
Chapter 1

Ecological Informatics: An Introduction

Friedrich Recknagel and William K. Michener

1.1 Introduction

Ecological Informatics is an emerging discipline that takes into account the data-

intensive nature of ecology, the valuable information content of ecological data,

and the need to communicate results and inform decisions, including those related

to research, conservation and resource management (Recknagel 2017). At its core,

ecological informatics combines developments in information technology and

ecological theory with applications that facilitate ecological research and the

dissemination of results to scientists and the public. Its conceptual framework

links ecological entities (genomes, organisms, populations, communities, ecosys-

tems, landscapes) with data management, analysis and synthesis, and communicat-

ing and informing decisions by following the course of a loop (Fig. 1.1).

Ecological Entities range from genomes, individual organisms, populations,

communities, ecosystems to landscapes and the biosphere, and are highly complex

and distinctly evolving. Figure 1.2 illustrates the evolving nature of ecosystems in

view of the fact that physical-chemical boundaries such as topology, temperature,

pH, and substrate determine their community of organisms. Progressing shifts of

physical-chemical boundaries under the influence of environmental and climate

changes at seasonal and inter-annual scales restructure communities of organisms,

and ecosystems adjust in due course. Over time, evolving ecosystems also alter

the nature of landscapes. Ecologists are challenged by the evolving nature and
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data-intensive nature of ecology, and require suitable concepts and tools to deal

appropriately with these challenges.

Data Management must meet requirements of many diverse sources of infor-

mation, and be suitable to a wide range of spatial and temporal scales. Sources of

information include paleo-ecological, eco-genomic, habitat, community and cli-

mate data. Spatial scales of ecological data range from habitat-specific to global,

and time scales range from real-time to centuries-long.

Analysis and Synthesis utilise archived and real-time information for inventory-

ing ecological entities, assessing sustainability of habitats and biodiversity, and

Fig. 1.1 Conceptual framework of ecological informatics

Fig. 1.2 Evolving nature of ecosystems
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hind- and forecasting of ecological entities. Multivariate statistics are commonly

applied for data analysis. Data synthesis typically applies inferential and process-

based modelling techniques, and utilises remote sensing and GIS-based tools.

Bayesian inference extends the predictive capacity of inferential and process-

based models by quantifying model uncertainties and estimating forecasting risks.

Communicating and Informing Decisions supported by data analysis and syn-

thesis is relevant for generating hypotheses for subsequent research steps as well as

for identifying viable management options. While inferential models help inform

short-term decisions, process-based models are more appropriate for long-term

forecasts and decision-making.

1.2 Data Management

Ecological data management is a process that starts at the conceptualization of the

project and concludes after the data have been archived and the results have

informed future research as well as resource management, conservation, and

other types of decision-making. Data management may be conceptualized in

terms of a data life cycle (Fig. 1.3) whereby: (1) projects are conceived and data

collection and analyses are planned; (2) data are collected and organized, usually

into data tables (e.g., spreadsheets) or databases; (3) data are quality assured using

accepted quality assurance/quality control (QA/QC) techniques; (4) data are

documented through the creation of metadata that describe all aspects of the data

and research; (5) data are preserved in a data repository or archive so that they may

be reused and shared; (6) data are discovered or made discoverable so that they may

be used in synthesis efforts or to reproduce results of a study; (7) data are integrated

Fig. 1.3 The life cycle of

data. Note the steps need not

be sequential nor does

research necessarily involve

all steps; e.g., some

synthesis efforts may

involve no new data

collection, thereby

proceeding from data

discovery through

integration with other data,

to analysis and visualization
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with other data in order to answer specific questions such as examining the

influence of climate extremes on pollination ecology; and (8) data are explored,

analysed and visualized, leading to new understanding that can then be communi-

cated to other scientists and the public.

