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Part I

Introduction



Chapter 1

Ecological Informatics: An Introduction

Friedrich Recknagel and William K. Michener

1.1 Introduction

Ecological Informatics is an emerging discipline that takes into account the data-

intensive nature of ecology, the valuable information content of ecological data,

and the need to communicate results and inform decisions, including those related

to research, conservation and resource management (Recknagel 2017). At its core,

ecological informatics combines developments in information technology and

ecological theory with applications that facilitate ecological research and the

dissemination of results to scientists and the public. Its conceptual framework

links ecological entities (genomes, organisms, populations, communities, ecosys-

tems, landscapes) with data management, analysis and synthesis, and communicat-

ing and informing decisions by following the course of a loop (Fig. 1.1).

Ecological Entities range from genomes, individual organisms, populations,

communities, ecosystems to landscapes and the biosphere, and are highly complex

and distinctly evolving. Figure 1.2 illustrates the evolving nature of ecosystems in

view of the fact that physical-chemical boundaries such as topology, temperature,

pH, and substrate determine their community of organisms. Progressing shifts of

physical-chemical boundaries under the influence of environmental and climate

changes at seasonal and inter-annual scales restructure communities of organisms,

and ecosystems adjust in due course. Over time, evolving ecosystems also alter

the nature of landscapes. Ecologists are challenged by the evolving nature and
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data-intensive nature of ecology, and require suitable concepts and tools to deal

appropriately with these challenges.

Data Management must meet requirements of many diverse sources of infor-

mation, and be suitable to a wide range of spatial and temporal scales. Sources of

information include paleo-ecological, eco-genomic, habitat, community and cli-

mate data. Spatial scales of ecological data range from habitat-specific to global,

and time scales range from real-time to centuries-long.

Analysis and Synthesis utilise archived and real-time information for inventory-

ing ecological entities, assessing sustainability of habitats and biodiversity, and

Fig. 1.1 Conceptual framework of ecological informatics

Fig. 1.2 Evolving nature of ecosystems
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hind- and forecasting of ecological entities. Multivariate statistics are commonly

applied for data analysis. Data synthesis typically applies inferential and process-

based modelling techniques, and utilises remote sensing and GIS-based tools.

Bayesian inference extends the predictive capacity of inferential and process-

based models by quantifying model uncertainties and estimating forecasting risks.

Communicating and Informing Decisions supported by data analysis and syn-

thesis is relevant for generating hypotheses for subsequent research steps as well as

for identifying viable management options. While inferential models help inform

short-term decisions, process-based models are more appropriate for long-term

forecasts and decision-making.

1.2 Data Management

Ecological data management is a process that starts at the conceptualization of the

project and concludes after the data have been archived and the results have

informed future research as well as resource management, conservation, and

other types of decision-making. Data management may be conceptualized in

terms of a data life cycle (Fig. 1.3) whereby: (1) projects are conceived and data

collection and analyses are planned; (2) data are collected and organized, usually

into data tables (e.g., spreadsheets) or databases; (3) data are quality assured using

accepted quality assurance/quality control (QA/QC) techniques; (4) data are

documented through the creation of metadata that describe all aspects of the data

and research; (5) data are preserved in a data repository or archive so that they may

be reused and shared; (6) data are discovered or made discoverable so that they may

be used in synthesis efforts or to reproduce results of a study; (7) data are integrated

Fig. 1.3 The life cycle of

data. Note the steps need not

be sequential nor does

research necessarily involve

all steps; e.g., some

synthesis efforts may

involve no new data

collection, thereby

proceeding from data

discovery through

integration with other data,

to analysis and visualization
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with other data in order to answer specific questions such as examining the

influence of climate extremes on pollination ecology; and (8) data are explored,

analysed and visualized, leading to new understanding that can then be communi-

cated to other scientists and the public.

The seven chapters in Part II discuss concepts, practices and tools that are

commonly used in data management planning through data integration. In

Chap. 2, Michener (2017a) provides guidance on developing effective data man-

agement plans. Chapter 3 (Porter 2017) describes different database approaches that

can be used to organize and manage data, as well as key data management concepts

like data modelling and data normalization. Chapter 4 (Michener 2017b) focuses on

commonly used graphical and statistical QA/QC approaches to ensuring data

quality. In Chap. 5, Michener (2017c) discusses the metadata standards and tools

that can be used to document data so it can be easily discovered, accessed and

interpreted. Cook et al. (2017) describe best practices for protecting and preserving

data to support long-term acquisition and use in Chap. 6. Chapter 7 (Michener

2017d) focuses on methods that can be employed to more easily discover data as

well as make data more readily discoverable by others. In Chap. 8, Schildhauer

(2017) discusses the underlying principles and practices involved in integrating

data from different sources—a necessary prerequisite for most data analysis and

synthesis efforts.

1.3 Analysis and Synthesis

The five chapters in Part III discuss a subset of modern tools that can be used for

analysis, synthesis and forecasting. Figure 1.4 provides an overview of basic steps

and methods of data analysis and synthesis in ecology. Conceptual Models should
be the starting point by reflecting research questions and key variables in an

instructive way. Sources for Data Acquisition typically include field, laboratory

and/or literature data. Common methods for Data Analysis are canonical corre-

spondence analysis (CCA), principal component analysis (PCA) as well as self-

organising maps (SOM) that reduce the data dimension and reveal nonlinear rela-

tionships by ordination and clustering of multivariate data.

In Chap. 12, Park et al. (2017) address explicitly the benefits of SOM for

revealing and visualising nonlinear relationships in complex ecological data, and

in Chap. 18, Mihuc and Recknagel (2017) demonstrate applications of canonical

correspondence analysis for qualitative analysis of interrelationships between the

native zooplankton community and invasive zebra mussel and alewife in Lake

Champlain.

Data Synthesis can be performed by statistical, inferential and process-based

modelling techniques. Statistical modelling basically utilises univariate nonlinear

and multivariate linear regression analysis but fail to identify multivariate nonlinear

relationships intrinsic of ecological data. By contrast, inferential models using

artificial neural networks (ANN) and evolutionary algorithms (EA) are well suited

6 F. Recknagel and W.K. Michener



as tools to encapsulate and predict the highly complex and interrelated behaviour of

ecological entities solely based on inductive reasoning. ANN do not explicitly

represent models and this is viewed as a major shortcoming of this computational

technique. By contrast EA represent models explicitly by IF-THEN-ELSE rules. In

Chap. 9, Recknagel et al. (2017a) introduce the rationale of the hybrid evolutionary

algorithm (HEA) and demonstrate applications of HEA for threshold identification,

predictive modelling and meta-analysis. Inferential modelling by HEA proves also

suitable for operational forecasting and early warning as discussed in Chap. 15 by

Recknagel et al. (2017b). Inferential models by regression trees represent correla-

tions between habitat properties and ecological entities by hierarchical structured

IF-THEN-ELSE rules. Case studies in Chap. 15 demonstrate their capability to

identify threshold conditions responsible for changing ecological entities.

Process-based models as outlined in Chap. 10 by Arhonditsis et al. (2017a)

synthesize data by nonlinear differential equations that contain algebraic equations

of Michaelis-Menten-type kinetics, causal and empirical relations. As demonstrated

by case studies in Chap. 10, process-based modelling of specific ecosystems

requires substantial data sets as well as ad hoc parameter optimization and calibra-

tion. If simulation results achieve reasonable validity for a specific ecosystem as

indicated by a ‘low’ root mean squared error RMSE and a ‘high’ coefficient of

Fig. 1.4 Basic steps and methods of data analysis and synthesis

1 Ecological Informatics: An Introduction 7



determination r2, the underlying model may be applied for hypotheses testing or

long-term forecasting by scenario analysis. The credibility of scenario analyses

may be constrained by the scope and inherent uncertainties of models. The analysis

of model uncertainty by means of Bayesian inference is explicitly addressed in

Chap. 11 by Arhonditsis et al. (2017b) and demonstrated by several case studies.

Forecasting of ecosystem behaviour is prerequisite for preventing or mitigating

events that cause rapid deterioration of ecological entities. In Chap. 16, Recknagel

et al. (2017c) address forecasting by model ensembles in order to overcome single

model constraints. Case studies in Chap. 16 demonstrate that ensembles of com-

plementary models extend the scope of an individual model, which is necessary to

more realistically reveal complex interrelationships between adjacent ecosystems

such as catchments and lakes under the influence of global change, and that model-

specific uncertainties may be compromised by Bayesian analysis of ensembles of

alternative models (see also Chap. 11). As shown in Chap. 15 (Recknagel et al.

2017b), predictive inferential models and remote sensing appear capable of short-

term forecasting of rapid outbreaks of population density. Two case studies dem-

onstrate that inferential models based on HEA allow early warning of harmful algal

blooms in lakes by real-time forecasts up to 30-day-ahead. The chapter also

discusses the potential of remote sensing for real-time monitoring of the spatio-

temporal distribution of water quality parameters and cyanobacteria blooms in

water bodies. Data Visualisation is prerequisite to successfully communicate and

disseminate findings from data analysis and synthesis. In Chap. 13, Rocchini et al.

(2017) address the potential of GIS-tools to visualise spatially-explicit modelling

and forecasting results.

1.4 Communicating and Informing Decisions

Research findings must be accessible to technical and general audiences to inform

decision-making, contribute to new knowledge, and educate about complex topics.

Part IV includes three chapters that illustrate how information can best be conveyed

to diverse audiences. In Chap. 14, Budden and Michener (2017) discuss best

practices for communicating and disseminating research outputs via publications,

presentations, illustrations and social media. Various modelling approaches can be

particularly useful for informing near-term and long-term decisions. In Chap. 15,

Recknagel et al. (2017b) highlight the potential for inferential models and remote

sensing to inform operational decisions by short-term forecasting. In Chap. 16,

Recknagel et al. (2017c) present scenario analysis by complementary and alter-

native model ensembles that can inform strategic decision-making by long-term

forecasting.
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1.5 Case Studies

The five specific case studies included in Part V illustrate how ecological infor-

matics has evolved to meet the needs of the various disciplines that comprise the

domain of ecological science. In Chap. 17, Parr and Thessen (2017) present two

user stories that highlight the latest tools and procedures that are used to manage

biodiversity data, including identification tools, phylogenetic trees, ontologies,

controlled vocabularies, standards, and genomics. In Chap. 18, Mihuc and

Recknagel (2017) demonstrate applications of CCA and HEA to long-term limno-

logical data of Lake Champlain (USA). In Chap. 19, Hanson et al. (2017) provide

an overview of the Global Lake Ecological Observatory Network and emphasize

the role of coordinated social and technical change in a successful research net-

work. Chapter 20 (Hong et al. 2017) describes efforts to analyse and synthesize data

resulting from the Nakdong River (South Korea) Long Term Ecological Research

effort. Maberly et al. (2017) report research outcomes from the LTER English Lake

District in Chap. 21.
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Chapter 2

Project Data Management Planning

William K. Michener

Abstract A data management plan (DMP) describes how you will manage data

during a research project and what you will do with the data after the project ends.

Research sponsors may have very specific requirements for what should be

included in a DMP. In lieu of or in addition to those requirements, good plans

address 11 key issues: (1) research context (e.g., what questions or hypotheses will

be examined); (2) how the data will be collected and acquired (e.g., human

observation, in situ or remote sensing, surveys); (3) how the data will be organized

(e.g., spreadsheets, databases); (4) quality assurance and quality control procedures;

(5) how the data will be documented; (6) how the data will be stored, backed up and

preserved for the long-term; (7) how the data will be integrated, analyzed, modeled

and visualized; (8) policies that affect data use and redistribution; (9) how data will

be communicated and disseminated; (10) roles and responsibilities of project

personnel; and (11) adequacy of budget allocations to implement the DMP. Several

tips are offered in preparing and using the DMP. In particular, researchers should

start early in the project development process to create the DMP, seek input from

others, engage all relevant project personnel, use common and widely available

tools, and adopt community practices and standards. The best DMPs are those that

are referred to frequently, reviewed and revised on a routine basis, and recycled for

use in subsequent projects.

2.1 Introduction

A data management plan (DMP) describes how you will manage data throughout

the life of a research project and what you will do with the data after the project

ends. Many research sponsors now require that a DMP be submitted as part of a

grant proposal. The plan is included in the package that is reviewed to determine

whether the proposal is worthy of funding. Once a project commences, some

sponsors regularly review a project’s data management activities against what

was included in the DMP.
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It is good practice to prepare a DMP before a project is initiated, regardless of

whether or not the research sponsor requires it. The process of creating a DMP

causes one to think through many issues that will affect the costs, personnel needs,

and feasibility of a project such as:

1. How much data will be collected and how will it be treated?

2. How much time is needed to manage the data and who will be responsible for

doing so?

3. How long should the data be preserved and where is the best location to do so?

4. Are there any legal constraints associated with acquiring, using and sharing

project data?

Understanding these issues upfront can save significant time, money, and aggra-

vation over the long-term. For example, a project’s data management activities may

reasonably be expected to cost more in terms of personnel and equipment when

many terabytes of data are collected as opposed to just a few megabytes of data.

Similarly, extra precautions and security are normally required when human subject

data are collected. In effect, a good DMP helps position your research project for

success.

The remainder of this chapter offers guidance on what is needed to create a good

plan as well as some tools and tips that can be employed. First, the components of a

DMP are presented along with relevant examples and links to additional resources.

Next, the overall process of developing and using a DMP is described. This section

includes suggestions on who creates the plan, when it gets created, and how the plan

is devised and used.

2.2 Components of a Data Management Plan

Research sponsors often have very specific requirements or guidance for the types

of information to be included in a DMP. These requirements are usually listed in the

request for proposals (or funding opportunity announcement) or in the sponsor’s
grant proposal guide. It is a good idea to consult these documents, which are

normally located on the sponsor’s web site. You may also identify requirements

by checking the Data Management Planning Tool website (DMPTool 2016) or the

DMPonline website (Digital Curation Center 2016) for US and UK research

sponsors, respectively. The websites are useful resources that provide funding

agency requirements for data management plans in the form of templates with

annotated advice for filling in the template. The DMPTool website also includes

numerous example plans that are published by DMPTool users. Many universities

and other organizations support Research Data Librarians that are knowledgeable

about sponsor requirements and can provide assistance in developing DMPs. As a

last resort, don’t hesitate to contact the relevant program officials with any ques-

tions about DMP requirements.
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Regardless of the specifics, DMP requirements typically apply to all or portions

of the data life cycle—e.g., data collection and organization, quality assurance and

quality control, documentation (i.e., metadata), data storage and preservation, data

analysis and visualization, and sharing with others (e.g., data policies and dissem-

ination approaches). In addition, it is usually a good idea to identify the roles and

responsibilities of all project participants that are engaged in data management

activities, and to include a budget that covers relevant personnel, hardware, soft-

ware, and services. Note that research sponsors may place page limits on the DMP

(e.g., two pages). Nevertheless, a DMP should be a useful resource for your project.

DMPs that exceed page limits can easily be shortened into a summary that meets

sponsor requirements. The various components of a comprehensive DMP are

described in the remainder of this section.

2.2.1 Context

A brief summary of the project context can be quite instructive for those involved

directly in the project as well as others that may wish to use the data after they have

been shared. A good summary indicates:

• Why the data are being collected (e.g., questions or hypotheses that are being

addressed)

• Who will create and use the data (e.g., names and roles of project participants

and collaborators)

• How the data will be used (e.g., intended uses of the data, potential limitations on

data use)

• How the project is being supported (e.g., sponsors, supporting organizations

such as field stations and marine laboratories)

Such information may later be expanded upon and incorporated into the meta-

data (see Sect. 2.5 and Michener 2017b).

2.2.2 Data Collection and Acquisition

All components of a DMP depend upon knowing sources, types and volumes of

data that will be collected as part of the project. It is useful to document who is

responsible for acquiring and processing the data as well as where the data are

acquired. Data sources may include remote sensing platforms (e.g., aerial, satellite,

balloon, drone), in situ environmental sensor networks (Porter et al. 2009, 2012),

environmental observatories and research networks [e.g., Long-Term Ecological

Research Network (Michener and Waide 2009; Michener et al. 2011), National

Ecological Observatory Network (Schimel et al. 2011), Ocean Observatories Ini-

tiative (Consortium for Ocean Leadership 2010), and others (see Peters et al.
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2014)], data centers and repositories (Sect. 2.6; Cook et al. 2017), surveys and

interviews, and human observation in the field. Other data may be acquired by

laboratory instruments or derived from models or computer simulations. It is

important to note whether the acquired data involve human subjects or have any

proprietary restrictions that may affect use and sharing.

It is also useful to list the types of data that will be collected as part of the project.

Keep in mind that many research sponsors and journals define data broadly to

include physical and biological specimens, software algorithms and code, and

educational materials. Data types can include text, spreadsheets, audio recordings,

movies and images, geographic information system data layers, patient records,

surveys, and interviews. Each data type may have multiple options for data and file

formats. It is usually a good idea to store data in unencrypted, uncompressed,

non-propriety formats that are based on open standards that are widely employed

by the scientific community.

Both the volume of data and number of data files affect hardware, software, and

personnel needs. For example, spreadsheets have limits to the number of cells (i.e.,

data values) that can be recorded and they are not designed for managing

geospatial data.

2.2.3 Data Organization

Once the types and volume of data to be collected are known, it is then desirable to

plan how the data will be organized and, if possible, identify the tools that will be

used. A spreadsheet program like Microsoft Excel or LibreOffice Calc may be

sufficient for a few relatively small data tables (tens of columns, thousands of rows),

but would not be applicable for a project where many large data files are generated.

In cases where many large data files are anticipated, a relational database manage-

ment system (e.g., ORACLE or mySQL), a Geographic Information System (e.g.,

ArcGIS, GRASS, QGIS), or NoSQL database (e.g., MongoDB) may be more

appropriate (see Porter 2017). For most classes of software including database

programs, there are numerous commercial and free or inexpensive open source

programs available (Hampton et al. 2015). That said, it is important to consider the

skills and training that may be required to effectively use different types of

software.

2.2.4 Quality Assurance/Quality Control

Quality assurance and quality control (QA/QC) refer to the approaches that are used

to assess and improve data quality. Some research sponsors and funding programs

impose specific requirements on the QA/QC procedures and standards that should

be followed by researchers. In most cases, however, QA/QC is up to the individual
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researcher(s). Regardless, research sponsors, reviewers, and project personnel

benefit from knowing that sound QA/QC procedures will be employed prior to,

during, and after data collection (see Michener 2017a). For example, many data

errors can be prevented from occurring or minimized by providing project person-

nel with training in instrumentation and data collection, and by adopting a routine

maintenance and calibration schedule. Double blind manual data entry (when

human data entry is required) and automated laboratory information systems can

also prevent data entry errors or, minimally, make it easy to detect and rectify such

errors when they occur. Various statistical and graphical approaches can be used to

detect and flag anomalous values in the data (see Michener 2017a).

2.2.5 Documentation

Metadata—the details about how, where, when, why and how the data were

collected, processed and interpreted—should be as comprehensive as possible.

Human memory is not infallible. Specific details are usually the first to be forgotten

but, eventually, even the more general information about a project is lost. Seem-

ingly minor details, such as the model and serial number of an analytical instru-

ment, often prove crucial when one attempts to verify the quality of a data value or

reproduce a result. The metadata provide a comprehensive record that can be used

by you and others to discover, acquire, interpret, use, and properly cite the data

products generated as part of the research (see Michener 2017b).

A good approach is to assign a responsible person to document data and project

details in a shared document or electronic lab notebook that is available to all

project personnel. The documentation should be routinely reviewed and revised by

another team member and backed up in one or more safe locations. This documen-

tation provides the foundation for the metadata that will be associated with project

data products that will be stored, reused, and shared with others.

The DMP should minimally include a concise description of how data will be

documented. This description ideally includes:

• Metadata standards that will be adopted by the project [e.g., Dublin Core (see

Dublin Core ® Metadata Initiative 2016), Ecological Metadata Language

(Fegraus et al. 2005)]

• Metadata tools that will be used to create and manage project metadata [e.g.,

Morpho (Higgins et al. 2002)]

• Identification of who is responsible for creating and managing the metadata
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2.2.6 Storage and Preservation

Laptop and desktop computers and websites generally have a lifespan of just a few

years. All storage media can be expected to either degrade gradually over time or

experience catastrophic failure. Thus, short-term data backup and long-term data

preservation are key components of a sound DMP. The plan should specifically

address three issues:

• how long the data will be accessible after the project ends

• the backup procedures that are to be followed throughout the project

• where and how the data and associated code will be stored for the short- and

long-term

Planned data longevity depends upon several factors. For instance, the research

sponsor, the research community to which you belong, or your home institution

may have specific guidelines, norms or requirements. It is also important to

consider the value of the data as a resource. Long-term ecological research data

and other data that cannot be easily replicated, such as observations of environ-

mental phenomena like natural disturbances or expensive experimental data, should

typically be preserved for the long-term. Easily replicated experimental data may

have a much shorter period of relevance (e.g., months to a few years). Other data

such as simulation data and intermediate data products may be kept for a short

period of time (days to months) or may not need to be preserved at all, especially if

the software code or models that generated the data are retained.

Accidents and disasters happen. Data should be protected throughout the course

of the project. A good strategy is to store at least three copies of the data in two

separate locations. For example, data should minimally be stored on the original

desktop or laptop computer, on an external hard drive that can be stored in a safe or

locked cabinet, and at one or more offsite locations such as an institutional data

repository or a commercial data storage service like Amazon, Dropbox, or Google.

Your backup plan should indicate the location and frequency of backup, who is

responsible for backup, as well as procedures for periodically verifying that

backups can be retrieved and read.

Long-term preservation (e.g., years to decades) requires that data and associated

code and workflows be deposited in a trusted data center or repository. Many

agencies, organizations or disciplines support specific repositories for particular

types of data. Examples include GenBank for nucleotide sequence data (Benson

et al. 2013; NCBI 2016), Global Biodiversity Information Facility for biodiversity

data (Flemons et al. 2007; GBIF 2016) and the US National Centers for Environ-

mental Information for climate, coastal and marine data (NCEI 2016). Other

examples of discipline-specific data repositories are listed and discussed in Cook

et al. (2017). Useful resources and examples of general science repositories for

data, code and workflows are included in Table 2.1.
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2.2.7 Data Integration, Analysis, Modeling and Visualization

Researchers can rarely predict all data integration, analysis, modeling and visual-

ization procedures that will be employed during a project. It is useful, however, to

identify the software and algorithms that will be used or created during the project

planning. Some software products are complex, expensive and difficult to use. In

such cases, budgetary resources for training and purchasing and supporting the

software (see Sect. 2.11) will be essential to include. Oftentimes, new code or

software tools will necessarily be generated as part of a project. Ideally, the DMP

will include a description of the software, models and code that will be employed or

developed during the project. It is a good idea to document procedures for manag-

ing, storing and sharing any new code, models, software and workflows that will be

created.

Table 2.1 Useful registries and general repositories for data, code, workflows, and related outputs

Repository name URL/References Description of services

BioSharing http://www.biosharing.

org; Sansone et al.

(2012)

Registry of community-based data and

metadata reporting standards, policies, and

databases for the biological, natural and

biomedical sciences

Dryad http://datadryad.org/;

Vision (2010)

Repository for a diverse array of data that

underlie scientific publications; data are

easily discovered, freely reusable, and

citable

Figshare http://figshare.com/ Repository where researchers can pre-

serve and share data, figures, images, and

videos

GitHub https://github.com/ Repository for code (primarily) that sup-

ports distributed revision control and

source code management

KNB or the Knowl-

edge Network for

Biocomplexity

https://knb.

ecoinformatics.org/;

Andelman et al. (2004)

Repository for ecological and environ-

mental data from individuals and institu-

tions world-wide

myExperiment http://www.

myexperiment.org;

Goble et al. (2010)

Repository of scientific workflows for a

variety of workflow systems (e.g.,

Taverna, Kepler)

REgistry of REsearch

data Repositories

http://www.re3data.org/

; Pampel et al. (2013)

Registry of research data repositories on

the web

Zenodo http://zenodo.org Repository where researchers can store

and share data, text, spreadsheets, audio,

video, and images across all fields of

science
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2.2.8 Data Policies

It is necessary to understand any legal requirements that may affect your proposed

research such as regulations associated with intellectual property rights and data

pertaining to human subjects, endangered and threatened species, and other sensi-

tive material. Furthermore, it is good practice and often required by research

sponsors to initially document project policies with respect to data use, data sharing,

and data citation. Three issues should be considered as you develop your DMP.

First, will your project make use of pre-existing materials such as data and code?

If so, document any licensing and sharing arrangements in the DMP. Proprietary

restrictions and intellectual property rights laws may prevent or limit your capacity

to use and redistribute code and software.

Second, will your project access, generate or use data that deal with human

subjects, live animals, endangered and threatened species, issues of national secu-

rity or competitiveness, or other sensitive material? If so, the research sponsor and

your home institution will generally have a set of formal procedures that must be

followed to obtain permission. Usually, you must receive approval from an Insti-

tutional Review Board before the research is undertaken or before the grant

proposal is submitted. Approvals may be granted with certain stipulations such as

that informed consent must be granted or that data are anonymized or presented in a

way that humans and specific locations cannot be identified.

Third, what are your plans for sharing, embargoing, and licensing data and code?

Increasingly, research sponsors, publishers and reviewers expect or require that

data be made available when findings based on the data are published. Likewise,

data collected by graduate students should be shared no later than when the thesis is

published or the graduate degree is awarded. Embargoes or delays in data avail-

ability associated with publications, patent applications, or other reasons should be

explicitly stated in the DMP. A good practice is to adopt a license that specifies how

data and other intellectual products may be subsequently used. Table 2.2 provides a

brief description of relevant licenses from the Creative Commons Organization.

The Dryad data repository, for instance, has adopted the CC0 (CC Zero) Waiver as

the de facto standard for how all data deposited in the repository should be treated.

Dryad also specifies how data products should be cited by others (Box 2.1).

Box 2.1 Recommended Data Citation Guidelines from Dryad Digital

Repository (2016)

“How do I cite data from Dryad?

When citing data found in Dryad, please cite both the original article as

well as the Dryad data package. It is recommended that the data package be

cited in the bibliography of the original publication so that the link between

the publication and data is indexed by third party services. Dryad provides a

(continued)
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Box 2.1 (continued)

generic citation string that includes authors, year, title, repository name and

the Digital Object Identifier (DOI) of the data package, e.g.

Westbrook JW, Kitajima K, Burleigh JG, Kress WJ, Erickson DL, Wright
SJ (2011) Data from: What makes a leaf tough? Patterns of correlated
evolution between leaf toughness traits and demographic rates among
197 shade-tolerant woody species in a neotropical forest. Dryad Digital
Repository. http://dx.doi.org/10.5061/dryad.8525

Dryad also assigns a DOI to each data file, which should only be used in

contexts where the citation to the data package as a whole is already under-

stood or would not be necessary (such as when referring to the specific file

used as part of the methods section of an article).”

If you are using a large number of data sources, it may be necessary to

provide a list of the relevant data packages/files rather than citing each

individually in the References. The list can then be submitted to Dryad so

others who read your publication can locate all of the original data.

Legal requirements and sponsor and institutional policies may be confusing or,

even, difficult to discover. Whenever doubt exists, it is good practice to contact

someone from your institution’s sponsored research office or Institutional Review

Table 2.2 The Creative Commons licenses (Creative Commons Corporation 2016)

License Description

No Rights Reserved [CC0 (tool)] “Allows licensors to waive all rights and place a work in

the public domain”

Attribution (CC BY) “Lets others distribute, remix, tweak, and build upon your

work, even commercially, as long as they credit you for

the original creation”

Attribution-NonCommercial (CC

BY-NC)

“Lets others remix, tweak, and build upon your work

non-commercially, and although their new works must

also acknowledge you and be non-commercial, they don’t
have to license their derivative works on the same terms”

Attribution-NoDerivs (CC BY-

ND)

“Allows for redistribution, commercial and

non-commercial, as long as it is passed along unchanged

and in whole, with credit to you”

Attribution-ShareAlike (CC BY-

SA)

“Lets others remix, tweak, and build upon your work even

for commercial purposes, as long as they credit you and

license their new creations under the identical terms”

Attribution-NonCommercial-

ShareAlike (CC BY-NC-SA)

“Lets others remix, tweak, and build upon your work

non-commercially, as long as they credit you and license

their new creations under the identical terms”

Attribution-NonCommercial-

NoDerivs (CC BY-NC-ND)

Allows “others to download your works and share them

with others as long as they credit you, but they can’t
change them in any way or use them commercially”

2 Project Data Management Planning 21

http://dx.doi.org/10.5061/dryad.8525


Board, a data librarian at your academic library, or the program manager(s) for the

research program to which you may be applying.

2.2.9 Communication and Dissemination of Research
Outputs

A good DMP describes what data products will be generated as well as when and

how they will be shared with others. Passive and, generally, more ineffective

approaches to data sharing include posting the data on a personal website or

emailing the data upon request. Active and more effective approaches include

publishing the data: (1) as a contribution to an open data repository (see Sect. 2.6

and Chap. 6); (2) as a supplement to a journal article as described above for Dryad

(Sects. 2.6 and 2.8); or as a standalone data paper that includes the data, metadata,

and, possibly, associated code and algorithms. Examples of journals that publish

data papers include the Ecological Society of America’s Data Papers, Scientific
Data (a Nature publication), the GeoScience Data Journal (a Wiley publication in

association with the Royal Meteorological Society), and GigaScience (a joint

BioMed Central and Springer publication). More active approaches may require a

little more work upfront in terms of generating sufficient metadata and adhering to

data formatting and other requirements. However, significant time and effort may

be saved in the long-term as the data originator no longer needs to respond to

queries or attempt to maintain a website or individual data repository.

2.2.10 Roles and Responsibilities

It is good practice to delineate the roles and responsibilities of project personnel

including time allocations if possible. Consider who will be responsible for data

collection, data entry, metadata creation and management, QA/QC, data preserva-

tion, and analysis. Make note of the management support activities (e.g., systems

administration, high-performance computing and data archival) that will be

performed by other individuals or organizations. Identifying roles and responsibil-

ities as part of the DMP helps ensure that the data will be appropriately managed

and that the staff needs are adequate. Research sponsors and reviewers are often

reassured that a DMP will be adhered to when named individuals are associated

with key project tasks. Moreover, clear articulation of roles and responsibilities

prevents confusion among project personnel.
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2.2.11 Budget

Data management is a non-trivial activity that costs money and takes time. The

dollar amount and percentage of a budget devoted to data management can vary

enormously from one project to another. Projects that involve collection and

management of a small amount of straightforward data may suffice on less than

5% of the budget being devoted to data management. Projects involving massive

amounts of data and complex analyses and modeling may require that more than

50% of the budget be devoted to data management. Most projects fall in between

the two extremes (e.g., 10–25% of the project budget devoted to data management).

A good DMP ideally includes a budget or pointers to budget lines that demon-

strate that financial resources are available to support the requisite hardware,

software, services, and personnel allocations (Sect. 2.10). Consider real project

costs as well as in-kind support that may be covered by your organization (e.g.,

systems administration, high-performance computing). If you plan to use commer-

cial or other service providers for particular activities (e.g., for data backup, long-

term storage and preservation), make sure that their fees are appropriately

budgeted.

2.3 Developing and Using a Data Management Plan

Section 2 described the various components that may be included in a comprehen-

sive DMP. This section addresses issues such as when and how the DMP is created

and by whom (Sect. 3.1), as well as how the DMP can be most effectively used

during the project (Sect. 3.2).

2.3.1 Best Practices for Creating the Plan

Good data management plans, like well-written research papers, require time to

evolve and mature. A wide array of data and metadata standards, data management

approaches, and data repositories are often available to meet the needs of a specific

community. Choosing among the various options requires deliberation. An effec-

tive tactic is to start filling in a draft data management plan template as soon as key

decisions are made such as those related to methods, data sharing, and choice of a

data repository for long-term storage. Much of the information included in a data

management plan may be excerpted directly from proposal text or possibly from

other plans that you and your colleagues have previously prepared. The emerging

draft can then be shared with colleagues and others who can incorporate their best

ideas. In so doing, the plan becomes a living and more useful document from the

onset.
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Few researchers are taught data management skills. An effective strategy is to

seek input from colleagues that have created and implemented data management

plans—i.e., request a copy of their plan(s), review, and ask questions. Librarians at

many research universities provide data management services that include guidance

about data management plans, metadata standards and tools, and trusted data

repositories. One may also view and take ideas from plans that have been created

by others and published on the DMPTool website.

Increasingly, research is a team effort. A typical project may engage one or more

senior researchers, a post-doctoral associate, and one or more graduate and under-

graduate students. Each of these individuals will likely “touch” the data at some

point in the research process, potentially affecting the quality of the data and the

interpretations. It is good practice to actively engage the entire team in developing

the data management plan. In so doing, you are seeking their best ideas as well as

their buy-in to the plan. Buy-in is critical, as the entire team must implement

the plan.

Many excellent tools, often open-source, exist for creating and managing meta-

data, performing QA/QC, and analyzing and visualizing data. It is recommended

that you use the best, widely available tools whenever possible. Reviewers of your

data management plan and your colleagues will appreciate the fact that you are

focusing valuable time on research as opposed to creating new tools.

It is good practice to use and cite a community standard if it exists and if it is

sufficient for the task at hand. All too often, inexperienced researchers create their

own unique methodologies, procedures, and standards (e.g., data encoding schema,

metadata formats, etc.). Adopting good community standards of practice will save

you time and effort from “reinventing the wheel.” Furthermore, community stan-

dards can typically be cited and are more likely to be perceived favorably by

reviewers.

2.3.2 Using the Plan

A DMP should be viewed and treated as a living document. An effective approach

is to use and re-visit your plan frequently—at least on a quarterly basis. The plan

represents a valuable resource for new students and staff that are brought onto the

project team. Plans should be revised to reflect any new changes in protocols and

policies. Laboratory and project team group meetings are ideal times for reviewing

and revising plans. It is important to track and document any changes to the DMP in

a revision history that lists the date that any changes were made to the plan along

with the details about those changes.
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2.4 Conclusion

A good data management plan will provide you and your colleagues with an easy-

to-follow road map that will guide how data are treated throughout the life of the

project and afterwards. No plan will be perfect from the start. This chapter provides

guidance with respect to the components and content included in a DMP. Some

research sponsors may require only a two-page synopsis of a DMP. However, by

considering all of the components described in Sect. 2, your plan is likely to be

more thorough, realistic, and adequately budgeted and staffed. Section 3 offers

suggestions about preparing and using the DMP. In particular, best practices dictate

that one: (1) starts early in the process to create the DMP; (2) seeks input and

examples from others; (3) engages all relevant project personnel; (4) uses common

and widely available tools for data management activities; and (5) follows and

adopts community practices and standards. Lastly, the best DMPs are those that are

referred to frequently, reviewed and revised on a routine basis, and recycled (i.e.,

the most effective and proven approaches are used again in subsequent projects).
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Chapter 3

Scientific Databases for Environmental

Research

John H. Porter

Abstract Databases are an important tool in the arsenal of environmental

researchers. There are a rich variety of database types available to researchers for

the management of their own data and for sharing data with others. However, using

databases for research is not without challenges due to the characteristics of

scientific data, which differ in terms of longevity, volume, diversity and ways

they are used from many business applications. This chapter reviews some suc-

cessful scientific databases, pathways for developing scientific data resources, and

general classes of Database Management Systems (DBMS). It also provides an

introduction to data modeling, normalization and how databases and data derived

from databases can be interlinked to produce new scientific products.

3.1 Introduction

The development of environmental databases constitutes a new paradigm in the

evolution of environmental research. The traditional model for ecological research

has been investigator-based. A researcher and his or her students would collect data,

analyze that data and publish the results. The data underlying the publication and

analyses, more often than not, would then be placed into file cabinets, never to be

seen again. This model assumes that the full utility of the data is “consumed” by the

publications based on the data in a short period immediately following the collec-

tion of the data. The model is inefficient, in the sense that different researchers may

duplicate data collection efforts, but it does not require resources for the develop-

ment of formal databases. Where the questions being asked are localized in space

and time and the number of types of data needed is limited to those a single

researcher is capable of gathering, the traditional model for environmental data

has been sufficient.

When the types of research needed to answer pressing environmental questions

are neither localized in space or in time the traditional model fails. Questions
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concerning the nature, extent and causes of global change, and regional analyses

require data resources that extend beyond those which it is logistically possible for

an individual researcher to collect. Understanding of complex ecosystem processes

can require a multidisciplinary approach that transcends individually-collected

data. Similarly, understanding long-term processes often requires stewardship of

data on decadal scales and longer. Data not only needs to be preserved, but it needs

to be made available. As an editorial in the prestigious journal Nature put it:

“Research cannot flourish if data are not preserved and made accessible” (Campbell

2009). Many environmental journals, as in other areas of science, have instituted

requirements that the data used in a paper be accessible (Whitlock et al. 2010), and

science funding agencies have developed new policies dictating that the products of

federally-funded science, including the data, be made available (Holdren 2013).

The requirements for long-term curation of data and the need for data exchange

between scientists to support integrative and synthetic analyses are facilitated by

the development of databases at a number of different levels, from the investigator

to the institution and even to the discipline.

There are several other advantages to developing and using scientific databases.

The first is that databases lead to an overall improvement of data quality. Multiple

users provide multiple opportunities for detecting and correcting problems in data.

A second advantage is cost. Data costs less to save than to collect again. Often,

environmental data cannot be collected again at any cost because of the complex of

poorly controlled factors, such as weather, that influence population and ecosystem

processes.

However, the primary reason for developing scientific databases must be the new

types of scientific inquiry that they make possible (Hampton et al. 2013). Gilbert

(1991) discusses the ways databases and related information infrastructure are

leading to a paradigm shift in biology (Fig. 3.1). Nowhere has this been more

evident than in the genomic community, where the creation of databases and

associated tools have facilitated a tremendous increase in our understanding of

the relationship between the genetic sequences and the actions of specific genes.

The environmental area is beginning to see a similar renaissance, brought on

through improvements in databases and data sharing. Specific inquiries which

require databases include long-term studies, which depend on databases to retain

project history, syntheses, which combine data for a purpose other than which it was

originally collected, and integrated multidisciplinary projects, which depend on

Fig. 3.1 Archiving and sharing data enable new types of analyses. The traditional model of data

sharing (top row of boxes, open arrows) limits data use to one or more publications. When data is

archived and shared (second row, solid arrows) it enables new types of studies as data is combined

with other data, or new theories are tested
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databases to facilitate sharing of data. Public decisions involving environmental

policy and management frequently require data that are regional or national, but

most ecological data is collected at smaller scales. Databases make it possible to

integrate diverse data resources in ways that support decision-making processes.

3.2 Challenges for Scientific Databases

Scientific databases face challenges that are different than those experienced by

most business-oriented databases (Pfaltz 1990; Robbins 1995). As noted by Rob-

bins (1995), the technologies supporting business databases emphasize data integ-

rity and internal consistency. It would not do to have two disparate estimates of

hours worked when paychecks are being issued! However, scientific databases may

well contain different observations of the same phenomena that are inconsistent,

resulting from differences in methodology and measurement imprecision or even

different models of the physical processes underlying the process under study.

Additionally, with the exception of correction of errors, scientific data is seldom

altered once it has been placed in a database. This contrasts with business data

where an account balance may be altered repeatedly as funds are expended. For this

reason, several authors (Cinkosky et al. 1991; Robbins 1994, 1995; Strebel et al.

1994, 1998; Meeson and Strebel 1998; Costello 2009) have proposed that a

publication model, rather than a traditional database model, is the correct model

for scientific data databases. This approach has wide acceptance, although Parsons

and Fox (2013) discuss some limitations and alternatives to this approach.

The biggest challenge for scientific databases is dealing with diversity. Science

means asking new questions. Scientific databases thus need to be adaptable so that

they can support new kinds of queries. In most business-oriented databases, the

focus is on development of standardized queries. This month’s sales report is

similar in form (although not content) to last month’s report. Business-oriented

database software has many features that aid in the production of standardized

reports. In contrast, the scientific focus is on identifying new relationships within a

given dataset or finding new linkages with other datasets. To this end, both

graphical and statistical analyses are required that transcend the capabilities of

business-oriented database products.

The volume and complexity of scientific data vary widely (Fig. 3.2). Some types

of data have a high volume but are relatively homogeneous. An example of this is

image data from satellites. Although each image may require hundreds of mega-

bytes to store, the storage formats of the data are relatively standardized and hence

require relatively little metadata for use. In contrast, certain types of manually

collected environmental data have an extremely small volume but require extensive
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documentation to be useful. For example, deep soil cores are very expensive to

obtain, so data is usually restricted to a few cores. However, these cores may be

exposed to many different analyses examining the density, mineral content, phys-

ical characteristics, biological indices, isotopic ratios, etc. Each of these analyses

needs to be well documented, making the metadata required exceed the volume of

numerical data itself by several orders of magnitude. Some data is both high in

volume and complex. Geographic Information System (GIS) data layers can be

very high in volume (depending on the resolution of the system) and require

metadata which covers not only the actual data collection, but the processing

steps used to produce it (FGDC 1994).

Some classes of data are referred to as “Big Data.” They are often characterized

by the “3 Vs”—large Volume, high Velocity and wide Variety (Madden 2012).

These characteristics make the data difficult to manage or analyze using conven-

tional software and analyses. Typical sources of Big Data are social media sites,

where millions (volume) of messages or postings appear each day (velocity) in a

wide diversity of forms (variety), and automated sensors and sensor systems. Some

researchers see the use of Big Data as allowing a whole new realm of analyses

based on correlation and exhaustive sampling of populations (Mayer-Sch€onberger
and Cukier 2013) in some cases rendering conventional model and theory-based

analyses obsolete (Anderson 2008), whereas others caution that correlation alone is

an unreliable guide to future behavior and that sampling bias can occur even in

large datasets (Harford 2014). Regardless, there is no question that both massive,

rapidly growing and diverse datasets generated by a growing array of automated

sensors pose challenges for science (Porter et al. 2012).

Scientific data is heterogeneous and diverse. In some areas of science (e.g.,

genomics, water quality) there is wide agreement on particular types of measure-

ments and the techniques for making them. However, in other areas (e.g., the

measurement of primary productivity) there is relatively little agreement on stan-

dards and the types of data collected are much more diverse. Standards are most

Fig. 3.2 Data vary widely in both volume and complexity. Most software is designed for

moderate data volumes and relatively low complexity (e.g., Business Data), but most ecological

data (bold) is relatively complex, requiring detailed metadata
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common in “mature” areas of inquiry (Yarmey and Baker 2013). In less mature

areas of science, experimentation with methodologies is a necessary part of the

scientific process. Eventually, there is a convergence in methodologies, which leads

to the informal adoption of emergent standards, which may subsequently be

adopted as formal standards. This process is especially rapid where there are a

limited number of specialized instruments for making measurements. Conversely,

the standardization process is especially difficult where a methodology needs to

operate across a range of physical systems. Techniques that are developed for

aquatic systems may be impossible to apply in forested systems.

The challenge of diversity extends to users as well. Scientific users have

different backgrounds and goals that need to be supported by the database. More-

over, the user community for a given database will be dynamic as the types of

scientific questions being asked change and new generations of scientists use the

database (Pfaltz 1990).

Scientific databases require a long-term perspective that is foreign to many other

types of databases. In business, there is a limited need for maintaining most types of

records beyond several years. Although tax records might be maintained, inventory

and payroll, and contact data are of little use after 2–5 years. However, for

environmental research, data retains utility for many decades. Indeed, data that

are centuries old are particularly valuable as they allow us to assess changes that

would otherwise be invisible to us (Magnuson 1990).

A frequently cited goal is that an environmental database should assure that data

is both accessible and interpretable 20-years in the future [Justice et al. (1995)

extend this goal to 100 years]. Reaching this goal depends on overcoming techno-

logical, cultural and semantic barriers (Cook et al. 2017). There is a technological

requirement for persistent media that does not degrade over time or become

technologically obsolete (otherwise you could end up with long-term data, but no

way to read it).

All storage media tend to degrade over time, both due to physical factors,

because the magnetic signals become indistinct over time and charges fade. It has

been said that there is no valuable data on 20-year old magnetic tapes, simply

because there is no readable information left on the tape after 20 years. Addition-

ally, the rapid developments in technology render old media physically incompat-

ible with newer computers. Gone are the floppy disks and reel-to-reel magnetic tape

drives that once were the standard for offline storage. Although DVDs (Digital

Video Disks) are still in use, they are rapidly being supplanted by flash memory

drives, which are in turn being replaced by cloud resources. Also serious is the high

rate of change in the formats in which information is stored. Information in

proprietary formats, such as a spreadsheet file from the early 1980s, may be difficult

or impossible to interpret once that software is no longer available. There has been a

progression of “standard” spreadsheet programs, from DigiCalc to Lotus 1-2-3 to

Microsoft Excel, each using different formats. Even within a single product line

formats can change sufficiently that files can no longer be read. For example,

Microsoft Access 2013 no longer can read databases that use the Access 97 file

format, rendering that data inaccessible to future users.

3 Scientific Databases for Environmental Research 31



Despite the challenge posed by technological change, this is the easiest barrier to

overcome. Active information management, where information on older media are

transferred to new media and new software formats, can assure that data is not lost

due to media failure or technological change. There is a transition period between

major storage technologies of approximately 5–10 years and during that time the

translation between media is relatively easy. However, if that window of opportu-

nity is missed, due to inattention or lack of funds, data may be irrevocably lost or

impracticably expensive to recover.

Long-term interpretability of data also depends on capturing the context of data

collection. Not all the information needed to understand and use the data is inherent

in the data itself. Strebel et al. (1994) and Michener et al. (1997) discuss the rapid

“decay” of data that is not actively managed. A critical feature of that decay is the

loss of detailed information about how the data was collected and the processing

steps to which it has been subjected. This loss occurs early in the process, resulting

in a steep decrease in the value of data if steps are not undertaken to capture the

information before it fades from the short-term memory of the researchers

collecting the data. Strebel et al. (1994) note that the decline in data usability

comes with increasing costs for use over time. At periods of less than a decade,

the costs of data use can become prohibitive if data are not adequately documented.

To create consistent, human and machine-readable metadata a number of standards

have been developed. There is a huge array of discipline-based standards, includ-

ing: Dublin Core, MARC, METS (McCray and Gallagher 2001; Guenther and

McCallum 2003) in the library community, Darwin Core for museum collections

(Wieczorek et al. 2012) and FGDC and ISO19115 for geographic information

systems (Nogueras-Iso et al. 2004). In the ecological area, Ecological Metadata

Language (EML) (Fegraus et al. 2005) has been formally adopted by the Long-

Term Ecological Research Network and used for Ecological Society of America

and Organization of Biological Field Station data registries. Storing metadata in

machine-readable ways, such as eXtensible Markup Language (XML), makes it

possible to automate, or at least semi-automate crosswalks and conversions among

the different standards. See Chap. 5 (Michener 2017) for more details on metadata

and its uses.

Finally, to assure long-term usability, terms used in documentation need to be

well defined so that semantic differences do not cloud future interpretation. Terms,

which have one meaning now, may have different meanings in the future or in

different disciplines. For example, taxonomic identifiers associated with a given

entity may vary over time as phylogenetic and taxonomic relationships are revised.

This problem is especially severe when data is of value in several different scientific

disciplines.
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3.3 Examples of Scientific Databases

3.3.1 A Useful Analogy

A useful analogy in examining cataloging and query systems for scientific data is to

consider individual datasets as “volumes” in a database “library.” Articles, journals,

chapters, books and volumes all have their analogs in scientific databases. Libraries

may have different sizes and have different requirements for cataloging systems.

For example, an individual might have a home “library” consisting of a relatively

small number of books. The books would not be cataloged or organized but simply

placed on a shelf. An individual book would be located by browsing all the titles on

the shelf. For an office library consisting of hundreds of books, a common model is

to group books on the shelf by general subject so that only a subset of the library

needs to be browsed. However, when the number of books in a library enters the

thousands to millions, as for a public library, formal cataloging procedures are

required.

This model also applies to scientific databases. If there are relatively few

different datasets, a simple listing of the titles of the datasets may be sufficient to

allow a researcher to locate data of interest. This is the prevailing model in single-

investigator and small project databases. The databases themselves are typically in

the form of esoteric web pages that do not conform to metadata (information needed

to use and interpret data) standards.

3.3.2 Examples of Databases

Some databases specialize in a single or few types of data and implement sophis-

ticated searching and analytical capabilities. Examples of this type of database are

large databases such as Genbank which serves as a primary archive of genetic

sequence data for the human genome project, with over one billion bases in

approximately 1.6 million sequences (Benson et al. 2013), UniProt Knowledgebase

which contains over 80 million sequences (UniProt Consortium 2014), and the

Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB

PDB), a protein structure database which contains atomic coordinate entries for

over 38,211 protein structures (Berman et al. 2000). These are very large databases

with funding in excess of one million dollars per year. In the publication analogy,

these databases are analogous to large, multi-volume reference works. They are

highly “indexed” but focus on a restricted region of the data universe.

There are also a variety of specialized types of databases that operate on a

smaller scale. For example, SPECIFY is specialized software for managing

museum specimens (Specify Software Project 2016) and BIOTA is software for

management of specimen-based biodiversity data (Colwell 1997). These systems

are available for download and are used by a variety of institutions and
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investigators. In the publication analogy, they would be books in a series that share

format elements and address the same topic, but have different content. Like the

large databases (Genbank, RCSB PDB), these databases are “deep” rather than

“wide” (Table 3.1), providing in-depth services for a particular type of data.

“Wide” databases are data repositories that attempt to capture all the data related

to a specific field of science. For example, the National Centers for Environmental

Information (NCEI) is operated by the National Oceanic and Atmospheric Admin-

istration (NOAA) and hosts over 20 petabytes of oceanic, atmospheric, and geo-

physical data (NOAA 2016). Such “data centers” often use standardized forms of

metadata (e.g., GILS, FGDC, DIF) for maintaining formal catalogs with controlled

vocabularies for subjects and keywords. Similarly, the National Aeronautic and

Space Administration (NASA) operates a series of Distributed Active Archive

Centers (DAACs) each of which specializes in supporting a particular area of

earth or space science and have a varying number of different types of data sets.

In the library analogy, these databases would be comparable to public libraries.

Additional “wide” databases are project-based databases. These are databases

that support a particular multidisciplinary research project and may include a wide

array of data focused on a particular site or research question. Examples of this type

of database are the databases at individual Long-Term Ecological Research (LTER)

sites (Michener et al. 2011). These databases contain data relating to a wide array of

scientific topics (i.e., weather and climate, primary productivity, nutrient move-

ments, organic matter, trophic structure, biodiversity and disturbance), along with

information that supports management of the site (i.e., researcher directories,

bibliographies and proposal texts). Management of the databases requires approx-

imately 15% of the total site funding and they focus strongly on long-term data.

Within the LTER network, there are diverse approaches to data management. These

are dictated by the locations of researchers (at some LTER sites the majority of

researchers are at a single university, at others they are at many different univer-

sities), and the types of data collected (studies of aquatic systems have different

data needs than studies of terrestrial systems). Individual LTER sites internally may

use different systems and metadata standards at individual sites, but use a common

standard, Ecological Metadata Language (EML) for sharing of data (Michener et al.

2011). These databases are fairly “wide”, but not particularly “deep” in the sense

that they provide access to a wide variety of data, but do not provide specialized

visualization or analysis tools for most types of data. In the library analogy, these

databases would be comparable to a large individual or small departmental library.

Table 3.1 “Deep” vs. “wide” databases

“Deep” databases “Wide” databases

• Specialize on one or a few types of data

• Large numbers of observations of one

(or few) type(s) of data

• Provide sophisticated data query and

analysis tools

• Tools operate primarily on data content

• Contain many different kinds of data

• Many different kinds of observations, but rela-

tively few of each type

• May provide tools for locating data, but typically

do not have tools for analysis

• Tools operate primarily on metadata content
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Some “databases,” such as individual web pages created by individual

researchers may be neither “wide” nor “deep.” The level of development of such

pages varies widely, as does the quality and quantity of the associated metadata. In

the library analogy, the pages from a single researcher would be comparable to a

very small personal library with little need for searching and cataloging capabili-

ties. As an aggregate, across all researchers, these databases constitute a valuable

resource, but one that is difficult to exploit because data can be hard to locate and

metadata may be insufficient or difficult to translate into usable forms. Brackett

(1996) describes such data as “massively disparate” which are “locally useful and

globally junk.” Additionally, web pages are notoriously ephemeral, so they may be

a poor choice for providing data over long time periods.

3.4 Evolving a Database

Scientific databases come in all sizes, from a database used by an individual

researcher to manage specific data, to project databases that bring together many

different kinds of data, to data repositories that serve a wide community. They have

some common elements such as the need to preserve and provide access to data

over long time periods, but also differ in the difficulty and expense of implemen-

tation. A database to manage sampling data may be set up in a matter of hours by a

single individual, whereas creating a useful scientific data repository may require

years of effort by a large team. Nonetheless, they share many commonalities, not

the least of which is the need to evolve and change over time, driven by scientific

and technical imperatives. Thus the development of a database is an evolutionary

process. During its lifetime, a database may serve a dynamic community of users or

purposes, and a database needs to change to meet those changing needs.

In creating a database, you need to ask four questions. The first is: “Why is this

database needed?” Not all data is important enough to warrant long-term storage in

a database. Pfaltz (1990) makes the point that, regardless of the rate of technolog-

ical advancement, our ability to collect data will exceed our ability to maintain it in

databases. If data is from a specific set of experimental manipulations linked only

loosely to any particular place and time, it may have little value beyond use in a

paper describing the result of the experiment. Similarly, data collected using

non-standard methodologies may be difficult or impossible to utilize in syntheses.

This is not to say that all experimental data or all data collected using non-standard

methodologies should not be preserved in a database. There are many examples of

where experimental evidence has been reinterpreted and access to the data may be

critical to that process. Similarly, data collected using non-standard methodologies

can be integrated with that collected by other methods if a reasonable degree of

caution is exercised. However, if a clear scientific need that will be met by a given

database cannot be identified, it may not be reasonable to devote resources to that

database.

3 Scientific Databases for Environmental Research 35



The second question that needs to be asked is: “Who will be the users of the
database?” This question is important on two levels. First, if you can’t identify a

community of users for your database, you may want to reexamine the need for the

database! Second, defining the users of your database provides guidance on what

database capabilities will be critical to its success. For example, a database

designed for use by experts in a given field is likely to be too complicated for use

by elementary school students. Ideally a database should provide data to users in a

way that maximizes its immediate utility. Data needs to be made available in a form

where users can manipulate it. A table embedded in a web page may provide an

attractive way for viewing data, but it can be difficult to then extract data from that

table in a spreadsheet or statistical package. The technological infrastructure

needed to use and interpret data should be available (and preferably in common

use) by the users or there is a risk that the database won’t be used (Star and Ruhleder
1996).

The third question is: “What types of questions should the database be able to

answer?” The answer to this question does much to dictate how data should be

structured within the database. The data should be structured in a way that maxi-

mizes the efficiency of the system for common types of queries. For example, a

large bibliographic database needs to support searches based on both author and

title, but probably doesn’t need to support searches based on page number. As noted

above, the data needs to be made available in a form where it is usable. In some

cases, it may be reasonable to provide multiple representations of data in forms that

are applicable to different questions.

A final question is one that is often not asked, but the answer to which has much

to do with the success of a database: “What incentives will be available for data

providers?” Any database is dependent upon one or more sources of data. The

traditional scientific environment provides few rewards for individuals who share

data (Porter and Callahan 1994). However, over the past decade there have been

significant advances, including making data citable through the use of Digital

Object Identifiers (DOIs), inclusion of data products, along with traditional publi-

cations, in reports to funding agencies and, perhaps most importantly, linking

contribution of data to the acceptance of scientific papers for publication (Duke

and Porter 2013). Nonetheless, it is no accident that areas where databases have

been particularly successful (e.g., genome databases) are those where contribution

of data to databases are an integral part of the publication process. Leading genomic

journals do not accept articles where the data has not already been submitted to one

of several recognized sequence databases, an approach that has now been adopted

by journals in other disciplines (Whitlock et al. 2010). In the absence of support

from the larger scientific community, databases need to be innovative in giving

something of value back to the data provider. This return can be in the form of

improved error checking, manipulation into new, easier to use forms, and improve-

ments in data input and display. Assuring proper attribution for data collection is a

critical part of providing incentives for data contribution. Originators (authors) of

datasets are more likely to make future contributions if previous contributions are

acknowledged. Ideally this attribution should be made in a formalized citation,
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which specifies the originator, date, dataset title and “publication” information,

rather than as an informal acknowledgement.

3.4.1 A Strategy for Evolving a Database

In making the myriad decisions needed to manage a database, a clear set of

priorities is the developer’s most valuable friend. Every database has some things

that it does well (although no part is ever perfect) and some areas that need

improvement. The process of database evolution is cyclical. A part of the database

may be implemented using state-of-the-art software, but several years later the state

of the art has advanced to a degree that it makes sense to migrate the system to new

software. Therefore, database systems should be based on current priorities, but

with a clear migration path to future systems. When making decisions about the

types of software to use in implementing the database and associated interfaces, it is

critical to consider an “exit strategy.” Software that stores data in proprietary

formats and provides no “export” capabilities are to be avoided at all costs!

The need for foresight applies to more than just software. The priorities of users

may change. A keyword search capability may be a top user priority, but once it

exists a spatial search capability may be perceived as increasingly important. It is

not possible to implement a database system in toto, so the strategy adopted for

development must recognize that, although some capabilities are not currently

implemented, the groundwork for those capabilities in future versions must be

provided for. Thus, even though an initial system may not support spatial searching,

collecting and storing spatial metadata in a structured (i.e., machine-readable) form

is highly desirable.

An important form of foresight is seeking scalable solutions. Scalability means

that adding or accessing the 1000th piece of data should be as easy as adding the

first (or easier). The genome databases faced a crisis when the flow of incoming

data started to swamp the system, which depended on some level of manual

curation of inputs (Fig. 3.3). The subsequent adoption of completely automated

techniques for submission and quality control allows the genome databases to

handle the ever-increasing flows of data. Indeed, Genbank now curates over

213 billion base pairs (NCBI 2016), a number that could never have been achieved

using manual curation. Every system has some bottlenecks and their identification

and elimination before they become critical is the hallmark of good planning and

management.

3.4.2 Choosing Software

The choice of software for implementation of a database, be it a personal database

for a specific type of data, or a large repository of diverse data, must be based on an
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understanding of the tasks you want the software to accomplish (e.g., input, query,

sorting, analysis) and the characteristics of the data (e.g., size, diversity). Simplicity

is the watchword. The software marketplace provides an abundance of sophisti-

cated software that is expensive and difficult to operate, but that may provide little

real improvement over simpler and less expensive software. Sophistication and

complexity do not always translate to utility. The factors to be considered in

choosing software extend beyond the operation of the software itself. For example,

is the software in the public domain (free) or commercial? Source code for public

domain software is frequently available, allowing on-site customization and

debugging. An additional advantage is that file formats are usually well specified

(or at least decipherable using the source code). A downside is that when something

is free, sometimes it is worth every cent! Difficulty of installation, insufficient

documentation, bugs in the code or lack of needed features are common complaints.

In contrast, commercial software comes with technical support (often for an

additional charge), is frequently well documented and is relatively easy to install.

However, as for public domain software, bugs in the software are not unknown! An

additional problem with commercial software is that, to some degree, you are at the

mercy of the developer. Source code is almost always proprietary, and file formats

frequently are proprietary as well. This can create some real problems for long term

archival storage if a commercial product is discontinued.

One consideration that applies to both public domain and commercial software is

market share. Software that has a large number of users has a number of advantages

over less frequently used software, regardless of specific features. A large user base

provides more opportunities for the testing of software. Rare or unusual bugs are

more likely to be uncovered if the software is widely used. Additionally, successful

software tends to generate its own momentum—spawning tools that improve the

utility of the software. Widely-used software also generate a host of web-accessible

Fig. 3.3 Growth of Genbank showing the type of curation used. Manual curation was becoming

saturated and it was only by adopting automated curation was Genbank able to grow by several

additional orders of magnitude
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forums and other information resources that can help answer even the most obscure

question.

3.4.3 Database Management System (DBMS) Types

There are a wide variety of database software products available. Table 3.2 lists

available options that extend beyond what might be traditionally considered as

DBMS.

A file system-based database would typically not be considered a DBMS

because there is no “buffer” between the physical representation of the data

Table 3.2 DBMS types and characteristics

Type Characteristics

• File System Based—use files and directories

to organize information. Examples: Gopher

information servers (not typically considered a

DBMS)

• Simple—can use generalized software

(word processors, file managers)

• Inefficient—as number of files increase

within a directory, search speed is impacted

• Few capabilities—no sorting or query

capabilities aside from sorting file names

• Hierarchical—store data in a hierarchical

system. Examples: IBM IMS database software,

phylogenetic trees, satellite images in Hierar-

chical Data Format (HDF)

• Efficient storage for data that has a clear

hierarchy

• Tools that store data in hierarchically orga-

nized files are commonly used for image data

• Relatively rigid, requires a detailed planning

process

• Network—store data in interconnected units

with few constraints on the type and number of

connections. Example: Cullinet IDMS/R soft-

ware, airline reservation databases

• Fewer constraints than hierarchical data-

bases

• Links defined as part of the database struc-

ture

• Networks can become chaotic unless

planned carefully

• Relational—store data in tables that can be

linked by key fields. Examples: Structured

Query Language (SQL) databases such as

Access, Oracle, MySQL, Sybase, and

SQLserver

• Widely-used, mature technology

• Efficient query engines

• Standardized interfaces (i.e., SQL)

• Restricted range of data structures, may not

handle image or expansive text well

(although some databases allow extensions)

• Object-oriented—store data in objects each

of which contains a defined set of methods for

accessing and manipulating the data. Examples:

POSTGRES database

• New, developing technology

• Wide range of structures is extensible to

handle many different types of objects

• Not as efficient as relational for query

•NoSQL—“Not only SQL” databases represent

a wide array of approaches, typically distrib-

uted, for dealing with “Big Data.” Examples:

HAADOOP, Cassondra, MongoDB

• New, rapidly evolving

• Individual tools prioritize different objec-

tives (e.g., speed vs. reliability) and types of

data

• Often utilize distributed computational

resources
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(in files and directories) and applications using the data. It lacks most of the

functions commonly associated with DBMS, such as query capabilities, support

for complex relationships among data types/files, enforcement of security and

integrity, and error recovery (Fig. 3.4). File system-based databases typically

have a heavy reliance on operating system capabilities and independent software

tools to provide at least some DBMS features. However, they also have the

advantage of relative simplicity and can be quite useful for data that do not

encompass complex interrelationships.

Hierarchical databases, such as the IBM IMS database software, have a higher,

albeit restricted range of structures (Hogan 1990). Here data are arranged in a

hierarchy that makes for efficient searching and physical access (Fig. 3.5). Each

entity is linked into the hierarchy so that it is linked to one, and only one, higher-

level (parent) entity, although it may be linked to multiple lower-level entities

(children). Note that these relationships are defined in the design of the database and

are not a function of specific data stored in the database. In Fig. 3.5 each image can

have multiple tile segments, but each tile is linked to only a single image.

Network databases permit a wider array of relationships than hierarchical data-

bases. Entities no longer need to be hierarchical in form (although they can be).

Thus in Fig. 3.6, both projects and datasets may have links to specific people. Like

hierarchical databases, the relationships are defined using pointers, not by the

contents of the data. Thus modification of those relationships demands that physical

changes be made to the database to update pointers.

By far the most widely used DBMS in business are relational databases, which

are also widely used for scientific databases. A relational database can take on

structures similar to those used in hierarchical and network databases, but with an

important difference. The relational model allows interrelationships to be specified

Fig. 3.4 Directories and subdirectories can provide a way to structure data within the context of a

computer file system
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based on key values of the data themselves. This makes it much easier to revise the

structure of relational databases to add new relationships and does much to explain

their popularity. In addition, relational databases benefit from a rigorous basis in

mathematical theory (Bobak 1997). In Fig. 3.7, the field Dataset_ID is shared by

both the Projects and Datasets tables and is the key field for linking those tables.

Similarly, People_ID is used to link datasets and projects to people. Unlike the

network database (Fig. 3.6), the links in the relational database are based on the

values of key fields, not explicit pointers that are external to the records themselves.

Object-oriented models are becoming increasingly common, although most

frequently those models are implemented using existing relational databases to

create the structure for storing object information. Query languages for object-

oriented databases are still being developed and are not standard across database

vendors, unlike relational databases where the variations on the SQL standard are

widely used (Keller et al. 1998). A major feature of most object-oriented databases

is the ability to extend the range of data types that can be used for fields to include

complex structures (e.g., image data types). They are most frequently used with

object-oriented languages such as Cþþ and JAVA to provide persistence to

program objects (Bobak 1997). This is an area of rapid innovation (Loomis and

Chaudhri 1998).

NoSQL “Not only Structured Query Language” databases are a loose and

rapidly growing collection of tools that may, or may not, incorporate elements of

relational databases. They were often developed to meet specific challenges

Fig. 3.5 Example of a

hierarchical database.

Images are successively

broken down into

geographical subsets (tiles),

where each tile and subtile

fall within the geographic

extent of their parent

element

Fig 3.6 In a network

database links between data

in different tables are made

explicitly

Fig. 3.7 In a relational

database, key fields such as

People_ID and Dataset_ID

are used to link tables based

on the data themselves
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associated with large, rapidly changing, or diverse data, often referred to collec-

tively as “Big Data.” The four major types of NoSQL databases are “key-value,”

“BigTable (or column family)”, “document” and “graph” databases (McCreary and

Kelly 2014; Sullivan 2015). Each type of database emphasizes a particular mix of

characteristics that optimize it for particular tasks. For example, “document”

databases facilitate queries on large quantities of unstructured or semi-structured

data. In contrast, “key-value” databases emphasize rapid retrieval of data from

distributed systems. “Graph” or “graph store” databases can encapsulate complex

rules and relationships in data, whereas “BigTable” or “column family” databases

store and access data in very large, sparse, tables using row and column identifiers.

The relational database has dominated traditional data handling, primarily in

business contexts. Many relational databases incorporate ACID (Atomicity, Con-

sistency, Isolation and Durability) principles (Haerder and Reuter 1983). Atomicity

refers to the principle that each transaction should either be fully completed, or not

at all. Thus, if the “city” and “state” in an address is being updated, and the

computer system fails after “city” has been updated but before “state” has been

updated, the entire transaction will fail, and “city” will be reset to its prior value.

Consistency dictates that any validation rules must be met. Thus if a database

contains a percent, and an attempt is made to set it to 101, the transaction should

fail. Isolation dictates that if two transactions try to change the same piece of data at

the same time, one of them will wait until the other has completed. Finally,

durability dictates that the results of a transaction must be fully completed before

the transaction terminates. This protects against failures where data may have been

written to a disk cache, but not the disk itself when a power failure occurs.

Adherence to ACID principles means that a properly designed relational data-

base is a very reliable place to store data. All sorts of potential errors are prevented.

However, this comes with a cost in terms of flexibility and performance. If a sensor

is generating thousands of measurements each second, a relational database may be

unable to keep up, with each “insert” transaction taking longer to complete than the

time between measurements. Similarly, if a large database is spread across many

servers, and one of them fails or experiences network delays, transactions may be

unable to be completed. Also, for science uses, validation rules may not be

immutable. Our expectation that a temperature would be less than 30� may prove

to be incorrect, so an ability to override validation limits may be needed.

NoSQL databases typically give up on one or more elements of ACID in order to

increase performance and flexibility (McCreary and Kelly 2014; Leavitt 2010). For

example, document stores don’t require the pre-definition of tables and database

schema needed for relational databases, making them extremely flexible. But

document stores also forgo most validation checks, violating the “consistency”

constraint. Similarly, to increase speed, key-value databases often cache key values

in memory, making them susceptible to losses of data in the event of a computer

crash, violating the “durability” constraint. NoSQL databases often provide greatly

improved speed, but may also allow temporary inconsistencies (McCreary and

Kelly 2014). Thus, there is often the need to balance the needs for reliability against

the needs for flexibility and performance when selecting the type of database to use.
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Regardless of the type of database, a key feature is the ability of DBMS to

interact with web servers. This makes possible dynamic web pages that immedi-

ately reflect changes to the database. Web pages can be used for both display and

input, allowing users on the Internet to contribute data and metadata. Data and

metadata entry systems using a web browser or app as the front-end are increasingly

common. When the form is submitted, changes can be made in the database

immediately, so users will have immediate access to the updated information.

3.4.4 Data Models and Normalization

In the creation of relational databases, the DBMS constitutes the canvas, but the data

model is the painting. The purpose of a data model is to explicitly spell out the

relationships between the different entities about which data is being stored (Bobak

1997). Ultimately the data model will be used as the road map for the definition of

tables, objects, and relations. However, it is typically at a level of abstraction that lets

us get past a mass of detail to look at the “big picture.” In a data model, the entities

that will be represented in a database are defined and their attributes specified.

Normalization is a process wherein a data model is reduced to its essential

elements (Hogan 1990). The aim of normalization is to eliminate redundancies

and potential sources of inconsistency. During the normalization process, it is not

unusual to define new entities and attributes or to eliminate old ones from a data

model. Note that data modeling is in many ways, a creative process. Although there

are rules for normalization, the data model inevitably reflects the purpose of the

database and the thought process of its creator.

The data modeling process is best described through an example. Let’s look at a
simple example of a database of species observations. The simplest model would be

to store all the data in a single table (Table 3.3).

Figure 3.8 shows how this table would be represented in an entity-relationship

diagram (E-R diagram).

There are several deficiencies in this model. First, the table is full of redundancies.

The species Quercus alba is represented numerous times within the table, as is the

common name “White Oak.” This gives many opportunities for errors to enter into

the table. For example, in the third line, “White Oak” is misspelled “White Oat.”

Table 3.3 “Flat file” species observation database

Genus Species Common name Observer Date State

Quercus alba White Oak Jones, D. 15-Jun-1998 NC

Quercus alba White Oak Smith, D. 12-Jul-1935 VA

Quercus alba White Oat Doe, J. 15-Sep-1920 PA

Quercus rubra Red Oak Fisher, K. 15-Jun-1998 VA

Quercus rubra Red Oak James, J. 15-Sep-1920 NC
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A second option is to split our table into two entities, one representing the

species-level data and another entity for the observations (Tables 3.4 and 3.5).

We need to add an attribute (here called “Spec_code”) that can act as a key to link

the two entities together. This key attribute takes on any unique code, including

text, however here we have chosen a numerical code. In Fig. 3.9 a dotted line is used

to show that link. With this data model it is not possible to have the inconsistency

(“White Oat”) in Table 3.3 because we have eliminated redundant copies of the

Common Name.

In a real application, the species entity would incorporate all of the data relevant

to the species that is independent of any specific observation. Additional attributes

of the species entity might include additional taxonomic information (e.g., family,

order), physical characteristics (e.g., mean size, branching pattern, leaf type) and

natural history information (e.g., reproductive characteristics, habitat). We might

even want to include images or Internet links. The observation entity might be

expanded to include additional information on the observation (e.g., method of

reporting, citation, voucher specimens), information on the location of the obser-

vation and additional details on the observer (e.g., contact information, such as

address and email). As this process proceeds it may become evident that additional

entities are required. For example, if a single observer makes multiple observations,

it may make sense to establish an observer entity with attributes such as address,

phone number, email, along with a new key attribute—Observer_code. Similarly,

Fig. 3.8 In an entity-

relationship (E-R) diagram

tables are represented by

boxes and columns in the

table (fields, attributes) by

ovals

Table 3.4 Table for species entity

Spec_code Genus Species Common name

1 Quercus alba White Oak

2 Quercus rubra Red Oak

Table 3.5 Data table for observations entity

Spec_code Observer Date State

1 Jones, D. 15-Jun-1998 NC

1 Smith, D. 12-Jul-1935 VA

1 Doe, J. 15-Sep-1920 PA

2 Fisher, K. 15-Jun-1998 VA

2 James, J. 15-Sep-1920 NC
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we might want to add an additional entity that describes locations in detail,

including coordinates, habitats etc. Linking images to specimens and locations as

well as species could further extend the model. A more comprehensive (but by no

means exhaustive) data model showing the entities (but not attributes) for a species

observation database is shown in Fig. 3.10. Note that multiple lines connecting the

entities depict a one-to-many relationship. Thus a species may have multiple

observations, Internet links and images, but each observation, Internet link or

image may be linked to only one species.

The degree to which formal normalization methods can be applied to NoSQL

databases varies, although the primary principle, that each piece of data should be

represented in a single place in the database, does not.

3.4.5 Advantages and Disadvantages of Using a DBMS

There are numerous advantages to using a DBMS. The first is that a DBMS has

many useful built-in capabilities such as sorting, indexing and query functions

(Maroses and Weiss 1982; Hogan 1990). Additionally, most relational databases

include integrity and redundancy checks and support transaction processing with

ACID characteristics. There has been substantial research into making relational

DBMS as efficient as possible and many DBMS can operate either independently,

or as part of a distributed network. This aids in scalability because if one computer

starts to become overloaded, another can be added without having to substantially

Fig. 3.9 In the revised data model, the Spec_code field provides a link between observations in

the two tables

Fig. 3.10 An expanded data model for a database of species observations. One-to-many relation-

ships are shown using a split line on the end connected to the table containing multiple rows of data

linked to a single row of data in the associated table
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restructure the underlying system. Finally, most relational DBMS include interfaces

that allow linkage to user-written programs or other software, such as statistical

packages. This is useful because it allows you to change the underlying structure of

the data without having to alter programs that use the data.

Despite these advantages, most DBMS are designed to meet the needs of

business applications and these may be quite different from the needs of scientists

(Maroses and Weiss 1982; Pfaltz 1990). For example, most commercial DBMS

have few graphical or statistical capabilities. DBMS are typically designed to create

standardized reports. These may be of little use to researchers asking new questions.

Additionally, DBMS are typically designed to deal with large volumes of data of a

few specific types. They are less useful when dealing with relatively small volumes

of data of many different types (the “variety” side of Big Data). If addition of each

new type of data to a database requires creation of new data tables, the data model

for the database can soon become incomprehensible. Similarly, DBMS can be

relatively inefficient in dealing with sequential data (e.g., data ordered by time of

collection). Some functions, such as highly optimized updating capabilities, are not

frequently used for scientific data because, barring detection of an error, data is

seldom changed once it is in the database, making some of the NoSQL alternatives

to relational databases more attractive. Additionally, not all analysis tools can be

easily interfaced with a DBMS. Proprietary data formats used by any DBMS may

limit archival quality of data. A final disadvantage of DBMS is that they require

expertise and resources to administer. This applies to all types of DBMS, including

NoSQL databases. For large projects, the costs of administration may be easily

absorbed, but for smaller projects or individuals, the resources required may exceed

the benefits accrued by using a DBMS for managing data. However, even if a

relational DBMS is not used for data, you may want to consider using a DBMS for

metadata (documentation). The structure of metadata is frequently more complex

than that of data and conforms better to the model of business data (relatively few

types of data, standard reports are useful). Most data is located based on searching

metadata rather than the data so the query capabilities of a DBMS are useful.

Similarly, metadata is changed more often than data, so that the updating capabil-

ities of a DBMS are more useful for metadata.

3.5 Interlinking Information Resources

Maximizing utility of database resources requires that we go beyond the simple

creation of individual databases. Synthetic and integrative research approaches

require the combination of data, often from diverse sources (Carpenter et al.

2009; Reichman et al. 2011). Users benefit from being able to search multiple

databases via a single query. Similarly, the value of the data that is contained in an

individual database is elevated when users are able to easily locate ancillary and

related data found elsewhere. A frequent phenomenon that accompanies develop-

ment of successful databases is that they spawn a series of “value added” databases

which tailor the raw information contained in one or more “basic” databases to meet
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the needs of a specific community. In our library and publishing analogy, we would

not expect useful physical constants and formula only to be found in a single book.

Instead we find them in a number of different reference texts aimed at different

audiences. Similarly, we should not expect only one source or format for a specific

kind of scientific data.

3.5.1 A Database Related to the Human Genome Project

The Human Genome Project provides an excellent case study of the opportunities

(and pitfalls) inherent in linking databases together. The data from GenBank,

EMBL and the Genome Data Base serve as “grist for the mill” of other databases.

For example, the Ribosomal Database Project (RDP; Cole et al. 2014) harvests data

on RNA data sequences from releases of GenBank. RDP then performs additional

analyses to align sequences from different sources and develop phylogenetic dia-

grams. It also provides specialized tools for locating “probes” which may be used to

distinguish classes of sequences. The RDP is then used by communities of ecolog-

ical and health researchers to identify microbes, or in the case of unknown microbes

to estimate the probable characteristics of such microbes based on their similarity to

known microbes. Although it contains no raw data that is not available in sequence

databases, RDP and similar databases reduce the duplication inherent in having

each individual researcher analyze that raw data.

3.5.2 Environmental Databases for Sharing Data

One approach to sharing data would be for each researcher to post their own on their

own web or social media page. This would certainly make data available, but at the

same time poses many problems. It would be difficult to formulate a coherent

strategy to search for similar data, the data would be highly diverse and the level of

metadata or documentation would vary widely. Most serious is that many Internet

resources are ephemeral—with web pages disappearing when new systems are

introduced or researchers move or retire. For this reason, there has been growth

in the development of repositories and clearinghouses for environmental data.

Government is a major generator of publicly-accessible environmental data

collected for regulatory and informational purposes. Within the U.S. government

there has been a trend towards consolidation of data resources. For example, the

National Oceanic and Atmospheric Administration merged several individual data

centers focusing on specific aspects of weather, climate, fisheries, oceans and

geophysical data into the National Centers for Environmental Information

(NOAA 2016). However, different agencies, with different missions and data

needs, have led to a wide array of federal data systems.

Non-governmental data is increasingly being made available via a growing

number of repositories (Michener et al. 2012). Some focus on a specialized type
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of data. For example, Vegbank (Ecological Society of America 2016) is an archive

primarily aimed at vegetation plot data (Peet et al. 2012). In contrast figshare (2016)

allows contributors to upload a variety of files including figures, tables and data,

regardless of the topic. Some restrict the source of data. The Dryad Data Repository

(Dryad 2016; White et al. 2008) provides a repository for data associated with

publications in selected journals.

Repositories vary widely in the types of data they allow and the amount of

metadata they require. Some, such as figshare, have minimal requirements, with

little or no metadata required and almost all types of files accepted, including those

in proprietary formats. In contrast, the Long Term Ecological Research Network

Data Portal (LTER 2016) uses EML metadata to describe tabular data, most of

which are in generic, rather than proprietary formats. For recently collected data the

difference between proprietary and generic formats may be unimportant—the

software is available to read both of them. However, as the data ages, data stored

in proprietary formats or with minimal metadata may become increasingly difficult

to analyze or interpret.

In addition to data repositories that actually contain the data files, data clearing-

houses or data registries, which provide links to data provided elsewhere, have also

been popular. For example, at the level of the U.S. federal government Data.gov

(2016) attempts to provide links to all the types of data collected by the federal

government. The Ecological Society of America Data Registry contains links to

data provided by society members, but it is up to the individual members to assure

that the registered data becomes accessible. However, such registries and clearing-

houses are difficult to keep current. Web sites frequently change, or disappear

altogether, leaving the clearinghouse with non-functional links.

DataONE provides a middle ground (DataONE 2016; Michener et al. 2012). It

provides searches that span a large number of environmental data providers,

including Dryad, the Long-Term Ecological Research network, the Knowledge

Network for Biocomplexity, the National Phenology Network and dozens of

other data repositories. Individual data repositories or “member nodes” are respon-

sible for providing and maintaining the content, but the search interface and links to

data are standardized, providing a simplified user experience and facilitating

comprehensive data searches. DataONE also provides Digital Object Identifiers

(DOIs) similar to those used for conventional digital publications, and supports

versioning, so that data used in an analysis can be accurately retrieved.

Digital Object Identifiers and similar identification systems, provide one solution

to the problem of changes in the locations or ownership of information resources.

They link to a database that can give the current location of a resource and if the

location of a resource changes, the database can be edited to reflect that change.

However, they remain dependent on providers updating the database to reflect new

locations and keeping the material available on the network. Resources that disap-

pear from the network or whose change in location are not noted can still be lost.

Additionally, DOIs were designed with immutable documents in mind. However,

many data are dynamic, with frequent additions. So although a DOI points to a

dataset, the contents of the dataset itself may be different. For this reason, DOIs are
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often coupled with other versioning mechanisms or DOIs are issued for specific

versions of a dataset.

3.5.3 Tools for Interlinking Information

Systems for searching data, such as DataONE, provide only the first step in

interlinking information. Once data is located it still needs to be acquired and

integrated. The integration process is often complex, involving adjustment of

sampling intervals (resampling, interpolation), aggregation, merging, unit conver-

sions and extensive quality assurance checks. The process can be simplified for data

that conform to standards (Kolb et al. 2013), but ultimately the process is often

complex, iterative and esoteric. Such complex analyses are best supported by

software that provide an auditable record of the steps used to synthesize multiple

datasets in an analysis (Borer et al. 2009).

There are a large number of analytical tools used by ecologists ranging from

spreadsheets, to database management systems, to statistical packages and finally to

specialized user-written software. Spreadsheets are probably the most widely used,

but are also problematic, with poor or marginal features for merging, aggregating

and transforming data. Moreover, unless each click is recorded, it may be impos-

sible to reconstruct what actually was done with data.

Better are statistical packages such as R, Matlab, SAS and SPSS, which allow

text copies of analytical steps to be preserved, and re-run or modified as needed and

support a wide array of functions for integrating data from different sources. The

choice of a specific package can be driven by cost, user background, and specific

analytical needs. However, there is such a wide range of overlap in capabilities, that

any of the statistical packages can be usefully applied to most data integration

challenges.

Database systems are designed to address integration of standardized data, and

can be used, albeit with more difficulty, to integrate the diverse, often non-standard

data generated by ecologists (Kolb et al. 2013). As with statistical packages, there is

extensive overlap in the capabilities of different databases, and also with the data

integration capabilities of spreadsheets. Ultimately it is the expertise of the user,

rather than the characteristics of the statistical package or database system that

dictate how successful a data integration effort will be.

