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Abstract. In a quantum logic circuit, the minimum number of qubits
required in a quantum error-correcting code (QECC) to correct a sin-
gle error was shown by Laflamme to be five. Due to the presence of
multi-control gates in the circuit block for a 5-qubit QECC, this block
cannot be readily implemented with present day technology. Further, the
fault-tolerant decomposition of the QECC circuit block requires a large
number of quantum logic gates (resources). In this paper, we (i) propose
a smaller 5-qubit error detection circuit which can also correct a single
error in 2 of the 5 qubits, and (ii) establish how to use a 3-qubit error
correction circuit to correct the single errors when detected in the other
3 qubits. This approach to quantum error-correction circuit design, func-
tionally equivalent to a 5-qubit QECC, yields a significant reduction in
the number of quantum logic gates. For a given quantum logic circuit,
we also provide a scheme to decide the locations where these error detec-
tion and error correction blocks are to be placed in attaining reduction in
gate requirement compared to the case where the original 5-qubit QECC
block is used. A comparative study of the resource requirement for the
benchmark circuits shows that the proposed method outperforms even
Shor and Steane codes in terms of resources. Thus, our proposed method
provides quantum error correction with minimum qubit requirement and
reduced resource requirement on the average.

1 Introduction

The evolution of a quantum state is mathematically represented by a unitary
transformation. Quantum computing is reversible since any unitary matrix U
has an inverse which is equal to its complex conjugate (U†). However, the state
of interest, which is referred to as the system, may be coupled with some other
quantum state, which is referred to as the environment. When this composite
system undergoes some unitary evolution, the evolution of the constituent states
may not be unitary. This incorporates error in the quantum system. An error is
nothing but an operator. It is best represented when the state of the system is
denoted by the density matrix notation [1,2] as ρ =

∑

i

pi|ψi〉〈ψi| where pi is the
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probability that the system is in the state |ψi〉. For a pure state |ψ〉, the density
matrix is simply |ψ〉〈ψ|. If an error E occurs on the state ρ with probability p,
then the evolution of the state is denoted as

E(ρ) = (1 − p)ρ + p.EρE† (1)

A quantum error correcting code R is a mapping such that the composition of
R with E gives back the original quantum state, i.e.,

(R ◦ E)(ρ)(E† ◦ R†) = ρ (2)

An error in a quantum system can also be modelled as a quantum channel.
Some quantum error models include Amplitude damping channel, Phase damp-
ing channel and Pauli channel [1,2]. In this paper, we have considered the Pauli
channel as the error model. The Pauli matrices I, X, Z and Y form the basis for
2 × 2 dimensional operator space [1]. Hence a code which can correct the Pauli
errors can also correct any linear combination of them, i.e., all errors in the 2×2
space. If the error probability is p and the probability of each of X, Z and Y
errors is considered to be equal (I implies no error and hence is not considered),
then the evolution of the quantum system is given as

E(ρ) = (1 − p)ρ +
p

3
(XρX† + ZρZ† + Y ρY †) (3)

2 Resource Requirement for 5-Qubit QECC

A quantum operation may be realized by one or more quantum gates forming
a network of gates or a circuit. Given a quantum system for performing certain
operations, a quantum circuit has to be obtained with minimum number of
gates, which are also termed as resources. The depth of the circuit and the
number of operations to be executed are also important factors in designing a
quantum circuit. Additionally, such a circuit requires quantum error correcting
code (QECC) for error-free operations. But the QECC also requires a circuit
block to be designed appropriately.

Several QECCs have been proposed in the literature to correct a single error
in a qubit [3–6]. Gottesman has provided a group theoretic model of errors in
a quantum system. His stabilizer formulation provides an operator-level mech-
anism for correcting quantum errors [7]. It has been shown by Laflamme et al.
[5] that in order to correct a single error in a qubit, the information of the qubit
must be distributed into at least 5 qubits. An important aspect of this code by
Laflamme is that the encoding and the decoding circuits are identical. Further-
more, it is extremely difficult to maintain the superposition of a qubit. Hence,
the 5-qubit code provides a better option for error correction than the other
codes [3,4,6].

