
Foundations of Generalized
Reversible Computing

Michael P. Frank(B)

Center for Computing Research, Sandia National Laboratories,
P.O. Box 5800, Mail Stop 1322, Albuquerque, NM 87185, USA

mpfrank@sandia.gov

http://www.cs.sandia.gov/cr-mpfrank

Abstract. Information loss from a computation implies energy dissipa-
tion due to Landauer’s Principle. Thus, increasing the amount of useful
computational work that can be accomplished within a given energy bud-
get will eventually require increasing the degree to which our computing
technologies avoid information loss, i.e., are logically reversible. But the
traditional definition of logical reversibility is actually more restrictive
than is necessary to avoid information loss and energy dissipation due to
Landauer’s Principle. As a result, the operations that have traditionally
been viewed as the atomic elements of reversible logic, such as Toffoli
gates, are not really the simplest primitives that one can use for the
design of reversible hardware. Arguably, a complete theoretical frame-
work for reversible computing should provide a more general, parsimo-
nious foundation for practical engineering. To this end, we use a rigorous
quantitative formulation of Landauer’s Principle to develop the theory
of Generalized Reversible Computing (GRC), which precisely character-
izes the minimum requirements for a computation to avoid information
loss and the consequent energy dissipation, showing that a much broader
range of computations are, in fact, reversible than is acknowledged by
traditional reversible computing theory. This paper summarizes the foun-
dations of GRC theory and briefly presents a few of its applications.

Keywords: Landauer’s Principle · Foundations of reversible comput-
ing · Logical reversibility · Reversible logic models · Reversible hardware
design · Conditional reversibility · Generalized reversible computing

1 Introduction

As we approach the end of the semiconductor roadmap [1], there is a growing
realization that new computing paradigms will be required to continue improving

M.P. Frank—This work was supported by the Laboratory Directed Research and
Development program at Sandia National Laboratories, and by the Advanced Sim-
ulation and Computing program under the U.S. Department of Energy’s National
Nuclear Security Administration (NNSA). Sandia National Laboratories is a multi-
program laboratory managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for NNSA under contract DE-AC04-
94AL85000. Approved for unclassified unlimited release SAND2017-3513 C.

c© Springer International Publishing AG 2017
I. Phillips and H. Rahaman (Eds.): RC 2017, LNCS 10301, pp. 19–34, 2017.
DOI: 10.1007/978-3-319-59936-6 2

20 M.P. Frank

the energy efficiency (and thus, cost efficiency) of computing technology beyond
the expected final CMOS node, when signal energies will reach a minimum prac-
tical level due to thermal noise and architectural overheads.1 Sustained progress
thus requires recovering and reusing signal energies with efficiency approach-
ing 100%, which implies we must carry out logically reversible transformations
of the local digital state, due to Landauer’s Principle [2], which tells us that
performing computational operations that are irreversible (i.e., that lose infor-
mation) necessarily generates entropy, and results in energy dissipation. Thus,
it’s essential for the designers of future computing technologies to clearly and
correctly understand the meaning of and rationale for Landauer’s Principle, and
the consequent requirements, at the logical level, for computational operations to
be reversible—meaning, both not information-losing, and also capable of being
physically carried out in an asymptotically thermodynamically reversible way.

Although Landauer’s Principle is valid, his original definition of what it
meant for a computation to be “logically reversible” was not general enough
to encompass all of the abstract logical structures that a computation can have
while still avoiding information loss and being able to be carried out via (asymp-
totically) thermodynamically reversible physical processes. It turns out that a
much larger set of computational operations can be reversible at the logical level
than Landauer’s traditional definition of logical reversibility acknowledges, which
opens up many possibilities for engineering reversible devices and circuits that
could never have been understood using the traditional definition, although some
of those opportunities were discovered anyway by the designers of historical con-
cepts for hardware implementation of reversible computing, such as Drexler’s
rod logic ([3], Chap. 12) and Younis and Knight’s charge recovery logic [4].

Yet, there remains today a widespread disconnect between standard
reversible computing theory and the engineering principles required for the
design of efficient reversible hardware. This disconnect has contributed to an
ongoing debate (e.g., [5]) regarding the question of whether logical reversibility
is really required for physical reversibility. Indeed it is, but not if the stan-
dard definition of logical reversibility is used. A useful response from the theory
side would be to update the standard definition of logical reversibility to reflect
the exact logical-level requirements for physical reversibility. Upon that firmer
foundation, we can construct a more general theoretical model for reversible
computing, which can then help bridge the historical disconnect between theory
and engineering in this field. It is the goal of this paper to develop such a model
from first principles, and show exactly why it is necessary and useful.

The rest of this paper is structured as follows. In Sect. 2, we review some
physical foundations and derive a general formulation of Landauer’s Princi-
ple, which we then use in Sect. 3 as the basis for systematically reconstructing
reversible computing theory to produce a new theoretical framework that we call

1 Per [1], minimum gate energies are expected to bottom out at around the 40–80 kBT
(1–2 eV) level (where kB is Boltzmann’s constant, and T is operating temperature);
while typical total CV 2 node energies (where C is node capacitance, and V is logic
swing voltage) may level off at a corresponding higher range of 1–2 keV.