3.6 Conclusions

Database management tools can be used by individual researchers and research

projects to improve the quality of data, the speed and accuracy of retrieval and the

ease of manipulation. However, these advantages do not come without a cost, in

terms of the resources spent on database creation and administration. At the larger
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scale, shared scientific databases are increasingly setting the boundaries for science

itself. Taking ecological and environmental science to the next step will require

taking ecological and environmental databases to a new level. A key to the success

of scientific databases lays in developing incentives for individuals who collect data

to make that data available in databases (Duke and Porter 2013; Porter and Callahan

1994; Roche et al. 2014). Additionally, mechanisms for funding databases need to

be developed. For-profit databases have been successful in some areas (e.g.,

Chemical Abstracts), but are an unlikely candidate for success where the number

of potential users is small (regardless of the importance of the data to our under-

standing of nature). Direct funding of databases has had some successes, but in

many ways a successful database is a funding agency’s worst nightmare: a project

that grows year after year and never, never goes away! Technological innovations

in computer systems and software can reduce the cost of operating data centers, but

maintaining data in the face of entropy that attempts to disorganize that data is no

simple task.

Despite these challenges, there are an increasing number of environmental

databases of shared environmental data, such as Dryad and DataONE. These

databases provide access to large numbers of individual datasets and are an

essential first step. Researchers can’t use data they can’t access! However, it still
falls on the researcher, once data has been acquired, to perform the many manip-

ulations required to successfully integrate data from diverse sources. New

approaches will be required to simplify the data integration process and to make

it possible for researchers to easily access the data they want, in the form they want.

Such approaches may involve tool development, wherein on-the-fly manipulations

are performed, or “value added” databases ingest raw datasets but produce stan-

dardized and well-documented data products ready for researchers to use. Ideally,

researchers should not be restricted to using tens of datasets (a practical maximum

when each dataset requires substantial, individual, manipulation), but rather hun-

dreds or even thousands of datasets.

Scientific databases evolve, but they don’t spontaneously generate. We are at an

exciting time in the development of scientific databases. Scientific questions and

technological advances are coming together to make a revolution in the availability

and usability of scientific data possible. However, the ultimate success of scientific

databases will depend on the intelligence and commitment of individuals creating

and operating databases.
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Chapter 4

Quality Assurance and Quality Control

(QA/QC)

William K. Michener

Abstract This chapter introduces quality assurance processes and procedures that

are employed to prevent data contamination from occurring and, secondly, quality

control processes and procedures that are used to identify and deal with errors after

they have been introduced. In addition, QA/QC activities are described that can be

implemented throughout the entire data life cycle from data acquisition through

analysis and preservation and general rules of thumb for promoting data quality are

presented.

4.1 Introduction

Quality assurance and quality control refer to the procedures that are used to

prevent errors from occurring and identifying and flagging those errors when they

do occur. In the context of data, quality assurance (QA) is a set of processes and

procedures that are employed to prevent or minimize data contamination (i.e. the

introduction of errors into a data set or database). Quality control (QC) focuses on

the data set or database after it has been created and includes processes that are

designed to identify, flag and, sometimes, correct errors that have been introduced

in the data product.

4.2 Quality Assurance

Data errors can be introduced by numerous sources. Humans can introduce errors

unknowingly (e.g., insufficient training and experience), accidentally (e.g., spilled

coffee) or purposely (e.g., mischief). In addition, instruments, sensors, computer

and data networks, and other field and laboratory equipment can malfunction or

cease to function for a variety of reasons. Such sources of data errors include natural
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phenomenon (e.g., fire, wind, floods, treefall, animal activities, biofouling), elec-

tromagnetic interference and power problems (e.g., spikes, loss of power, brown-

outs, battery failure), environmental factors (e.g., sand and dust, temperature spikes,

moisture, freezing), as well as fatigue, corrosion, photodegradation, and the normal

wear and tear and breakage that can affect sensors, instruments and their compo-

nents, and computer and data networks (see Ganesan et al. 2004; Suri et al. 2006;

Campbell et al. 2013).

Quality assurance is aimed at minimizing or preventing the introduction of errors

in data. QA includes a wide array of proactive and preventative administrative and

procedural processes. Several steps can be taken to minimize the introduction of

errors by humans. First, hire or otherwise engage qualified individuals and provide

them with adequate training. Many companies offer training in use of the instru-

ments they sell and many citizen science programs provide online or in-the-field

training and testing. It is always useful to perform trial runs in the field and

laboratory before official data collection begins to verify that staff and students

are comfortable with the data collection, processing and QA/QC procedures.

Second, adopt community-accepted standardized data collection and analytical

methods whenever possible as these methods are often well documented and are

more frequently associated with online or in-person training programs (e.g., Patrick

Center for Environmental Research 2002; American Public Health Association

2005). Third, accidents can be minimized through training (e.g., annual safety

training) and following laboratory best practices; universities, corporations and

laboratories often have developed standard laboratory operating procedures and

may also employ a safety officer that can provide guidance. Fourth, mischievous

acts can often be prevented or reduced by either adding security (e.g., fencing,

security cameras, locks) or by camouflaging instruments and sensors in the field.

Manual data entry continues to be used to record many field observations as well

as some laboratory measurements. For critical data, it is beneficial to have data

entered by two independent data entry personnel and, then, compare the two data

sets after they have been created; any differences can be compared with the field

notes, audio recordings, or other original sources. In addition, many spreadsheet,

data entry and database programs allow one to check the validity of data as it is

being entered. For example, entering an invalid date, a value that exceeds a

particular range, an invalid categorical value such as “D” for sex when only “F”

and “M” are allowed, or other invalid or questionable data may generate a comment

or pop-up window (e.g., “Data Exceed Instrument Range” or “Invalid Date

Entered”). Use of such data filters is strongly encouraged since it is much easier

to identify and correct an error at the source (e.g., data acquisition, data entry) than

after-the-fact (e.g., during data analysis).

Sensor and instrument errors can be minimized by establishing a program for

routine checks, maintenance, calibration and replacement of components suscepti-

ble to degradation and failure. The maintenance program may include stocking

replacement parts on site and tracking and recording maintenance activities. Proper

grounding, shielded cables and backup power supplies may also help reduce

equipment and sensor downtime. For critical data, it may be necessary to install
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three or more replicate sensors so that data collection continues when one of the

sensors ceases to function satisfactorily (e.g., breakage, sensor drift). Likewise, it

may also be useful to routinely send replicate samples to another laboratory for

processing to validate that laboratory instrumentation and procedures are working

properly and collecting high quality data. Last, some programs employ automated

alerts that are sent to key personnel when problems are noticed (e.g., Shafer et al.

2000).

4.3 Quality Control

Data quality control measures are employed to identify and flag suspect values in

data products after they have been generated. Values can be suspect for many

reasons. First, recorded data values may not represent the actual measurements or

observations that were made in the field or laboratory. Such errors may be due to

writing down erroneous values in lab or field notebooks and mistyping data in

spreadsheets or data entry forms (i.e., transcription errors), power loss or spikes,

and malfunctioning, miscalibrated or improperly maintained instruments and sen-

sors. Related errors include the insertion of duplicate records and the failure to

record or properly code or account for missing values. Second, recorded values may

be outliers in that they lie outside the distribution of most of the other values in the

record. Values that are smaller than the 5th percentile or larger than the 95th

percentile are often considered outliers or extreme values. Outliers may or may

not be errors, but often warrant further scrutiny as they may signal the occurrence of

extreme events, unusual variation in responses, or non-normal data distributions.

Quality control activities include data filtering and a variety of graphical and

statistical approaches that are discussed below.

4.3.1 Data Filters

Data filters were discussed in Sect. 4.2 because they can be used to prevent invalid

data from being entered in the first place (i.e., quality assurance). Data filters can

also be employed after the data set or database has been initially created to scan for

suspect data and possible errors. Quality control data filters may, for example,

check for duplicate records, missing values, repetition of identical values, range

exceedance, date and time chronology, erratic changes in slope (e.g., data spikes),

internal consistency (e.g., minimal water temperature is lower than maximum water

temperature), and spatial consistency (e.g., recorded values at one sensor do not

depart dramatically from values recorded at other sensors nearby) (Collins et al.

2006; Durre et al. 2010; Campbell et al. 2013).

Most common spreadsheet and database programs provide easy-to-use tools that

allow for checks of duplicate records, range checks, valid dates and times, and
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Table 4.1 Quality assurance and quality control activities associated with different components

of the research and data life cycle (plan/study design, collect/acquire data, assess data quality,

describe (add metadata), preserve and backup data, integrate and analyze data) (also see Michener

et al. 1997; Brunt 2000; Edwards 2000; Campbell et al. 2013; Michener 2017a, b; Porter 2017;

Cook et al. 2017; Schildhauer 2017).

Research component and

associated QA/QC activities Description

Plan/Design study

Design experiment or field study Fully define the experimental design to be followed and

include description in the metadata

Describe field and lab methods Select and describe the methods and instruments used to

acquire and process data (ideally, using well documented

community standards)

Create/adopt lab notebook Adopt an electronic (or paper) lab notebook where standard

operating procedures and all field, laboratory and analytical

activities are fully documented

Collect/Acquire data

Create data dictionary Define variables and measurement units; date-time formats;

site and other variable codes; acceptable values for cate-

gorical variables (e.g., sex, color) and expected ranges for

continuous variables

Establish data entry processes Develop file naming convention; design and implement

data entry forms/screens, Laboratory Information Manage-

ment System, etc.

Train personnel Train individuals that will be involved in data collection

and data processing

Maintain field and lab

instruments

Establish a maintenance schedule that includes testing all

field and lab instruments, performing routine maintenance

and calibration, and tracking and recording maintenance

activities

Assess data quality

Verify files and file names Check that file names are appropriate (e.g., descriptive,

consistent, non-proprietary) and properly versioned, and

that file names and sizes (e.g., checksum values, size in

bytes) are consistent with metadata

Verify data completeness Check data tables, files, databases, etc. for inclusion of date,

time, location, collector(s), data processor(s), measurement

units, relational key indicators and other critical values as

appropriate

Verify data are reasonable Check that measured/recorded values fall within expected

ranges and geographic coordinates, and that values of cat-

egorical values are appropriate (e.g., “M” and “F” okay, but

not “Z” for sex)

Verify internal consistency Check that relationships among variable values are appro-

priate (e.g., minimum air temperature is less than maximum

air temperature)

Verify presence or absence of

anomalies

Check repeated measurements for anomalous behavior

(e.g., erratic spikes, continually decreasing slope) that may

indicate sensor or instrument malfunctions

(continued)
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validity of categorical values. Otherwise, it is quite easy to add quality checks

during the data analysis phase in most statistical packages, usually as a series of “if-

then statements” (e.g., Edwards 2000, Table 4.1, p. 72; Gotelli and Ellison 2013,

p. 216). Once suspect data are identified, it is important to have an established

system for consistently flagging those values. The Oklahoma Mesonetwork, for

instance, flags values as “good” (0), “suspect” (1), “warning” (2), or “failure”

(3) (Shafer et al. 2000).

Table 4.1 (continued)

Research component and

associated QA/QC activities Description

Describe (add metadata)

Verify data and metadata match Check match between metadata and data to ensure that data

are fully described and up-to-date with the metadata and

vice versa

Verify files and file and data

formats

Check that files and file and data formats are clearly defined

and consistent

Verify methods and provenance Check that all data collection and data processing steps are

fully documented and that the provenance of data and

derived products is clear and complete

Verify variables and units Check that all variables and units of measurement are

defined

Verify quality descriptors Check that all data flags, issues and limitations associated

with the data are fully described

Verify contextual information Check that all information necessary to understand the

study and the data is included (e.g., study objectives, study

area description, lab and analytical standards)

Preserve and backup data

Create and implement back up

plan

Check that data are stored on at least three media (e.g.,

desktop computer, cloud storage, tape, auxillary hard drive)

in at least two different locations (e.g., lab/office, off-site

location such as a data center); routinely verify that backups

have been performed and that data can be recovered from

the backups

Create and implement preserva-

tion plan

Identify a repository where data will be preserved beyond

the life of the project; follow the repository guidelines and

recommendations for preparation of data and metadata

products that will be preserved

Integrate and analyze data

Verify data can be integrated and

analyzed

Check that files, data tables and databases are complete,

consistent with respect to units of measurement and inclu-

sion of relational keys, and include sufficient metadata

Exploratory data analysis Use graphical and statistical approaches to examine data

distribution, highlight potential outliers, and identify other

anomalies

Verify statistical assumptions Check that data conform to assumptions underlying the

statistical tests employed (e.g., data conform to normal

distribution)
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4.3.2 Graphical QC

There are numerous graphical approaches that can be used for quality control (e.g.,

identifying potential outliers) as well as exploring the data. Stem-and-leaf plots

have long been used to visualize data and identify extreme data points in relation to

the median and upper and lower quartiles (Gotelli and Ellison 2013); such plots can

be easily constructed in R using the “stem” command (e.g., Horton and Kleinman

2011, p. 169; Gardener 2012, p. 63). These plots work well for small to medium-

size data sets, but are often not as easy to interpret for very large data sets.

Scatterplot matrices are frequently used to initially explore data distributions and

to identify potentially interesting relationships in the data (Gotelli and Ellison

2013), and are suitable for data sets of any size. Figure 4.1 illustrates the pairwise

relationships among a subset of variables included in the classic data set on sleeping

Fig. 4.1 Scatterplot matrix illustrating the relationship between body weight (kg), brain weight

(g), total sleep (h/day), and maximum life span (years) of mammals. Data are from Allison and

Cicchetti (1976) and are also included as sample data sets in the R and JMP statistical programs.

Note: the original data set also includes slow wave (“non-dreaming”) sleep, paradoxical (“dream-

ing”) sleep, gestation time, species, and three additional categorical variables (i.e., predation,

exposure and danger indices). This scatterplot matrix was created using the “Graph—Scatterplot

Matrix” command in JMP ® Pro 11.0.0 (Copyright © 2013 SAS Institute Inc.; see SAS Institute

Inc. 2013a)
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mammals (Allison and Cicchetti 1976). This data set was used to examine the

relationships among sleep habits and other characteristics of mammal species

adapted to a variety of ecological niches. The scatterplots indicate that most of

the data values for the variables (especially for Body Weight, Brain Weight, and

Life Span) appear clustered near zero and that each variable has data values that lie

at the extremes (i.e., African and Asian elephants have body weights of 6654 kg and

2547 kg and brain weights of 5712 g and 4603 g, respectively; and humans and

Asian elephants have life spans of 100 years and 69 years, respectively). Such data

distributions often indicate that the data are not normally distributed and that they

should be transformed prior to formal statistical analysis (Edwards 2000).

Gotelli and Ellison (2013) describe a diverse array of data transformations

(i.e., logarithmic, square-root, cube-root, reciprocal, arcsine, and Box-Cox) that

can be used so that the transformed data meet the assumptions of statistical tests

(e.g., homoscedasticity and normality of residuals). Figure 4.1 was created using

the statistical package JMP (Copyright© 2013 SAS Institute Inc.); similar matrices

can be created using R (e.g., see page 167 (“pairs” function) in Horton and

Kleinman 2011).

The box plot or box-and-whisker plot is particularly effective for visualizing

data distributions and identifying possible outliers. Figure 4.2 illustrates the com-

ponents of a box plot constructed using the statistical package JMP (Copyright

© 2013 SAS Institute Inc.); similar box plots can be created in R (e.g., see page

169 (“boxplot” function) in Horton and Kleinman 2011). The box plot is notable for

the information content that is condensed into a relatively simple diagram and the

ease with which it can be used to rapidly assess the data distributions of many

variables.

Box plots are often combined with histograms to aid in identifying extreme

values (e.g., see page 213 in Gotelli and Ellison 2013); histograms can be created in

R (e.g., see page 168 (“hist” function) in Horton and Kleinman 2011). Combined

box plots and histograms are shown in Fig. 4.3 for the Body Weight, Brain Weight,

and Life Span data from Allison and Cicchetti (1976) that were previously shown in

the scatterplot matrix in Fig. 4.1. Figure 4.3 further illustrates the clustering of data

values near zero and the presence of apparent outliers. In fact, the clustering is so

significant that the box plots of body weight and brain weight are collapsed to the

extent that they are un-interpretable. Conversely, log10-transformed body weight,

brain weight and life span data approximate a normal distribution in the combined

box plots and histograms illustrated in Fig. 4.4. For all three variables, the median

falls within the confidence diamond for the mean, both the mean and median are

included within the densest 50% of the observations (i.e., “shortest half” as defined

by Rousseuw and Leroy 1987), and no extreme values are indicated. A normal

quantile plot can be used to further examine the extent to which a variable is

normally distributed. In Fig. 4.5, the log10-transformed brain weight data fall

approximately along a straight line in the normal quantile plot and all data values

fall within the Lilliefors confidence bounds—conditions that are indicative of a

normal distribution (Conover 1980).

If we now plot the log10-transformed values of body weight versus log10-

transformed values of brain weight, the relationship appears linear (Fig. 4.6),

4 Quality Assurance and Quality Control (QA/QC) 61



which is in sharp contrast to the relationship exhibited in Fig. 4.1. Moreover, the

two largest mammals by body weight (the African and Asian elephants) no longer

appear to be outliers (refer to Fig. 4.1); i.e., they follow the overall linear trend and

are located in the right uppermost corner of the figure. Likewise, if we plot the

log10-transformed values of brain weight versus log10-transformed values of max-

imum life span, the relationship appears approximately linear (Fig. 4.7). As in

Fig. 4.6, the two largest mammals by body weight (the African and Asian ele-

phants) no longer appear to be outliers (refer to Fig. 4.1); i.e., they follow the overall

linear trend and are located in the far right of the figure just below humans which

have the longest life span. Interestingly, the Little Brown and Big Brown Bats now

stand out because of their relatively long life spans in relation to their brain weights

as compared to 56 other mammals for which data was available (Allison and

Cicchetti 1976).

Parallel coordinate plots can also be used for identifying outliers, discontinuities

and trends in the data (e.g., positive or negative correlations; Inselberg 1985, 1997;

Fig. 4.2 A typical box plot includes a horizontal line within the box (indicates the median data

value), a box (encompasses half of the data values ranging from the 1st quartile through the 3rd

quartile; note the difference between the 1st and 3rd quartiles is referred to as the interquartile

range or IQR), whiskers (extending from the box to upper and lower values (calculated as: 3rd

quartile þ 1.5*IQR and 1st quartile � 1.5*IQR, or the upper and lower data point values

(excluding extreme values) if the data points do not extend to the computed ranges), and dots or
asterisks (indicating extreme values and potential outliers). This box plot also includes a confi-

dence diamond that contains the mean (i.e. an imaginary line drawn through the center of the

diamond—near where the median is located in this example—would show the mean) and the

upper and lower 95% of the mean (i.e., top and bottom points of the diamond). Also, a bracket

encompasses the shortest half, which is defined as the densest 50% of the observations (Rousseuw

and Leroy 1987). The illustration is based on an Outlier Box Plot that was created using the

“Analyze—Distribution” command in JMP ® Pro 11.0.0 (Copyright © 2013 SAS Institute Inc.;

see SAS Institute Inc. 2013b)
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Wegman 1990). A parallel coordinate plot allows one to visualize each cell in a data

table, and a single line segment represents a row in a data table. In Fig. 4.8, for

example, the horizontal line in the upper left corner reflects a discontinuity in the

data as “nondreaming” and “dreaming” sleep were not measured for the African

elephant although “total sleep,” “life span,” and “gestation” were measured. In

contrast, the red line immediately below the African elephant represents the Asian

elephant for which all variables were measured. Humans also stand out in the figure

for their long life span (blue point at top of chart for LifeSpan variable). Overall, it

Fig. 4.3 Combined histograms and box plots illustrating the distribution of body weight (kg),

brain weight (g), and maximum life span (years) data values (data from Allison and Cicchetti 1976;

see Fig. 4.1 for more information). The figure was created using the “Analyze—Distribution”

command in JMP® Pro 11.0.0 (Copyright© 2013 SAS Institute Inc.; see SAS Institute Inc. 2013b)

Fig. 4.4 Combined histograms and box plots illustrating the log10–transformed distributions

of body weight (kg), brain weight (g), and maximum life span (years) data values (data from

Allison and Cicchetti 1976; see Fig. 4.1 for more information). The figure was created using the

“Analyze—Distribution” command in JMP ® Pro 11.0.0 (Copyright © 2013 SAS Institute Inc.;

see SAS Institute Inc. 2013b)
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Fig. 4.5 Combined histogram, box plot and normal quartile plot illustrating the log10–

transformed distributions of brain weight data values (data from Allison and Cicchetti 1976; see

Fig. 4.1 for more information). The normal quantile plot (on the right) includes the normal quantile

scale (top), probability scale (bottom), and the Lilliefors confidence bounds (see Conover 1980 and
SAS Institute Inc. 2013b) in red dots and a diagonal straight line through the data to aid in

interpretation. The figure was created using the “Analyze—Distribution” command and the

“Normal Quantile Plot” option in JMP ® Pro 11.0.0 (Copyright © 2013 SAS Institute Inc.; see

SAS Institute Inc. 2013b)

Fig. 4.6 Scatterplot matrix illustrating the relationship between log10-transformed body weight

(kg) and log10-transformed brain weight (Data from Allison and Cicchetti 1976). This scatterplot

matrix was created using the “Graph—Scatterplot Matrix” command in JMP ® Pro 11.0.0

(Copyright © 2013 SAS Institute Inc.; see SAS Institute Inc. 2013a)
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also appears that those mammals that are categorized as most susceptible to

predation (i.e., danger category 5; represented by the bright red lines) tend to

spend less time in nondreaming, dreaming and total sleep.

Fig. 4.7 Scatterplot matrix illustrating the relationship between log10-transformed brain weight

(g), and log10-transformed maximum life span (years) (data from Allison and Cicchetti 1976). This

scatterplot matrix was created using the “Graph—Scatterplot Matrix” command in JMP ® Pro

11.0.0 (Copyright © 2013 SAS Institute Inc.; see SAS Institute Inc. 2013a)

Fig. 4.8 Parallel coordinate plot showing cells (raw data) from the mammalian sleep data table

created by Allison and Cicchetti (1976). A line represents a row from the data table and is

continuous from left to right, except where data are missing. Blue lines represent those mammals

that are least exposed and that are least susceptible to predation (e.g., Giant armadillo, which

scores “1” on each of the predation, exposure and danger indices) whereas red lines represent the
converse (e.g., rabbit, which scores “5” on each of the three indices). This parallel plot was created

using the “Graph—Parallel Plot” command in JMP ® Pro 11.0.0 (Copyright © 2013 SAS Institute

Inc.; see SAS Institute Inc. 2013a)
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Statistical process control charts (or control charts or Shewhart charts, named

after Walter A. Shewhart) have long been used to assess and improve the quality of

manufacturing and industrial processes by visualizing how a process changes over

time (Montgomery 2008). Control charts include a central line that represents the

average or mean of the variable and upper and lower lines for the control limits

(e.g., 3 standard deviations of the mean). Control limits can be based on long-term

historical data or upon the variability exhibited in a group of data (e.g., a month or

year or sampling period). A continuous line connects the data values or, in some

cases, the moving average of the process measurements. In industry, control charts

are used for identifying and correcting problems as they occur, assessing process

stability and identifying non-routine variation. In addition to charting measured

values over time, “special cases rules” can be invoked to highlight non-routine

variation (e.g., Nelson Rules and Westgard Rules; Nelson 1984, 1985; SAS Insti-

tute Inc. 2013c). Figure 4.9 illustrates how a control chart can aid in visualizing

environmental data patterns and processes over time. In this case, the hypothetical

concentration of some constituent, element or pollutant is measured daily for one

Fig. 4.9 This quality control plot was created using the “Analyze—Quality and Process—Control

Chart Builder” command (with options set to “Sigma: Levey Jennings” and “Warnings: Westgard

Rules: Rule 2 2S”) in JMP ® Pro 11.0.0 (Copyright © 2013 SAS Institute Inc.; see SAS Institute

Inc. 2013c). Red lines indicate 3 standard deviations from the mean (green line); Zones C, B and A

include points within 1, 2 and 3 standard deviations of the mean, respectively. Westgard Rule 2 2S

is triggered (red highlighted points) when two consecutive measurements are greater than 2 stan-

dard deviations of the mean (i.e., at days 11, 33, 55, 195–198, 270)
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year. On three occasions (days 11, 21 and 33) the measured concentration exceeded

the upper limit (i.e., three standard deviations of the mean); the lower limit was

never exceeded. In this example Westgard Rule 2: 2S was triggered four times

(days 11, 33, 55, 270) when two consecutive measurements positively exceeded

two standard deviations of the mean, as well as four times (days 195–198) when two

consecutive measurements fell two standard deviations below the mean. All

extreme values may warrant further examination to determine if some unusual

event has occurred. In this case, the measurements clustered around and preceding

days 195–198 may be indicative of instrument or sensor failure since this was the

only period during the entire year when measured concentrations approached zero.

A variety of similar charts can be created to aid in interpreting trends and

identifying extreme values. For example, instead of or in addition to including

upper and limits based on the historic or observed variability in the data, one could

include known limits based on illegal values such as wind speeds that are below

zero or that exceed the limits of the instrument or sensor. When long-term data are

available as is often the case with multi-decadal meteorological data, one approach

is to plot the variable’s daily minima and maxima for the year based on the historic

data; thus, any value(s) that approached or extended outside this range might be

flagged for further examination.

4.3.3 Statistical QC

In addition to the graphical methods presented in Sect. 4.3.2, it may also be useful to

test statistical assumptions using formal statistical methods. Some univariate nor-

mality tests include: (1) Anderson-Darling test (Anderson and Darling 1954;

Horton and Kleinman 2011; Razali and Wah 2011); (2) Kolomogorov-Smirnov

test (Edwards 2000; Razali and Wah 2011; Gotelli and Ellison 2013); (3) Lillifors

test (Conover 1999; Horton and Kleinman 2011; Razali and Wah 2011); and

Shapiro-Wilk test (Shapiro and Wilk 1965; Razali and Wah 2011). The Grubbs

test is a formal test for identifying outliers (Grubbs 1969; Grubbs and Beck 1972;

Edwards 2000). Comprehensive statistical QC and data analysis are outside the

purview of this chapter, but the importance of testing the assumptions of the

statistical methods that are employed cannot be over-emphasized (e.g., see Gotelli

and Ellison 2013).

4.3.4 Treatment of Errors and Outliers

A data value is only an error when it is definitively known that the value is incorrect.

Outliers and extreme values are not necessarily errors and should never be deleted.

Both errors and outliers can be extremely informative. An error provides valuable

information that can potentially be used to improve quality control processes.

Gotelli and Ellison (2013, p. 213) argue that
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There are only two reasons for justifiably discarding data: (1) the data are in error (e.g., they

were entered incorrectly in the field notebook); or (2) the data no longer represent valid

observations from your original sample space (e.g., one of your dune plots was overrun by

all-terrain vehicles). Deleting observations simply because they are “messy” is laundering

or doctoring the results and legitimately could be considered scientific fraud.

When data are determined to be in error, approaches may sometimes be

employed to correct for those errors (e.g., sensor drift; Horsburgh et al. 2010).

Outliers, on the other hand, may represent normal responses to extreme events or

extreme responses to normal conditions; in either case, outliers can lead to new

knowledge about the patterns or processes under study. Outliers should never be

deleted unless they can be shown to represent contaminated data. Edwards (2000)

suggests that

If no explanations for a severe outlier can be found, one approach is to formally analyse the

data both with and without the outlier(s) and see if conclusions are qualitatively different.

4.4 Implementing QA/QC

Decisions and actions taken throughout the entire data and research life cycles

(from study and data design through collection, adding metadata, preservation and

backup, and integration and analysis) can affect data quality (Table 4.1). Some

general rules of thumb for promoting quality data include: (1) plan for QA/QC from

the start of the project (i.e., don’t wait until you first detect contaminated data);

(2) all project personnel have a stake in data quality so engage them early on in

establishing standard operating procedures in the field and lab, training, and quality

assessment; and (3) routinely review the data and the QA/QC protocols as part of an

ongoing process by all project personnel to improve data quality (Edwards 2000).

All processes followed in data acquisition, QA/QC, and analyzing project data

should ideally be maintained as part of an audit trail that is included in the metadata

(Gotelli and Ellison 2013). Audit trails may be consulted in order to replicate

project findings or as part of legal proceedings. Scientific workflow programs

such as Kepler can be used to simplify and automate the process of capturing all

data processing and analysis steps (e.g., Barseghian et al. 2010).

4.5 Conclusion

QA/QC procedures encompass all activities aimed at ideally preventing data

contamination from occurring in the first place and, failing that, identifying and

dealing appropriately with errors that are introduced in a data set. QA activities

such as instituting comprehensive training, adopting community standards and

following best practices, employing data filters to prevent the entry of illegal
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values, establishing a rigorous maintenance program, and supporting independent,

manual double-entry of data can significantly reduce or prevent data contamination.

Perfect data sets are rare. QC steps such as data filters and graphical and

statistical procedures can be very effective at identifying and flagging outliers

and errors. Virtually every research project can benefit by visually examining the

data using tools such as scatterplot matrices, box plots, parallel plots and statistical

process control charts. These graphical QC procedures allow one to explore the data

and identify trends, search for outliers and unusual observations, and flag potential

errors for further examination. A good understanding of the data including under-

lying trends, distribution of values, and unusual observations contributes to sound

analysis and interpretation.

Data quality is affected throughout every step of the research and data life cycles

from planning and data collection through analysis and dissemination of results.

Quality data requires the attention of every individual that is engaged in the project

from the researcher(s) that plan the project, to the student who collects samples in

the field, to the post doctoral associate or technician who processes the samples in

the laboratory. Good QA/QC programs address all phases of the research and data

life cycles, engage all relevant personnel, and are routinely reviewed and

improved upon.
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Chapter 5

Creating and Managing Metadata

William K. Michener

Abstract This chapter introduces the reader to metadata as well as the standards

and tools that can be used to generate and manage standardized metadata during a

research project. First, metadata is defined and many of the benefits that accrue

from creating comprehensive metadata are listed. Second, the different types of

metadata that may be necessary to understand and use (e.g., analyze, visualize) a

data set are described along with some relevant examples. Third, the content,

characteristics, similarities and differences among many of the relevant ecological

metadata standards are presented. Fourth, the various software tools that enable one

to create metadata are described and best practices for creating and managing

metadata are recommended.

5.1 Introduction

Metadata refers to the information that is used to describe a dataset (i.e., data about

data). The term “metadata” is synonymous with “documentation” and has only

relatively recently become part of the science vocabulary. Metadata typically

includes the information that is necessary to understand the origin, organization

and characteristics of a data set. Simply put, metadata describes the: who, what,

when, where, why and how of the dataset (Table 5.1). Such information is necessary

for one to discover, acquire, understand, and use the data.

Despite the obvious importance of many of the questions included in Table 5.1,

many researchers fail to sufficiently document their data. This inattention to

metadata may be due to: (1) perceived lack of time, financial resources and

personnel to effectively manage the data; (2) lack of awareness of metadata

standards, metadata management tools, and best practices; (3) a belief that the

effort is wasted because no one else would want to use the data; or (4) an assump-

tion that the data originator(s) will remember the pertinent metadata.

The first challenge (i.e., lack of resources) can be overcome if the researcher

devotes modest effort to initially creating a reasonable data management plan that
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includes addressing staffing and other budgetary needs necessary to support meta-

data generation and management (see Michener 2017). The second challenge (lack

of awareness of enabling tools and approaches) can be tackled through educational

workshops and seminars or by reading the remainder of this chapter. Third, one

might question whether the data should have been collected in the first place if it is

virtually certain that no one else would ever want to see or use the data. Fourth,

virtually everyone overestimates their ability to retain facts, figures and details.

There is a natural tendency for the information content of data sets to decrease

over time. This loss of information content has been referred to as data entropy

(Michener et al. 1997) and is illustrated in Fig. 5.1. The figure highlights the reality

that researchers are generally most familiar with the data at the time of data

collection and processing. Shortly after the data are analyzed, though, we often

begin to forget many of the details related to data collection and processing such as

the precise location where samples were collected and the underlying details of the

laboratory and analytical methods. Later, more general details may be forgotten.

Data and documentation can be lost through accidents such as crashed disks,

electrical fires, and water leaks that can occur at any time. Finally, many of the

details that are carried around in our heads are lost when personnel retire, leave a

project or institution, or die.

The principal recourse for data entropy is to document your data as comprehen-

sively as possible and to preserve the data and metadata in multiple locations (see

Cook et al. 2017). There are many benefits that accrue from comprehensively

documenting a project’s data. First, you and your colleagues can easily interpret,

use and re-use the data over time by having a record of all those details that are

easily lost or forgotten. Second, the metadata can be useful for training or as a

resource for new personnel or students that are brought on to the project. Third,

your mind and memory can be used for more important tasks than remembering

Table 5.1 Categories of questions that can be asked about a dataset with examples

Questions Examples

Who Who collected the data? Who processed the data? Who funded the research that led

to the data? Who is the primary contact for the data? Who is permitted to use the

data?

What What data were collected? What questions or hypotheses were being addressed?

What QA/QC procedures were used? What data gaps exist? What do the variable

labels mean? What do the codes mean? What limitations do the data have? What

software do I need to read the data?

When When were the data collected? When were the data processed and analyzed? When

were or will the data be made available?

Where Where were the data collected? Where were the data processed and analyzed?

Where are the data stored?

Why Why were the data collected? Why were specific collection, processing and ana-

lytical methods employed?

How How were the data collected and processed? How precisely and accurately were the

data values measured? How can the data be accessed? How are the data organized

and structured? How should the data be cited?
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those project and data details that should be included in the metadata. Fourth, the

metadata that you create and maintain can be easily incorporated into literature

publications (i.e., materials and methods) and data packages (i.e., data and meta-

data) that are submitted to data repositories for long-term storage and, potentially,

data sharing.

5.2 Metadata Descriptors

Metadata descriptors or elements are those attributes of a data set that are necessary

for an individual to understand in order to discover, determine fitness-for-use,

acquire, and use a data set. Metadata descriptors may be grouped into three broad

categories: (1) high-level resource descriptors that provide basic information about

the dataset; (2) contextual descriptors that describe the research context and pro-

cedures employed to collect, process, and manage the data; and (3) physical

descriptors that detail the structure of the files and variables. Table 5.2 provides a

comprehensive list of metadata descriptors that are grouped into these three cate-

gories. The descriptors represent a more structured way of describing the: who,

what, when, where, why and how of the data as outlined in Table 5.1. Some of the

descriptors are essential in order to acquire and understand the data; other descrip-

tors may be optional but, nevertheless, provide additional information that may

facilitate determination of fitness-for-use.

Fig. 5.1 Data and information entropy: factors contributing to the loss of the information content

in a dataset over time (from Michener et al. 1997). Without proper curation, the investigator and

the project members forget the specific and general details. Over time as investigators move to new

projects and careers, the information about data products is lost. Furthermore, without proper

backups, the data files will be lost
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Table 5.2 Metadata descriptors or elements that provide the basis for comprehensively describing

ecological data by major category (derived from DCMI 2016, GBIF 2011a, ISO 2016a, Michener

et al. 1997)

Metadata descriptor Definition

I. High-level Resource

A. Dataset title Name assigned to the dataset

B. Identifier Unique code (e.g., Digital Object Identifier) assigned by data

originator or data repository to specifically identify a dataset

C. Responsible party (for

data generation)

1. Creator Name(s) and address(es) of the individuals responsible for gen-

erating the dataset

2. Contributor Name(s) and address(es) of the individuals responsible for con-

tributing to the dataset (e.g., metadata creation)

D. Publication date Date the dataset was published or made accessible (e.g., via a

data repository)

E. Dataset description

1. Abstract Brief summary of dataset contents including general spatial,

temporal, and taxonomic coverage

2. Subject Theme of the dataset

3. Keywords Subset of words and phrases that describe the dataset

F. Language Language that the data and metadata are written in

G. Accessibility

1. Publisher or data
repository

Location where the data are stored

2. Contact information Name(s) and address(es) of the data repository or other location

(s) where the data are stored (i.e., where the data can be accessed)

3. Copyright restrictions Any copyright restrictions that apply to all or portions of the

dataset

4. Other restrictions Any other restrictions or constraints that prevent use of all or

portions of the dataset (e.g., human subjects data)

H. Citation Recommended format for citing the dataset

II. Research context

A. Project

1. Spatial coverage Latitude and longitude of sampling points or bounding box,

geographic place names

2. Temporal coverage Start and end date of study, sampling frequency

3. Taxonomic coverage Taxonomic groups or species that are included in study

4. Hypotheses/questions Questions or hypotheses that are being addressed

5. Funding source(s) Research sponsor(s) including grant and contract numbers

6. Project personnel Researchers, technicians and students involved in project

B. Study site

1. Location(s) Specific locations (latitude and longitude) of sampling points,

how sites are marked and located in the field (e.g., in relation to

reference points or landmarks), height and depth (as appropriate)

(continued)
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Table 5.2 (continued)

Metadata descriptor Definition

2. Site characteristics Description of site including (as appropriate) climate, vegetation,

landform and topography, watershed, geology, lithology, soils,

history of land use

C. Experimental/sampling

design

Description of experimental/statistical design including details

related to sampling, subsampling, replication, experimental

treatments and controls

D. Research methods

1. Field and laboratory Description and/or references to field and laboratory methods

and protocols

2. Instrumentation Description of instruments including manufacturer, model/serial

number, calibration methods

3. Taxonomy and
systematics

References for taxonomic identification and voucher specimens

E. Data management

methods

1. Data acquisition Description of instrumentation, data loggers, and manual data

entry approaches that are used to acquire and record data; data

verification approaches

2. QA/QC Quality assurance and quality control procedures used to control

data quality, identify and flag outliers, etc.

3. Data processing Description of algorithms, procedures and software used in

processing, deriving, integrating and transforming data

4. Analyses Description of algorithms and software code used in analyzing

and visualizing data

5. Storage and
preservation

Description of how data, samples and specimens are stored and

preserved including maps, field and lab notebooks, photographs

and data products

F. History of dataset usage Description of how and when data were used including refer-

ences to the literature, data set revisions and updates

III. Physical structure

A. File(s)

1. Identifier Unique name(s) assigned to the data file(s) comprising a dataset

2. Size Total size in bytes of the file(s), number of rows and columns,

number of records and record length

3. File format and storage
mode

File type (e.g., ASCII, binary), data encoding and file compres-

sion schemes employed

4. Authentication proce-
dure(s)

Checksum and other mechanisms for ensuring correct data

transmission to others

B. Variables

1. Identifier Unique name(s) assigned to variable(s)

2. Definition Definition of variable meaning

3. Type Data type (integer, string, etc.)

4. Units of measurement SI units of measurement

5. Precision Number of significant digits

(continued)
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5.3 Metadata Standards

Different communities of practice develop different vocabularies. “Location,” for

example, can have a very different meaning for a geographer who is interested in

points and areas on the earth’s surface as opposed to a librarian who is attempting to

acquire an electronic record or document. Likewise, different fields may vary with

respect to the detail needed in the metadata. An art historian may be satisfied with a

place name, whereas a geographer may need to know the precise geographic

coordinates and the georeferencing system employed.

Metadata standards have been developed to standardize the vocabularies and

promote clarity in definition of terms and consistent use of those terms within or

across applications and disciplines. Dozens of metadata standards exist. They have

been created for the environmental sciences, social sciences, arts, financial markets,

libraries, education, and many other domains and disciplines. Standards differ with

respect to the number of descriptors (i.e., elements included) and the amount of

structure enforced; more structured and finely detailed metadata may be “read” and

interpreted by machines.

Some of the standards that are more commonly used in the ecological and

environmental sciences are described below. Most researchers do not necessarily

access the standards directly. Instead, the standards provide the basis for the

metadata descriptors that are employed by different metadata tools and GIS and

database programs (see Sect. 5.4). Nevertheless, it is usually considered good

practice to know that the documentation that you are creating adheres to a

community-accepted metadata standard as opposed to no standard or an ad hoc

“standard” that has been created for use within a single laboratory or organization.

5.3.1 Dublin Core Metadata Initiative

The Dublin Core Metadata Initiative (DCMI) is an open organization that is

managed as a project of the Association for Information Science and Technology.

DCMI supports shared innovation and design of metadata and best practices across

a broad range of purposes and business models. DCMI contributes and maintains

various community resources such as user guidelines, model-related specifications,

and controlled vocabularies. One of the key DCMI resources is the Dublin Core

Table 5.2 (continued)

Metadata descriptor Definition

6. List and definition of
codes

List and definition of all codes encountered in the data including

missing value codes and data quality flags

7. Data format Fixed or variable length, start and end columns, etc.

8. Data anomalies Description of any errors, anomalies, and missing periods in the

data
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Metadata Element Set—a vocabulary of fifteen properties for use in resource

description. Table 5.3 describes the elements of the “Dublin Core,” which has

been standardized as ISO Standard 15836:2009 (ISO 2016a) and ANSI/NISO

Standard Z39.85-2012 (NISO 2016). The name “Dublin” is due to the fact that a

1995 invitational workshop was held in Dublin, Ohio; “Core” refers to generic

elements that can be used to describe a wide variety of resources. Any changes to

the Dublin Core Metadata Element Set are reviewed by a DCMI committee.

5.3.2 Darwin Core

The Darwin Core is a set of standards that includes a vocabulary or range of terms

that are primarily used to document taxa and their occurrence (Wieczorek et al.

2012; TDWG 2016). The Darwin Core is based on the Dublin Core Metadata

Initiative standards (see Sect. 5.3.1). Darwin Core documents describe how terms

can be used, how terms are managed, and how terms can be extended to meet new

purposes. The “Simple Darwin Core” is often used to refer to a particular specifi-

cation that allows one to share taxa (or biodiversity) data in a structured flat-file

Table 5.3 Description of the 15 elements of the Dublin Core Metadata Element Set (DCMI 2016)

Element Description

Contributor Name of the person, organization, or service responsible for contributing to the

resource

Coverage The spatial (e.g., named place or geographic coordinates) or temporal (e.g., named

period, date, or date range) extent to which the resource applies

Creator Name of the person, organization, or service responsible for creating the resource

Date A single date or period associated with an event (e.g., creation, revision) in the life

of the resource

Description A description of the resource (e.g., abstract, a table of contents, free-text expla-

nation of the resource)

Format File format or type of physical medium for the resource

Identifier An unambiguous reference to the resource using a formal identifier such as a DOI,

URL, URN

Language Language of the resource

Publisher Name of the person, organization, or service responsible for making the resource

available

Relation A related resource usually identified by a formal identifier

Rights A statement about the various rights (including intellectual property rights) asso-

ciated with a resource

Source Identification of any sources (using a formal identifier) from which the resource is

partially or wholly derived

Subject The topic of the resource as identified using key words, classification codes, etc.

Title The name assigned to the resource

Type The nature of the resource
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format. Several categories of terms are included in the Simple Darwin Core

including: (1) record-level terms (e.g., language, license and access rights);

(2) occurrence (e.g., catalog number, sex, and life stage); (3) organism (e.g.,

name, ID); (4) material sample, living specimen, preserved specimen, or fossil
specimen; (5) event (e.g., year, month, day, time, field notes); (6) location (e.g.,

continent, country, state or province, latitude, longitude); (7) geological context
(e.g., epoch); (8) identification (e.g., date identified); and (9) taxon (TDWG 2016).

“Generic Darwin Core” extends the Simple Darwin Core for relational data and

includes two additional terms: resource relationship and measurement or fact.

Biodiversity data are typically shared as Darwin Core Archives (a popular mech-

anism for packaging and sharing data files).

5.3.3 Ecological Metadata Language

Ecological Metadata Language (EML) was developed specifically for the ecolog-

ical and environmental sciences. EML has several key features. First, EML is

modular in design and consists of numerous modules that allow one to document

data resources, literature, software and protocols (Table 5.4). Its modular structure

enables EML to be easily extended to support different discipline-specific data

descriptors via the addition of new modules. Second, EML is comprehensive and

structured in a way that key metadata elements can be machine-processed. This

structured approach enables the development of advanced data discovery and

processing services. Third, EML syntax is generally compatible with other meta-

data standards such as the Dublin Core Metadata Initiative and the International

Standards Organization’s Geographic Information Standard ISO 19115 (ISO

2016b). Fourth, EML supports strong data typing, which means that the contents

of an element can be validated against what is allowed for that field (e.g., is “17/01/

15” an acceptable entry for date?). Importantly, EML is designed so that metadata

can be generated as a standalone resource so that both metadata and data

(or references to the data) can be combined in a “data package.”

5.3.4 GBIF Metadata Profile

The Global Biodiversity Information Facility (GBIF) Metadata Profile was created

to standardize how data sets are described in the GBIF data portal (GBIF 2011a).

The GBIF Metadata Profile is based on EML (see Sect. 5.3.3) and includes several

elements (or resource types from Table 5.4): (1) dataset; (2) project; (3) people and

organizations; (4) keywords; (5) coverage (i.e., taxonomic, spatial, temporal);

(6) methods; (7) intellectual property rights; and (8) additional metadata and natural

collections descriptions data such as collection identifiers and preservation methods

(GBIF 2011a). The GBIF Integrated Publishing Toolkit (IPT) metadata editor is
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Table 5.4 Description of Ecological Metadata Language modules (KNB 2015a)

EML module Description

Top-level
resources

Modules used to describe four different types of resources:

Dataset This module contains general information that describes a dataset such as the

title, abstract, keywords, contacts, and purpose. The dataset module may

import other modules that describe the dataset in greater details (e.g.,

methods, protocols, project, access).

Literature The module contains information (e.g., literature citation, including title,

abstract, keywords, and contacts) that describes literature resources (e.g.,

journal articles, books, chapters, conference proceedings, maps, and

presentations).

Software The module contains general information that describes software resources

that were used to create, process and analyze a dataset.

Protocol The module contains specific information that defines the standardized

methods used to generate and process a dataset.

Supporting
modules

Modules for adding detail to top-level resources:

Access This module describes the level of access controls associated with a dataset

and/or the associated metadata (e.g., individuals and groups that have been

granted permission to access the resources).

Physical This module describes the physical characteristics of a data object (e.g.,

filename, size, data format) as well as how to access the resource (e.g., offline

and/or online locations such as the URL).

Party The module describes the people and organizations responsible for creating,

managing, and maintaining datasets and metadata.

Coverage The module contains fields for describing the spatial, temporal and taxo-

nomic coverage of a resource (e.g., N-S-E-W bounding coordinates, single or

range of dates and times, taxon names and/or common names).

Project This module contains information that describes the research context for the

project such as hypotheses and questions being addressed, research sponsors,

experimental or study design, and the study area.

Methods This module describes the methods that were employed to generate the

dataset, including field and laboratory methods, QA/QC procedures, and

analytical steps.

Data
organization

Modules used to describe dataset structures:

Entity This module contains the information that characterizes each entity in the

dataset. Entities are usually tables of data (e.g., ASCII text files, spreadsheets,

relational database tables), but datasets may also contain relational database

management system views as well as raster, vector and image data that may

be further described using modules from the next section (e.g., dataTable,

spatialRaster).

Attribute This module contains the information that describes each attribute (e.g.,

variable, column) in a dataset entity, including the name and definition of the

attribute, definitions of coded values and flags, and other information.

Constraint This module defines the relationships among and within dataset entities,

including primary and foreign key constraints, and others.

Entity types Modules that provide detailed information for discipline-specific entities:

(continued)
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normally used to generate metadata that conform to the GBIF Metadata Profile (see

Sect. 5.4.1).

5.3.5 FGDC CSDGM

The US Federal Geographic Data Committee (FGDC) adopted the Content Stan-

dard for Digital Geospatial Metadata (CSDGM) in 1994 as the standard to employ

for documenting geospatial data and became the de facto geospatial metadata

standard for many years, especially by US federal, State and local governments

(FGDC 2016). The Standard was revised in 1998 to allow different communities to

add new elements to the CSDGM (i.e., extensions) as well as customized adapta-

tions for specific domains (i.e., profiles). Additions to the second version (FGDC-

STD-001-1998) of the FGDC Standard included: (1) CSDGM: Extensions for

Remote Sensing Metadata (for remote sensing platforms and sensors); (2) the

Biological Data Profile of the CSDGM (to support data types that are not explicitly

geospatial such as specimen collections, laboratory results and field notes); and

(3) the Metadata Profile for Shoreline Data (for defining and mapping shoreline

data) (FGDC 2016). The FGDC CSDGM has largely been supplanted by ISO 19115

(ISO 2016b; see Sect. 5.3.6).

Table 5.4 (continued)

EML module Description

dataTable This module defines the characteristics of the data table, including columns/

variables (using the EML-attribute module), coverage, methodology used to

create the data table, and other information.

spatialRaster This module supports the description of georeferenced rectangular grids of

data values, including how the raster cells are organized, characteristics of

the image and spectral bands, etc.

spatialVector This module supports description of points and vectors and the relationships

among them.

spatialReference This module defines coordinate systems for referencing the spatial coordi-

nates of a dataset employing either a library of pre-defined coordinate

systems or support for customized projections.

storedProcedure This module supports definition of the complex DBMS queries and trans-

actions that produce a data table.

View This module describes a DBMS view—i.e., a query statement that is stored as

a database object and is executed each time the view is called.

Utility modules Modules that enhance metadata documentation:

Text Supports addition of enhanced text to other EML modules (e.g., sections,

paragraphs, lists, subscript, superscript, emphasis, etc.).
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5.3.6 ISO 19115

ISO 19115 is a metadata standard for geospatial data that was created by the

International Organization for Standardization (ISO 2016b). The standard was

initially developed for dealing with geospatial data (e.g., map data and Geographic

Information System data, much of it in point and vector forms), but was also revised

to support imagery and gridded (i.e., raster) data. The standard defines how to

describe geographic data, geographic services, and geographic features and feature

properties. It includes a comprehensive array of metadata elements that enable

users to access, interpret and, potentially, use the data such as the data content,

spatial and temporal coverage, spatial referencing scheme, quality, and other

properties of data. The most recent version (ISO 19115–1:2014) defines mandatory

and optional metadata elements as well as the minimum metadata required to

support data discovery, determination of fitness-for-use, and transfer and use of

data and services (ISO 2016b). ISO 19115 can also be extended to meet specialized

needs or to describe other resources such as imagery and gridded data (ISO 2016c).

5.4 Metadata Management

Metadata generation and management need not be an onerous burden. In this

section, some of the existing metadata tools that can be used to create and manage

metadata are described. In addition, several best practices that can expedite the

creation of good, comprehensive metadata are presented.

5.4.1 Metadata Tools

Metadata tools can be used to greatly simplify the process of generating and

managing metadata in the ecological and biodiversity sciences. That said, relatively

few standalone metadata management tools exist. Table 5.5 lists some of the more

commonly used tools that are currently available. The tools differ by the languages,

metadata standards and operating systems that they support as well as cost, com-

plexity and ease of use. Morpho, for example, is a free, downloadable standalone

package that can be used to generate EML-compliant metadata for ecological data

and other types of data (Higgins et al. 2002; Fegraus et al. 2005; Jones et al. 2007).

Morpho can also be used to incorporate data tables and the associated metadata into

data packages that can then be stored in archives such as KNB (Table 5.5).

In contrast to Morpho, ArcGIS is a comprehensive and expensive geographic

information system that is used to manage geospatial data and metadata from many

different scientific domains. Metadata are typically generated by the user (i.e., data

originator) and managed in ArcGIS using a variety of styles that are compliant with
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community geospatial metadata standards such as FGDC and ISO 19115. Several

standalone tools for generating geospatial metadata are listed in Table 5.5.

The situation with respect to biodiversity metadata tools is a bit more compli-

cated. Biodiversity data are aggregations of species occurrence records and check-

lists that are stored and managed on numerous hardware and software platforms

including: collections management software systems like Arctos (2016), EMu

(2016), Symbiota (Gries et al. 2014; Symbiota 2016), and Specify Software Project

(2016); more general database management systems like Microsoft Access and

FileMaker; and spreadsheet programs like Microsoft Excel. The platforms may

Table 5.5 Metadata tools that can be used to generate and manage ecological and biodiversity

metadata, including the metadata standards supported by the tools and relevant references

Tool name Description

Metadata

standard

(s) supported Reference(s)

ArcGIS ESRI’s ArcGIS provides metadata

styles that support viewing and

editing of metadata that are com-

pliant with community standards

FGDC, ISO

19115

ESRI (2016)

CatMDEdit A metadata editor tool that facili-

tates the documentation of

resources, especially geographic

information resources on multiple

platforms and in different

languages

Dublin Core,

FGDC, ISO

19115

Nogueras-Iso et al. (2012)

GeoNetwork

OpenSource

A comprehensive free and open

source catalog application that

supports metadata editing and

search functions on multiple

platforms

Dublin Core,

FGDC,

ISO19115

GeoNetwork Opensource

(2016)

IPT (GBIF) The Integrated Publishing Toolkit

(IPT) is a GBIF metadata editor for

publishing occurrence and taxo-

nomic data, and general metadata

about data sources as Darwin Core

Archives

GBIF Meta-

data Profile

GBIF (2011b, 2016a),

Robertson et al. (2014)

Morpho A free and easy to use package that

works on multiple platforms that

can be used to create and edit

metadata, create or view and

download data packages, share

and publish data, and specify

access controls

Ecological

Metadata

Language

Higgins et al. (2002),

Fegraus et al. (2005),

Jones et al. (2007), KNB

(2015b, c)

Tkme A tool for creating and editing

FGDC-compliant metadata that

runs on Windows and Unix

systems

FGDC USGS (2016a)

Xtme A Unix-based version of tkme FGDC USGS (2016b)
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differ significantly in how the data are stored and described (i.e., the terms used to

describe the data), but usually terms can be mapped to the Darwin Core standard.

The metadata are normally added when the data are published as Darwin Core

Archives. Some platforms like Specify provide a Schema Mapper and Data

Exporter that enables biodiversity data and metadata to be published as Darwin

Core Archives. In other cases, the GBIF Integrated Publishing Toolkit (IPT) is used

to encode data in the Darwin Core standard and publish data and metadata as

Darwin Core Archives (Robertson et al. 2014). Darwin Core Archives are com-

prised of one or more comma delimited text files (i.e., CSV files), an XML

document that describes the structure of the files and the relationships among the

files, and a metadata file (in either Dublin Core or Ecological Metadata Language)

that describes the dataset (Wieczorek et al. 2012). Darwin Core Archives can then

be registered with the GBIF registry so the data are readily discoverable and can be

accessed by others (Robertson et al. 2014).

5.4.2 Best Practices for Creating and Managing Metadata

There are three primary keys to success for creating good metadata. First, start
early. Metadata should be created at the inception of your project and updated as the

project evolves. In doing so, you are less likely to forget or fail to include key

details and the job will be much easier if small tasks are tackled on a routine basis.

Second, engage all relevant parties in generating and managing the metadata. For

example, a typical research project may involve a lead investigator, a technician or

staff member, and one or more students. All such individuals are probably “touch-

ing the data” and should, therefore, be involved in documenting protocols and

procedures, data quality issues, and all other relevant aspects of the data. Third,

treat the metadata as a living document. Initial metadata, for example, can be

created and maintained in a metadata management tool or, even, in an online

laboratory notebook or shared document that relevant personnel can update and

review on a frequent basis. The important point is to review and revise the metadata

frequently throughout the project.

Several additional best practices can simplify the process of developing meta-

data and facilitate the creation of metadata that will enable the data to be interpreted

and used for the long term. First, use metadata standards and tools. Formal

metadata standards and tools normally provide a comprehensive list of metadata

elements or descriptors that should be captured as well as an easy-to-use interface

for capturing, editing and publishing metadata. Second, create metadata that can be
understood by someone that is unfamiliar with the project. In particular, do not use
jargon, ensure that all acronyms and terms are defined, and include references

(i.e., citations) to methods, protocols, and other documents that will assist others

in understanding the data. It is especially important to use standardized terms for

locations, subject keywords and taxa to promote consistency and facilitate data

discovery. Table 5.6 lists several such resources including indexes, ontologies,

thesauri, and databases.
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Table 5.6 Resources for standardizing keywords (e.g., subject terms), place names, and taxo-

nomic names (e.g., plants, animals, fungi) in metadata

Resource Description Reference

Biocomplexity

thesaurus

Thesaurus for the biodiversity, ecologi-

cal and environmental sciences that is

maintained by the USGS Core Science

Analytics & Synthesis (CSAS) Program.

Searches of terms identify: broader,

related, and narrower terms, subject

categories, scope notes, and equivalence

relationships.

USGS (2016c)

Catalogue of life A comprehensive and authoritative

global index of species of animals,

plants, fungi and micro-organisms

Catalogue of Life (2016)

Encyclopedia of life

(EOL)

EOL contains a variety of information

about species including names, text,

images, video, sounds, maps and data

EOL (2016)

Environment Ontol-

ogy (EnvO)

The Environment Ontology (EnvO)

contains standard terms for biomes,

environmental features, and environ-

mental material

EnvO (2016)

GeoNames Geographical database of names that

covers all countries and contains over

eight million place names (e.g., popu-

lated places, administrative boundaries,

lakes, mountains, islands)

GeoNames (2016)

Global Biodiversity

Information Facility

(GBIF)

GBIF contains databases of species,

species occurrences, and datasets that

can be searched, viewed and

downloaded

GBIF (2016b)

Global Change Mas-

ter Directory

A public metadata inventory that

includes >34,000 Earth science dataset

and service descriptions; searches may

be performed using an extensive (hier-

archically structured) controlled vocab-

ulary, free-text, and locations and dates

NASA (2016)

Global Names Index An indexed collection of character

strings that have been used as organism

names based on numerous scientific

names repositories

Patterson et al. (2010), GNI

(2016)

Index Fungorum The Index Fungorum database contains

names of fungi at all ranks

Index Fungorum (2016)

Index to Organism

Names (ION)

ION contains organism names related

data (e.g., animals, plants, bacteria and

viruses) gathered from the scientific lit-

erature for Thomson Reuters’ databases

Thomson Reuters (2016)

(continued)

84 W.K. Michener



5.5 Conclusion

Data are neither useful nor usable unless accompanied by sufficient metadata that

allows one to understand the context, format, structure, and fitness-for-use of the

data. Generally, those data sets that are well documented have greater utility and

longevity than data that are only minimally described. Using community-accepted

metadata standards and tools can greatly simplify the process of developing com-

prehensive metadata that can be interpreted and used for the long term. Following

three best practices will help insure that your data products persist and can be used

for years to decades. First, begin creating and capturing metadata at the beginning

of your project to avoid the loss of important details. Second, engage all people who

touch the data (e.g., database design, data collection, data QA/QC and analysis, data

preservation) in generating and reviewing the metadata. Third, use the metadata—

i.e., routinely review and revise the metadata and, importantly, share the metadata

with others that may wish to use and understand the data. The real test is if other

Table 5.6 (continued)

Resource Description Reference

International Plant

Names Index (IPNI)

A database of the names and basic bib-

liographical information about seed

plants, ferns and lycophytes. IPNI is

supported by The Royal Botanic Gar-

dens, Kew, The Harvard University

Herbaria, and the Australian National

Herbarium

IPNI (2016)

iPlant Taxonomic
Name Resolution
Service

A utility for correcting and standardiz-

ing plant names against specific

taxonomies

iPlant Collaborative (2016)

Integrated Taxo-

nomic Information

System (ITIS)

A searchable database of authoritative

taxonomic information on plants, ani-

mals, fungi, and microbes from North

America and the world

ITIS (2016)

Taxonomy Database A curated database that contains classi-

fication and nomenclature for organisms

in the public sequence databases

National Center for Biotech-

nology Information (2016)

(Universal Biologi-
cal Indexer and
Organizer) uBio

uBio is a comprehensive catalog of

known names of living and extinct

organisms

uBio (2016)

World Registry of

Marine Species

(WoRMS)

WoRMS contains a large authoritative

and comprehensive list of names of

marine organisms

WoRMS (2016)

ZooBank ZooBank is the official registry of

published scientific names for animals,

according to the International Commis-

sion on Zoological Nomenclature

International Commission on

Zoological Nomenclature

(ICZN) (2016)
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researchers that are unfamiliar with your data collection and organization can

access, interpret and use data that you have produced well into the future.
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Chapter 6

Preserve: Protecting Data for Long-Term Use

Robert B. Cook, Yaxing Wei, Leslie A. Hook, Suresh K.S. Vannan,

and John J. McNelis

Abstract This chapter provides guidance on fundamental data management prac-

tices that investigators should perform during the course of data collection to

improve both the preservation and usability of their data sets over the long term.

Topics covered include fundamental best practices on how to choose the best

format for your data, how to better structure data within files, how to define

parameters and units, and how to develop data documentation so that others can

find, understand, and use your data easily. We also showcase advanced best

practices on how to properly specify spatial and temporal characteristics of your

data in standard ways so your data are ready and easy to visualize in both 2-D and

3-D viewers. By following this guidance, data will be less prone to error, more

efficiently structured for analysis, and more readily understandable for any future

questions that the data products might help address.

6.1 Introduction

Preservation certainly encompasses the idea that there should be no loss of bits

associated with a data product. In this chapter, we will expand this definition of

preservation, to include all of the data management practices that will preserve the

data at a high-enough level of quality so that it is usable well into the future. Well-

curated and -preserved data will be easily discovered and accessed, understood by

future users, and serve to enable others to reproduce the results of the original study.

Preservation, in this broad sense, starts when the seed-ideas for a project are first

pulled together, and continues until the data have been successfully finalized,

curated, archived, and released for others to use (Whitlock 2011).

Proper preservation of the data files is an important part of a research project, as

important as the sample design, collection, and analysis protocols in ensuring the

overall success of a project. Often researchers do not spend enough effort ensuring

that the data are properly managed, described, and preserved. Without well-
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prepared data—no matter how carefully the sample design, collection, and analysis

were done for a project—the research team may not be able to effectively use the

data to test their hypotheses. And the data will not be useful for any potential future

users.

Well-preserved ecological observations will continue to help us understand the

functioning of the global ecosystem. More importantly, the data of ecological

observations provide the foundation for advancing and sustaining economic, envi-

ronmental, and social well being (Reid et al. 2010; IGBP 2012; USGEO 2015).

Thus, well-preserved ecological data are critically needed to address global sus-

tainability—what could certainly be considered the grand scientific challenge of the

twenty-first century (Reid et al. 2010; IGBP 2012).

6.1.1 Preservation and Its Benefits

We will define preservation as preparing data packages—data, documentation, and

metadata—for a user 20 years into the future (NRC 1991); some advocate even

100 years (Justice et al. 1995). The rationale is that those who generated the data

initially or those who worked with the data when the data were first compiled will

have forgotten the details of the data within a few years (Michener et al. 1997)

(Fig. 5.1). Developing descriptive information for someone 20 or more years out

who is unfamiliar with the project, methods, and observations will ensure that the

information is preserved and, most importantly, usable (Fig. 6.1) (NRC 1991).

Well-managed and preserved data have many benefits. During the course of a

project, investigators who make a habit of preparing organized and well-described

data will spend less time doing data management and more time doing research.

Fig. 6.1 With proper

data management and

preservation during the

course of a project,

information about the data

is compiled during the data

life cycle (plan, collect,

assure, analyze, document,

and archive; Strasser et al.

2012). Metadata and

documentation are recorded

so that future users will be

able to find and use the data

products
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Researchers can pick up data files after being away from them for a period and

immediately use the data without having to remember what the data means or how

filters or analyses were done. Furthermore, researchers can hand off data and

documentation to collaborators who can readily understand and use data files,

without further explanation.

When the project has been completed and the data are finalized and properly

curated, scientists outside your project can find, understand, and use your data to

reproduce the findings of your research. Perhaps even more importantly, these data

products can be used to address additional broader-scale research questions (Reid

et al. 2010; Whitlock 2011; Michener 2017d; Schildhauer 2017). FLUXNET is an

example of a project that started out studying the scientific mysteries of individual

flux tower sites, but evolved to address larger scale questions across biomes and

climate domains. Along with this scientific evolution, FLUXNET has experienced a

data evolution in which the community has embraced standard methods for obser-

vations and processing, and has come to appreciate the advantages of placing data

into common formats, with standard units and parameter names. This standardiza-

tion facilitates combining data from 10s to 100s of flux towers to address broad

questions that cannot be addressed by individual projects (Baldocchi et al. 2012;

Papale et al. 2012). A common set of standards ultimately saves time, but requires

buy-in, which takes time for investigators to realize the benefits.

Funding agencies protect their investment in Earth science research, through

preservation of observations; many funding agencies require that data generated

through their grants be shared over the long term (Whitlock 2011). The preserved

observations provide the means to understand Earth processes, develop and test

models, and provide information for decision makers. Not preserving data products

so that they can effectively be used will decrease the return on research investment,

and more importantly hinder our ability to advance Earth science.

Some journals (e.g., PNAS, Ecological Monographs), scientific societies (e.g.,

Ecological Society of America) now require that the data used in a paper be

archived before the paper can be published, and others require that the data be

shared (PLoS, Nature, Science; Michener 2015). In both cases, data citations with

Digital Object Identifier (DOI) locators will allow readers to find the archived data

(Cook et al. 2016). Following data management practices for long-term preserva-

tion will make it easier for authors to archive their data products associated with a

submitted manuscript to meet this requirement.

Another benefit of data preservation is that others will use these well-curated

data, resulting in the data producers getting credit. Data repositories have started to

provide data product citations, each with a DOI (Parsons et al. 2010; Cook et al.

2016). A benefit of data preservation is that through data product citations (Cook

et al. 2009, 2016), data authors get credit for archived data products and their use in

other papers, in a manner analogous to article citations. In addition, readers of those

articles can obtain the data used in an article (Cook et al. 2016) through the DOI

locator.
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6.2 Practices for Preserving Ecological Data

This chapter is written for a broad audience—for those who are creating data

products, for those who may need to prepare the data products for archival, and

for those who will access and use the archived data. Accordingly, we will present

preservation activities that data contributors, data archives, and data users can

perform to preserve data products and make them useful in the future. The focus

will be on application of preservation principles, and less so with theoretical/

academic aspects of preservation. We are orienting this chapter toward practical

aspects, because ecologists may be willing to share their data, but they typically do

not have knowledge and training of data management practices that they can use to

facilitate sharing (Tenopir et al. 2011; Kervin et al. 2014).

Geospatial, or location, information is a fundamental component of ecological

data. The preservation practices described here are primarily for geospatial data

products, including tabular data as well as map and image data. Earlier best

practices for data sharing focused almost exclusively on tabular data (Olson and

McCord 2000; Cook et al. 2001), but the focus has expanded with improvements in

sensors, standards, and processing software, and many ecologists are turning to

geospatial data.

This chapter builds on the chapter on documentation and metadata (Michener

2017c). Because the metadata descriptors were thoroughly treated there, we will

focus on human readable text documents that provide another view into the data.

These text documents contain the contextual information about samples—under

what conditions was the sample collected, what antecedent conditions influenced

the sample, and what do others need to know about the sample context in order to

understand the data.

The remainder of Sect 6.2 describes best data management practices that inves-

tigators can perform to improve the preservation and usability of their data for

themselves and for future users.

6.2.1 Define the Contents of Your Data Files

The data compiled during a project is derived from the science plan (hypotheses/

proposal) for that project. During the proposal writing stage, the investigator should

identify the information needed to address the hypotheses and the best way to

compile that information. Sometimes that compilation will be to collect samples

and make measurements, other times it may be to run models to obtain output, or

even fuse data from multiple sources to create a necessary product.

Also during the proposal writing stage, a Data Management Plan (DMP)

(Michener 2017a) should be developed that lays out the content and organization

of the data based on a comprehensive list of data required for the project. The

environmental study will compile a suite of primary measurements along with
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contextual and ancillary information that defines the study area (soil, landcover,

plant functional types, weather, nutrient status, etc.).

Investigators should keep a set of similar measurements together in one data file.
The similarity extends to the same investigator, site, methods, instrument, and time

basis (all data from a given year, site, and instrument in one file). Data from a

continental study of soil respiration at 200 plots could be one data file, but 30-min

meteorological data from 30 sites over 5 years could be five data files (one per year)

or 30 data files (one per site). We do not have any hard and fast rules about contents

of each file, but we suggest that if the documentation/metadata for data are the

same, then the data products should all be part of one data set.

6.2.2 Define the Parameters

Defining the name, units, and format used for each parameter within a project

should be done with a clear view to the standards or guidelines of the broader

community. Using widely accepted names, units, and formats will enable other

researchers to understand and use the data. Ideally, the files, parameter names, and

units should be based on standards established with interoperability in mind

(Schildhauer 2017).

The SI (International System) should be used for units and ISO be used for

formats. The ISO Standard 8601 for dates and time (ISO 2016) recommends the

following format for dates:

yyyy-mm-dd or yyyymmdd, e.g., January 2, 2015 is 2015-01-02 or 20150102

which sorts conveniently in chronological order. ISO also recommends that time

be reported in 24-h notation (15:30 hours instead of 3:30 p.m. and 04:30 instead of

4:30 a.m.).

In observational records, report in both local time and Coordinated Universal

Time (UTC). Avoid the use of daylight savings time because in the spring the

instrument record loses 1 h (has a gap of 1 h) and in the autumn, instrument records

have a duplicate hour.

The components needed to define temporal information with sufficient accuracy

for ecological data include the following: calendar used, overall start and end

temporal representation of a data parameter, time point/period that each data

value represents, and temporal frequency of a data parameter. As an important

example, Daymet (Thornton et al. 2017), a 1-km spatially gridded daily weather

data set for North America, uses the standard, or Gregorian, calendar and leap years

are considered. But the years within Daymet always contain 365 days; Daymet does

this by dropping December 31 from leap years. The documentation for Daymet

defines this information (e.g., start and end times of each time step, which days are

included and which days are not). Following the Climate and Forecast

(CF) Metadata convention (Eaton et al. 2011) and the ISO 8601 Standard (ISO

2016), temporal information of Daymet is accurately defined.
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CF Metadata, a convention for netCDF-formatted files, is becoming more

common in ecological modeling and in some field studies. These conventions

allow combination and ready analysis of data files, and importantly, facilitate the

use of field data to parameterize and drive models with a minimum of conversions.

In addition to enabling integration of data files, standard units can be easily

converted from one unit to another using a tool such as UDUNITS library (UCAR

2016).

For each data file, investigators should prepare a table that identifies the param-

eter, provides a detailed description of that parameter, and gives the units and

formats (Table 6.1).

Table 6.1 Portion of a table describing contents and units (dos-Santos and Keller 2016)

Column heading Units/format Description

Site Fazenda Cauaxi or Fazenda Nova Neonita. Both located

in the Municipality of Paragominas

Area Code names given to the site areas. The areas are PAR_A01

for the Fazenda Nova Neonita or CAU_A01 for the Fazenda

Cauaxi

Transect The transect ID number within an area. Transect ¼ plot.

tree_number Tree number assigned to each tree in each transect

date_measured yyyy-mm-dd Date of measurements

UTM_easting m X coordinate of tree individual location. Fazenda Cauaxi is in

UTM Zone: 22S. Fazenda Nova Neonita is in UTM Zone:

23S

UTM_northing m Y coordinate of tree individual location. Fazenda Cauaxi is in

UTM Zone: 22S. Fazenda Nova Neonita is in UTM Zone:

23S

common_name Common name of tree. MORTA ¼ dead tree

scientific_name Scientific name of tree. NI ¼ not identified. For

common_name ¼ MORTA (dead) or LIANA, scientific

names are not provided.

DBH cm Diameter at breast height (DBH), 1.3 m above the ground.

Measured on both live and standing dead trees.

height_total m Total Height (m), measured using a clinometer and tape as

the height to the highest point of the tree crown. Measured on

both alive and standing dead trees. Fazenda Cauaxi site 2012

only—not measured in 2014.

Table 6.2 Characteristics of sites from the Scholes (2005) study

Site name Site code Latitude Longitude Elevation Date

Units (deg) (deg) (m)

Kataba (Mongu) K �15.43892 23.25298 1195 2000-02-21

Pandamatenga P �18.65651 25.49955 1138 2000-03-07

Skukuza Flux Tower skukuza �31.49688 25.01973 365 2000-06-15
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Provide another table that describes each study site or area used in the data

product [location, elevation, characteristics (climate or vegetation cover)], along

with a formal site name (Table 6.2).

Once the metadata about a record is defined, be sure to use those definitions,

abbreviations, units consistently throughout the data set and the project. For air

temperature, pick one abbreviation and use it consistently. Do not use T, temp.,

MAT (mean annual temp), and MDT (mean daily temp) within a data set, if they all

mean the same parameter; using one consistently will be much easier for users to

understand, particularly as they write code to process the values.

When data values are not present in the data file, investigators should indicate

this with a missing value code. We suggest that an extreme value never observed

(e.g., �9999) be used consistently to indicate that the value is missing.

6.2.3 Use Consistent Data Organization

There are several different ways to organize data files. For tabular data, one way is
similar to a spreadsheet table in which each row in a file represents a complete

record, and the columns represent the parameters that make up the record. The table

should have a minimum of two header rows, the first of which identifies the

parameter names and the second header row identifies the parameter units and

format (Table 6.3) (Cook et al. 2001). A suggestion for data files is that a column

containing a unique id for each record be included for provenance tracking.

Another perfectly appropriate alternative for tabular data is to use the structure

found in relational databases. In this arrangement, site, date, parameter name, value,

and units are placed in individual rows; unique ids could also be placed in this row.

This table is typically skinny (only 5 or 6 columns wide) and long, holding as many

records (rows) as needed in the study (Table 6.4). This arrangement allows new

parameters to be added to a project in the future without changing the tabular data

columns.

For whichever organization chosen, be consistent in file organization and

formatting throughout the entire file (Porter 2017). The file should have a separate

set of header rows that describes the content of the file. For example, the first row

of the file should contain file name, data set title, author, date, and any related

companion file names (Table 6.5) (Hook et al. 2010). Within the body of the file,

Table 6.3 An arrangement of content in which all of the information for a particular site and date

(e.g., site, date, parameter name, value and unit) is placed into one row

Station Date Temp. Precip.

Units YYYYMMDD C mm

HOGI 20121001 12 0

HOGI 20121002 14 3

HOGI 20121003 19 �9999
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do not change or re-arrange the columns or add any notes in marginal cells.

Additional features provided by specific software, such as colored highlighting

or special fonts (bold, italicized, etc.) that indicate characteristics to humans are

not useful for computers, and any information contained in the colors or fonts will

not be preserved.

Spatial data files containing vector data, such as ESRI’s Shapefile format, treat

each point, line, or polygon as a unique record described by a set of common

attributes. Records within a shapefile are organized in tabular format where each

row corresponds to a feature representing the location or area to which the row’s
attributes pertain. Tabular data stored inside ESRI shapefiles are limited by char-

acter count and cannot contain special characters so it is good practice to maintain a

complementary data dictionary file that defines the parameters, abbreviations, and

units.

6.2.4 Use Stable File Formats

A key aspect of preservation is to ensure that computers can read the data file well

into the future. Experience has shown that proprietary and non-standard formats

often become obsolete and difficult or even impossible to read. Operating systems,

the proprietary software, and the file formats will no longer be supported and

researchers are left with useless bits.

Over the short term, usually during the course of the research, it is fine to use

familiar proprietary data formats. But be sure that those formats can be exported

into an appropriate format (without loss of information) suitable for long-term

preservation.

Standardized, self-describing, and open data formats are recommended for long-

term preservation of ecological data (Table 6.6). Standardized formats increase

interoperability of data and lower the barrier of integrating heterogeneous data

(Schildhauer 2017). Self-describing formats make data easier to use by a wide

range of users. More importantly, open formats ensure consistent support and

improvement from user communities and increase longevity of ecological data.

Standardized and open formats also serve as a solid basis for developing data

access, subsetting, and visualization tools.

Table 6.4 An arrangement of information in which each row in a file represents a complete

record, and the columns represent the parameters that make up the record

Station Date Parameter Value Unit

HOGI 20121001 Temp. 12 C

HOGI 20121002 Temp. 14 C

HOGI 20121001 Precip. 0 mm

HOGI 20121002 Precip. 3 mm

96 R.B. Cook et al.



T
a
b
le

6
.5

A
n
ex
am

p
le

o
f
a
w
el
l-
o
rg
an
iz
ed

p
o
rt
io
n
o
f
a
fi
le

w
it
h
a
se
t
o
f
h
ea
d
er

ro
w
s
th
at

d
es
cr
ib
e
th
e
fi
le

(fi
le

n
am

e,
co
n
tr
ib
u
to
r,
ci
ta
ti
o
n
,
d
at
e,

an
d
an
y

re
le
v
an
t
n
o
te
s)

F
il
e
n
am

e
N
G
E
E
_
A
rc
ti
c_
B
ar
ro
w
_
S
o
il
_
In
cu
b
at
io
n
s_
2
0
1
2

D
at
e
m
o
d
ifi
ed
:

2
0
1
5
-1
0
-2
7

C
o
n
ta
ct
:

C
o
ll
ee
n
Iv
er
se
n
(i
v
er
se
n
cm

@
o
rn
l.
g
o
v
)

D
at
a
se
t
D
O
I

d
o
i:
1
0
.5
4
4
0
/1
1
8
5
2
1
3

N
o
te
s

F
o
r
m
o
re

in
fo
rm

at
io
n
,
se
e
d
at
a
se
t
D
O
I

R
eg
io
n

L
o
ca
le

L
at
it
u
d
e

L
o
n
g
it
u
d
e

D
at
e_
sa
m
p
le
d

T
h
aw

_
D
ep
th

S
o
il
_
H
o
ri
zo
n

C
ar
b
o
n
_
co
n
ce
n
tr
at
io
n
_

o
f_
so
il
_
la
y
er

N
it
ro
g
en
_
co
n
ce
n
tr
at
io
n
_

o
f_
so
il
_
la
y
er

D
ec
im

al
_
d
eg
re
es

D
ec
im

al
_
d
eg
re
es

y
y
y
y
-m

m
-d
d

cm
P
er
ce
n
t

P
er
ce
n
t

N
o
rt
h
S
lo
p
e

B
ar
ro
w

7
1
.2
8
0
8
6
7

�1
5
6
.6
1
1
6
0
6

2
0
1
2
-0
8
-0
1

3
6
.8

O
4
2
.9
4

2
.6
6

N
o
rt
h
S
lo
p
e

B
ar
ro
w

7
1
.2
8
0
8
6
7

�1
5
6
.6
1
1
6
0
6

2
0
1
2
-0
8
-0
1

3
6
.8

O
4
2
.9
4

2
.6
6

N
o
rt
h
S
lo
p
e

B
ar
ro
w

7
1
.2
8
0
8
6
7

�1
5
6
.6
1
1
6
0
6

2
0
1
2
-0
8
-0
1

3
6
.8

O
4
2
.9
4

2
.6
6

N
o
rt
h
S
lo
p
e

B
ar
ro
w

7
1
.2
8
0
8
6
7

�1
5
6
.6
1
1
6
0
6

2
0
1
2
-0
8
-0
1

3
6
.8

M
i

3
9
.3
6

2
.2
4

N
o
rt
h
S
lo
p
e

B
ar
ro
w

7
1
.2
8
0
8
6
7

�1
5
6
.6
1
1
6
0
6

2
0
1
2
-0
8
-0
1

3
6
.8

M
i

3
9
.3
6

2
.2
4

N
o
rt
h
S
lo
p
e

B
ar
ro
w

7
1
.2
8
0
8
6
7

�1
5
6
.6
1
1
6
0
6

2
0
1
2
-0
8
-0
1

3
6
.8

M
i

3
9
.3
6

2
.2
4

N
o
rt
h
S
lo
p
e

B
ar
ro
w

7
1
.2
8
0
8
6
7

�1
5
6
.6
1
1
6
0
6

2
0
1
2
-0
8
-0
1

3
6
.8

D
O

3
1
.6

1
.7
2

N
o
rt
h
S
lo
p
e

B
ar
ro
w

7
1
.2
8
0
8
6
7

�1
5
6
.6
1
1
6
0
6

2
0
1
2
-0
8
-0
1

3
6
.8

D
O

3
1
.6

1
.7
2

N
o
rt
h
S
lo
p
e

B
ar
ro
w

7
1
.2
8
0
8
6
7

�1
5
6
.6
1
1
6
0
6

2
0
1
2
-0
8
-0
1

3
6
.8

D
O

3
1
.6

1
.7
2

N
o
rt
h
S
lo
p
e

B
ar
ro
w

7
1
.2
8
0
8
9
1

�1
5
6
.6
1
1
6
4

2
0
1
2
-0
8
-0
1

3
9
.4

O
3
4
.4
2

1
.7
6

N
o
rt
h
S
lo
p
e

B
ar
ro
w

7
1
.2
8
0
8
9
1

�1
5
6
.6
1
1
6
4

2
0
1
2
-0
8
-0
1

3
9
.4

O
3
4
.4
2

1
.7
6

N
o
rt
h
S
lo
p
e

B
ar
ro
w

7
1
.2
8
0
8
9
1

�1
5
6
.6
1
1
6
4

2
0
1
2
-0
8
-0
1

3
9
.4

O
3
4
.4
2

1
.7
6

T
h
e
b
o
d
y
o
f
th
e
fi
le

is
co
n
si
st
en
tl
y
o
rg
an
iz
ed

an
d
co
m
p
le
te
d
(I
v
er
se
n
et

al
.
2
0
1
5
)

6 Preserve: Protecting Data for Long-Term Use 97



6.2.5 Specify Spatial Information

Almost all ecological data are location-relevant and many also have an associated

time component. For example, photos taken of field sites should be associated with

the accurate location, elevation, direction, and time information; otherwise they

will not be suitable for research. There are many other spatial and temporal data

types, for example, soil respiration observations across the world, MODIS Leaf

Area Index (LAI) maps, and global 0.5-degree monthly Net Ecosystem Exchange

(NEE) simulations generated from terrestrial biosphere models. When preparing

ecological data for use or long-term preservation, their spatial (“where”) and

temporal (“when”) information need to be accurately defined.

Two critical components of spatial information include the Spatial Reference

System (SRS) used and the spatial extent, boundary, resolution, and scale under the

given SRS. For example, Daymet v3 (Thornton et al. 2017) provides daily weather

parameters at 1-km spatial resolution for North America from 1980 to 2016. It uses

a special SRS called Lambert Conformal Conic and its definition using the Open

Geospatial Consortium (OGC) Well-Known Text (WKT) standard is shown in

Table 6.7.

Under this SRS, X and Y coordinates of each of the 1-km grid cells are

accurately defined following the CF convention in the netCDF files where Daymet

data are stored.

