
Designing Parity Preserving Reversible Circuits

Goutam Paul1(B), Anupam Chattopadhyay2, and Chander Chandak3

1 Cryptology and Security Research Unit (CSRU),
R.C. Bose Centre for Cryptology and Security,

Indian Statistical Institute, Kolkata 700 108, India
goutam.paul@isical.ac.in

2 School of Computer Engineering,
Nanyang Technological University (NTU), Singapore, Singapore

anupam@ntu.edu.sg
3 Liv Artificial Intelligence Pvt. Ltd., Bengaluru, India

chandar.chandak@gmail.com

Abstract. With the emergence of reversible circuits as an energy-
efficient alternative of classical circuits, ensuring fault tolerance in such
circuits becomes a very important problem. Parity-preserving reversible
logic design is one viable approach towards fault detection. Interestingly,
most of the existing designs are ad hoc, based on some pre-defined par-
ity preserving reversible gates as building blocks. In the current work,
we propose a systematic approach towards parity preserving reversible
circuit design. We prove a few theoretical results and present two algo-
rithms, one from reversible specification to parity preserving reversible
specification and another from irreversible specification to parity preserv-
ing reversible specification. We derive an upper-bound for the number of
garbage bits for our algorithm and perform its complexity analysis. We
also evaluate the effectiveness of our approach by extensive experimental
results and compare with the state-of-the-art practices. To our knowl-
edge, this is the first work towards systematic design of parity preserving
reversible circuit and more research is needed in this area to make this
approach more scalable.

Keywords: Fault tolerance · Parity · Quantum computing · Reversible
circuits

1 Introduction and Motivation

It is known that erasure of a single bit of information dissipates heat equivalent
to KBT ln 2 [3,12], where KB = 1.38 × 10−23 J/K is Boltzmann constant and T
is the room temperature in Kelvin. This heat dissipation is in conformity with
the laws of thermodynamics applied to any irreversible process. Using reversible
logic implementation of Boolean functions, it is theoretically possible to make
heat dissipation and hence power loss negligible. Though classical logic is not
reversible, it is possible to represent classical Boolean functions using reversible
logic [2]. On the other hand, any quantum computation is based on unitary

The original version of this chapter was revised: Table 2 was corrected. An erratum
to this chapter can be found at 10.1007/978-3-319-59936-6 20

c© Springer International Publishing AG 2017
I. Phillips and H. Rahaman (Eds.): RC 2017, LNCS 10301, pp. 77–89, 2017.
DOI: 10.1007/978-3-319-59936-6 6

http://dx.doi.org/10.1007/978-3-319-59936-6_20


78 G. Paul et al.

evolution of quantum mechanical systems and is inherently reversible. However,
with increasing demand on low power design, reversible logic finds application
not only in quantum circuits, but also in designing conventional circuits for
encoding/decoding etc [34].

Any physical device performing classical or quantum computation is subject
to error due to noise in the environment or imperfections in the device. Fault
tolerant computing can mitigate this. There are two broad approaches towards
fault tolerance - one focuses on fault prevention and the other focuses on first
fault detection and then fault correction. For fault detection, usage of redundant
parity bits is one of the most popular approaches. For classical circuits, bit flip
is the most common type of error. For quantum circuits, in addition to bit flip,
there might be phase flip as well. In this short technical note, we focus on bit
flip errors.

Most common method for detecting bit-flip errors in storage or transmission
is by means of parity checking. Classically, most arithmetic and other process-
ing functions do not preserve the parity. One has to use redundant circuitry
to compute and check the parity. In general, making a reversible circuit fault-
tolerant is much more difficult than classical circuit, since reversible logic allows
no feedback or fan-out. The notion of parity-preserving arithmetic circuits goes
back to [19]. Later, in [20], the concept of parity preserving reversible circuits
was introduced. The idea is to design the reversible circuit in such a way that
the parity between the input and the output bits are automatically conserved in
absence of any error.

After [20], there has been a series of sporadic works in this area, such as
designing adders [11], divider [4], multiplier [23], multiplexer [25], ALU [26] etc.
The work [36] discusses the various steps required in the logic design of quantum
circuits.

