Multi-Agent System for Distributed Cache
Maintenance

Santhilata Kuppili Venkata!®) Katarzyna Musial2, Samhar Mahmoud®,
and Jeroen Keppens?

! Department of Informatics, King’s College London, London, UK
santhilata.kuppili_venkata@kcl.ac.uk
2 Faculty of Science and Technology, Bournemouth University, Poole, UK

Abstract. With the growing number of applications that require large
data transfers from distributed databases, there is a great need for
efficient distributed data caching methods. It is essential that data is
cached at the best and optimal locations between users and data stores.
Cache management should consider patterns about data usage and make
dynamic decisions to place data across cache units. In this paper, we have
modelled the distributed data caching mechanism using multi-agent sys-
tem allowing to test strategies and algorithms for data placement that
later can be incorporated in the real life applications. Subsequently, we
demonstrate the application of this system to study various distributed
coordination strategies for identifying effective data placement and thus
improving overall cache performance. This study is significant for dis-
tributed system applications.

Keywords: Distributed cache - Agent based modelling - Coordination
strategies

1 Introduction

Introducing multi-agent systems (MAS) into distributed computing can facilitate
implementation and also provide novel characteristics such as more autonomy
to the application system [22]. MAS allows construction of models to solve prob-
lems with variety of frameworks for environment centered analysis, design [3]
and programmable architectures [9]. These architectures enable to create appli-
cation examples such as distributed situation assessment, distributed coordina-
tion etc. to accurately represent and help researchers to develop new insights.
Other examples include, large-scale distributed multi-agent systems in open sys-
tems such as E-Commerce [7], E-Health [14] and E-Governance [23]. Very few
systems in distributed caching have implemented the agent-based approach. In
industrial applications, TIBCO'. has come up with distributed cache scheme
for distributed object management using MAS. In their work, MAS is used

! https://docs.tibco.com/pub/businessevents-express/5.2.1/doc/html/
GUID-5CA44A37-01E9-4EE4-9922-8F8E70D50E7B. html.
© Springer International Publishing AG 2017

Y. Demazeau et al. (Eds.): PAAMS 2017, LNAT 10349, pp. 157-169, 2017.
DOI: 10.1007/978-3-319-59930-4_13

https://docs.tibco.com/pub/businessevents-express/5.2.1/doc/html/GUID-5CA44A37-01E9-4EE4-9922-8F8E70D50E7B.html
https://docs.tibco.com/pub/businessevents-express/5.2.1/doc/html/GUID-5CA44A37-01E9-4EE4-9922-8F8E70D50E7B.html

158 S. Kuppili Venkata et al.

to define functions such as partitioning, replication, distribution, failure recov-
ery and event handling. In another work in distributed caching, Dimakopoulos
et al. [5] simulate peer-to-peer resource discovery using MAS. Each cache agent
is used to store information to enable the distribution of data.

Distributed data caching is used in applications that need to cope with large
volumes of data which are distributed all over the world?. For users’ queries,
data may have to be collected from multiple data stores before the reply is sent
to the user. When groups of users work on related projects, queries tend to
be repeated fully or partially. Repeated queries need same data to be retrieved
and processed several times causing repeated data transfers, high bandwidth
utilization and thus delayed responses [20]. Setting up several interconnected
cache units to store the most repeated data at locations between users and data
servers help to reduce response time and save processing resources [18]. Thus
distributed caching is an interface between users and data stores.

Distributed caching is a complex system consisting of physical components
such as multiple units of data servers, communication networks, middleware
cache storage units, cache server (processing resources), and users. Cache man-
agement or maintenance is a software component which is considered to be
the soul of the entire system. Maintenance typically happens on cache servers.
Traditionally, cache storage units are small in size. Hence during the cache main-
tenance process, the decision has to be made about storing in cache units the
most relevant data and removing the obsolete data. This means that we have to
identify ‘what data’ to store, ‘where’ a given data segment should be stored,
and for ‘how long’. This is the data placement problem in distributed cache
maintenance. Periodically, an analyzer component (please refer to Sect.2) col-
lects meta-data by performing an assessment of the data freshness and location
relevance for each of the data segments stored. Analyzer helps cache mainte-
nance to predict future needs based on the meta-data collected. In order to
maximize cache utilization, management must employ approaches to make opti-
mal decisions. Usually cache units are considered to be passive resource units
and they are used only for storage purposes. But often global decision makers
are hampered with knowledge about association between data units at a par-
ticular location. Also, as the overall system grows, global decision making may
prove to be a bottle neck. To overcome these issues, we introduce the idea of
delegating some responsibility to cache. With the knowledge about local data,
caches actively participate in data placement decisions.