6.2.6 Assign Descriptive File Names

Even desktop personal computers can have large hard drives, and it can be very

easy to lose files and information on such large drives. To prevent time spent

Table 6.6 Recommended formats for ecological data preservation (ESO 2016; Edinburgh Data

Share 2015)

Format Description

Text/CSV Suitable for representing tabular data such as field observations and site

characteristics.

Shapefile Most widely used open format for representing vector data, such as points,

lines, and polygons.

GeoTIFF Open and popular format for storing geospatial raster imageries.

HDF/

HDF-EOS

A feature-rich format suitable for storing complex multi-dimensional and

multi-parameter scientific data. The HDF format and its EOS extension

(HDF-EOS) have been widely used for NASA earth observation mission

data for many years.

netCDF Similar to HDF but simpler; ideal for storing multi-dimensional and multi-

parameter data. Combined with Climate & Forecast (CF) convention, netCDF

data files can be standardized and self-describing, which can greatly advance data

interoperability. netCDF is gaining popularity in many research communities.
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searching for files, organize the information in a directory or folder structure based

on project or activity. The directory structure and file names need to be both human-

and machine-readable and so the names should contain text characters only and

contain no blank spaces (Cook et al. 2001; Hook et al. 2010). Carefully check for

any operating or database system limitations on characters (upper or lowercase,

special characters, and file name lengths).

Use descriptive file names that are unique and reflect the contents of the files. In

the metadata and documentation define the terms and acronyms in the file names.

Examples of good file names include “daymet_v3_tmax_annavg_1988_na.nc4”, a

Daymet version 3 file containing daily maximum and annual average maxi-

mum temperature in 1988 for North America (na) in netCDF-4 format (Thornton

et al. 2017).

Names should also be clear both to the user and to those with whom the files

will be shared. File names like “Mydata.xls,” “2001_data.csv,” and “best version.

txt” do not adequately describe the file and would not be useful to understand the

contents.

While the name should be descriptive and unique, the file name is not the

location for all of the metadata associated with a file. A standard metadata record

in XML format is a much more useful location for detailed information about a data

file, and will be accessible by APIs. See Michener (2017c) on metadata.

Table 6.7 Example Spatial Reference System, showing the projection, spatial extent, boundary,

resolution and scale

PROJCS["North_America_Lambert_Conformal_Conic",

GEOGCS["GCS_North_American_1983",

DATUM["North_American_Datum_1983",

SPHEROID["GRS_1980",6378137,298.257222101]],

PRIMEM["Greenwich",0],

UNIT["Degree",0.017453292519943295]],

PROJECTION["Lambert_Conformal_Conic_2SP"],

PARAMETER["False_Easting",0],

PARAMETER["False_Northing",0],

PARAMETER["Central_Meridian",-96],

PARAMETER["Standard_Parallel_1",20],

PARAMETER["Standard_Parallel_2",60],

PARAMETER["Latitude_Of_Origin",40],

UNIT["Meter",1],

AUTHORITY["EPSG","102009"]]
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6.2.7 Document Processing Information

To preserve your data and its integrity, save your raw data in a “read-only” form

(Strasser et al. 2012). By doing so, the raw data will not be affected by any changes,

either purposeful or inadvertent. Some spreadsheet type software allows cells to be

deleted inadvertently with the slip of a finger on a keyboard. Read only files will

prevent those sorts of changes.

Use a scripted language such as “R”, “SAS” or “MATLAB” to process data in a

separate file, located in a separate directory (Hook et al. 2010; Strasser et al. 2012).

The scripts you have written are an excellent record of data processing, can also

easily and quickly be revised and rerun in the event of data loss or requests for edits,

and have the added benefit of allowing a future worker to follow-up or reproduce

your processing. The processing scripts serve as the basis for a provenance record.

An example R script and some figures generated from the script are captured in

Appendix of this chapter.

Scripts can be modified to improve or correct analyses, and then rerun against

the raw data file. This approach can be especially beneficial when preparing

manuscripts. Two or three months after the analyses have been run and written

up, reviewers may want to have changes made (new filtering or statistical analysis,

additional data, etc.). Scripts saved along with data files serve as a record of the

analysis and can quickly be modified to meet the reviewer’s need. If they were not

saved, authors may have difficulty resurrecting the exact formula and perhaps even

the data used in the analysis.

6.2.8 Perform Quality Assurance

Quality assurance pertains not only to the data values themselves, but also to the

entire data package. All aspects of the data package need to be checked including

parameter names, units, documentation, file integrity, and organization, as well as

the validity and completeness of data values. One can think of quality assurance of a

data set like the careful steps authors go through to finalize an accepted paper for

publication.

There are a number of specific checks that researchers can perform to ensure the

quality of data products (Cook et al. 2001; Hook et al. 2010; Michener 2017b). The

organization within data files has to be consistent. Data should be delimited, lining

up in the proper column (Cook et al. 2001). Key descriptors, like sample identifier,

station, time, date, and geographic location, should not be missing. Parameter

names should follow their definition, and the spelling and punctuation should not

vary. Perform an alphabetical sort of the parameter names to identify discrepancies.

Check the content of data values through statistical summaries or graphical
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approaches to look for anomalous or out of range values. A number of different

graphical approaches (leaf diagram, box and whisker diagram, histograms,

scatterplots, etc.) are described in Michener (2017b). Another approach is to

generate plots of time-series data to check for the physical reasonableness of the

values and to ensure that the time zone is correct (Fig. 6.2). Plot the data on a map to

make sure that the site locations are as expected (Cook et al. 2001). Common errors

in spatial data are placing sites in the wrong hemisphere by not including the correct

sign of latitude or longitude or providing the spatial accuracy required to place the

site correctly on a shoreline, rather than mistakenly in a lake or coastal ocean

(e.g., Fig. 6.3).

There is no better quality assurance than to use the data files in an analysis.

Issues with the files, units, parameters, and other aspects of the data products will

become evident and draw the attention of the analysts.

6.2.9 Provide Documentation

The documentation accompanying a data set should describe the data in sufficient

detail to enable users to understand and reuse the data. The documentation should

describe the goals of the project, why the data were collected, and the methods used

for sample collection and analysis, and data reduction. The description should be

detailed enough to allow future researchers to combine that data with other similar

data across space, time, and other disciplines (Rüegg et al. 2014).

Fig. 6.2 Comparison of diurnal Net Ecosystem Exchange (NEE) for the Harvard Forest Flux

Tower with terrestrial biosphere model output of NEE used to quickly identify quality issues.

While most of the models are consistent with the timing and magnitude of noontime NEE, the

onset and conclusion of the phytoperiod shows some variation among models, especially Model X,

which was an outlier because of improper documentation. It was run with UTC time instead of

Eastern US time but was not labeled carefully and was mistakenly plotted with a peak NEE 5 h

earlier than the tower or other models (Ricciuto et al. 2013)
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A data set document should contain the following information:

• What does the data set describe?

• Why was the data set created?

• Who produced the data set?

• When and how frequently were the data collected?

• Where were the data collected and with what spatial resolution?

• How was each parameter measured?

• How reliable are the data (e.g., what is the uncertainty and measurement

precision and accuracy? what problems remain in the data set?)?

• What assumptions were used to create the data set (e.g., spatial and temporal

representativeness)?

• What is the use and distribution policy of the data set?

• How can someone get a copy of the data set?

• Provide any references to use of data in publication(s)

Often a data set is a collection of multiple files. Each file should be described,

including file names, temporal and spatial extent of the data, and parameters and

units. If all of the files are the same, this information can be contained in the data set

metadata and data set documentation. If each file is unique, in terms of contents,

then each should be described separately with file-level metadata record and a file

description document. The purpose for such a description is so that an investigator

can use an automated method to search for an individual file or even part of the file

that is required (e.g., XML metadata record or even self-describing file, like

netCDF or HDF; Michener 2017c). If each file is not named in a descriptive manner

or described in a document, then a user would have to manually view each file to

obtain the required data, something that no one would want to do, especially for big

data collections.

6.2.10 Protect Your Data

Everyone knows the sickening feeling when files are lost, due to hard drive crashes

or from other problems. They have either experienced the feeling themselves or

know someone who has lost their drives or files. A desktop, laptop, or server is fine

one day and the next a problem has come up with the hard drive, and the files have

disappeared. Backups are the key to surviving such losses. If you do not have

backups, then you cannot retrieve the information and your files are not preserved.

Researchers—really anyone using computers—should create back-up copies

often, to ensure that information is not lost. Ideally researchers should create

three copies, the original, one on-site, and one off-site (Brunt 2010). The off-site

storage prevents against hazards that may affect an institution such as fire, floods,

earthquakes, and electrical surges. Data are valuable and need to be treated
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accordingly, with appropriate risk mitigation. Cloud-based storage is becoming a

valid option for storing and protecting data, especially as an off-site backup

solution.

Frequency of the backups is based on need and risk. If you are compiling data

from a high frequency sensor, then frequent (e.g., 30-min or hourly) backups are

warranted to ensure that the information is not lost due to a disk crash. One can

develop a backup strategy that relies on a combination of sub-daily, daily, weekly,

and monthly backups, to cut back on the number of individual backups saved but

still maintain sufficient backup so that no work is lost.

A critical aspect of any backup is that it be tested periodically, so that you know

that you can recover from a data loss. After the initial shock of losing data, there is

nothing worse than having the false hope of a backup that is not intact and is

corrupted.

Another aspect of protecting your data deals with data transfers (e.g., over the

Internet, such as large files, large numbers of files, or both). Ensure that file transfers

are done without error by reconciling what was sent and received, using checksums

and lists of files.

6.3 Prepare Your Data for Archival

The practices in Sect. 6.2 should have provided the background needed to prepare

consistently structured, thoroughly defined, and well-documented data products.

During the course of the project, the data should have been easy-to-share with team

members, and readily analyzed to address the project’s science questions.
At the end of the project, the data products need to be turned over to a data

archive for curation and long-term storage (Fig. 6.4). Transitioning the data to an

archive should have been part of the initial project planning conducted during the

proposal writing stage, when a Data Management Plan (DMP) (Michener 2017a)

was developed. The Plan should have identified the data center responsible for

curating and archiving the data, and the investigators should have made initial

contact with the archive before the proposal was submitted. The DMP should have

included some information about the archive, their requirements, and a statement of

collaboration by the archive. Because of space restrictions, the two-page DMP

would not have included much detailed information. During the research project,

the team should have interacted with data center personnel to inform them of the

types and formats of data products being produced. Key characteristics that the data

center needs to know are the volume and number of files, the delivery dates, and any

special needs for the data (viewers or other tools, restricted access, etc.). Suggest a

title that is concise in its description of the data set’s scientific content and that

indicates its spatial and temporal coverage. The data center will have requirements,

and the project should identify what those are early in the project to ensure those

requirements are incorporated before the data are submitted to the archive.
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Data archives will need data files, documentation that describes the files and the

content (Sect. 6.2.9), and, if possible, standardized metadata records (Michener

2017c). As part of the data package, some data centers require supplemental

information such as sample design, sample collection and analysis methods, algo-

rithms, code, and data analysis methods, description of field sites, photographs,

articles using the data, etc. All of this information will provide context for those

who are trying to understand and use the data, especially many years into the future.

6.4 What the Archive Does

After the data sets have been finalized, and the project team has transmitted them to

the archive, the archive staff begins the process of curation leading to long-term

preservation (Lavoie 2000). This section will briefly describe what typically hap-

pens to a data set during curation and the services that investigators receive when

they archive a data set.

The archive is selected based on a number of factors. The agency that funded the

research may have a designated archive, perhaps based on science area. In recent

years, a principal investigator’s institution, often the library, will provide long-term
stewardship. Some journals and scientific societies have preferences for where data

associated with published articles should be archived.

Fig. 6.4 Flow of data and documentation from the investigator team to the archive, where quality

checks are performed and documentation is compiled. After the data are released, users can search

for, download, and use data of interest
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6.4.1 Quality Assurance

A data center goes through the following general steps during curation, summarized

in the following list:

1. Files received as sent
After the data have been received, the archivist will check the numbers of

files and the “checksum” to ensure that the files were received as sent (see Sect.

6.2.10). At this time, staff will also make sure that the file type is appropriate for

long-term storage and use (see Sect. 6.2.4).

2. Documentation describes files
The archivist will read the documentation and any manuscript associated with

the data product to get an understanding of why the data were produced and what

the workflow is. If there are a number of unique files, a table will be generated

that identifies the contents of each file or group of files. The archivist will check

the filenames to ensure they are descriptive and appropriate based on the file

content, date, spatial extent, etc. (see Sect. 6.2.6).

3. Parameters and units defined
The documentation and the data files should provide the parameter definitions

and the units. For tabular data, the data provider should have created a table that

defines the column names and units; if not, the archivist could generate this

useful table. Often the original investigator will be contacted to identify “mys-

tery” parameters that are not identified, defined, or are unitless (see Sect. 6.2.2).

4. File content is consistent
For spatial data files, the analyst may view the file or a sample of the files in a

GIS tool for consistency. The datum, projection, resolution, and spatial extent

will be exported from all files and checked for consistency (see Sect. 6.2.5).

For tabular data, the archivist will ensure that the parameter definitions and

units are consistent across all files (see Sect. 6.2.2).

5. Parameter values are physically reasonable
The maximum and minimum value will be exported and the range checked

for reasonableness (see Sect. 6.2.2).

Geospatial tabular data will be loaded onto a basemap for visual inspection of

proper overlay (see Sect. 6.2.8).

Staff will check that missing values and other flags are reasonable and

consistent (see Sect. 6.2.2). If a scale factor is applied, the archivist will make

sure that it is defined.

6. Reformat and reorganize data files if needed
The archivist will judge if the formats and organization of the received data

files are the most appropriate based on their data stewardship expertise in the

relevant research fields and the interactions with data providers. If needed,

received data files will be reformatted and reorganized to ease the usage and

maximize the future interoperability of data.
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6.4.2 Documentation and Metadata

The archive will often generate two types of documentation. One is a metadata

record in standardized format to describe the data and also to find data within a large

archive (Michener 2017c). The second is a data set document (a readme type

document) that provides a description of the data (what, where, when, why, who)

and references to manuscripts using data (see Sect. 6.2.9).

Sometimes the investigator drafts a metadata record (Michener 2017c) using

metadata-editing tools, but more often the data center will compile the metadata

record.

Often the archivist will generate a data set document that defines all of the

parameters and units, based on information or manuscripts provided by the inves-

tigators. Each file or type of file in the data set will be described and the spatial and

temporal domain and resolution will be provided. The document should also

describe the methods and limitations and estimates of quality or uncertainty. The

data set document will also include browse images or figures that effectively

illustrate the data set contents.

The investigator provides documents with contextual information (see Sect. 6.3)

that is archived along with the data files and data set documentation.

A key part of data curation is to generate a data citation that gives credit to the

data contributors and the archive, as well as provide a DOI that allows others to find

and use the data. Data product citations have structures similar to manuscript

citations and include authors, date released, data set title, data center, and DOI

(ESIP 2014; Starr et al. 2015; Cook et al. 2016).

6.4.3 Release of a Data Set

After curating and archiving data, data centers can perform a number of services

that benefit both the data users, the data providers, and the funders of the archive as

well as funders of the research project. The following list contains a summary of

archive activities after the data have been released:

1. Advertise data through email, social media, and website

2. Provide tools to explore, access, visualize, and extract data

3. Provide long-term, secure archiving (back-up and recovery)

4. Address user questions, and serve as a buffer between users and data contributors

5. Provide usage statistics and data citation statistics

6. Notify users when newer versions/updates of data products are available, par-

ticularly users who have downloaded the out-of-date data.

Data derived from research is advertised and made available through discovery

and access tools. The data can be used to address other hypotheses and when those

results are reported in a paper, the original data are cited, which can be used as a

measure of the impact of that work and the data center on science.
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6.5 Data Users

The key responsibility for the users of archived data is to give proper credit to the

data contributors. Using other’s ideas and research products, including data,

requires proper attribution. Data used should be cited in a manner similar to articles,

with callouts in the text, tables or figures, and a complete citation with DOI locator

in the list of references. Compilation of all of the citations of a data set into a data

citation index will ensure that the data authors are given credit for all of the effort

associated with making the measurements and compiling a well-preserved data

product.

A secondary responsibility of data users is to identify any issues with the data

files or documentation or discovery or access tools. Feedback to the data center and

to the data contributor on these issues will improve the quality of the data and

services at the archive.

6.6 Conclusions

Data management is important in today’s science, especially with all of the

advances in information technology. Sensors and other data sources can generate

voluminous data products, storage devices can safely store data files for rapid

access, and compute capabilities are sufficient to analyse and mine the big data.

Internet transfer speeds are catching up, but in the short-term, cloud computing and

storage has enabled access and analysis to occur within the same cluster.

Well-managed and organized data will enable the research team to work more

efficiently during the course of the project, including sharing data files with

collaborators so that they can pick up the files and begin using them with minimal

training. Data that is thoroughly described and documented can potentially be

re-used in ways not imagined when originally collected. For example, well-

preserved Earth observations are important for understanding the operation of the

Earth system and provide a solid foundation for sustaining and advancing eco-

nomic, environmental, and social well-being.

Because of the importance of data management, it should be included in the

research workflow as a habit, and done frequently enough that good data products

are generated. The steps outlined in this and related chapters in this book will ensure

that the data are preserved for future use.

Appendix: Example R-Script for Processing Data

This R script (Table 6.8) analyzes a CSV data file of the ORNL DAAC-archived

data set: “LBA-ECO CD-02 Forest Canopy Structure, Tapajos National Forest,

Brazil: 1999–2003” (Ehleringer et al. 2011).
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The script retrieves data records with positive height and LAI values for trees

near the site designated “Primary Forest Tower.” After determining a frequency

histogram (Fig. 6.5), it then analyzes the relationship between tree height and LAI

Table 6.8 R-script that processes data from a read-only file and generates two figures
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values. As revealed by the output plot (Fig. 6.6), height and LAI values have

negative correlation for trees near site “Primary Forest Tower”.

Input CSV data file of this R script is stored in directory “original”, on which the

script has only read-only permission. All outputs of this script are saved in directory

“analysis”, for which the script has both read and write permission.

Fig. 6.5 Histogram of LAI for trees in primary forest near flux tower site

Fig. 6.6 Plot of LAI versus Tree Height for primary forest tress near the flux tower site
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Chapter 7

Data Discovery

William K. Michener

Abstract Data may be discovered by searching commercially available internet

search engines, institutional and public repositories, online data directories, and the

content exposed by data aggregators. Chapter 7 describes these various search

approaches and presents seven best practices that can promote data discovery and

reuse. It further emphasizes the need for data products to be uniquely identifiable

and attributable to the data originators who must also be uniquely identifiable.

7.1 Introduction

Data discovery is the act of searching for and finding data that are or may be of

particular interest. Prior to the advent of the Internet and World Wide Web, data

discovery was often a difficult and laborious process. Researchers discovered that

data existed via word-of-mouth and conference presentations as well as through the

published literature. Accessing or acquiring such “found” data was often even more

difficult as data sharing has only begun to become the norm over the past two to

three decades (Michener 2015).

It is presently much easier to discover data. An array of Internet search engines,

data repositories, data directories, and data aggregators have been created to

facilitate data and information discovery and provide other services. This chapter

describes the various tools and approaches that are most commonly used today to

discover specific data products (Sect. 7.2) and best practices for promoting data

discovery and use (Sect. 7.3).
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7.2 Discovering Data Created by Others

The various tools and approaches that are used to discover data differ widely in their

efficacy at precisely finding the data that one is hoping to examine or acquire.

Commercial Internet search engines are very effective at discovering web sites and

web pages that mention research projects and publications resulting from those

studies. For instance, Google Scholar is particularly adept at enabling users to

discover publications related to a particular topic and that may include descriptions

of data collection and analytical methods. Internet search engines are often less

useful for precisely discovering data that are held in institutional and public

repositories as such data may be insufficiently described, hidden behind institu-

tional firewalls, or disambiguated from their associated metadata.

Searches of institutional and public repositories may quickly lead one to partic-

ular data products as such repositories often provide search tools that are tailored to

facilitate searches of their data holdings. It may, however, prove challenging to

identify the specific repository where one invests the time and effort in conducting

individual searches of the repository holdings. Data directories help address this

challenge by enabling one to search for particular data by keywords and then be

pointed to specific databases or repositories that may be linked to the online data

directory; the user may then be directed to a particular repository where the data and

metadata can be further examined. Data aggregators are increasingly being devel-

oped to provide a mechanism to discover data that originate from many different

sources (e.g., individuals, repositories, and institutions such as museums and

research networks). Data aggregators often provide additional value-added services

and products such as quality assurance, metadata checks, and access to analytical

and visualization tools. The different approaches to data discovery and relevant

examples are described below.

7.2.1 Internet Search Engines

Internet search engines are commonly used to search for information, publications,

data and other content that is available on web sites that are part of the World Wide

Web. Some of the more commonly employed general search engines include

Google, Bing, Yahoo! and Baidu. Internet search engines work by: (1) retrieving

information about web pages by routinely visiting web sites (i.e., web crawling);

(2) indexing the information that is retrieved such as titles and page content based

on HTML markup of the content; and (3) allowing users to query the indexed

content based on one or more keywords that the user enters. Different search

engines use different and, typically, proprietary approaches and algorithms for

indexing and caching (i.e., storing content for rapid access and processing) web

content. Google’s search engine, for example, is based on an algorithm that ranks

web pages based on the number and rank of the web sites and pages that link to
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them. Commercial internet search engines may derive income by assigning higher

rankings to pages from web sites that pay to have their content prioritized in

searches, by allowing paid advertisements to appear alongside search results, or

by both approaches. Search and indexing algorithms may filter and preferentially

rank results based on user characteristics such as location and prior user search

history.

The usefulness of a web search engine is related to how relevant results are to the

user. For instance, a user will often enter one or more search terms or keywords

such as “primary production” and retrieve millions of results. Some internet search

engines offer various ways to filter large lists of results and more precisely find

desired content. Such approaches include specifying a particular range of dates

(e.g., retrieving results that are from the current calendar year) and employing

Boolean operators (i.e., AND, OR, and NOT) to refine the query. Using the

previous example, after retrieving a daunting list of results after querying “primary

production,” a user may refine the search by entering “primary production AND

grassland AND data” to more precisely discover content of interest. Nevertheless,

such a search may still retrieve millions of results—some that point to specific data

products, others that point to publications dealing with topics such as how to

calculate net primary productivity from biomass data and a multitude of other

related issues.

7.2.2 Data Repositories

Numerous data repositories exist worldwide that hold ecological and environmental

data. The Registry of Research Data Repositories (also known as re3data.org;

re3data.org Project Consortium 2016) is a global registry of research data reposi-

tories where one can search for and discover relevant research data repositories

from various academic disciplines. re3data.org lists hundreds of repositories and

includes many data directories and data aggregators. The listed repositories vary

widely in size and scope from archives such as the Macaulay Library1 which is the

largest scientific archive of biodiversity audio and video recordings collected

worldwide (Cornell University 2016), to the HJ Andrews Experimental Forest2

which hosts ecological, environmental and related research data that are primarily

associated with a large forest research site in Oregon’s Cascades Mountains in the

U.S. Pacific Northwest (Andrews Experimental Forest LTER 2016), to the Dryad

1re3data.org: Macaulay Library; editing status 2014-06-25; re3data.org—Registry of Research

Data Repositories. http://doi.org/10.17616/R3CS4N last accessed: 2016-01-14.
2re3data.org: HJ Andrews Experimental Forest; editing status 2015-05-28; re3data.org—Registry

of Research Data Repositories. http://doi.org/10.17616/R3591T last accessed: 2016-01-14.
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Digital Repository3 which is a large general purpose, international, curated archive

that holds data that underlie scientific and medical publications from hundreds of

journals, professional societies and publishers (Dryad 2016).

In addition to variable size and scope, data repositories offer different

approaches for discovering and acquiring data. HJ Andrews Experimental Forest

data, for example, may be searched by: (1) using a simple “string search” where a

word or phrase is entered; (2) “advanced search” where one can specify data

associated with a particular researcher, a subset of theme keywords selected from

a list and specific study sites that are also selected from a list; or by (3) browsing the

list of all data products. Once one has identified data of interest, the metadata and

other descriptive information can typically be downloaded immediately, but acqui-

sition of the data requires that one register as a user and state the purpose for which

the data are being requested.

Biodiversity audio and video recordings can be easily discovered in the Macau-

lay Library by searching catalog numbers or common names or species names of

the organism(s) of interest. A search for “bluebird” generates a web page that

includes a listing of available audio and video recordings and other information

about the recordings including links to most of the recordings so they may be

listened to or viewed. Acquiring the recordings requires that one license the media

and place an order for the recordings that includes catalog number and/or species, a

description of the recording, requested data format, and delivery details; use for

research and education purposes is free, but commercial and other users may be

required to pay a license fee and studio fee for preparing the media.

Data may be discovered in the Dryad repository via several mechanisms includ-

ing simple text string search or a more advanced search that allows the user to

narrow the results set by title, author, subject, publication date and publication

name. For example, one may search for “wood density” and then narrow the search

further by specifying “Ecology Letters” as the publication name which leads to a

seminal paper by Chave and colleagues (2009) and the associated Dryad data

package (Zanne et al. 2009); note that the lead author of the journal article and

the Dryad data package are different individuals. The Dryad web page describes the

contents of the data package (i.e., downloadable file names and file sizes, title, and

other details) as well as links to the full metadata, the number of times the data

package contents have been downloaded and instructions for citing both the journal

article and the data package. The inclusion of a digital object identifier (DOI) in the

data package citation makes it possible to easily link to the data from data package

citations that are included in the Literature Cited sections of papers by other authors

(e.g., Mascaro et al. 2012) that have cited the journal publication that is based on the

data (i.e., Chave et al. 2009 in this case) and that have used and cited the data (i.e.,

Zanne et al. 2009).

3re3data.org: DRYAD; editing status 2015-11-18; re3data.org—Registry of Research Data Repos-

itories. http://doi.org/10.17616/R34S33 last accessed: 2016-01-14.
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7.2.3 Data Directories

The U.S. National Aeronautics and Space Administration’s (NASA) Global Change
Master Directory (GCMD) makes it easy for scientists and the public to discover

and access data relevant to climate change (NASA 2016). The GCMD contains

descriptions of tens of thousands of data sets from the Earth and environmental

sciences. One can perform searches of science keywords (e.g., atmosphere, bio-

sphere, oceans, paleoclimate), instruments (e.g., Earth remote sensing instruments,

in situ/laboratory instruments), platforms (e.g., aircraft, Earth observation satellites,

in situ ocean-based platforms), locations (e.g., continent, geographic region, verti-

cal location), providers (e.g., academic, government agencies, non-government

organizations), project name or acronym, and free text. Searches lead to records

that include project titles and brief abstracts and the records individually link to the

more complete metadata file and, frequently, to the data.

The GCMD also provides access to authoring tools and other services that data

and service providers can use to describe and facilitate discovery of their data

products. Keyword vocabularies are central to the GCMD search capability and

provide “controlled” lists of keywords that are accepted by the broader scientific

community. The vocabularies enable data providers to describe their data products

using standardized terms and are continually being expanded and revised.

The GCMD enables research organizations and other partners to create portals

that support discovery of the portion of the GCMD content that is associated with a

particular organization or partner (e.g., Antarctic Master Directory, World Water

Forum). The GCMD also serves as one of NASA’s contributions to the interna-

tional Committee on Earth Observation Satellites (CEOS), through which it is

named the CEOS International Directory Network (IDN) Master Directory

(CEOS 2016). The IDN Master Directory provides links to numerous GCMD-

associated portals.

DataONE is another related type of service that supports discovery of Earth and

environmental science data (DataONE 2016). DataONE harvests and indexes

metadata from a large international network of data repositories (Michener et al.

2011, 2012). It provides direct links to 100 s of thousands of data products that are

stored in various repositories worldwide. To discover data, a researcher typically

enters a keyword or phrase (e.g., “primary productivity”) in the DataONE search

bar which links to a visual display that enumerates the number of data products that

exist in different geographic regions worldwide and includes more advanced search

capabilities. The user can then easily narrow down the result set by searching for

particular data attributes (e.g., density, length), repositories (e.g., data only from the

Dryad Digital Repository), data creators, years, identifiers (e.g., DOIs), taxa (e.g.,

class, family), and locations (Fig. 7.1).
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7.2.4 Data Aggregators

Data aggregation is the process whereby data are gathered from multiple sources

and then, typically, presented in a standardized format to users. Some data

aggregators perform minimal or no additional processing of the data whereas others

provide numerous value-added services to benefit users. Value-added services can

include data reformatting, performing quality assurance checks (e.g., duplicate

detection, invalid entries), adding taxonomic or geographical location information,

and providing statistical and graphical summaries. Those aggregators that provide

significant value-added services often work with specific types of data such as

meteorological data or data pertaining to particular groups of organisms.

Data aggregators are typically grouped in with data repositories (e.g., listed in

the Registry of Research Data Repositories; re3data.org Project Consortium 2016)

although they differ from most repositories with respect to the services provided.

For instance, a typical institutional data repository may archive a wide range of data

from a large number of contributors; services may be limited to activities such as

the provision of a metadata entry tool, addition of a DOI, citation recommendations,

and periodic backup. A data aggregator, on the other hand, may accept limited types

of data that are in one or a small number of specific formats; the aggregator may

then further process the data by summarizing the data, adding additional metadata

descriptors, and so on. The examples below highlight a subset of non-commercial

data aggregators indicating the types of data they aggregate and some of the

services that are provided.

The Atlas of Living Australia (ALA 2016) is an online repository that contains data

and information about Australia’s plants, animals and microbes (e.g., species

occurrence records, photos, sound recordings, maps, molecular data and links to

pertinent literature). ALA aggregates records and datasets submitted from thou-

sands of sources including citizens, governmental agencies and other groups. It

provides access to keys as well as tools that enable data and metadata to be entered

in standardized formats. In addition, a variety of value added services and features

are provided including: (1) a spatial portal that allows one to view and create maps

that show species occurrences relative to climate and numerous other features;

(2) “fishmap” which allows one to find Australia’s marine fishes; (3) “Explore Your

Area” which allows one to see all species within a user-specified radius of your

home location (Fig. 7.2); and (4) a “dashboard” that provides updates on numbers of

occurrence records and datasets, records submitted by institution/data provider,

conservation status, and numbers of records by state and territory, date and taxo-

nomic grouping.

The Advanced Ecological Knowledge and Observation System (ÆKOS) Data
Portal (ÆKOS 2016) is a data portal that allows one to discover data about

Australian plants, animals and their environment (Fig. 7.3). The portal provides

detailed information about the research methods employed to facilitate understand-

ing and reuse of the data; such information is associated with various icons that
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accompany each data set discovered during a user’s search. The portal includes

numerous features and services that support researchers, educators and resource

managers. One can search by location and ecological data themes, and create

complex Boolean searches. Figure 7.3 illustrates the result set obtained by

performing a simple search for “Daintree.” Each resulting dataset is accompanied

by icons that represent conditions of use, the types of variables included in the data,

duration of the study, and research methods employed. By selecting “More

Details”, one is taken to a webpage where: (1) an “Observation Diagram” provides

a visual representation of the types of observations that are recorded; (2) a

“Methods Diagram” that similarly illustrates the sampling methods that are

employed with links to methodological details; and (3) “Metadata” where detailed

information about all aspects of the data is available. If the data appear suitable,

then a user can easily download the data in .csv format.

VertNet (2016) aggregates a wide variety of vertebrate biodiversity data from

natural history collections worldwide and provides tools that facilitate data discov-

ery, acquisition and publication (Constable et al. 2010; Guralnick and Constable

2010). VertNet has integrated, standardized and “cleaned” data derived from

previously existing vertebrate data aggregators [i.e., Mammal Networked Informa-

tion System (MaNIS 2016); Ornithological Information System (ORNIS 2016);

HerpNET (2016); and FishNet2 ( 2016)]. VertNet supports publication, indexing,

and georeferencing of data and provides training as well as a clear and concise set of

norms for data use and publication.

7.3 Best Practices for Promoting Data Discovery and Reuse

Data discovery and reuse are most easily accomplished when: (1) data are logically

and clearly organized; (2) data quality is assured; (3) data are preserved and

discoverable via an open data repository; (4) data are accompanied by comprehen-

sive metadata; (5) algorithms and code used to create data products are readily

available; (6) data products can be uniquely identified and associated with specific

data originator(s); and (7) the data originator(s) or data repository have provided

recommendations for citation of the data product(s). Data organization, data qual-

ity, metadata and data preservation were discussed in detail in Porter (2017),

Michener (2017a, b) and Cook et al. (2017), respectively.

Good data archiving and sharing policies promote long-term discoverability and

accessibility of data and do so in a way that benefits both the data producers and

consumers (Duke and Porter 2013; Whitlock et al. 2016). The following discussion

focuses on simple steps that can be taken to ensure that data products and scientific

code can be easily discovered, reused and cited.
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7.3.1 Data Products

Data Products Should Be Uniquely Identifiable and Attributable to Their
Originators “Consumers” or users of data benefit from knowing that a data product

exists, that it can be used and cited, that the data originators receive proper

attribution, and that others can subsequently discover and use the same data product

(e.g., for research transparency and data verification purposes). “Producers” or

originators of data benefit from having their data products cited and used by others

much like the peer-recognition that is associated with having publications cited by

others in the literature.

Persistent Identifiers (PIDs) have emerged as the principal mechanisms to

provide a long-lasting reference to datasets and other digital resources. PIDs

make it easy to uniquely cite and access research data and other digital resources.

Some of the more common PIDs include Archival Resource Keys (ARKs), Digital

Object Identifiers (DOIs), Life Science Identifiers (LSIs), and Universal Resource

Names (URNs). DOIs are increasingly becoming the norm for citing all types of

digital resources and various organizations have emerged to facilitate the creation

and management of DOIs. Crossref (2016), for example, commonly provides DOIs

for journal articles, books, reports and datasets.

Likewise, DataCite (2016) creates and supports standards for PIDs for data and

other digital resources. DataCite member institutions are globally distributed data

centers, national libraries, universities and other organizations that serve users by

assigning DOIs to data and other objects. DataCite provides specific recommenda-

tions for how to cite data (Box 7.1). DataCite also provides various tools for users

such as (1) DOI Citation Formatter which creates different citation formats for

DataCite and Crossref DOIs; (2) Metadata Search Tool that allows one to search the

metadata of datasets registered with DataCite; and (3) Metadata Stats service that

provides statistics on datasets that have been uploaded and accessed.

Box 7.1 DataCite Recommendations for Data Citation
The DataCite “recommended format for data citation is as follows:

Creator (PublicationYear): Title. Publisher. Identifier.

It may also be desirable to include information about two optional prop-

erties, Version and ResourceType (as appropriate). If so, the recommended

form is as follows:

Creator (PublicationYear): Title. Version. Publisher. ResourceType.

Identifier”.

(http://www.datacite.org/); accessed 20 Jan 2016).

Many data repositories work with DataCite member institutions to assign DOIs and

also provide specific guidelines for citing datasets that are housed in their reposi-

tory. For example, the dataset citation recommendations for the Dryad Digital

Repository are listed in Box 7.2.
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Box 7.2 Dryad Digital Repository Data Citation Recommendations
“When referencing data in the text, we recommend the following as a

template (substitute your DOI suffix for the xxxxx):

Data available from the Dryad Digital Repository: http://dx.doi.org/10.

5061/dryad.xxxxx

In the Bibliography, we recommend a citation similar to:

Heneghan C, Thompson M, Billingsley M, Cohen, D (2011) Data from:

Medical-device recalls in the UK and the device-regulation process: retro-

spective review of safety notices and alerts. Dryad Digital Repository. http://

dx.doi.org/10.5061/dryad.585t4”.

(https://datadryad.org/pages/faq; accessed 20 Jan 2016).

Data Originators and Users Should Be Uniquely Identifiable It is highly unlikely

that any given personal name can be resolved to a single individual; further, some

common names like “J. Smith” may be associated with thousands of individuals

and many researchers undergo name changes over the course of their careers (e.g.,

through marriage). This situation presents a real challenge when the goal is to make

sure that individuals receive proper attribution for the output of their scholarly and

research endeavors. ORCID (Open Research and Contributor ID; ORCID 2016)

provides a valuable service that enables researchers to be uniquely identified.

ORCID identifiers are unique alphanumeric codes that resolve to a specific indi-

vidual and can be easily linked to publications, grant proposals, and other outputs

and activities. The ORCID organization maintains a registry of unique researcher

identifiers and supports mechanisms that enable researchers to link their identifiers

to research products. Increasingly, research sponsors and publishers are encourag-

ing or requiring that individuals associate their works with an ORCID identifier.

7.3.2 Scientific Code

Scientific code such as custom software and scripts (e.g., R, Matlab) is used in

statistical and graphical analysis, modeling, detecting and correcting errors in data,

and creating figures and visualizations. Code precisely records what has been done

with the data and the availability of code makes it possible for other scientists to

more easily understand and, potentially, reproduce data processing and analytical

steps (Maslan et al. 2016; Peng 2011; Barnes 2010; Ince et al. 2012). It is good

practice to deposit scientific code in long-term repositories such as Dryad, Figshare,

PANGAEA, or Zenodo that provide licenses (e.g. CC0, CC-By) and that assign

DOIs so that code is preserved and may be used and properly cited by others

(Maslan et al. 2016).
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Chapter 8

Data Integration: Principles and Practice

Mark Schildhauer

Abstract Data integration is the process of combining (also called “merging” or

“joining”) data together to create a single unified data object from what were

multiple, distinct data objects. The motivation for integrating data is usually to

bring together the information needed to jointly analyze or model some phenom-

ena. By producing a single, consistently structured object through data integration,

the process of further manipulating those data is vastly simplified, while presumed

relationships among the data are clarified.

Data integration is essential for many scientific disciplines, but especially in

disciplines such as ecology and the environmental sciences, where processes and

patterns of interest often emerge from interactions among numerous complex

physical phenomena. Observations of these distinct phenomena are often collected

by disparate parties in uncoordinated ways, using different data systems. It is then

necessary to gather these data together and appropriately integrate them, to clarify

through further modeling and analysis the nature and strength of any relationships

among them. Synthesis studies, in particular, often require finding, and then bring-

ing together disparate data in order to integrate them, and reveal new insights.

This chapter describes aspects of data that are critical for determining whether

and how data can be integrated, and discusses some of the theoretical consider-

ations and common mechanisms for integrating data.

8.1 Introduction

Data integration is the process of combining, merging, or joining data together, in

order to make what were distinct, multiple data objects, into a single, unified data

object. Data integration is one of the most fundamental operations that researchers

and analysts typically must master, as many interesting scientific questions can be

investigated only if the data needed to address them are assembled together. A

typical motivation for data integration is to bring together data of similar or
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complementary kinds, in order to better inform models and analyses about phe-

nomena of interest. Data are also integrated in order to discover or test whether

potential relationships exist among the pieces, or to expand the spatial, temporal,

and thematic ranges over which scientists can explore potential relationships.

There are also many situations in scientific research where experiments are

carried out in a controlled environment by manipulating a well-defined set of

“variables” so that variability among unmeasured features is considered to be

unimportant relative to the outcome of interest. Such experimental studies provide

a strong inferential basis for testing and refining hypotheses, particularly when the

processes of interest are driven by relatively few factors in strongly determinate

ways. Many of the advances in molecular biology over the past decades, for

example, have been gained through carefully controlled experiments based on

sets of mutually exclusive hypotheses (Platt 1964). The data supporting these

types of research is often fully self-contained with minimal need for further

integration with other data.

While highly controlled experiments such as those commonly found in labora-

tory work can advance scientific understanding in powerful ways, studies of the

natural environment are often not amenable to such designs as many factors—

climate, topography, hydrology, soil composition, or the abundance and identity of

surrounding organisms (including humans!)—cannot all be simultaneously manip-

ulated or controlled. Yet these factors may be significant in structuring processes at

the ecological population, community, and ecosystems levels. In essence, ecolog-

ical systems can be highly complex, involving extensive interactions and feedbacks

among many potentially critical factors. This leads to a dilemma as to how

scientists can collect data on all these potentially critical factors, given the rela-

tively limited resources that individual researchers, and even research teams or

projects, typically have available to record observations of all the potential factors
that could influence the patterns and processes shaping the environment at multiple

scales.

Many field sciences (ecology, geology, oceanography, etc.) especially benefit

from having additional data available from the particular spatiotemporal region

where their observations were acquired: one might combine lists of bird species

collected by different individuals from the same area to gain a more comprehensive

record of the local avifauna; or one might merge data on tree growth rates with data

sets about air temperature, soil type, and precipitation, that were collected from the

same geospatial region over the same time period.

The need for data integration is thus pervasive throughout much of the environ-

mental and earth sciences. Indeed, data integration is one of the principal activities

involved in doing synthetic analyses. Much of the success of ecological synthesis

studies over the past few decades can be attributed to arduous but fruitful efforts

that brought together “existing data” to generate novel insights, activities that were

often facilitated by synthesis centers that support knowledge and data integration

activities (Carpenter et al. 2009). Regardless of the motivation, however, data

integration requires that researchers understand structural and semantic aspects of
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the data, as well gain some mastery of the mechanics involved in transforming and

manipulating data to produce appropriate and re-usable integrated data products.

In this chapter we describe the basic concepts and mechanisms of data integra-

tion. As there are many types of specialized data formats and these can require

special considerations based on the nature of the phenomena that the data “repre-

sent”, we focus here on understanding the structure and mechanics of dealing with

tabular data. While we will not cover the technical details of dealing with other

common data types conventionally stored in other formats—e.g., gene sequence

data, or raster or vector formatted geospatial data—many of the conceptual and

operational aspects of working with data described here pertain to those formats

as well.

8.2 Essential Characteristics of All Data

Data integration can take many forms depending on the characteristics of the data to

be integrated. There are three essential characteristics of all data, however, that

should always be considered by a researcher when planning for data collection, as

well as for strategizing how to integrate data. These characteristics are the seman-

tics (or meaning) of the data, the structure ( form or format in which the data are

documented or stored) of the data, and finally the choice of syntax (specific
programming language or application) used to define, store, query, and retrieve

the data.

Many scientists take for granted the meaning and structure of their data because

they are intimately acquainted with the theories and methods for investigating their

phenomena of interest, the conventional terms used to describe those phenomena,

as well as various specific tools for acquiring, storing, and manipulating data about

those phenomena. However, this can lead to highly idiosyncratic modeling of data,

structured in ways that are only comprehensible to the data creator, and lacking in

documentation that would enable others to understand the content or structure of the

data. This lack of standardization in terminology and modeling is increasingly

problematic in an era where the benefits of preserving and documenting data for

interpretation and re-use by others is becoming more and more critical (see Cook

et al. 2017). Data can serve several purposes, especially in the environmental and

earth sciences: as records of the state of diverse natural phenomena at various times

and places; as the empirical basis supporting important research findings and hence

“reproducible science”; and as source information having second or third “lives”

when re-purposed and integrated into synthesis research activities (Hampton et al.

2015). For these reasons, scientists are increasingly taking greater care in planning

the structure of their data, and documenting data contents as well, using available

tutorials and published best practices (Michener 2015; Strasser et al. 2014).
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The concept of metadata—explored in depth in Chap. 5—was alien and confus-

ing to many researchers as recently as a decade ago. As of 2017, however, most

scientists are now aware of the importance of providing critical additional infor-

mation (metadata: “higher order, beyond” data) about their data, if it was not

already explicated within their original data structure and documentation. With

the continuing growth of Internet technologies and computational power, the

potential to integrate and jointly analyze data of extremely high volumes or

dimensions has never been greater, and is catalyzing a growing culture of collab-

oration, synthesis, and data-sharing throughout many of the earth, environmental,

and social sciences. But data integration can only proceed with ease and confidence

if the data are well described and well structured. This means that adequate

documentation or metadata in some form, is critical—describing the semantic
content of the data (what the data are about); and that the data are organized

using standard structures (how they are stored), rather than idiosyncratic, custom,

or inappropriate ones. Following best practices in defining and structuring one’s
data will make them discoverable, accessible and amenable for further integration

and analyses by computers, rather than arduous, manual methods such as copying

and pasting data across worksheets. Finally, the choice of syntax by which the data

are created and manipulated/integrated, is important. Although there may be many

variations of computer language syntax for defining and describing data, there are

also many commonalities that we outline in this chapter.

Note that every analytical framework approaches data integration using its own

syntax and, to some extent, with specialized conceptual models of the data as well.

In the case of tabular data, however, these all conform to a great degree to the

relational model of data developed by Edgar Codd in 1969, with syntactical

representation for creating and modifying relational data through Structured

Query Language, or SQL (pronounced as “S-Q-L” or “sequel”) (Codd 2000; also

see https://en.wikipedia.org/wiki/Relational_model; https://en.wikipedia.org/wiki/

SQL). As SQL is also an ANSI and ISO standard, we primarily frame our data

integration examples using SQL syntax. Data analysis software such as “R”,

Matlab, and SAS have similar but often more idiosyncratic and less standard

terminologies than SQL for describing data integration operations, depending on

which specific packages, modules, or libraries of those frameworks one uses.

However, there are often close analogues to SQL syntax for manipulating data in

each of these frameworks. For these reasons, understanding some basic SQL and

the relational data model is very useful to any analyst who will be doing lots of data

creation, manipulation, or integration.

8.3 Data as Records About Reality

Scientists today use many sensors and instruments to collect their data, but in the

not too distant past, individuals mainly used their own keen senses—visual, audi-

tory, tactile—to describe and “measure” aspects of nature, and to record these as
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observations. Of course, humans’ direct sensory capabilities are highly limited

(witness a dog’s sense of hearing or smell relative to typical human beings), then

filtered through our brains, where further interpretation of what was observed

(whether real or imaginary) is (cognitively) conceptualized, and recollected or

recorded as “data”. Our everyday experience is largely based on such interpreta-

tions of sensory-based inputs about physical reality, whether scientifically informed

or not. Scientists are specifically trained to be acutely aware or knowledgeable

about various aspects of this reality, and typically describe and measure aspects of

nature with greater rigor, striving to be more deeply perceptive, objective, and

unbiased, compared with a naive observer. While it is debatable whether any

observations can be fully objective or unbiased, one can point to science as an

empirically-based “way of knowing” that has had unprecedented success in

predicting and informing many aspects of the behavior of physical reality, com-

pared with other methods, such as “blind faith” (not the band).

When data are used to support details about some natural event or occurrence,

we also call such data “evidence”. At this level, the very notion of identifying

objects and processes in the natural world, and recording their characteristics and

interactions with other objects and processes, touches on the domain of philosophy

of science (Quine 1981; Taper and Lele 2004). We routinely draw distinctions

among objects in the world, ascribe various characteristics to them, and then group

these objects into sets and types (e.g., biomes, chairs, fish, and clouds), based on

instances (or individuals) that actually occur and that we have measured or

observed. For example, there is a notion of a chair, and there is also the instance

of chair that you may be sitting in as you read this. We create a notion of “chair”

based on some functional characteristics to which we then attribute membership to

individual instances. Is a “table” a “chair” when someone is sitting on it? These

issues are brain-teasers, and are discussed largely in the realm of philosophy,

specifically, the branch of metaphysics called “ontology”—that inquires as to the

nature of reality or being. Nevertheless, such issues have relevance to science, for

science and empiricism involve describing, measuring, and classifying (“typing”)

events, occurrences, or physical objects in the material world and their inter-

relationships, so it is important to be thoughtful and critical about the basis for

our understanding.

Most scientists probably subscribe to the perspective of “naturalistic realism” or

“scientific realism”, and do not worry much about the underlying basis in “reality” of

the concepts and entities that they measure and describe (Hempel 1970), but there are

reasons to be cautious about too much naiveté relative to the ontological status of all

scientific phenomena (Kuhn 1996). Some reading about and reflection upon these

issues may challenge scientists’ confidence about the concreteness of their observa-

tions, and provoke greater reflection on the nature of the phenomena they are studying,

as well as how they are “documenting” these phenomena as data. Fortunately,

scientific conceptualizations of reality are continually challenged and amended by

empirical observation and experiment, to the point where today we acknowledge that

even our common day-to-day experience of space and time does not necessarily

conform to some deeper reality, e.g., quantum entanglement (Greene 2005).
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8.4 Record-Keeping and Prose Documents as Data

Integration Challenges

Until the digital age, much “data” of scientific interest was collected in the form of

notes, diaries and sketchbooks. The Codex of Leonardo da Vinci is an outstanding

example of this form of scientific recordkeeping. These record-keeping formats

typically involve lots of “natural language” descriptions (e.g., in prose English or

Chinese)—but also include “richer media” such as illustrations or digital images

with captions/descriptions, rough mockups of graphical trends (sometimes looking

quite nice by using modern graphics software), and even areas of “well-structured

data”—small tables or lists containing observations. These mechanisms for record-

keeping are still useful for many field biologists, due to the expressiveness of

natural language descriptions. Modern day field notes might also include descrip-

tions of the human or environmental context surrounding the observations (meta-

data), along with imagery, additional essential metadata (location, date, observer,

etc.) and other pertinent information as “annotations” (Canfield 2011).

Indeed, many great scientific insights from “data integration” in the past did not

involve the assistance of computers running analyses on well-structured data, but

rather from “data” collected and stored in the form of these lab or field notebooks.

The theory of natural selection, for example, emerged from Darwin’s integration of
patterns perceived in nature, documented in field notebooks filled with observations

of plants and animals, and their interactions and relationships (Fig. 8.1).

Today we can also consider these “natural language” documents as types of data

that can be structured and integrated into a “corpus” which can be further mined or

analyzed through “Natural Language Processing” (or NLP). The ability to rapidly

automate the acquisition of large numbers of relevant text documents by scouring

the Internet, and then organizing and “mining” these for patterns and relationships,

Fig. 8.1 Page from Charles

Darwin’s “First Notebook
on ‘Transmutation of

Species’” (1837)
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is a relatively recent capability enabled by modern computational power. NLP is

enabled by “Big Data” analysis and involves “integrating” text documents, but will

not be touched upon further here (Norvig 2009).

8.5 Formal Data Structures Facilitate Integration

Several formalized data structures have existed for millennia. Financial ledgers

recording barter/trade transactions were used in ancient Mesopotamia and various

highly structured representations of the movements of the sun or moon, viz. calen-

dars, have existed since the Bronze Age. For modern scientific data, however, several

common, well-structured data formats exist. The specific implementations and inter-

pretations of these data structures can vary somewhat, depending on what program-

ming languages or analytical tools one is using. Aside from the potentially subtle but

significant differences in the semantics of data structures, implementations can also

vary relative to the syntaxes (language commands) required for their construction and

manipulation. For example, the specific meanings of the following data structures and

how they are created or manipulated vary among Python, R, and MATLAB. Never-

theless, these variations are mainly in the fine details and the following common

usages of these named structures (Sects. 8.5.1–8.5.4) will generally be accurate.

8.5.1 Sets and Sequences

Sets and sequences, including lists, vectors, and linear arrays—are (typically) one

dimensional data structures consisting of individual values (also called elements)
that can be strictly ordered or not. While any collection of unique elements sharing

some common property can constitute a set, elements in a sequence can be repeated
and referenced by mapping to an index position within the set. This is necessary in

order to readily refer to elements (or subsets) within the sequence, without having to

specify their actual value. By convention, in many programming languages, square

brackets [. . .] or braces {. . .} or even parentheses (. . .) are used to delimit vectors,

arrays, and lists. Examples of lists are:

• items one must remember to purchase [wine, cheese, crackers, plates, cups]

• types of butterflies seen on a hike [Danaus plexippus, Morpho menelaus]
• the months in a year

• the height (m) of a plant measured on the first of each month from 2003 to 2015

[0.45, 1.18, 2.46, 5.78, 6.38, 7.72]

If the first list above was called “picnic”, then picnic[2] would equal “cheese”

(the second element in the list); although in many computer languages, the origin of

indexing starts at “0” not “1”, so the second element would be: picnic[1]. In vectors

all elements must be of the same type, while in lists, elements can be of mixed

types, e.g., both character and numeric.
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8.5.2 Matrices

Matrices are two dimensional, rectangular arrays of numbers or expressions, where

in a formal mathematical sense, index-ordering of the values is fixed. The

two-dimensional or rectangular matrix is common, and has a formal structure such

that the exact ordering of values is fixed across both the first (often called “row”) and

second (often called “column”) dimensions. Individual elements are identified and

accessible via an index, e.g., X [i, j], where X [i+1, j+2] has a specific relationship to

all the other matrix elements—referencing the cell one row “below”, and one column

to the “right”. Thus, matrices cannot be arbitrarily re-sorted by row or column

without changing the nature of the matrix (unlike a table, as described below).

Matrices also needn’t be solely numeric, though some language/software tools

require that. Finally, matrices are often confused with, or somewhat misleadingly

used to describe structures for displaying cross-classified data.

8.5.3 Cross-classifications

Cross-classifications are effective ways of presenting data when data elements are

described according to two attributes, e.g., seed shape AND seed color; or site AND
species, where the cell values could contain counts or other measures like total weight,

etc. (Fig. 8.2). Cross-classifications are not, however, the best way to store and update

raw data. One can see from the example in Fig. 8.2, that adding a new category of color

or shape, such as “green-yellow”, or “dappled”, might require adding another column

or row of data, and possibly re-classifying existing instances into these new categories.

The Table structure described next provides a much better way for storing these types

of data with great flexibility in splitting and lumping categories, and transformation to a

Cross-classification format easily achieved a few simple transformation rules.

8.5.4 Tables

Tables are extremely common data structures used extensively in many natural and

social sciences. There is both a common vernacular use of the term to indicate any

structured “rectangular” data object, as well as a more formal definition that is

grounded in the mathematics of set theory and relational algebra (Codd 1970).

In both cases, a table (equivalently called a “relation”), can be envisioned as a

set of rows and columns, in which each column contains some particular type of

Fig. 8.2 Cross-

classification data structure
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measurement or variable (also more formally called “attributes”), while the rows

represent individual records or observations consisting of values for each of the

column measurements. Note that these values can be “missing” or blank for any

number of the columns in a row and any number of rows in the table. It can be a bit

confusing to describe the structure of tables, as there is lots of variability in the

terminologies that are commonly used (Fig. 8.3).

Tables are typically constructed such that rows collectively represent a set of

records about some single “entity type”—where an “entity” represents some thing

or process that has features that are measurable or named. Thus, a table might

describe entity type¼People, and measured fields might include a surname and

birthdate. Rows would each represent an “instance” of that entity type, or in this

case, a Person. Tables should be designed such that additions of information are

easily made by adding rows, not columns, except for when some new type of

attribute or variable about that entity type, needs to be added. In that case, defining a

new column may be necessary. When creating a table, one specifies the name of

table (usually reflecting the “entity type” it represents), and the names of the types

of information contained in the columns. By definition, adding a new column to a

table effectively creates a new table, whereas adding a row does not. This is because

relational tables are defined by their name and the specific variables they contain.

Most current relational database management systems (RDBMS), including soft-

ware such as PostgreSQL, MySQL, or Oracle—use SQL, or “Structured Query

Language”, to construct and manipulate complex tabular data. SQL is highly standard-

ized such that the Data Definition Language (DDL) syntax for creating a Table will

look very much like the following in many relational database management systems:

CREATE TABLE Seed_Traits

(Shape VARCHAR, Color VARCHAR, Count INTEGER);

The Table is given a name (Seed_Traits), and each Column (Shape, Color,
Count) is given a name as well as a data type (VARCHAR, VARCHAR, INTEGER).
The data type indicates how the computer should treat the cell values in those

columns, e.g., as numerical ones amenable to arithmetic operations, or simply as

text strings.

In “R” a similar table structure might be defined (as a data frame) as follows:

Seed_Traits <- data.frame(Shape¼character(), Color¼character(), Count¼integer

());

Fig. 8.3 Terms describing table structures; read across rows for “synonyms”
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Note the strong similarity in syntaxes between R and SQL—involving naming

the table (called a data frame in “R”) “Seed_Traits”, and naming and typing the

variables—Shape, Color, and Count. Despite these syntactical similarities, the

underlying model of the data structure is somewhat different: a SQL table is a set

of tuples/rows, while an R data frame is a list whose elements are vectors/columns.

Technically, this leads to a difference in how data are inserted during the table/data

frame creation process: in SQL—INSERT tuple/row; in R—add vector/column).

The DDL statements shown above for defining one’s tables in SQL and R include

the name of the table or data frame, names and types of the attributes, and how these,

as well as tables, might be related to one another. These statements represent your

data model, or schema, in executable code. It is best to use scripts such as these to

define one’s data since scripts can be later reviewed, modified, and re-executed,

unlike, for example, simply typing your data into rows and columns in a spreadsheet.

If one does not have the DDL statements (SQL, R, or other) for defining the structure

and contents of one’s tables, it is nevertheless important to have a good grasp of one’s
data schema, even if only represented in text or a diagram.

8.5.5 Tables or Spreadsheets?

Not everything that looks like a table IS A table. When one constructs a spreadsheet

or worksheet in some popular application, such as Excel or Google Sheets, even if

these are regularly structured in rows and columns with the first row being a

“HEADER” row listing the column variables, one is typically not creating a true

“table” by default. This is because there may be no “enforcement” of data typing—

it would be permissible if one were to add a character string to a column in which all

values should be numeric, or put a numeric value into a column that consists

predominantly of text values. It is also common in many naively-constructed

spreadsheets (and perniciously so) to find comments and other marginalia outside

the “boundaries” of the table—which violate the integrity of the table and make it

difficult to differentiate the tabular data from the other presentational, descriptive

and summary elements surrounding it. While it is possible to use spreadsheets to

create table-like structures, one should be aware that these other features can make

later integration of those data highly problematic. One big advantage of using

formal database software, like PostgreSQL or MySQL, or analytical software like

“R” or SAS, is that when one creates a table or table-like structure (e.g., a data

frame in “R”), the software will assist you in making the data conformant to the

columns you specified with the data types you defined for them.

Exactly how tables are defined—with rows “collecting” data regarding one

single object such as a person, or as often is the case in ecological and environ-

mental studies, a heterogeneous entity, e.g., combining information about a spec-

imen along with context gleaned from other sources, such as spatiotemporal data,

information about the collector or methods, etc.—involves the art of data modeling.
The choice of what variables to include in a table, or separate out into distinct
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tables, depends to a great extent on the concerns of the researcher relative to the

analyses they are planning for their data, and whether they might be “merging” their

data with other data. However, it is always good practice to keep these principles in

mind when constructing tables: to create tables that represent some entity type

(e.g., a “person” table, or an “institution” table), structured with columns

representing variables, and each row representing a set of “linked” or closely

related (dependent) measurements. This will lead to data that are well constructed,

and readily amenable to ingestion and further manipulation and analysis by most

software packages. These are also the characteristics contributing to what is

referred to in the “R” statistical world as “Tidy Data” (Wickham 2014).

8.5.6 Tables or Cross-classifications?

The cross-classification data format illustrated above in Fig. 8.2 superficially

resembles a table. Where it differs is in how a well-modeled table can flexibly

accommodate new values, as opposed to the cross-classification. In the cross-

classification example above, the naming of “columns” as “Green” or “Yellow”

creates a problem if a researcher wants to later track a new color, say “Light Green”,

or “Greenish-yellow”. One can see that having a Variable for “Color” is better than

using two possible values for Color (Green, Yellow) as names of Variables. With a

well-constructed table, one simply adds Rows (records) to accommodate new

values, e.g., for new SHAPES or COLORS (Fig. 8.4). Adding Columns, however,

changes the table structure and, in many analytical packages, will require

re-defining the table since you are adding a new Variable.

8.5.7 Modeling True Tables

Researchers often conceive of their data as residing in tables, but these tables often

do not conform well with the formal requirement of representing some single entity

type. Rather, researchers’ tables are often inherently heterogeneous objects—cou-

pling together (in a record or tuple; Fig. 8.3) information about several different

Fig. 8.4 First few rows of Table “Seed_Traits” with more flexible structure than cross-

classification depicted in Fig. 8.2
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entity types or things—e.g., documenting the taxonomic identities, counts, and

heights of trees; along with contextual information such as the location where

those measurements were taken (e.g., place name, geo-coordinates); along with

perhaps some climatological data (e.g., mean annual precipitation and maximum

air temperature); and additional metadata (date of collection, data collector’s
name), etc.

Such analytically-ready tables are often products of prior data integration

processes even if those integration processes were done manually—merging in

ancillary data such as a place name or precipitation data that were in fact derived

from other sources. Even these tables, however, should have ALL unique rows—if

all the values are identical in two or more rows of a table, this would indicate either

a duplication error, or that those seemingly identical records in fact represent

measurements that should somehow be further differentiated. For example, if two

records from the Table about “Seed_Traits” have identical values for the measure-

ments of shape, color, and count, there should be some documentation, ideally

contained in an additional column, about what “differentiates” those records—

different sampling events in time, different specimen IDs, or measurements by

different persons, etc.

While most scientists prefer working with analytically ready tables as above,
relational databases take a different approach in modeling data tables, and for

different ends. Relational databases are effective at storing complex and volumi-

nous data, enabling a number of different analytically-ready tables to be derived

from them. These analytically ready tables often result from the JOINing or

integration of relational tables through a query. A query is a structured statement

requesting information from the tables in a database and, as mentioned earlier, is

often expressed in SQL. Relational databases are also very efficient at storing

information with minimal redundancy. For example, information about taxonomic

entities and their placement in a biological classification scheme (Family-Genus-

Species) might be stored only once in a Table, but referenced many times by other

tables in a relational database through a concise Key relationship, described in more

detail below. Another advantage of a relational database is that, due to careful

modeling and specification of relationships among tables through Keys and other

constraints, the integrity of the data can be maintained, allowing multiple users to

simultaneously add, delete, and update entries to the database without introducing

errors (called “anomalies” in database terminology).

Data (as opposed to “statistical”) normalization is another important concept that

is perhaps not familiar to many researchers, unless they have had to model some

fairly complex data. Nevertheless, it is a useful concept to know even when creating

simple tables. Data normalization involves thinking about the entities that “natu-

rally exist” in your data, and then separating these entities out into separate tables.

Information that is closely associated with the same type of entity is kept together as

a tuple in its own table—e.g., the information above about Jane Smith might be a

record in a “People” Table. In database terms, these types of necessary and close

associations among attributes are called “dependencies”. When an attribute’s value,
e.g., an ORCID ID (ORCID, Inc. 2016), uniquely determines the value of some
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other attribute (e.g., a birthdate), it is said that the birthdate is functionally depen-
dent on the ORCID ID, or that the ORCID ID “functionally determines” the

birthdate. Identifying functional dependencies in your data, and grouping these

attributes together into the same table, is a big part of normalization. The most basic

type of normalization, however, is called 1st normal form, and involves “atomiz-

ing” your data. Atomization is when you construct your tables such that the “cell”

contents are limited to single values of “one thing” or measurement. Thus, it is not

good practice to store values of an entire home address, or a given name and

surname, or both latitude and longitude—together in a single cell. These should

be separated out into more fundamental components—e.g., one variable (column)

to hold values for latitude and one variable (column) to hold values for longitude.

“Keys” are extremely important in integrating data, as they are the set of values

in a record that can be used to identify a unique occurrence or row in a table. Keys

form the basis for linking one table with another by matching up their values across
tables. Keys are still typically constructed such that they are only “unique” for rows

within a specific database table. Local database keys are often generated as an

additional column containing integer numbers, uniquely associated with a table

row. A key can, however, also consist of more than one variable, if that is what is

needed to uniquely identify a table row (e.g., both date and locationmight uniquely

identify a record). Locally-scoped keys, however, make it difficult to identify and

integrate compatible data across databases, which may be distributed around the

Internet, or simply appear in multiple spreadsheets on a researcher’s desktop

computer.

There are two important roles that Keys play in data integration: as PRIMARY

KEY, or FOREIGN KEY. For a given table, one can identify a PRIMARY KEY,

which is the attribute or set of attributes that uniquely identify a record (row) in that
table as distinct from all the others. Each row of a table must have a unique value

for its PRIMARY KEY. For example, in a table called “People”, that would contain

one record per person, the ORCID Identifier could be specified as the Primary Key

for that table. Wherever an ORCID Identifier might appear in some other table,
however, it is called a “Foreign Key” and refers back to the table where that

attribute is identified as its Primary Key. Thus, if an ORCID ID is designated as

the Primary Key for a table containing a record for “Jane Smith”, wherever that
particular ORCID ID appears as a Foreign Key in another table, it will be clear that

it refers to the one particular Jane Smith, and her associated attributes in the

“People” table, and not records of other individuals with that same name of Jane
Smith. In relational databases Key relationships among tables are formally specified

by explicitly identifying which columns are Primary Keys or Foreign Keys, and

called constraints. When using other analytical frameworks, such as “R” or SAS,

however, Key constraints are often not explicitly specified, in which case the

researcher must be fully aware of which variables can serve as Keys, in order to

properly integrate data tables.

There is insufficient room here to describe in detail relational algebra, which
provides the underlying theory for modeling relational data. There is a strong

mathematical logic underlying how tables and their attributes are constructed
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using those algebraic principles, how to model and normalize one’s data, and how

keys should be chosen and used to inter-relate tables for integration. While the

syntactical and even structural aspects of creating, manipulating and integrating

tables can vary across analytical frameworks, the theoretical bases of information

modeling and relational database structures are still very broadly relevant, and can

be found in many books that describe the theory and strategies for building

databases (e.g., Halpin and Morgan 2008; Connolly and Begg 2014).

8.5.8 Need for Global Keys

As it becomes easier and easier to integrate data from multiple sources, there is a

danger of re-counting certain observations—e.g., in the case where we might have

two identical observations for a “Jane Smith”, exhibiting the same height, weight,

and birthday. These records might refer to two people with the same name, or be an

erroneous repeat or “duplication” of data about the same “Jane Smith” individual,

due to some earlier data integration. To differentiate whether these records refer to

the same set of measurements or instances, one would need additional information,

ideally involving unique identifiers, such as Social Security numbers (in the USA)

or ORCID Identifiers.

Although the growth of the Web makes more data readily available to

researchers for integration and analysis, it also makes more critical the need for

“global keys”—in order to clearly reference the distinct instances of a multitude of

objects, including not only obvious entities like people or institutions, but also other

entities and phenomena that are singular—such as specimens from natural history

museums or ice-core samples, or specific oceanographic cruises or field expedi-

tions. In these cases, we might be able to infer from metadata what specific event or

instance of some object took place or was measured—a survey of a vegetation plot,

or a count of a herd of elephants—but in each case, we are relying on those

metadata to differentiate one event or measurement from another. Critical infor-

mation that allows such differentiation can often get lost when data are transferred,

subsetted, summarized, re-combined, etc.

To afford better possibilities for data integration in general, and particularly over

the Internet, Keys need to become globally unique. This requires expanding the

notion of Keys beyond simply identifying unique rows in a database table, to also

enable identifying unique tables, databases, and ideally any distinct information

resource accessible over the Web. This is not as unfamiliar a notion as it first

sounds—ORCID Identifiers essentially represent global Keys, in that they uniquely

identify an instance of “something”—in this case individual researcher/scientists.

This notion of a globally unique identifier may be conceptually simple, but its

actual implementation can vary. The specific term “Globally Unique Identifier”, or

“GUID”, for example, refers primarily to the assignment of a unique 128-bit digital

signature to a digital object, with the capacity to assign over 1038 such unique

addresses to items (probably enough to last us a while!). On the Web, however, a
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Uniform Resource Identifier, or URI, can also serve as a globally unique identifier

(Allemang and Hendler 2011). URIs have a similar format to the more familiar

URL (Uniform Resource Locator) that we type into the address area of our Web

browsers. These two differ in that URLs indicate a location of something on the

Web, while URIs have a broader meaning indicating a resource, which is any object
referenced and accessible through the Web, including simply “locations” (URLs)

for Web sites or pages. Thus, all URLs are URIs, but not necessarily vice-versa.

With the growing need to access and integrate distributed data across the Internet,

URIs will increasingly serve as global Keys pointing to data resources across

the Web.

Journal publishers are already issuing globally unique identifiers for articles,

most typically as Digital Object Identifiers, or DOIs (International DOI Foundation

2016), while Social Security numbers and ORCID IDs are other examples of

globally unique identifiers for individual persons. As we increasingly use URIs as

globally unique identifiers, the URIs will also need to be persistent—in that there is

an intention and commitment that these will always “point to” a specific resource

that can be accessed over the Web. This process of accessing the value or other

representation of the resource pointed to by a URI is called “dereferencing”, and is a

critical enabler of the Semantic Web and Linked Data (Berners-Lee et al. 2001;

Heath and Bizer 2011). An increasing need for more effective integration of

relevant data distributed across the Internet makes clear the advantage of using

non-local, global Keys such as DOIs or ORCID IDs. Such global identifiers will

become more commonplace in other aspects of scientific data and measurements,

much more than simply persons or publications. Such new approaches for integrat-

ing Web-distributed data are not yet well covered in traditional references about

databases, but are developing as blends of those technologies with emerging ones

for the Semantic Web and Linked Data.

8.6 Merging or JOINing Tables

The most common motivation for data integration arises from researchers’ needs to
combine tables to create an enriched set of “coupled” variables that can be further

manipulated and analyzed in search of various statistical relationships and other

patterns. These techniques often require constructing records in which some of the

variables are identified as “predictors”, while other variables are hypothesized

“outcomes” conditioned on the values of the predictor variables. Other motivations

for integrating data might simply be to test for potential relationships among

variables, such as positive or negative correlations with one another. These analyses

rely on bringing the data together in ways that clarify which measurements are

somehow associated together, which is often indicated by grouping those values

together in the same record.

There are a number of ways to merge tables, depending on the needs and interests

of the researcher. These various approaches have proper names and, even if a data
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analyst often finds it necessary to mix and customize these approaches, it is good to

be aware of the main integration processes and their proper names. To keep matters

simple, the focus here will be on merging two tables together, but the same principles

hold for merging together more than two tables. It is usually clearer, however, to

merge tables in an iterative pair-wise fashion, at least initially.

The most basic way of merging or integrating two tables involves a Cartesian

product, also known as a cross join, such that every row (or tuple) of one table is

matched with every row of another table. That is, if Table A has 8 rows and

3 attributes, and Table B has 10 rows and 2 attributes, the resulting Cartesian

product, Table C, has 80 (8 � 10) rows with 5 (3 + 2) attributes. However, it is

rarely the case that researchers will be merging data in this way—usually doing so

only if they need to create all possible combinations of the records from one data set

with another. More typically, researchers are bringing data together based on some

“matching” variable between the tables. These matching variables, which ideally

are Keys, must be domain compatible—that is, they represent the same “thing” or

measurement, and have the same set of allowable values. This generally requires an

understanding of the semantic contents of the variables. If two Tables have records

with the same value for a Key variable, this would indicate that those tables have

some measurements in common.

8.6.1 APPENDING or Unioning

A common data integration operation used for combining two or more tables that

have the same variables, is “appending”. This involves simply attaching tables to

one another, by matching along compatible variables, creating an output table that

contains the sum of the rows from the input tables (minus potential duplicates). This

is a highly useful operation when one collects numerous data sets of identical

structure and column semantics, but that may be housed separately because, for

instance, they are collected during different years, or from different places, or by

different people. When appending these types of data, it is often necessary then, to

afterwards add a column or two of additional information that will provide critical

differentiating metadata about time, place, or person.

The two tables A and B in Fig. 8.5 both contain at least two variables of interest,

for example, the names and weights of people participating on some project. In

Fig. 8.5 Tables A and B, to

demonstrate behavior of

data integration operations
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Table A our variables of interest are name and wt, while in Table B, the variables

are also called name and wt. The ID variables in both tables A & B might be simple

identifiers, that will not be of interest after the append unless additional information

is added, since these will not be unique across tables after the tables are merged—

they cannot serve as Keys for joining the two tables. To enable the ID column to

retain its potential as a Key value after the append operation, we would need to

modify the values, e.g., by including the originating table label as an identifier—

hence, for Amber the identifier might be “A1”, while for Rebecca it might be “B3”.

But, this would not happen automatically with a simple append operation.

In the standardized syntax of SQL, the following statement would be used to

append these two tables:

CREATE TABLE C (ID, name, wt)

INSERT INTO ‘C’
SELECT * FROM (

SELECT * FROM A

UNION ALL

SELECT * FROM B);

The “UNION ALL” would not exclude duplicate records from the result of

combining the two Tables, whereas use of only a “UNION” statement would

eliminate duplicate rows from the resulting table. The “SELECT *” statement here

indicates that all the variables in the “FROM” table will be included in the output.

Note that in this example we show the statements needed to create the output

“Table C” using the SQL “CREATE TABLE”, and “INSERT INTO” statements.

In later examples we leave out this step, which in “R” would be like leaving out the

assignment of an output to a new named data frame. The resulting output “Table C”

appears in Fig. 8.6. Note that the “matching” structure of our two variables of interest

allows us to simply vertically “stack” the two data sets to create one integrated output.

In “R”, the rbind command very similarly appends data frames (assuming the

Tables A and B above are converted to data frames A and B) if they have matching

column names, and would produce the same output as above:

base::rbind(A,B) # using base R
dplyr::bind_rows(A,B) # using the dplyr package

In SAS, the SET command can be used for this and other powerful appending

operations.

Fig. 8.6 Output Table C

from appending the

Tables A and B shown in

Fig. 8.5
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8.6.2 JOINs

Perhaps the most common data integration operations involve merging multiple

tables based on matching values in specified subsets of variables shared among the

tables. These types of operations are collectively called “JOINS” in SQL. Note,

however, that other data manipulation frameworks, such as R, Matlab or SAS use

different terminologies to refer to some of these data merging processes. For exam-

ple, R has a number of named functions for doing these types of operations, and these

vary from package to package (e.g., in R::base, or the popular dplyr and data.table
packages). The R package dplyr, however, does use syntax largely borrowed from

SQL for accomplishing many of its data frame “combining” operations. SAS accom-

plishes JOINs using both the SET andMERGE commands, and uses the sorted order

of variables to determine the exact outcomes. In addition, however, SAS offers a rich

set of SQL commands through its PROC SQL procedure.

We will describe four types of JOINs: INNER JOIN; and LEFT, RIGHT, and

FULL OUTER JOINs. An understanding of how these joins work in SQL will

provide a solid foundation for doing other types of merges, as is possible using

powerful data manipulation languages such as R, SAS, or Python’s pandas package.
When joining two or more tables, it is typically necessary to identify “matching”

variables that represent the relationships or “linkages” among those tables. As

discussed earlier, Key variables are often used for this purpose. Recall that model-

ing your data usually involves normalizing them—reducing data redundancy,

clarifying the natural relationships among the data by grouping related attributes

together into a Table, and identifying the Key variables. Ideally all functionally

dependent information about an entity instance is fully documented in a single

Table. For example, for a person named Jane Smith, all information tightly asso-

ciated with that individual would be stored ONCE in a “People” Table —surname,

given name, institutional affiliation, birthdate, etc. This greatly reduces the possi-

bilities for errors because, e.g., if the values of any of these attributes need to be

changed, the change only requires updating entries within one single record in one

table. All other tables that might be linked to Jane Smith (and other peoples’) record
through a Key variable would then automatically be updated.

There are basically three ways in which records from separate tables can be

related or “matched up”, and these relationships are called cardinality constraints.
Considering two tables at a time, records from one table to another can be related

as: one-to-one (often indicated as “1:1”), one-to-many (“1:M”), or many-to-many

(“M:N”). One-to-one relationships usually involve tables that are closely related,

and often the attributes in these might appear in the same Table instead of stored

separately. But sometimes there are reasons to separate these. For example, we

might have a “People Public” Table with an ORCID ID as a Primary Key, while
also containing other personal details (birthdate, country of birth) about some

individual, but a separate “People Private” Table, that might contain a social

security number, medical history or other confidential information. This latter

table merely needs to contain a person’s ORCID ID to be used as a Foreign Key
to link back to (“match with”) the appropriate Primary Key ORCID ID in the People
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Public Table, or in this case, possibly vice-versa. Since every citizen and permanent

resident of the USA should have one and only one Social Security number, and

every scientific researcher should have an ORCID ID, there should be a 1:1

relationship among the records from those two tables.

More commonly, data tables are integrated through one-to-many relationships.

For example, a relationship linking (“matching”) taxonomic names (stored in a

Taxonomy Table) to the taxonomic identity of individual plant stems recorded in a

Vegetation Plot Table is 1:M, since a single taxonomic name can be assigned to

many stems, but any given stem can only be assigned to a single taxon. One can

reverse the ordering of this description—many stems can belong to one taxon, and

describe that relationship equivalently as M:1. In contrast, the relationship between

a Table listing plant host species and a Table of potential pollinator species would

likely be many-to-many (M:N), since a plant might host multiple pollinator species,

and a pollinator might visit multiple plant species. Note finally that there may also

be no relationship at all between the records in two tables: a table containing

measurements of plant heights from sampling plots in Kansas might have no

relationship with a table of measurements of barnacle densities around deep-sea

hydrothermal vents in the Pacific Ocean! These two tables might have no Key
variables in common that could provide a basis for matching up and integrating

records across them.

Of these potential relationships, integrating tables that have many-to-many rela-

tionships with one another are the most complex, and require careful planning in order

to create effective and meaningful joins. In relational database systems where the data

are highly normalized (i.e., data are atomized, redundancies minimized, and function-

ally dependent attributes are in the same tables), these situations often require creation

of another table, variably called a “linking”, “associative”, “junction”, or “mapping”

table, that essentially includes the Key mappings of the matching instances from both

of the tables. For example, a familiar situation is the many-to-many relationship

between books and their readers (books are read by multiple people; people read

multiple books). The linking table would contain individuals’ ORCID IDs in a tuple

with the ISBNs (a type of global identifier) of the books they’ve read. There would be a
record for each “reader/book” combination. Thus the table would contain multiple

records per person, as well as multiple records per book. But the person and book

tables, if normalized, would each contain only one record per person or book,

respectively. The linking or associative table is necessary to document the specific

many-to-many relationships among entries from the two normalized tables. Creation

and use of such tables in relational databases is a topic that is well covered in books on

modeling relational data (Halpin and Morgan 2008; Connolly and Begg 2014).

It is common in many field-collected ecological data sets, however, for the raw data

to be entered “as observed”, such that the same taxonomic names might appear in

many records, such as in the plant/pollinator case described above. These are essen-

tially already “linking tables” that allow one to bring together, as 1:M JOINs, data from

normalized tables that might describe, e.g., the traits of the plant species (Plant Trait

Table; 1 row per taxon), and the traits of the pollinator species (Pollinator Trait Table;

1 row per taxon). One should carefully consult the manual for one’s software to be sure
of the exact syntax needed for merging tables that have many-to-many matches.
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Here we focus on the simpler but very common cases that involve merging tables

with 1:1 and 1:M relationships. The latter case is particularly useful when integrat-

ing tables based on key relationships that bring together complementary data that

enable exploration of new hypotheses and analyses.

The first type of JOIN we will describe is called an INNER JOIN, in that it

includes only those rows that are matches of variables from both tables. Here, we do

an INNER JOIN on the variable prodID (which might represent a purchase code in

this example), found in Tables Customer and Item (Fig. 8.7) using SQL code:

SELECT cName, prodID, pName, cost

FROM Customer AS C

INNER JOIN Item AS I

ON C.prodID¼ I.prodID

resulting in the output shown in Fig. 8.8.

• The “Customer AS C” statement enables the name of the table to be abbreviated

from “Customer” to later be referenced as simply “C”

• In the statement “ON C.prodID”, the prodID attribute in table Customer is

being referenced.

• The “ON” statement references the same “linkage” variable, prodID, from both

the Customer and Item tables.

Note that the record where C.prodID¼2500, ID¼3 and Name¼”Dave” from

Table Customer is missing from this output; as is the row where P.prodID¼25, and

Name¼”Cheese” from Table Item. That is because there were no matches for the

values of the prodID variable of those records (C.prodID¼250 or P.prodID¼25) in

both tables. In this case, Customer Dave may not have bought Item Cheese, but

instead purchased something else that was not listed in the Item table.

Fig. 8.7 Sample

Tables “Customer” and

“Item” to demonstrate

behavior of different data

integration operations

Fig. 8.8 Output from

INNER JOIN on

Tables “Customer” and

“Item” from Fig. 8.7
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You could accomplish this type of inner join in “R” using the merge command

on analogous data frames of Customer and Item:

base::merge(Customer, Item, by.x¼“prodID”, by.y¼“prodID”, all¼FALSE)
dplyr::inner_ join(Customer, Item, by¼“prodID”)

For ecologists, one might imagine the above tables linking taxonomic names of

Predators with their Prey Items through a matching “food_for_ID” (or “eats_ID”)

variable. Or a table consisting of “Stream Chemistry” measurements might be

linked through a variable such as “locationID” to a “Site” table that included details

about the place that was sampled (stream name, geo-coordinates, mean flow

volume, stream depth and width, etc.). In order not to distract researchers about

the “correctness” of the measurements and entities JOINed in these examples, we

keep them very generic. We challenge the scientist to imagine how these JOIN

patterns pertain to their own data integration needs.

Another common case is when someone wants to match a variable or variables in

one table with those in another, but doesn’t want to “lose” those records that have

no match. Instead, the unmatched values might have missing or NULL values for

any additional variables represented in the newly merged output table. These are

OUTER JOINs, and there are three types: LEFT, RIGHT, and FULL.

A LEFT (OUTER) JOIN, often called a “LEFT JOIN” follows—

SELECT cName, prodID, pName, cost

FROM Customer AS C

LEFT JOIN Item AS P

ON C.prodID¼ P.prodID

resulting in the output shown in Fig. 8.9.

The values of “NULL” for variables pName and cost in the resulting output

Table occur where the attributes had no matches for C.prodID¼P.prodID for

value¼2500 in Tables Customer and Item. The “LEFT JOIN”, however, specifies

that even unmatched records from the first (LEFT-hand) mentioned table (here

Table Customer with cName¼“Dave” and C.prodID¼2500), are carried into the

resulting output table, so every row from Table Customer appears in the output Table.

Similar results using “R” could be generated as:

base::merge(Customer, Item, by.x¼“prodID”, by.y¼“prodID”, all.x¼TRUE)

or

dplyr::left_ join(Customer, Item, by¼“prodID”)

Fig. 8.9 Output from

LEFT JOIN on

Tables “Customer” and

“Item” from Fig. 8.7
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Note that the exact special characters or numbers representing a “NULL” value

in a table (or data frame) can vary depending on the database or analytical

framework you are using. Also note again that the ordering of rows in a table is

arbitrary—a table can be sorted according to the values for any variable of interest,

but by definition there is no intrinsic ordering of the rows (or columns for that

matter) in a table.