However, all of these designs are ad hoc, based on some pre-defined parity
preserving reversible gates as building blocks. To the best of our knowledge, in
this article, we for the first time propose a novel and systematic approach towards
parity preserving reversible circuits design. We provide some related theoretical
results and give two algorithms. The first algorithm converts a reversible speci-
fication to parity preserving reversible specification and the second one converts
an irreversible specification directly to parity preserving reversible specification.

There are other approaches than parity preservation, for achieving fault-
tolerance in reversible circuits, as described in [17] and in [18]. The advantage of
parity-preserving circuit is that one need not do any extra operations in order
to detect errors or faults; the fault detection becomes a by-product of the usual
computation in the circuit. With this motivation, we focus on designing parity-
preserving reversible circuits in this paper.

2 Reversible Logic Synthesis

An n-variable Boolean function is reversible if all its output patterns map
uniquely to an input pattern and vice-versa. It can be expressed as an n-
input, n-output bijection or alternatively, as a permutation over the truth value



Designing Parity Preserving Reversible Circuits 79

set {0, 1, . . . 2n−1}. The problem of reversible logic synthesis is to map such a
reversible Boolean function on a reversible logic gate library.

The gates are characterized by their implementation cost in quantum tech-
nologies, which is dubbed as Quantum Cost (QC) [14,16]. Reversible logic gates
can also be represented as an unitary transformation, therefore serving as build-
ing blocks for quantum computers. Few prominent classical reversible logic gates
are presented below.

– NOT gate: On input A, it produces A as output.
– CNOT gate: On input (A,B), it produces (A,A ⊕ B) as output.
– CCNOT gate: Also known as Toffoli gate. On input (A,B,C), it produces

(A,B,AB ⊕ C) as output. This gate can be generalized with Tofn gate,
where first n − 1 variables are used as control lines. NOT and CNOT gates
are denoted as Tof1 and Tof2 respectively.

– Peres gate: A sequence of Tof3(a, b, c), Tof2(a, b) or its inverse is known as
Peres gate.

– Controlled Swap gate, also known as Fredkin gate. On input (A,B,C), it
produces (A,A.B +A.C,A.C +A.B) as output. This gate can be generalized
with Fredn gate (n > 1), where first n− 2 variables are used as control lines.

Multiple sets of reversible gates form an universal gate library for realizing
classical Boolean functions such as, (i) NCT: NOT, CNOT, Toffoli. (ii) NCTSF:
NOT, CNOT, Toffoli, SWAP, Fredkin. (iii) GT: Tofn. (iv) GTGF: Tofn and
Fredn. Of late, Clifford+T gate library is preferred for Quantum circuit con-
struction due to the known constructions of Clifford group of operators and T
gate for most promising error correcting codes, including surface code. In this
work, we focus on the logical fault tolerance issue and focus on the classical
reversible logic gates. Efficient Clifford+T realization of classical reversible logic
gates form an important research problem.

Reversible logic synthesis begins from a given n-variable Boolean function,
which can be irreversible. The first step is to convert it to a reversible Boolean
function by adding distinguishing output bits, known as garbage outputs. When
additional input Boolean variables are needed for constructing the output func-
tion, those are referred as ancilla. In this work, we focus on minimizing the
number of garbage outputs. However, for a full generalized analysis, one should
consider joint minimization of both the numbers of garbage outputs and the
ancilla inputs.

Reversible logic synthesis methods can be broadly classified in four categories
as following. A different and more detailed classification is presented in a recent
survey of reversible logic synthesis methods [24].

– Exact and Optimal methods: These methods consider step-by-step
exhaustive enumeration or formulating the logic synthesis as a SAT problem
[7] or reachability problem [10]. Optimal implementations for all 4-variable
Boolean functions [6] and for selected benchmarks up to 6-variable Boolean
functions are known [9].



80 G. Paul et al.

– Transformation-based method [13,35]: These methods use a weighted
graph representation for performing the transformations, while [13] proceed
row-wise in the Boolean truth-table.

– Methods based on decision diagrams [29,32]: In this approach, each
node of the decision diagram is converted to an equivalent reversible circuit
structure. These methods reported excellent scaling for large Boolean func-
tions, low QC at the cost of high number of garbage bits.

