
REVS: A Tool for Space-Optimized
Reversible Circuit Synthesis

Alex Parent1,2, Martin Roetteler2(B), and Krysta M. Svore2

1 Institute for Quantum Computing, University of Waterloo,
200 University Avenue West, Waterloo, ON, Canada

alexparent@gmail.com
2 Quantum Architectures and Computation Group,

Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
{martinro,ksvore}@microsoft.com

Abstract. Computing classical functions is at the core of many quan-
tum algorithms. Conceptually any classical, irreversible function can be
carried out by a Toffoli network in a reversible way. However, the Ben-
nett method to obtain such a network in a “clean” form, i.e., a form
that can be used in quantum algorithms, is highly space-inefficient. We
present REVS, a tool that allows to trade time against space, leading to
circuits that have a significantly smaller memory footprint when com-
pared to the Bennett method. Our method is based on an analysis of the
data dependency graph underlying a given classical program. We report
the findings from running the tool against several benchmarks circuits
to highlight the potential space-time tradeoffs that REVS can realize.

1 Introduction

The ability to compute classical functions is at the core of many interesting
quantum algorithms, including Shor’s algorithm for factoring, Grover’s algorithm
for unstructured search, and the HHL algorithm for inverting linear systems of
equations. While conceptually any classical, irreversible function can be carried
out by a reversible Toffoli network, the standard way to obtain such a network
is highly space-inefficient: the so-called Bennett method leads to a number of
qubits that is proportional to the circuit size of the given classical, irreversible
function [3].

We show that it is possible to trade time against space in reversible circuit
synthesis, leading to circuits that have a significantly smaller memory footprint
than the ones generated by the Bennett method. To this end, we implemented
a tool for space-optimized reversible synthesis. We applied our tool to a suite of
challenge problems that include a subset of several classical circuits benchmarks
such as the ISCAS and MCNC benchmarks, as well as reversible benchmarks
such as the Maslov benchmarks and the RevLib benchmarks. We show that it
is typically possible to reduce the total number of required ancillas by a factor
of 4X at a moderate increase of the total number of gates by less than 3X.

c© Springer International Publishing AG 2017
I. Phillips and H. Rahaman (Eds.): RC 2017, LNCS 10301, pp. 90–101, 2017.
DOI: 10.1007/978-3-319-59936-6 7



REVS: Space-Optimized Reversible Circuit Synthesis 91

Prior work. Several tools were developed for synthesizing reversible circuits,
ranging from low-level tools [13,15,24,26,30–32], over various optimizations [24],
to high-level programming languages and compilers [9–11,22,23,29,33,36]. See
also [25] for a survey. We are interested in methods that optimize space, i.e.,
methods that synthesize target functions while using as few ancillas as possible.

The implied trade-off is between circuit size, as measured by the total number
of Toffoli gates, and circuit width, as measured by the total number of qubits.
Methods to obtain such trade-offs have been studied in the literature before,
notably in the theoretical computer science community where space-time trade-
offs based on trading qubits (lines) for gates [7,27,34,35] and tradeoffs based
on Bennett’s pebble game have been known for quite some time [4–6,12]. Our
work implements a compiler that optimizes for space, trading it for a possibly a
slightly larger gate count and possibly for a longer compilation time.

Our contribution. We improve the space-efficiency of Toffoli networks by ana-
lyzing the data flow dependencies of the given input program or truth table.
This allows to clean some of the required ancilla bits much earlier than possible
with the Bennett method. Another key component that allowed us to improve
the memory footprint while keeping the circuit size of the resulting networks
relatively small, is the combination of known techniques for Boolean Exclu-
sive Sum-Of-Products (ESOP) [17,18] minimization with our dependency-graph
based methods for early cleanup.

Specifically, we considered the RevLib benchmarks [1] and the Maslov bench-
marks [14]. Our main result is that for some of the benchmarks we can improve
the total number of qubits needed. This typically comes at an increase of the
overall gate count, however, for some of the benchmarks our method achieves an
improvement in terms of number of qubits and total number of Toffoli gates.