The seven chapters in Part II discuss concepts, practices and tools that are

commonly used in data management planning through data integration. In

Chap. 2, Michener (2017a) provides guidance on developing effective data man-

agement plans. Chapter 3 (Porter 2017) describes different database approaches that

can be used to organize and manage data, as well as key data management concepts

like data modelling and data normalization. Chapter 4 (Michener 2017b) focuses on

commonly used graphical and statistical QA/QC approaches to ensuring data

quality. In Chap. 5, Michener (2017c) discusses the metadata standards and tools

that can be used to document data so it can be easily discovered, accessed and

interpreted. Cook et al. (2017) describe best practices for protecting and preserving

data to support long-term acquisition and use in Chap. 6. Chapter 7 (Michener

2017d) focuses on methods that can be employed to more easily discover data as

well as make data more readily discoverable by others. In Chap. 8, Schildhauer

(2017) discusses the underlying principles and practices involved in integrating

data from different sources—a necessary prerequisite for most data analysis and

synthesis efforts.

1.3 Analysis and Synthesis

The five chapters in Part III discuss a subset of modern tools that can be used for

analysis, synthesis and forecasting. Figure 1.4 provides an overview of basic steps

and methods of data analysis and synthesis in ecology. Conceptual Models should
be the starting point by reflecting research questions and key variables in an

instructive way. Sources for Data Acquisition typically include field, laboratory

and/or literature data. Common methods for Data Analysis are canonical corre-

spondence analysis (CCA), principal component analysis (PCA) as well as self-

organising maps (SOM) that reduce the data dimension and reveal nonlinear rela-

tionships by ordination and clustering of multivariate data.

In Chap. 12, Park et al. (2017) address explicitly the benefits of SOM for

revealing and visualising nonlinear relationships in complex ecological data, and

in Chap. 18, Mihuc and Recknagel (2017) demonstrate applications of canonical

correspondence analysis for qualitative analysis of interrelationships between the

native zooplankton community and invasive zebra mussel and alewife in Lake

Champlain.

Data Synthesis can be performed by statistical, inferential and process-based

modelling techniques. Statistical modelling basically utilises univariate nonlinear

and multivariate linear regression analysis but fail to identify multivariate nonlinear

relationships intrinsic of ecological data. By contrast, inferential models using

artificial neural networks (ANN) and evolutionary algorithms (EA) are well suited

6 F. Recknagel and W.K. Michener

https://doi.org/10.1007/978-3-319-59928-1_2
https://doi.org/10.1007/978-3-319-59928-1_3
https://doi.org/10.1007/978-3-319-59928-1_4
https://doi.org/10.1007/978-3-319-59928-1_5
https://doi.org/10.1007/978-3-319-59928-1_6
https://doi.org/10.1007/978-3-319-59928-1_7
https://doi.org/10.1007/978-3-319-59928-1_8
https://doi.org/10.1007/978-3-319-59928-1_12
https://doi.org/10.1007/978-3-319-59928-1_18


as tools to encapsulate and predict the highly complex and interrelated behaviour of

ecological entities solely based on inductive reasoning. ANN do not explicitly

represent models and this is viewed as a major shortcoming of this computational

technique. By contrast EA represent models explicitly by IF-THEN-ELSE rules. In

Chap. 9, Recknagel et al. (2017a) introduce the rationale of the hybrid evolutionary

algorithm (HEA) and demonstrate applications of HEA for threshold identification,

predictive modelling and meta-analysis. Inferential modelling by HEA proves also

suitable for operational forecasting and early warning as discussed in Chap. 15 by

Recknagel et al. (2017b). Inferential models by regression trees represent correla-

tions between habitat properties and ecological entities by hierarchical structured

IF-THEN-ELSE rules. Case studies in Chap. 15 demonstrate their capability to

identify threshold conditions responsible for changing ecological entities.