A “RIGHT JOIN” is very similar to a LEFT JOIN, only differing in that ALL the

records from the second mentioned (RIGHT-hand) Table are retained, with

unmatched variables from the first (LEFT) table filled with NULL values:

SELECT cName, prodID, pName, cost

FROM Customer AS C

RIGHT JOIN Item AS P

ON C.prodID¼ P.prodID

resulting in the output shown in Fig. 8.10.

In the case of OUTER JOINs, the exact nature of the output can also vary,

depending on what analytical package you are using and the options you specify for

the results—such as whether both the “prodID” variables from the “left” and “right”

tables are included in the result set or not.

One would produce very similar results in “R” using:

base::merge(Customer, Item, by.x¼“prodID”, by.y¼“prodID”, all.y¼TRUE) #
BASE

dplyr::right_ join(Customer, Item, by¼“prodID”)

A “FULL OUTER JOIN” maintains ALL the records from both Tables, and fills

in unmatched variables with NULL values as shown in Fig. 8.11.

SELECT cName, prodID, pName, cost

Fig. 8.10 Output from

RIGHT JOIN on

Tables “Customer” and

“Item” from Fig. 8.7

Fig. 8.11 Output from

FULL JOIN on

Tables “Customer” and

“Item” from Fig. 8.7
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FROM Customer AS C

FULL JOIN Item AS P

ON C.prodID¼ P.prodID

In “R”, near equivalent result sets can be created by:

base::merge(Customer, Item, by.x¼“prodID”, by.y¼“prodID”, all¼TRUE)
dplyr::full_ join(Customer, Item, by¼“prodID”)

The attentive reader will note that the above JOINs also demonstrate one-to-

many relationships of the Customer with the Item table—Customers Amber and

Bill both are associated with multiple Items. Also, one can usually imagine some

implicit “verb” that describes the relationship between tables that are JOINed. For

example, in this case, the relationship might be “purchases”. Amber purchases

Crackers and Plates, while Bill purchases Wine and Cups.

Be aware that different analytical packages can handle JOINs in very different

ways, both in terms of how to specify the desired operation in some computing

language (the syntax), as well as variation in how the outputs are presented. For

example, the R base::merge function operates very differently, both syntactically

and semantically, from functions in the dplyr or data.table packages, for doing join
operations. However, as can be seen here, even R’s base::merge function is quite

flexible and powerful for doing various JOINs. It is necessary to read the manual for

your software very carefully when doing JOINs, to be sure that your outputs are

what you expect them to be.

8.7 The Datum Is the Atom

While tables represent one of the most common and useful structures for storing

and integrating data, it is important to understand at the most atomic level: what are

the phenomena being named, typed, described, and/or quantified and preserved in

digital data? The growing demand for synthesis of data across traditional scientific

disciplines further motivates the need to better understand what data and observa-

tions are collectively available, so these can be integrated for further analysis.

These trends have led many earth and biological science informatics groups to

recently converge on a common model for data: as sets or collections of observa-
tions and measurements (Madin et al. 2008; Cox 2015). These models all seek to

enable more efficient data integration by placing the focus on data at its most

elemental levels, which are the individual observations and measurements. Scien-

tific observations are decomposed into constituents representing the entity (thing or
process) that is observed; the characteristics of the entity or process that were

documented or measured, and assigned values; and the specific scale or units
associated with those values (Fig. 8.12). In many cases, additional critical metadata
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might describe methodological or protocol specifications as well (although these

often might not be available, or readily inferred).

While the most common use of the term “observation” still refers to a row or

record in a table (e.g., SAS uses this terminology), in many cases calling these

row-level accumulations of data “observations” is somewhat misleading. As we

have seen, individual values “coupled together” in a record often come from

multiple original data sources, and are often associated together by some researcher

for some specific purpose, such as for a regression analysis. In most observational

data models, the observation is highly atomic—representing an act of measurement

of some particular instance, individual, or phenomenon. Then, as depicted in

Fig. 8.12, these observations are inter-related through some “has Context” relation-

ship, where “has Context” can be further clarified by using a more specific descrip-

tion, such as “has same geospatial context” or “taken from same specimen”.

For example, a table record might consist of seven observations: (1) mean daily

air temperature coupled with (2) monthly precipitation measurements (acquired

from a nearby set of weather gages), merged with weekly censuses of the (3) names

and (4) abundances of herbivorous insect larvae found on some (5) named plant

species, located at (6) some geospatial place name or geo-coordinates, at (7) some

point in time. In this case, our table really consists of only five distinct “entities”,

some with many potential characteristics that may or may not have been measured

or otherwise documented, e.g., (1) characteristics of the local atmospheric condi-

tions, (2) traits of the insect larvae, (3) traits of the plant host species, (4) descriptive

aspects of the local habitat and associated terrestrial environment, and (5) the date-

time. We could call such a “composite” record a single observation (according to

some relational data terminologies), or using the terminology of most observa-
tional data models—it would consist of several linked or coupled observations or

measurements—consisting of the physical characteristics of some place, that

contextualize some measurements on insect and plant entities, with further infor-

mation about a place’s geospatial location (Fig. 8.13). We have also depicted in

Fig. 8.13 how specific measurements might be annotated via a unique identifier, in

Fig. 8.12 Schema for a typical observational data model
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this case clarifying that the column labelled “temp” measures an air temperature, as
defined by the Environment Ontology’s term ENVO_09200001, which references a

URI (University of Michigan 2016a). The base URI for the “air temperature”

measurement in the Environment Ontology would be “http://purl.obolibrary.org/

obo/ENVO_09200001”, where the “purl” in the address indicates that this is

intended to be a persistent URL or “PURL”, that is also globally unique.

Careful examination of the “entities” in Fig. 8.13 reveals that for each, only a

small set of potential “characteristics” were measured—for weather, only air

temperature and precipitation (Fig. 8.13), and not, e.g., relative humidity or air

pressure, but these might be linked in from other sources. It further becomes clear

that there must be information as to the units associated with many of these

measurements, e.g., degrees Celsius for air temperature, or centimeters for precip-
itation. All recorded values in scientific data should use rigorously defined, highly

comparable standards for measurement, as much as possible, to enable consistent,

accurate interpretation by researchers regardless of language, location, or time of

access.

Regarding the plant/herbivore data in this example table—additional attributes

might result from direct measurement such as plant size or age, but others might be

inferable simply from knowledge about an entity’s belonging to some class. For

example, one of the plant species might be identified as a Milkweed, and through

that name linked to an entry in another table providing more complete taxonomic

information, such as the scientific name Asclepias spp., as well as plant family,

tribe, etc. Milkweed is poisonous to grazing animals, but the toxicity and potential

avoidance of Milkweed plants by specific insect species might not be known to the

researcher, nor directly assessed by them. Curiosity about how plant chemistry

might be structuring plant/insect interactions could motivate further integrating

these data with records from another table (possibly prepared by another

researcher)—that documents the toxicity of specific chemicals to various insect

taxa. From this integrated output table, we might discern that monarch butterflies

and several other insect species are immune to Milkweed toxins, but a number of

Fig. 8.13 Observational data model showing relationships among table variables, and reference to

external identifier
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insect species are not. One can see that many data integration actions are motivated

by importing (through a JOIN) a subset of columns from other data sets. The

observational data model makes clear that each value in a column represents a

distinct observation or measurement, and that the full tuple (row or record) structure

in a table might result from integration of multiple heterogeneous data sources,

coupled together to help inform some particular analysis of interest.

Observational data models afford maximum flexibility with regards to defining

tables by encouraging explicit specification of the semantics necessary to under-

stand the contents of any table “cell” value—in terms of the entity of interest, the

characteristics of the entity that are measured, and the units and methods involved

in obtaining the measurement(s). This type of information might be contained in a

Data Dictionary, or more recently, documented using various metadata standards,
such as the Ecological Metadata Language, EML (Fegraus et al. 2005), that is used

by environmental data repositories such as the U.S. National Science Foundation’s
Arctic Data Center (2016), or DataONE (2016). Ironically, however, there are

numerous ways in which the “same” entities and their characteristics can be

described or defined in data dictionaries or metadata standards, making evaluation

of their semantic similarity or equivalence difficult. In the same way that standard-

ization of measurement units, such as agreement on the meaning of a “millimeter”

or “kilogram”, has greatly facilitated comparability of data, there is currently a need

to increase standardization of the names of entities and measurements, so that

scientific data are more effectively discoverable, interpretable, and amenable to

potential integration with other data.

One potential solution to reducing the current “babel” of scientific terminologies

involves developing and agreeing upon community vocabularies. Entire data

objects, as well as individual measurements, are increasingly semantically defined

in this way, by referencing terms in web-accessible vocabularies (known as “ontol-

ogies”) through dereferenceable globally unique URIs. For example, if one wants to

indicate that the measurements in the table depicted in Fig. 8.13 were taken from a

“Mediterranean grassland biome”, one can indicate that by referencing a persistent

URI, such as one found in the Environment Ontology, ENVO (Buttigieg et al. 2016;

University of Michigan 2016b). Syntaxes used to define data in this way are

typically expressed in Resource Description Framework (RDF) and Web Ontology

Language (OWL)—which are the formal languages recommended for the Semantic

Web (Berners-Lee et al. 2001; W3C OWL Working Group 2016). The exact

mechanisms for linking ontology terms to digital object structures, e.g., tables,

table columns, or even cell values in databases, are currently under development,

and involve a process known as “semantic annotation” (Madin et al. 2008). In any

case, when it becomes easier and more common for researchers to reference terms

from shared vocabularies to unambiguously describe their data via Web-based

globally unique identifiers such as URIs, data integration will become much easier.

In addition, this practice will enable more precise semantic searches, such that

measurements from multiple tables of data distributed around the Web can be more

effectively discovered, and “matched” with other measurements.
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8.8 Conclusion

Data integration involves bringing together distinct, often heterogeneous data, in

order to enable more powerful and comprehensive modeling and analysis of

phenomena of interest. Data integration is a key data manipulation process that is

driving much scientific synthesis by enabling the coupling together of additional

and complementary information to derive more holistic or robust understanding.

Our focus here has been on tabular data—one of the most common data

structures that field scientists in particular must contend with. We have tried to

convey that there is a strong theoretical basis for constructing and interpreting data

(for tables in particular). We have emphasized here some of the basic principles,

and encourage the reader to investigate the subject further, as this will not only

enhance understanding of tabular data structures, but should lead to more robust

and accurate coding of diverse data integration processes, that can often get quite

complex.

The specific syntactical mechanisms for integrating data can vary considerably

from one analytical package to another, but the relational data model and the

standardized SQL syntax provide a strong foundational perspective for understand-

ing how to flexibly create, transform and merge tabular data. This understanding

can transfer into better practice as well when using free-form tools such as spread-

sheets to capture and manipulate scientific data. We hope, however, the reader is

convinced that more specialized data creation and manipulation tools that require

explicit specification (e.g., in coded statements) of table structures, their key

attributes, and how tables are related to one another provide huge advantages

with regards to the flexibility and transparency of creating and operating on one’s
own, as well as others’ data, in both the short and long term.

Finally, it is important to recognize that scientific data are collections of “asser-

tions” about the state of physical reality at some time and place, taken by observers

who are trained in appropriate, objective methods, often using sophisticated, special-

ized instruments. As such, scientific data should be regarded with special respect, and

in many cases, carefully preserved in ways that can be accessed and interpreted in the

future. This is particularly true for data about the state of the environment, which we

now know to be rapidly changing. Well-conceived, well-structured records about the

state of our environment in the past, present, and into the future—of biological,

physical, chemical and other measurements—may prove invaluable for understand-

ing both the long-term and short-term processes that are governing the state of our

biosphere. Facilitating the discovery and integration of these records through sound

data management practices will provide great benefits to the scientific research

enterprise when trying to uncover the complex relationships that govern ecosystems

and their components in this age of increasing global human impacts.
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Chapter 9

Inferential Modelling of Population Dynamics

Friedrich Recknagel, Dragi Kocev, Hongqing Cao, Christina

Castelo Branco, Ricardo Minoti, and Saso Dzeroski

Abstract This chapter introduces the design and applications of evolutionary

algorithms and regression trees for inferential modelling of complex ecological

data. Evolutionary algorithms prove to be superior tools for developing short-term

forecasting models, revealing ecological thresholds and supporting quantitative

meta-analyses as demonstrated exemplarily by means of the hybrid evolutionary

algorithm (HEA). A case study of Lake Müggelsee (Germany) illustrates that

models developed by HEA enable one to identify ecological thresholds and driving

forces that perform short-term forecasting of population growth. The meta-analysis

of Lakes Wivenhoe (Australia) and Lake Paranoa (Brazil) exemplifies the capabil-

ity of models developed by HEA to test hypotheses on forcing functions of

population growth across different environmental and climate conditions. Regres-

sion trees display fully transparent correlations between habitat properties and

ecological entities. The tree induction process does not require prior assumptions,

is fast and is not influenced by redundant variables and noise. Case studies for Lake

Prespa (Macedonia) and land areas in Victoria (Australia) illustrate the capacity of

regression trees to unravel complex ecological relationships.
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9.1 Introduction

Two novel computational techniques for inferential modelling will be presented

that are suitable for unravelling and forecasting the complexity and evolving nature

of ecosystems: evolutionary computation and regression trees.

Evolutionary computation (Holland 1975) is based on the cognitive principles of

‘generative creation’ and ‘choices over open-ended possibilities’ (Holland et al.

1986). It applies concepts of natural selection and evolution to induce multivariate

models represented as IF-THEN-ELSE rules from complex data patterns where the

IF part represents the condition and the THEN part the action. These IF-THEN-

ELSE models are cyclically redesigned by genetic operations such as ‘cross-over’,
‘mutation’ and ‘reproduction’ until the fittest (best matching) model has been

discovered. The fittest model represents relationships between targeted predictor

and output variables that suit both elucidation and prediction. Figure 9.1 illustrates

the concept of inferential modelling by evolutionary computation.

Holland’s two cognitive principles of evolutionary computation (Holland et al.

1986) appear highly relevant for studying ecological systems where ‘generative
creation’ suits the evolving nature of ecosystems, and ‘choices over open-ended

possibilities’ meets requirements to comprehend the complex stochastic nature

of ecosystems. Resulting models are considered to be inferential (or empirical)

and lack detailed process descriptions. However, the IF conditions of these models

reveal explicit thresholds, and sensitivity functions between predictor and

output variables quantify ecological relationships that represent events subject to

modelling such as outbreaks of population density (e.g. Recknagel et al. 2014).

Regression trees are machine-learning methods for constructing predictive

models by recursive partitioning of the data space and fitting a simple predictive

model within each partition (Breiman et al. 1984; Loh 2011). As a result, the

partitioning can be represented graphically as a decision tree. Regression trees

Fig. 9.1 Inferential modelling by evolutionary computation (RMSE: root mean squared error; r2:

coefficient of determination)
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suit output variables with either continuous or ordered discrete values, whereby its

validity is typically measured by the root mean squared error (RMSE).

9.2 Inferential Modelling of Ecological Data by the Hybrid

Evolutionary Algorithm

The hybrid evolutionary algorithm (HEA) (Cao et al. 2006, 2014, 2016; Recknagel

and Ostrovsky 2016) has been designed to evolve fittest IF-THEN-ELSE models

from ecological data by integrating genetic programming (GP) and differential

evolution (DE) (Fig. 9.2). The fittest model is determined by the lowest root

mean squared error (RMSE) and highest coefficient of determination (r2).

HEA applies GP according to Koza (1992) to evolve the optimum structure of

the rule model, and DE according to Storn and Price (1997) to optimise the

parameters of the rule model. Since GP typically operates on parse trees rather

than on bit strings, it is well suited to evolve IF-THEN-ELSE rules for multivariate

relationships. GP uses the logic functions FL ¼ {AND, OR}, comparison functions

FC ¼ {&gt;, &lt;, �, �}, and arithmetic functions FA ¼ {þ, �, *, /, exp, ln} to

represent IF-THEN-ELSE rules as a vector of multiple trees. Tree1 denotes the IF

condition with the function set tree1 ¼ FL [ FC [ FA, tree2 and tree3 respectively

denote the THEN and ELSE branches with the function set Ftree2/tree3 ¼ FA.

Figure 9.3 illustrates one crossover step by GP for the optimisation of the IF trees

of two parent models for 10-day-ahead forecasts of the abundance of the cyano-

bacterium Anabaena (cells mL�1) in Lake Wivenhoe, Australia (see also Chap. 15).

Figure 9.3a, e represent two parent models. Figure 9.3b, c, f, g illustrate the selec-

tion of crossover points and the crossover between the IF trees of the parent models.

Figure 9.3d, h represent the offspring models after the crossover.

Fig. 9.2 Conceptual diagram of the functioning of the hybrid evolutionary algorithm (HEA)

(Recknagel et al. 2013)
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Differential evolution (DE) extracts information on distance and direction of the

current population of solutions towards a global optimum to guide the search for

optimal parameters in the IF-THEN-ELSE rules. Since DE does not require sepa-

rate probability distributions, the scheme becomes completely self-organizing. DE

has been implemented in HEA for multi-objective parameter optimization as

described by Cao et al. (2014).

A boot-strap training scheme is applied in HEA that selects randomly rmax data-

subsets for training (75%) and testing (25%) for each of which tmax generations of

models are evolved (Fig. 9.4). After rmax boot-strap runs are completed, it deter-

mines the overall ‘fittest model’ of all generations evolved by genetic programming

and differential evolution. As a rule, 100 generations (rmax ¼ 100) prove to be

sufficient for minimising the RMSE and approximating global optima of modelling

experiments conducted by a Phoenix HPC Supercomputer.

The root mean squared error (RMSE) between the measured training data ŷ and
predicted data y assesses the model fitness as follows:

fitness ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
k

Pk

i¼1

byi � yið Þ2:
s

Boot-Strap Taining Mode of the
Hybrid Evolutionary Algorithm HEA

Set maximal number of boot-strap runs rmax

Initial number of boot-strap runs r = 0

r < rmax

yes

Randomly-selected
25% Validation Data

Randomly-selected
75% Training Data

Hybrid Evolutionary Algorithm
HEA

Number of boot-strap runs r = r+1

no Fittest model after rmax
boot-strap runs of HEA

Fig. 9.4 Boot-strap training scheme of the hybrid evolutionary algorithm HEA
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The models’ performances are measured by means of coefficients of determi-

nation (r2). However, in accordance with Bennett et al. (2013), the visual compar-

ison between measured and calculated data proved to be the most relevant approach

for the validation of models related to this highly complex data.

HEA automatically carries out sensitivity analyses for the input variables of each

discovered model. It calculates output trajectories separately for each input range

(mean � SD) by keeping remaining input variables constant at mean values.

Resulting sensitivity curves allow one to visualise the output trajectories in per-

centage terms (0–100%) within their range of each input.

Since HEA infers models from data patterns, it requires cleansed and formatted

cross-sectional or time-series data that are representative for the system to be

modelled both in terms of number of observations and of relevance for the model-

ing purpose. Daily data interpolation is required to match dissimilar monitoring

frequencies between physical, chemical and biological data, and to allow short-term

forecasting for days ahead. Ecosystem evolution requires that models become regu-

larly updated with the most recent data.

9.2.1 Population Dynamics of the Cyanobacterium
Microcystis in Lake M€uggelsee (Germany)

The hybrid evolutionary algorithm HEA has been applied to model population

dynamics of the cyanobacteria Anabaena, Aphanizomenon andMicrocystis in Lake
Müggelsee (Germany) for two time periods that differed in the lake’s trophic states
(Recknagel et al. 2016). In Phase I from 1979 to 1990, the lake appeared to be

hypertrophic; in Phase II from 1997 to 2012, decreasing external nutrient loads

transformed the lake into a eutrophic state. The aim of this study was to model

population dynamics of the three cyanobacteria for the two phases, and identify

shifts in the models’ IF conditions (thresholds) and input sensitivities in response to

differences between the two phases. Here we present the results for Microcystis of
this study. Table 9.1 summarizes weekly and biweekly measured limnological data

of Lake Müggelsee that were used for this study.

Table 9.1 Limnological data of Lake Müggelsee measured from 1979 to 1990 and 1997 to 2012

Limnological Variable

1979–90 Hypertrophic 1997–2012 Eutrophic

Avg/Min/Max

Water temperature (�C) 11.3/0.1/24.6 11.6/0.2/26.6

Secchi depth (m) 1.5/0.4/5.1 2/0.5/6.3

PH 8.2/7/9.4 8.3/7.1/9.5

PO4-P (μg L�1) 58.5/1/474 70.6/2/521

NO3-N (mg L�1) 1.2/0.004/7.4 0.33/0.01/1.91

NH4-N (mg L�1) 0.2/0.005/4.2 0.096/0.01/0.81

SiO2 (mg L�1) 3.58/0.01/8.1 4.41/0.05/10.5

Microcystis (mg L�1) 0.36/0.001/12.67 0.082/0.0001/6.23
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One hundred models of Microcystis have been evolved by HEA for each phase

based on repeated bootstrap runs. Figure 9.5 documents the Microcystis models

with highest coefficients of determination (r2) and p-values less than 0.05 of the two

phases. The IF conditions of the model for Phase I identified water temperatures

between 14.5 and 22.2 �C and NO3-N concentrations less than 0.041 mg L�1 as

indicative for biomass greater than 1 mg/L. The model underestimated the biomass

measured forMicrocystis in 1982 but corresponded with the timing and magnitudes

of peak biomass for the remaining years with an r2 ¼ 0.54 (Fig. 9.5b). Even though

the Microcystis model for Phase II selected the same threshold criteria their ranges

were quite different compared to the model for Phase I with water temperatures

between 20.9 and 23.7 �C and NO3-N concentrations less than 0.2 mg L�1

(Fig. 9.5c) that distinguished Microcystis values below and above 0.5 mg L�1

(Fig. 9.6c, d). It achieved an r2 ¼ 0.48 but failed to forecast the high Microcystis
biomass observed in 2002 and 2006 (Fig. 9.5d). When the IF conditions of the two

models were tested with measuredMicrocystis data of the two phases as illustrated

in Fig. 9.6, higher and lower biomass were clearly selected by these conditions.

Results illustrated in Fig. 9.7 suggest thatMicrocystis becomes extinct at Secchi

depths greater than 2 m in Phase II, but responds slightly positively to increasing

Fig. 9.5 7-day-ahead forecasting ofMicrocystis in Lake Müggelsee. Phase I: (a) IF-THEN-ELSE
model, (b) validation of the model; Phase II: (c) IF-THEN-ELSE model, (d) validation of the

model
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Secchi depths in Phase I (Fig. 9.7a). The finding for Phase I may indicate that

Microcystis withstands underwater light limitation at lower nutrient limiting con-

ditions by buoyancy enabled by its internal gas vesicles also reflected by almost

neutral sensitivity to Secchi depth.

Even though NO3-N concentrations were up to 4 times higher in Phase I as

compared to Phase II, Microcystis displayed highest biomass at lowest NO3-N

concentrations and vice versa in Phase I (Fig. 9.7b) indicating seasonally high N

consumption by all phytoplankton phyla. In Phase II Microcystis biomass grew

Fig. 9.6 Functioning of the IF condition as threshold for forecasting of: (a) high population

densities by the THEN equation and (b) low population densities by the ELSE equation of the

model forMicrocystis for Phase I; (c) high population densities by the THEN equation and (d) low

population densities by the ELSE equation of the model for Microcystis for Phase II (Recknagel
et al. 2016)
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hyperbolically with increasing NO3-N concentration towards a plateau near 3.5

mg L�1. Figure 9.7b demonstrates that the growth ofMicrocystis is inhibited by the
extended nitrogen limitation in Phase II. Microcystis appeared to respond neutrally

to changes in ammonium concentrations in Phase II.

In summary, the models for Microcystis forecast the timing of peaking biomass

in both phases. However magnitudes of high peak events were sometimes under-

estimated and magnitudes of low peak events overestimated.

Threshold conditions of Microcystis models indicating biomass greater than

4 mg L�1 in Phase I and greater than 0.5 mg L�1 in Phase II included water

temperature and concentrations of NO3-N. The temperature range between 14.5

and 22.2 �C in Phase I was somewhat surprising since optimum temperatures for

Microcystis growth are known to be near 23 �C (Reynolds 1984) which is well

matched by the temperature range of 20.9 to 23.7 �C in Phase II. However Fig. 9.8a

confirms that biomass of 6 to 8 mg L�1 has been observed at temperatures near

15 �C in Phase I and is most likely related to the transition from late summer to

autumn, and thus been recognised as ‘high biomass’ by the model. The NO3-N

concentrations that were identified by the models to coincide with high biomass of

Microcystis in summer were less than 0.041 mg L�1 for Phase I and smaller than

0.2 mg L�1 for Phase II. These findings by the models correspond with the observed

relationships between Microcystis and NO3-N as shown in Fig. 9.8b, c. In Phase I

there is a pattern of biomass greater than 8 mg L�1 at NO3-N concentrations below

0.05 mg L�1, reflecting the greatest N-consumption at highest biomass of

Microcystis whilst highest biomass of greater than 1 mg L�1 occurs at NO3-N con-

centrations below 0.2 mg L�1 in Phase II.

The case study of Lake Müggelsee allows the following conclusions to be

drawn:

1. inferential models developed by evolutionary computation via HEA can achieve

good forecasting accuracy for fast growing harmful populations such as the

cyanobacterium Microcystis;
2. IF conditions of such inferential models provide information on thresholds that

indicate rapid population growth; and

Fig. 9.7 Average sensitivity functions of 20 cyanobacterium-specific models for phase I and

phase II revealing relationships between: (a) Secchi depth and Microcystis; (b) NO3-N and

Microcystis; and (c) NH4 and Microcystis
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Fig. 9.8 Relationship between: (a) observed water temperatures and biovolumes ofMicrocystis in
Lake Müggelsee in Phase I, (b) observed NO3-N concentrations and biovolumes ofMicrocystis in
Lake Müggelsee in Phase I, and (c) observed NO3-N concentrations and biovolumes of

Microcystis in Lake Müggelsee in Phase II (Recknagel et al. 2016)
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3. sensitivity functions of such models provide information on key driving vari-

ables of population growth.

9.2.2 Meta-Analysis of Population Dynamics
of the Cyanobacterium

Cylindrospermopsis in Lake Wivenhoe (Australia) and Lake Paranoa (Brazil)

Meta-analysis becomes more conclusive for ecological applications if time-series

data and quantitative models can be included (Osenberg et al. 1999). Here we carry

out a meta-analysis of population dynamics of the tropical cyanobacterium

Cylindrospermopsis with models developed by HEA from 6 years of time-series

data of the subtropical Lake Wivenhoe and the tropical Lake Paranoa. Basic prop-

erties of the two lakes are summarised in Table 9.2. Both lakes experience annual

recurring blooms of Cylindrospermopsis that severely disrupt water supply and

cause higher water treatment costs.

Three years with low and 3 years with high abundances of Cylindrospermopsis
were selected for modelling from 17 years of time-series data at each lake.

Figure 9.9 indicates the 6 years of data from each lake, and displays the mean

annual trajectory as well as the min-max envelope of Cylindrospermopsis. It

Table 9.2 Basic characteristics of the Lakes Wivenhoe and Paranoa

Lake Wivenhoe 1997–2015 Australia Lake Paranoa 1980–1997 Brazil

Morphometry Max depth ¼ 28m Surface area ¼
107.5 km2

Mean/max depth ¼ 12/38m

Surface area ¼ 38 km2

Climate Subtropical Tropical

Circulation type Warm-monomictic Warm-monomictic

Trophic state Mesotrophic Eutrophic

Water temperature
�C Min/Max/Avg

14.8/30.2/22.7 19.4/29/23.8

TN/TP Min/Max/

Avg

6.2/71/28.2

DIN/DIP Min/Max/

Avg

3.1/1120.5/186.35

EC μS cm�1

Min/Max/Avg

191.7/575.25/350.2 27/103.6/59.9

Cylindrospermopsis
Min/Max/Avg

1/173166/9557.4 cells mL�1 1 / 5919965 / 416832.7 cells

mL�1
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indicates that the eutrophic Lake Paranoa encounters much higher abundances of

Cylindrospermopsis dominated by the extreme bloom event in summer 1990/91

with 6 million cells mL�1 than the mesotrophic Lake Wivenhoe. While the typical

growing season in Lake Wivenhoe lasts from November through February, Lake

Paranoa experiences high abundances from September through April.

The meta-analysis focused on the question of whether growth of Cylindro-
spermopsis appeared to be favoured by similar water temperatures and nutrient

thresholds in spite of the fact that the two lakes differ in climate and trophic state.

Models have therefore been developed by HEA from the 6 years of each lake, solely

driven by water temperature and by the N/P ratio. As the results in Fig. 9.10 show,

coefficients of determination of r2 ¼ 0.47 and r2 ¼ 0.36 have been achieved by the

water temperature-driven models for Wivenhoe and Paranoa, respectively (see

Fig. 9.10b, e). In both cases the models corresponded in terms of average timing

and magnitudes of population growth, and revealed that Paranoa seems to have a

lower temperature threshold of 25 �C for fast growth of Cylindrospermopsis
compared to 27.7 �C in Wivenhoe (Fig. 9.10c, f). This might be due to the fact

that its annual average temperature gradient of 9.6 �C is noticeably smaller than that

of Wivenhoe with 15.4 �C. Figure 9.12a, c display relationships between water

temperature and cell division rates of Cylindrospermopsis simulated by the two

models. In the case of Wivenhoe, it shows that fast rates correspond with rising

temperatures, and cell division ceases when temperatures drop below 20 �C. The
same trend can be observed for Paranoa.

Figure 9.11 compares the N/P-driven models developed by HEA whereby total

nitrogen (TN) and total phosphorus (TP) data were available for Wivenhoe, and

dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP) were

available for Paranoa. Simulation results for both lakes corresponded well with

observed population dynamics of Cylindrospermopsis even though lower coeffi-

cients of determination of r2 ¼ 0.34 and r2 ¼ 0.15 were achieved. Whereas no

distinct TN/TP threshold for fast population growth has been discovered for

Wivenhoe (Fig. 9.11c), the surpassing of the DIN/DIP threshold of 332.2 seemed

to be defining for the distinct bloom event in Paranoa during the summer 1990/91

(Fig. 9.11f).

Figure 9.12b, d display relationships between N/P ratios and cell division rates of

Cylindrospermopsis simulated by the two models where criteria for P- or

N-deficient growth are denoted based on TN/TP-values defined by Sterner (2008)

and for DIN/DIP-values defined by Redfield (1958). Most years at both lakes show

P-deficient conditions with no obvious limiting effects on cell division rates.

However, periods of no cell division seem to correspond with declining N/P ratios.

Based on the outcomes of the meta-analysis, several conclusions can be drawn:

1. Inferential models enhance quantitative meta-analysis.

2. Models solely driven by water temperature simulated major growth events of

Cylindrospermopsis in both lakes. Results indicate that the mesotrophic Lake

Wivenhoe has a higher temperature threshold of 27.7 �C for driving fast growth

than Lake Paranoa at 25 �C. Higher water temperatures might be required to
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stimulate growth at comparatively low nutrient concentrations, whilst the eutro-

phic Lake Paranoa provides a priori favourable nutrient conditions for growth.
3. Models solely driven by N/P ratios simulated major growth events of

Cylindrospermopsis in both lakes reasonably well, but failed to simulate some

of the seasonal events. Irrespective of the fact that both lakes experienced

phosphorus limitation during most of the 6 years, growth of Cylindrospermopsis
was seemingly not affected. This suggests that Cylindrospermopsis may utilize

alternative nutrient sources at low phosphorus concentrations such as sulfo-

lipids—i.e. known as sulphur-for-phosphorus strategy (Van Mooy et al. 2006),

and equally likely, tend to have large internal P-stores (Mayberly, pers. comm.).

9.3 Inferential Modelling of Ecological Data by Regression

Trees

Regression trees are hierarchical structures, where the internal nodes contain tests

on the independent variables. Each branch of an internal test corresponds to an

outcome of the test, and the prediction for the value of the dependent variable is

stored in a leaf. Each leaf of a regression tree contains a constant value as a

prediction for the dependent variable (regression trees represent piece-wise con-

stant functions).

To obtain the prediction for a new set of data, the data is sorted down the tree,

starting from the root node. For each internal node that is encountered on the path,

the test that is stored in the node is applied. Depending on the outcome of the test,

the path continues along the corresponding branch (to the corresponding subtree).

The resulting prediction of the tree is taken from the leaf at the end of the path. The

tests in the internal nodes can have more than two outcomes (this is usually the case

when the test is on discrete-valued attributes where a separate branch/subtree is

created for each value). Typically each test has two outcomes: the test has

succeeded or the test has failed. The trees in this case are also called binary trees.

Figure 9.13 displays schematically how a regression tree is constructed for data of

the function Y ¼ f(X).

9.3.1 Induction Algorithm of Regression Trees

A regression tree is usually constructed by a recursive partitioning algorithm from a

training set of data (Breiman et al. 1984). The algorithm is known as top-down

induction of decision trees (TDIDT). The data include measured values of the

independent and dependent variables. The tests in the internal nodes of the tree
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refer to the independent variables, while the predicted values in the leaves refer to

the dependent variables.

The TDIDT algorithm starts by selecting a test for the root node. Based on this

test, the training set is partitioned into subsets according to the test outcome. In the

case of binary trees, the training set is split into two subsets: one containing data for

which the test succeeds (typically the left subtree) and the other containing data for

which the test fails (typically the right subtree). This procedure is recursively

repeated to construct the subtrees.

The partitioning process stops if a stopping criterion is satisfied (e.g., the number

of data in the induced subsets is smaller than the predefined depth/size of the tree

exceeds some predefined value, etc.). In that case, the prediction vector is calcu-

lated and stored in a leaf. The components of the prediction vector are the mean

values of the dependent variables calculated over the records that are sorted into

leafs.

One of the most important steps in the tree induction algorithm is the test

selection procedure. For each node, a test is selected by using a heuristic function

computed on the training data. The goal of the heuristic is to guide the algorithm

towards small trees with good predictive performance. The heuristic used typically

for selecting the attribute tests in the internal nodes is intra-cluster variation

summed over the subsets induced by the test. Intra-cluster variation of a group/

cluster of samples C is defined as

Var Cð Þ ¼ 1

2 Cj j2
X

X2C

X

Y2C
d2 X; Yð Þ

with N the number of samples in the cluster and d is the distance function

between the samples (Euclidean distance is typically used). Lower intra-subset

variance results in predictions that are more accurate.

The tree induction algorithm is illustrated in Fig. 9.14. It starts by finding the best

split on the complete space (top-right corner) and then recursively partitions the

Fig. 9.13 Representing the function Y ¼ f(X) (a) as regression tree (b)
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examples into smaller groups: first adds an additional split instead on the right split,

then on the left split. The tree learning stops when some stopping criterion is met.

9.3.2 Pruning of Regression Trees

The different stopping criteria can be used to deal with noise and other types of

imperfections in the data. This is also known as tree pruning. The most widely used

tree pruning approaches include: (1) reduced error pruning; (2) maximal depth;

(3) minimal instances in a leaf; and (4) F-test pruning. First, reduced error pruning

is one of the most straightforward forms of pruning. It uses an additional validation

set of examples to remove the subtrees that are not improving the performance.

Namely, it starts at the leaves, and replaces each node with a leaf if the predictive

performance (as estimated with the validation set) is not affected.

Second, the maximal depth algorithm takes as input a user defined integer value

that specifies the maximally allowed depth for the leaves in the tree. Third, the

minimal instances in a leaf algorithm also takes as input a user defined integer value

that specifies the minimal number of instances that each leaf of the tree must

contain. Fourth, the F-test pruning algorithm checks whether the addition of a

split at a given leaf of the tree significantly reduces the intra-cluster variance for

the examples in that leaf: The significance level is specified by the user. These

pruning algorithms increase the interpretability of trees, while maintaining (or even

increasing) their predictive performance.

Fig. 9.14 The top-down induction of regression trees algorithm
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9.3.3 Diatom Populations in Lake Prespa (Mazedonia)

Lake Prespa is located at the border intersection of Macedonia, Albania and Greece.

Water quality and diatom populations have been monitored biweekly at 14 sites of

Lake Prespa from March 2005 to September 2006. The sampling sites were located

in Macedonia (8), Albania (3) and Greece (3), and were considered to be represen-

tative for assessing eutrophication effects (Krstić 2005).

The following water quality parameters were measured: temperature, dissolved

oxygen, Secchi depth, conductivity, alkalinity (pH), nitrogen compounds (NO2 ,

NO3 ,NH4, organic and total nitrogen), sulphur oxide ions (SO4), phosphorus (P),
sodium (Na), potassium (K ), magnesium (Mg), copper (Cu), manganese (Mn) and
zinc (Zn). A summary of the water quality data is included in Table 9.3.

Pelagic diatoms were sampled by plankton nets and benthic diatoms collected

from submerged plants, rocks and sediments. The relative abundance of identified

species was related to the total cell count per sampling site (see also Kocev et al.

2010), and the 10 most abundant diatom species are listed in Table 9.4.

The dataset was used to learn regression trees whereby water quality parameters

were considered as independent variables and the 10 most abundant diatom species

were considered as dependent variables. The modelling aimed to identify habitat

conditions that best suit the 10 diatom species. The learned regression trees are

illustrated in Fig. 9.15. We used three pruning algorithms to obtain these trees as

follows. First, we set the maximal depth parameter to 3. Second, we set the

minimum number of examples in a leaf to 16. Third, we set the significance level

for the F-test pruning at 0.05.

Here, we discuss the models for Cyclotella ocellata (COCE), Cavinula scutel-
loides (CSCU) and Navicula prespanense (NPRE). The most abundant diatom

according to the measured data, Cyclotella ocellata (COCE), is mostly influenced

by the nitrogen compounds, the temperature and the conductivity of the water and

the potassium (K ) concentration. The concentration of nitrates (i.e., nutrients)

positively influences the abundance: the leaves of the tree with higher nitrate

concentration (the first three leaves) contain samples with higher abundances of

Cyclotella ocellata than the leaves on the right-hand side of the tree.

The habitat model for Cavinula scutetelloides shows that the temperature,

nitrates and metal concentrations are most influential for this diatom species.

Higher temperatures favor this specific diatom species, while optimal concentra-

tions of magnesium (between 6.13 and 9.44 μg/dm3) are needed for the highest

abundance. This habitat model also reveals the limiting role of manganese and

copper for this species: the higher values of these metals at lower temperatures

reduce the abundance of the species.

The temperature and concentrations of sodium (Na) and copper (Cu) are most

important for the abundance of the Navicula prespanense (NPRE) diatoms. These

diatoms are most abundant at water temperatures higher than 24.2 �C—tempera-

tures characterize summer periods. These diatoms are absent (or present in very

small numbers) at temperatures lower than 21 �C and when the concentration of

copper exceeds 1.91 μg/dm3.
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Table 9.4 Acronyms of the 10 most abundant diatoms species

Acronym Diatom species Acronym Diatom species

APED Amphora pediculus DMAU Diploneis mauleri

CJUR Cyclotella juriljii NPRE Navicula prespanense

COCE Cyclotella ocellata NROT Navicula rotunda

CPLA Cocconeis placentula NSROT Navicula subrotundata

CSCU Cavinula scutelloides STPNN Staurosirella pinnata

Fig. 9.15 Individual habitat models for the 10 most abundant diatom species in Lake Prespa
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9.3.4 Vegetation Status of Selected Land Sites in Victoria
(Australia)

In this study, we used vegetation data from 16,967 terrestrial sites in Victoria

(Australia) acquired using the habitat hectares approach (Parkes et al. 2003)—a

rapid assessment technique of vegetation condition developed primarily for biodi-

versity conservation planning. ‘Vegetation quality’ in the habitat hectares approach
is defined as the degree to which the current vegetation differs from a ‘benchmark’
that represents the average characteristics of a mature and long-undisturbed stand of

the same plant community. Against the benchmark, the decline in quality can be

estimated for each vegetation type and dissimilar community assemblages;

e.g. rainforests and savannahs can be compared by employing the same general

index. This general approach has become a standard method used to quantify the

condition of habitat within the state of Victoria and has been emulated to some

degree by other jurisdictions within Australia (Gibbons et al. 2009).

The habitat hectares score is the weighted sum of 7 site and 3 landscape scale

metrics. The landscape components of the ‘habitat hectares’ score can be readily

rendered spatially within a GIS using tools such as FRAGSTATS (McGarigal et al.

2002) and have not been further considered in this study. The objective is to make

spatially explicit predictions of the 7 site scale components of the habitat hectares

score (hereafter referred to as the habitat hectares site score or HHSS).

Each of the 16,967 sampling point based on the ‘habitat hectares’ approach is

described by 40 independent (or feature) variables (GIS and remote-sensed data

with a pixel resolution of 30 � 30 m) and 7 dependent (or target) variables (the

HHSS). The HHSS is a numeric variable composed as a weighted average of the

following components: Large Trees; Tree (canopy) Cover; Understorey (non-tree)

Strata; Lack of Weeds; Recruitment; Organic Litter; and, Logs. Apart from Lack of

Weeds, each component score was calculated comparing the current status of the

vegetation with a benchmark.

The Large trees score represents the number of large trees (both living and dead)

that are present at the measuring site (compared to the ‘benchmark’ archetype). The
Tree Canopy score assesses the projective foliage cover of canopy trees in the

stand, while the Understory score assesses the abundance and diversity of various

shrubs and forb/herb strata of a community. The understorey assessment includes

only indigenous plant species. The Lack of weeds score is calculated from the cover

of non-indigenous weed species. The Recruitment score provides an indication of

the level of regeneration of woody plant species and could be seen as a surrogate

measure of the long-term viability of the site’s structural characteristics. Litter
represents both fine and coarse plant debris less than 10 cm diameter, while Logs
represent the fallen timber or branches of trees that are substantially detached from

the parent tree. An unabridged description of the habitat hectares scores and

methods can be found in Parkes et al. (2003). The 40 independent variables include

39 continuous variables and one categorical variable (Table 9.5). The categorical

variable LandCover surface was derived from Landsat 7 TM spectral data. Classes
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were obtained by applying a k-means clustering procedure to a stack of median

values for all Landsat 7 TM spectral bands and the Normalised Difference Vege-

tation Index across the years spanning 1989–2005. The 50 classes that emerged

from the unsupervised classification were ‘lumped’ into 10 bins that were partially

informed by a landuse model similarly derived using an ANN process. This

procedure allowed for temporal states consequent of clearing, wildfire and forest

harvesting to remain evident within broad landuse classes.

Using this dataset, we learned regression trees that predict the 7 HHSS vegeta-

tion condition scores separately. The learned regression trees are illustrated in

Fig. 9.16. We used one pruning algorithms to obtain these trees, setting the

minimum number of examples in a leaf to 2048.

Here, we discuss the major variables influencing the regression trees for the

7 HHSS scores. To begin with, we follow the positive or far left-hand side of the

tree predicting Weed Score. It initially partitions the data on the basis of

TreeProb1HaRegionMean: mean probability of detecting no tree cover within a

1 ha area around the subject pixel. This variable effectively divides the landscape

into forests and treeless areas or areas with only scattered trees. Following the

positive or left-hand side of the tree the data is further partitioned by the land cover

classes. Classes 2, 3, 4, 5, and 10 represent natural or semi-natural areas and we

should expect these areas to have a higher weed score (a high positive score reflects

the absence of weeds rather than weed infestation) relative to other thinly treed

areas. This is borne out by the regression tree. The final node is controlled by

NetRainfall. NetRainfall is a variable that is derived from both mean monthly

rainfall and mean evaporation rates. In essence it reflects the amount of effective

rainfall (rainfall less evaporation) over an entire year. Once we have reached this

node the model predicts that the drier and hotter a place is, the higher the weed score

(provided we have satisfied earlier criteria). This reflects the current on-ground

ecological reality in south-eastern Australia where there have been few deliberate

introductions of exotic plant species into specialist habitat types, such as semi-arid

regions, in comparison with temperate and sub-humid climatic regions that have

been favoured by human settlement and intensive agriculture. Furthermore, it is

apparent that Recruitment score and Understorey score are positively related. The

regression trees of these scores are structurally identical and both employ very

similar explanatory variables. Again, this is consistent with both field observation

and ecological theory: a diverse and structurally intact understorey implies an

adequate level of shrub and tree regeneration. The reverse is also likely. Within

defined ecosystem types and states, a positive relationship between ecosystem

function and structure is generally accepted by ecologists (Cortina et al. 2006).

Overall, the most important variables influencing all components of the HHSS

are those immediately related to (the probability) of (indigenous and non-native)

tree cover (such as NativeTreeProb that appears in the root of the multi-target tree,

and TreeProb1HaRegionMean, which appears in the roots of 5/7 single-target

trees). It is interesting to note that this is also the case for the sub-components

that do not depend directly on the presence of tree cover, e.g. Weeds Score.
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Following closely is LandCover (as modelled from satellite images), with dense

forest cover (category 2) yielding high HHSS scores. Finally, climate plays an

important role, with variables describing temperatures, rainfall and their variability

appearing in most of the models.

Fig. 9.16 Regression trees for each Habitat Hectares site score; the sum of these attributes

comprises the overall Habitat Hectares site score
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9.4 Conclusions

The two inferential modelling techniques—evolutionary algorithms and regression

trees—are designed to extract and synthesise information from complex data

patterns of real-world ecological data that improves our understanding of retro-

and prospective ecosystem dynamics. Inferential models are typically represented

as IF-THEN-ELSE rules that are fully transparent and can easily be updated with

newly emerging data. They are suitable for short-term forecasting applications (see

Chap. 15) and the identification of ecological thresholds. By contrast, mechanistic

or process-based models are represented by rigid algebraic equations based on

Michaelis-Menten-type kinetics and empirical relations, and are suitable for long-

term forecasting applications (see also Chaps. 10 and 16).

Inferential models developed by evolutionary algorithms such as HEA suit as

tools for determining thresholds and key driving variables of fast population growth

and up to 30 days forecasting of population dynamics as demonstrated by the case

study of Lake Müggelsee and discussed in Chap. 15. They also enhance meta-

analysis of time-series data by quantifying phenological indicators as shown by the

case study of lakes Wivenhoe and Paranoa. HEA is part of the NETLAKE toolbox

(Recknagel and Ostrovsky 2016) recommended for the analysis of high-frequency

data from lakes.

Inferential models developed by regression trees are flexible and fully transpar-

ent tools for revealing correlations between habitat properties and ecological

entities. The tree induction process does not require prior assumptions, is fast and

is not influenced by redundant variables and noise.
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Chapter 10

Process-Based Modeling of Nutrient Cycles
and Food-Web Dynamics

George Arhonditsis, Friedrich Recknagel, and Klaus Joehnk

Abstract Mathematical models are indispensable for addressing pressing aquatic

ecosystem management issues, such as understanding the oceanic response to

climate change, the interplay between plankton dynamics and atmospheric CO2

levels, and alternative management plans for eutrophication control. The appeal of

process-based (mechanistic) models mainly stems from their ability to synthesize

among different types of information reflecting our best understanding of the

ecosystem functioning, to identify the key individual relationships and feedback

loops from a complex array of intertwined ecological processes, and to probe

ecosystem behavior using a range of model application domains. Significant pro-

gress in developing and applying mechanistic aquatic biogeochemical models has

been made during the last three decades. Many of these ecological models have

been coupled with hydrodynamic models and include detailed biogeochemical/

biological processes that enable comprehensive assessment of system behavior

under various conditions. In this chapter, case studies illustrate ecological models

with different spatial configurations. Given that each segmentation depicts different

trade-offs among model complexity, information gained, and predictive uncer-

tainty, our objective is to draw parallels and ultimately identify the strengths and

weaknesses of each strategy.
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10.1 Introduction

Mechanistic aquatic biogeochemical models have formed the scientific basis for

environmental management decisions by providing a predictive link between

management actions and ecosystem responses. An appealing feature for their

extensive use is their role as “information integrators” in that they can be used to

synthesize across different types of information that reflect our best understanding

of ecosystem functioning (Spear 1997). Their main foundation consists of causal

mechanisms, complex interrelationships, and direct and indirect ecological paths

that are mathematically depicted in the form of nonlinear differential equations.

Model endpoints (state variables) usually coincide with routinely monitored envi-

ronmental variables that, in turn, are considered reliable surrogates of the physics,

chemistry and biology of the aquatic ecosystem under investigation. Scientific

knowledge, expert judgment, and experimental/field data are used to assign realistic

values to model inputs. Such inputs can either be ecologically meaningful param-
eters, representing physical or chemical processes, physiological rates, and parti-

tion coefficients, or factors that externally influence the biotic and abiotic

components of the system, also known as forcing functions. The latter model

input could be essential in linking an externally-introduced pollutant (e.g., herbi-

cide application or nutrient loading rates) with a key ecosystem attribute (e.g.,

biodiversity, total phytoplankton or cyanobacteria levels) or may not be directly

subject to anthropogenic control, e.g., temperature and solar radiation.

In the context of environmental decision-making and management, the state

variables of a model typically represent components or attributes of the system that

we consider to be relevant to the research question being examined. For example, in

lake eutrophication problems, the state variables can be the various forms of

phosphorus (phosphate, dissolved and particulate organic phosphorus) and the

different phytoplankton (diatoms, green algae, cyanobacteria) or zooplankton

(copepods, cladocerans) groups. If we are interested in predicting the success of a

strategy to reduce fish contamination levels in the Great Lakes, then logical state

variables of the model will be the contaminant concentrations in the tissues of

several fish species along with their corresponding biomass levels. The state vari-

ables can be expressed in units of mass or concentration (biogeochemical models),
energy (bioenergetic models), and number of species or individuals per unit of

volume or area (biodemographic models). Consequently, the physical, chemical,

and biological processes considered by the model account for the transfer of mass,

energy and/or individuals and drive the variability of the state variables. Examples

of physical processes are diffusive and advective transport of a fluid such as air or

water; chemical reactions typically modeled are hydrolysis, photolysis, oxidation,

and reduction; biological processes that are essential in modulating the dynamics of

biotic components are growth, metabolism, mortality, excretion, predation, and

emigration or immigration.

An interesting feature of mathematical models is the existence of feedback loops
(defined as closed-loop circles of cause and effect in ecological conditions in one
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part of the system that shape processes elsewhere in the system) that amplify

(positive feedbacks) or counteract (negative feedbacks) the original change. A

characteristic example is the positive feedback of bacteria-mediated mineralization

of the excreta of zooplankton basal metabolism that replenishes the summer

epilimnetic phosphate pool, which stimulates phytoplankton growth and offsets

the herbivorous control of autotroph biomass. Then, this increase of the phyto-

plankton biomass reinforces the zooplankton growth, thereby preventing an unde-

sirable collapse at the second trophic level. An example of a negative feedback in

the system is when excessive phosphorus is added causing excessive phytoplankton

growth which, in turn, causes shading that reduces sunlight penetration to lower

water depths and therefore the reduced primary production along with the decom-

position of the sinking phytoplankton cells result in gradual oxygen depletion and

possibly hypolimnetic anoxia which could kill off benthic organisms. Thus, the

ability of mathematical models to consider a series of intermingled ecological

mechanisms allows reproducing non-linear response patterns induced by distant

(and presumably unrelated) causal factors.

Fundamental to mathematical models is the Lomonosov-Lavoisier Law of Con-
servation of Mass. In quantitative terms, the principle is translated into a mass
balance model that is built from mass balance equations that account for all the
inputs and outputs of mass across the system’s boundaries and all the transport and

transformation processes occurring within the system. For a finite period of time,

this concept can be mathematically expressed as:

Accumulation ¼ ΔMass=Δt ¼ Δ Volume � Concentrationð Þ=Δt
¼ Input� Reactions� Output

This differential equation is solved to get model output (concentration) as a

function of time. The solution provides us with a time dependent, dynamic or
unsteady-state model (these terms are used interchangeably). If the equation is

relatively simple, then we can mathematically solve the equation to get an explicit
analytical solution where infinitesimal time steps are implied. However, often the

equation(s) are difficult to solve, in which case we use numerical approximations.
The simplest of these numerical methods is a finite difference approach whereby the
computer algorithm steps through time according to defined and discrete time steps.

An alternative solution to explicitly solving a differential equation is to assume no

change in the state variable value with time or that the system is at a steady state,
i.e., ΔMass/Δt ¼ 0.

Mathematical models must also consider variations in space (e.g., geographic

variation). If we do not consider spatial variation, then we have a lumped model,

e.g., ΔMass/Δx ¼ 0 where x is distance. An example of a lumped model would be

treating a lake’s water column as a single well-mixed compartment, i.e., the

contents are sufficiently well mixed as to be uniformly distributed (Fig. 10.1a).

Such characterization is often used to model shallow and small lakes, where

stratification does not occur and spatial homogeneity can be assumed. A common

example of this type of models is the continuously stirred tank reactor (CSTR) that
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simulates the system as a single, well-mixed or homogeneous compartment, where

its properties can only vary in time according to the following equation:

dC

dt
¼ f C; θ; tð Þ

where the quantity C (e.g. chemical concentration) being differentiated is called

the dependent variable; the quantity t (time in zero-dimensional systems) with

respect to which C is differentiated is called the independent variable, and θ
corresponds to the various inputs of the equation (e.g. external forcing, parameters).

When the function involves one independent variable the equation is called ordi-
nary differential equation (or ODE). Alternatively, we may consider spatial varia-

tions, with the simplest formulation of translating geographic differences into

discrete, well-mixed (homogeneous) boxes or compartments, typically defined

according to physical properties of the studied system. This type of model is

often called a box model. Using a lake as an example, a box model may have a

warmer upper water layer or epilimnion and a cooler lower water layer or hypo-

limnion to treat thermal stratification (Fig. 10.1c). In this example, the

discretisation is defined according to the temperature vertical profiles. The model

Fig. 10.1 Zero-,

one-, two-, and three-

dimensional strategies for

accommodating the spatial

variability in lake systems
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then includes heat and/or chemical transfer between the two compartments

according to heat and mass transfer coefficients.

The most sophisticated treatment of spatial variation is to have an analytical

solution to the differential dMass/dx. This would quantify the continuous variation

in the output as a function of space or location and hence would offer a continuous
model. Similarly to solutions of the time-varying differential equation, we can solve

the equations using an explicit analytical solution or a numerical approximation. In

this case, we deal with partial differential equations (or PDE) that involve two or

more independent variables. For example, such equations can be useful for systems

with a prevailing one-directional flow, e.g., rivers where the physical, chemical, and

biological properties are determined by this flow, and thus we may opt for a

one-dimensional representation that accommodates variability in the x axis

(Fig. 10.1b). Namely, the advection-diffusion equation that combines the two

main processes of mass transport, advection and diffusion, along with a first-

order reaction, will be suitable to describe the spatiotemporal distribution of a

substance in a river:

∂C
∂t

¼ �∂Cu
∂x

þ DX
∂2

C

∂x2
� kC

where C the chemical concentration in fixed element of space, x (distance) the

direction of the flow, u (distance/time) is velocity for advective transport, Dx

(distance2/time) is a diffusion coefficient for diffusive transport, and k (inverse

time) is a rate constant for a first-order reaction. One-dimensional representations

can also be used to simulate the vertical stratification of a deep lake without

significant variability in the horizontal plane (Fig. 10.1b). Two or three-

dimensional segmentations will be more appropriate for larger systems (estuaries,

large lakes with complex morphology, fragmented landscapes) characterized by

significant variability of their properties in both horizontal and vertical directions

(Fig. 10.1c, d). In this chapter, we offer a series of case studies that illustrate

ecological models with different spatial configurations. Given that each segmenta-

tion depicts different trade-offs among model complexity, information gained, and

predictive uncertainty, our objective is to draw parallels and ultimately pinpoint the

strengths and weaknesses of each strategy.

10.2 Zero- and One-Dimensional Lake Models

10.2.1 Zero-Dimensional Model for the Phosphorus Cycle
in a Hypereutrophic Wetland

Cootes Paradise is a large marsh in western Lake Ontario that is hydraulically

connected to Hamilton Harbour by a man-made channel (Fig. 10.2). It is charac-

terized by hypereutrophic conditions, stemming from the agricultural and urban
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Fig. 10.2 Map of Cootes Paradise and land use classification of the surrounding watershed (a).
Average daily phosphorus fluxes (kg day�1) corresponding to each simulated process during the

growing season (May–October) (b)
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development of the (previously forested) watershed along with the sewage effluent

discharged into the marsh for over nine decades (Thomasen and Chow-Fraser

2012). The vegetation cover in Cootes Paradise had receded to less than 15% by

the 1990s, relative to >90% cover with very high plant diversity at the turn of the

twentieth century (Chow-Fraser 2005). Coinciding with the vegetation decline, the

fishery shifted from a desirable warm water fishery of northern pike and largemouth

bass to one dominated by planktivorous and benthivorous species, such as bull-

heads, invasive common carp, and alewife. In particular, common carp, an exotic

species introduced into Lake Ontario at the end of the nineteenth century, accounted

for up to 45% of the overall water turbidity (Lougheed et al. 2004). High turbidity

had many detrimental effects across the entire food web, such as reducing light

penetration to a level that was insufficient for submersed aquatic vegetation/periph-

yton growth, clogging filter-feeding structures of invertebrates, and affecting the

behaviour and survival of visually hunting predators and mating fish (Thomasen

and Chow-Fraser 2012). To ameliorate the prevailing adverse ecological conditions

in the wetland, a number of restoration strategies have been implemented, such as

carp exclusion, nutrient loading reduction, and macrophyte planting (Lougheed

et al. 2004).

In this context, Kim et al. (2016) presented a modelling exercise aimed at

understanding the primary drivers of eutrophication in Cootes Paradise by eluci-

dating the interplay between various phosphorus-loading sources, internal flux

rates, phytoplankton activity, and the potential of macrophytes to become an

integral part of the bottom-up forcing into the system. Cootes Paradise marsh is

approximately 4 km long, with a maximum width of 1 km, and a mean depth of 0.7

m. Because of its small size, the surface area and volume of the marsh can vary

significantly according to water level fluctuations, reaching a maximum of 2.5 km2

and 3.6� 106 m3, respectively (Mayer et al. 2005). Thus, Kim et al. (2016) adopted

a zero-dimensional approach representing the Cootes Paradise as a spatially homo-

geneous system with a hydraulic connection to Hamilton Harbour. The focal points

of the model calibration were the reproduction of the water level variability and the

realistic characterization of processes such as phosphorus release via reflux/diffu-

sion and resuspension from the sediments. The role of macrophytes in the phos-

phorus cycle was accounted for by the dry-mass biomass submodel presented by

Asaeda et al. (2000), and modified by Kim et al. (2013), by differentiating among

three macrophyte functional groups: emergent, meadow, and submerged. Each

equation considers macrophyte growth through uptake of dissolved inorganic

phosphorus from the interstitial water, respiration releasing phosphorus back to

the water column, and mortality depositing phosphorus to the sediment pool.

After the model calibration against a 17-year (1996–2012) time-series of water

quality data, the Cootes Paradise model provided internal loading estimates

(�12.01 kg day�1) that were substantially lower than sediment reflux rates reported

in previous modelling work from the 1990s (Prescott and Tsanis 1997). This

discrepancy was attributed to the sediment resuspension induced by carp bioturba-

tion, which ceased after the construction of a barrier (or fishway) at the outlet of

Cootes Paradise. The fishway became operational during the winter of 1997 and
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used 5-cm wide grating to physically exclude large fish, targeting carp, from the

marsh (Lougheed et al. 2004). This biomanipulation practice effectively prevented

large carp (>40 cm) from entering the marsh after February 1997. According to the

Cootes Paradise marsh model projections (Fig. 10.2), the phosphorus contribution

of internal sources (reflux, resuspension, macrophyte respiration) and sinks (sedi-

mentation) appears to be significantly lower relative to the external sources (exog-

enous inflows) and sinks (outflows to Hamilton Harbour). Release of phosphorus

from actively growing submerged and emergent macrophytes is typically consid-

ered minimal, whereas decaying macrophytes may act as an internal phosphorus

source adding considerable quantities of phosphorus into the water (Granéli and

Solander 1988; Asaeda et al. 2000). Nonetheless, the Cootes Paradise model

demonstrated that macrophytes play a minimal role in the phosphorus budget of

the marsh, reflecting the fact that their abundance (e.g., biomass and density) is

fairly low in its current state.

Kim et al. (2016) identified the water level fluctuations as another critical factor

that can profoundly modulate the interplay among physical, chemical, and biolog-

ical components of the Cootes Paradise ecosystem. Lower water levels (and thus

smaller water volumes) imply lower dilution and higher nutrient concentrations; a

pattern consistent with Kim et al.’s (2016) predictions of higher ambient TP values

towards the end of the summer-early fall, when the lower water levels in the marsh

occur. Further, with lower water levels, wind energy is more easily transmitted to

the bottom sediments that, in turn, would accentuate the release of phosphorus due

to stirring and mixing (Prescott and Tsanis 1997; Chow-Fraser 2005). The same

mechanisms also appear to be the main drivers of the spatiotemporal variability of

water turbidity, thereby influencing the illumination of the water column; espe-

cially, the light environment near the sediment surface in open-water sites, which

currently does not favour submerged macrophyte growth (Chow-Fraser 2005). In

the same context, two threshold water levels have been proposed for evaluating the

resilience of submerged macrophytes; a maximum threshold, above which light

availability becomes limiting, and a minimum threshold, below which conditions

are excessively dry (Harwell and Havens 2003). On a final note, the simplified

segmentation of the Cootes Paradise model did not allow researchers to reproduce

the water quality gradients occasionally established between western and eastern

ends of the marsh. This weakness was highlighted by Kim et al. (2016) as a key

missing point that may not allow delineation of the role of a wastewater treatment

plant located in the innermost section of Cootes Paradise.

10.2.2 One-Dimensional Model for Nutrient Cycles
and Plankton Dynamics in Lakes and Reservoirs

The model SALMO (Benndorf and Recknagel 1982; Recknagel and Benndorf

1982) is a process-based one-dimensional lake model that simulates concentrations

of the state variables PO4-P, NO3-N, DO, detritus, chlorophyta, bacillariophyta,
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cyanophyta and cladocera (Fig. 10.3) at daily time steps for the mixed total water

body, and epi- and hypolimnion during thermal stratification (Fig. 10.4).

The mass balances for the nutrients and detritus are determined by transport

processes such as import, export, sedimentation and exchange between epi- and

hypolimnion, as well as consumption by phytoplankton, microbial recycling of

detritus and resuspension from anaerobic sediments.

Detritus is also subject to grazing by zooplankton. The mass balances for the

phytoplankton phyla chlorophyta, bacillariophyta and cyanophyta, and for

cladocera include transport processes by sedimentation, import and export, but

are predominantly determined by photosynthesis, respiration and grazing, as well

as assimilation, respiration and mortality, respectively. The zooplankton mortality

includes predation by planktivorous fish represented by parameters reflecting an

annually constant stock size. The DO budget is determined by O2 solubility

(Henry’s Law), plankton photosynthesis, and respiration. SALMO requires daily

input data for volumes, mean and maximum depths of mixed and stratified water

bodies, loadings of PO4-P, NO3-N, and detritus by the inflowing water, incident

solar radiation and water temperature.

Model inputs (see Fig. 10.3) characterise lake specific nutrient loadings, climate

conditions, seasonal circulation types, and morphometry by routinely measured

variables. Model parameters reflect lake specific underwater light transmission,

temperature, light and nutrient limitations of phyla-specific phytoplankton growth,

temperature and food limitation of cladocera growth, stock size of planktivorous

fish, specific sinking velocities and grazing preferences for phytoplankton phyla

and detritus. The model can therefore easily be implemented and validated for

different lakes and drinking water reservoirs based on routine limnological mea-

surements, and can serve as a flexible tool for scenario analysis of eutrophication

management options such as control of external and internal nutrient loadings

(e.g. Recknagel et al. 1995; Chen et al. 2014) and climate change, artificial

destratification and aeration, food web manipulation by carnivorous fish,

hypolimnetic withdrawal and partial drawdown (see Chap. 16).

Figures 10.5 and 10.6 display examples for applications of SALMO to a variety

of lakes and reservoirs with different circulation types and trophic states. The

Saidenbach Reservoir (Germany) had been a key water body during the develop-

ment and testing phase of SALMO (e.g. Recknagel and Benndorf 1982). As

illustrated in Fig. 10.5, the one-dimensional mode of SALMO simulated concen-

trations of PO4-P, phyto- and zooplankton separately for epi- and hypolimnion for

summer months while the zero-dimensional mode simulated the remaining months

of the year 1975. In the case of Lake Taihu (China), the zero-dimensional mode of

SALMO simulated successfully extreme conditions of that shallow hypertrophic

water body as prerequisite for a scenario analysis on management options (Chen

et al. 2014). Again different conditions had to be matched by SALMOwhen applied

to the two warm-monomictic Millbrook and Mt Bold Reservoirs in Australia

(Fig. 10.6). The Millbrook Reservoir is equipped with an aerator that artificially

destratifies the water body during summer being simulated by the zero-dimensional

SALMO. The Millbrook Reservoir will be revisited in Chap. 16 when the model
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ensemble SWAT-SALMO is applied to the Millbrook catchment-reservoir system.

The Mt Bold Reservoir is thermally stratified during summer.

The performance of SALMO for different water bodies depends firstly on having

accurate data for the key driving variables reflecting depths and volume fluctua-

tions, nutrient loadings, light and temperature dynamics, secondly on having

accurate measurements of key state variables for validation, and thirdly on correct

calibration of phyto- and zooplankton related growth parameters reflecting nutrient,

food, light and temperature limitations. The calibration of SALMO for specific

water bodies focuses on key parameters determined by sensitivity analysis

(e.g. Recknagel 1984) and their multi-objective optimization by evolutionary

algorithms (Cao et al. 2008; Cao and Recknagel 2009; Chen et al. 2014) within

the range of their standard error and against measured state variables.

10.3 Multi-dimensional Lake Models

The transition from 0-dimensional to higher dimensional models makes it necessary

to include processes related to internal lake dynamics as well as more complex

boundary conditions. Biogeochemical processes essentially stay the same, but we

have to add different transport mechanisms driven by external and internal forces.

While in the previous chapters, we focussed on the biogeochemical processes, here

we examine physical processes changing the natural environment of a lake.

In a natural lake environment processes will be affected by driving forces at the

surface—and to a lesser extend at the bottom—which may vary in time and space

generating complex flow patterns in a lake. Driving forces such as weather or inflow

will change the balance of heat and momentum in a lake, which can be described as

an analogue to the previously mentioned mass balance. Physically speaking, to

solve for processes in a real lake environment, we need to solve additional differ-

ential equations for velocity (momentum balance) at each point in the domain as

well as for temperature (heat balance) or salinity (constituent mass balance), see

e.g., Hutter and J€ohnk (2004). The resulting system of equations, Navier-Stokes

equation and heat balance using Fourier’s Law of heat conduction, is usually too

complex to be solved directly and has to be adapted for specific situations. Knowing

transport properties, advective and diffusive, throughout the lake then allows for the

simulation of spread and distribution of constituents like nutrients, particulate

matter or algae.

One simplification step is the separation of large from small-scale processes.

This then leads to simplified equations describing the general flow or transport in a

lake and a parameterization of small-scale process describing turbulence,

i.e. diffusional transport. The latter can either be a set of extra differential equation

like the k-e turbulence model (e.g. Joehnk and Umlauf 2001), or a simplified

version describing diffusional processes via a functional dependence on the vertical

density gradient in a lake (or in physical terms better expressed as the buoyancy

frequency). Another simplification, which can be well observed in oceans and
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lakes, comes from the fact that these systems are to a large extent laterally

homogeneous, i.e., in a lake changes mainly happen in the vertical as long as one

is far away from a boundary. However, the smaller the system is, the more influence

from the boundary needs to be taken into account, and the larger a lake or the more

complex its bathymetry is the more likely three-dimensional flows will form.

In the previous examples of 1D lake models, it was assumed that lake stratifi-

cation could be described by a two-layered system. This is a valid assumption, as

long as the dynamic changes during build-up or breakdown of stratification are of

no interest. Specific processes at the interface between these two layers are also

neglected by such a simplifying assumption, e.g., a metalimnetic oxygen minimum

(Joehnk and Umlauf 2001) where the system is determined by enhanced microbi-

ological decomposition through accumulation in the metalimnion due to an

increase in density.

In Fig. 10.7, different strategies for describing the spatial variability of a lake are

depicted. In each compartment of such geometry, nutrient cycling and food web

processes can be described individually. However, the more spatial complexity one

needs to take into account, the more physical, transport processes have to be

accounted for. In a zero dimensional system (Fig. 10.1a), e.g., a shallow well-

mixed pond, no specific physical processes have to be looked at as long as the time

scales of biogeochemical processes are larger than the time scales of turbulent

processes mixing the system. A one-dimensional horizontal system (Fig. 10.1b),

e.g. a channel type lake, might have well mixed conditions along its axis, horizontal

transport processes have to be taken into account for this case. A classical example

is the longitudinal decrease of dissolved oxygen in a river by degradation of

biochemical oxygen demand (BOD) described by the Streeter-Phelps equation

accounting for horizontal flow (Streeter and Phelps 1925). The one-dimensional

vertical case (Fig. 10.1b) is an adequate description of a lake when neglecting

horizontal gradients generated by boundary effects. Here, changes in the vertical

(a) (b)Fig. 10.7 Different process

types in a one- (a) and a

two-dimensional (b)
discretization of a lake

10 Process-Based Modeling of Nutrient Cycles and Food-Web Dynamics 203



are generated by turbulent and convective mixing, which are attributed to wind

stress at its surface or heat loss from the surface. This is a widely used approach in

describing lake dynamics. Numerous models exist to describe the hydrodynamics

and thermal characteristics of this type of lake approximation (e.g. Stepanenko et al.

2013, 2014) including complex biogeochemical processes (see Janssen et al. 2015

for an overview).

The more small scale processes of a water body need to be included, the more

knowledge on interacting bio-physical processes as well as on its geometry is

required. For a 1-dimensional case it is assumed that the water body can be

idealized by a set of serially connected “grid cells” (Fig. 10.7a). In a

2-dimensional case grids are connected across two dimensions—attaching a set of

1D cell structures (Fig. 10.7b), and finally a three-dimensionally resolved lake

would consist of slices of 2-dimensional grids fitting the shape of lake morphometry

and communicating across cell boundaries. While cell-internal biogeochemical

processes are described as in the examples above, the exchange between cells and

the prescription of driving forces at the cells’ external boundaries have to be defined
based on physical principles (Fig. 10.7). This increase in geometric complexity also

accompanies a higher complexity in physical processes (Wüest and Lorke 2003),

which in most cases makes it necessary to significantly lower the time step (down to

minutes or even seconds) of numerical solvers to resolve the various time scales of

physical processes. For 1- and 2-dimensional systems, the computational overhead

of running hydrodynamic and food web models in parallel is not restricted by

current computing technology. However, for large 3D models (or for lower dimen-

sional models running a multitude of scenarios) it may be necessary to decouple

hydrodynamics from biological dynamics and using averaged (e.g. hourly or daily)

physical quantities for the biological model parts (e.g. Skerratt et al. 2013). The

necessary higher time resolution and spatial knowledge of drivers and boundary

conditions for 2D- or 3D- is often not met with actual lake monitoring, in which

case a reduction of geometric complexity is more adequate to describe the problem.

Large lakes and estuaries often have a very complex shape, which introduces a

further complication in higher dimensional modelling of such systems. To ade-

quately describe the geometry of e.g. small bays or river channels attached to the

larger water body, it is necessary to either substantially reduce the grid spacing in

these sub-systems, which would increase the CPU time, or to implement

sub-gridding. The latter uses a higher resolved grid only for the specific region

and communicates with the low-resolution grid via boundary conditions at its

matching side, i.e., prescribed fluxes, water level, etc. This allows for fast calcula-

tion of the large-scale transport mechanisms and high resolution in the sub-grid

region. In the Fitzroy Estuary attached to the Great Barrier Reef, Australia, such

sub-gridding is used to simulate the spread of freshwater plumes from rivers during

flood events. While the large scale grid size in this coastal system is of the order of

4 km, the sub-gridded region has resolutions down to 200 m. Figure 10.8 shows a

snapshot of the salinity distribution in the estuary for the sub-gridded region in

comparison to the large scale grid solution (red lines).
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10.3.1 Horizontal and Vertical Transport of Nutrients
and Organisms

Using simple connected regions for a lake, like the partitioning into epilimnion/

hypolimnion for a food web model does not allow for a description of transport.

Instead an exchange rate between compartments has to be described. This can be

achieved by balancing the amount of constituents in the compartments over time

and deriving the relative quantity of a constituent transferring over a time period

from one into the adjacent compartment, e.g., particles sinking out of the epilim-

nion. For higher dimensional lake models with better spatial resolution, this process

will be substituted with one based on physical transport mechanisms, i.e. advective

transport of a quantity—temperature, particles, etc.—with a local velocity and

re-distribution due to turbulent diffusion. The advective transport or velocity is a

direct result of solving the hydrodynamic equations of motion in a lake. They

describe a general flow pattern usually driven by wind action or inflow. Turbulent

diffusion summarizes the small-scale processes generated by shearing in a fluid and

due to local density instabilities. The latter is usually described as thermal instabil-

ities when looking at freshwater systems, which are generated by surface cooling

through heat loss usually during night-time. While the flow patterns act on time

scales of hours to days or longer, the diffusional process describe fast processes

with time scales of minutes or smaller. These diffusional processes are the drivers

of constituent re-distribution in the water column. As such, the strength of turbulent

diffusion will determine the amount of light a phytoplankton will be able to harvest

while it is stochastically moved through the water column. Describing this motion

through “diffusion” is again an approximation of the true process; it describes the

mean distribution of a large amount of particles, but is not capable to follow the

path of a single particle.

10.3.2 Multi-segment Lake Model for Studying Dreissenids
and Macrophytes

The invasion of dreissenid mussels has been responsible for a major restructuring of

the biophysical environment in many parts of the Laurentian Great Lakes, with

profound alterations on the nutrient dynamics in the littoral zone (Coleman and

Williams 2002). The nearshore shunt (sensu Hecky et al. 2004) has been hypoth-

esized to impact the fate and transport of particulate matter, and subsequently alter

the relative productivity of inshore sites and their interactions with the offshore

areas. An important implication of the causal linkage between dreissenids and

nutrient variability in the littoral zone is the weakening of the external loading

signal, which led Hecky et al. (2004) to question whether conventional TP mass-

balance models developed during the pre-dreissenid period in the Great Lakes were

structurally adequate during the post-dreissenid era. In this context, Gudimov et al.
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(2015) presented a mechanistic model designed to examine the role of macrophyte

dynamics, to explicitly represent the impact of dreissenids in lakes, and to sensibly

portray the interplay between water column and sediments.

In Lake Simcoe, Ontario, Canada, dreissenid mussel distribution is determined

by a complex interplay among lake depth, substrate availability and exposure to

wave disturbance (Ozersky et al. 2011; Evans et al. 2011). Specifically, the highest

dreissenid biomass is typically found at areas of intermediate depth, where water

movement is high enough to ensure that the lake bottom is dominated by rocky

substrate but not excessively high to cause catastrophic disturbances to the

dreissenid community. Gudimov et al. (2015) used their phosphorus mass-balance

model to test the hypothesis that the spatial and temporal variability of P in Lake

Simcoe was predominantly driven by internal mechanisms following the establish-

ment of dreissenids. Because of the large size and complex shape of Lake Simcoe, a

zero-dimensional spatial configuration would have been inadequate as the funda-

mental assumption that the lake is thoroughly mixed with uniform concentrations

throughout is profoundly violated. On the other hand, there was not sufficient

information (water levels, circulation patterns) to support the implementation of

an explicit 2D or 3D hydrodynamic model. As an optimal compromise between the

two strategies, the horizontal variability of Lake Simcoe was accommodated with

four completely-mixed compartments, while the stratification patterns typically

shaping the water quality in Kempenfelt Bay, Cook’s Bay and the main basin

were reproduced by the addition of three hypolimnetic compartments (Fig. 10.9,

left panel). According to the Gudimov et al. (2015) model, the Lake Simcoe

segmentation resembles Nicholls’ (1997) conceptualization, in that the two embay-

ments (Kempenfelt Bay and Cook’s Bay) along with the shallow littoral zone at the

east end (East Basin) are separated from the main basin (Fig. 10.9, left panel). The

epilimnetic segments were interconnected through bi-directional hydraulic

exchanges to account for wind-driven flows and tributary discharges from adjacent

watersheds.

The Lake Simcoe model was designed to improve the fidelity of epilimnetic TP

simulations through detailed specification of internal P recycling pathways

(Fig. 10.9, left panel), such as the macrophyte dynamics and dreissenid activity as

well as the fate and transport of P in the sediments, including the sediment

resuspension, sorption/desorption in the sediment particles, and organic matter

decomposition. Thus, the ordinary differential equations describing the dynamics

of P in the water column consider all the external inputs, advective horizontal mass

exchanges between adjacent segments, macrophyte uptake, macrophyte P release

through respiration, dreissenid filtration, dreissenid excretion and pseudofeces

egestion, vertical diffusive exchanges when stratification is established, and

refluxes from the bottom sediments.

After the model calibration against the observed patterns in Lake Simcoe during

the 1999–2007 period, Gudimov et al. (2015) first attempted to shed light on the

role of the phosphorus fluxes associated with the dreissenid mussels. It was

predicted that dreissenids filter a considerable amount of particulate P from the

water column (6.2–238 tonnes P year�1), but the effective clearance rate is
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Fig. 10.9 Spatial segmentation and conceptual diagram of phosphorus pathways in the process-

based model of Lake Simcoe (a). Simulated phosphorus fluxes (tonnes P year�1) in water column

and sediment layer in the spatial segments of Lake Simcoe (b)
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significantly lower (0.8–22.8 tonnes P year�1) with a substantial amount of the

filtered particles (>85%) returned into the water column as feces, pseudofeces or

other metabolic excreta. The latter finding is not surprising as the ratio between

zebra mussel filtration and effective clearance rate can vary between 3.4 and 6.9

(Yu and Culver 1999). In particular, the Gudimov et al. (2015) study highlighted the

critical role of dreissenids in the shallow eastern end of Lake Simcoe, where they

filter 238.5 tonnes P year�1 from the water column and subsequently egest 215.0

tonnes P year�1, while an additional 22.4 tonnes P year�1 of metabolic excreta are

deposited onto the sediments. Because of its shallow morphometry, a large portion

of the eastern area is located within the euphotic and well-mixed zone, and

therefore the elevated benthic photosynthesis and access of the dreissenids to

sestonic algae create favourable conditions for biodeposition and nutrient recycling

(Ozersky et al. 2013). Importantly, the large fetch of Lake Simcoe, the relatively

deep epilimnion, and the fairly rapid horizontal mixing often induce hydrodynamic

conditions that may allow the localized impacts of dreissenids to shape ecosystem-

scale patterns (Schwalb et al. 2013).

Consistent with empirical evidence from the system, the Lake Simcoe model

predicted that macrophyte intake was responsible for a significant loss of P from the

interstitial waters, thereby providing a significant pathway for the rapid transport of

the nutrients assimilated from the sediments into the water column. P diffusive

fluxes from the sediments accounted for about 30–35% of the exogenous P loading

in Lake Simcoe. The retention capacity in Cook’s Bay was estimated to be about

28%, which is distinctly lower than estimates from the 1980s. Thus, the coloniza-

tion of the embayment by dreissenids and the recent proliferation of macrophytes

appear to have decreased the P retention in Cook’s Bay, where the predominant

fraction of TP is carbonate-bound P (apatite-P) mainly due to the accelerated

erosion in the catchment (Dittrich et al. 2012). The sediments in the main basin

are mostly driven by fast diagenetic processes of settling organic matter from the

epilimnion, resulting in internal P loading of 9.2 tonnes P year�1. In a similar

manner, the hypolimnetic sediments in Kempenfelt Bay are responsible for a fairly

high diffusive P flux into the water column (�1.7 tonnes P year�1), presumably

reflecting the highest proportion of the redox-sensitive P sediment pool compared

to other lake segments (Dittrich et al. 2012).

10.4 Concluding Remarks

As knowledge regarding the complex components of environmental systems con-

tinues to grow, there is a demand for increasing the articulation level of our

mathematical models. Generally, the premise for constructing complex models is

to mirror the complexity of natural systems and consider ecological processes that

can become important in future states and are driven by significantly different

conditions. Modelers essentially believe in the myth that if they can include ‘all’
the significant processes in the mathematical equations, then the model will closely
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mimic the ‘real system’ and thus will have increased predictive ability under a wide
range of environmental conditions. However, there is always a trade-off between

model complexity, transparency, uncertainty and validity, as well as data obtain-

ability. Increasing computational potential is tempting to solve biogeochemical

models in a 2- or 3-dimensional manner to cope with lateral changes in aquatic

systems as well as including more complex physical transport phenomena (MacKay

et al. 2009). However, this requires an adequate level of in-lake monitoring but also

access to large scale resolved meteorological data as drivers of physical processes.

Assimilation of remote sensing data with hydrodynamic modelling (e.g. Pinardi

et al. 2015) may further improve predictive abilities of models (see also Chap. 15).

In the context of aquatic biogeochemical modeling, there is increasing pressure

to explicitly treat multiple biogeochemical cycles, to increase the functional diver-

sity of biotic communities, and to refine the mathematical description of the higher

trophic levels (Arhonditsis and Brett 2004; Anderson 2005; Fennel 2008). In

particular, there are views in the literature suggesting the inclusion of multiple

nutrients along with the finer representation of plankton communities, as necessary

model augmentations for disentangling critical aspects of aquatic ecosystem

dynamics, e.g., species populations are more sensitive to external perturbations

(nutrient enrichment, episodic meteorological events), and key biogeochemical

processes are tightly linked to specific plankton functional groups (Flynn 2005).

Nonetheless, the derivation of distinct functional groups from fairly heterogeneous

planktonic assemblages poses challenging problems. Because of the still poorly

understood ecology, we do not have robust group-specific parameterizations that

can support predictions in a wide array of spatiotemporal domains (Anderson

2005).

