
Controlled and Uncontrolled SWAP Gates
in Reversible Logic Synthesis

Md Asif Nashiry1(B), Mozammel H.A. Khan2, and Jacqueline E. Rice1

1 Department of Mathematics and Computer Science,
University of Lethbridge, Lethbridge, AB T1K 3M4, Canada

{asif.nashiry,j.rice}@uleth.ca
2 Department of Computer Science and Engineering,

East West University, Aftabnagar, Dhaka 1212, Bangladesh
mhakhan@ewubd.edu

Abstract. This paper presents a quantum-level realization and synthe-
sis approach using SWAP and Fredkin (SF) gates. Our quantum real-
ization of negative-controlled Fredkin gate requires five 2-qubit elemen-
tary quantum gates, the same as that required for realizing a positive-
controlled Fredkin gate. We also propose and evaluate the performance of
a synthesis approach using SF gates for realizing conservative reversible
functions. Our result shows that circuit realization for conservative func-
tion using SF gates is more efficient than Toffoli gates. We achieve up to
87% improvement in gate count and quantum cost for (4×4) conservative
reversible functions.
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1 Introduction

A logic gate is a reversible gate if the output function of the gate is bijective [1].
The two most widely used reversible logic gate families are NOT-CNOT-Toffoli
(NCT) and SWAP-Fredkin (SF). A SWAP gate is a (2 × 2) reversible logic gate
which interchanges the input bits at the output. Fredkin and Toffoli proposed
a reversible controlled swap gate (also called Fredkin gate) in [2]. This gate is
a positive-controlled gate i.e. it swaps the two target inputs when the control
input is 1. The authors showed that it is a universal gate and thus any reversible
circuit can be synthesized using only Fredkin gates. One example of this is in [4],
where Bruce et al. proposed a design for a full-adder using five positive-controlled
Fredkin gates.

Smolin and DiVincenzo presented an implementation of the positive-
controlled Fredkin gate using five 2-qubit elementary quantum gates in [3].
We propose a realization of the negative-controlled Fredkin gate, that like the
positive-controlled Fredkin gate, requires five 2-qubit elementary quantum gates.
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Fig. 1. (a) Toffoli gate with top negative
control and bottom positive control and (b)
its realization.

Table 1. Behaviour of the circuit shown
in Fig. 1(b).

Control Target Output

a b c r

0 0 c c

0 1 c c′

1 0 c c

1 1 c c

We also propose a transformation based synthesis algorithm using SF gates for
realizing conservative reversible functions. A conservative reversible function has
the same number of 1s in both the input and output vectors of the function.

2 Realization of Negative-Controlled Fredkin Gate

To realize our proposed negative-controlled Fredkin gate we use a Toffoli gate
with top negative control and bottom positive control as an intermediate gate.
Realization of a Toffoli gate with top positive control and bottom negative con-
trol is presented in [5]. This realization requires five 2-qubit elementary quantum
gates. We follow this technique and present a realization of a Toffoli gate with
top negative control and bottom positive control in Fig. 1(b), also requiring five
2-qubit elementary quantum gates. The symbol and realization of a negative-
controlled Fredkin gate are shown in Fig. 2. The two target inputs are only
swapped at the target outputs when the control input a = 0 (Table 1). If the

Fig. 2. (a) Negative-controlled Fredkin gate and (b) its realization with two Feynman
gates and one Toffoli gate with top negative control and bottom positive control.

Toffoli gate shown in Fig. 2(b) is decomposed using the realization illustrated
in Fig. 1(b), and the last two Feyman gates are rearranged using the equiva-
lence shown in Fig. 3, the result is the circuit in Fig. 4. The operation of the
two gates in a dashed box can be expressed using 4 × 4 unitary matrices. As
these two gates are in cascade, their final operation will be another 4×4 unitary
matrix. Therefore, the two gates in practice work as one 2-qubit quantum gate.
Thus, the realization of the negative-controlled Fredkin gate requires five 2-qubit
elementary quantum gates. A similar argument is used in [3].
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Fig. 3. Circuits of (a) and (b) are
equivalent.

