
Iain Phillips
Hafizur Rahaman (Eds.)

 123

LN
CS

 1
03

01

9th International Conference, RC 2017
Kolkata, India, July 6–7, 2017
Proceedings

Reversible
Computation

Lecture Notes in Computer Science 10301

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Iain Phillips • Hafizur Rahaman (Eds.)

Reversible
Computation
9th International Conference, RC 2017
Kolkata, India, July 6–7, 2017
Proceedings

123

Editors
Iain Phillips
Imperial College London
London
UK

Hafizur Rahaman
Indian Institute of Engineering Science
and Technology

Shibpur
India

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-59935-9 ISBN 978-3-319-59936-6 (eBook)
DOI 10.1007/978-3-319-59936-6

Library of Congress Control Number: 2017941548

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the papers presented at RC 2017, the 9th International Confer-
ence on Reversible Computation, held during July 6–7, 2017, in Kolkata (India). The
conference was jointly organized by: (a) the Indian Institute of Technology, Kharagpur,
(b) the Indian Institute of Engineering Science and Technology, Shibpur, (c) the Indian
Statistical Institute, Kolkata, and (d) Jadavpur University, Kolkata.

Reversible computation has a growing number of promising application areas such
as low-power design, testing and verification, database recovery, discrete event sim-
ulation, reversible specification formalisms, reversible programming languages, pro-
cess algebras, quantum computation, etc. RC 2017 was the ninth event in a series of
annual meetings designed to gather researchers from different scientific disciplines for
the discussion and dissemination of recent developments in all aspects of reversible
computation. Previous RC events took place in York, UK (2009), Bremen, Germany
(2010), Ghent, Belgium (2011), Copenhagen, Denmark (2012), Victoria, Canada
(2013), Kyoto, Japan (2014), Grenoble, France (2015), and Bologna, Italy (2016).

The RC 2017 conference included two invited talks, by Kalyan S. Perumalla
(abstract included in the front matter of this volume) and Martin Roetteler (invited
paper included in this volume). The conference received 47 valid submissions, all of
which were reviewed by at least three members of the Program Committee. After
careful deliberation, the Program Committee selected 13 full papers and five short
papers for inclusion in these proceedings and for presentation at the conference.

We would like to thank everyone who contributed to the success of RC 2017: the
authors for submitting the results of their research to RC 2017; our two invited speakers
for their inspiring talks and their time; the Program Committee and their co-reviewers
for their expert work under tight time constraints, and for their commitment to the
quality of the conference; the general chairs, Indranil Sengupta and Rolf Drechsler, for
keeping the conference on track and for their help and advice; the organizing chair,
Amlan Chakrabarti; the student volunteers for their untiring effort to ensure the smooth
running of the conference; and the attendees of the events for their interest in the
presentations and the constructive discussions.

We would like to thank our sponsors for supporting this conference: VLSI Society
of India, Nucleodyne Systems, USA, and JIS Group Educational Initiatives.

We benefited from using the EasyChair system for the work of the Program
Committee and the compilation of the proceedings.

April 2017 Iain Phillips
Hafizur Rahaman

Organization

Program Committee

Bhargab B. Bhattacharya Indian Statistical Institute, Kolkata, India
Anupam Chattopadhyay Nanyang Technological University, Singapore
Bob Coecke University of Oxford, UK
Debesh Das Jadavpur University, India
Kamalika Datta National Institute of Technology Meghalaya, India
Gerhard Dueck University of New Brunswick, Canada
Robert Glück University of Copenhagen, Denmark
Jarkko Kari University of Turku, Finland
Martin Kutrib Universität Giessen, Germany
Ivan Lanese University of Bologna, Italy and Inria, France
Kazutaka Matsuda Tohoku University, Japan
Michael Miller University of Victoria, Canada
Iain Phillips Imperial College London, UK
Francesco Quaglia Sapienza Università di Roma, Italy
Hafizur Rahaman Indian Institute of Engineering Science and Technology

(IIEST), Shibpur, India
Ulrik Schultz University of Southern Denmark, Denmark
Peter Selinger Dalhousie University, Canada
Indranil Sengupta Indian Institute of Technology Kharagpur, India
Mathias Soeken EPFL, Switzerland
Jean-Bernard Stefani Inria, France
Susmita Sur-Kolay Indian Statistical Institute, Kolkata, India
Yasuhiro Takahashi NTT Communication Science Laboratories, Japan
Michael Thomsen University of Copenhagen, Denmark
Irek Ulidowski University of Leicester, UK
Robert Wille Johannes Kepler University Linz, Austria
Shigeru Yamashita Ritsumeikan University, Japan

Additional Reviewers

Axelsen, Holger Bock
De Vos, Alexis
Di Sanzo, Pierangelo
Hirvensalo, Mika
Kaarsgaard, Robin
Kakutani, Yoshihiko

Klimov, Andrei
Kole, Dipak
Mogensen, Torben Ægidius
Mosca, Michele
Paler, Alexandru
Pellegrini, Alessandro

Pinna, G. Michele
Podlaski, Krzysztof
Qiu, Daowen
Renz, Wolfgang
Salo, Ville

Schordan, Markus
Unno, Hiroshi
Yakaryilmaz, Abuzer
Yokoyama, Tetsuo

VIII Organization

Relating the Limits of Computational
Reversibility to Emergence
(Abstract of Invited Talk)

Kalyan S. Perumalla

Oak Ridge National Laboratory, Oak Ridge, TN, USA
perumallaks@ornl.gov

An interesting aspect of reversible computation is that analyses of the theoretical limits
of reversibility can touch metaphysical aspects. An objective treatment in reversible
computation has given us the understanding that any expressed finite computation (for
example, a Turing program) is effectively reversible by design or by transformation.
However, a subjective treatment of reversibility regarding the purpose or meaning of a
computation can lead to metaphysical considerations. A stark way this notion arises is
in the concept of “emergence.” Informally, emergence involves the phenomenon of
something (new) arising or coming into view (for example, a leader emerging in a
democracy of equals, or new particles spontaneously emerging from sub-atomic par-
ticle collisions). We argue that the concept of emergence and the concept of
reversibility are disjunctive in any objective treatment. If something emerges (sub-
jective view), it can never be reversed (objective view). If something can be reversed, it
cannot have emerged. If the arguments hold, they lead to a strange equivalence class of
terms that equates the following words to mean essentially the same thing (or lose
meaning together): new, random, (dis)orderly, (in)elegant, (un)interesting, first, spon-
taneous, abrupt, (un)expected, and so on. When the computation of physics and the
physics of computation meet in their limits, the confluence of subjective and objective
views with respect to their reversibility opens the counter-intuitive implications of the
aforementioned equivalence class. We relax the concept of emergence into three types,
the first encompassing the fully reversible objective view, the second capturing the
fundamentally irreversible subjective view, and the third bridging the two ends by
partial reversibility and proxy randomization.

Contents

Invited Paper

Tools for Quantum and Reversible Circuit Compilation 3
Martin Roetteler

Foundations

Foundations of Generalized Reversible Computing 19
Michael P. Frank

Reversible Nondeterministic Finite Automata . 35
Markus Holzer and Martin Kutrib

Capacitive-Based Adiabatic Logic . 52
Ayrat Galisultanov, Yann Perrin, Hervé Fanet, and Gaël Pillonnet

Implementing Reversible Object-Oriented Language Features
on Reversible Machines . 66

Tue Haulund, Torben Ægidius Mogensen, and Robert Glück

Reversible Circuit Synthesis

Designing Parity Preserving Reversible Circuits . 77
Goutam Paul, Anupam Chattopadhyay, and Chander Chandak

REVS: A Tool for Space-Optimized Reversible Circuit Synthesis 90
Alex Parent, Martin Roetteler, and Krysta M. Svore

Towards VHDL-Based Design of Reversible Circuits
(Work in Progress Report) . 102

Zaid Al-Wardi, Robert Wille, and Rolf Drechsler

Reversible Circuit Optimization

Optimizing the Reversible Circuits Using Complementary
Control Line Transformation . 111

Sai Phaneendra Parlapalli, Chetan Vudadha, and M.B. Srinivas

An ESOP Based Cube Decomposition Technique for Reversible Circuits 127
Sai Phaneendra Parlapalli, Chetan Vudadha, and M.B. Srinivas

http://dx.doi.org/10.1007/978-3-319-59936-6_1
http://dx.doi.org/10.1007/978-3-319-59936-6_2
http://dx.doi.org/10.1007/978-3-319-59936-6_3
http://dx.doi.org/10.1007/978-3-319-59936-6_4
http://dx.doi.org/10.1007/978-3-319-59936-6_5
http://dx.doi.org/10.1007/978-3-319-59936-6_5
http://dx.doi.org/10.1007/978-3-319-59936-6_6
http://dx.doi.org/10.1007/978-3-319-59936-6_7
http://dx.doi.org/10.1007/978-3-319-59936-6_8
http://dx.doi.org/10.1007/978-3-319-59936-6_8
http://dx.doi.org/10.1007/978-3-319-59936-6_9
http://dx.doi.org/10.1007/978-3-319-59936-6_9
http://dx.doi.org/10.1007/978-3-319-59936-6_10

Controlled and Uncontrolled SWAP Gates in Reversible Logic Synthesis. . . . 141
Md Asif Nashiry, Mozammel H.A. Khan, and Jacqueline E. Rice

Testing and Fault Tolerance

A Method to Reduce Resources for Quantum Error Correction 151
Ritajit Majumdar, Saikat Basu, and Susmita Sur-Kolay

Test Pattern Generation Effort Evaluation of Reversible Circuits 162
Abhoy Kole, Robert Wille, Kamalika Datta, and Indranil Sengupta

Automatic Test Pattern Generation for Multiple Missing Gate Faults
in Reversible Circuits (Work in Progress Report) . 176

Anmol Prakash Surhonne, Anupam Chattopadhyay, and Robert Wille

Quantum Circuits

Exact Global Reordering for Nearest Neighbor Quantum
Circuits Using A� . 185

Alwin Zulehner, Stefan Gasser, and Robert Wille

Improved Decomposition of Multiple-Control Ternary Toffoli Gates
Using Muthukrishnan-Stroud Quantum Gates . 202

P. Mercy Nesa Rani, Abhoy Kole, Kamalika Datta,
and Indranil Sengupta

Efficient Construction of QMDDs for Irreversible, Reversible,
and Quantum Functions . 214

Philipp Niemann, Alwin Zulehner, Robert Wille, and Rolf Drechsler

Improving Synthesis of Reversible Circuits: Exploiting Redundancies
in Paths and Nodes of QMDDs. 232

Alwin Zulehner and Robert Wille

Design of Efficient Quantum Circuits Using Nearest Neighbor Constraint
in 2D Architecture . 248

Leniency Marbaniang, Abhoy Kole, Kamalika Datta,
and Indranil Sengupta

Erratum to: Designing Parity Preserving Reversible Circuits E1
Goutam Paul, Anupam Chattopadhyay, and Chander Chandak

Author Index . 255

XII Contents

http://dx.doi.org/10.1007/978-3-319-59936-6_11
http://dx.doi.org/10.1007/978-3-319-59936-6_12
http://dx.doi.org/10.1007/978-3-319-59936-6_13
http://dx.doi.org/10.1007/978-3-319-59936-6_14
http://dx.doi.org/10.1007/978-3-319-59936-6_14
http://dx.doi.org/10.1007/978-3-319-59936-6_15
http://dx.doi.org/10.1007/978-3-319-59936-6_15
http://dx.doi.org/10.1007/978-3-319-59936-6_16
http://dx.doi.org/10.1007/978-3-319-59936-6_16
http://dx.doi.org/10.1007/978-3-319-59936-6_17
http://dx.doi.org/10.1007/978-3-319-59936-6_17
http://dx.doi.org/10.1007/978-3-319-59936-6_18
http://dx.doi.org/10.1007/978-3-319-59936-6_18
http://dx.doi.org/10.1007/978-3-319-59936-6_19
http://dx.doi.org/10.1007/978-3-319-59936-6_19

Invited Paper

Tools for Quantum and Reversible
Circuit Compilation

Martin Roetteler(B)

Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
martinro@microsoft.com

Abstract. We present tools for resource-aware compilation of higher-
level, irreversible programs into lower-level, reversible circuits. Our main
focus is on optimizing the memory footprint of the resulting reversible
networks. We discuss a number of examples to illustrate our compila-
tion strategy for problems at scale, including a reversible implementation
of hash functions such as SHA-256, automatic generation of reversible
integer arithmetic from irreversible descriptions, as well as a test-bench
of Boolean circuits that is used by the classical Circuits and Systems
community. Our main findings are that, when compared with Bennett’s
original “compute-copy-uncompute”, it is possible to reduce the space
complexity by 75% or more, at the price of having an only moderate
increase in circuit size as well as in compilation time. Finally, we discuss
some emerging new paradigms in quantum circuit synthesis, namely the
use of dirty ancillas to save overall memory footprint, probabilistic pro-
tocols such as the RUS framework which can help to reduce the gate
complexity of rotations, and synthesis methods for higher-dimensional
quantum systems.

Keywords: Quantum circuits · Reversible circuits · Quantum program-
ming languages · Pebble games · Dirty ancillas · Repeat-Until-Success
protocols · Ternary systems

1 Introduction

The compilation of quantum algorithms into sequences of instructions that a
quantum computer can execute requires a multi-stage framework. This frame-
work needs to be capable of taking higher level descriptions of quantum programs
and successively breaking them down into lower level net-lists of circuits until
ultimately pulse sequences are obtained that a physical machine can apply. Inde-
pendent of the concrete realization of the compilation method, one of the key
steps is to implement subroutines1 over the given target instruction set. As often
the underlying problem is a classical problem in that the problem specification
involves classical data (such as finding the period of a function or searching an
assignment that satisfies a given Boolean predicate), the question arises how

1 In quantum computing literature, such subroutines are often implementing “oracles”.

c© Springer International Publishing AG 2017
I. Phillips and H. Rahaman (Eds.): RC 2017, LNCS 10301, pp. 3–16, 2017.
DOI: 10.1007/978-3-319-59936-6 1

4 M. Roetteler

such functions can best be implemented on a quantum computer. Examples are
Shor’s algorithm for factoring and the computation of discrete logarithms over
a finite field [38], Grover’s quantum search algorithm [23], quantum walk algo-
rithms [27], the HHL algorithm for solving linear equations [16,25], and quantum
simulation methods [8,9]. The field of reversible computing deals with the latter
problem and investigates such issues as how to minimize the gate count over a
given universal gate set and how to minimize various other resources, such as
the circuit depth, the total number of qubits required, and other metrics.

There are many ramifications to this compilation problem. Some stem from
the choice of programming language to express the tools that perform the trans-
lation. Choices that have been reported in the literature range from C-like lan-
guages such as QCL [32] and Scaffold [26] to functional languages such as Quip-
per [21,22] and LIQUi|〉 [40]. Further choices involve the methods to compile
classical, irreversible programs into quantum circuits and several approaches
have been taken in the literature. One approach is to hide all classical subrou-
tines in libraries and to provide an optimized collection of functions to implement
these. This is the approach taken in several languages and as long as quantum
programming remains a very much circuit-centric endeavor, this approach might
well be appropriate. On the other hand, tools that allow the translation of clas-
sical, irreversible code into, say, networks of Toffoli gates have been developed:
in the Haskell-based Quipper language, there is a monadic bind to lift classical
computation to reversible circuits. In the LIQUi|〉 there is Revs [34], a tool to
perform the task of obtaining reversible networks automatically from a little
language that can be used to express classical programs.

The main idea behind Revs is to improve on Bennett’s [6] method to make
computations reversible: arbitrary computations can be carried out by a compu-
tational device in such a way that in principle each time-step can be reversed by
first performing a forward computation, using only step-wise reversible processes,
then copying out the result, and finally undoing all steps in the forward compu-
tation in reverse order. This solves the reversible embedding problem, albeit at
the cost of very large memory-requirements as the result from each intermediate
process have to be stored. Bennett already pointed out a solution [7] that is
applicable in principle to reduce the memory-overhead by studying time-space
trade-offs for reversible computation. He introduced the notion of reversible peb-
ble games which allow to systematically study ways to save on scratch space at
the expense of recomputing intermediate results. To determine the best pebbling
strategy for the dependency graph imposed by actual real-world programs and
to automate the process of pebbling in general, however, are non-trivial mat-
ters. In the Revs framework, we follow a pragmatic approach: (i) Boolean func-
tions are synthesized directly using various heuristics and optimizations, such as
exclusive-sum-of-products (ESOP) based optimization [15,30], (ii) the compiler
provides different strategies for making irreversible computations reversible: one
is Bennett’s method, another is heuristic that computes data dependencies in
the source program and tries to uncompute data that is no longer needed as
soon as possible.

Tools for Quantum and Reversible Circuit Compilation 5

As a real-world example we consider cryptographic hash-functions such as
SHA-256, which is part of the SHA-2 family [1]. This cipher can be thought of
as a Boolean function f : {0, 1}N → {0, 1}n, where n � N . It has a simple and
straightforward classical program for its evaluation that has no branchings and
only uses simple Boolean functions such as XOR, AND, and bit rotations. How-
ever, it has internal state between rounds. The fact that there is state prevents
the Boolean function from being decomposed, thereby making purely truth-table
or BDD-based synthesis methods useless for this problem.

The basic underlying fault-tolerant architecture and coding scheme deter-
mines the universal gate set, and hence by extension also the synthesis problems
that have to be solved in order to compile high-level, large-scale algorithms
into a sequence of operations that an actual physical quantum computer can
then execute. A gate set that arises frequently and that has been oft studied
in the literature, but by no means the only conceivable gate set, is the so-
called Clifford+T gate set [31]. This gate set consists of the Hadamard gate
H = 1√

2

[
1 1
1 −1

]
, the phase gate P = diag(1, i), and the CNOT gate which

maps (x, y) �→ (x, x ⊕ y) as generators of the Clifford group, along with the
T gate given by T = diag(1, exp(πi/4)). The Clifford+T gate set is known
to be universal [31], i.e., any given target unitary single qubit operation can
be approximated to within ε using sequences of length 4 log2(1/ε) [28,37] and
using an entangling gate such as the controlled NOT gate. Often, only T -gates
are counted as many fault-tolerant implementation of the Clifford+T gate set
at the logical gate level require much more resources [19] for T -gates than for
Clifford gates. We based reversible computations entirely on the Toffoli gate
|x, y, z〉 �→ |x, y, z ⊕ xy〉 which is known to be universal for reversible computing
[31] and which can be implemented exactly over the Clifford+T gate set, see [36]
for T -depth 1 implementation using a total of 7 qubits and [3] for a T -depth 3
realization using a total of 3 qubits.

2 Data Dependency Analysis in Revs

Data dependencies that might be present in a given F# program are modeled in
Revs using a data structure called a mutable data dependency graph (MDD).
This data structure tracks the data flow during a classical, irreversible compu-
tation. MDDs allow to identify parts of the data flow where information can be
overwritten as well as other parts where information can be uncomputed early
as it is no longer needed. These two techniques of overwrite, which are imple-
mented using so-called in-place operations, and early cleanup, for which we use a
strategy that can be interpreted as a particular pebble game played on the nodes
of the data flow graph, constitute the main innovation of the present work. The
cleanup methods described here can be thought of as an analog to garbage col-
lection for quantum architectures. Revs outputs a Toffoli network which then
can directly imported as an internal representation into LIQUi|〉 and be used as
part of another quantum computation.

6 M. Roetteler

Fig. 1. F# program that implements a carry ripple adder using a for-loop and main-
taining a running carry.

Revs is an embedded language into the .NET language F# and as such
inherits some functions and libraries from its host language. Also, the look-
and-feel of a typical Revs program is very similar to that of F# programs. In
fact, it is one of our design goals to provide a language that provides different
interpretations of the same source program, i.e., the same source code can be
compiled into (a) an executable for a given classical architecture such as the
.NET CLR, (b) a Toffoli network, (c) rendered form of output, e.g., pdf or svg,
or (d) an internal representation which can then be simulated efficiently on a
classical computer.

The current implementation of the Revs compiler supports Booleans as
basic types only. The core of the language is a simple imperative language over
Boolean and array (register) types. The language is further extended with ML-
style functional features, namely first-class functions and let definitions, and a
reversible domain-specific construct clean. It should be noted also that Revs was
designed to facilitate interoperability with the quantum programming language
LIQUi|〉 which is also F# based and which provides rich support for expressing
and simulating quantum circuits on classical machines, but which also provides
support for compiling quantum algorithms for target hardware architectures and
abstract quantum computer machine models.

An example Revs program is shown in Fig. 1(a). This example implements
a simple carry ripple adder of two n-bit integers. Shown in (b) is one of the
possible target intermediate representations, namely LIQUi|〉 code.

At a high level, all compilation strategies that are implemented in Revs pro-
ceed start from a classical description of the given function which is then turned
into an abstract syntax tree (AST) by a parser. This level might use libraries and
further optimizations by the F# compiler. The subsequent levels are domain-
specific to the reversible synthesis domain and use the MDD data-structure
presented in [34]. See Fig. 2 for an example. The overall compilation can use pre-
computed libraries, e.g., for reversible arithmetic and other optimized functions.

Tools for Quantum and Reversible Circuit Compilation 7

It should be noted that possibly the overall compilation can fail, namely in case
the given target strategy cannot be implemented using the given upper bound
on the number of available qubits.

3 An Example at Scale: SHA-256

We implemented the round function of SHA-256 which is a hash function as
specified in the FIPS 180-2 publication [1]. Like many other hash functions,
SHA proceeds in a round-like fashion and uses the current state of a finite state
machine, the next incoming data block, and various constants in order to define
the next state of the finite state machine. In the round function of the cipher
32 bit registers A, B, . . . , E are needed. The following Boolean functions are
introduced to describe the round functions:

(a) MDD for h before cleanup (b) MDD for h after eager cleanup

(c) Final resulting Toffoli network implementing the function h.

Fig. 2. Shown in (a) is the mutable data dependency graph (MDD) for the function
h(a, b, c, d) = f(a, b, c)⊕ f(b, c, d) where f(a, b, c) = a‖(b&c). Shown in (b) is the MDD
that results in applying Eager cleanup (as described in [34]) to the MDD in (a). Shown
in (c) is the final circuit that REVS emits based on the MDD in (b). Qubits that are
initially clean are shown as �, qubits that terminate in a clean state are shown as �.
Overall, the circuit uses a total of 7 qubits to compute the function h. This should
be compared with applying the Bennett cleanup which would result in a much larger
number of qubits, namely 11.

8 M. Roetteler

Ch(E,F,G) := (E ∧ F) ⊕ (¬E ∧ G)
Ma(A,B,C) := (A ∧ B) ⊕ (A ∧ C) ⊕ (B ∧ C)

Σ0(A) := (A≫2) ⊕ (A≫13) ⊕ (A≫22)
Σ1(E) := (E ≫6) ⊕ (E ≫11) ⊕ (E ≫25).

For a given round, the values of all these functions is computed and con-
sidered to be 32 bit integers. Further, a constant 32 integer value Ki is
obtained from a table lookup which depends on the number i of the given
round, where i ∈ {0, . . . , 63} and finally the next chunk of the message Wi

is obtained from the message after performing a suitable message expansion
is performed as specified in the standard. Finally, H is replaced according to
H ← H +Ch(E,F,G)+Ma(A,B,C)+Σ0(A)+Σ1(E)+Ki +Wi and then the
cyclic permutation A ← H,B ← A, . . . ,H ← G is performed. The implementa-
tion of the entire round function for a given number of rounds n was presented
in [34] using the Revs high-level language.

To test the performance of the Revs compiler, in [34] we hand-optimized an
implementation of SHA-256. This circuit contains 7 adders (mod 232). Using the
adder from [17] with a Toffoli cost of 2n − 3 this corresponds to 61 Toffoli gates
per adder or 427 per round.

Next, we used Revs to produce Toffoli networks for this cipher, depending
on various increments of the number n of rounds. The circuits typically are too
large to be visualized in printed form, however, an automatically generated .svg
file that the LIQUi|〉 compiler can be navigated by zooming in down to the level
of Toffoli, CNOT, and NOT gates. The resource estimates are summarized in
Table 1. Shown are the resulting circuit sizes, measured by the total number
of Toffoli gates, the resulting total number of qubits, and the time it took to
compile the circuit for various numbers of rounds. All timing data in the table

Table 1. Comparison of different compilation strategies for the cryptographic hash
function SHA-256.

Rnd Bennett Eager Reference

Bits Gates Time Bits Gates Time Bits Gates

1 704 1124 0.254 353 690 0.329 353 683

2 832 2248 0.263 353 1380 0.336 353 1366

3 960 3372 0.282 353 2070 0.342 353 2049

4 1088 4496 0.282 353 2760 0.354 353 2732

5 1216 5620 0.290 353 3450 0.366 353 3415

6 1344 6744 0.304 353 4140 0.378 353 4098

7 1472 7868 0.312 353 4830 0.391 353 4781

8 1600 8992 0.328 353 5520 0.402 353 5464

9 1728 10116 0.334 353 6210 0.413 353 6147

10 1856 11240 0.344 353 6900 0.430 353 6830

Tools for Quantum and Reversible Circuit Compilation 9

are measured in seconds and resulted from running the F# compiler in Visual
Studio 2013 on an Intel i7-3667 @ 2GHz 8 GB RAM under Windows 8.1. The
table shows savings of almost 4X in terms of the total numbers of qubits required
to synthesize the cipher when comparing the simple Bennett cleanup strategy
versus the Eager cleanup strategy. The reason for this is that the Bennett cleanup
methods allocates new space essentially for each gate whereas the Eager cleanup
strategy tries to clean up and reallocate space as soon as possible which for
the round-based nature of the function can be done as soon as the round is
completed.

Besides SHA-256, and other hash functions such as MD5, this technique
has also been applied to SHA-3 [4]. Our findings supports the thesis that it is
possible to trade circuit size (time) for total memory (space) in reversible circuit
synthesis. To the best of our knowledge, Revs is the first compiler that allows
to navigate this trade space and that offers strategies for garbage collection
for quantum architectures that go beyond the simple Bennett strategy which
generally leads to very poor memory utilization as most of the qubits are idle
most of the time.

4 Quantum Computing Software Architecture

Revs is part of a larger framework provided by the LIQUi|〉 software archi-
tecture. LIQUi|〉 is a quantum programming language and a high-performance
simulator for quantum circuits. LIQUi|〉 is an embedded language into F# which
itself is a full .NET language, i.e., F# supports object-oriented, imperative and
functional programming, as well as ease of using reflection and pattern match-
ing which helps with walking complex datastructures. LIQUi|〉 can be obtained
from https://github.com/StationQ/Liquid. Runtimes supported in LIQUi|〉 are
client/server versions, as well as an Azure based cloud service. There are sev-
eral ways in which LIQUi|〉 code can be executed, e.g., from the command line
running the .NET Common Language Runtime, or directly in a Visual Studio
interactive session (particularly useful for script files), or in a normal Visual
Studio development mode.

The Revs compiler can compile classical, irreversible code into functions that
can then be further processed, e.g., by using simulators in LIQUi|〉. An example
are Toffoli networks for specific functions such as the SHA-256 example from
the previous section. These circuits can then be executed by various simulation
backends that are available in LIQUi|〉, e.g., a full functional simulator which can
simulate arbitrary circuits on up to 32 qubits using about 32 GB of memory, or a
special purpose Toffoli simulator which can be used, e.g., to simulate large Toffoli
networks to implement controlled modular multiplication. For the latter see e.g.
[24] where simulation of modular multiplication networks have been reported for
bit sizes up to 8, 192.

https://github.com/StationQ/Liquid

10 M. Roetteler

5 Other Paradigms for Quantum and Reversible
Synthesis

5.1 Using Dirty Ancillas

By dirty ancillas we mean qubits which can be in an unknown state, possibly
entangled with other qubits in an unknown way, but which are available as
scratch space for other computations. There are not many use cases of this
situation and a priori it seems even difficult to imagine any situation where such
a “full quantum memory” could be of use at all as any manipulation that uses
dirty ancillas without restoring them to their state before they were used, will
destroy interferences between computational paths.

So far, we are aware of two specific situations where dirty ancillas help: (i)
the implementation of a multiply controlled NOT operation, see [5] and recent
improvements [2,29]. The second use case is an implementation of a constant
incrementer |x〉 �→ |x + c〉, where c is an integer that is known at compile time
and x an input that can be in superposition. In [24] it was shown that dirty
ancillas help to realize this operation using O(n log n) Toffoli gates and a total
of n qubits which are needed to represent x, along with O(n) dirty ancillas. This
in turn can be used to implement the entire Shor algorithm using almost entirely
Toffoli gates.2

Table 2. Costs associated with various implementations of addition |a〉 �→ |a + c〉 of a
value a by a classical constant c.

Cuccaro et al. [17] Takahashi et al. [39] Draper [18] Häner et al. [24]

Size Θ(n) Θ(n) Θ(n2) Θ(n log n)

Depth Θ(n) Θ(n) Θ(n) Θ(n)

Ancillas n+1 (clean) n (clean) 0 n
2

(dirty)

Mathematically, the underlying idea how to make use of dirty ancillas can be
illustrated in case of an addition “+1” which is an observation due to Gidney [20]:
Using the ancilla-free adder by Takahashi [39], which requires no incoming carry,
and its reverse to perform subtraction, one can perform the following sequence
of operations to achieve an incrementer using n borrowed ancilla qubits in an
unknown initial state |g〉:

|x〉|g〉 �→ |x − g〉|g〉 �→ |x − g〉|g′ − 1〉
�→ |x − g − g′ + 1〉|g′ − 1〉 �→ |x + 1〉|g〉,

2 Indeed, the only non-Toffoli gates in the quantum circuit presented in [24] are single
qubit Hadmard gates, single qubit phase rotations, and single qubit measurements.
The vast majority of other gates in the circuit form one big circuit component which
can be classically simulated and tested.

Tools for Quantum and Reversible Circuit Compilation 11

where g′ denotes the two’s-complement of g and g′ − 1 = g, the bit-wise com-
plement of g. Notice that g + g′ = 0 holds for all g and that the register holding
the dirty qubits |g〉 is returned to its initial state.

Table 2 provides a comparison between different ways to implement addition
on a quantum computer with the last column being the implementation based
on dirty ancillas.

In total, using the standard phase estimation approach to factoring this leads
to an O(n3 log n)-sized implementation of Shor’s algorithm from a Toffoli based
in-place constant-adder, which adds a classically known n-bit constant c to the
n-qubit quantum register |a〉, i.e., which implements |a〉|0〉 �→ |a + c〉 where a is
an arbitrary n-bit input and a+ c is an n-bit output (the final carry is ignored).

5.2 Repeat-Until-Success Circuits

Recently, Paetznick and Svore [33] showed that by using non-deterministic cir-
cuits for decomposition, called Repeat-Until-Success (RUS) circuits, the number
of T gates can be further reduced by a factor of 2.5 on average for axial rotations,
and by a larger factor for non-axial rotations. They emphasized that synthesis
into RUS circuits can lead to a shorter expected circuit length that surpasses
the theoretical lower bound for the length of a purely unitary circuit design.
Leveraging the RUS framework, in [12,13] efficient algorithms were presented to
synthesize a non-deterministic Repeat-Until-Success (RUS) circuits for approx-
imating any given single-qubit unitary. Our algorithm runs in probabilistically
polynomial classical runtime for any desired precision ε. Our methods demon-
strate the power of using ancilla qubits and measurement for quantum circuit
compilation.

The general layout of a RUS protocol is shown in Fig. 3. Consider a unitary
operation U acting on n + m qubits, of which n are target qubits and m are
ancillary qubits. Consider a measurement of the ancilla qubits, such that one
measurement outcome is labeled “success” and all other measurement outcomes
are labeled “failure”. Let the unitary applied to the target qubits upon mea-
surement be V . In the RUS protocol, the circuit in the dashed box is repeated
on the (n + m)-qubit state until the “success” measurement is observed. Each
time a “failure” measurement is observed, an appropriate Clifford operator W †

i

is applied in order to revert the state of the target qubits to their original input
state |ψ〉. The number of repetitions of the circuit is finite with probability 1.

|0〉 /m

U

|0〉 /m

U
|ψ〉 /n {W †

i } . . . V |ψ〉

Fig. 3. Repeat-Until-Success (RUS) protocol to implement a unitary V .

12 M. Roetteler

In [12,13] efficient algorithms were given to synthesize RUS protocols and
so-called fallback protocols which also allow to implement unitary gates using
probabilistic circuits. The inputs to the synthesis algorithms are the given uni-
tary U , typically assumed to be a Z-rotation, and a target accuracy ε. Under
mild number-theoretic conjectures, the complexity of the compilation method is
in Õ(log(1/ε)) and the length of the output, i.e., a sequence of H and T gates that
ε-approximates U , scales as (1+δ) log2(1/ε), where δ can be made arbitrary close
to 0. These results demonstrate the power of using ancilla qubits and measure-
ment for quantum circuit compilation as the currently best known deterministic
schemes lead to lengths of the resulting circuits that scale as c log2(1/ε), where
3 ≤ c ≤ 4, with the actual choice of c depending on various computational and
number-theoretic assumptions. See [12,13,28,35,37] for further reading about
single qubit unitary decomposition methods. Figure 4 conveys the basic intuition
behind RUS based methods: by allowing measurement and, if needed, repetition,
it is possible to achieve a much higher density of rotations that can effectively
be addressed.

)b()a(

Fig. 4. Comparing approximations of z-rotations by (a) unitary 〈H, T 〉 circuits of T -
depth at most 8 and (b) RUS protocols with a comparable expected T -depth of at most
7.5. In (a) only 40 circuits are close to any z-rotation (dark red points separated by
the outer arc), illustrating a higher density of RUS protocols. In the asymptotic limit
for T -depth this ratio tends to 3. (Color figure online)

5.3 Higher-Dimensional Alphabets

It turns out that some fault-tolerant scalable quantum computing schemes under-
line the importance to work with higher-dimensional alphabets to encode quan-
tum information. In particular, a ternary quantum framework recently emerged
from proposals for a metaplectic topological quantum computer (MTQC) which
offers native topological protection of quantum information. MTQC creates an
inherently ternary quantum computing environment; for example the common
binary CNOT gate is no longer a Clifford gate in that environment.

Tools for Quantum and Reversible Circuit Compilation 13

In [11], compilation and synthesis methods for ternary circuits were developed
for 2 different elementary gate sets: the so-called Clifford+R|2〉 basis [10] and the
Clifford+P9 basis [11], where R|2〉 and P9 are both non-Clifford single qutrit gate
defined as R|2〉 = diag(1, 1,−1) and P9 = diag(e−2π i/9, 1, e2π i/9).

The Clifford+R|2〉 basis, also called metaplectic basis, was obtained from
a MTQC by braiding of certain metaplectic non-abelian anyons and projec-
tive measurement. The gate R|2〉 is produced by injection of the magic state
|ψ〉 = |0〉 − |1〉 + |2〉. The injection circuit is coherent probabilistic, succeeds in
three iterations on average and consumes three copies of the magic state |ψ〉
on average. The |ψ〉 state is produced by a relatively inexpensive protocol that
uses topological measurement and consequent intra-qutrit projection. This pro-
tocol requires only three qutrits and produces an exact copy of |ψ〉 in 9/4 trials
on average. This is much better than any state distillation method, especially
because it produces |ψ〉 with fidelity 1. In [10] effective compilation methods
for Clifford+R|2〉 were developed to compile efficient circuits in the metaplectic
basis. In particular, given an arbitrary two-level Householder reflection r and a
precision ε, then r is effectively approximated by a metaplectic circuit of R|2〉-
count at most C log3(1/ε) + O(log(log(1/ε))), C ≤ 8.

The Clifford+P9 basis is a natural generalization of the binary π/8 gate. The
P9 gate can be realized by a certain deterministic measurement-assisted circuit
given a copy of the magic state μ = e−2π i/9|0〉 + |1〉 + e2π i/9|2〉, which further
can be obtained from the usual magic state distillation protocol. Specifically, it
requires O(log3(1/δ)) raw magic states of low fixed fidelity in order to distill
a copy of the magic state μ at fidelity 1 − δ. The paper [11] developed a novel
approach to synthesis of reversible ternary classical circuits over the Clifford+P9

basis. We have synthesized explicit circuits to express classical reflections and
other important classical non-Clifford gates in this basis, which we subsequently
used to build efficient ternary implementations of integer adders and their
extensions.

In [14] further optimizations were given under the assumption of binary-
encoded data and applied the resulting solutions to emulating of the modular
exponentiation period finding (which is the quantum part of the Shor’s inte-
ger factorization algorithm). We have performed the comparative cost analysis
of optimized solutions between the “generic” Clifford+P9 architecture and the
MTQC architecture (the Clifford+R|2〉) using magic state counts as the cost
measure. We have shown that the cost of emulating the entire binary circuit for
the period finding is almost directly proportional to the cost of emulating the
three-qubit Toffoli gate and the latter is proportional to the cost of the P9 gate.

6 Conclusions

We presented Revs, a compiler and programming language that allows to auto-
mate the translation of classical, irreversible programs into reversible programs.
This language does not constrain the programmer to think in a circuit-centric
way. In some cases (e.g., hash functions such as SHA-256) the savings of our

14 M. Roetteler

method over Bennett-style approaches can even be unbounded. We navigate the
PSPACE completeness of finding the optimal pebble game by invoking heuristic
strategies that identify parts of the program that are mutable which then can
be implemented via in-place operations. In order to manage the arising data
dependencies, we introduced MDD graphs which capture data dependencies as
well as data mutation. Using an example benchmark suite compiled from clas-
sical circuits and systems community, we show that the method can be applied
for medium to large scale problems. We also showed that hash functions such as
SHA-256 can be compiled into space-optimized reversible circuits.

Also, we highlighted that there are paradigms that break out of the usual frame-
work considered in quantum circuit synthesis: we highlighted that there are con-
crete case in which the presence of qubits helps, even if they have already been used
and are entangled with the rest of the quantum computer’s memory. Using such
dirty ancillas, it is possible to reduce circuit sizes e.g. for constant incrementers.
Next, discussed the power of using probabilistic protocols to implement unitaries,
which helps to bring down circuit sizes by a constant factor. In a concrete case,
probabilistic protocols such as RUS or fallback schemes help to reduce the cost for
single qubit axial rotations from 4 log2(1/ε) to log2(1/ε). Finally, we mentioned
that in some physical systems, ternary alphabets arise very naturally from the way
universal operations are performed. We mentioned two such gate sets and gave
pointers to method for synthesizing into these gate sets.

References

1. Federal information processing standards publication 180–2, 2002. See also the
Wikipedia entry. http://en.wikipedia.org/wiki/SHA-2

2. Abdessaied, N., Amy, M., Drechsler, R., Soeken, M.: Complexity of reversible cir-
cuits and their quantum implementations. Theor. Comput. Sci. 618, 85–106 (2016)

3. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm
for fast synthesis of depth-optimal quantum circuits. IEEE Trans. Comput. Aided
Des. Integr. Circ. Syst. 32(6), 818–830 (2013)

4. Amy, M., Di Matteo, O., Gheorghiu, V., Mosca, M., Parent, A., Schanck, J.M.:
Estimating the cost of generic quantum pre-image attacks on SHA-2 and SHA-3.
IACR Cryptol. ePrint Arch. 2016, 992 (2016)

5. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P.,
Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computa-
tion. Phys. Rev. A 52(5), 3457 (1995)

6. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532
(1973)

7. Bennett, C.H.: Time/space trade-offs for reversible computation. SIAM J. Comput.
18, 766–776 (1989)

8. Berry, D.W., Childs, A.M., Cleve, R., Kothari, R., Somma, R.D.: Exponential
improvement in precision for simulating sparse hamiltonians. In: Symposium on
Theory of Computing (STOC 2014), pp. 283–292 (2014)

9. Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly opti-
mal dependence on all parameters. In: IEEE 56th Annual Symposium on Founda-
tions of Computer Science (FOCS), pp. 792–809 (2015)

http://en.wikipedia.org/wiki/SHA-2

Tools for Quantum and Reversible Circuit Compilation 15

10. Bocharov, A., Cui, S.X., Kliuchnikov, V., Wang, Z.: Efficient topological compila-
tion for weakly-integral anyon model. Phys. Rev. A 93, 012313 (2016)

11. Bocharov, A., Cui, S.X., Roetteler, M., Svore, K.M.: Improved quantum ternary
arithmetics. Quantum Inf. Comput. 16(9&10), 862–884. arXiv preprint (2016).
arXiv:1512.03824

12. Bocharov, A., Roetteler, M., Svore, K.M.: Efficient synthesis of probabilistic quan-
tum circuits with fallback. Phys. Rev. A 91, 052317 (2015)

13. Bocharov, A., Roetteler, M., Svore, K.M.: Efficient synthesis of universal repeat-
until-success circuits. Phys. Rev. Lett. 114, 080502. arXiv preprint (2015).
arXiv:1404.5320

14. Bocharov, A., Roetteler, M., Svore, K.M.: Factoring with qutrits: Shor’s algo-
rithm on ternary and metaplectic quantum architectures. arXiv preprint (2016).
arXiv:1605.02756

15. Chrzanowska-Jeske, M., Mishchenko, A., Perkowski, M.A.: Generalized inclusive
forms - new canonical reed-muller forms including minimum esops. VLSI Des.
2002(1), 13–21 (2002)

16. Clader, B.D., Jacobs, B.C., Sprouse, C.R.: Preconditioned quantum linear system
algorithm. Phys. Rev. Lett. 110, 250504 (2013)

17. Cuccaro, S.A., Draper, T.G., Kutin, S.A., Moulton, D.P.: A new quantum ripple-
carry addition circuit. arXiv preprint (2004). arXiv:quant-ph/0410184

18. Draper, T.G.: Addition on a quantum computer. arXiv preprint (2000).
arXiv:quant-ph/0008033

19. Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface codes:
towards practical large-scale quantum computation. Phys. Rev. A 86, 032324
(2012). arXiv:1208.0928

20. Gidney, C.: StackExchange: creating bigger controlled nots from single qubit, tof-
foli, and CNOT gates, without workspace (2015)

21. Green, A.S., Lumsdaine, P.L.F., Ross, N.J., Selinger, P., Valiron, B.: An introduc-
tion to quantum programming in quipper. In: Dueck, G.W., Miller, D.M. (eds.)
RC 2013. LNCS, vol. 7948, pp. 110–124. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38986-3 10

22. Green, A.S., Lumsdaine, P.L., Ross, N.J., Selinger, P., Valiron, B.: Quipper: a
scalable quantum programming language. In: Proceedings of Conference on Pro-
gramming Language Design and Implementation (PLDI 2013). ACM (2013)

23. Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceed-
ings of the Symposium on Theory of Computing (STOC 1996), pp. 212–219. ACM
Press (1996)

24. Häner, T., Roetteler, M., Svore, K.M. Factoring using 2n+2 qubits with Toffoli
based modular multiplication. arXiv preprint (2016). arXiv:1611.07995

25. Aram, W., Harrow, A.H., Lloyd, S.: Quantum algorithm for linear systems of
equations. Phys. Rev. Lett. 103(15), 150502 (2009)

26. Heckey, J., Patil, S., JavadiAbhari, A., Holmes, A., Kudrow, D., Brown, K.R.,
Franklin, D., Chong, F.T., Martonosi, M.: Compiler management of communica-
tion and parallelism for quantum computation. In: Proceedings of the Twentieth
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS 2015), pp. 445–456. ACM (2015)

27. Kempe, J.: Quantum random walks - an introductory overview. Contemporary
Phys. 44(4), 307–327 (2003)

28. Kliuchnikov, V., Maslov, D., Mosca, M.: Practical approximation of single-qubit
unitaries by single-qubit quantum Clifford and T circuits. IEEE Trans. Comput.
65(1), 161–172 (2016)

http://arxiv.org/abs/1512.03824
http://arxiv.org/abs/1404.5320
http://arxiv.org/abs/1605.02756
http://arxiv.org/abs/quant-ph/0410184
http://arxiv.org/abs/quant-ph/0008033
http://arxiv.org/abs/1208.0928
http://dx.doi.org/10.1007/978-3-642-38986-3_10
http://dx.doi.org/10.1007/978-3-642-38986-3_10
http://arxiv.org/abs/1611.07995

16 M. Roetteler

29. Maslov, D.: On the advantages of using relative phase Toffolis with an application
to multiple control Toffoli optimization. Phys. Rev. A 93, 022311 (2016)

30. Mishchenko, A., Brayton, R.K., Chatterjee, S.: Boolean factoring and decomposi-
tion of logic networks. In: Proceedings of the IEEE/ACM International Conference
on Computer-Aided Design, pp. 38–44. IEEE Press (2008)

31. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2000)

32. Oemer, B.: Classical concepts in quantum programming. Int. J. Theor. Phys. 44(7),
943–955 (2005)

33. Paetznick, A., Svore, K.M.: Repeat-until-success: non-deterministic decomposition
of single-qubit unitaries. Quantum Inf. Comput. 4(15&16), 1277–1301 (2014)

34. Parent, A., Roetteler, M., Svore, K.M.: Reversible circuit compilation with space
constraints. arXiv preprint (2015). arXiv:1510.00377

35. Ross, N.J., Selinger, P.: Optimal ancilla-free Clifford+T approximation of
z-rotations. arXiv preprint (2014). arXiv:403.2975

36. Selinger, P.: Quantum circuits of T -depth one. Phys. Rev. A 87, 042302 (2013)
37. Selinger, P.: Efficient Clifford+T approximation of single-qubit operators. Quan-

tum Inf. Comput. 15(1–2), 159–180 (2015)
38. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-

rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)
39. Takahashi, Y., Tani, S., Kunihiro, N.: Quantum addition circuits, unbounded fan-

out. arXiv preprint (2009). arXiv:0910.2530
40. Wecker, D., Svore, K.M.: LIQ Ui|〉: a software design architecture and domain-

specific language for quantum computing. arXiv preprint arXiv:1402.4467

http://arxiv.org/abs/1510.00377
http://arxiv.org/abs/403.2975
http://arxiv.org/abs/0910.2530
http://arxiv.org/abs/1402.4467

Foundations

Foundations of Generalized
Reversible Computing

Michael P. Frank(B)

Center for Computing Research, Sandia National Laboratories,
P.O. Box 5800, Mail Stop 1322, Albuquerque, NM 87185, USA

mpfrank@sandia.gov

http://www.cs.sandia.gov/cr-mpfrank

Abstract. Information loss from a computation implies energy dissipa-
tion due to Landauer’s Principle. Thus, increasing the amount of useful
computational work that can be accomplished within a given energy bud-
get will eventually require increasing the degree to which our computing
technologies avoid information loss, i.e., are logically reversible. But the
traditional definition of logical reversibility is actually more restrictive
than is necessary to avoid information loss and energy dissipation due to
Landauer’s Principle. As a result, the operations that have traditionally
been viewed as the atomic elements of reversible logic, such as Toffoli
gates, are not really the simplest primitives that one can use for the
design of reversible hardware. Arguably, a complete theoretical frame-
work for reversible computing should provide a more general, parsimo-
nious foundation for practical engineering. To this end, we use a rigorous
quantitative formulation of Landauer’s Principle to develop the theory
of Generalized Reversible Computing (GRC), which precisely character-
izes the minimum requirements for a computation to avoid information
loss and the consequent energy dissipation, showing that a much broader
range of computations are, in fact, reversible than is acknowledged by
traditional reversible computing theory. This paper summarizes the foun-
dations of GRC theory and briefly presents a few of its applications.

Keywords: Landauer’s Principle · Foundations of reversible comput-
ing · Logical reversibility · Reversible logic models · Reversible hardware
design · Conditional reversibility · Generalized reversible computing

1 Introduction

As we approach the end of the semiconductor roadmap [1], there is a growing
realization that new computing paradigms will be required to continue improving

M.P. Frank—This work was supported by the Laboratory Directed Research and
Development program at Sandia National Laboratories, and by the Advanced Sim-
ulation and Computing program under the U.S. Department of Energy’s National
Nuclear Security Administration (NNSA). Sandia National Laboratories is a multi-
program laboratory managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for NNSA under contract DE-AC04-
94AL85000. Approved for unclassified unlimited release SAND2017-3513 C.

c© Springer International Publishing AG 2017
I. Phillips and H. Rahaman (Eds.): RC 2017, LNCS 10301, pp. 19–34, 2017.
DOI: 10.1007/978-3-319-59936-6 2

20 M.P. Frank

the energy efficiency (and thus, cost efficiency) of computing technology beyond
the expected final CMOS node, when signal energies will reach a minimum prac-
tical level due to thermal noise and architectural overheads.1 Sustained progress
thus requires recovering and reusing signal energies with efficiency approach-
ing 100%, which implies we must carry out logically reversible transformations
of the local digital state, due to Landauer’s Principle [2], which tells us that
performing computational operations that are irreversible (i.e., that lose infor-
mation) necessarily generates entropy, and results in energy dissipation. Thus,
it’s essential for the designers of future computing technologies to clearly and
correctly understand the meaning of and rationale for Landauer’s Principle, and
the consequent requirements, at the logical level, for computational operations to
be reversible—meaning, both not information-losing, and also capable of being
physically carried out in an asymptotically thermodynamically reversible way.

Although Landauer’s Principle is valid, his original definition of what it
meant for a computation to be “logically reversible” was not general enough
to encompass all of the abstract logical structures that a computation can have
while still avoiding information loss and being able to be carried out via (asymp-
totically) thermodynamically reversible physical processes. It turns out that a
much larger set of computational operations can be reversible at the logical level
than Landauer’s traditional definition of logical reversibility acknowledges, which
opens up many possibilities for engineering reversible devices and circuits that
could never have been understood using the traditional definition, although some
of those opportunities were discovered anyway by the designers of historical con-
cepts for hardware implementation of reversible computing, such as Drexler’s
rod logic ([3], Chap. 12) and Younis and Knight’s charge recovery logic [4].

Yet, there remains today a widespread disconnect between standard
reversible computing theory and the engineering principles required for the
design of efficient reversible hardware. This disconnect has contributed to an
ongoing debate (e.g., [5]) regarding the question of whether logical reversibility
is really required for physical reversibility. Indeed it is, but not if the stan-
dard definition of logical reversibility is used. A useful response from the theory
side would be to update the standard definition of logical reversibility to reflect
the exact logical-level requirements for physical reversibility. Upon that firmer
foundation, we can construct a more general theoretical model for reversible
computing, which can then help bridge the historical disconnect between theory
and engineering in this field. It is the goal of this paper to develop such a model
from first principles, and show exactly why it is necessary and useful.

The rest of this paper is structured as follows. In Sect. 2, we review some
physical foundations and derive a general formulation of Landauer’s Princi-
ple, which we then use in Sect. 3 as the basis for systematically reconstructing
reversible computing theory to produce a new theoretical framework that we call

1 Per [1], minimum gate energies are expected to bottom out at around the 40–80 kBT
(1–2 eV) level (where kB is Boltzmann’s constant, and T is operating temperature);
while typical total CV 2 node energies (where C is node capacitance, and V is logic
swing voltage) may level off at a corresponding higher range of 1–2 keV.

Foundations of Generalized Reversible Computing 21

Generalized Reversible Computing (GRC), which formalizes the essential but
often-overlooked concept of conditional reversibility (previously mentioned in
[6]). In Sect. 4, we present a few examples of conditionally-reversible opera-
tions that are useful building blocks for reversible hardware design, and are
straightforwardly physically implementable. Section 5 briefly discusses why GRC
is the appropriate model for asymptotically thermodynamically reversible hard-
ware such as adiabatic switching circuits. Section 6 contrasts GRC’s concept of
conditional reversibility with existing concepts of conditions for correctness of
reversible computations. Section 7 concludes with an outline of directions for
future work.

The present version of this paper has been limited to a summary of results,
omitting the proofs, due to conference page limits. A longer, more comprehensive
version will be published as a journal article at a later time.

2 Formulating Landauer’s Principle

Landauer’s Principle is essentially the observation that the loss of information
from a computation corresponds to an increase in physical entropy, implying a
certain associated dissipation of energy to heat in the environment. But, articu-
lating the meaning of and justification for the Principle in a more detailed way
will help clarify what information loss really means, and under what conditions,
precisely, information is lost in the course of carrying out a given computation.

As is standard in modern physics, we assume that any finite, closed physical
system has only some finite number N of distinguishable physical states, thus a
maximum entropy S̄ = kB ln N . In quantum theory, N is also the dimensionality
of the system’s Hilbert space, i.e., the cardinality of any basis set of orthogonal
(distinguishable) state vectors that spans the space of all possible quantum states
of the system. Let Σ denote any such maximal set of distinguishable states; we
call this a physical state space for the system.

Furthermore, modern physics requires that the physical dynamics relating
states at any time t ∈ R to the states that they may evolve to (or from) at
any later (resp. earlier) time t + Δt ∈ R is a bijective (one-to-one and onto)
functional relation. In quantum physics, this bijective dynamics is given by the
unitary time-evolution operator U(Δt) = e−iHΔt/�, where H is the system’s
Hamiltonian operator (its total-energy observable).2 Thus, physics is bijective,
in the above sense, implying that it is deterministic (meaning, the present state
determines the future) and reversible (the present determines the past).

Note that if fundamental physics were irreversible, then the Second Law of
Thermodynamics (which states that the change in entropy over time is non-
negative, ΔS ≥ 0) would be false, because two distinguishable states each with
nonzero probability could merge, combining their probabilities, and reducing
their contribution to the total entropy. Thus, the reversibility of fundamental
physics follows from the empirically-observed validity of the Second Law.
2 Although quantum physics does not yet incorporate a description of gravity, it’s

expected that even a full theory of quantum gravity would still exhibit unitarity.

22 M.P. Frank

In any event, if one accepts the bijectivity of dynamical evolution as a truism
of mathematical physics, then, as we will see, the validity of Landauer’s Principle
follows rigorously from it, as a theorem.

Given a physical state space Σ, a computational subspace C of Σ can be
identified with a partition of the set Σ. We say that a physical system Π is in
computational state cj ∈ C whenever there is an si ∈ cj such that the physical
state of the system is not reliably distinguishable from si. In other words, a
computational state cj is just an equivalence class of physical states that can be
considered equivalent to each other, in terms of the computational information
that we are intending them to represent. We assume that we can also identify
an appropriate computational subspace C(Δt) that is a partition of the evolved
physical state space Σ(Δt) at any past or future time t0 + Δt ∈ R.

Consider, now, any initial-state probability distribution p0 over the complete
state space Σ = Σ(0) at time t = t0. This then clearly induces an implied initial
probability distribution PI over the computational states at time t0 as well:

PI(cj) =
|cj |∑

k=1

p0(sj,k), (1)

where sj,k denotes the kth physical state in computational state cj ∈ C.
For probability distributions p and P over physical and computational states,

we can define corresponding entropy measures. Given any probability distribu-
tion p over a physical state space Σ, the physical entropy S(p) is defined by

S(p) =
N=|Σ|∑

i=1

p(si) log
1

p(si)
, (2)

where the logarithm can be considered to be an indefinite logarithm, dimensioned
in generic logarithmic units.

The bijectivity of physical dynamics then implies the following theorem:

Theorem 1 Conservation of entropy. The physical entropy of any closed
system, as determined for any initial state distribution p0, is exactly conserved
over time. I.e., if the physical entropy of an initial-state distribution p0(si) at
time t0 is S(0), and we evolve that system over an elapsed time Δt ∈ R according
to its bijective dynamics, the physical entropy S(Δt) of its final-state probability
distribution pΔt at time t0 + Δt will be the exact same value, S(Δt) = S(0).

Theorem 1 takes an ideal, theoretical perspective. In practice, entropy from
any real observer’s perspective increases, because the observer does not have
exact knowledge of the dynamics, or the capability to track it exactly. But in
principle, the ideal perspective with constant entropy still always exists.

We can also define the entropy of the computational state. Given any proba-
bility distribution P over a computational state space C, the information entropy
or computational entropy H(P) is defined by:

H(P) =
|C|∑

j=1

P (cj) log
1

P (cj)
, (3)

Foundations of Generalized Reversible Computing 23

which, like S(p), is dimensioned in arbitrary logarithmic units.
Finally, we define the non-computational entropy as the remainder of the

total physical entropy, other than the computational part; Snc = S − H ≥ 0.
This is the expected physical entropy conditioned on the computational state.

The above definitions let us derive Landauer’s Principle, in its most general,
quantitative form, as well as another form frequently seen in the literature.

Theorem 2 Launder’s Principle (general formulation). If the computa-
tional state of a system at initial time t0 has entropy HI = H(PI), and we allow
that system to evolve, according to its physical dynamics, to some other “final”
time t0 + Δt, at which its computational entropy becomes HF = H(PF) where
PF = P (Δt) is the induced probability distribution over the computational state
set C(Δt) at time t0 + Δt, then the non-computational entropy is increased by

ΔSnc = HI − HF. (4)

Conventional digital devices are typically designed to locally reduce com-
putational entropy, e.g., by erasing or destructively overwriting “unknown” old
bits obliviously, i.e., ignoring any independent knowledge of their previous value.
Thus, typical device operations necessarily eject entropy into the non-computa-
tional form, and so, over time, non-computational entropy typically accumulates
in the system, manifesting as heating. But, systems cannot tolerate indefinite
entropy build-up without overheating. So, the entropy must ultimately be moved
out to some external environment at some temperature T , which involves the
dissipation of energy ΔEdiss = TΔSnc to the form of heat in that environment,
by the definition of thermodynamic temperature. From Theorem 2 together with
these facts and the logarithmic identity 1 bit = (1 nat)/ log2 e = kB ln 2 follows
the more commonly-seen statement of Landauer’s Principle:

Corollary 1 Launder’s Principle (common form). For each bit’s worth
of computational information that is lost within a computer (e.g., by obliviously
erasing or destructively overwriting it), an amount of energy

ΔEdiss = kBT ln 2 (5)

must eventually be dissipated to the form of heat added to some environment
at temperature T .

3 Reformulating Reversible Computing Theory

We now carefully analyze the implications of the general Landauer’s Principle
(Theorem 2) for computation, and reformulate reversible computing theory on
that basis. We begin by redeveloping the foundations of the traditional the-
ory of unconditionally logically-reversible operations, using a language that we
subsequently build upon to develop the generalized theory.

For our purposes, a computational device D will simply be any physical
artifact that is capable of carrying out one or more different computational oper-
ations, by which the physical and computational state spaces Σ,C associated

24 M.P. Frank

with D’s local state are transformed. If D has an associated local computational
state space CI = {cI1, ..., cIm} at some initial time t0, a computational operation
O on D that is applicable at t0 is specified by giving a probabilistic transition
rule, i.e., a stochastic map from the initial computational state at t0 to the final
computational state at some later time t0 + Δt (with Δt > 0) by which the
operation will have been completed. Let the computational state space at this
later time be CF = {cF1, ..., cFn}. Then, the operation O : CI → P(CF) is a
map from CI to probability distributions over CF; which is characterizable, in
terms of random variables cI, cF for the initial and final computational states,
by a conditional probabilistic transition rule

ri(j) = Pr(cF = cFj |cI = cIi) = [O(cIi)](cFj), (6)

where i ∈ {1, ...,m} and j ∈ {1, ..., n}. That is, ri(j) denotes the conditional
probability that the final computational state is cFj , given that the initial com-
putational state is cIi.

A computational operation O will be called deterministic if and only if all of
the probability distributions ri are single-valued. I.e., for each possible value of
the initial-state index i ∈ {1, ...,m}, there is exactly one corresponding value of
the final-state index j such that ri(j) > 0, and thus, for this value of j, it must
be the case that ri(j) = 1, while ri(k) = 0 for all other k �= j. If an operation O
is not deterministic, we call it nondeterministic.3 For a deterministic operation
O, we can write O(cIi) to denote the unique cFj such that ri(j) = 1, that is,
treating O as a simple transition function rather than a stochastic one.

A computational operation O will be called (unconditionally logically)
reversible if and only if all of the probability distributions ri have non-
overlapping nonzero ranges. In other words, for each possible value of the final-
state index j ∈ {1, ..., n}, there is at most one corresponding value of the initial-
state index i such that ri(j) > 0, while rk(j) = 0 for all other k �= i. If an
operation O is not reversible, we call it irreversible.

For a computational operation O with an initial computational state space
CI, a (statistical) operating context for that operation is any probability distri-
bution PI over the initial computational states; for any i ∈ {1, ...,m}, the value
of PI(cIi) gives the probability that the initial computational state is cIi.

A computational operation O will be called (potentially) entropy-ejecting if
and only if there is some operating context PI such that, when the operation
O is applied within that context, the increase ΔSnc in the non-computational
entropy required by Landauer’s Principle is greater than zero. If an operation O
is not potentially entropy-ejecting, we call it non-entropy-ejecting.

3 Note that this is a different sense of the word “nondeterministic” than is commonly
used in computational complexity theory, when referring to, for example, nondeter-
ministic Turing machines, which conceptually evaluate all of their possible future
computational trajectories in parallel. Here, when we use the word “nondeterminis-
tic,” we mean it simply in the physicist’s sense, to refer to randomizing or stochastic
operations; i.e., those whose result is uncertain.

Foundations of Generalized Reversible Computing 25

Now, we can derive Landauer’s original result stating that only operations
that are logically reversible (in his sense) can always avoid ejecting entropy from
the computational state (independently of the operating context).

Theorem 3 Fundamental Theorem of Traditional Reversible Comput-
ing. Non-entropy-ejecting deterministic operations must be reversible. That is, if
a given deterministic computational operation O is non-entropy-ejecting, then it
is reversible in the sense defined above (its transition relation is injective).

The proof of the theorem involves showing that entropy is ejected when
states with nonzero probability are merged by an operation. However, when
states having zero probability are merged with other states, there is no increase
in entropy. This is the key realization that sets us up to develop GRC.

To do this, we define a notion of a computation that fixes a specific sta-
tistical operating context for a computational operation, and then we examine
the detailed requirements for a given computation to be non-entropy-ejecting.
This leads to the concept of conditional reversibility , which is the most general
concept of logical reversibility, and provides the appropriate foundation for GRC.

For us, a computation C = (O,PI) performed by a device D is defined by
specifying both a computational operation O to be carried out by that device, and
a specific operating context PI under which the operation O is to be performed.

A computation C = (O,PI) is called (specifically) entropy-ejecting if and
only if, when the operation O is applied within the specific operating context
PI, the increase ΔSnc in the non-computational entropy required by Landauer’s
Principle is greater than zero. If C is not specifically entropy-ejecting, we call it
non-entropy-ejecting.

A deterministic computational operation O is called conditionally reversible
if and only if there is a non-empty subset A ⊆ CI of initial computational states
(the assumed set or assumed precondition) that O’s transition rule maps onto
an equal-sized set B ⊆ CF of final states. That is, each cIi ∈ A maps, one to one,
to a unique cFj ∈ B where ri(j) = 1. We say that B is the image of A under O.
We also say that O is (conditionally) reversible under the precondition (that the
initial state is in) A.

It turns out that all deterministic computational operations are, in fact,
conditionally reversible, under some sufficiently-restrictive preconditions.

Theorem 4 Conditional reversibility of all deterministic operations.
All deterministic computational operations are conditionally reversible.

A trivial proof of Theorem4 involves considering precondition sets A that
are singletons. However, deterministic operations with any number k > 1 of
reachable final computational states are also conditionally reversible under at
least one precondition set A of size k.

Whenever we wish to fix a specific assumed precondition A for the reversibil-
ity of a conditionally-reversible operation O, we use the following concept:

Let O be any conditionally-reversible computational operation, and let A be
any one of the preconditions under which O is reversible. Then the conditioned

26 M.P. Frank

reversible operation OA = (O,A) denotes the concept of performing operation
O in the context of a requirement that precondition A is satisfied.

Restricting the set of initial states that may have nonzero probability to a
specific proper subset A ⊂ CI represents a change to the semantics of an opera-
tion, so generally, a conditioned reversible version of an arbitrary deterministic
operation is, in effect, not exactly the same operation. But we will see that
arbitrary computations can still be composed out of these restricted operations.

The central result of GRC theory (Theorem 5, below) is then that a deter-
ministic computation C = (O,PI) is specifically non-entropy-ejecting, and there-
fore avoids any requirement under Landauer’s Principle to dissipate any energy
ΔEdiss > 0 to its thermal environment, if and only if its operating context PI

assigns total probability 1 to some precondition A under which its computa-
tional operation O is reversible. Moreover (Theorem 6), even if the probability
of satisfying some such precondition only approaches 1, this is sufficient for the
entropy ejected (and energy dissipation required) to approach zero.

Theorem 5 Fundamental Theorem of Generalized Reversible Comput-
ing. Any deterministic computation is non-entropy-ejecting if and only if at least
one of its preconditions for reversibility is satisfied. I.e., let C = (O,PI) be any
deterministic computation (i.e., any computation whose operation O is deter-
ministic). Then, part (a): If there is some precondition A under which O is
reversible, such that A is satisfied with certainty in the operating context PI,
then C is a non-entropy-ejecting computation. And, part (b): Alternatively, if no
such precondition A is satisfied with certainty, then C is entropy-ejecting.

Theorem 6 Entropy ejection vanishes as precondition certainty appro-
aches unity. Let O be any deterministic operation, and let A be any precondi-
tion under which O is reversible, and let PI1, PI2, ... be any sequence of operation
contexts for O within which the total probability mass assigned to A approaches
1. Then, in the corresponding sequence of computations, the entropy ejected
ΔSnc also approaches 0.

A numerical example illustrating how the ΔSnc calculation comes out in a
specific case where the probability of violating the precondition for reversibility
is small can be found in [7].

It’s important to note that in order for real hardware devices to apply The-
orems 5 and 6 to avoid or reduce energy dissipation in practice, the device must
be designed with implicit knowledge of not only what conditionally-reversible
operation it should perform, but also which specific one of the preconditions for
that operation’s reversibility it should assume is satisfied.

As we saw in Theorem 4, any deterministic computational operation O is con-
ditionally reversible with respect to any given one A of its suitable preconditions
for reversibility. For any computation C = (O,PI) that satisfies the conditions
for reversibility of the conditioned reversible operation OA with certainty, we
can undo the effect of that computation exactly by applying any conditioned
reversible operation that is what we call a reversal of OA. The reversal of a
conditioned reversible operation is simply an operation that maps the image of

Foundations of Generalized Reversible Computing 27

the assumed set back onto the assumed set itself in a way that exactly inverts
the original forward map.

The above framework can also be extended to work with nondeterministic
computations. In fact, adding nondeterminism to an operation only makes it
easier to avoid ejecting entropy to the non-computational state, since nondeter-
minism tends to increase the computational entropy, and thus tends to reduce
the non-computational entropy. As a result, a nondeterministic operation can
be non-entropy-ejecting (or even entropy-absorbing, i.e., with ΔSnc < 0) even
in computations where none of its preconditions for reversibility are satisfied,
so long as the reduction in computational entropy caused by its irreversibility is
compensated for by an equal or greater increase in computational entropy caused
by its nondeterminism. However, we will not take the time, in the present paper,
to flesh out detailed analyses of such cases.

4 Examples of Conditioned Reversible Operations

Here, we define and illustrate a number of examples of conditionally reversible
operations (including a specification of their assumed preconditions) that com-
prise natural primitives out of which arbitrary reversible algorithms may be
composed. First, we introduce some textual and graphical notations for describ-
ing conditioned reversible operations.

Let the computational state space be factorizable into independent state
variables x, y, z, ..., which are in general n-ary discrete variables. A common
case will be binary variables (n = 2). For simplicity, we assume here that the
sets of state variables into which the initial and final computational state spaces
are factorized are identical, although more generally this may not be the case.

Given a computational state space C that is factorizable into state variables
x, y, z, ..., and given a precondition A on the initial state defined by

A = {ci ∈ C |P (x, y, ...)}, (7)

where P (x, y, ...) is some propositional (i.e., Boolean-valued) function of the
state variables x, y, ..., we can denote a conditionally-reversible operation OA on
C that is reversible under precondition A using notation like:

OpName(x, y, ... |P (x, y, ...)) (8)

which represents a conditionally-reversible operation named OpName that oper-
ates on and potentially transforms the state variables x, y, ..., and that is
reversible under an assumed precondition A consisting of the set of initial states
that satisfy the given proposition P (x, y, ...).

A simple, generic graphical notation for a deterministic, conditionally
reversible operation named OpName, operating on a state space that is decom-
posable into three state variables x, y, z, and possibly including an assumed
precondition for reversibility P (x, y, z), is the ordinary space-time diagram rep-
resentation shown in Fig. 1(a).

28 M.P. Frank

Fig. 1. (a) Generic graphical notation for a deterministic, conditioned reversible opera-
tion OpName(x, y, z |P (x, y, z)) on three state variables x, y, z, with an assumed precon-
dition specified by the propositional function P (x, y, z). (b) Left: Standard graphical
notation (top) and simplified symbol (bottom) for the conditioned reversible operation
rSET(x |x = 0); Right: Likewise for rCLR(x |x = 1).

In this representation, as in standard reversible logic networks, time is visu-
alized as flowing from left to right, and the horizontal lines represent state vari-
ables. The primed versions x′, y′, z′ going outwards represent the values of the
state variables in the final computational state cF after the operation.

As Landauer observed, operations such as “set to one” and “reset to zero”
on binary state spaces are logically irreversible, under his definition; indeed,
they constitute classic examples of bit erasure operations for which (assuming
equiprobable initial states) an amount kB ln 2 of entropy is ejected from the
computational state. However, as per Theorem 4, these operations are in fact
conditionally reversible, under suitably-restricted preconditions. A suitable pre-
condition, in this case, is one in which one of the two initial states is excluded.
Thus, the initial state is known with certainty in any operating context satisfy-
ing such a precondition. A known state can be transformed to any specific new
state reversibly. If the new state is different from the old one, such an operation
is non-vacuous. Thus, the following conditioned reversible operations are useful.

The deterministic operation rSET (reversible set-to-one) on a binary variable
x, which (to be useful) is implicitly associated with an assumed precondition
for reversibility of x = 0, is an operation that is defined to transform the initial
state into the final state x′ = 1; in other words, it performs the operation x := 1.
Standard and simplified graphical notations for this operation are illustrated on
the left-hand side of Fig. 1(b).

By Theorem 5, the conditioned reversible operation rSET(x |x = 0) is specifi-
cally non-entropy-ejecting in operating contexts where the designated precondi-
tion for reversibility is satisfied. It can be implemented in a way that is asymp-
totically physically reversible (as the probability that its precondition is satisfied
approaches 1) using any mechanism that is designed to adiabatically transform
the state x = 0 to the state x = 1.

Similarly, we can consider a deterministic conditioned reversible operation
rCLR(x |x = 1) (reversible clear or reversible reset-to-zero) which has an assumed
precondition for reversibility of x = 1 and which performs the operation x := 0,
illustrated on the right-hand side of Fig. 1(b).

A very commonly-used computational operation is to copy one state vari-
able to another. As with any other deterministic operation, such an operation is
conditionally reversible under suitable preconditions. An appropriate precondi-
tion for the reversibility of this rCOPY operation is any in which the initial value

Foundations of Generalized Reversible Computing 29

of the target variable is known, so that it can be reversibly transformed to the
new value. A standard reversal of a suitably-conditioned rCOPY operation, which
we can call rUnCOPY, is simply a conditioned reversible operation that transforms
the final states resulting from rCOPY back to the corresponding initial states.

Formally, let x, y be any two discrete state variables both with the same
arity (number n of possible values, which without loss of generality we may label
0, 1, ...), and let v ∈ {0, 1, ..., n − 1} be any fixed initial value. Then reversible
copy of x onto y = v or

rCOPYv = rCOPY(x, y | y = v) (9)

is a conditioned reversible operation O with assumed precondition y = v that
maps any initial state where x = i onto the final state x = i, y = i. In the
language of ordinary pseudocode, the operation performed is simply y := x.

Given any conditioned reversible copy operation rCOPYv, there is a condi-
tioned reversible operation which we hereby call reversible uncopy of y from x
back to v or

rUnCOPYv = rUnCOPYv(x, y | y = x) (10)

which, assuming (as its precondition for reversibility) that initially x = y, carries
out the operation y := v, restoring the destination variable y to the same initial
value v that was assumed by the rCOPY operation.