Typical applications that use distributed caches have huge number of cache
units set worldwide. Coordinating management component, cache units should
be able to analyze meta-data characteristics of the data usage and communicate
with each other. All these entities are autonomous, intelligent, and contribute
their knowledge towards solving data placement problem. We need to model
interactions between these entities that cooperate and negotiate to make a collec-
tive decision about the best possible location for each data segment. All of these
characteristics make agent-based system very well suited as a tool to model dis-

2 www.ivoa.net.

www.ivoa.net

Multi-Agent System for Distributed Cache Maintenance 159

tributed caching and its processes. Therefore, we propose an agent-based design
and agent-based simulation for evaluation of the presented ideas.

2 Background

Depending on application requirements, several types of architectures are avail-
able to describe the distributed cache system. The architecture we follow is as
shown in Fig. 1a. For the sake of clarity, we mention a data unit stored in cache
as ‘data segment’ and each cache storage unit as ‘cache unit’ here after.

Each cache unit in the overall cache system stores data segments. A cache
system can be in two states - (i) active state and (ii) maintenance state. Period-
ically, cache alters between these two states. Usually, maintenance state is much
shorter than active state. During the active state, the query analyzer receives
requests from users and identifies part of the query that can be answered from the
cache. It fragments the request and searches for the data needed by each of those
fragments in cache units. For any data segment that is not found in a cache, the
coordinator sends requests to databases. It then aggregates all segments together
and sends is to user [11]. During this period, it collects meta-information about
the user query patterns in order to predict future data needs.

Query interface 2.a. fragment query

2.b. refresh global index B serd
1. query - remainder
Query Analysis query
ST -reply
S]

\\\‘ R 6. Aggregate
S . s query & v \sreesscescasasas
e .
2 g S\ | cache data '
ACTIVE \f: ' placement :
CACHE {g’ ‘. '

STATE & c(f
ANALYZER o S Il. data

'
'
4 .
T s .
..... Qf feaamaaaat placement
| policies |
'
| Placement

CACHE ' agent
MAINTENANCE |
STATE

Ill. data placemen
H decisions

(a) Distributed cache architecture (b) Multi-agent architecture for distributed cache

Fig. 1. Distributed cache system and multi-agent model

During the maintenance state, cache refreshment and data placement is per-
formed. While coordinator keeps track of the changes in user query patterns
globally, each cache unit governs the data segments stored locally. In smaller
systems, the query analyzer can keep track of the global index of the data and
hence user interests. But, when the system grows, some of the information is
delegated to caches. Cache units keep track of the information related to each
data segment stored at its own location. Hence, it is important to place each
data segment at appropriate cache unit, so the overall performance of the cache

160 S. Kuppili Venkata et al.

system is maximised. Query analyzer and cache units should work together and
coordinate their actions to maintain the overall cache system (shown in Fig. 1b).

Typical diagnostics used for decision making in placing data segments are:
frequency of each data segment queried, time when a data segment was used,
location preference where the data segment was requested, association among
data segments at a given location, number of joins in a query, storage capacity
of the cache unit, and workload characteristics depicting the pattern of query
requests.

Many researchers have worked in the area of distributed caching [21]. But
since we are concentrated on semantic caching based on materialized views (a
hybrid concept) in cooperative environment, we relate our work to this type
of caching only. In an environment and goal similar to us, D’Orazio et al. [6]
proposed a flexible locality based resolution and dual cache solution, based on
semantic caching to improve query evaluation in grid middleware. But, their work
does not use active cache participation. This solution may not be scalable due
to the heavy cache operations. Lillis et al. [13] developed a cooperative caching
scheme for XML documents. This scheme allows sharing cache content among a
number of peers. The proactive cache replacement policy is implemented by each
peer cache checking its nodes before performing a split whenever a specific node
overflows. This work is similar to us but, since caches take decisions indepen-
dently, they tend to miss global data access patterns. Our solution differs in this
aspect. Cache units consult global information and other important diagnostics
before taking decisions on eviction (explained later).