Fig. 4. Realization of a negative-
controlled Fredkin gate.

3 SF Based Synthesis Approach

The basic working principle of the transformation based synthesis algorithm is
to apply reversible operations to a reversible function in order to generate an
identity function. The first such algorithm was proposed by Miller et al. [6].
The authors applied gates from the NCT gate library. In the basic algorithm the
reversible logic operations are applied to the output of the function’s truth table.
The following is the basis of transformation based logic synthesis approach.

Table 2. Truth table of a (3 × 3) reversible function.

Input Output

ai bi ci ao bo co

(0) 0 0 0 0 0 0 (0)

(1) 0 0 1 1 0 0 (4)

(2) 0 1 0 0 0 1 (1)

(3) 0 1 1 0 1 1 (3)

(4) 1 0 0 0 1 0 (2)

(5) 1 0 1 1 0 1 (5)

(6) 1 1 0 1 1 0 (6)

(7) 1 1 1 1 1 1 (7)

Step 0: If f(0) = 0, no transformation is required; go to step 1. If f(0) �= 0,
apply a (1 × 1) Toffoli gate (NOT gate) in order to achieve f(0) = 0.

Step 1: For 1 � i < 2m − 1: If f(i) = i, no transformation is required and
proceed to next i. If f(i) �= i, apply the smallest (k × k) Toffoli gate, k = 2 to n
in order to make f i(i) = i.

The choice of gate during each step of transformation is crucial in order to
maintain convergence. The gate chosen in each step of transformation must not
change the order of bits of the previous steps. Consider the (3 × 3) reversible
function f =

∑
(0, 4, 1, 3, 2, 5, 6, 7) in Table 2. The circuit which is generated by

following the basic transformation algorithm is presented in Fig. 5.
The basic premise of SF-based transformation synthesis is the same as that

presented in [6]; however instead of using logic gates from the NCT gate family
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Table 3. Transformation stages of the function inTable 2 using SFbased transformation.

Output Step 0 Step 1 Step 2 Step 3 Step 4

(i) (ii) (iii) (iv) (v)

a b c a0 b0 c0 a1 b1 c1 a2 b2 c2 a3 b3 c3 a4 b4 c4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1

0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0

0 1 1 0 1 1 1 1 0 1 1 0 0 1 1 0 1 1

0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0

1 0 1 1 0 1 1 0 1 0 1 1 1 1 0 1 0 1

1 1 0 1 1 0 0 1 1 1 0 1 1 0 1 1 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

— S(a,c) S(a,b) F(b;a,c) F(a;b,c)

we use only SWAP and Fredkin gates. We use the same function from Table 2
to demonstrate the SF-based transformation synthesis. We also use the simple
one direction transformation for this example. Table 3 shows the transformation
stages. The resulting circuit realization of the function from Table 2 is displayed
in Fig. 6.

a0

b0

c0

at

bt

ct

Fig. 5. Basic transformation synthesis
for the function in Table 2.

a0

b0

c0

at

bt

ct

Fig. 6. SF based synthesis for the func-
tion in Table 2.

4 Comparison of NCT and SF Based Synthesis
Approaches

It is important to observe that the function in Table 2 is a conservative function
and Figs. 5 and 6 show two circuit designs for this function. In Fig. 6, we have a
gate count of 4 as compared to a gate count of 12 for the circuit in Fig. 5. The
quantum cost of the implementation in Fig. 6 is (2 × 3) + (2 × 5) = 16, where
the quantum cost for the circuit realization in Fig. 5 is 28. The percentages of
decrease in gate count and quantum cost are 67% and 43% respectively, which
is a very significant improvement.
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In order to compare the SF based transformation approach with NCT based
transformation from a wider perspective, we have generated all possible (3 × 3)
conservative reversible functions. We have realized all 36-(3 × 3) conservative
functions using both algorithms. The highest percentage of reduction in gate
count is 67% for more than half of the (3 × 3) conservative reversible functions.
The ability of changing two bits at a time gives SF gates an advantage over the
NCT gate family for realizing conservative reversible circuits.