Generally, the methods described in this paper aim at large circuits, i.e., they
are scalable: our reversible synthesis method starts from high-level descriptions
in a functional programming language.

2 Reversible Circuits

Reversible functions are Boolean functions f : {0, 1}n → {0, 1}n that can be
inverted on all outputs, i.e., the functions that correspond to permutations of
a set of cardinality 2n. As with classical circuits, reversible functions can be
constructed from universal gate sets: for instance, it is known that the Toffoli
gate which maps (x, y, z) �→ (x, y, z⊕xy), together with the controlled-NOT gate
(CNOT) which maps (x, y) �→ (x, x⊕y) and the NOT gate which maps x �→ x⊕1,
is universal for reversible computation. The group generated by all NOT, CNOT,
and Toffoli gates on n ≥ 4 bits is isomorphic to the alternating group A2n of
even permutations which is a group of order (2n)!/2. Hence, any given target
function, when considered as a permutation π can be implemented over this gate
set at the expense of at most 1 additional qubit since 1⊗π = diag(π, π) is even.



92 A. Parent et al.

Most classical functions f : {0, 1}n → {0, 1}m are not invertible. To make
a classical function reversible a permutation π on a larger space has to be con-
structed that implements f on a subset of size 2n of the inputs. These extra bits
are commonly denoted ancilla bits and are used as scratch space, i.e., tempo-
rary bits which store intermediate results of a computation. A very important
difference to classical computing is that scratch bits cannot just be overwrit-
ten when they are no longer needed: any ancilla that is used as scratch space
during a reversible computation must be returned to the initial value—which is
commonly assumed to be the value 0—computationally.

Moreover, if this return to a “clean” value is not achieved, the function cannot
be safely used inside a quantum computer as its use might lead to unwanted
entanglement of the computational registers with the ancilla qubits. This in
turn can destroy desired interferences crucial for quantum algorithms [20]. If a
Toffoli network computes a target function in a way that leaves garbage bits
that are unclean, then one can turn this into a clean network using Bennett’s
method, however, this leads to a 2X increase in circuit size and additional qubits
to store the output.

The number of Toffoli gates used in the implementation of a given permuta-
tion is the basic measure for the circuit size that we use in this paper. Counting
Toffolis only is justified from the theory of fault-tolerant quantum computing [20]
since the Toffoli gate (and the T gate) has a substantial cost, whereas the cost
of so-called Clifford gates, such as CNOT and NOT, can usually be neglected.
Another related metric is the overall depth of the circuit, measured usually in the
form of T -gate-depth. Implementations of the Toffoli gate over the Clifford+T
gate set are known [20]. The other basic parameter in our design space is circuit
width, measured as the maximum number of qubits needed during any point,
i.e., the maximum number of input qubits, output qubits, and ancilla qubits.

Generally, our goal is to trade time for space, i.e., to achieve a reduction
in the total number of qubits required. In turn, we are willing to pay a price
in terms of a slight increase in the total number of Toffoli gates and in terms
of compilation time. Our trade-off is justified by the limited number of qubits
available in experimental quantum devices.

3 Dependency Analysis

Analyzing the dependencies between the instructions in a basic function, between
functions, and between larger units of code is a fundamental topic in compiler
design [2,19]. Typically, dependency analysis consists of finding codes units and
to identify them with nodes in a directed acyclic graph (DAG). The directed
edges in the graph are the dependencies between the basic units, i.e., anything
that might constrain the execution order, for instance control dependencies that
arise from the control flow in the program, or branchings that happen conditional
on the value of a variable or the causal dependencies that arise from one unit
having to wait for the output of another unit before the computation can proceed.



