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Abstract A shaking force balanced mechanism is a mechanism that does not exert

dynamic reaction forces to its base and to its surrounding for any motion. For mobile

mechanisms such as exoskeletons, humanoid robots, drones, and anthropomorphic

hands force balance is an important property for, among others, their dynamic behav-

ior, stability, safety, control, and low energy consumption. For the design of force

balanced mechanisms with multiple closed loops it can be a significant challenge

to obtain the balance conditions, especially when the mechanism consists of closed

loops that depend on other closed loops. In this paper it is shown how with mass

equivalent modeling the force balance conditions can be derived of a complex multi-

degree-of-freedom parallel mechanism with multiple closed loops of which one or

more depend on other closed loops. It is shown how such a mechanism can be divided

in mass equivalent linkages such as mass equivalent dyads and mass equivalent tri-

ads for which each can be analyzed individually with principal vectors and linear

momentum equations.
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1 Introduction

A shaking force balanced mechanism is a mechanism that does not exert dynamic

reaction forces to its base and to its surrounding for any motion. The sum of the

linear momenta of all moving elements of a force balanced mechanism is constant

for all motion which most of the times implies that the center of mass (CoM) of the

mechanism is in a stationary point in the base. Also the motion of a force balanced

mechanism is not affected by any translational motion of the base, i.e. the base and

the mechanism are dynamically decoupled for translational motion of the base.
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For mobile mechanisms such as exoskeletons, humanoid robots, drones, and

anthropomorphic hands force balance is an important property for their dynamic

behavior [6], stability and control [2], safety, and ergonomics [5]. Since force bal-

anced mechanisms are also statically balanced—gravity does not affect their motion,

they lead to energy friendly actuation [3] and also to an increase of safety of large

moving structures such as bridges [6]. For fast moving robotic manipulators force

balance reduces the base vibrations such that cycle times can be shorter [10].

For the design of force balanced mechanisms with multiple closed loops it can

be a significant challenge to obtain the general force balance conditions, especially

when the mechanism consists of closed loops that depend on other closed loops.

Common methods to derive the balance conditions require the explicit formulation

of the closed-loop relations which then need to be included in the other equations

where the linear dependent relations among the links need to be eliminated [1]. If at

all possible, this leads to considerable efforts.

With mass equivalent modeling the loop closure relations can be considered

implicitly. This has already shown to have potential to derive the force balance con-

ditions of simple parallel mechanisms by balancing each arm individually [4, 11,

12] and also for complex parallel mechanisms by the design of inherently balanced

closed-chain linkage architectures [6, 7] and by the design of mass equivalent dyad

and triad linkages [8, 9]. The essence of this approach for complex linkages is that

one or multiple links together are modeled with real and virtual equivalent masses,

which subsequently are projected on the remaining open-chain linkage and included

for analysis.

The goal of this paper is to show how with mass equivalent modeling the force

balance conditions can be derived of a complex multi-degree-of-freedom (multi-

DoF) parallel mechanism with multiple closed loops of which one or more depend

on other closed loops. It is shown how such a mechanism can be divided in mass

equivalent linkages such as mass equivalent dyads and mass equivalent triads for

which each can be analyzed individually. First a two-DoF force balanced planar par-

allel mechanism with three closed loops is presented. This linkage is divided in one

mass equivalent dyad and two mass equivalent triads. Then the balance conditions

of the mass equivalent dyad are explained and subsequently the balance conditions

and design parameters of the mass equivalent triads are obtained.

2 Two-DoF Force Balanced Planar Parallel Mechanism
with Three Closed Loops

Figure 1a presents a planar parallel linkage which has two-DoF motion and three

closed loops of which one depends on the other two. This new mechanism con-

sists of the two four-bar linkages A0A1A2A3 and A4A5A6A7, with common base link

A0A3A7A4, and a dyad B1C1B2 of which B1 and B2 are revolute pairs with the coupler

links of each four-bar linkage. Where each four-bar linkage has a single independent

closed loop, the dyad gives a third dependent closed loop following a path through
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Fig. 1 a Force balanced parallel mechanism composed of two 4R four-bar linkages with common

base and a dyad pivoted with each coupler link (drawn to scale); b The dyad and the two triads

representing the 4R four-bar linkages are shown with their mass equivalent elements from which

the force balance conditions are derived

each four-bar linkage. From the perspective of a driven parallel manipulator, both

four-bar linkages can be moved individually with two actuators at the base whereby

the motion of the dyad with joint C1 as the end-effector is determined. Such a mecha-

nism could be useful, for instance, as a manipulator on a service and inspection drone

to move around rapidly without dynamically affecting (destabilizing) the hovering

and manoeuvring drone itself.

