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Abstract. We present tools for resource-aware compilation of higher-
level, irreversible programs into lower-level, reversible circuits. Our main
focus is on optimizing the memory footprint of the resulting reversible
networks. We discuss a number of examples to illustrate our compila-
tion strategy for problems at scale, including a reversible implementation
of hash functions such as SHA-256, automatic generation of reversible
integer arithmetic from irreversible descriptions, as well as a test-bench
of Boolean circuits that is used by the classical Circuits and Systems
community. Our main findings are that, when compared with Bennett’s
original “compute-copy-uncompute”, it is possible to reduce the space
complexity by 75% or more, at the price of having an only moderate
increase in circuit size as well as in compilation time. Finally, we discuss
some emerging new paradigms in quantum circuit synthesis, namely the
use of dirty ancillas to save overall memory footprint, probabilistic pro-
tocols such as the RUS framework which can help to reduce the gate
complexity of rotations, and synthesis methods for higher-dimensional
quantum systems.

Keywords: Quantum circuits · Reversible circuits · Quantum program-
ming languages · Pebble games · Dirty ancillas · Repeat-Until-Success
protocols · Ternary systems

1 Introduction

The compilation of quantum algorithms into sequences of instructions that a
quantum computer can execute requires a multi-stage framework. This frame-
work needs to be capable of taking higher level descriptions of quantum programs
and successively breaking them down into lower level net-lists of circuits until
ultimately pulse sequences are obtained that a physical machine can apply. Inde-
pendent of the concrete realization of the compilation method, one of the key
steps is to implement subroutines1 over the given target instruction set. As often
the underlying problem is a classical problem in that the problem specification
involves classical data (such as finding the period of a function or searching an
assignment that satisfies a given Boolean predicate), the question arises how

1 In quantum computing literature, such subroutines are often implementing “oracles”.
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such functions can best be implemented on a quantum computer. Examples are
Shor’s algorithm for factoring and the computation of discrete logarithms over
a finite field [38], Grover’s quantum search algorithm [23], quantum walk algo-
rithms [27], the HHL algorithm for solving linear equations [16,25], and quantum
simulation methods [8,9]. The field of reversible computing deals with the latter
problem and investigates such issues as how to minimize the gate count over a
given universal gate set and how to minimize various other resources, such as
the circuit depth, the total number of qubits required, and other metrics.

There are many ramifications to this compilation problem. Some stem from
the choice of programming language to express the tools that perform the trans-
lation. Choices that have been reported in the literature range from C-like lan-
guages such as QCL [32] and Scaffold [26] to functional languages such as Quip-
per [21,22] and LIQUi|〉 [40]. Further choices involve the methods to compile
classical, irreversible programs into quantum circuits and several approaches
have been taken in the literature. One approach is to hide all classical subrou-
tines in libraries and to provide an optimized collection of functions to implement
these. This is the approach taken in several languages and as long as quantum
programming remains a very much circuit-centric endeavor, this approach might
well be appropriate. On the other hand, tools that allow the translation of clas-
sical, irreversible code into, say, networks of Toffoli gates have been developed:
in the Haskell-based Quipper language, there is a monadic bind to lift classical
computation to reversible circuits. In the LIQUi|〉 there is Revs [34], a tool to
perform the task of obtaining reversible networks automatically from a little
language that can be used to express classical programs.

The main idea behind Revs is to improve on Bennett’s [6] method to make
computations reversible: arbitrary computations can be carried out by a compu-
tational device in such a way that in principle each time-step can be reversed by
first performing a forward computation, using only step-wise reversible processes,
then copying out the result, and finally undoing all steps in the forward compu-
tation in reverse order. This solves the reversible embedding problem, albeit at
the cost of very large memory-requirements as the result from each intermediate
process have to be stored. Bennett already pointed out a solution [7] that is
applicable in principle to reduce the memory-overhead by studying time-space
trade-offs for reversible computation. He introduced the notion of reversible peb-
ble games which allow to systematically study ways to save on scratch space at
the expense of recomputing intermediate results. To determine the best pebbling
strategy for the dependency graph imposed by actual real-world programs and
to automate the process of pebbling in general, however, are non-trivial mat-
ters. In the Revs framework, we follow a pragmatic approach: (i) Boolean func-
tions are synthesized directly using various heuristics and optimizations, such as
exclusive-sum-of-products (ESOP) based optimization [15,30], (ii) the compiler
provides different strategies for making irreversible computations reversible: one
is Bennett’s method, another is heuristic that computes data dependencies in
the source program and tries to uncompute data that is no longer needed as
soon as possible.
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As a real-world example we consider cryptographic hash-functions such as
SHA-256, which is part of the SHA-2 family [1]. This cipher can be thought of
as a Boolean function f : {0, 1}N → {0, 1}n, where n � N . It has a simple and
straightforward classical program for its evaluation that has no branchings and
only uses simple Boolean functions such as XOR, AND, and bit rotations. How-
ever, it has internal state between rounds. The fact that there is state prevents
the Boolean function from being decomposed, thereby making purely truth-table
or BDD-based synthesis methods useless for this problem.