The encoding and decoding circuits of the 5-qubit code, proposed by
Laflamme [5], has a number of multi-control gates, which cannot be implemented
readily in modern day technologies. Due to the presence of these multi-control
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operations, the fault-tolerant decomposition requires a large number of gates.
Also these gates can be noisy, and incorporate errors in the circuit. Moreover,
the error correction requires a significant amount of time due to more gate oper-
ations and thus hinders the speed of the computation. FTQLS [8] provides the
fault-tolerant decomposition of any quantum circuit in different technologies viz.
Ion Trap (IT), Quantum Dot (QD), Linear Photonics (LP), Non-linear Photon-
ics (NP), Neutral Atom (NA) and Superconductor (SC). In Table 1, we compare
the number of gate operations and the number of cycles per operation for Shor,
Steane and Laflamme codes for each of the six available technologies, as obtained
from FTQLS. It is evident from Table 1 that while the qubit requirement of
Laflamme code is low, the gate count is significantly larger than for the other
two codes.

Table 1. Comparison of gate count and number of cycles of both encoding and cor-
rection circuits for QECCs of Shor, Steane and Laflamme respectively

QECC Technology Qubits Ancilla Total number of qubits Gate count Cycles

Shor IT 9 8 9 + 8 = 17 105 24

Steane 7 6 7 + 6 = 13 85 30

Laflamme 5 - 5 1641 1432

Shor QD 9 8 9 + 8 = 17 133 116

Steane 7 6 7 + 6 = 13 127 191

Laflamme 5 - 5 3353 19602

Shor LP 9 8 9 + 8 = 17 56 164

Steane 7 6 7 + 6 = 13 55 172

Laflamme 5 - 5 1751 2310

Shor NP 9 8 9 + 8 = 17 56 196

Steane 7 6 7 + 6 = 13 55 206

Laflamme 5 - 5 2437 2566

Shor NA 9 8 9 + 8 = 17 87 22

Steane 7 6 7 + 6 = 13 95 29

Laflamme 5 - 5 1892 1657

Shor SC 9 8 9 + 8 = 17 84 196

Steane 7 6 7 + 6 = 13 85 242

Laflamme 5 - 5 2604 9070

In order to overcome these shortcomings, we have proposed a smaller 5 qubit
circuit for error detection which can also correct errors in 2 of the 5 qubits.
Given a quantum circuit, one can insert this detection circuit block at certain
points in the given circuit so that if an error is likely to be detected, only then
the correction circuit block is also placed. We have computed the time inter-
val for placing this error detection block to obtain reduction in resources. We
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have also shown the percentage savings in the resource requirement for different
benchmark circuits using this proposed technique.

Shor and Steane codes require more qubits for error correction than the code
by Laflamme (refer Table 1). However, the resource requirement of the former
two is much less than for the 5 qubit code. Hence once can argue that these two
codes be used rather than the proposed technique which requires both detection
and correction steps in the worst case. However, we show that in average case,
our proposed technique requires less resources than the Shor and Steane codes
too. Hence, this technique is superior both in terms of qubits as well as resources.

The paper has been organised as follows. In Sect. 2 we propose a new quantum
circuit for error detection and compute the time interval for placing this block
in a quantum circuit. Section 3 shows the use of the error detection circuit along
with a 3 qubit error correction circuit to replace the error correction circuit of
the 5 qubit code. We also show the percentage savings provided by this method.
In Sect. 4, we show the percentage savings in different benchmark circuits. We
conclude in Sect. 5.