Figure 2(a) shows graphical notations for rCOPYv and rUnCOPYv.
It is easy to generalize rCOPY to more complex functions. In general, for

any function F (x, y, ...) of any number of variables, we can define a conditioned
reversible operation rF (x, y, ..., z | z = v) which computes that function, and
writes the result to an output variable z by transforming z from its initial value
to F (x, y, ...), which is reversible under the precondition that the initial value of z
is some known value v. Its reversal rUnFv(x, y, ..., z | z = F (x, y, ...)) decomputes
the result in the output variable z, restoring it back to the value v. See Fig. 2(b).

The F above may indeed be any function, including standard Boolean logic
functions operating on binary variables, such as AND, OR, etc. Therefore, the above

Fig. 2. (a) Left: Reversible copy of x onto y = v; Right: Reversible uncopy of y from x
back to v. (b) Given any function F (x, y) = z of n (here, n = 2) state variables, we can
easily convert it to a pair of conditioned reversible operations rF (x, y, z | z = v) and
rUnFv(x, y, z | z = F (x, y)) that are mutual reversals of each other that compute and
decompute the value of F by reversibly transforming the output variable z from and
to any predetermined value v. Top: standard notation, bottom: simplified symbols.

30 M.P. Frank

scheme leads us to consider conditioned reversible operations such as rAND0,
rAND1, rOR0, rOR1; and their reversals rUnAND0, rUnAND1, rUnOR0, rUnOR1; which
reversibly do and undo standard AND and OR logic operations with respect to
output nodes that are expected to be a constant logic 0 or 1 initially before the
operation is done (and also finally, after doing the reverse operations).

Clearly, one can compose arbitrary n-input Boolean functions out of such
primitives using standard logic network constructions, and decompute interme-
diate results using the reverse (mirror-image) circuits (after rCOPYing the desired
results), following the general approach pioneered by Bennett [8]. This results
in an embedding of the desired function into a reversible function that preserves
only the input and the final output.

One may wonder, however, what is the advantage of using operations such as
rAND and rUnAND for this, compared to the traditional unconditionally reversible
operation ccNOT(x, y, z) (controlled-controlled-NOT, a.k.a. the Toffoli gate oper-
ation [9], z := z ⊕ xy). Indeed, any device that implements ccNOT(x, y, z) in a
physically-reversible manner could be used in place of a device that implements
rAND(x, y, z | z = 0) and rUnAND0(x, y, z | z = xy), or in place of one that imple-
ments rNAND(x, y, z | z = 1) and rUnNAND1(x, y, z | z = xy), in cases where the
preconditions of those operations would be satisfied.

But, the converse is not true. In other words, there are devices that can
asymptotically physically reversibly carry out rAND0 and rUnAND0 that do not
also implement full Toffoli gate operations. Therefore, if what one really needs
to do, in one’s algorithm, is simply to do and undo Boolean AND operations
reversibly, then to insist on doing this using Toffoli operations rather than con-
ditioned reversible operations such as rAND and rUnAND is overkill, and amounts
to tying one’s hands with regards to the implementation possibilities, leading
to hardware designs that can be expected to be more complex than neces-
sary. Indeed, there are very simple adiabatic circuit implementations of devices
capable of performing rAND/rUnAND and rOR/rUnOR operations (based on e.g.
series/parallel combinations of CMOS transmission gates [10]), whereas, adi-
abatic implementations of ccNOT itself are typically much less simple. This
illustrates our overall point that the GRC framework generally allows for sim-
pler designs for reversible computational hardware than does the traditional
reversible computing model based on unconditionally reversible operations.

5 Modeling Reversible Hardware

A broader motivation for the study of GRC derives from the following observa-
tion (not yet formalized as a theorem):

Assertion 1 General correspondence between truly, fully adiabatic cir-
cuits and conditioned reversible operations. Part (a): Whenever a switch-
ing circuit is operated deterministically in a truly, fully adiabatic way (i.e., that
asymptotically approaches thermodynamic reversibility), transitioning among
some discrete set of logic levels, the computation being performed by that

Foundations of Generalized Reversible Computing 31

circuit corresponds to a conditioned reversible operation OA whose assumed
precondition A is (asymptotically) satisfied. Part (b): Likewise, any conditioned
reversible operation OA can be implemented in an asymptotically thermody-
namically reversible manner by using an appropriate switching circuit that is
operated in a truly, fully adiabatic way, transitioning among some discrete set
of logic levels.

Part (a) follows from our earlier observation in Theorem5 that, in deter-
ministic computations, conditional reversibility is the correct statement of the
logical-level requirement for avoiding energy dissipation under Landauer’s Prin-
ciple, and therefore it is a necessity for approaching thermodynamic reversibility
in any deterministic computational process, and therefore, more specifically, in
the operation of adiabatic circuits.

Meanwhile, part (b) follows from general constructions showing how to imple-
ment any desired conditioned reversible operation in an asymptotically thermo-
dynamically reversible way using adiabatic switching circuits. For example, Fig. 3
illustrates how to implement an rCOPY operation using a simple four-transistor
CMOS circuit. In contrast, implementing rCOPY by embedding it within an
unconditionally-reversible cNOT would require including an XOR capability, and
would require a much more complicated adiabatic circuit, whose operation would
itself be composed from numerous more-primitive operations (such as adiabatic
transformations of individual MOSFETs [11]) that are themselves only condi-
tionally reversible.

In general, the traditional reversible computing framework of uncondition-
ally reversible operations does not exhibit any correspondence such as that of
Assertion 1 to any natural class of asymptotically physically-reversible hardware
that we know of. In particular, the traditional unconditionally-reversible frame-
work does not correspond to the class of truly/fully adiabatic switching circuits,
because there are many such circuits that do not in fact perform unconditionally
reversible operations, but only conditionally-reversible ones.

6 Comparison to Prior Work

The concept of conditional reversibility presented here is similar to, but distinct
from, certain concepts that are already well known in the literature on the theory
of reversible circuits and languages.

First, the concept of a reversible computation that is only semantically cor-
rect (for purposes of computing a desired function) when a certain precondition
on the inputs is satisfied is one that was already implicit in Landauer’s original
paper [2], when he introduced the operation now known as the Toffoli gate, as
a reversible operation within which Boolean AND may be embedded. Implicit in
the description of that operation is that it only correctly computes AND if the
control bit is initially 0; otherwise, it computes some other function (in this
case, NAND). This is the origin of the concept of ancilla bits, which are required
to obey certain pre- and post-conditions (typically, being cleared to 0) in order
for reversible circuits to be composable and still function as intended. The study

32 M.P. Frank

Fig. 3. (Left) A simple adiabatic CMOS circuit capable of carrying out a variant of
the rCOPY operation. Here, computational states are represented using dual-rail com-
plementary voltage coding, so that, for example, a logical state A = 0 is represented
using the voltage assignments AP = VH, AN = VL, where VH, VL are high and low volt-
age levels, respectively. The logical state A = 1 would be represented using the opposite
voltage assignments. The two CMOS transmission gates shown will thus be turned ON
(conducting) only when A = 1. In this circuit, A is the logic input, B is the output, and
D is a driving signal. (Right) Sequence of operation. Assume initially that D = 0 and
A = 0. Normally we would also have B = 0 initially, but to illustrate the conditional
reversibility of this circuit, we will also consider the case B = 1. In step 1, some exter-
nal circuit adiabatically transforms input A from logic 0 to a newly-computed value (0
or 1) to be copied, then in step 2, the drive signal D is unconditionally transformed
adiabatically from logic 0 to 1. Note that, in the course of this operation sequence, if
B were 1 initially, then it would be dissipatively sourced to D = 0 in step 1 if A = 1.
Thus, this particular operation sequence implements a conditioned reversible operation
rCOPY′(A,B |AB); it is reversible as long as we don’t try to copy an input value A = 1

onto an initial state where B = 1. The prime there after rCOPY is denoting the variant
semantics, namely that in the case ĀB, the value A = 0 is not copied to B.

of the circumstances under which such requirements may be satisfied has been
extensively developed, e.g. as in [12]. However, any circuit composed from Toffoli
gates is still reversible even if restoration of its ancillas is violated; it may yield
nonsensical outputs in that case, when composed together with other circuits,
but at no point is information erased. This distinguishes ancilla-preservation con-
ditions from our preconditions for reversibility, which, when they are unsatisfied,
necessarily yield actual (physical) irreversibility.

Similarly, the major historical examples of reversible high-level programming
languages such as Janus ([13,14]), Ψ-Lisp [15], the author’s own R language [16],
and RFUN ([17,18]) have invoked various “preconditions for reversibility” in the
defined semantics of many of their language constructs. But again, that concept
really has more to do with the “correctness” or “well-definedness” of a high-level
reversible program, and this notion is distinct from the requirements for actual
physical reversibility during execution. For example, the R language compiler
generated PISA assembly code in such a way that even if high-level language
requirements were violated (e.g., in the case of an if condition changing its
truth value during the if body), the resulting assembly code would still execute
reversibly, if nonsensically, on the Pendulum processor [19].

In contrast, the notion of conditional reversibility explored in the present
document ties directly to Landauer’s principle, and to the possibility of the

Foundations of Generalized Reversible Computing 33

physical reversibility of the underlying hardware. Note, however, that it does
not concern the semantic correctness of the computation, or lack thereof, and in
general, the necessary preconditions for the physical reversibility and correctness
of a given computation may be orthogonal to each other, as illustrated by the
example in Fig. 3.

7 Conclusion

In this paper, we presented the core foundations of a general theoretical frame-
work for reversible computing. We considered the case of deterministic com-
putational operations in detail, and presented results showing that the class
of deterministic computations that are not required to eject any entropy from
the computational state under Landauer’s Principle is larger than the set of
computations composed of the unconditionally-reversible operations considered
by traditional reversible computing theory, because it also includes the set of
conditionally-reversible operations whose preconditions for reversibility are sat-
isfied with probability approaching unity. This is the most general possible char-
acterization of the set of classical deterministic computations that can be phys-
ically implemented in an asymptotically thermodynamically reversible way.

We then illustrated some basic applications of the theory in modeling con-
ditioned reversible operations that transform an output variable between a pre-
determined, known value and the computed result of the operation. Such oper-
ations can be implemented easily using e.g. adiabatic switching circuits, whose
low-level computational function cannot in general be represented within the
traditional theory of unconditionally-reversible computing. This substantiates
that the GRC theory warrants further study.

Some promising directions for future work include: (1) Giving further exam-
ples of useful conditioned reversible operations; (2) illustrating detailed physical
implementations of devices for performing such operations; (3) further extending
the development of the new framework to address the nondeterministic case; and
(4) developing further descriptive frameworks for reversible computing at higher
levels (e.g., hardware description languages, programming languages) building
on top of the fundamental conceptual foundations that GRC theory provides.

Since GRC broadens the range of design possibilities for reversible computing
devices in a clearly delineated, well-founded way, its study and further develop-
ment will be essential for the computing industry to successfully transition, over
the coming decades, to the point where it is dominantly utilizing the reversible
computing paradigm. Due to the incontrovertible validity of Landauer’s Prin-
ciple, such a transition will be an absolute physical prerequisite for the energy
efficiency (and cost efficiency) of general computing technology to continue grow-
ing by many orders of magnitude.

References

1. International Technology Roadmap for Semiconductors 2.0, 2015 th edn. Semicon-
ductor Industry Association (2015)

34 M.P. Frank

2. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 5(3), 183–191 (1961)

3. Drexler, K.E.: Nanosystems: Molecular Machinery, Manufacturing, and Computa-
tion. Wiley, New York (1992)

4. Younis, S.G., Knight Jr., T.F.: Practical implementation of charge recovering
asymptotically zero power CMOS. In: Proceedings of the 1993 Symposium on
Research in Integrated Systems, pp. 234–250. MIT Press (1993)

5. López-Suárez, M., Neri, I., Gammaitoni, L.: Sub-kBT micro-electromechanical irre-
versible logic gate. Nat. Commun. 7, 12068 (2016)

6. Frank, M.P.: Approaching the physical limits of computing. In: 35th International
Symposium on Multiple-Valued Logic, pp. 168–185. IEEE Press, New York (2005)

7. DeBenedictis, E.P., Frank, M.P., Ganesh, N., Anderson, N.G.: A path toward ultra-
low-energy computing. In: IEEE International Conference on Rebooting Comput-
ing. IEEE Press, New York (2016)

8. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–
532 (1973)

9. Toffoli, T.: Reversible computing. In: Bakker, J., Leeuwen, J. (eds.) ICALP
1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980). doi:10.1007/
3-540-10003-2 104

10. Anantharam, V., He, M., Natarajan, K., Xie, H., Frank, M.: Driving fully-adiabatic
logic circuits using custom high-Q MEMS resonators. In: Arabnia, H.R., Guo, M.,
Yang, L.T. (eds.) ESI/VLSI 2004, pp. 5–11. CSREA Press (2004)

11. Frank, M.P.: Towards a more general model of reversible logic hardware. In: Invited
talk Presented at the Superconducting Electronics Approaching the Landauer
Limit and Reversibility (SEALeR) Workshop. Sponsored by NSA/ARO (2012)

12. Thomsen, M.K., Kaarsgaard, R., Soeken, M.: Ricercar: a language for describing
and rewriting reversible circuits with ancillae and its permutation semantics. In:
Krivine, J., Stefani, J.-B. (eds.) RC 2015. LNCS, vol. 9138, pp. 200–215. Springer,
Cham (2015). doi:10.1007/978-3-319-20860-2 13

13. Lutz, C.: Janus: a time-reversible language. Letter from Chris Lutz to Rolf Lan-
dauer (1986). http://tetsuo.jp/ref/janus.pdf

14. Yokoyama, T.: Reversible computation and reversible programming languages.
Elec. Notes Theor. Comput. Sci. 253(6), 71–81 (2010)

15. Baker, H.G.: NREVERSAL of fortune — the thermodynamics of garbage collec-
tion. In: Bekkers, Y., Cohen, J. (eds.) IWMM 1992. LNCS, vol. 637, pp. 507–524.
Springer, Heidelberg (1992). doi:10.1007/BFb0017210

16. Frank, M.: Reversibility for Efficient Computing. Doctoral dissertation, Massa-
chusetts Institute of Technology. Department of Electrical Engineering and Com-
puter Science (1999)

17. Yokoyama, T., Axelsen, H.B., Glück, R.: Towards a reversible functional language.
In: Vos, A., Wille, R. (eds.) RC 2011. LNCS, vol. 7165, pp. 14–29. Springer, Heidel-
berg (2012). doi:10.1007/978-3-642-29517-1 2

18. Axelsen, H.B., Glück, R.: Reversible representation and manipulation of construc-
tor terms in the heap. In: Dueck, G.W., Miller, D.M. (eds.) RC 2013. LNCS, vol.
7948, pp. 96–109. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38986-3 9

19. Vieri, C.J.: Reversible Computer Engineering and Architecture. Doctoral disserta-
tion, Massachusetts Institute of Technology, Department of Electrical Engineering
and Computer Science (1999)

http://dx.doi.org/10.1007/3-540-10003-2_104
http://dx.doi.org/10.1007/3-540-10003-2_104
http://dx.doi.org/10.1007/978-3-319-20860-2_13
http://tetsuo.jp/ref/janus.pdf
http://dx.doi.org/10.1007/BFb0017210
http://dx.doi.org/10.1007/978-3-642-29517-1_2
http://dx.doi.org/10.1007/978-3-642-38986-3_9

Reversible Nondeterministic Finite Automata

Markus Holzer(B) and Martin Kutrib

Institut für Informatik, Universität Giessen,
Arndtstr. 2, 35392 Giessen, Germany

{holzer,kutrib}@informatik.uni-giessen.de

Abstract. By former and recent results the model of reversible deter-
ministic finite automata is well understood. On the other hand, reversible
nondeterministic finite automata and their accepted languages have not
systematically been considered in the literature. Here it turns out that
reversible nondeterministic finite automata (REV-NFAs) are more pow-
erful compared to their reversible deterministic counterparts, but still
cannot accept all regular languages. Moreover, we compare the family
of languages accepted by REV-NFAs to the language families accepted
by deterministic and nondeterministic finite state automata with irre-
versibility degree k. Besides these results on the computational power of
REV-NFAs we consider closure properties of the language family induced
by these devices.

1 Introduction

Although our experience in the real world tells us that irreversibility is almost
everywhere, that is, irreversible events appear on the large scale of things, the
fundamental nature of physics behaves differently as supported by the following
quote:

“So far as we know, all the fundamental laws of physics, like Newton’s
equations, are reversible.”

Richard P. Feynman (Lecture 46 “Ratchet and Pawl”)

This means that irreversible processes are composed by reversible ones. Viewing
physical processes in an abstract way, by representing them in terms of states
and transitions between states, links physics with computations. Computational
models with discrete internal states are subject to studies in computer science
since its beginning. Thus, by its close connection to physics, it is natural to ask,
whether abstract computational models are able to obey fundamental principles
of physics such as reversibility. For example, reversible Turing machines have
been introduced in [5], where it turned out that every Turing machine can be
simulated by a reversible one—for improved simulation constructions see [4,15].
There are legions of other computational devices that were studied with respect
to the concept of reversibility. One are finite state automata, which are on the
other end of the computational spectra compared to Turing machines, since their
computational power is very weak.
c© Springer International Publishing AG 2017
I. Phillips and H. Rahaman (Eds.): RC 2017, LNCS 10301, pp. 35–51, 2017.
DOI: 10.1007/978-3-319-59936-6 3

36 M. Holzer and M. Kutrib

For deterministic finite state automata, reversibility can usually be verified
by simple inspection of the transition function, ensuring that the induced com-
putation step relation is an injective function on configurations. Injectivity is
the least common property of almost all reversible finite state automata models
that are considered in the literature. On other aspects such as, for example, the
number of initial and final states, these reversible automata differ slightly. In
principle the following situations appear in the literature:

1. one initial and one final state (also called bideterminism) [2,12],
2. one initial and multiple final states [1,9], and
3. multiple initial and multiple final states [14,16].

Obviously, the third model is the most general one, but it cannot accept all reg-
ular languages [16]. For instance, the language a∗b∗ is not reversible. It is worth
mentioning that finite automata in the sense of [16] may have limited nondeter-
minism plugged in from the outside world at the outset of the computation, since
one of the multiple initial states is guessed. A further generalization that allows
nondeterministic transitions even between different strongly connected compo-
nents of the automaton was introduced in [14]—see also [6]. The corresponding
automata are said to be quasi-reversible. However, due to the still restrictive
use of the nondeterministic transitions, quasi-reversible finite automata are not
more powerful than reversible finite automata in the sense of [16].

Thus, the question arises, what happens if nondeterminism is allowed in
general in a reversible finite state automaton? Here we stick to the standard
definition of finite automata, that is, one initial state and possibly multiple final
states. This is in the line of research on reversible deterministic finite automata
started in [1], recently restarted in [9], followed by [3,13]. At a first glance,
one may think that languages accepted by reversible nondeterministic finite
automata (REV-NFA) are mirror images of languages accepted by determin-
istic finite automata. However, in general, the reversal of a REV-NFA language
is not accepted by a deterministic finite automaton, but by a multiple entry
deterministic finite automaton with a sole accepting state, a more or less unex-
plored model as well. We will not directly focus on this issue, but will use it later
in some of our proofs.

The paper is organized as follows. In the next section we introduce the
necessary notations for reversible finite automata. Then in Sect. 3 we study
the accepting power of REV-NFAs. In Subsect. 3.1 the computational power
of REV-NFAs is compared with the power of other reversible devices. In par-
ticular, reversible nondeterministic finite automata turn out to be strictly more
powerful than their deterministic reversible counterparts, already for unary lan-
guages. But REV-NFAs still cannot accept all regular languages—again a∗b∗

is such an example. Subsection 3.2 is devoted to study the relationships with
language families induced by deterministic and nondeterministic finite state
automata with irreversibility degree k—see [3]. Here the irreversibility degree
for a regular language is the minimal number of irreversible states necessary in
any finite automaton accepting the language. As in the case of deterministic
finite automata, the irreversibility degree induces a strict and infinite hierarchy

Reversible Nondeterministic Finite Automata 37

on nondeterministic automata as well. Finally, in Subsect. 3.3 we consider the
closure properties of the family of languages accepted by REV-NFAs. Although
REV-NFAs and REV-DFAs induce different language families, these share the
same closure properties. It turns out that both families are intersection closed
and are nearly anti-AFLs, except for the positive closure under inverse homo-
morphisms. Recall, that the AFL operations are union, concatenation, Kleene
star, homomorphism, inverse homomorphism, and intersection with regular sets.
An anti-AFL is not closed under all of these operations. These closure properties
are somehow surprising since we consider language families that are defined via
a classical automaton model. Due to space constraints some proofs are omitted.

2 Preliminaries

We recall some definitions on formal languages and finite automata as contained,
for example, in [8]. An alphabet Σ is a non-empty finite set, its elements are called
letters or symbols. We write Σ∗ for the set of all words over the finite alphabet Σ.
In particular, the empty word is referred to as λ.

A nondeterministic finite automaton (NFA) is a 5-tuple A = (Q,Σ, δ, q0, F),
where Q is the finite set of internal states, Σ is the alphabet of input symbols
or letters, q0 ∈ Q is the initial state, F ⊆ Q is the set of accepting states, and
δ : Q × Σ → 2Q is the partial transition function. The language accepted by
A is

L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F �= ∅ },

where the transition function is recursively extended to δ : Q × Σ∗ → 2Q. A
NFA A is deterministic if |δ(p, a)| ≤ 1, for all states p ∈ Q and a ∈ Σ. In this
case we simply write δ(p, a) = q, if δ(p, a) = {q}. By δR : Q × Σ → 2Q, with
δR(q, a) = { p ∈ Q | q ∈ δ(p, a) }, we denote the reverse transition function
of δ. Similarly, also δR can be extended to words instead of symbols. A state
p ∈ Q is accessible in A if there is a word w ∈ Σ∗ such that δ(q0, w) = p, and
it is productive if there is a word w ∈ Σ∗ such that δ(p,w) ∈ F . If p is both
accessible and productive then we say that p is useful. In this paper we only
consider automata with all states useful. Two automata A and A′ are said to
be equivalent if they accept the same language, that is, L(A) = L(A′). In this
case we simply write A ≡ A′. An NFA (DFA, respectively) is minimal among
all NFAs (DFAs, respectively) if there does not exist an equivalent NFA (DFA,
respectively) with fewer states. It is well known that minimal DFAs are unique
up to isomorphism. Minimal NFAs are not isomorphic in general.

Next we define reversible NFAs and DFAs. Let A = (Q,Σ, δ, q0, F) be an
NFA. A state r ∈ Q is said to be irreversible if there are two distinct states p
and q in Q and a letter a ∈ Σ such that r ∈ δ(p, a) ∩ δ(q, a). Then an NFA is
reversible if it does not contain any irreversible state. In this case the automaton
is said to be a reversible NFA (REV-NFA). A language L ⊆ Σ∗ is said to be
nondeterministically reversible if there is a REV-NFA A which accepts the lan-
guage L. Analogously one defines reversible DFAs (REV-DFA)—alternatively

38 M. Holzer and M. Kutrib

one can define reversibility for DFAs as follows: the DFA A is reversible, if
every letter a ∈ Σ induces an injective partial mapping from Q to itself via the
mapping δa : Q → Q with p
→ δ(p, a). In this case, the reverse transition func-
tion δR can then be seen as a (partial) injective function δR : Q × Σ → Q. A
language is said to be deterministically reversible or for short reversible if there
is a REV-DFA that accepts it. Finally, a REV-NFA (REV-DFA, respectively) is
minimal among all REV-NFAs (REV-DFAs, respectively) if there is no equiva-
lent REV-NFA (REV-DFA, respectively) with a smaller number of states. Both
minimal REV-DFAs and minimal REV-NFAs are not isomorphic in general.

0

1

2

3

a

b

a, b

a

0

1

2

3

a, b

a

a

b

Fig. 1. A minimal NFA (left) and a minimal REV-NFA (right) for the finite language
L = {aa, ab, ba}. Thus, L is a nondeterministically reversible language.

Example 1. Consider the finite language L = {aa, ab, ba}. A minimal NFA and
a REV-NFA for this language are shown in Fig. 1. It is easy to see that the
NFA shown is minimal. Obviously, this minimal NFA is not reversible, since it
contains the irreversible state 3. Observe, that the REV-NFA is of same size as
the minimal NFA. This is in contrast to minimal DFAs and REV-DFAs. When-
ever the minimal DFA for a reversible language is not reversible, the minimal
REV-DFA is of strictly larger size. �

In [9] the following structural characterization of regular languages that can
be accepted by REV-DFAs in terms of their minimal DFAs is given. The condi-
tions of the characterization are illustrated in Fig. 2.

Theorem 2. Let A = (Q,Σ, δ, q0, F) be a minimal deterministic finite automa-
ton. The language L(A) can be accepted by a reversible deterministic finite
automaton if and only if there do not exist useful states p, q ∈ Q, a letter a ∈ Σ,
and a word w ∈ Σ∗ such that p �= q, δ(p, a) = δ(q, a), and δ(q, aw) = q.

3 Nondeterministic Reversible Finite Automata

As mentioned in the introduction, at a first glance, one may think that languages
accepted by REV-NFAs are mirror images of languages accepted by deterministic
finite automata. But, in general, the reversal of a REV-NFA language is not
accepted by a deterministic finite automaton. Here the reversal of a language

Reversible Nondeterministic Finite Automata 39

r

p

q

a

a

w

r=q

p
a

a

w

r=p

q

a

a

w

Fig. 2. The “forbidden pattern” of Theorem 2. The states p and q must be distinct,
but state r could be equal to state p or state q. The situations where r = q or r = p
are shown in the middle and on the right, respectively—here the word w and its
corresponding path are grayed out because they are not relevant.

L is defined by LR = {wR ∈ Σ∗ | w ∈ L }, where wR refers to the reversal of w.
The mirror image of a word is inductively defined as λR = λ and (wa)R = a(wR),
for w ∈ Σ∗ and a ∈ Σ. We find the following situation, where a multiple-entry
DFA (MeDFA) is a 5-tuple A = (Q,Σ, δ,Q0, F), with Q,Σ, δ, and F are as for
ordinary DFAs and Q0 ⊆ Q is the set of initial states, and the language accepted
by A is L(A) =

⋃
q0∈Q0

L(Aqo), where Aq = (Q,Σ, δ, q, F). The reversible variant
of MeDFAs is referred to as REV-MeDFA.

Lemma 3. Let L ⊆ Σ∗. The language L is accepted by a REV-NFA if and only
if LR is accepted by a multiple-entry DFA with a sole final state. ��

It is worth mentioning that multiple-entry DFAs were previously investi-
gated in the literature [7,10,11,17], but the additional restriction to a sole final
state makes it an almost unexplored automaton model. Next, we investigate the
accepting power of REV-NFAs and later the closure properties of the family of
all those languages accepted by REV-NFAs.

3.1 Computational Power

We consider the computational power of REV-NFAs compared to ordinary finite
state automata. In general, the family of all languages accepted by automata of
some type X will be denoted by L (X). Deterministic finite automata and their
reversible variants were already considered in [9,16]. Here we first examine their
relationships. Recall that reversible deterministic finite automata with one initial
and one final state are called bideterministic [2,12]. Let L (Bi-DFA) refer to the
family of languages accepted by bideterministic finite automata and REG refer
to the family of all regular languages.

Theorem 4. L (Bi-DFA) ⊂ L (REV-DFA) ⊂ L (REV-MeDFA) ⊂ REG.

Proof. The inclusions are obvious. For the strictness of the first inclusion we
use the characterization that a language L is accepted by a bideterministic finite
automaton if and only if the minimal DFA of L is reversible and has a unique final
state [16]. The strictness follows from the finite language L = λ + a. Since every

40 M. Holzer and M. Kutrib

finite language belongs to L (REV-DFA), but the minimal DFA for L, although
it is reversible, has two final states, L does not belong to L (Bi-DFA). Thus,
L (Bi-DFA) ⊂ L (REV-DFA). The strictness of the second inclusion is witnessed
by the language a∗+b∗. Because the minimal DFA contains the forbidden pattern
described in Theorem 2, this language does not belong to L (REV-DFA). On
the other hand, with a reversible multiple-entry DFA the language a∗ + b∗ is
easily acceptable by using the minimal DFAs for the languages a∗ and b∗ as
sub-components. Therefore L (REV-DFA) ⊂ L (REV-MeDFA). Finally, in [16]
it was shown that the regular language a∗b∗ is not member of L (REV-MeDFA).
Therefore L (REV-MeDFA) ⊂ REG. ��

Before we investigate the computational power of REV-NFAs in detail we
prove an important property of reversible automata if they accept unary words
that are long enough.

Lemma 5. Let A = (Q,Σ, δ, q0, F) be an n-state REV-NFA and a ∈ Σ. If a
unary word am, for m ≥ n, is accepted by A, then it can be written as am =
aiam−i for some 1 ≤ i ≤ m satisfying the conditions (i) q0 ∈ δ(q0, ai) and (ii)
qf ∈ δ(q0, am−i) with qf ∈ F . We may have q0 = qf , in particular this is the
case if i = m. The statement remains valid in case A is a REV-DFA.

Proof. Consider an accepting computation of A on input am. Let

q0 = p0, p1, . . . , pi−1, pi, pi+1, . . . , pk−1, pk, pk+1, . . . , pm−1, pm = qf

with qf ∈ F be the sequence of states during the accepting computation under
consideration, where pj+1 ∈ δ(pj , a), for 0 ≤ j < m. Since m ≥ n at least one
state in this sequence appears twice because of the pigeon hole principle. We
take the first state pi, for some 0 ≤ i < m, from the left in the sequence with
this property. This means that all states pj to the left of pi, that is, 0 ≤ j < i,
are different to all other states, that are the states to the right of pi including
state pi, in the whole sequence. Since pi appears twice, its counterpart is assumed
to be state pk with i < k ≤ m.

Let pi be the initial state q0. Then we have found a loop pattern in the
REV-NFA. This means that the word am can be written as am = akam−k

satisfying 1 ≤ k ≤ m and qk ∈ δ(q0, ak) and qf ∈ δ(qk, am−k) with qf ∈ F . Note
that qk = q0 by assumption. Now, let 1 ≤ i < m. Then as mentioned above
both states pi−1 and pk−1 are different, but they satisfy δ(pi−1, a) � pi = pk ∈
δ(pk−1, a), which means that pi is irreversible. This is a contradiction to our
assumption that A is a REV-NFA. Therefore, pi must be the initial state and
we have found the loop pattern as described above. ��

Now we are ready to investigate the computational power of the reversible
automata we are interested in. We find the following situation.

Theorem 6. L (REV-DFA) ⊂ L (REV-NFA) ⊂ REG.

Reversible Nondeterministic Finite Automata 41

Proof. All inclusions are obvious by definition. Thus, their strictnesses remains to
be shown: (1) For the strictness of the inclusion L (REV-DFA) ⊆ L (REV-NFA)
we consider the infinite unary language L = {λ, a2, a3, . . .}, which is the com-
plement of the finite language {a}. A REV-NFA for the language L is depicted
in Fig. 3. Note that in [3] it was shown that the complement of a non-empty
finite unary language cannot be accepted by any REV-DFA. Therefore, L is not
a reversible language. Thus, nondeterminism improves the accepting power of
reversible finite state automata and therefore L (REV-DFA) ⊂ L (REV-NFA).
(2) Next we show that the regular language L = a∗b∗ is not nondeterministi-
cally reversible. Assume in contrast to the assertion that there is a REV-NFA
A = (Q, {a, b}, δ, q0, F) that accepts L. Let n be the number of states of A.
Then we apply Lemma 5 for the word an in L. Hence we find a loop-structure
of the form q0 ∈ δ(q0, ai1) and qfa

∈ δ(q0, an−i1), for some state qfa
∈ F and

1 ≤ i1 ≤ n. Applying Lemma 5 once again, but now for the word bn, results
in a loop-structure δ(q0, bi2) and qfb

∈ δ(q0, bn−i2), for some 1 ≤ i2 ≤ n and
state qfb

∈ F . Then we combine the computations of these two loops by first
doing the computation on ai1 leading from the initial state to q0, followed by
reading bi2 , which leads us to q0 again, followed by reading ai1 and bn−i2 which
in turn leads to an accepting state qfb

visiting q0 in between. Hence the word
ai1bi2ai1bn−i2 is accepted by A, which is a contradiction since all words in L
are of the form a∗b∗. This shows that a∗b∗ does not belong to L (REV-NFA).
Therefore, the inclusion L (REV-NFA) ⊆ L (NFA) is strict. ��

It remains to compare the families L (REV-NFA) and L (REV-MeDFA).

0 1 2 3
a

a a a

Fig. 3. A REV-NFA for the infinite unary language L = {λ, a2, a3, . . .}. Thus L is a
nondeterministically reversible language.

Theorem 7. The families L (REV-NFA) and L (REV-MeDFA) are incompa-
rable.

Proof. The language L = a∗ +b∗ belongs to L (REV-MeDFA) as already argued
in the proof of Theorem 4. We show that L cannot be accepted by any REV-NFA.
To this end we argue as follows: Assume to the contrary that the language L
is accepted by a REV-NFA A = (Q, {a, b}, δ, q0, F). Let n = |Q|. Then we
apply Lemma 5 for the word an in L. Hence we find a loop-structure of the
form q0 ∈ δ(q0, ai1) and qfa

∈ δ(q0, an−i1), for some 1 ≤ i1 ≤ n and qfa
∈ F .

Applying Lemma 5 once again, but now for the word bn, results in a loop-
structure δ(q0, bi2) and qfb

∈ δ(q0, bn−i2), for some 1 ≤ i2 ≤ n and state qfb
∈

F . Then we combine the computations of these two loops by first doing the
computation on ai1 leading from the initial state to q0, followed by reading bi2 ,

42 M. Holzer and M. Kutrib

which leads us to q0 again, and finally reading an−i1 moving to the final state qfa
.

Hence the word ai1bi2an−i1 is accepted by A, which is a contradiction since all
words in L are either in a∗ or b∗ only. Thus, L �∈ L (REV-NFA).

For the converse, we consider the language L = ba+a+ba∗ that is accepted by
some REV-NFA. In order to show that L is not a member of L (REV-MeDFA),
a characterization of the languages accepted by reversible multiple-entry DFAs
in terms of a forbidden pattern in the minimal DFA given in [16] is utilized. Here
the details are omitted. ��

REG

(REV-MeDFA) (REV-NFA)

(REV-DFA)

(Bi-DFA) FIN

Fig. 4. Inclusion structure of the language families
accepted by different variants of reversible finite automata
in question. The arrows indicate strict inclusions. Language
families not linked by a path are pairwise incomparable.
Here FIN is the family of all finite languages and REG the
family of all regular languages.

The inclusion struc-
ture of the language
families accepted by
variants of reversible
finite automata is
summarized in Fig. 4.
Observe that L (Bi-DFA)
and FIN are incom-
parable, which can be
seen by the languages a∗

and λ + a.
In the remainder of

this subsection we con-
sider unary languages
accepted by REV-NFAs
in more detail. A unary
language is said to be
cyclic if it can be
accepted by a DFA
that consists of a loop
only. It is known that
unary REV-DFAs can
only accept finite and
cyclic languages [3]. In particular this means that the complement of a non-
empty finite unary language cannot be accepted by any REV-DFA. On the
other hand, one can show that complements of unary finite languages are always
accepted by REV-NFAs.

Theorem 8. Let L ⊆ Σ∗ be a finite language, where Σ is a singleton set. Then
the language L and its complement Σ∗\L are both accepted by REV-NFAs.

Proof. Clearly, every finite language L is reversible and thus also nondetermin-
istically reversible. It remains to be shown that Σ∗\L is also accepted by a
REV-NFA, if Σ is a singleton set. Regardless whether Σ is a singleton set or
not, it is easy to see that the language Σ∗\L can be written as

Σ∗\L = Σn+1Σ∗ ∪ S, (1)

Reversible Nondeterministic Finite Automata 43

where n = max{ |w| | w ∈ L } and S is a finite set of words of length at
most n. In fact, S is the complement of L with respect to the set Σn, that is,
S = Σn\L. Now let us assume without loss of generality that Σ = {a}. Let A
be the REV-NFA (Q, {a}, δ, q0, F) with Q = {0, 1, . . . , n} ∪ {1′, 2′, . . . , (n + 1)′},
initial state q0 = 0, set of final states

F = { i | 0 ≤ i ≤ n and ai �∈ L } ∪ { i′ | 1 ≤ i ≤ n + 1 },

and the transition function

δ(i, a) =

{
{i + 1} if 0 ≤ i < n

{0} ∪ {1′} if i = n
and δ(i′, a) = {(i + 1)′} if 1 ≤ i < n + 1.

The REV-NFA is depicted in Fig. 5. By construction all words ai of length at
most n with ai �∈ L are accepted by A. Furthermore all words ai are accepted
by the accepting tail states, where i satisfies the condition

0

1

n

a

a

a

a

1′2′. . .(n+1)′ aaaa

Fig. 5. A REV-NFA for a co-finite unary language that can be written as Σn+1Σ∗ ∪S,
where S is a finite set of words that are of length at most n. The loop-state i, for
0 ≤ i ≤ n, is accepting if ai ∈ S.

k · (n + 1) + n + 1 = (k + 1) · n + (k + 1) ≤ i ≤ k · (n + 1) + n + (n + 1) = (k + 2) · n + (k + 1),

for k ≥ 0. Note that

(k + 2) · n + (k + 2) = ((k + 1) + 1) · n + ((k + 1) + 1),

for every k ≥ 0, which means that the described intervals for i are consecutive.
Therefore, all unary words of length at least n + 1 are accepted by the automaton.
Hence, A accepts all words according to the description given in Eq. 1. ��

Although REV-NFAs are more powerful than REV-DFAs, the former
automaton model is not able to accept all unary regular languages.

Theorem 9. The unary regular language L = {a} ∪ { a2i | i ≥ 0 } cannot be
accepted by any REV-NFA. ��

44 M. Holzer and M. Kutrib

3.2 On the Degree of Irreversibility

The degree of irreversibility of DFAs was introduced in [3]. For a DFA A the
degree of irreversibility d(A) is the number of irreversible states that are part
of one of the forbidden patterns shown in Fig. 2. Observe, that since the DFAs
need not to be complete and only contain useful states, the non-accepting sink
state does not count for the degree of irreversibility. The hierarchy on regular
languages that is induced by the irreversibility degree was studied in [3] in detail.
Let

IREVk-DFA = {A | A is a DFA and d(A) ≤ k },

for k ≥ 0. Obviously this notion generalizes to NFAs as well. In this case we
refer to the set of all NFAs with irreversibility degree at most k by IREVk-NFA.

It was shown in [3] that

L (REV-DFA) = L (IREV0-DFA) ⊂ L (IREV1-DFA) ⊂ · · ·
· · · ⊂

⋃

k≥0

L (IREVk-DFA) ⊂ REG,

by the separating languages Lk, where

Lk = (aa∗bb∗)k/2 ifk is even, and Lk = (aa∗bb∗)kaa∗ ifk is odd,

for k ≥ 0. It turned out that Lk ∈ L (IREVk-DFA)\L (IREVk−1-DFA), for
k ≥ 1.

What can be said about the language families L (IREVk-NFA)? As in the
deterministic case we have IREV0-NFA = {A | A is a reversible NFA } and
thus the equality L (IREV0-NFA) = L (REV-NFA) holds. Moreover, by defi-
nition the inclusion IREVk-NFA ⊆ IREVk+1-NFA follows and, therefore, the
corresponding language classes satisfy L (IREVk-NFA) ⊆ L (IREVk+1-NFA),
for k ≥ 0. Since a∗b∗ is not a member of L (REV-NFA) which was shown in the
proof of Theorem 6 we have

L (REV-NFA) = L (IREV0-NFA) ⊂ L (IREV1-NFA)

since already the minimal DFA for the language in question has irreversibility
degree one. Next we consider the hierarchy on regular languages induced by the
irreversibility degree of NFAs, which is tight and infinite.

Theorem 10. For all k ≥ 0, L (IREVk-NFA) ⊂ L (IREVk+1-NFA).

Proof. The strict inclusion L (IREV0-NFA) ⊂ L (IREV1-NFA) is shown above.
Now let k ≥ 2 and define Σk = {a1, a2, . . . , ak}. Now consider the languages Lk

over the alphabet Σk defined as

Lk = a∗
1 + a∗

2 + · · · + a∗
k.

Reversible Nondeterministic Finite Automata 45

The language Lk, for k ≥ 2, is accepted by the DFA Ak = (Qk, Σk, δk, q0, F),
with Q = {0, 1, . . . , k}, q0 = 0, F = {0, 1, . . . , k}, and

δk(0, ai) = i and δk(i, ai) = i,

for 1 ≤ i ≤ k. By construction the DFA Ak has k irreversible states.
In order to prove our statement it remains to be shown that k irreversible

states are needed for the language Lk, even when considering NFAs. Assume to
the contrary that there is an NFA Bk = (Q,Σk, δ, q0, F), that accepts Lk with
strictly less than k irreversible states. Then for every letter ai in Σk we can find a
state p of Bk that is different from the initial state and, moreover, is irreversible,
and three natural numbers i1, i2, i3 such that (i) p ∈ δ(q0, ai1

i) with i1 ≥ 1, (ii)
p ∈ δ(p, ai2

i) with i2 ≥ 1, and (iii) δ(p, ai3
i) ∩ F �= ∅. This is seen as follows:

Let n be the number of states of Bk. Consider an accepting computation on the
word an, for a ∈ Σk. Let

q0 = p0, p1, . . . , pi−1, pi, pi+1, . . . , pj−1, pj , pj+1, . . . , pn−1, pn = qf

with qf ∈ F be the sequence of states during the accepting computation under
consideration, where pi+1 ∈ δ(pi, a), for 0 ≤ i < n. Since n + 1 states appear in
the sequence, at least one state appears twice. We choose the first state pi, for
some 0 ≤ i < n, from the left in the sequence with this property. Let pj be a
repetition of pi, that is, pj = pi. Our choice of pi means that all states to the
left of pi are different to all other states, that are the states to the right of pi

including state pi, in the whole sequence. Thus, pi ∈ δ(q0, ai), pi ∈ δ(pi, a
j−i),

and qf ∈ δ(pi, a
n−j).

If pi is the initial state, then the automaton Bk accepts words that do not
belong to Lk by first reading letters a until the state pi is reached (which is the
initial state), and then reading some letters different from a. We conclude that
state pi cannot be the initial state of Bk. Thus, i ≥ 1 and moreover j−i ≥ 1. This
implies that pi is an irreversible state, since two different states pi−1 and pj−1

map to pi by reading the same letter a. Thus, we have found a state pi and
three natural numbers (i, j − i, n − j) satisfying (i) pi ∈ δ(q0, ai) with i ≥ 1, (ii)
pi ∈ δ(pi, a

j−i) with j − i ≥ 1, and (iii) δ(pi, a
n−j) ∩ F �= ∅.

Since this argumentation applies to all letters from Σk, we now have k
irreversible states q1, q2, . . . , qk each of which is associated with three naturals
numbers

(i1, j1, �1,), (i2, j2, �2), . . . , (ik, jk, �k)

satisfying the above mentioned conditions. Let qi be the state that is induced
by the letter ai, for 1 ≤ i ≤ k. Since Bk has strictly less than k irreversible
states, at least two of these states must be the same. Assume without loss of
generality that q1 is the same as q2. But then the automaton Bk accepts words
that do not belong to the language Lk, because the word ai1

1 aj2+�2
2 with j2 ≥ 1 is

accepted by the computation p1 ∈ δ(q0, ai1
1) which is equal to state p2, continued

by p2 ∈ δ(p2, a
j2
2) and finally by δ(p2, a�2

2) ∩ F �= ∅. This is a contradiction to

46 M. Holzer and M. Kutrib

our assumption that Bk has strictly less than k irreversible states and shows
Lk ∈ L (IREVk-NFA)\L (IREVk−1-NFA), for k ≥ 2. ��

Finally, we consider the relation between languages accepted by deterministic
and nondeterministic finite automata with respect to the degree of irreversibility.

Theorem 11. For all k ≥ 0, we have

L (REV-NFA)\L (IREVk-DFA) �= ∅.

Proof. As already mentioned above, the languages Lk where

Lk = (aa∗bb∗)k/2 if k is even, and Lk = (aa∗bb∗)kaa∗ if k is odd,

for k ≥ 0, separate L (IREVk-DFA) from L (IREVk−1-DFA), for k ≥ 1, [3].
Next we turn to show that Lk, for k ≥ 0, is accepted by a REV-NFA. Let

Ak = (Qk, {a, b}, δk, q0, Fk) with Qk = {1, 2, . . . , k + 1}, q0 = 1, Fk = {k + 1},
and δ(i, a) = {i, i + 1} if i is odd and 1 ≤ i < k + 1, and δ(i, b) = {i, i + 1} if i is
even and 1 ≤ i < k+1. By construction the NFA Ak is reversible and accepts the
language Lk. This shows that Lk ∈ L (REV-NFA)\L (IREVk-DFA), for k ≥ 1,
and our stated claim follows. ��

As immediate consequence of the previous proof we obtain the following
corollary.

Corollary 12. For all k ≥ 0, L (IREVk-DFA) ⊂ L (IREVk-NFA). ��
Moreover, the levels of irreversibility of deterministic and nondeterministic

finite automata which are off by one are incomparable.

Theorem 13. The families L (IREVk+1-DFA) and L (IREVk-NFA) are
incomparable, for k ≥ 0.

Proof. The fact L (IREVk-NFA)\L (IREVk+1-DFA) �= ∅ is shown in Theo-
rem 11. For k ≥ 1, the language used in the proof of Theorem 10 shows
L (IREVk+1-DFA)\L (IREVk-NFA) �= ∅. For the remaining case k = 0 we
take the language a∗b∗ ∈ L (IREV1-DFA)\L (IREV0-NFA). Hence the language
families are incomparable. ��

3.3 Closure Properties of REV-NFA Languages

Next we consider the closure properties of the language families accepted by
finite automata. Most closure properties of L (REV-DFA), except for inverse
homomorphism, λ-free homomorphism, and intersection with regular sets, were
studied in [3] in the context of the degree of reversibility. The results are sum-
marized in Table 1. Interestingly, although L (REV-DFA) and L (REV-NFA)
are different language families, they share the same closure properties. We start
with the union and the concatenation operations. The family L (REV-DFA) is
not closed under both of these operations [3]. The same is true for the nonde-
terministic variant.

Reversible Nondeterministic Finite Automata 47

Table 1. Closure properties of the language families L (REV-DFA) and L (REV-NFA).
The results on L (REV-DFA), except for inverse homomorphism, λ-free homomor-
phism, and intersection with regular sets, can be found in [3].

Operation Language family

L (REV-DFA) L (REV-NFA)

Union No No

Intersection Yes Yes

Inverse homomorphism Yes Yes

λ-free homomorphism No No

Intersection with regular sets No No

Complementation No No

Concatenation No No

Kleene star No No

Theorem 14. The language family L (REV-NFA) is not closed under union
or concatenation.

Proof. Let L1 = a∗ and L2 = b∗ which are obviously nondeterministically
reversible. But neither the union of L1 and L2 nor the concatenation of L1

and L2 can be accepted by any REV-NFA. The former was shown in the proof
of Theorem 7, while the latter was proven in the proof of Theorem 6. Thus,
L (REV-NFA) is not closed under union and concatenation. ��

Now we draw our attention to the complementation. In [3] it was shown that
the complementation of every non-empty unary finite language is not accepted
by any REV-DFA. This shows the non-closure of L (REV-DFA) under comple-
mentation because every finite language is a reversible language. On the other
hand, we have already shown in the previous subsection that complements of
unary finite languages are always accepted by REV-NFAs. Thus, with these
languages one cannot disprove the closure under complementation. In the next
theorem we show that L (REV-NFA) is not closed under complementation by
using a very simple but non-unary language.

Theorem 15. The language family L (REV-NFA) is not closed under comple-
mentation.

Proof. Consider the language L = a∗b∗, which was shown in the proof of Theo-
rem 6 to be not accepted by any REV-NFA. The REV-NFA

A = (Q, {a, b}, δ, q0, F)

with the set of states Q = {0, 1, 2}, the initial state q0 = 0, the set of final states
F = {2}, and the transition function δ(0, a) = {0}, δ(0, b) = {0, 1}, δ(1, a) =
{1, 2}, and δ(2, b) = {2} accepts the complement of L. This is seen as follows.

48 M. Holzer and M. Kutrib

The automaton A is depicted on the left of Fig. 6. The DFA built by the powerset
construction from A is drawn on the right of Fig. 6. By interchanging accepting
and non-accepting states of the DFA one obtains a DFA for the language a∗b∗,
which can be easily verified. Thus, the REV-NFA A accepts the complement of
the language under consideration. Therefore, the language family L (REV-NFA)
is not closed under complementation. ��

0 1 2

a, b

b

a

a

b

0 0, 1 0, 1, 2

a

b

b

a

a, b

Fig. 6. A REV-NFA (left) and a DFA (right) both accepting the complement of the
language a∗b∗. The DFA is built by the powerset construction from the REV-NFA.

Note that the language a∗b∗ and its complement cannot be accepted by any
REV-DFA, which can easily be seen by applying Theorem 2 to the DFA and its
complement from Fig. 6. As an immediate consequence we obtain the non-closure
of both L (REV-DFA) and L (REV-NFA) under intersection with regular sets
using the reversible language {a, b}∗ and the regular set a∗b∗.

Corollary 16. Both families L (REV-DFA) and L (REV-DFA) are not closed
under intersection with regular sets. ��

Up to now we have only seen non-closure results. But restricting the inter-
section to reversible and nondeterministically reversible languages, respectively,
we obtain the following result. The intersection closure of L (REV-DFA) was
shown in [3].

Theorem 17. The language family L (REV-NFA) is closed under intersection.
��

Next we take a closer look on homomorphisms. Since homomorphisms were
not covered for REV-DFAs yet, we consider them here as well.

Theorem 18. The families L (REV-DFA) and L (REV-NFA) are not closed
under λ-free homomorphisms. ��

For inverse homomorphisms we obtain the closure under inverse homomor-
phisms.

Theorem 19. The families L (REV-DFA) and L (REV-NFA) are closed under
inverse homomorphisms. ��

Finally we consider the Kleene star operation. Again we find a non-closure
result. Here we utilize our characterization of REV-NFA languages in terms of
multiple-entry DFAs with a sole final state as shown in Theorem 2.

Reversible Nondeterministic Finite Automata 49

Theorem 20. The family L (REV-NFA) is not closed under Kleene star.

Proof. We consider the language L = (aa + aaa + bb + bbb)∗ as witness for the
assertion. Since {aa+aaa+ bb+ bbb} is finite, it is accepted by some REV-NFA.
So, it remains to be shown that L is not accepted by any REV-NFA.

In contrast to the assertion assume that L belongs to L (REV-NFA). Since L
is closed under reversal, that is, L = LR, by Lemma 3 there exists a multiple-
entry DFA with a sole accepting state A = (Q, {a, b}, δ,Q0, {qf}) that accepts L.
Since λ ∈ L we conclude that qf ∈ Q0. Moreover, since neither a nor b do belong
to L, we know that δ(qf , a) �= qf as well as δ(qf , b) �= qf .

Starting the computation in some initial state on arbitrarily long unary inputs
of the form a+ or b+ drives automaton A either into loops that do not contain the
accepting state qf , or into loops that do contain state qf . Since all these unary
words longer than one have to be accepted, there are at least one initial state
qi ∈ Q0 and numbers ka, �a ≥ 2 such that δ(qi, a

ka) = qf and δ(qf , a�a) = qf .
Similarly, there are at least one initial state qj ∈ Q0 and numbers kb, �b ≥ 2 such
that δ(qj , b

kb) = qf and δ(qf , b�b) = qf .
Now we consider an infinite sequence of words belonging to L defined as

a�a+1, a�a+1b�b+1, a�a+1b�b+1a�a+1, a�a+1b�b+1a�a+1b�b+1, . . .

Let q ∈ Q0 be an initial state such that A accepts one of these words when
starting in q. Then none of the other words are accepted when A starts the
computation in q. In order to give evidence of this claim, let w1 be a word in
the sequence such that δ(q, w1) = qf . Say that w1 ends with a�a+1. Then we
consider any longer word in the sequence, say

w2 = w1(b�b+1a�a+1)ib�b+1, for i ≥ 0, or w2 = w1(b�b+1a�a+1)i, for i ≥ 1.

Assume δ(q, w2) = qf . Since δ(q, w1) = qf we conclude

δ(qf , (b�b+1a�a+1)ib�b+1) = qf or δ(qf , (b�b+1a�a+1)i) = qf .

However, since δ(qf , b�b) = qf , we have

δ(qf , ba�a+1(b�b+1a�a+1)i−1b�b+1) = qf or δ(qf , ba�a+1(b�b+1a�a+1)i−1) = qf ,

a contradiction since neither b nor a may appear alone in any word of L. So,
in order to accept all of the words, an infinite number of initial states would be
necessary. This shows that L is not accepted by any multiple-entry DFA with a
sole accepting state and, thus, not accepted by any REV-NFA. ��

4 Conclusions

We have investigated the accepting power of REV-NFAs. These automata are
a straightforward generalization of REV-DFAs, which were recently investi-
gated in [3,9,13]. It turned out that REV-NFAs are strictly more powerful

50 M. Holzer and M. Kutrib

than REV-DFAs. Moreover, their relation to other reversible finite state mod-
els are studied. Further aspects such as the degree of irreversibility and closure
properties of the language family induced by REV-NFAs is investigated, too.
Reversible NFAs are a natural host for further research questions. For instance,
can we develop characterization of minimal REV-NFAs? Recently, this task was
considered for REV-DFAs in [13], where conditions were found that character-
ize the class of regular languages that admit several non-isomorphic minimal
REV-DFAs.

References

1. Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weakness
and generalizations. In: Motwani, R. (ed.) Foundations of Computer Science (FOCS
1998), pp. 332–341. IEEE Computer Society (1998)

2. Angluin, D.: Inference of reversible languages. J. ACM 29, 741–765 (1982)
3. Axelsen, H.B., Holzer, M., Kutrib, M.: The degree of irreversibility in deterministic

finite automata. In: Han, Y.-S., Salomaa, K. (eds.) CIAA 2016. LNCS, vol. 9705,
pp. 15–26. Springer, Cham (2016). doi:10.1007/978-3-319-40946-7 2

4. Axelsen, H.B., Glück, R.: A simple and efficient universal reversible turing machine.
In: Dediu, A.-H., Inenaga, S., Mart́ın-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638,
pp. 117–128. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21254-3 8

5. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532
(1973)

6. Garćıa, P., de Parga, M.V., López, D.: On the efficient construction of quasi-
reversible automata for reversible languages. Inform. Process. Lett. 107, 13–17
(2008)

7. Gill, A., Kou, L.T.: Multiple-entry finite automata. J. Comput. System Sci. 9, 1–19
(1974)

8. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Boston
(1978)

9. Holzer, M., Jakobi, S., Kutrib, M.: Minimal reversible deterministic finite
automata. In: Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 276–287. Springer,
Cham (2015). doi:10.1007/978-3-319-21500-6 22

10. Holzer, M., Salomaa, K., Yu, S.: On the state complexity of k-entry deterministic
finite automata. J. Autom. Lang. Comb. 6, 453–466 (2001)

11. Kappes, M.: Descriptional complexity of deterministic finite automata with multi-
ple initial states. J. Autom. Lang. Comb. 5, 265–278 (2000)

12. Kobayashi, S., Yokomori, T.: Learning approximately regular languages with
reversible languages. Theoret. Comput. Sci. 174, 251–257 (1997)

13. Lavado, G.J., Pighizzini, G., Prigioniero, L.: Minimal and reduced reversible
automata. In: Câmpeanu, C., Manea, F., Shallit, J. (eds.) DCFS 2016. LNCS,
vol. 9777, pp. 168–179. Springer, Cham (2016). doi:10.1007/978-3-319-41114-9 13

14. Lombardy, S.: On the construction of reversible automata for reversible languages.
In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M.
(eds.) ICALP 2002. LNCS, vol. 2380, pp. 170–182. Springer, Heidelberg (2002).
doi:10.1007/3-540-45465-9 16

http://dx.doi.org/10.1007/978-3-319-40946-7_2
http://dx.doi.org/10.1007/978-3-642-21254-3_8
http://dx.doi.org/10.1007/978-3-319-21500-6_22
http://dx.doi.org/10.1007/978-3-319-41114-9_13
http://dx.doi.org/10.1007/3-540-45465-9_16

Reversible Nondeterministic Finite Automata 51

15. Morita, K., Shirasaki, A., Gono, Y.: A 1-tape 2-symbol reversible Turing machine.
Trans. IEICE E72, 223–228 (1989)

16. Pin, J.-E.: On reversible automata. In: Simon, I. (ed.) LATIN 1992. LNCS,
vol. 583, pp. 401–416. Springer, Heidelberg (1992). doi:10.1007/BFb0023844

17. Veloso, P.A.S., Gill, A.: Some remarks on multiple-entry finite automata. J.
Comput. System Sci. 18, 304–306 (1979)

http://dx.doi.org/10.1007/BFb0023844

Capacitive-Based Adiabatic Logic

Ayrat Galisultanov, Yann Perrin, Hervé Fanet, and Gaël Pillonnet(B)

University Grenoble Alpes, CEA, LETI, 38000 Grenoble, France
gael.pillonnet@cea.fr

Abstract. This paper introduces a new paradigm to implement logic
gates based on variable capacitance components instead of transistor
elements. Using variable capacitors and Bennett clocking, this new logic
family is able to discriminate logic states and cascade combinational logic
operations. In order to demonstrate this, we use the capacitive voltage
divider circuit with the variable capacitor modulated by an input bias
state to the set output state. We propose the design of a four-terminal
capacitive element which is the building block of this new logic family.
Finally, we build a Verilog-A model of an electrically-actuated MEMS
capacitive element and analyze the energy transfer and losses within
this device during adiabatic actuation. The proposed model will be used
for capacitive-based adiabatic logic circuit design and analysis, including
construction of reversible gates.

Keywords: Adiabatic logic · Capacitive-based adiabatic logic · Variable
capacitor · Electromechanics · MEMS · NEMS

1 Introduction

Field-effect transistor (FET) scaling is probably not a long-term answer to
dramatically increase the energy-efficiency of logical computation. Therefore,
a trade-off between the leakage and conduction losses still exists at each CMOS
technology node: the energy per operation can be minimized using an appro-
priate supply voltage and operating frequency. However, despite the nanoscale
transistor size, the lowest dissipation per operation is nowadays a few decades
higher than the theoretical limit introduced by Landauer [1,2]. Even though
Landauer’s theory is still being discussed, it is possible to decrease the energy
required to implement the logical operation at the hardware level. Adiabatic
logic based on FET has been introduced to alleviate this inherent trade-off and
reduce the conduction loss [3]. By smoothing transitions between logic states,
the charge and discharge of the FET gate capacitance C through the FET chan-
nel resistance R of the previous stage is lowered by a factor of 2RC

T , where T
is the ramp duration. But there is still a reduction limit factor due to the FET
threshold voltage VTH . This non-adiabatic part of the conduction limit remains
equal to CV 2

TH

2 . On the other hand, adiabatic operation reduces the operation
frequency and magnifies the FET leakage loss. Even if the energy per operation

c© Springer International Publishing AG 2017
I. Phillips and H. Rahaman (Eds.): RC 2017, LNCS 10301, pp. 52–65, 2017.
DOI: 10.1007/978-3-319-59936-6 4

Capacitive-Based Adiabatic Logic 53

is slightly reduced, by only a factor of ten, there is still a trade-off between the
non-adiabatic conduction and leakage loss. This therefore limits the interest of
FET-based adiabatic logic.

To suppress the leakage, electromechanical relays have been used in the liter-
ature [4]. As they are based on metal-metal contact instead of a semiconductor
junction, the leakage becomes almost negligible [5]. The Shockley law, which
basically links the on-state resistance and leakage in the off-region, is not valid
in relay devices as it is based on electrical contact between two plates [6]. More-
over, the main bottleneck of the relay-based adiabatic logic is the mechanical
reliability of devices [7,8]. To overcome these limitations, we propose a new
logic family called Capacitive-based Adiabatic Logic (CAL) [9]. By substituting
relays with variable capacitors, this approach avoids electrical contact. Mechan-
ical contact between the electrodes is then no longer required. For this reason,
CAL could be more reliable compared to electromechanical relays.

The first section of this paper presents an overview of the new logic family,
at the gate-level. We focus on buffer, inverter, and AND and OR gates, operated
using Bennett clocking. These gates (excluding the NOT gate) are irreversible,
but we also suppose that CAL could be used for reversible gates construction.
Next, we address the question of the cascadability of CAL gates, and a solution to
implement the elementary CAL device based on MEMS technology is proposed.
Finally, we analyze the energy transfer and losses within this device.

2 Buffer and Inverter Functions in CAL

CMOS-based adiabatic logic circuits basically operate with two types of archi-
tecture: the quasi adiabatic pipeline and Bennett clocking. Power supplies called
power clocks (PC’s) are quite different for these two architectures. In a pipeline
architecture, a four-phase power supply is used. The logic state is received from
the previous gate during the evaluate interval, then transmitted to the next gate
during the hold interval. In the recovery stage, the electrical energy stored in the
capacitor of the next gate is recovered. The symmetrical idle phase is added for
reasons of cascadability. In order to guarantee constant output signal from the
previous gate during the evaluation stage, a 90◦ phase shift between subsequent
PC’s is needed.

The second type of PC is called Bennett clocking. Here, the power supply
voltage of the current gate increases and decreases only when the inputs are
stable, as presented in Fig. 1(a). In this work, we use Bennett clocking in order
to avoid problems with maintaining the signal during the hold interval in the
pipeline architecture [2]. The CAL can also be operated in 4-phase PC’s, but it
is out the scope of this paper.

As the PC provides an AC signal, the resistive elements (transistors) in a
voltage divider circuit can be replaced by capacitive ones. In CAL, we keep
the FET transistor notations, i.e. the input voltage is applied between the gate
(G) and the ground. These two terminals are isolated from the drain (D) and
source (S) terminals, which form output with a capacitance CDS . Let us con-
sider the capacitive divider circuit presented in Fig. 1(b). In the first assumption,

54 A. Galisultanov et al.

VPC1

gnd

Vin
Vout1

VPC2

gnd

Vout2
CAL
gate 1

CAL
gate 2

VDD

VPC1

t

VDD
Vin

t

VDD

VPC2

t

Vout

C0

gnd

CDS(Vin)

i(t)

VPC

Vin

a) b)

Fig. 1. Schematics depicting (a) the Bennett clocking principle, and (b) the capacitive
voltage divider circuit.

CDS(Vin) is a variable capacitor which depends only on the input voltage Vin.
The fixed capacitor C0 is the equivalent load of the next gate(s) and the inter-
connections. The output voltage is defined by the capacitance ratio and the PC
voltage VPC(t) such that:

Vout(t) =
CDS(Vin)

C0 + CDS(Vin)
VPC(t). (1)

In this and the next section, the voltages are normalized to the maximum voltage
reached by the PC, VPCmax, i.e. voltages range from 0 to 1. Two limiting cases
emerge which are:

– when CDS � C0, the output voltage value is close to one;
– when CDS � C0, the output voltage value is close to zero.

Thus, with an appropriate CDS(Vin) characteristic, the output voltage can be
triggered by Vin. A particular electromechanical implementation of this variable
capacitor will be discussed later.

There are two possible behaviors of capacitance as a function of the input
voltage. The curve CDS(Vin) can have a positive or negative slope, as presented
in Fig. 2(a). The former case is called positive variation capacitance (PVC) and
the latter, negative variation capacitance (NVC). The low and high-capacitance
values are denoted CL and CH , respectively. PVC and NVC voltage-controlled
capacitors could play the same role in CAL as NMOS and PMOS in FET-based
logic. According to (1), the load capacitance C0 is a critical parameter in the
design of cascadable gates. In order to minimize the low logic state and maximize
the high logic state, the load capacitance must satisfy the following condition:

C0 =
√

CLCH . (2)

For electrical modeling purposes, we assume that the capacitances of PVC
and NVC blocks are given by (3) and (4), respectively.

CDS(Vin) =
CH + CL

2
+

(
CH − CL

2

)
tanh (a(Vin − VT)) (3)

Capacitive-Based Adiabatic Logic 55

gnd

CDS(Vin)

VPC

Vout

gnd

Vin
CDS(Vin)

InverterBuffer

i(t)

VPC

i(t)

C0 C0

R R

Vin

Vout

0,0 0,2 0,4 0,6 0,8 1,0
0

1

2

3

4

5

VT

CH CH

CLCL

PVC

NVC

C
D

S/C
0

Vin/VPCmax

a)

c)

b)

d)

0 2 4 6 8 10 12 14
0

2

4

6
0,0

0,5

1,0

0 2 4 6 8 10 12 14

C0

CDS

C
/C

0

t/T

Vout

VPC

V/
VP

C
m

ax

Vin

0 2 4 6 8 10 12 14
0

2

4

6
0,0

0,5

1,0

0 2 4 6 8 10 12 14

C0

CDS

C
/C

0

t/T

Vout

VPC

V/
VP

C
m

ax

Vin

Fig. 2. (a) C(V) characteristics and symbols for PVC (solid line) and NVC (dash-
dot line) capacitors. (b) Electrical schematics of simple CAL buffer (left) and inverter
(right) circuits. (c-d) Spice-simulated input and output signals (first graph), CDS and
C0 (second graph) of the buffer (c) and inverter (d) gates over time. For (a), (c) and (d),
we used the following parameters: CL = 0.2 pF, CH = 5 pF, C0 = 1 pF, VPCmax = 1
V, VT = 0.5 V, a = 10 V−1, Vinmax = 0.83 V, R = 1 kΩ, T = 100 ns.

CDS(Vin) =
CH + CL

2
−

(
CH − CL

2

)
tanh (a(Vin − VT)) (4)

In (3) and (4), VT is the threshold voltage and a is a positive parameter that
defines the slope of the CDS(Vin) curve.

Buffer and inverter logic gates can be implemented using a capacitive voltage
divider containing a variable capacitor. CAL buffer and inverter circuits are
shown in Fig. 2(b). Relation (1) is true for buffer and inverter circuits only if the
voltage drop in the series resistance is small, and generally this is the case in
adiabatic logic. The results of electrical simulation of a buffer and an inverter are
presented in Fig. 2(c) and (d), respectively. With the set of parameters arbitrarily
chosen here, the logic states can easily be identified in the output. In order to
imitate the cascade of elements, the high and low values of the input voltage are
set equal to the high and low values of the output voltage.

The ratio CH

CL
needs to be maximized in order to clearly identify the logic

states. For example, for a buffer gate with a capacitance ratio of about 25, the
minimal output voltage is equal to 0.17 and the maximal output voltage is equal
to 0.83 (cf. Fig. 2(c)). With a capacitance ratio of about 4, these voltages become
0.33 and 0.66, respectively.

56 A. Galisultanov et al.

gnd

Vin

VPC1

i1(t)

C0

R

gnd

VPC2

i2 (t)

C0

R

gnd

VPC3

i3 (t)

C0

R

gnd

VPC4

i4 (t)

C0

R

Vout

VG1 VG2 VG3

0 5 10 15 20 25

0,0

0,5

1,0
0,0

0,5

1,0
0,0

0,5

1,0
0,0

0,5

1,0

0 5 10 15 20 25

Vout

VPC4

V/
VP

C
m

ax

t/T

VPC3

V/
VP

C
m

ax
V/

V P
C

m
ax

VPC2

VG3

VG2

VPC1

VG1Vin

Vin

V/
VP

C
m

ax

a)

b)

Fig. 3. (a) The cascade of 4 inverters. (b) Spice-simulated: input voltage Vin, VPC1,
output of the first inverter VG1 (first graph), VPC2, output of the second inverter VG2

(second graph), VPC3, output of the third inverter VG3 (third graph), input voltage
Vin, VPC4, output voltage of the fourth inverter Vout (fourth graph) over time. The
model parameters are the same as in Fig. 2.

To prove the ability of CAL to process and transfer logic states through N
logic gates, we investigated the cascading of the 4 inverters presented in Fig. 3(a).
Here, we use Bennett clocking and assume that the input capacitance of the next
gate C0 is constant. It should be noted that from an energy point of view, this
hypothesis is inaccurate as it does not take into account the work of electrical
force (see later). The binary input logic word is “0 1”. The input voltage levels
are the same as in the previous simulation. The results of electrical simulation
of the 4 cascaded inverters are shown in Fig. 3(b). We compare the PC signal
and the output voltage of each gate. As expected, the input logic word has been
transmitted through the 4 inverters. In addition, the amplitude of the output
signal is the same as the amplitude of the input signal.

3 Implementation of AND and OR Gates in CAL

The possible realizations of AND and OR gates based on PVC elements are
shown in Fig. 4(a). The parameters of the circuits are the same as in the previous

Capacitive-Based Adiabatic Logic 57

calculations. The simulated evolution of the output voltage of an AND gate is
given in Fig. 4(b) as a function of the input voltage over time. As expected, the
output reaches a high level only if both AND gate inputs are high. However,
the third graph of Fig. 4(b) shows that the output voltage for low-low and high-
high inputs decreases compared to the case of the buffer examined above. For
example, the high level output voltage drops from 0.83 to 0.7. This is due to the
decrease of the equivalent capacitance, caused by the series connection of the
two variable capacitors CDS1 and CDS2.

Vout

Vin,1

gnd

Vin,2

OR

gnd AND

C0

VPC

VPC

Vout

C0

Vin,1

Vin,2

b)a)

0 5 10 15 20 25

0,0

0,5

1,0

0,0

0,5

1,0

0

2

4

6
0,0

0,5

1,0
0 5 10 15 20 25

V/
VP

C
m

ax

t/T

V/
VP

C
m

ax

C0

CDS2
CDS1

C/
CC

0

"11""10""01"

OR

AND

Vout

Vout

VPC

VPC

Vin2Vin1

V/
VP

C
m

ax

"00"DS1

DS2

Fig. 4. (a) AND and OR gate circuits. (b) Evolution of the input voltages (first graph),
capacitances (second graph), PC and output voltage for AND (third graph) and OR
(fourth graph) gates over time.

We now examine the case of an OR gate. The corresponding output voltage
is reported in the fourth graph of Fig. 4(b). A high output is reached when one
or both inputs are high. In contrast with the case of the AND gate, the output
voltage for low-low and high-high inputs is now higher than for the case of the
buffer. The low level output voltage for low-low inputs rises from 0.17 to 0.3. This
is due to the increase of the equivalent capacitance, caused by the connection in
parallel of the two variable capacitors CDS1 and CDS2.

Serial and parallel connection of variable capacitors reduces the difference
between low and high logic states. This could be an issue for CAL operation.
The same limitation applies to the quantity of gates, N , connected to the output,
i.e. for fan-out operation. Total value of the load capacitance should be in the
range of the variation of the variable capacitor CDS , i.e.:

CL < NC0 < CH . (5)

58 A. Galisultanov et al.

4 Electromechanical Model of a Four-Terminal
Variable Capacitor Element

The key challenge of CAL development is being able to define the scalable hard-
ware necessary to implement the elementary PVC and NVC devices. The capaci-
tor value can be modulated by the variation of relative permittivity, plate surface
and gap thickness. In principle, there are a wide range of available actuators to
realize this modulation: magnetic, piezoelectric, electrostatic, etc. For further
analysis, we selected electrostatic actuators as electrostatic MEMS relays for
scaling with sub-1-volt operation [6], as a possibility for the integration of the
MEMS relays in VSLI circuits has already been demonstrated [4]. The basic
electromechanical device of CAL consists of the two electrically-isolated and
mechanically-coupled capacitors.

4.1 Two-Terminal Parallel Plate Transducer

Let us consider a 1D parallel-plate transducer model of a gap-variable capacitor
with an initial air-filled gap g0, equivalent mass m and equivalent spring constant
k. The electromechanical transducer model in up-state position is shown in the
left part of Fig. 5(a). The up-state capacitance equals:

CG U =
ε0AG

geff
, (6)

where ε0 is the permittivity constant of a vacuum, geff = g0 + td/εd is the
effective electrostatic gap, AG is the electrode area of the gate capacitance,
and td, εd are the thickness and relative permittivity of the dielectric layer,
respectively.