The basic underlying fault-tolerant architecture and coding scheme deter-
mines the universal gate set, and hence by extension also the synthesis problems
that have to be solved in order to compile high-level, large-scale algorithms
into a sequence of operations that an actual physical quantum computer can
then execute. A gate set that arises frequently and that has been oft studied
in the literature, but by no means the only conceivable gate set, is the so-
called Clifford+T gate set [31]. This gate set consists of the Hadamard gate
H = 1√

2

[
1 1
1 −1

]
, the phase gate P = diag(1, i), and the CNOT gate which

maps (x, y) �→ (x, x ⊕ y) as generators of the Clifford group, along with the
T gate given by T = diag(1, exp(πi/4)). The Clifford+T gate set is known
to be universal [31], i.e., any given target unitary single qubit operation can
be approximated to within ε using sequences of length 4 log2(1/ε) [28,37] and
using an entangling gate such as the controlled NOT gate. Often, only T -gates
are counted as many fault-tolerant implementation of the Clifford+T gate set
at the logical gate level require much more resources [19] for T -gates than for
Clifford gates. We based reversible computations entirely on the Toffoli gate
|x, y, z〉 �→ |x, y, z ⊕ xy〉 which is known to be universal for reversible computing
[31] and which can be implemented exactly over the Clifford+T gate set, see [36]
for T -depth 1 implementation using a total of 7 qubits and [3] for a T -depth 3
realization using a total of 3 qubits.

2 Data Dependency Analysis in Revs

Data dependencies that might be present in a given F# program are modeled in
Revs using a data structure called a mutable data dependency graph (MDD).
This data structure tracks the data flow during a classical, irreversible compu-
tation. MDDs allow to identify parts of the data flow where information can be
overwritten as well as other parts where information can be uncomputed early
as it is no longer needed. These two techniques of overwrite, which are imple-
mented using so-called in-place operations, and early cleanup, for which we use a
strategy that can be interpreted as a particular pebble game played on the nodes
of the data flow graph, constitute the main innovation of the present work. The
cleanup methods described here can be thought of as an analog to garbage col-
lection for quantum architectures. Revs outputs a Toffoli network which then
can directly imported as an internal representation into LIQUi|〉 and be used as
part of another quantum computation.
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Fig. 1. F# program that implements a carry ripple adder using a for-loop and main-
taining a running carry.

Revs is an embedded language into the .NET language F# and as such
inherits some functions and libraries from its host language. Also, the look-
and-feel of a typical Revs program is very similar to that of F# programs. In
fact, it is one of our design goals to provide a language that provides different
interpretations of the same source program, i.e., the same source code can be
compiled into (a) an executable for a given classical architecture such as the
.NET CLR, (b) a Toffoli network, (c) rendered form of output, e.g., pdf or svg,
or (d) an internal representation which can then be simulated efficiently on a
classical computer.

The current implementation of the Revs compiler supports Booleans as
basic types only. The core of the language is a simple imperative language over
Boolean and array (register) types. The language is further extended with ML-
style functional features, namely first-class functions and let definitions, and a
reversible domain-specific construct clean. It should be noted also that Revs was
designed to facilitate interoperability with the quantum programming language
LIQUi|〉 which is also F# based and which provides rich support for expressing
and simulating quantum circuits on classical machines, but which also provides
support for compiling quantum algorithms for target hardware architectures and
abstract quantum computer machine models.

An example Revs program is shown in Fig. 1(a). This example implements
a simple carry ripple adder of two n-bit integers. Shown in (b) is one of the
possible target intermediate representations, namely LIQUi|〉 code.

At a high level, all compilation strategies that are implemented in Revs pro-
ceed start from a classical description of the given function which is then turned
into an abstract syntax tree (AST) by a parser. This level might use libraries and
further optimizations by the F# compiler. The subsequent levels are domain-
specific to the reversible synthesis domain and use the MDD data-structure
presented in [34]. See Fig. 2 for an example. The overall compilation can use pre-
computed libraries, e.g., for reversible arithmetic and other optimized functions.
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It should be noted that possibly the overall compilation can fail, namely in case
the given target strategy cannot be implemented using the given upper bound
on the number of available qubits.