Each link i of the mechanism has a mass mi with its CoM defined by parameters

ei and fi relative to the line through the joints of the link as illustrated in Fig. 1a. This

means that each of the eight links can have a general design, i.e. mass symmetry is

not required.

For specific relations among the link masses and the link CoMs the common CoM

of all links together is in a stationary point S in the base link for all motion of the

mechanism. These relations are named the (shaking) force balance conditions which

in fact are design criteria for the links. The mechanism in Fig. 1a is shown with one

of the many force balance solutions and is drawn to scale for a realistic impression.

With common methods such as the linear independent vector method [1] it is

specifically challenging to handle the closed loop by the dyad because of its depen-

dency on the closed loops of each four-bar linkage. However with mass equivalent

modeling this can be considered in a systematic and insightful manner.

To derive the general force balance conditions the mechanism can be divided in

three parts which each then is analyzed by means of a mass equivalent model. These

three parts are the dyad B1C1B2 with links masses m7 and m8, and each of the two

four-bar linkages. In the next section the dyad is investigated for mass equivalence

and the four-bar linkages are investigated for mass equivalence in the subsequent

section.
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3 Mass Equivalent Dyad

For force balance of the mechanism in Fig. 1a the dyad B1C1B2 needs to have con-

stant mass properties with respect to joints B1 and B2 for all motion such that these

mass properties can be included in the force balance of the two four-bar linkages.

This is since the motion of the dyad is nonlinearly related with the motion of the

other links by which the design of the other links cannot contribute fully to the bal-

ance of the dyad links in another way. It can also be said that the dyad needs to be

force balanced with respect to the ‘imaginary dyad base link’ B1B2. This imaginary

link is shown in Fig. 1b where Sd is the common CoM of m7 and m8. Due to the

motion of the mechanism the size of this imaginary link varies. As long as the trian-

gleB1B2Sd remains similar of shape for all motion while being scaled and rotated, the

mass properties of the dyad relative to B1 and B2 are constant. The triangle B1B2Sd
with a mass m7 + m8 in Sd then is regarded a mass equivalent model of the dyad [8].

Also, from another viewpoint, for force balance the dyad needs to be mass equivalent

to the model of the triangular element B1B2Sd with mass m7 + m8 in Sd.

The conditions for which the triangular element B1B2Sd and the dyad are mass

equivalent have been derived as [8]

m7e7 = ma
dl7, m7f7 = mc

dl7, m8e8 = mb
dl8, m8f8 = mc

dl8 (1)

Here ma
d = (m7 + m8)(1 − 𝜆d1) and mb

d = (m7 + m8)𝜆d1 are real equivalent masses

with ma
d + mb

d = m7 + m8 and mc
d = (m7 + m8)𝜆d2 is a virtual equivalent mass. 𝜆d1

and 𝜆d2 are the similarity parameters, i.e. the properties that define the shape of the

triangle B1B2Sd by describing the location of Sd relative to line B1B2.

These conditions are the first four force balance conditions of the mechanism. For

instance when l7, l8, m7, m8, e7, and f7 are given then e8 and f8 can be derived for

force balance of the linkage in Fig. 1. Generally this means that the CoM of one of

the dyad links is located beyond the joint with the coupler link as illustrated for m8
that is located beyond joint B1. In practice this implies the need of a countermass on

link B1C1.