3 System Overview

3.1 Architecture

We have developed a multi-agent model for the distributed cache system. This
model supports two main functions of distributed cache: (i) participation of
agents in active state (regular query process) and (ii) cache maintenance for data
placement (shown inside dotted lines of Fig. 1b) in cache maintenance state. The
system architecture together with major participating agents and their interac-
tions is shown in Fig. 1b. Identification of agents and their roles are modelled
based on our earlier work [10]. We follow a flexible, generic MAS architecture
that can use decision making and information gathering techniques. We have
applied GATA agent-oriented software engineering methodology [24] because of
its capacity to formally describe agents in distributed systems. The functionality
of agents and GAIA role models are presented in Table 1. Interaction diagrams to
represent interactions among agents are developed using the standards defined
for Agent Unified Modelling Language (AUML) [17].

User agents (UA) are modelled as the software representation of humans
that query databases. Query process is instigated when UA sends a query to
databases. Query response time is measured as the time elapsed from the query
sent from UA to the reply received by a user (Fig. 1b). The main responsibility of
a user agent is to monitor the query response time. UA synchronizes its clock with

Multi-Agent System for Distributed Cache Maintenance 161

Table 1. Description of GAIA role model of agents

The User Agent Role Model

Role Schema: User Agent (Software representation of a single or group of users).

Description: Agent is the instigator of query process. It calculates query response time

Protocols and activities: formulateQuery, sendQuery, set_LocalClock, receiveReply, calculate_responseTime
Permissions: prepares a Query, suspends queryState, reads queryStatus, accesses Globalclock

Responsibilities

liveness: USER AGENT =(formulateQuery.sendQuery) (receiveReply.calculateResponseTime) (setLocalClock)

The Query analysis Agent Role Model

Role Schema: Query Analysis Agent

Description: Plays coordinator role. Monitors overall execution during active and maintenance states of cache

Protocols and activities: queryFragmentation, globallndexUpdate, aggregateResponse, collectMetaQualifiers, prepareDi-
agnostics, createDataPlacementPlans

Permissions: reads workLoadCharacteristics; updates globalQueryIndex, reads userData, reads acceptQuery, prepares
‘WorkloadAnalysis

Responsibilities

liveness:

QUERYANALYZER =(startQueryProcess. globallndexUpdate. aggregateResponse), (prepareDiagnostics);
MAINTENANCE-MANAGER = (createDataPlacementPlans);

The Cache Agent Role Model

Role Schema: Cooperative Cache Agent.

Description: Plays active role in cache maintenance. Coordinates with QAA,PA and peers to prepare data placement plans.
Protocols and activities: analyzeLocalData,vote, negotiate, generateLocalPlan

Permissions: acceses LocalSiteInformation, reads/writes/modifies LocalPlan

Responsibilities

liveness: CACHEAGENT = (analyzeLocalData.vote
EXCHANGER = (negotiate)

The Placement Agent Role Model

Role Schema: Placement Agent.

Description: Supports QAA in creating optimal placement plans based on various strategies; helps cache agents
Protocols and activities: collectVotes, collectPlans,negotiatePlans, collectQualifierData, createPlacement
Permissions: generates Plan, distributes FinalPlan, gathers DataAnalysis,localCachelnfo

analyzeLocalData.generateLocalPlan) INFORMATION-

Responsibilities
liveness: PLACEMENT-HANDLER = (collectQualifierData),(collectVotes——generatePlans), (collect-
Plans generatePlans), (negotiatePlans- generatePlans), (createPlacement)

The Database Agent Role Model

Role Schema: Resource role

Description: Agent asses data store performance characteristics

Protocols and activities: receiveQuery, lookupData processQuery, synchronizeClock, sendData
Permissions: access DataServer, process Query

Responsibilities

liveness: DATABASE-SERVER = (receiveQuery. synchronizeClock. lookupData.processQuery.sendData)

the global clock to measure response time. During the query process, UA can
be in one of the three states, query sent, wait for response or query completion.
Also, user agents exhibit querying patterns related to their interests.