When VG is applied to the electrodes, the electrostatic attractive force (7)
acting on the piston causes its static displacement z. This displacement is defined
by the equilibrium equation related to the restoring force of the spring (8).

FelG(z) =
ε0AGV 2

G

2(geff − z)2
(7)

ε0AGV 2
G

2(geff − z)2
= kz (8)

It can be shown that there is a critical displacement from which the electrostatic
force is no longer balanced by the restoring force and the piston falls down to
the bottom electrode as presented in the right-hand part of Fig. 5(a). The static
pull-in point displacement equals one third of the effective gap and the pull-in
voltage is given by:

Capacitive-Based Adiabatic Logic 59

VPI =

√
8
27

kg3eff
ε0AG

. (9)

The down-state capacitance is defined by the dielectric layer thickness and
equals:

CG D =
ε0εdAG

td
. (10)

In this configuration, the high down-state to up-state capacitance ratio is achiev-
able. However, there is a problem induced by a non-adiabatic pull-down motion.
According to [10], the impact kinetic energy loss is one of the dominant loss
mechanisms in a MEMS relay. The kinetic energy loss cannot be suppressed by
the increasing ramping time, as after the pull-in point, we lose control under the
motion of the piston. In order to avoid this issue, a solution with a controlled
dynamic should be proposed.

Fig. 5. (a) Electromechanical capacitance in up (left) and down (right) states. (b)
Electrostatically-controlled variable capacitor CDS . (c) CG and CDS capacitances
according to VG (VDS = 0 V). (d) Test circuit.

As we discussed above, the static pull-in point displacement equals one third
of the effective gap. We can thus avoid collapse if we add a stopper with a
thickness greater than 2geff/3 to stop the mechanical motion before the pull-
in. This solution allows us to reduce the impact energy loss and eliminate the
uncontrolled dynamic caused by the voltage VG.

60 A. Galisultanov et al.

4.2 Four-Terminal Parallel Plate Transducer with Stopper

Figure 5(b) shows a viable candidate for PCV implementation, where the gap
between the electrodes can be modulated by the electrostatic force caused by
the gate voltage, VG, and the drain-source voltage, VDS . The right part (input)
is electrically isolated from the left which has the drain and source terminals
(output). The output capacitance CDS should be insensitive to VDS when VG =
0 V. In order to guarantee this, we add two couples of symmetrical electrodes,
which form two capacitors CDS T and CDS D. The CDS capacitance is the sum
of the latter. When the input voltage VG and the displacements are small, the
electrostatic attractive force FelDS(z) in the output is almost balanced:

FelDS(z) =
ε0ADSV 2

DS

2(g0/3 + td/εd − z)2
− ε0ADSV 2

DS

2(g0/3 + td/εd + z)2
, (11)

where ADS is the symmetrical output electrode area of the CDS capacitance
and the initial output gap thickness equals g0/3. For the selected gap value, the
piston contacts the bottom electrode when VG equals the contact voltage, Vcon

(12).

Vcon =

√
2kg0(2g0/3 + td/εd)2

3ε0AG
. (12)

In the beginning of this paper, we assumed that CDS depends only on the
input voltage VG. The proposed structure provides us with the same behavior as
with the Bennett clocking PC. The symmetric output capacitance CDS allows
pull-in to be avoided by applying non-zero VDS when the input VG = 0 V. When
the input voltage VG is ramped higher than the contact voltage, the piston comes
into contact with the dielectric layer in the stopper area. After this contact, the
value of VDS no longer affects the position of the piston, and consequently,
neither the input nor the output capacitances. The capacitances CG and CDS

as a function of input voltage VG are presented in Fig. 5(c) (VDS = 0 V). The
ratio CH

CL
for CDS is about 9, whereas the variation of CG capacitance is not as

high and does not exceed 50%.
The dynamic behavior of the parallel plate transducer with an air-filled cavity

is described by the following differential equation of motion:

mz̈ = FelG(z) + FelDS(z) + Fcon(z) − bż − kz, (13)

where we assume that the viscous damping coefficient b does not depend on
the piston displacement. The limit of piston displacement due to the stopper
is modelled by injecting an additional restoring force Fcon as in work [11]. The
adhesion force is neglected. The mechanical resonant frequency f and Q–factor
of the system can be defined from (14) and (15).

Capacitive-Based Adiabatic Logic 61

f =
1
2π

√
k

m
(14)

Q =

√
mk

b
(15)

4.3 Energy Conversion and Losses

In order to study the dynamic behavior of the 4-terminal variable capacitor,
we performed transient electromechanical simulation of the circuit depicted in
Fig. 5(d). However in this paper, only the case of maximal displacement and
large capacitance variation is discussed (VG ≥ Vcon). The equivalent parameters
of the model are extracted from a fixed-fixed gold plate: length 103 µm, width
30 µm and thickness 0.5 µm, according to [11]. The residual stresses in the plate
equal zero and only the linear component of stiffness is used in the model. The
energy components in this system are:

ES1 =
∫ t0

0

VPC1(t)iG(t)dt Energy delivered by the first voltage source

ES2 =
∫ t0

0

VPC2(t)iDS(t)dt Energy delivered by the second voltage source

ECG
=

1
2
CGV 2

G Electrical energy stored in CG

ECDS
=

1
2
CDSV 2

DS Electrical energy stored in CDS

ERG
= RG

∫ t0

0

iG(t)2dt Energy dissipated in the resistor RG

ERDS
= RDS

∫ t0

0

iDS(t)2dt Energy dissipated in the resistor RDS

EM =
1
2
kz2 Mechanical spring energy

EKIN =
1
2
mv2 Kinetic energy

ED = b

∫ t0

0

v(t)2dt Energy loss in damping

ΔE = ES1 − ECG
− ERG

− EM − EKIN − ED Energy balance

where VPC1, VPC2 are the output voltages of the two PC’s, and iG, and iDS the
currents through the resistors RG and RDS , respectively.

The smooth transition needed in any adiabatic logic family reduces the fre-
quency. In CMOS-based digital circuits, logic states are encoded through two

62 A. Galisultanov et al.

0 100 200 300

0

5

10
0,0
0,5
1,0
1,5

0,0
0,1
0,2
0,3

0
2
4
6

0
10
20
30

0,0
0,1
0,2
0,3
0,4

-20

0

20

0
5

10
15
20

0 100 200 300

ΔE

En
er

gy
, f

J

t, μs

En
er

gy
, a

J
En

er
gy

, p
J

EKIN

ERDS

ERG

EDEM

ES1

ES2= ECDS

En
er

gy
, p

J
C

, f
F

z,
μ m

C
ur

re
nt

, A

ECG

CDS

CG

IG IDS

VDS

Vo
lta

ge
, V VG

Fig. 6. Evolution of voltages applied to the four-terminal transducer model (first
graph), currents (second graph), equivalent mass displacement (third graph), capaci-
tances (fourth graph), energy components of electrical part (fifth graph), mechanical
spring energy and damping loss (sixth graph), resistive losses (seventh graph), kinetic
energy and energy balance (eighth graph) over time. We used the following parameters:
g0 = 1 µm, td = 0.1 µm, εd = 7.6, m = 1.19 · 10−11 kg, k = 4.72 N/m, b = 7.48 · 10−6

Ns/m, AG = 8.53 ·10−10 m2, ADS = 0.47 ·10−10 m2, Vcon = 13.8 V, f = 100 kHz, Q =
0.5, T = 50µs, RG = RDS = 1 kΩ.

distinct voltage values, e.g. 0 and VDD. Switching of a bit requires capacitance
C to be charged or discharged. This represents the input capacitance of the fol-
lowing gate. In standard CMOS circuitry, switches are operated sharply over a
time period T << RC, where R is the resistance in the charging part of the
circuit. This leads to a power dissipation of about 1

2CV 2
0 per operation [12].

In adiabatic computing, energy saving is achieved by operating the circuit in
the T >> RC range. This allows the energy of the logic states to be recycled
and reused, instead of conversion into heat [13]. In an electromechanical system
such as CAL, the total dissipation is the sum of the losses in the electrical and
mechanical domains [14]. To reduce power dissipation, the ramping time should

Capacitive-Based Adiabatic Logic 63

be much more than both the electrical RC and mechanical ∝ 1/f time constants.
The time constants of the model follow 1/f = 10 µs, so that RDSCDSmax = 32.5
ps. The time required for the variable capacitance to mechanically change up-
state to down-state is significantly longer than the RC electrical constant. This
means that mechanical motion is adiabatic in the electrical domain. However, a
smooth transition is needed for the maximal time constant.

For the first simulation and model verification, we selected a Bennett clocking
PC with T = 5/f = 50µs and VPC1max = VPC2max = 20 V. The results are
shown in Fig. 6. During the charging process of CG, part of the electrical energy
is converted into mechanical energy. Charging or discharging the CDS capacitor
does not lead to energy conversion as the capacitance remains constant. When
discharging CG, part of the mechanical spring energy stored in the system is
recovered in the first voltage source. The difference between transferred and
received energy is determined by damping, kinetic and resistive losses. However,
mechanical loss dominates, and the resistive loss is 5 orders of magnitude lower
than the mechanical one. The kinetic energy loss is only 6% of the damping loss
for this particular case. The total dissipated energy during one cycle is 172 fJ.
The ratio of the total dissipated energy to the energy delivered by the first voltage
source is 0.067. Consequently, most of the energy provided is recovered. We also
checked the difference between the energy provided by the voltage sources and
all the other energy components (eighth graph of Fig. 6). The energy saving law
is satisfied, i.e. the step in the ΔE graph is caused by kinetic energy loss during
impact. This step is related to the work by the contact force Fcon which limits the
piston motion. This simulation therefore allows us to verify that the proposed
model is energy consistent and can be used for further variable capacitance
development.

In Fig. 7(a), we present the effect of ramping time T on the maximum energy
components during one cycle. All other parameters are the same as in the pre-
vious calculation. The resistive loss is very small and is thus not given in Fig. 7.
As discussed above, increasing the ramping time decreases the mechanical and
total loss values. The latter decreases proportionally: T−0.8. This demonstrates
the absence of any non-adiabatic losses for the proposed design. However, the
main drawback of this approach is the decrease in the operating frequency.

The results for the maximum energy components during one cycle in relation
to Q–factor are shown in Fig. 7(b). The ramping time is fixed and equals 50µs
(5/f). The increase in Q–factor decreases the total mechanical loss value. For
example the Q–factor increases from 0.5 to 10 which reduces the total loss from
172 fJ to 45 fJ per cycle. The loss reduction is monotonous for this case. There-
fore, we can say that an increase in Q–factor allows a decrease in loss without
dramatically decreasing the operating frequency. The maximal value of the Q–
factor is limited by the idle phase between the ramping-down and ramping-up
stages. This time should be sufficient to decay the vibration after input voltage
decrease.

The developed electromechanical model of the variable MEMS capacitance
has been successfully verified. In addition, the main loss mechanisms have been

64 A. Galisultanov et al.

a) b)

1 10 100
0,1

1

10

100

1000

10000
En

er
gy

, f
J

Tf

EEL

EC
EM

ELOSS

EKIN

ED

0,1 1 10

10

100

1000

10000

EKIN

ED

EEL

EC

EM

ELOSSEn
er

gy
, f

J

Q-factor

Fig. 7. Simulated maximal energy components: (a) according to ramping time (Q =
0.5); (b) according to Q–factor (Tf = 5).

established, and the adiabatic loss decreases also demonstrated for an electro-
mechanical device with Bennett clocking actuation. The energy dissipated during
one cycle is in the order hundreds of fF and still far from the energy dissipated
by a nano-scale FET transistor which is in the order a fraction of fF. However,
scalability is possible for the proposed electromechanical devices and with appro-
priate ramping time and Q–factor selection it could overcome this level and try
to confirm or go lower than the Landauer limit. The proposed model will be used
for further CAL circuit design and analysis, including reversible gate circuits.

5 Conclusion

The present work focused on the analysis and hardware implementation of CAL
at the gate level. First, we demonstrated that basic logic functions can be imple-
mented using a capacitive voltage divider with variable capacitors. It was then
shown that the load capacitance of the next logic gates is a critical parameter in
the design of CAL-based circuits. A possible design of a four-terminal variable
capacitors has been proposed and discussed.

In order to analyze all loss mechanisms, an analytical compact model of
the electrostatically-actuated variable capacitor has been developed. In electro-
mechanical adiabatic systems, total loss is a sum of the losses in all electrical
and mechanical domains, where mechanical loss dominates due to a relatively
high mechanical time constant. To decrease these losses, the ramping time T
and Q–factor should be appropriately chosen. The main drawback of an increase
in ramping time is the decrease in operating frequency. The absence of non-
adiabatic losses and leakages allows us to construct reversible gates with ultra-
low power consumption.

The developed electromechanical model of the variable MEMS capacitance
will be used for further CAL circuits design and analysis.

Capacitive-Based Adiabatic Logic 65

References

1. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 5(3), 183–191 (1961)

2. Teichmann, P.: Adiabatic Logic: Future Trend and System Level Perspective.
Springer Science in Advanced Microelectronics, vol. 34. Springer, Netherlands
(2012)

3. Snider, G.L., Blair, E.P., Boechler, G.P., Thorpe, C.C., Bosler, N.W.,
Wohlwend, M.J., Whitney, J.M., Lent, C.S., Orlov, A.O.: Minimum energy for
computation, theory vs. experiment. In: 11th IEEE International Conference on
Nanotechnology, pp. 478–481 (2011)

4. Spencer, M., Chen, F., Wang, C.C., Nathanael, R., Fariborzi, H., Gupta, A.,
Kam, H., Pott, V., Jeon, J., Liu, T.-J.K., Markovic, D., Alon, E., Stojanovic,
V.: Demonstration of integrated micro-electro-mechanical relay circuits for VLSI
applications. IEEE J. Solid-State Circ. 46(1), 308–320 (2011)

5. Houri, S., Billiot, G., Belleville, M., Valentian, A., Fanet, H.: Limits of CMOS
technology and interest of NEMS relays for adiabatic logic applications. IEEE
Trans. Circuits Syst. I Regul. Pap. 62(6), 1546–1554 (2015)

6. Lee, J.O., Song, Y.-H., Kim, M.-W., Kang, M.-H., Oh, J.-S., Yang, H.-H.,
Yoon, J.-B.: A sub-1-volt nanoelectromechanical switching device. Nat. Nanotech-
nol. 8(1), 36–40 (2013)

7. Pawashe, C., Lin, K., Kuhn, K.J.: Scaling limits of electrostatic nanorelays. IEEE
Trans. Electron Devices 60(9), 2936–2942 (2013)

8. Loh, O.Y., Espinosa, H.D.: Nanoelectromechanical contact switches. Nat. Nan-
otechnol. 7(5), 283–295 (2012)

9. Pillonnet, G., Houri, S., Fanet, H.: Adiabatic capacitive logic: a paradigm for low-
power logic. In: IEEE International Symposium of Circuits and Systems ISCAS,
May 2017 (in press)

10. Rebeiz, G.M.: RF MEMS: Theory, Design, and Technology. Wiley, Hoboken (2004)
11. Van Caekenberghe, K.: Modeling RF MEMS devices. IEEE Microwave Mag. 13(1),

83–110 (2012)
12. Paul, S., Schlaffer, A.M., Nossek, J.A.: Optimal charging of capacitors. IEEE Trans.

Circuits Syst. I: Fundam. Theory Appl. 47(7), 1009–1016 (2000)
13. Koller, J.G., Athas, W.C.: Adiabatic switching, low energy computing, and the

physics of storing and erasing information. In: Proceedings of Physics of Compu-
tation Workshop, October 1992, pp. 267–270 (1992)

14. Jones, T.B., Nenadic, N.G.: Electromechanics and MEMS. Cambridge University
Press, New York (2013)

Implementing Reversible Object-Oriented
Language Features on Reversible Machines

Tue Haulund(B), Torben Ægidius Mogensen, and Robert Glück

DIKU, Department of Computer Science,
University of Copenhagen, Copenhagen, Denmark

qvr916@alumni.ku.dk, torbenm@di.ku.dk, glueck@acm.org

Abstract. We extend the reversible language Janus with support
for class-based object-oriented programming, class inheritance and
subtype-polymorphism. We describe how to implement these features on
reversible hardware - with emphasis on the implementation of reversible
dynamic dispatch using virtual method tables. Our translation is effective
(i.e. garbage-free) and we demonstrate its practicality by implementation
of a fully-featured compiler targeting the reversible assembly language
PISA.

1 Introduction

In the present paper, we consider the techniques required for realizing reversible
object-oriented language features on reversible machines. In particular, we iden-
tify effective (i.e. garbage-free) approaches to reversible dynamic dispatch using
virtual method tables, in contrast to the compiler-generated dispatch methods
suggested in [10] for the reversible OOP language Joule.

As a means of illustrating the proposed techniques, we extend the reversible
language Janus [7,11,12] with support for object-oriented programming. A
feature-complete, non-optimizing compiler has been implemented for this lan-
guage, utilizing the methods presented in this paper.

Janus uses a stack-based memory model where local variables are lexically
scoped and must be disposed of in the opposite order they were created. Our vari-
ant of Janus continues with this approach by also storing class instances directly
on the program stack - which means that the language can be implemented
without the use of a reversible memory heap. Nevertheless, the techniques we
present in this paper are intended to be generally applicable and should carry
over to other reversible languages with a more elaborate memory model.

A traditional Janus program consists of one or more procedure definitions.
In place of procedures, we use classes as the basic building blocks of a pro-
gram. Each class definition contains one or more class methods, represented by
a parameterized list of program statements. A program statement may be either
a reversible control flow primitive; a reversible variable update (or swap); an
object block; a local integer block or a method invocation.

Even though the overall program structure is different, most components of
the original Janus language remains: Reversible control flow structures, reversible
c© Springer International Publishing AG 2017
I. Phillips and H. Rahaman (Eds.): RC 2017, LNCS 10301, pp. 66–73, 2017.
DOI: 10.1007/978-3-319-59936-6 5

Implementing Reversible OO Language Features 67

variable updates, local variable blocks and expressions. We refer to [11,12] for
a thorough description of Janus and its features. The translation schemes pro-
vided in this paper are intended to complement the Janus-to-PISA translation
from [1] and are presented using the same notation. An in-depth presentation of
our work on reversible object-oriented programming is available in [6], includ-
ing a complete description and formal semantics of a reversible object-oriented
language.

The following example program modelling shapes in two-dimensional space
illustrates the overall structure of a program:

2 Classes and Inheritance

As is the case for conventional (i.e. irreversible) OOP languages, each class
defines a number of fields and methods, and may also specify a base class. If
a class is derived from a base class, it inherits the data fields and class methods
of that class. Inherited class methods may be overridden in the derived class,
provided the type signature of the methods are identical. Collectively, the classes
of a program form a hierarchy, and inheritance is used to establish a subtype
relation over class instances.

Classes serve as an encapsulation mechanism; a class instance is a bundle of
data and program code. Direct outside access to class data is disallowed, only
class methods may access the class fields. All class fields are in scope within each
class method and may be accessed indiscriminately. For the sake of simplicity,
we do not support access modifiers, friend classes or other mechanisms for fine-
grained control over data access. Such features are useful, but data access control
can be implemented in the usual fashion (as compile-time restrictions), even
when targeting reversible hardware.

68 T. Haulund et al.

3 Aliasing

A variable update statement from Janus is reversible only when the value of the
right-hand side expression does not depend on the value of the memory cell being
updated. In Janus, this can be verified by simple syntactic analysis, because the
language is designed to make it impossible for two different identifiers within
the same scope to refer to the same location in memory. Consequently, if the
identifier on the left-hand side of an update does not occur in the right-hand
side expression, the update is reversible.

In contrast to Janus, direct access to class fields from within a class method
must be considered when judging the reversibility of a statement in a reversible
OOP language. Specifically, two restrictions apply in order to avoid aliasing in
our OOP variant of Janus: No single identifier may be passed to more than one
parameter in a single method invocation and a class field may not be passed as
an argument to a method of that same class. These restrictions place an added
burden on the programmer and limit the usability of the language. In return,
they allow for simple compile time detection of irreversible updates.

An alternative approach to the aliasing restriction is to insert run time checks
around each variable update [10], which issues an error if an update is irre-
versible. However, this incurs a cost in execution time and in code size. With a
static aliasing analysis, these costs can be minimized by omitting the run time
checks wherever the compiler can guarantee that an update is reversible.

4 Translation

In the following sections we will provide translation schemes from our high-
level OOP language to the reversible assembly language PISA. We refer to [5]
for a complete list of PISA instructions. A complete formalization of the PISA
language and the Pendulum machine was given in [3] and a translation from
Janus to PISA was presented in [1]. PISA is also the target language of the R
compiler [4,5].

In addition to the regular PISA instructions, we make use of the following 4
pseudoinstructions (where rsp refers to the register holding the stack pointer sp):

SUBI r i
def
= ADDI r − i

PUSH r
def
=

[
EXCH r rsp , ADDI rsp 1

]

POP r
def
=

[
SUBI rsp 1 , EXCH r rsp

]

CALL r
def
=

[
SWAPBR r, NEG r

]

Implementing Reversible OO Language Features 69

4.1 Objects and Memory

In a reversible language we cannot simply leave values in unused memory and
then overwrite them later on when the memory is needed again - this would lead
to a loss of information which compromises reversibility. As a result, we require
unused memory to already be zero-cleared at the time of object instantiation,
so the fields of each new object have a known initial value. To maintain the
memory in this state, we must ensure that any memory marked as unused does
not contain non-zero values. Consequently, all the state that has accumulated
within an object must be zero-cleared before the object is deallocated.

Like local variables in Janus, we use lexical scoping for class instances which
means they can be stored on the program stack rather than in a reversible
memory-heap (which, on the other hand, would allow for staggered alloca-
tion/deallocation of objects). We use a symmetric construct/destruct block
to define the lifetime of an object. Consider the following statement, where c is
the name of a class, x is an identifier and s is a statement:

construct c x s destruct x

Before the sub-statement s is executed, an object of type c is instantiated. Ini-
tially, the fields of this new class instance are all zero, since the newly allocated
object resides in zero-cleared memory. Within the statement s, the identifier x
refers to the new object and the state of the object may be mutated through invo-
cation of class methods. When the statement s has been executed, the state of
the object must have been zero-cleared – otherwise the system cannot reversibly
reclaim the memory occupied by the object. It is up to the programmer to
maintain this invariant, otherwise the program stops with an error indication.
Symmetric record construction/deconstruction was first suggested in [2,10].

Fig. 1. Memory layout of 3 class instances

Figure 1 illustrates the memory layout of 3 objects based on the class hier-
archy from the example program in Sect. 1. An object consists of a number of
class fields and a pointer to the virtual method table which resides in a static

70 T. Haulund et al.

memory segment before the program and the program stack. We can implement
this object instantiation with the following series of PISA instructions:

construct c x s destruct x

(1) XOR rx rsp ; Store address of new object x in rx
(2) XORI rv labelvt ; Store address of vtable in rv
(3) EXCH rv rsp ; Push address of vtable onto stack

(4) ADDI rsp sizec ; Allocate space for new object

(5) · · · · · · ; Code for statement s

(6) SUBI rsp sizec ; Deallocate space occupied by zero-cleared object

(7) EXCH rv rsp ; Pop vtable address into rv
(8) XORI rv labelvt ; Clear rv
(9) XOR rx rsp ; Clear rx

Register rsp contains the stack pointer while rx and rv are free registers. The
immediate labelvt represents the address of the virtual method table for class c
while sizec equals the size of an instance of class c.

4.2 Methods

The calling convention in [1] is a generalized version of the PISA calling con-
vention from [5], modified to support recursion. Our translation uses a simi-
lar approach with added support for method parameters and pass-by-reference
semantics.

To facilitate access to class fields from within a class method, each translated
method is given an extra hidden parameter which contains the address of the
object to which the method belongs at each invocation. When a method accesses
a class field, it only needs to add the memory offset for that field to the object
pointer to obtain the address of the class field. The PISA translation of a method
q is given by:

method q(int x1, int x2) qbody

(1) qtop : BRA qbot
(2) POP rro ; Load return offset

(3) PUSH [rx2 , rx1 , rthis] ; Restore this-pointer and arguments

(4) labelq : CALL rro ; Method entry and exit point

(5) POP [rthis, rx1 , rx2] ; Load this-pointer and arguments

(6) PUSH rro ; Store return offset

(7) · · · · · · ; Code for method body qbody
(8) qbot : BRA qtop

The caller transfers control to instruction (4) after which the object-pointer
and method arguments are popped off the stack, the return offset is stored and

Implementing Reversible OO Language Features 71

the body is executed. The method prologue works identically for both directions
of execution which avoids the need for multiple translations of the same method
to support reverse execution.

4.3 Dynamic Dispatch

A virtual method call involves three overall steps:

1. Lookup: Fetch the memory address of the method implementation using the
virtual method table of the object.

2. Jump: Compute the memory offset relative to the address of the jump
instruction, push the arguments to the program stack, jump to the method
and pop the arguments from the program stack after the call returns.

3. Cleanup: Uncompute the memory offset to reobtain the absolute memory
address, zero-clear registers by lookup in the virtual table.

The following series of instructions shows the PISA translation of a virtual
method invocation:

call x::q(x1, x2)

(1) EXCH rv rx ; Get address of vtable

(2) ADDI rv offsetq ; Lookup q in vtable

(3) EXCH rt rv ; Get address of q

(4) XOR rtgt rt ; Copy address of q

(5) EXCH rt rv ; Place address back in vtable

(6) SUBI rv offsetq ; Restore vtable pointer

(7) EXCH rv rx ; Restore object pointer

(8) PUSH [rx2 , rx1 , rx] ; Push args and new’this’ onto stack

(9) SUBI rtgt labeljmp ; Calculate jump offset

(10) labeljmp : CALL rtgt ; Jump to method

(11) ADDI rtgt labeljmp ; Restore absolute jump value

(12) POP [rx, rx1 , rx2] ; Pop args and new’this’ from stack

(13) EXCH rv rx ; Get address of vtable

(14) ADDI rv offsetq ; Lookup q in vtable

(15) EXCH rt rv ; Get address of q

(16) XOR rtgt rt ; Clear address of q

(17) EXCH rt rv ; Place address back in vtable

(18) SUBI rv offsetq ; Restore vtable pointer

(19) EXCH rv rx ; Restore object pointer

Since the virtual table pointer is stored at offset 0, the address of the virtual
table can be procured simply by dereferencing the pointer to the object. The
lookup in the table involves adding a fixed offset to the virtual table address. The

72 T. Haulund et al.

offset is determined by the compiler and corresponds to the entry in the virtual
table for the method that is being invoked. Since memory access in PISA works
by swapping out values, we use Bennett’s method to create a copy of the address
in a register before swapping it back into the virtual table. This ensures that the
virtual table is returned to its original state before we jump to the method. The
jump itself is accomplished dynamically, with the CALL pseudo-instruction.

All jump targets in PISA must be relative to the address of the jump instruc-
tion. Normally, absolute jump addresses are converted to relative jump offsets
at load time but since the target address is not known until run time in this
case, we must compute the relative offset manually. We do this by subtracting
the address of the jump instruction from the absolute address of the method
implementation, fetched from the virtual table. After the jump, we undo this
computation to reobtain the absolute address which can then be XOR zero-
cleared by looking up the same address again in the virtual table. In effect, we
undo the entire lookup phase of the virtual call, thereby zero-clearing all the
registers involved in the dispatch process.

The entire sequence of PISA instructions representing the virtual call is palin-
dromic with respect to its own inversion. Consequently, the virtual call mech-
anism will behave the same regardless of the direction of execution. Virtual
uncalls are implemented in the same manner as virtual calls, only the direction
of execution is reversed before the jump to the method implementation:

uncall x::q(x1, x2)

(9) SUBI rtgt labeljmp ; Calculate jump offset

-- topjmp RBRA botjmp ; Flip direction

(10) labeljmp : CALL rtgt ; Jump to method

-- botjmp BRA topjmp ; Paired branch

(11) ADDI rtgt labeljmp ; Restore absolute jump value

5 Conclusion

We described an extension to the reversible language Janus which adds support
for OOP, class inheritance and subtype-polymorphism. We also provided a trans-
lation from this language to the reversible assembly language PISA. We showed
how the addition of basic OOP features does not interfere with the reversibility
of the language.

We established how reversible dynamic dispatch can be implemented on a
reversible machine, by means of virtual method tables. The feasibility of the
proposed translation was demonstrated by implementation of a fully-fledged
compiler. We believe this is important because it demonstrates that language
features central to mainstream OOP languages such as C++ or Java can be
made accessible to the field of reversible computing.

Implementing Reversible OO Language Features 73

It is our hope that our reversible OOP language and the techniques employed
in its translation can serve as a basis for further research into reversible object-
oriented programming. In order to move away from stack allocated objects, which
are simple to implement but cumbersome to work with, more work is needed on
the topics of reversible memory heaps and reversible dynamic memory manage-
ment. Some work has already been done on these topics with regards to reversible
functional languages [2,8,9].

Acknowledgments. The authors would like to thank the European COST Action IC
1405 “Reversible Computation” for its valuable support and Ulrik Pagh Schultz for his
insightful comments.

References

1. Axelsen, H.B.: Clean translation of an imperative reversible programming lan-
guage. In: Knoop, J. (ed.) CC 2011. LNCS, vol. 6601, pp. 144–163. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-19861-8 9

2. Axelsen, H.B., Glück, R.: Reversible representation and manipulation of construc-
tor terms in the heap. In: Dueck, G.W., Miller, D.M. (eds.) RC 2013. LNCS, vol.
7948, pp. 96–109. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38986-3 9

3. Axelsen, H.B., Glück, R., Yokoyama, T.: Reversible machine code and its abstract
processor architecture. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR
2007. LNCS, vol. 4649, pp. 56–69. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74510-5 9

4. Frank, M.P.: The R programming language and compiler, MIT Reversible Com-
puting Project Memo #M8 (1997)

5. Frank, M.P.: Reversibility for efficient computing. Ph.D. thesis, Massachusetts
Institute of Technology (1999)

6. Haulund, T.: Design and Implementation of a Reversible Object-Oriented Pro-
gramming Language. Master’s thesis, University of Copenhagen, DIKU (2016)

7. Lutz, C.: Janus: a time-reversible language, Letter to R. Landauer (1986)
8. Mogensen, T.Æ.: Reference counting for reversible languages. In: Yamashita, S.,

Minato, S. (eds.) RC 2014. LNCS, vol. 8507, pp. 82–94. Springer, Cham (2014).
doi:10.1007/978-3-319-08494-7 7

9. Mogensen, T.Æ.: Garbage collection for reversible functional languages. In:
Krivine, J., Stefani, J.-B. (eds.) RC 2015. LNCS, vol. 9138, pp. 79–94. Springer,
Cham (2015). doi:10.1007/978-3-319-20860-2 5

10. Schultz, U.P., Axelsen, H.B.: Elements of a reversible object-oriented language.
In: Devitt, S., Lanese, I. (eds.) RC 2016. LNCS, vol. 9720, pp. 153–159. Springer,
Cham (2016). doi:10.1007/978-3-319-40578-0 10

11. Yokoyama, T., Axelsen, H.B., Glück, R.: Principles of a reversible programming
language. In: Computing Frontiers, pp. 43–54. ACM (2008)

12. Yokoyama, T., Glück, R.: A reversible programming language and its invertible self-
interpreter. In: Partial Evaluation and Semantics-based Program Manipulation, pp.
144–153. ACM (2007)

http://dx.doi.org/10.1007/978-3-642-19861-8_9
http://dx.doi.org/10.1007/978-3-642-38986-3_9
http://dx.doi.org/10.1007/978-3-540-74510-5_9
http://dx.doi.org/10.1007/978-3-540-74510-5_9
http://dx.doi.org/10.1007/978-3-319-08494-7_7
http://dx.doi.org/10.1007/978-3-319-20860-2_5
http://dx.doi.org/10.1007/978-3-319-40578-0_10

Reversible Circuit Synthesis

Designing Parity Preserving Reversible Circuits

Goutam Paul1(B), Anupam Chattopadhyay2, and Chander Chandak3

1 Cryptology and Security Research Unit (CSRU),
R.C. Bose Centre for Cryptology and Security,

Indian Statistical Institute, Kolkata 700 108, India
goutam.paul@isical.ac.in

2 School of Computer Engineering,
Nanyang Technological University (NTU), Singapore, Singapore

anupam@ntu.edu.sg
3 Liv Artificial Intelligence Pvt. Ltd., Bengaluru, India

chandar.chandak@gmail.com

Abstract. With the emergence of reversible circuits as an energy-
efficient alternative of classical circuits, ensuring fault tolerance in such
circuits becomes a very important problem. Parity-preserving reversible
logic design is one viable approach towards fault detection. Interestingly,
most of the existing designs are ad hoc, based on some pre-defined par-
ity preserving reversible gates as building blocks. In the current work,
we propose a systematic approach towards parity preserving reversible
circuit design. We prove a few theoretical results and present two algo-
rithms, one from reversible specification to parity preserving reversible
specification and another from irreversible specification to parity preserv-
ing reversible specification. We derive an upper-bound for the number of
garbage bits for our algorithm and perform its complexity analysis. We
also evaluate the effectiveness of our approach by extensive experimental
results and compare with the state-of-the-art practices. To our knowl-
edge, this is the first work towards systematic design of parity preserving
reversible circuit and more research is needed in this area to make this
approach more scalable.

Keywords: Fault tolerance · Parity · Quantum computing · Reversible
circuits

1 Introduction and Motivation

It is known that erasure of a single bit of information dissipates heat equivalent
to KBT ln 2 [3,12], where KB = 1.38 × 10−23 J/K is Boltzmann constant and T
is the room temperature in Kelvin. This heat dissipation is in conformity with
the laws of thermodynamics applied to any irreversible process. Using reversible
logic implementation of Boolean functions, it is theoretically possible to make
heat dissipation and hence power loss negligible. Though classical logic is not
reversible, it is possible to represent classical Boolean functions using reversible
logic [2]. On the other hand, any quantum computation is based on unitary

The original version of this chapter was revised: Table 2 was corrected. An erratum
to this chapter can be found at 10.1007/978-3-319-59936-6 20

c© Springer International Publishing AG 2017
I. Phillips and H. Rahaman (Eds.): RC 2017, LNCS 10301, pp. 77–89, 2017.
DOI: 10.1007/978-3-319-59936-6 6

78 G. Paul et al.

evolution of quantum mechanical systems and is inherently reversible. However,
with increasing demand on low power design, reversible logic finds application
not only in quantum circuits, but also in designing conventional circuits for
encoding/decoding etc [34].

Any physical device performing classical or quantum computation is subject
to error due to noise in the environment or imperfections in the device. Fault
tolerant computing can mitigate this. There are two broad approaches towards
fault tolerance - one focuses on fault prevention and the other focuses on first
fault detection and then fault correction. For fault detection, usage of redundant
parity bits is one of the most popular approaches. For classical circuits, bit flip
is the most common type of error. For quantum circuits, in addition to bit flip,
there might be phase flip as well. In this short technical note, we focus on bit
flip errors.

Most common method for detecting bit-flip errors in storage or transmission
is by means of parity checking. Classically, most arithmetic and other process-
ing functions do not preserve the parity. One has to use redundant circuitry
to compute and check the parity. In general, making a reversible circuit fault-
tolerant is much more difficult than classical circuit, since reversible logic allows
no feedback or fan-out. The notion of parity-preserving arithmetic circuits goes
back to [19]. Later, in [20], the concept of parity preserving reversible circuits
was introduced. The idea is to design the reversible circuit in such a way that
the parity between the input and the output bits are automatically conserved in
absence of any error.

After [20], there has been a series of sporadic works in this area, such as
designing adders [11], divider [4], multiplier [23], multiplexer [25], ALU [26] etc.
The work [36] discusses the various steps required in the logic design of quantum
circuits.

However, all of these designs are ad hoc, based on some pre-defined parity
preserving reversible gates as building blocks. To the best of our knowledge, in
this article, we for the first time propose a novel and systematic approach towards
parity preserving reversible circuits design. We provide some related theoretical
results and give two algorithms. The first algorithm converts a reversible speci-
fication to parity preserving reversible specification and the second one converts
an irreversible specification directly to parity preserving reversible specification.

There are other approaches than parity preservation, for achieving fault-
tolerance in reversible circuits, as described in [17] and in [18]. The advantage of
parity-preserving circuit is that one need not do any extra operations in order
to detect errors or faults; the fault detection becomes a by-product of the usual
computation in the circuit. With this motivation, we focus on designing parity-
preserving reversible circuits in this paper.

2 Reversible Logic Synthesis

An n-variable Boolean function is reversible if all its output patterns map
uniquely to an input pattern and vice-versa. It can be expressed as an n-
input, n-output bijection or alternatively, as a permutation over the truth value

Designing Parity Preserving Reversible Circuits 79

set {0, 1, . . . 2n−1}. The problem of reversible logic synthesis is to map such a
reversible Boolean function on a reversible logic gate library.

The gates are characterized by their implementation cost in quantum tech-
nologies, which is dubbed as Quantum Cost (QC) [14,16]. Reversible logic gates
can also be represented as an unitary transformation, therefore serving as build-
ing blocks for quantum computers. Few prominent classical reversible logic gates
are presented below.

– NOT gate: On input A, it produces A as output.
– CNOT gate: On input (A,B), it produces (A,A ⊕ B) as output.
– CCNOT gate: Also known as Toffoli gate. On input (A,B,C), it produces

(A,B,AB ⊕ C) as output. This gate can be generalized with Tofn gate,
where first n − 1 variables are used as control lines. NOT and CNOT gates
are denoted as Tof1 and Tof2 respectively.

– Peres gate: A sequence of Tof3(a, b, c), Tof2(a, b) or its inverse is known as
Peres gate.

– Controlled Swap gate, also known as Fredkin gate. On input (A,B,C), it
produces (A,A.B +A.C,A.C +A.B) as output. This gate can be generalized
with Fredn gate (n > 1), where first n− 2 variables are used as control lines.

Multiple sets of reversible gates form an universal gate library for realizing
classical Boolean functions such as, (i) NCT: NOT, CNOT, Toffoli. (ii) NCTSF:
NOT, CNOT, Toffoli, SWAP, Fredkin. (iii) GT: Tofn. (iv) GTGF: Tofn and
Fredn. Of late, Clifford+T gate library is preferred for Quantum circuit con-
struction due to the known constructions of Clifford group of operators and T
gate for most promising error correcting codes, including surface code. In this
work, we focus on the logical fault tolerance issue and focus on the classical
reversible logic gates. Efficient Clifford+T realization of classical reversible logic
gates form an important research problem.

Reversible logic synthesis begins from a given n-variable Boolean function,
which can be irreversible. The first step is to convert it to a reversible Boolean
function by adding distinguishing output bits, known as garbage outputs. When
additional input Boolean variables are needed for constructing the output func-
tion, those are referred as ancilla. In this work, we focus on minimizing the
number of garbage outputs. However, for a full generalized analysis, one should
consider joint minimization of both the numbers of garbage outputs and the
ancilla inputs.

Reversible logic synthesis methods can be broadly classified in four categories
as following. A different and more detailed classification is presented in a recent
survey of reversible logic synthesis methods [24].

– Exact and Optimal methods: These methods consider step-by-step
exhaustive enumeration or formulating the logic synthesis as a SAT problem
[7] or reachability problem [10]. Optimal implementations for all 4-variable
Boolean functions [6] and for selected benchmarks up to 6-variable Boolean
functions are known [9].

80 G. Paul et al.

– Transformation-based method [13,35]: These methods use a weighted
graph representation for performing the transformations, while [13] proceed
row-wise in the Boolean truth-table.

– Methods based on decision diagrams [29,32]: In this approach, each
node of the decision diagram is converted to an equivalent reversible circuit
structure. These methods reported excellent scaling for large Boolean func-
tions, low QC at the cost of high number of garbage bits.

– ESOP-based methods: For classical logic synthesis, the exclusive sum of
products (ESOP) formulation is studied well for specific target technolo-
gies [15]. For reversible logic synthesis, the ESOP formulation [8] maps
directly to the basic reversible logic gates and has led to significant research
interest.

Among the above methods, methods based on Decision Diagrams and ESOP-
based methods can synthesize an irreversible Boolean specification to reversible
circuit by adding extra garbage lines. However, these methods do not guaran-
tee the minimum garbage count. On the other hand, determination of mini-
mum garbage count and their assignment is non-trivial, particularly for Boolean
functions with large number of variables [33]. To the best of our knowledge,
no automatic reversible logic synthesis tool supports automatic derivation of
parity-preserving Boolean specification from an irreversible/reversible Boolean
specification. Our flow proposed in the paper can be complemented with any
reversible logic synthesis flows, which work on reversible Boolean specifications.

3 Theoretical Results

First we discuss how to convert a reversible Boolean specification (that does not
necessarily consider parity preservation) into parity-preserving reversible speci-
fication. Before proceeding, we count the number of n-variable parity preserving
reversible Boolean functions in Theorem 1.

Theorem 1. Total number of n-variable parity preserving reversible Boolean
functions is

(
2n−1!

)2.

Proof. In the truth table of an n-variable reversible Boolean function, there are
2n input and output rows. Half of the 2n input (or output) rows, i.e., total 2n−1

rows would have odd parity and the other half would have even parity. For the
function to be parity-preserving, the odd-parity input rows must map to the
odd-parity output rows. There are 2n−1! such mappings. Corresponding to each
of these, the even-parity input rows must map to the even-parity output rows
and there are again 2n−1! such mappings. Hence the result follows.

The method of constructing a parity-preserving reversible specification
from any reversible specification is described in the proof of Theorem 2.

Designing Parity Preserving Reversible Circuits 81

Theorem 2. Given any n-variable reversible Boolean specification, it can be
converted to a parity-preserving reversible Boolean specification with the intro-
duction of at most one extra variable.

Proof. If the function is already parity-preserving, we need not do anything. If
not, then in the output column of the truth table, we can just put a 0 in the
parity-matching rows and a 1 in the parity-mismatching rows. On the input side,
the extra variable can be set to the constant 0. Hence the result follows.

3.1 Direct Method of Converting Irreversible Specification
to Parity-Preserving Reversible Specification

Next, we discuss the case when we are given an irreversible Boolean specification.
One simple approach can be a two-phase procedure: first, to use some standard
approaches [33] for converting the irreversible specification to a reversible spec-
ification, and next, use the result of Theorem 2. However, the first phase in
this approach may incur unnecessary extra garbage bits. To avoid this problem,
we provide a direct method of converting a given irreversible specification to a
parity-preserving reversible specification with theoretically bounded number of
extra bits. The method is as follows.

Since the specification is irreversible, the output rows must contain duplicate
bit-strings. Suppose there are n input variables and hence 2n rows in the truth
table. Suppose there are k < 2n distinct output bit-strings, with the counts
n1, . . . , nk, such that

∑k
i=1 ni = 2n. For each i = 1, . . . , k, out of ni rows with

the same output bit-string, let ni,p be the number of rows where the input and
the output parity is matching and so ni − ni,p is the number of rows where
the parity is not matching. To differentiate the matching rows we need at least
�log2 ni,p� extra bits. Similarly, to differentiate the mismatching rows, we need
at least �log2 (n − ni,p)� extra bits. Hence, for the rows corresponding to the
bit-string category i, the number of extra bits needed is at most one more than
the maximum of these two numbers. The one additional bit may be required to
match the parity, in case the specification with the garbage bits is not already
parity-preserving. Thus, the total number of extra bits needed is given by the
maximum of the above quantity over all i’s. Hence, with the above formulation,
we have the following result.

Theorem 3. The number of extra bits needed by the proposed algorithm to con-
vert an irreversible specification to parity-preserving reversible specification is at
most

k
max
i=1

{max{�log2 ni,p�, �log2 (n − ni,p)�}} + 1.

Note that the expression before 1 is the number of garbage lines needed to
convert the irreversible specification to reversible specification which has been
explained in the following subsection.

82 G. Paul et al.

3.2 Algorithm and Its Complexity Analysis

We present the algorithm for converting an irreversible specification to parity-
preserving reversible specification in Algorithm 1. Suppose x1, . . . , xk are k inte-
gers ∈ {0, . . . , 2n−1} corresponding to the distinct output bit-strings. Note that
according to our notation, xi appears ni times. We will keep two arrays match
and mismatch as follows. In the algorithm, match[xi] will contain ni,m and
mismatch[xi] will contain n−ni,m. The array count[i], for 0, . . . , 2n −1, is filled
from top to bottom order, corresponding to each output row as follows: count[i]
contains how many times the i-th output row has appeared so far starting from
the top row in both the cases when the parity is preserved and when it is not
preserved.

ALGORITHM 1. Irreversible to Parity Preserving Reversible Specifica-
tion
Input: n, An integer array out[0 . . . 2n − 1], containing the decimal equivalent

of the output rows of an n-variable Boolean function.
Output: Parity preserving reversible specification.

1 max = 0;
2 for i = 0 to 2n − 1 do
3 match[i] = 0, mismatch[i] = 0, count[i] = 0;

end
4 for row ← 0 to 2n − 1 do
5 if parity matches then
6 match[out[row]]++;
7 count[row] = match[out[row]];
8 if max < match[out[row]] then
9 max = match[out[row]];

end

end
10 else
11 mismatch[out[row]]++;
12 count[row] = mismatch[out[row]];
13 if max < mismatch[out[row]] then
14 max = mismatch[out[row]];

end

end

end
15 g = log2 max + 1;
16 Add g columns to the Boolean output specification;
17 for row ← 0 to 2n − 1 do
18 k = count[row];
19 Append binary value of k in the g − 1 bits;
20 Use the last bit, if necessary, to match parity;

end

Designing Parity Preserving Reversible Circuits 83

Now we present the complexity of our algorithm in Theorem 4.

Theorem 4. For an n-input m-output Boolean specification, the running time
of Algorithm 1 is O((n + m)2n).

Proof. The maximum number of input or output rows in the Boolean specifi-
cation is 2n. Let there be k < 2n distinct output bit-strings with the counts
n1, . . . , nk, such that

∑k
i=1 ni = 2n. For each row we have to compute the num-

ber of 1’s in the input and output bit-strings for computing the parity. The
algorithmic complexity for this traversal is O((n + m)2n), which accounts for
Steps 2 to 14. After this computation, we have one more iteration over the out-
put rows through Step 17 to 20, the running time of which is dominated by
O((n + m)2n). Hence the result follows.

4 Experimental Results

The proposed algorithm has been implemented and tested on several benchmark
circuits, using C++ on an Intel(R) Core(TM) i5-3570 CPU (Quad-core) with
3.40 GHz clock and 6 MB cache, having Linux version 2.6.32-358.6.2.el6.x86 64
as the OS, and gcc version 4.4.7 as the compiler. First, we compared our auto-
matically generated parity-preserving reversible circuits with manually created
parity-preserving reversible circuits reported by others. Our comparison metric
is the number of additional garbage lines required for preserving parity. Quan-
tum cost and Gate Count for different specifications can vary considerably. In
the paper we have given an example of rd53 circuit. For this circuit we can
have a total of (10! × 10! × 5! × 5! = 1.8962193e + 17) different possible par-
ity preserved specifications. Even Table 2 in the paper with Full Adder Boolean
specification has (3! × 3! = 36) different possible reversible specifications.

4.1 Comparison with State-of-the-Art

We apply the proposed algorithm on Half Adder and Full Adder as two test
cases. The transformation of irreversible Boolean specification to a reversible one
is depicted in Tables 1 and 2 respectively, with the required number of constant
input and garbage lines. The ancilla inputs and garbage outputs are referred as
Ai and Gi respectively. The reversible specification thus obtained can be used to
implement the reversible circuit using the well-known reversible logic synthesis
methods for garbage-free synthesis [13].

We do not compare the gate count and quantum cost incurred in realizing
the circuit as the proposed algorithm does not aim to optimize those parameters.
Our aim was to minimize the number of garbage lines. For the parity preserved
half adder circuit obtained from the proposed algorithm, the gate count and
quantum cost required for the realization of the circuit are 8 and 28 respec-
tively. The approach followed for the construction of the circuit is similar to
the transformation based synthesis as proposed in [13]. The circuit is shown in
Fig. 1.

84 G. Paul et al.

Table 1. Half Adder Boolean specification

Irreversible specification Reversible specification

Input Output Input A1 A2 Output G1 G2

00 00 00 0 0 00 0 0

01 10 01 0 0 10 0 0

10 10 10 0 0 10 1 1

11 01 11 0 0 01 0 1

Table 2. Full Adder Boolean specification

Irreversible specification Reversible specification

Input Output Input A1 A2 Output G1 G2 G3

000 00 000 0 0 00 0 0 0

001 10 001 0 0 10 0 0 0

010 10 010 0 0 10 0 1 1

011 01 011 0 0 01 0 0 1

100 10 100 0 0 10 1 0 1

101 01 101 0 0 01 0 1 0

110 01 110 0 0 01 1 0 0

111 11 111 0 0 11 0 0 1

1

2

1

2

1

2

Fig. 1. Realization for the parity preserved half adder circuit as per Table 1

Designing Parity Preserving Reversible Circuits 85

In terms of the ancilla and garbage count, we obtain exactly the same number
for both the Half Adder and Full Adder circuits as obtained manually in [1,27].

It is also worthwhile to compare with the online testability approaches pro-
posed in [17,18]. There, an additional parity line and modulo-redundancy is
added corresponding to every reversible gate after the circuit is synthesized.
Naturally, this leads to a significant design overhead, which can be up to 300%
in terms of gate count [18]. Even with such an overhead, there are fault scenarios
that cannot be covered. In contrast, our proposition only requires 2N additional
CNOT gates, where N is the number of inputs in the parity-preserved reversible
circuit. The CNOT gates are targeted towards one additional parity line, similar
to the Preamble and Postamble blocks suggested in [18].

A limitation of our approach is that it assumes a rather simplistic bit-flip
model arising from classical reversible logic circuits. In the context of, say, Quan-
tum technologies, the fault models are different [22] and requires a deeper analy-
sis. For example, it is indeed possible to interpret a Single Missing Gate Fault
(SMGF) or Single Missing Control Fault (SMCF) as a bit-flip, though, it is not
guaranteed that a parity-preserving reversible circuit can lead to a 100% detec-
tion of all possible missing faults. For that, the propagation of an individual
bit-flip and the masking effects of the subsequent gates need to be taken into
account. Moreover, the correlation between parity violation and the two kinds
of missing faults is circuit specific. Clearly, it is an interesting open problem to
identify the minimum performance overhead to guarantee complete fault cover-
age with a solution lying between gate-wise redundancy advocated earlier [18]
and circuit-level parity-preservation proposed here.

4.2 Tests for Boolean Functions with Large Variable Count

We also tried the algorithm for several Boolean functions with large number of
variables, for which obtaining a parity-preserving Boolean specification manually
would be hard.

As an example, our algorithm converts the irreversible specification rd53 [13]
into reversible one as enlisted in Table 3. A summary of all the functions we tried
is presented in Table 4. In this table, the tar functions are from Tarannikov’s
paper [31]. From [31, Eq. 2], we use the parameter c as 001 to construct an 8-
variable, 2-resilient function then we get tar82 2 001.pla. Similarly tar93 110.pla
and tar93 101.pla are 9 variable 3-resilient functions with the c vector as 110 and
101 respectively. The functions like rdNK is presented in several benchmarks
on reversible logic synthesis [16]. The input weight function rdNK has N inputs
and K = �logN� + 1 outputs. Its output is the binary encoding of the number of
ones in its input. The other functions are obtained from RevKit benchmark [28].

86 G. Paul et al.

Table 3. Reversible Boolean specification for rd53 function

Input A1 A2 A3 Output G1 G2 G3 G4 G5

00000 0 0 0 000 0 0 0 0 0

00001 0 0 0 001 0 0 0 0 0

00010 0 0 0 001 0 0 0 1 1

00011 0 0 0 010 0 0 0 0 1

00100 0 0 0 001 0 0 1 0 1

00101 0 0 0 010 0 0 0 1 0

00110 0 0 0 010 0 0 1 0 0

00111 0 0 0 011 0 0 0 0 1

01000 0 0 0 001 0 0 1 1 0

01001 0 0 0 010 0 0 1 1 1

01010 0 0 0 010 0 1 0 0 0

01011 0 0 0 011 0 0 0 1 0

01100 0 0 0 010 0 1 0 1 1

01101 0 0 0 011 0 0 1 0 0

01110 0 0 0 011 0 0 1 1 1

01111 0 0 0 100 0 0 0 0 1

10000 0 0 0 001 0 1 0 0 1

10001 0 0 0 010 0 1 1 0 1

10010 0 0 0 010 0 1 1 1 0

10011 0 0 0 011 0 1 0 0 0

10100 0 0 0 010 1 0 0 0 0

10101 0 0 0 011 0 1 0 1 1

10110 0 0 0 011 0 1 1 0 1

10111 0 0 0 100 0 0 0 1 0

11000 0 0 0 010 1 0 0 1 1

11001 0 0 0 011 0 1 1 1 0

11010 0 0 0 011 1 0 0 0 0

11011 0 0 0 100 0 0 1 0 0

11100 0 0 0 011 1 0 0 1 1

11101 0 0 0 100 0 0 1 1 1

11110 0 0 0 100 0 1 0 0 0

11111 0 0 0 101 0 0 0 0 1

Designing Parity Preserving Reversible Circuits 87

Table 4. Summary of results for exemplary Boolean functions with large no. of vari-
ables

Function Input count Output count Garbage count Ancilla count Runtime (ms)

tar82 2 001.pla 8 1 8 1 0.66

tar93 110.pla 9 1 8 0 1.89

tar93 101.pla 9 1 8 0 1.63

rd53 5 3 5 3 0.18

rd73 7 3 7 3 0.35

rd84 8 4 8 4 0.64

rd20 5 20 5 19 4 34.70

rd10 4 10 4 9 3 23.17

0410184 85.pla 14 14 1 1 14.17

cycle10 2 61.pla 12 12 1 1 3.39

ham15 30.pla 15 15 1 1 30.15

ham7 29.pla 7 7 1 1 0.20

ham8 64.pla 8 8 1 1 0.31

life 175.pla 9 1 9 1 0.45

squar5.pla 5 8 1 4 6.77

urf4 89.pla 11 11 1 1 1.76

urf6.pla 15 15 1 1 29.21

plus63mod8192.pla 13 13 1 1 6.76

5 Conclusion and Future Work

We propose the first systematic algorithm to convert any irreversible specifi-
cation into a parity-preserving reversible specification. In existing works such
as in [11,27], a new specific gate is introduced to realize one particular parity-
preserving circuit. However, these gates may not be useful to realize other cir-
cuits. Our method is fully automated and general and can work on any given
circuit. The relevant code for the Algorithm 1 has been shared at [5].

In the current work, we have focused on bit-flip error only. However, the fault
coverage for different logical fault models [22] arising in the context of Quan-
tum circuit implementation requires further work, which we plan to undertake.
Another interesting future work could be to tackle the complexity of the input
representation.

One limitation of our work is that it uses truth-table specification and hence
is not scalable for large variables. An interesting future work could be exploring
the possibility of direct synthesis of parity-preserving circuits based on more
compact representations, such as BDDs or other hierarchical reversible logic
synthesis [30]. Such an approach may be more efficient for functions of larger
number of variables and hence more scalable. Moreover, as pointed out in a
recent work [21], even if a reversible circuit is parity preserving, it has to be
checked against a particular fault model. As part of our future work, we also

88 G. Paul et al.

plan to inject faults at different gates and estimate the fault coverage of our
circuits against different fault models.

References

1. Azad Khan, M.H.: Design of full-adder with reversible gates. In: International
Conference on Computer and Information Technology, pp. 515–519 (2002)

2. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532
(1973)

3. Bérut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz,
E.: Experimental verification of Landauer’s principle linking information and ther-
modynamics. Nature 483, 187–189 (2012)

4. Dastan, F., Haghparast, M.: A novel nanometric fault tolerant reversible divider.
Int. J. Phys. Sci. 6(24), 5671–5681 (2011)

5. https://github.com/cchandak/parity preserving rev ckt
6. Golubitsky, O., Falconer, S.M., Maslov, D.: Synthesis of the optimal 4-bit reversible

circuits. In: Proceedings of DAC, pp. 653–656 (2010)
7. Grosse, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact multiple-control toffoli

network synthesis with SAT techniques. IEEE TCAD 28(5), 703–715 (2009)
8. Gupta, P., Agrawal, A., Jha, N.K.: An algorithm for synthesis of reversible logic

circuits. IEEE TCAD 25(11), 2317–2330 (2006)
9. Grosse, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact multiple-control tooli net-

work synthesis With SAT techniques. IEEE TCAD 28(5), 703–715 (2009). doi:10.
1109/TCAD.2009.2017215

10. Hung, W.N.N., Xiaoyu, S., Guowu, Y., Jin, Y., Perkowski, M.: Optimal synthesis
of multiple output boolean functions using a set of quantum gates by symbolic
reachability analysis. IEEE TCAD 25(9), 1652–1663 (2006)

11. Islam, M.S., Rahman, M.M., Begum, Z., Hafiz, A., Al Mahmud, A.: Synthesis
of fault tolerant reversible logic circuits. In: Proceedings of IEEE Circuits and
Systems International Conference on Testing and Diagnosis, pp. 1–4 (2009)

12. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 5, 183–191 (1961)

13. Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for
reversible logic synthesis. In: Proceedings of DAC, pp. 318–323 (2003)

14. Miller, D.M., Wille, R., Sasanian, Z.: Elementary quantum gate realizations for
multiple-control toffolli gates. In: Proceedings of International Symposium on
Multiple-Valued Logic, pp. 288–293 (2011)

15. Mishchenko, A., Perkowski, M., Fast heuristic minimization of exclusive-sums-of-
products. In: Proceedings of the Reed-Muller Workshop, pp. 242–250 (2001)

16. Maslov, D.: Reversible Benchmarks. http://webhome.cs.uvic.ca/∼dmaslov,
Accessed Jun 2013

17. Nayeem, N.M., Rice, J.E.: Online testable approaches in reversible logic. J. Elec-
tron. Test. 29(6), 763–778 (2013)

18. Nashiry, M.A., Bhaskar, G.G., Rice, J.E.: Online testing for three fault models in
reversible circuits. In: Proceedings of ISMVL, pp. 8–13 (2011). doi:10.1109/ISMVL.
2015.36

19. Parhami, B.: Parity-preserving transformations in computer arithmetic. In: Pro-
ceeding of SPIE, vol. 4791, pp. 403–411 (2002)

https://github.com/cchandak/parity_preserving_rev_ckt
http://dx.doi.org/10.1109/TCAD.2009.2017215
http://dx.doi.org/10.1109/TCAD.2009.2017215
http://webhome.cs.uvic.ca/~dmaslov
http://dx.doi.org/10.1109/ISMVL.2015.36
http://dx.doi.org/10.1109/ISMVL.2015.36

Designing Parity Preserving Reversible Circuits 89

20. Parhami, B.: Fault-tolerant reversible circuits. In: Proceeding of 40th Asilomar
Conference Signals, Systems, and Computers, Pacific Grove, CA, pp. 1726–1729,
October 2006

21. Przigoda, N., Dueck, G.W., Wille, R., Drechsler, R.: Fault detection in parity pre-
serving reversible circuits. In: Proceeding of IEEE 46th International Symposium
on Multiple-Valued Logic (ISMVL), Sapporo, Japan, pp. 44–49, 18–20 May 2016

22. Polian, I., Fiehn, T., Becker, B., Hayes, J.P.: A family of logical fault models for
reversible circuits. In: Proceedings of Asian Test Symposium, pp. 422–427 (2011)

23. Qi, X., Chen, F., Zuo, K., Guo, L., Luo, Y., Hu, M.: Design of fast fault tolerant
reversible signed multiplier. Int. J. Phys. Sci. 7(17), 2506–2514 (2012)

24. Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits - a sur-
vey. In: CoRR abs/1110.2574, http://arxiv.org/abs/1110.2574 (2011)

25. Saligram, R., Hegde, S.S., Kulkarni, S.A., Bhagyalakshmi, H.R., Venkatesha, M.K.:
Design of fault tolerant reversible multiplexer based multi-boolean function gener-
ator using parity preserving gates. Int. J. Comput. Appl. 66(19), 20–24 (2013)

26. Saligram, R., Hegde, S.S., Kulkarni, S.A., Bhagyalakshmi, H.R., Venkatesha, M.K.:
Design of parity preserving logic based fault tolerant reversible arithmetic logic
unit. In: CoRR abs/1307.3690, http://arxiv.org/abs/1307.3690 (2013)

27. Syal, N., Sinha, H.P., Sheenu: Comparison of different type parity preserving
reversible gates and simple reversible gates. In: International Journal of Research
and Innovation in Computer Engineering, vol. 1, issue 1 (2011)

28. Soeken, M., Frehse, S., Wille, R., Drechsler, R.: RevKit: a toolkit for reversible
circuit design. In: Proceedings of Workshop on Reversible Computation, pp. 64–76
(2011)

29. Soeken, M., Wille, R., Hilken, C., Przigoda, N., Drechsler, R.: Synthesis of
reversible circuits with minimal lines for large functions. In: Proceedings of ASP-
DAC, pp. 85–92 (2012). doi:10.1109/ASPDAC.2012.6165069

30. Soeken, M., Chattopadhyay, A.: Unlocking efficiency and scalability of reversible
logic synthesis using conventional logic synthesis. In: Proceedings of the 53rd
Annual Design Automation Conference (DAC), Article no. 149, Austin, Texas,
05–09 June 2016

31. Tarannikov, Y.: New constructions of resilient boolean functions with maximal
nonlinearity. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 66–77. Springer,
Heidelberg (2002). doi:10.1007/3-540-45473-X 6

32. Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions.
In: Proceedings of DAC, pp. 270–275 (2009)

33. Wille, R., Keszöcze, O., Drechsler, R.: Determining the minimal number of lines
for large reversible circuits. In: Proceedings of DATE, pp. 1–4 (2011)

34. Wille, R., Drechsler, R., Osewold, C., Garcia-Ortiz, A.: Automatic design of low-
power encoders using reversible circuit synthesis. In: Proceedings of DATE, pp.
1036–1041 (2012). doi:10.1109/DATE.2012.6176648

35. Zheng, Y., Huang, C.: A novel toffoli network synthesis algorithm for reversible
logic. In: Proceedings of ASP-DAC, pp. 739–744 (2009)

36. Wille, R., Chattopadhyay, A., Drechsler, R.: From reversible logic to quantum
circuits: logic design for an emerging technology. In: Proceedings of International
Conference on Embedded Computer Systems: Architectures, Modeling and Simu-
lation (SAMOS), pp. 268–274 (2016)

http://arxiv.org/abs/1110.2574
http://arxiv.org/abs/1307.3690
http://dx.doi.org/10.1109/ASPDAC.2012.6165069
http://dx.doi.org/10.1007/3-540-45473-X_6
http://dx.doi.org/10.1109/DATE.2012.6176648

REVS: A Tool for Space-Optimized
Reversible Circuit Synthesis

Alex Parent1,2, Martin Roetteler2(B), and Krysta M. Svore2

1 Institute for Quantum Computing, University of Waterloo,
200 University Avenue West, Waterloo, ON, Canada

alexparent@gmail.com
2 Quantum Architectures and Computation Group,

Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
{martinro,ksvore}@microsoft.com

Abstract. Computing classical functions is at the core of many quan-
tum algorithms. Conceptually any classical, irreversible function can be
carried out by a Toffoli network in a reversible way. However, the Ben-
nett method to obtain such a network in a “clean” form, i.e., a form
that can be used in quantum algorithms, is highly space-inefficient. We
present REVS, a tool that allows to trade time against space, leading to
circuits that have a significantly smaller memory footprint when com-
pared to the Bennett method. Our method is based on an analysis of the
data dependency graph underlying a given classical program. We report
the findings from running the tool against several benchmarks circuits
to highlight the potential space-time tradeoffs that REVS can realize.

1 Introduction

The ability to compute classical functions is at the core of many interesting
quantum algorithms, including Shor’s algorithm for factoring, Grover’s algorithm
for unstructured search, and the HHL algorithm for inverting linear systems of
equations. While conceptually any classical, irreversible function can be carried
out by a reversible Toffoli network, the standard way to obtain such a network
is highly space-inefficient: the so-called Bennett method leads to a number of
qubits that is proportional to the circuit size of the given classical, irreversible
function [3].

We show that it is possible to trade time against space in reversible circuit
synthesis, leading to circuits that have a significantly smaller memory footprint
than the ones generated by the Bennett method. To this end, we implemented
a tool for space-optimized reversible synthesis. We applied our tool to a suite of
challenge problems that include a subset of several classical circuits benchmarks
such as the ISCAS and MCNC benchmarks, as well as reversible benchmarks
such as the Maslov benchmarks and the RevLib benchmarks. We show that it
is typically possible to reduce the total number of required ancillas by a factor
of 4X at a moderate increase of the total number of gates by less than 3X.

c© Springer International Publishing AG 2017
I. Phillips and H. Rahaman (Eds.): RC 2017, LNCS 10301, pp. 90–101, 2017.
DOI: 10.1007/978-3-319-59936-6 7

REVS: Space-Optimized Reversible Circuit Synthesis 91

Prior work. Several tools were developed for synthesizing reversible circuits,
ranging from low-level tools [13,15,24,26,30–32], over various optimizations [24],
to high-level programming languages and compilers [9–11,22,23,29,33,36]. See
also [25] for a survey. We are interested in methods that optimize space, i.e.,
methods that synthesize target functions while using as few ancillas as possible.

The implied trade-off is between circuit size, as measured by the total number
of Toffoli gates, and circuit width, as measured by the total number of qubits.
Methods to obtain such trade-offs have been studied in the literature before,
notably in the theoretical computer science community where space-time trade-
offs based on trading qubits (lines) for gates [7,27,34,35] and tradeoffs based
on Bennett’s pebble game have been known for quite some time [4–6,12]. Our
work implements a compiler that optimizes for space, trading it for a possibly a
slightly larger gate count and possibly for a longer compilation time.

Our contribution. We improve the space-efficiency of Toffoli networks by ana-
lyzing the data flow dependencies of the given input program or truth table.
This allows to clean some of the required ancilla bits much earlier than possible
with the Bennett method. Another key component that allowed us to improve
the memory footprint while keeping the circuit size of the resulting networks
relatively small, is the combination of known techniques for Boolean Exclu-
sive Sum-Of-Products (ESOP) [17,18] minimization with our dependency-graph
based methods for early cleanup.

Specifically, we considered the RevLib benchmarks [1] and the Maslov bench-
marks [14]. Our main result is that for some of the benchmarks we can improve
the total number of qubits needed. This typically comes at an increase of the
overall gate count, however, for some of the benchmarks our method achieves an
improvement in terms of number of qubits and total number of Toffoli gates.

Generally, the methods described in this paper aim at large circuits, i.e., they
are scalable: our reversible synthesis method starts from high-level descriptions
in a functional programming language.

2 Reversible Circuits

Reversible functions are Boolean functions f : {0, 1}n → {0, 1}n that can be
inverted on all outputs, i.e., the functions that correspond to permutations of
a set of cardinality 2n. As with classical circuits, reversible functions can be
constructed from universal gate sets: for instance, it is known that the Toffoli
gate which maps (x, y, z) �→ (x, y, z⊕xy), together with the controlled-NOT gate
(CNOT) which maps (x, y) �→ (x, x⊕y) and the NOT gate which maps x �→ x⊕1,
is universal for reversible computation. The group generated by all NOT, CNOT,
and Toffoli gates on n ≥ 4 bits is isomorphic to the alternating group A2n of
even permutations which is a group of order (2n)!/2. Hence, any given target
function, when considered as a permutation π can be implemented over this gate
set at the expense of at most 1 additional qubit since 1⊗π = diag(π, π) is even.

92 A. Parent et al.

Most classical functions f : {0, 1}n → {0, 1}m are not invertible. To make
a classical function reversible a permutation π on a larger space has to be con-
structed that implements f on a subset of size 2n of the inputs. These extra bits
are commonly denoted ancilla bits and are used as scratch space, i.e., tempo-
rary bits which store intermediate results of a computation. A very important
difference to classical computing is that scratch bits cannot just be overwrit-
ten when they are no longer needed: any ancilla that is used as scratch space
during a reversible computation must be returned to the initial value—which is
commonly assumed to be the value 0—computationally.

Moreover, if this return to a “clean” value is not achieved, the function cannot
be safely used inside a quantum computer as its use might lead to unwanted
entanglement of the computational registers with the ancilla qubits. This in
turn can destroy desired interferences crucial for quantum algorithms [20]. If a
Toffoli network computes a target function in a way that leaves garbage bits
that are unclean, then one can turn this into a clean network using Bennett’s
method, however, this leads to a 2X increase in circuit size and additional qubits
to store the output.

The number of Toffoli gates used in the implementation of a given permuta-
tion is the basic measure for the circuit size that we use in this paper. Counting
Toffolis only is justified from the theory of fault-tolerant quantum computing [20]
since the Toffoli gate (and the T gate) has a substantial cost, whereas the cost
of so-called Clifford gates, such as CNOT and NOT, can usually be neglected.
Another related metric is the overall depth of the circuit, measured usually in the
form of T -gate-depth. Implementations of the Toffoli gate over the Clifford+T
gate set are known [20]. The other basic parameter in our design space is circuit
width, measured as the maximum number of qubits needed during any point,
i.e., the maximum number of input qubits, output qubits, and ancilla qubits.

Generally, our goal is to trade time for space, i.e., to achieve a reduction
in the total number of qubits required. In turn, we are willing to pay a price
in terms of a slight increase in the total number of Toffoli gates and in terms
of compilation time. Our trade-off is justified by the limited number of qubits
available in experimental quantum devices.

3 Dependency Analysis

Analyzing the dependencies between the instructions in a basic function, between
functions, and between larger units of code is a fundamental topic in compiler
design [2,19]. Typically, dependency analysis consists of finding codes units and
to identify them with nodes in a directed acyclic graph (DAG). The directed
edges in the graph are the dependencies between the basic units, i.e., anything
that might constrain the execution order, for instance control dependencies that
arise from the control flow in the program, or branchings that happen conditional
on the value of a variable or the causal dependencies that arise from one unit
having to wait for the output of another unit before the computation can proceed.

REVS: Space-Optimized Reversible Circuit Synthesis 93

let xor4 (a:bool array) (b:bool array) =

let c = Array.zeroCreate 4

for i in 0 .. 3 do

c.[i] <- a.[i] <> b.[i]

c

let and4 (a:bool array) (b:bool array) =

let d = Array.zeroCreate 4

for i in 0 .. 3 do

d.[i] <- a.[i] && b.[i]

d

let mutable a = Array.zeroCreate 4

a <- xor4 a b

and4 a c

(a) F# snippet (b) Corresponding MDD

Fig. 1. (a) Simple F# code example of a function that uses arrays and in place oper-
ations. (b) Corresponding mutable data dependency (MDD) graph with data depen-
dency arrows (dashed) and mutation arrows (bold).

3.1 Mutable Data Dependency Graphs (MDDs)

We used the .NET language F# to implement a compiler for a language that
can express classical, irreversible functions and turn them into reversible net-
works. The language itself is also a subset of F# which has the advantage that
all programs expressed in the language also have an abstract interpretation as
executable programs that can be run on the .NET common language run-time
(CLR). This helps with testing of the reversible circuits generated by our com-
piler as it is possible to (a) generate a Toffoli network from the source program
and (b) get a trace from the execution on a classical computer and then to
compare (a) and (b).

The compilation itself follows some steps that are common for domain-specific
approaches. As our language is embedded into F#, we can first invoke the F#
compiler to generate an abstract syntax tree (AST) for the input program. Using
so-called active patterns [28] we turn the AST into an internal representation
that represents the dependency graph of the program. The nodes of this graph
capture the control flow and data dependencies between expressions, but also
identify which blocks can be computed by in-place operations and which blocks
have to be computed by out-of-place operations. Because of this latter feature is
related to which elements of the dependency graph are mutable and which are
not, we call this data structure the Mutable Data Dependency graph or MDD.