3 An Example at Scale: SHA-256

We implemented the round function of SHA-256 which is a hash function as
specified in the FIPS 180-2 publication [1]. Like many other hash functions,
SHA proceeds in a round-like fashion and uses the current state of a finite state
machine, the next incoming data block, and various constants in order to define
the next state of the finite state machine. In the round function of the cipher
32 bit registers A, B, . . . , E are needed. The following Boolean functions are
introduced to describe the round functions:

(a) MDD for h before cleanup (b) MDD for h after eager cleanup

(c) Final resulting Toffoli network implementing the function h.

Fig. 2. Shown in (a) is the mutable data dependency graph (MDD) for the function
h(a, b, c, d) = f(a, b, c)⊕ f(b, c, d) where f(a, b, c) = a‖(b&c). Shown in (b) is the MDD
that results in applying Eager cleanup (as described in [34]) to the MDD in (a). Shown
in (c) is the final circuit that REVS emits based on the MDD in (b). Qubits that are
initially clean are shown as �, qubits that terminate in a clean state are shown as �.
Overall, the circuit uses a total of 7 qubits to compute the function h. This should
be compared with applying the Bennett cleanup which would result in a much larger
number of qubits, namely 11.
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Ch(E,F,G) := (E ∧ F ) ⊕ (¬E ∧ G)
Ma(A,B,C) := (A ∧ B) ⊕ (A ∧ C) ⊕ (B ∧ C)

Σ0(A) := (A≫2) ⊕ (A≫13) ⊕ (A≫22)
Σ1(E) := (E ≫6) ⊕ (E ≫11) ⊕ (E ≫25).

For a given round, the values of all these functions is computed and con-
sidered to be 32 bit integers. Further, a constant 32 integer value Ki is
obtained from a table lookup which depends on the number i of the given
round, where i ∈ {0, . . . , 63} and finally the next chunk of the message Wi

is obtained from the message after performing a suitable message expansion
is performed as specified in the standard. Finally, H is replaced according to
H ← H +Ch(E,F,G)+Ma(A,B,C)+Σ0(A)+Σ1(E)+Ki +Wi and then the
cyclic permutation A ← H,B ← A, . . . ,H ← G is performed. The implementa-
tion of the entire round function for a given number of rounds n was presented
in [34] using the Revs high-level language.

To test the performance of the Revs compiler, in [34] we hand-optimized an
implementation of SHA-256. This circuit contains 7 adders (mod 232). Using the
adder from [17] with a Toffoli cost of 2n − 3 this corresponds to 61 Toffoli gates
per adder or 427 per round.

Next, we used Revs to produce Toffoli networks for this cipher, depending
on various increments of the number n of rounds. The circuits typically are too
large to be visualized in printed form, however, an automatically generated .svg
file that the LIQUi|〉 compiler can be navigated by zooming in down to the level
of Toffoli, CNOT, and NOT gates. The resource estimates are summarized in
Table 1. Shown are the resulting circuit sizes, measured by the total number
of Toffoli gates, the resulting total number of qubits, and the time it took to
compile the circuit for various numbers of rounds. All timing data in the table

Table 1. Comparison of different compilation strategies for the cryptographic hash
function SHA-256.

Rnd Bennett Eager Reference

Bits Gates Time Bits Gates Time Bits Gates

1 704 1124 0.254 353 690 0.329 353 683

2 832 2248 0.263 353 1380 0.336 353 1366

3 960 3372 0.282 353 2070 0.342 353 2049

4 1088 4496 0.282 353 2760 0.354 353 2732

5 1216 5620 0.290 353 3450 0.366 353 3415

6 1344 6744 0.304 353 4140 0.378 353 4098

7 1472 7868 0.312 353 4830 0.391 353 4781

8 1600 8992 0.328 353 5520 0.402 353 5464

9 1728 10116 0.334 353 6210 0.413 353 6147

10 1856 11240 0.344 353 6900 0.430 353 6830
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are measured in seconds and resulted from running the F# compiler in Visual
Studio 2013 on an Intel i7-3667 @ 2GHz 8 GB RAM under Windows 8.1. The
table shows savings of almost 4X in terms of the total numbers of qubits required
to synthesize the cipher when comparing the simple Bennett cleanup strategy
versus the Eager cleanup strategy. The reason for this is that the Bennett cleanup
methods allocates new space essentially for each gate whereas the Eager cleanup
strategy tries to clean up and reallocate space as soon as possible which for
the round-based nature of the function can be done as soon as the round is
completed.