Preliminary efforts to incorporate plankton functional types into global biogeo-

chemical models were based on speculative parameterization and, not surprisingly,

resulted in unreliable predictions (Anderson 2005). In the same context, a recent

meta-analysis evaluated the ability of 124 aquatic biogeochemical models to

reproduce the dynamics of phytoplankton functional groups (Shimoda and

Arhonditsis 2016). Most notably, moderate fit statistics were found for diatoms

(median r2 ¼ 0.31, RE ¼ 70%) and cyanobacteria (median r2 ¼ 0.36, RE ¼ 65%),

and even worse performance was recorded for cryptophytes (median r2 ¼ 0.39,

RE ¼ 79%), flagellates (median r2 ¼ 0.07, RE ¼ 78%) and haptophytes (median r2

¼ 0.39, RE ¼ 41%), which likely reflects our limited knowledge of their ecophys-

iological parameters compared to other well-studied functional groups. Significant

variability also exists with respect to the mathematical representation of key

physiological processes (e.g. growth strategies, nutrient kinetics, settling velocities)

as well as group-specific characterizations typically considered in the pertinent

literature. Furthermore, recent attempts to integrate biogeochemistry with fish

production underscore the uncertainty arising from the mismatch between the

operating time scales of planktonic processes and fish life cycles as well as the

need to consolidate the mechanistic description and parameterization of several

critical processes, such as the reproduction and mortality of the adult stages (Fennel

2008). Despite repeated efforts to increase model complexity, we still have not gone
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beyond the phase of identifying the unforeseeable ramifications and the challenges

that we need to confront so as to improve the predictive power of our models. Until

we have the knowledge to mathematically depict the interplay among physical,

chemical, and biological processes with greater fidelity and less uncertainty, the

gradual incorporation of model complexity, where possible and relevant, is the

most prudent strategy. The Bayesian analysis of model uncertainty will be

addressed in detail in Chap. 11.
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Lougheed VL, Theÿsmeÿer T, Smith T, Chow-Fraser P (2004) Carp exclusion, food-web interac-

tions, and the restoration of Cootes Paradise marsh. J Great Lakes Res 30(1):44–57

MacKay MD, Neale PJ, Arp CD et al (2009) Modeling lakes and reservoirs in the climate system.

Limnol Oceanogr 54(6):2315–2329

Mayer T, Rosa F, Charlton M (2005) Effect of sediment geochemistry on the nutrient release rates

in Cootes Paradise Marsh, Ontario, Canada. Aquat Ecosyst Health Manage 8(2):133–145

Nicholls KH (1997) A limnological basis for a Lake Simcoe phosphorus loading objective. Lake

Reser Manage 13(3):189–198

Ozersky T, Barton DR, Depew DC et al (2011) Effects of water movement on the distribution of

invasive dreissenid mussels in Lake Simcoe, Ontario. J Great Lakes Res 37:46–54

Ozersky T, Barton DR, Hecky RE, Guildford SJ (2013) Dreissenid mussels enhance nutrient

efflux, periphyton quantity and production in the shallow littoral zone of a large lake. Biol

Invasions 15(12):2799–2810

Pinardi M, Fenocchi A, Giardino C et al (2015) Assessing potential algal blooms in a shallow

fluvial lake by combining hydrodynamic modelling and remote-sensed images. Water

7:1921–1942

Prescott KL, Tsanis IK (1997) Mass balance modelling and wetland restoration. Ecol Eng 9

(1-2):1–18

Recknagel F (1984) A comprehensive sensitivity analysis for an ecological simulation model. Ecol

Model 26:77–96

Recknagel F, Benndorf J (1982) Validation of the ecological simulation model SALMO. Int Rev

Hydrobiol 67(1):113–125

Recknagel F, Hosomi M, Fukushima T, Kong D-S (1995) Short- and long-term control of external

and internal phosphorus loads in lakes – a scenario analysis. Water Res 29(7):1767–1779

Schwalb A, Bouffard D, Ozersky T et al (2013) Impacts of hydrodynamics and benthic commu-

nities on phytoplankton distributions in a large, dreissenid-colonized lake (Lake Simcoe,

Ontario, Canada). Inland Waters 3(2):269–284

Shimoda Y, Arhonditsis GB (2016) Phytoplankton functional type modelling: running before we

can walk? A critical evaluation of the current state of knowledge. Ecol Model 320:29–43

Skerratt J, Wild-Allen K, Rizwi F et al (2013) Use of a high resolution 3D fully coupled

hydrodynamic, sediment and biogeochemical model to understand estuarine nutrient dynamics

212 G. Arhonditsis et al.

https://doi.org/10.1007/s10452-015-9544-1
https://doi.org/10.1007/s10452-015-9544-1
https://doi.org/10.1016/S0304-3800(00)00381-1


under various water quality scenarios. Ocean Coast Manage 83:52–66. doi:10.1016/j.

ocecoaman.2013.05.005

Spear RC (1997) Large simulation models: Calibration, uniqueness and goodness of fit. Environ

Model Softw 12:219–228

Stepanenko VM, Martynov A, J€ohnk KD et al (2013) A one-dimensional model intercomparison

study of thermal regime of a shallow, turbid midlatitude lake. Geosci Model Dev 6(4):1337–

1352. doi:10.5194/gmd-6-1337-2013

Stepanenko V, J€ohnk KD, Machulskaya E et al (2014) Simulation of surface energy fluxes and

stratification of a small boreal lake by a set of one-dimensional models. Tellus A 66. doi:10.

3402/tellusa.v66.21389

Streeter HW, Phelps EB (1925) A study of the pollution and natural purification of the Ohio river.

III. Factors concerned in the phenomena of oxidation and reaeration, Public Health Bulletin

no. 146, Reprinted by US Department of Health, Education and Welfare, Public Health

Service, 1958, ISBN B001BP4GZI

Thomasen S, Chow-Fraser P (2012) Detecting changes in ecosystem quality following long-term

restoration efforts in Cootes Paradise Marsh. Ecol Indic 13(1):82–92

Wüest A, Lorke A (2003) Small-scale hydrodynamics in lakes. Annu Rev Fluid Mech 35:373–412

Yu N, Culver DA (1999) Estimating the effective clearance rate and refiltration by zebra mussels,

Dreissena polymorpha, in a stratified reservoir. Freshw Biol 41(3):481–492

10 Process-Based Modeling of Nutrient Cycles and Food-Web Dynamics 213

https://doi.org/10.1016/j.ocecoaman.2013.05.005
https://doi.org/10.1016/j.ocecoaman.2013.05.005
https://doi.org/10.5194/gmd-6-1337-2013
https://doi.org/10.3402/tellusa.v66.21389
https://doi.org/10.3402/tellusa.v66.21389


Chapter 11

Uncertainty Analysis by Bayesian Inference

George Arhonditsis, Dong-Kyun Kim, Noreen Kelly, Alex Neumann,
and Aisha Javed

Abstract The scientific methodology of mathematical models and their credibility

to form the basis of public policy decisions have been frequently challenged. The

development of novel methods for rigorously assessing the uncertainty underlying

model predictions is one of the priorities of the modeling community. Striving for

novel uncertainty analysis tools, we present the Bayesian calibration of process-

based models as a methodological advancement that warrants consideration in

ecosystem analysis and biogeochemical research. This modeling framework com-

bines the advantageous features of both process-based and statistical approaches;

that is, mechanistic understanding that remains within the bounds of data-based

parameter estimation. The incorporation of mechanisms improves the confidence in

predictions made for a variety of conditions, whereas the statistical methods

provide an empirical basis for parameter value selection and allow for realistic

estimates of predictive uncertainty. Other advantages of the Bayesian approach

include the ability to sequentially update beliefs as new knowledge is available, the

rigorous assessment of the expected consequences of different management

actions, the optimization of the sampling design of monitoring programs, and the

consistency with the scientific process of progressive learning and the policy

practice of adaptive management. We illustrate some of the anticipated benefits

from the Bayesian calibration framework, well suited for stakeholders and policy

makers when making environmental management decisions, using the Hamilton

Harbour and the Bay of Quinte—two eutrophic systems in Ontario, Canada—as

case studies.

11.1 Does Uncertainty Really Matter?

In the context of environmental management, the central objectives of policy

analysis and decision-making are to identify the important drivers of ecological

degradation, to pinpoint the sources of controversy, and to help anticipate the

unexpected. The explicit consideration of uncertainty enables one to think more
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carefully about these matters, to elucidate the relative role of different causal

factors, and to delineate contingency plans (Dawes 1988). Environmental problems

have a way of resurfacing themselves and are rarely (if ever) solved completely.

Nonetheless, even if some facets may change overtime, the core problems often

remain the same. Thus, having a framework that rigorously evaluates the underly-

ing uncertainty makes it much easier to distinguish between valid assumptions and

erroneous actions and, thus, maximize the efficiency of adaptive management

strategies (Morgan et al. 1992).

The concepts of “uncertainty” and “risk” are understood in a variety of different

ways by scientists, stakeholders, policy makers, and the public in ecology/environ-

mental science. Uncertainty is a generic term comprising many concepts

(Pappenberger and Beven 2006). No direct measurement of an empirical quantity

can be absolutely exact and, therefore, uncertainty arises from random error in

direct measurements. In addition, biases are often introduced through the measuring

apparatus and/or experimental protocols. This experimental procedure typically

reflects the systematic error associated with the difference between the true value

of the quantity of interest and the value to which the mean of the measurements

converges as more measurements are taken. Another source of uncertainty lies in

the subjective judgments used to overcome knowledge gaps and lack of empirical

measurements related to the major ecological mechanisms and/or variables under-

lying the environmental problem at hand. Inherent randomness is often perceived

as a distinctly different type of uncertainty in that it is in principle irreducible.

Nonetheless, this indeterminacy is not considered a matter of principle in environ-

mental science, but rather the product of our incomplete knowledge of the world. It

is argued that once we shed light on unknown causal variables and important

ecological processes, we should be able to reduce the apparent uncertainty. In

cases of environmental policy analysis, where there is no clear empirical evidence

and scientific support in favor of a certain management option, significant uncer-

tainty arises from potential disagreements among decision makers and stake-

holders, reflecting their different perspectives and conscious (or unconscious)

biases. Perhaps, the most familiar source of uncertainty is the variability that

environmental quantities demonstrate over time and space. While these quantities

can be effectively described by frequency distributions, what we typically fail to

acknowledge and effectively communicate is the degree of confidence about the

parameters (mean, median, standard deviation or various percentiles) of these

distributions given the available information in a certain location or time period.

Along the same line of thinking, all mathematical models are simplistic repre-

sentations of natural ecosystems and, therefore, their application in an environmen-

tal policy analysis context introduces the so-called approximation uncertainty
(Arhonditsis et al. 2007). This uncertainty stems from the assumptions made and

imperfect knowledge used to determine model structure and inputs (Beck 1987;

Reichert and Omlin 1997). Model input error mainly stems from the uncertainty

underlying the values of model parameters, initial conditions, and forcing functions

as well as the realization that all models are drastic simplifications of reality

that approximate the actual processes, i.e., essentially, all parameters are effective
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(e.g., spatially and temporally averaged) values unlikely to be represented by fixed

constants (Arhonditsis et al. 2006). Model structure error arises from (1) the

selection of the appropriate state variables (model endpoints) to reproduce ecosys-

tem functioning, given the environment management problem at hand; (2) the

selection of the suitable equations among a variety of mathematical formulations

for describing the ecosystem processes, e.g., linear, quadratic, sigmoidal, and

hyperbolic functional forms to reproduce fish predation on zooplankton (Edwards

and Yool 2000); and (3) the fact that our models are based on relationships which

are derived individually in controlled laboratory environments but may not collec-

tively yield an accurate picture of the natural ecosystem dynamics (Arhonditsis

et al. 2006).

The general premise for constructing mathematical models is to mirror the

complexity of natural systems and account for all the ecological processes that

can potentially become important in future hypothesized ecosystem states, and thus

increase our predictive ability. Nonetheless, by striving for increased model com-

plexity, and thereby (implicitly or explicitly) embracing a reductionist description

of natural system dynamics, we accentuate the disparity between what we want to

tease out from a mathematical model and what can realistically be observed given

the available technology, staffing, and resources to study the natural system. In

doing so, it often becomes impossible to impose quantitative (or even qualitative)

constraints on what should be considered “acceptable” model performance (Beven

2006). This problem profoundly undermines the very basic application of mathe-

matical models as inverse analysis tools, i.e., any information on the levels and the

variability of the state (or dependent) variables is used through the model calibra-

tion exercise to infer the most likely values of independent variables (model

parameters) typically representing ecological rates and functional properties of

the abiotic environment and/or the biotic communities. Instead, what modelers

encounter is a situation in which several distinct choices of model inputs lead to

the same model output, i.e., many sets of parameters fit the data about equally well.

This non-uniqueness of the model solutions is known in the modeling literature as

equifinality (Beven 1993). In recognition of the uncertainty and equifinality prob-

lems, it is suggested that the model calibration practice should change from seeking

a single “optimal” value for each model parameter, to seeking a distribution of

parameter sets that all meet a pre-defined fitting criterion (Stow et al. 2007;

Arhonditsis et al. 2007). These acceptable parameter sets may then provide the

basis for estimating prediction error associated with the model parameters.

Model uncertainty analysis is an attempt to formulate the joint probability

distribution of model inputs and then update our knowledge about this distribution

after the consideration of the calibration dataset. In this regard, Bayesian inference

represents a suitable means to combine existing information (prior) with current

observations (likelihood) for projecting the future. Several recent studies illustrate

how Bayesian inference techniques can be used to quantify the information that

data contain about model inputs, to offer insights into the covariance structure

among parameter estimates, and to obtain predictions along with uncertainty

bounds for model outputs (Bayarri et al. 2007; Arhonditsis et al. 2007, 2008a, b).
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Specifically, Bayesian calibration schemes have been introduced with simple math-

ematical models and statistical formulations that explicitly accommodate measure-

ment error, parameter uncertainty, and model structure error. Nonetheless, the

emergence of the holistic management paradigm has increased the demand for

even more complex biogeochemical models with considerably greater uncertainty

(Zhang and Arhonditsis 2008; Ramin et al. 2011; Reichert and Schuwirth 2012). In

particular, there is increasing pressure for the development of integrated water

quality models that effectively connect the watershed with downstream biogeo-

chemical processes. This need stems from the emerging management questions

related to contemporary climate and land use changes that should be connected with

the receiving water bodies (Rode et al. 2010). In this context, significant progress

has been made in regards to the computational demands and error propagation

control through complex model structures (Dietzel and Reichert 2012; Kim et al.

2014).

In this chapter, we present two case studies that illustrate how the assessment of

uncertainty can assist in developing integrated environmental modeling systems,

overcoming the conceptual or scale misalignment between processes of interest and

supporting information, and exploiting disparate sources of data that differ with

regards to their quality and resolution. The two systems are the Hamilton Harbour

and Bay of Quinte, Ontario, Canada. There is a great deal of modeling work that has

been done toward establishing realistic eutrophication goals and impartially eval-

uating the likelihood of delisting the two systems as Areas of Concerns (AOCs).

Existing watershed, eutrophication, and food web models shed light on different

facets of the ecosystem functioning. Here, we address several critical questions that

have emerged from these models: To what extent do the models coalesce with

respect to their assumptions and inference drawn? What are the major sources of

uncertainty that will ultimately determine the attainment of the existing delisting

goals? Our aim is to highlight the major lessons learned about the watershed

dynamics, the eutrophication phenomena, and the broader implications for food

web integrity. We also place special emphasis on the knowledge gaps of our current

understanding of the two systems. Our thesis is that the uncertainty stemming from

several “ecological unknowns” can offer critical planning information to determine

the optimal management actions in the two areas.

11.2 Hamilton Harbour

11.2.1 Introduction

Located at the western end of Lake Ontario, Hamilton Harbour is a large 2150 ha

embayment surrounded by a watershed of approximately 500 km2 (HH RAP 2003).

The harbour has a roughly triangular shape with a length of 8 km along its main axis

and a maximum width of 6 km along its eastern shoreline. It has a maximum depth
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of 23 m, an average depth of 13 m, a surface area of 21.5 km2, and a volume of

2.8 � 108 m3. The harbour exchanges water with western Lake Ontario via the

Burlington Ship Canal, which is a man-made canal, 836 m long, 89 m wide and

9.5 m deep. The residence time of the harbour is significantly reduced by these

exchange flows, which have a large influence on water quality and hypolimnetic

dissolved oxygen concentrations (Yerubandi et al. 2016). The majority of the loads

of inorganic nutrients and organic matter entering Hamilton Harbour originate from

the Woodward and Skyway wastewater treatment plants (WWTPs), combined

sewer overflows (CSOs), and ArcelorMittal Dofasco and Stelco steel mills

(Hiriart-Baer et al. 2009). Other significant loads are delivered by three main

tributaries that feed into the Harbour: Grindstone Creek, Red Hill Creek, and

Spencer Creek, which reaches the harbour through a 250 ha shallow area of both

marsh and open water called Cootes Paradise (HH RAP 2003). While the Redhill

Creek watershed is ~80% urbanized, much of Grindstone and Spencer Creeks

remain undeveloped as less than 20% of their watershed areas has been developed

(HH RAP 2003). As a consequence of the excessive loading of nutrients and other

pollutants, the harbour experiences serious water quality problems, such as algal

blooms, low water transparency, predominance of toxic cyanobacteria, and low

hypolimnetic oxygen concentrations often beginning in early summer.

Hamilton Harbour has long been considered one of the most degraded sites in the

Great Lakes, and was listed as one of the 43 Areas of Concern (AOCs)1 in the

mid-1980s by the Water Quality Board of the International Joint Commission (Hall

and O’Connor 2016). Since then, the Hamilton Harbour Remedial Action Plan

(RAP) has assembled a variety of government, private sector, and community

participants to decide on actions to restore the harbour environment. To this end,

the RAP identified a number of beneficial use impairments2 (BUIs), including the

beneficial use Eutrophication or Undesirable Algae (HH RAP 2003). The founda-

tion of the remedial measures and setting of water quality goals for the restoration

of the harbour was based on the premise that reducing ambient phosphorus con-

centrations could control the chlorophyll a concentrations and water clarity. Using a

framework that involved data analysis, expert judgment, and modeling along with

consideration of what was deemed desirable and achievable for the harbour (Hall

et al. 2006), critical thresholds for the TP concentration were set at 17 μg L�1,

chlorophyll a concentration at 10 μg L�1, Secchi disc depth at 3.0 m, whilethe

1Great Lakes Areas of Concern are designated geographic areas within the Great Lakes Basin that

show severe environmental degradation.
2An impairment of beneficial uses means a change in the chemical, physical or biological integrity

of the Great Lakes system sufficient to cause any of the following: Restrictions on Fish and

Wildlife Consumption; Tainting of Fish and Wildlife Flavor; Degraded Fish and Wildlife

Populations; Fish Tumors or Other Deformities; Bird or Animal Deformities or Reproductive

Problems; Degradation of Benthos; Restrictions on Dredging Activities; Eutrophication or Unde-

sirable Algae; Restrictions on Drinking Water Consumption or Taste and Odor Problems; Beach

Closings; Degradation of Aesthetics; Added Costs to Agriculture or Industry; Degradation of

Phytoplankton and Zooplankton Populations; Loss of Fish and Wildlife Habitat.
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maximum allowable exogenous TP loadings in the harbour were set at 142 kg day�1

(Charlton 2001). Reductions of external TP loading into the harbour led to water

quality improvement and resurgence of aquatic macrophytes, but the system still

receives substantial loads of phosphorus, ammonia, and suspended solids from the

WWTPs, as well as from non-point loading sources and, therefore, only moderate

improvements in TP, chlorophyll a and total ammonia concentrations have been

observed since the mid-1990s (Hiriart-Baer et al. 2009, 2016).

Environmental modeling has been an indispensable tool of the Hamilton Har-

bour restoration efforts and a variety of data-oriented and process-based models are

in place to determine realistic water quality goals. However, none of the existing

modeling efforts in the Hamilton Harbour had rigorously assessed the effects of the

uncertainty underlying model predictions (parametric and structural error,

misspecified boundary conditions) on the projected system responses, nor have

models to address percentile-based standards been used (Zhang and Arhonditsis

2008). Given the substantial social and economic implications of management

decisions, it is important to implement modeling practices accommodating the

type of probabilistic standards that seem to be more appropriate for complex

environmental systems, such as the Hamilton Harbour (Ramin et al. 2011). In the

following sections, we review the modeling efforts conducted to date in order to

quantitatively assess the uncertainty in implementing management actions, and to

highlight the applicability of percentile-based standards for setting water quality

targets in the Hamilton Harbour and its watershed.

11.2.2 Eutrophication Modeling to Elucidate the Role
of Lower Food Web

A series of process-based eutrophication models were built to depict the interplay

among the different ecological mechanisms underlying the eutrophication prob-

lems, and to guide a water quality criteria-setting process that explicitly acknowl-

edges the likelihood of standards violations in Hamilton Harbour (Gudimov et al.

2010, 2011; Ramin et al. 2011, 2012). As a starting point, Ramin et al. (2011)

developed an ecological model that considered the interactions among eight state

variables: nitrate, ammonium, phosphate, generic phytoplankton, cyanobacteria,

zooplankton, organic nitrogen, and organic phosphorus. The model was based

on a two-compartment vertical segmentation representing the epilimnion and

hypolimnion of the harbour. The planktonic food web model was subsequently

calibrated with Bayesian inference techniques founded upon a statistical formula-

tion that explicitly accommodated measurement error, parameter uncertainty, and

model structure imperfection. Concurrently with the Ramin et al. (2011) study,

Gudimov et al. (2010) conducted a second (independent) modeling exercise with an

upgraded model structure that utilized a three-compartment vertical segmentation

representing the epilimnion, metalimnion, and hypolimnion, included three
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phytoplankton functional groups to more realistically depict the continuum

between diatom and cyanobacteria-dominated communities, and two zooplankton

functional groups to account for the role of herbivorous and omnivorous zooplank-

ton in the system. With these approaches, both Ramin et al. (2011) and Gudimov

et al. (2010) provided a good representation of the seasonal variability of the

prevailing water quality conditions and accurately reproduced the major cause-

effect relationships underlying the harbour dynamics. Using the upgraded model

structure, Gudimov et al. (2011) revisited several of the critical assumptions made

in the previous two studies, and further explored the general uncertainty involved in

their assumptions of ecosystem functioning. Building from these models, Ramin

et al. (2012) used Bayesian averaging techniques to synthesize the forecasts from

models of differing complexity to examine the robustness of earlier predictions

regarding the harbour’s response to nutrient loading scenarios (see Chap. 16).

These models collectively addressed two critical questions regarding the present

status and future response of the Hamilton Harbour system: Is it possible to meet the

eutrophication delisting goals of the AOC, if the RAP’s proposed nutrient loading

reduction targets are actually implemented? How frequently would these water

quality goals be violated? The adoption of a water quality criterion that permits a

pre-specified level of violations in space and time offers a more realistic assessment

of the anticipated water quality conditions as it accommodates both natural vari-

ability and sampling error. Overall, similar projections were achieved by Ramin

et al. (2011) and by Gudimov et al. (2010), projecting that the 17 μg TP L�1 target

would likely be met if the RAP phosphorus-loading target of 142 kg day�1 were

achieved. However, by using a more representative summer epilimnetic TP dataset

to calibrate the eutrophication model, Gudimov et al. (2011) demonstrated that the

latter water quality target was too stringent, and most likely unattainable

(Fig. 11.1). As corroborated by Ramin et al. (2012), a more pragmatic goal of

20 μg TP L�1 would permit an acceptable frequency level of violations, e.g.,<10%

of the weekly samples during the stratified period (Fig. 11.1).

In contrast to the TP criterion, and depending on the assumptions made about the

strength of the top-down control, as well as the importance of the internal nutrient

sources (e.g., phosphorus release from the sediments, nutrient mineralization),

Ramin et al. (2011) and Gudimov et al. (2010) provided evidence that the mean

chlorophyll a target was achievable, although their projections had >50% proba-

bility of exceeding the 10 μg L�1 threshold level, even under the most drastic

external nutrient loading reduction scenarios. In a follow-up study, Gudimov et al.

(2011) revisited the ecological parameterization of the previous two models in

order to test whether the chlorophyll a criterion could be achieved with a lower

frequency of violations. With this analysis, two critical “ecological unknowns”

were identified to influence the model’s capacity to assess compliance with the

chlorophyll a criterion; namely, the importance of the epilimnetic nutrient regen-

eration mediated by the microbial food web, and the likelihood of a structural shift

in the lower food web towards a zooplankton community dominated by large-sized

and fast-growing herbivores (e.g., Daphnia) (Gudimov et al. 2011). Given these

uncertainties, Ramin et al. (2012) emphasized that the criteria setting process
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Fig. 11.1 Chlorophyll a predictive distributions for different levels of TP concentrations under (a)
the present and (b) the Hamilton Harbour RAP loading targets (see text). Panel (c) illustrates the
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should allow for a realistic percentage of violations of the target, such that

exceedances of <10–15% of the weekly samples collected during the stratified

period should still be considered as compliance, in order to explicitly accommodate

the natural variability or inherent unpredictability of the system response.

In the same context, the uncertain role of planktivory and sediment diagenesis in

the system emerged as two additional important ecological mechanisms for achiev-

ing the water quality targets in Hamilton Harbour. Gudimov et al. (2010) provided

evidence that the anticipated structural shifts of the zooplankton community could

determine the restoration rate, as well as the stability of the new trophic state in the

harbour. Larger zooplankton taxa are particularly efficient in suppressing the

standing phytoplankton biomass, but are also preferentially consumed by fish,

and therefore the level of planktivory may shape the response rate to the nutrient

loading reductions (Gudimov et al. 2010). Further, Gudimov et al. (2011) demon-

strated that the epilimnetic TP concentrations were highly sensitive to the internal

phosphorus loading assumptions, as a nearly two-fold increase of the sediment

fluxes dramatically increased the number of violations of the TP delisting target.

Thus, the internal nutrient loading from the sediments may be an important

regulatory factor of the harbour.

The accuracy of the predictions made by the eutrophication model is conditional

upon the credibility of the nutrient loading estimates to the harbour, which were

highly uncertain and inadequately accounted for the contribution of non-point

sources, episodic meteorological events (e.g., spring thaw, intense summer storms),

and short-term variability at the local WWTPs (Gudimov et al. 2010, 2011). These

uncertainties could potentially influence the exceedance frequency and the confi-

dence of compliance with the water quality standards, particularly during the

summer-stratified period (Gudimov et al. 2010). Given the pivotal role played by

ambient phosphorus in the ecology of this system, there is a clear need to improve

the tributary loading estimates in the area.

11.2.3 Nutrient Export Modeling for the Hamilton Harbour
Watershed

The identification of the major nutrient source areas in the Hamilton Harbour

watershed is of great management interest, as subwatersheds characterized by

both high total delivery and high delivery per area are priority areas for manage-

ment intervention. However, considerable knowledge gaps exist regarding the

⁄�

Fig. 11.1 (continued) predictive distributions of chlorophyll a and epilimnetic TP concentrations

examined to accommodate the inter- and intra-annual variability. Vertical dashed lines indicate the
water quality targets of 10 μg�L�1 chl a and 20 μg�L�1 epilimnetic TP [Reproduced from Gudimov

et al. (2011)]
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complex interplay among hydrological factors, geological features, land uses, and

spatial patterns of the built environment that modulates the attenuation rates of

nutrient and contaminants. Following the development of the eutrophication

models, Wellen et al. (2012, 2014a, b, c) employed two different watershed models

to advance our understanding of how urban sites cycle nutrients and contaminants,

so planning decisions that least impact Hamilton Harbour can be better informed.

Wellen et al. (2012, 2014a) implemented Bayesian inference techniques to

parameterize the SPARROW (SPAtially Referenced Regressions On Watershed

attributes) non-linear regression model in the Hamilton Harbour watershed. SPAR-

ROW is a spatially distributed, hybrid empirical/process-based model that esti-

mates the relation between in-stream measurements of nutrient fluxes and the

sources and sinks of nutrients within watersheds over annual timescales (McMahon

et al. 2003). Source processes are described with export coefficients that predict TP

mobilization, while the sink processes are represented by delivery factors,

predicting how landscape attributes modulate the delivery of mobilized TP to

streams, and attenuation coefficients, predicting the amount of the delivered TP

remaining in transit per length of stream or per reservoir. With the SPARROW

strategy, a two-level hierarchical structure is implemented, where watersheds are

first divided into subwatersheds that each drain to a water-quality monitoring

station, then each subwatershed is further divided into reach catchments draining

to a particular stream segment (Schwarz et al. 2006).

Using data from Ontario’s Provincial Water Quality Monitoring Network

(PWQMN), Wellen et al. (2012, 2014a) offered the first estimates of export

coefficients and delivery rates from the different subcatchments and generated

testable hypotheses regarding the nutrient export “hot spots” in the studied water-

shed. The derived total phosphorus export estimates suggest that urban land uses

may export more phosphorus per area than agricultural lands. This finding was

somewhat contrary to the popular notion that the rates of nutrient export from urban

lands are lower than those of agricultural lands due to lower nutrient subsidies.

Wellen et al. (2014a) was able to show that subwatersheds which are both large and

in close proximity to Hamilton Harbour have the highest nutrient delivery values

per area, as the attenuation of their loads en route to the system is very low and the

urban developments are more concentrated along the shore (Fig. 11.2).

The same modeling work has demonstrated that stream attenuation coefficients

are quite variable in time (Fig. 11.3). The mechanisms that modulate the variability

of nutrient attenuation across stream size are fairly well established in the literature.

They generally refer to the tighter coupling of smaller streams with their stream-

beds, whereby biological and chemical removal processes in the sediments have

greater access to nutrients in the water column (Alexander et al. 2004). The longer

hydraulic residence time of smaller streams allows these processes to operate for

longer times. Recent work suggests that stream stage explains the inter-annual

variation of nutrient attenuation at a particular site over time, implying that the

coupling between streambed and water column changes from year to year (Basu

et al. 2011). Consistent with these findings, Wellen et al. (2012) showed that the

inter-annual variability of the average discharge, a function of stream stage, can
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explain more than half of the variability of stream attenuation estimates from the

SPARROW model in higher-order streams.

An interesting implication of the Hamilton Harbour’s SPARROW modeling is

that the year-to-year variability of the contribution of phosphorus source areas may

be strongly affected by the capacity of stream reaches to attenuate nutrient loads

(Fig. 11.4). Empirical studies of nutrient uptake in rivers indicate significant

variability of nutrient attenuation rates at annual timescales for phosphorus

(Doyle et al. 2003) and nitrogen (Claessens et al. 2009). Donner et al. (2004)

found that nutrient attenuation rates varied nearly two-fold between wet and dry

years in the Mississippi River, with wet years exhibiting lower attenuation. Basu

et al. (2011) also showed an inverse relationship between stream stage and nutrient

attenuation that was consistently manifested across spatial and temporal scales.

This finding implies that fluctuations in stage (and discharge) may indeed affect the

spatial location of significant nutrient source areas at various scales. While previous

research has documented the variability of in-stream attenuation at annual time-

scales, the Hamilton Harbour modeling work allowed estimating how this variabil-

ity impacts basin-scale nutrient source areas.

Wellen et al. (2014a) applied the SPARROW model to evaluate the potential

improvement of parameter estimates (and the decrease of predictive uncertainty) if

the precision of the currently available nutrient loading estimates in Hamilton

Harbour is increased. Parameter identification was overwhelmingly improved

with an increase in the spatial intensity of sampling stations, while an increase in

the credibility of the measured nutrient loads significantly reduced the uncertainty

of the model predictions, even when the number of stations monitored was halved

(Wellen et al. 2014a). When a higher quality dataset was used to parameterize the

model, the subwatersheds that displayed the greatest contraction in their 95%

Percent Percent/Area
0.02 − 1.4 0.01 − 0.09

0.09 − 0.18
0.18 − 0.26
0.26 − 0.34
0.34 − 0.43
1.15

1.4 − 2.8
2.8 − 4.2
4.2 − 5.6
5.6 − 7.0
55.3

0 10

Hamilton Harbour Hamilton HarbourKilometers

0 10

Kilometers

Fig. 11.2 Estimated contribution of each subwatershed to the total phosphorus loading in

Hamilton Harbour. The map on the left expresses the load of each subwatershed as a percentage

of the total phosphorus load, including the combined sewer overflows and taking into account

attenuation en route to Hamilton Harbour. The map on the right normalizes the percentage

contribution by the corresponding subwatershed areas [Reproduced from Wellen et al. (2014a)]
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Fig. 11.3 (Upper panels) Scatterplots of yearly total phosphorus stream attenuation rates

(ks1 refers to attenuation in first- and second-order streams, ks2 to attenuation in third- and
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Fig. 11.3 (continued) higher-order streams) against annual average streamflow. (Bottom panels)
Time series plots of the two attenuation coefficients over a 22-year study period (1988–2009).

Dashed black lines indicate upper and lower limits of the 95% credible intervals (In Bayesian

statistics, a credible interval is an interval in the domain of a posterior probability distribution

used for interval estimation. Credible intervals are analogous to confidence intervals in frequentist

statistics, but differ on a philosophical basis; Bayesian intervals treat their bounds as fixed and the

estimated parameter as a random variable, whereas frequentist confidence intervals treat their

bounds as random variables and the parameter as a fixed value.); solid black lines indicate the

medians of the posterior distributions of the two coefficients. Grey lines depict the attenuation rate
values typically reported in the literature [Reproduced from Wellen et al. (2012)]

Hamilton Harbour

Third and higher order streams

0.03 − 0.16

0 10

Kilometers

0.16 − 0.32

0.32 − 0.47

0.47 − 0.63

0.63 − 0.79

0.79 − 0.95

0.95 − 1.10

1.10 − 1.26

Percent Delivered Yield

Fig. 11.4 Spatio-temporal variability of total phosphorus delivered yield at the watershed (top
panels) and reach (bottom panels) scales. (Left panels) The percent contribution of total load into

the Hamilton Harbour per square kilometer for 2006, the year with the lowest value of ks2. (Right
panels) The percent contribution of total load to the Harbour per square kilometer for 1999, the

year with the highest value of ks2 [Reproduced from Wellen et al. (2012)]
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credible intervals were the headwater streams as well as locations closest to the

harbour characterized by high delivery rates and urban land uses (Fig. 11.5). Using

the uncertainty patterns provided by the SPARROW model predictions, Wellen

et al. (2014a) proposed that additional water-quality data-collection efforts in the

watershed should be focused on “hot spots” sites characterized by: (1) a mid-range

likelihood of impairment (i.e. the probability of exceeding a threshold level lying

within the 25–75% range); (2) model predictions of unacceptably high variance;

(3) locations where data uncertainty drives the model residuals; and/or (4) locations

where modeled loads showed the greatest reduction in the width of their 95%

credible intervals when higher quality dataset are obtained.

Even though the SPARROW modeling exercise has gained considerable

insights, the annual resolution of the latter model, along with the fact that the

PWQMN program collects monthly samples primarily during baseflow conditions,

impedes the accurate characterization of TP dynamics during high flow conditions.

In particular, examination of the daily flows of Redhill and Grindstone Creeks

supports the idea of a single threshold separating two states of response of the two

Creeks to precipitation (Wellen et al. 2014b). Figure 11.6 shows scatterplots of

log10 transformed daily flows and averages of the previous 2 or 3 days of precip-

itation along with the fitted piecewise regressions. These periods were chosen to

implicitly include the effect of antecedent moisture. The data used are from the

period 1988–2009, representing the months from May through November. Redhill

Creek’s threshold was estimated at a 2-day average of 7.7 mm, and would be

reached by one day with 15.2 mm of precipitation or 2 days of 7.7

mm. Grindstone Creek’s threshold was estimated to be a 3-day average of 5.0

mm. It was hypothesized that the watershed response to precipitation occurs in

distinct states, such that precipitation depth above these thresholds triggers an

Fig. 11.5 Value of information of additional monitoring in the Hamilton Harbour watershed.

Maps show the difference between the width of the 95% credible intervals of the posterior loading

estimates derived from the high and the current precision scenarios for sampling with all 24 stations

originally used to calibrate the SPARROWmodel (right) and sampling with a subset of 12 stations

(left) [Reproduced from Wellen et al. (2014a)]
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extreme state, which is characterized by a qualitatively different response of the

watershed to precipitation.

To solidify this working hypothesis, Long et al. (2014, 2015) collected 87 24-h

level-weighted composite samples from a variety of catchment states (rain, snow-

melt, baseflow) from all four major tributaries to Hamilton Harbour between July

2010 and May 2012. The key findings from this research were as follows: (1) daily

TP loads varied by three orders of magnitude between wet and dry conditions, with

storm events and spring freshets driving peak daily loads in urban and agricultural

watersheds, respectively; (2) areal TP loads were significantly higher from the

urban relative to the agricultural watersheds; and (3) the characterization of TP

concentrations during high flow conditions was essential in establishing accurate

concentration versus flow relationships and subsequently nutrient load estimates.

The brief but intense events that occurred less than 10% of the time were found to

be responsible for 50–90% of TP loads delivered from local tributaries.

Capitalizing upon this high-resolution dataset, a SWAT model was used to

simulate the water cycle and sediment export in the area (Wellen et al. 2014b, c).

Surface runoff is the primary pathway through which many pollutants (including

phosphorus) enter waterways, and so identifying sources of surface runoff can aid

in locating possible pollutant source areas (McDowell and Srinivasan 2009). In

Fig. 11.7, estimates of surface runoff generation are presented for the different land

uses in Redhill and Grindstone Creeks across three formulations (i.e., different

statistical configurations of the Bayesian calibration framework; see Wellen et al.

2014b). Runoff generated during the entire year was distinguished from runoff
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Fig. 11.6 Piecewise regression graphs relating the 2- or 3-day average precipitation to the daily

streamflow measured from 1988 to 2009. Only data from the months May–November are plotted.

Statistics below graphs show the means and, in parentheses, standard deviations of the parameters

of the regressions [Reproduced from Wellen et al. (2014b)]
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generated during the growing season (May–September), as this is the period when

the receiving water body is most sensitive to eutrophication. In both Creeks, urban

land use generated the greatest depth of runoff; 245–262 mm for Redhill Creek and

202–240 mm for Grindstone Creek. For Redhill Creek, this compares to

51–183 mm for crops, 26–76 mm for forest, 34–149 mm for pasture, and

34–106 mm for urban green space. For Grindstone Creek, the urban runoff estimate

compares to 11–45 mm for crops, 3–16 mm for forest, and 3–21 mm for pasture.

During the growing season, this disparity became more acute, particularly in

Grindstone Creek. Between May and September, runoff generation in Redhill

Creek ranged from 8–51 mm for crops, 4–16 mm for forest, 6–37 mm for pasture,

and 6–29 mm for urban green space. For Grindstone Creek, this compares to 1 mm

for crops, <1 mm for forest, and <1 mm for pasture. Urban areas effectively

by-pass catchment storage, as nearly all the precipitation falling on them becomes

surface runoff and reaches the stream in less than one day, leaving little time for

evapotranspiration. While the importance of urban areas as a surface runoff source

increased slightly during the growing season in Redhill Creek, the model surpris-

ingly predicts that almost no surface runoff reaches the stream from any of the

pervious surfaces in Grindstone Creek from May to September. While it is likely

that the contribution of runoff for Grindstone Creek is somewhat underestimated,
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by different land uses. Formulations 1–3 correspond to different statistical configurations of the
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there seem to be important differences in soil type and/or vegetation cover between

the two catchments which may be responsible for generating the markedly different

amounts of runoff during the growing season.

Despite the small aerial coverage of the agricultural areas in Redhill Creek (5%)

and the urban areas in Grindstone Creek (9%), these areas were responsible for

a disproportionate amount of overland sediment export to streams (Fig. 11.8).

Cropland was estimated to contribute between 20% and 30% of Redhill Creek’s
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total sediment export to streams (720–3299 tons), while urban areas were estimated

to contribute between 17% and 36% of Grindstone Creek’s total sediment export

(410–1830 tons). During the growing season, urban residential areas are the main

sources of sediment export to both streams, comprising 70–99% of all sediment

exported to streams in Redhill Creek (217–1143 tons) and 60–81% of all estimated

sediment exported to Grindstone Creek (74–214 tons).

During the calibration of the sediment routing submodel, reliable data were not

available on stream bankwidth and depth. In order to draw reliable inferences on the

sediment yield and streambed sediment storage status for Redhill and Grindstone

Creeks at the sub-basin scale, Wellen et al. (2014c) used the entire predictive range

of sediment storage for each subbasin (bed storage ¼ upstream sediment in þ
erosional sediment in � downstream sediment out) (Fig. 11.9). It was assumed that

if the 95% credible interval of the bed storage distribution was non-overlapping

Fig. 11.9 Estimated sediment yield and bed erosion status for Redhill and Grindstone Creeks

[Reproduced from Wellen et al. (2014c)]
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with zero, reliable statements could be made about whether the reach was gaining

or losing sediment during the period 2010–2012. If the bed storage was positive, the

reach was categorized as very likely aggrading, while if the bed storage was

negative, the reach was categorized as very likely degrading. If there was overlap

with zero, the reach was categorized as likely aggrading or degrading, depending on

which side of zero the median of the distribution laid. Some reaches categorized

as balanced, as their credible intervals of absolute bed storage were less than

1 ton per year. The headwater areas of both Creeks were classified as balanced,

while all the reaches losing sediment from their bed are located along the

main channel. The final downstream reach was characterized as gaining sediment

in both Creeks, reflecting the wider streams and gentler slopes. Notably, the

sub-basin characterized as having the highest class of sediment yield in Redhill

Creek’s southern end was in balance, indicating that the substantial agricultural

sediment mass estimated to be added to the streams in that reach was largely

propagated downstream. In Grindstone Creek, there are few reaches that are

storing sediment. In particular, the reaches containing most of the urban area

towards the mouth of the basin are either at balance or likely degrading, implying

that much of the urban sediment added to Grindstone Creek is exported

downstream.

11.3 Bay of Quinte

11.3.1 Introduction

The Bay of Quinte, a Z-shaped embayment at the northern end of Lake Ontario, has

experienced a long history of eutrophication problems, characterized by frequent

and spatially extensive algal blooms, predominance of toxic cyanobacteria, domi-

nance (or invasion) of undesirable fish species, and destruction of wildlife habitats

(Arhonditsis et al. 2016, Shimoda et al. 2016). Because of these ecological degra-

dation problems, the Great Lakes Water Quality Agreement between the United

States and Canada established a number of objectives, guidelines, and initiatives to

restore and maintain physicochemical and biological integrity. The Bay of Quinte

was designated as one of the 43 Areas of Concern around the Great Lakes by the

International Joint Commission (IJC) in 1986, whereby the Canadian government

made a commitment to introduce a comprehensive action plan that primarily aimed

to control nutrient loading from municipal sewage treatment plants. Phosphorus

reduction in detergents along with upgrades at the WWTPs resulted in a dramatic

reduction (>95%) of the phosphorus discharges from the 1960s, 215 kg day�1, to

the 2000s, <10 kg day�1 (Kinstler and Morley 2011).

Despite the substantial improvement of the ambient water quality conditions,

high P concentrations and summer cyanobacteria blooms remain a central issue in
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the bay (Watson et al. 2011). Invasions of zebra (Dreissena polymorpha) and

quagga (Dreissena bugensis) mussels have further complicated ecosystem structure

and functioning since the mid-1990s (Dermott and Bonnell 2011). In the post-

dreissenid era, total phosphorus concentrations demonstrate significant within-year

variability, characterized by relatively low spring and fall levels, 10–15 μg TP L�1,

and high summer concentrations, > 50 μg TP L�1 (Shimoda et al. 2016). This

ambient TP variability may also stem from the biological nutrient regeneration and

sediment diagenesis processes, reflecting the impact of the memory of the system

(Kim et al. 2013).

Existing empirical evidence suggests that the presence of dreissenids may have

led to structural changes that could ultimately be translated into an ecosystem

regime shift (deYoung et al. 2008). Namely, in the Bay of Quinte, increased light

penetration resulting from dreissenid filtration of suspended solids stimulated the

growth of submerged macrophytes that rapidly proliferated into deeper waters

(Leisti et al. 2012). Regarding the phytoplankton community, the dreissenid inva-

sion could cause shifts of the algal assemblage stemming directly from their feeding

selectivity or indirectly from an increase in water column transparency, although

the role of the feedback loop associated with their nutrient recycling activity could

not be ruled out (Arhonditsis et al. 2016). Specifically, the arrival of dreissenid

mussels coincided with both desirable (e.g., Aphanizomenon and Oscillatoria
decline) and undesirable (e.g., Microcystis increase) shifts in the phytoplankton

community composition (Shimoda et al. 2016). The increased frequency of harmful

algal blooms in the post-dreissenid period has profound ramifications for several

beneficial use impairments in the Bay of Quinte, such as Eutrophication or unde-
sirable algae, Restrictions on drinking water or taste and odor problems, and
Degradation of aesthetics.

Environmental modeling has been an indispensable tool of the Bay of Quinte

restoration efforts and a variety of data-oriented and process-based models have

been used for elucidating ecosystem dynamics and evaluating the likelihood of

delisting the system as an AOC. Quite recently, a network of models was developed

to connect the watershed processes with the dynamics of the Bay of Quinte (Zhang

et al. 2013; Arhonditsis et al. 2016; Kim et al. 2013, 2016, 2017). This integrated

watershed-receiving water body modeling framework has been used to evaluate

management scenarios that would lead to significant reduction of phosphorus

export from the Bay of Quinte watershed and to quantify the overall uncertainty

associated with the severity of the eutrophication phenomena in the area

(Fig. 11.10).
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Fig. 11.10 Conceptual diagram of the integrated phosphorus-modeling framework for the Bay of

Quinte. The spatial segmentation of the model for the receiving water body consists of the

following compartments: (U1) the segment that extends from the mouth of Trent River until the

city of Belleville; (U2) the segment that begins from the mouth of Moira River and comprises the

Big Bay, Muscote Bay, and North Point Bay; and (U3) the area influenced by the inflows of

Napanee River, extending until the outlet of Hay Bay. In the middle Bay, there are three segments

corresponding to the main stem (M1) and the two adjacent embayments: Hay Bay (M2), and Picton
Bay (M3). The lower segment of the Bay, representing the transitional area to Lake Ontario, was

separated into the epilimnetic (Le) and hypolimnetic (Lh) compartments. Numbers in parentheses
correspond to the average flushing rate of each segment [Reproduced from Arhonditsis et al.

(2016)]
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11.3.2 Modeling the Relationship Among Watershed
Physiography, Land Use Patterns, and Phosphorus
Loading

One of the emerging imperatives of eutrophication management is the advancement

of our understanding of the relationships among land use, agricultural activities,

hydrological processes, and water quality (Wellen et al. 2015). Prior to the water-

shed modeling exercise, Kim et al. (2016) implemented Self-Organizing Maps

(SOM) to gain insights into the physiographical features and land-use patterns in

the Bay of Quinte watershed, and to subsequently associate them with the phos-

phorus non-point source loading. In this application, eighteen classification vari-

ables were used, such as the landscape slope, saturated soil hydraulic conductivity,

soil bulk density, and areal fractions for different land use types (lakes, ponds,

alvars, bogs, coniferous swamps, deciduous swamps, fens, marshes, deciduous

forests, coniferous forests, cutovers, mining areas, urban lands, pastures, and

croplands) in 73 gauged and 137 ungauged subwatersheds. Thus, a total of 210 spa-

tial units were distributed on 2-dimensional hexagonal maps, and then clustered in

different groups according to their similarities.

Based on the spatial heterogeneity of these classification variables, SOM delin-

eated six spatial clusters in the Bay of Quinte watershed with fairly distinct land-use

patterns (Fig. 11.11). Coniferous and deciduous coverage along with pastures and

croplands dominate the landscape in cluster 1. Different types of wetlands, such as

fen (�10%), coniferous swamp (�8%), and alvar (�0.4%) have also their highest

areal fraction values in the same cluster. In cluster 2, the average landscape slope is

steep and the soil bulk density is high. The areal fractions of forests as well as

mining and logging sites are also high. In cluster 3, most of the subwatersheds are

located in the vicinity of the Bay of Quinte, where crops occupy �75% of the area.

Not surprisingly, the annual TP yield per area and average TP concentrations are the

highest (528 kg km�2 year�1 and 103 μg L�1) in these same regions. In cluster

4, soil hydraulic conductivity is significantly higher, deciduous swamp are more

abundant relative to the rest of the watershed, cropland coverage is the second

highest (�41%), and thus the net TP export is high. In cluster 5, urban land

represents �74% of the land-use coverage and net TP export and yield are the

second highest (3.72 tonnes year�1 and 209 kg km�2 year�1), which is further

accentuated by the increased point source loading (2.44 tonnes year�1). In cluster

6, pasture and cropland approximately correspond to 60% of the area, and these

subwatersheds are mainly located adjacent to the Bay of Quinte.

Nutrient loads, yields, and deliveries at landscape and regional scales were

estimated using the SPARROW model (Kim et al. 2017). The goodness-of-fit

between observed and predicted TP loading values from the SPARROW model

was excellent in the logarithmic scale (r2 > 0.95), although there were four sites

with errors greater than 10 tonnes year�1 when the SPARROW predictions were

back-transformed to the original scale. The posterior parameter values offered

insights into the patterns of phosphorus export and delivery in the Bay of Quinte
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Fig. 11.11 Map of Bay of Quinte watershed: (a) land use types, and (b) classification based on

artificial neural networks and associated phosphorus export per subwatershed [Reproduced from

Kim et al. (2016)]

11 Uncertainty Analysis by Bayesian Inference 237



watershed. The main findings from the SPARROW modeling exercise were as

follows: (1) urban areas are characterized by a fairly high areal phosphorus export

with a mean estimate of 126 kg of TP per km2 on an annual basis; (2) the

contribution of phosphorus from agricultural land uses can vary considerably

among the various crop types (30–127 TP kg per km2), but is generally lower

than the impact of urban sites. Similar to the Hamilton Harbour, this finding

contradicts the popular notion that rates of nutrient export from urban lands are

below those of agricultural lands due to lower anthropogenic nutrient subsidies,

such as fertilizer implementation (Moore et al. 2004; Soldat et al. 2009). Nonethe-

less, other studies in the region of Southern Ontario have found urban total

phosphorus export rates to be comparable (or even higher) than agricultural total

phosphorus export rates (Winter and Duthie 2000); (3) the crop-specific export

coefficient values were on par with those typically reported in the literature (Harmel

et al. 2008); (4) the attenuation rate in low flow streams (3.7% of TP per kilometer)

appears to be distinctly greater than in those with high flow (1.1% of TP per

kilometer); and (5) fallow areas are responsible for approximately 70 kg of TP

per km2 on an annual basis.

In the context of watershed management, the spatial distribution of net (instead

of the cumulative) TP loading that ultimately inflows into the receiving waterbody

was used to identify the most influential subwatersheds (Fig. 11.12). The percent-

age of net loading was mostly greater in the downstream catchment of the major

tributaries. By contrast, the relative contribution of the ungauged watersheds close

to the bay was significantly lower primarily due to their small areal extent

(Fig. 11.12a). On the other hand, the error associated with the estimates of the

relative contribution of the different subwatersheds was higher in the Trent River

basin (SE> 67%) than the rest of the tributaries. Interestingly, the Trent River’s
upper catchment also exhibited high variability in the percentage net TP loads

(Fig. 11.12b). The coefficient of variation (CV) values of the relative contributions

along with the net contributions normalized by the corresponding subwatershed

areas were also used to delineate the hot-spots in the Bay of Quinte watershed. The

highest CVs (>32%) were found in the upper catchment of Trent River

(Fig. 11.12c). Counter to the error estimates, however, the ungauged watershed

close to the bay was characterized by fairly high CVs (Fig. 11.12c). This trend was

more pronounced when the normalized percentage TP loads were considered

(Fig. 11.12d). Unlike the CV values, the normalized percentage TP loads were

low in the upper catchment of Trent River, but were distinctly higher in the lower

part of the watershed, especially near the bay (Fig. 11.12d). Overall, this strategy

pinpointed many locations close to the water body that may be responsible for

significant nutrient fluxes, due to their landscape attributes and soil characteristics

(Kim et al. 2017).
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11.3.3 Eutrophication Risk Assessment with Process-Based
Modeling and Determination of Water Quality
Criteria

The basis of the eutrophication risk assessment analysis was the mechanistic model

presented by Kim et al. (2013), which introduced several novel mathematical

formulations regarding the representation of macrophyte dynamics; the role of

dreissenids in the system; several processes related to the fate and transport of

phosphorus in the sediments along with the interplay between water column and

sediments, such as particulate sedimentation being dependent upon the standing

algal biomass, sediment resuspension, sorption/desorption in the sediment particles,

and organic matter decomposition. The model was then calibrated to match the

measured TP concentrations in the upper, middle, and lower segments of the Bay

during the 2002–2009 period (Kim et al. 2013; Arhonditsis et al. 2016). The model

demonstrated satisfactory ability to fit the monthly TP levels in the Bay of Quinte,

and was able to reproduce the end-of-summer increase of the ambient TP levels in

the upper segment, even in years (e.g., 2005) when the corresponding concentra-

tions were greater than 60 μg L�1. The model also faithfully depicted the spatial

gradients in the system, with distinctly higher TP levels in the upper segment

relative to those experienced in the middle/lower Bay (Kim et al. 2013).

The model was then used to draw inferences on the spatial variability of the

various external and internal TP flux rates in the Bay of Quinte (Fig. 11.13). The net

TP contributions (sources or sinks) represent the mass of phosphorus associated

with the various compartments (water column, sediments, macrophytes,

dreissenids) throughout the growing season (May–October) averaged over the

2002–2009 period. In the U1 segment, the phosphorus budget is predominantly

driven by the external sources (phosphorus loading: 159 kg day�1) and sinks

(outflows: 152 kg day�1). The sediments (resuspension and diffusion from the

sediments to water column minus particle settling) act as a net source of phosphorus

in this segment (57.9 kg day�1). Dreissenids subtract approximately 65.9 kg day�1

from the water column (particle filtration minus respiration) and subsequently

deposit 62.4 kg day�1 via their excretion and particle rejection. In a similar manner,

the U2 segment receives 206 kg day�1 from exogenous sources, including the

upstream inflows, and transports downstream 190 kg day�1. The net contribution

of the sediments accounted for 70.4 kg day�1, while dreissenids on average reduce

the ambient TP levels by 112 kg day�1. The main differences between the two

segments in the upper Bay are the TP fluxes related to macrophyte P intake from the

sediments and respiration that can reach the levels of 46.9 and 42.3 kg day�1

relative to the fluxes of 11.1 and 10.0 kg day�1 in the U1 segment. Likewise, the

macrophyte intake from the sediments minus the amount of P regenerated from the

decomposition of the dead plant tissues varies between 35 and 65 kg day�1 in

segments U3 andM1, while the subsequent release of their metabolic by-products is

approximately responsible for 19–26 kg day�1. The settling of particulate P dom-

inates over the resuspension and diffusion from the sediments to the water column
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with the corresponding net fluxes ranging between 25 and 35 kg day�1. In Hay Bay

(M2), the fluxes mediated by the macrophytes and dreissenids primarily modulate

the TP dynamics and the same pattern appears to hold true in Picton Bay (M3). In

the lower Bay of Quinte (Le and Lh), the model postulates a significant pathway

(>1100 kg P day�1) through which the inflowing water masses from Lake Ontario

well up from the hypolimnion to the epilimnion and are subsequently exported from

the system. In the same area, the internal biotic sources (macrophytes) similarly

represent an important vector of phosphorus transport.

In general, the Bay of Quinte modeling work highlights the internal recycling as

one of the key drivers of phosphorus dynamics. The flow from the Trent River is the

predominant driver of the dynamics in the upper segment until the main stem of the

middle area. However, the sediments in the same segment release a significant

amount of phosphorus and the corresponding fluxes are likely amplified by the

macrophyte and dreissenid activity. From a management standpoint, the presence

of a significant positive feedback loop in the upper Bay of Quinte suggests that the

anticipated benefits of additional reductions of the exogenous point and non-point

loading may not be realized within a reasonable time frame, i.e., 5–10 years (Kim

et al. 2013). Analysis of nutrient loading scenarios showed that the restoration pace

of the Bay could be slow, even if the riverine total phosphorus concentrations reach

levels significantly lower than their contemporary values, <25 μg TP L�1

(Fig. 11.14; see also Kim et al. 2013; Arhonditsis et al. 2016).

Bearing in mind that the TP targeted levels merely represent a “means to an end”

and not “the end itself”, the actual question that the stakeholders in the area ponder

is to what extent the anticipated benefits from a more efficient external phosphorus

loading control could also be capitalized as a significant decrease of the algal bloom

frequency? With respect to the total phytoplankton biovolume, Nicholls et al.

(2002) showed that it declined after the control of phosphorus in the 1970s, but

did not change significantly after the establishment of dreissenids in the system. As

previously mentioned, Nicholls and Carney (2011) showed that the arrival of

dreissenid mussels may be associated with positive (e.g., Aphanizomenon and

Anabaena decline) effects on the integrity of the Bay of Quinte ecosystem. How-

ever, the recent increase of the cyanophyte Microcystis has had significant impli-

cations for the aesthetics and other beneficial uses of the Bay of Quinte, through the

formation of “scums” on the water surface as well as the fact that some strains of

Microcystis are toxin producers. These structural shifts in the phytoplankton com-

munity composition could stem directly from the feeding selectivity of dreissenids

or indirectly from the improvements in the transparency of the water column

(Blukacz-Richards and Koops 2012), but the role of the feedback loop associated

with their nutrient recycling activity could conceivably be another important factor.

According to the predictions of a non-linear quantile regression model (Shimoda

et al. 2016), the current average TP concentrations (30–40 μg L�1) represent the

area where the algal biovolume vs TP relationship is characterized by a steep slope

and thus any further improvements in the ambient nutrient levels are likely to

induce more favorable quantitative and qualitative changes in phytoplankton

(Fig. 11.15). Nonetheless, existing empirical evidence from the system is indicative
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Fig. 11.14 Simulated maximum TP concentrations during the growing season (May–October) in

the Bay of Quinte. Upper panels (a) refer to the predictions associated with the reference

environmental conditions; and lower panels (b) represent the predictions of a TP loading reduction

scenario (60% point sources, 20% non-point sources, and 50% urban storm water). The first eleven

years (2002–2012) were based on real meteorological and nutrient loading conditions, while the

final (12th) year was forced with a wide range of combinations of TP riverine concentrations and

flows that were generated from the mean (� error) predictions of the SPARROWmodel. The white
contour line corresponds to the proposed targeted level of 40 μg TP L�1. The flushing rates express

the frequency (number of times) of water renewal in the upper Bay during the growing season. The

black dotted line represents a threshold level of 20 μg L�1 for the flow-weighted TP concentration

in all the major tributaries in the upper Bay of Quinte [Reproduced from Arhonditsis et al. (2016)]
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of a weak correlation between chlorophyll a and cyanobacteria toxin concentrations

(Watson et al. 2011), suggesting that a complex interplay among physical, chem-

ical, and biological factors may drive the spatiotemporal abundance and composi-

tion patterns of the algal assemblages in the Bay of Quinte (Nicholls et al. 2002). In

a system like the Bay of Quinte, where both external and internal loading drives the

severity of eutrophication phenomena, there will inevitably be some uncertainty in

the overall eutrophication risk assessment.

There are several compelling reasons (knowledge gaps, natural variability,

complex interactions among a suite of ecological mechanisms) to avoid overly

confident statements about the future response of this impaired system, and thus the

most prudent strategy is to explicitly recognize an acceptable level of violations of

the delisting goals. Specifically, Kim et al. (2013) challenged the usefulness of the

historical delisting criterion of a seasonal average TP concentration lower than

30 μg L�1, as it is neither a reflection of the considerable intra-annual variability in

the upper Bay nor representative of the water quality conditions in near shore areas

of high public exposure (e.g., beaches). It would seem very unlikely that a single-

value water quality standard monitored in a few offshore sampling stations can

capture the entire range of dynamics in the system (e.g., the extremes seen in the

near shore sites) or the magnitude of the end-of-summer TP peaks. Kim et al. (2013)

instead advocated the pragmatic stance that the delisting objectives should revolve

around extreme (and not average) values of variables of management interest and

must explicitly accommodate all the sources of uncertainty (insufficient informa-

tion, lack of knowledge, and natural variability) by permitting a realistic frequency

of standard violations. Namely, the critical threshold level should be set at a value

Fig. 11.15 Quantile regression model for total phytoplankton biovolume against monthly average

TP concentration in the Bay of Quinte (Arhonditsis et al. 2016)
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of 40 μg TP L�1, which cannot be exceeded more than 10–15% in both time and

space. Under the assumption that the TP concentrations in the Bay of Quinte follow

a log-normal distribution and that TP values <15 μg L�1 are likely to occur only

10% of the time during the growing season, then 10–15% exceedances of the 40 μg
TP L�1 level are approximately equivalent to a targeted seasonal average of 25–28

μg TP L�1. Thus, the replacement of the historical paradigm (binary assessment)

with a probabilistic approach to water quality criteria does not intend to make the

delisting of AOCs easier, but rather to offer a more comprehensive method for

tracking the prevailing conditions in the Bay.

11.4 Concluding Remarks

We have demonstrated some of the benefits for environmental management when

identifying the uncertainties and knowledge gaps of the natural environment,

differentiating between predictable and unpredictable patterns, and critically eval-

uating model outputs. The presentation of the model outputs as a probabilistic

assessment of environmental conditions makes the model results more credible for

local decision makers and stakeholders. The often-misleading deterministic state-

ments are avoided and environmental goals are set by explicitly acknowledging an

inevitable risk of not achieving 100% compliance in time and space. The acceptable

level of violations is then subject to decisions that reflect different socioeconomic

values and environmental priorities.

The Bayesian (iterative) nature of the presented modeling networks is concep-

tually similar to the policy practice of adaptive management, i.e., an iterative

implementation strategy that is recommended to address the often-substantial

uncertainty associated with water quality model forecasts and avoid the implemen-

tation of inefficient and flawed management plans. The use of Bayesian inference

techniques is also consistent with the scientific process of progressive learning and

offers a natural mechanism for sequentially updating our knowledge on model

inputs and structure every time new data are collected from the system. Thus,

modeling tools can be iteratively updated to accommodate the significant year-to-

year variability associated with the external nutrient loading or the weather condi-

tions, thereby serving as a reliable long-term management tool for policy analysis.

Importantly, the probabilistic statements provided from the Bayesian calibration

can also indicate where the limited monitoring resources should be focused (Zhang

and Arhonditsis 2008). In particular, additional data collection efforts should target

hot spots, where the model predictive distribution indicates a high probability of

non-attaining water quality goals or, alternatively, an unacceptably high variance.

Thus, we can assess the value of information (value of additional monitoring;

“Where should additional data collection efforts be focused?”) and subsequently

optimize the sampling design for environmental monitoring. In other words, uncer-

tainty does matter and its quantification is not an excuse to avoid providing answers
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to pressing environmental problems, but rather a prudent strategy to improve the

rigor of model-based management of our natural resources!
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Chapter 12

Multivariate Data Analysis by Means of

Self-Organizing Maps

Young-Seuk Park, Tae-Soo Chon, Mi-Jung Bae, Dong-Hwan Kim,

and Sovan Lek

Abstract Ecological data range widely in variability, showing non-linear and

complex relationships among variables. Although conventional multivariate ana-

lyses are useful tools to explore ecological data, data mining by non-linear methods

is preferred because a high degree of complexity resides in ecological phenomena.

One of these methods is artificial neural networks in machine learning based on

biologically inspired learning algorithms. Self-organizing map (SOM) is one of the

most popular unsupervised artificial neural networks and are commonly used to

seek patterns and clusters in ecological data. SOMs are versatile in analysing

non-linear and complex data, which are observed frequently in ecological systems.

In this paper, we explain the theory of SOMs and their application in ecological

modelling, with a focus on learning processes, visualization, preprocessing of input

data, and interpretation of results. We also discuss the advantages and disadvan-

tages of SOM approaches.

12.1 Introduction

Ecological data are complex both spatially and temporally. They range widely in

variability, showing non-linear and complex relationships between explanatory and

response variables, mixed with noise, redundancy, and outliers (Gauch 1982;
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Jongman et al. 1995; Park et al. 2003). Explaining variation in complex ecological

data through either statistical analyses or machine learning can be considered in two

steps: unsupervised and supervised approaches (Fig. 12.1). Although various ways

exist to extract information from datasets, unsupervised approaches are used con-

ventionally to summarize the variability in the data as a first step using statistical

methods, including classification (i.e. hierarchical cluster analysis, k-means, etc.) or

ordination (i.e. principal component analysis (PCA), nonmetric multidimensional

scaling (NMDS), detrended correspondence analysis (DCA), isometric feature

mapping (Isomap), etc.) as well as machine learning algorithms, including a self-

organizing map (SOM) (Park et al. 2003). Subsequently, this data analysis is

followed by supervised approaches in either statistical (e.g. regression analysis

and discriminant analysis) or learning algorithms (e.g. a multilayer perceptron)

(Fig. 12.1). The supervised approaches are helpful in investigating more specific

questions in the later phases of data analysis after information is initially extracted

from the original data.

PCA is an indirect gradient analysis method, seeking the strongest linear corre-

lation structure among variables (Legendre and Legendre 1998). It reduces multi-

dimensional data to lower dimensions that keep the characteristics of the raw data

as much as possible. Eigen values, which explain a portion of the original total

variance, are calculated, and then eigenvectors, which contain the coefficients of

Fig. 12.1 Schematic diagram of the modelling procedure. Unsupervised approaches are used to

summarize the properties of given data sets in the first step, and then supervised approaches are

used for the prediction and discrimination of variables in revealing input–output relationships. The

arrows represent a direct relationship between modelling steps
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the linear equation for a given axis, are founded. Finally, each axis score using the

eigenvector is shown in an ordination space (Bae et al. 2008).

DCA was developed to correct the distortions that occur in correspondence

analysis (Hill and Gauch 1980). The first dimension is split into several intervals

and the second axis scores are adjusted in order to make mean score within each

segment zero. As individual segments of each axis are expanded or contracted, the

within-sample variation of species scores is equalized (McCune and Grace 2002;

Bae et al. 2008).

NMDS maintains the rank ordering of the distances in a low dimensional space,

expressed as a monotonic function (Shepard 1962; Borg and Groenen 1997;

Mahechaa et al. 2007). It calculates the best position of the data on reduced

dimensions through an iterative search that minimizes the stress of the reduced

dimensions. “Stress” is a measure of departure from monotonicity in the relation-

ship between the dissimilarity distance in the original dimensional space and

distance in the reduced dimensional ordination space. The value of stress based

on Kruskal’s rules of thumb is between 0 and 100 (Daniel and Scott 2007). If the

value is close to 0, we can conclude NMDS result is appropriate to use (Bae et al.

2008).

Isomap (Tenenbaum et al. 2000) is an algorithm for the ordination, combining

the classical techniques of PCA and NMDS to a class of nonlinear manifolds

(Mahechaa et al. 2007). The algorithm is based on a nonlinear geodesic inter-

point distance matrix. Isomap defines residual variance to characterize how well the

low-dimensional Euclidean embedding captures the geodesic distances estimated

from the neighborhood graph. Lower residuals indicate better-fitting solutions, with

less metric distortion (Balasubramanian et al. 2002; Bae et al. 2008).

Bae et al. (2008) compared these four different ordination methods (i.e. PCA,

DCA, NMDS, and Isomap) for patterning water quality of reservoirs, and con-

cluded that PCA and NMDS appeared to be the most efficient methods based on the

explanation power. Although conventional multivariate analyses are useful tools to

explore ecological data, data mining by non-linear methods is preferred because a

high degree of complexity resides in ecological phenomena (Blayo and Demartines

1991). SOMs are unsupervised artificial neural networks (ANNs) that allow

non-linear data mining by means of biologically inspired learning algorithms, and

are applicable to classification and association (Park et al. 2003; Chon et al. 2004).

SOMs identify patterns and clusters in data effectively (Fig. 12.1), and visualize

properties of a dataset. By contrast, supervised ANNs reveal input-output relation-

ships within complex data that can be applied for predictive modelling

(e.g. Recknagel et al. 1997). In supervised ANNs, a ‘teacher’ in the learning

phase ‘tells’ the ANN how well it performs or what the correct behaviour should

be. The most popular supervised ANN is a multi-layer perceptron with a back-

propagation algorithm, which proves to be efficient for prediction and discrimina-

tion problems. In this chapter, we focus on the theory and application of SOMs in

ecological modelling.
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12.2 Properties of a Self-Organizing Map

SOMs were proposed by Kohonen (1982, 2001) in the early 1980s and are also

known as Kohonen networks or Kohonen feature maps. An SOM approximates the

probability density function of the input data and is used in clustering, visualization,

and abstraction (Kohonen 2001). The algorithm performs a topology-preserving

projection of the data space onto a regular low-dimensional space. Theoretically,

there is no limitation in the dimensional space, but usually a two-dimensional space

is preferred because of the ability of human perception. The SOM puts the dataset

on the map preserving the neighbourhood, so similar patterns in the dataset are

mapped close together on the grid.

In the learning process, the SOM calculates the distance between the samples

and virtual computational units (details of this process are provided in following

sections). This distance is influenced by the properties of the input datasets.

Therefore, the final output stems from the input dataset. If the data have high vari-

ability due to undesired sources (e.g., noise), output data variation will not be

represented properly in the reduced dimension. A preprocessing step is needed

prior to SOM training to overcome the problems due to undesired sources such as

missing values, outliers, and extremes. In addition, data transformation may be

needed for handling extreme values, different data distribution patterns, periodic

properties, etc. Therefore, we first consider the issues with data preparation.

12.3 Data Preparation

12.3.1 Missing Values and Outliers

Missing values can be treated in three ways: deletion, skipping, or replacement.

(1) The simplest way to treat missing values is to delete any row or column of the

data matrix containing missing values. However, this is the most costly method

because valuable information present in the data can be lost when it is removed

along with the missing values. (2) Missing values can be skipped during the

numerical calculation by recording them in the data matrix. Conventionally, we

use ‘NaN’ for ‘not available’ or ‘�9999’ for values that are impossible to observe in

the actual data. (3) Estimated values can be used to replace the missing values,

including the mean, median, values obtained by regression or prediction models,

and interpolated values by autocorrelation. This method is usually the most suitable

when missing values are scattered over the data matrix.

Outliers are recorded values of measurements in variables that are outside the

range of the bulk of the data (Ellison and Gotelli 2004; Osborne and Overbay 2004).

They may be noise, but they may also reflect actual ecological processes. Therefore,

they should be carefully considered.
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12.3.2 Data Transformation

Transformations are conducted as a preprocessing procedure to meet the assump-

tions of applying statistical approaches if there are extreme differences or different

distribution patterns among measured values for variables.

Logarithmic transformation: Logarithmic transformation may be used for vari-

ables with a high degree of variation. This type of transformation is one of the most

commonly used in ecological studies. It compresses high values while spreading

low values by expressing the values as orders of magnitude. To avoid the problem

of log (0) being undefined, a value of one is added to all data points before applying

the transformation.

Standardization: Standardization, also called variance normalization, is a linear

transformation that scales values with a mean ¼ 0 and variance ¼ 1, thus making

the data dimensionless. It is useful for studying environmental variables in ecolog-

ical studies. Then, the transformed variables can be compared to each other conve-

niently. Both positive and negative values are produced by the transformation,

so it is not compatible with proportion-based distance measures such as a Sorensen

distance (McCune and Grace 2002).

Range normalization: Range normalization is a linear transformation that scales

the values between 0 and 1. This transformation is used to provide the same weights

to different variables by rescaling. For example, in multivariate analysis of com-

munities, abundant species contribute more than rare species do. To avoid this,

species abundance can be transformed by rescaling the range between the minimum

and maximum.

Binary transformation: Both quantitative and qualitative data can be converted

to binary data (i.e. either 0 or 1). Quantitative data can be transformed to binary

according to a threshold value, which can be the mean, median, or other values. If a

value is less than or equal to the threshold value, it is designated as zero, otherwise

it becomes a one. When several different threshold values are used, ordinal data is

ranked. In addition, qualitative variables can be transformed into binary as dummy

variables. This transformation allows the use of qualitative descriptors in multi-

variate analyses (Legendre and Legendre 1998).

Details on data transformation are available in statistical analysis and data

mining books, including McCune and Grace (2002) and Legendre and

Legendre (1998).

12.3.3 Distance Measure

The first step in the multivariate analysis is the calculation of distances or similar-

ities among a set of samples. Euclidean distance (ED) and Bray-Curtis dissimilarity

are most commonly used for distance measures in SOMs for ecological studies.
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Euclidean distance ranges from zero to infinity. Euclidean distance is highly

sensitive to outliers, because large differences are weighted more heavily than

several small differences. Euclidean distance also suffers from double-zero prob-

lems (i.e. zero values observed at two samples concurrently), which are commonly

observed in ecological community data. Due to these reasons, Bray-Curtis dissim-

ilarity is used in ecological community studies, ranging between 0 and 1.

There are other distance measures including variants of ED such as squared ED

and relative ED, relative Sorensen distance, Jaccard distance, Chi-square distance,

Mahalanobis distance, and City-block (Manhattan) distance. They are well docu-

mented in the literature, including in Legendre and Legendre (1998) and in McCune

and Grace (2002).

12.4 Self-Organizing Maps

12.4.1 Architecture

An SOM consists of an input layer and an output layer (Fig. 12.2). Each layer has a

collection of computational units called neurons, or computation nodes. The input

layer is connected to each vector of the dataset, and each variable in the data matrix

corresponds to each input unit. The output layer consisting of D output units forms

an array of units on which the distribution of the dataset is represented in an ordered

Fig. 12.2 A two-dimensional SOM. The data matrix is given in the input layer, whereas patterned

results are presented in the output layer
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way in a low dimension. Input and output layers are connected by the connection

intensities (weights) represented in the reference vectors.

12.4.2 Learning Algorithm

When an input vector x of a sample is sent to the input layer as stated above, the

distance between the weight vector w and the x is computed adaptively at all output

units. At the beginning of the learning process, the w is initialized with small

random values. The distances between x and all output units are calculated, and

the output unit with the minimum distance is defined as the best matching unit

(BMU), or so-called ‘winner’, of the given input vector. As with other clustering

algorithms, many different kinds of distance measure algorithms can be applied as

stated in Sect. 12.3.3.

Thew of the BMU and its neighbourhood units are updated by the SOM learning

rule as follows:

wc tþ 1ð Þ ¼ wc tð Þ þ α tð Þhcv tð Þ wc tð Þ � x tð Þð Þ ð12:1Þ

where t is the iteration step,wc is the weight vector of BMU c, α(t) is the learning
rate which is a decreasing function of the iteration time t, and hcv(t) is the neigh-

bourhood function that defines the distance between the neighbourhood v and the

BMU c to be updated during the learning process.

The shape of the width of the neighbourhood can be chosen with various neigh-

bourhood functions including block, Gaussian bell, triangular, and Mexican hat

shaped (Kohonen 2001). Triangular and Gaussian bell shaped functions may lead to

smoother formation of topology in the map and faster convergence of the weight

vectors. The Mexican hat function is useful when constructing an SOM for classifi-

cation purposes (Melssen et al. 1994).

This learning process is continued until a stopping criterion is met, usually, when

weight vectors are stabilized or when a predefined number of iterations are com-

pleted. For good statistical accuracy, Kohonen (2001) recommends that the number

of iterations must be at least 500 times the number of network units, whereas the

number of input variables generally does not affect the number of iterations. The

sequential training procedure is summarized in Box 12.1.

Box 12.1 Sequential Learning Algorithm of an SOM

Step 1. Initialize weights, w, to small random values

Step 2. Present an input vector x
Step 3. Compute the distance between the weight vectors and the input

vector

(continued)
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Box 12.1 (continued)

Step 4. Determine the best matching unit (BMU) with minimum distance

for the input vector

Step 5. Determine neighbourhood whose distance to the BMU on the map

of the network is less than or equal to neighbourhood radius r
Step 6. Update weights w; Learning rate and neighbourhood radius are

decreased with time as convergence is reached.

Step 7. Go to Step 2 and repeat the process for all input vectors until a

stopping criterion is met.

12.4.3 Evaluation of Trained Map Quality

After the learning process, the quality of trained results from the SOM can be

evaluated. Among several map quality measures, Quantization error (QE) and

Topographic error (TE) are commonly used. QE is calculated using the average

distance between each data vector and its BMU to measure map resolution, whereas

TE displays the proportion of all data vectors for which first and second BMUs are

not adjacent to measure topology preservation (Kiviluoto 1996). Therefore, TE is

used as an indicator of the accuracy of the mapping in preserving the topology,

whereas QE is used to select the best map with the minimum value (Kohonen 2001;

Park et al. 2003).

12.4.4 Optimum Map Size

Although a two-dimensional map in output layer is the most popular in practical

applications, maps with one or higher numbers of dimensions may be applied. One

dimension may be used specifically for emphasizing single dimensional data

variation in output; however, data interpretation and visualization are generally

not very appealing due to the dimensional limit, compared to two dimensions. On

the other hand, a higher number of dimensions, such as three, can provide more

detailed information on data variation while still maintaining comprehensibility.

Maps with high numbers of dimensions, however, require a vast number of com-

putations before convergence of the network. Moreover, it is rather cumbersome in

a practical sense to visualize the output of the high dimensional map and to interpret

the output dimension by dimension.

In a two-dimensional map, rectangular and hexagonal configurations are com-

monly used. However, a hexagonal lattice is preferred, because it does not favour

horizontal or vertical directions as much as a rectangular array does (Kohonen

2001; Park et al. 2003).
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The map size (number of output neurons) is important to detect any deviation in

the data. If the map size is too small, it might not explain some important differ-

ences that should be detected. Conversely, if the map size is too big, the differences

are too small (Wilppu 1997). The map size depends on the number of samples to be

trained. Although no strict rules exist to define the optimal map size, there are

several possible methods. First, setting the number of output neurons approximately

equal to the number of the input samples seems to be a useful rule-of-thumb for

many applications when the data sets are relatively small (Kaski 1997). However,

attention should be paid to over-fitting problems when a large map size is used. This

may happen when the number of output units is as large as or larger than the number

of training samples.

The second method to determine the map size is by using the heuristic rule

suggested by Vesanto (1999). According to their rule, the number of output neurons

is determined as 5� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
number of samples

p
which is defined in the SOM Toolbox

(http://www.cis.hut.fi/projects/somtoolbox/). In this case, the two largest eigen-

values of the training data are calculated first, and then the ratio between the side

lengths of the map grid is set to the ratio between the two maximum eigenvalues

(Céréghino and Park 2009).

An alternative to the calculation of eigenvalues is to consider QE and TE, which

indicate the quality of the trained map (Park et al. 2003). The optimum size is

selected based on minimum values for QE and TE. However, it should be noted that

QE and TE gradually decrease with increasing map size, so the optimum size is

based on local minimum values for QE and TE.

12.4.5 Clustering SOM Units

The trained SOM ordinates samples on the SOM output units based on the simi-

larity of the input variables. However, it is difficult to distinguish subsets of SOM

output units because there are still no boundaries among the SOM output units.

Therefore, a further step is required to split the SOM map into several groups

according to the similarity of input variables. Several different clustering algo-

rithms can be allied.

First, the unified distance matrix algorithm (U-matrix; Ultsch and Siemon 1990)

is popular for presenting overall similarities among SOM units. Inserted between

computation nodes, the U-matrix calculates distances between neighbouring map

units, and these distances can be visualized to represent clusters using a grey scale

display on the map (Fig. 12.3). Low distance is visualized as plain, whereas high

distance is ravine, indicating possible clusters.

Alternatively, hierarchical clustering analysis is commonly used because it

presents hierarchical similarities using a dendrogram among SOM output units

based on linkage distances as criteria. However, both linkage methods and distance

measures affect the clustering results.
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A k-means method can also be applied. To determine the best number of clusters,

the Davies–Bouldin index (DBI) (Davies and Bouldin 1979) is calculated. The DBI
is a relative index of cluster validity, with smaller DBIs indicating better clustering.

Small values of the DBI occur for a solution with low variance within clusters and

high variance between clusters. Therefore, minimal DBI proposes the best number

of clusters (Hruschka and Natter 1999). Moreover, DBI can be applied to the results

of hierarchical clustering to determine the optimum number of clusters.

12.4.6 Evaluation of Input Variables

During the learning process of an SOM, the SOM output units that are topograph-

ically close in the array activate each other to update their weights from the same

input vector. This results in a smoothing effect on the weight vectors. These weight

vectors tend to approximate the probability density function of the input vector.

Therefore, the visualization of input variables is convenient to understand the

contribution of each input variable with respect to the clusters on the trained

SOM. This visualization map is called component planes.
Indicator species analysis (Dufrêne and Legendre 1997) is used to evaluate the

contribution of input variables (indicator species) in each cluster defined in the

SOM. Indicator species are used as ecological indicators of community or habitat

types, environmental conditions, or environmental changes. An indicator value

(IndVal) for each species i in cluster j is calculated as follows:

IndVali, j ¼ Nindividualsi, j=Nindividualsi
� �� Nsitesi, j=Nsitesj

� �� 100 ð12:2Þ

where Nindividualsij is the mean number of individuals of species i across sites
of cluster j, Nindividualsi is the sum of the mean numbers of individuals of species

i over all groups, Nsitesi,j is the number of sites in cluster j where species i is
present, and Nsitesj is the total number of sites in cluster j.

Fig. 12.3 Procedure for U-matrix visualization. New cells are inserted between SOM units, and

then distances between the SOM units are calculated. The calculated distances in the U-matrix are

visualized. Low distance is presented as plain, whereas high distance appears as ravine
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De Cáceres et al. (2010) suggested improving indicator species analysis by

considering all possible combinations of groups of sites and selecting the combi-

nation for which the species can be used best as an indicator. A package

‘indicspecies’ in R for indicator species is available from the CRAN (https://cran.

r-project.org/web/packages/indicspecies/).

12.4.7 Relations Between Biological and Environmental
Variables

It is necessary to understand the relationships between biological and environmen-

tal variables since natural distributions of organisms are determined primarily by

their environment (Huntley 1999). To understand these relationships, environmen-

tal variables can be projected onto the SOM that has been trained with biological

variables. At first, each environmental variable is submitted to the trained SOM,

and then the mean value of each environmental variable is calculated in each output

neuron of the trained SOM with samples belonging to the same neuron (Park et al.

2003). These mean values of environmental variables assigned on the SOM are

visualized in grey scale as component planes, and then compared with maps of

sampling sites as well as biological attributes.