– ESOP-based methods: For classical logic synthesis, the exclusive sum of
products (ESOP) formulation is studied well for specific target technolo-
gies [15]. For reversible logic synthesis, the ESOP formulation [8] maps
directly to the basic reversible logic gates and has led to significant research
interest.

Among the above methods, methods based on Decision Diagrams and ESOP-
based methods can synthesize an irreversible Boolean specification to reversible
circuit by adding extra garbage lines. However, these methods do not guaran-
tee the minimum garbage count. On the other hand, determination of mini-
mum garbage count and their assignment is non-trivial, particularly for Boolean
functions with large number of variables [33]. To the best of our knowledge,
no automatic reversible logic synthesis tool supports automatic derivation of
parity-preserving Boolean specification from an irreversible/reversible Boolean
specification. Our flow proposed in the paper can be complemented with any
reversible logic synthesis flows, which work on reversible Boolean specifications.

3 Theoretical Results

First we discuss how to convert a reversible Boolean specification (that does not
necessarily consider parity preservation) into parity-preserving reversible speci-
fication. Before proceeding, we count the number of n-variable parity preserving
reversible Boolean functions in Theorem 1.

Theorem 1. Total number of n-variable parity preserving reversible Boolean
functions is

(
2n−1!

)2.

Proof. In the truth table of an n-variable reversible Boolean function, there are
2n input and output rows. Half of the 2n input (or output) rows, i.e., total 2n−1

rows would have odd parity and the other half would have even parity. For the
function to be parity-preserving, the odd-parity input rows must map to the
odd-parity output rows. There are 2n−1! such mappings. Corresponding to each
of these, the even-parity input rows must map to the even-parity output rows
and there are again 2n−1! such mappings. Hence the result follows.

The method of constructing a parity-preserving reversible specification
from any reversible specification is described in the proof of Theorem 2.



Designing Parity Preserving Reversible Circuits 81

Theorem 2. Given any n-variable reversible Boolean specification, it can be
converted to a parity-preserving reversible Boolean specification with the intro-
duction of at most one extra variable.

Proof. If the function is already parity-preserving, we need not do anything. If
not, then in the output column of the truth table, we can just put a 0 in the
parity-matching rows and a 1 in the parity-mismatching rows. On the input side,
the extra variable can be set to the constant 0. Hence the result follows.

3.1 Direct Method of Converting Irreversible Specification
to Parity-Preserving Reversible Specification

Next, we discuss the case when we are given an irreversible Boolean specification.
One simple approach can be a two-phase procedure: first, to use some standard
approaches [33] for converting the irreversible specification to a reversible spec-
ification, and next, use the result of Theorem 2. However, the first phase in
this approach may incur unnecessary extra garbage bits. To avoid this problem,
we provide a direct method of converting a given irreversible specification to a
parity-preserving reversible specification with theoretically bounded number of
extra bits. The method is as follows.

Since the specification is irreversible, the output rows must contain duplicate
bit-strings. Suppose there are n input variables and hence 2n rows in the truth
table. Suppose there are k < 2n distinct output bit-strings, with the counts
n1, . . . , nk, such that

∑k
i=1 ni = 2n. For each i = 1, . . . , k, out of ni rows with

the same output bit-string, let ni,p be the number of rows where the input and
the output parity is matching and so ni − ni,p is the number of rows where
the parity is not matching. To differentiate the matching rows we need at least
�log2 ni,p� extra bits. Similarly, to differentiate the mismatching rows, we need
at least �log2 (n − ni,p)� extra bits. Hence, for the rows corresponding to the
bit-string category i, the number of extra bits needed is at most one more than
the maximum of these two numbers. The one additional bit may be required to
match the parity, in case the specification with the garbage bits is not already
parity-preserving. Thus, the total number of extra bits needed is given by the
maximum of the above quantity over all i’s. Hence, with the above formulation,
we have the following result.

Theorem 3. The number of extra bits needed by the proposed algorithm to con-
vert an irreversible specification to parity-preserving reversible specification is at
most

k
max
i=1

{max{�log2 ni,p�, �log2 (n − ni,p)�}} + 1.