REVS: Space-Optimized Reversible Circuit Synthesis 93

let xor4 (a:bool array) (b:bool array) =

let c = Array.zeroCreate 4

for i in 0 .. 3 do

c.[i] <- a.[i] <> b.[i]

c

let and4 (a:bool array) (b:bool array) =

let d = Array.zeroCreate 4

for i in 0 .. 3 do

d.[i] <- a.[i] && b.[i]

d

let mutable a = Array.zeroCreate 4

a <- xor4 a b

and4 a c

(a) F# snippet (b) Corresponding MDD

Fig. 1. (a) Simple F# code example of a function that uses arrays and in place oper-
ations. (b) Corresponding mutable data dependency (MDD) graph with data depen-
dency arrows (dashed) and mutation arrows (bold).

3.1 Mutable Data Dependency Graphs (MDDs)

We used the .NET language F# to implement a compiler for a language that
can express classical, irreversible functions and turn them into reversible net-
works. The language itself is also a subset of F# which has the advantage that
all programs expressed in the language also have an abstract interpretation as
executable programs that can be run on the .NET common language run-time
(CLR). This helps with testing of the reversible circuits generated by our com-
piler as it is possible to (a) generate a Toffoli network from the source program
and (b) get a trace from the execution on a classical computer and then to
compare (a) and (b).

The compilation itself follows some steps that are common for domain-specific
approaches. As our language is embedded into F#, we can first invoke the F#
compiler to generate an abstract syntax tree (AST) for the input program. Using
so-called active patterns [28] we turn the AST into an internal representation
that represents the dependency graph of the program. The nodes of this graph
capture the control flow and data dependencies between expressions, but also
identify which blocks can be computed by in-place operations and which blocks
have to be computed by out-of-place operations. Because of this latter feature is
related to which elements of the dependency graph are mutable and which are
not, we call this data structure the Mutable Data Dependency graph or MDD.

Which parts of the code can be computed by an in-place operation is inferred
by which variables are labeled in F# as mutable together with the external
knowledge about whether for an expression involving these variables an in-place
implementation is actually known. An example for the latter is the addition
operation for which we can choose either an in-place implementation (a, b) �→
(a, a + b) or an out-of-place implementation (a, b, 0) �→ (a, b, a + b).



94 A. Parent et al.

The nodes of the MDD correspond to inputs, computations, initialized and
cleaned-up bits. Inputs nodes can correspond to individual variables but also to
entire arrays which are also represented as a single node and treated atomically.
Computation nodes correspond to any expression that occurs in the program
and that manipulates the data. Initialized and cleaned-up bits correspond to
bits that are part of the computation and which can be used either as ancillas
or to hold the actual final output of the computation. Initialization implies that
those qubits are in the logical state 0 and the cleaned-up state means these bits
are known to be returned back in the state 0.

The directed edges in a MDD come in two flavors: data dependencies and
mutations. Data dependencies are denoted by dashed arrows and represent any
data dependency that one expression might have in relation to any other expres-
sion. Mutations are denoted by bold arrows and represent parts of the program
that are changed during the computation. By tracking the flow of the muta-
tions one can then ultimately determine the scheduling of the expressions onto
reversible operations and re-use a pool of available ancillas. This helps to reduce
the space requirements of the computation, in some cases even drastically so.

First, a number of arrays are used to store data in a way that allows for
easy access and indexing. Note that in F# the type array is inherited from
the .NET array type and by definition is a mutable type. This information is
used when the MDD for the program is constructed as our compiler knows that
in principle the values in the array can be updated and overwritten. Whether
this can actually be leveraged when compiling a reversible circuit will of course
depend on other factors as well, namely whether the parts of the data that is
invoked in assignments (denoted by <−) is used at a later stage in the program,
in which case the data might have to be recomputed.

When resolving the AST of a function, each node will either be another
function or an input variable. If the node is a function, we recursively compute
the AST for all of the function inputs adding the results to the graph. Upon doing
so, we use the index numbers of these results as the inputs for the operation and
then add the operation to the graph. If the node is a variable, the algorithm
looks up its name in a map of currently defined variables and returns an index
to its node. The type of the operation determines which arrows will be solid
input arrows and which will be data dependencies, i.e., controls. An example is
shown in Fig. 1.