Which parts of the code can be computed by an in-place operation is inferred
by which variables are labeled in F# as mutable together with the external
knowledge about whether for an expression involving these variables an in-place
implementation is actually known. An example for the latter is the addition
operation for which we can choose either an in-place implementation (a, b) �→
(a, a + b) or an out-of-place implementation (a, b, 0) �→ (a, b, a + b).

94 A. Parent et al.

The nodes of the MDD correspond to inputs, computations, initialized and
cleaned-up bits. Inputs nodes can correspond to individual variables but also to
entire arrays which are also represented as a single node and treated atomically.
Computation nodes correspond to any expression that occurs in the program
and that manipulates the data. Initialized and cleaned-up bits correspond to
bits that are part of the computation and which can be used either as ancillas
or to hold the actual final output of the computation. Initialization implies that
those qubits are in the logical state 0 and the cleaned-up state means these bits
are known to be returned back in the state 0.

The directed edges in a MDD come in two flavors: data dependencies and
mutations. Data dependencies are denoted by dashed arrows and represent any
data dependency that one expression might have in relation to any other expres-
sion. Mutations are denoted by bold arrows and represent parts of the program
that are changed during the computation. By tracking the flow of the muta-
tions one can then ultimately determine the scheduling of the expressions onto
reversible operations and re-use a pool of available ancillas. This helps to reduce
the space requirements of the computation, in some cases even drastically so.

First, a number of arrays are used to store data in a way that allows for
easy access and indexing. Note that in F# the type array is inherited from
the .NET array type and by definition is a mutable type. This information is
used when the MDD for the program is constructed as our compiler knows that
in principle the values in the array can be updated and overwritten. Whether
this can actually be leveraged when compiling a reversible circuit will of course
depend on other factors as well, namely whether the parts of the data that is
invoked in assignments (denoted by <−) is used at a later stage in the program,
in which case the data might have to be recomputed.

When resolving the AST of a function, each node will either be another
function or an input variable. If the node is a function, we recursively compute
the AST for all of the function inputs adding the results to the graph. Upon doing
so, we use the index numbers of these results as the inputs for the operation and
then add the operation to the graph. If the node is a variable, the algorithm
looks up its name in a map of currently defined variables and returns an index
to its node. The type of the operation determines which arrows will be solid
input arrows and which will be data dependencies, i.e., controls. An example is
shown in Fig. 1.

3.2 Eager Cleanup Strategy

From Bennett’s work on reversible Turing machines it follows that any function
can be implemented by a suitable reversible circuit [3]: if an n-bit function x �→
f(x) can be implemented with K gates over {NOT,AND}, then the reversible
function (x, y) �→ (x, y ⊕ f(x)) can be implemented with at most 2K + n gates
over the Toffoli gate set. The basic idea behind Bennett’s method is to replace all
AND gates with Toffoli gates, then perform the computation, copy out the result,
and undo the computation. One potential disadvantage of Bennett’s method is the
large number of ancillas it requires as the required memory scales proportional

REVS: Space-Optimized Reversible Circuit Synthesis 95

Algorithm 1. EAGER Performs eager cleanup of an MDD.
Require: An MDD G in reverse topological order, subroutines LastDependentNode,

ModificationPath, InputNodes.
1: i ← 0
2: for each node in G do
3: if modificationArrows node = ∅ then
4: dIndex ← LastDependentNode of node in G
5: path ← ModificationPath of node in G
6: input ← InputNodes of path in G
7: if None (modificationArrows input) ≥ dIndex then
8: cleanUp ← (Reverse path) ++ cleanNode
9: end if

10: else
11: cleanUp ← uncleanNode
12: G ← Insert cleanUp Into G After dIndex
13: end if
14: end for
15: return G

to the circuit size of the initial, irreversible function f . Nevertheless, Bennett’s
method is useful to clean up garbage qubits in some situations where our improved
synthesis method, which we call the “eager cleanup” strategy, does not succeed.
The basic idea behind eager cleanup is to process the MDD in inverse topological
order and try to clean up qubits that are no longer needed as early as possible. To
do this, when we find a node A which does not have an outgoing modification arrow
we first find the node furthest along in topological order which depends on it B. We
then consider all inputs in the modification path of A. If any of the inputs have
outgoing arrows modification arrows pointing levels previous to B we may not
clean the bit eagerly as its inputs are no longer available. If the inputs do not have
modification arrows pointing at levels previous to B we can immediately clean
it up by reversing all operations along its modification path. In many cases, the
eager cleanup strategy leads to lower number of qubits used compared to Bennett’s
original method [3]. A pseudo-code implementation of the eager cleanup strategy
is shown in Algorithm 1.

4 Boolean Expression Generation

REVS handles higher-level, irreversible programs using cleanup strategies such
as Bennett’s method or the eager cleanup strategy mentioned in the previous
section. This is particularly useful if the irreversible program has control flow
such as loops, branchings, and subroutine calls. If a piece of the given code corre-
sponds to a Boolean expression directly, then synthesis is handled differently: in
these cases truth-table based techniques such as the ones described in [15] could
be applied, however, in the current implementation we follow a simple flow that
takes the Boolean function, either given in BLIF or PLA format, transforms

96 A. Parent et al.

Algorithm 2. ESOP-FACTOR Find and factor common ESOP expressions.
Require: Boolean expression exprs as list of (input, output) pairs, integer sizeParam

to specify maximum group size.
1: outputGroups ← group exprs with identical output
2: factorGroups ← Divide each group in outputGroups into groups of size sizeParam

or less
3: for each group in factorGroups do
4: xorExpr ← expression formed by XORing all input expressions in

group together
5: factoredExpr ← use multi-level optimization techniques to factor xorExpr
6: circuit ← apply boolean expression generation algorithm to factoredExpr
7: end for
8: return circuit

it into exclusive-sum-of-product (ESOP) format using Exorcism [18], and then
further process it using strategies that again allow tradeoffs between circuit size
and number of qubits used. We briefly sketch these methods next and show the
application to some benchmarks used in reversible synthesis.

4.1 Boolean Function Synthesis Benchmarks

The Berkeley Logic Interchange Format (BLIF) and the Programmable Logic
Array format (PLA) allow logic level circuit description of a classical operation.
Both formats allow the specification of hierarchical logical circuits, based on
a simple text input form. Circuits can have combinational components, which
typically are given by a collection of truth tables using separate lines for each
input/output combinations, where “don’t cares” are allowed. Circuits are also
allowed to have sequential components such as latches.

BLIF underlies many circuit benchmarks that have been used primarily by the
Circuit and Systems community in the 80s and 90s. These benchmarks include the
ISCAS’85, ISCAS’89, MCNC’91, LGSynth’91 and LGSynth’92 collections [16].
We identified all examples from the union of these benchmarks that only use com-
binational circuit elements. For those Boolean functions in principle a reversible
circuit can be computed. We obtained a set of 135 benchmark circuits which we
used to test the performance of our Boolean generation subroutines. On these cir-
cuits we typically found that our tool REVS decreased the number of ancillas by
a factor of 4x while increasing the number of gates only moderately.

PLA underlies benchmarks for reversible circuit synthesis that typically start
as classical, irreversible functions expressed in this format. The two benchmarks
we considered are the RevLib benchmarks [1] and the Maslov benchmarks [14].
We optimized the reversible circuits for space using the methods described in
this paper and compared it to the best known circuits in the RevLib and Maslov
databases. While generally, we get a tradeoff between space and time, in some
cases we found circuits that are more efficient in terms of number of qubits and
the total circuit size.

REVS: Space-Optimized Reversible Circuit Synthesis 97

)c)b)a

Fig. 2. An example illustrating the synthesis based on factorization of output groups
for ESOP files. Shown in (a) is a simple example of an ESOP file corresponding to the
output functions (f0(x0, x1, x2), f1(x0, x1, x2)), where f0(x0, x1, x2) = x0x1x2 ⊕x0x1x2

and f1(x0, x1, x2) = x0x1x2⊕x0x1x2⊕x2. Running REVS with parameter p = 0 treats
each line in the ESOP file as a group. This turns each line into a multiply-controlled
Toffoli gate as shown in (b). Running REVS with parameter p = 1 allows REVS to
group up to 2 lines together, provided that the lines have identical outputs. In the
example, the first two lines are grouped together which allows to factor the sum of the
corresponding input product terms as x0x1x2 ⊕ x0x1x2 = (x0x1 ⊕ x0x1)x2. The factor
(x0x1⊕x0x1) is then simplified to x0⊕x1 and computed into a new ancilla qubit which
is then afterwards uncomputed. Overall, the T -gate complexity of the resulting circuit
is small, however, the total number of qubits used has increased by 1. The circuits in
(b) and (c) were rendered using QCViewer [21].

4.2 Optimizations for Boolean Circuits

In general, given a set of AND expressions that are combined using OR we want
to find sets of mutually exclusive statements that minimize the use of AND.
We consider each AND expression to be a vertex on a graph and add edges
between vertices that are mutually exclusive. Now we cover this graph using the
smallest possible number of cliques using an algorithm that solves the CLIQUE-
COVER problem, which asks to partition the vertices of a graph into cliques.
NP-completeness of CLIQUE-COVER for given upper bound k of allowed cliques
is well-known, however, practical approximation algorithms exist [8].

After finding a cliques partition each set of mutually exclusive statements
can be implemented by evaluating the AND statements and combining all of the
values on a single ancilla using XOR for each clique. These results can then be
combined using OR statements. We can pre-process the given file in such a way
that the cliques will be grouped in the output. This yields a new file, however,
the effect of the reordering is that instead of OR functions now the much cheaper
XOR functions can be used.

We ran REVS against a suite of benchmarks from the RevLib database.
In Table 1 we report on improvements over the best known circuits. Our tool
improved so far only one instance of the Maslov database, namely the benchmark
that consists of computing a Boolean function that computes the bits of the
permanent of a given 3 × 3 binary matrix. Shown in Table 1 are the qubit and
gate costs for the eager cleanup method and in comparison the corresponding
cost with the best circuit from the database. The total number of qubits in the
first data column is the number of ancillas from the second data column plus

98 A. Parent et al.

Table 1. Performance of REVS on a selection of benchmark circuits.

Name Our Method RevLib Comparison (rel.) Time

Tot. Bits Ancillas Toffolis Tot. Bits Toffolis Tot. Bits Toffolis

4mod5 7 2 1 7 4 1.00 0.25 0.00s

5xp1 23 6 83 23 365 1.00 0.23 0.02s

6sym 11 4 35 14 16 0.79 2.19 0.02s

alu4 61 39 2821 33 10456 1.85 0.27 3.70s

apex5 228 23 3727 1025 1860 0.22 2.00 15.59s

bw 36 3 73 87 159 0.41 0.46 0.01s

con1 13 4 16 13 63 1.00 0.25 0.01s

decod24 6 0 1 6 4 1.00 0.25 0.00s

e64 193 63 4096 195 130 0.99 31.5 0.17s

ex1010 38 18 6581 29 31219 1.31 0.21 6.92s

f51m 52 30 1774 35 6207 1.49 0.29 1.97s

frg2 336 54 8950 1219 2186 0.28 4.09 1913.09s

hwb9 33 15 2915 170 394 0.19 7.40 3.13s

max46 20 10 195 17 689 1.18 0.28 0.20s

mini-alu 9 3 14 10 10 0.90 1.40 0.00s

pdc 102 46 3222 619 1105 0.16 2.91 85.16s

rd84 26 14 170 34 50 0.76 3.40 0.13s

seq 107 31 3310 1617 3343 0.07 0.99 1.21s

spla 95 33 3232 489 1054 0.19 3.07 75.11s

sqrt8 18 6 32 18 158 1.00 0.20 0.02s

squar5 16 3 36 17 155 0.94 0.23 0.01s

t481 19 2 26 20 68 0.95 0.38 0.01s

the number of inputs and outputs. Typically, a space improvement of around 4X
can be observed at an increase of the number of gates by around 3X. For the
benchmarks shown in bold, our tool found a circuit that is better in both, the
number of bits and the total number of gates.

It should be noted also that all ancilla bits computed by our tool are returned
clean whereas some of the circuits in [31] leave garbage behind which would lead
to a further increase in the gate count and the number of ancillas. In case the gate
counts in RevLib were given in terms of multiply controlled gates, we converted
the gates into Toffoli gates using 2n−3 Toffoli gates per n-fold controlled NOT.
Among the examples we observed with large possible improvement in terms
of space was frg2 where a space reduction of almost a factor 4 was achieved.
This however came at a significant increase in compilation time for this specific
example which was caused by a large number of same output values which led to
a large number of possible groupings. In our reference implementation all possible
groupings were explored and the minimum picked which lead to the outlier in

REVS: Space-Optimized Reversible Circuit Synthesis 99

compilation cost. Using a greedy strategy for the groupings, a reduction of this
compilation time is possible. The compilation time are measured with respect to
an Intel i7-3667 @ 2 GHz 8 GB RAM processor running on a standard laptop.

We implemented the procedure that first performs the offline conversion of
the given circuit to an equivalent circuit by performing the clique-cover-based
XOR maximization. Then this circuit is converted directly into an MDD before
cleanup and in doing so, our compiler finds the optimized grouping that replaces
OR terms with XOR terms. As the next stage in the pre-processing, we then use
the Exorcism-4 tool [18] to perform Exclusive Sum-Of-Product (ESOP) mini-
mization. Afterward, we use factoring techniques from multi-level circuit opti-
mization and minimize the size of the out expressions. A pseudo-code implemen-
tation of this factoring technique is given as Algorithm2.

An example of how our Boolean expression generation allows to trade circuit
size (and compilation time) for the total number of qubits used is shown in Fig. 2.
Finally, since the processed PLA file is an xor sum on the outputs, MDD based
cleanup can be done after each boolean expression to minimize the number of
bits use.

5 Conclusions

We developed a tool that automates the translation of classical, irreversible pro-
grams into reversible programs. Contrary to previous approaches of reversible
programming languages such as the reversible languages R or Janus [23], our
language does not constrain the programmer. Also, in contrast to previous
approaches for implementing Bennett-style strategies such as Quipper [9] our
approach is more space efficient. We employ heuristic strategies which seek to
identify parts of the program that lead to mutation which then can be imple-
mented via in-place operations.

In order to manage the arising data dependencies, we introduced MDD
graphs which capture data dependencies as well as data mutation in one graph.
We prove that our eager cleanup strategy is correct, provided the mutation paths
that occur in the MDD have no inter-path dependency. In case such dependen-
cies arise, we clean up the paths using the standard Bennett strategy, which
allows us to compile any program that can be expressed in our language into a
Toffoli network.

We found examples where our dependency-graph based method for eager
cleanup is better than Bennett’s original method, even when Bennett’s method
is implemented by cleaning up at function boundaries. Using an example bench-
mark suite compiled from the classical circuits and systems community as well
as known reversible benchmarks, we show that the method can be applied for
medium to large scale problems.

100 A. Parent et al.

References

1. Revlib - an online resource for reversible functions and circuits. http://www.revlib.
org/

2. Aho, A.V., Lam, M.S., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques,
and Tools. Addison Wesley, London (2007)

3. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532
(1973)

4. Bennett, C.H.: Time/space trade-offs for reversible computation. SIAM J. Comput.
18, 766–776 (1989)

5. Buhrman, H., Tromp, J., Vitányi, P.: Time and space bounds for reversible simu-
lation. In: Orejas, F., Spirakis, P.G., Leeuwen, J. (eds.) ICALP 2001. LNCS, vol.
2076, pp. 1017–1027. Springer, Heidelberg (2001). doi:10.1007/3-540-48224-5 82

6. Pebble games and complexity. Ph.D. thesis, Electrical Engineering and Computer
Science, UC Berkeley, Technical report: EECS-2013-145 (2013)

7. Chattopadhyay, A., Pal, N., Majumder, S.: Ancilla-quantum cost trade-off during
reversible logic synthesis using exclusive sum-of-products (2014). arxiv:1405.6073

8. Goldschmidt, O., Hochbaum, D.S., Hurkens, C.A.J., Yu, G.: Approximation algo-
rithms for the k-clique covering problem. SIAM J. Disc. Math. 9(3), 492–509 (1996)

9. Green, A., LeFanu Lumsdaine, P., Ross, N., Selinger, P., Valiron, B.: Quipper: a
scalable quantum programming language. In: PLDI 2013 (2013)

10. Heckey, J., Patil, S., Javadi Abhari, A., Holmes, A., Kudrow, D., Brown, K.R.,
Franklin, D., Chong, F.T., Martonosi, M.: Compiler management of communica-
tion and parallelism for quantum computation. In: ASPLOS 2015, pp. 445–456.
ACM (2015)

11. JavadiAbhari, A., Patil, S., Kudrow, D., Heckey, J., Lvov, A., Chong, F.T.,
Martonosi, M.: ScaffCC: scalable compilation and analysis of quantum programs.
Parallel Comput. 45, 2–17 (2015)

12. Lange, K.J., McKenzie, P., Tapp, A.: Reversible space equals deterministic space.
J. Comput. Syst. Sci. 60(2), 354–367 (2000)

13. Lin, C.-C., Jha, N.K.: RMDDS: Reed-Muller decision diagram synthesis of
reversible logic circuits. ACM J. Emerg. Technol. Comput. Syst. 10(2), 14 (2014)

14. Maslov, D.: Reversible logic synthesis benchmarks page. http://webhome.cs.uvic.
ca/∼dmaslov/

15. Maslov, D., Miller, D.M., Dueck, G.W.: Techniques for the synthesis of reversible
Toffoli networks. ACM Trans. Des. Autom. Electron. Syst. 12(4), 42 (2007)

16. Minkovich, K.: BLIF benchmark suite. http://cadlab.cs.ucla.edu/∼kirill/
17. Mishchenko, A., Brayton, R., Chatterjee, S.: Boolean factoring and decomposition

of logic networks. In: Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design, pp. 38–44. IEEE Press (2008)

18. Mishchenko, A., Perkowski, M.: Fast heuristic minimization of exclusive sum-of-
products, 2001. Exorcism is available as part of the ABC software. https://people.
eecs.berkeley.edu/∼alanmi/

19. Muchnick, S.S.: Compiler Design and Implementation. Morgan Kaufmann,
San Francisco (1997)

20. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2000)

21. Parent, A., Parker, J., Burns, M., Maslov, D.: Quantum Circuit Viewer. Poster
presentation at TQC 2013, University of Guelph, Canada. Software (2013). https://
github.com/aparent/QCViewer, http://qcirc.iqc.uwaterloo.ca/

http://www.revlib.org/
http://www.revlib.org/
http://dx.doi.org/10.1007/3-540-48224-5_82
http://arxiv.org/abs/1405.6073
http://webhome.cs.uvic.ca/~dmaslov/
http://webhome.cs.uvic.ca/~dmaslov/
http://cadlab.cs.ucla.edu/~kirill/
https://people.eecs.berkeley.edu/~alanmi/
https://people.eecs.berkeley.edu/~alanmi/
https://github.com/aparent/QCViewer
https://github.com/aparent/QCViewer
http://qcirc.iqc.uwaterloo.ca/

REVS: Space-Optimized Reversible Circuit Synthesis 101

22. Parent, A., Roetteler, M., Svore, K.M.: Reversible circuit compilation with space
constraints (2015). arXiv:1510.00377

23. Perumalla, K.S.: Introduction to Reversible Computing. CRC Press, Boca Raton
(2014)

24. Saeedi, M., Markov, I.L.: Constant-optimized quantum circuits for modular mul-
tiplication and exponentiation. Quantum Information and Computation 12(5&6),
361–394 (2012)

25. Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits - a sur-
vey. ACM Comput. Surv. 45(2), 21 (2013)

26. Shafaei, A., Saeedi, M., Pedram, M.: Reversible logic synthesis of k-input, m-output
lookup tables. In: DATE 2013, pp. 1235–1240 (2013)

27. Soeken, M., Robert Wille, R., Hilken, Ch., Przigoda, N., Drechsler, R.: Synthesis
of reversible circuits with minimal lines for large functions. In: Proceedings of
ASP-DAC 2012 (2012)

28. Syme, D., Granicz, A., Cisternino, A.: Expert F# 3.0. Apress Publishing,
New York (2012)

29. Thomsen, M.K.: A functional language for describing reversible logic. In: Forum
on Specification and Design Languages, pp. 135–142. IEEE (2012)

30. Viamontes, G.F., Markov, I.L., Hayes, J.P.: Quantum Circuit Simulation. Springer,
Heidelberg (2009)

31. Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions.
In: Proceedings of DAC 2009, pp. 270–275 (2009)

32. Wille, R., Drechsler, R.: Towards a Design Flow for Reversible Logic. Springer,
Dodrecht (2010)

33. Wille, R., Offermann, S., Drechsler, R.: SyReC: a programming language for syn-
thesis of reversible circuits. In: Specification Design Languages (FDL), pp. 1–6
(2010)

34. Wille, R., Soeken, M., Drechsler, R.: Reducing the number of lines in reversible
circuits. In: Proceedings of DAC 2010, pp. 647–652 (2010)

35. Wille, R., Soeken, M., Miller, D.M., Drechsler, R.: Trading off circuit lines and
gate costs in the synthesis of reversible logic. Integration 47(2), 284–294 (2014)

36. Yokoyama, T., Glück, R.: A reversible programming language and its invertible
self-interpreter. In: PEPM 2007, pp. 144–153 (2007)

http://arxiv.org/abs/1510.00377

Towards VHDL-Based Design
of Reversible Circuits

Work in Progress Report

Zaid Al-Wardi1,2(B), Robert Wille3,4, and Rolf Drechsler1,4

1 Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
{alwardi,drechsle}@informatik.uni-bremen.de

2 Collage of Engineering, Al-Mustansiriya University, Baghdad, Iraq
3 Institute for Integrated Circuits, Johannes Kepler University Linz, Linz, Austria

robert.wille@jku.at
4 Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

Abstract. Hardware Description Languages (HDL) facilitate the design
of complex circuits and allow for scalable synthesis. While rather estab-
lished for conventional circuits, HDLs for reversible circuits are in their
infancy and usually require a deep understanding of the reversible comput-
ing concepts. This motivates the question whether reversible circuits can
also efficiently be designed with conventional HDLs, such as VHDL. This
work discusses this question. By this, it provides the basis towards a design
flow that requires no or only little knowledge of the reversible computa-
tion paradigm which could ease the acceptance of this non-conventional
computation paradigm amongst designers and stakeholders.

1 Introduction

The majority of reversible circuit design and synthesis methodologies are derived
from functional descriptions provided in terms of truth tables, two-level descrip-
tions, decision diagrams, or similar (Boolean) function representations (see
e.g. surveys provided in [1,2]). These approaches are limited by their restricted
scalability and are not competitive to the state-of-the-art design flows available
for conventional circuits.

Hardware Description Languages (HDL) address scalable design of digital
circuits [3]. In fact, the design of conventional circuitry heavily relies on estab-
lished HDLs such as VHDL or Verilog. For reversible circuit design, a clear trend
towards higher levels of abstractions can be seen [4,5]. The proposed approaches
employ the reversible computation paradigm with its characteristics as well as
restrictions and, hence, rely on dedicated concepts such as reversible assignments,
reversible control logic, etc. Since, historically, design focused on circuits follow-
ing the conventional computing paradigm, those concepts are usually rather
unfamiliar amongst HDL-designers.

This motivates the question whether reversible circuits can also efficiently
be designed with conventional HDLs such as VHDL or Verilog. Obviously, this
c© Springer International Publishing AG 2017
I. Phillips and H. Rahaman (Eds.): RC 2017, LNCS 10301, pp. 102–108, 2017.
DOI: 10.1007/978-3-319-59936-6 8

Towards VHDL-Based Design of Reversible Circuits 103

Fig. 1. Simple VHDL program

would break with many concepts and may lead to drawbacks such as the need to
embed non-reversible HDL description means into reversible circuitry (causing
overhead e.g. in terms of additional circuit lines).

In this work, we address this issue and choose the widely used hardware
description language VHDL as an example of a conventional HDL. We discuss
its suitability to synthesize reversible circuits. The findings from the resulting
observations provide the basis towards a design flow that requires no or only
little knowledge of the reversible computation paradigm. At the same time, it
pinpoints to the weaknesses and open issues to be addressed in order to make
VHDL-based design indeed a more accessible alternative to the existing design
solutions for reversible circuits. Possible directions how to address these weak-
nesses are discussed in this work.

2 Realizing VHDL Signals

VHDL signal types can directly be mapped to signals of the reversible circuits.
More precisely, a VHDL signal is mapped to a reversible circuit line1.

In Fig. 1 we can see a VHDL code that declares different types of signals,
which are mapped to lines with different specifications as follows:

1. Input ports a,b: These lines carry input values to the circuit and remain
unchanged within a circuit.

2. Output port f: This has a constant ‘0’ input, then an expression is assigned
to this signal (line) by a statement within the architecture body.

3. Internal signal w: This line represent an internal wire. It is similar to output
ports in that it is initially constant ‘0’ and assigned in the same way as well.
The difference between outputs and wires is that wires facilitate computing
other signal(s) and then are considered garbage outputs.

4. Implicit lines: These lines are similar to internal signals in that they have
constant ‘0’ inputs and constitute garbage outputs, but are not explicitly

1 For simplicity, in the following a line refers to an N -line bundle representing an N -bit
signal (accordingly, a single line in figures represent an N -bit circuit line-bundle).

104 Z. Al-Wardi et al.

0 S <= E

E E

a. Simple assignment

0 s
Cn Cn

C2 C2

C1 C1

Ed Ed

En En

E2 E2

E1 E1

b. Conditional signal assignement

Fig. 2. Realization of signal assignment

declared within the code. Such lines are mandatory to compute non-reversible
operations, e.g. to compute the expression (a and w) in Fig. 1, line (8).

3 Realizing VHDL Statements

With the signals defined and initially realized in the circuit, the realizations of
the respective operations in terms of reversible gates can be conducted. To this
end, all statements in the VHDL code are traversed and synthesized. A statement
is considered as a sub-system that performs some action to realize the desired
operation.

3.1 Signal Assignment

A statement, in its simplest form, is usually composed of an expression which is
evaluated and whose result is afterwards assigned to a circuit signal (i.e. a state-
ment usually has the form S <= E;), with E being the expression and S being the
signal to which the result is assigned). The realization of the underlying expres-
sions is covered afterwards in the following section. Realizing signal assignment
(a non-reversible operation) is possible when the target signal is known to be
a constant ‘0’ [6]. This assignment is realized using Toffoli gates, as shown in
Fig. 2a.

Conditional signal assignment statements appear in the following form:
(S <= E1 when C1 else E2 when C2 ... else En when Cn else Ed;).
This assignment requires a case distinction to decide which expression is to

be assigned to the target signal. Figure 2b shows a possible realization for this.

3.2 Components

Components are entities instantiated within the architecture of another entity.
Each instance places a sub-circuit definition within the main circuit. Figure 3
shows a VHDL code that declares a component, then instantiates it twice within
the architecture body.

Towards VHDL-Based Design of Reversible Circuits 105

This structural style of describing systems is preferred for synthesis purposes.
Component sub-circuits should be determined first, and this sub-circuit defini-
tion is to be placed in the main circuit for each instant. The only change is the
mapping of component lines into the main circuit lines; therefore a port map is
associated with each instance to serve as a look-up table for this mapping, as
shown in Fig. 4.

Fig. 3. Structural VHDL architecture with declared and instantiated components

0 −

y y
x x

z z
0 result
0 −
0 −
0 −

temp

z

a
b

f a

b
fGtest

Gtest

Gmain

Fig. 4. Using component circuits to synthesize the VHDL code from Fig. 3

4 Realizing Expressions

Up to this point, the discussion assumes that expressions are values that are,
somehow, available on certain circuit lines like any other signal. This skips a core
issue, namely how to realize expressions. VHDL provides a set of operations
to be used in expressions. These operations are not necessarily reversible. An
additional line with constant inputs is applied to make a non-reversible function
reversible [7] (leading to the implicit lines as discussed in Sect. 2). This is exactly
how the reversible HDL SyReC tackles this problem [4]. Hence, realizing an
expression E which is combined with N operators will implicitly add N constant
lines to the circuit. This is considered a serious drawback [8].

106 Z. Al-Wardi et al.

0 −
0 −
0 −
0 −
0 −
0 E

c c

b b

a a

l1

l2

l3

l4

l5

l6

and
not

and
or

not
xor

a. Direct realization of expression E

0 −
0 E

c c

b b

a a

l1

l2

0

G(a.b) G
−1
(a.b)

G
(a|c)

b. Line-aware realization of expression E

Fig. 5. Circuits realizing expression E from Example 1

Line-awareness when realizing HDL expressions can tangibly increase the
overall efficiency of this approach [9]. The reduction can be started by reconsid-
ering the necessity of adding lines in some special cases, such as with not, xor,+
and −. These operators are reversible, hence, can be computed with no addi-
tional line. Further reduction in lines may be obtained by reverse computing
(re-computing) intermediate values and reusing these lines for further computa-
tions [9]. To reverse a computation, just repeat it in the reverse order of gates.

Example 1. Consider the Boolean expression E (a.b.c ⊕ a|c), which has the fol-
lowing form in VHDL: (not(a and b) and c xor not(a or c)) . The value of
E is computed based on six Boolean operations. Hence, six constant input lines
are required to compute this expression. Figure 5a shows a reversible circuit to
compute E. Figure 5b shows the line-aware realization of the same expression
using only two constant lines, in which G−1

(a.b)
re-computes line l1. This line is

used once more to compute the sub-expression (not (a or c)), using G
(a|c).

5 Overall Realization

Using the realization schemes described above for signals, statements, and
expressions, an overall realization can be obtained for a given VHDL code. To
this end, the respectively obtained sub-circuits need to be accordingly connected.
In conventional hardware, it does not matter which statement is synthesized first,
the resulting hardware will be exactly the same because of statements’ concur-
rency [3]. The reversible computation scheme, on the other hand, is processing
signals in a cascade fashion. Consequently, signals are successively computed.
A simple algorithm, based on signal dependence, can be applied to determine
the correct order in which statements are to be synthesized. Hence, the order in
which statements are synthesized may differ from the order in which they appear
in the code. Figure 6a shows such an example. The figure shows the correct real-
ization of the VHDL code from Fig. 1, where statement S2 is synthesized before
S1 to resolve the issue of signal dependence.

The two statements S1 and S2 from Fig. 1 have expressions on their right hand
sides. A constant ‘0’ line is needed, in this example, to compute each expression.

Towards VHDL-Based Design of Reversible Circuits 107

0 −
0 −

w = 0 −
f = 0 f

b b

a a

GES2
GES1

a. Direct realization

0 0

w = 0 −
f = 0 f

b b

a a

GES2
G−1

ES2
GES1

G−1
ES1

b. Line-aware realization

Fig. 6. Circuits realization of VHDL code from Fig. 1

As a result, two implicit lines are added to realize the circuit (see Fig. 6a). For
complex codes, implicit lines keep accumulating throughout the code – resulting
in large numbers of circuit lines. A line-aware realization on the overall module
level may also re-compute lines to realize garbage-free statements [4]. This allows
statements to reuse implicit lines. In Fig. 6b, the implicit line used for statement
S2 is re-computed and then reused for S1. This arrangement realizes the circuit
with only one implicit line – compared to the two lines needed in the circuit
shown in Fig. 6a.

6 Conclusions

In this work, we discussed how to realize VHDL code as reversible circuits. To
this end, we considered the realization of the corresponding signal declarations,
statements, as well as expressions. Based on that, two different schemes for the
overall realization of the desired circuit have been proposed – with a particular
focus on the number of eventually resulting circuit lines. With these contribu-
tions, we provide an initial basis towards a VHDL-based reversible circuit design
flow that requires no or only little knowledge of the reversible computation par-
adigm. For future work, it is planed to consider more data-types with associated
operators, as well as covering more statements and settings.

Acknowledgments. This work has partially been supported by the European Union
through the COST Action IC1405.

References

1. Drechsler, R., Wille, R.: From truth tables to programming languages: progress in
the design of reversible circuits. In: International Symposium on Multi-valued Logic,
pp. 78–85 (2011)

2. Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits - a survey.
ACM Comput. Surv. (2011)

3. Ashenden, P.J.: The Designers Guide to VHDL, 3rd edn. Elsevier (2008)

108 Z. Al-Wardi et al.

4. Wille, R., Schönborn, E., Soeken, M., Drechsler, R.: SyReC: a hardware description
language for the specification and synthesis of reversible circuits. Integr. VLSI J.
53, 39–53 (2016)

5. Thomsen, M.K.: A functional language for describing reversible logic. In: Forum on
Specification and Design Languages, pp. 135–142 (2012)

6. Wille, R., Soeken, M., Drechsler, R.: Reducing the number of lines in reversible
circuits. In: Design Automation Conference, pp. 647–652 (2010)

7. Wille, R., Keszöcze, O., Drechsler, R.: Determining the minimal number of lines for
large reversible circuits. In: Design, Automation and Test in Europe (2011)

8. Wille, R., Soeken, M., Miller, D.M., Drechsler, R.: Trading off circuit lines and gate
costs in the synthesis of reversible logic. Integr. VLSI J. 47(2), 284–294 (2014)

9. Al-Wardi, Z., Wille, R., Drechsler, R.: Towards line-aware realizations of expres-
sions for HDL-based synthesis of reversible circuits. In: Krivine, J., Stefani, J.-B.
(eds.) RC 2015. LNCS, vol. 9138, pp. 233–247. Springer, Cham (2015). doi:10.1007/
978-3-319-20860-2 15

http://dx.doi.org/10.1007/978-3-319-20860-2_15
http://dx.doi.org/10.1007/978-3-319-20860-2_15

Reversible Circuit Optimization

Optimizing the Reversible Circuits Using
Complementary Control Line Transformation

Sai Phaneendra Parlapalli(B), Chetan Vudadha, and M.B. Srinivas

Department of Electrical Engineering, Birla Institute of Technology and Science
(BITS) - Pilani, Hyderabad Campus, Hyderabad, India

phani.parlapalli@gmail.com

Abstract. In this paper, a transformation method is presented which
converts complementary control lines of a reversible gate pair to
equal/similar control lines. A set of optimization rules is discussed that
take advantage of the increased equal control lines to reduce the cost.
A greedy optimization algorithm, which uses the proposed transforma-
tion method and the optimization rules, is presented. Results for a large
set of benchmarks confirm that the proposed algorithm performs bet-
ter when compared with other Exclusive-OR Sum-Of-Product (ESOP)
based methods available in the literature.

1 Introduction

Research on reversible logic is motivated by its applications in emerging tech-
nologies like quantum computing [14] and optical computing [4] as well as the
need for ultra low power design [3,10,20]. Traditional synthesis methods can-
not be directly applied to realize a reversible logic circuit because fan-out and
feedback are not allowed in this logic. Such constraints inspired researchers to
develop synthesis methods that target reversible logic exclusively. These methods
may be classified broadly as exact methods and heuristic methods [16,19]. Exact
methods generate reversible circuits optimized in terms of circuit cost. However,
they can be applied only to functions with very small number of variables (upto
6) [19]. On the other hand, heuristic methods have been used to synthesize
functions with a large number of variables. However, circuits obtained by these
methods have been found to be sub-optimal in terms of cost. This led to the
development of post-synthesis optimization methods like template based opti-
mization [11], rule based optimization [1,7], factor based decomposition [6,12]
etc., to further reduce the circuit cost.

Post-synthesis optimization methods have been applied either on gates hav-
ing only positive control lines [11] or on gates having both positive and negative
control lines [1,7]. In both these cases, the structures of gates having equal con-
trol lines have been decomposed into simpler structures, thereby resulting in the
reduction of the circuit cost [7,12]. However, if gates have unequal control lines
i.e., if positive control connection and negative control connection appear on the
same line, they are left untouched. In this paper, a transformation algorithm,

c© Springer International Publishing AG 2017
I. Phillips and H. Rahaman (Eds.): RC 2017, LNCS 10301, pp. 111–126, 2017.
DOI: 10.1007/978-3-319-59936-6 9

112 S.P. Parlapalli et al.

which works on a pair of gates by transforming unequal control lines to equiva-
lent equal control lines, is presented. Further, a set of existing rules and a new
rule are discussed, which can be applied on the circuit post transformation, to
reduce the cost. Finally, using this algorithm and a set of rules, a greedy opti-
mization algorithm is implemented and applied on a set of benchmark reversible
circuits. The resulting circuits show an average cost improvement of 45% when
compared with the initial benchmark circuits.

Rest of the paper is organized as follows: Sect. 2 gives background on
reversible logic circuits. The proposed transformation algorithm and rules for
a gate pair as well as the greedy optimization method for a gate netlist are pre-
sented in Sect. 3. Simulation results and comparison with existing methods are
given in Sect. 4 and conclusions are drawn in Sect. 5.

2 Background

2.1 Reversible Logic Circuits

A logic function f is called reversible logic function if there is a one-to-one
mapping between inputs and outputs and is bijective. A reversible logic circuit
for a function can be realized by cascading reversible gates like NOT, CNOT,
Toffoli and multi-control Toffoli (MCT) gates [18]. The standard representation
of basic reversible gates and a cascade of these gates to form a reversible circuit
are shown in Fig. 1. An MCT gate is represented as MCT (C; t) where C is a set
of control lines and t is the target line. When all the positive (negative) control
lines of the gate, represented as •(◦), are set to ‘1’ (‘0’), a MCT gate inverts the
target line, represented as ⊕.

x0 x0

x0 • x0

f0 f0 ⊕ x0

x0 • x0

x1 • x1

f0 f0 ⊕ x0x1

x0 • x0

x1 x1

x2 • x2

f0 f0 ⊕ x0x1x2

x0 • • x0 ⊕ x1

x1 • • • x0

x2 x2

f0 f0 ⊕ x1 ⊕ x0x1x2

Fig. 1. Reversible gates and reversible circuit

2.2 Quantum Cost of a Reversible Logic Circuit

The Quantum Cost (QC) of a reversible gate is the number of primitive quan-
tum gates required to implement the gate functionality. The primitive gates

Optimizing the Reversible Circuits 113

of quantum library followed in this paper are NOT, CNOT, controlled V and
controlled V+ gates. The QC of a reversible gate is calculated using the cost
function given in RevKit tool [17]. The cost of a reversible circuit is the sum of
the cost of individual reversible gates in the circuit.

3 Proposed Optimization Approach

In this section, an algorithm to transform unequal control lines to equal control
lines for a pair of gates is explained. Next, a set of rules are applied on the
transformed gate netlist. Finally, a greedy optimization method is presented
which uses the transformation algorithm and the rules to optimize a gate netlist.

3.1 Motivation

As explained earlier, post-synthesis optimization methods have been used to
improve the sub-optimal circuits generated by the existing synthesis methods.
One such optimization method has been discussed in [7], where a set of gates
has been transformed to simpler gates by applying certain rules. For example,
consider two gates shown in Fig. 2(a). These two gates, which differ by one control
line, can be merged into a single gate and the simplified gate netlist is shown
in Fig. 2(b). However, this rule can be applied only if the other control lines of
the gate pair are equal but not when they are different as shown in Fig. 2(c). In
order to address this issue, an algorithm is presented in this paper to convert
unequal control lines to equal control lines.

x0 • x0

x1 • • x1

x2 • • x2

QC = 26

x0 x0

x1 • x1

x2 • x2

QC = 5

x0 • x0

x1 • x1

x2 • x2

QC = 26

Fig. 2. Example case for optimization method presented in [7]

3.2 Basic Idea

In a gate pair, if a control line has positive control connection on one gate and
negative control connection on the other, then that line is termed as complemen-
tary control line (CCL). For example, the control line x0 for the gates in Fig. 2(c)
has negative control connection on the first gate and positive control connection
on the second. This control line is termed as CCL for that gate pair. The basic

114 S.P. Parlapalli et al.

idea in this paper is to convert such CCLs of a gate pair to equal control lines
by adding CNOT gates to the circuit. This is illustrated with Example 1 given
below.

Example 1. Consider the gate pair shown in Fig. 3(a). This gate pair has three
CCLs (x0, x1, x2). The gate g1, represented by (x0x1x2) ⊕ f0 can be written as
(x0(x0 ⊕x1)x2)⊕f0. Similarly, the gate g2, represented by (x0x1x2)⊕f0, can be
written as (x0(x0 ⊕ x1)x2) ⊕ f0. The term (x0 ⊕ x1) is now the common factor
among the two gates. For realization of this common factor, CNOT gates are
added to the gate pair g1 and g2 as shown in Fig. 3(b). As a result, the CCL x1

has transformed to an equal control line.

It has to be noted however that, in a gate pair with k CCLs, at most k − 1
CCLs can be transformed to equal control lines. The remaining CCL cannot
be transformed because it has to be used as a control line for the CNOT gates
that are added. After the transformation, different rules can be applied on the
transformed gate pairs to reduce their cost.

g1 g2

x0 • x0

x1 • x1

x2 • x2

g1 g2

x0 • • • x0

x1 • • x1

x2 • x2

x1

Fig. 3. Illustration of Example 1

3.3 The Gate Transformation Algorithm

The method for converting CCLs to equal control lines for a given pair of gates is
presented in Algorithm 1. This algorithm takes two gates Gi and Gj as inputs and
returns a gate netlist Gt as output. The set of CCLs (represented as ccl), if any, in
the given gate pair are extracted using the function ExtractComplementLines.
From ccl, a line is randomly selected as the baseline using the function random
and is subsequently removed from ccl. Now, for each line li in ccl, a CNOT
gate with the baseline as control line and li as the target line is added to an
intermediate gate netlist called CG. The function value determines whether the
control connection of a line in a gate is positive or negative control. The line li in
gates Gi and Gj is set to negative control if it has the same control connection
as the baseline, else is set to positive control. This updates the initial gate
pair Gi and Gj . Finally, the output gate netlist Gt is generated by cascading
the CG before and after the updated gate pair Gi and Gj . The proposed gate
transformation algorithm is illustrated in Example 2.

Optimizing the Reversible Circuits 115

Algorithm 1. Gate Transformation Algorithm for a Pair of Gates
1: Input: Gates Gi, Gj

2: Output: Gate Netlist Gt

3: begin
4: ccl = ExtractComplementLines(Gi, Gj)
5: if ccl = φ then exit
6: baseline = random(ccl)
7: ccl = ccl − {baseline}
8: CG = φ
9: for each li ∈ ccl do

10: append(CNOT (baseline, li), CG)
11: if value(Gi, baseline) == value(Gi, li) then
12: Gi(li) = Gj(li) = NegativeControl
13: else
14: Gi(li) = Gj(li) = PositiveControl
15: end if
16: end for
17: Gt = append(CG, Gi, Gj , CG)
18: return Gt

19: end

Example 2. Consider two gates gi and gj shown in Fig. 4(a), given as inputs
to Algorithm 1. First, the function ExtractComplementLines extracts the lines
x0, x1, x2 as CCLs for the gate pair and assigns them to the set ccl (ccl =
{x0, x1, x2}). Next, assuming that the random function selects the line x0 as the
baseline from ccl, it is removed from ccl and is updated to {x1, x2}.

In the first iteration, line x1 from the set ccl is selected as line li. A CNOT
gate with x0 (the baseline) as control line and x1 (line li) as target line is added
to the gate netlist CG. Since the function value returns the control connections
of x0 and x1 in gate gi as negative and positive control respectively, the line x1

in gates gi and gj is updated to positive control. At the end of the first iteration,
status of the gate netlist CG and that of gates gi and gj are shown in Fig. 4(b).

The algorithm then proceeds to update the gate netlist CG and the gate
pair gi, gj for the remaining lines in the ccl. Figure 4(c) shows the status after
the second iteration. Finally, the gate netlist CG is added before and after the
updated gates gi and gj to form the output gate netlist Gt as shown in Fig. 4(d).

3.4 Rule Based Optimization on Transformed Gate Netlist

In this sub-section, two existing rules and a newly proposed one are presented
which can be used to optimize the transformed gate netlist. The existing rules
used have been presented in [7] and are briefly explained as follows:

1. Merging Rule: A pair of gates can be merged into a single gate if they have the
same target lines, one CCL and any remaining control lines that are equal.

116 S.P. Parlapalli et al.

gi gj

x0 • x0

x1 • x1

x2 • x2

f0

ccl = {x1, x2} baseline = x0

Iteration 1−−−−−−−−−−−−→

CG
x0 •
x1

x2

f0

gi gj

x0 • x0

x1 • • x1

x2 • x2

f0

li = x1 baseline = x0

⏐
⏐
⏐
�
Iteration 2

g1 g2

x0 • • • • • x0

x1 • • x1

x2 x2
Final Netlist←−−−−−−−−−−−−−

CG
x0 • •
x1

x2

f0

gi gj

x0 • x0

x1 • • x1

x2 x2

f0

li = x2 baseline = x0

Fig. 4. Illustration of gate transformation algorithm (a) Initial gate pair (b) After
iteration 1 (c) After iteration 2 (d) Final transformed gate netlist

This rule is represented as Eq. 1 given below:

MCT (C ∪ {xi};xt) ◦ MCT (C ∪ {xi};xt) = MCT (C;xt) (1)

where C is a set of equal control lines.
2. Replacement Rule: A pair of gates can be replaced with two gates if they have

the same target lines, one CCL, a control line with control connection only
on one gate and any remaining control lines that are equal.
This rule is represented as Eq. 2 given below:

MCT (C ∪ {xi, xj};xt) ◦ MCT (C ∪ {xi};xt) =
MCT (C ∪ {xi, xj};xt) ◦ MCT (C;xt) (2)

where C is a set of equal control lines.

These rules can be used on a pair of gates if it has only one CCL but not more.
However, the proposed transformation algorithm enables the usage of above rules
on a gate pair that has one or more than one CCL. This is because the algorithm
can reduce any number of CCLs in a gate pair to one CCL as described in

Optimizing the Reversible Circuits 117

Sect. 3.3. The procedure is illustrated with Examples 3 and 4 for merging and
replacement rules, respectively.

Example 3. Consider a pair of gates shown in Fig. 5(a). These gates cannot be
optimized using merging rule as they have more than one CCL. After the appli-
cation of the proposed algorithm however, the resulting gate netlist has only one
CCL as shown in Fig. 5(b). The gates g1 and g2 in the resulting netlist have
the same target line, one CCL and two equal control lines. Thus, g1 and g2 can
be merged into a single gate gm using the merging rule. The final gate netlist
is shown in Fig. 5(c) where it can be seen that the cost of the gate netlist has
reduced from 26 to 9.

x0 • x0

x1 • x1

x2 • x2

Cost = 26

g1 g2

x0 • • • • • x0

x1 • • x1

x2 x2

Cost = 30

gm

x0 • • • • x0

x1 • x1

x2 x2

Cost = 9

Fig. 5. Illustration of Example 3

Example 4. Consider a pair of gates shown in Fig. 6(a). These gates cannot be
optimized using the replacement rule because they have more than one CCL.
After the algorithm is applied however, the resulting gate netlist has only one
CCL as shown in Fig. 6(b). The gates g1 and g2 in the resulting netlist have the
same target line, one CCL, the line x4 with control connection only on gate g1
and three equal control lines. Thus, g1 and g2 can be replaced with two other
gates g3 and g4. The final gate netlist is shown in Fig. 6(c) where it can be seen
that the cost of the gate netlist has reduced from 90 to 72.

While the above examples illustrate the existing rules, a new decomposition
rule, which uses equal control lines in a given gate pair, is proposed in this work.
Before describing this rule, a definition for unused line is presented below:

Definition 1. (Unused line): If a line in a gate netlist is neither a control line
nor a target line then it is termed as unused line.

Decomposition Rule: Consider a pair of gates g1 and g2 with same target line
xt, K equal control lines, C CCLs and P (Q) lines that have control connection

118 S.P. Parlapalli et al.

x0 • • x0

x1 • x1

x2 • x2

x3 • • x3

x4 • x4

Cost = 90

g1 g2

x0 • • x0

x1 • • • x1

x2 x2

x3 • • x3

x4 • x4

Cost = 92

g3 g4

x0 • • x0

x1 • • • x1

x2 x2

x3 • • x3

x4 x4

Cost = 76

Fig. 6. Illustration of Example 4

in g1(g2) but not in g2(g1). If an unused line xu is available, then the gate pair
can be decomposed into a network of smaller gates using the following equation:

MCT (K ∪ C ∪ P ;xt) ◦ MCT (K ∪ C ∪ Q;xt) =
MCT (C ∪ P ;xu) ◦ MCT (C ∪ Q;xu) ◦ MCT (K ∪ {xu};xt)◦

MCT (C ∪ P ;xu) ◦ MCT (C ∪ Q;xu) ◦ MCT (K ∪ {xu};xt)
(3)

This decomposition rule is illustrated with the help of the following example:

Example 5. Consider the gate pair g1 and g2 shown in Fig. 7(a). These gates
have the same target line, three equal control lines, one CCL. Line x4 has control
connection only in g1 while line x5 has control connection only in g2. As can be
observed, line x6 is unused line for this gate pair. Using the decomposition rule
given by Eq. 3, these gates can be decomposed into a network of smaller gates.
The resulting decomposed gate netlist is shown in Fig. 7(b).

Usage of this rule results in an optimized netlist only if the number of equal
control lines is more than unequal control lines in the gate pair. Therefore,
increasing the number of equal control lines increases the possibility of obtaining
reduced gate netlist. The proposed transformation method enables the usage of
the decomposition rule by increasing the number of equal control lines. Example 6
illustrates the usage of the decomposition rule after applying the transformation
method for a pair of gates.

Example 6. Consider two gates g1 and g2 shown in Fig. 8(a). The decomposition
rule cannot be applied on this gate pair because there are no equal control lines.
Applying the gate transformation algorithm to transform CCLs to equal control
lines results in the gate netlist shown in Fig. 8(b). Since the gates ga and gb
have three equal control lines, the decomposition rule can be applied. The final
decomposed gate netlist is shown in Fig. 8(c) where it can be seen that the cost
has reduced from 104 to 78.

Optimizing the Reversible Circuits 119

g1 g2

x0 • x0

x1 • • x1

x2 • • x2

x3 • • x3

x4 • x4

x5 • x5

x6 x6

Cost = 104

x0 • • x0

x1 • • x1

x2 • • x2

x3 • • x3

x4 • • x4

x5 • • x5

x6 • • x6

Cost = 72

Fig. 7. Illustration of proposed decomposition rule

g1 g2

x0 • x0

x1 • x1

x2 • x2

x3 • x3

x4 • x4

x5 • x5

x6 x6

QC = 104

ga gb

x0 • • • • • • • x0

x1 • • x1

x2 • • x2

x3 • • x3

x4 • x4

x5 • x5

x6 x6

QC = 110

x0 • • • • • • • • x0

x1 • • x1

x2 • • x2

x3 • • x3

x4 • • x4

x5 • • x5

x6 • • x6

QC = 78

Fig. 8. Illustration of Example 6

In the next sub-section a greedy optimization algorithm, that utilizes the
reduction rules presented above to reduce the cost of the given gate netlist, is
presented.

3.5 Greedy Optimization

In the greedy optimization algorithm given in Algorithm2, a reversible gate
netlist G is given as input and a gate netlist G′ is returned. Initially, the gate
netlist G is traversed and the gates with equal control lines but different target
lines are merged using the function target merging [21]. This avoids regeneration
of the same gate for different target lines. Since the reduction rules presented
in Sect. 3.4 can be applied only on the gates with equal target lines, a set of
segments consisting of gates with equal target lines is generated and assigned to
Segment.

120 S.P. Parlapalli et al.

Algorithm 2. Greedy Optimization Method for a Gate Netlist
1: Input: Reversible Gate Netlist G
2: Output: Modified Gate Netlist G′

3: begin
4: GN = target merging(G)
5: Segment = φ
6: G′ = φ
7: for each g ∈ GN do
8: insert(Segment[target(g)], g)
9: end for

10: for each sg ∈ Segment do
11: while sg is not empty do
12: flag = false
13: Gi = select gate(sg)
14: RemoveGate(sg, Gi)
15: CostTable(Gi) = φ
16: for each Gj ∈ sg do
17: Status = False
18: Gt = φ
19: NewCost = ∞
20: Status, Gt, NewCost = translate(Gi, Gj)
21: if Status is True then
22: CostTable(Gi) = {Gj , Gt, NewCost}
23: flag = True
24: end if
25: end for
26: if flag is True then
27: Gp, Gnew = LeastCost(CostTable(Gi))
28: Append(G′, Gnew)
29: RemoveGate(sg, Gp)
30: else
31: Append(G′, Gi)
32: end if
33: end while
34: end for
35: return G′

36: end

For a sg in Segment, each gate Gi is paired with every other gate Gj and
is given to the translate function. This function takes a gate pair and checks
for the possibility of reduction using the transformation algorithm and the rules
presented in Sect. 3.4. If a possibility exists for a reduction of that pair, the
function returns Status as True, the reduced gate netlist as Gt and its cost
as NewCost. Also, the gate netlist Gt and its cost NewCost are added to the
CostTable(Gi) and the flag is set to True.

After Gi is paired with every other gate Gj in sg, the status of flag is checked.
If the flag is False, it indicates that there is no reduction possible for the gate

Optimizing the Reversible Circuits 121

Gi when paired with any other gate in that segment and the gate Gi is added
to the output gate netlist G′. If it is True then the function LeastCost scans
the CostTable(Gi) and returns a gate Gp that results in maximum possible
reduction when paired with Gi. This function also returns Gnew which is the
reduced gate netlist for the gate pair Gi and Gp. Finally, the gate netlist Gnew

is added to the output gate netlist G′ and the gate Gp is subsequently removed
from the segment sg. This process is repeated for each sg in the Segment.

4 Simulation Results

The greedy optimization method has been applied on different benchmark
reversible circuits to evaluate its efficiency in terms of cost. The reversible gate
netlist obtained from Exclusive-OR Sum of Product (ESOP) based synthesis
method presented in [9] is given as the input for the optimization method.

The quantum cost for different benchmark circuits after applying the opti-
mization method is shown in Table 1. The first column gives the benchmark
name while the second and third columns provide the cost of input gate netlist
and the gate netlist obtained after target merging (line no 4 of Algorithm2),
respectively. The fourth column gives the cost of the final gate netlist obtained
after applying the optimization algorithm. The fifth and sixth columns give the
percentage improvement over the initial gate netlist and the gate netlist obtained
after target merging, respectively. It is seen from the Table 1 that in the best
case, there is a considerable reduction of quantum cost of up to 84%. An average
cost improvement of about 45% is observed over all the benchmarks considered
in the table.

A comparison of costs obtained from the optimization method with different
ESOP based methods [2,5,8,13,15] is presented in Table 2. The first column gives
the name of the benchmark circuit while the columns 2–6 indicate the quantum
cost of respective benchmark circuits realized with existing ESOP based meth-
ods [2,5,8,13,15]. Column 7 provides the quantum cost to realize that bench-
mark using the proposed optimization method. Column 8 shows the percentage
improvement of quantum cost achieved compared to the existing methods that
give the best reduction for that benchmark.

It can be seen from the table that there is an improvement of up to 48%
in quantum cost. For arithmetic benchmark circuits like frg2, in0, max46, etc.,
and large benchmark circuits like misex3, table3, etc., there is a reduction in the
quantum cost. However, for some benchmarks like add6, bw, z4 etc., the opti-
mization method results in higher quantum cost when compared to the existing
ones [2,5,13]. This is because of limited availability of a required gate pair that
can be transformed using the algorithm and the rules presented earlier.

122 S.P. Parlapalli et al.

Table 1. Comparison with original gate netlist

Benchmark Cost of input
gate netlist

Cost
after
merge

Cost of
proposed
method

% Impr w.r.t. proposed method

Original After merge

5xp1 1264 809 773 38.84 4.45

9sym 10937 10937 3055 72.07 72.07

add6 6679 5157 3848 42.39 25.38

alu1 205 205 205 0.00 0.00

alu2 4623 4306 3090 33.16 28.24

alu3 2432 1976 1828 24.84 7.49

alu4 43635 36913 25007 42.69 32.25

apex4 252939 39818 39806 84.26 0.03

apex5 49161 31891 27960 43.13 12.33

apla 3806 1713 1601 57.93 6.54

bw 4464 820 820 81.63 0.00

C17 77 77 77 0.00 0.00

clip 7445 3842 1837 75.33 52.19

cm150a 803 803 785 2.24 2.24

con1 150 150 150 0.00 0.00

cordic 343959 172199 64504 81.25 62.54

cu 1191 747 747 37.28 0.00

dc2 1957 1097 1017 48.03 7.29

decod 2001 460 460 77.01 0.00

dist 7489 3723 2739 63.43 26.43

e64 26129 23751 23751 9.10 0.00

ex1010 178709 54154 52822 70.44 2.46

ex2 146 146 140 4.11 4.11

ex3 76 76 59 22.37 22.37

f2 262 118 83 68.32 29.66

f51m 30300 26533 19374 36.06 26.98

frg2 186500 103876 97001 47.99 6.62

in0 20639 7623 7501 63.66 1.60

majority 133 133 110 17.29 17.29

max46 4524 4524 2876 36.43 36.43

misex1 935 358 358 61.71 0.00

misex3 106810 46381 40771 61.83 12.10

misex3c 104924 46977 41886 60.08 10.84

mlp4 3878 2511 2129 45.10 15.21

mux 800 800 768 4.00 4.00

pm1 494 188 188 61.94 0.00

(continued)

Optimizing the Reversible Circuits 123

Table 1. (continued)

Benchmark Cost of input
gate netlist

Cost
after
merge

Cost of
proposed
method

% Impr w.r.t. proposed method

Original After merge

radd 721 659 483 33.01 26.71

rd84 2520 2334 1751 30.52 24.98

root 3618 1829 1548 57.21 15.36

sao2 7702 3688 3324 56.84 9.87

spla 94371 30518 26862 71.54 11.98

sqn 2096 1348 791 62.26 41.32

sqr6 989 609 549 44.49 9.85

sqrt8 583 477 312 46.48 34.59

squar5 365 234 231 36.71 1.28

t481 229 229 205 10.48 10.48

table3 79348 17662 16863 78.75 4.52

urf3 146687 53963 50761 65.40 5.93

z4 517 494 352 31.91 28.74

Table 2. Comparison with ESOP based methods

Benchmark [15] [13] [8] [2] [5] Proposed Method % Impr

5xp1 1349 786 865 – 807 773 1.65

add6 6362 – 5084 2683 – 3848 −43.42

alu2 5215 – 4476 – 3679 3090 16.01

alu3 2653 – – – 1919 1828 4.74

alu4 48778 41127 43850 – 38635 25007 35.27

apex4 256857 35840 50680 51284 – 39806 −11.07

apex5 – 33830 – – 33803 27960 17.29

apla 4051 1683 – – 1709 1601 4.87

bw – 637 – 2233 790 820 −28.73

C17 97 – – – – 77 20.61

clip 6616 3824 4484 – 3218 1837 42.91

cm150a 844 – – – – 785 6.99

con1 207 162 – – – 150 7.41

cordic 349522 187620 – – 111955 64504 42.38

cu 1332 781 – – 780 747 4.23

dc2 1956 1084 – – 1099 1017 6.18

decod 1924 399 – 976 – 460 −15.29

(continued)

124 S.P. Parlapalli et al.

Table 2. (continued)

Benchmark [15] [13] [8] [2] [5] Proposed Method % Impr

dist 7414 3700 – – – 2739 25.97

e64 – – – – 24345 23751 2.44

ex1010 183726 52788 – 77293 – 52822 −0.06

ex2 153 – – 118 – 140 −18.64

ex3 97 – – 73 – 59 19.18

f2 274 112 – 116 – 83 25.89

f51m 34244 28382 – – 25119 19374 22.87

frg2 – 112008 – – 114239 97001 13.40

in0 22196 7949 – – – 7501 5.64

majority 147 – – 106 – 110 −3.77

max46 4432 – – 3239 – 2876 11.21

misex1 1017 332 466 – 352 358 −7.83

misex3 122557 49076 67206 – 54132 40771 16.92

misex3c 118578 49720 85330 52600 – 41886 15.76

mlp4 3827 2496 – – – 2129 14.70

mux 826 – – 784 – 768 2.04

pm1 582 – – 290 – 188 35.17

radd 798 – – 349 – 483 −38.40

rd84 2598 – 2062 – 1965 1751 10.89

root 3486 1811 – – 1583 1548 2.21

sao2 7893 3767 5147 – – 3324 11.76

spla – – 49419 – 45478 26862 40.93

sqn 2170 – – 1183 – 791 33.14

sqr6 1090 583 – – – 549 5.83

sqrt8 584 – 461 – – 312 32.32

squar5 476 – 251 – – 231 7.97

t481 237 – 237 – – 205 13.50

table3 86173 – 35807 – 32286 16863 47.77

urf3 – 53157 – 56766 – 50761 4.51

z4 674 489 – 260 – 352 −35.38

5 Conclusion

In this paper, an algorithm to transform complementary control lines of a gate
pair to equal control lines has been presented. It is shown that this algorithm
enables the usage of a set of rules by converting CCLs to equal control lines. A
greedy optimization technique which uses the transformation algorithm and the

Optimizing the Reversible Circuits 125

rules to optimize the given gate netlist has also been presented and discussed.
Simulation results show that there is a significant reduction in the quantum cost
of benchmark circuits with a maximum of 84% and an average of 45% when
compared to the original gate netlist. Further, a comparison of the proposed
optimization method with the existing ESOP based methods shows an improve-
ment in quantum cost of up to 48%.

Acknowledgements. This work was supported in part by Council of Scientific &
Industrial Research (CSIR) grant (ref.-09/1026(0007)/2012-EMR-I).

References

1. Arabzadeh, M., Saeedi, M., Zamani, M.S.: Rule-based optimization of reversible
circuits. In: Proceedings of the 2010 Asia and South Pacific Design Automation
Conference, pp. 849–854. IEEE Press (2010)

2. Bandyopadhyay, C., Rahaman, H., Drechsler, R.: Improved cube list based cube
pairing approach for synthesis of ESOP based reversible logic. In: Gavrilova, M.L.,
Tan, C.J.K., Thapliyal, H., Ranganathan, N. (eds.) Transactions on Computational
Science XXIV. LNCS, vol. 8911, pp. 129–146. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-45711-5 8

3. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–
532 (1973)

4. Cuykendall, R., Andersen, D.R.: Reversible optical computing circuits. Opt. Lett.
12(7), 542–544 (1987)

5. Datta, K., Gokhale, A., Sengupta, I., Rahaman, H.: An ESOP-based reversible cir-
cuit synthesis flow using simulated annealing. In: Chaki, R., Saeed, K., Choudhury,
S., Chaki, N. (eds.) Applied Computation and Security Systems. AISC, vol. 305,
pp. 131–144. Springer, New Delhi (2015). doi:10.1007/978-81-322-1988-0 8

6. Datta, K., Rathi, G., Sengupta, I., Rahaman, H.: An improved reversible circuit
synthesis approach using clustering of ESOP cubes. ACM J. Emerg. Technol. Com-
put. Syst. (JETC) 11(2), 15 (2014)

7. Datta, K., Sengupta, I., Rahaman, H.: A post-synthesis optimization technique for
reversible circuits exploiting negative control lines. IEEE Trans. Comput. 64(4),
1208–1214 (2015)

8. Drechsler, R., Finder, A., Wille, R.: Improving ESOP-based synthesis of reversible
logic using evolutionary algorithms. In: Di Chio, C., et al. (eds.) EvoApplications
2011. LNCS, vol. 6625, pp. 151–161. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-20520-0 16

9. Fazel, K., Thornton, M., Rice, J.: ESOP-based Toffoli gate cascade generation. In:
IEEE Pacific Rim Conference on Communications, Computers and Signal Process-
ing, pp. 206–209 (2007)

10. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 5(3), 183–191 (1961). http://dx.doi.org/10.1147/rd.53.0183

11. Maslov, D., Dueck, G.W., Miller, D.M.: Techniques for the synthesis of reversible
Toffoli networks. ACM Trans. Des. Autom. Electron. Syst. 12(4) (2007). http://
doi.acm.org/10.1145/1278349.1278355

12. Miller, D.M., Wille, R., Drechsler, R.: Reducing reversible circuit cost by adding
lines. In: 40th IEEE International Symposium on Multiple-Valued Logic (ISMVL),
pp. 217–222. IEEE (2010)

http://dx.doi.org/10.1007/978-3-662-45711-5_8
http://dx.doi.org/10.1007/978-3-662-45711-5_8
http://dx.doi.org/10.1007/978-81-322-1988-0_8
http://dx.doi.org/10.1007/978-3-642-20520-0_16
http://dx.doi.org/10.1007/978-3-642-20520-0_16
http://dx.doi.org/10.1147/rd.53.0183
http://doi.acm.org/10.1145/1278349.1278355
http://doi.acm.org/10.1145/1278349.1278355

126 S.P. Parlapalli et al.

13. Nayeem, N.M., Rice, J.E.: A shared-cube approach to ESOP-based synthesis of
reversible logic. Facta Univ. Ser. Electron. Energ. 24(3), 385–402 (2011)

14. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2010)

15. Rice, J., Fazel, K., Thornton, M., Kent, K.: Toffoli gate cascade generation using
ESOP minimization and QMDD-based swapping. In: Proceedings of the Reed-
Muller Workshop (RM 2009), pp. 63–72 (2009)

16. Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits - a sur-
vey. ACM Comput. Surv. (CSUR) 45(2), 21 (2013)

17. Soeken, M., Frehse, S., Wille, R., Drechsler, R.: RevKit: a toolkit for reversible
circuit design. Mult. Valued Log. Soft Comput. 18(1), 55–65 (2012)

18. Toffoli, T.: Reversible computing. In: Bakker, J., Leeuwen, J. (eds.) ICALP
1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980). doi:10.1007/
3-540-10003-2 104

19. Wille, R., Drechsler, R.: Towards a Design Flow for Reversible Logic. Springer,
Dordrecht (2010)

20. Wille, R., Drechsler, R., Osewold, C., Garcia-Ortiz, A.: Automatic design of low-
power encoders using reversible circuit synthesis. In: Proceedings of the Conference
on Design, Automation and Test in Europe (DATE 2012), pp. 1036–1041. EDA
Consortium, San Jose (2012). http://dl.acm.org/citation.cfm?id=2492708.2492966

21. Wille, R., Soeken, M., Otterstedt, C., Drechsler, R.: Improving the mapping of
reversible circuits to quantum circuits using multiple target lines. In: 18th Asia
and South Pacific Design Automation Conference (ASP-DAC), pp. 145–150. IEEE
(2013)

http://dx.doi.org/10.1007/3-540-10003-2_104
http://dx.doi.org/10.1007/3-540-10003-2_104
http://dl.acm.org/citation.cfm?id=2492708.2492966

An ESOP Based Cube Decomposition Technique
for Reversible Circuits

Sai Phaneendra Parlapalli(B), Chetan Vudadha, and M.B. Srinivas

Department of Electrical Engineering, Birla Institute of Technology and Science
(BITS) - Pilani, Hyderabad Campus, Hyderabad, India

phani.parlapalli@gmail.com

Abstract. Reversible logic finds applications in emerging technologies
such as quantum computing, optical computing, etc. This has motivated
research into development of synthesis and optimization algorithms for
reversible circuits. In this paper, a set of rules is presented for the decom-
position of a pair of multi-control Toffoli gates (MCT) to reduce the
quantum cost of reversible circuits. These rules find pairs of MCT gates,
which when decomposed to a network of smaller gates, result in reduced
quantum cost. This technique is used in conjunction with an Exclusive-
OR Sum-Of-Product (ESOP) based reversible circuit synthesis algorithm
to check its efficiency. Results indicate that there is a reduction in quan-
tum cost of several benchmark circuits when compared to the known
ESOP based synthesis algorithms.

1 Introduction

Motivated by the applications of reversible logic in emerging technologies, many
algorithms and methodologies have been developed during the past decade to
synthesize and optimize reversible logic circuits. A survey on different synthe-
sis and optimization techniques has been presented in [12,18]. These include
exact/optimal methods, heuristics methods, etc. The exact/optimal methods
generate optimal circuits in terms of cost but are applicable only to functions
with very small number of variables, whereas, heuristic methods can synthesize
large functions (typically 30 or less variables [18]) but generate sub-optimal cir-
cuits. To handle a larger number of variables, high-level function descriptions like
Binary Decision Diagram (BDD) [6,17], Exclusive-OR Sum Of Product (ESOP)
[4,5,9] have been proposed for the synthesis of reversible logic circuits. While
these methods are scalable for a much higher number of variables, the synthe-
sized circuits are far from optimal.

The present work focuses on synthesis of reversible logic circuits using ESOP
based technique. A decomposition algorithm is presented which decomposes pairs
of ESOP product terms into smaller product terms while eliminating the redun-
dant terms for the same functionality. This results in the reduction of the size of
the reversible gate which has a direct impact in the reduction of quantum cost
of the final synthesized circuit.

c© Springer International Publishing AG 2017
I. Phillips and H. Rahaman (Eds.): RC 2017, LNCS 10301, pp. 127–140, 2017.
DOI: 10.1007/978-3-319-59936-6 10

128 S.P. Parlapalli et al.

The rest of the article is organized as follows: Sect. 2 discusses the basic con-
cepts of reversible circuits and their ESOP representation. A review of existing
ESOP based synthesis techniques and related work is presented in Sect. 3 while
the proposed decomposition algorithm is presented in Sect. 4. Finally experimen-
tal results and comparison with existing techniques are discussed in Sect. 5, and
conclusions are drawn in Sect. 6.

2 Background

2.1 Reversible Circuits

A reversible Boolean function is a multi-input, multi-output Boolean function
which has an equal number of inputs and outputs. It has a one-to-one mapping
between inputs and outputs and is bijective. A cascade of reversible gates realizes
a reversible circuit for a given function. Among several reversible gates that exist
in literature, the most basic gates are NOT, CNOT and Toffoli gates [15]. A
Toffoli gate inverts the target line, represented as ⊕ in Fig. 1, when all positive
control lines, represented as •, are equal to ‘1’. Similarly, a negative control in
Toffoli gate, represented as ◦, indicates the control line is active when it is equal
to ‘0’. A n-bit multi control Toffoli (MCT) gate is a generalized Toffoli gate with
n−1 control lines and is represented as MCT (C; t), where C is the set of control
lines and t is the target line. The standard gate representation of these reversible
gates is shown in Fig. 1.

In this paper, quantum cost (QC), which is the equivalent cost of reversible
gate in quantum technology, is taken as a cost metric to evaluate the cost of
reversible circuits. The quantum cost for Toffoli gate and MCT gates are calcu-
lated using the cost function given in RevKit tool [14]. If a gate has all negative
control lines, then the cost of the gate is incremented by one [7]. The cost of a
circuit is the sum of the cost of individual reversible gates in the circuit.

x0 • x0

x1 • x1

x2 x0x1 ⊕ x2

(a) Toffoli

x0 • x0

x1 • x1

x2 • x2
...