Query analysis agent (QAA) assumes coordinator role in the distrib-
uted caching. It has combined responsibilities for analysis and management.
Hence QAA is a high level abstraction for multiple supporting agents. This agent
assumes coordination and monitoring of the whole query-reply process. It inter-
acts with UAs, maintenance agents and cache agents. In the active state, QAA
is the single point access to user agents. It then fragments incoming queries, and
searches within the cache for the data need by query. QAA divides query into
fragments and resolves which part of the query can be answered by cache. It then
sends the remainder query (part that cannot be answered by cache) to respec-
tive databases. After collecting all the data from sources, data is aggregated to

162 S. Kuppili Venkata et al.

formulate a response. QAA maintains the global index of data availability for
lookup. QAA also gathers meta characteristics of user query patterns from the
workloads during the active state. It sets diagnostics for the use during mainte-
nance state. During the maintenance state, QAA runs prediction algorithms for
future needs with the help of diagnostics collected during the active state. With
the help of other supporting agents QAA creates optimal data placement plans.

Cache agents (CA) are designed to take active part in cache maintenance.
They are cooperative agents. Cache agents handle local data during active phase
and prepare meta data to be used during maintenance phase. Meta data include
knowledge about query pattern, data requirements and associations among data
stored within a cache storage unit. CAs share information and negotiate with
other agents while creating plans for ideal data placement. Cache agents are
functional elements in deciding the scalability of the system.

Placement agent (PA) is an executor agent in the cache maintenance
phase. It revises and recreates data placement plans and supports QAA during
the maintenance state. PA interacts with cache agents to get feedback over the
local information. PA holds multiple responsibilities. PA helps cache agents in
negotiations. It aggregates plans made by cache agents and sends positive or
negative feedback.

Database agents (DBA) are resource (passive) agents. They understand
database load characteristics of the data usage and periodically submits this
information to QAA. Database agents are mainly needed in the evaluation
of database performance for various cache algorithms. DBA is responsible for
assessing data store performance with respect to cache algorithms and decisions
on replication.

Apart from the above main agents, Negotiator Agent supports QAA in
handling negotiations among CAs. Similarly, a Planning Agent is another
supporting role for QAA. Planning Agent is responsible for creating a master
placement plan (distributed query planner) and distributing sub plans to others.
Communication Agent, Network Agent, and Processing Agents have
specific tasks in the overall distributed cache scenario, but they are not discussed
in detail due to lack of space.

3.2 Coordination Strategies in Multi-Agent Systems

Many coordination strategies are available, each of them has its advantages and
disadvantages and there is no universally best method [12]. We choose the most
common strategies used in distributed computing [4] and multi-agent systems.
One of the foremost coordination approaches is the master /slave or client-
server technique [16]. In this technique, the master agent plans and distributes
fragments of plans to slaves. Master has the authority to do task and resource
allocation. Slaves typically are cooperative in achieving common goals visualized
by the master. Master /slave coordination approach is more suitable for central-
ized market structure. Voting methods [1] refer to techniques used to describe
decision making processes involving multiple agents. Voting methods are useful
in applications related to political science, game theory (for conflict resolution)

Multi-Agent System for Distributed Cache Maintenance 163

and pattern recognition. In weighted voting methods, each vote carries equal
weight while, ranked and confidence voting methods provide a bias to candi-
dates. In multi-agent planning [16], agents build a plan that details all future
actions and interactions required to achieve their goals as well as interleave exe-
cution with more planning and re-planning to avoid inconsistent and conflicting
actions. In multi-agent planning, there is usually a coordinating agent that, on
receipt of all partial or local plans from individual agents, analyses them in order
to identify potential inconsistencies and conflicting interactions. The coordinat-
ing agent then attempts to modify these partial plans and combines them into
a multi-agent plan where conflicting interactions are eliminated. Negotiation
protocols are used in the case where agents have different goals or the use of a
resources by agents can prevent another agent to achieve its goal. The protocol
followed in the negotiation and decision making process that determines each
agent uses its positions and criteria for agreement [2,15]. We also adopt a coor-
dination approach from automatic control systems by obtaining feedback [8].
This strategy is similar to the effective negotiation, where agents reason their
beliefs and desires [19].

3.3 Interaction Among Agents for Data Placement

This section describes implementation of coordination strategies using the agent
model. All strategies are assumed to follow standard rules: (i) all agents abide
by the coordination by agreement (COA); as and when priorities and conditions
of requirements change, coordinator agent broadcasts them to all participating
agents; (ii) all agents accomplish coordination one phase at a time in a joint
activity.