4 Mass Equivalent Triads

For force balance the two four-bar linkages need to have constant mass properties

with respect to the base link A0A3A7A4, i.e. they need to be force balanced with

respect to the base, for all motion. Since each four-bar linkage consists of three mov-

ing links, they can be regarded as triads A0A1A2A3 and A4A5A6A7 which, similar to

the dyad, need to have constant mass properties with respect to their joints A0, A3,

A4, and A7. This means that also the triads need to be mass equivalent to single-

element models [9]. This is illustrated in Fig. 1b where triangle A0A3Str1 represents

the equivalent mass model of triad A0A1A2A3 and triangle A4A7Str2 represents the

equivalent mass model of triad A4A5A6A7.
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Fig. 2 a Triad 1 as a 3-DoF principal vector linkage with mass projection of the equivalent dyad

with ma
d in B1 and mc

d about P2 and P3; b For analysis of DoF 3 the masses in link A2A3 can be

combined as m′
3

Since the dyad is located on top of the two triads, the mass of the dyad needs to be

included in the triads as well. This means that the mass model A0A3Str1 includes the

mass of triad A0A1A2A3 and part of the dyad mass with their common CoM in Str1
and that the mass model A4A7Str2 includes the mass of triad A4A5A6A7 and the other

part of the dyad mass with their common CoM in Str2. Both mass models lay in the

base link with the common CoM of Str1 and Str2 located in S, which is the common

CoM of the complete mechanism.

The force balance conditions of the triads can be derived with the methodology

presented in [6, 8, 9] by analyzing each DoF of the triad independently with princi-

pal vectors. First these principal vectors are investigated, then the balance conditions

are obtained with linear momentum equations for each relative DoF individually fol-

lowed by the calculations of the mass parameters of the triad from the mass equiva-

lent model.

Figure 2a shows the triad A0A1A2A3 as a 3-DoF principal vector linkage with a

principal point P1, P2, and P3 in each of the three principal elements—the triad

links. These principal points define together with the principal joints A1 and A2 the

three illustrated parallelograms which trace the common CoM in Str1 for all motion.

The lengths of the sides of the parallelograms a1, a21, a23, and a3 are the principal

dimensions which are constants. This means that the parallelograms can be seen as

rigid-body linkages with revolute pairs moving along with the triad. The location

of the principal point in each principal element is defined with parameters bi and ci
relative to the lines through the joints of the links.
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In addition to the masses m1, m2, and m3 of the triad, in Fig. 2a also the equiv-

alent masses ma
d and mc

d of the dyad are projected. The real equivalent mass ma
d is

projected in B1 and the virtual equivalent mass mc
d is projected twice about P2 and

twice about P3. About P2 mc
d is located at a distance d1 = ‖B1P2‖ from P2 perpen-

dicular to line B1P2 as illustrated and mc
d is located at a distance a23 = ‖A2P2‖ from

P2 perpendicular to line A2P2 as illustrated. About P3 mc
d is located at a distance

a3 = ‖A2P3‖ from P3 perpendicular to line A2P3 as illustrated and mc
d is located at

a distance a′3 = ‖A3P3‖ from P3 perpendicular to line A3P3 as illustrated.

The fundamentals of the mass projections are explained in detail in [6, 7]. The

virtual equivalent mass mc
d determines the positions of the link CoMs of the dyad

perpendicular to the lines through the links’ joints. To include this property in the

triads they have to be projected about each principal point along a closed loop. The

closed loop chosen here runs along B1P2A2P3A3 − A7P6A6P5B2, i.e. via triad 1, the

base, and triad 2 with principal points P5 and P6 as shown in Fig. 4.

With the method of rotations about the principal joints (RAPJ) [6, 8] DoF 1 and

DoF 3 can be analyzed. DoF 1 is the rotational motion of principal element A0A1
about principal joint A1 with the other two principal elements immobile. This means

that only mass m1 is moving and for force balance its linear momentum should equal

the linear momentum of the total mass of the triad moving along in joint Str1. The

linear momentum of this motion can be written with respect to the aligned reference

frame x1y1 as

L1
̇
𝜃1

=
[
mtr1a1

0

]

=
[
m1(a1 + p1)

0

]

(2)

withmtr1 = m1 + m2 + m3 + ma
d the total mass of the triad model. The resulting force

balance condition of this DoF is directly found as

m1p1 = (m2 + m3 + ma
d)a1 (3)

DoF 3 is the rotational motion of principal element A2A3 about principal joint A2
with the other two principal elements immobile and is analyzed similarly as DoF 1.