...
xn−2 • xn−2

xn−1 x0x1 · · ·xn−2 ⊕ xn−1

(b) Multi-Control Toffoli (MCT)

Fig. 1. Basic reversible gates

Decomposition of an MCT Gate. Any MCT gate can be decomposed into
a network of smaller gates. A fundamental decomposition method is presented
in Lemma 7.3 of [2] by which any MCT gate of size m (where m � 5) can
be decomposed into a network of two gates, each of size p and two gates of

An ESOP Based Cube Decomposition Technique for Reversible Circuits 129

size m − p + 1 each, given at least one empty line (line which is not a control
or target line for an MCT gate) is present in the circuit. For example, the
decomposition of a MCT gate, G = MCT (x0, x1, x2, x3, x4; f0), of size 5 into
a network of four gates of size 3 (i.e., p = 3) is shown in Fig. 2. In this paper,
gates in the network that are realized on an empty line are termed as secondary
gates (represented as sg in Fig. 2) and the gates that are realized on the actual
target line, i.e., f0 are termed as primary gates (represented as pg in Fig. 2).
Assuming symbol ‘◦’ denotes composition (cascading of the gates/circuits), the
decomposition network of gate G can be written in terms of ‘sg’ and ‘pg’ as:

G = sg ◦ pg ◦ sg ◦ pg

x0 • x0
x1 • x1
x2 • x2
x3 • x3
x4 • x4
x5 x5

0 f0

sg sg
x0 • • x0
x1 • • x1
x2 • • x2
x3 • • x3
x4 • • x4
x5 • • x5

0 f0
pg pg

Fig. 2. Decomposition of MCT gate into network of four smaller gates

2.2 Exclusive-OR Sum-Of-Products (ESOP)

A traditional Sum-of-Product (SOP) is a method of representing a function using
AND-OR expression, i.e., OR of several product terms. Likewise, an Exclusive-or
sum-of-products (ESOP) is a type of representation in AND-EXOR expression
[8], i.e., exclusive-OR of several product terms. The individual product terms
in an ESOP expression are called as cubes and the variables in its positive or
negative polarity form are called as literals. For example, consider a function
in SOP form as f = x0x1 + x0x2, the ESOP equivalent form of the same is
f = x0x1 ⊕ x0x1x2. Further, x0x1, x0x1x2 are termed as cubes and variables
x0, x1, x1, x2 are termed as literals. In general the cubes are represented as
a vector of inputs, i.e., for n variables where x0, x1, . . . , xn−1 are inputs and
xi ∈ {0, 1,−}, the cube Ci is represented as cube Ci = <x0x1 . . . xn−1>. The
‘−’ in a cube indicates that the variable at that position has not appeared in
the cube and is termed as a ‘don’t care’ literal.

In this paper, ESOP functions are represented as a list of cubes called cube
lists. As an example, consider two functions f1 = x0x1 ⊕ x0x1x2 and f2 =
x0 ⊕x0x1x2, where x0, x1 and x2 are input variables and f1 and f2 are outputs.
The cube list along with the cube outputs and representation of cubes for the
functions f1 and f2 are shown in Fig. 3.

130 S.P. Parlapalli et al.

x0 x1 x2 f1 f2
C1(x0x1) 1 0 − 1 0
C2(x0x1x2) 1 1 1 1 1
C3(x0) 0 − − 0 1

(a)

Ci < x0x1x2 >

C1 < 10− >
C2 < 111 >
C3 < 0 − − >

(b)

Fig. 3. (a) Cube list and (b) representation of cubes for functions f1 = x0x1 ⊕ x0x1x2

and f2 = x0 ⊕ x0x1x2

3 Related Work

The ESOP based synthesis approach for reversible circuits has been introduced
in [5]. In this approach, the cubes corresponding to every output variable are
mapped to a MCT gate. Later, different techniques have been presented to reduce
the quantum cost of these circuits. A template matching approach has been
presented in [10] by which different templates are applied on a cascade of MCT
gates to reduce the quantum cost. A synthesis approach was presented in [13]
which uses positive and negative control gates to eliminate the usage of NOT
gates for negative literals in the cubes. Further, a set of transformation rules
is defined to transfer the targets on outputs to some input lines which helps
in reducing number of lines in the circuit. An ordering based technique has
been presented in [11] to reorder the ESOP cubes such that the number of
NOT gates is reduced. In addition to this a set of transformation rules have
also been presented to improve the quantum cost of the circuit. Based on these
transformation rules, a simulated annealing based approach has been developed
in [3] to reduce the quantum cost of circuit. In order to reduce the number
of CNOT gates used for sharing MCT gates among their outputs, a shared
cube synthesis approach has been presented in [9] which finds multiple outputs
that have the largest number of common cubes. These common cubes are first
mapped on to respective MCT gates and then CNOT gates are added to share
the common cubes between the outputs. All these techniques use EXORCISM-4
tool [8] to generate a cube list. EXORCISM-4 is a general tool that generates Ex-
OR cube list from truth tables or SOP expressions. There are techniques [1,4]
which use custom algorithms to generate cube lists targeting only reversible
circuits.

In this paper, a decomposition technique for a pair of cubes is proposed to
improve the quantum cost of a reversible circuit. This technique selects a pair of
cubes from the cube list and decomposes them into smaller cubes without any
change in the functionality.

4 Proposed Cube Decomposition Technique

4.1 General Idea

The synthesis algorithms/methods of reversible circuits typically generate sub-
optimal circuits and thus optimization methods are applied to reduce circuit’s

An ESOP Based Cube Decomposition Technique for Reversible Circuits 131

quantum cost. Among the optimization methods, one of the methods is decom-
posing the MCT gates in the circuit into a network of smaller gates and removal
of redundant gates, if any. In general, this decomposition is applied indepen-
dently on individual gates and thus generation of maximum number of redundant
gates may not happen. Rather than applying decomposition on individual gates,
if the decomposition is applied on a pair of gates with a systematic approach,
the chances of generation of redundant gates are higher. For example, consider a
pair of gates shown in Fig. 4(a) and two different types of decomposition for the
same are shown in Figs. 4(b) and (c). The first decomposition is applied inde-
pendently on individual gates and the second decomposition is applied pairwise
generating identical primary gates. The dotted box in Fig. 4(c) contains primary
gates that are equal and thus redundant, and hence which can be removed from
the circuit thereby reducing the quantum cost of pairwise decomposition circuit.

• •
•

•
•

• •

(a)

• • • •
• •

• • • •
• •

• •
• • • •

(b)

• • • •
• •

• • • •
• •

• •
• • • •

(c)

Fig. 4. (a) Initial circuit (QC = 78) (b) Individual gate decomposition (QC = 98) (c)
Pairwise decomposition (QC = 62)

The following lemma proves different conditions by which redundant gates
can be generated when decomposing a pair of gates.

Lemma 1. Consider two MCT gates G1 and G2. If the primary (or secondary)
gates of two decomposed MCT gates, G1 and G2, are identical or if one of the
primary (or secondary) gates of G1(G2) is identical to other gate G2(G1), then
redundant gates can be generated which can be removed from the circuit.

Proof. Consider two MCT gates G1 and G2 and the decomposed network of
these gates in terms of their primary and secondary gates are represented as:

G1 = sg1 ◦ pg1 ◦ sg1 ◦ pg1 & G2 = sg2 ◦ pg2 ◦ sg2 ◦ pg2

where pg1, pg2 represents primary gates and sg1, sg2 represents secondary gates
for gate G1 and G2 respectively. The general circuit realization for the cascade
of gates G1 and G2 is given as:

G1 ◦ G2 = G1 ◦ G−1
2 [∵ MCT gates are self-inverse]

= sg1 ◦ pg1 ◦ sg1 ◦ pg1 ◦ pg2 ◦ sg2 ◦ pg2 ◦ sg2
(1)

132 S.P. Parlapalli et al.

If the primary gates of two MCT gates are equal, then pg1 ◦ pg2 = ∅. Thus,
primary gates are redundant and can be removed from the circuit. Then the
Eq. (1) reduces to:

G1 ◦ G2 = sg1 ◦ pg1 ◦ sg1 ◦ sg2 ◦ pg2 ◦ sg2 (2)

Similarly, if the primary gates of one of the gates is equal to the other unde-
composed gate, then pg1 ◦ G2 = ∅. Thus, the cascade of gate G1 and G2 can be
reduced to:

G1 ◦ G2 = sg1 ◦ pg1 ◦ sg1 ◦ pg1 ◦ G2

= sg1 ◦ pg1 ◦ sg1
(3)

��
Thus, from the above discussion, a systematic decomposition of these MCT

gates into a network of smaller gates can result in the reduction of cost of circuit
implementation. This can be directly applied in ESOP based synthesis because
of its advantage that the cubes can be directly realized using MCT gates. Thus,
the decomposition problem in terms of ESOP cubes can be formulated as:

Given a pair of cubes C1 and C2, the generation of secondary gates, sg1,
sg2, and primary gates, pg1, pg2, for the pair of cubes such that the primary
gates are equal or one of the primary gates is equal to other cube’s MCT gate
realization.

The MCT gate realization of a cube C is represented as G(C). In the next
subsection, the generation of these primary and secondary gates for a given pair
of cubes is explained.

4.2 Generation of Primary and Secondary Gates

In order to generate the primary and secondary gates for a given pair of cubes,
the input variables of these cubes are assigned to three different groups i.e.,
equal, unequal and target. The variables of a cube that are equal to the other
cube (with same literal value) are assigned to Equal group (E). The variables
of a cube that are not equal with the other cube are assigned to Unequal group
(U) and the variables that are not present in the cube, i.e., having don’t care
term as values are assigned to Target group (T). The representation for these
three groups is given as follows.

Ea = Eb = {xi : ai = bi �= ‘ − ’}

Ua = {xi : ai �= bi, ai �= ‘ − ’} & Ub = {xi : bi �= ai, bi �= ‘ − ’}

Ta = {xi : ai = ‘ − ’} & Tb = {xi : bi = ‘ − ’}
where, ai and bi indicate the value of variable xi in cube Ca, Cb respectively and
the suffix a, b of a group indicates the group belongs to cube Ca, Cb respectively.
As an example, consider two cubes, Ca = <10 − 101> and Cb = <11 − −11>.

An ESOP Based Cube Decomposition Technique for Reversible Circuits 133

The equal, unequal and target for the cube pair are given as: Ea = Eb = {x0, x5},
Ua = {x1, x3, x4} & Ub = {x1, x4} and Ta = {x2} & Tb = {x2, x3}. The variables
in the target group of a cube can be taken as empty lines, which are the target
lines for the generation of secondary gate. Considering empty line is represented
as xt and actual target line for an MCT gate is represented as t, the primary
and secondary gates in terms of equal and unequal groups are given as:

pg = MCT (E, xt; t) & sg = MCT (U ;xt)

From the above expressions, E, U and t are known variables and the only
unknown variable that needs to be derived is xt. Depending on the availability
of xt in the target groups of a pair of cubes, there are different cases in the
generation of primary and secondary gates. These cases are discussed in the
following subsections.

Case 1. If Ta∩Tb �= φ, then one of the variables (denoted as xt) from set Ta∩Tb

can be chosen as the target line for the generation of secondary gates for a pair
of cubes. Since, the target line of secondary gate is also a control line for primary
gate, xt is added to the list of control lines for the primary gates. Thus, the final
primary and secondary gates representations are:

sg1 = MCT (Ua;xt) , sg2 = MCT (Ub;xt)

pg1 = pg2 = MCT (Ea, xt; t)

As an example, consider two cubes, Ca = <10−101> and Cb = <11−−11>
and the equal, unequal and target groups are given as:Ea = Eb = {x0, x5}, Ua =
{x1, x3, x4} & Ub = {x1, x4}, Ta = {x2} & Tb = {x2, x3}. There exist a common
variable x2 in both target groups Ta and Tb which acts as target line in the
generation of secondary gates. Thus, the primary and secondary gates for the
cube Ca and Cb are sg1 = MCT (x1, x3, x4;x2) , sg2 = MCT (x1, x4;x2), pg1 =
pg2 = MCT (x0, x5, x2; f0). From Lemma 1, if the primary gates of both the
cubes are equal then the cascade of cubes can be given as G(Ca) ◦ G(Cb) =
sg1 ◦ pg1 ◦ sg1 ◦ sg2 ◦ pg2 ◦ sg2. The final circuit implementation for the cascade
of cube Ca and Cb is shown in Fig. 5.

x0 • • x0
x1 • x1
x2 x2
x3 • x3
x4 • x4
x5 • • x5
f0 f0

(a) Circuit before Cube Decomposition

x0 • • x0
x1 • • x1
x2 • • x2
x3 • • x3
x4 • • x4
x5 • • x5
f0 f0

(b) Circuit after Cube Decomposition

Fig. 5. Cube decomposition for a pair of cube with same empty line as target line

134 S.P. Parlapalli et al.

Case 2. The previous approach can be used only if there exists a variable in both
the target groups of cube pair. In this subsection, another approach is presented
if there is no common variable present in both target groups, i.e., Ta ∩ Tb = φ.
Here, two variables, xta and xtb, are chosen one from each target groups Ta and Tb

respectively. These variables act as empty lines in the generation of secondary gates
for their respective cubes. Further, these variables act as control lines for primary
gates for cube Ca and Cb and thus the primary gates can be represented as

pg1 = MCT (Ea, xta; t) & pg2 = MCT (Eb, xtb; t)

From the above equations, the primary gates for cube pair are not equal. In
order to make them equal, the variable xtb is added to the primary gate of cube
Ca and variable xta is added to the primary gate of cube Cb. As xtb is also a
variable in unequal group of cube Ca, but covered in primary gates this variable
can be removed in the generation of secondary gate for cube Ca. Similarly with
variable xta for cube Cb. Thus the final gate realization of primary and secondary
gates is:

pg1 = pg2 = MCT (Ea, xta, xtb; t)

sg1 = MCT (Ua − {xtb};xta) & sg2 = MCT (Ub − {xta};xtb)

As an example, consider two cubes, Ca = <10− 101> and Cb = <1− 1011>
and the equal, unequal and target groups are given as: Ea = Eb = {x0, x5},
Ua = {x1, x3, x4} & Ub = {x2, x3, x4} and Ta = {x2} & Tb = {x1}. There is no
common variable that exists in both the target groups. Thus, x2 is selected for the
generation of secondary gate for cube Ca and x1 for cube Cb. Thus the primary
and secondary gates for the cube Ca and Cb are sg1 = MCT (x3, x4;x2), sg2 =
MCT (x3, x4;x1), pg1 = pg2 = MCT (x0, x5, x1, x2; f0). From Lemma 1, if the
primary gates of both the cubes are equal then the cascade of cubes can be given
as G(Ca)◦G(Cb) = sg1◦pg1◦sg1◦sg2◦pg2◦sg2. The final circuit implementation
for the cascade of cube Ca and Cb is shown in Fig. 6.

x0 • • x0
x1 x1
x2 • x2
x3 • x3
x4 • x4
x5 • • x5
0 f0

(a) Circuit before Cube Decomposition

x0 • • x0
x1 x1
x2 • • x2
x3 • • x3
x4 • • x4
x5 • • x5
0 f0

(b) Circuit after Cube Decomposition

Fig. 6. Cube decomposition for a pair of cube with different empty line as target line

An ESOP Based Cube Decomposition Technique for Reversible Circuits 135

Case 3. As discussed earlier, for a cascade of two MCT gates if one of the MCT
gate’s primary gate is equal to other MCT gate then the cost of circuit realization
can be reduced. For a pair of cubes, this condition is satisfied when one of the
cube’s unequal group has only one variable and the same variable is present in
the target group of other cube. The cube which has only one variable (denoted
as xt) in unequal group is not decomposed and the other cube is decomposed
with the same variable as target line for its secondary gate. The primary and
secondary gates of decomposed cube can be expressed as: sg1 = MCT (Ua;xt),
pg1 = MCT (Ea, xt; t).

For example, consider two cubes, Ca = <110 − 1> and Cb = <1 − −11>.
The equal, unequal and target groups for cube pair are: Ea = Eb = {x0, x4},
Ua = {x1, x2} & Ub = {x3}, Ta = {x3} & Tb = {x1, x2}. The unequal group of
cube Cb has only one variable, x3, which is also present in the target group of
cube Ca. This variable acts as a target line for cube Ca, while cube Cb is not
decomposed. The secondary and primary gate for cube Ca is expressed as sg1 =
MCT (x1, x2;x3), pg1 = MCT (x0, x4, x3; f0). The MCT gate implementation of
cube Cb is G(Cb) = MCT (x0, x3, x4; t). According to Lemma 1, if the primary
gate of one MCT gate is equal to other MCT gate then the cascade of gates can
be given as G1 ◦ G2 = sg1 ◦ pg1 ◦ sg1. The final circuit implementation for the
cascade of cubes Ca and Cb is shown in Fig. 7.

x0 • • x0
x1 • x1
x2 x2
x3 • x3
x4 • • x4
0 f0

(a) Before Cube Decomposition

x0 • x0
x1 • • x1
x2 x2
x3 • x3
x4 • x4
0 f0

(b) After Cube Decomposition

Fig. 7. Only one cube is decomposed in the pair of cube

4.3 Algorithm for Cube Decomposition

In this section, the algorithm for cube decomposition technique is presented.
The input to the algorithm is cube list, which has a list of cubes and out-
put is reversible gate net-list GateNetlist. In the algorithm, initially a cube
Ci from the given cube list is extracted. This cube is checked with the
other cubes in the cube list for any possible decomposition using the function
CheckingDecomposition(). This function returns true if the pair of cubes can
be decomposed with any one of the proposed decomposition technique else it
returns false.

If the return value is false, then the gate realization of cube Ci is added
to the GateNetlist. If the return value is true, the corresponding cost of the
decomposed circuit is calculated using function DecompCost(). After all the
cubes in the cube list are checked for the decomposition condition, the cube
which has the least decomposed circuit cost is termed as BestCube and the cost

136 S.P. Parlapalli et al.

is BestCost for cube Ci. If the BestCost is less than the cost of MCT realization
of cube Ci plus the cost of BestCube, then the MCTList() function returns
the decomposed network of smaller cubes using the proposed decomposition
techniques. The decomposed circuit, generated for the cubes Ci and BestCube,
is appended to the GateNetlist. If the BestCost is greater than the cost of MCT
realization of cube Ci plus the cost of BestCube, then the gate realization of
cube Ci is added to the GateNetlist. The pseudo code of this algorithm is given
below:

Algorithm 1. Cube Decomposition Algorithm
1: Input: cube list
2: Output: Reversible GateNetlist
3: begin
4: while cube list is not empty do
5: flag = false
6: Ci = pop(cube list)
7: BestCost = ∞
8: for each cube Cj ∈ cube list do
9: if CheckDecomposition(Ci, Cj) is true then

10: Costdeco = DecompCost(Ci, Cj)
11: InitCost = MCTCost(Ci) + MCTCost(Cj)
12: if min{BestCost, InitCost} > Costdeco then
13: flag = true
14: BestCost = Costdeco
15: BestCube = Cj

16: BestDeco = MCTList(Ci, Cj)
17: end if
18: end if
19: end for
20: if flag is true then
21: AddToArray(GateNetlist, BestDeco)
22: DeleteCube(cube list, BestCube)
23: else
24: AddToArray(GateNetlist,GenerateMCT (Ci))
25: end if
26: end while
27: return GateNetlist
28: end

5 Simulation Results and Comparisons

The proposed algorithm has been used to implement various reversible benchmark
circuits available inRevLib [16] and comparedwith existingESOPbased reversible
circuit synthesis techniques such as [1,3,4,9,10]. The cubes list can be generated

An ESOP Based Cube Decomposition Technique for Reversible Circuits 137

either by EXORCISM-4 tool or other cube list generation techniques [1,4]. To eval-
uate the proposed approach, quantum cost reduction obtained by existing cube
transformation techniques that use EXORCISM-4 tool are considered.

Table 1 compares the quantum cost of related and existing ESOP based syn-
thesis techniques with the proposed one. The first column indicates the bench-
mark name in alphabetical order. Columns 2–6 indicate the quantum cost of
existing ESOP based synthesis techniques for the corresponding benchmarks.
The techniques presented in columns 2–4 use EXORCISM-4 tool to generate
cube list whereas techniques presented in columns 5 and 6 use their own meth-
ods to generate the cube lists. Column 7 indicates the quantum cost of the cor-
responding benchmark using the proposed technique. The final column shows
the percentage improvement of quantum cost achieved compared to the existing
techniques that give the best reduction for that benchmark.

Table 1. Comparison with existing approaches

Benchmark [10] [9] [3] [4] [1] Proposed
approach

% Impr

5xp1 1349 786 807 865 – 759 3.44

9sym 5781 10943 3406 16487 1895 2222 −17.26

add6 6362 – – 5084 2683 3629 −35.26

alu1 243 – – – 156 156 0.00

alu2 5215 – 3679 4476 – 3458 6.01

alu3 2653 – 1919 – – 1828 4.74

alu4 48778 41127 38635 43850 – 31220 19.19

apex4 256857 35840 – 50680 51284 37018 −3.29

apex5 – 33830 33803 – – 29842 11.72

apla 4051 1683 1709 – – 1601 4.87

bw – 637 790 – 2233 649 −1.88

C17 97 – – – – 78 19.59

clip 6616 3824 3218 4484 – 2889 10.22

cm150a 844 – – – – 785 6.99

con1 207 162 – – – 150 7.41

cordic 349522 187620 111955 – – 91935 17.88

cu 1332 781 780 – – 747 4.23

dc2 1956 1084 1099 – – 1019 6.00

decod 1924 399 – – 976 436 −9.27

dist 7414 3700 – – – 3367 9.00

e64 – – 24345 – – 23751 2.44

ex1010 183726 52788 – – 77293 52467 0.61

(continued)

138 S.P. Parlapalli et al.

Table 1. (continued)

Benchmark [10] [9] [3] [4] [1] Proposed
approach

% Impr

ex2 153 – – – 118 140 −18.64

ex3 97 – – – 73 59 19.18

f2 274 112 – – 116 107 4.46

f51m 34244 28382 25119 – – 22042 12.25

frg2 – 112008 114239 – – 97183 13.24

in0 22196 7949 – – – 7501 5.64

majority 147 – – – 106 106 0.00

max46 4432 – – – 3239 2875 11.24

misex1 1017 332 352 466 – 338 −1.81

misex3 122557 49076 54132 67206 – 42098 14.22

misex3c 118578 49720 – 85330 52600 42868 13.78

mlp4 3827 2496 – – – 2303 7.73

mux 826 – – – 784 768 2.04

pm1 582 – – – 290 188 35.17

radd 798 – – – 349 316 9.46

rd84 2598 – 1965 2062 – 1687 14.15

root 3486 1811 1583 – – 1533 3.16

sao2 7893 3767 – 5147 – 3244 13.88

spla – – 45478 49419 – 28220 37.95

sqn 2170 – – – 1183 1222 −3.30

sqr6 1090 583 – – – 597 −2.40

sqrt8 584 – – 461 – 314 31.89

squar5 476 – – 251 – 231 7.97

t481 237 – – 237 – 205 13.50

table3 86173 – 32286 35807 – 17454 45.94

urf3 – 53157 – – 56766 51622 2.89

z4 674 489 – – 260 388 −49.23

For the 49 benchmarks considered, the quantum cost has reduced for 39
benchmarks using the proposed cube decomposition technique when compared
to existing ones. Benchmarks like misex3, rd84, cordic, alu4, spla, table3 have
improved by more than 14% when compared to existing synthesis techniques.
Further, the proposed algorithm consumes a very less synthesis time with a
maximum of 5 s for frg2 benchmark when implemented in Python programming
language on a workstation with Intel E3-1220 processor with 8 GB of primary
memory running Windows 7.

An ESOP Based Cube Decomposition Technique for Reversible Circuits 139

6 Conclusion

Reversible logic is known for its applications in emerging technologies such as
quantum computing, optical computing, etc. In this paper, an ESOP based
cube decomposition algorithm has been proposed to reduce the quantum cost
of reversible circuits. Using this algorithm, a pair of cubes is decomposed into
a network of smaller gates while eliminating redundant gates. The algorithm
has been implemented to synthesize different benchmark circuits and the results
indicate that there is a reduction in quantum cost for a majority of benchmarks.

Acknowledgements. This work was supported in part by Council of Scientific &
Industrial Research (CSIR) grant (ref.-09/1026(0007)/2012-EMR-I).

References

1. Bandyopadhyay, C., Rahaman, H., Drechsler, R.: Improved cube list based cube
pairing approach for synthesis of ESOP based reversible logic. In: Gavrilova, M.L.,
Tan, C.J.K., Thapliyal, H., Ranganathan, N. (eds.) Transactions on Computational
Science XXIV. LNCS, vol. 8911, pp. 129–146. Springer, Heidelberg (2014). doi:10.
1007/978-3-662-45711-5 8

2. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P.,
Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computa-
tion. Phys. Rev. A 52(5), 3457 (1995)

3. Datta, K., Gokhale, A., Sengupta, I., Rahaman, H.: An ESOP-based reversible cir-
cuit synthesis flow using simulated annealing. In: Chaki, R., Saeed, K., Choudhury,
S., Chaki, N. (eds.) Applied Computation and Security Systems. AISC, vol. 305,
pp. 131–144. Springer, New Delhi (2015). doi:10.1007/978-81-322-1988-0 8

4. Drechsler, R., Finder, A., Wille, R.: Improving ESOP-based synthesis of reversible
logic using evolutionary algorithms. In: Di Chio, C., et al. (eds.) EvoApplications
2011. LNCS, vol. 6625, pp. 151–161. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-20520-0 16

5. Fazel, K., Thornton, M., Rice, J.: ESOP-based Toffoli gate cascade generation. In:
IEEE Pacific Rim Conference on Communications, Computers and Signal Process-
ing, pp. 206–209 (2007)

6. Lin, C.C., Jha, N.K.: RMDDS: Reed-Muller decision diagram synthesis of
reversible logic circuits. J. Emerg. Technol. Comput. Syst. 10(2), 14:1–14:25 (2014).
http://doi.acm.org/10.1145/2564923

7. Miller, D.M., Sasanian, Z.: Recent developments on mapping reversible circuits to
quantum gate libraries. In: International Symposium on Electronic System Design
(ISED), pp. 17–22. IEEE (2012)

8. Mishchenko, A., Perkowski, M.: Fast heuristic minimization of exclusive-sums-of-
products. In: Proceedings of the 5th Reed-Muller Workshop, pp. 242–250 (2001)

9. Nayeem, N.M., Rice, J.E.: A shared-cube approach to ESOP-based synthesis of
reversible logic. Facta Univ. Ser. Electron. Energ. 24(3), 385–402 (2011)

10. Rice, J., Fazel, K., Thornton, M., Kent, K.: Toffoli gate cascade generation using
ESOP minimization and QMDD-based swapping. In: Proceedings of the Reed-
Muller Workshop (RM 2009), pp. 63–72 (2009)

http://dx.doi.org/10.1007/978-3-662-45711-5_8
http://dx.doi.org/10.1007/978-3-662-45711-5_8
http://dx.doi.org/10.1007/978-81-322-1988-0_8
http://dx.doi.org/10.1007/978-3-642-20520-0_16
http://dx.doi.org/10.1007/978-3-642-20520-0_16
http://doi.acm.org/10.1145/2564923

140 S.P. Parlapalli et al.

11. Rice, J., Nayeem, N.: Ordering techniques for ESOP-based Toffoli cascade genera-
tion. In: IEEE Pacific Rim Conference on Communications, Computers and Signal
Processing (PacRim), pp. 274–279. IEEE (2011)

12. Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits - a sur-
vey. ACM Comput. Surv. (CSUR) 45(2), 21 (2013)

13. Sanaee, Y., Dueck, G.W.: ESOP-based Toffoli network generation with transforma-
tions. In: 40th IEEE International Symposium on Multiple-Valued Logic (ISMVL),
pp. 276–281. IEEE (2010)

14. Soeken, M., Frehse, S., Wille, R., Drechsler, R.: RevKit: a toolkit for reversible
circuit design. Mult. Valued Log. Soft Comput. 18(1), 55–65 (2012)

15. Toffoli, T.: Reversible computing. In: Bakker, J., Leeuwen, J. (eds.) ICALP
1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980). doi:10.1007/
3-540-10003-2 104

16. Wille, R., Grosse, D., Teuber, L., Dueck, G., Drechsler, R.: RevLib: an online
resource for reversible functions and reversible circuits. In: 38th International Sym-
posium on Multiple Valued Logic. ISMVL 2008. pp. 220–225, May 2008

17. Wille, R., Drechsler, R.: BDD-based synthesis of reversible logic for large functions.
In: Proceedings of the 46th Annual Design Automation Conference, pp. 270–275.
ACM (2009)

18. Wille, R., Drechsler, R.: Towards a Design Flow for Reversible Logic. Springer,
Dordrecht (2010)

http://dx.doi.org/10.1007/3-540-10003-2_104
http://dx.doi.org/10.1007/3-540-10003-2_104

Controlled and Uncontrolled SWAP Gates
in Reversible Logic Synthesis

Md Asif Nashiry1(B), Mozammel H.A. Khan2, and Jacqueline E. Rice1

1 Department of Mathematics and Computer Science,
University of Lethbridge, Lethbridge, AB T1K 3M4, Canada

{asif.nashiry,j.rice}@uleth.ca
2 Department of Computer Science and Engineering,

East West University, Aftabnagar, Dhaka 1212, Bangladesh
mhakhan@ewubd.edu

Abstract. This paper presents a quantum-level realization and synthe-
sis approach using SWAP and Fredkin (SF) gates. Our quantum real-
ization of negative-controlled Fredkin gate requires five 2-qubit elemen-
tary quantum gates, the same as that required for realizing a positive-
controlled Fredkin gate. We also propose and evaluate the performance of
a synthesis approach using SF gates for realizing conservative reversible
functions. Our result shows that circuit realization for conservative func-
tion using SF gates is more efficient than Toffoli gates. We achieve up to
87% improvement in gate count and quantum cost for (4×4) conservative
reversible functions.

Keywords: Reversible logic · SWAP gate · Fredkin gate · Toffoli gates ·
Mixed polarity gates · Quantum gates · Logic synthesis · Conservative
functions

1 Introduction

A logic gate is a reversible gate if the output function of the gate is bijective [1].
The two most widely used reversible logic gate families are NOT-CNOT-Toffoli
(NCT) and SWAP-Fredkin (SF). A SWAP gate is a (2 × 2) reversible logic gate
which interchanges the input bits at the output. Fredkin and Toffoli proposed
a reversible controlled swap gate (also called Fredkin gate) in [2]. This gate is
a positive-controlled gate i.e. it swaps the two target inputs when the control
input is 1. The authors showed that it is a universal gate and thus any reversible
circuit can be synthesized using only Fredkin gates. One example of this is in [4],
where Bruce et al. proposed a design for a full-adder using five positive-controlled
Fredkin gates.

Smolin and DiVincenzo presented an implementation of the positive-
controlled Fredkin gate using five 2-qubit elementary quantum gates in [3].
We propose a realization of the negative-controlled Fredkin gate, that like the
positive-controlled Fredkin gate, requires five 2-qubit elementary quantum gates.

c© Springer International Publishing AG 2017
I. Phillips and H. Rahaman (Eds.): RC 2017, LNCS 10301, pp. 141–147, 2017.
DOI: 10.1007/978-3-319-59936-6 11

142 M.A. Nashiry et al.

Fig. 1. (a) Toffoli gate with top negative
control and bottom positive control and (b)
its realization.

Table 1. Behaviour of the circuit shown
in Fig. 1(b).

Control Target Output

a b c r

0 0 c c

0 1 c c′

1 0 c c

1 1 c c

We also propose a transformation based synthesis algorithm using SF gates for
realizing conservative reversible functions. A conservative reversible function has
the same number of 1s in both the input and output vectors of the function.

2 Realization of Negative-Controlled Fredkin Gate

To realize our proposed negative-controlled Fredkin gate we use a Toffoli gate
with top negative control and bottom positive control as an intermediate gate.
Realization of a Toffoli gate with top positive control and bottom negative con-
trol is presented in [5]. This realization requires five 2-qubit elementary quantum
gates. We follow this technique and present a realization of a Toffoli gate with
top negative control and bottom positive control in Fig. 1(b), also requiring five
2-qubit elementary quantum gates. The symbol and realization of a negative-
controlled Fredkin gate are shown in Fig. 2. The two target inputs are only
swapped at the target outputs when the control input a = 0 (Table 1). If the

Fig. 2. (a) Negative-controlled Fredkin gate and (b) its realization with two Feynman
gates and one Toffoli gate with top negative control and bottom positive control.

Toffoli gate shown in Fig. 2(b) is decomposed using the realization illustrated
in Fig. 1(b), and the last two Feyman gates are rearranged using the equiva-
lence shown in Fig. 3, the result is the circuit in Fig. 4. The operation of the
two gates in a dashed box can be expressed using 4 × 4 unitary matrices. As
these two gates are in cascade, their final operation will be another 4×4 unitary
matrix. Therefore, the two gates in practice work as one 2-qubit quantum gate.
Thus, the realization of the negative-controlled Fredkin gate requires five 2-qubit
elementary quantum gates. A similar argument is used in [3].

SWAP Gates in Reversible Logic 143

Fig. 3. Circuits of (a) and (b) are
equivalent.

Fig. 4. Realization of a negative-
controlled Fredkin gate.

3 SF Based Synthesis Approach

The basic working principle of the transformation based synthesis algorithm is
to apply reversible operations to a reversible function in order to generate an
identity function. The first such algorithm was proposed by Miller et al. [6].
The authors applied gates from the NCT gate library. In the basic algorithm the
reversible logic operations are applied to the output of the function’s truth table.
The following is the basis of transformation based logic synthesis approach.

Table 2. Truth table of a (3 × 3) reversible function.

Input Output

ai bi ci ao bo co

(0) 0 0 0 0 0 0 (0)

(1) 0 0 1 1 0 0 (4)

(2) 0 1 0 0 0 1 (1)

(3) 0 1 1 0 1 1 (3)

(4) 1 0 0 0 1 0 (2)

(5) 1 0 1 1 0 1 (5)

(6) 1 1 0 1 1 0 (6)

(7) 1 1 1 1 1 1 (7)

Step 0: If f(0) = 0, no transformation is required; go to step 1. If f(0) �= 0,
apply a (1 × 1) Toffoli gate (NOT gate) in order to achieve f(0) = 0.

Step 1: For 1 � i < 2m − 1: If f(i) = i, no transformation is required and
proceed to next i. If f(i) �= i, apply the smallest (k × k) Toffoli gate, k = 2 to n
in order to make f i(i) = i.

The choice of gate during each step of transformation is crucial in order to
maintain convergence. The gate chosen in each step of transformation must not
change the order of bits of the previous steps. Consider the (3 × 3) reversible
function f =

∑
(0, 4, 1, 3, 2, 5, 6, 7) in Table 2. The circuit which is generated by

following the basic transformation algorithm is presented in Fig. 5.
The basic premise of SF-based transformation synthesis is the same as that

presented in [6]; however instead of using logic gates from the NCT gate family

144 M.A. Nashiry et al.

Table 3. Transformation stages of the function inTable 2 using SFbased transformation.

Output Step 0 Step 1 Step 2 Step 3 Step 4

(i) (ii) (iii) (iv) (v)

a b c a0 b0 c0 a1 b1 c1 a2 b2 c2 a3 b3 c3 a4 b4 c4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1

0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0

0 1 1 0 1 1 1 1 0 1 1 0 0 1 1 0 1 1

0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0

1 0 1 1 0 1 1 0 1 0 1 1 1 1 0 1 0 1

1 1 0 1 1 0 0 1 1 1 0 1 1 0 1 1 1 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

— S(a,c) S(a,b) F(b;a,c) F(a;b,c)

we use only SWAP and Fredkin gates. We use the same function from Table 2
to demonstrate the SF-based transformation synthesis. We also use the simple
one direction transformation for this example. Table 3 shows the transformation
stages. The resulting circuit realization of the function from Table 2 is displayed
in Fig. 6.

a0

b0

c0

at

bt

ct

Fig. 5. Basic transformation synthesis
for the function in Table 2.

a0

b0

c0

at

bt

ct

Fig. 6. SF based synthesis for the func-
tion in Table 2.

4 Comparison of NCT and SF Based Synthesis
Approaches

It is important to observe that the function in Table 2 is a conservative function
and Figs. 5 and 6 show two circuit designs for this function. In Fig. 6, we have a
gate count of 4 as compared to a gate count of 12 for the circuit in Fig. 5. The
quantum cost of the implementation in Fig. 6 is (2 × 3) + (2 × 5) = 16, where
the quantum cost for the circuit realization in Fig. 5 is 28. The percentages of
decrease in gate count and quantum cost are 67% and 43% respectively, which
is a very significant improvement.

SWAP Gates in Reversible Logic 145

In order to compare the SF based transformation approach with NCT based
transformation from a wider perspective, we have generated all possible (3 × 3)
conservative reversible functions. We have realized all 36-(3 × 3) conservative
functions using both algorithms. The highest percentage of reduction in gate
count is 67% for more than half of the (3 × 3) conservative reversible functions.
The ability of changing two bits at a time gives SF gates an advantage over the
NCT gate family for realizing conservative reversible circuits.

SF based synthesis also performs better than NCT based synthesis when
comparing quantum cost. Among the 36 functions, we have achieved lower QC
for almost 70% of the functions. For the remaining functions, the QC is the
same for both approaches. There is not a single instance where the NCT based
synthesis performs better than our proposed approach. The highest percentage
of decrease in quantum cost is 70% and the average percentage of reduction of
quantum cost is 29%.

As mentioned above, the proposed transformation algorithm using the SF
gate family follows the greedy approach. We have designed our algorithm in this
way in order to offer a fair comparison, since the basic transformation based
synthesis algorithm which is proposed in [6] also follows the greedy approach.
At every step of transformation, the algorithm selects a gate which costs less in
terms of quantum cost. For example, if we observe column (ii) of Table 3, we need
to transform 100 into 010. There are two choices for this mapping. We could use
either a SWAP gate S(a,b) or a negative controlled Fredkin gate, F

′
(a, b; c). The

proposed SF gate based transformation selects a SWAP gate, S(a,b) because a
SWAP gate has lower quantum cost than a Fredkin gate. However, if we use a
F

′
(a, b; c) at this stage, we get a circuit which is presented in Fig. 7. The use of

F
′
(a, b; c) gate reduces the quantum cost from 16 to 13 as we compared with

the circuit in Fig. 6. Moreover, one less gate is needed in this circuit realization.
The circuit in Fig. 8 is even more simplified design for the reversible function
from Table 2. Figure 8 shows that the gate count is 2 and the quantum cost is
10. Now if we compare the gate count and quantum cost of Fig. 8 with that
of the NCT gate based basic transformation synthesis (Fig. 5), the gate count
has been reduced from 12 to 2, a 6 times reduction. The quantum cost has
been reduced from 28 to 10, which is an improvement of almost a factor of
3. We have also generated all possible 414720 conservative (4 × 4) reversible
function. However unlike the case of (3 × 3) functions, there are some circuit
realizations where the gate count and quantum cost increase when using SF

a0

b0

c0

at

bt

ct

Fig. 7. Another circuit realization for
the function from Table 2.

a0

b0

c0

at

bt

ct

Fig. 8. More efficient circuit realization
for the function from Table 2.

146 M.A. Nashiry et al.

gate based transformation synthesis. Among all the (4×4) conservative reversible
functions, the quantum cost increases for 27213 (6.5%) functions and the gate
count increases for 2 functions. The highest percentage of reduction in gate
count by using our proposed synthesis algorithm is 87% and the reduction in
gate count, on average, is 61%. We achieve the highest percentage of reduction
of quantum cost is 87%. The average percentage of decrease of quantum cost
over all 414720 functions is 35%.

5 Conclusion

The contribution of this work is twofold. First, we present a unique realization
of a negative-controlled Fredkin gate using five 2-qubit elementary quantum
gates. Secondly, we propose a transformation based synthesis algorithm using
SF gates for the realization of conservative reversible functions. After applying
our approach to all possible (3 × 3) and (4 × 4) conservative functions we see
that the synthesis of conservative reversible functions using SF gates is more
efficient than using NCT gates. For (3 × 3) functions we show reductions in GC
and QC of 67% and 70% respectively, while for (4 × 4) functions we achieve
even higher reductions of 87% in both GC and QC. We also show that the
percentage of reduction in GC and QC can be further improved by choosing
gates intelligently instead of by following a greedy approach. Finally, this paper
shows the usefulness of a negative control Fredkin gate in circuit realization.

The outcome of this work indicates that the synthesis process in reversible
logic could be more efficient if we knew the class of a reversible function in
advance. Therefore, classifying reversible functions and using the benefits of SF-
gates in circuit realization for different classes of functions will be an important
area of further research.

Acknowledgment. The second author was involved in this work at the University of
Lethbridge, Lethbridge, AB, Canada while on sabbatical from East West University,
Dhaka, Bangladesh. The first and third author carried out this work with the support
of NSERC.

References

1. Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic
circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 22(6), 710–722
(2003)

2. Fredkin, E., Toffoli, T.: Conservative logic. In: Andrew, A. (ed.) Collision-Based
Computing, pp. 47–81. Springer, London (2002)

3. Smolin, J.A., DiVincenzo, D.P.: Five two-bit quantum gates are sufficient to imple-
ment the quantum Fredkin gate. Phys. Rev. A 53(4), 2855 (1996)

SWAP Gates in Reversible Logic 147

4. Bruce, J.W., Thornton, M.A., Shivakumaraiah, L., Kokate, P.S., Li, X.: Efficient
adder circuits based on a conservative reversible logic gate. In: Proceedings of IEEE
Computer Society Annual Symposium on VLSI 2002, pp. 83–88 (2002)

5. Maslov, D., Miller, D.M.: Comparison of the cost metrics for reversible and quantum
logic synthesis. arXiv preprint quant-ph/0511008 (2005)

6. Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for
reversible logic synthesis, in Proceedings on Design Automation Conference, pp.
318–323. IEEE (2003)

https://arxiv.org/abs/quant-ph/0511008v3

Testing and Fault Tolerance

A Method to Reduce Resources
for Quantum Error Correction

Ritajit Majumdar1(B), Saikat Basu2, and Susmita Sur-Kolay2

1 B.P. Poddar Institute of Management and Technology,
Maulana Abul Kalam Azad University of Technology, Kolkata, India

majumdar.ritajit@gmail.com
2 Advanced Computing and Microelectronics Unit,

Indian Statistical Institute, Kolkata, India

Abstract. In a quantum logic circuit, the minimum number of qubits
required in a quantum error-correcting code (QECC) to correct a sin-
gle error was shown by Laflamme to be five. Due to the presence of
multi-control gates in the circuit block for a 5-qubit QECC, this block
cannot be readily implemented with present day technology. Further, the
fault-tolerant decomposition of the QECC circuit block requires a large
number of quantum logic gates (resources). In this paper, we (i) propose
a smaller 5-qubit error detection circuit which can also correct a single
error in 2 of the 5 qubits, and (ii) establish how to use a 3-qubit error
correction circuit to correct the single errors when detected in the other
3 qubits. This approach to quantum error-correction circuit design, func-
tionally equivalent to a 5-qubit QECC, yields a significant reduction in
the number of quantum logic gates. For a given quantum logic circuit,
we also provide a scheme to decide the locations where these error detec-
tion and error correction blocks are to be placed in attaining reduction in
gate requirement compared to the case where the original 5-qubit QECC
block is used. A comparative study of the resource requirement for the
benchmark circuits shows that the proposed method outperforms even
Shor and Steane codes in terms of resources. Thus, our proposed method
provides quantum error correction with minimum qubit requirement and
reduced resource requirement on the average.

1 Introduction

The evolution of a quantum state is mathematically represented by a unitary
transformation. Quantum computing is reversible since any unitary matrix U
has an inverse which is equal to its complex conjugate (U†). However, the state
of interest, which is referred to as the system, may be coupled with some other
quantum state, which is referred to as the environment. When this composite
system undergoes some unitary evolution, the evolution of the constituent states
may not be unitary. This incorporates error in the quantum system. An error is
nothing but an operator. It is best represented when the state of the system is
denoted by the density matrix notation [1,2] as ρ =

∑

i

pi|ψi〉〈ψi| where pi is the

c© Springer International Publishing AG 2017
I. Phillips and H. Rahaman (Eds.): RC 2017, LNCS 10301, pp. 151–161, 2017.
DOI: 10.1007/978-3-319-59936-6 12

152 R. Majumdar et al.

probability that the system is in the state |ψi〉. For a pure state |ψ〉, the density
matrix is simply |ψ〉〈ψ|. If an error E occurs on the state ρ with probability p,
then the evolution of the state is denoted as

E(ρ) = (1 − p)ρ + p.EρE† (1)

A quantum error correcting code R is a mapping such that the composition of
R with E gives back the original quantum state, i.e.,

(R ◦ E)(ρ)(E† ◦ R†) = ρ (2)

An error in a quantum system can also be modelled as a quantum channel.
Some quantum error models include Amplitude damping channel, Phase damp-
ing channel and Pauli channel [1,2]. In this paper, we have considered the Pauli
channel as the error model. The Pauli matrices I, X, Z and Y form the basis for
2 × 2 dimensional operator space [1]. Hence a code which can correct the Pauli
errors can also correct any linear combination of them, i.e., all errors in the 2×2
space. If the error probability is p and the probability of each of X, Z and Y
errors is considered to be equal (I implies no error and hence is not considered),
then the evolution of the quantum system is given as

E(ρ) = (1 − p)ρ +
p

3
(XρX† + ZρZ† + Y ρY †) (3)

2 Resource Requirement for 5-Qubit QECC

A quantum operation may be realized by one or more quantum gates forming
a network of gates or a circuit. Given a quantum system for performing certain
operations, a quantum circuit has to be obtained with minimum number of
gates, which are also termed as resources. The depth of the circuit and the
number of operations to be executed are also important factors in designing a
quantum circuit. Additionally, such a circuit requires quantum error correcting
code (QECC) for error-free operations. But the QECC also requires a circuit
block to be designed appropriately.

Several QECCs have been proposed in the literature to correct a single error
in a qubit [3–6]. Gottesman has provided a group theoretic model of errors in
a quantum system. His stabilizer formulation provides an operator-level mech-
anism for correcting quantum errors [7]. It has been shown by Laflamme et al.
[5] that in order to correct a single error in a qubit, the information of the qubit
must be distributed into at least 5 qubits. An important aspect of this code by
Laflamme is that the encoding and the decoding circuits are identical. Further-
more, it is extremely difficult to maintain the superposition of a qubit. Hence,
the 5-qubit code provides a better option for error correction than the other
codes [3,4,6].

The encoding and decoding circuits of the 5-qubit code, proposed by
Laflamme [5], has a number of multi-control gates, which cannot be implemented
readily in modern day technologies. Due to the presence of these multi-control

A Method to Reduce Resources for Quantum Error Correction 153

operations, the fault-tolerant decomposition requires a large number of gates.
Also these gates can be noisy, and incorporate errors in the circuit. Moreover,
the error correction requires a significant amount of time due to more gate oper-
ations and thus hinders the speed of the computation. FTQLS [8] provides the
fault-tolerant decomposition of any quantum circuit in different technologies viz.
Ion Trap (IT), Quantum Dot (QD), Linear Photonics (LP), Non-linear Photon-
ics (NP), Neutral Atom (NA) and Superconductor (SC). In Table 1, we compare
the number of gate operations and the number of cycles per operation for Shor,
Steane and Laflamme codes for each of the six available technologies, as obtained
from FTQLS. It is evident from Table 1 that while the qubit requirement of
Laflamme code is low, the gate count is significantly larger than for the other
two codes.

Table 1. Comparison of gate count and number of cycles of both encoding and cor-
rection circuits for QECCs of Shor, Steane and Laflamme respectively

QECC Technology Qubits Ancilla Total number of qubits Gate count Cycles

Shor IT 9 8 9 + 8 = 17 105 24

Steane 7 6 7 + 6 = 13 85 30

Laflamme 5 - 5 1641 1432

Shor QD 9 8 9 + 8 = 17 133 116

Steane 7 6 7 + 6 = 13 127 191

Laflamme 5 - 5 3353 19602

Shor LP 9 8 9 + 8 = 17 56 164

Steane 7 6 7 + 6 = 13 55 172

Laflamme 5 - 5 1751 2310

Shor NP 9 8 9 + 8 = 17 56 196

Steane 7 6 7 + 6 = 13 55 206

Laflamme 5 - 5 2437 2566

Shor NA 9 8 9 + 8 = 17 87 22

Steane 7 6 7 + 6 = 13 95 29

Laflamme 5 - 5 1892 1657

Shor SC 9 8 9 + 8 = 17 84 196

Steane 7 6 7 + 6 = 13 85 242

Laflamme 5 - 5 2604 9070

In order to overcome these shortcomings, we have proposed a smaller 5 qubit
circuit for error detection which can also correct errors in 2 of the 5 qubits.
Given a quantum circuit, one can insert this detection circuit block at certain
points in the given circuit so that if an error is likely to be detected, only then
the correction circuit block is also placed. We have computed the time inter-
val for placing this error detection block to obtain reduction in resources. We

154 R. Majumdar et al.

have also shown the percentage savings in the resource requirement for different
benchmark circuits using this proposed technique.

Shor and Steane codes require more qubits for error correction than the code
by Laflamme (refer Table 1). However, the resource requirement of the former
two is much less than for the 5 qubit code. Hence once can argue that these two
codes be used rather than the proposed technique which requires both detection
and correction steps in the worst case. However, we show that in average case,
our proposed technique requires less resources than the Shor and Steane codes
too. Hence, this technique is superior both in terms of qubits as well as resources.

The paper has been organised as follows. In Sect. 2 we propose a new quantum
circuit for error detection and compute the time interval for placing this block
in a quantum circuit. Section 3 shows the use of the error detection circuit along
with a 3 qubit error correction circuit to replace the error correction circuit of
the 5 qubit code. We also show the percentage savings provided by this method.
In Sect. 4, we show the percentage savings in different benchmark circuits. We
conclude in Sect. 5.

3 5-Qubit Quantum Error Detection Circuit

In classical computing, error may cause the bit to flip from 0 to 1 or vice versa.
However, in quantum computing, a qubit can incur bit flip or phase flip errors, or
both [9]. Thus quantum error correction has two requirements: detection of the
type of error and detecting the location of the error. While the former operation
is possible using 4 qubits only [10], at least 5 qubits are necessary for both
operations [5]. A code which is capable of detecting only the type of error is
called a quantum error detection code, while a quantum error correction code
can both detect the type and its location. Qubit is an essential resource which
must be minimized in quantum computation. This is because it is difficult to
preserve the superposition nature of a qubit. Any modification of the original
superposition results in loss of information [1]. So using 5-qubit code is preferable
for error correction since it requires the minimum number of qubits. However,
Table 1 shows that this code has significantly large resource requirement.

In this paper, our proposal is to place a quantum error detection block at
certain points in the circuit. If error is likely to be detected, only then the
correction block is also placed there. However, the 4-qubit error detection code
is not applicable here because encoding the information of a single qubit into 4
qubits only will not allow to correct errors when necessary. The qubit should be
encoded using the 5-qubit code by Laflamme to allow error correction whenever
necessary.

We propose a 5-qubit error detection block as shown in Fig. 1. This block
can act on the 5-qubit system which has been encoded using Laflamme code. In
Fig. 1, |q0〉 up to |q4〉 are the data qubits and the last four are ancilla qubits.
|q5〉, |q6〉 check for bit error while |q7〉, |q8〉 check for phase errors. This block
checks whether the first four and the last four qubits are in the same state. If
they are not, then an error is detected. Instead of the error correcting block in [5],

A Method to Reduce Resources for Quantum Error Correction 155

|q0〉 • H • H

|q1〉 • • H • • H

|q2〉 • • H • • H

|q3〉 • • H • • H

|q4〉 • H • H

|q5〉 ⊕⊕⊕⊕
|q6〉 ⊕⊕⊕⊕
|q7〉 ⊕⊕⊕⊕
|q8〉 ⊕⊕⊕⊕

Fig. 1. Proposed 5-qubit error detection block

we place the detection block of Fig. 1 after certain time interval. The correction
block is placed at the location where an error is likely to be detected.

A salient question arises here: at which locations should the error detection
and the error correction blocks be placed in a given quantum circuit? We provide
a bound on the time interval that can be allowed between two error detection
blocks, in terms of the probability of error. This time interval may vary with
the technology used, since the probability of error at a quantum gate or of
decoherence (memory error) differs with the technology for implementing it.
Furthermore, if the error detection block is placed at intervals greater than this
bound, then the larger error correction block is mandated and hence resource
reduction cannot be achieved.

Let p be the error probability per nanosecond (ns), D and C be the gate count
of the 5-qubit detection circuit and the 5-qubit correction circuit respectively. We
consider that we check for errors at interval of n ns. The probability of no errors
occurring after n ns is (1− p)n, and hence the error probability is (1− (1− p)n).
When a single error occurs, then the resource requirement is (D +C) since both
error detection as well as correction block must be placed. It is only D when
there is no error. So the resource requirement for each time error correction is
performed, is

(1 − p)n.D + (1 − (1 − p)n).(D + C) (4)

If this technique is not used, then after each time interval only the correction
block is placed, i.e., the resource requirement is C each time. For our proposed
method to be advantageous, the resource requirement of this method should be
at most C, i.e.,

(1 − p)n.D + (1 − (1 − p)n).(D + C) ≤ C (5)

A simple calculation gives us the following inequality

156 R. Majumdar et al.

Table 2. Gate counts D and C for error detection and correction in various technologies

Technology # Gates for error correction (C) # Gates for error detection (D) D
C

IT 843 36 0.043

SC 1301 34 0.026

LP 874 26 0.03

NP 1217 26 0.021

NA 900 34 0.038

QD 1518 52 0.034

(1 − p)n ≥ D

C
(6)

We have used FTQLS [8] to obtain the fault-tolerant version of the error
correction block [5] and the error detection block (Fig. 1). The ratio of D to
C is provided in Table 2. Note here that in Table 1, we reported the total gate
count for both encoding and correction blocks. However, since the encoding
block remains same in both cases, in Table 2 we have the gate count of the error
correction block of the Laflamme code only to compare with the proposed error
detection block.

In [11], the authors have addressed error tracing in quantum circuits. They
have placed error correction blocks only when the error probability exceeds a
predefined threshold. This technique has allowed them to reduce the required
number of error correction blocks significantly compared to the ideal case. Sim-
ilarly, we propose that error correction can be performed after certain time gap
of n ns. For different values of p, the inequality of (6) enables us to the find
the maximum permissible value of n for obtaining a circuit with very low prob-
ability of error. In Table 3, we give the estimated error probability in different
technologies as obtained from [12].

Table 3. Probability of worst gate and memory error in different technologies [12]

Technology Probability of gate error Memory error (per ns)

QD 9.89 × 10−1 3.47 × 10−2

NA 8.12 × 10−3 0.00

LP 1.01 × 10−1 9.80 × 10−4

NLP 5.20 × 10−3 9.80 × 10−5

SC 1.00 × 10−5 1.00 × 10−5

IT 3.19 × 10−9 2.52 × 10−12

In Table 4, we show the values of n for different values of p in the technolo-
gies considered. We have varied p from 10−8 to 10−1. However, certain error

A Method to Reduce Resources for Quantum Error Correction 157

Table 4. Time interval n(ns) of error detection with error probability p ranging from
10−5/ns to 10−1/ns) for different technologies

Technology p = 10−8 p = 10−7 p = 10−6 p = 10−5 p = 10−4 p = 10−3 p = 10−2 p =10−1

IT 84397007 8439701 843970 84397 8440 844 84 9

SC × × 3649657 364965 36495 3648 364 35

LP × × × 350655 35064 3505 349 34

NP × × 3863231 386322 38631 3862 385 37

NA × 32701690 3270168 327016 32701 3269 326 32

QD × × × × × 3380 337 33

probabilities are too low for some of the technologies; for example p = 10−9 for
QD (see Table 3) is not feasible. Such entries in Table 4 are denoted by a ‘×’.

Thus Table 4 provides an upper bound of the time interval between placing
two error detection blocks in a quantum circuit for a particular technology.

4 Savings in Resources by Our Proposed Method

We consider the proposed quantum error detection circuit of Fig. 1 once more.
After the quantum error detection block is placed, one needs to check the syn-
dromes in the 4 ancilla qubits, of which first two indicate bit error and last two
indicate phase error. We consider only the bit flip error syndrome for the time
being. If the syndrome is 00, it indicates that the circuit is free of bit error. If
the syndrome is 10, it indicates that the last four qubits are in the same state,
but the 1st four qubits are not. This is possible only if error has occurred in the
1st qubit. Similarly, if 01 is the syndrome, then it is possible to determine that
the 5th qubit has error. However, if the syndrome is 11, then it is not possible
to determine which of the remaining 3 qubit is erroneous. The similar is true
for syndromes for phase flip errors too. Thus when there is any error on the 1st
or last qubit, this error detection block can both identify the error type and its
position; hence can correct it.

If error is in one of the other 3 qubits, then this proposed error detection
circuit can detect it, but cannot determine its position uniquely. So we need to
place the error correction block. However, when the error syndrome is 11, we are
sure that the error is not in the first or last data qubit. Hence it is not necessary
to place the 5-qubit error correcting block to correct errors in one of 3 qubits.
Rather, we place a 3-qubit error correction block as shown in Fig. 2.

We now consider the worst case scenario, where an error has been detected
by the error detection block of Fig. 1 but this block cannot correct it. So we need
to place the 3-qubit error correcting block of Fig. 2. In this scenario our proposed
technique requires the maximum resource (5-qubit error detection + 3-qubit error
correction). In Table 5, we show the percentage savings that the worst case sce-
nario of our proposed technique gives over the ideal situation of placing a 5-qubit
error correction block. From the table we see that for all technologies, our proposed
technique provides an average reduction of 94.70% with respect to [5].

158 R. Majumdar et al.

|q0〉
|q1〉 • H • H

|q2〉 • • H • • H

|q3〉 • H • H

|q4〉
|q5〉 ⊕⊕
|q6〉 ⊕⊕
|q7〉 ⊕⊕
|q8〉 ⊕⊕

Fig. 2. 3-qubit error correcting block

Table 5. Percentage savings by using the proposed technique over the 5-qubit QECC

Technology Ideal 5-qubit EC Detection block 3-qubit EC Total Savings (%)

IT 843 36 28 64 92.4

SC 1301 34 22 56 95.7

LP 874 26 14 40 95.4

NP 1217 26 14 40 96.7

NA 900 34 22 56 93.8

QD 1518 52 36 88 94.2

Average savings (%) with respect to [5] 94.70

5 Resource Savings Analysis

In Table 5, we have shown the percentage savings compared to Laflamme code for
worst case scenario. However, it is not expected that each time both the detection
and correction block need to be placed. At a location where the probability of
error is almost zero, placing the detection block alone is sufficient. In this section,
we provide an analysis of the resource requirement.

In [11], the authors have introduced the mechanism of error tracing for linear
and concatenated Bacon-Shor [6], Steane [4] and Knill C4 code [13]. 5-qubit error
correction code was not used for error tracing purpose. Here, we use a similar
approach for different error thresholds and compute the percentage savings in
resources. Using the technique of [11], we propose placing the error correction
and detection block after some predefined threshold. Let the error threshold be
pth. So, we place both the detection and correction block only when the error

A Method to Reduce Resources for Quantum Error Correction 159

Table 6. Comparative study of savings in different benchmark circuits

Circuit Name PMD Threshold # QECC
in [11]

Resource in [11] Our resource Savings (%)
with respect
to Steane
Code

9 qubit 7 qubit 5 qubit
2 qubit Grover’s Search IT 0.001 0 0 0 0 0 -

0.01 0 0 0 0 0 -
0.1 0 0 0 0 0 -

SC 0.001 0 0 0 0 0 -
0.01 0 0 0 0 0 -
0.1 0 0 0 0 0 -

LP 0.001 20 840 760 17480 521 31.45
0.01 20 840 760 17480 523 31.18
0.1 20 840 760 17480 548 27.89

NP 0.001 21 882 798 25557 547 31.45
0.01 9 378 342 10953 236 30.99
0.1 0 0 0 0 0 -

NA 0.001 21 1218 1050 18900 715 31.90
0.01 10 580 500 9000 343 31.40
0.1 1 58 50 900 37 26.00

QD 0.001 33 3036 2277 50094 1718 24.55
0.01 33 3036 2277 50094 1728 24.11
0.1 33 3036 2277 50094 1835 19.41

4 qubit Reversible Adder IT 0.001 0 0 0 0 0 -
0.01 0 0 0 0 0 -
0.1 0 0 0 0 0 -

SC 0.001 2 116 100 2602 69 31.00
0.01 0 0 0 0 0 -
0.1 0 0 0 0 0 -

LP 0.001 104 4368 3952 90896 2706 31.55
0.01 104 4368 3952 90896 2719 31.20
0.1 104 4368 3952 90896 2850 27.90

NP 0.001 104 4368 3952 126568 2706 31.55
0.01 51 2142 1938 62067 1334 31.16
0.1 7 294 266 8519 192 27.82

NA 0.001 127 7366 6350 114300 4321 31.95
0.01 57 3306 2850 51300 1950 31.58
0.1 19 1102 950 17100 688 27.58

QD 0.001 189 17388 13041 286902 9835 24.59
0.01 189 17388 13041 286902 9897 24.10
0.1 189 17388 13041 286902 10509 19.42

4 qubit quantum Fourier
Transform Circuit

IT 0.001 0 0 0 0 0 -

0.01 0 0 0 0 0 -
0.1 0 0 0 0 0 -

SC 0.001 5 290 250 4215 171 31.6
0.01 0 0 0 0 0 -
0.1 0 0 0 0 0 -

LP 0.001 233 9786 8854 203642 6062 31.54
0.01 233 9786 8854 203642 6091 31.20
0.1 233 9786 8854 203642 6385 27.88

NP 0.001 233 9786 8854 283561 6062 31.54
0.01 117 4914 4446 142389 3059 31.20
0.1 15 630 570 18255 411 27.89

NA 0.001 237 13746 11850 213300 8064 31.95
0.01 117 6786 5850 105300 4004 31.56
0.1 18 1044 900 16200 652 27.56

QD 0.001 558 51336 38502 847044 29037 24.58
0.01 558 51336 38502 847044 29217 24.11
0.1 558 51336 38502 847044 31025 19.42

3 qubit Bernstein Vazirani
search circuit

IT 0.001 0 0 0 0 0 -

0.01 0 0 0 0 0 -
0.1 0 0 0 0 0 -

SC 0.001 0 0 0 0 0 -
0.01 0 0 0 0 0 -
0.1 0 0 0 0 0 -

LP 0.001 21 882 798 18354 547 31.45
0.01 21 882 798 18354 549 31.20
0.1 21 882 798 18354 576 27.81

NP 0.001 21 882 798 25557 547 31.45
0.01 9 378 342 10953 236 30.99
0.1 0 0 0 0 0 -

NA 0.001 19 1102 950 17100 647 31.90
0.01 8 464 400 7200 274 31.50
0.1 1 58 50 900 37 26.00

QD 0.001 23 2116 1587 34914 1197 24.58
0.01 23 2116 1587 34914 1205 24.07
0.1 23 2116 1587 34914 1279 19.40

Average savings (%) with respect to Steane Code 28.34

160 R. Majumdar et al.

probability p = pth. From Eq. 4, the expected resource requirement for placing
the detection and/or correction block each time is

(1 − pth)D + (1 − (1 − pth))(D + C) = D + pthC.

This equation gives the expected resource requirement when the error detec-
tion and/or correction block(s) are placed. In Table 6, we show the expected per-
centage savings in resource for different benchmark quantum circuits. In addition
to comparing our technique with the ideal situation of placing the 5-qubit error
correcting code, we also compare our proposed technique with Shor and Steane
codes.

It can be observed from Table 6 that Steane code has the minimum resource
requirement of the three codes (Shor, Steane and Laflamme). The percentage
savings shown in this table is with respect to Steane code only, since it has
the minimum resource requirement. Our proposed technique shows an average
resource reduction of 28.34% over Steane code [4].

Another observation from the benchmark table is that with the increase in
probability threshold, the percentage savings decreases, i.e., the resource require-
ment of our proposed technique increases. This is natural because if when the
error threshold is increased, the probability of error occurring increases. Hence,
it is more likely to detect errors for higher threshold. So the probability that both
detection and correction block needs to be placed increases with the increase in
error threshold. Hence the resource requirement of the proposed technique also
increases, resulting in a decrease in the percentage savings.

The resulting values from the benchmark circuits (Table 6) clearly show that
our proposed technique has minimal resource requirement and minimum qubit
requirement and hence is superior to all the three error correcting codes consid-
ered (Shor, Steane, Laflamme).

6 Conclusion

In this paper we have proposed a technique to replace the 5 qubit error correction
code. Though this code requires the minimum number of qubits, its resource
requirement is extremely high since it contains a few multi-control gates. These
gates cannot be directly implemented in a fault-tolerant manner, and the fault-
tolerant decomposition requires a large number of gates. Our proposed technique
uses two steps: error detection, and if error is likely to be detected, then error
correction. The total qubit requirement does not increase in this technique. One
can still perform error correction with 5 qubits only. However, in the original
5 qubit code [5], no ancilla qubits are required for error correction. But our
proposed technique requires 4 ancilla qubits. Nevertheless, these qubits are all
initialized to |0〉 and the superposition property of these qubits are not necessary
for the proposed mechanism. Hence effectively they behave like reversible bits
and can be reused more than once.

We have shown the percentage savings that the technique proposed here
provides. Furthermore, we have used our technique on some benchmark circuits

A Method to Reduce Resources for Quantum Error Correction 161

too and have shown the savings in gate count. Hence, this method provides a
way for performing error correction using the minimum number of qubits and
also reduces the gate count significantly. A future prospect will be to find the
minimum resource requirement for quantum error correction and to check where
our proposed technique stands compared to it.

References

1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2010)

2. Wilde, M.M.: Quantum Information Theory. Cambridge University Press,
New York (2013)

3. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys.
Rev. A 52, R2493–R2496 (1995)

4. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77,
793–797 (1996)

5. Laflamme, R., Miquel, C., Paz, J.P., Zurek, W.H.: Perfect quantum error correcting
code. Phys. Rev. Lett. 77, 198–201 (1996)

6. Bacon, D.: Operator quantum error-correcting subsystems for self-correcting quan-
tum memories. Phys. Rev. A 73, 012340 (2006)

7. Gottesman, D.: Stabilizer codes and quantum error correction. arXiv preprint
arXiv:quant-ph/9705052 (1997)

8. Lin, C.C., Chakrabarti, A., Jha, N.K.: FTQLS: fault-tolerant quantum logic syn-
thesis. IEEE Trans. Very Large Scale Integr. VLSI Syst. 22(6), 1350–1363 (2014)

9. Gottesman, D.: An introduction to quantum error correction and fault-tolerant
quantum computation. Quantum Inform. Sci. Contrib. Math. 68, 13–60 (2009)

10. Grassl, M., Beth, T., Pellizzari, T.: Codes for the quantum erasure channel. Phys.
Rev. A 56, 33–38 (1997)

11. Majumdar, R., Basu, S., Mukhopadhyay, P., Sur-Kolay, S.: Error tracing in linear
and concatenated quantum circuits. arXiv preprint arXiv:1612.08044 (2016)

12. Suchara, M., Faruque, A., Lai, C.Y., Paz, G., Chong, F., Kubiatowicz, J.D.: Esti-
mating the resources for quantum computation with the QuRE toolbox. Technical
report, DTIC Document (2013)

13. Knill, E.: Quantum computing with realistically noisy devices. Nature 434(7029),
39–44 (2005)

http://arxiv.org/abs/quant-ph/9705052
https://arxiv.org/abs/quant-ph/9705052v1
http://arxiv.org/abs/1612.08044

Test Pattern Generation Effort Evaluation
of Reversible Circuits

Abhoy Kole1, Robert Wille2, Kamalika Datta3, and Indranil Sengupta4(B)

1 B.P. Poddar Institute of Management and Technology, Kolkata, India
abhoy.kole@gmail.com

2 Johannes Kepler University Linz, Linz, Austria
robert.wille@jku.at

3 National Institute of Technology Meghalaya, Shillong, India
kdatta@nitm.ac.in

4 Indian Institute of Technology Kharagpur, Kharagpur, India
isg@iitkgp.ac.in

Abstract. The problem of synthesis and optimization of reversible and
quantum circuits have drawn the attention of researchers for more than
one decade. With physical technologies for realizing the quantum bits
(qubits) being announced, the problem of testing such circuits is also
becoming important. There have been several works for identifying fault
models for reversible circuits, and test generation algorithms for the
same. In this work, we aim to show that the problem of testing reversible
circuits with respect to recent fault models (like missing gate, missing
control, reduced control, etc.) is easy, and it is not really worth to spend
time and effort for generating better test patterns. To establish this point,
test generators using two extreme scenarios have been implemented: a
naive test generator that is very fast but does not guarantee optimal-
ity and a SAT-based test generator that is slow but guarantees smallest
test sets. Experiments have been carried out on reversible benchmark
circuits, which establish the fact that the size of the test patterns does
not drastically differ across the spectrum.

Keywords: Reversible circuit · ATPG · SAT · Optimization

1 Introduction

A circuit is said to be reversible if it provides a bijective mapping between the
input and output lines, which implies that the number of input and output
lines are equal. A reversible circuit is composed as a cascade of simple reversible
gates, without any fanout or feedback connections. Reversible circuits have been
studied extensively in the literature as an alternate computing paradigm with
some potential for low power design (see e.g. [2,8] or, more recently, [3]) or
quantum computation [11].

Particular for the latter domain, how to implement corresponding circuits
has intensely been considered. To this end, various methods for synthesis and
c© Springer International Publishing AG 2017
I. Phillips and H. Rahaman (Eds.): RC 2017, LNCS 10301, pp. 162–175, 2017.
DOI: 10.1007/978-3-319-59936-6 13

ATPG: Under Various Fault Models 163

optimization have been proposed (see e.g. [4,14]). For their physical realization,
various quantum gates and methods of decomposing reversible circuits to circuits
composed of the corresponding gate library have been reported. Here, particular
the NCV library [9] or more recently the Clifford+T [1] library received attention.
In this regard, it has to be considered that, in a quantum circuit, information
is represented in terms of qubits, which can not only be in the states 0 and 1,
but also any superposition of them. Reversible circuits however provide a good
basis for this, since every quantum gate operation is also reversible in nature.

With various technologies beginning to emerge that are able to implement
and manipulate qubits, researchers have also been looking at the various fault
effects and models that such circuits can be subjected to. In conventional gate
level circuits, where each gate is physically implemented and a signal moves
from one gate to the next, wire-level fault models like stuck-at or bridging faults
have become popular. In contrast, a quantum circuits consists of a set of qubits
whose interactions are controlled by applying a sequence of control pulses; in
other words, the same set of qubits perform the gate operations sequentially.
Therefore, wire-level fault models are not relevant to quantum circuits, and
newer fault models like missing-gate or missing-control have been proposed.

There have been several reported works that target the testing of faults
in reversible circuits – and, by this, conduct Automatic Test Pattern Genera-
tion (ATPG). Initial works [12] used the stuck-at fault models for reversible cir-
cuits; however, subsequent works relied on more realistic fault models addressing
physical realization constraints [5]. The various test pattern generation methods
that have been reported can be broadly categorized as: (a) branch-and-bound
methods [5], (b) methods based on Integer Linear Programming (ILP) [13], SAT-
based and PBO-based methods [17–19], etc. In addition, there has been several
works on design for testability (DFT), where by adding some extra gates or
controls, the faults can be tested using very few test patterns [10].

Most of these methods suffer from scalability problems as they often aim to
find the best possible, i.e. smallest possible, solution and rely on tools like ILP,
SAT, or PBO solvers that do not scale well with problem size. In this work, we
are questioning whether these efforts are really worth it. In fact, it is evident that
the problem of testing reversible circuits is much simpler as compared to that
for conventional circuits – since the problems of controllability and observability
are naturally solved by the bijective mappings for every gate operation. Because
of this, it is rather easy to implement an ATPG tool that would run very fast
and, at the same time, still would generate the desired set of test patterns which
is of moderate size.

Motivated by that, the main objectives of the proposed work is as follows:

(a) Evaluate test generation methods from an effort-quality tradeoff point of
view. Specifically, how naive ATPG algorithms perform as compared to the
optimum ATPG approaches.

(b) Establish the fact that it does not make much sense to spend time and effort
in minimizing the number of test patterns in reversible circuits. Because of
its inherent properties, such circuits in any case do not require too many
patterns for testing.

164 A. Kole et al.

x1 x31

x2 x32

x3 x33

x4 x34

x5 x35

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

x17

x18

x19

x20

x21

x22

x23

x24

x25

x26

x27

x28

x29

x30

Fig. 1. Example reversible circuit

The rest of the paper is organized as follows. Section 1 provides a brief lit-
erature survey covering reversible circuits and gates, the fault models, and the
notable test generation works reported in the literature. Section 2 provides the
details for our proposed evaluation, where we discuss a naive test generation
approach that is fast but non-optimal, and a SAT-based approach that is slow
but optimal. Results of the experimental evaluation will be presented and dis-
cussed in Sect. 3. Finally, Sect. 4 summarizes the work with concluding remarks
and some directions for future work.