Foundations of Generalized Reversible Computing 21

Generalized Reversible Computing (GRC), which formalizes the essential but
often-overlooked concept of conditional reversibility (previously mentioned in
[6]). In Sect. 4, we present a few examples of conditionally-reversible opera-
tions that are useful building blocks for reversible hardware design, and are
straightforwardly physically implementable. Section 5 briefly discusses why GRC
is the appropriate model for asymptotically thermodynamically reversible hard-
ware such as adiabatic switching circuits. Section 6 contrasts GRC’s concept of
conditional reversibility with existing concepts of conditions for correctness of
reversible computations. Section 7 concludes with an outline of directions for
future work.

The present version of this paper has been limited to a summary of results,
omitting the proofs, due to conference page limits. A longer, more comprehensive
version will be published as a journal article at a later time.

2 Formulating Landauer’s Principle

Landauer’s Principle is essentially the observation that the loss of information
from a computation corresponds to an increase in physical entropy, implying a
certain associated dissipation of energy to heat in the environment. But, articu-
lating the meaning of and justification for the Principle in a more detailed way
will help clarify what information loss really means, and under what conditions,
precisely, information is lost in the course of carrying out a given computation.

As is standard in modern physics, we assume that any finite, closed physical
system has only some finite number N of distinguishable physical states, thus a
maximum entropy S̄ = kB ln N . In quantum theory, N is also the dimensionality
of the system’s Hilbert space, i.e., the cardinality of any basis set of orthogonal
(distinguishable) state vectors that spans the space of all possible quantum states
of the system. Let Σ denote any such maximal set of distinguishable states; we
call this a physical state space for the system.

Furthermore, modern physics requires that the physical dynamics relating
states at any time t ∈ R to the states that they may evolve to (or from) at
any later (resp. earlier) time t + Δt ∈ R is a bijective (one-to-one and onto)
functional relation. In quantum physics, this bijective dynamics is given by the
unitary time-evolution operator U(Δt) = e−iHΔt/�, where H is the system’s
Hamiltonian operator (its total-energy observable).2 Thus, physics is bijective,
in the above sense, implying that it is deterministic (meaning, the present state
determines the future) and reversible (the present determines the past).

Note that if fundamental physics were irreversible, then the Second Law of
Thermodynamics (which states that the change in entropy over time is non-
negative, ΔS ≥ 0) would be false, because two distinguishable states each with
nonzero probability could merge, combining their probabilities, and reducing
their contribution to the total entropy. Thus, the reversibility of fundamental
physics follows from the empirically-observed validity of the Second Law.
2 Although quantum physics does not yet incorporate a description of gravity, it’s

expected that even a full theory of quantum gravity would still exhibit unitarity.

22 M.P. Frank

In any event, if one accepts the bijectivity of dynamical evolution as a truism
of mathematical physics, then, as we will see, the validity of Landauer’s Principle
follows rigorously from it, as a theorem.

Given a physical state space Σ, a computational subspace C of Σ can be
identified with a partition of the set Σ. We say that a physical system Π is in
computational state cj ∈ C whenever there is an si ∈ cj such that the physical
state of the system is not reliably distinguishable from si. In other words, a
computational state cj is just an equivalence class of physical states that can be
considered equivalent to each other, in terms of the computational information
that we are intending them to represent. We assume that we can also identify
an appropriate computational subspace C(Δt) that is a partition of the evolved
physical state space Σ(Δt) at any past or future time t0 + Δt ∈ R.

Consider, now, any initial-state probability distribution p0 over the complete
state space Σ = Σ(0) at time t = t0. This then clearly induces an implied initial
probability distribution PI over the computational states at time t0 as well:

PI(cj) =
|cj |∑

k=1

p0(sj,k), (1)

where sj,k denotes the kth physical state in computational state cj ∈ C.
For probability distributions p and P over physical and computational states,

we can define corresponding entropy measures. Given any probability distribu-
tion p over a physical state space Σ, the physical entropy S(p) is defined by

S(p) =
N=|Σ|∑

i=1

p(si) log
1

p(si)
, (2)

where the logarithm can be considered to be an indefinite logarithm, dimensioned
in generic logarithmic units.

The bijectivity of physical dynamics then implies the following theorem:

Theorem 1 Conservation of entropy. The physical entropy of any closed
system, as determined for any initial state distribution p0, is exactly conserved
over time. I.e., if the physical entropy of an initial-state distribution p0(si) at
time t0 is S(0), and we evolve that system over an elapsed time Δt ∈ R according
to its bijective dynamics, the physical entropy S(Δt) of its final-state probability
distribution pΔt at time t0 + Δt will be the exact same value, S(Δt) = S(0).

Theorem 1 takes an ideal, theoretical perspective. In practice, entropy from
any real observer’s perspective increases, because the observer does not have
exact knowledge of the dynamics, or the capability to track it exactly. But in
principle, the ideal perspective with constant entropy still always exists.

We can also define the entropy of the computational state. Given any proba-
bility distribution P over a computational state space C, the information entropy
or computational entropy H(P) is defined by:

H(P) =
|C|∑

j=1

P (cj) log
1

P (cj)
, (3)

Foundations of Generalized Reversible Computing 23

which, like S(p), is dimensioned in arbitrary logarithmic units.
Finally, we define the non-computational entropy as the remainder of the

total physical entropy, other than the computational part; Snc = S − H ≥ 0.
This is the expected physical entropy conditioned on the computational state.

The above definitions let us derive Landauer’s Principle, in its most general,
quantitative form, as well as another form frequently seen in the literature.