Besides SHA-256, and other hash functions such as MD5, this technique
has also been applied to SHA-3 [4]. Our findings supports the thesis that it is
possible to trade circuit size (time) for total memory (space) in reversible circuit
synthesis. To the best of our knowledge, Revs is the first compiler that allows
to navigate this trade space and that offers strategies for garbage collection
for quantum architectures that go beyond the simple Bennett strategy which
generally leads to very poor memory utilization as most of the qubits are idle
most of the time.

4 Quantum Computing Software Architecture

Revs is part of a larger framework provided by the LIQUi|〉 software archi-
tecture. LIQUi|〉 is a quantum programming language and a high-performance
simulator for quantum circuits. LIQUi|〉 is an embedded language into F# which
itself is a full .NET language, i.e., F# supports object-oriented, imperative and
functional programming, as well as ease of using reflection and pattern match-
ing which helps with walking complex datastructures. LIQUi|〉 can be obtained
from https://github.com/StationQ/Liquid. Runtimes supported in LIQUi|〉 are
client/server versions, as well as an Azure based cloud service. There are sev-
eral ways in which LIQUi|〉 code can be executed, e.g., from the command line
running the .NET Common Language Runtime, or directly in a Visual Studio
interactive session (particularly useful for script files), or in a normal Visual
Studio development mode.

The Revs compiler can compile classical, irreversible code into functions that
can then be further processed, e.g., by using simulators in LIQUi|〉. An example
are Toffoli networks for specific functions such as the SHA-256 example from
the previous section. These circuits can then be executed by various simulation
backends that are available in LIQUi|〉, e.g., a full functional simulator which can
simulate arbitrary circuits on up to 32 qubits using about 32 GB of memory, or a
special purpose Toffoli simulator which can be used, e.g., to simulate large Toffoli
networks to implement controlled modular multiplication. For the latter see e.g.
[24] where simulation of modular multiplication networks have been reported for
bit sizes up to 8, 192.

https://github.com/StationQ/Liquid
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5 Other Paradigms for Quantum and Reversible
Synthesis

5.1 Using Dirty Ancillas

By dirty ancillas we mean qubits which can be in an unknown state, possibly
entangled with other qubits in an unknown way, but which are available as
scratch space for other computations. There are not many use cases of this
situation and a priori it seems even difficult to imagine any situation where such
a “full quantum memory” could be of use at all as any manipulation that uses
dirty ancillas without restoring them to their state before they were used, will
destroy interferences between computational paths.

So far, we are aware of two specific situations where dirty ancillas help: (i)
the implementation of a multiply controlled NOT operation, see [5] and recent
improvements [2,29]. The second use case is an implementation of a constant
incrementer |x〉 �→ |x + c〉, where c is an integer that is known at compile time
and x an input that can be in superposition. In [24] it was shown that dirty
ancillas help to realize this operation using O(n log n) Toffoli gates and a total
of n qubits which are needed to represent x, along with O(n) dirty ancillas. This
in turn can be used to implement the entire Shor algorithm using almost entirely
Toffoli gates.2

Table 2. Costs associated with various implementations of addition |a〉 �→ |a + c〉 of a
value a by a classical constant c.

Cuccaro et al. [17] Takahashi et al. [39] Draper [18] Häner et al. [24]

Size Θ(n) Θ(n) Θ(n2) Θ(n log n)

Depth Θ(n) Θ(n) Θ(n) Θ(n)

Ancillas n+1 (clean) n (clean) 0 n
2

(dirty)

Mathematically, the underlying idea how to make use of dirty ancillas can be
illustrated in case of an addition “+1” which is an observation due to Gidney [20]:
Using the ancilla-free adder by Takahashi [39], which requires no incoming carry,
and its reverse to perform subtraction, one can perform the following sequence
of operations to achieve an incrementer using n borrowed ancilla qubits in an
unknown initial state |g〉:

|x〉|g〉 �→ |x − g〉|g〉 �→ |x − g〉|g′ − 1〉
�→ |x − g − g′ + 1〉|g′ − 1〉 �→ |x + 1〉|g〉,

2 Indeed, the only non-Toffoli gates in the quantum circuit presented in [24] are single
qubit Hadmard gates, single qubit phase rotations, and single qubit measurements.
The vast majority of other gates in the circuit form one big circuit component which
can be classically simulated and tested.
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where g′ denotes the two’s-complement of g and g′ − 1 = g, the bit-wise com-
plement of g. Notice that g + g′ = 0 holds for all g and that the register holding
the dirty qubits |g〉 is returned to its initial state.