Process-based models as outlined in Chap. 10 by Arhonditsis et al. (2017a)

synthesize data by nonlinear differential equations that contain algebraic equations

of Michaelis-Menten-type kinetics, causal and empirical relations. As demonstrated

by case studies in Chap. 10, process-based modelling of specific ecosystems

requires substantial data sets as well as ad hoc parameter optimization and calibra-

tion. If simulation results achieve reasonable validity for a specific ecosystem as

indicated by a ‘low’ root mean squared error RMSE and a ‘high’ coefficient of

Fig. 1.4 Basic steps and methods of data analysis and synthesis
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determination r2, the underlying model may be applied for hypotheses testing or

long-term forecasting by scenario analysis. The credibility of scenario analyses

may be constrained by the scope and inherent uncertainties of models. The analysis

of model uncertainty by means of Bayesian inference is explicitly addressed in

Chap. 11 by Arhonditsis et al. (2017b) and demonstrated by several case studies.

Forecasting of ecosystem behaviour is prerequisite for preventing or mitigating

events that cause rapid deterioration of ecological entities. In Chap. 16, Recknagel

et al. (2017c) address forecasting by model ensembles in order to overcome single

model constraints. Case studies in Chap. 16 demonstrate that ensembles of com-

plementary models extend the scope of an individual model, which is necessary to

more realistically reveal complex interrelationships between adjacent ecosystems

such as catchments and lakes under the influence of global change, and that model-

specific uncertainties may be compromised by Bayesian analysis of ensembles of

alternative models (see also Chap. 11). As shown in Chap. 15 (Recknagel et al.

2017b), predictive inferential models and remote sensing appear capable of short-

term forecasting of rapid outbreaks of population density. Two case studies dem-

onstrate that inferential models based on HEA allow early warning of harmful algal

blooms in lakes by real-time forecasts up to 30-day-ahead. The chapter also

discusses the potential of remote sensing for real-time monitoring of the spatio-

temporal distribution of water quality parameters and cyanobacteria blooms in

water bodies. Data Visualisation is prerequisite to successfully communicate and

disseminate findings from data analysis and synthesis. In Chap. 13, Rocchini et al.

(2017) address the potential of GIS-tools to visualise spatially-explicit modelling

and forecasting results.

1.4 Communicating and Informing Decisions

Research findings must be accessible to technical and general audiences to inform

decision-making, contribute to new knowledge, and educate about complex topics.

Part IV includes three chapters that illustrate how information can best be conveyed

to diverse audiences. In Chap. 14, Budden and Michener (2017) discuss best

practices for communicating and disseminating research outputs via publications,

presentations, illustrations and social media. Various modelling approaches can be

particularly useful for informing near-term and long-term decisions. In Chap. 15,

Recknagel et al. (2017b) highlight the potential for inferential models and remote

sensing to inform operational decisions by short-term forecasting. In Chap. 16,

Recknagel et al. (2017c) present scenario analysis by complementary and alter-

native model ensembles that can inform strategic decision-making by long-term

forecasting.
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1.5 Case Studies

The five specific case studies included in Part V illustrate how ecological infor-

matics has evolved to meet the needs of the various disciplines that comprise the

domain of ecological science. In Chap. 17, Parr and Thessen (2017) present two

user stories that highlight the latest tools and procedures that are used to manage

biodiversity data, including identification tools, phylogenetic trees, ontologies,

controlled vocabularies, standards, and genomics. In Chap. 18, Mihuc and

Recknagel (2017) demonstrate applications of CCA and HEA to long-term limno-

logical data of Lake Champlain (USA). In Chap. 19, Hanson et al. (2017) provide

an overview of the Global Lake Ecological Observatory Network and emphasize

the role of coordinated social and technical change in a successful research net-

work. Chapter 20 (Hong et al. 2017) describes efforts to analyse and synthesize data

resulting from the Nakdong River (South Korea) Long Term Ecological Research

effort. Maberly et al. (2017) report research outcomes from the LTER English Lake

District in Chap. 21.
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