Theorem 2 Launder’s Principle (general formulation). If the computa-
tional state of a system at initial time t0 has entropy HI = H(PI), and we allow
that system to evolve, according to its physical dynamics, to some other “final”
time t0 + Δt, at which its computational entropy becomes HF = H(PF) where
PF = P (Δt) is the induced probability distribution over the computational state
set C(Δt) at time t0 + Δt, then the non-computational entropy is increased by

ΔSnc = HI − HF. (4)

Conventional digital devices are typically designed to locally reduce com-
putational entropy, e.g., by erasing or destructively overwriting “unknown” old
bits obliviously, i.e., ignoring any independent knowledge of their previous value.
Thus, typical device operations necessarily eject entropy into the non-computa-
tional form, and so, over time, non-computational entropy typically accumulates
in the system, manifesting as heating. But, systems cannot tolerate indefinite
entropy build-up without overheating. So, the entropy must ultimately be moved
out to some external environment at some temperature T , which involves the
dissipation of energy ΔEdiss = TΔSnc to the form of heat in that environment,
by the definition of thermodynamic temperature. From Theorem 2 together with
these facts and the logarithmic identity 1 bit = (1 nat)/ log2 e = kB ln 2 follows
the more commonly-seen statement of Landauer’s Principle:

Corollary 1 Launder’s Principle (common form). For each bit’s worth
of computational information that is lost within a computer (e.g., by obliviously
erasing or destructively overwriting it), an amount of energy

ΔEdiss = kBT ln 2 (5)

must eventually be dissipated to the form of heat added to some environment
at temperature T .

3 Reformulating Reversible Computing Theory

We now carefully analyze the implications of the general Landauer’s Principle
(Theorem 2) for computation, and reformulate reversible computing theory on
that basis. We begin by redeveloping the foundations of the traditional the-
ory of unconditionally logically-reversible operations, using a language that we
subsequently build upon to develop the generalized theory.

For our purposes, a computational device D will simply be any physical
artifact that is capable of carrying out one or more different computational oper-
ations, by which the physical and computational state spaces Σ,C associated

24 M.P. Frank

with D’s local state are transformed. If D has an associated local computational
state space CI = {cI1, ..., cIm} at some initial time t0, a computational operation
O on D that is applicable at t0 is specified by giving a probabilistic transition
rule, i.e., a stochastic map from the initial computational state at t0 to the final
computational state at some later time t0 + Δt (with Δt > 0) by which the
operation will have been completed. Let the computational state space at this
later time be CF = {cF1, ..., cFn}. Then, the operation O : CI → P(CF) is a
map from CI to probability distributions over CF; which is characterizable, in
terms of random variables cI, cF for the initial and final computational states,
by a conditional probabilistic transition rule

ri(j) = Pr(cF = cFj |cI = cIi) = [O(cIi)](cFj), (6)

where i ∈ {1, ...,m} and j ∈ {1, ..., n}. That is, ri(j) denotes the conditional
probability that the final computational state is cFj , given that the initial com-
putational state is cIi.

A computational operation O will be called deterministic if and only if all of
the probability distributions ri are single-valued. I.e., for each possible value of
the initial-state index i ∈ {1, ...,m}, there is exactly one corresponding value of
the final-state index j such that ri(j) > 0, and thus, for this value of j, it must
be the case that ri(j) = 1, while ri(k) = 0 for all other k �= j. If an operation O
is not deterministic, we call it nondeterministic.3 For a deterministic operation
O, we can write O(cIi) to denote the unique cFj such that ri(j) = 1, that is,
treating O as a simple transition function rather than a stochastic one.

A computational operation O will be called (unconditionally logically)
reversible if and only if all of the probability distributions ri have non-
overlapping nonzero ranges. In other words, for each possible value of the final-
state index j ∈ {1, ..., n}, there is at most one corresponding value of the initial-
state index i such that ri(j) > 0, while rk(j) = 0 for all other k �= i. If an
operation O is not reversible, we call it irreversible.

For a computational operation O with an initial computational state space
CI, a (statistical) operating context for that operation is any probability distri-
bution PI over the initial computational states; for any i ∈ {1, ...,m}, the value
of PI(cIi) gives the probability that the initial computational state is cIi.

A computational operation O will be called (potentially) entropy-ejecting if
and only if there is some operating context PI such that, when the operation
O is applied within that context, the increase ΔSnc in the non-computational
entropy required by Landauer’s Principle is greater than zero. If an operation O
is not potentially entropy-ejecting, we call it non-entropy-ejecting.

3 Note that this is a different sense of the word “nondeterministic” than is commonly
used in computational complexity theory, when referring to, for example, nondeter-
ministic Turing machines, which conceptually evaluate all of their possible future
computational trajectories in parallel. Here, when we use the word “nondeterminis-
tic,” we mean it simply in the physicist’s sense, to refer to randomizing or stochastic
operations; i.e., those whose result is uncertain.

Foundations of Generalized Reversible Computing 25

Now, we can derive Landauer’s original result stating that only operations
that are logically reversible (in his sense) can always avoid ejecting entropy from
the computational state (independently of the operating context).

Theorem 3 Fundamental Theorem of Traditional Reversible Comput-
ing. Non-entropy-ejecting deterministic operations must be reversible. That is, if
a given deterministic computational operation O is non-entropy-ejecting, then it
is reversible in the sense defined above (its transition relation is injective).

The proof of the theorem involves showing that entropy is ejected when
states with nonzero probability are merged by an operation. However, when
states having zero probability are merged with other states, there is no increase
in entropy. This is the key realization that sets us up to develop GRC.