Table 2 provides a comparison between different ways to implement addition
on a quantum computer with the last column being the implementation based
on dirty ancillas.

In total, using the standard phase estimation approach to factoring this leads
to an O(n3 log n)-sized implementation of Shor’s algorithm from a Toffoli based
in-place constant-adder, which adds a classically known n-bit constant c to the
n-qubit quantum register |a〉, i.e., which implements |a〉|0〉 �→ |a + c〉 where a is
an arbitrary n-bit input and a+ c is an n-bit output (the final carry is ignored).

5.2 Repeat-Until-Success Circuits

Recently, Paetznick and Svore [33] showed that by using non-deterministic cir-
cuits for decomposition, called Repeat-Until-Success (RUS) circuits, the number
of T gates can be further reduced by a factor of 2.5 on average for axial rotations,
and by a larger factor for non-axial rotations. They emphasized that synthesis
into RUS circuits can lead to a shorter expected circuit length that surpasses
the theoretical lower bound for the length of a purely unitary circuit design.
Leveraging the RUS framework, in [12,13] efficient algorithms were presented to
synthesize a non-deterministic Repeat-Until-Success (RUS) circuits for approx-
imating any given single-qubit unitary. Our algorithm runs in probabilistically
polynomial classical runtime for any desired precision ε. Our methods demon-
strate the power of using ancilla qubits and measurement for quantum circuit
compilation.

The general layout of a RUS protocol is shown in Fig. 3. Consider a unitary
operation U acting on n + m qubits, of which n are target qubits and m are
ancillary qubits. Consider a measurement of the ancilla qubits, such that one
measurement outcome is labeled “success” and all other measurement outcomes
are labeled “failure”. Let the unitary applied to the target qubits upon mea-
surement be V . In the RUS protocol, the circuit in the dashed box is repeated
on the (n + m)-qubit state until the “success” measurement is observed. Each
time a “failure” measurement is observed, an appropriate Clifford operator W †

i

is applied in order to revert the state of the target qubits to their original input
state |ψ〉. The number of repetitions of the circuit is finite with probability 1.

|0〉 /m

U

|0〉 /m

U
|ψ〉 /n {W †

i } . . . V |ψ〉

Fig. 3. Repeat-Until-Success (RUS) protocol to implement a unitary V .
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In [12,13] efficient algorithms were given to synthesize RUS protocols and
so-called fallback protocols which also allow to implement unitary gates using
probabilistic circuits. The inputs to the synthesis algorithms are the given uni-
tary U , typically assumed to be a Z-rotation, and a target accuracy ε. Under
mild number-theoretic conjectures, the complexity of the compilation method is
in Õ(log(1/ε)) and the length of the output, i.e., a sequence of H and T gates that
ε-approximates U , scales as (1+δ) log2(1/ε), where δ can be made arbitrary close
to 0. These results demonstrate the power of using ancilla qubits and measure-
ment for quantum circuit compilation as the currently best known deterministic
schemes lead to lengths of the resulting circuits that scale as c log2(1/ε), where
3 ≤ c ≤ 4, with the actual choice of c depending on various computational and
number-theoretic assumptions. See [12,13,28,35,37] for further reading about
single qubit unitary decomposition methods. Figure 4 conveys the basic intuition
behind RUS based methods: by allowing measurement and, if needed, repetition,
it is possible to achieve a much higher density of rotations that can effectively
be addressed.

)b()a(

Fig. 4. Comparing approximations of z-rotations by (a) unitary 〈H, T 〉 circuits of T -
depth at most 8 and (b) RUS protocols with a comparable expected T -depth of at most
7.5. In (a) only 40 circuits are close to any z-rotation (dark red points separated by
the outer arc), illustrating a higher density of RUS protocols. In the asymptotic limit
for T -depth this ratio tends to 3. (Color figure online)

5.3 Higher-Dimensional Alphabets

It turns out that some fault-tolerant scalable quantum computing schemes under-
line the importance to work with higher-dimensional alphabets to encode quan-
tum information. In particular, a ternary quantum framework recently emerged
from proposals for a metaplectic topological quantum computer (MTQC) which
offers native topological protection of quantum information. MTQC creates an
inherently ternary quantum computing environment; for example the common
binary CNOT gate is no longer a Clifford gate in that environment.
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In [11], compilation and synthesis methods for ternary circuits were developed
for 2 different elementary gate sets: the so-called Clifford+R|2〉 basis [10] and the
Clifford+P9 basis [11], where R|2〉 and P9 are both non-Clifford single qutrit gate
defined as R|2〉 = diag(1, 1,−1) and P9 = diag(e−2π i/9, 1, e2π i/9).