In this section, we briefly review the basics of reversible circuits, the
fault models, and the test generation approaches that have been proposed for
reversible circuits.

1.1 Reversible Circuits and Gates

In our work, we only consider reversible circuits that are composed of multiple-
control Toffoli (MCT) gates, also known as k-CNOT gates. A k-CNOT gate has
k + 1 inputs and outputs, with k control connections (c1, c2, . . . , ck) and one
target line t. The logic value of the target line t gets inverted only when all
the lines with control connections are at logic 1, while the logic values of all
the other lines remain unchanged. In other words, the new value of t becomes
tnew = (c1.c2 · · · ck) ⊕ t.

Figure 1 shows a reversible circuit with 6 gates, comprising of one 0-CNOT
gate, one 1-CNOT gate, two 2-CNOT gate, one 3-CNOT gate and one 4-CNOT
gate.

Since the state of the target line of a k-CNOT gate is computed using the
XOR operation, it is clear that every gate is reversible; if the output vector is
applied to the output of the gate, we get back the previous input. When we
generate test vectors to detect faults in the gates, this property results in the
following unique characteristics.

(a) For any state vector Si applied to the input of any gate gi, it will map to
a unique state vector in the primary outputs (PO). Any bit change(s) in
Si will result in a different unique state vector in PO. This is due to the
bijective property of reversible circuits.

(b) For any state vector Si applied to the input of any gate gi, it is always
possible to get a unique state vector at the primary inputs (PI). This can be

ATPG: Under Various Fault Models 165

achieved by back-tracing from gate gi, and evaluating every gate encountered
in the reverse direction.

These characteristics help to solve the controllability and observability prob-
lems during testing of reversible circuits, which is known to be one of the biggest
obstacles in the testing of conventional circuits.

1.2 Reversible Circuit Fault Models

It is known that reversible gates can be decomposed into quantum gates using
some quantum gate library (e.g. NCV). It has been mentioned in [11] that quan-
tum gates can be implemented using various nanotechnologies. Some of these
approaches use the quantum states of sub-atomic particles (like spin-up and
spin-down) to represent the qubits. The qubit states are modified by applying
very short-width electromagnetic pulses to implement the quantum gate func-
tions. In trapped-ion technology, for instance, individual atoms can represent the
qubits. The atomic states are altered by applying precise laser pulses of specified
frequency and duration. A sequence of such pulses has to be applied in time to
execute the gates that comprise a reversible or quantum circuit.

In some earlier works, classical stuck-at or bridging fault models at the
reversible circuit level was considered. However, because of the dynamic nature
of evaluation of the quantum gates by application of pulses, the applicability
of such wire-oriented classical fault models is doubtful. As discussed in [5], a
suitable fault model in the quantum domain should largely be technology inde-
pendent, and based on errors with regards to the application of evaluation pulses.
The following fault scenarios can result.

(a) Missing Gate Fault, where due to absence of a pulse, a gate might not eval-
uate at all.

(b) Repeated Gate Fault, where due to multiple pulses being generated instead
of just one, a gate might be evaluated multiple (say, k) times. Since the
effect of two identical gate operations cancel each other, when k is even,
this also reduces to the Missing Gate Fault. And when k is odd, the fault is
undetectable.

(c) Missing Control Fault (also known as Partial Missing Gate Fault) where
a gate gets evaluated even when some subset of the control lines is active,
because of partially misaligned or mistuned gate pulses.

(d) Additional Control Fault, where some control connection gets added in addi-
tion to the already existing connections.

Earlier works have considered single missing gate fault (SMGF), and single
missing control fault (SMCF/1-PMGF) for test generation and analysis. How-
ever, SMCF can be generalized to Partial Missing Gate Fault (PMGF), where
multiple missing control faults within a gate can also occur. Inclusion of one
additional control line leads to single additional control fault (SACF). Besides
that, the considerations conducted in this work can similarity be applied to
any other fault model for reversible circuits (even those which are about to be
proposed in the future).

166 A. Kole et al.

1.3 Existing ATPG Solutions for Reversible Circuits

Various works on Automatic Test Pattern Generation (ATPG) for reversible cir-
cuits have been reported in the literature. The problem of test set generation and
reduction of test set has been addressed using ILP in [12,13]. Exact approaches
that generate smallest test set has also been considered previously in [18,19].
The authors in [6,7] proposed approaches to derive test sets for detecting mul-
tiple missing-gate faults in reversible circuits. Besides exact approaches (using
SAT and PBO), a simulation based approach has also been considered in [17].

2 Proposed Work

In the present paper, we aim to evaluate how the effort in generating tests for
reversible circuits correlate with the quality of test vectors generated. For the
purpose of evaluation, we have considered two extremes of the spectrum with
respect to test generation in a reversible circuit:

(a) A naive approach that directly generates a test for an undetected fault that
is expected to require larger number of test vectors.

(b) An exact (minimal) approach that would generate the smallest possible test
set.

In the following subsections, we evaluate and compare the number of test vectors
for these two extreme scenarios.

2.1 Naive Test Pattern Generation

Consider a reversible circuit consisting of p gates {G1, G2, . . . , gp}. For every
gate Gi, i = 1 to p, we do the following:

(i) Generate the fault list F consisting of all faults according to a given fault
model.

(ii) Generate a set of vectors {Vi} at the input of gate Gi that can detect all
faults f ∈ F in Gi.

(iii) Repeat the following steps for all vectors v ∈ {Vi}:
(a) Back propagate v to obtain the corresponding input test vector, say T .

Since every gate is reversible, for a given v, T will be unique.
(b) Carry out fault simulation with test vector T to determine the faults in

F that get detected.
(c) Remove the detected faults from F (fault dropping).

(iv) Continue with Step i. The process terminates as soon as the fault list F
becomes empty.

To detect an SMCF in Gi, all control lines (except the missing one) have
to be assigned to 1, while the missing control line has to be assigned to 0. The
assignment of the remaining lines can be chosen arbitrarily. Similarly, to detect
an SMGF in Gi, all control lines have to be assigned to 1, while the remaining

ATPG: Under Various Fault Models 167

lines can be arbitrarily assigned. Again, to detect single additional control fault
(SACF) in Gi, all control lines except the additional one have to be assigned
to 1, and the additional line has to be assigned to 0. The assignment of the
remaining lines can be arbitrarily chosen.

Three alternate methods for filling up the remaining lines (i.e. the don’t care
bits) have been studied:

(a) 0-filling : where a don’t care line is set to logic value 0.
(b) 1-filling : where a don’t care line is set to logic value 1.
(c) Random filling : where a don’t care line is randomly set to 0 or 1.

The naive test generation approach with the three alternatives for don’t care
filling have been studied for the SMGF and SMCF models. The overall runtime of
this naive approach is O(n2) (For a reversible circuit with n gate, the number of
generated test vectors encompassing all fault models is Cn, where C is a constant,
and back propagation and fault dropping for each test vector on average is n

2 +n.).

2.2 Exact (Minimal) Test Pattern Generation

In this subsection we discuss an approach that uses Boolean satisfiability to
generate minimum test patterns for detecting faults in a reversible circuit. To
this end, we utilize a SAT formulation which is similar to the one proposed
in [18]. We state below the SAT formulation for SMGF and for SMCF. We
also discuss the SAT formulation of the combined SMGF+SMCF model and
the PMGF model which have not been considered earlier. By this we show that
this solution (and, hence, the considerations conducted here) can be applied to
ATPG of reversible circuits in general and does not rely on a particular fault
model.

(a) SMGF: The SAT based formulation for detecting the presence of SMGF in
a circuit C is:

n∧

i=1

Ii ∧
∧

gk∈C

(
n∨

i=1

fi(gk)

)
(1)

where for the k-th CmNOT gate, gk (T ({xi
1, x

i
2, . . . , x

i
m};xi

m+1)) from i-th
circuit instance fi(gk) = xi

1 ∧ xi
2 ∧ · · · ∧ xi

m for all missing gate, gk ∈ C.
(b) SMCF: The SAT based formulation for detecting the presence of SMCF in

a circuit C is:
n∧

i=1

Ii ∧
∧

gk∈C

(
n∨

i=1

f
′
i (gk)

)
(2)

where for the k-th CmNOT gate, gk (T ({xi
1, x

i
2, . . . , x

i
m};xi

m+1)) from i-th
circuit instance f

′
i (gk) = xi

1 ∧ xi
2 ∧ · · · ∧ xi

j ∧ · · · ∧ xi
m for all missing control

line, xi
j ∈ {xi

1, x
i
2, . . . , x

i
m}.

168 A. Kole et al.

(c) SMGF+SMCF: We can also combine the SMGF and SMCF fault models
in a single unified formulation. The SAT formulation for the combined fault
model for a given circuit C is:

n∧

i=1

Ii ∧

SMGF︷ ︸︸ ︷
∧

gk∈C

(
n∨

i=1

fi(gk)

)
∧

SMCF︷ ︸︸ ︷
∧

gk∈C

(
n∨

i=1

f
′
i (gk)

)
(3)

where for the k-th CmNOT gate, gk (T ({xi
1, x

i
2, . . . , x

i
m};xi

m+1)) from i-th
circuit instance fi(gk) = xi

1 ∧ xi
2 ∧ · · · ∧ xi

j ∧ · · · ∧ xi
m for all missing gate,

gk ∈ C and f
′
i (gk) = xi

1 ∧ xi
2 ∧ · · · ∧ xi

j ∧ · · · ∧ xi
m for all missing control line,

xi
j ∈ {xi

1, x
i
2, dots, x

i
m}.

(d) PMGF: The PMGF fault model is a superset of the SMCF fault model.
The SAT based formulation for detecting PMGFs in a circuit C is:

n∧

i=1

Ii ∧
∧

gk∈C

(
n∨

i=1

f1
i (gk)

)
∧ . . .

(
n∨

i=1

fn
i (gk)

)
(4)

where for the k-th CmNOT gate, gk (T ({xi
1, x

i
2, . . . , x

i
m};xi

m+1)) from i-th
circuit instance

f1
i (gk) = xi

1 ∧ · · · ∧ xi
j ∧ · · · ∧ xi

m,

f2
i (gk) = xi

1 ∧ · · · ∧ xi
j ∧ · · · ∧ xi

k ∧ · · · ∧ xi
m,

. . . = . . . ,

fn
i (gk) = xi

1 ∧ xi
2 ∧ · · · ∧ xi

m.

Here the term f1
i (gk) is identical to the term f

′
i (gk) of SMCF.

(e) SMGF+PMGF: We can also combine the SMGF and PMGF fault models
in a single unified formulation. The SAT formulation for the combined fault
model for a given circuit C is:

n∧

i=1

Ii ∧

SMGF︷ ︸︸ ︷
∧

gk∈C

(
n∨

i=1

fi(gk)

)
∧

PMGF︷ ︸︸ ︷
∧

gk∈C

(
n∨

i=1

f1
i (gk)

)
∧ . . .

(
n∨

i=1

fn
i (gk)

)
(5)

where for the k-th CmNOT gate, gk (T ({xi
1, x

i
2, . . . , x

i
m};xi

m+1)) from i-th
circuit instance

fi(gk) = xi
1 ∧ xi

2 ∧ · · · ∧ xi
j ∧ · · · ∧ xi

m,

f1
i (gk) = xi

1 ∧ xi
2 ∧ · · · ∧ xi

j ∧ · · · ∧ xi
m,

f2
i (gk) = xi

1 ∧ · · · ∧ xi
j ∧ · · · ∧ xi

k ∧ · · · ∧ xi
m,

. . . = . . . ,

fn
i (gk) = xi

1 ∧ xi
2 ∧ · · · ∧ xi

m.

ATPG: Under Various Fault Models 169

x1 x7

x2 x8

x3 x9
x6

x5

x4

(a) C1
Impl

x10 x16

x11 x17

x12 x18
x15

x14

x13

(b) C2
Impl

Fig. 2. An example circuit with multiple instances

x1 x31

x2 x32

x3 x33

x4 x34

x5 x35

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

x16

x17

x18

x19

x20

x21

x22

x23

x24

x25

x26

x27

x28

x29

x30

(a) 4gt4-v0 72

1 1

0 1

1 1

1 1

1 0

g1
1

1

1

1

1

g2
0

1

1

1

1

g3
1

1

1

1

1

g4
1

1

1

1

0

g5
1

1

1

1

1

g6

(b) SMGF

1 0

1 1

1 1

1 1

0 0×

g1
1

1

1

1

0 ×

g2
1

1

1

1

0

g3
0

1

1

1

0

×
g4

0

1

1

1

0

×
g5

0

1

1

1

0

×
g6

(c) SMCF1

1 1

1 0

1 1

1 1

1 0

g1
1

0

1

1

1

g2
0

0

1

1

1

g3
1

0

1

1

1

g4
1

0

1

1

0

×
g5

1

0

1

1

0

×
g6

(d) SMCF2

1 1

0 1

1 1

0 0

1 0

g1
1

1

1

0

1

g2
0

1

1

0

1

g3
1

1

1

0

1
×

g4
1

1

1

0

1

g5
1

1

1

0

0
×

g6

(e) SMCF3

0 1

0 1

0 0

1 1

1 0

g1
0

1

0

1

1

×

g2
0

1

0

1

1

g3
1

1

0

1

1

×

g4
1

1

0

1

1

g5
1

1

1

0

1

×

g6

(f) SMCF4

Fig. 3. Detecting SMGF and SMCF faults for (a) the benchmark 4gt4-v0 72 with
variables assigned before and after each gate operation, (b) input pattern detects all
possible SMGFs that may produce affected output and (c)–(f) undesired output and
corresponding specific SMCFs detected by different input patterns

The basic idea behind the generation of minimal test sets for reversible circuit
using SAT based approach is illustrated with the help of an example illustrated
in Fig. 2. If the number of test vectors required is t, then we need to have t
instances of the circuit with all the lines distinctly labeled. The figure shows two
instances C1

Impl and C2
Impl for t = 2.

For the instance C1
Impl (see Fig. 2a) the equations representing the circuit

behavior are formed as:

I1 = (x4 = x1) ∧ (x5 = x2 ⊕ x1) ∧ (x6 = x3) ∧ (x7 = x4)

∧(x8 = x5) ∧ (x9 = x6 ⊕ x4x5)

Similarly, for the instance C2
Impl shown in Fig. 2b, the equations are formed as:

I2 = (x13 = x10) ∧ (x14 = x11 ⊕ x10) ∧ (x15 = x12)

∧(x16 = x13) ∧ (x17 = x14) ∧ (x18 = x15 ⊕ x13x14)

The SAT formulation for SMCF as per Eq. (2) will be

I1 ∧ I2 ∧ (x1 ∨ x10) ∧ (x4x5 ∨ x13x14) ∧ (x4x5 ∨ x13x14)

170 A. Kole et al.

The SAT formulation for SMGF as per Eq. (1) will be

I1 ∧ I2 ∧ (x1 ∨ x10) ∧ (x4x5 ∨ x13x14)

Given these formula as inputs, a SAT solver will provide a set of test vectors
as output.

2.3 Test Generation for Several Fault Models Using SAT Solver

If we combine the equations for SMCF and SMGF into a single set of equations,
and feed the same to a SAT solver, we shall get the test patterns required to test
both single missing-control and also single missing-gate faults. The total number
of test patterns is expected to be less in the combined approach.

We illustrate the idea with the help of a benchmark circuit, viz. 4gt4-v0 72.
Figure 3a shows the reversible logic implementation. We show the test patterns
generated under the following three fault model scenario.

(a) SMGF: The SAT solver returns the following single test vector covering all
SMGFs of the circuit shown in Fig. 3a:

(i) [x1, x2, x3, x4, x5] = [1, 0, 1, 1, 1], which detects SMGFs for all the gates
as shown in Fig. 3b.

(b) SMCF: The SAT solver returns the following 4 test vectors covering all
SMCFs of the circuit shown in Fig. 3a:

(i) [x1, x2, x3, x4, x5] = [1, 1, 1, 1, 0], which detects SMCFs for the gates g1,
g2, g4, g5 and g6 as shown in Fig. 3c.

(ii) [x1, x2, x3, x4, x5] = [1, 1, 1, 1, 1], which detects SMCFs for the gates g5
and g6 as shown in Fig. 3d.

(iii) [x1, x2, x3, x4, x5] = [1, 0, 1, 0, 1], which detects SMCFs for the gates g4
and g6 as shown in Fig. 3e.

(iv) [x1, x2, x3, x4, x5] = [0, 0, 0, 1, 1], which detects SMCFs for the gates g2,
g4 and g6 as shown in Fig. 3f.

(c) Combined (SMGF+SMCF): For the combined formulation, the SAT
solver returns the following 5 test vectors covering all SMGFs and SMCFs
of the circuit shown in Fig. 3a:

(i) [x1, x2, x3, x4, x5] = [1, 1, 1, 1, 1], which detects SMCFs for the gates g5
and g6, and SMGFs for the gates g1, g2, g3 and g4 as shown in Fig. 3d.

(ii) [x1, x2, x3, x4, x5] = [0, 0, 0, 1, 1], which detects SMCFs for the gates g2,
g4 and g6, and SMGFs for the gates g1, g3 and g5 as shown in Fig. 3f.

(iii) [x1, x2, x3, x4, x5] = [1, 0, 1, 1, 1], which detects SMGFs for the gates g1,
g2, g3, g4, g5 and g6 as shown in Fig. 3b.

(iv) [x1, x2, x3, x4, x5] = [1, 1, 1, 1, 0], which detects SMCFs for the gates g1,
g2, g4, g5 and g6 as shown in Fig. 3c.

(v) [x1, x2, x3, x4, x5] = [1, 0, 1, 0, 1], which detects SMCFs for the gates g4
and g6, and SMGFs for the gates g1, g2, g3 and g5 as shown in Fig. 3e.

(d) PMGF: The SAT solver returns 15 test vectors covering all PMGFs of the
circuit shown in Fig. 3a.

(e) Combined (SMGF+PMGF): For the combined formulation, the SAT
solver returns 16 test vectors covering all SMGFs and PMGFs of the circuit
shown in Fig. 3a.

ATPG: Under Various Fault Models 171

3 Experimental Evaluation

Experiments have been carried out on reversible benchmark circuits available
in [16]. The naive test generator (with fault simulator) have been implemented
in C and run on a core-i3 machine with 4GB RAM, running Ubuntu v16.04. The
test generators using SAT solvers have been implemented on the RevKit [15]
platform, using C++ and Python, and run on the same core-i3 machine.

Using these implementations, we conducted the evaluations motivated in
Sect. 1. Tables 1 and 2 provide a summary of some of the obtained numbers. More
precisely, Table 1 shows the results of the SAT-based ATPG implementation with
combined fault models and also the naive ATPG implementation. Results for 0-
filling, 1-filling and random filling (best out of 5 runs) are also shown. Table 2
show the results for larger benchmark circuits using the naive ATPG tool with 0-
filling, 1-filling and random-filling. Since those benchmarks cannot be handled by
the SAT-based exact approach (due to run-time limitations), no corresponding
numbers for this solutions are provided here.

Based on these numbers (as well as further case studies for which we cannot
present all numbers due to page limitations), the following conclusions can be
drawn:

Table 1. Combined fault model and comparison with naive approach

Benchmarks SAT based ATPG Naive ATPG (SMGF+SMCF)

Circuit d n c Separate SMGF+SMCF SMGF+PMGF 0-fill 1-fill r-fill T

Ftot Ptot P T P T P P P

4gt4-v0 78 13 5 1 31 8 6 0.01 16 0.04 9 7 7 0.00

4gt12-

v0 86

14 5 1 34 6 5 0.01 16 0.05 10 7 8 0.00

decod24-

enable 32

14 9 6 31 3 3 0.01 4 0.01 6 5 3 0.00

mod5d1 16 15 8 3 34 3 3 0.01 4 0.01 9 7 5 0.00

4 49 16 16 4 0 40 8 5 0.01 8 0.02 8 5 7 0.00

miller 5 16 8 5 40 5 5 0.02 6 0.02 8 7 7 0.00

3 17 6 17 7 4 37 4 3 0.02 4 0.01 7 5 6 0.00

mini-

alu 84

20 10 6 47 3 3 0.03 4 0.01 9 6 8 0.00

rd53 131 28 7 2 52 15 10 0.04 16 0.08 14 13 14 0.00

rd84 142 28 15 7 77 7 5 0.09 5 0.04 29 10 9 0.00

sym6 63 29 14 8 72 5 5 0.05 6 0.04 17 11 9 0.00

4 49 7 42 15 11 103 5 5 0.06 6 0.06 14 11 8 0.00

ham15 108 70 15 0 195 17 11 0.17 16 0.36 12 12 11 0.00

hwb5 13 88 28 23 219 5 5 0.30 6 0.20 29 17 10 0.00

ham15 109 109 15 0 235 11 7 0.23 16 0.39 15 10 9 0.00

ham15 107 132 15 0 484 20 16 78.59 – – 37 24 23 0.04

hwb6 14 159 46 40 400 6 5 0.51 6 0.57 51 30 13 0.06

ex5p 647 206 198 1551 – – – 172 117 17 3.55

d: number of gates, n: number of lines, c: number of constant lines

Ftot: total number of faults, T : Time in seconds

Ptot: total number of test patterns (when run separately)

P : number of test patterns, r: random filling

172 A. Kole et al.

Table 2. ATPG test patterns for larger benchmarks

Benchmarks Faults ATPG

Circuit d n c F1 F2 0-fill 1-fill r-fill Time (s)

9symml 195 129 10 1 474 129 222 193 194 0.2

add6 196 229 19 7 853 229 210 174 141 0.68

alu2 199 157 16 6 567 157 211 198 202 0.33

alu4 201 1063 22 8 5535 1063 1735 1549 1573 120.77

bw 291 307 87 82 432 307 49 37 13 0.26

clip 206 174 14 5 653 174 175 163 160 0.34

dist 223 185 13 5 727 185 155 144 147 0.32

e64-bdd 295 387 195 130 454 387 135 129 14 0.9

f51m 233 663 22 8 3296 663 1252 1091 1127 33.67

frg1 234 212 31 3 1343 212 928 447 697 2.78

ham15 298 153 45 30 157 153 33 26 8 0.04

hwb7 302 281 73 66 426 281 76 40 14 0.27

hwb7 62 331 7 7 582 331 66 52 47 0.29

hwb8 116 749 8 8 1317 749 126 85 77 2.62

hwb8 303 449 112 104 686 449 126 53 14 1.05

hwb9 123 1959 9 9 3596 1959 275 168 150 38.59

hwb9 304 699 170 161 1068 699 184 73 17 3.55

in0 235 338 26 11 2107 338 423 406 408 3.37

in2 236 405 29 10 2475 405 506 454 451 5.26

life 238 107 10 1 387 107 138 136 129 0.1

max46 240 107 10 1 371 107 189 172 171 0.13

mlp4 245 131 16 8 480 131 138 92 95 0.15

plus127mod8192 162 910 13 13 5704 910 1072 105 311 27.61

plus63mod8192 164 492 13 13 3064 492 765 121 286 6.65

rd84 253 111 12 4 315 111 116 116 107 0.09

sym10 262 194 11 1 818 194 307 290 313 0.71

sym9 148 210 10 1 756 210 210 10 29 0.17

sym9 193 129 10 1 474 129 222 193 195 0.21

table 3 264 1012 28 14 8002 1012 978 912 946 53.52

tial 265 1041 22 8 5517 1041 1767 1625 1614 119.85

urf1 150 1517 9 9 6077 1517 259 149 148 20.56

urf1 151 1487 9 9 5878 1487 256 149 144 19.68

d: number of gates, n: number of lines, c: number of constant lines
F1: number of SMCFs, F2: number of SMGFs

ATPG: Under Various Fault Models 173

– Exact test pattern generation using the SAT-based exact approach is time-
consuming and not scalable. While small circuits can indeed be handled in
some seconds, no results can be obtained for circuits composed of some dozens
of circuit lines and hundreds of gates. This is not very surprising considering
the exponential complexity of guaranteeing minimal test sets.

– Despite the efforts spent on guaranteeing minimality, determining the mini-
mal test set often yields only moderate improvements compared to the naive
approach. In fact, the size of the test sets obtained by the naive approach is
often only a few patterns bigger than the test sets obtained by the SAT-based
minimal approach.

These evaluations confirm that, from an effort-quality tradeoff point of view,
there is no real need to spent much effort into the optimization of test pattern
generation for reversible circuits. In fact, naive solutions as sketched in this
work already yield results which are close to the optimum. In contrast, further
improving them towards minimality often comes with an increase in the run-
time and a substantially reduced scalability so that it is often not worthwhile to
spent these efforts (for a relatively small gain).

4 Conclusion

In this paper we have carried out an evaluation of the various alternate test
generation techniques for reversible circuits, and how it impacts the quality of
the test. To observe the entire spectrum of variability, we have implemented
test generators touching the two extremes. Firstly, a naive test generator has
been implemented that is very fast and uses a greedy approach to generate
test patterns. Secondly, a SAT based test generator has been implemented that
generates the smallest test set but requires large run times. The variation in the
number of test patterns, in spite of a very large variation in run times, is not
significantly large. This summarizes the main finding of the work, namely, test
generation for reversible circuit is easy and naive solutions are often sufficient.
Vice versa, it is not worthwhile to spent much efforts on the development of
more sophisticated solutions since the possible gain will be moderate.

Although SAT-based exact approach produces smaller number of test pat-
terns compared to naive approach as shown in Fig. 4a, it takes longer duration
even for circuits with small number of gates, as shown in Fig. 4b. Here the com-
parison is made for the benchmarks with upto 109 gates reported in Table 1.
Figure 4c shows 0-filling produces larger number of test patterns than 1-filling
and r-filling as presented for larger benchmarks in Table 2.

174 A. Kole et al.

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30

Siz
e

Test Pattern

(a) Size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15 20

Tim
e

Test Pattern

(b) Time

0

500

1000

1500

2000

0 500 1000 1500 2000

Siz
e

Test Pattern

(c) Larger Benchmark

Fig. 4. Evaluation of approaches (a) comparison of number of test patterns generated
using SAT-based and naive approaches for smaller size benchmarks from Table 1, (b)
time taken by various SAT-based approaches and corresponding test pattern generated
for small size benchmark from Table 1 compared to naive approach and (c) number of
test patterns generated by different naive approaches for the benchmarks from Table 2

ATPG: Under Various Fault Models 175

References

1. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm
for fast synthesis of depth-optimal quantum circuits. IEEE Trans. CAD 32(6),
818–830 (2013)

2. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–
532 (1973)

3. Berut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz,
E.: Experimental verification of Landauer’s principle linking information and ther-
modynamics. Nature 483, 187–189 (2012)

4. Drechsler, R., Wille, R.: From truth tables to programming languages: progress
in the design of reversible circuits. In: International Symposium on Multi-valued
Logic (2011)

5. Hayes, J.P., Polian, I., Becker, B.: Testing for missing-gate faults in reversible
circuits. In: Asian Test Symposium, pp. 100–105 (2004)

6. Kole, D.K., Rahaman, H., Das, D.K., Bhattacharya, B.B.: Derivation of automatic
test set for detection of missing gate faults in reversible circuits. In: International
Symposium on Electronic System Design (ISED), pp. 200–205, December 2011

7. Kole, D.K., Rahaman, H., Das, D.K., Bhattacharya, B.B.: Derivation of test set for
detecting multiple missing-gate faults in reversible circuits. Comput. Electr. Eng.
39(2), 225–236 (2013)

8. Landauer, R.: Irreversibility and heat generation in computing process. IBM J.
Res. Dev. 5(3), 183–191 (1961)

9. Miller, D.M., Wille, R., Sasanian, Z.: Elementary quantum gate realizations for
multiple-control Toffolli gates. In: International Symposium on Multi-valued Logic
(2011)

10. Mondal, J., Das, D.K., Kole, D.K., Rahaman, H.: A design for testability technique
for quantum reversible circuits. In: East-West Design & Test Symposium (EWDTS
2013) (2012)

11. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cam-
bridge University Press, New York (2000)

12. Patel, K.N., Hayes, J.P., Markov, I.L.: Fault testing for reversible circuits. IEEE
Trans. CAD 23(8), 1220–1230 (2004)

13. Polian, F., T., Becker, B., Hayes, J.P.: A family of logical fault models for reversible
circuits. In: Asian Test Symposium, pp. 422–427 (2004)

14. Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits - a sur-
vey. ACM Comput. Surv. 45(2), 21:1–21:34 (2013)

15. Soeken, M., Frehse, S., Wille, R., Drechsler, R.: RevKit: an open source toolkit for
the design of reversible circuits. In: Vos, A., Wille, R. (eds.) RC 2011. LNCS, vol.
7165, pp. 64–76. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29517-1 6

16. Wille, R., Grosse, D., Teuber, L., Dueck, G.W., Drechsler, R.: Revlib: an online
resource for reversible functions and reversible circuits. In: International Sympo-
sium on Multi-valued Logic, pp. 220–225, May 2008

17. Wille, R., Zhang, H., Drechsler, R.: ATPG for reversible circuits using simula-
tion, Boolean satisfiability, and pseudo Boolean optimization. In: IEEE Annual
Symposium on VLSI, pp. 120–125, July 2011

18. Zhang, H., Frehse, S., Wille, R., Drechsler, R.: Determining minimal testsets for
reversible circuits using Boolean satisfiability. In: AFRICON, pp. 1–6 (2011)

19. Zhang, H., Wille, R., Drechsler, R.: SAT-based ATPG for reversible circuits. In:
International Design and Test Workshop, pp. 149–154, December 2010

http://dx.doi.org/10.1007/978-3-642-29517-1_6

Automatic Test Pattern Generation for Multiple
Missing Gate Faults in Reversible Circuits

Work in Progress Report

Anmol Prakash Surhonne1,2(B), Anupam Chattopadhyay1, and Robert Wille3

1 Nanyang Technological University, Singapore, Singapore
anmolpra001@e.ntu.edu.sg, anupam@ntu.edu.sg

2 Technical University of Munich, Munich, Germany
3 Institute for Integrated Circuits,

Johannes Kepler University Linz, Linz, Austria
robert.wille@jku.at

Abstract. Logical reversibility is the basis for emerging technologies like
quantum computing, may be used for certain aspects of low-power design,
and has been proven beneficial for the design of encoding/decoding
devices. Testing of circuits has been a major concern to verify the
integrity of the implementation of the circuit. In this paper, we pro-
pose the main ideas of an ATPG method for detecting two missing gate
faults. To that effect, we propose a systematic flow using Binary Decision
Diagrams (BDDs). Initial experimental results demonstrate the efficacy
of the proposed algorithms in terms of scalability and coverage of all
testable faults.

1 Introduction

Reversible circuits represent an emerging technology based on a computation
paradigm which significantly differs from conventional circuits. In fact, they
allow bijective operations only, i.e., n-input n-output functions that map each
possible input vector to a unique output vector. Reversible computation enables
several promising applications and, indeed, surpasses conventional computation
paradigms in many domains including but not limited to quantum computation
(see, e.g., [1]), certain aspects of low-power design (as experimentally observed,
e.g., in [2]), encoding and decoding devices (see, e.g., [3,4]), or verification (see,
e.g., [5]).

Accordingly, also the consideration of the design of reversible circuits received
significant interest. In comparison to conventional circuit design, new concepts
and paradigms have to be considered here. For example, fanout and feedback are
not directly allowed. This affects the design of reversible circuits and requires
alternative solutions. To this end, several design approaches have been intro-
duced. An overview of that is, e.g., provided in [6,7].

In parallel, how to physically build reversible and quantum circuits is being
investigated and led to first promising results (see, e.g., [8,9]). With this, also
c© Springer International Publishing AG 2017
I. Phillips and H. Rahaman (Eds.): RC 2017, LNCS 10301, pp. 176–182, 2017.
DOI: 10.1007/978-3-319-59936-6 14

Automatic Test Pattern Generation for Multiple Missing Gate Faults 177

the question of how to prevent and detect faults in the physical realization
became relevant. In particular for quantum computation, this is a crucial issue:
Quantum systems are much more fault-prone than conventional circuits, since
the phenomenon of quantum de-coherence forces the qubit states to decay –
resulting in a loss of quantum information which, eventually, causes faults. Faults
also do originate from the fact that quantum computations are conducted by a
stepwise application of gates on qubits.

As a result, researchers studied different fault models and the respective
methods for Automatic Test Pattern Generation (ATPG). In that regard, one
of the earliest works on different fault models for quantum circuits is [10], which
proposed these models based on the implementation principles of quantum cir-
cuits using trapped ion technology [1]. The types of fault model included, for
example, the single missing gate fault (SMGF), the partial missing gate fault
(PMGF), and the multiple missing gate fault (MMGF). However, mainly ATPG
methods for single faults have been proposed thus far (see e.g. [11–13]).

2 Background

To keep the remainder of this work self-contained, this section briefly reviews
the basics of reversible circuits as well as ATPG and the fault models considered
for this kind of circuits.

2.1 Reversible Circuits

Reversible circuits are digital circuits with the same number of input signals and
output signals. Furthermore, reversible circuits realize bijections, i.e. each input
assignment maps to a unique output assignment. Accordingly, computations
can not only be performed from the inputs to the outputs but also in the other
direction. Reversible circuits are composed as cascades of reversible gates. The
Toffoli gate [14] is widely used in the literature and also considered in this paper.

Definition 1. Given a set of variables or signals X = {x1, x2, . . . , xn}, a Toffoli
gate G(C, t) is a tuple of a possibly empty set C ⊂ X of control lines and a
single target line t ∈ X \C. The Toffoli gate inverts the value on the target line
if all values on the control lines are set to 1 or if C = ∅. All remaining values
are passed through unaltered. In the following, Toffoli gates are also denoted as
Multiple Controlled Toffoli (MCT) gates.

2.2 Test of Reversible Circuits

As in conventional circuits, Automatic Test Pattern Generation (ATPG) meth-
ods for reversible circuits aim at determining a set of stimulus patterns (denoted
as testset) in order to detect faults in a circuit with respect to an underlying
fault model. A single missing gate fault is defined as follows.

178 A.P. Surhonne et al.

Definition 2. Let G(C, t) be a gate of a reversible circuit. Then, a Single Miss-
ing Gate Fault (SMGF) appears if instead of G no gate is executed (i.e. G
completely disappears). The method to detect SMGF is widely studied and can
be referred in previous works.

Definition 3. Let G be a set of k gates from a reversible circuit. Then, a Mul-
tiple Missing Gate Fault (MMGF) appears if instead of G no gates are executed
(i.e. all gates G completely disappear in G).

In the following, we consider MMGFs with two missing gates. However, the
methods described below can easily be extended for an arbitrary number of
faulty gates. From here on forward, MMGF is referred to as missing of two
gates. In order to detect MMGFs, the respective gates have to be activated so
that the faulty behaviour can be observed at the outputs of the circuit. However,
in case of multiple faults, the absence of one gate within the circuit may cause the
deactivation of another gate in the circuit – leading to masking effects. Besides
that, the absence of two gates may lead to no change in the outputs – leading to
an undetectable fault. Because of that, the dependencies of two gates considered
as one MMGF have to be analyzed in order to generate a test pattern.

Definition 4. Two gates Gx and Gy (x < y) are said to be dependent if the
target line of Gx is involved in the activation of the SMGF of Gy. More precisely,
a Toffoli gate Gy is dependent from gate Gx, if the target line of Gy is the control
line of Gx or if Gy is dependent on another gate Gz which is dependent from Gx.

3 ATPG for MMGF Detection

This section describes the proposed approach for ATPG of MMGFs. The goal
is to obtain a test set that covers all possible faults with a minimum number
of test patterns. The proposed solution has four phases. First, test patterns for
SMGFs, i.e. for the single faults, are obtained and compactly stored in a BDD.
Based on that, the dependencies already discussed in the previous section are
analyzed. The results from these two steps (i.e. the patterns for all SMGFs as
well as the information about the dependencies of the gates in the currently
considered circuit) are then utilized in order to obtain MMGF test sets. Finally,
a covering algorithm is applied to minimize the obtained test set – yielding a
minimal result covering all MMGFs.

3.1 Test Generation for SMGFs

In order to obtain all desired test patterns, it is assumed that only one gate is
faulty at a time in this step. Also, the faults are detected at the primary outputs
of the circuits and no distinction is made between different types of lines like
output, garbage etc. Constant inputs of the circuit are assumed to be variable
for the purpose of testing. For a circuit with n lines and N gates, there are N
SMGFs, and the test patterns are obtained by activating the considered gate.

Automatic Test Pattern Generation for Multiple Missing Gate Faults 179

Overall, this yields 2n−k possible test patterns that can be obtained for testing
a SMGF. In order to compactly store them, Binary Decision Diagrams (BDDs,
[15]) are applied.

3.2 Dependency Analysis

The next step is to analyse the dependencies between all combinations of two
faulty gates as discussed in Sect. 2.2. The following pseudo-code describes how
the dependencies between the gates are obtained.

Algorithm 1. Dependency Analysis
N : Number of gates of the circuit.
Gx : Gate numbered x.
Table[N] : Table storing the dependencies of the N gates.
for i = 0 ; i < N ; i + + do

for j = 0 ; j < i ; j + + do
if targetLine(Gj) = controlLine(Gi) then

Insert Gj to Table[i].
Insert all the gates Gj is dependent from to Table[i].

end if
end for

end for

3.3 MMGF Test Generation

Using the test patterns for SMGFs as well as information about the dependen-
cies of all combinations of two faulty gates, now the respective test patterns for
MMGFs with two faulty gates can be obtained. More precisely, without loss of
generality, consider two gates Gx and Gy as well as their test patterns for corre-
sponding SMGFs (denoted as S(Gx) and S(Gy)). If these two gates are indepen-
dent to each other, we determine two test patterns (denoted as M(Gy, Gx)1 and
M(Gy, Gx)2): one test pattern to activate the gate Gx and not Gy and another
to activate Gy. More precisely:

M(Gy, Gx)1 = S(Gy) M(Gy, Gx)2 = (S(Gx) ∩ S(Gy))

If the two gates are dependent on each other, we determine two other tests
patterns: one test pattern to activate the gate Gx and not Gy and vice versa.
More precisely:

M(Gy, Gx)1 = (S(Gy) ∩ S(Gx)) M(Gy, Gx)2 = (S(Gx) ∩ S(Gy))

Besides that, masking may occur leading to untestable faults (as discussed
in Sect. 2.2). A fault is untestable using this method if

M(Gy, Gx)i = {∅} where i = {1, 2}

180 A.P. Surhonne et al.

Using this as basis, the respective determinations can efficiently be conducted
on the BDD. More precisely, the BDD containing the SMGF test patterns are
manipulated for all the MMGF yielding a BDD with n inputs and 2 ∗ NC2

outputs.

3.4 Minimal Test Set Determination

Once all the test patterns for the individual MMGFs are obtained, it is tried to
derive the minimal testset covering all the faults. To that effect, two different
techniques are proposed.

First, row and column reduction of a covering table [16] is implemented
following a greedy scheme. Second, a covering algorithm is implemented using
the BDDs to determine a minimum cover of the stored patterns. For a circuit
with n lines, the covering BDD has 2n inputs and 1 output. Having that, the
minimum test set is equivalently represented by the minimum-weighted path
from the output of the BDD to the 1-terminal of the BDD, where the then arc
has a weight of 1 and the else arc has a weight of 0.

4 Experimental Results

The ideas proposed above have prototypically been implemented on a Ubuntu
Linux system running on a Intel(R) Core(TM) i7−3630QM CPU 64bit@2.4Ghz
and 6GB of RAM. For the first two steps, i.e. determining the SMGF testset and
the dependency analysis, Revkit [17] has been applied. For the remaining steps,
the BDD package CUDD [18] was employed. All experiments were conducted
on benchmark circuits obtained from Revlib [19]. Table 1 presents the obtained
experimental results. The results show that the algorithm performed well for
larger circuits covering a large number of faults. We obtained 100% fault cover-
age for circuits like rd73 140 and rd84 142, whereas the worst performance was
for the circuit ex3 229 with a coverage of 28.6. This was due to a large number
of NOT gates, and hence the performance could be improved by DFT tech-
niques. For the circuits rd32 − v0 66 and root 255, the SMGF and MMGF test
patterns are identical. This is because all the dependent faults of these circuits
are untestable. Considering the two covering methods, i.e. the greedy heuristic
vs. the BDD-based approach, clearly shows the difference in runtime – especially
for large circuits, where the BDD-based covering could not be completed after
a long time. This was expected as the BDD-based approach obtains an exact,
i.e. minimal cover, while the heuristic solution only approximates that. Besides
that, it can be observed that the test set size determined by the greedy heuristic
is, for most cases, the same as the minimal size obtained by the BDD-based app-
roach. That is, the quality of the heuristic is rather good and often yields test
sets which are close to the optimum. It should also be noted that the untestable
faults are due to the function of the algorithm, and other methods can be used
to detect these faults, which will be considered in the future work where we try
to increase the coverage to 100%.

Automatic Test Pattern Generation for Multiple Missing Gate Faults 181

Table 1. Experimental results

SMGF MMGF

Circuit N n Type TP TPG TPBDD TF D U %D %U TG TBDD

cm82a 208 22 8 MCT 4 9 8 231 21 107 9.1 46.3 0.08s 6s

ex3 229 7 6 MCT 2 3 3 21 4 15 19 71.4 0.01s 0.01s

graycode6 47 5 6 MCT 1 4 3 10 0 0 0 0 0.01s 0.04s

ham3 102 5 3 MCT 2 4 4 10 6 1 60 10 0.01s 0.01s

hwb4 52 11 4 MCT 2 6 6 55 41 3 74.5 5.5 0.01s 0.04s

hwb5 55 24 5 MCT 3 12 11 276 192 78 69.6 28.3 0.03s 0.1s

majority 239 8 6 MCT 3 4 4 28 6 18 21.4 64.3 0.01s 0.01s

mini-alu 167 6 4 MCT 3 5 5 15 15 1 100 6.7 0.01s 0.02s

mod10 171 10 4 MCT 3 6 6 45 29 20 64.4 44.4 0.01s 0.03s

mod5adder 128 15 6 MCT 2 8 7 105 59 66 56.2 62.9 0.02s 0.12s

mod5d1 63 7 5 MCT 1 4 4 21 4 2 19 9.5 0.01s 0.02s

mod8-10 177 14 5 MCT 2 6 6 91 53 41 58.2 45.1 0.01s 0.03s

rd32-v0 66 4 4 MCT 2 2 2 6 2 2 33.3 33.3 0.01s 0.03s

rd53 137 16 7 MCT 2 9 8 120 44 36 36.7 30 0.05s 0.07s

sym6 145 36 7 MCT 1 6 6 630 0 180 0 28.6 0.1s 0.13s

xor5 254 7 6 MCT 1 3 3 21 2 10 9.5 47.6 0.01s 0.06s

ham7 105 21 7 MCT 3 9 5 210 35 14 16.7 6.7 0.05s −
hwb5 53 55 5 MCT 4 21 21 1485 1396 98 94 6.6 0.02s 0.15s

hwb6 56 126 6 MCT 8 43 43 7875 7614 328 96.7 4.2 1.7s 1.9s

3 17 13 6 3 MCT 2 4 4 15 12 7 80 46.7 0.01s 0.01s

root 255 99 13 MCT 14 14 − 4851 660 660 13.6 13.6 16s −
rd73 140 20 10 MCT 3 6 − 190 72 0 37.9 0 1s −
rd84 142 28 15 MCT 3 8 − 378 125 0 33.1 0 90s −
adr4 197 55 13 MCT 6 13 − 1485 65 525 4.4 35.4 38s −
ham15 108 70 15 MCT 8 26 − 2415 1474 154 61 6.4 100s −
hwb7 59 289 7 MCT 14 71 − 41616 40735 742 97.9 1.8 48s −
hwb7 60 166 7 MCT 8 32 − 13695 13683 71 99.9 0.5 7s −
0410184 169 46 14 MCT 1 9 − 1035 315 274 30.4 26.5 8s −
N - Number of gates n - Number of lines.

TP - Number of test patters covering all SMGF.

TPG - Number of test patterns covering all MMGF using greedy method.

TPBDD - Number of test patterns covering all MMGF using BDD based covering algorithm.

TF - Total Number of MMGF faults. D - Number of dependencies.

U - Number of untestable faults.

TG Time taken for obtaining test patterns using greedy method.

TBDD Time taken for obtaining test patterns using BDD based covering algorithm.

%D - Percentage of dependencies = (D/TF) ∗ 100

%U - Percentage of untestable faults = (U/TF) ∗ 100

Acknowledgement. This work has partially been supported by the EU COST Action
IC1405.

182 A.P. Surhonne et al.

References

1. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cam-
bridge University Press, New York (2000)

2. Berut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz,
E.: Experimental verification of landauer’s principle linking information and ther-
modynamics. Nature 483, 187–189 (2012)

3. Wille, R., Drechsler, R., Osewold, C., Garcia-Ortiz, A.: Automatic design of low-
power encoders using reversible circuit synthesis. In: Design, Automation and Test
in Europe, pp. 1036–1041 (2012)

4. Zulehner, A., Wille, R.: Taking one-to-one mappings for granted: advanced logic
design of encoder circuits. In: Design, Automation & Test in Europe (2017)

5. Amarú, L., Gaillardon, P.-E., Wille, R., De Micheli, G.: Exploiting inherent char-
acteristics of reversible circuits for faster combinational equivalence checking. In:
Proceedings of the Conference on Design, Automation & Test in Europe. EDA
Consortium, pp. 175–180 (2016)

6. Drechsler, R., Wille, R.: From truth tables to programming languages: progress
in the design of reversible circuits. In: International Symposium on Multi-Valued
Logic, pp. 78–85 (2011)

7. Saeedi, M., Markov, I.L.: Synthesis and optimization of reversible circuits - a sur-
vey. ACM Comput. Surv. 45(2), 21:1–21:34 (2011)

8. Vandersypen, L.M.K., Steffen, M., Breyta, G., Yannoni, C.S., Sherwood, M.H.,
Chuang, I.L.: Experimental realization of Shor’s quantum factoring algorithm using
nuclear magnetic resonance. Nature 414, 883 (2001)

9. Desoete, B., Vos, A.D.: A reversible carry-look-ahead adder using control gates.
INTEGRATION VLSI J. 33(1–2), 89–104 (2002)

10. Polian, I., Fiehn, T., Becker, B., Hayes, J.P.: A family of logical fault models for
reversible circuits. In: Asian Test Symposium, pp. 422–427 (2005)

11. Patel, K.N., Hayes, J.P., Markov, I.L.: Fault testing for reversible circuits. In: Asian
Test Symposium, pp. 410–416 (2003)

12. Hayes, J.P., Polian, I., Becker, B.: Testing for missing-gate-faults in reversible cir-
cuits. In: Asian Test Symposium, pp. 100–105 (2004)

13. Wille, R., Zhang, H., Drechsler, R.: ATPG for reversible circuits using simula-
tion, Boolean satisfiability, and pseudo Boolean optimization. In: IEEE Computer
Society Annual Symposium on VLSI, pp. 120–125 (2011)

14. Toffoli, T.: Reversible computing. In: Bakker, J., Leeuwen, J. (eds.) ICALP
1980. LNCS, vol. 85, pp. 632–644. Springer, Heidelberg (1980). doi:10.1007/
3-540-10003-2 104

15. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. 35(8), 677–691 (1986)

16. Bushnell, M., Agrawal, V.: Essentials of Electronic Testing for Digital, Memory
and Mixed-Signal VLSI Circuits, vol. 17. Springer Science & Business Media, New
York (2004)

17. Soeken, M., Frehse, S., Wille, R., Drechsler, R.: RevKit: an open source toolkit for
the design of reversible circuits. In: Vos, A., Wille, R. (eds.) RC 2011. LNCS, vol.
7165, pp. 64–76. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29517-1 6

18. Somenzi, F.: Cudd: Cu decision diagram package release 2.4. 2 (2009)
19. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: Revlib: An online

resource for reversible functions and reversible circuits. In: International Sympo-
sium on Multi-Valued Logic, pp. 220–225 (2008)

http://dx.doi.org/10.1007/3-540-10003-2_104
http://dx.doi.org/10.1007/3-540-10003-2_104
http://dx.doi.org/10.1007/978-3-642-29517-1_6

Quantum Circuits

Exact Global Reordering for
Nearest Neighbor Quantum Circuits Using A∗

Alwin Zulehner(B), Stefan Gasser, and Robert Wille

Institute for Integrated Circuits, Johannes Kepler University Linz, Linz, Austria
{alwin.zulehner,stefan.gasser,robert.wille}@jku.at

Abstract. Since for certain realizations of quantum circuits only adja-
cent qubits may interact, qubits have to be frequently swapped – leading
to a significant overhead. Therefore, optimizations such as exact global
reordering have been proposed, where qubits are reordered such that the
overall number of swaps is minimal. However, to guarantee minimality
all n! possible permutations of qubits have to be considered in the worst
case – which becomes intractable for larger circuits. In this work, we
tackle the complexity of exact global reordering using an A* search algo-
rithm. The sophisticated heuristics for the search algorithm proposed in
this paper allow for solving the problem in a much more scalable fash-
ion. In fact, experimental evaluations show that the proposed approach
is capable of determining the best order of the qubits for circuits with
up to 25 qubits, whereas the recent state-of-the-art already reaches its
limits with circuits composed of 10 qubits.

1 Introduction

Quantum computations employ an emerging technology where operations are
performed on quantum bits (qubits) rather than conventional bits that can
only represent two basis states. Exploiting quantum physical effects of qubits
like superposition and entanglement allow to reduce the computational com-
plexity of certain tasks significantly compared to conventional logic (cf. [1]).
Well known examples are Shor’s algorithm (cf. [2]) for integer factorization or
Grover’s algorithm for database search (cf. [3]). Such quantum computations are
usually described using so-called quantum circuits, where qubits are represented
as circuit lines. Operations on a subset of these qubits are described by quantum
gates.

However, for many physical realizations, quantum circuits have to employ
constraints on the interaction distance of qubits. More precisely, quantum gates
can only be applied to adjacent qubits. To fulfill this requirement, SWAP opera-
tions (gates) that swap the values of two adjacent qubits are added to the quan-
tum circuit – leading to a significant overhead. This overhead can be reduced by
permuting the order of the qubits (circuit lines).

A broad variety of different approaches has been presented for this purpose
– including solutions relying on templates [4], local and global reordering strate-
gies [4], dedicated data-structures [5–8], or look-ahead schemes [9]. Also exact
c© Springer International Publishing AG 2017
I. Phillips and H. Rahaman (Eds.): RC 2017, LNCS 10301, pp. 185–201, 2017.
DOI: 10.1007/978-3-319-59936-6 15

186 A. Zulehner et al.

approaches, i.e. solutions guaranteeing the minimal number of SWAP gate inser-
tions, have been proposed [10,11]. The work published in [11] provides a compre-
hensive overview of the state-of-the-art. All these approaches particularly focus
on how to properly reorder the qubits in the circuit so that the respective inter-
action distance (and, hence, the number of required SWAP gates) is reduced.

In this work, we focus on global reordering. Here, heuristic as well as exact
solutions have been proposed. Exact solutions are of particular interest as they
guarantee the minimal number of SWAP insertions. Guaranteeing minimality,
however, significantly increases the complexity of the considered problem. In
the worst case, all n! possible permutations of qubits have to be considered –
an exponential complexity. We tackle this exponential complexity by using the
A∗ search algorithm, i.e. a state-space search algorithm that traverses – guided
by dedicated heuristics – only parts of the exponential search space until an
optimal solution is determined. Experimental evaluations show that the proposed
approach is able to determine the optimal order of the qubits (circuit lines) for
quantum circuits composed of up to n = 25 qubits, whereas state-of-the-art
solutions for exact global reordering are currently limited to n = 10 qubits.

This paper is structured as follows. In Sect. 2, we review nearest neighbor
compliant quantum circuits. Based on that, we discuss the effect of globally
permuting the order of the circuit lines in Sect. 3. In Sect. 4, we propose two
approaches to determine the optimal order of the qubits using the A∗ search
algorithm and discuss their differences. Finally, the proposed approaches are
experimentally evaluated in Sect. 5 while Sect. 6 concludes the paper.

2 Nearest Neighbor Compliant Quantum Circuits

In contrast to conventional computation, quantum computation [1] operates
on qubits instead of bits. A qubit is a two-state quantum system, with basis
states |0〉 ≡ (

1
0

)
and |1〉 ≡ (

0
1

)
(representing Boolean values 0 and 1, respec-

tively). Furthermore, a qubit can be in a superposition of these basis states, i.e.
|x〉 = α |0〉+β |1〉, where the complex amplitudes α and β satisfy |α|2 + |β|2 = 1.
Note that the state of a qubit cannot directly be observed, because measurement
collapses the qubit into one of the two basis states |0〉 or |1〉. More precisely, the
qubit collapses to basis state |0〉 with probability |α|2 and to basis state |1〉 with
probability |β|2.

This simply extends to quantum systems composed of n qubits. Such a sys-
tem is in a superposition of its 2n basis states. Operations on such systems are
performed through multiplication of appropriate 2n × 2n unitary matrices.

A usual representation for quantum computations are quantum circuits. Here,
the respective qubits are denoted by solid circuit lines. Operations are repre-
sented by quantum gates. These operations may operate on a subset of the cir-
cuit lines only. Table 1 lists common 1-qubit quantum gates together with the
corresponding unitary matrices describing their operation. In order to perform
operations on more than one qubit, controlled quantum gates are applied. These
gates are composed of a target line |t〉 and a control line |c〉 and realize the
unitary operation represented by the matrix

Exact Global Reordering for Nearest Neighbor Quantum Circuits Using A∗ 187

Table 1. Quantum gates

M =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 U0 0

⎞

⎟
⎟
⎠ ,

where U denotes the operation applied to the target line. In the remainder of
this work, we use the following formal notation:

Definition 1. A quantum circuit is denoted by the cascade G = g1g2 . . . g|G| of
gates (in figures drawn from left to right), where |G| denotes the total number
of gates. The number of qubits and, thus, the number of circuit lines is denoted
by n. The costs of a quantum circuit (also denoted as quantum cost) are defined
by the number |G| of gates.
Example 1. Figure 1 shows a quantum circuit composed of n = 2 circuit lines
and |G| = 2 gates. This circuit gets |00〉 as input and transforms the state of the
underlying quantum system to 1√

2
· |00〉 + 1√

2
· |11〉.

In the recent years, researchers proposed several physical realizations for
quantum circuits. This led to a better understanding of their physical limitations
and constraints, e.g. with respect to the interaction distance, decoherence time,
or scaling (see e.g. [12–14]). Besides that, so-called nearest neighbor constraints
have to be satisfied for many quantum circuit architectures. This particularly
holds for technologies based on proposals for ion traps [15–17], nitrogen-vacancy
centers in diamonds [18,19], quantum dots emitting linear cluster states linked

188 A. Zulehner et al.

q0 = |0〉

q1 = |0〉

H

X

1√
2

· |00〉 + 1√
2

· |11〉

Fig. 1. Quantum circuit

by linear optics [20], laser manipulated quantum dots in a cavity [21], and super-
conducting qubits [22,23]. Here, nearest neighbor constraints limit the interac-
tion distance between gate qubits and require that computations are performed
between adjacent, i.e. nearest neighbor, qubits only.

In order to formalize this restriction for electronic design automation, a cor-
responding metric representing the costs of a quantum circuit to become nearest
neighbor compliant has been introduced in [4]. There, the authors defined the
Nearest Neighbor Cost as follows:

Definition 2. Assume a 2-qubit quantum gate g(c, t) with a control at the line c
and a target at line t, where c and t are numerical indices holding 0 ≤ c, t < n.
Then, the Nearest Neighbor Cost (NNC) for g is calculated using the distance
between the target and the control line. More precisely,

NNC(g) = |c − t| − 1.

As a result, a single control gate g is termed nearest neighbor compliant if
NNC(g) = 0. 1-qubit gates are assumed to have NNC of 0. The resulting NNC
for a quantum circuit is defined by the sum of the NNC of its gates, i.e.

NNC(G) =
∑

g∈G

NNC(g).

A quantum circuit G is termed nearest neighbor compliant if NNC(G) = 0,
i.e. if all quantum gates are 1-qubit gates or adjacent 2-qubit gates.

Example 2. Consider the circuit G depicted in Fig. 2(a). Gates are denoted by
G = g1. . .g7 from the left to the right. As can be seen, gates g2, g4, g5, as
well as g6 are non-adjacent and have nearest neighbor costs of NNC(g2) = 2,
NNC(g4) = 1, NNC(g5) = 1, as well as NNC(g6) = 2, respectively. Hence, the
entire circuit has nearest neighbor costs of NNC(G) = 6.

A naive way to make an arbitrarily given quantum circuit nearest neighbor
compliant is to modify it by additional SWAP gates.

Exact Global Reordering for Nearest Neighbor Quantum Circuits Using A∗ 189

q0 q0

q1 q1

q2 q2

q3 q3

U

U

U

U

U

U U

(a) Given circuit

q0 q0

q1 q1

q2 q2

q3 q3

U

U

U

U U

U U

(b) Nearest neighbor compliant circuit

Fig. 2. Establishing nearest neighbor compliance

Definition 3. A SWAP gate is a quantum gate g(qi, qj) including two qubits qi,
qj and maps (q0, . . . , qi, qj , . . . , qn−1) to (q0, . . . , qj , qi, . . . , qn−1). That is, a
SWAP gate realizes the exchange of two quantum values (in figures drawn using
two connected × symbols).

These SWAP gates allow for making all control lines and target lines adjacent
and, by this, help to satisfy the nearest neighbor constraint. More precisely, a
cascade of adjacent SWAP gates can be inserted in front of each gate g with non-
adjacent circuit lines in order to shift the control line of g towards the target
line, or vice versa, until they are adjacent. Afterwards, SWAP gates are inserted
to restore the original order of circuit lines.

Example 3. Consider again the circuit depicted in Fig. 2(a). In order to make
this circuit nearest neighbor compliant, SWAP gates in front and after all these
gates are inserted as shown in Fig. 2(b).

3 Global Reordering for Nearest Neighbor Quantum
Circuits

Global reordering became a suitable solution to reduce the cost of nearest neigh-
bor compliant quantum circuits. Before adding SWAP gates to the circuit as
reviewed in the previous section, the position of the qubits (circuit lines) is
changed in order to reduce the number of required SWAP gates. An example
illustrates the idea.

Example 4. Consider again the quantum circuit depicted in Fig. 2(a) and its
nearest neighbor compliant version shown in Fig. 2(b). Permuting the order
of qubits from q0q1q2q3 to q2q0q3q1 results in the circuit depicted in Fig. 3(a)
– the nearest neighbor cost are reduced from 6 to 3. Hence, only 6 (instead
of 12) SWAP gates are required to make the circuit nearest neighbor compliant
(cf. Fig. 3(b)).

190 A. Zulehner et al.

q2 q2

q0 q0

q3 q3

q1 q1

U

U

U

U

U

U U

(a) Obtained circuit

q2 q2

q0 q0

q3 q3

q1 q1

U

U

U U

U

U U

(b) Nearest neighbor compliant circuit

Fig. 3. Global Reordering (applied to the circuit from Fig. 2(a))

Table 2. Adjacency matrix for the circuit in Fig. 2(a)

q0 q1 q2 q3

q0 – 1 1 2

q1 – – 0 1

q2 – – – 2

q3 – – – –

As demonstrated by the example above, the positions of the qubits have a
significant impact on the nearest neighbor cost of the resulting circuit (and, thus,
on the number of required SWAP gates). To simplify the determination of the
resulting nearest neighbor cost for a specific order of the qubits, the concept of
an adjacency matrix of a quantum circuit can be used. The entries of this matrix
indicate how often two qubits have to be adjacent, i.e. how many gates exist in
the quantum circuit that operate exactly on these qubits. More formally:

Definition 4. Consider a quantum circuit composed of n qubits. Then, the adja-
cency matrix of this circuit is an n × n dimensional matrix M where the entries
mi,j, 0 ≤ i, j < n provide the number of gates with the target and the controlling
qubit at the ith and jth position, or vice versa (i.e. the number of gates with
g(i, j) or g(j, i)).

Since we do not distinguish between target and controlling qubit of a gate, the
adjacency matrix is symmetric with respect to the main diagonal. Furthermore,
the main diagonal of the matrix is skipped as well, because a single qubit cannot
be the target and the controlling qubit of the same gate.

Example 5. Consider again the circuit depicted in Fig. 2(a). The according adja-
cency matrix is given in Table 2. To improve readability, we set all entries mi,j

for which j ≤ i to don’t care (denoted by –), because they contain redundant
information. For example, the entry m0,3 has value 2 because the circuit contains
exactly two gates (the second and the sixth) for which qubits q0 and q3 have to
be adjacent.

Exact Global Reordering for Nearest Neighbor Quantum Circuits Using A∗ 191

The adjacency matrix M of a quantum circuit can be used to determine the
nearest neighbor cost (and, hence, the number of required SWAP gates) of a
quantum circuit. More precisely:

NNC(M) =
n∑

i=0

n∑

j=i+1

mi,j · (j − i − 1)

Example 5 (continued). The nearest neighbor cost of the circuit shown in
Fig. 2(a) is:

NNC(M) = m0,1 · 0 + m0,2 · 1 + m0,3 · 2 + m1,2 · 0 + m1,3 · 1 + m2,3 · 0 = 6.

Consequently, 12 SWAP gates are required to make the circuit nearest neighbor
compliant.

Permuting the order of the qubits does not require to update the adjacency
matrix. Instead, the resulting nearest neighbor cost when applying a permuta-
tion π to the order of the qubits is determined by

NNC(M,π) =
n∑

i=0

n∑

j=i+1

mi,j · (|π(j) − π(i)| − 1) .

Example 5 (continued). If we apply the permutation π = (1, 3, 0, 2) to the qubits
of the circuit shown in Fig. 2(a), the new resulting order is q2q0q3q1 (cf. Fig. 3(a)).
This changes the nearest neighbor cost to:

NNC(M,π) = m0,1 · 1 + m0,2 · 0 + m0,3 · 0 + m1,2 · 2 + m1,3 · 0 + m2,3 · 1 = 3.

Using the adjacency matrix of a quantum circuit allows for efficiently com-
puting the nearest neighbor cost of the circuit with a permuted order of qubits.
However, determining the best possible permutation, which requires the least
number of SWAP gates is a computationally complex task. In the worst case,
all n! possible permutations have to be considered – an exponential complex-
ity. Previous attempts tried to tackle this complexity by exploiting reasoning
engines such as satisfiability solvers (see [10,11]). However, their applicability is
still limited to rather small quantum circuits, i.e. circuits with not more than
n = 10 qubits.

4 Global Reordering Using A∗

In this section, we propose an alternative solution for global reordering in order
to generate cost-efficient nearest neighbor compliant quantum circuits. To this
end, we employ the power of the A∗ search algorithm. In the following, we review
the basics of the A∗ algorithm and how global reordering can be translated into a
search problem first. Based on that, we discuss two strategies for how to traverse
the search space for the considered problem using A∗ search.

192 A. Zulehner et al.

4.1 A∗ Algorithm

The A∗ algorithm is a state-space search algorithm. To this end, (sub-)solutions
of the considered problem are represented by state nodes. Nodes that represent a
solution are called goal nodes (multiple goal nodes may exist). The main idea is
to determine the cheapest path (i.e. the path with the lowest cost) from the root
node to a goal node. Since the search space is typically exponential, sophisticated
mechanisms are employed in order to keep considering as few paths as possible.

All state-space search algorithms are similar in the way that they start with a
root node (representing an initial partial solution) which is iteratively expanded
towards the goal node (i.e. the desired complete solution). How to choose the
node that shall be expanded next depends on the actual search algorithm. For
A∗ search, we determine the cost of each leaf-node of the search state. Then,
the node with the lowest cost is chosen to be expanded next. To this end, we
determine the cost f(x) = g(x)+h(x) of a node x. The first part (g(x)) describes
the cost of the current sub-solution (i.e. the cost of the path from the root to x).
The second part describes the remaining cost (i.e. the cost from x to a goal node),
which is estimated by a heuristic function h(x). Since the node with the lowest
cost is expanded, some parts of the search space (those that lead to expensive
solutions) are never expanded.

Example 6. Consider the tree shown in Fig. 4. This tree represents the part of
the search space that has already been explored for a certain search problem.
The nodes that are candidates to be expanded in the next iteration of the A∗

algorithm are highlighted in blue. For all these nodes, we determine the cost
f(x) = g(x) + h(x). This sum is composed by the cost of the path from the root
to the node x (i.e. the sum of the cost annotated at the respective edges) and
the estimated cost of the path from node x to a goal node (provided in red).
Consider the node labeled E. This node has cost f(E) = (40 + 60) + 200 = 300.
The other candidates labeled B, C, and F have cost f(B) = 580, f(C) = 360,
and f(F) = 320, respectively. Since the node labeled E has the fewest expected
cost, it is expanded next.

Obviously, the heuristic cost should be as accurate as possible, to expand as
few nodes as possible. If h(x) always provides the correct minimal remaining cost,
only the nodes along the cheapest path from the root node to a goal node would
be expanded. But since the minimal costs are usually not known (otherwise, the
search problem would be trivial to solve), estimations are employed. However,
to ensure an optimal solution, h(x) has to be admissible, i.e. h(x) must not
overestimate the cost of the cheapest path from x to a goal node. This ensures
that no goal node is expanded (which terminates the search algorithm) until all
nodes that have the potential to lead to a cheaper solution are expanded.

Exact Global Reordering for Nearest Neighbor Quantum Circuits Using A∗ 193

A

B C D

E F

80 300 40

60 100

80 + 500 = 580 300 + 60 = 360

100 + 200 = 300 140 + 180 = 320

Fig. 4. A∗ search algorithm (Color figure online)

Example 6 (continued). Consider again the node labeled E. If h(x) is admissible,
the true cost of each path from this node to a goal node is greater than or equal
to 200.

The general concept of the A∗ search algorithm as described above can easily
be applied for exact global reordering of quantum circuits. In this case, the goal
is to determine the permutation (the order) of the qubits, for which the fewest
number of SWAPs gates are required in order to make the currently considered
quantum circuit nearest neighbor compliant. Therefore, the nodes of the search
space describe a (partial) permutation of the qubits. More precisely, a node with
depth i (i.e. a node on with distance i to the root node) represents a partial
permutation of i qubits. For simplicity, we label the nodes with the resulting
order of the qubits instead of the partial permutation and neglect those qubits
for which the permutation is not yet defined.

Example 7. Consider a quantum circuit composed of n = 4 qubits q0, q1, q2,
and q3 as well as a partial permutation π = (0,♦,♦, 1). This partial permutation
maps qubit q0 to the first position and qubit q3 to the second position. The
mapping for the other qubits is not defined and, hence, denoted by ♦ (also called
hole). The resulting order of the qubits is then q0q3♦♦. For simpler graphical
visualization, we label the node that represents π with q0q3 – neglecting the
qubits for which the position is not yet fixed.

A function g(x) is needed to determine the cost of the path from the root
to node x. Note that an edge in the tree describes a qubit that is added to the
partial permutation. Consequently, the cost of the path from the root to node x
can also be determined by the partial permutation that is represented by x. To
this end, we determine the resulting nearest neighbor cost of the circuit. Since
the permutation is only partially defined, we consider only those gates for which
the position of the target and the controlling qubit is already fixed (i.e. these
qubits have to occur in the partial permutation).

194 A. Zulehner et al.

q1

q1q0 q1q2 q1q3

Fig. 5. Straightforward expansion strategy (Color figure online)

Example 8. Consider a node labeled q1q3q0. The cost g(x) of this node is deter-
mined by the nearest neighbor cost of all gates g(c, t), for which c, t ∈ {0, 1, 3}.
As discussed above, this cost can be determined from the adjacency matrix by
g(x) = m0,1 · 1 + m0,3 · 0 + m1,3 · 0.

Besides the representation of the (sub-) solutions and a cost function g(x), we
need two more things for exact global reordering for nearest neighbor quantum
circuits using A∗:

– An expansion strategy for the nodes, i.e. a strategy how another qubit shall
be added to the partial permutation and

– an admissible heuristic function h(x) to estimate the resulting cost from node
x to a goal node that suits to the expansion strategy.

In the following sections, we propose two such expansion strategies and dis-
cuss their according heuristic function h(x).

4.2 Straightforward Strategy

In this section, we discuss a straightforward expansion strategy for the nodes
encountered during the A∗ algorithm and a corresponding admissible heuristic
h(x). To this end, we consider a quantum circuit composed of n qubits.

Consider a tree node with depth i. This node represents a partial permutation
composed of i qubits. Hence, the position of i qubits is already fixed. To generate
a permutation of i + 1 bits, we simply add one of the remaining qubits to the
right of the already placed ones. Since n − i such qubits exist, the expansion of
the node yields n − i successors. An example illustrates the idea.

Example 9. Consider a quantum circuit composed of n = 4 qubits q0, q1, q2,
and q3, and assume that the node highlighted blue in Fig. 5 has to be expanded
next. This node represents a partial permutation q1. Since there are three qubits
that are not contained in the partial permutation (q0, q2, and q3), three successor
nodes are generated. These nodes represent the partial permutations q1q0, q1q2,
and q1q3, respectively. The resulting nodes are illustrated in Fig. 5.

Exact Global Reordering for Nearest Neighbor Quantum Circuits Using A∗ 195

Based on this expansion strategy, we have to estimate the cost h(x) of the
path from node x to a goal node. Recall that a goal node represents a permutation
of the qubits. Consequently, we estimate how much the nearest neighbor cost
increase when appending the remaining qubits to the current order. To ensure
admissibility of this heuristic, we consider each qubit individually. Appending
a qubit qj to the right of the current order changes the nearest neighbor cost
by Δqj . This increase is determined by the nearest neighbor cost of all gates
for which qj is the controlling or the target qubit. Furthermore, the other qubit
involved in the gate has to be part of the current order. All these values Δqj

are then summed up to approximate the overall increase of the nearest neighbor
cost h(x). Obviously this leads to an under-approximation of the real cost, since
not all remaining qubits can be appended at the same location and the nearest
neighbor costs between the remaining qubits are not considered.

Example 9 (continued). Consider the node labeled q1q0 in Fig. 5. Appending
qubit q2 to the right of the current order would increase the resulting cost by
Δq2 = m1,2 · 1 + m0,2 · 0. Analogously, appending qubit q3 to the right would
increase the resulting cost by Δq3 = m1,3 · 1 + m0,3 · 0. Consequently, the overall
cost increase is estimated by the sum h(x) = Δq2 + Δq3 = m1,2 + m1,3.

4.3 Elaborated Strategy

While the solution introduced above employs a rather straightforward scheme, we
additionally propose a more sophisticated approach for expansion and estimation
– described in this section. Here, we allow qubits to be inserted not only to
the right of the already placed ones, but at all possible positions within the
partial permutation. To this end, we restrict that, within an expansion, only one
qubit is considered (while in the straightforward scheme introduced above all
remaining qubits are considered; albeit with a fixed position). More precisely,
out of the remaining qubits we choose the one which occurs most often as target
or controlling qubit (accelerating the search by focusing on qubits with many
interactions within the circuit). An example illustrates the idea.

Example 10. Consider a quantum circuit composed of n = 4 qubits q0, q1, q2,
and q3, and assume that the node highlighted blue in Fig. 6 has to be expanded
next. This node represents a partial permutation q1q0. Assume that qubit q2 is
considered next as this is the one of the remaining qubits which interacts most
often in the considered circuit, i.e. occurs most often as target or controlling
qubit. Since there are three possibilities where to insert qubit q2, three successor
nodes are generated. These nodes represent the partial permutations q2q1q0,
q1q2q0, and q1q0q2, respectively. The resulting nodes are illustrated in Fig. 6.

Since we have a different expansion strategy, another heuristic to approxi-
mate the remaining cost is required. In contrast to above, the position at which
the remaining qubits are inserted is not fixed anymore. Therefore, we have to
determine Δk

qj for each position k at which a qubit qj can be inserted. Then,
Δqj is the minimum of all these values (since the heuristic has to be admissible).

196 A. Zulehner et al.

q2q1q0 q1q2q0 q1q0q2

q1q0

Fig. 6. Elaborated expansion strategy (Color figure online)

Finally, to estimate the overall cost increase when all remaining qubits qj are
inserted, we sum up all these values Δqj to obtain h(x).