3.2 Eager Cleanup Strategy

From Bennett’s work on reversible Turing machines it follows that any function
can be implemented by a suitable reversible circuit [3]: if an n-bit function x �→
f(x) can be implemented with K gates over {NOT,AND}, then the reversible
function (x, y) �→ (x, y ⊕ f(x)) can be implemented with at most 2K + n gates
over the Toffoli gate set. The basic idea behind Bennett’s method is to replace all
AND gates with Toffoli gates, then perform the computation, copy out the result,
and undo the computation. One potential disadvantage of Bennett’s method is the
large number of ancillas it requires as the required memory scales proportional



REVS: Space-Optimized Reversible Circuit Synthesis 95

Algorithm 1. EAGER Performs eager cleanup of an MDD.
Require: An MDD G in reverse topological order, subroutines LastDependentNode,

ModificationPath, InputNodes.
1: i ← 0
2: for each node in G do
3: if modificationArrows node = ∅ then
4: dIndex ← LastDependentNode of node in G
5: path ← ModificationPath of node in G
6: input ← InputNodes of path in G
7: if None (modificationArrows input) ≥ dIndex then
8: cleanUp ← (Reverse path) ++ cleanNode
9: end if

10: else
11: cleanUp ← uncleanNode
12: G ← Insert cleanUp Into G After dIndex
13: end if
14: end for
15: return G

to the circuit size of the initial, irreversible function f . Nevertheless, Bennett’s
method is useful to clean up garbage qubits in some situations where our improved
synthesis method, which we call the “eager cleanup” strategy, does not succeed.
The basic idea behind eager cleanup is to process the MDD in inverse topological
order and try to clean up qubits that are no longer needed as early as possible. To
do this, when we find a node A which does not have an outgoing modification arrow
we first find the node furthest along in topological order which depends on it B. We
then consider all inputs in the modification path of A. If any of the inputs have
outgoing arrows modification arrows pointing levels previous to B we may not
clean the bit eagerly as its inputs are no longer available. If the inputs do not have
modification arrows pointing at levels previous to B we can immediately clean
it up by reversing all operations along its modification path. In many cases, the
eager cleanup strategy leads to lower number of qubits used compared to Bennett’s
original method [3]. A pseudo-code implementation of the eager cleanup strategy
is shown in Algorithm 1.

4 Boolean Expression Generation

REVS handles higher-level, irreversible programs using cleanup strategies such
as Bennett’s method or the eager cleanup strategy mentioned in the previous
section. This is particularly useful if the irreversible program has control flow
such as loops, branchings, and subroutine calls. If a piece of the given code corre-
sponds to a Boolean expression directly, then synthesis is handled differently: in
these cases truth-table based techniques such as the ones described in [15] could
be applied, however, in the current implementation we follow a simple flow that
takes the Boolean function, either given in BLIF or PLA format, transforms



96 A. Parent et al.

Algorithm 2. ESOP-FACTOR Find and factor common ESOP expressions.
Require: Boolean expression exprs as list of (input, output) pairs, integer sizeParam

to specify maximum group size.
1: outputGroups ← group exprs with identical output
2: factorGroups ← Divide each group in outputGroups into groups of size sizeParam

or less
3: for each group in factorGroups do
4: xorExpr ← expression formed by XORing all input expressions in

group together
5: factoredExpr ← use multi-level optimization techniques to factor xorExpr
6: circuit ← apply boolean expression generation algorithm to factoredExpr
7: end for
8: return circuit

it into exclusive-sum-of-product (ESOP) format using Exorcism [18], and then
further process it using strategies that again allow tradeoffs between circuit size
and number of qubits used. We briefly sketch these methods next and show the
application to some benchmarks used in reversible synthesis.

4.1 Boolean Function Synthesis Benchmarks

The Berkeley Logic Interchange Format (BLIF) and the Programmable Logic
Array format (PLA) allow logic level circuit description of a classical operation.
Both formats allow the specification of hierarchical logical circuits, based on
a simple text input form. Circuits can have combinational components, which
typically are given by a collection of truth tables using separate lines for each
input/output combinations, where “don’t cares” are allowed. Circuits are also
allowed to have sequential components such as latches.

