. showed ability to control the 
growth of the sugarcane pathogen Fusarium moniliforme. Khan et  al. [88] have 
shown that tomato plants inoculated with endophytic Sphingomonas sp. LK11 
showed increases in shoot length, chlorophyll content, and shoot and root dry 
weights, indicating that the phyto-hormones produced by this strain may help in 
increasing crop growth. Although there are still gaps in our knowledge of endo-
phytes, the investigation of these microbes as a bioresource for plant growth-
promoting regulators and as biocontrol agents for disease and pest management 
represents opportunities for improving crop yield and health in a sustainable way.

�Manipulation of the Plant Microbiome Toward Improved 
Plant Health

According to the latest United Nations projections, the world population will exceed 
ten billion by 2100 [89]. In order to meet the demand for food, both the land area 
used by agriculture and productivity must increase in the near future. In this sce-
nario, intentional manipulation of the plant microbiome may be an alternative way 
to improve agriculture sustainability. This would be done by exploiting rhizosphere 
microorganisms with beneficial traits to, for example, make nutrients more avail-
able for plants or increase plant tolerance to biotic and abiotic stresses, consequently 
decreasing the dependence on chemical input in agriculture.

Manipulating the plant microbiome can be achieved simply by promoting good 
management of soil. Crop rotations increase the diversity of microorganisms in soil, 
promoting high resilience to plant pathogens [90]. Bakker et al. [91] showed that 
where resource changes altered the bulk soil microbial community, the effects were 
observed in the rhizosphere of two different cultivars of corn, suggesting that rhizo-
sphere microbial communities are altered depending on the site history and selec-
tive events.
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The stimulation of certain microorganisms or the introduction of inoculants is 
another strategy for plant microbiome manipulation. This approach aims to estab-
lish a beneficial community that competitively excludes plant pathogens. Reducing 
the time of niche exploration is crucial for enhancing microbial root-colonizing 
capacity [80, 92]; this can be achieved by the co-inoculation of several beneficial 
strains, including endophytes. The inoculation of a bacterial consortium might also 
promote the release of antimicrobial compounds [93] that improve the suppression 
of soil-borne pathogens [94].

The inoculation of microorganisms also has the potential to improve plant nutri-
tional status. Rhizobium spp. are some of the most common microorganisms used as 
inoculants in legumes and their use can supply almost all of the nitrogen required by 
legume crops [95]. Phosphorus-solubilizing microorganisms can also be applied as 
inoculants, either alone or in association with rock phosphate [96]. A limitation in 
the use of inoculants is that the densities of the inoculated microorganisms are sub-
ject to decline over time, and the inoculants have to be able to survive under differ-
ent field conditions. It is also important to consider that inoculants must be free of 
metabolites that are hazardous for humans, animals, and plants [97].

The plant genotype, in interaction with environmental conditions, is respon-
sible for regulating the release of exudates in the rhizosphere soil, and this exu-
date release is one of the main drivers of the microbiome structure. In this 
context, the microbiome may be manipulated by changing the amount and qual-
ity of root exudates through plant breeding or genetic modification [98–100]. 
However, it is important to note that this strategy is limited in many ways: (a) 
the methods are very time-consuming and are restricted to the target species/
cultivar; (b) traditionally, breeding programs do not consider the interaction 
among plants and microorganisms when new cultivars are being developed 
[101]; and (c) the quantity and quality of the exudates vary tremendously among 
soil types and physiological conditions of plants, making the exudates difficult 
to manipulate [102].

Although less commonly studied, manipulation of the microbiome of aerial plant 
parts can also be a strategy for improving plant growth and health. Falk et al. [103] 
suggested that it is possible to reduce the severity of powdery mildew infections 
caused by Uncinula necator on grapevines by releasing the conidia of the myco-
parasite fungus Ampelomyces quisqualis. Several pesticides applied in agriculture 
have the potential to affect the natural occurrence of a microbial community [104, 
105], while it has already been shown that the natural leaf microbiome is beneficial 
to the plant. Perazzolli et al. [106] showed that the naturally occurring microbiomes 
of grapevine leaves could reduce signs of powdery mildew on the surfaces of the 
leaves under controlled conditions.

Optimizing plant-microbiome interactions through microbiome manipulation 
has the potential to improve crop sustainability, reducing the impacts of traditional 
agricultural practices. Although many efforts have been made to understand the fac-
tors controlling microbiome assemblage, manipulating the microbiome is still a 
challenge to be addressed.
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