12.5 Application in Ecological Modelling

Since Chon et al. (1996) applied an SOM to the patterning of benthic communities

in streams, SOMs have been used most widely in extracting information from

ecological data: community grouping (Foody 1999; Giraudel and Lek 2001; Park

et al. 2003), hydrosystems/landscapes (Tison et al. 2004), animal behaviours (Chon

et al. 2004; Park et al. 2005), plankton community dynamics (Recknagel et al.

2006), cyanotoxins dynamics (Chan et al. 2007) and patterning of long-term

fisheries data (Hyun et al. 2005). SOMs were also applied to natural resource and

ecosystem management (Park et al. 2003, 2004, 2006, Gevrey et al. 2004, Park and

Chung 2006), prediction of population and communities (Céréghino et al. 2001;

Obach et al. 2001), dimensional reduction of large datasets (Park et al. 2006;

Griebeler and Seitz 2006), computational policy simulations for natural hazard

migrations (Samarasinghe and Strickert 2013), surface temperature anomaly and

solar activity (Friedel 2012), spatial and temporal variations of benzene (Strebel

et al. 2013), effects of landscape and morphometric factors on water quality of

reservoirs (Park et al. 2014), and molecular ecology (Roux et al. 2007; Nikolic et al.

2009). Several papers were published in special issues of Ecological Informatics

(Chon and Park 2006; Park and Chon 2015) and Ecological Modelling (Park and
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Chon 2007). Kalteh et al. (2008) and Chon (2011) reviewed the applications of the

SOM techniques in ecological and environmental sciences.

12.6 SOM Tools

The most efficient and popular SOM tool is the SOM Toolbox (Vesanto 1999)

operated in MATLAB, which was developed by the Laboratory of Information and

Computer Science at the Helsinki University of Technology. The SOM Toolbox is

available freely from their website (http://www.cis.hut.fi/projects/somtoolbox/),

and it provides default optimized initialization and training methods (Vesanto

1999).

Three R packages implementing standard SOMs are available from the CRAN

(https://cran.r-project.org/web/packages/): kohonen (Wehrens 2015), som, and

wccsom. Recently, Bottin et al. (2014) developed a package ‘diatSOM’ for

R. Although it was specifically suited to diatom communities, it can be applied to

other ecological data. The diatSOM package is available from the authors by

request.

12.7 Example of SOM Application

Problem

1. Summarize variability of aquatic insect species richness in streams

2. Characterize the relationship between species richness and environmental

gradients

Dataset

An SOM was applied to classify the sampling sites according to similarity of

aquatic insect richness with a focus on four insect orders [i.e. Ephemeroptera,

Plecoptera, Trichoptera, and Coleoptera (EPTC)] collected at 138 sampling sites

(Park et al. 2003). EPTC richness is highly correlated to the overall macro-

invertebrate richness in the study area (Céréghino et al. 2001). Therefore, it is a

good estimator of the overall community richness.

EPTC richness was characterized using four environmental variables: altitude

(m), stream order, distance from the source (km), and maximum water temperature

(�C) in summer. A detailed description of these ecological data was also given in

Cayrou et al. (2000) and Céréghino et al. (2001). The data were transformed to be

proportionally normalized between 0 and 1 in the range of the minimum and

maximum values (i.e. range normalization) in each taxon (each input variable).

262 Y.-S. Park et al.

http://www.cis.hut.fi/projects/somtoolbox/
https://cran.r-project.org/web/packages


Training Network

The network consisted of an input layer with four input neurons (four taxa richness)

and an output layer on a two-dimensional hexagonal lattice. The dataset, consisting

of 138 samples with four taxa richness, was trained with a sequential learning

algorithm. We used 54 (¼ 9 � 6) output units based on 5� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
138 samples

p
.

Results

The SOM training converged after 8832 learning iterations. The final QE and final

TE were 0.167 and 0.022, respectively. This result showed that only three pairs (¼
0.022 � 138) of the first- and second-BMUs were not adjacent in the trained hexa-

gonal map, therefore the SOM was trained smoothly in topology.

The trained SOM classified samples based on the similarities of EPTC richness

are shown in Fig. 12.4. The SOM output units were classified further into five

clusters (1–5) based on a hierarchical cluster analysis using the Ward linkage

method with Euclidean distance measures. The DBI was the lowest with five

clusters. The U-matrix showed similar patterns. Therefore, three different methods

proposed five clusters as the optimum number in the network. Based on a dendro-

gram of hierarchical clustering and the DBI, the five clusters were parsed into two

main groups: clusters 1 and 3 and clusters 2, 4, and 5.

Species richness was higher on the lower parts of the SOM units, but lower on

the upper parts (Fig. 12.5). Samples in clusters 1 and 3 have mostly low species

richness. In particular, the species richness of Coleoptera and Ephemeroptera were

lowest in cluster 1, whereas that of Plecoptera was lower in cluster 3. Trichoptera

richness was low in both clusters. Meanwhile, species richness of Coleoptera and

Ephemeroptera was the highest in clusters 3 and 4, whereas that of Plecoptera was

highest in cluster 2. Figure 12.6 shows the differences in EPTC richness of the five

different clusters. Clusters 1 and 3 on the upper parts of the SOM map have low

species richness, and clusters 2 and 5 on the lower part of the map have the highest

values. These results indicate that occurrence patterns of EPTC still show variabil-

ity to some degree, even though they inhabit mostly undisturbed areas.

Samples in clusters 3 and 4 were from streams with high stream order (lower in

the watershed), whereas samples in clusters 1 and 5 were mainly from small streams

with low stream order (higher up in the watershed) (Fig. 12.7). The variation in

maximum temperature in summer was low compared to that of the other variables.

The distance from the source was clearly different between these clusters. In

contrast, concerning altitude, clusters 1 and 5 represented high mountain streams,

whereas clusters 3 and 4 were for lowland streams. Finally, these results display that

EPTC richness was lower in the streams with higher stream order, but higher in the

streams with average and lower stream orders. The relationship between species

richness and environmental variables is summarized in Table 12.1.
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12.8 Advantages and Disadvantages

An SOM is an efficient means of data mining to approximate the probability density

function of complex input data with fewer dimensions (Kohonen 2001). Inspired by

neural activity in biological organisms, the ‘winner’ has the chance to adjust its

weight through local competition; and global convergence was reached adaptively

d 
0.761

7.28

13.8
Coleoptera

d 
2.98

9.08

15.2
Ephemeroptera

d 
3.6

13.8

23.9
Plecoptera

d 
6.13

14.8

23.5
Trichoptera

Fig. 12.5 Visualization of EPTC richness calculated in the trained SOM. The values of EPTC

richness were calculated during the learning process
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Fig. 12.6 Differences in EPTC richness for the five different clusters. The different letters on the bars
indicate statistically significant differences based on Dunn’s multiple comparison test (P < 0.05)
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through repetition of numerous local competitions. Due to adaptive properties

embedded within the network, an SOM has various advantages including utility

for information extraction, flexibility in application, and network conformation.
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Fig. 12.7 Differences in four environmental variables [stream order, altitude, maximum temper-

ature in summer (Max_temp), and distance from source (Distance_source)] for the five different

clusters defined in the SOM. The different letters on the bars indicate statistically significant

differences based on Dunn’s multiple comparison test (P < 0.05)

Table 12.1 Summary of the relationship between species richness and environmental variables

Variable

Cluster

1 2 3 4 5

EPTC richness L H L M H

Stream order L M H H L

Altitude H M L L H

Max_tempa L H H H L

Distance_sourceb L L H H L

Overall Low species

richness at

high moun-

tain area

High spe-

cies rich-

ness upper

streams

Low spe-

cies rich-

ness at

down

streams

Middle high

species rich-

ness at down

streams

High species

richness at

high moun-

tain streams

aMaximum temperature in summer
bDistance from source
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12.8.1 Utility for Training and Information Extraction

Compared to other process-based or heuristic models, the model structure and

algorithm in an SOM are relatively simple for training, requiring a short amount

of time with few optimization techniques. Information extracted from local com-

petition effectively accumulates, whereas the original topology of the initial data is

preserved concurrently through the learning procedure. Although the algorithm is

simple, its capacity for dimension compression is notable. An SOM is feasible for

inferring the complex relationships among biological and environmental variables

that are interwoven in natural ecosystems as stated above.

Consequently, an SOM is suitable for extracting information from large datasets

consisting of numerous sample units and variables in different scales. In general,

conventional multivariate analyses are not suitable to extract information from such

large and complex datasets. In the dimensional reduction of principal component

analysis, for instance, a large dataset with a large number of variables would

produce a large number of significant principal components (i.e. relatively lower

Eigenvalues for each component). Therefore, a few principal components may not

be sufficient to address overall variation in the multidimensional datasets

(Melssen et al. 1993).

12.8.2 Visualization and Recognition

An SOM has advantages in visualizing output presentations. Various styles are

available to reveal associations between sample groups and input-output relation-

ships. Profiles of multivariables, for instance, can be projected efficiently on com-

ponent planes, providing a comprehensive view of the data structure as

demonstrated in the example in Sect. 12.7 (Fig. 12.5).

An SOM is also useful for recognition of new datasets after training. An SOM is

able to project the incoming input over the trained map through recognition: the

association between new inputs to trained groups are conveniently identifiable. This

process is a potential mechanism for automatic monitoring of ecosystem assess-

ments. SOM sensitivity can be conducted to determine the importance of variables

to address output correspondence responding to altered input data. Recently,

prediction stability was checked in pest establishment risk by altering presence/

absence data of species occurrence in Paini et al. (2010).

12.8.3 Architecture Flexibility

Due to the self-organizing property of the network, SOM networks can be flexibly

modified to extract information according to problems per se in spatial and tempo-

ral domains. An SOM network can be flexibly modified to be applicable for spatial
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variability. A geo-SOM was developed to fit geo-referenced data to take into

account spatial dependency of variables in cluster formation (Baç~ao et al. 2005).

An additional advantage of an SOM is noted by its feasibility in network archi-

tecture. Due to its self-organizing property, node configurations are flexible in

evolving problem-oriented network architecture. One demonstration of SOM net-

work architecture is modular networks. Stemming from operator maps allowing

vector space transformation (Kohonen 1993; Kohonen et al. 1997), networks could

be developed in a modular manner. SOM networks could be grown such that hyper-

cubical output space is adaptively formed, enlarged by an extension of nodes and

dimensions in the SOM architecture (Bauer and Villmann 1997; Villmann and

Bauer 1998). The growing SOM allows the network to adaptively generate nodes to

overcome the learning constraints when the current system does not sufficiently

match the incoming data through the learning procedure (Marsland et al. 2002;

Dittenbach et al. 2002).

12.8.4 Flexibility in Combining with Other Models

The SOM is flexible in linking with other models. For instance, an MLP has been

popularly combined with an SOM to exercise both supervised and unsupervised

learning (Chon 2011). Data partitions were conducted first through an SOM, and

then followed by an MLP to reveal the input-output relationships specifically.

12.8.5 Constraints on Measure Consistency and Output
Variability

As commonly shown in heuristic algorithms used in ANNs, distances between

computation nodes in the output layer are not measured with the consistent scale on

the map, whereas data variation could be expressed with parameters in multivari-

able statistics (i.e., Eigenvalue) (Peeters and Dassargues 2006). To overcome this

disadvantage, alternatives are used to present the degree of association among

grouped sample units on the map, including U-matrix (Ultsch and Siemon 1990)

or hierarchical clustering (Ward 1963).

Another problem lies with variability in convergence. Because convergence is

reached adaptively based on random processes in the learning procedure, the

trained results would vary slightly based on each training condition, although the

overall trend would be similar between different trials of training. Consequently,

placement of grouped sample units may not be consistent on ordination maps

because placement of the groups is relational to each other: actual placement of

groups is determined adaptively through the convergence process. The main ordi-

nation (expressed as on a vertical, horizontal, or diagonal gradient) may be upside
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down depending upon the convergence procedure. The subordinations could be

repositioned according to the main ordinations on the map. U-matrix and hier-

archical clustering could be helpful for addressing the degree of association across

different levels of subgroups; similar groups could be allied closely depending upon

their degree of association.

12.8.6 Necessity of Sufficient Data

Sufficient data is required for learning. The issue of data sufficiency can be applied to

all learning methods. However, an SOM would be sensitive to the initial data size

considering that topology preservation stems from the original data structure in

dimensional compression. With a deficiency in sample number, dimensional com-

pression could not be conducted accordingly from the first step. The number of

samples should be sufficient to provide ample cases for training. For instance, caution

is at least required when the sample size is lower than the number of variables.

12.9 Future Development

The direction of future development for SOMs lies in solving the problems raised in

constraints as stated above. Regarding problems in measure inconsistency and

output variability, more computational approaches would be required regarding

convergence, solution stability, and topology preservation (Fort 2006; Ritter and

Schulten 1988). In addition, development of grouping techniques with statistical

backgrounds is warranted in the future, extending the lines of methodology includ-

ing U-matrix and hierarchical clustering.

Additionally, enhancing the advantages is needed in the future. An SOM could

be developed further to be fluent in visualization, spatial and temporal data, net-

work architecture development, and combining with other models to be fitted to

complex ecosystem phenomena as stated above. Moreover, sensitivity tests and a

supervised SOM garner attention regarding precision in addressing input-output

relationships. For additional perspectives on the future development of SOMs,

refer to Kalteh et al. (2008), Chon (2011), and Park et al. (2014).

12.10 Conclusions

We explained the theory of SOMs and their application in ecological modelling,

with a focus on learning processes, visualization, preprocessing of input data, and

interpretation of results. SOMs are versatile in analysing non-linear and complex

data, which are observed frequently in ecological systems.
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Chapter 13

GIS-Based Data Synthesis and Visualization

Duccio Rocchini, Carol X. Garzon-Lopez, A. Marcia Barbosa,

Luca Delucchi, Jonathan E. Olandi, Matteo Marcantonio, Lucy Bastin,

and Martin Wegmann

Abstract Synthesizing and properly visualizing data in 2D systems is a key issue

when aiming at explaining spatial patterns by spatial processes.

In this chapter we address the topics synthesis and visualization in relation to

following ecological issues: (1) synthesizing species distribution models relying on

virtual species, (2) visualizing spatial uncertainty in species distribution based on

cartograms, (3) fuzzy methods to synthesize species distribution uncertainty,
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(4) remote sensing data synthesis by exploratory analysis and replotting data in new

systems, (5) measuring and visualizing ecological diversity from space based on

generalized entropy, and (6) neutral landscape for testing ecological theories. We

will make use of examples from the free and open source software GRASS GIS

and R.

13.1 Introduction

In spatial ecology synthesizing and properly visualizing data in 2D systems is a key

issue when aiming at explaining spatial patterns by spatial processes. This has been

demonstrated in a number of ecological and geographical studies, dealing with

different scientific aims (e.g. Rocchini et al. 2016). Increasing availability of open

ecological data through networks like the Global Biodiversity Information Facility

or the DataONE (Data Observation Network for Earth), on the one hand, and

remote sensing data on the other, makes it necessary to promote methods for data

synthesis and visualization.

In this book chapter we address currently used methods for synthesis and

visualization, and provide examples from the free and open source software

GRASS GIS (Neteler et al. 2012) and R (R Development Core Team 2016).

13.2 Synthesizing Species Distributions by Virtual Species

Virtual species represents a powerful approach to build species distributions based

on known ecological parameters for illustrating species spread. The package

“virtualspecies” in the R software allows to create habitat suitability maps as

shown in Fig. 13.1. The bioclimatic variables annual temperature and annual

precipitation were used as proxies of habitat suitability, and obtained from the

bioclim dataset at 1 km spatial resolution (Hijmans et al. 2005). The resulting map

shows a species with a wide niche distributed throughout Europe (Fig. 13.1b).

13.3 Cartograms to Synthesize and Visualize Sampling

Effort Bias

In ecology, a number of studies have dealt with the prediction of species distribu-

tion and diversity over space and its changes over time based on a set of environ-

mental predictors related to environmental variability, productivity, spatial

constraints and climate drivers. Species distribution models have been acknowl-

edged as the most powerful methods to map the spread of plant and animal species.

The basic approach used to create maps based on predictors is to rely on linear

models to create gridded landscapes of potential distribution of species based on
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Fig. 13.1 A virtual species distribution might be useful to synthesize species spread conditional to

known ecological drivers. Panel (a) environmental suitability of the virtual species in the predictor

space, represented with two climate predictor variables. Red, high suitability, orange, medium

suitability, yellow, low suitability. Panel (b) the habitat suitability for the virtual species created.

Suitability is represented from low in red to high in green

13 GIS-Based Data Synthesis and Visualization 275



point or polygon local data. In most cases, the output is a density function in two

dimensions representing the distribution Sx of the x species. In general, boundaries

are defined sharply based on thresholds of predictors or factors such as land cover

e.g. Comber et al. (2013) or based on continuous variability of predictors such as air

temperature. Uncertainty in such generalized linear models, generalized additive

models, maximum entropy models is mainly derived from pseudo-absent input data

(Foody 2011) as well as from models’ bias, i.e. the error deriving from the selected

model. Hence, the visualization of uncertainty in two dimensions is strongly

suggested (Comber et al. 2012; Rocchini et al. 2013).

Concerning bias related to sampling effort, we rely on one of the most com-

monly used datasets in biodiversity studies at large spatial extents, namely the

GBIF dataset. GBIF data comprises a huge range of species occurrence observa-

tions collected with a wide variety of sampling approaches. It spans from well-

established plot censuses to direct observations collected during field trips. Conse-

quently, some of the data points are at the centre of censured grids i.e. each point

comprises the species located at a specie c-size quadrant, or correspond to single

observations of individuals of the same species. These differences also depend on

the methodologies used to observe occurrences per taxon. Plots within transects are

commonly employed in vegetation censuses, while transects, point counts and live

traps are preferred in the case of animals. Moreover, the variation in factors such as

country-specific biodiversity monitoring schemes, funding schemes, focal ecosys-

tems, accessibility to remote areas add more sources of variation, especially at

multinational scales (Barbosa et al. 2013).

Undoubtedly, all those sources of variation result in non-homogeneous samples

that influence not only the development of accurate species distribution maps but

more importantly conservation and management decisions focusing on such a

distribution of biodiversity (Rocchini et al. 2011).

In this study we synthesize spatial uncertainty in the sampling effort of the GBIF

data, by explicitly taking into account potential area effects of European countries.

We aim at quantifying and mapping the uncertainty derived from the variation in

observations due to differences in sampling efforts. Cartograms serve well this

purpose where the shape of objects is directly related to a certain property, such as

uncertainty. Cartograms build on the standard treatment of diffusion, in which the

current density is given by:

J ¼ v r; tð Þ∗p r; tð Þ ð13:1Þ

where v(r,t) and p(r,t) are the velocity and density at position r and time t. For
more details see Gastner and Newman (2004).

Cartograms allow to visualize spatial uncertainty in the results by changing the

size of the polygons based on its information density e.g. number of observations,

variation. Based on this approach the spatial distribution of a species (e.g. Fagus
sylvatica) can be represented in the coloured grid in Fig. 13.2 where the colour

represents the abundance of the species and the distortion of the shape of each grid

cell might represent the sampling bias, i.e. more distorted cells may have been

oversampled compared to others.
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13.4 Fuzzy Methods to Synthesize Species Distribution

Uncertainty

Beside sampling bias, taxonomic bias may occur when different operators or

scientists deal with the association of each individual to a taxonomic category.

Fuzzy set theory can assist in processing information uncertainty related to each

species (hereafter also generally related to class as in fuzzy set theory). The concept

of fuzzy sets has been introduced by Zadeh (1965) widely been used in ecology

since.

The principle behind fuzzy set theory is that the situation of one class being

exactly right, other classes being equally or exactly wrong often does not exist.

Conversely, Gopal and Woodcock (1994) suggests that there is a gradual change

from membership to non-membership.

A fuzzy set is defined as follows:

if U denotes a universe of entities u, the fuzzy set F is represented as:

Fig. 13.2 Cartograms can be used to show the sampling e_ort bias in species distribution

modelling. In this case, oversampled cells are more distorted than the others; hence in such cells

the higher abundance of Fagus sylvatica might be an artifact of oversampling
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F ¼ u; μ uð Þð Þ j uЄ U ð13:2Þ

where the membership function μ(u) associates for each entity u the degree of

membership into the set F and ranges within the interval [0,1].

Hence, fuzzy sets might represent a good starting point for continuously map-

ping species by relying on each species as:

Fi ¼ u; μi uð Þð Þ j u Є U ð13:3Þ
Fj ¼ u; μj uð Þ� � j u Є U ð13:4Þ

In this case, for each species i and j a map is derived based on fuzzy training data

taken in the field that represents species probability of occurrence. In this case,

according to Boggs (1949), uncertainty is explicit in the sense that a probability of

occurrence of each sampled individual to each species is mapped instead of

determining a crisp set of species with 100% accuracy.

A fuzzy determination of a species can be derived e.g. as the probability of

correct determination by different operators or scientists. Figure 13.3 represents an

example for the foraminifera species Keratella quadrata. It shows a map of the

species’ presence per country or region together with the probability (as inverse

distance) of occurrence of each individual within the species or group. The analysis

was performed by means of the fuzzySym package (Barbosa 2015) for the R

software.

13.5 Synthesis of Remote Sensing Data

13.5.1 Exploratory Data Analysis

In some cases remote sensing data are correlated to each other such as high

reflectance in a certain region of the electromagnetic spectrum might be related to

that in another one. In other cases, indices derived from remote sensing data are

implicitly correlated. This is the case when calculating texture measures.

13.5.1.1 Correlation of Remotely Sensed Bands by Hexagon Binning

Hexagon binning is a powerful technique for synthesizing geographical data,

especially those based on huge 2D matrices. Figure 13.4 displays an example

from two Landsat images freely available in the North Carolina dataset of

GRASS GIS (https://grass.osgeo.org/download/sample-data/). Hexagon binning

by means of the R package “hexbin” clumps point clouds into hexagons once

matrices are imported to R by using the package rgrass7 (Bivand et al. 2016). It

visualises the contrast between Landsat NIR infrared versus Landsat red (Fig. 13.4).
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In contrast to normal plots, hexagon binning allows to display the amount of points

per each value in the point cloud.

13.5.1.2 Correlation Among Several Layers by Texture Measures

Texture measures provide information about the amount of variability in a

neighbourhood. This has a number of repercussions related to biodiversity studies

in which local spatial heterogeneity is used as a proxy for species diversity

(Rocchini et al. 2016). In most cases texture measures are implicitly correlated.

Showing such correlation is important to synthesize the texture system and avoid

redundant information.

Fig. 13.3 Representation of the presence (top) of the foraminifera species Keratella quadrata and
the probability (as inverse distance) of occurrence (down) of each determined individual to that

species. While the presence/absence map has obviously only red (1—presence) and white (0—

absence) colour, the probability map based on inverse distance covers the whole range of decimal

values from 0 to 1
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The following example suggested by Haralick et al. (1973) applies GRASS GIS

to calculate the texture measures in a neighbourhood of pixels by following steps:

(1) the angular second moment, as a measure of local homogeneity; (2) the contrast,

a grey-level variation with respect to neighbour pixels; (3) the correlation, a linear

dependency value; (4) the variance in the neighbouring moving window (see also r.

neighbors); (5) the entropy, an index of randomness; (6) the sum average; (7) the

sum entropy; (8) the sum variance; (9) the difference in variance; (10) the differ-

ence in entropy; (11) the inverse distance moment, i.e. the inverse of the previously

described contrast measure; and (12) the maximal correlation coefficient. We refer

to Haralick et al. (1973) for a detailed description of all the measures. Figure 13.5

presents two of the aforementioned maps for entropy and variance generated from a

Landsat ETM+ image. In order to represent the level of correlation of such

measures, R package ‘corrplot’ allows to create a graphical matrix of correlation

coefficients provided that data have been imported from GRASS GIS by the R

package ‘rgrass7’.
Figure 13.6 illustrates the amount of correlation among texture measures. During

modelling of ecosystem complexity most of the texture measures should be first

synthesized by a graphical output since they are strongly correlated.

13.5.2 Fourier Transformations

Remote sensing data are a powerful input for studying landscape transformations in

space and time. In some cases, such transformations cannot be inspected in the

Fig. 13.4 Starting from two Landsat ETM+ bands, hexagon binning allows to explore their

relationship by also showing the amount of data per each value
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normal space but need to be further transformed to highlight such difference. The

use of transformations within frequency spaces to measure variation in a signal has

long been acknowledged. While methods are known based on orthonormal series

such as rectangular decomposition of waves (Walsh 1923), the most commonly

used Fourier transformations (Fourier 1822) rely on continuous waves. The

methods for detecting landscape change based on continuous instead of classified

information rely on continuous functions which neither require a-priori field infor-

mation nor specific models based on the data being used. In view of this fact the

Fourier transformation appears most suitable.

The continuous function f(x) may described a spatial domain. According to

Fourier (1822), every f(x) can be transformed into a continuum of sinusoidal

functions of varying frequency as follows:

F ωð Þ ¼
Z 1

�1
f xð Þe�2πiωdx ð13:5Þ

where ω ¼ frequency, also known as radian frequency since it is expressed

in radians per spatial units. Extending Eq. (13.5) to two dimensions implies

Fig. 13.5 Examples of texture measures derived from a Landsat ETM+ band 4. (a) NIR, (b)

entropy and (c) variance
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considering a two-dimensional function f(x,y), e.g. a raster matrix. Its Fourier

transformations reads as follows:

F ω; vð Þ ¼
Z Z 1

�1
f x; yð Þe�2πi ωxþvyð Þdx, dy ð13:6Þ

where ω,ʋ ¼ frequency coordinates.

Figure 13.7 illustrates the Fourier space where high frequency values (high

heterogeneity) are at the border of the image while low frequency values (high

homogeneity) are at the centre. Hence the higher the value of pixels at the border,

the higher the heterogeneity or complexity of the whole image.

Fig. 13.6 A corrplot by R allows to directly show the amount of correlation among remotely

sensed layers. In this example, the system composed by texture measures [sensu Haralick et al.

(1973)] is generally highly positively or negatively correlated. Refer to the main text for additional

information on single measures’ acronyms. Reproduced from Rocchini et al. (2013)
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13.6 Synthesizing Diversity Measurements from Space:

The Case of Generalized Entropy

From a practical point of view, distinct diversity measures summarize a large

multivariate data set into one single value based on distinct objectives and

approaches. Distinct diversity measures always result in a loss of information,

and summary statistics seems to be capable of unequivocally synthesizing all

aspects of diversity (Ricotta 2005). However, Renyi (1970) proposed a generalized

entropy as follows:

Hα ¼ 1

1� α
� ln

X
pα

which is extremely flexible and powerful since many popular diversity indices

are simply special cases of Hα. As an example, for α ¼ 0, H0 ¼ ln(N) namely the

logarithm of richness (N¼ number of Digital Numbers), i.e. the maximum Shannon

Fig. 13.7 A Fourier image gathered applying Eq. (13.6) to a remotely sensed image. The external

part of a Fourier frequency space contains high frequency values while the part near the centre

contains low frequency values. Hence the higher the amount of red values (higher values)

occupying the white (low values) external part, the higher will be the heterogeneity in the

landscape
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entropy index (Hmax) which is used as the denominator of the Pielou index, while

for α ¼ 2, H2 ¼ ln(1/D) where D is the Simpson Dominance index (impossible to

make sense of this sentence). For α ¼ 1 the Renyi entropy is defined in the limiting

sense using l’Hospital’s rule of calculus, and H1 ¼ Shannon’s entropy H.

Renyi’s framework offers a continuum of possible diversity measures, which

differ in their sensitivity to rare and abundant DNs, becoming increasingly regu-

lated by the most common DNs when increasing the values of α. In this view,

changing α can be considered as a scaling operation that takes place not in the real

but in the data space. That is why Renyi’s generalized entropy has been referred to

as a continuum of diversity measures (Ricotta and Avena 2003). Changing the

parameter α will change the behaviour of the formula generating different maps of

diversity as displayed in Fig. 13.8. As a result Fig. 13.8 represents a continuum of

diversity values over space instead of single measures.

13.7 Neutral Landscapes

Patterns in the field can be correlated to random patterns by calculating the

deviation from random expectations in two dimensions as suggested by Hanspach

et al. (2011). To accomplish this goal, different kinds of lattice surfaces can be

generated, including completely random surfaces, Gaussian distribution, and fractal

Fig. 13.8 Starting from the same remotely sensed image (left) R_enyi generalized entropy based

on di_erent alpha values can lead to di_erent maps to better synthesize the continuous variation of

ecological diversity in space. This panels are related to calculations in GRASS GIS

284 D. Rocchini et al.



surfaces with a predefined fractal dimension. Lattice surfaces help to compare real

patterns found in landscape ecology with neutral landscape to determine if the real

patterns show a significant deviation from random (neutral) expectations.

Landsat images can be tested against random surfaces in order to find clumped

parts of a Landsat image which significantly deviate from random expectations over

space. A more sophisticated but still straightforward neutral model can be

represented by a Gaussian surface, which should graphically not be different

from a random surface but would have normally distributed values in two dimen-

sions, and means and standard deviations can be defined a-priori.

Figure 13.9 provides an example for fractal surfaces according to Mandelbrot

and Blumen (1989) based on the assumption that surfaces with a fractal dimension

from 2 to 3 might represent severe differences in their roughness or complexity

(Imre et al. 2011). Fractal surfaces can be used to test the complexity of real patterns

against lattice images.

13.8 Conclusions

This chapter has demonstrated the use of free and open-source software to

synthesize and visualize spatio-ecological data. Different approaches for processing

spatio-ecological information have been discussed for a variety of research fields.

We referred largely to methods that have already been implemented and tested in

GRASS GIS and R packages. However the GRASS GIS platform and R software

allows users to contribute new features to the already existing extensive software

libraries.

Fig. 13.9 Artificial landscapes with different fractal dimensions: (a) 2.1 and (b) 2.96
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Communicating and Informing Decisions



Chapter 14

Communicating and Disseminating Research

Findings

Amber E. Budden and William K. Michener

Abstract This chapter provides guidance on approaches and best practices for

communicating and disseminating research findings to technical audiences via

scholarly publications such as peer-reviewed journal articles, abstracts, technical

reports, books and book chapters. We also discuss approaches for communicating

findings to more general audiences via newspaper and magazine articles and

highlight best practices for designing effective figures that explain and support

the research findings that are presented in scientific and general audience publica-

tions. Research findings may also be presented verbally to educate, change percep-

tions and attitudes, or influence policy and resource management. Key topics

include simple steps for giving effective presentations and best practices for

designing slide text and graphics, posters and handouts. Websites and social

media are increasingly important mechanisms for communicating science. We

discuss forms of commonly used social media, identify simple steps for effectively

using social media, and highlight ways to track and understand your social media

and overall research impact using various metrics and altmetrics.

14.1 Introduction

The ingredients of good science are obvious—novelty of research topic, comprehensive

coverage of the relevant literature, good data, good analysis including strong statistical

support, and a thought-provoking discussion. The ingredients of good science reporting are

obvious—good organization, the appropriate use of tables and figures, the right length,

writing to the intended audience—do not ignore the obvious. Bourne (2005)

Researchers communicate their findings for several reasons. First and foremost,

basic and applied researchers strive to enhance scientific knowledge; communicat-

ing and disseminating new information and knowledge represent a cornerstone of

the scientific process. Second, many researchers focus on communicating research

findings that can positively contribute to improved natural resource management,

conservation and decision-making. Third, many researchers are motivated to

A.E. Budden (*) • W.K. Michener

University of New Mexico, Albuquerque, NM, USA

e-mail: aebudden@dataone.unm.edu; william.michener@gmail.com

© Springer International Publishing AG 2018

F. Recknagel, W.K. Michener (eds.), Ecological Informatics,
DOI 10.1007/978-3-319-59928-1_14

289

mailto:aebudden@dataone.unm.edu
mailto:william.michener@gmail.com


educate the next generation of scientists and to increase public awareness through

broad communication. Finally, all scientists, to varying degrees, communicate and

disseminate their findings so that they may be recognized for their contributions to

science; such contributions may be characterized by number of citations and impact

factor, altmetrics, impact on resource management and decision-making, as well as

their influence on tenure and promotion decisions.

Research findings may be communicated and disseminated using various types

of media to reach different audiences and to achieve different objectives. Written

communications such as scholarly articles, technical reports, abstracts, books and

textbooks, newspaper and magazine articles, blogs, infographics, posters, and

website content are used to convey research findings to both technical and lay

audiences. Some media such as scholarly publications and technical reports are

frequently aimed at more expert audiences, whereas textbooks are focused on

particular age ranges and educational levels (e.g., high school, college) and news-

paper articles are aimed at the broad public and usually written at a middle school

level (e.g., 6th through 8th grade). Research findings may also be communicated

verbally at professional society meetings via talks and poster presentations; public

meetings (e.g., lectures, Town Halls); television and radio interviews, podcasts and

videos; and webinars. Scientific content that is presented verbally at conferences

and meetings may also be disseminated via recorded videos (e.g., YouTube, vimeo)

and by sharing slide and poster presentations (e.g., slideshare). Research findings

may also be embedded in data, tables and illustrations that are preserved and

discoverable through archives, data directories and data aggregators (Cook et al.

2017; Michener 2017). Last, many scientists keep current with the newest research

findings through social media such as twitter and facebook.

In this chapter, we describe approaches and best practices for communicating

and disseminating research findings via publications and online resources aimed at

scientific and general audiences (Sect. 14.2), presentations (Sect. 14.3), and social

media (Sect. 14.4). We conclude with a description of metrics and altmetrics and

how these tools are used to measure the impact of research findings (Sect. 14.5).

14.2 Publishing Research Findings

Research findings are most frequently and directly communicated to one’s peers via
scholarly publications. These publications typically undergo peer review to assure

their value and have been the traditional method of research communication since

the first scientific journal, Philosophical Transactions of the Royal Society, was

founded in 1665 (Kronick 1976).

Synthesized research findings are communicated via textbooks and books to

students and others that are interested in detailed treatments of particular topics.

Highlights of research findings are often presented to more general-interest audi-

ences via newspaper and magazine articles. Below, we present some of the best

practices associated with communicating findings via scholarly publications,
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general audience outlets and illustrations. Additional details pertaining to writing

non-fiction and technical documents can be found in books by Strunk and White

(1999), Zinsser (2006), Alred et al. (2011), and the University of Chicago Press

Staff (2010).

14.2.1 Scholarly Publications

Scholarly publications include peer-reviewed journal articles, abstracts, technical

reports and books and book chapters. Original research findings frequently first

appear in journal articles, abstracts, and technical reports. Books and book chapters

often take longer to appear in publication form and generally include findings that

are synthesized from numerous studies.

14.2.1.1 Journal Articles

Individual journals normally have specific publication requirements that address

page limitations, text content and format (e.g., required sections), table and figure

guidelines, and citation style. Table 14.1 describes ten simple rules for writing

research papers as defined by Zhang (2014). The rules include many principles and

practices that, if followed, can increase the likelihood that a research paper will be

published, interesting and impactful.

14.2.1.2 Abstracts

Research findings may also be presented in abstracts. Such abstracts are often

published prior to or following scientific meetings and are associated with posters

and presentations that are given at the meetings. Publishers and scientific societies

often have very specific abstract guidelines that authors are required to follow such

as word limits (e.g., 200–500 word limits) and specific paragraph content (e.g.,

methods, key findings). Recommendations for writing good abstracts differ from

those associated with writing research papers. Weinberger et al. (2015) analyzed

one million abstracts from numerous scientific domains and found that citation rates

were positively associated with longer and more detailed abstracts containing prolix

prose and statements that signified the novelty and importance of the work. In

addition, highly cited abstracts frequently contained superlatives, pleasant words,

active words and words that easily evoked images. In contrast to scientific articles

where conciseness is a virtue, authors of abstracts benefit from using all space at

their disposal to highlight novel findings and to emphasize the importance of

their work.
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14.2.1.3 Technical Reports

Technical reports are generally used to convey technical information about a topic

or project to a particular audience in a clear, well-organized format. Examples

include project reports that summarize a project’s progress and findings, literature

reviews, and authoritative syntheses of the state-of-knowledge about a specific

topic. Such reports may be targeted to research sponsors, knowledgeable colleagues

and peers, and, in some cases, decision-makers and the public. Technical reports

Table 14.1 Ten simple rules for writing research papers [adapted from Zhang (2014)]

Number Rule Description

1 “Make it a driving

force”

“Design a project with an ultimate paper firmly in mind”

2 “Less is more” “Fewer but more significant papers serve both the research

community and one’s career better than more papers of

less significance”

3 “Pick the right

audience”

“This is critical for determining the organization of the

paper and the level of detail of the story, so as to write the

paper with the audience in mind.”

4 “Be logical” “The foundation of “lively” writing for smooth reading is a

sound and clear logic underlying the story of the paper.”

“An effective tactic to help develop a sound logical flow is

to imaginatively create a set of figures and tables, which

will ultimately be developed from experimental results,

and order them in a logical way based on the information

flow through the experiments.”

5 “Be thorough and make

it complete”

Present the central underlying hypotheses; interpret the

insights gleaned from figures and tables and discuss their

implications; provide sufficient context so the paper is self-

contained; provide explicit results so readers do not need to

perform their own calculations; and include self-contained

figures and tables that are described in clear legends

6 “Be concise” “The delivery of a message is more rigorous if the writing

is precise and concise”

7 “Be artistic” “Concentrate on spelling, grammar, usage, and a “lively”

writing style that avoids successions of simple, boring,

declarative sentences”

8 “Be your own judge” Review, revise and reiterate. “. . .put yourself completely

in the shoes of a referee and scrutinize all the pieces—the

significance of the work, the logic of the story, the cor-

rectness of the results and conclusions, the organization of

the paper, and the presentation of the materials.”

9 “Test the water in your

own backyard”

“. . .collect feedback and critiques from others, e.g., col-

leagues and collaborators.”

10 “Build a virtual team of

collaborators”

Treat reviewers as collaborators and respond objectively to

their criticisms and recommendations. This may entail

redoing research and thoroughly re-writing a paper.

292 A.E. Budden and W.K. Michener



written for research sponsors, agencies and professional societies must often follow

specific requirements with respect to format, length and content. Generally, though,

technical reports include most or all of the components described in Table 14.2. The

same rules pertaining to writing research papers presented in Table 14.1 (especially

rules 3–8) also apply to writing technical reports. Also, see Alred et al. (2011) for

recommendations about writing good technical reports.

14.2.1.4 Books and Book Chapters

Books and book chapters may be written for general or expert audiences and may

either be self-published or published by a university press or commercial publisher.

Publishers frequently require that a book proposal be submitted and be peer-

reviewed. Such proposals typically follow a specific format and include informa-

tion about the intended audience, a detailed outline of the book, anticipated length

and number of tables and figures, and learning objectives if the book is intended for

the textbook market. The outline is particularly important as it highlights how

content is structured and, ideally, demonstrates that the author(s) have envisioned

a logical flow for the presentation of the material. If a book proposal is approved,

the authors are normally provided with specific guidelines for formatting text,

tables, figures, references and other elements.

Table 14.2 Common components of a technical report

Component Description

Title page Brief descriptive title of the report; may include authors, date,

citation, etc.

Executive summary,

summary or abstract

Summarizes major findings of the report; an executive sum-

mary provides a high-level summary of the report and is typi-

cally short in length (e.g., 1–5 pages)

Table of contents, list of

figures, list of tables

Presents the document’s structure and indicates where specific

sections, figures and tables may be found

Introduction Helps the reader understand the structure and content of the

report and, often, the reason the report was written

Section(s) The main body of the report normally includes one or more

sections that are often titled and numbered (e.g., background,

methods, results, conclusions, recommendations, etc.)

Acknowledgments Brief paragraph that acknowledges sponsors and other

contributors

References Literature cited in the report

Appendices Detailed information such as raw or summarized data, survey

forms, scientific code, and design specifications are frequently

included in one or more appendices
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14.2.2 Newspaper and Magazine Articles for General
Audiences

Researchers rarely write newspaper and magazine articles. Instead, they are more

likely to be interviewed by a reporter who is writing an article about a particular area

of research or a new research finding. The goal of the reporter or author is typically to

convey important and interesting facts to the reading public in a brief, word-limited

story, although some articles may be opinion pieces that are designed to sway public

opinion to a particular point of view. Before granting an interview, it is good practice

to determine whether the publication is reputable and whether or not the piece is

designed to inform readers or editorialize a position that you may or may not support.

Regardless of the objective, newspaper and magazine articles are normally written

in a style that differs markedly from how scientific articles are written. Scientific

articles follow a logical progression where the author: (1) introduces key hypotheses

or a problem statement along with background information in the introduction;

(2) describes how the research was conducted in the materials and methods section;

(3) presents basic findings and supporting data in the results section; and (4) explains

the major findings and their significance in the discussion section. In contrast,

newspaper articles include the most notable finding or conclusion in the lead

paragraph. The remainder of the article contains supporting facts, quotes and anec-

dotes that pertain to what was discovered or is known about the topic, who did the

work and when and where they did it and, possibly, why and how the work was done.

As a researcher, your primary objective may be to ensure that your research

findings are presented in an accurate and compelling way to readers, and that they

may positively impact conservation, resource management, policy, education or

decision-making. There are several ways to do this. First, it is always a good idea to

plan out what you want to say to the reporter. You may even ask them to send you a

list of questions in advance of the interview. Jot down answers to the what, who,

when, where, why and how of the research. Also, compose one or more brief,

memorable quotes that explain what is noteworthy about the research and possibly

include an anecdote that may help the reporter and readers relate to the finding or

discovery (e.g., how this research impacts the lives of the readers). Second, provide

the reporter with factual responses to their questions and offer to clarify any

confusing or complex points during the interview. Third, offer to review the article

before it goes to press and answer any subsequent questions that arise. A little

preparation work can lead to good press coverage that will further promulgate your

research findings and discoveries.

14.2.3 Designing Effective Figures

Effective graphics and illustrations help explain and support the concepts and

research findings that are presented in scientific and general audience publications.

Many good references provide guidance on creating effective graphics and
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illustrations (e.g., Few 2012; Robbins 2013; Tufte 1983, 1990, 1997; Wong 2013).

Here, we present general guidance for creating good figures, highlight some of the

tools that can be used and provide examples of effective figures.

Table 14.3 lists ten simple rules for creating better figures. Tailoring the message

to the audience is as important to creating a good illustration (Table 14.3, Rule 1) as

it is to writing a good research paper (Table 14.1, Rule 3). Readers of a scientific

journal will wish to see a figure that conveys all information relevant to a key point

or finding such as error bars that allow one to judge the significance of the results.

Illustrations for students and the general public can be more effective if they are

simpler, contain fewer details, and include explanations of the most salient points.

Rules 2 and 9 focus on the importance of having a clear and understandable

Table 14.3 Ten simple rules for creating better figures [adapted from Rougier et al. (2014)]

Number Rule Description

1 “Know your audience” “. . .identify, as early as possible in the design process,

the audience and the message the visual is to convey.”

2 “Identify your message” Clarify the underlying message that you wish to convey

in a figure and how a figure can best serve that purpose.

3 “Adapt the figure to the

support medium”

Adapt the figure content (e.g., amount of detail) and

presentation style (e.g., degree of complexity, color

contrast, line thickness) to the medium (e.g., journal vs

newspaper article, poster, presentation, web page).

4 “Captions are not

optional”

Figures should be accompanied by captions that explain

how to interpret the figure and that provide other details

that may not be included directly in the figure (e.g.,

probability values).

5 “Do not trust the

defaults”

Default settings (e.g., choice of font, line thickness,

colors, tick marks) should be manually adjusted for a

specific type of plot.

6 “Use color effectively” “If you decide to use color, you should consider which

colors to use and where to use them.” Color can be used to

enhance a message, but use of too many similar colors

causes color blindness.

7 “Do not mislead the

reader”

“As a rule of thumb, make sure to always use the simplest

type of plots that can convey your message and make sure

to use labels, ticks, title, and the full range of values when

relevant.”

8 “Avoid “Chartjunk”” Avoid “unnecessary or confusing visual elements . . . that
do not improve the message (in the best case) or add

confusion (in the worst case). For example, chartjunk

may include the use of too many colors, too many labels,

gratuitously colored backgrounds, useless grid lines, etc.”

9 “Message trumps

beauty”

“Remember, in science, message and readability of the

figure is the most important aspect while beauty is only an

option.”

10 “Get the right tool” Many tools exist that can facilitate the creation of good

figures and save time.
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message whereas Rules 3–8 provide guidelines for designing and creating effective

figures. Rule 10 highlights the benefits of using an appropriate tool that can do the

desired job and save time in the process. Many open-source (e.g., GRASS,

Matplotlib, QGIS, R, VisTrails; Hampton et al. 2015; Rougier et al. 2014) and

commercial (e.g., JMP, MATLAB, OmniGraffle, SAS, Tableau) software packages

can be used to create good figures.

Figures 14.1, 14.2, 14.3 and 14.4 exemplify many of the best characteristics of

good illustrations identified in Table 14.3. Figure 14.1 is from a study by Chaves

and Bicca-Marques (2016) that tested the hypothesis that brown howler monkeys

(Alouatta guariba clamitans) can adjust their diet in response to changes in resource
availability by comparing the diet of six free-ranging groups inhabiting three small

and three large forest fragments in southern Brazil. The box-whisker plot figure is

an information-rich black and white illustration that enables one to see the spread

and skewness of the data in each of six groups. The figure shows all data values and

indicates significant differences between the study groups (as indicated by the

letters). Overall, the figure provides a large amount of information about the

distribution of data within each of the study groups and allows one to better

visualize how significant the differences are between groups. In addition, the legend

is clear and concise and aids in interpretation by the viewer.

Fig. 14.1 Figure legend quoted directly from Fig. 3 (Chaves and Bicca-Marques 2016): Fig. 3.

Intermonth diet similarity between study groups inhabiting small and large fragments. The line
within a box represents the median of the Morisita-Horn index, the box represents the 25% and

75% interquartiles (IQR), and the whiskers represent the IQR multiplied by 1.5. Dots represent the
actual data points for each group. Different letters indicate significant differences (P < 0.05).

doi:10.1371/journal.pone.0145819.g003
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Fig. 14.2 (a) Figure legend quoted directly from Fig. 1 (Rose et al. 2016): Fig. 1. Reference site

locations for each dataset used, and major river systems in the study area. The river disturbance

index (RDI–see [47] for details of its derivation) provides context for the ‘least disturbed’
reference sites; low RDI values indicate low levels of human pressures in the upstream catchment.

Note that the season dataset is represented by all ‘training’ sites in the SEQ section of the study

area. doi:10.1371/journal.pone.0146728.g001.

(b) Figure legend quoted directly from Fig. 2 (Rose et al. 2016): Fig. 2. Projected species

distributions (at a cut-off threshold of 0.5) for (a) Hypseleotris klunzingeri and (b) Melanotaenia
duboulayi. Green stream segments are predicted presences; grey segments are predicted absences.
The circles are sites that were sampled in autumn/winter 2013 (i.e. the training and space datasets;

n ¼ 128). Red circles are observed presences, open circles are observed absences. ENS–Single

species ensemble model; DFA–RIVPACS community model using a discriminant function clas-

sifier; RF–RIVPACS model using a random forest classifier; MANN–Multi-species response

artificial neural network model; MARS–Multi-species response multivariate adaptive regression

splines model. doi:10.1371/journal.pone.0146728.g002
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Figure 14.2 combines two figures from a study by Rose et al. (2016) that tested

the accuracy of five species distribution models for predicting fish assemblages at

reference stream segments in coastal subtropical Australia. Figure 14.2a is a clear,

uncluttered map that shows the location of the study area in Australia, depicts four

different types of reference sites using easily distinguishable symbols, and high-

lights five different categories of river disturbance that range from least disturbed

(forest green and light green) to most disturbed (yellow, orange and red). The figure

includes key cities, a 4-point compass rose, and a bar scale for reference.

Figure 14.2b illustrates the results of the study and shows stream segments where

each of the two species modeled (Hypseleotris klunzingeri and Melanotaenia
duboulayi) were predicted to be present (green) or absent (grey). In addition, filled

Fig. 14.2 (continued)
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red circles indicated observed presences at reference sites and open circles indi-

cated predicted absences. Combined, the two figures provide the reader with

substantial information about the study area and sampling strategy as well as a

highly effective colored illustration that highlights the differences and similarities

among the different models and species.

Figure 14.3 illustrates the results of a bat dynamics model developed by Bergou

et al. (2015) that shows that bats perform body rolls by selectively retracting one

wing during the flapping cycle and that the complex maneuver does not rely on

aerodynamic forces. The figure combines a graph that shows roll angle over time

under three different morphological conditions with a bar that highlights down-

stroke and upstroke periods. In addition, front and bottom illustrations of bats with

their wings extended at downstroke and retracted at upstroke aid the viewer in

interpreting model results. The figure is notable for its judicious use of color,

inclusion of bat sketches and comprehensive legend.

Figure 14.4 is from a study of convergent evolution by Bale et al. (2015) that

demonstrates that an optimal method of swimming has evolved independently at

Fig. 14.3 Figure legend quoted directly from Fig. 4 (Bergou et al. 2015): Fig. 4. Minimal model

of bat dynamics applied to body roll maneuver. Both wings are fully extended (er ¼ el ¼ 1) at

mid-downstroke, while one wing is fully retracted (er ¼ 0) at mid-upstroke. For morphological

parameters matched to those of C. perspicillata (I* ¼ 5), simulations show that this asymmetric

wing extension induces body roll and that aerodynamic forces do not influence the motion

significantly. The response is insensitive to modest changes in the relative wing inertia (I* ¼ 2),

although when the morphological parameters are matched to those of fruit flies (I* ¼ 0.02, C* ¼
0.05), aerodynamic forces dominate, while inertial forces have minimal effect on the body

orientation. MATLAB code available in file minimal_simulation.zip from the Dryad Digital

Repository, doi:10.5061/dryad.21qs5 [31]. doi:10.1371/journal.pbio.1002297.g004
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Fig. 14.4 Figure legend quoted directly from Fig. 1 (Bale et al. 2015): Fig. 1. Undulatory median/

paired fin swimmer phylogenetic relationships and SW ¼ λ/~a, where λ and ~a are wavelength and

mean amplitude of undulations present along the fin, respectively. The eight instances of inde-

pendent emergence of elongated median/paired fin swimming are highlighted in blue. The SW of

these organisms and sources of the data are also tabulated in the S2 Table. Not shown here because

of space constraints is the SW for the ray Dasyatis americana, which has an SW of 25.1, and the

weakly electric knifefish Eigenmannia virescens, which use two counter-propagating waves on

their fin during slow speed swimming and have an average SW of 17.7. See S4 Table. The

following images are licensed under CC-BY: (c) Sepia officinalis image courtesy of Hans Dappen.
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least eight times in vertebrate and invertebrate swimmers across three different

phyla. The figure is very effective at showing when the swimming trait emerged and

in which organisms; pictures of example organisms are included as well as the

Optimal Specific Wavelength (i.e., measure of fin undulations). The figure is

notable because of its clear presentation of phylogenetic relationships, inclusion

of functional data and the addition of pictures of the organisms to aid the reader in

understanding the paper’s findings.

14.3 Communicating Research Findings Outside

of Publications

Communication is more than simply presenting material; communication is defined

by an interaction between the ‘sender’, or presenter/author, and the ‘receiver’, or
audience. Communication is effective when the message elicits a desired response by

the receiver. In communicating research findings, the desired response may be a

change in policy or practice, continued or increased funding, or increased under-

standing of the research area. If this is not achieved then communication has largely

failed. It is critical to both understand the goals of your presentation and to know your

audience. This is true for both written and verbal communication. For verbal com-

munication, there is an added dimension of environment. Authors have little control

over the environment where their printed material is read. However, the presenter

must consider and respond to the environment for verbal presentations to be effective.

In this section we discuss steps for creating an effective presentation, highlight

best practices for designing slides and supporting materials such as handouts, and

provide tips for creating appealing, information-rich poster presentations.

14.3.1 Simple Steps for Giving an Effective Presentation

The basis of a good presentation lies in storytelling. Presentations are a ubiquitous,

default form of communication in scientific research and other domains, and are

largely treated as such in their preparation and execution. They can be dull. They

⁄�

Fig. 14.4 (continued) (d) Raja eglanteria image courtesy of George Burgess. (f) Rhinoptera
bonasus image courtesy of Juan Aguere. (j) Taeniura lymma image courtesy of Nicolai

Johannesen. (m) Regalecus glesne image courtesy of Sandstein. (n) Apteronotus albifrons image

courtesy of Clinton and Charles Robertson. (o) Apteronotus leptorhynchus image courtesy of the

Harvard Museum of Comparative Zoology. (p) Gymnorhamphichthys hypostomus image courtesy

of Mark Sabaj with support from IXingu Project (NSF DEB-1257813). (s) Gymnarchus niloticus
image courtesy of Masashi Kawasaki. All remaining images are public domain. doi:10.1371/

journal.pbio.1002123.g00
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include facts, statistics and other information but may do so without a compelling

story. Storytelling is the ability to weave details into a compelling narrative and

create emotional connections. It is common across all cultures. Stories are the most

powerful art form or tool for delivering information (Duarte 2010). Becoming a

storyteller to more effectively communicate information may seem daunting, but

you don’t need to be an outstanding orator. You simply need to be authentic and to

make a human connection.

Knowing your audience is central to delivering an impactful presentation

(Bourne 2007, Table 14.4): What grade level will you be talking with? Is it a

specialized audience familiar with your field? Are these decision makers? What are

they motivated by? Where does their interest lie? Make your presentation about

them and not about you: Why would your research interest them? How does this

Table 14.4 Ten simple rules for good oral presentations [adapted from Bourne (2007)]

Number Rule Description

1 “Talk to the audience” This is akin to knowing your audience. “Prepare

presentations that address the target audience”.

2 “Less is more” “Your knowledge of the subject is best expressed

through a clear and concise presentation”. You will

have the opportunity to go into details in response to

questions.

3 “Only talk when you have

something to say”

Be realistic about what you will have available to

present and do not take advantage of the audience’s
time by presenting “uninteresting preliminary

material”

4 “Make the take-home mes-

sage persistent”

Aim for the audience to be able to remember three key

points a week after the presentation.

5 “Be logical” Set your presentation up like a story. “There is a

logical flow—a clear beginning, middle and an end.”

6 “Treat the floor as a stage” “Presentations should be entertaining” but remain

true to yourself and know your limits. “A good

entertainer will captivate the audience”.

7 “Practice and time your

presentation”

This will become easier but it is always good to

practice with a friendly audience. “An important talk

should not be given for the first time to an audience of

peers. You should have delivered it to your research

collaborators who will be kinder and gentler”

8 “Use visuals sparingly but

effectively”

Presentation styles and the need for visuals vary.

Practice will help refine how many visuals you need.

“A useful rule of thumb [is] one visual for each

minute you are talking.”

9 “Review audio and/or video

of your presentations”

This will help you easily see where you can improve

your presentation.

10 “Provide appropriate

acknowledgements”

You may “acknowledge people at the beginning or at

the point of their contribution so that their contribu-

tions are very clear”.
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relate? Why should they be invested in the outcome? Ultimately, the goal is for your

audience to embrace your message and this requires them to engage with

it. Authenticity is required. Build upon the emotional connections developed in

storytelling and do not distance your audience by using jargon, heavy-handed

visuals and other crutches. Knowing your audience is the first of ten simple rules

for good oral presentations.

Storyboarding is critical for preparing a presentation. Storyboarding is a concept

that is derived from film production and means to use drawings (or text notes) that

represent critical concepts and elements from your story to build the flow of your

presentation. Storyboarding enables you to streamline your material, focus only on

the critical information, ensure that your message is persistent and stands out, and

maintain a logical flow (i.e., rules 2–5 in Table 14.4). Storyboarding can be done in

many different formats but you should be able to easily edit, cut and revise the story

elements; thus, working outside of presentation software is often an advantage.

Sticky notes or index cards, for example, can readily be physically rearranged,

enabling you to quickly change your narrative without being encumbered by

software (Duarte 2008).

When constructing a storyboard, adhering to a form that contains a ‘beginning’,
‘middle’ and ‘end’ is more likely to result in a successful presentation and one that

provides the logical flow identified by Bourne (2007). Duarte (2010) draws from

literary and cinematic structures and refers to the transitions between the beginning

and middle as a “call to adventure”. This call to adventure creates a perceived

imbalance by stating ‘what could be’ versus ‘what is’. ‘What could be’ is the desired
outcome that a body of research is moving us towards and ‘what is’ reflects the

current status or knowledge in the field. Likewise, Duarte (2010) refers to the

transition between middle and end as “a call to action” where the presenter

articulates the finish line that the audience is to cross, whether it be a figurative or

literal call to action.

14.3.2 Best Practices for Slides

The previous section introduced how to give an effective presentation and largely

focused on story development. Few speakers will give an oral presentation without

visual aids and PowerPoint or Keynote are widely used to generate supporting

graphics. In developing your storyboard and identifying the take-home messages

and transitions, it will quickly become apparent which sections can be best

supported with visuals as well as the type of visual information needed to elucidate

your points. Visuals should be used sparingly but effectively (Rule 8, Table 14.4;

Bourne 2007). In this section we provide some basic guidance on how to design

effective slides.
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14.3.2.1 Slide Design

The arrangement and organization of slides can have a significant impact on

whether the message of your presentation is clearly communicated. This is true

not just in terms of the story arc across a set of slides but also with respect to

elements within individual slides. Text, figures or images may occur alongside

other slide elements and careful design can maximize the clarity of the slide (Duarte

2008). In particular, attention should be paid to:

1. Contrast: Contrast helps to establish relationships between elements. By

highlighting something as different through color, shape, size, etc., the audience

can quickly understand that the item warrants attention. For example, using bold

words within a sentence is a common way to employ contrast and bring attention

to the significant text. Use contrast sparingly to create notable differences.

2. Flow: A western reading pattern flows left to right, top to bottom and this is the

way most viewers will process slides. Slides should follow this convention for

ease of interpretation. If it is necessary to deviate from this pattern, you should

use cues to direct the audience.

3. Hierarchy: Hierarchies enable the audience to readily interpret relationships, or

order, in elements. An example of this is the title font being larger than the main

text, which may be larger than supporting text. Another is the use of bullets.

Ensure your font size choices are intentional since variation in text size infers

meaning.

4. Unity: Adopting an underlying grid structure to your slides allows for consis-

tency in information presentation. Verify that items are aligned, images, text or

graphics are consistently placed and the transition between slides is not

distracting. A unified structure also creates a more organized or branded

presentation.

5. Proximity: As with hierarchy and text size, the spatial relationship of elements

to one another carries meaning and elements should therefore be placed

intentionally.

14.3.2.2 Text Slides

Distill information down to the most salient points when representing a textual

concept or series within a slide. Include only key concepts that anchor the audience

to your narrative since the audience will be listening to you at the same time they

are reading the slide. Impact statements (single phrases occupying a whole slide) or

bulleted points might be appropriate depending on the nature of the information.

Duarte (2008) argues that there are no set rules for the amount of text or number of

bullets that should appear on a slide. Rather, bullets should be treated as headlines

and used sparingly whereas sub-bullets should be avoided. Information should be

reduced down to key points so that bullets serve as mnemonics for the narrative

(Duarte 2008). Bullets can sometimes be replaced with images; however, practice
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of the accompanying narrative and repetition are critical (Rule 7, Bourne 2007;

Duarte 2008).

Sans serif fonts are more legible when reading at a distance and are preferred for

presentation purposes. There are many fonts to choose from and different fonts have

different personalities (Cho 2013). It is best to include no more than two font types

(Duarte 2008). Additional emphasis can be achieved with color, weight and italics

to add variation without the introduction of a third font type. With respect to font

size you should try to stay above 28 pt. A good test is to put your file into slide sorter

view and look at the slides at 66 percent size. If you can still read them, so can your

audience (Duarte 2008).

14.3.2.3 Graphics

Figures in slide presentations must be read and interpreted significantly faster than

those in a paper publication. So while the guidance presented previously for

designing effective figures holds true for published material, additional consider-

ation is required for slide presentation. Rather than provide all details of your

research within a figure, first identify the intended conclusion that you want the

audience to reach and then make sure that this message stands out during the

graphic design. This can be achieved by choosing the appropriate tool or chart

type, keeping the chart simple or free from ‘chartjunk’ (Tufte 2003, 2006) and using
graphical elements to emphasize key data or points.

Sullivan (2011) and Few (2009) provide information on the limitations of

particular chart types and demonstrate how to simplify charts so that the important

information stands out. Duarte (2008) extends these concepts to PowerPoint pre-

sentations and provides ‘make-overs’ for an example pie chart, vertical bar chart

and horizontal bar chart [Fig. 14.5; see also Robbins (2016) and Few (2016)]. Some

consistent guidelines include: avoid 3D graphics; de-emphasize or remove non data

elements (such as gridlines); be consistent in the use of color; order bars by size

versus alphabetically for easier comparison; choose an aspect ratio that shows

variation in the data; and use visually prominent elements to emphasize key points.

Note the use of contrast in Fig. 14.5b, c to highlight the important message.

Chart design should also take into consideration the way in which we decode

graphical information. For example, shape, color, position, etc. can be used to

compare or contrast data points. However, the ability to perceive these differences

varies. Cleveland and McGill (1985) identified the order in which people are able to

most accurately compare information (Table 14.5). Position along a common scale

is easiest for viewers to judge. For example, imagine two points in a scatter plot. We

are quickly able to see which point is farther from the axis than the other. Cleveland

and McGill (1985) found that judging differences in these elements was more

accurate than judging the length of bars within a stacked chart, for example. They

observed that our ability to perceive differences in angle (pie charts) and slope

(regression lines) was tied and ranked midway in their list of graphical attributes.

14 Communicating and Disseminating Research Findings 305



F
ig
.
1
4
.5

E
x
am

p
le
cl
ea
n
in
g
o
f
ty
p
ic
al
p
ie
,
h
o
ri
zo
n
ta
l
b
ar

an
d
v
er
ti
ca
l
b
ar

ch
ar
ts
ad
ap
te
d
fr
o
m

D
u
ar
te
(2
0
0
8
).
In

al
l
ca
se
s
th
e
fi
g
u
re

ti
tl
e
h
as

b
ee
n
o
m
it
te
d
to

fo
cu
s
o
n
th
e
g
ra
p
h
ic
al
el
em

en
ts
.
(a
)
3
-d
im

en
si
o
n
al
p
ie
ch
ar
ts
te
n
d
to

g
iv
e
m
o
re

p
ro
m
in
en
ce

to
th
e
d
at
a
in

th
e
fo
re
g
ro
u
n
d
.
(b
)
T
o
o
m
an
y
co
lo
rs
ca
n
o
b
sc
u
re

th
e

fo
ca
l
p
o
in
t.
T
h
e
h
o
ri
zo
n
ta
l
sc
al
e
an
d
si
n
g
le
co
lo
r
ch
an
g
e
h
el
p
em

p
h
as
iz
e
g
ro
w
th

o
f
th
e
ta
rg
et
o
rg
an
iz
at
io
n
.
(c
)
D
ep
th

ca
n
v
is
u
al
ly

sk
ew

th
e
d
at
a
an
d
h
as

b
ee
n

re
m
o
v
ed
.
C
o
lo
r
w
as

ad
d
ed

to
cr
ea
te

a
d
is
ti
n
ct

ta
k
e-
aw

ay
m
es
sa
g
e;

th
e
y
ea
r
th
at

m
em

b
er
sh
ip

re
ac
h
ed

1
0
0
0

306 A.E. Budden and W.K. Michener



Differences in hue (color) were the most difficult to discern. Graphs should exploit

the highest ranking attributes as much as possible.

14.3.3 Handouts

Both the presenter and the audience can benefit from the judicious use of handouts.

Handouts provide an opportunity to go into greater detail, enabling presenters to

keep the presentation slides as simple as possible. Handouts also allow the

presenter to leave the audience with a reminder of the presentation and provide

contact information for future discussion opportunities. Audience members can

listen to the presentation without the need to take notes and are presented an

opportunity for follow-up. Handouts should be designed explicitly for the audience

to augment the material presented and should not simply repeat the presentation.

Some generic best practices for creating effective handouts (adapted from Witt

2016) include:

1. Simplicity: While a handout enables you to provide additional detail, it should

focus on the key concepts of your presentation. You should also aim to keep the

handout short but this may vary with the length of your presentation.

2. Relationship to presentation: Create the handout using the same story format as

the presentation. You do not need to cover all the slides presented but the

audience should be able to follow the handout sequentially with the talk.

3. Provide additional detail: Use the handout to expand on points, including

additional figures as needed. Consider that your handout may need to stand

alone if someone is reading it months after your presentation. A handout can also

be used to provide full citations for references.

4. Visually appealing: As with presentations, follow good style guidelines for

handouts. Use appropriate fonts, allow for white space in the design, ensure

that break points are logical and that proximity, hierarchy and contrast are used

appropriately.

Table 14.5 Ordering of elementary graphical perception tasks by element [adapted from

Cleveland and McGill (1985)]

Rank Aspect judged Example

1 Position along a common scale Scatter plot

2 Position on identical but non-aligned scales Multiple scatter plots

3 Length Bar chart

4 Angle; slope (tied) Pie chart, regression line

5 Area Bubble chart

6 Volume; density; color saturation (tied) Heatmap

7 Color hue Multiple
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5. Know when to distribute: If your handout it intended for the audience to follow

along and take notes, or allow for deeper understanding of the material, distrib-

ute it before the presentation. However, if it is intended primarily as a means to

remind them of the talk and provide your contact information, you can distribute

it after your presentation.

6. Allow ample time: A good handout will be designed alongside the presentation

so that as you reduce content in your slides, you will better understand what

needs to be provided in a handout. The handout should not be an afterthought.

For researchers that work with RStudio or in LaTeX, Edward Tufte’s (2016)

distinctive clean graphical style has been converted into programs that can help

structure Tufte-esque handouts (CTAN 2016; R Markdown 2016).

14.3.4 Posters

An effective poster can require considerably more time to prepare and print than is

necessary to prepare an oral presentation. However, posters do have some distinct

advantages over talks. Posters can provide more opportunities to interact with your

audience than might be available through a moderated question and answer session

that follows a series of presentations. You can respond to questions, provide

additional details or context, use the poster as a spring-board for discussion, and

receive direct feedback on your work. Due to the interpersonal nature of poster

presentations, the communication style is different. Preparation is important. How-

ever you will necessarily go ‘off script’ and the practice and repetition

recommended for a talk (Rule 7, Table 14.4) does not hold true for posters in the

same way. Indeed, Erren and Bourne (2007) suggest that authors should take

advantage of the unique nature of posters (Rule 6, Table 14.6). The less formal

presentation format allows the author to be more speculative and poster presenta-

tions are great opportunities to distribute related materials.

A good poster will employ many of the good design elements identified for

presentations in Sect. 14.3.2 including font choices, color schemes, contrasting

elements, flow, image use, etc. However, since posters can also act as stand-alone

communication mechanisms, the poster must be able to speak for you. For this

reason, it is important to quickly attract and capture the attention of the viewer.

There are many examples of poster best practices or ‘tips’ for creation and presen-

tation (e.g., Plunkett 2016; Malson 2015; Purrington 2016) and multiple printing

companies provide free tutorials and templates. When developing your poster it is a

good idea to review other examples and identify what worked and what didn’t, what
stood out as the take home message, and what was lost in the details. The blog

“Better Posters” (Faulkes 2016) provides examples of real posters that have been

critiqued or improved upon, as well as discussion posts, and is a great resource for

improving poster design.
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14.4 Communication in a Virtual Environment

Social media refers to the collective of online communication channels that enable

people to interact with each other by both sharing and consuming information.

There are many different forms of social media including websites and applications

dedicated to forums (question and answer discussion environments), blogging

(online journaling), social networking (communication across networks of friends

and colleagues), social curation (collaborative management of online information)

and wikis (community contributed and curated websites). Here we discuss some

commonly used social and online media, and provide guidance for using them

effectively for research communication.

Table 14.6 Ten simple rules for good poster presentations [adapted from Erren and Bourne

(2007)]

Number Rule Description

1 “Define the purpose” This will vary by the intent and nature of the

work. “Do you want the person .. to engage in

discussion? .. try something for themselves? ..

collaborate?” Ask yourself these questions

before beginning.

2 “Sell your work in ten seconds” You will likely be competing with many other

posters and first impressions count. You need

to ‘sell’ your work.

3 “The title is important” Following from Rule 2, your “title is a good

way to sell your work”. It should be “short and

comprehensible to a broad audience”.

4 “Poster acceptance means nothing” Acceptance is not an endorsement of your

work. That comes from peers through good

science and a well-presented poster.

5 “Many of the rules for writing a

good paper apply to posters too”

“Identify your audience and provide the

appropriate scope and depth of content”

6 “Good posters have unique features

not pertinent to papers”

“Posters allow you to be more speculative.

There is the opportunity to say more than you

would in traditional literature.”

7 “Layout and format are critical” As with slides, use natural flow and directions

to guide the reader through the content.

8 “Content is important but keep it

concise”

“Economy of words .. is particularly important

for posters because of their inherent space

limitations”. Clarity and precision of expres-

sion are also key.

9 “Posters should have your

personality”

“Think of your poster as an extension of your

personality” and use it to connect with

passersby.

10 “The impact of a poster happens

both during and after a poster

session”

Make sure to engage your audience on the day

and ‘present’ your poster. Also, “make it easy

for a conference attendee to contact you

afterward.”
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14.4.1 Websites

Websites, like newspaper and magazine articles, can be used to promote and enable

discovery of your research findings and scholarly outputs; they can provide access

to data, research findings, articles, videos and other project resources. Many

universities and other organizations encourage their researchers to provide a brief

curriculum vitae (including a list of recent publications) as a webpage on their

institution’s website. There are advantages to this approach. In particular, the

institution maintains and supports the website and the researcher need only rou-

tinely update the content. In addition to institutional webpages, many individual

researchers create a separate website for their individual or laboratory’s scholarly
output. For instance, a laboratory website normally highlights publications ema-

nating from the laboratory as well as the students, post-doctoral associates, and

technical staff that are associated with the laboratory. Such websites can be

important for recruiting new students as well as for promoting the laboratory’s
research foci, findings and data. An individual website can be tailored to your

individual needs but also requires time, money and, possibly, personnel for design,

maintenance and update, and system administration. Furthermore, individual

websites frequently must adhere to institutional requirements.

Most research networks and scientific organizations maintain institutional

websites that are used to: (1) highlight discoveries and new publications;

(2) announce meetings, news, and job openings to their members; (3) enable access

to research data and tools; (4) raise funds; and (5) build and promote a sense of

community. Examples of research network websites include:

• Global Lake Ecological Observatory Network (GLEON 2016);

• The Long Term Ecological Research Network (LTER 2016); and

• Nutrient Network: A Global Research Cooperative (NutNet 2016).

At least one individual working part-time is necessary to support a website for a

research network and costs depend on the degree of functionality, amount and

diversity of content, and frequency of updates. Large organizations may, of course,

support websites that are created and maintained by a team of individuals. A prime

example is the Cornell Lab of Ornithology website (Cornell University 2016) which

includes links to its numerous citizen science programs (e.g., eBird, Project

FeederWatch, NestWatch, etc.) as well as its research, education, technology and

conservation programs. Many excellent reference books provide guidance on how

to design and build good websites (e.g., Duckett 2011; Krug 2014; Robbins 2012).

14.4.2 Types and Uses of Different Social Media

Traditional online media, such as websites, will often have a social component to

them: the ability to provide user comments or integration of social media applica-

tions within the site. However, there is enormous variety in social media
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applications that might specialize in particular media (images, video) or facilitate a

specific type of communication.

Statista (2016) lists Facebook as the most widely used social media network with

1590 million users. WhatsApp, a cross platform mobile messaging service, was

listed second with 1000 million users, Instagram was 9th with 400 million users and

Twitter was 10th with 320 million users. The leading social networks are usually

available in multiple languages and enable users to connect with people across

geographical, political or economic borders (Statista 2016).

Social media applications have been used widely in business for market

research, communication, promotions, community development and e-commerce,

and they are increasingly being used for research communication. Here we briefly

summarize some of the more commonly used social media platforms within the

scientific community and how they might support research dissemination.

• Facebook is an online social networking service that allows users to share their

profiles, post updates and share media with their immediate network or the

public. Facebook can be used to notify your networks of your research products

or activities and create a moderated page dedicated to a particular topic. This

latter option is often used by teams of researchers or research organizations

(e.g., DataONE 2016; NEON 2016; NSF 2016).

• Twitter is also an online social networking service that enables users to com-

municate with their network. However, the form of communication (tweets) is

presently limited to 140-character messages. These messages may contain links

to online sources of images and Twitter is often used to promote activities and

events as well as provide brief updates. The use of #hashtags (relevant phrases or

keywords) facilitates discussion around a thematic topic and enables users to

follow a ‘stream’ of conversation. They are also used to facilitate communica-

tion around a specific event, such as a conference.

• Google+ (Google Plus) is an interest based social network platform, owned and

operated by Google Inc. that provides multiple functions. Users have public

profiles that provide standard demographic information. Users can provide

updates about their activities and follow the updates from others that are

organized into groups or ‘circles’. One of the most commonly used features of

Google+ is the ‘hangouts’ communication service. Hangouts enables text chat,

group video conferencing (with screen share functionality) and ‘Hangouts on

Air’; the ability to live webcast from Google+ and stream to Youtube.

• Slideshare is a web based slide hosting service where users can upload files in

public or private status for viewing and sharing. Researchers commonly use it as

an online library of presentations they have given and for promoting a particular

presentation. The site accepts multiple file formats and allows users to rate,

comment on and share the material.

• Figshare is an online digital repository that enables researchers to preserve and

share their research outputs. File formats include figures, datasets, images, and

videos. Users can share, embed or download content exposed via Figshare.
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• Youtube/Vimeo are video sharing platforms that enable individuals to upload

and share video files. Users can like and comment on individual videos, as well

as share them though social media. Video files can also be embedded in websites

by the owner, rendering Youtube and Vimeo as video hosting services. “Video

Abstracts” accompanying publications are becoming increasingly common, as

are video data as supplemental material.

14.4.3 Simple Steps for Effective Use of Social Media

Twitter and Facebook have harnessed two of the largest communities of academics

using social media and these are good places to start if social media is new to you.

Whether Twitter or Facebook, building your social media presence comprises two

primary activities (Leek 2016). First, you need to build your network; follow other

people, and have other people follow you. It is not hard to acquire a long list of

individuals, journals or organizations to follow; having individuals follow you is

more challenging. To build a following requires that you post content that they find

of interest. Posting solely about your work will not garner a broad following and

Leek (2016) suggests a strategy of acting as a ‘content curator’ where you promote

the work of others and share anything exciting, creative or important. Second, once

you have established a network, you can use social media to build an audience for

your scientific work.

Many best practices for businesses seeking brand engagement (Forant 2013)

apply equally to individuals promoting their research. For example, make sure you

follow back and interact with others, stay unique to your style and tone, and be as

transparent as possible but don’t over-share. Leek (2016) also suggests you avoid

‘hot button’ issues unless they are directly relevant to your message. Controversy is

rife on the internet and as a scientist using social media to promote your work, it

may not be advantageous to engage in all discussions.

Increasingly, scientists are using Twitter as a means to live (micro) blog activ-

ities at research conferences (Lister et al. 2010; Ekins and Perlstein 2014). This use

of social media enables non-attendees to stay connected with current activities,

enables attendees to follow concurrent sessions and provides a platform for pre-

senters to promote their work. Not surprisingly, a set of Twitter guidelines has

emerged to help attendees, conference organizers and interested parties extend the

value of the scientific content beyond the auditorium (Ekins and Perlstein 2014;

Croxall 2014). Table 14.7 provides 10 simple rules of live tweeting at scientific

conferences (Ekins and Perlstein 2014). Lister et al. (2010) extend recommenda-

tions beyond Twitter users and provide guidelines for conference organizers,

bloggers and presenters who will be giving talks in an environment that is open

to live blogging.
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14.4.4 Understanding Your Social Media Impact

Just as citations and downloads can indicate the use or impact of a journal article,

social media analytics can provide equivalent information (Eysenbach 2011). By

gathering data from blogs, websites and social media applications you can get

insights into the reach and potential impact of your material. However, comparing

analytics can be challenging since different applications collect different types of

usage statistics. Widrich (2013) suggests that some of the most important metrics to

track include click rates on social shares, Facebook “talking about this”, twitter

followers, and your Klout score (Klout Inc. 2015). The Klout score provides a

single number between 1 and 100 that represents your social influence (i.e., the

more influential you are, the higher your Klout Score) and is based on more than

400 signals from 8 different networks. However, this does not enable you to access

more detailed information on the demographics and behavior of your audience such

as where they are located, what time of day they were most active, how long they

engaged with your material, etc. Hines (2015) provides a comprehensive overview

of these metrics for Facebook, Twitter, Google+, LinkedIn, Pinterest and Google

Analytics that you may wish to explore.

Table 14.7 Ten simple rules of live tweeting at scientific conferences [adapted from Ekins and

Perlstein (2014)]

Number Rule Description

1 “Short conference hashtag” “Organizers should claim a short descriptive # that

includes the year”

2 “Promote the hashtag” “Highlight the # in all conference materials”

3 “Encourage tweeting” “Session chairs can facilitate this and relay questions”

4 “Conference twitter

etiquette”

“Keep questions short and on the science .. encourage

responsible tweeting”

5 “Conference tweet layout” “List speaker name, affiliation and conference # in

the first tweet; surname or initials and meeting # are

sufficient thereafter”

6 “Keep conference discus-

sion flowing”

“Summarize presentations concisely, use # for

keywords, and use “@ reply” to engage individuals”

7 “Differentiate your opin-

ions from the speaker’s”
“Separate your own comments/viewpoints on the

speaker or science .. from the speaker’s own words.”

8 “Bring questions up from

outside”

“Check for and raise questions from those outside the

conference, returning the speaker responses.”

9 “Meet other live tweeters

face to face”

Build relationships and collaboration opportunities by

organizing or participating in tweetups

10 “Emphasize impact of live

tweeting”

“Ensure that positive effects of tweeting at confer-

ences, such as discoveries, publications, or collabora-

tions, are highlighted”
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14.5 Metrics and Altmetrics

Zhang (2014) postulates that “fewer but more significant papers serve both the

research community and one’s career better than more papers of less significance”

(Table 14.1, Rule 2). Various metrics and altmetrics have been proposed as

measures of the significance of an individual scholarly publication as well as the

cumulative contributions of an individual researcher. Some metrics that are com-

monly provided for individual publications include number of citations, page views

and downloads. Similarly, the h-index was proposed as a mechanism for assessing

the quality of a researcher’s output, and reflects the number of publications and the

number of citations per publication (Hirsch 2005).

Many metrics like numbers of downloads, page views and Wikipedia citations

increase gradually over time (Brody et al. 2006) making it difficult to assess the

significance of recent publications. Consequently, altmetrics have been developed

as one way to identify recent, potentially impactful scholarly publications by also

tracking citations in various social web services (e.g., Piwowar 2013; Priem et al.

2012). Lin and Fenner (2013) grouped article-level metrics into five categories that

can be related to increasing amount of engagement with the research article:

(1) viewed (lowest level of engagement)—e.g., HTML views, PDF downloads;

(2) saved—e.g., Mendeley, CiteULike; (3) discussed—e.g., science blogs, journal

community, Twitter, Facebook; (4) recommended—e.g., F1000 Prime; and

(5) cited (highest level of engagement)—e.g., Web of Science, CrossRef.

Several services calculate and track altmetrics including Altmetric (2016) and

Impactstory (2016). Altmetrics is an active field of research; nevertheless, there is

strong evidence that altmetrics like tweets, Facebook wall posts, research high-

lights, blog mentions, mainstream media mentions and forum posts are positively

associated with citation counts (Thelwall et al. 2013). Social media usage is

discussed above in Sect. 14.4.3 and guidance for reporting altmetrics in a curricu-

lum vita is provided by Piwowar and Priem (2013).

14.6 Conclusion

Science is dramatically changing. The total global scientific output is doubling

roughly every 9 years (Bornmann and Mutz 2015), tens of millions of scientific

papers have been published in tens of thousands of scientific journals, and we are

drowning in a sea of data and information. Discovering a particular research finding

can be equated to finding the proverbial needle in the haystack. Given that science is

predicated on advancing the state of knowledge, scientists increasingly must play a

central role in clearly communicating and documenting their research findings in

ways that are tailored to and reach appropriate audiences.

Research findings are more likely to be incorporated in the corpus of knowledge

if they are communicated and disseminated to targeted stakeholders (e.g., readers of
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high impact journals, attendees of high profile scientific conferences). Successful

communication depends on having a clear, concise and impactful message that is

accompanied by attractive and understandable supporting visuals and is

underpinned by high quality and well-documented data.

The best practices highlighted in this chapter can help in advancing knowledge

by promoting more effective storytelling, providing more impactful graphics and

figures, and reaching both broader audiences and targeted stakeholders through

general-audience outlets and social media. Scientific advancement, now more than

ever, demands that we not only do good science, but that we also clearly commu-

nicate and broadly disseminate our discoveries and findings to other scientists,

citizens, resource managers and decision-makers.
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Chapter 15

Operational Forecasting in Ecology by

Inferential Models and Remote Sensing

Friedrich Recknagel, Philip Orr, Annelie Swanepoel, Klaus Joehnk,

and Janet Anstee

Abstract This chapter addresses the demand of environmental agencies and water

industries for tools enabling them to prevent and mitigate events of rapid deterio-

ration of environmental assets such as contamination of air, soils and water,

declining biodiversity, desertification of landscapes. Getting access to reliable

early warning signals may avoid excessive ecological and economic costs.

Here we present examples of recently emerging technologies for predictive

modelling and remote sensing suitable for early warning of outbreaks of toxic

cyanobacteria blooms in freshwaters that pose a serious threat to public health

and biodiversity. As demonstrated by two case studies, inferential models devel-

oped from in situ water quality data by evolutionary computation prove to be

suitable for up to 30 days forecasting of population dynamics of cyanobacteria

and concentrations of cyanotoxins in drinking water reservoirs with different

climates. The models not only forecast daily concentrations of cyanobacteria and

cyanotoxins but also daily proliferation rates. Proliferation rates exceeding 0.2 day�1

serve as criteria for early warning. Alarm is triggered if forecasted concentrations of

cyanobacteria or cyanotoxins exceed predefined threshold values and proliferation
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rates exceed 0.2 day�1, constituting a bloom event. Findings from these case studies

suggest that cyanobacteria blooms can be forecasted up to 30 days ahead in real-time

mode solely based on online water quality data monitored by multi-sensor data

loggers.