Example 10 (continued). Consider again the node highlighted in blue in Fig. 6.
The heuristic cost h(x) of this node is determined as follows. For all remaining
qubits (i.e. q2 and q3) we estimate the cost increase when adding the respec-
tive qubit to the permutation. Each remaining qubit can be inserted at three
positions. Inserting the qubit q2 at position zero (at the left of q1) increases the
nearest neighbor cost by Δ0

q2 = m0,2 ·1. Analogously, inserting the qubit at posi-
tions one and two yields Δ1

q2 = m0,1 ·1 and Δ2
q2 = m1,2 ·1, respectively. Then, the

minimum Δq2 = min
(
Δ0

q2 ,Δ
1
q2 ,Δ

2
q2

)
= min (m0,2,m0,1,m1,2) of the three possi-

bilities is determined. Analogously, Δq3 = min (m0,3,m0,1,m1,3) is determined.
Finally, the sum of the minima is determined, i.e. h(x) = Δq2 + Δq3 .

4.4 Discussion

In this section, we compare the two expansion strategies proposed above. To this
end, we analyze how many successor nodes are generated when expanding a node
with depth i. For the straightforward strategy, such a node has n − i successors,
because each of the n − i remaining literals can be appended to the right of the
current order. In contrast, a node with depth i generates i + 1 successors when
expanded using the elaborated strategy, because the qubit that is inserted is
fixed and there are i + 1 possibilities where this qubit might be inserted.

Consider the case that the estimated cost of a node with depth i is larger than
the minimum that can be achieved. This means that this node (and, therefore,
also its child nodes) will never be expanded. In case we use the straightforward
expansion strategy, we therefore prune (n − i) · (n − i − 1) · . . . · 1 = (n − i)!
possible solutions of the search tree. In contrast, if we apply the elaborated
expansion strategy, we prune (i+1)·(i+2)·. . .·n = n!/i! solutions. Consequently,
eliminating a node with depth i prunes significantly more possible solutions if the
elaborated expansion strategy is used. However, the heuristics to estimate the
resulting cost is computationally more expensive for the elaborated expansion
strategy. Since we have to determine the best position for each of the remaining
qubits, O(n3) lookups in the adjacency matrix are required. In contrast, using
the straightforward expansion strategy requires O(n2) such lookups.

Exact Global Reordering for Nearest Neighbor Quantum Circuits Using A∗ 197

q0q1q2

q0 q1 q2

q0q1 q0q2 q1q0 q1q2 q2q0 q2q1

0 0 0

3 4 6 4 6 3

3

1st

2nd 3rd 4th

5th

6th

Fig. 7. Search tree of the straightforward expansion strategy

q0

q0q1 q1q0

q2q0q1 q0q2q1 q0q1q2

0

3

6 4 3

1st

2nd

3rd

4th

Fig. 8. Search tree of the elaborated expansion strategy

Example 11. Consider a quantum circuit with three circuit lines (denoted by q0,
q1, and q2), where the corresponding adjacency matrix has the entries m0,1 = 4,
m0,2 = 3, and m1,2 = 6. Figures 7 and 8 show the resulting trees generated by
the A∗ search algorithm using the naive expansion strategy and the elaborated
expansion strategy, respectively. The black numbers attached to the nodes rep-
resent the corresponding cost f(x). The red numbers indicate the iteration in
which the nodes were expanded. Furthermore, the expanded goal node (i.e. the
one that yields an optimal solution) is highlighted in blue. The node highlighted
red in Fig. 8 can immediately be rejected by the search algorithm, because it is
symmetric to the other node on this level. For the straightforward strategy, a
total of six nodes had to be expanded until the optimal solution was determined.
In contrast, using the elaborated strategy allows to determine the same solution
by expanding only four nodes.

198 A. Zulehner et al.

5 Experimental Evaluation

We experimentally evaluated the proposed approach and compared the obtained
results to the current state-of-the-art. To this end, we implemented the A∗ algo-
rithm as well as the proposed expansion strategies described in the previous
section in Java. The quantum circuits used as benchmarks were composed from
the ones available in RevLib [24] and those previously used in [11]. The exper-
iments for the proposed approaches were conducted on a Java virtual machine
with 6 GB of memory running on a 1.7 GHz Intel i5 processor. The runtimes for
the current state-of-the-art were taken from the corresponding paper (cf. [11]).
However, since these experiments were conducted on a similar processor, the
runtimes are comparable.

Table 3 summarizes the obtained results. In the first three columns, we list the
name of the benchmark, the number of qubits n, as well as the minimal number of
SWAP gates required to make the quantum circuit nearest neighbor compliant.
The fourth column lists the runtime of the current state-of-the-art approach [11].
The remaining columns list the runtime t, the number of created nodes, and
the number of expanded nodes for the straightforward approach (proposed in
Sect. 4.2) as well as for the elaborated approach (proposed in Sect. 4.3).

A comparison to the current state-of-the-art shows that the proposed
approaches allow for determining the optimal order of the qubits in a runtime
which is magnitudes faster that the current state-of-the-art. For example, one of
the largest benchmark (urf3 155) requires more than 3000 CPU seconds using
the state-of-the-art, while the approaches proposed here can solve this instance
in few seconds (straightforward approach) or even a fraction of a second (elabo-
rated approach) only. Moreover, also the scalability is significantly better: While,
thus far, minimal results for global reordering were available for quantum cir-
cuits composed of at most n = 10 qubits, the solutions proposed in this work
are capable of generating results for circuits with up to 25 qubits.

Besides that, the results also confirm the discussion from Sect. 4.4 on the
differences between the two A∗ schemes. The straightforward approach runs
into a time out of half an hour for some circuits with 14, 15, or 16 qubits. In
contrast, the more elaborated expansion strategy can also determine a solution
for these benchmarks in less than 100 s. A further analysis explains this: Using
the elaborated strategy, fewer nodes are generated and also significantly fewer
of them are further expanded. This is because eliminating a node close to the
root node of the tree prunes a larger part of the search space. Even though this
requires a computationally more complex heuristic function to estimate the cost
of a node, it eventually pays off and yields significant speedups compared to the
straightforward strategy.

Exact Global Reordering for Nearest Neighbor Quantum Circuits Using A∗ 199

Table 3. Experimental evaluation

s-o-t-a [11] Straightforward (Sect. 4.2) Elaborated (Sect. 4.3)

Benchmark n SWAPs t t Created Expanded t Created Expanded

decod24-v3 46 4 4 0.10 0.00 23 9 0.00 10 4

hwb4 52 4 18 0.10 0.00 33 14 0 10 4

rd32-v0 67 4 4 1.10 0.00 23 9 0.00 10 4

4gt11 84 5 2 0.10 0.00 43 13 0.00 15 5

4gt13-v1 93 5 8 0.10 0.00 54 17 0.00 15 5

4mod5-v1 23 5 30 0.10 0.00 118 43 0.00 15 5

aj-e11 165 5 52 0.10 0.00 89 31 0.00 15 5

hwb5 55 5 120 0.10 0.00 112 40 0.00 19 6

QFT5 5 20 0.10 0.00 206 87 0.00 23 7

hwb6 58 6 290 0.10 0.01 743 271 0.00 79 18

mod8-10 177 6 156 0.10 0.01 419 128 0.00 44 11

ham7 104 7 140 1.90 0.01 1407 391 0.02 151 30

rd53 135 7 136 1.80 0.01 1539 412 0.00 41 10

QFT8 8 112 20.00 0.32 69281 28962 0.05 2966 439

urf2 152 8 71280 22.00 0.04 19170 5604 0.00 845 136

QFT9 9 168 236.5 3.30 623530 260651 0.30 23127 2959

urf1 149 9 179832 241.30 0.21 84588 21384 0.05 5896 786

urf5 158 9 176284 247.00 0.44 137694 38582 0.03 3648 522

QFT10 10 240 2936.8 45.73 6235301 2606502 1.13 204568 23119

rd73 140 10 150 1579.4 0.08 49171 9064 0.02 3834 535

Shor3 10 4802 1846.2 0.19 103385 21548 0.00 1496 215

sym9 148 10 10984 2415.12 0.34 138043 28921 0.00 474 77

sys6-v0 144 10 114 1586.40 0.07 40315 7340 0.02 1990 290

urf3 155 10 453368 3023.60 1.55 445123 102912 0.03 7526 975

cycle10 2 110 12 4104 TO 25.34 5649298 1045869 0.30 34018 4011

Shor4 12 13588 TO 7.84 3095113 618714 0.13 12496 1493

plus63mod4096 163 13 113104 TO 481.68 39226031 6834319 0.44 36283 4246

0410184 169 14 48 TO 0.02 15935 1598 0.00 613 88

plus127mod8192 162 14 279520 TO TO - - 2.03 162532 17469

plus63mod8192 164 14 149708 TO TO - - 1.75 138771 15455

Shor5 14 34680 TO TO - - 1.77 172154 16703

ham15 108 15 1340 TO TO - - 1.11 78458 7910

rd84 142 15 284 TO 552.84 47396532 6167835 1.09 75770 8577

urf6 160 15 241208 TO TO - - 92.89 5593552 517840

cnt3-5 180 16 340 TO 937.23 156966895 18710815 8.23 496214 50119

Shor6 16 76318 TO TO - - 47.39 3310774 263822

add8 172 25 90 TO 499.31 48043975 3007062 60.13 990050 70269

6 Conclusions

In this work we have considered the problem of exact global reordering to min-
imize the number of SWAP gates required to make a quantum circuit nearest
neighbor compliant. Using the A∗ algorithm to determine the optimal permuta-
tion of the order of the qubits allows for significant improvements compared to
the state-of-the-art. While current approaches are able to determine a solution
for circuits with up to 10 qubits, the approach proposed in this paper is able to
determine an exact solution for circuits composed of up to 25 qubits.

200 A. Zulehner et al.

Acknowledgements. This work has partially been supported by the European Union
through the COST Action IC1405.

References

1. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cam-
bridge University Press, New York (2000)

2. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

3. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Sym-
posium on the Theory of Computing, pp. 212–219 (1996)

4. Saeedi, M., Wille, R., Drechsler, R.: Synthesis of quantum circuits for linear nearest
neighbor architectures. Quantum Inform. Process. 10(3), 355–377 (2011)

5. Khan, M.H.: Cost reduction in nearest neighbour based synthesis of quantum
Boolean circuits. Eng. Lett. 16(1), 1–5 (2008)

6. Hirata, Y., Nakanishi, M., Yamashita, S., Nakashima, Y.: An efficient method to
convert arbitrary quantum circuits to ones on a linear nearest neighbor architec-
ture. In: Conference on Quantum, Nano and Micro Technologies, pp. 26–33 (2009)

7. Shafaei, A., Saeedi, M., Pedram, M.: Optimization of quantum circuits for inter-
action distance in linear nearest neighbor architectures. In: Design Automation
Conference, pp. 41–46 (2013)

8. Wille, R., Quetschlich, N., Inoue, Y., Yasuda, N., Minato, S.: Using πDDs for
nearest neighbor optimization of quantum circuits. In: Devitt, S., Lanese, I. (eds.)
RC 2016. LNCS, vol. 9720, pp. 181–196. Springer, Cham (2016). doi:10.1007/
978-3-319-40578-0 14

9. Wille, R., Keszocze, O., Walter, M., Rohrs, P., Chattopadhyay, A., Drechsler, R.:
Look-ahead schemes for nearest neighbor optimization of 1d and 2d quantum cir-
cuits. In: ASP Design Automation Conference, pp. 292–297 (2016)

10. Wille, R., Lye, A., Drechsler, R.: Optimal SWAP gate insertion for nearest neighbor
quantum circuits. In: ASP Design Automation Conference, pp. 489–494 (2014)

11. Wille, R., Lye, A., Drechsler, R.: Exact reordering of circuit lines for nearest neigh-
bor quantum architectures. IEEE Trans. CAD 33(12), 1818–1831 (2014)

12. Fowler, A.G., Devitt, S.J., Hollenberg, L.C.L.: Implementation of Shor’s algorithm
on a linear nearest neighbour qubit array. Quantum Inform. Comput. 4, 237–245
(2004)

13. Meter, R.V., Oskin, M.: Architectural implications of quantum computing tech-
nologies. J. Emerg. Technol. Comput. Syst. 2(1), 31–63 (2006)

14. Ross, M., Oskin, M.: Quantum computing. Commun. ACM 51(7), 12–13 (2008)
15. Amini, J.M., Uys, H., Wesenberg, J.H., Seidelin, S., Britton, J., Bollinger, J.J.,

Leibfried, D., Ospelkaus, C., VanDevender, A.P., Wineland, D.J.: Toward scalable
ion traps for quantum information processing. New J. Phys. 12(3), 033031 (2010)

16. Kumph, M., Brownnutt, M., Blatt, R.: Two-dimensional arrays of radio-frequency
ion traps with addressable interactions. New J. Phys. 13(7), 073043 (2011)

17. Nickerson, N.H., Li, Y., Benjamin, S.C.: Topological quantum computing with a
very noisy network and local error rates approaching one percent. Nat. Commun.
4, 1756 (2013)

18. Devitt, S.J., Fowler, A.G., Stephens, A.M., Greentree, A.D., Hollenberg, L.C.L.,
Munro, W.J., Nemoto, K.: Architectural design for a topological cluster state quan-
tum computer. New J. Phys. 11(8), 083032 (2009)

http://dx.doi.org/10.1007/978-3-319-40578-0_14
http://dx.doi.org/10.1007/978-3-319-40578-0_14

Exact Global Reordering for Nearest Neighbor Quantum Circuits Using A∗ 201

19. Yao, N.Y., Gong, Z.X., Laumann, C.R., Bennett, S.D., Duan, L.M., Lukin, M.D.,
Jiang, L., Gorshkov, A.V.: Quantum logic between remote quantum registers. Phys.
Rev. A 87, 022306 (2013)

20. Herrera-Mart́ı, D.A., Fowler, A.G., Jennings, D., Rudolph, T.: Photonic imple-
mentation for the topological cluster-state quantum computer. Phys. Rev. A 82,
032332 (2010)

21. Jones, N.C., Van Meter, R., Fowler, A.G., McMahon, P.L., Kim, J., Ladd, T.D.,
Yamamoto, Y.: Layered architecture for quantum computing. Phys. Rev. X 2,
031007 (2012)

22. Ohliger, M., Eisert, J.: Efficient measurement-based quantum computing with
continuous-variable systems. Phys. Rev. A 85, 062318 (2012)

23. DiVincenzo, D.P., Solgun, F.: Multi-qubit parity measurement in circuit quantum
electrodynamics. New J. Phys. 15(7), 075001 (2013)

24. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: an online
resource for reversible functions and reversible circuits. In: International Sympo-
sium on Multi-Valued Logic, pp. 220–225 (2008). RevLib is available at http://
www.revlib.org

http://www.revlib.org
http://www.revlib.org

Improved Decomposition of Multiple-Control
Ternary Toffoli Gates Using

Muthukrishnan-Stroud Quantum Gates

P. Mercy Nesa Rani1, Abhoy Kole2, Kamalika Datta1,
and Indranil Sengupta3(B)

1 National Institute of Technology Meghalaya, Shillong, India
{mercyranip,kdatta}@nitm.ac.in

2 B. P. Poddar Institute of Management and Technology, Kolkata, India
abhoy.kole@gmail.com

3 Indian Institute of Technology Kharagpur, Kharagpur, India
isg@iitkgp.ac.in

Abstract. In conventional binary reversible circuit synthesis, reversible
gates are decomposed into quantum gates using some standard quantum
gate library. In recent years there has been increased attention in syn-
thesis using ternary reversible gates since it leads to a reduction in the
number of lines. However, very few works exist that address the problem
of decomposing ternary reversible gates based on some ternary quantum
gate library. Most of these works use Muthukrishnan-Stroud (M-S) gates
for decomposition of ternary Toffoli gate, and they use a naive approach
that requires an exponential (in number of control lines) number of M-S
gates. Also the number of ancilla lines required is (c − 1), where c is
the number of control lines. The present paper proposes a method for
decomposing ternary Toffoli gates to M-S gates that requires less number
of ancilla lines, and also requires a number of M-S gates that is linear in
c. A template-based post-decomposition optimization step has also been
used to further reduce the number of M-S gates required. Decomposition
results for up to 16 control lines have been presented.

1 Introduction

Energy dissipation is one of the most important issues in present-day fabrication
technology. In general, conventional logic operations result in loss of information
and hence some mandatory energy dissipation [7]. Also Bennett [2] showed that
circuits with zero energy dissipation have to be reversible. This has motivated
researchers to explore reversible logic as an alternative to conventional logic in
circuit design.

A more compact and efficient information encoding can be obtained in an m-
valued quantum system (where m > 2), as compared to binary quantum system.
In a ternary quantum system (m = 3), a quantum digit is referred to as qutrit.
In such a system, up to 63% reduction in the number of required lines (qutrits
as compared to qubits in conventional quantum system) can be achieved [6]. In
c© Springer International Publishing AG 2017
I. Phillips and H. Rahaman (Eds.): RC 2017, LNCS 10301, pp. 202–213, 2017.
DOI: 10.1007/978-3-319-59936-6 16

Ternary Toffoli Gate Decomposition Using M-S Gates 203

general, ternary logic results in reduction in the number of lines as well as number
of gates while realizing quantum circuits. A qutrit has three basis states denoted
as |0〉, |1〉 and |2〉. The state of a qutrit can be represented either by one of the
basis states, or by their linear superposition as: |ϕ〉 = φ|0〉 + ω|1〉 + ξ|1〉, where
φ, ω and ξ are complex numbers representing the probability amplitudes of the
basis states. The condition required for normalization is |φ|2 + |ω|2+|ξ|2 = 1.

Ternary reversible logic functions can be synthesized using ternary reversible
logic gates. The ternary reversible gates can be further decomposed into ternary
elementary quantum gates. The number of such elementary gates can be used to
define the quantum cost for the realization, where each of the elementary gates is
assumed to be of unit cost. The ternary elementary gates used by researchers are
Muthukrishnan-Stroud (M-S) Gate and Ternary Shift Gate. There exists very few
works on ternary reversible gate decomposition into ternary elementary gates [4].
In this paper, we have proposed a decomposition scheme for ternary Toffoli gates
of arbitrary sizes in terms of M-S gates using a set of ancilla lines fed by constant
inputs |0〉, |1〉 or |2〉. A post-decomposition optimization step reduces the number
of M-S gates to a number that is linear in the number of control lines. Earlier,
authors in [14] have proposed a similar approach with linear increase in number
of gates to realize the operation of an arbritrary size Toffoli gate without using
any ancilla line.

The rest of the paper is organized as follows. Section 2 introduces a brief back-
ground of ternary reversible and elementary gates, and a brief literature survey
of logic syntheses using such gates. Section 3 explains the proposed approach for
decomposing ternary Toffoli gates of arbitrary size to a netlist of elementary M-S
gates, and a template optimization process that is used to reduce the quantum
cost of the netlist. Section 4 presents decomposition results for ternary Toffoli
gates with up to 16 control lines, followed by concluding remarks in Sect. 5.

2 Background

In this section, we briefly present the important ternary reversible gates that
have been proposed by researchers in synthesis, and also some of the elementary
ternary gates that form the target for the proposed decomposition approach.
Finally we briefly review some of the existing works in reversible logic synthesis
using ternary gates.

2.1 Ternary Reversible Gates

For synthesis of arbitrary logic functions using ternary reversible logic, ternary
reversible gates are used. The various ternary reversible gates used in the lit-
erature are ternary Toffoli gate, ternary Feynman or controlled-NOT gate, and
ternary NOT gate.

(a) Ternary Toffoli Gate [8,15]: This gate triggers when its two control lines
I1 and I2 are both in state |1〉 or |2〉 (i.e. I1 = I2). This causes the target
line I3 to change as I3 ⊕3 1. Figure 1(a) shows the schematic diagram of a
ternary Toffoli gate which is activated when both the control lines are at |2〉.

204 P.M.N. Rani et al.

I1 O1 = I1

I2 O2 = I2

I3 O3 =
I3 ⊕3 1 if I1 = I2 = 2
I3 otherwise

(a)

I1 O1 = I1

I2 O2 =
I2 ⊕3 1 if I1 = 2
I2 otherwise

(b)

Ii Oi = Ii ⊕3 1

(c)

Fig. 1. (a) Ternary Toffoli gate, (b) Ternary Feynman gate, (c) Ternary NOT gate

(b) Ternary Feynman Gate [4]: This gate triggers when the control line I1 is
at |2〉, and the target line I2 changes as I2 ⊕3 1. Figure 1(b) shows the the
schematic representation of a ternary Feynman gate.

(c) Ternary NOT Gate [16]: This gate changes the value on the target line
I1 as I1 ⊕3 1, Fig. 1(c) shows the schematic representation of a ternary NOT
gate.

2.2 Ternary Elementary Gates

Elementary gates are the basic building blocks for realizing ternary reversible
logic circuits. The cost of an elementary gate is assumed to be unity. The ternary
elementary gates that have been used by researchers are Ternary Shift Gate [5]
and Muthukrishnan-Stroud (M-S) Gate [13].

(a) Ternary Shift Gates [5]: Six ternary reversible shift operations are possi-
ble corresponding to the possible permutations of the values 0, 1 and 2, which
are realized using ternary shift gates (1 × 1). One of these corresponds to
the identity permutation, I (Buffer). A ternary shift gate represents the Z-
transformation, which can be realized using five unitary permutative matri-
ces Z(+1), Z(+2), Z(02), Z(12) and Z(01). For example, for the input logic
state [0 1 2], the operations of the shift gates are defined as:

Z(I) = [0 1 2]
Z(+1) = [1 2 0]
Z(+2) = [2 0 1]

Z(01) = [1 0 2]
Z(02) = [2 1 0]
Z(12) = [0 2 1]

(b) Muthukrishnan-Stroud (M-S) Gate [13]: It is a 2-qutrit ternary gate
as shown in Fig. 2. It has controlling input I1 that controls the output O2,
which is the Z-transformation of controlled input I2 whenever I1 = |2〉,
where Z ∈ {+1,+2, 12, 01, 02}. M-S gates can be realized using ion-trap
technology [3].

2.3 Existing Works in Ternary Reversible Logic Synthesis

The main motivation behind using ternary reversible logic for realizing logic
functions is the fact that the amount of information per digit is high in ternary

Ternary Toffoli Gate Decomposition Using M-S Gates 205

I1 O1 = I1

I2 O2 =
Z transform of I2 if I1 = 2
I2 otherwiseZ

Fig. 2. M-S Gate

logic as compared to binary logic. This is expected to lead to more compact real-
izations requiring less number of quantum bits. Various ternary reversible logic
synthesis approaches that have been reported in the literature can be grouped
into four categories: (a) Group Theory based synthesis, (b) Ternary Galois Field
Sum of Products (TGFSOP) based synthesis, (c) Ternary Decision Diagram
(TDD) based synthesis, and (d) Soft Computing based synthesis.

In [11], Miller et al. presented a synthesis method for multi-valued reversible
logic using heuristic algorithm. This method takes a reversible function F and
transforms it to the identity mapping by finding a sequence of multi-valued
logic gates. The merit of this approach is that it is faster for smaller circuits;
however, it does not scale to larger functions. In [1], Basu et al. presented a
synthesis method where a ternary function is first expressed in terms of the
minterms. Two algorithms are proposed to simplify the minterms, which are
then expressed in terms of projection operations Li and Ji that can be directly
mapped to M-S gates. Results for ternary benchmarks are provided that show a
31% improvement in cost as compared to previous works.

Khan et al. [5] proposed sixteen Ternary Galois Field Expansions (TGFE)
and three different types of Ternary Decision Diagrams (TDD) to realize ternary
benchmarks. As future works, the authors have suggested formulation of efficient
heuristics for reducing the number of SWAP and Shift gates, and creation of a
ternary benchmark library. Lukac et al. [9] proposed an evolutionary approach
using genetic algorithm for quantum and reversible logic synthesis targeting to
ternary logic system.

3 Proposed Decomposition Approach Using M-S Gates

In this section we present an approach for decomposing ternary Toffoli gates of
arbitrary size into M-S gates. The following subsection discusses the realization
of 3-input ternary Toffoli gates using M-S gates. The next subsection proposes
some recursive formulations to decompose ternary multiple-control Toffoli gates
into M-S gates, and also presents the overall algorithm for decomposition.

3.1 3-Input Ternary Toffoli Gate

Here we consider the decomposition of a ternary Toffoli gate using M-S gates.
A ternary Toffoli gate TZ({c1, c2}; t) has two control lines c1 and c2, a target
line t, and realizes the Z-transformation corresponding to some ternary Shift
operation. In the decomposition, the number of M-S gates required will be:

206 P.M.N. Rani et al.

(a) 5, when a constant |0〉 ancilla line is used in the decomposition (see Fig. 3(b));
(b) 5, when a constant |1〉 ancilla line is used in the decomposition (see Fig. 3(c));
(c) 7, when a constant |2〉 ancilla line is used in the decomposition (see

Fig. 3(d));

c1

c2

a

t Z

(a)

≡

c1

c2

|0
t

+1 +1

Z

+2 +2

(b)

≡

c1

c2

|1
t

+2 +2

Z

+1 +1

(c)

≡

c1

c2

|2
t

+1 +1 +1

Z

+2 +2 +2

(d)

Fig. 3. Decomposition of ternary Toffoli gate. (a) A ternary Toffoli gate, (b) decom-
position using constant |0〉, (c) decomposition using constant |1〉, (d) decomposition
using constant |2〉

For different states of ancilla line a, the decomposition of TZ(C; t), with
control lines C = {c1, c2}, can be expressed as follows:

Case 1: a = |0〉
T 0
Z(C; t) = M1(c1; a)M1(c2; a)MZ(a; t)M2(c2; a)M2(c1; a) (1)

Case 2: a = |1〉
T 1
Z(C; t) = M2(c1; a)M2(c2; a)MZ(a; t)M1(c2; a)M1(c1; a) (2)

= T 0
Z(C; t)−R

where −R in the superscript indicates reverse, i.e. the sequence of gates in the reverse

order.
Case 3: a = |2〉

T 2
Z(C; t) = M1(∅; a)T 0

Z(C; t)M2(∅; a) (3)
OR

T 2
Z(C; t) = M2(∅; a)T 1

Z(C; t)M1(∅; a) (4)

In the following section, we refer to these ancilla lines as Type-|0〉, Type-|1〉,
and Type-|2〉 ancilla lines respectively.

3.2 Ternary Multiple-Control Toffoli (TMCT) Gate

Decomposition of ternary multiple control Toffoli (TMCT) gate TZ(C; t) of size
n (> 3) can be accomplished in various ways depending on the number of ancilla
lines available. We first present some theoretical results of decomposition, which
form the foundation of the proposed approach.

Ternary Toffoli Gate Decomposition Using M-S Gates 207

Lemma 1. The operation of a TMCT gate TZ(C; t) of size n (n � 3) can be
realized using 2n−3 M-S gates and n−2 ancilla lines of type |0〉 when decomposed
using following recursive structure:

T 0
Z(C; t) = M1(ci; a)T

0
1 (C′; a)MZ(a; t)T 0

2 (C′; a)M2(ci; a) (5)

where C ′ = C − {ci} and ancilla a is assumed to be of type |0〉.

c1

c2

c3

c4

|0
|0
|0
t Z

(a)

≡

c1

c2

c3

c4

|0
|0
|0
t

+1 +1

Z

+2 +2

(b)

≡

c1

c2

c3

c4

|0
|0
|0
t

+1

+1 +1

+1

+2 +2

Z

+1 +1

+2

+2 +2

+2

(c)

Fig. 4. Decomposition of a TMCT gate of size 5 using 3 Type-|0〉 ancilla lines

Proof. At each step of decomposition of a TMCT gate of size n, the structure
represented by Eq. (5) yields a pair of TMCT gates of size n − 1 and 3 M-S
gates. The process continues to level n − 3 until all gates are of size 3 (i.e. can
be replaced by the structure Eq. (1)) or less. This results in 2n−3 size-3 ternary
Toffoli gates and (2n−3 − 1) × 3 M-S gates which in turn generates a cascade of
2n − 3 M-S gates. Figure 4 shows one such decomposition of a TMCT gate of
size 5 that yields a circuit consisting of 29 M-S gates.

It is also possible to carry out the decomposition using smaller number of
ancilla lines as stated in the following lemma.

Lemma 2. The operation of a TMCT gate TZ(C; t) of size n+1 (n > 3) can be
realized using the following recursive structure when m (�log2 n� � m � n − 2)
ancilla lines of type |0〉 are available:

T 0
Z(C; t) = T 0

1 (C′; a)T 0
1 (C′′; a)MZ(a; t)T 0

2 (C′′; a)T 0
2 (C′; a) (6)

where C = C ′ ∪ C ′′, C ′ ∩ C ′′ = ∅ and ancilla a is assumed to be of type |0〉.

Proof. Figure 5 shows the decomposition of a TMCT gate of size 8 using 3 ancil-
las lines of type |0〉. Initially, the set of control lines is partitioned into two
disjoint subsets to realize the gate operation using the cascade shown in Fig. 5b.
Each of these TMCT gates can be further decomposed reusing the same ancilla
line. For example, Fig. 5c shows the realization of TMCT gate pair surrounded
by dashed rectangle in Fig. 5b. An identical replacement can be made for the
remaining TMCT gate pair with respective target operations.

208 P.M.N. Rani et al.

c1

c2

c3

c4

c5

c6

c7

|0
|0
|0
t Z

(a)

≡

c1

c2

c3

c4

c5

c6

c7

|0
|0
|0
t

+1 +1

Z

+2 +2

(b)

≡

c1

c2

c3

c4

c5

c6

c7

|0
|0
|0
t

+1 +1

+1

+2 +2 +1 +1

+1

+2 +2

Z

+2 +2

(c)

Fig. 5. Decomposition of a TMCT gate of size 8 using 3 Type-|0〉 ancilla lines

With least number of constant ancillas of type |0〉 the decomposition can be
carried out using following corollary.

Corollary 1. The realization of a TMCT gate TZ(C; t) of size n+1 (n > 2 and
is an exact power of 2) requires 1

3 × (4log2 n+1 − 1) M-S gates when implemented
using log2 n ancillas of type |0〉.
Proof. At each step of decomposition using ancilla ai (i = 1, 2, . . .) of type |0〉,
the structure of Eq. (6) generates a cascade consisting of 4 TMCT gates with
exactly n

2 control lines and 1 M-S gate realizing the target operation, as shown in
Fig. 6. At depth log2 n−1 the structure results in a circuit consisting of 4log2 n−1

ternary Toffoli gates of size 3 and 1
3 × (4log2 n−1 − 1) M-S gates.

T(2+1) T(2+1) T(2+1) T(2+1) T(2+1). . . M(1+1) . . . M(1+1)M(1+1)

T(n+1)

T(n/2+1) T(n/2+1))1+1(M)1+2/n(T)1+2/n(T

T(n/4+1) M(1+1). . .
...

...
...

...
log2 n − 1

Fig. 6. Decomposition of a TMCT gate of size n + 1 using log2 n constant ancilla of
type |0〉

Considering all the above scenarios that require change in decomposition
structure and also yields circuit with different M-S gate count, the following
decomposition algorithm is formulated.

Ternary Toffoli Gate Decomposition Using M-S Gates 209

Algorithm 1. M-S mapping of a ternary Toffoli gate Tz(C; t) of arbitrary size

Input: a) Toffoli gate Tz(C; t)
b) Ancilla lines A = {a1, a2, . . . , an}

Output: An M-S gate implementation of Tz(C; t) gate
begin

if (|C| > 1)
begin

if (|C| == 2) //C = {c1, c2}
ckt = M1(c1; a1) ∪ M1(c2; a1) ∪ Mz(a1; t) ∪ M2(c2; a1) ∪ M2(c1; a1);

else
begin

len C′ = 1; //Default size
if (|A| = �log2 |C|�)

len C′ = |C|
2

;
Split C into C′ and C′′ such that (C′ ∪ C′′ = C) &

(C′ ∩ C′′ = ∅) & (len C′ = |C′|);
a = A[1];
A′ = A[2 . . . n];
if (|C′| = 1)

begin
ckt1 = M1(C

′; a);
ckt4 = M2(C

′; a);
end

else
begin

ckt1 = map(T1(C
′; a), A′);

ckt4 = map(T2(C
′; a), A′);

end
endif
if (|C′′| = 1)

begin
ckt2 = M1(C

′′; a);
ckt3 = M2(C

′′; a);
end

else
begin

ckt2 = map(T1(C
′′; a), A′);

ckt3 = map(T2(C
′′; a), A′);

end
endif
ckt = ckt1 ∪ ckt2 ∪ Mz(a; t) ∪ ckt3 ∪ ckt4;

end
endif

return ckt;
end

210 P.M.N. Rani et al.

4 Template Optimization and Results

In the previous section we have presented a scheme for decomposing a TMCT gate
TZ(C; t) of size n (n > 3) using m ancilla lines of type |0〉. The decomposition
algorithm is not optimal and results in a netlist with lots of redundant gates, as
shown in Fig. 7. Also the number of M-S gates required is dependent on the number
of ancilla lines available during decomposition. For a TMCT gate of size n+1, the
number of M-S gates is almost linear when decomposed using �log2 n� ancilla lines,
and it becomes exponential when n − 1 ancilla lines are used.

0

20000

40000

60000

80000

100000

120000

140000

0 5 10 15 20

M
-
S

g
a
t
e

c
o
u
n
t

No. of control lines, n

n-1
log n

Fig. 7. Comparison of M-S gates requirement to realize the operation of a TMCT gate
of size n + 1 using �log2 n� and n − 1 constant ancillas of |0〉 type

In this section, we present a simple post-decomposition optimization scheme
using which the number of M-S gates can be further reduced. For this purpose,
we use the following identity templates:

c1

c2

c3

c4

|0
|0
|0
t

+1

+1

+1 +1

+1

+2 +2

+1

+1 +1

+2

+2 +2

+2

+1

+1

+1 +1

+1

+2 +2

+2

+1 +1

+2

+2 +2

+2

+2

Fig. 8. M-S gate realization of a TMCT gate of size 5 using 3 type |0〉 ancilla lines

Ternary Toffoli Gate Decomposition Using M-S Gates 211

I = M1(c; t)M2(c; t) (7)
= M2(c; t)M1(c; t) (8)

where I is the identity operation, and the M-S gate pairs operate on the same
control and target qutrits c and t respectively. The template based optimization
using technique similar to the one used in [10,12]. The optimized M-S netlist for
a TMCT gate T (C; t) with up to 16 control lines, decomposed using m ancillas
(�log2 |C|� � m < |C| − 1), is presented in Table 1. After optimization the

c1

c2

c3

c4

|0
|0
|0
t

+1

+1

+1 +1

+1

+1

+1

+2

+2

+2 +2

+2

+2

Fig. 9. Optimized M-S gate realization of a TMCT gate of size 5 using 3 type |0〉
ancilla lines

Table 1. Number of M-S gates required in realizing TMCT gates for upto 16 control
lines

|C| Number of ancilla lines of type |0〉
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 5

3 9

4 17 13

5 21 17

6 29 25 21

7 37 33 29 25

8 53 41 37 33 29

9 49 45 41 37 33

10 65 53 49 45 41 37

11 73 69 57 53 49 45 41

12 89 77 73 61 57 53 49 45

13 97 93 81 77 65 61 57 53 49

14 113 101 97 85 81 69 65 61 57 53

15 129 117 105 101 89 85 73 69 65 61 57

16 161 133 121 109 105 93 89 77 73 69 65 61

212 P.M.N. Rani et al.

number of M-S gate count becomes linear, and maximum reduction is observed
when n−2 ancilla lines are used. The realization of a TMCT gate of size n using
n − 2 constant ancilla lines yields a netlist of 4n − 7 M-S gates. Figure 8 shows
one such decomposition of a TMCT gate of size 5 using the recursive structure
of Eq. (5). All the M-S gates surrounded by dashed rectangle are redundant and
simplification using above templates result in a cascade of M-S gates similar to
the one shown in Fig. 9.

5 Conclusion

A recursive approach for decomposing multiple-control ternary Toffoli gates into
elementary M-S quantum gates has been presented in this paper. The approach
uses a tradeoff between the number of ancilla lines used for decomposition, and
the number of M-S gates required in the final netlist. Reuse of ancilla lines
increases the number of M-S gates, however, it reduces the number of additional
circuit lines. Also a template based optimization scheme has been presented to
reduce the cost of the M-S gate netlist. Both the decomposition and optimization
steps presented in this work are not optimal. Therefore, a possible future work
can be to design even better decomposition in terms of both ancilla lines and
M-S gate count.

References

1. Basu, S., Mandal, S.B., Chakrabarti, A., Sur-Kolay, S.: An efficient synthesis
method for ternary reversible logic. In: International Symposium on Circuits and
Systems (ISCAS), pp. 2306–2309 (2016)

2. Bennett, C.: Logical reversibility of computation. J. IBM Res. Dev. 17(6), 525–532
(1973)

3. Cirac, J.I., Zoller, P.: Quantum computations with cold trapped ions. Phys. Rev.
Lett. 74, 4091–4094 (1995)

4. Khan, M.H.A.: Design of reversible/quantum ternary multiplexer and demulti-
plexer. In: Engineering Letters, pp. 174–178 (2006)

5. Khan, M.H.A., Perkowski, M.A., Khan, M.R., Kerntopf, P.: Ternary GFSOP min-
imization using Kronecker decision diagrams and their synthesis with quantum
cascades. J. Multi Valued Logic Soft Comput. 11, 567–602 (2005)

6. Khan, M.H.A.: GFSOP-based ternary quantum logic synthesis. In: Proceedings
of the SPIE 7797, Optics and Photonics for Information Processing IV, pp. 1–15
(2010)

7. Landauer, R.: Irreversibility and heat generation in the computing process. J. IBM
Res. Dev. 5, 183–191 (1961)

8. Li, X., Yang, G., Zheng, D.: Logic synthesis of ternary quantum circuits with
minimal qutrits. J. Comput. 8(3), 1941–1946 (2013)

9. Lucac, M., Perkowski, M.A., Goi, H., Pivtoraiko, M., Yu, C.H., Chung, K.,
Jeech, H., Kim, B.G., Kim, Y.D.: Evolutionary approach to quantum and reversible
circuits synthesis, artificial intelligence in logic design. Artif. Intell. Rev. 20(3),
361–417 (2003)

Ternary Toffoli Gate Decomposition Using M-S Gates 213

10. Maslov, D., Dueck, G., Miller, D., Negrevergne, C.: Quantum circuit simplification
and level compaction. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
27(3), 436–444 (2008)

11. Miller, D.M., Dueck, G., Maslov, D.: A synthesis method for MVL reversible logic.
In: 34th International Symposium on Multiple-Valued Logic (ISMVL), pp. 74–80
(2004)

12. Miller, D., Sasanian, Z.: Lowering the quantum gate cost of reversible circuits. In:
Proceedings of the International Midwest Symposium on Circuits and Systems,
pp. 260–263 (2010)

13. Muthukrishnan, A., Stroud Jr., C.R.: Multivalued logic gates for quantum compu-
tation. Phys. Rev. A 62(5), 052309/1-8 (2000)

14. Sasanian, Z., Wille, R., Miller, D.M.: Realizing reversible circuits using a new class
of quantum gates. In: Proceedings of the Design Automation Conference, pp. 36–41
(2012)

15. Yang, G., Song, X., Perkowski, M., Wu, J.: Realizing ternary quantum switching
networks without ancilla bits. J. Phys. A: Math. Gen. 38, 1–10 (2005)

16. Yang, G., Xie, F., Song, X., Perkowski, M.: Universality of 2-qudit ternary
reversible gates. J. Phys. A: Math. Gen. 39, 7763–7773 (2006)

Efficient Construction of QMDDs
for Irreversible, Reversible,

and Quantum Functions

Philipp Niemann1(B), Alwin Zulehner2, Robert Wille1,2, and Rolf Drechsler1,3

1 Cyber-Physical Systems, DFKI GmbH, Bremen, Germany
Philipp.Niemann@dfki.de

2 Institute for Integrated Circuits, Johannes Kepler University, Linz, Austria
{alwin.zulehner,robert.wille}@jku.at

3 Department of Computer Science, University of Bremen, Bremen, Germany
drechsle@informatik.uni-bremen.de

Abstract. In reversible as well as quantum computation, unitary matri-
ces (so-called transformation matrices) are employed to comprehensively
describe the respectively considered functionality. Due to the exponential
growth of these matrices, dedicated and efficient means for their repre-
sentation and manipulation are essential in order to deal with this com-
plexity and handle reversible/quantum systems of considerable size. To
this end, Quantum Multiple-Valued Decision Diagrams (QMDDs) have
shown to provide a compact representation of those matrices and have
proven their effectiveness in many areas of reversible and quantum logic
design such as embedding, synthesis, or equivalence checking. However,
the desired functionality is usually not provided in terms of QMDDs,
but relies on alternative representations such as Boolean Algebra, circuit
netlists, or quantum algorithms. In order to apply QMDD-based design
approaches, the corresponding QMDD has to be constructed first—a
gap in many of these approaches. In this paper, we show how QMDD
representations can efficiently be obtained for Boolean functions, both
reversible and irreversible ones, as well as general quantum functionality.

1 Introduction

Reversible and quantum computation are alternative computational paradigms
that have received significant attention in the past decades. In contrast to conven-
tional computation, reversible computations are information loss-less such that the
inputs of a computation can always be recovered from the outputs. The absence
of information loss helps (at least theoretically) to avoid energy dissipation dur-
ing computations and is used for certain aspects in low-power design.1 Moreover,
superconducting quantum interference devices [14], nanoelectromechanical sys-
tems [5,6], adiabatic circuits [1], and many further technologies utilize this compu-

1 Initial experiments verifying the underlying link between information loss and ther-
modynamics have been reported in [2].

c© Springer International Publishing AG 2017
I. Phillips and H. Rahaman (Eds.): RC 2017, LNCS 10301, pp. 214–231, 2017.
DOI: 10.1007/978-3-319-59936-6 17

Efficient Construction of QMDDs 215

tation paradigm. Reversibility of the respective operations is also an inherent char-
acteristic of quantum computation [9]. The considered quantum systems are com-
posed of qubits which, analogously to conventional bits, can represent a (Boolean)
0 or 1, but also superpositions of the two. This allows for solving many practi-
cally relevant problems (e.g. factorization [15] or database search [4]) exponen-
tially faster than in classical computation. In both, reversible as well as quantum
computation, unitary matrices (so-called transformation matrices) are employed
to comprehensively describe the respectively considered functionality. Quantum
Multiple-Valued Decision Diagrams (QMDDs, [13]) provide a compact, graphical
representation of thesematrices and allow for applyingmatrix operations like addi-
tion and multiplication directly on the data-structure. To this end, QMDDs have
shown their effectiveness with respect to various critical tasks of reversible and
quantum logic design. For example:

– Embedding: Due to the inherent reversibility of quantum and reversible logic,
irreversible objective functions have to be embedded into reversible ones. For
this purpose, a certain number of additional inputs (ancillary inputs) and
outputs (garbage outputs) needs to be added and corresponding functionality
is to be assigned in order to obtain reversibility. While it has been shown
to be coNP-hard to determine an appropriate/minimal number of additional
in- and outputs [17], the probably even larger problem is how to assign the
additional mappings. QMDDs have been shown to be very efficient in this
regard [20].

– Synthesis: Once a reversible function description is available, the synthesis
problem of quantum and reversible logic is to determine an equivalent circuit
representation in terms of a quantum or reversible gate library (e.g. Toffoli
gates, the NCV library, or the Clifford+T library). QMDDs have successfully
been employed for synthesis purposes in the past – particularly in order to
realize larger reversible and quantum functionality with a minimum number
of circuit lines and qubits, respectively (see e.g. [11,16]).

– Equivalence Checking: Frequently, designers are facing different functional
descriptions, e.g. before and after a technology-mapping, employing differ-
ent gate libraries, unoptimized and optimized versions, etc. In these cases, it
is often helpful to prove whether different descriptions indeed realize the same
functionality. Since QMDDs are canonic, they are very suited to conduct cor-
responding equivalence checks (see e.g. [12]).

However, in most cases the desired functionality is originally not provided in
terms of QMDDs, but using alternative representations such as Boolean Alge-
bra, circuit netlists, or quantum algorithms. In order to apply the corresponding
approaches, the QMDD representing the considered functionality has to be con-
structed first. So far, it has not been considered in the literature yet how to do
that efficiently.

In fact, for the Boolean domain, there is a large body of research on the
construction of various description means for Boolean functions, e.g. Boolean
algebra, circuit descriptions, or graphical representations. However, the result-
ing representations are far from the function matrix description that is required

216 P. Niemann et al.

0
0

0
1

1
0

1
1

00 0 0 1 0

01 0 0 0

10 i 0 0 0

11 0 1 0 0

−i

x2x1

(a) Matrix

x1

x2

1

0

i
0

00 −i

(b) QMDD

Fig. 1. Matrix and QMDD representation of a 2-qubit quantum operation.

to build the corresponding QMDD. In fact, most compact representations (alge-
braic or graphical) require an evaluation/traversal for each primary output in
order to determine a particular input-output-mapping, i.e. a single entry of the
function matrix. In the quantum domain, the desired functionality is usually
given in terms of quantum algorithms or quantum circuits which are composed
of modules or gates that realize a computational step (e.g. modular exponentia-
tion) or quantum operations (e.g. rotations, controlled operations), respectively.
The overall transformation matrix is computed by multiplying the matrices of
the individual modules/gates, but those need to be constructed somehow first.

In this paper, we close these gaps and present detailed approaches for an
efficient construction of QMDDs for Boolean as well as general quantum func-
tionality. The paper is organized as follows: In Sect. 2, we provide a brief review
of QMDDs. Afterwards, in Sects. 3 and 4, we present detailed approaches for an
efficient construction of QMDDs for Boolean and quantum functionality, respec-
tively. The results of a feasibility study to confirm the applicability of the pro-
posed methodologies are provided in Sect. 5 before the paper is concluded in
Sect. 6.

2 Quantum Multiple-Valued Decision Diagrams

In the following, we briefly introduce basic concepts and ideas of Quantum
Multiple-Valued Decision Diagrams (QMDDs). For a more thorough introduc-
tion, we refer to [13]. QMDDs have been introduced as a data-structure for the
efficient representation and manipulation of unitary, complex-valued matrices
that are frequently considered in reversible and quantum computation.

Example 1. Figure 1a shows a transformation matrix of a 2-qubit quantum oper-
ation. Columns and rows (representing the inputs and outputs of the operation,
respectively) are indexed by the same set of variables {x1, x2}.

The main idea of QMDDs is a recursive partitioning of the (square) transfor-
mation matrices and the use of edge weights to represent various complex-valued
matrix entries. More precisely, a matrix of dimension 2n × 2n is partitioned into
four sub-matrices of dimension 2n−1 × 2n−1 as follows:

Efficient Construction of QMDDs 217

xi

M00 M01 M10 M11

(a) Relation to matrix partitioning

xi xi

−1 −i i

0

−i
0 0 0

i

(b) Normalization of weights

Fig. 2. QMDD vertices

M =
[
M00 M01

M10 M11

]

This partitioning is relative to the most significant row and column variable.

Example 2. Consider again the matrix shown in Fig. 1a. This matrix is parti-
tioned with respect to variable x1. The sub-matrices are identified by subscripts
giving the row (output) and column (input) value for that variable identifying
the position of the sub-matrix within the matrix. Using this partition, a matrix
can be represented as a graph with vertices as shown in Fig. 2a. The vertex is
labeled by the variable associated with the partition and has directional edges
pointing to vertices corresponding to the sub-matrices. More precisely, the first,
second, third, and fourth outgoing edge of the vertex (from left to right) points
to a vertex representing M00, M01, M10, and M11, respectively.

The partitioning process can recursively be applied to each of the sub-
matrices and to each of the subsequent levels of sub-matrices until one reaches
the terminal case where each sub-matrix is a single value. The result is that the
initial matrix is represented by a directed, acyclic graph (DAG)—the QMDD.
By traversing the tree, one can access the successively partitioned sub-matrices
of the original matrix down to the individual elements.

Example 3. Figure 1b shows the QMDD for the transformation matrix from
Fig. 1a. Here, the single root vertex (labeled x1) represents the whole matrix and
has four outgoing edges to vertices representing the top-left, top-right, bottom-
left, and bottom-right sub-matrix (from left to right). This decomposition is
repeated at each partitioning level until the terminal vertex (representing a sin-
gle matrix entry) is reached. To obtain the value of a particular matrix entry,
one has to follow the corresponding path from the root vertex at the top to the
terminal vertex while multiplying all edge weights on this path. For example,
the matrix entry −i from the top-right sub-matrix of Fig. 1a (highlighted bold)
can be determined as the product of the weights on the highlighted path of the
QMDD in Fig. 1b. For simplicity, we omit edge weights equal to 1 and indicate
edges with a weight of 0 by stubs.

The performed decompositions unveil redundancies in the description for
which representations can be shared—eventually yielding a rather compact rep-
resentation of the matrix. More precisely, the edge weights in a QMDD are
normalized in order to extract common multipliers and represent sub-matrices
that only differ by a scalar factor by a shared vertex.

218 P. Niemann et al.

Example 4. The top-right and bottom-left sub-matrices of the matrix in Fig. 1a
(highlighted in gray) differ by a scalar factor only (namely, i) and, thus, can
be represented by a single, shared QMDD vertex as shown in Fig. 1b. In order
to obtain shared vertices when constructing the QMDD, the following normal-
ization scheme is performed: for each non-terminal vertex the weights of all
outgoing edges are divided by the weight of the first non-zero edge. In other
words, a vertex is normalized if, and only if, the first non-zero edge has weight
1. The extracted factor is then propagated to all incoming edges as shown in
Fig. 2b.

Fortunately, the simple normalization scheme from Example 4 is sufficient
to obtain the maximum shared vertex compression. No improvement is possi-
ble with more sophisticated normalization schemes [10]. However, by applying
different variable orders, the QMDD size can often be reduced significantly. If,
in contrast, a particular variable order is fixed, QMDDs are indeed canonical
representations. This means that for a given matrix the corresponding QMDD
representation is unique (for a fixed normalization scheme). Moreover, efficient
algorithms have been presented for applying operations like matrix addition or
multiplication directly on the QMDD data-structure.

Overall, QMDDs allow for applying matrix-based approaches in reversible
and quantum logic design directly on this compact data-structure and, thus,
make them applicable to systems of considerable size. However, the desired
functionality needs to be on hand in terms of its QMDD representation first.
As QMDDs are usually not the original description means, in the following we
present a methodology for deriving QMDD representations from commonly used
function representations for Boolean as well as quantum functionality.

3 Constructing QMDDs for Boolean Functionality

In this section, we describe how to obtain a QMDD representation for
multi-output Boolean functions—both, irreversible and reversible ones.

3.1 General Idea and Methodology

A multi-output Boolean function f : Bn → B
m is commonly given in terms

of descriptions of its primary outputs f1, . . . , fm (also termed component func-
tions). These single-output Boolean functions B

n → B are commonly described
in terms of Boolean Algebra, i.e. as Sums of Products (SOP), Products of
Sums (POS), or the like. In the following, we focus on SOP representations,
but any other description means can be treated similarly.

Matrices, however, as required for the construction of corresponding QMDDs,
are usually not employed to describe these functions—with one exception:
reversible Boolean functions can be interpreted as permutations of the set B

n

and are frequently represented as permutation matrices. In these 2n×2n matrices
Pf = [pi,j]2n×2n , each column (row) denotes a possible input (output) pattern.

Efficient Construction of QMDDs 219

x1 x2 f1 f2
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

(a) Truth-table

0
0

0
1

1
0

1
1

00 1 0 0 0

01 0 1 1 0

10 0 0 0 1

11 0 0 0 0

x1x2

f1/y1

f2/y2

Inputs

O
u
tp

u
ts

(b) Function matrix

x1 x2 y1 y2 χf

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 1
...

...
...

...
...

1 1 1 1 0

(c) Char. function

Fig. 3. Representations of a half adder.

Moreover, pi,j = 1 if, and only if, f maps the input pattern corresponding to
column j to the output pattern corresponding to row i. Otherwise pi,j = 0.

In order to have a baseline for the QMDD construction, these matrices can
be generalized in a straightforward fashion to functions with different num-
bers of inputs and outputs. In fact, the function matrix of a Boolean function
f : Bn → B

m needs to have the dimension 2m ×2n in order to allow for the same
correspondence of input (output) patterns and columns (rows).

Example 5. A half adder can be described by the multi-output Boolean func-
tion f : B2 → B

2 with component functions f1(x1, x2) = x1 ∧ x2 (carry) and
f2(x1, x2) = x1 ⊕ x2 = x1x2 ∨ x1x2 (sum). The corresponding truth-table and
function matrix representations are shown in Figs. 3a and b, respectively. Each
line of the truth-table is represented by a single 1 entry in the function matrix.
For instance, the third line stating that (1, 0) is mapped to (0, 1) is represented
by the 1 in the third column (10), second row (01).

In order to bridge the gap between the initial representation (which is essen-
tially a more compact representation of the truth-table of f) and the targeted
QMDD representation (which is essentially a more compact representation of
the function matrix of f), the main idea is to employ the so-called characteris-
tic function χf of f . This is a Boolean function B

n × B
m → B with n inputs

labeled x = x1, . . . , xn and m inputs labeled y = y1, . . . , ym, where χf (x, y) = 1
if, and only if, f(x) = y. In other words, χf evaluates to true if, and only if, the
backmost m inputs represent the correct output pattern that is generated when
applying f to the input pattern specified by the first n inputs. Thus, the entries
of the function matrix can be interpreted as the outcomes of χf .

Example 6. The characteristic function of the half adder from Example 5 is
shown in Fig. 3c in terms of its truth-table. Each line corresponds to one entry
of the function matrix. More precisely, writing all columns of the function matrix
on top of each other would yield the χf column of the truth-table.

220 P. Niemann et al.

As it is infeasible to construct and store the whole function matrix at once due
to its exponential complexity, we rather employ compact, graphical representa-
tions of Boolean functions (especially of the characteristic functions) from which
the desired QMDD representation can then be derived directly without explicitly
considering the function matrix. To this end, we make use of Binary Decision
Diagrams (BDDs, [3]). These are similar to QMDDs, but each non-terminal ver-
tex has only two instead of four outgoing edges (termed high and low edge)
and represents a (single-output) Boolean function rather than a matrix. More
precisely, the function fv of a vertex v labeled by xi is recursively defined as

fv =
(
xi ∧ fhigh(v)

) ∨ (
xi ∧ flow(v)

)
,

where fhigh(v) and flow(v) denote the functions represented by the high and low
child, respectively. This equation has a strong analogy to the Shannon decom-
position of f (wrt. a primary input xi) which is given as

f = (xi ∧ fxi=1) ∨ (xi ∧ fxi=0) .

Here, fxi=1 and fxi=0 are the so-called co-factors of f which are obtained by set-
ting the primary input xi to 1 and 0, respectively. The analogy between the two
equations, on the one hand, justifies the claim that the BDD vertices represent
the Shannon decomposition of f with respect to its primary inputs and, on the
other hand, yields a blueprint for how to construct the BDD representation of
a given function. Alternatively, as logical operations like AND, OR, etc. can be
conducted directly and efficiently on BDDs, the BDD representation of an SOP
can also be constructed by first building the BDDs for the individual products
and then using the BDD equivalent of the logical OR operation to “sum up” the
products.2

Example 7. The BDDs for the component functions of the half adder reviewed
in Examples 5 and 6 are shown on the left-hand side of Fig. 4.

Overall, there is a well-developed methodology for constructing the BDD
representation of the component functions of f . These BDDs have then to be
composed in a second step to obtain the BDD of the characteristic function χf .
Since the outcomes of χf essentially describe the entries of the desired function
matrix, the resulting BDD can eventually be transformed to a QMDD. In the
following, these steps are described in more detail.

3.2 Generating the BDD of the Characteristic Function

In order to derive the BDD representing the characteristic function χf of a
multi-output function f : Bn → B

m, we first introduce new variables yi for the
primary outputs of f (referred to as output variables in the following). While the
original (input) variables are used to encode the column index of the function
2 Actually, there is a large body of research on how to derive BDD representations

from various other, algebraic or netlist-based, representations of Boolean functions.

Efficient Construction of QMDDs 221

x1

x2 x2

0 1

⇒

x1

x2 x2

y2 y2

0 1

⇒

x1

x2

0 1

⇒

x1

y1 y1

x2 x2

0 1

⇒
x1

y1 y1

x2 x2 x2

y2 y2 y2 y2

1

0

0 0

0 0 0 0

⇒

x1

x2 x2 x2

1

0

00 0 0 0 0 0 0

BDD of fi BDD of hi BDD of χf QMDD of f

Fig. 4. Construction of the QMDD for the half adder.

matrix, the output variables encode rows. Then, we construct the characteristic
function for each output. More precisely, we construct the helper functions hi

given by

hi(x1, . . . , xn, yi) = fi(x1, . . . , xn)�yi,

where � denotes the XNOR-operation. This logical operation—and, thus, the
entire function hi—evaluates to true if, and only if, both operands are equal,
i.e. fi(x1, . . . , xn) = yi. Consequently, the hi-function can be interpreted as
characteristic functions of the primary outputs of f .

Afterwards, the BDD of χf can be constructed by AND-ing the BDDs rep-
resenting the hi-functions as the following calculation shows:

h1 ∧ h2 ∧ . . . ∧ hm = 1
⇔∀i ∈ {1, . . . , n} : hi = 1

⇔∀i ∈ {1, . . . , n}, (x1, . . . , xn, y1, . . . , ym) ∈ B
n+m : fi(x1, . . . , xn) = yi

⇔f(x1, . . . , xn) = (y1, . . . , ym)
⇔χf (x1, . . . , xn, y1, . . . , ym) = 1

Remark 1. If n > m, i.e. if f has more primary inputs than outputs, we pad
the function with zeros in order to obtain a Boolean function with the same
number of inputs and outputs, such that the resulting function matrix is square.

222 P. Niemann et al.

xi

yi yi

f00 f01 f10 f11

⇒ xi

f00 f10 f01 f11

Fig. 5. General transformation rule from characteristic BDDs to QMDDs.

More precisely, we add n − m additional constant outputs/component functions
fj ≡ 0. While these can, in principle, be added at any position, we add them in
front of the original outputs/component functions. If, in contrast, m > n, we add
m − n additional inputs that have no impact on the functionality of f . Again,
these inputs can, in principle, be added at any position, but we add them in
front of the original inputs. Overall, this ensures that the original functionality
is represented by the sub-matrix of dimension 2m × 2n in the top-left corner of
the square function matrix. Moreover, this allows us to assume in the following
that n = m without restriction.

As the BDD representing χf is guaranteed to be exponential in size for the
variable order x1 � . . . � xn � y1 � . . . � ym (at least for reversible functions),
we enforce an interleaved variable order x1 � y1 � x2 � y2 � . . . � xn � yn
when constructing the BDD for χf .

Example 8. Consider again the half adder example. The BDDs representing the
helper functions h1 = f1�y1 and h2 = f2�y2 are computed using the BDD
equivalent of the logical XNOR operation and are shown in Fig. 4 (next to the
BDDs representing f1 and f2). By AND-ing these BDDs, we obtain the BDD
representing χf which is shown in the center of Fig. 4. In this BDD, all edges
pointing to the zero-terminal are indicated by stubs for the sake of a better
readability and to emphasize the similarity to the targeted QMDD.

3.3 Transforming the BDD into a QMDD

With a BDD in interleaved variable order representing χf , the matrix partition-
ing employed by QMDDs is already laid out implicitly. In fact, corresponding
bits of the column and row indices are represented by different, but adjacent
variables (xi and yi), while QMDDs combine these in a single variable. Con-
sequently, the BDD of χf can be transformed into the QMDD for f using the
general transformation rule shown in Fig. 5. However, there are two special cases
that have to be treated separately:

– If an input variable xi is skipped (more precisely: a vertex labeled by yi is
the child of a vertex not labeled by xi), this implies the xi vertex would be
redundant, i.e. high and low edge point to the same vertex. This case can
easily be handled by setting f00 = f10 = f0 or f01 = f11 = f1, respectively,

Efficient Construction of QMDDs 223

l

yi

f0 f1

(l �= xi)

⇒⇐

xi primary input xi add. input

xi

f0 f0 f1 f1

xi

f0
0

f1

0

(a) Skipped input variables

xi

l

f0

(l �= yi)

⇒
xi

f0 ? f0 ?

(b) Skipped output variables

Fig. 6. Handling skipped variables.

as illustrated on the left-hand side of Fig. 6a. If, however, xi is not an original
input of the function, but has been introduced later in order obtain the same
number of in- and outputs, we set f10 = f11 = 0 instead to ensure that
the original functionality occurs only once in the final function matrix (as
illustrated on the right-hand side of Fig. 6a).

– If an output variable level yi is skipped (more precisely: the high or low edge
of a vertex labeled by xi point to a vertex labeled by l �= yi), this implies
the skipped yi vertex would be redundant (both children would be the same).
This case can easily be handled by setting f00 = f01 = f0 or f10 = f11 = f1,
respectively, before applying the general transformation rule. For instance, the
case of a skipped variable on the low edge is illustrated in Fig. 6b.

Example 9. Consider again the characteristic BDD shown in the center of Fig. 4.
Here, the single x1 vertex and the leftmost x2 vertex can be transformed to
their QMDD equivalent by applying the general transformation rule. For the
remaining x2 vertices, the methodology for skipped y2 output variables is to be
applied. Overall, this yields the QMDD shown on the right-hand side of Fig. 4.

Overall, following this procedure yields a QMDD representing the function
matrix (in case of a reversible function, a permutation matrix) of any Boolean
function f originally provided in terms of an SOP.

4 Constructing QMDDs for Quantum Functionality

In this section, we describe how to efficiently construct a QMDD representing
desired quantum functionality. General quantum functionality is usually either
given (a) in terms of an abstract quantum algorithm which describes a series of
computational steps or complex quantum operations (modules) to be conducted
or (b) in terms of a quantum circuit consisting of a cascade of elementary quan-
tum operations (so-called quantum gates) that form a more complex operation.

Example 10. Consider the 3-qubit quantum circuit shown in Fig. 7a. Horizon-
tal lines represent qubits. Quantum gates, i.e. H (a Hadamard operation) and

224 P. Niemann et al.

x1

x2

x3 H

(a) Quantum circuit

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

000 1√
2

1√
2

0 0 0 0 0 0

001 0 0 1√
2

−1√
2

0 0 0 0

010 0 0 1√
2

1√
2

0 0 0 0

011 1√
2

−1√
2

0 0 0 0 0 0

100 0 0 0 0 1√
2

1√
2

0 0

101 0 0 0 0 0 0 1√
2

−1√
2

110 0 0 0 0 0 0 1√
2

1√
2

111 0 0 0 0 1√
2

−1√
2

0 0

x2x1

x3
Inputs

O
u
tp

u
ts

(b) Transformation matrix

x1

x2

x3 x3

1

1√
2

0 0

0 0 0 0
−1

(c) QMDD

Fig. 7. Different representations of quantum functionality.

(a controlled NOT, CNOT), are applied successively from left to right. The
corresponding transformation matrix is depicted in Fig. 7b. As for any matrix
of a linear transformation, columns denote input basis vectors and rows denote
output basis vectors. In the quantum domain, the basis vectors are called basis
states and are commonly denoted as |x1x2x3〉 using the so-called ket-notation. For
instance, the basis state |001〉 is mapped to the linear combination (superposition)
1√
2
|000〉− 1√

2
|011〉. Note that there is a strong relationship between the partition-

ing of the matrix with respect to a variable xj and the input/output mapping of
the corresponding qubit. More precisely, the top-left sub-matrix of a partitioning
represents the mapping |0〉 �→ |0〉, the top-right sub-matrix represents the map-
ping |1〉 �→ |0〉, and so on. This transfers to the corresponding QMDD vertices such
that the outgoing edges represent the mappings |0〉 �→ |0〉, |1〉 �→ |0〉, |0〉 �→ |1〉,
and |1〉 �→ |1〉 from left to right and are denoted by e00, e10, e01, e11 in the follow-
ing. Finally, the corresponding QMDD is depicted in Fig. 7c.

For quantum algorithms as well as circuits, the representation/description
of the overall functionality is successively built from functional descrip-
tions/representations of the individual parts (modules or gates). More precisely,
for a cascade of modules/gates g1g2 . . . gl where the transformation for mod-
ule/gate gi is defined by matrix Mi, the transformation for the complete algo-
rithm/circuit is given by the direct matrix product Ml · Ml−1 · . . . · M1. Note
that the order of the matrices has to be reversed to achieve the correct order
of applying the modules/gates (first g1, then g2, etc.). To construct this matrix
product, the QMDDs for the single modules/gates simply have to be multiplied
using the QMDD-based algorithm for matrix multiplication. Consequently, for
the remainder of this section we focus on how the QMDD representations for
elementary quantum gates can be constructed efficiently.

Efficient Construction of QMDDs 225

A gate g is specified by the 2×2 base transition matrix B, the target qubit xt

and a possible empty set of control qubits C ⊂ {x1, . . . , xn} (with xt /∈ C)
together with a map α : C → {|0〉, |1〉} which describes the activating values, i.e.
qubit basis states, of each control qubit.

Example 11. The base transition matrix of the first gate of the quantum circuit
in Fig. 7a (Hadamard gate) is given by H = 1√

2

(
1 1
1 −1

)
. This gate has a target x3

and no controls, i.e. C = ∅. The second gate of the circuit is a controlled NOT
gate with the base transition matrix X =

(
0 1
1 0

)
, a target x2, and one positive

control, i.e. C = {x3} with α(x3) = |1〉. This gate effectively swaps the basis
states |0〉 and |1〉 on qubit x2 if, and only if, qubit x3 is in the |1〉-state.

The QMDD for a quantum gate is built variable by variable (qubit by qubit)
in a bottom-up fashion from the terminal to the root vertex. To this end, we
assume the variable order x1 � x2 � . . . � xn from the root vertex towards the
terminal vertex. In order to indicate which set of variables has been processed so
far, we use the notation M{xk,...,xn}. Moreover, for the sake of an easier reference,
we term those edges of a QMDD vertex diagonal that correspond to a |i〉 → |i〉
mapping (i = 0, 1), i.e. e00 and e11, and the remaining edges off-diagonal.

Although it is possible to construct the QMDD for the gate in a single run as
roughly sketched in [8], for a better understanding we follow [13] and construct
two QMDDs representing the cases that the gate is active (all control qubits
are in their activating state) or inactive (at least one control qubit is not).3 By
adding these QMDDs, the actual QMDD for the gate results.

Case “gate is active”, i.e. the base transition B is performed on qubit xt if,
and only if, all controls are in their activating state. All other qubits preserve
their original state.
Consequently, the QMDD for the active case contains all (non-zero) paths of
the final QMDD for which all decision variables (qubits) except for the target
have an activating assignment.
In order to have a valid starting point, we begin at the terminal level with
an edge pointing to the terminal vertex with weight 1, i.e. M∅ = [1]1×1.4

Afterwards, the qubits are processed in a bottom-up fashion. If the current
qubit xc

– is neither a control nor the target, i.e. xc �= xt, xc /∈ C, the gate is active
regardless of the qubit’s state. Consequently, at the matrix level the result is
id2×2 ⊗M{xc+1,...,xn} which corresponds to a QMDD vertex labeled xc where
all diagonal edges point to the existing QMDD and all remaining edges are
0-edges.

3 Without loss of generality, we consider only basis states of the underlying quantum
system, i.e. each qubit is assumed to be in one of its basis states. Due to the linearity
of quantum operations, these are sufficient to construct the corresponding transfor-
mation matrix which yields the correct behaviour also for the case of superposed
input states.

4 The appropriate weights of the base transition will be incorporated later.

226 P. Niemann et al.

x1

x2

x3

1

1√
2

00

−1

00

(a) First gate

x1

x2

x3

1

00

00

00 0

Inactive

x1 x1

x2 x2

x3 x3 x3

1 1

00

0 0

0 00

=

Active

00

0 0000 0

+

(b) Second gate

Fig. 8. QMDD representations for the gates from the quantum circuit in Fig. 7a.

– is a control, i.e. xc ∈ C, the gate is only active for one control value |i〉 = α(xc).
Consequently, the result is a vertex labeled xc with only 0-edges except from
the edge |i〉 → |i〉 which points to the existing QMDD.

– is the target, i.e. xc = xt, the base transition is performed. Consequently, the
result is B ⊗ M{xc+1,...,xn}, i.e. a vertex labeled xt with all edges pointing to
the existing QMDD with the corresponding edge weight taken from the base
transition matrix B (if a weight is zero, the corresponding edge is a 0-edge
directly pointing to the terminal).

During this construction, the QMDD is normalized as described in Example 4.

Example 12. Consider the QMDD in Fig. 8a which represents the first gate of
the quantum circuit shown in Fig. 7a. As this gate does not have any controls,
it is always active and, thus, it suffices to build the QMDD representing the
active part. We start with an edge to the terminal vertex with weight 1. As
the bottom-most qubit is already the target qubit, all edges of the x3-vertex
point directly to this terminal with the appropriate weight of the Hadamard
transformation matrix H = 1√

2

(
1 1
1 −1

)
. Note that normalization will propagate

the common multiplier 1√
2

of this matrix to the root edge. The remaining qubits
are neither control nor target. Thus, vertices representing an identity mapping
of these qubits are inserted.

The QMDD for the inactive case is constructed similarly.

Case “gate is inactive”, i.e. the identity transition is performed on qubit xt

since at least one control is not in its activating state. All qubits preserve
their original state, i.e. none but diagonal edges are populated at all.
Consequently, the QMDD for the inactive case contains all (non-zero) paths
of the final QMDD for which at least one decision variable (qubit) does not
have an activating assignment.
However, when constructing the QMDD in a bottom-up fashion, we always

Efficient Construction of QMDDs 227

use the hypothesis that all controls above the current qubit are in their acti-
vating states and at least one control below is not.
To make sure that this hypothesis gives the correct result even for the bottom-
most control (for which no inactive control may exist below), we start at the
terminal level with an edge pointing to the terminal vertex with weight 0,
i.e. M∅ = [0]1×1. This ensures that all edges corresponding to the activating
value of this bottom-most control are 0-edges.
The remaining qubits are processed as follows. If the current qubit xc

– is neither a control nor the target, i.e. xc �= xt, xc /∈ C, the gate is inactive
regardless of the qubit’s state. Consequently, at the matrix level the result is
id2×2 ⊗M{xc+1,...,xn} which corresponds to a QMDD vertex labeled xc where
all diagonal edges point to the existing QMDD and all remaining edges are
0-edges.

– is a control, i.e. xc ∈ C, the gate is definitely inactive for all but one control
value |i〉 = α(xc). For the latter, the activity of the gate depends on the
remaining qubits. Consequently, the result is a vertex with all diagonal edges
pointing to the k-fold tensor product id2×2

⊗k (nothing happens to all k qubits
below the current one) except from the edge |i〉 → |i〉. The latter handles the
case that the qubit is in its activating state and is pointing to the existing
QMDD M{xc+1,...,xn}.5 All off-diagonal edges are 0-edges.

– is the target, i.e. xc = xt, the identity transformation is performed on the
target. Consequently, the result is id2×2⊗M{xc+1,...,xn} like in the unconnected
case.

Example 13. The QMDDs for the circuit’s second gate is shown in Fig. 8b.
For the inactive part, we start with a 0-edge. For the control on x3, we con-

struct a vertex which uses this 0-edge as e11 and for which the other diagonal
edge e00 represents the identity id2×2

⊗0 = [1]1×1, i.e. it points to the terminal
vertex with weight 1. As x3 is the only control, we simply add vertices repre-
senting an identity mapping for the remaining qubits.