Note that the expression before 1 is the number of garbage lines needed to
convert the irreversible specification to reversible specification which has been
explained in the following subsection.



82 G. Paul et al.

3.2 Algorithm and Its Complexity Analysis

We present the algorithm for converting an irreversible specification to parity-
preserving reversible specification in Algorithm 1. Suppose x1, . . . , xk are k inte-
gers ∈ {0, . . . , 2n−1} corresponding to the distinct output bit-strings. Note that
according to our notation, xi appears ni times. We will keep two arrays match
and mismatch as follows. In the algorithm, match[xi] will contain ni,m and
mismatch[xi] will contain n−ni,m. The array count[i], for 0, . . . , 2n −1, is filled
from top to bottom order, corresponding to each output row as follows: count[i]
contains how many times the i-th output row has appeared so far starting from
the top row in both the cases when the parity is preserved and when it is not
preserved.

ALGORITHM 1. Irreversible to Parity Preserving Reversible Specifica-
tion
Input: n, An integer array out[0 . . . 2n − 1], containing the decimal equivalent

of the output rows of an n-variable Boolean function.
Output: Parity preserving reversible specification.

1 max = 0;
2 for i = 0 to 2n − 1 do
3 match[i] = 0, mismatch[i] = 0, count[i] = 0;

end
4 for row ← 0 to 2n − 1 do
5 if parity matches then
6 match[out[row]]++;
7 count[row] = match[out[row]];
8 if max < match[out[row]] then
9 max = match[out[row]];

end

end
10 else
11 mismatch[out[row]]++;
12 count[row] = mismatch[out[row]];
13 if max < mismatch[out[row]] then
14 max = mismatch[out[row]];

end

end

end
15 g = log2 max + 1;
16 Add g columns to the Boolean output specification;
17 for row ← 0 to 2n − 1 do
18 k = count[row];
19 Append binary value of k in the g − 1 bits;
20 Use the last bit, if necessary, to match parity;

end



Designing Parity Preserving Reversible Circuits 83

Now we present the complexity of our algorithm in Theorem 4.

Theorem 4. For an n-input m-output Boolean specification, the running time
of Algorithm 1 is O((n + m)2n).

Proof. The maximum number of input or output rows in the Boolean specifi-
cation is 2n. Let there be k < 2n distinct output bit-strings with the counts
n1, . . . , nk, such that

∑k
i=1 ni = 2n. For each row we have to compute the num-

ber of 1’s in the input and output bit-strings for computing the parity. The
algorithmic complexity for this traversal is O((n + m)2n), which accounts for
Steps 2 to 14. After this computation, we have one more iteration over the out-
put rows through Step 17 to 20, the running time of which is dominated by
O((n + m)2n). Hence the result follows.

4 Experimental Results

The proposed algorithm has been implemented and tested on several benchmark
circuits, using C++ on an Intel(R) Core(TM) i5-3570 CPU (Quad-core) with
3.40 GHz clock and 6 MB cache, having Linux version 2.6.32-358.6.2.el6.x86 64
as the OS, and gcc version 4.4.7 as the compiler. First, we compared our auto-
matically generated parity-preserving reversible circuits with manually created
parity-preserving reversible circuits reported by others. Our comparison metric
is the number of additional garbage lines required for preserving parity. Quan-
tum cost and Gate Count for different specifications can vary considerably. In
the paper we have given an example of rd53 circuit. For this circuit we can
have a total of (10! × 10! × 5! × 5! = 1.8962193e + 17) different possible par-
ity preserved specifications. Even Table 2 in the paper with Full Adder Boolean
specification has (3! × 3! = 36) different possible reversible specifications.

4.1 Comparison with State-of-the-Art

We apply the proposed algorithm on Half Adder and Full Adder as two test
cases. The transformation of irreversible Boolean specification to a reversible one
is depicted in Tables 1 and 2 respectively, with the required number of constant
input and garbage lines. The ancilla inputs and garbage outputs are referred as
Ai and Gi respectively. The reversible specification thus obtained can be used to
implement the reversible circuit using the well-known reversible logic synthesis
methods for garbage-free synthesis [13].