BLIF underlies many circuit benchmarks that have been used primarily by the
Circuit and Systems community in the 80s and 90s. These benchmarks include the
ISCAS’85, ISCAS’89, MCNC’91, LGSynth’91 and LGSynth’92 collections [16].
We identified all examples from the union of these benchmarks that only use com-
binational circuit elements. For those Boolean functions in principle a reversible
circuit can be computed. We obtained a set of 135 benchmark circuits which we
used to test the performance of our Boolean generation subroutines. On these cir-
cuits we typically found that our tool REVS decreased the number of ancillas by
a factor of 4x while increasing the number of gates only moderately.

PLA underlies benchmarks for reversible circuit synthesis that typically start
as classical, irreversible functions expressed in this format. The two benchmarks
we considered are the RevLib benchmarks [1] and the Maslov benchmarks [14].
We optimized the reversible circuits for space using the methods described in
this paper and compared it to the best known circuits in the RevLib and Maslov
databases. While generally, we get a tradeoff between space and time, in some
cases we found circuits that are more efficient in terms of number of qubits and
the total circuit size.



REVS: Space-Optimized Reversible Circuit Synthesis 97

)c)b)a

Fig. 2. An example illustrating the synthesis based on factorization of output groups
for ESOP files. Shown in (a) is a simple example of an ESOP file corresponding to the
output functions (f0(x0, x1, x2), f1(x0, x1, x2)), where f0(x0, x1, x2) = x0x1x2 ⊕x0x1x2

and f1(x0, x1, x2) = x0x1x2⊕x0x1x2⊕x2. Running REVS with parameter p = 0 treats
each line in the ESOP file as a group. This turns each line into a multiply-controlled
Toffoli gate as shown in (b). Running REVS with parameter p = 1 allows REVS to
group up to 2 lines together, provided that the lines have identical outputs. In the
example, the first two lines are grouped together which allows to factor the sum of the
corresponding input product terms as x0x1x2 ⊕ x0x1x2 = (x0x1 ⊕ x0x1)x2. The factor
(x0x1⊕x0x1) is then simplified to x0⊕x1 and computed into a new ancilla qubit which
is then afterwards uncomputed. Overall, the T -gate complexity of the resulting circuit
is small, however, the total number of qubits used has increased by 1. The circuits in
(b) and (c) were rendered using QCViewer [21].

4.2 Optimizations for Boolean Circuits

In general, given a set of AND expressions that are combined using OR we want
to find sets of mutually exclusive statements that minimize the use of AND.
We consider each AND expression to be a vertex on a graph and add edges
between vertices that are mutually exclusive. Now we cover this graph using the
smallest possible number of cliques using an algorithm that solves the CLIQUE-
COVER problem, which asks to partition the vertices of a graph into cliques.
NP-completeness of CLIQUE-COVER for given upper bound k of allowed cliques
is well-known, however, practical approximation algorithms exist [8].

After finding a cliques partition each set of mutually exclusive statements
can be implemented by evaluating the AND statements and combining all of the
values on a single ancilla using XOR for each clique. These results can then be
combined using OR statements. We can pre-process the given file in such a way
that the cliques will be grouped in the output. This yields a new file, however,
the effect of the reordering is that instead of OR functions now the much cheaper
XOR functions can be used.

We ran REVS against a suite of benchmarks from the RevLib database.
In Table 1 we report on improvements over the best known circuits. Our tool
improved so far only one instance of the Maslov database, namely the benchmark
that consists of computing a Boolean function that computes the bits of the
permanent of a given 3 × 3 binary matrix. Shown in Table 1 are the qubit and
gate costs for the eager cleanup method and in comparison the corresponding
cost with the best circuit from the database. The total number of qubits in the
first data column is the number of ancillas from the second data column plus



98 A. Parent et al.

Table 1. Performance of REVS on a selection of benchmark circuits.