It is useful to first combine all masses in principal element A2A3 as shown in Fig. 2b

where the location of the total mass m′
3 = m3 + mc

d is defined by e′3 and f ′3 which are

calculated as

e′3 =
m3e3
m′

3
, f ′3 =

m3f3 + mc
dl3

m′
3

(4)

Then for the motion of DoF 3 only mass m′
3 is moving and for force balance its linear

momentum equals the linear momentum of the total mass of the triad moving along

in joint Str1. The linear momentum of this motion can be written with respect to the

aligned reference frame x3y3 as
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L3
̇
𝜃3

=
[
mtr1a3

0

]

=
[
m′

3(a3 + p′3)
0

]

(5)

with p′3 the distance between m′
3 and P3 as illustrated. The resulting force balance

condition for this DoF is found as

(m3 + mc
d)p

′
3 = (m1 + m2 + ma

d − mc
d)a3 (6)

For DoF 2 the method of rotations about the principal points (RAPP) needs to be

used [6, 9]. DoF 2 is the rotational motion of element A1A2 about principal point P2
with elements A0A1 and A2A3 solely in translational motion. The linear momentum

of this motion must equal zero for force balance since the total mass in joint Str1 is sta-

tionary. To assist formulating the linear momentum equations, the mass motion can

be modeled with the Equivalent Linear Momentum System shown in Fig. 3, which is

a mass model with the same linear momentum for rotational motion about P2. From

this model the linear momentum of the motion of DoF 2 can be written with respect

to the aligned reference frame x2y2 as

L2
̇
𝜃2

=
[
0
0

]

= m1

[
c2

−b21

]

+ m2

[
c2 − f2

−(b21 − e2)

]

+ ma
d

[
c2 − fB1

−(b21 − eB1)

]

−

mc
d

[
b21 − eB1
c2 − fB1

]

+ m3

[
c2

−(b21 − l2)

]

+ mc
d

[
b21 − l2

c2

]

(7)

The resulting force balance conditions for this DoF are directly obtained as

m1c2 + m2(c2 − f2) + ma
d(c2 − fB1) − mc

d(l2 − eB1) + m3c2 = 0 (8)

m1b21 + m2(b21 − e2) + ma
d(b21 − eB1) − mc

dfB1 + m3(b21 − l2) = 0

To calculate the design parameters of the links, when parameters e2 and f2 are

chosen the parameters b21 and c2 of P2 are obtained from Eqs. (8) as
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b21 =
m2e2 + ma

deB1 + mc
dfB1 + m3l2

m1 + m2 + m3 + ma
d

(9)

c2 =
m2f2 + ma

dfB1 + mc
d(l2 − eB1)

m1 + m2 + m3 + ma
d

Subsequently the design parameters of links A0A1 and A2A3 can be calculated from

the relations

p1 + a1
a1

=
e1
b1

=
f1
c1
,

p′3 + a3
a3

=
e′3
b3

=
f ′3
c3

(10)

with which the link CoM parameters can be derived to depend on bi and ci as

e1 = (
p1
a1

+ 1)b1 = (
m2 + m3 + ma

d

m1
+ 1)b1

f1 = (
p1
a1

+ 1)c1 = (
m2 + m3 + ma

d

m1
+ 1)c1 (11)

e′3 = (
p′3
a3

+ 1)b3 = (
m1 + m2 + ma

d − mc
d

m3 + mc
d

+ 1)b3

f ′3 = (
p′3
a3

+ 1)c3 = (
m1 + m2 + ma

d − mc
d

m3 + mc
d

+ 1)c3

The relations for a triad to be mass equivalent with the element A0A3Str1 are [9]

ma
tri
(l1 − b1) = mb

tri
b1, mc

tri
l1 = (ma

tri
+ mb

tri
)c1

ma
tri
b21 = mb

tri
(l2 − b21), mc

tri
l2 = (ma

tri
+ mb

tri
)c2 (12)

ma
tri
b3 = mb

tri
(l3 − b3), mc

tri
l3 = (ma

tri
+ mb

tri
)c3

with the equivalent triad masses ma
tr1

, mb
tr1

, and mc
tr1

. With b21 and c2 known, they are

obtained from these relations as

ma
tr1

= m1 + m2 + m3 + ma
d − mb

tr1
(13)

mb
tr1

=
m1 + m2 + m3 + ma

d

l2
b21, mc

tr1
=

m1 + m2 + m3 + ma
d

l2
c2

and subsequently c1, c3, b1, and b3 can be calculated as
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b1 =
ma