In Master/slave coordination strategy, query analysis agent (QAA) acts
as the master coordinating agent as shown in Fig. 2a. Master aims for equal distri-
bution of data caching at each cache location. With the help of a planning agent,
QAA decides the placement of data using first come first placed basis according
to cache storage space availability. Thus master follows a greedy strategy and

Coordinator ¢ VOtOIS e »
Query Analysis
Agent (OAA) CA1 cA2 CAn
5 Global H H ! '
Master 2 requirements Plan i H
Query Analysis PR— Slaves - > : j
Agent (QAA) ; ; : T m
T | Planning | | CAt I | cro II CAn | : ' T =
Workload dater Agent IS b 4 Vote : :
0 B . i]
: : 2 D
Creation of Listfor CA1,2 : 2
Plans for CA . &
Listfor CA2 H a
: H el
Listfor CAn H 8

(a) Master/slave strategy among cache (b) Voting strategy among cache agents and
agents and query analysis agent query analysis agent

Fig. 2. Master/slave and voting coordination strategies in the system

164 S. Kuppili Venkata et al.

ensures to place each data segment at a first available best position. This strat-
egy is the simplest of all and needs minimum number of inter agent-message
communications. But, master/slave strategy suffers from improper distribution
of data placement and thus longer query response time as there is no feedback
from cache units (slaves).

Unlike master/slave, voting strategy enables cache agents to vote for the
QAA’s (coordinator) decisions. This strategy allows local interests of a cache to
be expressed through voting as shown in Fig. 2b.

Cache units can vote based on the

Placement oA o | [om local knowledge (bias) such as affin-
Agent : : ity among all data stored within a
: ' cache unit. Polling of votes is done
vpli_? | to accept or reject the whole plan.

/] LU A plan is accepted only when it is
A ' accepted by majority of voters. Coor-

Plan generation

! R : dinator first starts with a basic plan.
Final plan_; - ! If rejected, improved plans are cre-
; ; ated by adding another qualifier to the
heuristic. Coordinator follows a greedy
strategy and ensures to place each data
segment at first available best position. In Multi-agent planning strategy,
cache agents develop plans keeping local benefit in view. Agents make indi-
vidual plans using different heuristics. Here the Placement Agent (PA) acts as
coordinator and resolves conflicts and develops a new global plan. Coordinator
resolves contention when more than one cache unit bids to store a specific data
segment or placement of new data (shown in Fig. 3). For example, a cache agent
with larger data storage capacity may use storage capacity for heuristic where as
another agent with high cache hit ratio might consider data frequency. PA must
consider common interests to resolve conflicts. Thus placement agent follows a
greedy strategy and ensures to place each data segment at a first best position.

In Negotiation strategy, cache agents negotiate with each other to maxi-
mize cache site utilization as shown in Fig. 4a. In multi-agent planning, partici-
pating cache agents generate separate plans and submit them to the coordinator.
Negotiation allows peer to peer communication with other cache agents to discuss
plans. Negotiations are carried on till they reach to a mutually agreed solution.
Each cache agent starts with their own objectives and benefits. This strategy
uses all of its diagnostics to calculate the cost of placement to decide the ideal
place. Hence many iterations of negotiations are needed before agents converge
to a final decision. With a decentralized approach, the cache system may not
suffer from bottlenecks with the scaling up of the system. Also, by considering
multiple diagnostics, negotiation can predict user preferences well and recom-
mend the most ideal place for each data segment. On the other hand, it suffers
from the big inter agent message communication overhead. When negotiations
run into infinite number of iterations, the coordinator agent (QAA in this case)
may force cache agents to stop from going into infinite interactions.

Fig. 3. Multi-agent planning

Multi-Agent System for Distributed Cache Maintenance 165

Query Analysis CA1 ca2 CAn
Agent

Query Analysis ! » ; '
-t — g

! | : ’g 5 Nezg‘e'?,t,m Quialffier basedd information

Negotiation 1 : .
Agent Qualifier baseld information

' P H H ' '
1 Final plan H“ ' ! ' “
' " H h ! : Final plan

(a) Negotiation among cache agents and (b) Negotiation with feedback among cache
query analysis agent in the system agents and query analysis agent

Fig. 4. Negotiation and feedback coordination strategies in the system

Feedback strategy is an extension of negotiation strategy that aims to
reduce inter agent message communication overhead. Feedback strategy employs
a negotiation agent to provide feedback after every iteration to cache agents. It
calculates the overall cost of data placement and provides feedback (shown in
Fig. 4b). When negotiations are not contributing to the improvement of the final
results, negotiation agent may provide negative feedback refraining concerned
agents from further negotiations. Thus feedback helps to reduce communication
overhead and help the negotiations to converge quickly.