We do not compare the gate count and quantum cost incurred in realizing
the circuit as the proposed algorithm does not aim to optimize those parameters.
Our aim was to minimize the number of garbage lines. For the parity preserved
half adder circuit obtained from the proposed algorithm, the gate count and
quantum cost required for the realization of the circuit are 8 and 28 respec-
tively. The approach followed for the construction of the circuit is similar to
the transformation based synthesis as proposed in [13]. The circuit is shown in
Fig. 1.



84 G. Paul et al.

Table 1. Half Adder Boolean specification

Irreversible specification Reversible specification

Input Output Input A1 A2 Output G1 G2

00 00 00 0 0 00 0 0

01 10 01 0 0 10 0 0

10 10 10 0 0 10 1 1

11 01 11 0 0 01 0 1

Table 2. Full Adder Boolean specification

Irreversible specification Reversible specification

Input Output Input A1 A2 Output G1 G2 G3

000 00 000 0 0 00 0 0 0

001 10 001 0 0 10 0 0 0

010 10 010 0 0 10 0 1 1

011 01 011 0 0 01 0 0 1

100 10 100 0 0 10 1 0 1

101 01 101 0 0 01 0 1 0

110 01 110 0 0 01 1 0 0

111 11 111 0 0 11 0 0 1

1

2

1

2

1

2

Fig. 1. Realization for the parity preserved half adder circuit as per Table 1



Designing Parity Preserving Reversible Circuits 85

In terms of the ancilla and garbage count, we obtain exactly the same number
for both the Half Adder and Full Adder circuits as obtained manually in [1,27].

It is also worthwhile to compare with the online testability approaches pro-
posed in [17,18]. There, an additional parity line and modulo-redundancy is
added corresponding to every reversible gate after the circuit is synthesized.
Naturally, this leads to a significant design overhead, which can be up to 300%
in terms of gate count [18]. Even with such an overhead, there are fault scenarios
that cannot be covered. In contrast, our proposition only requires 2N additional
CNOT gates, where N is the number of inputs in the parity-preserved reversible
circuit. The CNOT gates are targeted towards one additional parity line, similar
to the Preamble and Postamble blocks suggested in [18].

A limitation of our approach is that it assumes a rather simplistic bit-flip
model arising from classical reversible logic circuits. In the context of, say, Quan-
tum technologies, the fault models are different [22] and requires a deeper analy-
sis. For example, it is indeed possible to interpret a Single Missing Gate Fault
(SMGF) or Single Missing Control Fault (SMCF) as a bit-flip, though, it is not
guaranteed that a parity-preserving reversible circuit can lead to a 100% detec-
tion of all possible missing faults. For that, the propagation of an individual
bit-flip and the masking effects of the subsequent gates need to be taken into
account. Moreover, the correlation between parity violation and the two kinds
of missing faults is circuit specific. Clearly, it is an interesting open problem to
identify the minimum performance overhead to guarantee complete fault cover-
age with a solution lying between gate-wise redundancy advocated earlier [18]
and circuit-level parity-preservation proposed here.

4.2 Tests for Boolean Functions with Large Variable Count

We also tried the algorithm for several Boolean functions with large number of
variables, for which obtaining a parity-preserving Boolean specification manually
would be hard.

As an example, our algorithm converts the irreversible specification rd53 [13]
into reversible one as enlisted in Table 3. A summary of all the functions we tried
is presented in Table 4. In this table, the tar functions are from Tarannikov’s
paper [31]. From [31, Eq. 2], we use the parameter c as 001 to construct an 8-
variable, 2-resilient function then we get tar82 2 001.pla. Similarly tar93 110.pla
and tar93 101.pla are 9 variable 3-resilient functions with the c vector as 110 and
101 respectively. The functions like rdNK is presented in several benchmarks
on reversible logic synthesis [16]. The input weight function rdNK has N inputs
and K = �logN� + 1 outputs. Its output is the binary encoding of the number of
ones in its input. The other functions are obtained from RevKit benchmark [28].