The Clifford+R|2〉 basis, also called metaplectic basis, was obtained from
a MTQC by braiding of certain metaplectic non-abelian anyons and projec-
tive measurement. The gate R|2〉 is produced by injection of the magic state
|ψ〉 = |0〉 − |1〉 + |2〉. The injection circuit is coherent probabilistic, succeeds in
three iterations on average and consumes three copies of the magic state |ψ〉
on average. The |ψ〉 state is produced by a relatively inexpensive protocol that
uses topological measurement and consequent intra-qutrit projection. This pro-
tocol requires only three qutrits and produces an exact copy of |ψ〉 in 9/4 trials
on average. This is much better than any state distillation method, especially
because it produces |ψ〉 with fidelity 1. In [10] effective compilation methods
for Clifford+R|2〉 were developed to compile efficient circuits in the metaplectic
basis. In particular, given an arbitrary two-level Householder reflection r and a
precision ε, then r is effectively approximated by a metaplectic circuit of R|2〉-
count at most C log3(1/ε) + O(log(log(1/ε))), C ≤ 8.

The Clifford+P9 basis is a natural generalization of the binary π/8 gate. The
P9 gate can be realized by a certain deterministic measurement-assisted circuit
given a copy of the magic state μ = e−2π i/9|0〉 + |1〉 + e2π i/9|2〉, which further
can be obtained from the usual magic state distillation protocol. Specifically, it
requires O(log3(1/δ)) raw magic states of low fixed fidelity in order to distill
a copy of the magic state μ at fidelity 1 − δ. The paper [11] developed a novel
approach to synthesis of reversible ternary classical circuits over the Clifford+P9

basis. We have synthesized explicit circuits to express classical reflections and
other important classical non-Clifford gates in this basis, which we subsequently
used to build efficient ternary implementations of integer adders and their
extensions.

In [14] further optimizations were given under the assumption of binary-
encoded data and applied the resulting solutions to emulating of the modular
exponentiation period finding (which is the quantum part of the Shor’s inte-
ger factorization algorithm). We have performed the comparative cost analysis
of optimized solutions between the “generic” Clifford+P9 architecture and the
MTQC architecture (the Clifford+R|2〉) using magic state counts as the cost
measure. We have shown that the cost of emulating the entire binary circuit for
the period finding is almost directly proportional to the cost of emulating the
three-qubit Toffoli gate and the latter is proportional to the cost of the P9 gate.

6 Conclusions

We presented Revs, a compiler and programming language that allows to auto-
mate the translation of classical, irreversible programs into reversible programs.
This language does not constrain the programmer to think in a circuit-centric
way. In some cases (e.g., hash functions such as SHA-256) the savings of our
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method over Bennett-style approaches can even be unbounded. We navigate the
PSPACE completeness of finding the optimal pebble game by invoking heuristic
strategies that identify parts of the program that are mutable which then can
be implemented via in-place operations. In order to manage the arising data
dependencies, we introduced MDD graphs which capture data dependencies as
well as data mutation. Using an example benchmark suite compiled from clas-
sical circuits and systems community, we show that the method can be applied
for medium to large scale problems. We also showed that hash functions such as
SHA-256 can be compiled into space-optimized reversible circuits.

Also, we highlighted that there are paradigms that break out of the usual frame-
work considered in quantum circuit synthesis: we highlighted that there are con-
crete case in which the presence of qubits helps, even if they have already been used
and are entangled with the rest of the quantum computer’s memory. Using such
dirty ancillas, it is possible to reduce circuit sizes e.g. for constant incrementers.
Next, discussed the power of using probabilistic protocols to implement unitaries,
which helps to bring down circuit sizes by a constant factor. In a concrete case,
probabilistic protocols such as RUS or fallback schemes help to reduce the cost for
single qubit axial rotations from 4 log2(1/ε) to log2(1/ε). Finally, we mentioned
that in some physical systems, ternary alphabets arise very naturally from the way
universal operations are performed. We mentioned two such gate sets and gave
pointers to method for synthesizing into these gate sets.
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