Name Our Method RevLib Comparison (rel.) Time

Tot. Bits Ancillas Toffolis Tot. Bits Toffolis Tot. Bits Toffolis

4mod5 7 2 1 7 4 1.00 0.25 0.00s

5xp1 23 6 83 23 365 1.00 0.23 0.02s

6sym 11 4 35 14 16 0.79 2.19 0.02s

alu4 61 39 2821 33 10456 1.85 0.27 3.70s

apex5 228 23 3727 1025 1860 0.22 2.00 15.59s

bw 36 3 73 87 159 0.41 0.46 0.01s

con1 13 4 16 13 63 1.00 0.25 0.01s

decod24 6 0 1 6 4 1.00 0.25 0.00s

e64 193 63 4096 195 130 0.99 31.5 0.17s

ex1010 38 18 6581 29 31219 1.31 0.21 6.92s

f51m 52 30 1774 35 6207 1.49 0.29 1.97s

frg2 336 54 8950 1219 2186 0.28 4.09 1913.09s

hwb9 33 15 2915 170 394 0.19 7.40 3.13s

max46 20 10 195 17 689 1.18 0.28 0.20s

mini-alu 9 3 14 10 10 0.90 1.40 0.00s

pdc 102 46 3222 619 1105 0.16 2.91 85.16s

rd84 26 14 170 34 50 0.76 3.40 0.13s

seq 107 31 3310 1617 3343 0.07 0.99 1.21s

spla 95 33 3232 489 1054 0.19 3.07 75.11s

sqrt8 18 6 32 18 158 1.00 0.20 0.02s

squar5 16 3 36 17 155 0.94 0.23 0.01s

t481 19 2 26 20 68 0.95 0.38 0.01s

the number of inputs and outputs. Typically, a space improvement of around 4X
can be observed at an increase of the number of gates by around 3X. For the
benchmarks shown in bold, our tool found a circuit that is better in both, the
number of bits and the total number of gates.

It should be noted also that all ancilla bits computed by our tool are returned
clean whereas some of the circuits in [31] leave garbage behind which would lead
to a further increase in the gate count and the number of ancillas. In case the gate
counts in RevLib were given in terms of multiply controlled gates, we converted
the gates into Toffoli gates using 2n−3 Toffoli gates per n-fold controlled NOT.
Among the examples we observed with large possible improvement in terms
of space was frg2 where a space reduction of almost a factor 4 was achieved.
This however came at a significant increase in compilation time for this specific
example which was caused by a large number of same output values which led to
a large number of possible groupings. In our reference implementation all possible
groupings were explored and the minimum picked which lead to the outlier in



REVS: Space-Optimized Reversible Circuit Synthesis 99

compilation cost. Using a greedy strategy for the groupings, a reduction of this
compilation time is possible. The compilation time are measured with respect to
an Intel i7-3667 @ 2 GHz 8 GB RAM processor running on a standard laptop.

We implemented the procedure that first performs the offline conversion of
the given circuit to an equivalent circuit by performing the clique-cover-based
XOR maximization. Then this circuit is converted directly into an MDD before
cleanup and in doing so, our compiler finds the optimized grouping that replaces
OR terms with XOR terms. As the next stage in the pre-processing, we then use
the Exorcism-4 tool [18] to perform Exclusive Sum-Of-Product (ESOP) mini-
mization. Afterward, we use factoring techniques from multi-level circuit opti-
mization and minimize the size of the out expressions. A pseudo-code implemen-
tation of this factoring technique is given as Algorithm2.

An example of how our Boolean expression generation allows to trade circuit
size (and compilation time) for the total number of qubits used is shown in Fig. 2.
Finally, since the processed PLA file is an xor sum on the outputs, MDD based
cleanup can be done after each boolean expression to minimize the number of
bits use.

5 Conclusions

We developed a tool that automates the translation of classical, irreversible pro-
grams into reversible programs. Contrary to previous approaches of reversible
programming languages such as the reversible languages R or Janus [23], our
language does not constrain the programmer. Also, in contrast to previous
approaches for implementing Bennett-style strategies such as Quipper [9] our
approach is more space efficient. We employ heuristic strategies which seek to
identify parts of the program that lead to mutation which then can be imple-
mented via in-place operations.