3 5-Qubit Quantum Error Detection Circuit

In classical computing, error may cause the bit to flip from 0 to 1 or vice versa.
However, in quantum computing, a qubit can incur bit flip or phase flip errors, or
both [9]. Thus quantum error correction has two requirements: detection of the
type of error and detecting the location of the error. While the former operation
is possible using 4 qubits only [10], at least 5 qubits are necessary for both
operations [5]. A code which is capable of detecting only the type of error is
called a quantum error detection code, while a quantum error correction code
can both detect the type and its location. Qubit is an essential resource which
must be minimized in quantum computation. This is because it is difficult to
preserve the superposition nature of a qubit. Any modification of the original
superposition results in loss of information [1]. So using 5-qubit code is preferable
for error correction since it requires the minimum number of qubits. However,
Table 1 shows that this code has significantly large resource requirement.

In this paper, our proposal is to place a quantum error detection block at
certain points in the circuit. If error is likely to be detected, only then the
correction block is also placed there. However, the 4-qubit error detection code
is not applicable here because encoding the information of a single qubit into 4
qubits only will not allow to correct errors when necessary. The qubit should be
encoded using the 5-qubit code by Laflamme to allow error correction whenever
necessary.

We propose a 5-qubit error detection block as shown in Fig. 1. This block
can act on the 5-qubit system which has been encoded using Laflamme code. In
Fig. 1, |q0〉 up to |q4〉 are the data qubits and the last four are ancilla qubits.
|q5〉, |q6〉 check for bit error while |q7〉, |q8〉 check for phase errors. This block
checks whether the first four and the last four qubits are in the same state. If
they are not, then an error is detected. Instead of the error correcting block in [5],
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|q0〉 • H • H

|q1〉 • • H • • H

|q2〉 • • H • • H

|q3〉 • • H • • H

|q4〉 • H • H

|q5〉 ⊕⊕⊕⊕
|q6〉 ⊕⊕⊕⊕
|q7〉 ⊕⊕⊕⊕
|q8〉 ⊕⊕⊕⊕

Fig. 1. Proposed 5-qubit error detection block

we place the detection block of Fig. 1 after certain time interval. The correction
block is placed at the location where an error is likely to be detected.

A salient question arises here: at which locations should the error detection
and the error correction blocks be placed in a given quantum circuit? We provide
a bound on the time interval that can be allowed between two error detection
blocks, in terms of the probability of error. This time interval may vary with
the technology used, since the probability of error at a quantum gate or of
decoherence (memory error) differs with the technology for implementing it.
Furthermore, if the error detection block is placed at intervals greater than this
bound, then the larger error correction block is mandated and hence resource
reduction cannot be achieved.

Let p be the error probability per nanosecond (ns), D and C be the gate count
of the 5-qubit detection circuit and the 5-qubit correction circuit respectively. We
consider that we check for errors at interval of n ns. The probability of no errors
occurring after n ns is (1− p)n, and hence the error probability is (1− (1− p)n).
When a single error occurs, then the resource requirement is (D +C) since both
error detection as well as correction block must be placed. It is only D when
there is no error. So the resource requirement for each time error correction is
performed, is

(1 − p)n.D + (1 − (1 − p)n).(D + C) (4)

If this technique is not used, then after each time interval only the correction
block is placed, i.e., the resource requirement is C each time. For our proposed
method to be advantageous, the resource requirement of this method should be
at most C, i.e.,

(1 − p)n.D + (1 − (1 − p)n).(D + C) ≤ C (5)

A simple calculation gives us the following inequality
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Table 2. Gate counts D and C for error detection and correction in various technologies

Technology # Gates for error correction (C) # Gates for error detection (D) D
C

IT 843 36 0.043

SC 1301 34 0.026

LP 874 26 0.03

NP 1217 26 0.021

NA 900 34 0.038

QD 1518 52 0.034

(1 − p)n ≥ D

C
(6)

We have used FTQLS [8] to obtain the fault-tolerant version of the error
correction block [5] and the error detection block (Fig. 1). The ratio of D to
C is provided in Table 2. Note here that in Table 1, we reported the total gate
count for both encoding and correction blocks. However, since the encoding
block remains same in both cases, in Table 2 we have the gate count of the error
correction block of the Laflamme code only to compare with the proposed error
detection block.