86 G. Paul et al.

Table 3. Reversible Boolean specification for rd53 function

Input A1 A2 A3 Output G1 G2 G3 G4 G5

00000 0 0 0 000 0 0 0 0 0

00001 0 0 0 001 0 0 0 0 0

00010 0 0 0 001 0 0 0 1 1

00011 0 0 0 010 0 0 0 0 1

00100 0 0 0 001 0 0 1 0 1

00101 0 0 0 010 0 0 0 1 0

00110 0 0 0 010 0 0 1 0 0

00111 0 0 0 011 0 0 0 0 1

01000 0 0 0 001 0 0 1 1 0

01001 0 0 0 010 0 0 1 1 1

01010 0 0 0 010 0 1 0 0 0

01011 0 0 0 011 0 0 0 1 0

01100 0 0 0 010 0 1 0 1 1

01101 0 0 0 011 0 0 1 0 0

01110 0 0 0 011 0 0 1 1 1

01111 0 0 0 100 0 0 0 0 1

10000 0 0 0 001 0 1 0 0 1

10001 0 0 0 010 0 1 1 0 1

10010 0 0 0 010 0 1 1 1 0

10011 0 0 0 011 0 1 0 0 0

10100 0 0 0 010 1 0 0 0 0

10101 0 0 0 011 0 1 0 1 1

10110 0 0 0 011 0 1 1 0 1

10111 0 0 0 100 0 0 0 1 0

11000 0 0 0 010 1 0 0 1 1

11001 0 0 0 011 0 1 1 1 0

11010 0 0 0 011 1 0 0 0 0

11011 0 0 0 100 0 0 1 0 0

11100 0 0 0 011 1 0 0 1 1

11101 0 0 0 100 0 0 1 1 1

11110 0 0 0 100 0 1 0 0 0

11111 0 0 0 101 0 0 0 0 1



Designing Parity Preserving Reversible Circuits 87

Table 4. Summary of results for exemplary Boolean functions with large no. of vari-
ables

Function Input count Output count Garbage count Ancilla count Runtime (ms)

tar82 2 001.pla 8 1 8 1 0.66

tar93 110.pla 9 1 8 0 1.89

tar93 101.pla 9 1 8 0 1.63

rd53 5 3 5 3 0.18

rd73 7 3 7 3 0.35

rd84 8 4 8 4 0.64

rd20 5 20 5 19 4 34.70

rd10 4 10 4 9 3 23.17

0410184 85.pla 14 14 1 1 14.17

cycle10 2 61.pla 12 12 1 1 3.39

ham15 30.pla 15 15 1 1 30.15

ham7 29.pla 7 7 1 1 0.20

ham8 64.pla 8 8 1 1 0.31

life 175.pla 9 1 9 1 0.45

squar5.pla 5 8 1 4 6.77

urf4 89.pla 11 11 1 1 1.76

urf6.pla 15 15 1 1 29.21

plus63mod8192.pla 13 13 1 1 6.76

5 Conclusion and Future Work

We propose the first systematic algorithm to convert any irreversible specifi-
cation into a parity-preserving reversible specification. In existing works such
as in [11,27], a new specific gate is introduced to realize one particular parity-
preserving circuit. However, these gates may not be useful to realize other cir-
cuits. Our method is fully automated and general and can work on any given
circuit. The relevant code for the Algorithm 1 has been shared at [5].

In the current work, we have focused on bit-flip error only. However, the fault
coverage for different logical fault models [22] arising in the context of Quan-
tum circuit implementation requires further work, which we plan to undertake.
Another interesting future work could be to tackle the complexity of the input
representation.

One limitation of our work is that it uses truth-table specification and hence
is not scalable for large variables. An interesting future work could be exploring
the possibility of direct synthesis of parity-preserving circuits based on more
compact representations, such as BDDs or other hierarchical reversible logic
synthesis [30]. Such an approach may be more efficient for functions of larger
number of variables and hence more scalable. Moreover, as pointed out in a
recent work [21], even if a reversible circuit is parity preserving, it has to be
checked against a particular fault model. As part of our future work, we also



88 G. Paul et al.

plan to inject faults at different gates and estimate the fault coverage of our
circuits against different fault models.