4 Evaluation

We have conducted a number of experiments to study various variables using
Java based simulator developed for the research project. Due to space constraints
studies related to three important metrics are presented. We have used synthetic
workloads generated in our tool® to evaluate distributed strategies devoid of
noise introduced due to communication networks, etc. Each workload is a set of
queries with varied repetition distribution of queries. A workload is defined as a
tuple: W =< N/, s,,t,n >; where, W is the workload, N/ = total number queries
during the observation period, s = percentage number of queries repeated within
the workload, r = statistical distribution with which s queries are repeated, ¢
= statistical distribution with which queries are sent, n = number of cache
agents in the experiment. For example, a workload <30000, 20, poisson, uniform,
45> describes a workload (W) of 30000 queries; 20% of queries are repeated in
a poisson distribution among the workload; inter query arrival rate is set to
uniform distribution; and number of cache agents = 45.

3 Links to our query generator will be made public later.

166 S. Kuppili Venkata et al.

We made the following assumptions to maintain the uniformity across all
strategies:

— All queries have equal complexity to keep the processing requirements equal.

— All cache units have identical server configuration. They are assumed to be
located near to user groups. Hence cache agents can use location preference
in their negotiations. Similarly, all data servers are assumed to have identi-
cal hardware configuration. We did not consider server-side cache for these
experiments.

— Communication network is assumed to be congestion free and transmission
lines are always available for data transfers. This assumption is valid to eval-
uate the performance of a strategy alone.

Average query response time is an important metric to evaluate cache
performance. Response time is calculated as the total time elapsed between the
time a query is sent from user agent to the time user agent receives response.
Hence, response time depends on the data availability at a nearby cache location.
Thus, response time indicates the effectiveness of a data placement as well. In a
typical scenario several queries are sent simultaneously and the processing takes
place in parallel. Here we calculated the average response time for a workload.
Each of the experiments were repeated 8 times and median value is calculated
below for the comparison study. Time spent for a process to complete is measured
in terms of simulated time ticks. A tick is a unit time needed to complete it’s

execution.
n

. 1
Response time = i Z(Dl + 1+ di + gproc), (1)
i=1
where, i = i'" query, N'= total number queries during the observation period,
D = average processing time at data servers, | = cache latency (time spent at
query optimizer + lookup time), d = data transfer time on network and gproc =
assemble time of cached data segments and remainder queries.

Average response time for wvaried query repetition distributions: — Average
response time was observed in this experiment for varied query repetition distri-
butions as shown in Fig. 5a. For workload W; =< 30000,20,* uniform,50>, each
experiment was conducted several times and average was taken. We followed
Least Recently Used (LRU) policy to for cache refresh during maintenance.
From the results, random and uniform distributions of repetition of queries in
the workload (where any particular query repetition pattern is not present) have
resulted in the two highest response times across all strategies. This may be due
to the deletion of queries based on LRU. Among the strategies, as master/slave
does not consider cache agents’ preferences, average time for master/slave has
the highest response time over every query repetition pattern. Negotiation has
exhibited high response times with large communication overhead. While poisson
distribution has low response time consistently.

Average response time for varied number of queries: Based on the lower response
time for poisson query repetition pattern as shown in Fig. 5a, we focused on the

Multi-Agent System for Distributed Cache Maintenance 167

244 2

?

Uniform 0 Random

=B = Masterislave ——H— Voting
e Multi-agent e Negotiation

8

5

Average responsetime per query (ticks*1000)

g
-
184 2 E’
% £
164 % 8
% § 164
144 % s
% o
124 % g
104 é 2
Master/slave Voting Multi-agent Negotiation feedback 1120000 20000 30000 40000
Coordination strategies Number of queries per epoch
(a) Average response time with workload vari- (b) Average response time for poisson work-
ation load pattern

‘=W = Masterslave =i Voting
b Multi-agent e feedback
~——te—— negotiation

M@Poisson WUniform ORandom @ Exponential

Look up time (no. ticks * 100)
Number of messages

N

Master/slave Voting Multi-agent
Number of cache agents Coordination strategies

legotiation feedback

(c) Look up time variation (d) Communication overhead with varying
workload patterns

Fig. 5. Experimental evaluation

response time with respect to increasing number of queries in Fig.5b. With
workload W, =<*20,poisson, uniform,50>, almost all strategies stabilize with
the increase in number of queries due to the heavy repetition of few number
of queries in poisson pattern. Multi-agent and voting have low response times.
Negotiation and feedback resulted in high response time and almost similar to
Master/slave. But in general they are low as these strategies could find an ideal
data placement better than other query repetition distributions. Feedback has
shown clear advantage over negotiation. This experiment is to test the scalability
of coordination strategies for increased workloads.