For the active part, we start with an edge to the terminal vertex which
becomes the e11 edge of the x3-vertex, as the activating state of x3 is |1〉. For
the target qubit x2 with the base transition matrix X =

(
0 1
1 0

)
, an x2-vertex is

added. For this vertex, both off-diagonal edges point to the x3-vertex constructed
before (with weight 1 as the corresponding entry in X is 1) and both diagonal
edges are 0-edges (as the corresponding entry in X is 0). Last, but not least, for
the unconnected qubit x1 a vertex representing its identity mapping is added.
Finally, by adding the QMDDs for the inactive and active part, we obtain the
actual QMDD for the CNOT gate.

Overall, the resulting QMDDs for the active as well as the inactive part of
the gate are linear in the number of variables—regardless of the complexity of
the gate under consideration. Both QMDDs can be constructed in parallel while

5 If there is no further control below the current qubit, the gate inactivity is ensured
by choosing a 0-edge as the initial QMDD.

228 P. Niemann et al.

iterating through the variables in a bottom-up fashion. In addition, they describe
disjoint parts of the gate matrix, while they are padded with zeros outside of
that particular part. Consequently, their sum can be computed in linear time
and will also be linear in size. In fact, there are only trivial additions where
at least one of the summands is a 0-matrix and, as already recognized in [8],
the addition could be saved entirely, such that the whole construction could be
performed in a single pass from the terminal to the root vertex with no back-
tracking or recursion. Either way, QMDD representations for single gates can
be computed very efficiently and the potentially rather expensive part of con-
structing a QMDD representation for quantum algorithms or quantum circuits
(as well as any other quantum logic representation) is given by the (QMDD-
based) matrix multiplication that is required to concatenate the representations
of single modules/gates.

5 Feasibility Study

In this section, we demonstrate the applicability of the discussed methods for
QMDD construction. To this end, we implemented them in C++ on top of the
QMDD package (provided together with [13]) and the BDD package CUDD [18].
As benchmarks for the construction of QMDDs representing Boolean functions,
we considered functions from RevLib [19]. For quantum benchmarks, we con-
sidered quantum realizations of the Boolean functions from RevLib, realizations
of the Quantum Fourier Transformation and Grover’s search algorithm (cf. [9]),
implementations of error-correcting codes (taken from [7]) as well as randomly
generated Clifford group circuits. All experiments have been conducted on a
4 GHz processor with 32 GB of memory running Linux 4.4.

Table 1a lists the results for the QMDD construction for Boolean functions
(reversible as well as non-reversible ones). The first three columns list the name
of the benchmark as well as the number of primary inputs and primary outputs
(denoted by PI and PO, respectively). Note that the number of variables of the
resulting QMDD is accordingly given by n = max(PI, PO). The remaining two
columns of Table 1a list the run-time (in CPU seconds) required for constructing
the QMDD and the size of the resulting QMDD (i.e. its number of vertices).

The numbers show that the QMDDs construction could either be conducted
in negligible run-time (i.e. in less than a second) or fails by running into a timeout
of 10 000 s (denoted by TO). However, the latter case was only observed for two
benchmarks with more than 100 QMDD variables. The limiting factor in these
cases was the construction of the characteristic function, since the variables
in the BDD have to adhere to a certain order. More precisely, the variables
representing primary inputs and primary outputs are interleaved – allowing that
the transformation of the characteristic function into a QMDD can be conducted
as described in Sect. 3.3. While certainly a limitation, this is in line with the
characteristic matrix partitioning of QMDDs, i.e. QMDDs eventually employ a
similar order (only with the difference that corresponding PIs and POs are jointly
considered in a single vertex). That is, the QMDD data-structure itself is the
limiting factor for these two functions; not the proposed construction method.

Efficient Construction of QMDDs 229

Table 1. Feasibility study

(a) Boolean functions

Benchmark PI PO t size
5xp1 90 7 10 0.10 342
sao2 199 10 4 0.11 138
urf3 75 10 10 0.15 1001
urf4 89 11 11 0.22 2774
add6 92 12 7 0.11 309
alu1 94 12 8 0.12 189
apla 107 10 12 0.12 288
cycle10 2 61 12 12 0.13 66
sqr6 204 6 12 0.11 112
0410184 85 14 14 0.26 38
alu4 98 14 8 0.16 1471
cu 141 14 11 0.10 165
misex3c 181 14 14 0.13 522
table3 209 14 14 0.12 934
tial 214 14 8 0.14 1503
ham15 30 15 15 0.50 2021
in0 162 15 11 0.10 492
urf6 77 15 15 0.53 2312
cmb 134 16 4 0.11 86
decod 137 5 16 0.12 111
apex4 103 9 19 0.16 1189
cm151a 129 19 9 0.11 141
mux 185 21 1 0.15 145
cordic 138 23 2 0.11 132
bw 116 5 28 0.11 432
frg1 160 28 3 0.12 417
apex2 101 39 3 0.22 1797
pdc 191 16 40 0.29 1800
seq 201 41 35 0.35 1881
spla 202 16 46 0.25 1538
ex5p 154 8 63 0.20 1139
e64 149 65 65 0.22 1161
cps 140 24 109 0.92 3763
apex5 104 117 88 TO –
frg2 161 143 139 TO –

(b) Quantum functionality

Benchmark n |G| t size
QFT-3 3 9 0.11 21
QFT-4 4 16 0.10 85
QFT-5 5 21 0.11 341
QFT-6 6 30 0.11 1365
7-qubit-code 7 18 0.11 29
Grover-3 7 83 0.10 209
hwb6 56 7 1153 0.15 87
QFT-7 7 37 0.11 5461
5-qubit-code 9 24 0.11 83
9-qubit-code-A 9 11 0.11 25
Grover-4 9 106 0.12 1075
rd73 252 10 660 0.18 42
9symml 195 11 2945 0.49 53
dc1 221 11 290 0.11 64
Grover-5 11 131 0.18 2816
cycle10 2 110 12 722 0.13 66
adr4 197 13 426 0.18 174
dist 223 13 3544 2.42 284
radd 250 13 327 0.16 151
co14 215 15 1290 0.29 65
dc2 222 15 1218 0.67 360
ham15 107 15 1101 0.25 4521
Clifford-15 15 100 1.43 22697
5xp1 194 17 931 0.36 719
9-qubit-code-B 17 40 0.11 1075
Clifford-18 18 100 0.84 21609
Clifford-20 20 100 10.21 76473
decod 217 21 845 0.15 187
pcler8 248 21 289 0.26 1083
apla 203 22 2051 1.43 421
cu 219 25 752 1.28 525
Clifford-25 25 100 284.16 580992
cm151a 211 28 639 45.13 6408
cm163a 213 29 575 3.44 1205
add64 184 193 576 0.14 701

Table 1b shows the obtained results for constructing QMDDs for quantum
computations. The first three columns of the table list the name of the bench-
marks, the number of qubits n as well as the number of gates of the quantum
circuit |G|. The remaining two columns list the run-time required to construct
the QMDD and its number of vertices. Here, the numbers show that a QMDD
can be constructed for quantum circuits composed of more than one thousand
gates quite efficiently. Indeed, we observe a run-time of less than one second
for most cases. However, there are also a few benchmarks for which the time to
construct the QMDD takes longer (e.g. Clifford-20 or Clifford-25), but these are
exactly the cases where the size of the resulting QMDD is large.

230 P. Niemann et al.

6 Conclusions

In this work, we considered how to efficiently construct a QMDD representa-
tion for Boolean functions, reversible and non-reversible ones, as well as quan-
tum functionality. These representations are essential for the efficiency of various
approaches in reversible/quantum logic design, but are usually not the originally
provided description means. For the Boolean case, we developed a methodology
to obtain and transform the BDD of the characteristic function which is struc-
turally already very similar to the desired QMDD. For the quantum case, we
focused on the construction of QMDD representations for elementary quantum
gates from which the representation of the entire circuit or algorithm can be
obtained using (QMDD-based) matrix multiplication. The feasibility of the pro-
posed methods has been confirmed on several examples. In fact, the obtained
results showed that the construction can be conducted in negligible run-time
when the characteristic matrix partitioning of QMDDs allows for an efficient
representation. Overall, this work closes an important gap for several design
solutions based on QMDDs e.g. for embedding, synthesis, or verification.

Acknowledgements. This work has partially been supported by the European Union
through the COST Action IC1405.

References

1. Athas, W., Svensson, L.: Reversible logic issues in adiabatic CMOS. In: Proceedings
of the Workshop on Physics and Computation, PhysComp 1994, pp. 111–118 (1994)

2. Berut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz,
E.: Experimental verification of Landauer’s principle linking information and ther-
modynamics. Nature 483, 187–189 (2012)

3. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. 35(8), 677–691 (1986)

4. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Theory
of Computing, pp. 212–219 (1996)

5. Houri, S., Valentian, A., Fanet, H.: Comparing CMOS-based and NEMS-based adi-
abatic logic circuits. In: Conference on Reversible Computation, pp. 36–45 (2013)

6. Merkle, R.C.: Reversible electronic logic using switches. Nanotechnology 4(1), 21
(1993)

7. Mermin, N.D.: Quantum Computer Science: An Introduction. Cambridge Univer-
sity Press, New York (2007)

8. Miller, D.M., Thornton, M.A.: QMDD: a decision diagram structure for reversible
and quantum circuits. In: International Symposium on Multi-Valued Logic, p. 6
(2006)

9. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cam-
bridge University Press, New York (2000)

10. Niemann, P., Wille, R., Drechsler, R.: On the “Q” in QMDDs: efficient represen-
tation of quantum functionality in the QMDD data-structure. In: Conference on
Reversible Computation, pp. 125–140 (2013)

Efficient Construction of QMDDs 231

11. Niemann, P., Wille, R., Drechsler, R.: Efficient synthesis of quantum circuits imple-
menting Clifford group operations. In: ASP Design Automation Conference, pp.
483–488 (2014)

12. Niemann, P., Wille, R., Drechsler, R.: Equivalence checking in multi-level quantum
systems. In: Conference on Reversible Computation, pp. 201–215 (2014)

13. Niemann, P., Wille, R., Miller, D.M., Thornton, M.A., Drechsler, R.: QMDDs:
efficient quantum function representation and manipulation. IEEE Trans. CAD
35(1), 86–99 (2016)

14. Ren, J., Semenov, V., Polyakov, Y., Averin, D., Tsai, J.S.: Progress towards
reversible computing with nSQUID arrays. IEEE Trans. Appl. Supercond. 19(3),
961–967 (2009)

15. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Foundations of Computer Science, pp. 124–134 (1994)

16. Soeken, M., Wille, R., Hilken, C., Przigoda, N., Drechsler, R.: Synthesis of
reversible circuits with minimal lines for large functions. In: ASP Design Automa-
tion Conference, pp. 85–92 (2012)

17. Soeken, M., Wille, R., Keszocze, O., Miller, D.M., Drechsler, R.: Embedding of
large Boolean functions for reversible logic. J. Emerg. Technol. Comput. Syst.
12(4), 41:1–41:26 (2015)

18. Somenzi, F.: Efficient manipulation of decision diagrams. Softw. Tools Technol.
Transf. 3(2), 171–181 (2001)

19. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: an online
resource for reversible functions and reversible circuits. In: International Sympo-
sium on Multi-Valued Logic, pp. 220–225 (2008). RevLib is available at http://
www.revlib.org

20. Zulehner, A., Wille, R.: Make it reversible: efficient embedding of non-reversible
functions. In: Design, Automation and Test in Europe, pp. 458–463 (2017)

http://www.revlib.org
http://www.revlib.org

Improving Synthesis of Reversible Circuits:
Exploiting Redundancies in Paths

and Nodes of QMDDs

Alwin Zulehner(B) and Robert Wille

Institute for Integrated Circuits, Johannes Kepler University Linz, Linz, Austria
{alwin.zulehner,robert.wille}@jku.at

Abstract. In recent years, reversible circuits have become an estab-
lished emerging technology through their variety of applications. Since
these circuits employ a completely different structure from conventional
circuitry, dedicated functional synthesis algorithms have been proposed.
Although scalability has been achieved by using approaches based on
decision diagrams, the resulting circuits employ a significant complexity
measured in terms of quantum cost. In this paper, we aim for a reduc-
tion of this complexity. To this end, we review QMDD-based synthesis.
Based on that, we propose optimizations that allow for a substantial
reduction of the quantum costs by jointly considering paths and nodes
in the decision diagram that employ a certain redundancy. In fact, in our
experimental evaluation, we observe substantial improvements of up to
three orders of magnitudes in terms of runtime and up to six orders of
magnitudes (a factor of one million) in terms of quantum cost.

1 Introduction

In the recent years, reversible circuits – circuits that additionally allow to com-
pute the inputs from the outputs – have become an established field in research
due to their characteristics regarding low power design (based on the seminal
work of Landauer [5] and Bennett [3]) and their application in quantum compu-
tations [10] – a new computation paradigm that allows for solving certain tasks
substantially faster. Most recently, reversible circuits also found their application
in the design of on-chip interconnects [18,20], encoders [21], and verification [1].

Reversible circuits employ a completely different structure compared to con-
ventional circuits, because not only the outputs are determined by the inputs,
but also vice versa. This leads to a structure where circuits consist of a set of
circuit lines that are passed through a cascade of reversible gates and, hence, dis-
allow direct feedback and fanout. Consequently, dedicated synthesis approaches
that establish the desired unique mapping from inputs to outputs are required.
Although a variety of synthesis approaches exist, functional synthesis approaches
are of special interest, since they result in a circuit where the number of circuit
lines is minimal. Over the years, several such synthesis approaches have been
proposed, ranging from exact ones (i.e. the number of gates is minimal) [4] to
c© Springer International Publishing AG 2017
I. Phillips and H. Rahaman (Eds.): RC 2017, LNCS 10301, pp. 232–247, 2017.
DOI: 10.1007/978-3-319-59936-6 18

Improving Synthesis of Reversible Circuits 233

heuristic ones based on truth tables [6,12]. However, since their underlying data
structure is exponential they suffer from limited scalability. Therefore, methods
based on a more compact representation of the function to be synthesized such
as decision diagrams [15,16] or Boolean satisfiability [13] have been proposed.
They, in contrast, yield rather costly circuits.

In this paper, we focus on QMDD-based synthesis [16], one of the scalable
synthesis approaches listed above. This synthesis approach is based on Quantum
Multiple-Valued Decision Diagrams (QMDDs [7,11]), a decision diagram intro-
duced for the compact representation of reversible and quantum computations.
The main premise of QMDD-based synthesis is to employ reversible gates which
transform each QMDD node to the identity. By doing that for all nodes of a
QMDD (representing the function to be synthesized) in a breadth first fashion,
a circuit realizing the given function results. However, during this process often
equal cases are considered iteratively; for each, the same cascade of gates are
applied – leading to a large number of redundant steps and, hence, gates.

In this work, we introduce a new QMDD-based synthesis approach which
aims to consider those redundant cases only once. To this end, a scheme is
employed which considers all paths to the currently considered node together
and performs logic minimization to reduce their number. Furthermore, nodes
which can be transformed to the identity with the same cascade of gates are
considered jointly. This allows for a substantial reduction of gates. Experimental
evaluations show that the proposed scheme improves the current state of the art
QMDD-based synthesis by several orders of magnitudes in terms of runtime as
well as in terms of quantum cost (an abstract measure of the complexity of the
resulting circuit).

This paper is structured as follows. In Sect. 2, we briefly review reversible
functions and their representation as well as reversible circuits. Based on that,
we review QMDD-based synthesis in Sect. 3 and discuss the proposed optimiza-
tions in Sect. 4. In Sect. 5, we discuss the improvement that can be achieved
by the proposed optimization, whereas Sect. 6 experimentally confirms these
improvements. Section 7 concludes the paper.

2 Background

In this section we briefly recapitulate reversible functions including their efficient
representation as well as reversible circuits.

2.1 Reversible Functions

A Boolean function is reversible if the mapping from inputs to outputs establishes
a bijection, i.e. the inputs can also be computed from the outputs.

Definition 1. A Boolean function f : B
m → B

n is reversible iff n = m and
there exists a unique mapping from inputs to outputs and vice versa.

234 A. Zulehner and R. Wille

Besides truth tables, reversible functions can also be represented by means
of a permutation matrix.

Definition 2. Consider a reversible Boolean function f : Bn → B
n. Then, the

permutation matrix of f is a 2n×2n matrix with entries mi,j, 0 ≤ i, j < 2n such
that

mi,j =

{
1 if f(j) = i

0 otherwise.

A 1-entry in the permutation matrix means that an input (column) is mapped
to an output (row) by f . All other entries of the permutation matrix are zero.
Since a permutation represents a unique mapping (i.e. a reversible function), it
contains exactly one 1-entry in each column and in each row.

Example 1. Consider the reversible function depicted in Fig. 1a. The function
is reversible because the number of inputs is equal to the number of outputs
and each output pattern occurs exactly once. Consequently, the input can be
uniquely determined having the output only. The permutation matrix of this
reversible function is shown in Fig. 1b. Here, reversibility can easily be seen
since each column as well as each row contains exactly one 1-entry.

x1 x2 x3 x′
1 x′

2 x′
3

0 0 0 0 1 0
0 0 1 0 1 1
0 1 0 1 0 0
0 1 1 0 0 1
1 0 0 1 1 0
1 0 1 1 0 1
1 1 0 0 0 0
1 1 1 1 1 1

(a) Truth table

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

000 0 0 0 0 0 0 1 0

001 0 0 0 1 0 0 0 0

010 1 0 0 0 0 0 0 0

011 0 1 0 0 0 0 0 0

100 0 0 1 0 0 0 0 0

101 0 0 0 0 0 1 0 0

110 0 0 0 0 1 0 0 0

111 0 0 0 0 0 0 0 1

x1
x2
x3

Inputs

O
u
tp

u
ts

(b) Permutation matrix

Fig. 1. Representation of reversible functions

2.2 Quantum Multiple-Valued Decision Diagrams (QMDDs)

The description means for reversible functions discussed in the previous section
is rather limited. Since the size of truth tables as well as the size of permuta-
tion matrices grows exponentially with the number of variables, a more scalable
representation is desirable in order to represent large functions. However, permu-
tation matrices can be represented more compactly – and with non-exponential
space in many relevant cases – using so called Quantum Multiple-Valued Decision

Improving Synthesis of Reversible Circuits 235

Diagrams (QMDDs [7,11]). QMDDs were initially introduced to represent the
unitary matrices of quantum computations. Since quantum computations are
reversible and the matrices are also of dimension 2n × 2n, QMDDs are perfectly
suited for representing permutation matrices. For simplicity, we discuss only
those aspects of QMDDs that are relevant for this paper and omit all quantum
related issues.

The main idea of QMDDs is a recursive decomposition of a permutation
matrix M over its variables. A variable xi represents a mapping from the
ith input to the ith output of the function. There exist four possible mappings of
a variable, since an input may be mapped from 0 to 0, from 0 to 1, from 1 to 0,
or from 1 to 1. Considering the most significant variable x1 of the permutation
matrix, these four different mappings exactly describe the four quadrants of the
matrix, which we denote M0→0, M1→0, M0→1, and M1→1. This decomposition
can be represented by a decision diagram node labeled x1 with four outgoing
edges, describing exactly those quadrants M0→0, M1→0, M0→1, and M1→1 from
left to right.

This decomposition is recursively applied until a single entry is reached.
Such an entry is then represented by a terminal. The compactness of QMDDs
results – as for other types of decision diagrams – from sharing equal nodes
(and thus representing equal sub-matrices). For simpler graphical visualization,
we represent 0-matrices (i.e. matrices containing 0-entries only) with a 0-stub,
independent of their dimension.

Example 2. Consider again the permutation matrix depicted in Fig. 1b. The
decomposition over its variables x1, x2, and x3 yields the QMDD shown in
Fig. 2. Note that the path highlighted in bold traverses the third edge of the
node labeled x1, the second edge of the node labeled x2 and the first edge of
the node labeled x3. Consequently, this path describes a mapping of variable x1

from 0 to 1, a mapping of variable x2 from 1 to 0, and a mapping of variable x3

from 0 to 0, i.e. a mapping from input x1x2x3 = 010 to output x1x2x3 = 100.

x1

x2 x2 x2

x3 x3 x3

1

0 0 0 00 0

00 000000

Fig. 2. QMDD of the permutation matrix shown in Fig. 1b

For a formal definition of QMDDs, as well as manipulation algorithms such
as matrix multiplication we refer to [11].

236 A. Zulehner and R. Wille

2.3 Reversible Circuits

The structure of reversible circuits is completely different to classical circuitry,
because fanout and feedback are not directly allowed. A reversible circuit rather
consists of a set of circuit lines (one for each variable of the realized reversible
function) which are passed through a cascade of reversible gates. The values of
the circuit lines may be changed in a reversible fashion by these gate or passed
through unaltered. In this paper, we focus on Toffoli gates – a reversible gate
that has been proven to be universal (i.e. all reversible functions can be realized
using Toffoli gates only).

Definition 3. Consider a set X = {x1, x2, . . . , xn} of n circuit lines and a
sequence G = g1, g2, . . . , gk of k reversible gates. Then, the pair C = (X,G)
describes a reversible circuit. A Toffoli gate gi = TOF (Ci, ti) consists of a set
Ci ⊆ {x−

i |xi ∈ X} ∪ {x+
i |xi ∈ X} of negative and positive control lines, and

a target line ti. The Boolean value of the target line is inverted iff the Boolean
value of all positive and negative control lines is 1 and 0, respectively. All circuit
lines except the target line are passed unaltered through the gate.

Toffoli gates as defined above are self-inverse, i.e. applying a Toffoli gate
twice results in the identity. For graphical visualization we use the symbols , ,
and ⊕ to represent a positive control line, a negative control line, and a target
line, respectively.

Example 3. Consider the reversible circuit shown in Fig. 3. The circuit is
composed of three Toffoli gates and is labeled with the intermediate values
resulting when the input lines are assigned x1x2x3 = 010. The first gate
g1 = TOF ({x−

1 , x
+
2 }, x3) inverts the value of target line x3, because the neg-

ative control line x1 is assigned 0 and the positive control line x2 is assigned 1.
Similarly, the second gate g2 = TOF ({x+

3 }, x1) is activated, because the value
of circuit line x3 is now 1. Consequently, the value of target line x1 is changed
to 1. The last gate g3 = TOF ({x+

2 , x
−
3 }, x1) does not change the value of target

line x1, because the negative control line x3 is assigned 1. Therefore, all three
circuit lines are passed through the gate unaltered in this case. Eventually, the
circuit maps input x1x2x3 = 010 to output x′

1x
′
2x

′
3 = 111.

x1 x′
1

x2 x′
2

x3 x′
3

0

1

0

g1

0

1

1

g2

1

1

1

g3

1

1

1

Fig. 3. Reversible circuit

The complexity of reversible circuits is usually measured in terms of quan-
tum cost. These cost result from mapping the circuit to specific libraries
of quantum gates. Two commonly used libraries for determining the quan-
tum cost of a reversible circuit are the NCV library [8] and the Clifford+T

Improving Synthesis of Reversible Circuits 237

library [2]. Here, the quantum cost are determined by the overall number of gates
(NCV-cost) or the length of the sequence of T-gates (and, therefore, denoted
T-depth), respectively. As shown in Table 1, the NCV-cost as well as the
T-depth of a Toffoli gate depends on the number of control lines. The quan-
tum costs listed in Table 1 were determined using RevKit [14].

Table 1. Quantum cost of Toffoli gates

Control lines NCV-cost T-depth

1 1 0

2 5 3

3 20 12

4 40 24

5 60 36

Example 3 (continued). The NCV-cost and the T-depth of the circuit shown in
Fig. 3 are 11 and 6, respectively.

3 QMDD-Based Synthesis

In this section, we review QMDD-based synthesis (originally proposed in [16]).
As discussed in Sect. 1, QMDD-based synthesis is a functional synthesis approach
which yields a circuit with the minimal number of circuit lines. The main idea
behind the algorithm is described as follows.

Assume the function to be synthesized is described by a permutation
matrix M . Then, due to reversibility its inverse M−1 exists, and their prod-
uct M ◦ M−1 = I is the identity matrix. Consequently, if we find a cascade
of reversible gates G that transforms M to the identity, we implicitly found a
reversible circuit for M−1. Reversing G yields a reversible circuit that realizes M
(because the Toffoli gates are self-inverse). Therefore, an algorithm is required
that transforms the QMDD representing M to the identity. Since the identity
matrix only maps input 0 to output 0 and input 1 to output 1, the identity
QMDD imposes the structure depicted in Fig. 4.

To obtain the desired identity QMDD, we traverse the QMDD in breadth-first
manner and transform each node we encounter to the identity structure shown in
Fig. 5 by applying Toffoli gates. To this end, the paths to the 1-terminal (called
1-paths in the following) through the second and third edge of the currently
considered node have to be moved to the first and fourth edge, respectively. These
1-paths refer to the input of the encountered variables and therefore contain a
negative literal xj (positive literal xj) whenever the first or third (second or
fourth) edge of a node labeled xj is traversed.

In the following, we denote the sets of 1-paths through the first, second,
third and fourth edge of the currently considered node by P1, P2, P3, and P4,

238 A. Zulehner and R. Wille

x1

x2

xn

1

00

00

00

00

Fig. 4. Identity QMDD with n variables

xi

xi+1 xi+1

00

Fig. 5. Identity structure

respectively. Similarly, we refer to the sets of 0-paths (i.e. paths that terminate in
a 0-stub) with P 1, P 2, P 3, and P 4. Since the QMDD represents a permutation
matrix, each column and each row of the matrix contains exactly one 1-entry.
Therefore, the number of 0-paths in P 1 (P 4) is equal to the number of 1-paths
in P2 (P3), i.e.

∣∣P 1

∣∣ = |P2|. Moreover, P 1 = P3 and P 4 = P2.

Example 4. Consider the QMDD shown in Fig. 2 and assume that the root node
is currently considered. The sets of 1-paths are P1 = P4 = {x2x3, x2x3, x2x3}
and P2 = P3 = {x2x3}.

To obtain the identity structure for the currently considered node labeled xi,
we swap the 1-paths in P2 with the 0-paths in P 1. This inherently swaps the
1-paths in P3 with the 0-paths in P 4. Swapping paths can be accomplished by
applying Toffoli gates, since applying a Toffoli gate TOF (C, xi) inverts the input
of variable xi for all paths that are represented by C.

Example 4 (continued). The path p = x2x3 is contained in the set P2 of
1-paths through the second edge as well as in the set P 1 of 0-paths through
the first edge. These two paths can be swapped by applying the Toffoli gate
TOF ({x+

2 , x
−
3 }, x1). This automatically swaps the 1-path in P3 with the 0-path

in P 4. The resulting QMDD is depicted in Fig. 6.

For a more formal description of how the currently considered node can be
transformed to the desired identity structure we refer to [16], because under-
standing the main idea of QMDD-based synthesis (the breadth-first traversal of
the nodes) is sufficient for the purpose of this paper.

Improving Synthesis of Reversible Circuits 239

x1

x2 x2

x3 x3 x3

1

00

0 0

00 000000

Fig. 6. QMDD resulting from transformation of the root node of the QMDD in Fig. 2

If the currently considered node is not the root node of the QMDD, we have
to ensure that no other node is affected by the applied gates. To this end, we
add further control lines that describe the path to the currently considered node
to each Toffoli gate that is applied. More precisely, if the path to the currently
considered node traverses the first edge of another node (representing a mapping
from 0 to 0), we add a negative control line for the corresponding variable.
Analogously, we add a positive control line for the corresponding variable if the
path traverses the fourth edge of that node1. If there exist k such paths to the
currently considered node, we have to replicate each Toffoli gate for each of those
k paths in order to eventually transform the currently considered node to the
identity structure.

Example 5. Consider the QMDD depicted in Fig. 7 and assume that the node
highlighted in blue is currently considered. This node can be transformed to the
desired identity structure by applying a Toffoli gate with target line x3. Since
there exist two paths to this node, namely x1x2 and x1x2, we have to apply
two gates TOF ({x−

1 x
+
2 }, x3) and TOF ({x+

1 x
−
2 }, x3) to eventually transform this

node to the desired identity structure. The resulting circuit is shown in Fig. 8a.

x1

x2 x2

x3 x3

1

x1 00 x1

00 x2 x2 00

00 0 0

Fig. 7. Paths to the currently considered node

1 A path to the currently considered node can only traverse the first or the fourth
edge of other nodes, because they already establish the identity structure.

240 A. Zulehner and R. Wille

x1 x′
1

x2 x′
2

x3 x′
3

g1 g2

(a) Without optimization

x1 x′
1

x2 x′
2

x3 x′
3

g1 g2

(b) ESoP-minimized

Fig. 8. Gates required to transform the currently considered node from Fig. 7

4 Improving QMDD-Based Synthesis

In the synthesis scheme originally proposed in [16] and reviewed above, the
overall number of paths to the nodes of a certain variable grows exponentially
with the number of variables above. This leads to a substantial number of gates
with (partially) redundant sets of control lines. This poses a significant drawback
to QMDD-based synthesis since

– a significant number of gates is applied to transform each single node of the
considered QMDD to the identity structure and

– the applied gates usually include rather large sets of control lines.

More precisely, the number of gates is heavily influenced by the number of
paths to the currently considered node, because each gate that is required to
transform the currently considered node to the identity has to be replicated
for each path. Furthermore, the number of control lines of these Toffoli gates
depend on the number of literals of the path from the root node to the cur-
rently considered node (because these literals are added to the Toffoli gates in
form of control lines to ensure that no other node is affected). Since the overall
costs of a reversible circuit depend on both, the total number of gates as well
as the respective number of control lines, this makes circuits generated using
QMDD-based synthesis rather expensive.

In order to address the problem, we propose two optimization techniques to
reduce the cost of the circuits generated by QMDD-based synthesis, namely

1. a straightforward solution which performs logic minimization on the paths to
the currently considered node to reduce the number of paths as well as the
number of their literals and

2. a more elaborate approach which considers nodes that require the same
sequence of Toffoli gates in order to get transformed to the identity struc-
ture jointly.

The straight forward solution utilizes logic minimization techniques to reduce
the overall number of paths to the currently considered node as well as to reduce
the overall number of literals in the paths. To this end, each path to the currently
considered node is described as a product (conjunction) of its literals. Then, the
exclusive sum (exclusive disjunction) of all these products is formed. The sum
has to be exclusive, because applying a Toffoli gate an even times does not have

Improving Synthesis of Reversible Circuits 241

any effect (since a Toffoli gate is self-inverse). The resulting Exclusive Sum of
Products (ESoP) can be minimized using techniques such as proposed in [9].
Such a minimization reduces the overall number of products (and, hence, the
number of paths and gate replications) as well as the number of literals in these
products (and, hence, the number of control lines that have to be added to each
gate).

Example 6. Consider again the QMDD depicted in Fig. 7 and assume that the
node highlighted in blue is currently considered. There exist two paths to the
currently considered node, namely x1x2 and x1x2. The ESoP of the two paths
is then x1x2 ⊕ x1x2. Minimizing this ESoP yields x1x2 ⊕ x1x2 = x1 ⊕ x2. Con-
sequently, also the two paths x1 and x2 can be used to describe all paths to the
currently considered node. The resulting gates are shown in Fig. 8b. Although
the number of paths (and therefore the number of gates) did not change, the
NCV-cost and T-depth are reduced from 10 to 2 and from 6 to 0, respectively.

The more elaborated optimization approach aims to further reduce the cost
of the circuits considering more than one node simultaneously. The general idea
is based on the key observation that sometimes different QMDD nodes require
the same sequence of Toffoli gates in order to get transformed to the identity.
As described in Sect. 3, this sequence of Toffoli gates depends on the set P1 of
1-paths through the first edge and the set P2 of 1-paths through the second edge
only. From these two sets, the other sets of 1-paths (P3 = P 1, P4 = P 2) as well
as the set of 0-paths can uniquely be determined. Cases frequently occur where
nodes in the QMDD have equal sets of 1-paths P1 and P2, even though they are
structurally different.

Example 7. Consider the QMDD depicted in Fig. 9. The root node already estab-
lishes the desired identity structure and the two nodes labeled x2 (highlighted
in blue) are structurally different. However, their sets of 1-paths are equal,
i.e. P1 = {x3} and P2 = {x3} for both nodes. Consequently, both nodes can
be transformed to the identity structure with the same sequence of Toffoli gates.
One possible sequence is TOF ({x+

2 }, x3), TOF ({x+
3 }, x2).

Without applying this scheme, the sequence of Toffoli gates has to be repli-
cated twice – once for each node (including control line x−

1 for the left node
and control line x+

1 for the right node). This resulting in the circuit shown in
Fig. 10a. The gates g1 and g2 thereby transform the left node to the identity,
whereas the gates g3 and g4 transform the right node to the identity.

Since QMDD nodes that employ an equal characteristic regarding their sets
of 1-paths P1 and P2 can be transformed to the identity structure with the same
sequence of Toffoli gates, they can considered jointly for synthesis purposes and
thus processed together. To this end, we form the ESoP of the paths to all nodes
with equal sets P1 and P2 and apply the logic minimization as described in the
straight forward approach.

242 A. Zulehner and R. Wille

x1

x2 x2

x3 x3 x3 x3

1

x1
00 x1

00000 0 0 00000

Fig. 9. QMDD nodes with equal sets P1 and P2 (Color figure online)

x1 x′
1

x2 x′
2

x3 x′
3

g1 g2 g3 g4

x+
1x−

1

(a) Without joint consideration

x1 x′
1

x2 x′
2

x3 x′
3

g1 g2

(b) With joint consideration

Fig. 10. Gates required to transform the nodes labeled x2

Example 7 (continued). Since both nodes labeled x2 have equal sets of 1-paths
P1 and P2, they can be considered jointly and processed together. The minimized
ESoP of all paths to these nodes is x1⊕x1 = 1, a sum consisting of a single prod-
uct without any literals. Therefore no additional control lines are required (all
nodes labeled x2 can be considered jointly). The resulting circuit that transforms
all nodes labeled x2 to the identity structure is shown in Fig. 10b. Compared to
the gate sequence depicted in Fig. 10a we observe a reduction of the NCV-cost
from 20 to 2 and a reduction of the T-depth from 12 to 0.

5 Discussion

In this section, we briefly analyze the potential of the optimization scheme
described above, i.e. we discuss how many nodes might be considered together
in the best case. To this end, we assume that the nodes of n variables are left to
be processed, i.e. the currently considered nodes are sub-QMDDs with height n,
and that the sequence of Toffoli gates that transforms these nodes to the identity
structure is uniquely determined by the set of 1-paths P1 and P2.

First, we determine how many different sequences of Toffoli gates exist. Since
we assume that the sequence of Toffoli gates is uniquely determined by P1 and
P2, we analyze how many combinations of sets P1 and P2 exist: The QMDD of
the currently considered node represents a 2n ×2n permutation matrix (since all
nodes above already employ the identity structure). Consequently, there must

Improving Synthesis of Reversible Circuits 243

be exactly one 1-entry in each of the 2n rows and in each of the 2n columns. This
means, that there must be exactly 2n−1 1-entries in the upper half of the matrix,
i.e. |P1|+ |P2| = 2n−1. These 2n−1 1-entries (1-paths) are arbitrarily distributed
in the 2n columns (in the sets P1 and P2). Consequently, there exist

(
2n

2n−1

)
possibilities in which rows the 1-entries are located, i.e. possible different pairs
of sets (P1, P2). If we assume n = 2, there exist

(
22

22−1

)
= 6 different sequences

that transform a currently considered node to the identity. These sequences as
well as their corresponding sets P1 and P2 are depicted in Fig. 11.

x1 x′
1

x2 x′
2

(a) P1 = {x1, x1}, P2 = ∅

x1 x′
1

x2 x′
2

(b) P1 = {x1}, P2 = {x1}

x1 x′
1

x2 x′
2

(c) P1 = {x1}, P2 = {x1}

x1 x′
1

x2 x′
2

(d) P1 = {x1}, P2 = {x1}

x1 x′
1

x2 x′
2

(e) P1 = {x1}, P2 = {x1}

x1 x′
1

x2 x′
2

(f) P1 = ∅, P2 = {x1, x1}

Fig. 11. Sequences of Toffoli gates for n = 2

As a second step, we analyze how many different sub-QMDDs with n vari-
ables exist. Recall, that a QMDD composed of n variables represents a permu-
tation matrix of dimension 2n × 2n, i.e. a matrix that represents a permutation
of 2n elements. Since 2n elements can be permuted in 2n! ways, there exist 2n!
structurally different QMDDs with n variables. Considering again that n = 2,
there exist 22! = 4! = 24 structurally different QMDDs.

Having an arithmetic expression for the number of sequences as well as for
the number of QMDDs allows one to analyze the potential of the proposed opti-
mization. The resulting numbers for several values of n are provided in Table 2.
As one can easily see, there are many more different QMDDs than sequences,
because

(
2n

2n−1

) 	 2n!. Consider the case that the n = 3 variables of the QMDD
are not yet processed. In the worst case, the QMDD has 40 320 nodes labeled
with the currently considered variable. For each of those nodes, a sequence of

Table 2. Potential of the proposed optimization

n No. sequences
(

2n

2n−1

)
No. QMDDs 2n!

2 6 24

3 70 40 320

4 12 870 2 · 1013

5 6 · 108 2.6 · 1035

244 A. Zulehner and R. Wille

Toffoli gates has to be determined. If we apply the proposed optimization (i.e. if
we jointly consider nodes with equal sets of 1-paths), the number of nodes that
have to be processed drops to 70 – reducing the computational effort by a factor
of 576. Furthermore, the logic minimization used to reduce the paths to the cur-
rently considered nodes is applied to a larger set of paths, which makes it more
likely to obtain a more compact ESoP.

Obviously, it is more likely that many nodes can be processed together if their
currently considered variable is the label for a large number of nodes. Therefore,
this optimization has a higher impact on large QMDDs than on small ones. Since
we observed that large QMDDs tend to yield circuits with rather high quantum
cost, we expect higher improvements for these cases.

6 Experimental Results

In this section, we evaluate the reduction of the quantum cost we achieve by
applying the proposed optimizations to the QMDD-based synthesis algorithm.
To this end, we have reimplemented the QMDD-based synthesis as originally
proposed in [16] (including some minor optimizations regarding performance)
in C++ using the QMDD package provided in [11] and the BDD package
CUDD [17]. This implementation represents the current state-of-the-art and
serves as baseline. Based on that, we have implemented the optimizations dis-
cussed in Sect. 4. In the following, Scheme A denotes the optimization where the
paths to the currently node are reduced using logic minimization2 and Scheme B
denotes the case if we additionally process nodes with equal sets of 1-paths
jointly. As benchmarks served the reversible circuits provided at RevLib [19].
All experiments were conducted on a 4 GHz processor with 32 GB of memory
running Linux 4.4.

Table 3 summarizes the experimental results. The first two columns list the
name of the benchmark and the number of circuit lines n. Then, for each synthe-
sis scheme, the runtime, the NCV-cost as well as the T-depth is listed. Finally,
we list the reduction of the quantum cost for Scheme A with respect to the
baseline and for Scheme B with respect to Scheme A. Since the improvement
rates observed for NCV-cost and for T-depth are almost identical for each of
the benchmarks (they deviate in a fraction of a percent only), we only list the
improvement regarding T-depth in the last two columns of Table 3.

The obtained results clearly show a significant improvement in terms of
runtime. While the original approach requires a significant amount of runtime
for some benchmarks (e.g. more than 1000 s for benchmarks sym9, rd84, and
cycle10), the optimizations proposed in this paper allowed to synthesize all
benchmarks within a few seconds (Schemes A and B). Only one benchmark
(cordic) required slightly more than a minute.

Furthermore, a substantial improvement in terms of quantum cost can be
observed for the benchmarks. For all benchmarks that result in a circuit with

2 We utilized the methods available at RevKit [14] for logic minimization.

Improving Synthesis of Reversible Circuits 245

T
a
b
le

3
.
T

-d
ep

th
im

p
ro

v
em

en
ts

co
m

p
a
re

d
to

th
e

st
a
te

-o
f-
th

e-
a
rt

246 A. Zulehner and R. Wille

a T-depth of more than half a million using the original approach, substan-
tial improvements of several orders of magnitudes were determined. Consider
for example the benchmarks plus127mod8192 and plus63mod8192. Performing
logic optimizations on the paths to the currently considered node (i.e. Scheme A)
already result in a reduction of the quantum cost by a factor of 145.21. If we addi-
tionally transform nodes together that have equal sets of 1-paths (i.e. Scheme B),
we get another improvement by a factor of 8029.35 and, hence, an overall
improvement of six orders of magnitudes. On average, we observe an improve-
ment by a factor of 4.22 for Scheme A with respect to the original approach and
an improvement by a factor of 5.35 of Scheme B with respect to Scheme A. This
results in an overall improvement by a factor of 22.57.

7 Conclusion

In this paper, we reviewed the QMDD-based synthesis algorithm (proposed
in [16]) for reversible circuits. Based on that review, we discovered cases that
result in the same sequence of Toffoli gates, but are considered iteratively –
leading to a substantial overhead in the number of gates. To reduce the costs of
the resulting circuits, we proposed optimizations that consider such redundant
cases jointly during synthesis. Experimental evaluations show that substantial
improvements to the current state-of-the-art can be achieved. More precisely,
improvements of up to three orders of magnitudes were observed for the runtime
and improvements up to six orders of magnitudes were observed regarding the
quantum cost of the resulting circuits.

Acknowledgements. This work has partially been supported by the European Union
through the COST Action IC1405.

References

1. Amarù, L.G., Gaillardon, P., Wille, R., Micheli, G.D.: Exploiting inherent char-
acteristics of reversible circuits for faster combinational equivalence checking. In:
Design, Automation and Test in Europe, pp. 175–180 (2016)

2. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm
for fast synthesis of depth-optimal quantum circuits. IEEE Trans. CAD Integr.
Circ. Syst. 32(6), 818–830 (2013)

3. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–
532 (1973)

4. Große, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact multiple control Toffoli
network synthesis with SAT techniques. IEEE Trans. CAD 28(5), 703–715 (2009)

5. Landauer, R.: Irreversibility and heat generation in the computing process. IBM
J. Res. Dev. 5(3), 183–191 (1961)

6. Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for
reversible logic synthesis. In: Design Automation Conference, pp. 318–323 (2003)

7. Miller, D.M., Thornton, M.A.: QMDD: a decision diagram structure for reversible
and quantum circuits. In: International Symposium on Multi-Valued Logic, p. 6
(2006)

Improving Synthesis of Reversible Circuits 247

8. Miller, D.M., Wille, R., Sasanian, Z.: Elementary quantum gate realizations for
multiple-control Toffolli gates. In: International Symposium on Multi-Valued Logic,
pp. 288–293 (2011)

9. Mishchenko, A., Perkowski, M.: Fast heuristic minimization of exclusive-sums-of-
products. In: International Workshop on Applications of the Reed-Muller Expan-
sion in Circuit Design, pp. 242–250 (2001)

10. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cam-
bridge University Press, New York (2000)

11. Niemann, P., Wille, R., Miller, D.M., Thornton, M.A., Drechsler, R.: QMDDs:
efficient quantum function representation and manipulation. IEEE Trans. CAD
35(1), 86–99 (2016)

12. Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Reversible logic circuit
synthesis. In: International Conference on CAD, pp. 353–360 (2002)

13. Soeken, M., Dueck, G.W., Miller, D.M.: A fast symbolic transformation based algo-
rithm for reversible logic synthesis. In: Devitt, S., Lanese, I. (eds.) RC 2016. LNCS,
vol. 9720, pp. 307–321. Springer, Cham (2016). doi:10.1007/978-3-319-40578-0 22

14. Soeken, M., Frehse, S., Wille, R., Drechsler, R.: RevKit: a toolkit for reversible
circuit design. In: Workshop on Reversible Computation, pp. 69–72 (2010). RevKit
is available at http://www.revkit.org

15. Soeken, M., Tague, L., Dueck, G.W., Drechsler, R.: Ancilla-free synthesis of large
reversible functions using binary decision diagrams. J. Symb. Comput. 73, 1–26
(2016)

16. Soeken, M., Wille, R., Hilken, C., Przigoda, N., Drechsler, R.: Synthesis of
reversible circuits with minimal lines for large functions. In: ASP Design Automa-
tion Conference, pp. 85–92 (2012)

17. Somenzi, F.: CUDD: CU decision diagram package release 3.0. 0. (2015)
18. Wille, R., Drechsler, R., Osewold, C., Ortiz, A.G.: Automatic design of low-power

encoders using reversible circuit synthesis. In: Design, Automation and Test in
Europe, pp. 1036–1041 (2012)

19. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: an online
resource for reversible functions and reversible circuits. In: International Sympo-
sium on Multi-Valued Logic, pp. 220–225 (2008). RevLib is available at http://
www.revlib.org

20. Wille, R., Keszocze, O., Hillmich, S., Walter, M., Ortiz, A.G.: Synthesis of approxi-
mate coders for on-chip interconnects using reversible logic. In: Design, Automation
and Test in Europe (2016)

21. Zulehner, A., Wille, R.: Taking one-to-one mappings for granted: Advanced logic
design of encoder circuits. In: Design, Automation and Test in Europe (2017)

http://dx.doi.org/10.1007/978-3-319-40578-0_22
http://www.revkit.org
http://www.revlib.org
http://www.revlib.org

Design of Efficient Quantum Circuits Using
Nearest Neighbor Constraint in 2D Architecture

Leniency Marbaniang1, Abhoy Kole2, Kamalika Datta1,
and Indranil Sengupta3(B)

1 National Institute of Technology Meghalaya, Shillong, India
leniencym06@gmail.com, kdatta@nitm.ac.in

2 B.P. Poddar Institute of Management and Technology, Kolkata, India
abhoy.kole@gmail.com

3 Indian Institute of Technology Kharagpur, Kharagpur, India
isg@iitkgp.ac.in

Abstract. With the development in quantum computing, nearest neigh-
bor constraint has become important for circuit realization. Various
works have tried to make a circuit nearest neighbor compliant (NNC)
by using minimum number of SWAP gates. To this end, an efficient
qubit placement strategy is proposed that considers interaction among
qubits and their positions of occurrence. Experimental results show that
the proposed method reduces the number of SWAP gates by 3.3% to
36.1% on the average as compared to recently published works.

Keywords: Nearest neighbor · Qubit · 2D architecture · Quantum gate

1 Introduction

Quantum computing has drawn the attention of researchers over several decades.
Unlike conventional binary logic systems that manipulate bits, quantum systems
manipulate qubits that can exist as a state of superposition: φ = α|0〉 + β|1〉,
where |α|2+|β|2 = 1. Qubits can be implemented using technologies like ion-trap
[1], photonics [4], nuclear magnetic resonance [3], etc. In some technology like
ion-trap, the operation requires that the interacting qubits must be adjacent
to each other known as the Nearest Neighbor Constraint. This is achieved by
inserting an appropriate number of SWAP gates for nearest neighbor compliance.
Several works have been proposed for arranging qubits in 1D [2,5,6] and 2D [7–
9] architectures where the main aim is to minimize the number of SWAP gates.
2D architectures require fewer number of SWAP gates for NNC. In this paper, a
heuristic procedure for mapping qubits to a 2D grid is proposed, which considers
gate position, degree of lookahead and strength of interaction among qubits.

The paper is organized as follows. Section 2 explains the proposed method
and steps of algorithm using examples. In Sect. 3, experimental results and com-
parison with previous works have been presented followed by concluding remarks
in Sect. 4.
c© Springer International Publishing AG 2017
I. Phillips and H. Rahaman (Eds.): RC 2017, LNCS 10301, pp. 248–253, 2017.
DOI: 10.1007/978-3-319-59936-6 19

2D NN-Compliant Quantum Circuit 249

2 Proposed Method

This section presents a qubit placement and SWAP gate insertion approach
to make a quantum circuit NNC. This is based on a lookahead strategy that
considers the frequency of occurrence of gates and their relative positions. Given
the lookahead value LA, a window of LA gates C = gigi+1gi+2 . . . g(i+LA−1)

is analyzed to determine the most interactive and frequently occurring qubits
in the block. A data structure as shown in Fig. 1 is constructed for each qubit
consisting of their interacting qubits, number of interactions and gate numbers.
Using this structure, an interaction table is created as shown in Tables 1(a) and
(b), from which the priority of the qubits is determined. Having the qubit priority
list as in Table 1(g), qubit placement in the 2D grid as explained by Algorithm 1
is carried out such that the highest priority qubit is placed at the center and its
interacting qubits are placed around it in the order <bottom, right, top, left>.
Using the 2D grid, appropriate number of SWAP gates are inserted before the
gate to bring the interacting qubits adjacent to each other and the new position
of the qubit is retained. Finally, the total number of SWAP gates is counted and
recorded. The same process is repeated for the next block of LA gates and also
for the pair of blocks combined. This method is applied to other blocks of the
same circuit and for different values of LA, and the configuration with minimum
SWAP gate count is chosen as the best.

a2

a3

a5

a4

2

6

7

a1

a1

a1

a6

a2 a41

1

1

1

1, 4

3, 5

2

2 8

C
ontrolqubit

Targetqubit

N
o.of

interactions

G
ate

N
o.

Fig. 1. Data structure of 1st block

2.1 The Proposed Algorithm

Knowing the LA value, different blocks of the circuit are defined by scanning
the circuit from left to right. For each block, data structure and priority table
are constructed and placement of the qubits in the 2D grid is performed (see
Algorithm 1). Firstly, a qubit from the qubit priority table is selected and placed
in the grid followed by its interaction qubits as shown in Fig. 2. If the qubit is
already present, nothing is done. Initially it checks if the cell is empty; if not, it
checks the next cell for space availability. This process is repeated until it finds
an empty cell and inserts the qubit. Next SWAP gates are inserted as needed.
Lastly the number of SWAP gates is calculated and recorded.

250 L. Marbaniang et al.

Algorithm 1. Qubit Placement

Input: Qubit Priority Table PT , Interaction Table IT

Output: Qubit placement GD in 2D grid

begin

for qi ∈ PT do

if (qi /∈ GD) then

x = mid x(GD);

y = mid y(GD);

if (GDx,y is NOT empty) then

Find (x, y) such that GDx,y is empty and adjacent to maximum number of empty cells;

enddif

Place qi at GDx,y ;

else

Retrieve location (x, y) of qi ∈ GD;

endif

for ((qj ∈ IT) and (ITqi,qj
� 1)) do

Place qj in one of the empty cell from GDx±r,y±c where r, c = 1, 2, . . . ;

endfor

endfor

return GD;

end

Table 1. Illustration for the first block. (a) Random Interaction Table, (b) Interaction
Table (after sorting), (c) Qubit Table, (d) Qubit Table (after sorting based on maximum
interactions), (e) Qubit Table (after sorting the gate numbers), (f) Qubit Table with
time interval, (g) Qubit Priority Table

2.2 Illustrative Example

Consider the benchmark circuit 4gt4-v0 80 that consists of 6 qubits and 44 gates.
We illustrate the steps of qubit mapping for LA = 8. In the first invocation of
the lookahead mechanism the block will consist of the first 8 gates. In the second
call it will consist of the next 8 gates, and in the last call it will consist of all the
16 gates. In the first invocation a data structure as shown in Fig. 1 is constructed
to find out the interacting qubits, the number of interactions and gate numbers

2D NN-Compliant Quantum Circuit 251

where they interact within this block. Then a random interaction table is created
by filling it randomly as shown in Table 1(a).

This random priority table is then sorted based on the interactions to get
Table 1(b). If there is more than one gate with the same interacting qubits then
we keep a record of just one gate, sum up the interactions, append the gate
numbers and sort it again. Using the modified priority table, for each qubit,
we calculate the total interactions and record all the gate numbers as shown in
Table 1(c) followed by sorting as in Table 1(d). Next, the gate numbers of each
qubit are sorted in ascending order as in Table 1(e). From this table, the qubits,
their total interactions, the gate numbers, and the interval between the gates
of each qubit is calculated as shown in Table 1(f). It is seen that qubits a2, a3
and a5 have four interactions but their frequencies of interaction are different.
So qubit with the least time interval gets the highest priority, viz. a2, as seen in
Table 1(g). Lastly, the circuit is scanned again to check if any qubit not in the
block is left unfilled in the qubit priority table. If so, the qubit is appended in
the table. Using this priority table, qubit placement is done as Algorithm 1 and
illustrated in Fig. 2.

After qubit placement is completed in a 2D grid, SWAP gates insertion is
performed. The process is illustrated for a benchmark 4gt11 84 that have five
qubits, one of which (viz. a4) is not involved in any gate interactions. The steps
are shown in Fig. 3 which requires 2 SWAP operations.

Insert a2

from Qubit
Priority Table

a2

a1

a2

a1

a2

a1

a2a3 a3

a1

a2a3

a1

a2a3 a1

a2a3

............

a1

a2a3

a1

a2a3

........................

Insert a1

Interaction
of a2

Insert a3

Interaction
of a2

Insert a1

from Qubit
Priority
Table
(Already Present)

Insert a2

Interaction
of a1 (Already

Present)

Insert a3

Interaction
of a1

(Already
Present)

Insert a5

Interaction
of a1 a5

Insert a3

from Qubit
Priority
Table

(Already Present)

a5a5

Insert a4

Interaction
of a3

a4

a6

a4
Insert a6

Interaction
of a4

Fig. 2. Qubit placement of 1st block

a1a2

a3 a5

Final
configuration

a1a2

a3 a5 a1

a2

a3

a5

a1

a2

a3

a5

a1a2

a3 a5

a1a2

a3 a5

a1a2

a3 a5

a1a2

a3 a5

V (a2; a1) V (a3; a1)

SWAP (a1; a5)

CNOT (a3; a2)

SWAP (a2; a3)

V †(a2; a1) CNOT (a3; a2) CNOT (a5; a1) CNOT (a1; a5)

Fig. 3. Swap gate insertion

252 L. Marbaniang et al.

3 Experimental Results

The proposed method has been implemented in C and run on a core-i5 based
desktop with 4 GB of RAM. Experiments have been carried out on NCV bench-
marks that was used in [7–9] and results are shown in Table 2 along with previ-
ous results. The first two columns represent the benchmark name and number of
qubits (n). SWAP gates count (swap) observed in [8] is presented next followed
by number of SWAP gates for joint lookahead (swap�) and iterative lookahead
(swap�) reported in [9] in the next two columns respectively. After this, SWAP

Table 2. Improvements in SWAP gates of 2D qubit placement over [7–9]

Benchmark [8] [9] [7] Proposed 2D Impr. (%)

Name n swap swap� swap� swap swap l grid [8] [9]� [9]� [7]

QFT5 5 5 – – 5 4 2 3× 2 20.0 – – 20.0

QFT7 7 14 13 22 18 14 7 3× 3 0 −7.7 36.4 22.2

QFT8 8 23 17 25 18 20 4 3× 3 13.0 −17.6 20 −11.1

QFT9 9 36 22 27 34 32 11 4× 3 11.1 −45.5 −18.5 5.9

QFT10 10 51 37 43 53 43 2 4× 3 15.7 −16.2 0 18.9

Shor3 10 1770 1010 1485 1710 828 16 3× 4 53.2 18 44.2 51.6

Shor4 12 – 2757 3807 4264 2118 20 3× 4 – 23.2 44.4 50.3

Shor5 14 – 6344 8504 8456 5566 15 4× 4 – 12.3 34.5 34.2

Shor6 16 19980 12468 15970 20386 12905 25 4× 5 35.4 −3.5 19.2 36.7

3 17 13 3 3 5 8 6 5 2 2× 2 −66.7 0 37.5 16.7

4gt4-v0 80 6 15 – – 17 10 8 2× 3 33.3 – – 41.2

4gt10-v1 81 5 15 15 22 16 14 4 2× 3 6.7 6.7 36.4 12.5

4gt12-v1 89 6 18 – – 19 14 4 3× 4 22.2 – – 26.3

4mod5-v1 23 5 7 – – 11 6 6 3× 3 14.3 – – 45.5

aj-e11 165 5 22 16 37 24 11 3 3× 4 50.0 31.3 70.3 54.2

alu-v4 36 5 11 – – 10 8 5 3× 3 27.3 – – 20.0

cycle10 2 110 12 588 483 824 839 635 11 4× 3 −8.0 −31.5 22.9 24.3

ham7 104 7 45 37 53 48 29 9 3× 4 35.6 21.6 45.3 39.6

ham15 108 15 280 233 355 328 199 8 4× 4 28.9 14.6 43.9 39.3

hwb4 52 4 9 – – 9 5 6 3× 2 44.4 – – 44.4

hwb5 55 5 49 37 64 45 35 3 3× 3 28.6 5.4 45.3 22.2

hwb6 58 6 76 59 85 79 52 5 3× 3 31.6 11.9 38.8 34.2

hwb7 62 8 1500 1050 1703 1688 1093 6 4× 4 27.1 −4.1 35.8 35.2

hwb8 118 9 7877 6316 11096 11027 5892 6 3× 4 25.2 6.7 46.9 46.6

hwb9 123 10 11233 8522 14459 15022 8661 10 4× 3 22.9 −1.6 40.1 42.3

mod5adder 128 6 36 33 45 41 30 6 3× 3 16.7 9.1 33.3 26.8

mod8-10 177 6 43 – – 45 36 4 3× 4 16.3 – – 20

plus63mod4096 163 13 13316 11764 22160 22118 15180 17 4× 4 −14.0 −29.0 31.5 31.4

plus63mod8192 164 14 18987 15484 29939 29835 15931 20 4× 4 16.1 −2.9 46.8 46.6

plus127mod8192 162 14 33299 27549 52333 53598 28520 30 5× 4 14.4 −3.5 45.5 46.8

rd53 135 7 40 30 47 39 29 6 4× 3 27.5 3.3 38.3 25.6

rd73 140 10 43 – – 37 25 5 4× 4 41.9 – – 32.4

urf1 149 9 37722 29252 41058 38555 22358 10 3× 4 40.7 23.6 45.5 42

urf2 152 8 16755 12872 18101 16822 9098 10 3× 4 45.7 29.3 49.7 45.9

urf3 155 10 93558 69693 95485 94017 67034 30 3× 4 28.4 3.8 29.8 28.7

urf5 158 9 34416 25887 36813 34406 19050 15 4× 3 44.6 26.4 48.3 44.6

urf6 160 15 42910 31540 43100 43909 28147 15 5× 4 34.4 10.8 34.7 35.9

2D NN-Compliant Quantum Circuit 253

gate count of [7] is presented. In the next three columns, SWAP gate count of pro-
posed approach (swap), LA value and 2D configuration (grid) are reported. The
last four columns show the % improvement of the proposed approach over [7–9].
On an average improvements of 22.4% (53.2% in the best case) over [8], 3.3%
and 36.1% (31.3% and 70.3% in the best case) over joint and iterative lookahead
strategy from [9], and 32.4% (54.2% in the best case) over [7] are observed.

4 Conclusion

In this work, a new lookahead approach for qubit placement in a 2D grid to
minimize the number of SWAP gates for NN-compliance is proposed. Prioriti-
zation of the qubits has been worked out to determine which qubit should be
placed earlier by considering the qubit’s number of interactions and position in
the circuit. The most frequent qubit with less interval gets a higher priority. The
results obtained are found to be better than those reported in existing works.

Acknowledgement. This work was partially supported by Department of Science
and Technology, Government of India under Grant No. YSS/2015/001461.

References

1. Blatt, R.: Quantum information processing with trapped ions. In: Quantum Infor-
mation and Measurement, p. Th1.1 (2013)

2. Chakrabarti, A., Sur-Kolay, S., Chaudhury, A.: Linear nearest neighbor synthesis
of reversible circuits by graph partitioning. arXiv preprint (2011). arXiv:1112.0564

3. Lu, D., Brodutch, A., Park, J., Katiyar, H., Jochym-O’Connor, T., Laflamme, R.:
NMR quantum information processing. In: Takui, T., Berliner, L., Hanson, G. (eds.)
Electron Spin Resonance (ESR) Based Quantum Computing. BMR, vol. 31, pp.
193–226. Springer, New York (2016). doi:10.1007/978-1-4939-3658-8 7

4. Nemoto, K.: Photonic architecture for scalable quantum information processing in
diamond. Phys. Rev. X 4(3), 031022 (2014)

5. Rahman, M.M., Dueck, G.W., Chattopadhyay, A., Wille, R.: Integrated synthesis of
linear nearest neighbor ancilla-free MCT circuits. In: 46th International Symposium
on Multiple-Valued Logic (ISMVL), pp. 144–149, May 2016

6. Shafaei, A., Saeedi, M., Pedram, M.: Optimization of quantum circuits for interac-
tion distance in linear nearest neighbor architectures. In: 50th ACM/EDAC/IEEE
Design Automation Conference (DAC), pp. 1–6, May 2013

7. Shafaei, A., Saeedi, M., Pedram, M.: Qubit placement to minimize communication
overhead in 2D quantum architectures. In: 2014 19th Asia and South Pacific Design
Automation Conference (ASP-DAC), pp. 495–500, January 2014

8. Shrivastwa, R.R., Datta, K., Sengupta, I.: Fast qubit placement in 2D architecture
using nearest neighbor realization. In: IEEE International Symposium on Nanoelec-
tronic and Information Systems, pp. 95–100, December 2015

9. Wille, R., Keszocze, O., Walter, M., Rohrs, P., Chattopadhyay, A., Drechsler, R.:
Look-ahead schemes for nearest neighbor optimization of 1D and 2D quantum cir-
cuits. In: 21st Asia and South Pacific Design Automation Conference (ASP-DAC),
pp. 292–297, January 2016

http://arxiv.org/abs/1112.0564
http://dx.doi.org/10.1007/978-1-4939-3658-8_7

Erratum to: Designing Parity Preserving
Reversible Circuits

Goutam Paul1(&), Anupam Chattopadhyay2, and Chander Chandak3

1 Cryptology and Security Research Unit (CSRU),
R.C. Bose Centre for Cryptology and Security,

Indian Statistical Institute, Kolkata 700 108, India
goutam.paul@isical.ac.in
2 School of Computer Engineering,

Nanyang Technological University (NTU), Singapore, Singapore
anupam@ntu.edu.sg

3 Liv Artificial Intelligence Pvt. Ltd., Bengaluru, India
chandar.chandak@gmail.com

Erratum to:
Chapter “Designing Parity Preserving Reversible Circuits” in:
I. Phillips and H. Rahaman (Eds.),
Reversible Computation, LNCS 10301,
DOI: 10.1007/978-3-319-59936-6_6

The 6th and 7th row of Table 2 (starting with 101 and 110 respectively) must have “0”
in their last column instead of “1”.

The updated online version of this chapter can be found at
http://dx.doi.org/10.1007/978-3-319-59936-6_6

© Springer International Publishing AG 2017
I. Phillips and H. Rahaman (Eds.): RC 2017, LNCS 10301, p. E1, 2017.
DOI: 10.1007/978-3-319-59936-6_20

http://dx.doi.org/10.1007/978-3-319-59936-6_6
http://dx.doi.org/10.1007/978-3-319-59936-6_6

Author Index

Al-Wardi, Zaid 102

Basu, Saikat 151

Chandak, Chander 77
Chattopadhyay, Anupam 77, 176

Datta, Kamalika 162, 202, 248
Drechsler, Rolf 102, 214

Fanet, Hervé 52
Frank, Michael P. 19

Galisultanov, Ayrat 52
Gasser, Stefan 185
Glück, Robert 66

Haulund, Tue 66
Holzer, Markus 35

Khan, Mozammel H.A. 141
Kole, Abhoy 162, 202, 248
Kutrib, Martin 35

Majumdar, Ritajit 151
Marbaniang, Leniency 248
Mogensen, Torben Ægidius 66

Nashiry, Md Asif 141
Niemann, Philipp 214

Parent, Alex 90
Parlapalli, Sai Phaneendra 111, 127
Paul, Goutam 77
Perrin, Yann 52
Pillonnet, Gaël 52

Rani, P. Mercy Nesa 202
Rice, Jacqueline E. 141
Roetteler, Martin 3, 90

Sengupta, Indranil 162, 202, 248
Srinivas, M.B. 111, 127
Surhonne, Anmol Prakash 176
Sur-Kolay, Susmita 151
Svore, Krysta M. 90

Vudadha, Chetan 111, 127

Wille, Robert 102, 162, 176, 185, 214, 232

Zulehner, Alwin 185, 214, 232

	Preface
	Organization
	Relating the Limits of Computational Reversibility to Emergence (Abstract of Invited Talk)
	Contents
	Invited Paper
	Tools for Quantum and Reversible Circuit Compilation
	1 Introduction
	2 Data Dependency Analysis in Revs
	3 An Example at Scale: SHA-256
	4 Quantum Computing Software Architecture
	5 Other Paradigms for Quantum and Reversible Synthesis
	5.1 Using Dirty Ancillas
	5.2 Repeat-Until-Success Circuits
	5.3 Higher-Dimensional Alphabets

	6 Conclusions
	References

	Foundations
	Foundations of Generalized Reversible Computing
	1 Introduction
	2 Formulating Landauer's Principle
	3 Reformulating Reversible Computing Theory
	4 Examples of Conditioned Reversible Operations
	5 Modeling Reversible Hardware
	6 Comparison to Prior Work
	7 Conclusion
	References

	Reversible Nondeterministic Finite Automata
	1 Introduction
	2 Preliminaries
	3 Nondeterministic Reversible Finite Automata
	3.1 Computational Power
	3.2 On the Degree of Irreversibility
	3.3 Closure Properties of REV-NFA Languages

	4 Conclusions
	References

	Capacitive-Based Adiabatic Logic
	1 Introduction
	2 Buffer and Inverter Functions in CAL
	3 Implementation of AND and OR Gates in CAL
	4 Electromechanical Model of a Four-Terminal Variable Capacitor Element
	4.1 Two-Terminal Parallel Plate Transducer
	4.2 Four-Terminal Parallel Plate Transducer with Stopper
	4.3 Energy Conversion and Losses

	5 Conclusion
	References

	Implementing Reversible Object-Oriented Language Features on Reversible Machines
	1 Introduction
	2 Classes and Inheritance
	3 Aliasing
	4 Translation
	4.1 Objects and Memory
	4.2 Methods
	4.3 Dynamic Dispatch

	5 Conclusion
	References

	Reversible Circuit Synthesis
	Designing Parity Preserving Reversible Circuits
	1 Introduction and Motivation
	2 Reversible Logic Synthesis
	3 Theoretical Results
	3.1 Direct Method of Converting Irreversible Specification to Parity-Preserving Reversible Specification
	3.2 Algorithm and Its Complexity Analysis

	4 Experimental Results
	4.1 Comparison with State-of-the-Art
	4.2 Tests for Boolean Functions with Large Variable Count

	5 Conclusion and Future Work
	References

	REVS: A Tool for Space-Optimized Reversible Circuit Synthesis
	1 Introduction
	2 Reversible Circuits
	3 Dependency Analysis
	3.1 Mutable Data Dependency Graphs (MDDs)
	3.2 Eager Cleanup Strategy

	4 Boolean Expression Generation
	4.1 Boolean Function Synthesis Benchmarks
	4.2 Optimizations for Boolean Circuits

	5 Conclusions
	References

	Towards VHDL-Based Design of Reversible Circuits
	1 Introduction
	2 Realizing VHDL Signals
	3 Realizing VHDL Statements
	3.1 Signal Assignment
	3.2 Components

	4 Realizing Expressions
	5 Overall Realization
	6 Conclusions
	References

	Reversible Circuit Optimization
	Optimizing the Reversible Circuits Using Complementary Control Line Transformation
	1 Introduction
	2 Background
	2.1 Reversible Logic Circuits
	2.2 Quantum Cost of a Reversible Logic Circuit

	3 Proposed Optimization Approach
	3.1 Motivation
	3.2 Basic Idea
	3.3 The Gate Transformation Algorithm
	3.4 Rule Based Optimization on Transformed Gate Netlist
	3.5 Greedy Optimization

	4 Simulation Results
	5 Conclusion
	References

	An ESOP Based Cube Decomposition Technique for Reversible Circuits
	1 Introduction
	2 Background
	2.1 Reversible Circuits
	2.2 Exclusive-OR Sum-Of-Products (ESOP)

	3 Related Work
	4 Proposed Cube Decomposition Technique
	4.1 General Idea
	4.2 Generation of Primary and Secondary Gates
	4.3 Algorithm for Cube Decomposition

	5 Simulation Results and Comparisons
	6 Conclusion
	References

	Controlled and Uncontrolled SWAP Gates in Reversible Logic Synthesis
	1 Introduction
	2 Realization of Negative-Controlled Fredkin Gate
	3 SF Based Synthesis Approach
	4 Comparison of NCT and SF Based Synthesis Approaches
	5 Conclusion
	References

	Testing and Fault Tolerance
	A Method to Reduce Resources for Quantum Error Correction
	1 Introduction
	2 Resource Requirement for 5-Qubit QECC
	3 5-Qubit Quantum Error Detection Circuit
	4 Savings in Resources by Our Proposed Method
	5 Resource Savings Analysis
	6 Conclusion
	References

	Test Pattern Generation Effort Evaluation of Reversible Circuits
	1 Introduction
	1.1 Reversible Circuits and Gates
	1.2 Reversible Circuit Fault Models
	1.3 Existing ATPG Solutions for Reversible Circuits

	2 Proposed Work
	2.1 Naive Test Pattern Generation
	2.2 Exact (Minimal) Test Pattern Generation
	2.3 Test Generation for Several Fault Models Using SAT Solver

	3 Experimental Evaluation
	4 Conclusion
	References

	Automatic Test Pattern Generation for Multiple Missing Gate Faults in Reversible Circuits
	1 Introduction
	2 Background
	2.1 Reversible Circuits
	2.2 Test of Reversible Circuits

	3 ATPG for MMGF Detection
	3.1 Test Generation for SMGFs
	3.2 Dependency Analysis
	3.3 MMGF Test Generation
	3.4 Minimal Test Set Determination

	4 Experimental Results
	References

	Quantum Circuits
	Exact Global Reordering for Nearest Neighbor Quantum Circuits Using A*
	1 Introduction
	2 Nearest Neighbor Compliant Quantum Circuits
	3 Global Reordering for Nearest Neighbor Quantum Circuits
	4 Global Reordering Using A*
	4.1 A* Algorithm
	4.2 Straightforward Strategy
	4.3 Elaborated Strategy
	4.4 Discussion

	5 Experimental Evaluation
	6 Conclusions
	References

	Improved Decomposition of Multiple-Control Ternary Toffoli Gates Using Muthukrishnan-Stroud Quantum Gates
	1 Introduction
	2 Background
	2.1 Ternary Reversible Gates
	2.2 Ternary Elementary Gates
	2.3 Existing Works in Ternary Reversible Logic Synthesis

	3 Proposed Decomposition Approach Using M-S Gates
	3.1 3-Input Ternary Toffoli Gate
	3.2 Ternary Multiple-Control Toffoli (TMCT) Gate

	4 Template Optimization and Results
	5 Conclusion
	References

	Efficient Construction of QMDDs for Irreversible, Reversible, and Quantum Functions
	1 Introduction
	2 Quantum Multiple-Valued Decision Diagrams
	3 Constructing QMDDs for Boolean Functionality
	3.1 General Idea and Methodology
	3.2 Generating the BDD of the Characteristic Function
	3.3 Transforming the BDD into a QMDD

	4 Constructing QMDDs for Quantum Functionality
	5 Feasibility Study
	6 Conclusions
	References

	Improving Synthesis of Reversible Circuits: Exploiting Redundancies in Paths and Nodes of QMDDs
	1 Introduction
	2 Background
	2.1 Reversible Functions
	2.2 Quantum Multiple-Valued Decision Diagrams (QMDDs)
	2.3 Reversible Circuits

	3 QMDD-Based Synthesis
	4 Improving QMDD-Based Synthesis
	5 Discussion
	6 Experimental Results
	7 Conclusion
	References

	Design of Efficient Quantum Circuits Using Nearest Neighbor Constraint in 2D Architecture
	1 Introduction
	2 Proposed Method
	2.1 The Proposed Algorithm
	2.2 Illustrative Example

	3 Experimental Results
	4 Conclusion
	References

	Erratum to: Designing Parity Preserving Reversible Circuits
	Erratum to: Chapter “Designing Parity Preserving Reversible Circuits” in: I. Phillips and H. Rahaman (Eds.), Reversible Computation, LNCS 10301, DOI: 10.1007/978-3-319-59936-6_6

	Author Index