To do this, we define a notion of a computation that fixes a specific sta-
tistical operating context for a computational operation, and then we examine
the detailed requirements for a given computation to be non-entropy-ejecting.
This leads to the concept of conditional reversibility , which is the most general
concept of logical reversibility, and provides the appropriate foundation for GRC.

For us, a computation C = (O,PI) performed by a device D is defined by
specifying both a computational operation O to be carried out by that device, and
a specific operating context PI under which the operation O is to be performed.

A computation C = (O,PI) is called (specifically) entropy-ejecting if and
only if, when the operation O is applied within the specific operating context
PI, the increase ΔSnc in the non-computational entropy required by Landauer’s
Principle is greater than zero. If C is not specifically entropy-ejecting, we call it
non-entropy-ejecting.

A deterministic computational operation O is called conditionally reversible
if and only if there is a non-empty subset A ⊆ CI of initial computational states
(the assumed set or assumed precondition) that O’s transition rule maps onto
an equal-sized set B ⊆ CF of final states. That is, each cIi ∈ A maps, one to one,
to a unique cFj ∈ B where ri(j) = 1. We say that B is the image of A under O.
We also say that O is (conditionally) reversible under the precondition (that the
initial state is in) A.

It turns out that all deterministic computational operations are, in fact,
conditionally reversible, under some sufficiently-restrictive preconditions.

Theorem 4 Conditional reversibility of all deterministic operations.
All deterministic computational operations are conditionally reversible.

A trivial proof of Theorem4 involves considering precondition sets A that
are singletons. However, deterministic operations with any number k > 1 of
reachable final computational states are also conditionally reversible under at
least one precondition set A of size k.

Whenever we wish to fix a specific assumed precondition A for the reversibil-
ity of a conditionally-reversible operation O, we use the following concept:

Let O be any conditionally-reversible computational operation, and let A be
any one of the preconditions under which O is reversible. Then the conditioned

26 M.P. Frank

reversible operation OA = (O,A) denotes the concept of performing operation
O in the context of a requirement that precondition A is satisfied.

Restricting the set of initial states that may have nonzero probability to a
specific proper subset A ⊂ CI represents a change to the semantics of an opera-
tion, so generally, a conditioned reversible version of an arbitrary deterministic
operation is, in effect, not exactly the same operation. But we will see that
arbitrary computations can still be composed out of these restricted operations.

The central result of GRC theory (Theorem 5, below) is then that a deter-
ministic computation C = (O,PI) is specifically non-entropy-ejecting, and there-
fore avoids any requirement under Landauer’s Principle to dissipate any energy
ΔEdiss > 0 to its thermal environment, if and only if its operating context PI

assigns total probability 1 to some precondition A under which its computa-
tional operation O is reversible. Moreover (Theorem 6), even if the probability
of satisfying some such precondition only approaches 1, this is sufficient for the
entropy ejected (and energy dissipation required) to approach zero.

Theorem 5 Fundamental Theorem of Generalized Reversible Comput-
ing. Any deterministic computation is non-entropy-ejecting if and only if at least
one of its preconditions for reversibility is satisfied. I.e., let C = (O,PI) be any
deterministic computation (i.e., any computation whose operation O is deter-
ministic). Then, part (a): If there is some precondition A under which O is
reversible, such that A is satisfied with certainty in the operating context PI,
then C is a non-entropy-ejecting computation. And, part (b): Alternatively, if no
such precondition A is satisfied with certainty, then C is entropy-ejecting.

Theorem 6 Entropy ejection vanishes as precondition certainty appro-
aches unity. Let O be any deterministic operation, and let A be any precondi-
tion under which O is reversible, and let PI1, PI2, ... be any sequence of operation
contexts for O within which the total probability mass assigned to A approaches
1. Then, in the corresponding sequence of computations, the entropy ejected
ΔSnc also approaches 0.

A numerical example illustrating how the ΔSnc calculation comes out in a
specific case where the probability of violating the precondition for reversibility
is small can be found in [7].

It’s important to note that in order for real hardware devices to apply The-
orems 5 and 6 to avoid or reduce energy dissipation in practice, the device must
be designed with implicit knowledge of not only what conditionally-reversible
operation it should perform, but also which specific one of the preconditions for
that operation’s reversibility it should assume is satisfied.

As we saw in Theorem 4, any deterministic computational operation O is con-
ditionally reversible with respect to any given one A of its suitable preconditions
for reversibility. For any computation C = (O,PI) that satisfies the conditions
for reversibility of the conditioned reversible operation OA with certainty, we
can undo the effect of that computation exactly by applying any conditioned
reversible operation that is what we call a reversal of OA. The reversal of a
conditioned reversible operation is simply an operation that maps the image of

Foundations of Generalized Reversible Computing 27

the assumed set back onto the assumed set itself in a way that exactly inverts
the original forward map.

The above framework can also be extended to work with nondeterministic
computations. In fact, adding nondeterminism to an operation only makes it
easier to avoid ejecting entropy to the non-computational state, since nondeter-
minism tends to increase the computational entropy, and thus tends to reduce
the non-computational entropy. As a result, a nondeterministic operation can
be non-entropy-ejecting (or even entropy-absorbing, i.e., with ΔSnc < 0) even
in computations where none of its preconditions for reversibility are satisfied,
so long as the reduction in computational entropy caused by its irreversibility is
compensated for by an equal or greater increase in computational entropy caused
by its nondeterminism. However, we will not take the time, in the present paper,
to flesh out detailed analyses of such cases.