Lookup time is another important metric for cache performance and a mea-
sure to consider for scaling up of the system. Lookup time is the time needed for
query analysis agent to update query index and search for a stored segment due
to reordering of data placement after each cache maintenance period. Figure 5¢
shows the lookup time needed for varying number of cache agents in the system
for W3 =< 30000,20,poisson, uniform, * >. Almost all strategies have linearly
increased with increasing number of cache agents. Lookup time for negotiation
and feedback are higher than others. This may be due to the higher number of
data replacements done by them. Master/slave and voting strategies are quicker
in comparison with other strategies and can help to scale the cache system.

The communication overhead in terms of number of internal messages
needed for a strategy to reach a decision with workload pattern variation is

168 S. Kuppili Venkata et al.

shown in Fig. 5d for W, =< 30000,20, * uniform,50>. Master/slave, voting and
multi-agent have the lowest overhead with finite number of communications per
cache agent. These strategies are ideal for open systems that uses Internet as
applications need to set up huge number of proxy caches over the network. Being
iterative, negotiation strategy needed the highest number of internal messages.
Though feedback is lower than the negotiation, the worst case for feedback may
go up to the maximum similar negotiation.

5 Conclusion and Future Work

In this paper, we have presented a multi-agent system to model distributed cache
system and the study of optimal data placement for cached data to achieve higher
performance. We chose master/slave, voting and multi-agent planning strategies
to represent centralized coordination as well as negotiation to represent decen-
tralized or peer to peer coordination in our study. We introduced a new feedback
strategy to refine negotiation. Feedback will help to reduce the message explosion
due to inter-agent communications in negotiation. Though master/slave is sim-
ple to implement, it has high response time due to the lack of knowledge about
user preferences. In negotiation strategy the advantage of considering multiple
diagnostics for recommending an ideal place is totally eclipsed by the inter-agent
communication overhead. Limitations on the evaluation is not extensively dis-
cussed as the main aim of this paper is to present the MAS. In future, we would
like to implement other coordination strategies with cache refresh policies. We
also plan to incorporate this model in real life applications and compare with
existing non multi-agent approaches.

References

1. Bosse, T., Hoogendoorn, M., Treur, J.: Automated evaluation of coordination
approaches. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006. LNCS,
vol. 4038, pp. 44-62. Springer, Heidelberg (2006). doi:10.1007/11767954_4

2. Bussmann, S., Miiller, J.: A negotiation framework for cooperating agents. In:
Deen, S.M., (ed.) Proceedings of the CKBS-SIG (CKBS 1992) (1992)

3. Consoli, A., Tweedale, J., Jain, L.: An architecture for agent coordina-
tion and cooperation. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES
2007. LNCS, vol. 4694, pp. 934-940. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74829-8_114

4. Coulouris, G., Dollimore, J., Kindberg, T., Blair, G.: Distributed Systems - Con-
cepts and Design, 5th edn. Addison Wesley Publishing Company, Reading (2011)

5. Dimakopoulos, V.V., Pitoura, E.: A peer-to-peer approach to resource discovery
in multi-agent systems. In: Klusch, M., Omicini, A., Ossowski, S., Laamanen, H.
(eds.) CIA 2003. LNCS, vol. 2782, pp. 62-77. Springer, Heidelberg (2003). doi:10.
1007/978-3-540-45217-1_5

6. d’Orazio, L., Jouanot, F., Denneulin, Y., Labbé, C., Roncancio, C., Valentin, O.:
Distributed semantic caching in grid middleware. In: Wagner, R., Revell, N., Per-
nul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 162-171. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-74469-6_17

http://dx.doi.org/10.1007/11767954_4
http://dx.doi.org/10.1007/978-3-540-74829-8_114
http://dx.doi.org/10.1007/978-3-540-74829-8_114
http://dx.doi.org/10.1007/978-3-540-45217-1_5
http://dx.doi.org/10.1007/978-3-540-45217-1_5
http://dx.doi.org/10.1007/978-3-540-74469-6_17

