
Prototyping Ubiquitous Multi-Agent Systems:
A Generic Domain Approach with Jason

Carlos Eduardo Pantoja1,2(B) and José Viterbo2

1 Centro Federal de Educação Tecnológica (CEFET/RJ),
Av. Maracanã 229, Tijuca, RJ, Brazil

pantoja@cefet-rj.br
2 Universidade Federal Fluminense (UFF),

Av. Gal. Milton Tavares de Souza, São Domingos, Niterói, RJ, Brazil
viterbo@ic.uff.br

Abstract. This work presents a generic domain approach for pro-
gramming ubiquitous Multi-Agent Systems using Jason framework and
ARGO in electronic prototypes. The approach aims to provide a ready-
to-use platform that is heterogeneous and independent from the hard-
ware selected to be used in several domains. In order to validate the
approach, two examples in distinct domains and based on case studies
were implemented, prototyped and discussed. The results show that the
approach is adequate to develop such kind of systems.

1 Introduction

Agents are intelligent and autonomous entities that can be implemented in both
hardware and software. They are proactive and able to communicate to each
other in organizations. A Multi-Agent Systems (MAS) is a system composed
of agents acting upon an environment to achieve mutual or conflicting goals
[7]. Ubiquitous Systems and Ambient Intelligence (AmI) are electronic ambient
that aids humans in common or complex situations in a pervasive way aided by
intelligent systems. Accordingly to [2], the characteristics of the MAS approach
can be exploited for the development of such kind of systems.

Applying the MAS approach in prototyping is not a simple issue since sev-
eral limitations can occur when integrating hardware devices and the software
responsible for the reasoning. One of these limitations provides tied solutions
integrating MAS platforms and prototypes where the software is tied to the
hardware technology employed, such as [3]. When it happens, the software is
coupled to the hardware and it is not possible to change it for another one from
a different type without rework. Besides, in most of the cases, it is only possi-
ble to use one kind of controller. Another limitation is that several works, such
as [5], provide solutions where the software is strictly developed to one specific
domain, do not offering generic constructions for programming robotic agents.

ARGO1 [4] is a Jason’s customized architecture that tries to facilitate
the development of MAS for robotic platforms by allowing agents to control
1 http://argo-for-jason.sourceforge.net.

c© Springer International Publishing AG 2017
Y. Demazeau et al. (Eds.): PAAMS 2017, LNAI 10349, pp. 342–345, 2017.
DOI: 10.1007/978-3-319-59930-4 34

http://argo-for-jason.sourceforge.net


Prototyping Ubiquitous Multi-Agent Systems 343

heterogeneous microcontrollers. Jason [1] is a well-known agent-oriented pro-
gramming language. We assert that Jason and ARGO agents can be employed
in the development of ubiquitous Multi-Agent Systems (uMAS) in a generic
domain approach, uncoupled and independent from the type of controllers used.

2 Main Purpose

The main objective of this work is to provide an easy way of prototyping uMAS
using BDI agents in a generic domain approach without concerning with the
hardware technology employed in the prototype. The approach aims to be used
in ubiquitous prototyping using Jason and ARGO independently of the domain
chosen for the development of uMAS. In other words, in combining Jason and
ARGO agents, it is possible to create agents capable of controlling hardware
devices by means of microcontrollers. The designer of the prototype just has to
concern with the agents’ programming and the functionalities of the devices. All
infrastructure (e.g. middleware) for transferring the perceptions from hardware
to agent’s knowledge base is inserted into the reasoning cycle of ARGO agents.

ARGO counts with a mechanism capable of processing sensorial information
as perceptions directly into the belief base of specific kind of agent and it allows
hardware controlling without concerning with the technology. Several internal
actions are available to program some specific behaviors of an ARGO agent,
which is able to decide: whether or not perceive the environment using its sen-
sors; to act upon the environment using its actuators; the time interval between
each environment sensing; if it is necessary to filter information for the sake
of performance and; select which device to control in a specific moment. All of
these characteristics can be exploited at runtime, offering a dynamic solution for
programming and prototyping ubiquitous systems based on the agent approach.

In order to clarify the proposed approach, two examples in complete distinct
domains are shown: in the first example it will be used a smart home prototype
controlled by several ATMEGA controllers in a situation with a hearing impaired
person living at a house and the second example will present an autonomous
vehicle capable of identifying a wall and stop based on its sensors. Complement-
ing the approach, the controllers from the first example will be changed for a
different type and the example will be executed again.