4 Examples of Conditioned Reversible Operations

Here, we define and illustrate a number of examples of conditionally reversible
operations (including a specification of their assumed preconditions) that com-
prise natural primitives out of which arbitrary reversible algorithms may be
composed. First, we introduce some textual and graphical notations for describ-
ing conditioned reversible operations.

Let the computational state space be factorizable into independent state
variables x, y, z, ..., which are in general n-ary discrete variables. A common
case will be binary variables (n = 2). For simplicity, we assume here that the
sets of state variables into which the initial and final computational state spaces
are factorized are identical, although more generally this may not be the case.

Given a computational state space C that is factorizable into state variables
x, y, z, ..., and given a precondition A on the initial state defined by

A = {ci ∈ C |P (x, y, ...)}, (7)

where P (x, y, ...) is some propositional (i.e., Boolean-valued) function of the
state variables x, y, ..., we can denote a conditionally-reversible operation OA on
C that is reversible under precondition A using notation like:

OpName(x, y, ... |P (x, y, ...)) (8)

which represents a conditionally-reversible operation named OpName that oper-
ates on and potentially transforms the state variables x, y, ..., and that is
reversible under an assumed precondition A consisting of the set of initial states
that satisfy the given proposition P (x, y, ...).

A simple, generic graphical notation for a deterministic, conditionally
reversible operation named OpName, operating on a state space that is decom-
posable into three state variables x, y, z, and possibly including an assumed
precondition for reversibility P (x, y, z), is the ordinary space-time diagram rep-
resentation shown in Fig. 1(a).

28 M.P. Frank

Fig. 1. (a) Generic graphical notation for a deterministic, conditioned reversible opera-
tion OpName(x, y, z |P (x, y, z)) on three state variables x, y, z, with an assumed precon-
dition specified by the propositional function P (x, y, z). (b) Left: Standard graphical
notation (top) and simplified symbol (bottom) for the conditioned reversible operation
rSET(x |x = 0); Right: Likewise for rCLR(x |x = 1).

In this representation, as in standard reversible logic networks, time is visu-
alized as flowing from left to right, and the horizontal lines represent state vari-
ables. The primed versions x′, y′, z′ going outwards represent the values of the
state variables in the final computational state cF after the operation.

As Landauer observed, operations such as “set to one” and “reset to zero”
on binary state spaces are logically irreversible, under his definition; indeed,
they constitute classic examples of bit erasure operations for which (assuming
equiprobable initial states) an amount kB ln 2 of entropy is ejected from the
computational state. However, as per Theorem 4, these operations are in fact
conditionally reversible, under suitably-restricted preconditions. A suitable pre-
condition, in this case, is one in which one of the two initial states is excluded.
Thus, the initial state is known with certainty in any operating context satisfy-
ing such a precondition. A known state can be transformed to any specific new
state reversibly. If the new state is different from the old one, such an operation
is non-vacuous. Thus, the following conditioned reversible operations are useful.

The deterministic operation rSET (reversible set-to-one) on a binary variable
x, which (to be useful) is implicitly associated with an assumed precondition
for reversibility of x = 0, is an operation that is defined to transform the initial
state into the final state x′ = 1; in other words, it performs the operation x := 1.
Standard and simplified graphical notations for this operation are illustrated on
the left-hand side of Fig. 1(b).

By Theorem 5, the conditioned reversible operation rSET(x |x = 0) is specifi-
cally non-entropy-ejecting in operating contexts where the designated precondi-
tion for reversibility is satisfied. It can be implemented in a way that is asymp-
totically physically reversible (as the probability that its precondition is satisfied
approaches 1) using any mechanism that is designed to adiabatically transform
the state x = 0 to the state x = 1.

Similarly, we can consider a deterministic conditioned reversible operation
rCLR(x |x = 1) (reversible clear or reversible reset-to-zero) which has an assumed
precondition for reversibility of x = 1 and which performs the operation x := 0,
illustrated on the right-hand side of Fig. 1(b).

A very commonly-used computational operation is to copy one state vari-
able to another. As with any other deterministic operation, such an operation is
conditionally reversible under suitable preconditions. An appropriate precondi-
tion for the reversibility of this rCOPY operation is any in which the initial value

Foundations of Generalized Reversible Computing 29

of the target variable is known, so that it can be reversibly transformed to the
new value. A standard reversal of a suitably-conditioned rCOPY operation, which
we can call rUnCOPY, is simply a conditioned reversible operation that transforms
the final states resulting from rCOPY back to the corresponding initial states.

Formally, let x, y be any two discrete state variables both with the same
arity (number n of possible values, which without loss of generality we may label
0, 1, ...), and let v ∈ {0, 1, ..., n − 1} be any fixed initial value. Then reversible
copy of x onto y = v or

rCOPYv = rCOPY(x, y | y = v) (9)

is a conditioned reversible operation O with assumed precondition y = v that
maps any initial state where x = i onto the final state x = i, y = i. In the
language of ordinary pseudocode, the operation performed is simply y := x.

Given any conditioned reversible copy operation rCOPYv, there is a condi-
tioned reversible operation which we hereby call reversible uncopy of y from x
back to v or

rUnCOPYv = rUnCOPYv(x, y | y = x) (10)

which, assuming (as its precondition for reversibility) that initially x = y, carries
out the operation y := v, restoring the destination variable y to the same initial
value v that was assumed by the rCOPY operation.