References

1. Azad Khan, M.H.: Design of full-adder with reversible gates. In: International
Conference on Computer and Information Technology, pp. 515–519 (2002)

2. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532
(1973)

3. Bérut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz,
E.: Experimental verification of Landauer’s principle linking information and ther-
modynamics. Nature 483, 187–189 (2012)

4. Dastan, F., Haghparast, M.: A novel nanometric fault tolerant reversible divider.
Int. J. Phys. Sci. 6(24), 5671–5681 (2011)

5. https://github.com/cchandak/parity preserving rev ckt
6. Golubitsky, O., Falconer, S.M., Maslov, D.: Synthesis of the optimal 4-bit reversible

circuits. In: Proceedings of DAC, pp. 653–656 (2010)
7. Grosse, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact multiple-control toffoli

network synthesis with SAT techniques. IEEE TCAD 28(5), 703–715 (2009)
8. Gupta, P., Agrawal, A., Jha, N.K.: An algorithm for synthesis of reversible logic

circuits. IEEE TCAD 25(11), 2317–2330 (2006)
9. Grosse, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact multiple-control tooli net-

work synthesis With SAT techniques. IEEE TCAD 28(5), 703–715 (2009). doi:10.
1109/TCAD.2009.2017215

10. Hung, W.N.N., Xiaoyu, S., Guowu, Y., Jin, Y., Perkowski, M.: Optimal synthesis
of multiple output boolean functions using a set of quantum gates by symbolic
reachability analysis. IEEE TCAD 25(9), 1652–1663 (2006)

11. Islam, M.S., Rahman, M.M., Begum, Z., Hafiz, A., Al Mahmud, A.: Synthesis
of fault tolerant reversible logic circuits. In: Proceedings of IEEE Circuits and
Systems International Conference on Testing and Diagnosis, pp. 1–4 (2009)

12. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 5, 183–191 (1961)

13. Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for
reversible logic synthesis. In: Proceedings of DAC, pp. 318–323 (2003)

14. Miller, D.M., Wille, R., Sasanian, Z.: Elementary quantum gate realizations for
multiple-control toffolli gates. In: Proceedings of International Symposium on
Multiple-Valued Logic, pp. 288–293 (2011)

15. Mishchenko, A., Perkowski, M., Fast heuristic minimization of exclusive-sums-of-
products. In: Proceedings of the Reed-Muller Workshop, pp. 242–250 (2001)

16. Maslov, D.: Reversible Benchmarks. http://webhome.cs.uvic.ca/∼dmaslov,
Accessed Jun 2013

17. Nayeem, N.M., Rice, J.E.: Online testable approaches in reversible logic. J. Elec-
tron. Test. 29(6), 763–778 (2013)

18. Nashiry, M.A., Bhaskar, G.G., Rice, J.E.: Online testing for three fault models in
reversible circuits. In: Proceedings of ISMVL, pp. 8–13 (2011). doi:10.1109/ISMVL.
2015.36

19. Parhami, B.: Parity-preserving transformations in computer arithmetic. In: Pro-
ceeding of SPIE, vol. 4791, pp. 403–411 (2002)

https://github.com/cchandak/parity_preserving_rev_ckt
http://dx.doi.org/10.1109/TCAD.2009.2017215
http://dx.doi.org/10.1109/TCAD.2009.2017215
http://webhome.cs.uvic.ca/~dmaslov
http://dx.doi.org/10.1109/ISMVL.2015.36
http://dx.doi.org/10.1109/ISMVL.2015.36


Designing Parity Preserving Reversible Circuits 89

20. Parhami, B.: Fault-tolerant reversible circuits. In: Proceeding of 40th Asilomar
Conference Signals, Systems, and Computers, Pacific Grove, CA, pp. 1726–1729,
October 2006

21. Przigoda, N., Dueck, G.W., Wille, R., Drechsler, R.: Fault detection in parity pre-
serving reversible circuits. In: Proceeding of IEEE 46th International Symposium
on Multiple-Valued Logic (ISMVL), Sapporo, Japan, pp. 44–49, 18–20 May 2016