tr1

m1 + m2 + m3 + ma
d
l1, c1 =

mc
tr1

m1 + m2 + m3 + ma
d
l1 (14)

b3 =
mb

tr1

m1 + m2 + m3 + ma
d
l3, c3 =

mc
tr1

m1 + m2 + m3 + ma
d
l3

Herewith all parameters are known for force balance. In addition, the similarity para-

meters of triad 1 defining the shape of element A0A3Str1 can be found as

𝜆tr11 =
mb

tr1

m1 + m2 + m3 + ma
d
, 𝜆tr12 =

mc
tr1

m1 + m2 + m3 + ma
d

(15)

and the principal dimensions a1, a21, a23, and a3 can be calculated as

a1 =
√

b21 + c21 = l1
√

(1 − 𝜆tr11)2 + 𝜆

2
tr12

a21 =
√

b221 + c22 = l2
√

𝜆

2
tr11 + 𝜆

2
tr12 (16)

a23 =
√

(l2 − b21)2 + c22 = l2
√

(1 − 𝜆tr11)2 + 𝜆

2
tr12

a3 =
√

b23 + c23 = l3
√

𝜆

2
tr11 + 𝜆

2
tr12

For triad 2 the force balance conditions and the design parameters are derived

similarly to triad 1. Figure 4a shows the triad A4A5A6A7 as a 3-DoF principal vector

linkage with a principal point P4, P5, and P6 in each of the three principal elements.

These principal points define together with the principal joints A5 and A6 the three

illustrated parallelograms which trace the common CoM in Str2 for all motion. The

lengths of the sides of the parallelograms are the principal dimensions a4, a54, a56,
and a6.

In Fig. 4a also the equivalent masses mb
d and mc

d of the dyad are projected with

the real equivalent mass mb
d in B2 and the virtual equivalent mass mc

d projected twice

about P5 and twice about P6. About P5 mc
d is located at a distance d2 = ‖B2P5‖ from

P5 perpendicular to line B2P5 as illustrated and mc
d is located at a distance a56 =

‖A6P5‖ from P5 perpendicular to line A6P5 as illustrated. About P6 mc
d is located at

a distance a6 = ‖A6P6‖ from P6 perpendicular to line A6P6 as illustrated and mc
d is

located at a distance a′6 = ‖A7P6‖ from P6 perpendicular to line A7P6 as illustrated.

Following the same procedure as for triad 1, the linear momentum of DoF 1 of

triad 2, which is the rotational motion of A4A5 about A5 with the other triad links

immobile, can be written relative to the aligned reference frame x4y4 as

L4
̇
𝜃4

=
[
mtr2a4

0

]

=
[
m4(a4 + p4)

0

]

(17)
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Fig. 4 a Triad 2 as a 3-DoF principal vector linkage with mass projection of the equivalent dyad

with mb
d in B2 and mc

d about P5 and P6; b For analysis of DoF 3 the masses in link A6A7 can be

combined as m′
6

with mtr2 = m4 + m5 + m6 + mb
d the total mass of the triad model with CoM in joint

Str2. The masses in principal element A6A7 can be combined in total mass m′
6 =

m6 + mc
d with CoM defined by e′6 and f ′6 which are calculated as

e′6 =
m6e6
m′

6
, f ′6 =

m6f6 − mc
dl6

m′
6

(18)

Then the linear momentum of DoF 3 of triad 2, which is the rotational motion of

principal element A6A7 about principal joint A6 with the other two principal elements

immobile, can be written relative to the aligned reference frame x6y6 as

L6
̇
𝜃6

=
[
mtr2a6

0

]

=
[
m′

6(a6 + p′6)
0

]

(19)

For DoF 2, the rotational motion of element A5A6 about principal point P5 with

elements A4A5 and A6A7 solely in translational motion, Fig. 5 shows the Equivalent

Linear Momentum System. For force balance P5 is the CoM of this mass model.