Figure 2(a) shows graphical notations for rCOPYv and rUnCOPYv.
It is easy to generalize rCOPY to more complex functions. In general, for

any function F (x, y, ...) of any number of variables, we can define a conditioned
reversible operation rF (x, y, ..., z | z = v) which computes that function, and
writes the result to an output variable z by transforming z from its initial value
to F (x, y, ...), which is reversible under the precondition that the initial value of z
is some known value v. Its reversal rUnFv(x, y, ..., z | z = F (x, y, ...)) decomputes
the result in the output variable z, restoring it back to the value v. See Fig. 2(b).

The F above may indeed be any function, including standard Boolean logic
functions operating on binary variables, such as AND, OR, etc. Therefore, the above

Fig. 2. (a) Left: Reversible copy of x onto y = v; Right: Reversible uncopy of y from x
back to v. (b) Given any function F (x, y) = z of n (here, n = 2) state variables, we can
easily convert it to a pair of conditioned reversible operations rF (x, y, z | z = v) and
rUnFv(x, y, z | z = F (x, y)) that are mutual reversals of each other that compute and
decompute the value of F by reversibly transforming the output variable z from and
to any predetermined value v. Top: standard notation, bottom: simplified symbols.

30 M.P. Frank

scheme leads us to consider conditioned reversible operations such as rAND0,
rAND1, rOR0, rOR1; and their reversals rUnAND0, rUnAND1, rUnOR0, rUnOR1; which
reversibly do and undo standard AND and OR logic operations with respect to
output nodes that are expected to be a constant logic 0 or 1 initially before the
operation is done (and also finally, after doing the reverse operations).

Clearly, one can compose arbitrary n-input Boolean functions out of such
primitives using standard logic network constructions, and decompute interme-
diate results using the reverse (mirror-image) circuits (after rCOPYing the desired
results), following the general approach pioneered by Bennett [8]. This results
in an embedding of the desired function into a reversible function that preserves
only the input and the final output.

One may wonder, however, what is the advantage of using operations such as
rAND and rUnAND for this, compared to the traditional unconditionally reversible
operation ccNOT(x, y, z) (controlled-controlled-NOT, a.k.a. the Toffoli gate oper-
ation [9], z := z ⊕ xy). Indeed, any device that implements ccNOT(x, y, z) in a
physically-reversible manner could be used in place of a device that implements
rAND(x, y, z | z = 0) and rUnAND0(x, y, z | z = xy), or in place of one that imple-
ments rNAND(x, y, z | z = 1) and rUnNAND1(x, y, z | z = xy), in cases where the
preconditions of those operations would be satisfied.

But, the converse is not true. In other words, there are devices that can
asymptotically physically reversibly carry out rAND0 and rUnAND0 that do not
also implement full Toffoli gate operations. Therefore, if what one really needs
to do, in one’s algorithm, is simply to do and undo Boolean AND operations
reversibly, then to insist on doing this using Toffoli operations rather than con-
ditioned reversible operations such as rAND and rUnAND is overkill, and amounts
to tying one’s hands with regards to the implementation possibilities, leading
to hardware designs that can be expected to be more complex than neces-
sary. Indeed, there are very simple adiabatic circuit implementations of devices
capable of performing rAND/rUnAND and rOR/rUnOR operations (based on e.g.
series/parallel combinations of CMOS transmission gates [10]), whereas, adi-
abatic implementations of ccNOT itself are typically much less simple. This
illustrates our overall point that the GRC framework generally allows for sim-
pler designs for reversible computational hardware than does the traditional
reversible computing model based on unconditionally reversible operations.

5 Modeling Reversible Hardware

A broader motivation for the study of GRC derives from the following observa-
tion (not yet formalized as a theorem):

Assertion 1 General correspondence between truly, fully adiabatic cir-
cuits and conditioned reversible operations. Part (a): Whenever a switch-
ing circuit is operated deterministically in a truly, fully adiabatic way (i.e., that
asymptotically approaches thermodynamic reversibility), transitioning among
some discrete set of logic levels, the computation being performed by that

Foundations of Generalized Reversible Computing 31

circuit corresponds to a conditioned reversible operation OA whose assumed
precondition A is (asymptotically) satisfied. Part (b): Likewise, any conditioned
reversible operation OA can be implemented in an asymptotically thermody-
namically reversible manner by using an appropriate switching circuit that is
operated in a truly, fully adiabatic way, transitioning among some discrete set
of logic levels.

Part (a) follows from our earlier observation in Theorem5 that, in deter-
ministic computations, conditional reversibility is the correct statement of the
logical-level requirement for avoiding energy dissipation under Landauer’s Prin-
ciple, and therefore it is a necessity for approaching thermodynamic reversibility
in any deterministic computational process, and therefore, more specifically, in
the operation of adiabatic circuits.

Meanwhile, part (b) follows from general constructions showing how to imple-
ment any desired conditioned reversible operation in an asymptotically thermo-
dynamically reversible way using adiabatic switching circuits. For example, Fig. 3
illustrates how to implement an rCOPY operation using a simple four-transistor
CMOS circuit. In contrast, implementing rCOPY by embedding it within an
unconditionally-reversible cNOT would require including an XOR capability, and
would require a much more complicated adiabatic circuit, whose operation would
itself be composed from numerous more-primitive operations (such as adiabatic
transformations of individual MOSFETs [11]) that are themselves only condi-
tionally reversible.