SF based synthesis also performs better than NCT based synthesis when
comparing quantum cost. Among the 36 functions, we have achieved lower QC
for almost 70% of the functions. For the remaining functions, the QC is the
same for both approaches. There is not a single instance where the NCT based
synthesis performs better than our proposed approach. The highest percentage
of decrease in quantum cost is 70% and the average percentage of reduction of
quantum cost is 29%.

As mentioned above, the proposed transformation algorithm using the SF
gate family follows the greedy approach. We have designed our algorithm in this
way in order to offer a fair comparison, since the basic transformation based
synthesis algorithm which is proposed in [6] also follows the greedy approach.
At every step of transformation, the algorithm selects a gate which costs less in
terms of quantum cost. For example, if we observe column (ii) of Table 3, we need
to transform 100 into 010. There are two choices for this mapping. We could use
either a SWAP gate S(a,b) or a negative controlled Fredkin gate, F

′
(a, b; c). The

proposed SF gate based transformation selects a SWAP gate, S(a,b) because a
SWAP gate has lower quantum cost than a Fredkin gate. However, if we use a
F

′
(a, b; c) at this stage, we get a circuit which is presented in Fig. 7. The use of

F
′
(a, b; c) gate reduces the quantum cost from 16 to 13 as we compared with

the circuit in Fig. 6. Moreover, one less gate is needed in this circuit realization.
The circuit in Fig. 8 is even more simplified design for the reversible function
from Table 2. Figure 8 shows that the gate count is 2 and the quantum cost is
10. Now if we compare the gate count and quantum cost of Fig. 8 with that
of the NCT gate based basic transformation synthesis (Fig. 5), the gate count
has been reduced from 12 to 2, a 6 times reduction. The quantum cost has
been reduced from 28 to 10, which is an improvement of almost a factor of
3. We have also generated all possible 414720 conservative (4 × 4) reversible
function. However unlike the case of (3 × 3) functions, there are some circuit
realizations where the gate count and quantum cost increase when using SF

a0

b0

c0
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bt

ct

Fig. 7. Another circuit realization for
the function from Table 2.
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Fig. 8. More efficient circuit realization
for the function from Table 2.
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gate based transformation synthesis. Among all the (4×4) conservative reversible
functions, the quantum cost increases for 27213 (6.5%) functions and the gate
count increases for 2 functions. The highest percentage of reduction in gate
count by using our proposed synthesis algorithm is 87% and the reduction in
gate count, on average, is 61%. We achieve the highest percentage of reduction
of quantum cost is 87%. The average percentage of decrease of quantum cost
over all 414720 functions is 35%.

5 Conclusion

The contribution of this work is twofold. First, we present a unique realization
of a negative-controlled Fredkin gate using five 2-qubit elementary quantum
gates. Secondly, we propose a transformation based synthesis algorithm using
SF gates for the realization of conservative reversible functions. After applying
our approach to all possible (3 × 3) and (4 × 4) conservative functions we see
that the synthesis of conservative reversible functions using SF gates is more
efficient than using NCT gates. For (3 × 3) functions we show reductions in GC
and QC of 67% and 70% respectively, while for (4 × 4) functions we achieve
even higher reductions of 87% in both GC and QC. We also show that the
percentage of reduction in GC and QC can be further improved by choosing
gates intelligently instead of by following a greedy approach. Finally, this paper
shows the usefulness of a negative control Fredkin gate in circuit realization.

The outcome of this work indicates that the synthesis process in reversible
logic could be more efficient if we knew the class of a reversible function in
advance. Therefore, classifying reversible functions and using the benefits of SF-
gates in circuit realization for different classes of functions will be an important
area of further research.
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