In [11], the authors have addressed error tracing in quantum circuits. They
have placed error correction blocks only when the error probability exceeds a
predefined threshold. This technique has allowed them to reduce the required
number of error correction blocks significantly compared to the ideal case. Sim-
ilarly, we propose that error correction can be performed after certain time gap
of n ns. For different values of p, the inequality of (6) enables us to the find
the maximum permissible value of n for obtaining a circuit with very low prob-
ability of error. In Table 3, we give the estimated error probability in different
technologies as obtained from [12].

Table 3. Probability of worst gate and memory error in different technologies [12]

Technology Probability of gate error Memory error (per ns)

QD 9.89 × 10−1 3.47 × 10−2

NA 8.12 × 10−3 0.00

LP 1.01 × 10−1 9.80 × 10−4

NLP 5.20 × 10−3 9.80 × 10−5

SC 1.00 × 10−5 1.00 × 10−5

IT 3.19 × 10−9 2.52 × 10−12

In Table 4, we show the values of n for different values of p in the technolo-
gies considered. We have varied p from 10−8 to 10−1. However, certain error
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Table 4. Time interval n(ns) of error detection with error probability p ranging from
10−5/ns to 10−1/ns) for different technologies

Technology p = 10−8 p = 10−7 p = 10−6 p = 10−5 p = 10−4 p = 10−3 p = 10−2 p =10−1

IT 84397007 8439701 843970 84397 8440 844 84 9

SC × × 3649657 364965 36495 3648 364 35

LP × × × 350655 35064 3505 349 34

NP × × 3863231 386322 38631 3862 385 37

NA × 32701690 3270168 327016 32701 3269 326 32

QD × × × × × 3380 337 33

probabilities are too low for some of the technologies; for example p = 10−9 for
QD (see Table 3) is not feasible. Such entries in Table 4 are denoted by a ‘×’.

Thus Table 4 provides an upper bound of the time interval between placing
two error detection blocks in a quantum circuit for a particular technology.

4 Savings in Resources by Our Proposed Method

We consider the proposed quantum error detection circuit of Fig. 1 once more.
After the quantum error detection block is placed, one needs to check the syn-
dromes in the 4 ancilla qubits, of which first two indicate bit error and last two
indicate phase error. We consider only the bit flip error syndrome for the time
being. If the syndrome is 00, it indicates that the circuit is free of bit error. If
the syndrome is 10, it indicates that the last four qubits are in the same state,
but the 1st four qubits are not. This is possible only if error has occurred in the
1st qubit. Similarly, if 01 is the syndrome, then it is possible to determine that
the 5th qubit has error. However, if the syndrome is 11, then it is not possible
to determine which of the remaining 3 qubit is erroneous. The similar is true
for syndromes for phase flip errors too. Thus when there is any error on the 1st
or last qubit, this error detection block can both identify the error type and its
position; hence can correct it.

If error is in one of the other 3 qubits, then this proposed error detection
circuit can detect it, but cannot determine its position uniquely. So we need to
place the error correction block. However, when the error syndrome is 11, we are
sure that the error is not in the first or last data qubit. Hence it is not necessary
to place the 5-qubit error correcting block to correct errors in one of 3 qubits.
Rather, we place a 3-qubit error correction block as shown in Fig. 2.

We now consider the worst case scenario, where an error has been detected
by the error detection block of Fig. 1 but this block cannot correct it. So we need
to place the 3-qubit error correcting block of Fig. 2. In this scenario our proposed
technique requires the maximum resource (5-qubit error detection + 3-qubit error
correction). In Table 5, we show the percentage savings that the worst case sce-
nario of our proposed technique gives over the ideal situation of placing a 5-qubit
error correction block. From the table we see that for all technologies, our proposed
technique provides an average reduction of 94.70% with respect to [5].
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|q0〉
|q1〉 • H • H

|q2〉 • • H • • H

|q3〉 • H • H

|q4〉
|q5〉 ⊕⊕
|q6〉 ⊕⊕
|q7〉 ⊕⊕
|q8〉 ⊕⊕

Fig. 2. 3-qubit error correcting block

Table 5. Percentage savings by using the proposed technique over the 5-qubit QECC