In general, the traditional reversible computing framework of uncondition-
ally reversible operations does not exhibit any correspondence such as that of
Assertion 1 to any natural class of asymptotically physically-reversible hardware
that we know of. In particular, the traditional unconditionally-reversible frame-
work does not correspond to the class of truly/fully adiabatic switching circuits,
because there are many such circuits that do not in fact perform unconditionally
reversible operations, but only conditionally-reversible ones.

6 Comparison to Prior Work

The concept of conditional reversibility presented here is similar to, but distinct
from, certain concepts that are already well known in the literature on the theory
of reversible circuits and languages.

First, the concept of a reversible computation that is only semantically cor-
rect (for purposes of computing a desired function) when a certain precondition
on the inputs is satisfied is one that was already implicit in Landauer’s original
paper [2], when he introduced the operation now known as the Toffoli gate, as
a reversible operation within which Boolean AND may be embedded. Implicit in
the description of that operation is that it only correctly computes AND if the
control bit is initially 0; otherwise, it computes some other function (in this
case, NAND). This is the origin of the concept of ancilla bits, which are required
to obey certain pre- and post-conditions (typically, being cleared to 0) in order
for reversible circuits to be composable and still function as intended. The study

32 M.P. Frank

Fig. 3. (Left) A simple adiabatic CMOS circuit capable of carrying out a variant of
the rCOPY operation. Here, computational states are represented using dual-rail com-
plementary voltage coding, so that, for example, a logical state A = 0 is represented
using the voltage assignments AP = VH, AN = VL, where VH, VL are high and low volt-
age levels, respectively. The logical state A = 1 would be represented using the opposite
voltage assignments. The two CMOS transmission gates shown will thus be turned ON
(conducting) only when A = 1. In this circuit, A is the logic input, B is the output, and
D is a driving signal. (Right) Sequence of operation. Assume initially that D = 0 and
A = 0. Normally we would also have B = 0 initially, but to illustrate the conditional
reversibility of this circuit, we will also consider the case B = 1. In step 1, some exter-
nal circuit adiabatically transforms input A from logic 0 to a newly-computed value (0
or 1) to be copied, then in step 2, the drive signal D is unconditionally transformed
adiabatically from logic 0 to 1. Note that, in the course of this operation sequence, if
B were 1 initially, then it would be dissipatively sourced to D = 0 in step 1 if A = 1.
Thus, this particular operation sequence implements a conditioned reversible operation
rCOPY′(A,B |AB); it is reversible as long as we don’t try to copy an input value A = 1

onto an initial state where B = 1. The prime there after rCOPY is denoting the variant
semantics, namely that in the case ĀB, the value A = 0 is not copied to B.

of the circumstances under which such requirements may be satisfied has been
extensively developed, e.g. as in [12]. However, any circuit composed from Toffoli
gates is still reversible even if restoration of its ancillas is violated; it may yield
nonsensical outputs in that case, when composed together with other circuits,
but at no point is information erased. This distinguishes ancilla-preservation con-
ditions from our preconditions for reversibility, which, when they are unsatisfied,
necessarily yield actual (physical) irreversibility.

Similarly, the major historical examples of reversible high-level programming
languages such as Janus ([13,14]), Ψ-Lisp [15], the author’s own R language [16],
and RFUN ([17,18]) have invoked various “preconditions for reversibility” in the
defined semantics of many of their language constructs. But again, that concept
really has more to do with the “correctness” or “well-definedness” of a high-level
reversible program, and this notion is distinct from the requirements for actual
physical reversibility during execution. For example, the R language compiler
generated PISA assembly code in such a way that even if high-level language
requirements were violated (e.g., in the case of an if condition changing its
truth value during the if body), the resulting assembly code would still execute
reversibly, if nonsensically, on the Pendulum processor [19].

In contrast, the notion of conditional reversibility explored in the present
document ties directly to Landauer’s principle, and to the possibility of the

Foundations of Generalized Reversible Computing 33

physical reversibility of the underlying hardware. Note, however, that it does
not concern the semantic correctness of the computation, or lack thereof, and in
general, the necessary preconditions for the physical reversibility and correctness
of a given computation may be orthogonal to each other, as illustrated by the
example in Fig. 3.

7 Conclusion

In this paper, we presented the core foundations of a general theoretical frame-
work for reversible computing. We considered the case of deterministic com-
putational operations in detail, and presented results showing that the class
of deterministic computations that are not required to eject any entropy from
the computational state under Landauer’s Principle is larger than the set of
computations composed of the unconditionally-reversible operations considered
by traditional reversible computing theory, because it also includes the set of
conditionally-reversible operations whose preconditions for reversibility are sat-
isfied with probability approaching unity. This is the most general possible char-
acterization of the set of classical deterministic computations that can be phys-
ically implemented in an asymptotically thermodynamically reversible way.

We then illustrated some basic applications of the theory in modeling con-
ditioned reversible operations that transform an output variable between a pre-
determined, known value and the computed result of the operation. Such oper-
ations can be implemented easily using e.g. adiabatic switching circuits, whose
low-level computational function cannot in general be represented within the
traditional theory of unconditionally-reversible computing. This substantiates
that the GRC theory warrants further study.