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Multi-Agent System for Distributed Cache Maintenance 169

He, M., Jennings, N.R., Leung, H.-F.: On agent-mediated electronic commerce.
IEEE Trans. Knowl. Data Eng. 15(4), 985-1003 (2003)

Hellerstein, J.L., Diao, Y., Parekh, S., Tilbury, D.M.: Feedback Control of Com-
puting Systems. Wiley, New York (2004)

Kravari, K., Bassiliades, N.: A survey of agent platforms. J. Artif. Soc. Soc. Simul.
18, 11 (2015)

Kuppili Venkata, S., Keppens, J., Musial, K.: Agent based simulation to evaluate
adaptive caching in distributed databases. In: Rovatsos, M., Vouros, G., Julian, V.
(eds.) EUMAS/AT -2015. LNCS, vol. 9571, pp. 455-462. Springer, Cham (2016).
doi:10.1007/978-3-319-33509-4_36

Venkata, S.K., Keppens, J., Musial, K.: Adaptive caching using sub-query frag-
mentation for reduction in data transfers from distributed databases. In: Lorente,
N.P.F., Shortridge, K., (eds.) ADASS XXV, ASP Conference, Series. ASP (2016)
Lesser, V., Corkill, D.: Challenges for multi-agent coordination theory based on
empirical observations. In: Proceedings of the 2014 International Conference on
Autonomous Agents and Multi-Agent Systems, AAMAS 2014 (2014)

Lillis, K., Pitoura, E.: Cooperative XPath caching. In: Proceedings of the 2008
ACM SIGMOD International Conference on Management of Data, SIGMOD 2008.
ACM (2008)

Mahmoud, S., Tyson, G., Miles, S., Taweel, A., Staa, T.V., Luck, M., Delaney,
B.: Multi-agent system for recruiting patients for clinical trials. In: International
Conference on Autonomous Agents and Multi-Agent Systems, AAMAS 2014 (2014)
Marzougui, B., Barkaoui, K.: Interaction protocols in multi-agent systems based
on a gent petri nets model. IJACSA 4(7), 166 (2013)

Nwana, H.S., Lee, L.C., Jennings, N.R.: Co-ordination in software agent systems.
Br. Telecom Tech. J. 14(4), 79-88 (1996)

Odell, J., Parunak, H.V.D., Bauer, B.: Extending UML for Agents. ERIM, Ann
Arbor (2000)

Ozsu, T.M., Valduriez, P.: Principles of Distributed Database Systems, 3rd edn.
Prentice Hall Press, Upper Saddle River (2007)

Sycara, K.P.: Multiagent compromise via negotiation. In: Huhns, M., (ed.) Dis-
tributed Artificial Intelligence, vol. 2. Morgan Kaufmann Publishers Inc. (1989)
Szalay, A.S., Gray, J., Thakar, A.R., Kunszt, P.Z., Malik, T., Raddick, J.,
Stoughton, C., van den Berg, J.: The SDSS Skyserver: public access to the sloan
digital sky server data. In: Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data, SIGMOD 2002. ACM (2002)

Team, T.T.: Mid-tier caching: the TimesTen approach. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data, SIGMOD 2002. ACM
(2002)

Stula, M., Stipani¢ev, D., Seri¢, L.: Multi-agent systems in distributed compu-
tation. In: Jezic, G., Kusek, M., Nguyen, N.-T., Howlett, R.J., Jain, L.C. (eds.)
KES-AMSTA 2012. LNCS, vol. 7327, pp. 629-637. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-30947-2_68

Warnier, M., Brazier, F.M.T., Oskamp, A.: Security of distributed digital criminal
dossiers. J. Softw. 3(3), 21-29 (2008)

Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia methodology for agent-
oriented analysis and design. Auton. Agents Multi Agent Syst. 3(3), 285-312 (2000)

http://dx.doi.org/10.1007/978-3-319-33509-4_36
http://dx.doi.org/10.1007/978-3-642-30947-2_68

	Multi-Agent System for Distributed Cache Maintenance
	1 Introduction
	2 Background
	3 System Overview
	3.1 Architecture
	3.2 Coordination Strategies in Multi-Agent Systems
	3.3 Interaction Among Agents for Data Placement

	4 Evaluation
	5 Conclusion and Future Work
	References