Technology Ideal 5-qubit EC Detection block 3-qubit EC Total Savings (%)

IT 843 36 28 64 92.4

SC 1301 34 22 56 95.7

LP 874 26 14 40 95.4

NP 1217 26 14 40 96.7

NA 900 34 22 56 93.8

QD 1518 52 36 88 94.2

Average savings (%) with respect to [5] 94.70

5 Resource Savings Analysis

In Table 5, we have shown the percentage savings compared to Laflamme code for
worst case scenario. However, it is not expected that each time both the detection
and correction block need to be placed. At a location where the probability of
error is almost zero, placing the detection block alone is sufficient. In this section,
we provide an analysis of the resource requirement.

In [11], the authors have introduced the mechanism of error tracing for linear
and concatenated Bacon-Shor [6], Steane [4] and Knill C4 code [13]. 5-qubit error
correction code was not used for error tracing purpose. Here, we use a similar
approach for different error thresholds and compute the percentage savings in
resources. Using the technique of [11], we propose placing the error correction
and detection block after some predefined threshold. Let the error threshold be
pth. So, we place both the detection and correction block only when the error
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Table 6. Comparative study of savings in different benchmark circuits

Circuit Name PMD Threshold # QECC
in [11]

Resource in [11] Our resource Savings (%)
with respect
to Steane
Code

9 qubit 7 qubit 5 qubit
2 qubit Grover’s Search IT 0.001 0 0 0 0 0 -

0.01 0 0 0 0 0 -
0.1 0 0 0 0 0 -

SC 0.001 0 0 0 0 0 -
0.01 0 0 0 0 0 -
0.1 0 0 0 0 0 -

LP 0.001 20 840 760 17480 521 31.45
0.01 20 840 760 17480 523 31.18
0.1 20 840 760 17480 548 27.89

NP 0.001 21 882 798 25557 547 31.45
0.01 9 378 342 10953 236 30.99
0.1 0 0 0 0 0 -

NA 0.001 21 1218 1050 18900 715 31.90
0.01 10 580 500 9000 343 31.40
0.1 1 58 50 900 37 26.00

QD 0.001 33 3036 2277 50094 1718 24.55
0.01 33 3036 2277 50094 1728 24.11
0.1 33 3036 2277 50094 1835 19.41

4 qubit Reversible Adder IT 0.001 0 0 0 0 0 -
0.01 0 0 0 0 0 -
0.1 0 0 0 0 0 -

SC 0.001 2 116 100 2602 69 31.00
0.01 0 0 0 0 0 -
0.1 0 0 0 0 0 -

LP 0.001 104 4368 3952 90896 2706 31.55
0.01 104 4368 3952 90896 2719 31.20
0.1 104 4368 3952 90896 2850 27.90

NP 0.001 104 4368 3952 126568 2706 31.55
0.01 51 2142 1938 62067 1334 31.16
0.1 7 294 266 8519 192 27.82

NA 0.001 127 7366 6350 114300 4321 31.95
0.01 57 3306 2850 51300 1950 31.58
0.1 19 1102 950 17100 688 27.58

QD 0.001 189 17388 13041 286902 9835 24.59
0.01 189 17388 13041 286902 9897 24.10
0.1 189 17388 13041 286902 10509 19.42

4 qubit quantum Fourier
Transform Circuit

IT 0.001 0 0 0 0 0 -

0.01 0 0 0 0 0 -
0.1 0 0 0 0 0 -

SC 0.001 5 290 250 4215 171 31.6
0.01 0 0 0 0 0 -
0.1 0 0 0 0 0 -

LP 0.001 233 9786 8854 203642 6062 31.54
0.01 233 9786 8854 203642 6091 31.20
0.1 233 9786 8854 203642 6385 27.88

NP 0.001 233 9786 8854 283561 6062 31.54
0.01 117 4914 4446 142389 3059 31.20
0.1 15 630 570 18255 411 27.89

NA 0.001 237 13746 11850 213300 8064 31.95
0.01 117 6786 5850 105300 4004 31.56
0.1 18 1044 900 16200 652 27.56

QD 0.001 558 51336 38502 847044 29037 24.58
0.01 558 51336 38502 847044 29217 24.11
0.1 558 51336 38502 847044 31025 19.42