From this model the linear momentum can be written with respect to the aligned

reference frame x5y5 as
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L5
̇
𝜃5

=
[
0
0

]

= m4

[
c5

−b54

]

+ m5

[
c5 − f5

−(b54 − e5)

]

+ mb
d

[
c5 − fB2

−(b54 − eB2)

]

+

mc
d

[
b54 − eB2
c5 − fB2

]

+ m6

[
c5

−(b54 − l5)

]

− mc
d

[
b54 − l5

c5

]

(20)

From Eqs. (17), (19) and (20) the force balance conditions for triad 2 are obtained

as

m4p4 = (m5 + m6 + mb
d)a4

(m6 + mc
d)p

′
6 = (m4 + m5 + mb

d − mc
d)a6 (21)

0 = m4c5 + m5(c5 − f5) + mb
d(c5 − fB2) + mc

d(l5 − eB2) + m6c5
0 = m4b54 + m5(b54 − e5) + mb

d(b54 − eB2) + mc
dfB2 + m6(b54 − l5)

Similarly as for triad 1, the parameters of the principal points P4, P5, and P6 can be

calculated as

b4 =
ma

tr2

m4 + m5 + m6 + mb
d

l4, c4 =
mc

tr2

m4 + m5 + m6 + mb
d

l4 (22)

b54 =
m5e5 + mb

deB2 − mc
dfB2 + m6l5

m4 + m5 + m6 + mb
d

, c5 =
m5f5 + mb

dfB2 − mc
d(l5 − eB2)

m4 + m5 + m6 + mb
d

b6 =
mb

tr2

m4 + m5 + m6 + mb
d

l6, c6 =
mc

tr2

m4 + m5 + m6 + mb
d

l6

with

ma
tr2

= m4 + m5 + m6 + mb
d − mb

tr2
(23)

mb
tr2

=
m4 + m5 + m6 + mb

d

l5
b54, mc

tr2
=

m4 + m5 + m6 + mb
d

l5
c5
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and subsequently the parameters of the CoMs of the links can be calculated with

e4 =
m4 + m5 + m6 + mb

d

m4
b4, f4 =

m4 + m5 + m6 + mb
d

m4
c4

e′6 =
m4 + m5 + m6 + mb

d

m6 + mc
d

b6, f ′6 =
m4 + m5 + m6 + mb

d

m6 + mc
d

c6

e6 =
m6 + mc

d

m6
e′6, f6 =

(m6 + mc
d)f

′
6 + mc

dl6
m6

(24)

Herewith all parameters are known for force balance of triad 2. The similarity para-

meters of triad 2 which define the shape of element A4A7Str2 can be found as

𝜆tr21 =
mb

tr2

m4 + m5 + m6 + mb
d

, 𝜆tr22 =
mc

tr2

m4 + m5 + m6 + mb
d

(25)

and the principal dimensions a4, a54, a56, and a6 can be calculated as

a4 =
√

b24 + c24 = l4
√

(1 − 𝜆tr21)2 + 𝜆

2
tr22

a54 =
√

b254 + c25 = l5
√

𝜆

2
tr21 + 𝜆

2
tr22 (26)

a56 =
√

(l5 − b54)2 + c25 = l5
√

(1 − 𝜆tr21)2 + 𝜆

2
tr22

a6 =
√

b26 + c26 = l6
√

𝜆

2
tr21 + 𝜆

2
tr22

5 Discussion and Conclusion

In this paper it was shown how with mass equivalent modeling the force balance

conditions can be derived of a complex multi-degree-of-freedom parallel mecha-

nism with multiple closed loops of which one depends on the other closed loops. By

dividing the mechanism in three parts it was investigated as a combination of a mass

equivalent dyad on top of two mass equivalent triads. With the method of principal

vectors and the linear momentum equations of each relative degree-of-freedom the

force balance conditions were derived and the design parameters were calculated for

each of three parts individually.

The approach of mass equivalent modeling can also be used for the synthesis of

complex force balanced mechanisms by composing the new mechanism of combined

mass equivalent linkages. There is a wide variety of possibilities to do this, already

when solely using mass equivalent dyads and triads. The advantage with mass equiv-

alent modeling is that the closed-loop relations do not need to be formulated but are
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considered implicitly. Also it is possible to apply this method for spatial mechanisms.

For instance by applying two mass equivalent triads as balanced four-bar linkages

with common base as in this paper but placing them in different planes under a rel-

ative angle instead of having them in the same plane, with a spatially moving mass

equivalent dyad on top.
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