22. Polian, I., Fiehn, T., Becker, B., Hayes, J.P.: A family of logical fault models for
reversible circuits. In: Proceedings of Asian Test Symposium, pp. 422–427 (2011)

23. Qi, X., Chen, F., Zuo, K., Guo, L., Luo, Y., Hu, M.: Design of fast fault tolerant
reversible signed multiplier. Int. J. Phys. Sci. 7(17), 2506–2514 (2012)

24. Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits - a sur-
vey. In: CoRR abs/1110.2574, http://arxiv.org/abs/1110.2574 (2011)

25. Saligram, R., Hegde, S.S., Kulkarni, S.A., Bhagyalakshmi, H.R., Venkatesha, M.K.:
Design of fault tolerant reversible multiplexer based multi-boolean function gener-
ator using parity preserving gates. Int. J. Comput. Appl. 66(19), 20–24 (2013)

26. Saligram, R., Hegde, S.S., Kulkarni, S.A., Bhagyalakshmi, H.R., Venkatesha, M.K.:
Design of parity preserving logic based fault tolerant reversible arithmetic logic
unit. In: CoRR abs/1307.3690, http://arxiv.org/abs/1307.3690 (2013)

27. Syal, N., Sinha, H.P., Sheenu: Comparison of different type parity preserving
reversible gates and simple reversible gates. In: International Journal of Research
and Innovation in Computer Engineering, vol. 1, issue 1 (2011)

28. Soeken, M., Frehse, S., Wille, R., Drechsler, R.: RevKit: a toolkit for reversible
circuit design. In: Proceedings of Workshop on Reversible Computation, pp. 64–76
(2011)

29. Soeken, M., Wille, R., Hilken, C., Przigoda, N., Drechsler, R.: Synthesis of
reversible circuits with minimal lines for large functions. In: Proceedings of ASP-
DAC, pp. 85–92 (2012). doi:10.1109/ASPDAC.2012.6165069

30. Soeken, M., Chattopadhyay, A.: Unlocking efficiency and scalability of reversible
logic synthesis using conventional logic synthesis. In: Proceedings of the 53rd
Annual Design Automation Conference (DAC), Article no. 149, Austin, Texas,
05–09 June 2016

31. Tarannikov, Y.: New constructions of resilient boolean functions with maximal
nonlinearity. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 66–77. Springer,
Heidelberg (2002). doi:10.1007/3-540-45473-X 6

32. Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions.
In: Proceedings of DAC, pp. 270–275 (2009)

33. Wille, R., Keszöcze, O., Drechsler, R.: Determining the minimal number of lines
for large reversible circuits. In: Proceedings of DATE, pp. 1–4 (2011)

34. Wille, R., Drechsler, R., Osewold, C., Garcia-Ortiz, A.: Automatic design of low-
power encoders using reversible circuit synthesis. In: Proceedings of DATE, pp.
1036–1041 (2012). doi:10.1109/DATE.2012.6176648

35. Zheng, Y., Huang, C.: A novel toffoli network synthesis algorithm for reversible
logic. In: Proceedings of ASP-DAC, pp. 739–744 (2009)

36. Wille, R., Chattopadhyay, A., Drechsler, R.: From reversible logic to quantum
circuits: logic design for an emerging technology. In: Proceedings of International
Conference on Embedded Computer Systems: Architectures, Modeling and Simu-
lation (SAMOS), pp. 268–274 (2016)

http://arxiv.org/abs/1110.2574
http://arxiv.org/abs/1307.3690
http://dx.doi.org/10.1109/ASPDAC.2012.6165069
http://dx.doi.org/10.1007/3-540-45473-X_6
http://dx.doi.org/10.1109/DATE.2012.6176648

	Designing Parity Preserving Reversible Circuits
	1 Introduction and Motivation
	2 Reversible Logic Synthesis
	3 Theoretical Results
	3.1 Direct Method of Converting Irreversible Specification to Parity-Preserving Reversible Specification
	3.2 Algorithm and Its Complexity Analysis

	4 Experimental Results
	4.1 Comparison with State-of-the-Art
	4.2 Tests for Boolean Functions with Large Variable Count

	5 Conclusion and Future Work
	References