In order to manage the arising data dependencies, we introduced MDD
graphs which capture data dependencies as well as data mutation in one graph.
We prove that our eager cleanup strategy is correct, provided the mutation paths
that occur in the MDD have no inter-path dependency. In case such dependen-
cies arise, we clean up the paths using the standard Bennett strategy, which
allows us to compile any program that can be expressed in our language into a
Toffoli network.

We found examples where our dependency-graph based method for eager
cleanup is better than Bennett’s original method, even when Bennett’s method
is implemented by cleaning up at function boundaries. Using an example bench-
mark suite compiled from the classical circuits and systems community as well
as known reversible benchmarks, we show that the method can be applied for
medium to large scale problems.



100 A. Parent et al.

References

1. Revlib - an online resource for reversible functions and circuits. http://www.revlib.
org/

2. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools. Addison Wesley, London (2007)

3. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532
(1973)

4. Bennett, C.H.: Time/space trade-offs for reversible computation. SIAM J. Comput.
18, 766–776 (1989)

5. Buhrman, H., Tromp, J., Vitányi, P.: Time and space bounds for reversible simu-
lation. In: Orejas, F., Spirakis, P.G., Leeuwen, J. (eds.) ICALP 2001. LNCS, vol.
2076, pp. 1017–1027. Springer, Heidelberg (2001). doi:10.1007/3-540-48224-5 82

6. Pebble games and complexity. Ph.D. thesis, Electrical Engineering and Computer
Science, UC Berkeley, Technical report: EECS-2013-145 (2013)

7. Chattopadhyay, A., Pal, N., Majumder, S.: Ancilla-quantum cost trade-off during
reversible logic synthesis using exclusive sum-of-products (2014). arxiv:1405.6073

8. Goldschmidt, O., Hochbaum, D.S., Hurkens, C.A.J., Yu, G.: Approximation algo-
rithms for the k-clique covering problem. SIAM J. Disc. Math. 9(3), 492–509 (1996)

9. Green, A., LeFanu Lumsdaine, P., Ross, N., Selinger, P., Valiron, B.: Quipper: a
scalable quantum programming language. In: PLDI 2013 (2013)

10. Heckey, J., Patil, S., Javadi Abhari, A., Holmes, A., Kudrow, D., Brown, K.R.,
Franklin, D., Chong, F.T., Martonosi, M.: Compiler management of communica-
tion and parallelism for quantum computation. In: ASPLOS 2015, pp. 445–456.
ACM (2015)

11. JavadiAbhari, A., Patil, S., Kudrow, D., Heckey, J., Lvov, A., Chong, F.T.,
Martonosi, M.: ScaffCC: scalable compilation and analysis of quantum programs.
Parallel Comput. 45, 2–17 (2015)

12. Lange, K.J., McKenzie, P., Tapp, A.: Reversible space equals deterministic space.
J. Comput. Syst. Sci. 60(2), 354–367 (2000)

13. Lin, C.-C., Jha, N.K.: RMDDS: Reed-Muller decision diagram synthesis of
reversible logic circuits. ACM J. Emerg. Technol. Comput. Syst. 10(2), 14 (2014)

14. Maslov, D.: Reversible logic synthesis benchmarks page. http://webhome.cs.uvic.
ca/∼dmaslov/

15. Maslov, D., Miller, D.M., Dueck, G.W.: Techniques for the synthesis of reversible
Toffoli networks. ACM Trans. Des. Autom. Electron. Syst. 12(4), 42 (2007)

16. Minkovich, K.: BLIF benchmark suite. http://cadlab.cs.ucla.edu/∼kirill/
17. Mishchenko, A., Brayton, R., Chatterjee, S.: Boolean factoring and decomposition

of logic networks. In: Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design, pp. 38–44. IEEE Press (2008)