Some promising directions for future work include: (1) Giving further exam-
ples of useful conditioned reversible operations; (2) illustrating detailed physical
implementations of devices for performing such operations; (3) further extending
the development of the new framework to address the nondeterministic case; and
(4) developing further descriptive frameworks for reversible computing at higher
levels (e.g., hardware description languages, programming languages) building
on top of the fundamental conceptual foundations that GRC theory provides.

Since GRC broadens the range of design possibilities for reversible computing
devices in a clearly delineated, well-founded way, its study and further develop-
ment will be essential for the computing industry to successfully transition, over
the coming decades, to the point where it is dominantly utilizing the reversible
computing paradigm. Due to the incontrovertible validity of Landauer’s Prin-
ciple, such a transition will be an absolute physical prerequisite for the energy
efficiency (and cost efficiency) of general computing technology to continue grow-
ing by many orders of magnitude.

References

1. International Technology Roadmap for Semiconductors 2.0, 2015 th edn. Semicon-
ductor Industry Association (2015)

34 M.P. Frank

2. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 5(3), 183–191 (1961)

3. Drexler, K.E.: Nanosystems: Molecular Machinery, Manufacturing, and Computa-
tion. Wiley, New York (1992)

4. Younis, S.G., Knight Jr., T.F.: Practical implementation of charge recovering
asymptotically zero power CMOS. In: Proceedings of the 1993 Symposium on
Research in Integrated Systems, pp. 234–250. MIT Press (1993)

5. López-Suárez, M., Neri, I., Gammaitoni, L.: Sub-kBT micro-electromechanical irre-
versible logic gate. Nat. Commun. 7, 12068 (2016)

6. Frank, M.P.: Approaching the physical limits of computing. In: 35th International
Symposium on Multiple-Valued Logic, pp. 168–185. IEEE Press, New York (2005)

7. DeBenedictis, E.P., Frank, M.P., Ganesh, N., Anderson, N.G.: A path toward ultra-
low-energy computing. In: IEEE International Conference on Rebooting Comput-
ing. IEEE Press, New York (2016)

8. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–
532 (1973)

9. Toffoli, T.: Reversible computing. In: Bakker, J., Leeuwen, J. (eds.) ICALP
1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980). doi:10.1007/
3-540-10003-2 104

10. Anantharam, V., He, M., Natarajan, K., Xie, H., Frank, M.: Driving fully-adiabatic
logic circuits using custom high-Q MEMS resonators. In: Arabnia, H.R., Guo, M.,
Yang, L.T. (eds.) ESI/VLSI 2004, pp. 5–11. CSREA Press (2004)

11. Frank, M.P.: Towards a more general model of reversible logic hardware. In: Invited
talk Presented at the Superconducting Electronics Approaching the Landauer
Limit and Reversibility (SEALeR) Workshop. Sponsored by NSA/ARO (2012)

12. Thomsen, M.K., Kaarsgaard, R., Soeken, M.: Ricercar: a language for describing
and rewriting reversible circuits with ancillae and its permutation semantics. In:
Krivine, J., Stefani, J.-B. (eds.) RC 2015. LNCS, vol. 9138, pp. 200–215. Springer,
Cham (2015). doi:10.1007/978-3-319-20860-2 13

13. Lutz, C.: Janus: a time-reversible language. Letter from Chris Lutz to Rolf Lan-
dauer (1986). http://tetsuo.jp/ref/janus.pdf

14. Yokoyama, T.: Reversible computation and reversible programming languages.
Elec. Notes Theor. Comput. Sci. 253(6), 71–81 (2010)

15. Baker, H.G.: NREVERSAL of fortune — the thermodynamics of garbage collec-
tion. In: Bekkers, Y., Cohen, J. (eds.) IWMM 1992. LNCS, vol. 637, pp. 507–524.
Springer, Heidelberg (1992). doi:10.1007/BFb0017210

16. Frank, M.: Reversibility for Efficient Computing. Doctoral dissertation, Massa-
chusetts Institute of Technology. Department of Electrical Engineering and Com-
puter Science (1999)

17. Yokoyama, T., Axelsen, H.B., Glück, R.: Towards a reversible functional language.
In: Vos, A., Wille, R. (eds.) RC 2011. LNCS, vol. 7165, pp. 14–29. Springer, Heidel-
berg (2012). doi:10.1007/978-3-642-29517-1 2

18. Axelsen, H.B., Glück, R.: Reversible representation and manipulation of construc-
tor terms in the heap. In: Dueck, G.W., Miller, D.M. (eds.) RC 2013. LNCS, vol.
7948, pp. 96–109. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38986-3 9

19. Vieri, C.J.: Reversible Computer Engineering and Architecture. Doctoral disserta-
tion, Massachusetts Institute of Technology, Department of Electrical Engineering
and Computer Science (1999)

http://dx.doi.org/10.1007/3-540-10003-2_104
http://dx.doi.org/10.1007/3-540-10003-2_104
http://dx.doi.org/10.1007/978-3-319-20860-2_13
http://tetsuo.jp/ref/janus.pdf
http://dx.doi.org/10.1007/BFb0017210
http://dx.doi.org/10.1007/978-3-642-29517-1_2
http://dx.doi.org/10.1007/978-3-642-38986-3_9

	Foundations of Generalized Reversible Computing
	1 Introduction
	2 Formulating Landauer's Principle
	3 Reformulating Reversible Computing Theory
	4 Examples of Conditioned Reversible Operations
	5 Modeling Reversible Hardware
	6 Comparison to Prior Work
	7 Conclusion
	References