3 qubit Bernstein Vazirani
search circuit

IT 0.001 0 0 0 0 0 -

0.01 0 0 0 0 0 -
0.1 0 0 0 0 0 -

SC 0.001 0 0 0 0 0 -
0.01 0 0 0 0 0 -
0.1 0 0 0 0 0 -

LP 0.001 21 882 798 18354 547 31.45
0.01 21 882 798 18354 549 31.20
0.1 21 882 798 18354 576 27.81

NP 0.001 21 882 798 25557 547 31.45
0.01 9 378 342 10953 236 30.99
0.1 0 0 0 0 0 -

NA 0.001 19 1102 950 17100 647 31.90
0.01 8 464 400 7200 274 31.50
0.1 1 58 50 900 37 26.00

QD 0.001 23 2116 1587 34914 1197 24.58
0.01 23 2116 1587 34914 1205 24.07
0.1 23 2116 1587 34914 1279 19.40

Average savings (%) with respect to Steane Code 28.34
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probability p = pth. From Eq. 4, the expected resource requirement for placing
the detection and/or correction block each time is

(1 − pth)D + (1 − (1 − pth))(D + C) = D + pthC.

This equation gives the expected resource requirement when the error detec-
tion and/or correction block(s) are placed. In Table 6, we show the expected per-
centage savings in resource for different benchmark quantum circuits. In addition
to comparing our technique with the ideal situation of placing the 5-qubit error
correcting code, we also compare our proposed technique with Shor and Steane
codes.

It can be observed from Table 6 that Steane code has the minimum resource
requirement of the three codes (Shor, Steane and Laflamme). The percentage
savings shown in this table is with respect to Steane code only, since it has
the minimum resource requirement. Our proposed technique shows an average
resource reduction of 28.34% over Steane code [4].

Another observation from the benchmark table is that with the increase in
probability threshold, the percentage savings decreases, i.e., the resource require-
ment of our proposed technique increases. This is natural because if when the
error threshold is increased, the probability of error occurring increases. Hence,
it is more likely to detect errors for higher threshold. So the probability that both
detection and correction block needs to be placed increases with the increase in
error threshold. Hence the resource requirement of the proposed technique also
increases, resulting in a decrease in the percentage savings.

The resulting values from the benchmark circuits (Table 6) clearly show that
our proposed technique has minimal resource requirement and minimum qubit
requirement and hence is superior to all the three error correcting codes consid-
ered (Shor, Steane, Laflamme).

6 Conclusion

In this paper we have proposed a technique to replace the 5 qubit error correction
code. Though this code requires the minimum number of qubits, its resource
requirement is extremely high since it contains a few multi-control gates. These
gates cannot be directly implemented in a fault-tolerant manner, and the fault-
tolerant decomposition requires a large number of gates. Our proposed technique
uses two steps: error detection, and if error is likely to be detected, then error
correction. The total qubit requirement does not increase in this technique. One
can still perform error correction with 5 qubits only. However, in the original
5 qubit code [5], no ancilla qubits are required for error correction. But our
proposed technique requires 4 ancilla qubits. Nevertheless, these qubits are all
initialized to |0〉 and the superposition property of these qubits are not necessary
for the proposed mechanism. Hence effectively they behave like reversible bits
and can be reused more than once.

We have shown the percentage savings that the technique proposed here
provides. Furthermore, we have used our technique on some benchmark circuits
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too and have shown the savings in gate count. Hence, this method provides a
way for performing error correction using the minimum number of qubits and
also reduces the gate count significantly. A future prospect will be to find the
minimum resource requirement for quantum error correction and to check where
our proposed technique stands compared to it.
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