Advanced remote sensing technology allows to quantify absorption/reflectance

characteristics of algal pigments of a water column for deriving chlorophyll-a

concentrations as indicator for algal biomass, or discriminating cyanobacteria by

specific pigments such as cyano-phycocyanin and cyano-phycoerithrin. It has the

potential to monitor spatio-temporal distribution of water quality parameters and

cyanobacteria blooms based on sufficient spatial, temporal and spectral resolution

of the sensors, and the availability of suitable algorithms to match satellite infor-

mation with high-resolution in-situ measurements. The chapter discusses the pros-

pect of using remote sensing technology for forecasting seasonal trajectories of

cyanobacteria blooms that requires the combination of in-situ monitoring and

remote sensing data with hydrodynamic models. By deriving vertical light attenu-

ation in the water column from remote sensing data, hydrodynamic models will be

enabled to predict seasonally occurring cyanobacteria blooms.

15.1 Introduction

Some events occur suddenly and spread rapidly temporarily disturbing ecosystem

states or, possibly, causing irreversible ecosystem change. Temporary disturbances

may be caused by local wild fires, sporadic pathogenic or toxic pollution, whereas

irreversible changes may be caused by accumulations of pollutants, bioinvasions or

climate change. Ecological and economic costs of both cases can be high, and tools

for operational forecasting are needed to avoid or minimise these costs.

Operational forecasting of sudden, detrimental events in ecosystems is a very

challenging task that can be approached by quantifying tipping points (e.g. Scheffer

et al. 2009; Huber et al. 2012; Recknagel et al. 2014a), through real-time forecast-

ing (e.g. Recknagel et al. 2014b; Ye et al. 2014) or remote sensing (e.g. Lunetta

et al. 2015; Matthews and Odermatt 2015).

This chapter provides examples of operational forecasting of outbreaks of

harmful algal blooms (HABs) by inferential models developed using evolutionary

algorithms, and by remotely sensed data.

15.2 Early Warning of HABs Based on Inferential

Modelling

Two case studies of real-time forecasting and early warning of cyanobacteria

blooms are presented based on the early warning scheme shown in Fig. 15.1. The

scheme suggests the use of routine and in situ monitoring as sources of water

320 F. Recknagel et al.
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quality data that are pre-processed and archived in a lake data base prior to

inferential modelling using the hybrid evolutionary algorithm (HEA; see

Chap. 9). Species-specific cyanobacteria models are validated before being used

for up to 30-day forecasts based on in-situ water quality data in real-time mode.

Daily forecasted concentrations of cyanobacteria populations or cyanotoxins are

analysed in relation to thresholds of related proliferation rates. If proliferation rates

and concentrations exceed critical levels defined by local water authorities, early

warnings of HABs are issued to lake management and water works. As displayed in

Fig. 15.1, early warnings may activate intermittent mixing of the lake and ad hoc
cyanotoxin treatment in water works.

The two case studies demonstrate that the HEA enables development of predic-

tive inferential models that:

1. can be applied in real–time mode for early warning of cyanobacteria blooms.

The models are solely based on electronically measurable predictor variables

such as water temperature (WT), dissolved oxygen (DO), turbidity (TURB), pH,

electrical conductivity (EC) and chlorophyll-a (Chla) being monitored in situ by
multi-probe data loggers (e.g. YSI 6920 V2-2).

2. directly target the threat from cyanobacteria blooms posed by cyanotoxins rather

than inadvertently forecasting cyanobacteria blooms of non-toxic strains.

The first example is from Lake Wivenhoe (Australia) and takes advantage of in
situ water quality monitoring by multi-probe data loggers that have operated near

the lake outlet since 2007. Daily in situ data and weekly to biweekly cyanobacteria

cell counts from 2007 through 2015 are used for modelling population dynamics of

Cylindrospermopsis raciborskii. The second example is from Vaal Reservoir

(South Africa) and models microcystin concentrations based on in situ water

quality data recorded at weekly/biweekly intervals from 2002 through 2015.

Since the six in situ water quality variables were not measured in real-time,

interpolated daily data were used for modelling.

Details of the design and functioning of HEA (Cao et al. 2014; Recknagel et al.

2014a, b) are presented in Chap. 10. Since HEA induces models from long-term

data patterns, it appears that the more event-related patterns the historical data

contains, the more generic the models tend to become, and the more likely the

model’s predictive validity reaches beyond the data limits. Ongoing ecosystem

evolution requires that models be regularly updated using the most recent

monitoring data.
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15.2.1 Cyanobacterium Cylindrospermopsis in Lake
Wivenhoe (Australia)

Lake Wivenhoe is a warm-monomictic and mesotrophic reservoir located near

Brisbane in the subtropical southeast of Queensland, Australia (Fig. 15.2). The

lake has a catchment area of 7020 km2, an average depth of 11 m with a surface area

of 108 km2 and a volume of 1.165 million ML.

Blooms of the filamentous cyanobacterium Cylindrospermopsis raciborskii
occur annually in Lake Wivenhoe (Orr et al. 2010). C. raciborskii produces the

hepatotoxic cylindrospermopsin, which presents a risk to human health

(e.g. Hawkins et al. 1985) and must be removed during water treatment. Controlling

the development of C. raciborskii within the reservoir is a key goal of Seqwater

(www.seqwater.com.au), the water authority responsible for reservoir management.

However, this cyanobacterium is ecologically adaptable and can form blooms

under a range of light, temperature and nutrient regimes, and may tolerate

nitrogen-depleted waters through the ability to fix atmospheric nitrogen (N2)

(Bouvy et al. 2000; Moisander et al. 2008).

Daily in situ data and weekly cyanobacterium cell counts from 2007 through

2015 (Table 15.1) were used to develop HEA models for 10, 20, and 30-day

forecasts of C. raciborskii. Resulting models are tested for their capacity to provide

early warnings to employ operational in-lake measures for HAB control such as

intermittent mixing, and to alert within days the drinking water treatment plant of

high concentrations of C. raciborskii possibly present in source water.

Both cross- and split-sample-validation displayed good correspondence between

observed and 10-day-ahead forecasts of C. raciborskii population dynamics in Lake

Wivenhoe for 2007 through 2015 (Fig. 15.3b, e and f). The model in Fig. 15.3a

achieved a coefficient of determination r2 ¼ 0.48 with an IF-condition that sepa-

rates high and low cell numbers depending on distinct ranges of pH and electrical

conductivity (see Fig. 15.3d). Based on the assumption that 8000 cells mL�1 of

Fig. 15.2 Location of Lake Wivenhoe in Queensland, Australia
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C. raciborskii corresponds to the 1 μg L�1 threshold concentration for

cylindrospermopsins in drinking water currently being considered by the WHO

(2003), the timing of outbreaks of major blooms in the period between 2008 and

2015 has been accurately forecasted except for a minor bloom event in summer

2007/2008 (Fig. 15.3b). Although magnitudes of blooms in 2009, 2010 and 2013

were lower than the observed data, models predicted the observed bloom events of

more than 8000 cells mL�1.

Figure 15.4 illustrates validation results for 20- and 30-day-ahead forecasts of

C. raciborskii that were averaged from the three best models for each case. The

averaged models accurately predict the timing of fast population growth of the

observed bloom events between 2008 and 2015 but underestimate magnitudes for

most of the bloom events (Fig. 15.4a, c). However, both the 20- and 30-day-ahead

forecasts accurately predict cell division rates greater than 0.2 day�1 and magni-

tudes higher than 8000 cells mL�1 that according to Fig. 15.1 would cause alarm.

The case study of Lake Wivenhoe leads to the following conclusions:

– Models developed for 10- to 30-day-ahead forecasting of C. raciborskii
predicted observed bloom events even though magnitudes of observed cell

numbers were often underestimated.

– The water temperature above which C. raciborskii grows fastest in Lake

Wivenhoe appears to be 26.1 �C, which matches findings by Briand et al.

(2002). The thresholds also suggest that C. raciborskii is tolerant to higher

electrical conductivity up to 382 μS cm�1 as previously suggested by Briand

et al. (2002) and Moisander et al. (2008).

– Forecasting models for C. raciborskii in Lake Wivenhoe are solely driven by

electronically-measurable in situ water quality data.

Table 15.1 Limnological data of Lake Wivenhoe

Water quality variables Units

2007–2015

Mean/Min/Max

Physical-chemical parameters

WT (Temperature) ˚C 14.83/22.59/29.5

TURB (Turbidity) NTU 10.08/1.5/288.1

pH 8.1/6.5/9.7

DO (dissolved oxygen) mg L−1 7.96/4.85/11.16

EC (electrical conductivity) μS cm−1 335/140/496.5

Biological parameters

Cylindrospermopsis raciborskii cells mL−1 7126/1/74700
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15.2.2 Cyanotoxin Microcystins in Lake Vaal (South Africa)

The warm-monomictic and mesotrophic Vaal Reservoir (Fig. 15.5) is

South Africa’s largest drinking water reservoir and is located approximately

150 km south of Johannesburg. It has a catchment area of 38,500 km2, a maximum

depth of 47 m, a surface area of 320 km2 and a maximum volume of 2.61 million

ML.

The toxic microcystins that are produced by Microcystis spp. detrimentally

affects aquatic biodiversity, animals and human health (Carmichael 1994). The

maximum health limit of microcystins concentrations in drinking water has been

defined by the World Health Organization (WHO 2003) as 1 μg L�1. Climate and

water quality conditions of the Vaal Reservoir favour outbreaks ofMicrocystis spp.
blooms and can lead to increased concentrations of microcystins in the reservoir

(Conradie and Barnard 2012). Thus, the monitoring and control of cyanobacteria

blooms is a high priority for Rand Water (www.randwater.co.za), the water author-

ity responsible for the management of the Vaal Reservoir.

In-situ water quality data and total microcystin concentrations measured from

2002 through 2015 (Table 15.2) were used to develop forecasting models for

microcystins for 10 to 30 days ahead by HEA. Resulting models were tested for

their suitability to be applied for early warning of microcystins concentrations that

exceed 1 μg L�1 in Vaal Reservoir. Such models would directly target the threat

from cyanobacteria blooms posed by cyanotoxins rather than forecasting nontoxic

cyanobacteria populations.

Figure 15.6 documents cross- and split-sample validation for 10-day-ahead

forecasting models of microcystins. Both models fail to predict a minor peak

Vaal River

Vaal River

Vaal River

Vaal River
Barrage

SAMPLING STATION

VAAL
DAM

Vereeniging

Klip
River

Klip
River

Wilge River

Fig. 15.5 Location of the Vaal Reservoir
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event in 2013 but accurately forecast the major peak events in 2003, 2004, 2010,

2012, 2014 and 2015 in relation to correct timing and concentrations of

microcystins greater than 1 μg L�1 (Fig. 15.6b, d, e). The threshold conditions of

the model in Fig. 15.6a suggest that water temperatures greater than 20.8 �C and

turbidity ranging between 46 and 75 NTU were indicative of high microcystins

concentrations in the Vaal Reservoir. This finding reflects the fact that highest

microcystins concentrations can be expected during the collapse of a Microcystis
bloom typically occurring at warm water temperatures and causing low transpar-

ency. Figure 15.6c illustrates how these thresholds separate microcystins concen-

trations above and below 1 μg L�1 as a prerequisite for the model’s forecasting

performance.

Figure 15.7 documents results averaged from the 3 best models for forecasting

microcystins concentrations in the Vaal Reservoir for 20- and 30-day-ahead. The

models accurately forecast major peak events in 2003, 2004 and 2011 with

microcystins concentrations above 1 μg L�1 (Fig. 15.7a, c). Figure 15.7b, d reveal

daily proliferation rates greater than 0.2 day�1 before and during events of signif-

icantly increased microcystins concentrations.

The Vaal Reservoir case study leads to the following conclusions:

– Models for 10- to 30-day-ahead forecasting of microcystins concentrations in the

Vaal Reservoir prove to be valid for early warning of events that exceed 1 μg L�1.

– IF-conditions of the models reveal water quality conditions under which con-

centrations of microcystins are typically rising in Vaal Reservoir, and suggest

that water temperatures greater than 20 �C and turbidity ranging between 46 and

75 NTU may be indicative for such events.

– Forecasting models for microcystins in the Vaal Reservoir neither require costly

cyanobacteria cell counts nor nutrient measurements but are solely driven by

electronically-measurable in situ water quality data.

Although there is a highly complex synergy among environmental and climate

factors on one hand, and the sudden proliferation of cyanobacteria and -toxins in

freshwaters on the other hand, the two case studies demonstrated that inferential

Table 15.2 Limnological

data of Vaal Reservoir
Water quality variables Units

2002–2015

Mean/Min/Max

Physical-chemical parameters

WT (Temperature) ˚C 17.5/8.8/26

TURB (Turbidity) NTU 57.1/8.6/141

pH 7.7/5.8/10.7

DO (dissolved oxygen) mg L−1 7.4/3.2/11.1

EC (electrical conductivity) mS cm−1 19.6/13.9/55

Biological parameters

Chlorophyll-a μg L−1 11.9/0.67/101

Total microcystin μg L−1 0.42/0.1/5

328 F. Recknagel et al.



F
ig
.
1
5
.6

1
0
-d
ay
-a
h
ed

fo
re
ca
st
in
g
m
o
d
el
s
fo
r
m
ic
ro
cy
st
in
s
in

th
e
V
aa
l
R
es
er
v
o
ir
fr
o
m

2
0
0
2
to

2
0
0
5
.
C
ro
ss
va
li
da

ti
on

:
IF
-T
H
E
N
-E
L
S
E
m
o
d
el
(a
),
v
al
id
at
io
n

re
su
lt
(b
),
se
p
ar
at
io
n
o
f
m
ic
ro
cy
st
in
s
co
n
ce
n
tr
at
io
n
b
el
o
w

an
d
ab
o
v
e
1
μg

L
�1

b
y
IF
-c
o
n
d
it
io
n
s
(c
)
Sp

li
t-
sa
m
pl
e
va
li
da

ti
on
:
IF
-T
H
E
N
-E
L
S
E
m
o
d
el

(d
),

v
al
id
at
io
n
re
su
lt
s
(e
),
(f
)
(R
ec
k
n
ag
el

et
al
.
2
0
1
7
)

15 Operational Forecasting in Ecology by Inferential Models and Remote Sensing 329



F
ig
.
1
5
.7

F
o
re
ca
st
in
g
m
o
d
el
s
fo
r
m
ic
ro
cy
st
in
s
in

V
aa
l
R
es
er
v
o
ir
fr
o
m

2
0
0
2
to

2
0
1
5
.
2
0
-d
ay
-a
h
ea
d
fo
re
ca
st
in
g
:
cr
o
ss
-v
al
id
at
io
n
(a
)
(d
ot
te
d
li
ne

1
μg

L
�1
),

fo
re
ca
st
ed

co
n
ce
n
tr
at
io
n
g
ra
d
ie
n
ts
(b
);
3
0
-d
ay
-a
h
ea
d
fo
re
ca
st
in
g
:
cr
o
ss
-v
al
id
at
io
n
(c
)
(d
ot
te
d
li
ne

1
μg

L
�1
),
fo
re
ca
st
ed

d
ai
ly

co
n
ce
n
tr
at
io
n
s
an
d
p
ro
li
fe
ra
ti
o
n

ra
te
s
(d
)
(R
ec
k
n
ag
el

et
al
.
2
0
1
7
)

330 F. Recknagel et al.



models based on HEA can accurately forecast short-term (10 to 30 day) temporal

patterns in cyanobacteria and -toxins. Findings indicate the possibility to forecast

cyanobacteria blooms in real-time mode solely based on online water quality data

monitored by multi-sensor data loggers. More detailed results of the two case

studies are documented in Recknagel et al. (2017).

15.3 Early Warning of HABs Based on Remotely-

Sensed Data

15.3.1 Earth Observation of Water Quality Parameters

Forecasts of harmful algal blooms in lakes have historically been based on single-

or multi-site observations of water quality parameters. This is usually done by

selecting one or more locations in a lake that are assumed to represent the whole

system. Of course, high spatial and temporal variability can lead to significant over-

or underestimation of parameter values. To overcome this, field campaigns are

usually necessary to record spatial and temporal patterns in a limited number of

sites. Satellite remote sensing has an advantage over traditional field-monitoring

methods, as it can provide a picture across the entire lake surface. The last decades

of development in monitoring technology, i.e. increased spatial and spectral reso-

lution, has enhanced the applicability of remote sensing for monitoring lakes. In

addition to bathymetric and large-scale surface water mapping (Mueller et al.

2015), efforts have been undertaken to monitor algal blooms in inland waters

(e.g., Klemas 2012; Odermatt et al. 2010).

Earth observations enable scientists to quantify the light environment of a water

column and derive water quality parameters (for an overview, see e.g., Dekker and

Hestir 2012). Chlorophyll is the most widely used index of water quality and

nutrient status. Other pigments, i.e. cyano-phycocyanin and cyano-phycoerithrin

can be used to discriminate cyanobacteria. Coloured dissolved organic matter can

be used to estimate carbon content in aquatic systems, and total suspended matter

allows one to derive the underwater light environment. For hydrodynamic model-

ling, vertical light attenuation in the water column can also be derived from remote

sensing data. Observation of harmful algal blooms in water bodies is based mainly

on the absorption/reflectance characteristics of algal pigments. Although focussing,

by nature, only on the surface layers, remote sensing can provide an invaluable

source of information for the spatio-temporal distribution of water quality param-

eters and cyanobacteria blooms. However, challenges for the observation of blooms

in lakes remain, e.g., spatial and temporal resolution, cloud cover, atmospheric

correction, etc. (Dekker and Hestir 2012; D€ornh€ofer and Oppelt 2016; Palmer et al.

2015 and references therein).

As ocean observation was the first application of remote sensing in aquatic

systems, focus was given to the well-known absorption characteristics of
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chlorophyll-a to derive phytoplankton biomass characteristics on large scales.

Satellite optical instruments are available for observation of specific bands of

chlorophyll absorption around 440 nm and 681 nm. However, inland waters pose

a more complex problem, as many water constituents absorb light at different bands

across the entire visible spectrum (Fig. 15.8). Optical instruments in different

satellites resolve different bands across the whole spectrum (see Table 15.3)

which might not coincide or overlap with specific bands of chlorophyll absorption.

Water quality parameters like chlorophyll content can only be estimated using

ratios between discrete numbers of available spectral bands.

The observation of lake water using satellite optical sensors depends on the

spatial, temporal and spectral resolution of the sensors and the availability of high

resolution in-situ data for algorithm validation. The long-running Landsat series of

satellites (Landsat 1 started in 1972, Landsat 7 has been in orbit since 1999) has a

good spatial resolution of 30–79 m, but lacks a high spectral band resolution. The

newer satellite in this series, Landsat 8, has a better spectral resolution but is of

limited use for the observation of harmful algal blooms due to a long revisit time of

about 16 days. Nevertheless, as the Landsat image archive consists of several

decades of data, this can provide useful information on historic changes in water

quality parameters. Two other sensors are often used for water quality information,

MODIS (Moderate resolution imagining spectrometer) and MERIS (Medium res-

olution imagining spectrometer) have higher spectral resolution (see Table 15.3)

but their spatial resolution of 300–1000 m limits their use to larger lakes

(e.g. Lunetta et al. 2015). The Sentinel-2 mission (launched in 2015; a second

satellite will be launched in 2017) offers new opportunities for water quality

observations having optical sensors with 13 bands in the visible, near infrared,

and short wave infrared part of the spectrum and spatial resolutions of 10, 20, and

Fig. 15.8 Characteristic absorption spectrum of inland waters
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60 m. Their combined revisiting time will be 5 days. The use of such new satellite

systems for the interpretation of water quality parameters will enhance our capa-

bility to predict harmful algal blooms, but further research is needed to generate

suitable algorithms to match satellite information with high-resolution in-situ

measurements (Manzo et al. 2015; Toming et al. 2016). In the future we will see

hyperspectral satellite missions, e.g., Hyperspectral Infrared Imager or HyspIRI,

with several hundreds of spectral bands and spatial resolution of 60 m but low

temporal resolution of 19 days. This system will be effective for detecting seasonal

changes (Hestir et al. 2015) and can serve as a basis for process-based models

covering the intermediate time between overpasses. Furthermore, it will enable

discrimination of cyanobacteria species depending on their pigment composition

(Kudela et al. 2015).

Mapping of cyanobacteria blooms requires the aforementioned, multispectral or

hyperspectral resolution sensors to derive information on cyanobacteria-specific

pigments. When such information is not available, chlorophyll can be used as proxy

as long as cyanobacteria are the dominant species. It will even result in a better

estimation than cyano-phycocyanin from current sensors due to its sensitivity to

detection (Stumpf et al. 2016). For lakes with a known record of cyanobacteria

blooms such an approach is permissible, i.e. in-situ data are required to legitimize

the remotely sensed information. However, a chlorophyll-based estimation for

concentration of cyanobacteria and related cyanotoxins tends to overestimate

cyanotoxin content (Loftin et al. 2016).

Table 15.3 Characteristics of selected satellite sensor systems and their usability for water quality

observation [modified after Dekker and Hestir (2012)]

Satellite

sensor system

Pixel

size

Spectral

bands

Revisit

cycle Suitability

(m)

(400–1000

nm) (d) Chlorophyll

Cyano

pigments

Current MODIS 1000 9 1 Highly

suited

Potential

MODIS 250–500 2 1 Not suitable Not

suitable

MERIS &

OCM-2

300 15 2–3 Highly

suited

Highly

suited

Landsat 30 4 16 Potential Potential

Rapideye 6.5 5 1.5 Potential Potential

Worldview-

2

2 8 On

demand

Suited Suited

Future Sentinel-3 300 21 1 Highly

suited

Highly

suited

HySpIRI 60 60 19 Highly

suited

Highly

suited
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15.3.2 Forecasting HABs Using Earth Observations

Classical, process-based models rely on massive data on water quality parameters at

multiple sites for calibration and validation. This includes knowledge of physio-

logical characteristics of dominant species, in-situ data in the lake, as well as drivers

like meteorological data over the lake and inflow characteristics to the lake

(Fig. 15.9). Earth observation using satellite remote sensing provides spatially

extensive information on certain water quality parameters reflecting bio-optical

properties in the surface waters. These snapshots, depending on cloud-free condi-

tions and overpass timing, allow for calibration of hydrodynamic models as well as

bio-optical models. The development of such data assimilation systems for inland

waters, combining process-based models—usually 2D horizontal or 3D

hydrodynamic-biogeochemical models—are currently being investigated. While

monitoring of algal bloom using remote sensing is broadly used, only a few real-

world applications exist for coupling with process-based models for forecasting.

For the shallow Mantua Superior Lake, Italy, Pinardi et al. (2015) verified the

simulation results for wind driven transport of chlorophyll-a concentration in the

lake using a 3D hydrodynamic model compared to chlorophyll data derived from

Fig. 15.9 Conceptual framework for combining remote sensing with modelling of harmful algal

bloom [after J€ohnk et al. (2016)].
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airborne and satellite remote sensed data. However, this application is restricted to

assessing pure transport processes as it does not simulate algal growth.

Ongoing work at the artificial, urban Lake Burley Griffin, Australia, is develop-

ing a framework to integrate remote sensing data (Fig. 15.10) with a 3D

hydrodynamic-biogeochemical model (J€ohnk et al. 2016) and in-situ measurements

of bio-optical properties (Cherukuru et al. 2017). The availability of high spatial

resolution images (Worldview-2 satellite, 2m resolution) for coloured dissolved

organic matter (CDOM), non-algal particulate matter (NAP), and chlorophyll-a

(Fig. 15.10) will allow scientists to forecast the development of cyanobacteria

blooms on a timescale of 7 days based on initial remote sensing data and simula-

tions driven by meteorological weather forecast.

For large lakes the spatial limitation of current satellite sensors is of minimal

concern. Based on data from a geostationary satellite—Geostationary Ocean Color

Imager (GOCI) launched by Korea—high temporal resolution images were used to

follow algal blooms in Lake Taihu, China, with an hourly resolution (Huang et al.

2015). Basis for such a highly resolved series are the availability of in-situ data as

prerequisite for calibrating the retrieval algorithms and cloud-free conditions.

Lake Erie, USA, is another example of a large lake, where hydrodynamic models

were used to predict seasonally occurring cyanobacteria blooms. A

two-dimensional, vertically integrated circulation model was used to forecast the

trajectory of blooms (Wynne et al. 2011). Combined with in-situ monitoring and

remote sensing data (MERIS) this led to the development of an online system for

bloom dynamics in Lake Erie (Wynne et al. 2013). This system developed by the

NOAA’s Great Lakes Environmental Research Laboratory is presently the only

operational harmful algal bloom forecasting system known to us (Western Lake

Erie HAB tracker: https://www.glerl.noaa.gov//res/HABs_and_Hypoxia/

habTracker.html).

The integration of remote sensing data with process-based models to forecast

harmful algal blooms in inland waters is currently an active research area. With the

launch of new, multispectral satellite sensors it can be expected that this field will

rapidly expand and lead to new forecasting systems. It should be stressed, that

process based models and algorithms to derive water quality data from satellite

imagery need large databases of in-situ measurements to have predictive power.

Thus, even with remote sensing allowing for a large-scale picture, field data are still

necessary to ground truth Earth observation based models.

15.4 Conclusions

Operational forecasting and early warning of sudden occurring, unfavourable

changes in ecosystems is prerequisite for prevention and mitigation of high eco-

nomic and ecological costs. Novel computational and sensor technology becomes

available to efficiently monitor and forecast such events like outbreaks of harmful

cyanobacteria blooms.
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Fig. 15.10 Water quality parameters for Lake Burley Griffin, Australia, derived from Worldview

2 satellite. (a) True colour image for 17.March 2010, (b) CDOM—coloured dissolved organicmatter

characterized by a specific wavelength, (c) NAP—non algal particulate matter, (d) chlorophyll-a
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Inferential models derived from in situ water quality data by evolutionary

computation have been demonstrated to achieve up to 30-day-ahead forecasts of

fast-growing concentrations of cyanobacteria cells and cyanotoxins in drinking

water reservoirs. These models can be developed for different species of

cyanobacteria and different cyanotoxins, and allow real-time early warning driven

by online in situ water quality data monitored by multi-probe data loggers.

Future research focuses on generalising models of cyanobacteria and cyanotoxin

species derived from lakes with similar climate, topology and trophic states.

Libraries of species specific models categorised for lakes with similar properties

will allow to share models across lakes with similar properties but insufficient

historical data for on-site modelling.

Remote sensing allows to monitor spatio-temporal distribution of water quality

parameters and cyanobacteria blooms based on sufficient spatial, temporal and

spectral resolution of the sensors, and the availability of suitable algorithms to

match satellite information with high-resolution in-situ measurements. Future

research focuses on forecasting seasonal trajectories of harmful algal blooms by

combining in-situ monitoring and remote sensing data with hydrodynamic models.

By deriving vertical light attenuation in the water column from remote sensing data,

hydrodynamic models will be enabled to predict seasonally occurring

cyanobacteria blooms.
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Chapter 16

Strategic Forecasting in Ecology by Inferential

and Process-Based Models

Friedrich Recknagel, George Arhonditsis, Dong-Kyun Kim,

and Hong Hanh Nguyen

Abstract Long-term forecasts are crucial for successful preventative and restor-

ative management in ecology, and therefore require valid forecasting models.

However, the validity of models is restricted by their scope and their inherent

uncertainties.

This chapter discusses benefits of ensemble modelling in order to strengthen the

validity and reliability of long-term forecasts. An ensemble of inferential models is

demonstrated to overcome the limited scope of a single model for forecasting

population dynamics of the cyanobacterium Microcystis in response to adaptive

flow management of the River Nakdong (South Korea). Ensembles of alternative

process-based models based on model averaging are examined to decrease uncer-

tainties of single models when applied to determine the Remedial Action Plan for

eutrophication control of Hamilton Harbour (Canada) and global warming effects

on the phytoplankton community of Lake Engelsholm (Denmark). An ensemble of

the complementary models SWAT and SALMO is applied to the catchment-

reservoir system Millbrook (Australia) to overcome limitations of the scope of

the two individual models. Results indicate that both, complex catchment-specific

and lake-specific processes need to be considered in order to realistically forecast

spatial cascading effects between catchments and lakes under the influence of

prospective land use and climate changes.

16.1 Introduction

Strategic or long-term forecasting is traditionally considered the domain of process-

based models that simulate ‘what-if’ scenarios by running the process equations

with scenario-specific parameter and input settings. Resulting state trajectories
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display the likely scenario effect. However, scenario results from single process-

based models may be limited by two factors: (1) their inherent uncertainty, and

(2) their scope. Model ensembles as illustrated in Fig. 16.1 are one possible

approach to addressing these limiting factors. Ensembles of alternative models

may mitigate single model uncertainty (e.g., Ramin et al. 2012; Trolle et al.

2014), and ensembles of complementary models may extend the scope of single

models.

By contrast, scenario analysis by inferential models may be limited by the fact

that they lack the mechanistic foundation, and are directly driven by predictor

variables. Again, ensembles of inferential models may address this limiting factor

and would allow information to be cascaded between complementary models, and

enable the simulation of nutrient cycles and community dynamics (e.g., Recknagel

et al. 2014) as a prerequisite for scenario analysis.

This chapter discusses novel approaches for scenario analysis based on ensem-

bles of inferential and process-based models.

16.2 Scenario Analysis by Inferential Models

This case study is based on an ensemble of inferential models that have been

developed from hybrid evolutionary algorithms HEA (Cao et al. 2014, see also

Chap. 9). The ensemble is applied to test the hypothesis that seasonally altered flow

regimes in the River Nakdong (Korea) can be used to control population growth of

Microcystis aeruginosa by changing water residence time and water quality. In

Fig. 16.1 Rationale of ensembles of complementary (a) and alternative models (b)
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order to test the hypothesis, two flow regimes were created from historical data that

maintain the base flow above the threshold of 350 m3 s�1 in winter, and limit the

peak flow in summer to 700 m3 s�1. These flow regimes can be practically managed

by maintaining the recommended flow level during the dry winter season by

releasing additional water from adjacent dams, and by maintaining the

recommended peak flow limit in summer by releasing less water from dams

(e.g. Jeong et al. 2007; Hong et al. 2014).

The Nakdong River stretches 525 km across South Korea with a catchment area

of 23,380 km2 and is regulated by dams that supply irrigation and drinking water to

adjacent communities. The river has a history of phytoplankton proliferation

dominated by cyanobacteria in summer and diatoms in winter (Ha et al. 1999,

2003; see also LTER Nakdong River in Chap. 20). Weekly to monthly water quality

data and algae cell counts monitored at Mulgeum Station of the Nakdong River

from 1993 to 2012 (see Table 16.1) have been linearly interpolated for daily time

steps before modeling Microcystis aeruginosa using the hybrid evolutionary algo-

rithm HEA.

Scenarios have been based on the observation that 350 m3 s�1 is the flow

threshold above which chlorophyll a concentrations decline significantly (Hong

et al. 2014). Accordingly, scenario 1 assumes a twofold increase and scenario

2 assumes a threefold increase of flow that is below the threshold, whereby flow

rates exceeding 700 m3 s�1 (�83rd percentile of the river flow) have been halved

(Fig. 16.2).

Figure 16.3 illustrates the model ensemble that has been designed for analysing

alternative flow scenarios for the cyanobacterium Microcystis based on the best-

performing model for 5-day-ahead forecasts of Microcystis (see Fig. 16.4a). The

model achieved a coefficient of determination r2 ¼ 0.94 and identified the water

Table 16.1 Statistical summary of limnological data from Nakdong River monitored from 1993

to 2012

Variable Unit Min Max Mean SD

Coefficient of

variance (%)

Water temperature WT �C 0 34.4 16.4 8.7 53

Dissolved oxygen DO mg L�1 2.5 24.7 10.9 3.9 36

pH 6.27 10.73 8.24 0.82 10

Electrical conductivity

EC

μS cm�1 10 670 292 116 40

Turbidity TURB NTU 1.6 648.0 17.4 43.1 248

Flow rate Q m3 s�1 0.1 11,996.9 527.9 1009.9 191

Nitrate NO3-N mg L�1 0.05 5.62 2.54 0.86 34

Phosphate PO4-P μg L�1 2 1114 56 53 94

Silica SiO2 mg L�1 0.01 21.64 5.41 3.90 72

Chlorophyll a Chl-a μg L�1 0.4 1035.0 34.9 61.0 175

Microcystis aeruginosa cells mL�1 0 9,500,837 49,420 479,907 971
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Fig. 16.3 Model ensemble for simulating flow scenarios for Microcystis (Recknagel et al. 2017)

Fig. 16.2 Definition of flow scenarios 1 and 2 in relation to the reference flow regime monitored

at Mulgeum Station of the Nakdong River from 1993 to 2012 (Recknagel et al. 2017)
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temperature of 27.7�C as threshold above which the model forecasts high popula-

tion density of Microcystis of greater than 50,000 cells mL�1 (see Fig. 16.4b). The

temperature threshold corresponds well with literature findings suggesting that

Microcystis tend to have optimum growth rates above 25 �C (e.g. Robarts and

Zohary 1987).

The predictor variable water temperature (WT) of the Microcystis model is

considered to be least affected by flow and has therefore been maintained

unchanged for the scenario analysis. However, the predictor variables turbidity

(TURB), nitrate (NO3-N), and chlorophyll a (Chl-a) are expected to be flow-

dependent. They have been represented by separate forecasting models (see

Table 16.2 and Fig. 16.4c), and incorporated into the model ensemble for

Microcystis (Fig. 16.3). The model for TURB included WT, dissolved oxygen

(DO) and pH as predictor variables which were considered to be flow-independent

and therefore maintained unchanged for the scenario analysis. The model for NO3-

N was based on the predictor variables WT, DO and pH which remained unchanged

for the scenario analysis. However, the Chl-a model included the flow-dependent

predictor variables electrical conductivity (EC) and silica (SiO2) for which fore-

casting models have also been developed (see Table 16.2).

The Chl-a model achieved an r2 ¼ 0.54 (Fig. 16.4c) suggesting water tempera-

tures greater than 26.2 �C and pH values greater than 9.6 as threshold conditions for

forecasting Chl-a concentrations greater than 15 μg L�1 (see Fig. 16.4d). Both

thresholds indicate that Chl-a in the River Nakdong is seasonally correlated with the

cyanobacterium Microcystis, which is dominating in summer at optimum water

temperatures greater than 25 �C (see above), and causing pH values to rise above

8.5 (Reynolds 2006).

Whilst bloom events of Microcystis with more than 50,000 cells ml�1 occurred

frequently in River Nakdong, major blooms in 1994, 1996 and 1997 exceeding

Table 16.2 Documentation of models for turbidity TURB, electrical conductivity EC, phosphate

PO4-P, nitrate NO3-N and silica SiO2

Models r2

IF(pH/371.7)*Q<¼72

THEN TURB ¼ ((�25.85/(WT�33.48)+(((Q/15.3)+84.66)/DO))

ELSE TURB ¼ (((�489.97/(WT�17.15))/(WT�23.88)�433.49/(WT-31.65))

0.31

IF (DO>¼19.5 AND Q>¼46.53) OR (Q>¼30.15 AND (pH-Q>�28.61)

THEN EC ¼ (451.96�((�16.32�(WT*(�0.536)))*ln(|(Q�88.43)|)))

ELSE EC ¼ (410.95�((18.05�(WT*(�0.536)))*ln(|(Q�44.83)|)))

0.54

IF (TURB<8.2 OR Q<¼136.5) OR (WT<28.7 OR (TURB<97.6 AND TURB>¼48.5))

THEN PO4-P ¼ ((3.2/(246.9�(WT*27.4)))+54.3�(41.22/(TURB�88.185)))

ELSE PO4-P ¼ (((TURB/0.36)�DO)+62.89)

0.37

IF pH>¼9.1 OR Q<76.7

THEN NO3-N ¼ (((3.364�(WT/19.24))�0.052)�((31.93/(25.987�Q))/107.28))

ELSE NO3-N ¼ (((3.127�(WT/29.1))�(37.6/(Q+DO)))�((1.84/(7.01�pH))/173.48))

0.33

IF Q>395.35

THEN SiO2 ¼ ln(|(((WT*TURB)*(WT*TURB))*((�208.55/DO)/Q))|)

ELSE SiO2 ¼ ln(|(((Q*0.03)*(Q*0.102)+(277.9/(WT�0.367)))|)

0.37
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1 million cells ml�1 (Fig. 16.5a) were of particular interest and have been fore-

casted accurately in terms of timing and magnitude by the model documented in

Fig. 16.4a. The scenario analysis by means of the model ensemble in Fig. 16.3

predicted a 70% lower magnitude of the Microcystis bloom in 1994 and the

prevention of major bloom events in 1996 and 1997 (Fig. 16.5b) by the flow regime

1 (see Fig. 16.2b) and the prevention of all 3 bloom events (Fig. 16.5c) by the flow

regime 2 (Fig. 16.2c).

Figure 16.6 represents results of the scenario analysis in terms of percentage of

average change of water quality parameters in response to the two flow scenarios

forecasted by the models for TURB, EC, PO4-P, NO3-N and SiO2 as well as the

models in Fig. 16.4. It illustrates that EC increased up to 110% under the influence

of the flow scenarios while concentrations of PO4, NO3 and SiO2 decreased.

Turbidity decreased most significantly to almost 80% whilst Chl-a diminished up

to 96%. Figure 16.6 provides further evidence that altered flow regimes can prevent

extreme algal blooms in River Nakdong reflected by decline of the average popu-

lation density of Microcystis to 96%.

In summary, the case study has demonstrated that ensembles of inferential

models allow scenario analysis of complex systems such as population dynamics

Fig. 16.5 5-day-ahead forecasting ofMicrocystis in River Nakdong from 1993 to 2012 based on:

(a) reference flow (Fig. 16.2a), (b) flow scenario 1 (Fig. 16.2b), (c) flow scenario 2 (Fig. 16.2c)

(Recknagel et al. 2017)
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of the cyanobacterium Microcystis in response to river flow regimes. River flow

influences Microcystis growth not only directly by changing water residence time,

but also indirectly by altering predictor variables such as turbidity, conductivity,

nutrient and chlorophyll-a concentrations. It therefore proved to be sensible to

model these ‘indirect’ predictor variables affected by flow first before they feed

into theMicrocystis model in combination with the ‘direct’ predictor variable flow.
The so-designed model ensemble enabled cascading effects of changed flow

regimes to be simulated through the network of predictor variables forMicrocystis.
Results of the scenario analysis suggest that managed flow is a viable option for

controlling blooms ofMicrocystis in the River Nakdong. The full study including a
model ensemble for predicting winter blooms of Stephanodiscus has been

documented in Recknagel et al. (2017).

16.3 Scenario Analysis by Process-Based Models

Recognizing that there is no true model of an ecological system, but rather several

adequate descriptions of different conceptual basis and structure, simulation librar-

ies and ensemble modeling may mitigate uncertainty inherent in the model selec-

tion process. Environmental management decisions relying on a single inadequate

model can introduce bias and uncertainty that is much larger than the error

stemming from the erroneous choice of model parameter values (Neuman 2003).

Basing ecological forecasts on a single mathematical model implies that a valid

alternative model may be rejected (or omitted) from the decision making process

(Type I model error), but also that projections can potentially result from a flawed

mathematical construct that was not rejected in an earlier stage (Type II model

error).

The simulation library SALMO-OO (Recknagel et al. 2008a) is an object-

oriented implementation of the lake model SALMO (see Chap. 10) that provides

access to alternative process representations for algal growth and grazing as well as

zooplankton growth and mortality adopted from Arhonditsis and Brett (2005),

Fig. 16.6 Comparison of

percentage changes of water

quality parameters and

phytoplankton forecasted in

response to scenarios 1 and

2 (Recknagel et al. 2017,

modified)
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Hongping and Jianyi (2002), and Park et al. (1974), which are integrated into the

SALMO framework. Keeping the selection of these process representations

optional, the aim is to give SALMO-OO structural flexibility in order to assemble

“best-fit” model structures for particular applications (Recknagel et al. 2008b).

In this section we demonstrate how ensembles of alternative and consecutive

models can improve the validity of scenario analyses.

16.3.1 Ensemble of Alternative Models Based on Bayesian
Model Averaging

Bayesian Model Averaging (BMA) is a technique designed to integrate across

many different competing models, thereby incorporating the uncertainty about the

optimal model for any given exercise into the inference drawn about parameters

and predictions (Raftery et al. 2005). Thus, rather than picking the single “best-fit”

model to predict future system responses, we can use Bayesian model averaging to

provide a weighted average of the forecasts from different models (Hoeting et al.

1999). In weather forecasting, BMA has offered a strategy for statistical post-

processing of ensemble outputs, thereby achieving lower predictive error and

sharper predictive probability density functions (Bao et al. 2010; Sloughter et al.

2007, 2010). In the context of eutrophication, despite the increasing number of

process-based modeling studies that have adopted uncertainty analysis techniques

(Arhonditsis et al. 2007, 2008a, b; Law et al. 2009; Ramin et al. 2011; McDonald

et al. 2012), there is an overwhelming gap in the literature of ensemble approaches

to guide risk assessment. Moreover, there has been little focus on the benefits of

basing ecological forecasts on combinations of process-based models, and practi-

cally no discussion on the ways that outputs of mathematical models with multiple

endpoints (state variables) and derived quantities (process rates) can be objectively

integrated into a single averaged prediction.

Ramin et al. (2012) recently examined the potential benefits for model-based

environmental management when a combination of models of different complexity

is being used. In particular, predictions drawn from a simple plankton model were

synthesized with those provided by a complex ecosystem model in order to guide

the water quality criteria setting process in Hamilton Harbour (Ontario, Canada; see

Chap. 11). The former (simpler) model accounted for the basic processes underly-

ing the interplay among phosphate, detritus, and generic phytoplankton and zoo-

plankton state variables, such as phosphate uptake, grazing, metabolic losses,

phosphorus recycling, and sedimentation (Fig. 16.7). The complex eutrophication

model reproduced the interactions among a generic phytoplankton group, a

“cyanobacteria-like” phytoplankton, and zooplankton with the nitrogen and phos-

phorus cycles. The latter model also considered a dynamic causal association

between nutrient release rates from the sediments and particulate fluxes from the

water column.
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Fig. 16.7 The flow diagram of the phosphate (PO4)–phytoplankton (PHYT)–zooplankton
(ZOOP)–detritus or particulate phosphorus (DET), also referred to as NPZD model (a). The

nitrogen biogeochemical cycle of the model: (1) external forcing to phytoplankton growth
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Using a Bayesian framework (see also Chap. 11), the two ecological models

were calibrated independently against the water quality conditions currently

prevailing in the Hamilton Harbour. A sequence of realizations from the posterior

distribution of the models was obtained using Markov chain Monte Carlo (MCMC)

simulations (Gilks et al. 1998). Quantifying model performance in terms of the

magnitude of the structural (or process) error terms for each state variable with

available calibration data indicated that the complex model outperformed the

simple one (Ramin et al. 2012, see Table 16.3). In a post-hoc sensitivity analysis

test, the ability of the latter model to support predictions outside its calibration

domain was examined against the empirical relationships among annual phospho-

rus loading, summer total phosphorus (TP), and chlorophyll a concentrations his-

torically recorded in the Hamilton Harbour (Ramin et al. 2012). However, because

of the uncertainty of the year-specific loading values from the early 1990s, when the

system was hyper-eutrophic, a predictive validation exercise to examine the cred-

ibility of the model to reproduce year-to-year variations was not undertaken, and

thus the likelihood of overfitting the data with the complex model is not entirely

ruled out (Gudimov et al. 2010; Ramin et al. 2011).

⁄�

Fig. 16.7 (continued) (temperature, solar radiation); (2) zooplankton grazing; (3) phytoplankton

basal metabolism excreted as NH4 (Ammonium) and ON (Organic Nitrogen); (4) zooplankton

basal metabolism excreted as NH4 and ON; (5) settling of particles; (6) water sediment NO3

(Nitrate), NH4, and ON exchanges; (7) exogenous inflows of NO3, NH4, and ON; (8) outflows of
NO3, NH4, and ON; (9) NO3 sinks due to denitrification; (10) ONmineralization; (11) nitrification;

and (12) phytoplankton uptake (b). The phosphorus biogeochemical cycle of the model: (1) exter-

nal forcing to phytoplankton growth (temperature, solar radiation); (2) zooplankton grazing;

(3) phytoplankton basal metabolism excreted as PO4 (Phosphate) and OP (Organic Phosphorus);

(4) zooplankton basal metabolism excreted as PO4 and OP; (5) OP mineralization; (6) water

sediment PO4 and OP exchanges; (7) settling of particles; (8) exogenous inflows of PO4 and OP;
and (9) outflows of PO4 and OP (c)

Table 16.3 Markov chain

Monte Carlo estimates of the

mean values and standard

deviations (SD) of the model

structural (or process) error

for the different state

variables of the two

eutrophication models

Parameters Simple (NPZD) Complex

Mean SD Mean SD

σPO4epi 1.732 0.457 0.287 0.101

σPHYTepi 205.5 52.51 – –

σZOOPepi 55.47 19.96 13.86 3.466

σDET/OPepi 1.083 0.421 2.221 0.599

σNH4epi – – 48.56 11.71

σNO3epi – – 240.5 66.52

σCYAepi – – 111.7 29.76

σNONCYAepi – – 52.32 14.71

σPO4hypo 2.261 0.533 0.834 0.218

σDET/OPhypo 3.794 0.898 2.212 0.554

σNH4hypo – – 14.81 5.33

σNO3hypo – – 268.2 64.39
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Furthermore, drawing parallels between the parameter posteriors of the two

models, the study identified their similarities with respect to the ecological charac-

terization of the planktonic food web of the studied system. In particular, the

generic phytoplankton group in both models was assigned high maximum phyto-

plankton growth rates (>2 day�1), fast response to light availability (i.e., half

saturation light intensity for phytoplankton <140 MJ m�2 day�1), fast phosphorus

kinetics (i.e., half saturation constant <10 μg P L�1), and high maximum uptake

rates (0.02 μg P L�1 day�1). Likewise, the updating of the two models resulted in

similar zooplankton grazing (�0.5 day�1) and mortality rates (0.11–0.15 day�1) as

well as sedimentation rates of particulate matter (>0.4 m day�1), and relative

importance of the two factors that determine the illumination of the water column,

i.e., the light extinction due to chlorophyll a (0.02–0.03 L μg chla�1 m�1), and the

background light attenuation (�0.2 m�1).

After the calibration exercise, the MCMC estimates of the mean and standard

deviation parameter values along with their covariance structure were used to

update the two models (Gelman et al. 2013). The updated models provided the

basis for long-term forecasting through a series of posterior simulations aiming to

examine the compliance of the system with targeted water quality standards, 20 μg
TP L�1 and 10 μg chla L�1, under reduced nutrient loading conditions (Ramin et al.

2011). Predictions from the two models were also combined to obtain averaged

forecasts from the two ecological characterizations of the system. One of the critical

decisions when considering models of different complexity involves the selection

of the averaging scheme to synthesize their predictions (Lindstr€om et al. 2015).

Ramin et al. (2012) opted for a strategy that considers performance over all the

model endpoints rather than the subset of state variables included in both models or

the variables more closely related to the environmental management problem at

hand. Thus, the adopted strategy used the respective mean process error values as

weights in a weighted model average:

wij ¼
PMC

k¼1

σijk
Yj

MC
ð16:1Þ

wMi ¼ m
Pm

j¼1

wij

ð16:2Þ

TP ¼
Xl

i¼1

wMiTPMi chla ¼
Xl

i¼1

wMichlaMi ð16:3Þ

where: l represents the number of models considered in this analysis (l ¼ 2);

m corresponds to the number of state variables j of the modelMi for which data are

available (m¼ 6 or 11);MC is the total number of MCMC runs sampled to form the

model posteriors; σijk denotes the model structural error for the state variable j of the
model Mi as sampled from the MCMC run k; �Yj represents the annual observed
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average for the variable j, TPMi and chlaMi are the total phosphorus and chlorophyll

a predictions from the individual models weighted by the corresponding weights

wMi to obtain the averaged predictions TP and chla. This weighting scheme entails

the risk of downplaying the impact of the best performing model for a particular

variable, but also reflects the notion that all models integrated in an ensemble

ecological forecast should demonstrate balanced performance over their entire

structure. In particular, this approach aims to penalize the likelihood of calibration

bias, whereby the maximization of the fit for a specific state variable (e.g., phyto-

plankton biomass, dissolved oxygen) may be accompanied by high error for other

state variables (herbivorous zooplankton biomass, nutrient concentrations), and

thus to avoid forecasts founded on models with misleadingly high weights that

downplay fundamentally flawed ecological structures (Franks 1995; Arhonditsis

and Brett 2004).

Regarding the nutrient loading scenario examined with the two updated models,

both the simple model (18.7 � 0.7 μg TP L�1) and the complex one (17.8 � 0.9 μg
TP L�1) predicted that the average TP concentrations during the summer stratified

period will fall below the level of 20 μg TP L�1, if the exogenous phosphorus

loading is reduced to 142 kg day�1 (Fig. 16.8a, b). The complete agreement

between the two forecasts for total phosphorus is also reflected in their averaged

prediction (Fig. 16.8c). Both models also predict that the epilimnetic chlorophyll

a concentrations will fall below the threshold level of 10 μg chla L�1 (Fig. 16.9a, b).

Nonetheless, the simple model appears to support more optimistic predictions with

respect to phytoplankton response to the reduced ambient TP concentrations rela-

tive to the complex one. Consequently, the averaged predictive distribution for

chlorophyll a demonstrates a distinct bimodal pattern with a primary mode at 7.5 μg
chla L�1, reflecting the greater weight placed on the complex model, and a

secondary peak at 5.1 μg chla L�1, associated with the simple one (Fig. 16.9c).

The fact that both models predict the achievability of the water quality standard

related to the mean chlorophyll a concentrations (<10 μg L�1) in the Hamilton

Harbour is certainly encouraging; nonetheless, the more conservative predictions of

the complex ecosystem model invite investigation of the factors that could be

driving this discrepancy.

To this end, one of the major structural differences between the two models lies

in the way the nutrient fluxes from the sediments are treated, i.e., a user-specified

temperature-dependent phosphorus flux rate vis-�a-vis a dynamic characterization of

the phosphorus release as a function of the particulate sedimentation and burial

rates (Ramin et al. 2011). The simple model predicts that the sediments contribute

approximately 1.1 mg P m2 day�1 into the overlying water column, whereas the

same fluxes are increased to 2.0 mg Pm2 day�1 with the complex model. Empirical

evidence from the system suggests that upward diffusive phosphate fluxes in the

Harbour are closer to the latter estimate, as they can reach the level of 1.7 mg m2

day�1 (Azcue et al. 1998). Under the reduced nutrient loading scenario, the

dynamic nature of the sediment response with the complex model decreases the

phosphorus release at the level of 1.5 mg m2 day�1, which is still higher than the

flux used to force the simple model. Using a temperature-dependent phosphorus
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release rate to reproduce the sediment-water column interactions, which is then

treated as an inverse problem (i.e., data for the dependent variables are used to

specify the values of model parameters), likely oversimplifies this facet of the

ecosystem functioning. Thus, the discrepancy between the two models pinpoints

a structural weakness in the simple model and also highlights the importance of

embracing more sophisticated modeling strategies to shed light on the sediment

diagenesis processes in the Hamilton Harbour (Gudimov et al. 2016). Bearing in

mind that the Occam’s razor suggests a shift towards simpler theories until sim-

plicity can be gradually traded for increased predictive capacity (Jaynes 1994), the

consideration of more than one model for environmental management problems can

be particularly useful. This practice offers an opportunity to identify areas where

extra complexity should be invoked and knowledge gaps that can be critical for

increasing the credibility of our ecological forecasts.

The Hamilton Harbour case study in principle reflects our lack of confidence in

mechanistic modeling to support reliable “real-time” forecasts. After the training
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Fig. 16.8 Predictions of the epilimnetic summer total phosphorus concentrations, under the

proposed nutrient loading reductions by the Hamilton Harbour Remedial Action Plan (RAP),

based on the two eutrophication models (a, b) and their averaged predictions (c). Old threshold

refers to the 17 μg TP L�1 standard, while the new delisting criterion sets the water quality target at

20 μg TP L�1 (Gudimov et al. 2010, 2011; Ramin et al. 2011, 2012)
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and validation phase, we typically opt for analysis of long-term ecological scenarios

aiming to address questions of the type “What would happen if. . .?” while the

derived projections are conditioned on the model assumptions, residual error,

and/or associated uncertainty. The novel feature of this study is the explicit

recognition of the uncertainty pertaining to the selection of the optimal model

structure for a specific environmental management problem.

16.3.2 Ensemble of Alternative Models for Simulating
Phytoplankton Response to Climate Change

Trolle et al. (2014) applied a model ensemble to test the hypothesis that the

corresponding mean predictions (derived as the average of daily outputs of the
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Fig. 16.9 Predictions of the epilimnetic summer chlorophyll a concentrations, under the proposed
nutrient loading reductions by the Hamilton Harbour RAP, based on the two eutrophication

models (a, b) and their averaged predictions (c)
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ensemble members) can provide a better working model compared with any

individual process-based model (Gneiting and Raftery 2005). The case study for

testing this hypothesis was Lake Engelsholm in Denmark—a shallow eutrophic

lake surrounded by a catchment area (15.2 km2) that consists mainly of cultivated

arable land, forested hills, and scattered dwellings. The ensemble tool comprised

three process-based models: PCLake (Janse 1997), PROTECH (Elliott et al. 2010)

and DYRESM-CAEDYM (Hamilton and Schladow 1997).

The calibration of PCLake and DYRESM-CAEDYM was conducted indepen-

dently by adjusting parameters related to intracellular nutrient storage, maximum

potential growth rates for phytoplankton and zooplankton grazing rates. PROTECH

and DYRESM-CAEDYM were also subject to iterative adjustments of the release

rates of nutrients from the bottom sediments, whereas PCLake reflects a dynamic

sediment nutrient pool in which the nutrient reflux from the sediments is related

dynamically to the biogeochemical processes of the water column (Trolle et al.

2014). In general, Trolle et al. (2014) found that the ensemble mean predictions

were superior to any of the individual models used in reproducing both day-by-day

and monthly mean total phytoplankton biomass for the entire 1999–2001 study

period (Fig. 16.10). The same study further noted that the differences in phyto-

plankton biomass simulated by the three models (blue shaded zone in Fig. 16.10)

were higher when biomass peaks during spring and summer months, whereas their

predictions appear to converge with respect to the timing of low biomass, a period

also known as the clear-water phase between spring and summer blooms.

Capitalizing upon these predictive discrepancies as well as the conceptual

differences of the three models, Trolle et al. (2014) examined climate change

scenarios, reflecting a 1.5, 3 and 5 �C warming, and two increased nutrient loading

Fig. 16.10 Calibration (1999–2000) and validation (2001) of PCLake (purple line), DYRESM-

CAEDYM or DYCD (blue line), and PROTECH (green line) relative to observed phytoplankton

dynamics (red circles) in Lake Engelsholm. The blue shaded “Band” represents the total range

(maximum/minimum) of the three models and the thick black “Mean” line represents the

ensemble mean of all three models
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regimes (Table 16.4). These simulations showed that overall phytoplankton bio-

mass is likely to increase, and cyanobacteria will become a more dominant group of

the phytoplankton assemblages with warmer climate (Fig. 16.11). In particular, it

was predicted that future climate warming may cause an increase in the average

number of days per year when cyanobacteria biomass exceeds the World Health

Organization recommended limits, from 8 to 23 days per year, even with conser-

vative scenarios of air temperature increase. In the model simulations, the pattern of

cyanobacteria dominance was triggered not only through direct influence of tem-

perature on growth rate, but also indirectly through changes in water column

stability and/or nutrient transformation rates (Trolle et al. 2014).

Similar to the Hamilton Harbour study (Ramin et al. 2012), Trolle et al. (2014)

used the uncertainty underlying model predictions to pinpoint directions for opti-

mizing the structure of water quality models through process reformulation (e.g.,

exclusion/inclusion of highly uncertain/missing ecological mechanisms) or refine-

ment of the spatial resolution. For example, the largest uncertainty for the scenarios

that combined climate warming and increased external nutrient loads, relative to the

scenarios with warming alone, were primarily attributed to: (1) the conceptual

differences in the way the three models handle the interplay between nutrients in

bottom sediments and the overlying water column, and (2) several other structural

differences regarding the critical mechanisms that shape phytoplankton dynamics,

such as the explicit representation or not of cyanobacterial nitrogen fixation.

Another stark difference was the dramatic oscillations in phytoplankton biomass

simulated by DYRESM-CAEDYM in the summer periods relative to the other two

Table 16.4 Potential future climate and nutrient load scenarios relative to base scenario (years

1999–2001). These scenarios were used to project the response of Lake Engelsholm with the

model ensemble comprising three process-based models

Scenario details

Daily temperature

change relative to

base (�C)

Increase in total nitrogen

and phosphorus loads

relative to base (%)

Scenario 1 Indicative of warming by year

2050

1.5 0

Scenario 2 Indicative of warming by year

2100

3 0

Scenario 3 Indicative of high warming by

year 2100

5 0

Scenario 4 Indicative of high warming

and increased precipitation by

year 2100

5 +5

Scenario 5 Indicative of high warming

and highly increased precipi-

tation by year 2100

5 +15

Scenario 6 Nutrient loading increase by

5%

0 +5

Scenario 7 Nutrient loading increase by

15%

0 +15
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models. The latter pattern was associated with the detailed high-frequency hydro-

dynamics, which can influence phytoplankton dynamics in daily (or even sub-daily)

scales and vertical distributions, thereby resulting in greater output variability

relative to the simplified physical environment postulated by PCLake and

PROTECH. A second plausible explanation for the emergence of these dynamic

phytoplankton behaviours could have been the explicit consideration of

phytoplankton-zooplankton interactions in DYRESM-CAEDYM, instead of the

implicit accommodation through a simple mortality rate on phytoplankton (Trolle

et al. 2014).

As with any modeling exercise, an important mechanism for further improving

the reliability of strategic forecasting with model ensembles is to test them against

observation data that truly reflect future conditions (Refsgaard et al. 2014). While

this may seem a key challenge in the context of climate change, the multi-model

ensemble approach provides greater confidence and will likely become common-

place methodology in the future, as it enables increased robustness of model pro-

jections and scenario uncertainty estimation due to differences in model structures.

The only difference between the two case studies presented in this chapter is that

the work by Ramin et al. (2012) propagates both within- (initial conditions,

parametric error) and among- (structural) model uncertainty through the ecological

forecasts used to guide future management and planning.

16.3.3 Ensemble of Complementary Models for Simulating
Climate and Land Use Effects on Catchment-
Reservoir Systems

Drinking water reservoirs are typically designed to store surface run-off water from

upstream catchments. Therefore, both water quantity and quality of reservoirs are

largely determined by impacts of climate and land uses on soils and vegetation in

catchments. The concept of external nutrient loadings by Vollenweider (1976) was

the first attempt to take these catchment-reservoir relationships explicitly into

account by classifying the trophic state of reservoirs depending on phosphorus

loadings from the catchment. Meanwhile, process-based catchment models such as

SWAT (Arnold et al. 2012) are available that can simulate nutrient loadings at daily

time-steps, and lake models such as SALMO (see Chap. 10) that can simulate

in-lake nutrient cycling and plankton dynamics in response to external nutrient

loadings.

This case study applies the model ensemble SWAT-SALMO to the semi-arid

Millbrook catchment-reservoir system in South Australia to demonstrate benefits of

simulating spatial-cascading effects of climate and land-use changes in the long-

term. The Millbrook catchment covers an area of 361 km2 and is characterized by

multiple land uses including orchards, vineyards and residential areas (see

Fig. 16.12), that over time undergo changes driven by demographic and economic
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development. The Millbrook reservoir (Fig. 16.12) has a volume of 16,000 ML and

a surface area of 176 ha, and contributes approximately 16% of the drinking water

supply for Adelaide, the capital of South Australia. The reservoir is equipped with

an aerator that is operated during the summer months (December through March) in

order to prevent thermal and oxygenic stratification of the water body.

The model ensemble SWAT-SALMO (Fig. 16.13) has been applied as follows:

Step 1

Calibration and validation of the model SWAT for the Millbrook catchment from

2008 to 2012 based on the catchment-specific digital elevation model (DEM), soil

and land-use maps, and meteorological data, as well as stream flow and nutrient

data. Figure 16.14 displays validation results for the simulated flow and concentra-

tions of nitrate and phosphate at daily time steps that entered the Millbrook

reservoir from 2008 to 2012. It shows that despite seasonal overestimation of

flow and nitrate, the overall results satisfactorily matched observed data as

Fig. 16.12 Millbrook catchment-reservoir system (South Australia)
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Fig. 16.13 Model ensemble SWAT-SALMO
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indicated by the percentage bias (PBIAS) values that were well above the criteria of

�70% as recommended by Moriasi et al. (2007), and justified the use of the SWAT

simulated outputs as inputs for SALMO.

Step 2

Calibration and validation of the model SALMO for the artificially de-stratified

Millbrook reservoir from 2008 to 2012 based on: daily phosphate and nitrate

loadings provided by SWAT, daily volumes, mixing depths, solar radiation and

water temperature. Figure 16.15 displays validation results for simulated phos-

phate, nitrate and Chl-a concentrations that match seasonal trends of observed

data but differ year by year. For more details about SALMO see Chap. 10.

Step 3

Using SWAT to simulate flow and nutrient concentrations that enter the Millbrook

reservoir based on following scenarios:

(1) Restricting import of external river water to the Millbrook catchment by 50%.

This scenario has been designed to test the hypothesis that a 50% reduced

import of external river water may lower nutrient loads to the Millbrook

reservoir, and may mitigate eutrophication effects from future land and climate

changes.

(2) Replacing 50% of pasture areas in the Millbrook catchment by residential areas.

This scenario takes into account likely effects of on-going population

growth assuming that in the forthcoming 30 years up to 50% of current pasture

land will be converted to residential areas, and may impact water quality of the

Millbrook reservoir.

(3) Imposing effects of global warming on the Millbrook Catchment-Reservoir

system as projected for the upcoming 30 years by the global climate models

(GCM) of the 5th IPCC Report (IPCC5 2014).

This scenario utilises daily rainfall and air temperature data provided by

GIWR (2015) that were forecasted and calibrated for different regions of South

Australia until 2100 by means of global climate models (GCM) from the 5th

IPCC Report (IPCC5 2014). The GCM produced 100 stochastic replicates of

climate data until 2100 both for “low” emission 4.5 W/m2 and “high” emission

8.5 W/m2. However, only one replicate that corresponded to the median of

projected total precipitation for the period between 2006 and 2100 was selected

for scenario (3) utilising data for the “high” emission case represented as RCP

8.5.

(4) Combining scenarios (1) and (3)

(5) Combining scenarios (2) and (3)

(6) Combining scenarios (2) and (3) with thermal stratification of the reservoir.

This scenario investigates the impact of prospective land use changes and

global warming on water quality if the reservoir is thermally stratified during

summer.
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Step 4

Using SALMO to simulate phosphate, nitrate and chlorophyll-a concentrations in

the Millbrook reservoir based on the SWAT outputs from scenarios (1) to (6).

Results of scenarios (1) to (6) have been illustrated in Figs. 16.16 and 16.17 and

summarised in Table 16.5 for the period from July 2008 to June 2009 that experi-

enced dry conditions (so-called ‘dry year’) and the period from July 2010 to June

2012 that experienced wet conditions (so-called ‘wet year’). Figure 16.18 illustrates
differences in air and water temperatures of these 2 years before and after global

warming simulations.

Scenario (1) confirms observations that the external river water carries higher

phosphate concentrations than the natural catchment water. Therefore, a 50%

reduced import of river water is expected to lower phosphate loads to the reservoir,

and consequently phosphate and chlorophyll-a concentrations within the reservoir

during the ‘wet year’, but may have only minor effects during the ‘dry year’.
Scenario (2) suggests a slightly increased flow from the catchment driven by

extended impervious residential areas. As a result, it enriches phosphate and nitrate

concentrations in the reservoir leading to slightly higher chlorophyll-a during the

‘wet year’ only.
The prospective global warming over the next 30 years as simulated by scenario

(3) is likely to affect flow from the catchment by less and more sporadic rainfall.

However, resulting flow may carry higher phosphate concentrations driven by more

intense microbial and photochemical decomposition of organic matter under the

influence of higher air temperature and UVB light. These effects together with

reservoir water that is on average warmer by 1.98 �C (see Fig. 16.18) will stimulate

algal growth particularly during the ‘wet year’ as reflected by an increased

chlorophyll-a concentration of 0.2% during summer.

Scenario (4) suggests that a stimulation of algal growth by global warming as

forecasted by scenario (3) can partially be mitigated by lowering the phosphate load

from the Millbrook catchment by a 50% reduced import of external river water.

Scenario (5) demonstrates that combined effects of extending residential areas

and global warming as anticipated for the next 30 years will increase both nitrate

and phosphate loadings from the catchment resulting in higher nutrient and

chlorophyll-a concentrations in the reservoir and posing the risk of cyanobacteria

blooms.

Since the Millbrook reservoir had been artificially destratified during the period

of this case study with the aim to control not only physical-chemical processes such

as internal phosphate loads from anaerobic sediments but also algal growth by

limiting light contact and buoyancy (e.g. Cooke et al. 2005), the interpretation of

these five scenarios must take into account successful mitigation effects by this

control measure. These mitigation effects become also evident by unusual seasonal

dynamics of algal biomass simulated by chlorophyll-a.

Scenario (6) indicates that the reservoir would face severe eutrophication effects

from prospective land use and climate changes if its water body would be thermally

stratified. This is reflected in particular by estimated PO4-P concentrations that

would increase by 21% in dry years and 49% in wet years, and chl-a concentrations
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that would increase by 6.8% in dry years and 52.4% in wet years. The results of

scenario (6) clearly approve the precautionary measure by SA Water to prevent

thermal stratification of the reservoir by artificial mixing since the 1990s as

prerequisite for sustainable water supply in future.

Overall, this case study has demonstrated that complex scenarios such as

assessing impacts of human population growth and global warming on eutrophica-

tion of lakes by far exceed the scope of a single lake model. To make such scenario

analyses relevant and credible: (1) ensembles of complementary models are

required that reflect both key processes in catchments as well as those in reservoirs;

and (2) validation of seasonal and inter-annual nutrient and phytoplankton dynam-

ics is required to make forecasted eutrophication effects transparent and justifiable.

The full study has been documented in Nguyen et al. (2017).

16.4 Concluding Remarks

The use of model ensembles is a promising strategy to improve contemporary

ecological forecasting. Ensembles of inferential models can overcome the limita-

tion of a single model that is lacking information transmitting processes, and enable

information to cascade between complementary models as required for the simu-

lation of nutrient cycles and community dynamics (e.g. Recknagel et al. 2014,

2017).

Ensembles of alternative process-based models provide not only a framework to

improve forecasting validity, but also to compare alternative ecological structures,

to challenge existing ecosystem conceptualizations, and to integrate across different

(and often conflicting) paradigms (Ramin et al. 2012; Trolle et al. 2014). As

previously shown, the discrepancy between the projections of two distinct ecosys-

tem characterizations offers an excellent opportunity to formulate testable hypoth-

eses and identify potentially critical ecological processes/mechanisms under

Fig. 16.18 Air temperature (left column), and water temperature (right column) of the ‘dry year’
and the ‘wet year’ before and after global warming simulations
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significantly different external conditions (e.g., climate warming, nutrient loading,

invasive species).

Ensembles of complementary process-based models extend the scope of a single

model in order to realistically simulate exchange processes between highly-

interrelated “open” ecosystems such as catchments and lakes, which are vital to

determine their response to such complex scenarios as global warming.

To further improve credibility and acceptance of strategic forecasting, future

research should focus on the refinement of the weighting schemes and other

performance standards to impartially synthesize predictions of different models

(Wilks 2002; Lindstr€om et al. 2015). Specifically, some outstanding challenges

involve: (1) the development of ground rules for the features of the calibration and

validation domain in order to effectively weight the individual members of model

ensembles on the basis of their performance; (2) the inclusion of penalties for model

complexity that will allow building ensemble forecasts upon parsimonious models;

and (3) performance assessment that does not exclusively consider model endpoints

but also examines the plausibility of the underlying ecosystem structures, i.e.,

biological rates, ecological processes or other derived mass fluxes.
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Chapter 17

Biodiversity Informatics

Cynthia S. Parr and Anne E. Thessen

Abstract Biodiversity informatics, the application of informatics techniques to

biodiversity data, is rooted in physical objects and nomenclatural codes. Through

two user stories, one from wildlife conservation and another from agriculture, we

demonstrate the importance and process of biodiversity informatics. We discuss the

importance and integration of taxonomic names, identification tools, species dis-

tributions, phylogenetic trees, traits, associations, the literature, ontologies, con-

trolled vocabularies, standards, and genomics. Despite the plethora of resources, a

seamless, biodiversity question and answer engine is still out of reach. The largest

impediment to our user stories is the lack of cross-disciplinary infrastructure and the

digitized and standardized data to support services. Satisfying our user stories will

require additional investment in infrastructure and data that will be a challenge to

manage and sustain. This chapter discusses the basic biodiversity informatics

concepts that are at the heart of our user stories, and will be the basis of the user

stories of the future as society rushes to cope with global environmental change.

17.1 Introduction

Biodiversity, the variety of life (Wilson 1999), is more than the charismatic subject

of your favorite nature documentaries. The wealth of genetic diversity, the millions

of named and unnamed species, and their roles in every ecosystem are vital to

sustaining human life on this planet, and our planet would be unrecognizable

without them. For this reason, 196 countries have ratified the 1992 Convention on

Biological Diversity (CBD 2016), a legally binding agreement that commits them

to reversing the loss of these precious natural resources. In this chapter, we present

biodiversity informatics as a discipline with deep roots and a promising future.
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Through the lens of two specific case studies, we aim to leave the reader with a solid

understanding of the key areas of biodiversity informatics as well as some concrete

examples of projects, tools, and standards that they may use. We aim to identify

areas where more work is needed so that tomorrow’s biodiversity informaticians

will be inspired to push information technology forward to support science and

policy to find real solutions to society’s problems.

17.1.1 What Is Biodiversity Informatics

The terms “Biodiversity” and “informatics” were both coined in the latter half of

the twentieth century (Wilson 1988; Widrow et al. 2005) but does that mean that the

discipline is new? Certainly, emerging computer technology of the last few decades

has enabled collaboratively-built, web-accessible databases and services about

biological organisms (Bisby 2000; Heidorn 2011) that have transformed how

biodiversity information is shared. Yet it can be argued that the development and

sharing of information about biological diversity has very deep roots. Cave paint-

ings of animals and oral traditions about medicinal plants are early examples where

humans captured their knowledge of the living world with the intent to communi-

cate that information to present and future audiences. Systematic ways of

portraying and naming and organizing and describing organisms are now being

translated into the digital world, but the essential questions to be addressed with the

information remain the same as in ancient times: what organism is this, where does

it live, how does it relate to other organisms, how is it important for us, how do we

protect it or protect against it if that’s necessary, and what can we learn from it.

Several key concepts are central to biodiversity informatics. These concepts

have some parallels in other informatics disciplines but are worth making explicit in

the biodiversity context. First, much of biodiversity informatics rests on physical

objects that ground the digital information: specimens of organisms. Second, some

of these specimens are vouchers for the nomenclature that is used when referring to

organisms—as required by the codes that govern the names of organisms. We will

talk more about names below, but they are vital to biodiversity informatics, and also

in linking information about biodiversity to the other kinds of information about the

world. A final key concept is the taxonomic impediment. A recent estimate is that

6.5 million or 86% of all species remain unnamed and undescribed (Mora et al.

2011). The number of experts currently engaged in what is called “primary” or

“alpha”-taxonomy may be too small to finish the job, or at least not with current

tools; although some disagree (see Costello et al. 2012). Even if ecologists who

work with biodiversity use proxies [e.g. representatives, functional groups, guilds,

or higher taxonomic groups as in the Madingly model (Purves et al. 2013)],

knowledge of the many individual organisms that make up those groups remains

essential to a robust ecological understanding of the biosphere.
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17.1.2 Our User Story Approach

In order to demonstrate the importance and process of biodiversity informatics, we

will explore user stories involving the impact of climate change on organisms.

These user stories were previously described from the perspective of using ontol-

ogies to link phenotypes and environments (Thessen et al. 2016). In this chapter, we

will describe the existing biodiversity informatics infrastructure these user stories

require while highlighting examples the reader can explore further.

Coping with climate change is anticipated to be one of the most challenging

aspects of applied biodiversity science, affecting both wildlife conservation and

agriculture. Managers want to know “What species or crop varieties are projected
to do well in my location over the next century?” Addressing this question requires

data about species observations, traits, phylogenetics, and genomes. It also requires

data infrastructure for curation, management, discovery for digital records, physical

specimens, and nomenclatural history. Following are the stories of two users, each

of whom is trying to solve their problems in wildlife conservation and plant

breeding (modified after Thessen et al. 2016).

User Story 1: Coping with Climate Change in Wildlife Conservation

Lupita is a park ranger who manages a coastal wildlife sanctuary. Some of the

species in her sanctuary are listed as threatened by the IUCN. According to the

latest climate change projections, her sanctuary is going to be hotter and wetter in

50 years. She has limited resources to maintain the biodiversity in her sanctuary for

the long term. She needs to identify which species might be at risk under the

projected future climate regime and consider her options for mitigating that risk.

User Story 2: Coping with Climate Change in Agriculture

Steve is a scientist working for a seed company. He wants to develop crop hybrids

that perform well in the drier, warmer climates predicted for the next 30 years in the

region of the country that he serves. He knows that farmers will want to plant crops

that are drought tolerant and have high, stable yields. These crops must also be

suitable for local soil conditions and sometimes rapidly changing factors such as

emerging diseases, invasive pests, and threats to pollinators. He needs to identify

promising species and varieties so he can include them in his breeding program.

17.2 Meeting the Needs of Biodiversity User Stories

Our user stories require similar types of data, tools, and services. However, the gaps

in the existing infrastructure are somewhat different. Below, we discuss the specific

needs of each user story and the existing infrastructure in place to fill those needs.

For easy reference, standards and ontologies are summarized in Table 17.1. In

“Next Steps” (Sect. 17.3) we highlight the gaps as opportunities for future research

and technology development.
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17.2.1 Taxonomic Names

Observations about organisms have been linked to an organism name for the past

several centuries. Most of the observations known to science are attached to

scientific, Linnaean names, but vernacular names and, more recently, genetic

barcodes have been used. This “taxon identifier” is an important point of integration

across data sets and is a common search term used to discover data. Unfortunately,

names make poor identifiers, mostly because they are not unique or persistent and

are often used ambiguously (Remsen 2016). Problems of several names for one

species or one name for multiple species are very common. For example, if Lupita

has the common muskrat in her sanctuary, searching for data using Ondatra
zibethicus will miss information using Castor zibethicus, a synonym. How can

Lupita and Steve find out about all the synonyms and homonyms they need to find

and correctly aggregate existing data to get as complete and accurate a picture as

possible of their taxa? To find the answer, we need to understand the nature of

taxonomic names.

When taxonomists think they’ve discovered a new species, they publish a

description of that species and name it, sometimes depositing a specimen of the

new taxon in a museum or herbarium. Species are named and described according

to a collection of rules called the codes of nomenclature. There are five: one for

animals (Ride et al. 1999), one for plants, fungi, and algae (McNeill et al. 2012),

one for cultivated plants (Brickell et al. 2016), one for bacteria (Lapage et al. 1992),

and one for viruses (King 2011). This may seem overly complicated, but, these

rules attempt to: (1) prevent taxonomists from applying the same name to two

different species; (2) mandate that original descriptions are published in such a way

that they are widely available; and (3) ground taxonomic descriptions in physical

reality by requiring specimens. The rules aren’t perfect. Homonyms are more

common than we would like, literature can be difficult to obtain, and specimens

can go missing. As unstable as taxonomic names are, they would be much worse

Table 17.1 Selected data and metadata standards and ontologies used in biodiversity informatics

Standard Used Primarily to Describe References

Darwin Core Species occurrences Wieczorek et al.

(2012)

Audubon Core Multimedia Morris et al.

(2013)

Global Genome Biodiver-

sity Network

Biological samples Droege et al.

(2016)

Gene Ontology (GO) Cell structure and function, genes, proteins,

cellular processes

Ashburner et al.

(2000)

Relations Ontology (RO) Organism interactions RO Project (2016)

Biological Collections

Ontology (BCO)

Biological sampling concepts and their

relations

Walls et al. (2014)

Phenotype and Trait

Ontology

Trait qualities OBO Technical

WG (2016)

378 C.S. Parr and A.E. Thessen



without the rules of nomenclature. The rules of nomenclature have been around for

centuries; thus, taxonomic descriptions are very reliant on the printed page and

physical objects. Recently, the taxonomic process is adopting more technology

through the use of ZooBank (Pyle and Michel 2008), part of the larger Global

Names Architecture project (Patterson et al. 2010) and a web-based registry, to

make nomenclatural acts machine-readable, instead of solely existing on paper.

There are an estimated 22 million names and 2 million described taxa (Chapman

2009; Patterson 2014). For Lupita and Steve, correctly applying these names can be

a daunting task because the rules of nomenclature require that the entire history of a

name and specimen be respected. Fortunately, there are tools and services that can

help. Nomenclatural authorities and aggregators act as stewards of names, some-

times only for specific taxonomic groups (Table 17.2). They typically have some

degree of community buy-in from taxonomists practicing in that area and are

accepted as an authority. Some authorities take responsibility for maintaining a

list of current, accepted names and their taxonomic synonyms, either by resource-

intensive manual curation (e.g., IPNI 2012), curation by committee (e.g., Catalogue

of Life, Ruggiero et al. 2015, COL 2016), or an aggregator-enabled, crowd-sourc-

ing approach (e.g., Encyclopedia of Life (EOL), Parr et al. 2014). Only some

authorities include vernacular names, surrogates (like strain numbers), or misspell-

ings in their efforts (e.g., EOL, Parr et al. 2014, EOL 2016; uBio, Leary et al. 2007;

Global Names Index, Patterson et al. 2010, GNI 2016). The combination of any

name string into bundles of synonyms referring to the same taxon are called

reconciliation groups (Patterson et al. 2010). Building reconciliation groups can

be partially automated using algorithms for fuzzy matching and parsing (see

software description in Patterson et al. 2016), but significant manual work is still

needed to capture synonym information that resides only in published work and to

Table 17.2 List of nomenclatural authorities and name aggregators

Authority

Taxonomic

Focus Reference(s)

Catalogue of Life Lifewide COL (2016), Roskov

et al. (2016)

Encyclopedia of Life Lifewide EOL (2016), Parr et al.

(2014)

uBio Lifewide Leary et al. (2007)

Global Names Index Lifewide GNI (2016), Patterson

et al. (2010)

Integrated Taxonomic Information System Lifewide ITIS (2016)

Taxonomy Database National Center for Bio-

technology Information

Lifewide Federhen (2012), NCBI

(2016)

World Register of Marine Species Lifewide—only

marine

WoRMS Editorial Board

(2016)

The Interim Register of Marine and Nonmarine

Genera

Lifewide to

Genus

Rees (2016)
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integrate names across databases (Patterson 2014; Patterson et al. 2016). The

human curation of names and classifications is a major bottleneck.

Fortunately for Lupita and Steve, valuable services can be built on top of curated

classifications and reconciliation groups (e.g., Boyle et al. 2013). Some compelling

examples include automated expansion of name searches and name validation

(Boyle et al. 2013; Patterson 2014). Many algorithms for finding taxonomic

names in data files and text are available (see Thessen et al. 2012 for a review)

and some of these tools can automatically parse the found name string and return

the current name based on a user-defined authority such as the Global Names

Recognition and Discovery tools and services (GNRD 2016). In order for Steve

and Lupita to find and correctly aggregate all the data they need to make their

decisions, they need to know all the names that have been used to describe the taxa

they are interested in. They can use resources like Catalogue of Life and IPNI to

find the taxonomic synonyms and homonyms and EOL and uBio to find the

vernacular names. This list of names, divided into reconciliation groups, can be

used to discover and aggregate the occurrence, trait, genetic, and phylogenetic data

they need to answer their questions. Thus, names form the basis of any biodiversity

informatics task.

17.2.2 Identification Tools

People often need to identify an unknown organism, and biodiversity informaticists

build tools to help. Lupita and her colleagues might use these identification tools as

they inventory the species that live in their park. Steve’s team may need to identify

new crop pests or pollinators. In recent years there has been a shift in identification

technology from identification keys focused primarily on morphological character-

istics and aimed at experts, to DNA barcoding and image recognition that can assist

both experts and non-experts.

Taxonomists historically published identification keys in books and scholarly

articles in the form of dichotomous keys that take a reader through a prescribed set

of decisions between two answers (“couplets”). With the advent of computers,

software has been developed so that keys are matrix-based (rows for species and

columns for their characteristics) and interactive (users can check off characteristics

in any order). Many of these platforms allow users to develop their own keys;

examples include DELTA—DEscription Language for TAxonomy (DELTA-

Intkey; Dallwitz 2010), Lucid (Lucidcentral 2016), and the IDnature guides at

DiscoverLife (DiscoverLife 2016). Some keys are designed for offline use, but

many are online. Notably, keys often focus on characteristics or traits that will

distinguish organisms from each other, not on characteristics that may be useful for

phylogenetic or evolutionary analysis or modeling of ecological processes. While

digital interactive keys remain useful, critics argue that they have not been widely

used or usable outside a narrow audience of taxonomists (see review by Walter and
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Winterton 2007). Given the taxonomic impediment mentioned above, more scal-

able and broadly usable approaches to identification are needed.

Molecular methods such as DNA barcoding have been developed for rapid

identification (Hebert et al. 2003). DNA barcoding involves sequencing short

stretches of DNA that are expected to be unique at the species level, and comparing

the sequences to a reference library of these sequences from known organisms.

Unlike traditional keys, it is not necessary to have a mostly complete specimen or a

good look at the unknown organism with observable morphological characteristics.