18. Mishchenko, A., Perkowski, M.: Fast heuristic minimization of exclusive sum-of-
products, 2001. Exorcism is available as part of the ABC software. https://people.
eecs.berkeley.edu/∼alanmi/

19. Muchnick, S.S.: Compiler Design and Implementation. Morgan Kaufmann,
San Francisco (1997)

20. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2000)

21. Parent, A., Parker, J., Burns, M., Maslov, D.: Quantum Circuit Viewer. Poster
presentation at TQC 2013, University of Guelph, Canada. Software (2013). https://
github.com/aparent/QCViewer, http://qcirc.iqc.uwaterloo.ca/

http://www.revlib.org/
http://www.revlib.org/
http://dx.doi.org/10.1007/3-540-48224-5_82
http://arxiv.org/abs/1405.6073
http://webhome.cs.uvic.ca/~dmaslov/
http://webhome.cs.uvic.ca/~dmaslov/
http://cadlab.cs.ucla.edu/~kirill/
https://people.eecs.berkeley.edu/~alanmi/
https://people.eecs.berkeley.edu/~alanmi/
https://github.com/aparent/QCViewer
https://github.com/aparent/QCViewer
http://qcirc.iqc.uwaterloo.ca/


REVS: Space-Optimized Reversible Circuit Synthesis 101

22. Parent, A., Roetteler, M., Svore, K.M.: Reversible circuit compilation with space
constraints (2015). arXiv:1510.00377

23. Perumalla, K.S.: Introduction to Reversible Computing. CRC Press, Boca Raton
(2014)

24. Saeedi, M., Markov, I.L.: Constant-optimized quantum circuits for modular mul-
tiplication and exponentiation. Quantum Information and Computation 12(5&6),
361–394 (2012)

25. Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits - a sur-
vey. ACM Comput. Surv. 45(2), 21 (2013)

26. Shafaei, A., Saeedi, M., Pedram, M.: Reversible logic synthesis of k-input, m-output
lookup tables. In: DATE 2013, pp. 1235–1240 (2013)

27. Soeken, M., Robert Wille, R., Hilken, Ch., Przigoda, N., Drechsler, R.: Synthesis
of reversible circuits with minimal lines for large functions. In: Proceedings of
ASP-DAC 2012 (2012)

28. Syme, D., Granicz, A., Cisternino, A.: Expert F# 3.0. Apress Publishing,
New York (2012)

29. Thomsen, M.K.: A functional language for describing reversible logic. In: Forum
on Specification and Design Languages, pp. 135–142. IEEE (2012)

30. Viamontes, G.F., Markov, I.L., Hayes, J.P.: Quantum Circuit Simulation. Springer,
Heidelberg (2009)

31. Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions.
In: Proceedings of DAC 2009, pp. 270–275 (2009)

32. Wille, R., Drechsler, R.: Towards a Design Flow for Reversible Logic. Springer,
Dodrecht (2010)

33. Wille, R., Offermann, S., Drechsler, R.: SyReC: a programming language for syn-
thesis of reversible circuits. In: Specification Design Languages (FDL), pp. 1–6
(2010)

34. Wille, R., Soeken, M., Drechsler, R.: Reducing the number of lines in reversible
circuits. In: Proceedings of DAC 2010, pp. 647–652 (2010)

35. Wille, R., Soeken, M., Miller, D.M., Drechsler, R.: Trading off circuit lines and
gate costs in the synthesis of reversible logic. Integration 47(2), 284–294 (2014)

36. Yokoyama, T., Glück, R.: A reversible programming language and its invertible
self-interpreter. In: PEPM 2007, pp. 144–153 (2007)

http://arxiv.org/abs/1510.00377

	REVS: A Tool for Space-Optimized Reversible Circuit Synthesis
	1 Introduction
	2 Reversible Circuits
	3 Dependency Analysis
	3.1 Mutable Data Dependency Graphs (MDDs)
	3.2 Eager Cleanup Strategy

	4 Boolean Expression Generation
	4.1 Boolean Function Synthesis Benchmarks
	4.2 Optimizations for Boolean Circuits

	5 Conclusions
	References