3 Demonstration

This section shows the examples2 using the generic domain approach employing
Jason along with ARGO in two practical examples in distinct domains. The first
example, based on [6], presents a smart home where a hearing impaired person
is living in. In this smart home, if someone presses the door bell in front of the
main door, the hearing impaired is not able to hear it and the smart home warns
the person blinking the lights of the house. A prototype represents the smart

2 https://youtu.be/9osZIMKvftA and https://youtu.be/0QzXHwzLSj8.

https://youtu.be/9osZIMKvftA
https://youtu.be/0QzXHwzLSj8


344 C.E. Pantoja and J. Viterbo

home using two ATMEGA328 (Arduino): one for controlling the bell and another
one responsible for the lights of the house. The MAS responsible for controlling
the prototype has an ARGO agent, which is responsible for identifying if exists
somebody at the front door and another one responsible for blinking the lights
of the house. For instance, agent Kate is responsible for the bell and agent Bob
is responsible for the lights. Figure 1 depicts the prototype, Kate and Bob.

Fig. 1. The prototype employing Arduino (top left); agent Kate (top right); the pro-
totype employing Galileo (bottom left) and; agent Bob (bottom right).

The second example is an autonomous unmanned vehicle, which is able to
stop before it crashes into a wall. The vehicle is a 4WD platform with 4 dis-
tance sensors on each side of the prototype plugged in an Arduino board and an

Fig. 2. The autonomous vehicle (left) and the agent code (right).



Prototyping Ubiquitous Multi-Agent Systems 345

intelligent agent is responsible for perceiving the environment and to move until
it perceives the wall. Figure 2 depicts the vehicle and the agent code. Finally, the
first example was repeated using an Intel Galileo board instead of the Arduino
board for agent Kate (Fig. 1) without modifying the agent’s code. Bob still con-
trols the other Arduino board. It is possible to see that the demonstration com-
bines two different controllers in the same prototype in a heterogeneous app-
roach. The result shows no difference in both executions.

4 Conclusions

This paper presented a generic domain approach using Jason and ARGO for
prototyping uMAS and two practical examples in different domains were pre-
sented. The proposed approach is generic since it is possible to program agents
for different domains without being aware or bonded to the type of controller
employed. Because the software layer is independent of the controller employed
it is allowed to use different types of controllers (even together or separated).
Besides, they can be replaced without changing the MAS. For adding new con-
trollers, they must comply with the protocol used in ARGO which uses serial
ports as the communication channel between low-level layers and the software.
For instance ARGO accepts ATMEGA and PIC controllers. These character-
istics of the approach can be exploited to develop ubiquitous systems, where
heterogeneous hardware are employed and intelligent agents can be used for
providing an autonomous behavior of the system.

References

1. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems
in AgentSpeak using Jason. Wiley, Chichester (2007)

2. Chaouche, A.C., Seghrouchni, A.E.F., Ilié, J.M., Säıdouni, D.E.: A higher-order
agent model with contextual planning management for ambient systems. In: Kowal-
czyk, R., Nguyen, N. (eds.) Transactions on Computational Collective Intelligence
XVI. LNCS, vol. 8780, pp. 146–169. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44871-7 6

3. Cook, D.J., Youngblood, G.M., Heierman, E.O., Gopalratnam, K., Rao, S., Litvin,
A., Khawaja, F.: Mavhome: an agent-based smart home. PerCom. 3, 521–524 (2003)

4. Pantoja, C.E., Stabile, M.F., Lazarin, N.M., Sichman, J.S.: ARGO: an extended
jason architecture that facilitates embedded robotic agents programming. In:
Baldoni, M., Müller, J.P., Nunes, I., Zalila-Wenkstern, R. (eds.) EMAS 2016.
LNCS (LNAI), vol. 10093, pp. 136–155. Springer, Cham (2016). doi:10.1007/
978-3-319-50983-9 8

5. Sun, Q., Yu, W., Kochurov, N., Hao, Q., Hu, F.: A multi-agent-based intelligent
sensor and actuator network design for smart house and home automation. J. Sens.
Actuator Netw. 2(3), 557–588 (2013)

6. Villarrubia, G., De Paz, J.F., Bajo, J., Corchado, J.M.: Ambient agents: embedded
agents for remote control and monitoring using the pangea platform. Sensors 14(8),
13955–13979 (2014)

7. Wooldridge, M.: An Introduction to MultiAgent Systems. Wiley, New York (2009)

http://dx.doi.org/10.1007/978-3-662-44871-7_6
http://dx.doi.org/10.1007/978-3-662-44871-7_6
http://dx.doi.org/10.1007/978-3-319-50983-9_8
http://dx.doi.org/10.1007/978-3-319-50983-9_8

	Prototyping Ubiquitous Multi-Agent Systems: A Generic Domain Approach with Jason
	1 Introduction
	2 Main Purpose
	3 Demonstration
	4 Conclusions
	References