A sample with degraded DNA fragments often suffices. Thus, while DNA

barcoding can help scientists and their citizen collaborators confirm their identifi-

cations of their organisms of study (Shen et al. 2013) or rapidly inventory inhab-

itants of a study area (e.g., Miller et al. 2016), it is also used by customs agents to

determine if imported goods are made from threatened species regulated by CITES

(Staats et al. 2016). It can be used by students who send in or even analyze samples

from their schoolyards (Santschi et al. 2013) or from restaurant meals

(e.g., “SushiGate”, Wong and Hanner 2008). This technique only works if the

sequences can be compared to a well-curated database of expertly identified

reference sequences (Barcode of Life Datasystem, BOLD, Ratnasingham and

Hebert 2007). If barcode sequences are not found in BOLD or produce ambiguous

results, this may indicate problems with the database or the methods (Collins and

Cruickshank 2012; Lis et al. 2016) or scientists may conclude that a species new to

science has been found and merits naming (reviewed in Miller et al. 2016).

Computer vision is another growing area for biodiversity identification (addi-

tional references in Thessen 2016). LeafSnap, for example, is a mobile phone

application that citizen scientists in North America can use to identify trees by

taking a photo of a leaf (Kumar et al. 2012). The image is segmented (separated

from the background) and the shape of the leaf is compared to known leaf shapes.

New approaches to machine classification of biodiversity images are tested in an

annual event called LifeCLEF (Joly et al. 2015).

Finally, both book-based and online field guides remain popular resources for

identification (Farnsworth et al. 2013). While the “unsung” artists and authors of

paper-based field guides deserve more recognition, geographic biases in field guide

publication and sales may have wide-ranging impacts (Holt 2016). Can free, online

guides even the playing field? Resources such as Scratchpads (Smith et al. 2009),

EOL, and iNaturalist have large numbers of images, maps, and descriptions that can

be used for identification all over the world. EOL and iNaturalist have teamed up to

make it easy for people to create their own field guides (California Academy of

Sciences 2016). The Cornell Laboratory of Ornithology is developing Merlin to

support both interactive question-and-answer identification and image recognition

(Cornell University 2016a). The increasing availability of online resources means

that even searches with a few keywords on Google Images can assist in

identification.

Even if Lupita and Steve do not use these resources themselves, they can take

advantage of crowd-sourcing and post their images of unknown organisms on a

variety of platforms. A growing community of both professionals and citizen
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scientists will bring their expertise and their online searching skills to provide

identifications.

17.2.3 Occurrence Data and Species Distributions

Biodiversity informatics helps answer the question, “What lives here?” Lupita

needs a list of organisms in her park before she can determine which of them is

threatened by changing conditions. Or, a different formulation of the question

might be “What is the geographic distribution of this organism?” Steve could use

maps indicating where his crop variety of interest grows to establish the typical soil

and weather it needs to do well, then he could look for other varieties or crop

relatives that have similar distributions or habitat preferences. Because it is impos-

sible to conduct up-to-date inventories at all places at all times, we must rely on

samples of data and algorithms to determine an estimated distribution. Many

biodiversity informaticists are building systems to collect, manage, aggregate,

serve, and analyze these primary occurrence data, and the maps that result

from them.

Occurrence data may start in field notebooks and specimen tags on physical

specimens. Explorers like Lewis and Clark or biologists like Darwin collected

specimens during their journeys and logged basic information about them in the

field. As those specimens were deposited in museums, they would have been

catalogued individually or in groups with metadata: information about who col-

lected what, where, and when. Modern digital museum catalogs aim for

georeferenced, time-stamped specimen records. This is much easier now that

collectors use Global Positioning Systems (GPS) and specimen data is “born

digital”, but software such as BioGeoBIF (Hill et al. 2009) and GEOLocate (Rios

and Bart 2010) can retroactively estimate coordinates (and uncertainty estimates)

for specimens that previously had only vague locations handwritten on tags. Large

scale efforts are now underway to digitize the specimen data associated with

physical specimens (e.g., iDigBio, Page et al. 2015), and increasingly these efforts

use crowd-sourcing (Ellwood et al. 2015).

Biodiversity informaticists have developed digital museum catalog software

such as BRAHMS (University of Oxford 2016), EMu (Axiell Group 2016), Specify

(Specify Software Project 2016), Digital Information System for Natural History

Collections (DINA; DINA Consortium 2016), and Symbiota (Gries et al. 2014). In

addition to providing ready access to the specimen-based occurrence information,

this software typically helps collection managers manage specimen loans and

reports about their collections.

Occurrence data also results from observations that are not associated with

museum specimens. These observations may be associated with sound or video

recordings (e.g., Cornell University’s Macaulay Library; Cornell University

2016b), or with photographs (e.g., California Academy of Sciences 2016), or with

no voucher at all (e.g., eBird; Audubon and Cornell Lab of Ornithology 2016).
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Some occurrence data can be derived from nucleotide sequence data in GenBank

(reviewed in Gratton et al. 2016). With the advent of citizen science and acceler-

ating improvements in digital and sensor technology it is now possible to generate

vast amounts of timely occurrence data. For example, wildlife biologists and

citizens set up camera traps that are triggered by the motion of passing wildlife

and capture large numbers of images (Fig. 17.1). These assist in understanding what

organisms live in an area and when and how they are active.

Darwin Core is a mature, widely-used standard for the sharing of biodiversity

occurrence data (Wieczorek et al. 2012). Darwin Core is a product of the Biodi-

versity Information Standards organization, known by the acronym TDWG due to

its historical name, Taxonomic Databases Working Group (TDWG 2016). Darwin

Core is used by the Global Biodiversity Information Facility (GBIF 2016) to create

its central index of more than 600 million occurrences, which in turn is used by

mapping projects such as Biodiversity Information Serving our Nation (BISON;

USGS 2016), Map of Life (Jetz et al. 2012; MOL 2016), and AquaMaps (Kaschner

et al. 2016).

Researchers can use standardized digital occurrence data to estimate the distri-

butions of individual species, better understand their habitat preferences, and

generate maps of species richness. A variety of approaches used for species

distribution modeling are reviewed in Peterson et al. (2015). Ecological niche

modeling uses correlations with environmental parameters available for each

occurrence point (or lack of a point), or our current understanding of a species

niche, or both. Map of Life (Jetz et al. 2012) uses absence information to better

account for knowledge that a species was not observed during inventory, not just

knowledge that it was observed. Process or hybrid distribution modeling integrates

niche and dispersal characteristics and sometimes includes interactions with other

species (reviewed in Evans et al. 2016). Many of these approaches will be useful to

Steve and Lupita as they attempt to forecast species distributions under future

climate change scenarios.

Occurrence data are used in many other ways (see GBIF Science Committee

2016 for a recent review). Simple estimates of range size from GBIF data were

recently combined with protected areas maps (ProtectedPlanet 2016) and the PRE-

DICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial

Systems) database to conclude that species diversity is higher inside of protected

areas than in matched areas outside them (Gray et al. 2016). The National Phenol-

ogy Network (Schwartz et al. 2012) collects additional information about seasonal

events such as flowering or migration so that researchers can extend their under-

standing of distributions to include timing impacts of climate change.

Lupita may use species distribution information to prioritize her resources to

assist species that have very limited ranges, or to ensure the quality of habitat

critical for migration. She may be able to argue that she should have more resources

because more precious diversity is in her park compared to others. Steve, on the

other hand, may be able to identify promising species or varieties with current

distributions that do well in the forecasted climate. But knowing species distribu-

tions will not be enough—this is just the next step on the path to solutions.
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17.2.4 Phylogenetic Trees

For both of our user stories it may be helpful to identify the nearest relatives of the

relevant organisms and their traits. For example, wild relatives of crops likely have

phenotypic variation that could be leveraged to improve qualities of cultivated

species. Relatives of species in the national park may live in climates similar to the

projected future of the park and may or may not have traits that help them thrive. In

both cases, in order to estimate whether the species can adapt (in a genetic sense)

quickly enough to the rate of change of the environment it is critical to understand

how related species have changed over short and long time scales. Evolutionary

biologists called biological systematists construct phylogenetic trees, or hypotheses

of evolutionary relationships among organisms to address such questions. They use

algorithms and tools developed by evolutionary informaticists (reviewed in Parr

et al. 2012).

Ideally, we would refer Steve and Lupita to a database with the single true Tree

of Life. After all, living organisms today are thought to descend from a common

ancestor and systematists have been working for hundreds of years to understand

that history of speciation and extinction since life began. Even if we had already

named all the organisms that ever existed (we haven’t, as noted earlier) it is still a

challenging proposition to correctly arrange all of these organisms in a structure

that we know now would not be a simple tree, given endosymbiosis (Archibald

2015), gene transfer (Nakhleh 2013), and hybridization (natural or by breeders).

If Steve or Lupita wanted to find phylogenetic trees for their species of interest,

they could search the literature and hope to find studies with exactly the species

they are looking for. The repository TreeBASE (The Phyloinformatics Research

Foundation, Inc. 2016; Sanderson et al. 1994) was designed to make it easier to find

published trees. Today, we would refer Steve and Lupita to Open Tree of Life

(2016), which aims to synthesize our current knowledge across the entire tree of life

(Hinchliff et al. 2015).

17.2.5 Taxa and Their Traits

All organisms have traits, but the exact definition of “trait” is unclear. In the context

of our user stories, traits can be any characteristic of an organism, whether it

describes life history, eating habits, morphology, habitat, etc. Taxa are defined by

their traits (with the exception of some newly discovered prokaryotic taxa described

by a gene sequence). What Steve and Lupita are really interested in are the traits of

the taxa in their care. They need to identify specific traits that make an organism

better able to adapt to a given environment and what traits might make an organism

more vulnerable to change. Then, they need to look for those traits in their

organisms of interest.
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Trait data are modeled by trait:value pairs that can also be referred to as

measurement:value pairs, character:character state pairs, or phenotypes. An exam-

ple of a trait:value pair would be flower color:purple or habitat:marine. Two

important repositories for trait information are the Encyclopedia of Life TraitBank

(Parr et al. 2016) and Phenoscape (Phenoscape 2016a). TraitBank contains over

11 million records about more than 330 traits from over 1.7 million taxa. TraitBank

uses a data model based on the Darwin Core Archive star schema with occurrences

as the basis of record (Fig. 17.2). An extension file is provided that contains

measurements. Every occurrence can have multiple measurements. The measure-

ment can be about a taxon or about the occurrence. Measurements are presented

with values, units, statistical methods, and a reference. This model can accommo-

date data from individual organisms or summary statistics about a taxon. The data

in TraitBank come from a variety of sources including online databases, data

mining, and the published literature. Phenoscape contains nearly 10,000 records

about over 5000 taxa, all fish. The data in Phenoscape are modeled as character:

character state pairs called “EQ formalisms” (Fig. 17.3) (Mabee et al. 2007). The

data in Phenoscape are from the published literature. An important difference

between TraitBank and Phenoscape is that the latter has semantic reasoning enabled

(Balhoff et al. 2011).

Both repositories use ontologies and controlled vocabularies to standardize the

measurement:value and character:character state pairs. The biodiversity literature is

plagued with inconsistent term usage (e.g., Yoder et al. 2010), so normalizing and

standardizing terms is an important challenge for biodiversity data aggregation.

Several ontologies exist that can be used to describe organism traits and metadata

(see Table 1 in Thessen et al. 2016), but there are still many necessary terms that are

Fig. 17.2 Data model for trait-related concepts
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not part of any ontology or vocabulary. Many communities have not agreed on a set

of terms and their definitions, but where ontologies are well developed, machine-

readable species descriptions can be used (Balhoff et al. 2013).

Steve and Lupita need to know the traits of the organisms they work with in

order to understand why an organism might do well or poorly in different circum-

stances. The data model for linking traits to taxa has been demonstrated with

semantic species descriptions (Balhoff et al. 2013), but forming a relationship

between traits (phenotypes) and environmental conditions has not been formalized

(discussed in detail by Thessen et al. 2016). TraitBank and Phenoscape can be

easily queried via web services or a search box. While both repositories combined

contain many thousands of records, the majority of biodiversity knowledge is still

only accessible through human-readable text. Both of our users could get a start on

gathering the trait data they need using TraitBank and Phenoscape, but would need

to turn to the literature to complete their research. They would likely have to

interpret the meaning of the original authors in order to standardize the terms

used by different researchers. Thus, if Steve or Lupita wanted to find the traits in

common to organisms that live in a specific environment, they would not be able to

use a fully automated query, but would need a workflow with a manual component.

17.2.6 Digital Biodiversity Literature

Lupita or Steve will likely consult online versions of the peer-reviewed literature,

new and old, in their daily activities. Nearly all modern research papers are now

published online. But it is especially important that the scholarly literature on

biodiversity be digitally available in the most useful forms possible, even if it is

hundreds of years old. Why? Because taxonomists must review and cite original

descriptions whenever they want to describe new species or change nomenclature

based on new information. Moreover, knowledge of rarely encountered species

may only be found in the older literature. Finally, even for well-studied organisms

there is a treasure trove of information locked in the text of scholarly literature.

Fig. 17.3 Use of the Phenotype and Trait Ontology (PATO) and anatomy ontologies (AO, these

may differ across organisms) to capture morphological traits of organisms as entity:quality

statements, or formalisms. Modified from Phenoscape (2016b)
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While online scientific journals are common now and open access is increasing

(Solomon et al. 2013), bringing the older paper-based literature to the World Wide

Web is a huge effort. The Biodiversity Heritage Library (BHL 2016) is the result of

scanning, performing optical character recognition on, and indexing scientific

names in millions of pages by a world-wide consortium of institutions (Gwinn

and Rinaldo 2009). BHL already includes over 50 million pages that range from the

fifteenth century through today.

The effort to scan the world’s biodiversity literature is not yet complete, but

researchers are already mining it for information. For example, CharaParser was

developed to process natural language sentences in morphological descriptions

using machine learning algorithms to produce structured character data (Cui

2012). Other examples of the use of text mining to extract the kind of information

that Lupita and Steve need from the literature will be described in the following

sections.

17.2.7 Species Associations

An interaction between two species can impact more than the organisms directly

involved (e.g., Schmitz et al. 2000). Organisms can switch from being omnivorous

to either entirely carnivorous or herbivorous depending on the food species present.

Keystone species can have a profound effect on an ecosystem through their

associations, often resulting in a completely different ecosystem in their absence.

Climate change, the driver of both user stories, is known to alter trophic, compet-

itive, parasitic, and mutualistic interactions (Tylianakis et al. 2008). Field studies

have shown that species interactions can strongly influence an ecosystem’s
response to climate change (Suttle et al. 2007). It is not enough to understand the

traits of organisms, Steve and Lupita must also understand how these traits interact

to result in an integrated, functioning ecosystem.

Most of the interaction data that Steve and Lupita need are present only in the

published literature and are not machine-readable; however, several efforts are

underway to digitize this information. The Global Biotic Interaction database

(GloBI) contains over two million associations between nearly 130,000 taxa

(Poelen et al. 2014). The data in GloBI are modeled simply as Taxon:Interaction:

Taxon. The taxa are recorded using an identifier from an accepted aggregator or

taxonomic authority. The interactions are described using terms from the Relations

Ontology (RO Project 2016). Every interaction statement is related to a citable

reference and can be tagged with georeferencing metadata. The Gulf of Mexico

Species Interactions (GoMexSI) database is similar to GloBI, but focuses on trophic

interactions in the Gulf of Mexico derived primarily from surveys of gut contents

(Simons et al. 2013). Alternatively, mangal.io stores whole networks rather than

individual interaction observations (Poisot et al. 2015). It is true that networks can

be built from many individual observations of interactions that originate from the
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same place; GloBI and GoMexSI focus on the individual interaction while mangal.

io focuses on observations of the entire network.

Unfortunately for Steve and Lupita, there is no easy way to know how a change

in an individual interaction will affect an entire ecosystem aside from empirical

study. Methods for using the contents of GloBI, GoMexSI, and mangal.io for

predicting ecosystem-level responses to changes in species associations are being

developed through predictive models (e.g., Tarnecki et al. 2016). The transition

from a table-based, taxonomically-organized data schema to the graph-based,

system-organized data schema (represented by GloBI, GoMexSI, and mangal.io)

makes it much easier for Steve and Lupita to find out how taxa are interconnected

and thus can give them a place to start their own investigations.

17.2.8 Ontologies and Controlled Vocabularies

A controlled vocabulary is a standard list of terms (often with definitions) that a

community of users has agreed to use, for example, in a metadata record or in a

database. An ontology is similar, but also relates the terms to each other and is

represented in a machine-readable format. A controlled vocabulary facilitates

human communication and standardization, while an ontology facilitates machine

understanding. Machine-readability is important for scaling up analyses by remov-

ing manual components of an analytical or data management task.

Both controlled vocabularies and ontologies enable unambiguous term usage

within a community, but an ontology can also enable reasoning, a type of machine

learning (Jensen and Bork 2010). A simple reasoning task would be to tell a

machine, using ontologies, that: (1) all birds have wings; and (2) a robin is a bird.

The machine could “learn” that: (3) robins have wings. This is a very simple form of

the technology used by IBM’s Watson (Gliozzo et al. 2013), for example. Ontol-

ogies are a very important part of machine-readable data models and text mining

algorithms in biodiversity in support of taxonomic, phylogenetic, and evolutionary

biology studies (Cui 2012; Balhoff et al. 2010, 2011, 2013; Midford et al. 2013;

Dececchi et al. 2015; Manda et al. 2015; Walls et al. 2014; Chawuthai et al. 2016).

Ontologies used in biodiversity are typically bottom-up, community efforts with

varying degrees of coordination between them and within them. OBOFoundry and

BioPortal (Noy et al. 2009) are important nuclei for ontology development and

maintenance in biodiversity (Smith et al. 2007). Building and maintaining an

ontology can be difficult work requiring dedicated staff to address user needs

(e.g., requesting new terms, modifying existing terms) and outreach efforts to

gain community support and consensus (e.g., term definitions, Seltmann et al.

2013), which can be the most difficult part of ontology development. Some

ontologies, such as the Gene Ontology, have developed their own tools for ontology

search and browse (AmiGO, Carbon et al. 2009), but OntoBee is available (Xiang

et al. 2011). Many ontologies use github (GitHub Inc. 2016) and sourceforge

(Slashdot Media 2016) as issue trackers for managing requests for new terms.
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Many ontologies that were built by different communities overlap to varying

degrees and thus require alignment (Smith et al. 2007). Despite the increase in

analytical and reasoning power that an ontology affords us, significant human effort

is required to do the initial building of the ontology and then support the mainte-

nance. This human effort is the largest bottleneck in the ontological process. In

addition, many aspects of biodiversity science are arguably incompatible with the

logical constructs of ontology (Franz 2010).

Fortunately, users of data do not need to be ontology experts to take advantage of

their reasoning power. An ideal system would provide semantic technology “under

the hood” through a user friendly interface. Several methods have been proposed

for biodiversity repositories to implement semantic technology (Malaverri et al.

2009; Lapp et al. 2011; Amanqui et al. 2014; Stucky et al. 2014) and some

repositories (e.g., Phenoscape, BioHub, Read et al. 2016) already use semantic

reasoning in this way; however, much of the data Steve and Lupita need do not yet

have a strong ontological backbone. In biodiversity science for now, many of the

connections a machine could make automatically using an ontology have to be

made manually—with a few exceptions that are supported by well-developed

anatomical ontologies (e.g., Yoder et al. 2010).

17.2.9 Biodiversity Genomics

Steve will be very interested in any genomic and phenotypic information on strains

and crop wild relatives he might use in his breeding program. A full review of

molecular biology informatics is out of scope for this chapter, but several efforts are

of particular interest to biodiversity informaticists.

Germplasm repositories (sometimes called “genebanks,” not to be confused with

GenBank) exist all over the world to preserve seeds and other living genetic

material, largely for the world’s crops. GRIN-Global (Germplasm Repository

Information Network, The GRIN-Global Project 2016) provides access to informa-

tion not only on these physical accessions but on their known properties including

genes and trait information. After using GRIN-Global to identify candidates for his

breeding program Steve can use the system to contact researchers and obtain

material. Meanwhile, the Global Genome Initiative (Smithsonian Institution

2016b) is gathering samples from across the tree of life, not just those of agricul-

tural significance, that will be suitable for full-genome sequencing. In most but not

all cases, type specimens are too old to have suitable DNA so fresh material needs

to be gathered. Information about those samples and their suitability for sequencing

is available at the Global Genome Biodiversity Network (GGBN 2011þ, Droege

et al. 2014). Both GGBN and GBIF already use GGBN’s proposed TDWG standard

(Droege et al. 2016). The Biological Collections Ontology (Walls et al. 2014)

provides appropriate semantics in this area.

While some model and crop organisms have large enough genomics communi-

ties that can each sustain their own repository and analysis platform, for the long tail
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of biodiversity there are shared collaborative tools. For example, the i5K

Workspace provides tools for annotating the i5K Consortium’s planned 5000

arthropod genomes (Poelchau et al. 2015). Genomic projects are described and

aggregated at the Genomes Online Database (Mukherjee et al. 2016).

17.3 Next Steps

Our users, Steve and Lupita, have a challenging task in front of them. In order to

answer their questions, they need to use data and infrastructure from many different

sources. Some of the data they need may not be digital, may not exist, or may be

behind a paywall. Despite the plethora of repositories, ontologies, standards,

vocabularies, and web services discussed above, a seamless, biodiversity question

and answer engine is still out of reach. Infrastructure, especially data formats that

are compatible across domains, remain a large gap. Bridges across existing infra-

structure are patchy. Where infrastructure is in place, the data to fuel tools and

services are incomplete. The management and sustainability of data and infrastruc-

ture remain a huge challenge, as documented in the Global Biodiversity Informatics

Outlook (Hobern et al. 2013). The absence of a universal system of unambiguous,

unique identifiers is a major impediment to biodiversity science because without

proper identifiers automated linking of data and properly attributing work become

prohibitive (Page 2008). Satisfying our user stories will require additional invest-

ment in infrastructure and data digitization.

The largest impediment to our user stories is the lack of digitized and standard-

ized data. This is an important bottleneck because digitization often has manual

steps and standardization requires custom solutions for heterogeneous data sets.

One promising solution is the development of techniques that use machine learning

and semantic technology to automatically extract data from human-readable for-

mats (Thessen et al. 2012), infer missing data (Dececchi et al. 2015), and perform

automated QA/QC on existing data (OCR repair). These methods have not yet

reached their full potential due to the need for additional development and slow

uptake by domain scientists. Data can also be missing due to the general

undersampling of most environments and taxa (Hortal et al. 2015) and the lengthy

analysis time most samples require. Expansion of citizen science to include data

acquisition and analysis can help increase throughput (Theobald et al. 2015;

Chandler et al. 2017) in addition to investing in machine learning algorithms that

can infer data in undersampled areas (Thessen 2016). Promising techniques for

analyzing remote sensing imagery are starting to close the gap between what can be

learned from observation on the ground and from monitoring of large areas by

satellites and aircraft (Gillison et al. 2016). Significant investments in automated

methods and enabling citizen scientist participation are necessary to provide the

biodiversity informatics infrastructure with the data it needs to serve users.

Finding and integrating data gathered from experiments and resulting from

management actions is difficult both in biodiversity and agricultural science. Both
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Lupita and Steve will benefit if they can learn from many small experiments.

Interpreting GBIF data is difficult without knowing which of the vast number of

data collection protocols were used to collect it. While there are agricultural

thesauri that include some research techniques and management concepts

(e.g., National Agricultural Library Thesaurus and Glossary, USDA 2016) they

were developed primarily for the annotation of literature, not data. The Experimen-

tal Factor Ontology (EFO) was developed to describe experimental variables, but

was developed for molecular biology (Malone et al. 2010). The Ontology for

Biomedical Investigations (OBI) is widely used, but was initially developed for

biomedical clinical investigations (Bandrowski et al. 2016). The EXPO ontology

was introduced in 2006, but is not widely used (Soldatova and King 2006). The

Parasite Experiment Ontology (PEO) is limited to parasites (Cross et al. 2011).

Both EFO and OBI have the potential to be applied within biodiversity-focused

experiments. Similarly, the ICASA data standard (White et al. 2013) has been

developed for describing crop experiments; it could be tested more broadly, further

developed as an ontology, and used as a model for biodiversity experiments.

17.4 Conclusion

In our focus on users like Steve and Lupita, we have not covered all areas of

biodiversity informatics. We did not discuss the development of tools or standards

to support policy makers or intergovernmental monitoring of the Convention on

Biological Diversity (see the Essential Biodiversity Variables, Pereira et al. 2013).

We did not suggest how biodiversity information could be included in decision

support tools for water and agricultural resource management. This will be impor-

tant for ensuring a healthy biosphere while feeding the nine billion people expected

to be on our planet in 2050 (Godfray et al. 2010). We barely touched on the rise of

data-intensive biodiversity science (Kelling et al. 2009).

However, the basic biodiversity informatics concepts presented in this chapter

will be at the heart of those use cases, just as they were important for Lupita and

Steve. The tremendous growth in biodiversity informatics over the last few decades

suggests there is cause for optimism.
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Chapter 18

Lessons from Bioinvasion of Lake Champlain,

U.S.A.

Timothy B. Mihuc and Friedrich Recknagel

Abstract Freshwater lakes provide ideal habitat for invasive species, such as the

zebra mussel, which can weaken lake ecological integrity by altering food web

structure and dynamics. This case study utilized 23 years Lake Champlain data to

examine relationships among water quality, invasive species, native mysids (Mysis
diluviana) and the zooplankton community. Canonical correspondence analysis

(CCA) was employed to ordinate and qualitatively assess long-term patterns across

the datasets, and the hybrid evolutionary algorithm (HEA) revealed quantitative

relationships and thresholds. Results from both methods are complementary and

suggest that: (1) zebra mussels directly affect rotifer densities by preying on slow

moving rotifers, and (2) zebra mussels indirectly affect cladocerans, copepods and

mysids by both preying on rotifers and grazing on phytoplankton. The direct and

indirect effects of zebra mussels on the zooplankton community as well as on

mysids adversely affect the ecological integrity of Lake Champlain. Data ordi-

nation by CCA and inferential modelling by HEA proved useful for elucidating

long-term food web patterns in the complex Lake Champlain ecosystem.

18.1 Introduction

Bioinvasion is an anthropogenic global problem that can alter food web structures

and dynamics, drive trophic cascading, and irreversibly affect biodiversity and

ecological integrity (Higgins and Vander Zanden 2010). Over time invasive species

can also cumulatively change physical and chemical habitat conditions making

ecosystems less resilient to stresses (Strayer et al. 2006). Biological invasion inter-

acts in complex ways with transport, land use and global change (Crowl et al.

2008). Growing connectedness and globalization increasingly expose aquatic eco-

systems to invasive species. Temperate freshwater lakes are particularly vulnerable
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to key invasive species including the zebra mussel (Dreisenna polymorpha), ale-
wife (Alosa pseudoharengus) and spiny water flea (Bythotrephes longimanus).
Invasive zebra mussels have degraded aquatic habitats in Europe and North Amer-

ica for 25 years with estimated total economic costs for electric generation and

water treatment of $267 million in the U.S. between 1989 and 2004 (Connelly et al.

2007).

Zebra mussels are found throughout the Great Lakes, Lake St. Clair and the

Mississippi river watershed. Lake Champlain is one of the largest lakes in the

United States and has been referred to as the “Sixth Great Lake”. It has been

invaded by zebra mussels and alewife since 1992 (Mihuc et al. 2012).

Synergies among invasive species, aquatic communities and habitats are highly

complex and dynamic, but poorly understood (Strayer et al. 2006). Various

approaches have been applied to forecast invasion and assess impacts of

non-native species in freshwater lakes. Process-based models have been built

using the modelling software Ecopath where the inclusion of Dreissena mussels

in food web models enabled comparison of carbon flow and biomass before and

after their invasion (Stewart and Sprules 2011). Individual based models have been

developed to examine alterations of invasive mussel life cycles rising temperatures

(Griebeler and Seitz 2007). Survival analysis and maximum likelihood techniques

have been applied to estimate probabilities of lake invasion by invasive mussels

(Leung et al. 2004).

This study applies CCA and HEA models to examine direct, indirect, and cas-

cading effects between invasive zebra mussels and alewifes, and the zooplankton

community and water quality using data collected by the Lake Champlain Long-

Term Monitoring program (LTM) from 1992 to 2015. General trends in water

quality and zooplankton community dynamics have previously been discussed in

Smeltzer et al. (2012) and Mihuc et al. (2012).

18.2 Case Study: Lake Champlain

The dimictic Lake Champlain (Fig. 18.1) is located between New York and

Vermont (US) and Quebec (Canada). It has an estimated volume of 25.8 km3, a

surface area of 1120 km2, a mean depth of 22 m and a drainage basin of 21,326 km2.

Although primarily used as recreational lake, it also serves as a source of drinking

water. However, runoff from agricultural and urban land uses in the drainage basin

have resulted in eutrophication of the lake. The lake is divided into several distinct

lake segments that differ in eutrophication levels, with the most Northern and

Southern parts being meso-eutrophic, and central parts being meso-oligotrophic.

Other major concern include the impact of the zebra mussel (Dreissena poly-
morpha) and alewife (Alosa pseudoharengus) on Lake Champlain, as well as recent

arrivals of the spiny water flea, Bythotrephes longimanus.
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Lake water quality and zooplankton data were obtained from the Lake Cham-

plain Long-term Monitoring program, and alewife data were acquired from the

Vermont Dept. of Environmental Conservation. Data from the deep main lake from

1992 to 2015 have been averaged for July–August and are listed in Table 18.1.

Fig. 18.1 Bathymetric map of Lake Champlain (1 m ¼ 3.28 feet). From Lake Champlain Basin

Atlas at: http://atlas.lcbp.org/
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18.3 Data Ordination by CCA

CCA has been applied to ordinate and display complex long-term monitoring data

of Lake Champlain in two-dimensional space, and reveal qualitative relationships

between the native zooplankton community, water quality, and invasive zebra mus-

sels and alewifes. Figure 18.2 displays CCA results for the biological and water

quality data summarized in Table 18.1. The ordination results for water quality

parameters and invasive species are plotted as red arrows that originate from the

plot origin whereby the length of the arrows indicate the data variance of these

variables. The location of plots for biological variables such as rotifers reflect their

abundance. Locations for sample years are symbolized by blue triangles corre-

sponding with shifts in the composition of the zooplankton community across the

sample years. The ordination in Fig. 18.2 achieved a 51.2% correlation between

water quality, invasive species and the zooplankton community. The results reflect

long-term shifts in the zooplankton community such as the higher rotifer and mysid

abundances shown in the right lower quadrant of the x–y axis for the early 1990s.

Rotifer abundance was inversely related to zebra mussel abundance. Increases in

alewife and zebra mussel densities in the left quadrants accompanied increases in

Total N, N:P and Chl a in the right quadrants.

Table 18.1 Summary of annual water quality and biological data of Lake Champlain averaged for

July–August from 1992 to 2015

Water quality variables Mean/Min/Max Biological variables Mean/Min/Max

Secchi Depth (m) 5.2/3.3/6.8 Zebra Mussels (Ind m�3) 93300.7/0/

350000

Total Nitrogen [Total N]

(mg L�1)

407.1/325/516 Mysids (Ind m�3) 297.3/64/973.6

Total Phosphorus (mg L�1) 11.35/7.6/16.1 Cyclopoida (Ind m�3) 1615.5/127.4/

3620.5

Chlorophyll-a [Chl a] (μg L�1) 3.8/1.7/6.1 Calanoida (Ind m�3) 883.9/18.4/

2151.8

TN/TP [N:P] 36.97/23.3/51.7 Bosminidae (Ind m�3) 1875.1/145.5/

6782.9

Daphnia (Ind m�3) 955.3/36.8/

3169.5

Copepoda (Ind m�3) 2663.7/300.5/

8427.2

Leptodora (Ind m�3) 4.6/0.1/21.85

Rotifers (Ind m�3) 3988.5/154.8/

27582.4

Spiny water flea SWF

(Ind m�3)

1.3/0/28.4

Alewife (CPUE) 49982.4/0/

352136.8

Smelt (CPUE) 259.6/59.9/746.3
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The copepod taxa cyclopoida and calanoida increased in abundance in response

to the alewife invasion in the mid-2000s (Fig. 18.3a, b). Overall ordination results

in Fig. 18.3 indicate long-term shifts not only in copepods but also in daphinic and

bosminid crustaceans in response to increased zebra mussel and alewife abundance.

Results in Fig. 18.4a indicate a decline in mysid abundance in recent years

compared to the late 1990s that coincided with steadily growing zebra mussels

populations since the mid-1990s (Fig. 18.4c) and increasing alewife densities

since the mid-2000s (Fig. 18.4b). These results correspond with findings by

Ball et al. (2015).

CCA results suggest possible trophic interactions among zooplankton taxa,

mysids, and zebra mussels in Lake Champlain that are further explored below by

inferential modeling using HEA.

18.4 Inferential Modelling by HEA

HEA has been developed for inferential modelling of multivariate ecological data

(Cao et al. 2014; Recknagel and Ostrovsky 2016). For more details about HEA

please see Chap. 9. In this study, HEA is used to reveal and quantify direct and

Fig. 18.2 CCAnalysis of the biological and water quality data summarized in Table 18.1. Results

for water quality parameters and invasive species are plotted as red arrows; shaded taxa reflect

strong negative relationships with zebra mussel abundance
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indirect relationships among the zooplankton community, mysids and the invasive

zebra mussel Dreissena polymorpha in Lake Champlain.

Rotifer population dynamics were related to grazing of chlorophyll-a, and pred-

ation by crustaceans and zebra mussels as illustrated in Fig. 18.5a. The IF-condition

of the model in Fig. 18.5b indicates that the fastest decline in rotifer abundance is

associated with increased numbers of zebra mussels above 395 individuals m�3.

The corresponding sensitivity function for the zebra mussels in Fig. 18.5c illustrates

that rotifer density sharply decreases in response to increasing numbers of

zebra mussels, most likely in response to the mussel’s filtration of small bodied

and slow moving rotifers. Sensitivity functions in Fig. 18.5c further reveal that

there are no obvious predation effects on rotifers by growing numbers of calanoids

and cyclopoids. Interestingly, rotifer and mysid population densities are positively

associated.

The inferential model in Fig. 18.6b suggests that chlorophyll-a concentrations

remained slightly higher when zebra mussel numbers were less than 110.781 Ind m�3.

However, sensitivity results in Fig. 18.6c show a nearly neutral relationships

between chlorophyll-a concentrations and zebra mussels. The sensitivity function

for rotifers indicates that chlorophyll-a concentrations are slightly increasing with

growing numbers of rotifers. This finding points at an indirect effect of zebra

mussels since numbers of rotifers greater than 10,000 Ind m�3 occurred only before

Fig. 18.3 CCA related to: (a) Calanoids; (b) Cyclopoids; (c) Daphnids; (d) Bosminids. The size

of the blue circles reflects increases in abundance; gradients for water quality and invasive species
are illustrated by red arrows
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the arrival of zebra mussels. Daphnia seems to have the greatest grazing effects on

chlorophyll-a, whereas Bosmina has no effect on chlorophyll-a concentrations.

The model for daphnia presented in Fig. 18.7 indicates mutual relationships

among daphnia, calanoids, mysids and cyclopoids (Fig. 18.7c). The IF-condition of

the model in Fig. 18.7b also shows a range rather than a distinct threshold for

mysids that would indicate the separation of high from low individual numbers of

daphnia.

The bosmina model (Fig. 18.8b) identified a cyclopoid abundance of 445 Ind m�3

as a threshold below which high numbers of bosmina can be expected. However,

sensitivity functions in Fig. 18.8c suggest a positive relationship with cyclopoida

and neutral relationships with calanoids and mysids.

Results from HEA models (Figs. 18.5, 18.6, 18.7, and 18.8) illustrate direct and

indirect effects of zebra mussels on zooplankton and mysids in Lake Champlain.

Zebra mussels directly prey on small bodied rotifers (see Fig. 18.5b) causing secon-

dary effects on mysids. The model in Fig. 18.6 also revealed direct effects of

zebra mussels on chlorophyll-a, as well as the indirect effects on zooplankton com-

munity and mysids associated with zebra mussels feeding on rotifers.

Figure 18.9 demonstrates that small bodied cyclopoids increased in abundance

following alewife invasion in 2005–06. These taxa most likely are able to avoid

Fig. 18.4 CCA related to: (a) Mysidae; (b) Alewife; and (c) Zebra mussels. The size of the blue
circles reflects increases in abundance; gradients for water quality and invasive species are

illustrated by red arrows

18 Lessons from Bioinvasion of Lake Champlain, U.S.A. 407



F
ig
.
1
8
.5

R
el
at
io
n
sh
ip
s
o
f
ro
ti
fe
rs
w
it
h
ze
b
ra

m
u
ss
el
s,
cy
cl
o
p
id
s,
ca
la
n
o
id
s,
an
d
m
y
si
d
s:
(a
)
co
n
ce
p
tu
al
m
o
d
el
;
(b
)
in
fe
re
n
ti
al
m
o
d
el
;
(c
)
se
n
si
ti
v
it
y
fu
n
ct
io
n
s

408 T.B. Mihuc and F. Recknagel



F
ig
.
1
8
.6

R
el
at
io
n
sh
ip
s
o
f
ch
lo
ro
p
h
y
ll
-a

w
it
h
ze
b
ra

m
u
ss
el
s,
ro
ti
fe
rs
,
d
ap
h
n
ia

an
d
b
o
sm

in
a:

(a
)
co
n
ce
p
tu
al

m
o
d
el
;
(b
)
in
fe
re
n
ti
al

m
o
d
el
;
an
d
(c
)
se
n
si
ti
v
it
y

fu
n
ct
io
n
s

18 Lessons from Bioinvasion of Lake Champlain, U.S.A. 409



F
ig
.
1
8
.7

R
el
at
io
n
sh
ip
s
o
f
d
ap
h
n
ia

w
it
h
co
p
ep
o
d
s,
ca
la
n
o
id
s
an
d
m
y
si
d
s:
(a
)
co
n
ce
p
tu
al

m
o
d
el
;
(b
)
in
fe
re
n
ti
al

m
o
d
el
;
an
d
(c
)
se
n
si
ti
v
it
y
fu
n
ct
io
n
s

410 T.B. Mihuc and F. Recknagel



F
ig
.
1
8
.8

R
el
at
io
n
sh
ip
s
o
f
b
o
sm

in
a
w
it
h
co
p
ep
o
d
s,
ca
la
n
o
id
s
an
d
m
y
si
d
s:
(a
)
co
n
ce
p
tu
al

m
o
d
el
;
(b
)
in
fe
re
n
ti
al

m
o
d
el
;
(c
)
se
n
si
ti
v
it
y
fu
n
ct
io
n
s

18 Lessons from Bioinvasion of Lake Champlain, U.S.A. 411



predation by alewifes, which selectively feed on larger bodied zooplankton. Small

bodied bosmina and daphnia also seem to be less affected by alewifes. The arrival

of the spiny water flea Bythotrephes longimanus in 2014 may also have contributed

to the recent declines in cladocerans and copepods in Lake Champlain.

Fig. 18.9 Long-term trends of native zooplankton (a) and mysids and alewife (b) in Lake

Champlain from 1992 to 2015
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18.5 Conclusions

This study demonstrated that analysis and modelling of long-term ecological data

can assist in better understanding complex inter-relationships and possible future

trends in lake ecosystems affected by invasive species that may become irreversible

if disregarded.

Results of the study suggest that over time zebra mussels and alewifes syner-

gistically reshape trophic food webs of lakes by cascading positive and negative

effects. Zebra mussels subdue directly rotifers causing indirect positive effects on

crustaceans and copepods, and negative effects on mysids. Alewifes entering a food

web that has already been altered by zebra mussels, directly prey on mysids and

copepods with further indirect positive effects on cladocerans. Since cladocerans

are most efficient filter feeders, the question arises how abundant cladocerans

influence the phytoplankton community and detritus concentrations in Lake Cham-

plain. Whilst existing chlorophyll-a data displayed nearly steady-state conditions

during the study period, this question can only be answered by future research

including phytoplankton community data and modelling.

Findings from these studies may also improve public awareness of consequences

of uncontrolled bioinvasion on natural lakes that over time will be worsened by

catalyzing effects of global climate change (e.g. Bellard et al. 2016). These conse-

quences not only cause ecological costs but moreover growing economic costs.
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Chapter 19

The Global Lake Ecological Observatory

Network

Paul C. Hanson, Kathleen C. Weathers, Hilary A. Dugan,

and Corinna Gries

Abstract This chapter explores a socio-technological (S-T) approach to informa-

tion management within the Global Lake Ecological Observatory Network

(GLEON). In S-T systems, information management, relevant organizational pol-

icies, and the supporting technologies are integral components of the network

fabric. They derive from the needs of the community, articulated through repre-

sentative governance, and they service the needs of the community by engaging

data providers as partners in scientific endeavors. Through a brief history of

GLEON, we recount the emergence of the S-T approach as part of GLEON’s
philosophy as a learning organization. It is clear that there is still much to be

learned about streamlining data curation and publishing, especially from an inter-

national network of observatories with diverse data and sensor networks. Grass-

roots networks such as GLEON often do not have the resources—human, financial,

and infrastructure—required for persistent and highly efficient data curation and

publishing. However, strategies that address directly the needs of the network

community, such as providing credit to data providers, tracking the progress of

projects that use the data, and sharing high-value synthesized data sets, quickly gain

acceptance and garner commitment by the community. Today, S-T systems require

‘humans in the loop’ for data curation, which, in turn, results in constraints on

scalability of these systems. One of the great challenges that lie ahead will be

connecting GLEON S-T, which represents a diverse international community, with

existing external data curation and archiving services.

P.C. Hanson (*) • C. Gries

Center for Limnology, University of Wisconsin, Madison, WI, USA

e-mail: pchanson@wisc.edu; cgries@wisc.edu

K.C. Weathers

Cary Institute of Ecosystem Studies, Millbrook, NY, USA

e-mail: weathersk@caryinstitute.org

H.A. Dugan

Center for Limnology, University of Wisconsin, Madison, WI, USA

Cary Institute of Ecosystem Studies, Millbrook, NY, USA

e-mail: hdugan@gmail.com

© Springer International Publishing AG 2018

F. Recknagel, W.K. Michener (eds.), Ecological Informatics,
DOI 10.1007/978-3-319-59928-1_19

415

mailto:pchanson@wisc.edu
mailto:cgries@wisc.edu
mailto:weathersk@caryinstitute.org
mailto:hdugan@gmail.com


19.1 Introduction: A Brief History of GLEON

The Global Lake Ecological Observatory Network (GLEON; www.gleon.org) is an

international, grassroots network of environmental and computer scientists, infor-

mation technology experts, and, increasingly, citizens and artists, whose mission is

to conduct innovative science by sharing and interpreting high-resolution sensor
data to understand, predict and communicate the role and response of lakes in a
changing global environment (Fig. 19.1; Weathers et al. 2013; Hanson et al. 2017).

However, GLEON did not begin in 2005 with this mission. Rather, it began as a

group of limnologists and information technology (IT) professionals who wished to

build a persistent and scalable network of buoys in lakes around the world.

GLEON’s initial focus was on sensor observatories (data) and lakes (Fig. 19.2),

but has since evolved into three networks: people, lakes and data (Weathers et al.

2013; Hanson et al. 2017). GLEON now has more than 500 members from more

than 50 countries.

19.2 GLEON as Three Networks: People, Lakes and Data

GLEON is comprised of networks of people, lakes and data. The three networks are

described below.

19.2.1 People

GLEON is largely a volunteer organization and relies on its membership to create

products such as research projects, publications, code, models, applications, and

educational/outreach materials. Members also elect and fill governance roles and

create operational committees. In fact, the governance and operations structure of

GLEON has played a critical role in its success as a network and provides the

guidance for the development, evaluation, and implementation of science, techno-

logy, education and outreach initiatives. Understanding GLEON information man-

agement (IM) requires knowledge of the roles and responsibilities of its governance

structure as well as an understanding of how the ‘people network’—the engine of

GLEON—operates (Fig. 19.3).

The future trajectory of scientific research has high uncertainty and, often,

organizational structures and philosophical differences and similarities dictate the

nature and methods of how science is accomplished (Uriarte et al. 2007;

Eigenbrode et al. 2007). GLEON uses a socio-technological (S-T) systems

approach to accomplish its goals. Here we define an S-T systems approach as ‘a
social system operating on a technical base’ (Whitworth and Ahmad 2014). Our

collaboration pays careful attention to the process and best practices of team
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science (e.g., Bennett et al. 2010; NRC 2015; Read et al. 2016), and we facilitate an

organizational structure adapted to training and producing talented network scien-

tists who can effectively navigate and shape the S-T interface and create innovative

scientific products. One of the first activities of early GLEON members was to

create Operating Principles and Procedures (OPP). This OPP not only set out the

data sharing guidelines, but also created a governing structure, the Steering

Committee.

An elected Steering Committee (SC), comprised of approximately 14 members

from 10 different countries, provides leadership and vision for the organization.

The Collaborative Climate Committee (CCC), also elected from the membership,

helps guide the social environment of GLEON to the end of maximum engagement

and empowerment of all members. The CCC is advisory to the GLEON SC and its

Chair is a non-voting member of the SC. The GLEON Student Association (GSA)

Fig. 19.2 Examples of GLEON buoys from around the world
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accounts for one-third of GLEON membership, plays a critical role in GLEON by

organizing training programs and sessions within the annual All Hands’ meetings,

co-running the Network Partnership Program, and helping to promote leadership

opportunities for students throughout the network (Weathers et al. 2013). The GSA

Chair is a non-voting member of the SC. Network-wide issues, such as best

practices for the use of network data and priorities for the development of infor-

mation management (IM) technologies, are relevant to each of these committees,

and each committee, in turn, influences how important issues are addressed

throughout GLEON operations.

19.2.2 Lakes and Lake Science

GLEON’s primary mission is to create and communicate knowledge about lake

ecosystems. It operates principally through face-to-face and virtual meetings that

are designed to initiate and accomplish research and synthesis projects. The team-

forming models that GLEON has evolved toward fall into three categories: (1) ini-

tiatives that result directly from formal Working Groups; (2) ad hoc groups that

form around ideas that do not fall neatly into the longer-term Working Group

structure; and (3) partnerships—collaborations that have formed wholly or in part

through professional networking at GLEON meetings.

GLEON has successfully demonstrated the value of this team-building approach

through catalyzing multiple Working Groups organized under a diverse set of

topics with contemporary relevance (Table 19.1). Via these working groups, data

sets have been curated (e.g., Solomon et al. 2013) that utilize an unprecedented

Fig. 19.3 GLEON is a network of people, lakes, and data, with a diversity of resources. Through

network structure and process, GLEON is able to use its diversity of resources to address the five

pillars of ecosystem science [adapted from Hanson et al. (2017)]
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collection of high-frequency sensor data from lakes worldwide. These data sets

have been used to determine the relative importance of convection versus wind

shear in lake mixing which controls CO2 emissions from lakes (Read et al. 2012),

predict ice-out dates (Pierson et al. 2011), examine short and longer-term effects of

major storm events on lake ecosystem function (Jennings et al. 2012; Klug et al.

2012), and determine that lakes are warming at different rates around the globe

(O’Reilly et al. 2015), all of which are major advances in knowledge that are direct

or indirect results of GLEON network science and collaboration. Further, synthetic

work stemming from GLEON provides insights to the future of harmful algal

blooms in lakes (Brookes and Carey 2011), delivers best practices for studying

lake metabolism (Staehr et al. 2010), and both demonstrates and articulates some of

the future opportunities for microbial ecology using environmental sensors (Jones

et al. 2008; Shade et al. 2009). Recently, large-scale data synthesis projects have led

to data publications (Sharma et al. 2015) and the development of integrated

databases (Soranno et al. 2015) with the potential to be extended internationally

through GLEON collaborations. Collectively, these outcomes demonstrate how a

network diverse in intellectual resources can capitalize on distributed data and

information resources to address a diversity of science questions.

19.2.3 Data

All of these synthesis projects, and especially the ones on a larger scale (spatial,

temporal, or data type) have advanced our experience and helped define successful,

and unsuccessful, approaches and necessary skillsets in data management to sup-

port this type of research. The irony of these scientific and human network suc-

cesses is that there is a major gap in our ability to discover, explore, and synthesize

data on lake (and myriad other) ecosystems: To date, data acquisition and harmo-
nization is laborious and sometimes too difficult to accomplish, and it stands in the
way of scientific advancement. The lack of an efficient way to collect and harmonize
high frequency data is a significant bottleneck.

Table 19.1 GLEON Working Groups persist through multiple meetings and provide the infra-

structure for discussions of science topics. Many GLEON product-oriented projects originate from

Working Groups

Working group Example project title

The theory group Spring blitz

Reservoirs and lake management State of the lakes survey

Citizen science Lake observer mobile app

Lake physics and modeling Parameter optimization techniques

Signal processing and fluorescence DO and ChlA maximums across lakes

Lake metabolism The age of carbon

Climate sentinels Thermal responses to regional climate
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19.3 GLEON’s Early History and Evolution

Following GLEON’s mission of ‘sharing and interpreting high resolution sensor

data’, a vision for a cyberinfrastructure (CI) ecosystem was developed early on in

GLEON’s history. Figure 19.4 illustrates that vision, and each component was

realized with varying degrees of success. At the time, several CI research and

development groups were faced with similar problems of streaming, harmonizing,

storing, and making accessible large amounts of high frequency sensor data in near

real time. Each sub group approached the same basic problem from their respective

environmental, research and technical perspectives. However, it became clear that

the goal of collecting and serving real time, high frequency sensor data was

expensive, almost impossible to sustain (especially as a research project), and in

need of extensive user input, not to mention being hampered by national and

institutional data sharing (or rather data not sharing) policies. Hence, the initial

GLEON CI vision was never accomplished. Here we recount each of the compo-

nents of what should be a straightforward CI approach, its successes/failures, and

lessons learned. We also discuss which of the components of our initial vision are

still in use today and why.

Our initial vision was to have sensor data collected from buoys deployed around

the world be pushed or pulled, near real time, into a central database and served out

from there (again, near real time) (Fig. 19.4). As a grass-roots network, GLEON did

not impose any specific requirements on the variables being collected or the

hardware/software required to obtain and store data at the site-level. Each site

funds its own research, including buoys, and its sampling infrastructure must

service first the needs of the site-level funding source. As a consequence,

GLEON is a network whose heterogeneity in data and local CI reflects the diversity

of people, lakes, and cultures of the network. None-the-less, an end-to-end solution

Fig. 19.4 An early vision of the GLEON cyber infrastructure ecosystem included fully integrated

observational platforms (buoys), software for reformatting and formatting data for storage, and

long-term storage in standardized repositories
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for network-wide data streaming was, and is a terrific goal, but one that has not yet

been accomplished due to the lack of major, distributed and sustained funding. The

ideal progression, which we describe below, is to have data flow from sensors to the

GLEON database. The GLEON database would then be open, and the data easily

discovered, utilized in models and for visualizations, and harmonized with other

data (e.g., watershed data and limnological data sampled by more traditional

methods).

1. From sensors to databases: This is the realm of proprietary hardware and

software of sensors and dataloggers, and rapidly changing telemetry technology.

In remote areas, this remains problematic. For the purpose of formatting the

datastream and submitting it to a database the software package ‘Ziggy’ was
developed by GLEON members while DataTurbine (Open Source DataTurbine

Initiative 2016) was available as an alternative.

2. A data model: The data model ‘Vega’, adapted from the Observations Data

Model (ODM) developed by the Consortium of Universities for the Advance-

ment of Hydrologic Science, Inc. (CUAHSI 2016) was developed, and data

providers in GLEON agreed on a common vocabulary to describe measurement

parameters and other metadata. Ziggy and DataTurbine were capable of format-

ting the data according to the Vega data model via specific configuration files for

each data provider.

3. Data discovery: Originally a web interface was developed, which was later

replaced by a desktop application, providing access and query capabilities into

the harmonized data from >50 lakes in the GLEON network.

4. Lake modeling: The data were then available in a known standard format, and

access and pre-processing could easily be automated before they were used in

large-scale modeling.

The described components were developed, and several, mostly US lake

research groups, contributed data for a short period of time at the beginning of

GLEON (circa 2007–2009). However, supporting the development and manage-

ment of the system became prohibitive, both because undergraduate and graduate

students who helped in the development graduated, and because there were no

specific resources to further develop and support the software. In addition, when

these systems stopped being maintained, they were still in a developmental stage

that rendered them too technical for most data contributors to use without major

support from the developers. However, social and policy related issues of data

sharing also contributed to its demise. Since then, commercial data logger software

has improved dramatically, and several other groups were able to continue devel-

opment [e.g., DataONE (2016), CUAHSI Water Data Center (2016), OPeNDAP

(2016)] of more generally applicable solutions to data management. However, by

now each GLEON member has developed a unique workflow and tools to manage

the data locally complying with their respective institutional data sharing policy.
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19.4 A World Café Approach

In 2011 the GLEON community re-assessed information management needs,

opportunities and requirements. We took a World Café approach (The World

Café Community Foundation 2016) to these issues of network-wide relevance, in

which a large and somewhat intractable topic, such as IM for GLEON, is broken

down into smaller, more tractable sub-issues, such as IM policy, IM tools, and IM

training. Each tractable bit is a stop in the tour of cafés, and everyone at the meeting

(up to 200 people) has the opportunity to contribute to each bit by spending

10–15 min at each café. After the tour, hosts from each café summarize the

information, and a sub-committee is tasked with assembling the bits into a coherent

message addressing the larger issue.

The World Café approach was used to justify and define the mission of the GLEON

IT Task Force. An IT task force was formed in 2011 to respond to several information

technology needs of GLEON, some of which were articulated and discussed at the

World Café during the G13 meeting in Sunapee, New Hampshire (Table 19.2). The

Table 19.2 The GLEON IT Task force was formed to make recommendations to the GLEON

Steering Committee on changes to GLEON policy and process in support of technology use and

development. The following are the task force’s five recommendations

1. Team Data Sharing

(a) Sharing GLEON data, must be as open as possible, while respecting differences in

international funding environments as they pertain to the data ownership and liability of the data-

providing investigator.

(b) The GLEON data sharing policy must include a simple data access agreement.

(c) The GLEON data sharing policy must stipulate conditions for acceptable use (not-for-

profit) and redistribution of data and metadata, and the citation verbiage.

2. Team Attribution

(a) GLEON data should be linked to the organization(s) and individuals in the organization

who played a key role in providing the data.

(b) Any errors discovered in the contributed data or improvements to the data must be reported

back to the data provider.

(c) Any publication must be reported back to the providers of the data, who should be offered

the opportunity to participate in any subsequent research.

(d) GLEON should investigate publishing GLEON data sets both to credit data providers and

to provide a reference/citation for published data sets.

3. Team Metadata

(a) We recommend GLEON adopt a metadata scheme describing different versions of the

same data (such as raw, cleaned, gap-filled, QA/QC’d, modeled, etc.), similar to schemes

employed by other organizations (e.g. NEON, CUAHSI, and NetLake).

4. Team Participation

(a) Points of contact within GLEON should be clearly identified so that sites have a GLEON

resource person to contact with questions.

(b) Site data and metadata should be easily accessed on the GLEON website.

5. Team Research Project Management

(a) Develop a project tracking system on the GLEON website that communicates the breadth

of research conducted at GLEON, provides transparency and openness of the research process,

and allows data providers to track and report on data use.
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task force was divided into 5 teams according to topical areas. The primary objectives

of the task force were to: (1) summarize the list of data provider and user needs, as

begun at G13, and produce a set of requirements used to engage computer science

(CS) colleagues in developing technology solutions; (2) make recommendations to the

GLEON Steering Committee on changes to GLEON policy and process in support of

technology use and development; (3) identify the most pressing needs for more reliable

and usable sensor data for those sites that stream to Vega (Note: We mostly tabled this

discussion point at G13. However, we have an opportunity to improve the current data

streaming system, and our CS colleagues need our guidance); and (4) define the path

forward for future oversight of GLEON IT.

By ‘technologies’, we mean technologies developed by/for GLEON in support

of science (e.g., distributed computing, management of synthesized data sets), the

human and data network (e.g., documenting participation in GLEON activities,

providing credit for participation, linking participation to resources such as data,

supporting data streaming and sensor network development), and dissemination of

information about the organization (e.g., reporting on activities to GLEON mem-

bership, as well as outside entities). These are broad and complex categories of

technologies. The Task Force addressed technology at two levels. At a high level,

the task force sought to ensure that technology use and development is consistent

with the organization’s goals and the members’ needs. At an operational level, the

Task Force intended to make specific and targeted recommendations on techno-

logy, policy, and process that will improve GLEON, with the understanding that

resources are limited and initiatives need to be prioritized.

Technology cannot be separated from policy and process, and so a concurrent

goal was to synchronize GLEON’s policies and operations with technologies so that
the three components can work most effectively in service of GLEON’s needs. We

note that GLEON, as with technology, continually evolves and that it is important

to build the flexibility for change into the S-T system; the resources in support of

GLEON must continually adapt to the changing needs of GLEON.

Based on the recommendations of the IT Task Force, GLEON made two

particularly notable advancements. The first was that the project management

team implemented GLEON’s Project Tracker on the website, which now is used

successfully to communicate research progress and allows data providers to track

the use of their data, one of the main requirements identified by the IT task force.

The second was that GLEON obtained a small planning grant awarded by the US

NSF to test information management approaches developed by other groups in a

series of workshops in 2012 and 2013. Specifically, a DataONE member node and a

CUAHSI HydroServer were installed locally for testing purposes. Several GLEON

data products are now available through the DataONE federation and the CUAHSI

data center now hosts high frequency time series data from some US GLEON sites.

Meanwhile, a very successful, albeit non-automated, approach to large-scale

research in GLEON is requesting data from the community that fulfill certain

criteria relevant for the study, i.e., certain lake characteristics or certain parameters

measured. Data providers may choose to participate and sometimes are required to

provide significant data manipulations to format their data according to the project’s
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standard, at which point data providers are frequently included in the author list of

the resulting paper. Several of the resulting data products have been published in

well-known repositories, such as DataONE via the Long Term Ecological Research

(LTER) or GLEON data repositories (e.g., Sharma et al. 2015). This model was

initiated by the early synthesis working groups at the National Center for Ecological

Analysis and Synthesis (NCEAS 2016) and is very successful well beyond

GLEON.

19.5 Lessons Learned

A decade of GLEON experience has rendered several lessons about information

management in service of people, data, and lakes. These lessons include:

1. Invite more than data. Data can, and should be used, as an invitation to engage

new collaborators and perspectives in the research enterprise. Rather than

asking for data alone, we encourage GLEON scientists to ask for collaborators,

with the recognition that there are many ways to contribute to productivity.

This has been a crucial part of GLEON’s ethos and operating principles.

2. Grassroots networks often generate highly heterogeneous data and manage

similar data in equally heterogeneous and site-specific workflows. The collec-

tion of hardware and local IT infrastructure is thus also dizzyingly heteroge-

neous across sites. In addition, each site moves forward in its technological

evolution and capacity at its own pace. While this diversity has inherent

inefficiencies, it provides scientific advantages because the network has mea-

surements relevant to almost any aquatic ecology topic, and therefore, scientific

response can be rapid and adaptive. The diversity and asynchronous advance-

ment also means that every site has the potential to be a leader in a particular

area because of their unique design.

3. Harmonizing heterogeneous data into a convenient data product for re-use puts

a large burden on the data providers. Once a data site (by site, we mean a

functional unit that has responsibility and authority to collect, store, and

distribute data) has developed an acceptable IM workflow, adding the step of

providing the data in a community approved standard format is currently not

providing enough incentive for the data provider to justify the extra effort.

4. Traditional funding streams for data repositories largely follow national bor-

ders and can not provide a comprehensive solution for an international network

such as GLEON. This places international grass-roots networks in the unten-

able position of not having the internal resources to provide full IM services

while at the same time not being able to engage, e.g., federal agencies, in the

support of research activities from foreign countries.

5. Accordingly, international grassroots networks will have to organize as net-

works of independent repositories that agree on standard interfaces for data

exchange which may or may not involve standard data formats. However,
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extensive investments are necessary to develop and maintain needed infrastruc-

ture even if this system of systems consists only of a registry for resources (data

and tools) and search capabilities without providing central IM services and

data storage. Examples are the DataONE Federation (DataONE 2016) and the

Group on Earth Observation (GEO 2016). Both projects have received national

funding to develop metadata clearing houses that also serve international

partners.

6. The S-T model used by GLEON has, in fact, provided an ideal platform for

accelerating technology developments in the area of models and analytical

code widely used in limnology. In contrast to data management, these models

and code are considered research products, and represent contributions to

advancing science. Extensive training in the use of these technologies and

direct input of users to improve them has contributed to their great success.

Further, these technologies have been released as open source which will

dramatically increase the speed and efficiency with which model resources

enter collaborative space, thereby catalyzing network science.

7. In true S-T spirit, GLEON has found that engaging with citizen scientists to

further co-develop and utilize network science products enhances both the

technology development as well as the use of those technologies, i.e., the

developers and users are part of the same community (e.g., the LakeObserver

app, www.lakeobserver.org, Cary Institute of Ecosystem Studies 2016).

8. The curation of resources (models and data) for publication, discovery, and

delivery should be driven by research questions, the need for increased trans-

parency and repeatability in science and the preservation of valuable, some-

times even irreplaceable information. However, the magnitude of the data

discovery problem is still immense and may only be overcome by prioritization

according to current science, education, and outreach needs, and by providing

value to all participants in metrics (data as publications and data usage

statistics).

9. As a community, we need to fully validate data publishing as a scientific

contribution and completely integrate it into the scientific process, improve

documentation and exposure of data manipulation procedures to enable reuse

of data and tools by others, and embrace the practice of publishing models as

open resources for community development and reuse.

10. We must enable the community of scientists, students and citizens focused on

aquatic systems to develop networked team science strategies and infrastruc-

ture that can be transferred to other science domains and conversely encourage

the community to re-use developments in other science domains.

11. It is essential to track progress at the project scale so that all who are involved,

including data providers, project personnel, and the network community, have

information on the state of the project. This provides the community with

knowledge about which projects are underway and in many cases identifies

opportunities for anyone in the community to contribute to those projects.

Project tracking also provides information for reporting progress to funding

providers.
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12. At its inception, GLEON founders and shapers did not immediately recognize

the importance of the ‘social’ part of IM; we now know that GLEON functions

as an S-T system. In some ways, the story of GLEON is an empirical story—

through trial and error and gathering feedback, a community of scientists has

evolved from a product-centric group—with technologies and manuscripts the

initial raison d’etre, to a people-centric community, with additional foci of

collaboration and team building compelled by a common need for discovery

and innovation (Weathers et al. 2013; Hanson et al. 2017).

19.6 A Vision for the Future of GLEON Information

Management

The vision for the future of GLEON information management focuses on three

primary activities: (1) advancing socio-technical systems; (2) advancing team

science; and (3) growing capacity at lake observatories.

19.6.1 Socio-technological Systems: The Need
and the Vision

Innovative research and scientific discoveries are increasingly being accomplished

by collaborative teams (Cheruvelil et al. 2014; Guimer�a et al. 2005; Wüchty et al.

2007)—i.e., by diverse networks of people who are able to discover, access,

manage, and synthesize ‘big data’ from observations that span the globe and at

frequencies that range from milliseconds to months (LaDeau et al. 2017). Data at

large spatial and temporal scales and integrated from different disciplines are

needed to interpret, forecast, and manage ecosystems (e.g., lakes and reservoirs)

and ecosystem functions and services, such as ecosystem energy exchanges and

clean and plentiful drinking water, especially in a rapidly changing environment

(Fig. 19.5). In recognition of these needs, networks such as GLEON are forming to

support new science and new approaches to the conduct of science. These new

teams need to include and fully integrate domain scientists as well as data man-

agers, technologists, programmers, and computer scientists to rise up to the

challenges.

Network science is increasingly being shown to lead to innovative research

(NRC 2015). Along with the era of ‘Big Data’, there is growing recognition of

the need for interdisciplinary science and more extensive collaboration that crosses

institutional, geographic and political, as well as technology and domain science

boundaries (Wüchty et al. 2007; Cheruvelil et al. 2014; Uriarte et al. 2007).

Confronting complex ecosystem problems, such as how food, water, and energy

systems are responding to global change, using big data requires a great diversity of

skills, especially, a strong suite of social skills necessary to harness communities’
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resources, inspire creativity, and communicate across domain boundaries (Porter

et al. 2011; Cheruvelil et al. 2014). These skills, as well as the training necessary to

develop them, are difficult to learn from any one institution or research group but

can be a key attribute of the cumulative expertise and knowledge of a cohesive,

functional research network (Weathers et al. 2013).

The current overarching goal of IM within GLEON is to grow a socio-technical

(S-T) system (here defined as ‘a social system operating on a technical base’,
Whitworth and Ahmad 2014) that captures the processes of assembling technology

and human resources for a given science problem, and enables their reuse so that

science problems can be solved more efficiently through collaboration (Fig. 19.6).

Rather than develop new technology components, per se, we envision a ‘systems

redesign’. In our experience, progress on systems-level CI has been impeded by the

usually unstated assumption that humans in the loop are barriers to be removed. In
contrast, we postulate that attention to S-T features are needed to overcome these

obstacles, accelerate scientific inquiry, and to catalyze new networks of people

(Fig. 19.7). In an S-T system, technology is adapted to human needs and humans are

well trained to effectively use available technology and the human networks that

result. Furthermore, community vetted guidelines or policies governing the system,

community trust, platforms for developing collaborations, and human interactions

underpin all aspects of S-T systems and are thus vitally important to system

function.

Even with well-functioning data, model, and script archives in place today,

innovative ideas for data syntheses, including data discovery and data access are

ignited by personal interaction and communication (Fecher et al. 2015; Tenopir

et al. 2011; Hogan and Weathers 2003)—through the human network. A series of

human network events is necessary before data harmonization can start, including

Fig. 19.5 Data representing new space-time scales for science were part of the initial vision for

GLEON (Porter et al. 2005). These data remain an important resource for network-level research
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building trust and establishing collaborative groups, which in highly functioning

network teams must be followed by negotiating the rules for exchange and use of

resources, and acknowledgement of those who contributed (e.g., Cheruvelil et al.

2014).

In order to proceed toward data preparation and analysis, it is critical to under-

stand data structures and vocabularies, QA/QC and aggregation of raw data plus

reformatting to meet specific requirements of the analysis or modeling process.

Although there are many common patterns in these data manipulation processes

across observatories and collaborative groups, they are usually handled in a one-off

approach, with research teams implementing them over and over again in slightly

different ways, depending on script writing prowess. We have found that having

experts negotiate the interaction between data consumers and providers improves

the overall experience and that these experts are more adept at writing reusable data

Fig. 19.6 In an S-T system, people are an integral part of the information management system.

Teams both produce and consume data and are involved in the creation of technologies and models

used in the iterative process of science

Fig. 19.7 GLEON’s goal for a better, faster, network science in which the time from concept to

product is shortened through tight integration of network resources, including GLEON’s human

resources
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manipulation scripts, potentially expediting the research process. Hence, we assert

that future IM should have a people-network-guiding triumvirate: Data Science,

Governance, and Community Development Teams to guide the research process of

Eco-Science teams. Through this human component of S-T, we will attain better,

more creative products, publications, and perspectives.

Future work in GLEON will go far beyond establishing and making available

technology to support the data lifecycle (data collection, curation, storage, discov-

ery, access, integration, analysis, and publication). It has been recognized that

successful data curation as well as data preparation for synthesis research requires

a specialized skillset (Hernandez et al. 2012). However, this skillset can efficiently

be applied to data curation and basic data manipulation of a wide range of

environmental science disciplines. Hence, we hypothesize that a data curation

and preparation center can accelerate scientific inquiry by shifting the ratio of

time spent on data discovery and preparation vs. data analysis, which is currently

cited to be as much as 80% vs. 20%, respectively, for synthesis research (Lohr

2014). Clearly these are estimates from ‘one-off’ research projects and efficiency

can be achieved through advanced training/specialization of the workforce (data

professionals), tool reuse, and understanding and implementation of advanced

semantics and standards during data and tool curation.

19.6.2 Advancing Team Science

The network we seek to develop will evolve through time and be multilayered,

connecting nodes of different types (e.g., models, data). A foundation layer will be

the people network (Weathers et al. 2013; Read et al. 2016). Understood as a social

network, GLEON will facilitate research interactions among scientists and citizens,

focused on aquatic ecosystems. From one perspective, then, the activities of

GLEON can be seen as a contribution to the facilitative mode of S-T integration

(Fisher et al. 2015). As the research community focused on aquatic ecosystems is

large and distributed, network facilitation must coordinate and integrate these

interactions if it is to be efficient and effective, and this requires respecting the

differences manifest across the community. These include conceptual, methodo-

logical, and professional differences between disciplines (O’Rourke and Crowley

2013), institutional boundaries that separate universities and other research units,

and cultural and legal boundaries that mark relevant transitions between countries.

19.6.3 Growing Capacity at Lake Observatories

GLEON plans to continue to work closely with lake and reservoir observatories as

well as citizen scientist groups that lead lake associations and management groups.

Our goal is to provide training options to assist in making their data more accessible
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and discoverable, which will also help in including these groups and their resources

in collaborative efforts. Moreover, teaching observatories how to use community

tools for data QA/QC, derived data products, and data discovery and access as part

of the scientific process, i.e., ‘teach the teachers’ is an important aspiration. This

has, for the last decade since the inception of GLEON, been identified as a critical,

lacking set of resources by GLEON site members (i.e., observatories). Without

these tools, many buoy data languish on the hard drives of observatory facilities.

Finally, all of the data, models, workflows, and metadata need to be available to the

community, enabling observatories to highlight the contributions they have made to

broader science, education, and outreach efforts, as well as the policies regarding

the use of resources in network science.

19.7 Conclusions

GLEON, as a socio-technical (S-T) system formed from an international commu-

nity of scientists and a network of lake observatories, has made tremendous

progress in data exchange among its members over the first 10 years of its

existence. While an S-T system is a different and surprising outcome from our

initial vision of building the cyberinfrastructure to accept, handle, and serve high

frequency data streaming from lakes around the world, it has proven effective in

supporting more than 100 publications and data products. GLEON has supported

S-T development through inter personal trust building, developing mechanisms of

attributing credit, and providing the platforms—both social and technical—for

interdisciplinary collaboration.

Data management, however, remains primarily a manual exercise and happens

at each observatory. In support of GLEON network science, data have also been

collected from multiple sites and curated manually to answer specific research

questions. These data products have proven to be high value and have supported

multiple publications through re-use. Because data management has manual com-

ponents, and because workflows in support of science tend to be ad hoc, GLEON

scientists reinvent the process of data gathering, data cleaning, and data harmoni-

zation. Although each research question requires slightly different approaches to

these steps, some generalizations are possible. Our experience suggests that the

skill set of a data specialist could make the research process more efficient and

accelerate scientific inquiry through standardization and tool reuse.

While we have made important strides within GLEON over the past decade, it is

clear that a better system of systems for data discovery and access is needed in an

approach that continues to honor local skills, policies, and requirements. The

current approach of querying the community of data producers for data is successful

but will always miss data that are not offered due to lack of time, resources, or

interest at the local observatory. Collaborations with organizations outside of

GLEON that have long-term sustainability and the human and technological
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resources to tackle big data management problems may be needed to realize the

goals of easily discoverable and usable data.

References

Bennett LM, Gadlin H, Levine-Finley S (2010) Collaboration and team science: a field guide.

National Institutes of Health Publication No. 10-7660, National Institutes of Health, Bethesda.

https://ccrod.cancer.gov/confluence/download/attachments/47284665/TeamScience_FieldGuide.

pdf?version¼2&modificationDate¼1285330231523&api¼v2

Brookes JD, Carey CC (2011) Resilience to blooms. Science 334(6052):46–47

Cary Institute of Ecosystem Studies (2016) Lake Observer: a mobile app for recording lake and

water observations. https://www.lakeobserver.org. Accessed 18 Aug 2016

Cheruvelil KS, Soranno PA, Weathers KC et al (2014) Creating and maintaining high-performing

collaborative research teams: the importance of diversity and interpersonal skills. Front Ecol

Environ 12:31–38

Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) (2016)

ODM Databases. http://his.cuahsi.org/odmdatabases.html. Accessed 18 Aug 2016

Consortium of Universities for the Advancement of Hydrologic Science, Inc. Water Data Center

(CUAHSI Water Data Center) (2016) The Water Data Center. https://www.cuahsi.org/wdc.

Accessed 18 Aug 2016

DataONE (2016) DataONE: Data Observation Network for Earth. https://www.dataone.org/.

Accessed 18 Aug 2016

Eigenbrode SD, O’Rourke MR, Wulfhorst JD et al (2007) Employing philosophical dialogue in

collaborative science. BioScience 57:55–64

Fecher B, Friesike S, Hebing M (2015) What drives academic data sharing? PloS One 10(2):

e0118053. doi:10.1371/journal.pone.0118053

Fisher E, O’Rourke M, Evans R et al (2015) Mapping the integrative field: taking stock of socio-

technical collaborations. J Respons Innov 2(1):39–61

GEO (2016) GEO: Group on Earth Observations. https://www.earthobservations.org/index.php.

Accessed 18 Aug 2016

Guimer�a R, Uzzi B, Spiro J et al (2005) Team assembly mechanisms determine collaboration

network structure and team performance. Science 308:697–702

Hanson PC, Weathers KC, Kratz TK (2017) Networked lake science: how the Global Lake Eco-

logical Observatory Network (GLEON) works to understand, predict and communicate lake

ecosystem responses to global change. Inland Waters 4:543–554

Hernandez RR, Mayernik MS, Murphy-mariscal ML et al (2012) Advanced technologies and

data management practices in environmental science: lessons from academia. BioScience

62(12): 1067–1076

Hogan K, Weathers KC (2003) Psychological and ecological perspectives on the development of

systems thinking. In: Berkowitz AR, Nilon CH, Hollweg KS (eds) Understanding urban eco-

systems: a new frontier for science and education. Springer, New York, pp 233–260

Jennings E, Jones S, Arvola L et al (2012) Episodic events in lakes: an analysis of drivers, effects,

and responses using high frequency data. Freshw Biol 57:589–601

Jones SE, Chiu CY, Kratz TK et al (2008) Typhoons initiate predictable change in aquatic bac-

terial communities. Limnol Oceanogr 53:1319–1326

Klug JL, Richardson DC, Ewing HA et al (2012) Ecosystem effects of a tropical cyclone on a

network of lakes in NE North America. Environ Sci Technol 46:11693–11701

LaDeau SL, Han BA, Rosi EJ, Weathers KC (2017) The next decade of big data in ecosystem

science. Ecosystems 20(2767):274–283

432 P.C. Hanson et al.

https://ccrod.cancer.gov/confluence/download/attachments/47284665/TeamScience_FieldGuide.pdf?version=2&modificationDate=1285330231523&api=v2
https://ccrod.cancer.gov/confluence/download/attachments/47284665/TeamScience_FieldGuide.pdf?version=2&modificationDate=1285330231523&api=v2
https://ccrod.cancer.gov/confluence/download/attachments/47284665/TeamScience_FieldGuide.pdf?version=2&modificationDate=1285330231523&api=v2
https://ccrod.cancer.gov/confluence/download/attachments/47284665/TeamScience_FieldGuide.pdf?version=2&modificationDate=1285330231523&api=v2
https://ccrod.cancer.gov/confluence/download/attachments/47284665/TeamScience_FieldGuide.pdf?version=2&modificationDate=1285330231523&api=v2
https://www.lakeobserver.org
http://his.cuahsi.org/odmdatabases.html.%20Accessed%2018%20Aug%202016
https://www.cuahsi.org/wdc
https://www.dataone.org/
https://doi.org/10.1371/journal.pone.0118053
https://www.earthobservations.org/index.php


Lohr S (2014) For big-data scientists, ‘janitor work’ is key hurdle to insights. New York Times,

17 Aug 2014. http://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-

to-insights-is-janitor-work.html?_r¼0

National Research Council (NRC) (2015) Enhancing the effectiveness of team science. In: Com-

mittee on the Science of Team Science, Cooke NJ, Hilton ML (eds) Board on behavioral,

cognitive, and sensory sciences, division of behavioral and social sciences and education.

The National Academies Press, Washington, DC

NCEAS (2016) NCEAS: National Center for Ecological Analysis and Synthesis. https://www.

nceas.ucsb.edu. Accessed 18 Aug 2016

O’Reilly CM, Sharma S, Gray DK et al (2015) Rapid and highly variable warming of lake surface

waters around the globe. Geophys Res Lett 42:10773–10781

O’Rourke M, Crowley SJ (2013) Philosophical intervention and cross-disciplinary science:

the story of the Toolbox Project. Synthese 190:1937–1954

Open Source DataTurbine Initiative (2016) DataTurbine. http://dataturbine.org. Accessed 18 Aug

2016

OPeNDAP (2016) OPeNDAP. http://opendap.org. Accessed 18 Aug 2016

Pierson DC, Weyhenmeyer GA, Arvola L et al (2011) An automated method to monitor lake ice

phenology. Limnol Oceanogr Methods 9:74–83

Porter J, Arzberger P, Braun H-W, Bryant P, Gage S, Hansen T et al (2005) Wireless sensor net-

works for ecology. BioScience 55(7):561. doi:10.1641/0006-3568(2005)055[0561:WSNFE]2.

0.CO;2

Porter JH, Hanson PC, Lin CC (2011) Staying afloat in the sensor data deluge. TREE 1484:1–9

Read JS, Hamilton DP, Desai AR et al (2012) Lake size dependency of wind shear and convection

as controls on gas exchange. Geophys Res Lett 39:L09405. doi:10.1029/2012GL051886

Read EK, O’Rourke M, Hong GS et al (2016) Building the team for team science. Ecosphere 7(3):

e01291. doi:10.1002/ecs2.1291

Shade A, Carey CC, Kara E et al (2009) Can the black box be cracked? The augmentation of

microbial ecology by high-resolution, automated sensing instruments. ISME J 3:881–888

Sharma S, Gray D, Read J et al (2015) A global database of lake surface temperatures collected by

in situ and satellite methods from 1985-2009. Sci Data 2:150008. doi:10.1038/sdata.2015.8

Solomon CT, Bruesewitz DA, Richardson DC et al (2013) Ecosystem respiration: drivers of

daily variability and background respiration in lakes around the globe. Limnol Oceanogr 58:

849–866

Soranno PA, Bissell EG, Cheruvelil KS et al (2015) Building a multi-scaled geospatial temporal

ecology database from disparate data sources: Fostering open science through data reuse.

GigaScience 4:28. doi:10.1186/s13742-015-0067-4

Staehr PA, Bade D, Van de Bogert MC et al (2010) Lake metabolism and the diel oxygen tech-

nique: state of the science. Limnol Oceanogr Methods 8:628–644

Tenopir C, Allard S, Douglass K et al (2011) Data sharing by scientists: practices and perceptions.

PLoS One 6(6):e21101. doi:10.1371/journal.pone.0021101
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Chapter 20

Long-Term Ecological Research

in the Nakdong River: Application

of Ecological Informatics to Harmful Algal

Blooms

Dong-Gyun Hong, Kwang-Seuk Jeong, Dong-Kyun Kim, and Gea-Jae Joo

Abstract In recent decades, the importance of long-term ecological research

(LTER) has been highlighted because of the growing interest in global environmental

changes. Specifically, LTER data allows one to track the history of target ecosystems

(e.g., trends of particular ecological entities) and enables one to understand the causal

relationships of ecosystem functioning. One ecological problem is harmful algal

blooms (HABs) in freshwater environments. It is generally perceived that global

warming and local eutrophication are responsible for serious and frequent HAB

events, and various efforts have been made to explain and forecast HABs. LTER

data for HABs typically consist of various forcing functions and variables; thus, the

selection of appropriate data-analysis methods for a HAB database is necessary. This

chapter presents a series of studies related to the prediction and elucidation of two

HABs, such as summer cyanobacteria (e.g., Microcystis aeruginosa) and winter

diatom (e.g., Stephanodiscus hantzschii) that occur in the regulated Nakdong River,

South Korea. First, HABs, water quality, and zooplankton patterns were analyzed

using self-organizing maps (SOMs). Those major factors that have a close relation-

ship to HABs, i.e., water temperature, pH, and rainfall, were selected. We created a

predictive model and control scenario for HABs using a variety of methods (evolu-

tionary computation, artificial neural network) in the real world based on confirmed

information. We also suggest potential further studies of the Nakdong River.
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This chapter focuses on: (1) properties of the limnological dataset of the

Nakdong River derived from Korean Long-Term Ecological Research (KLTER),

(2) analysis and time-series modelling of KLTER dataset by means of machine

learning techniques, and (3) benefits of applied ecological informatics for KLTER

dataset.

20.1 Introduction

Streams and rivers are regarded as major water resources. To utilize water more

efficiently from natural freshwater systems, humans have modified streams and

rivers, including the construction of hydraulic features such as weirs and dams.

Stream modification, which includes artificial structures, is also employed to pro-

vide for issues affecting water resource management resulting from climate change

(e.g., increased flooding and drought).

One emerging issue in water resource management is that of harmful algal

blooms (HABs). It is well known that HABs typically occur in eutrophic systems

where the water body is stagnant. An increase in water depth and retention time and

a decrease in water velocity result from river modifications, and these morpholog-

ical changes function as environmental stressors, which may induce phytoplankton

succession leading to HABs (principally cyanobacteria). Excessive HABs produce

odor-causing components and increase water toxicity (Mihaljević and Stević 2011).

Prediction of HABs and identification of causing factors are the first actions to

ameliorate water-quality deterioration associated with ecosystem degradation in the

Nakdong River (Kim et al. 2007a) (Fig. 20.1). Due to the complexity of the relation-

ship among ecosystem components, understanding the causal relationship between

HABs should be accomplished using the appropriate methodologies. Eco-

logical informatics, based on machine learning techniques, is known to be a

suitable method for understanding with HAB problems (Jeong et al. 2001). Fur-

thermore, long-term datasets including HABs provide a formidable amount of

information for a machine-learning algorithm because the history of environmental

problems is recorded in the dataset. The utilization of LTER data for HAB predic-

tion will contribute to an understanding of HABs in river systems.

In this chapter, we summarize the application of ecological informatics tech-

niques to HAB prediction, using LTER data collected in a regulated river system in

East Asia (the Nakdong River, South Korea). Seasonal variation of HABs in the

Nakdong River is illustrated in Fig. 20.2. The Nakdong River case studies of HAB

predictions are discussed, including the identification of the relationship between

HABs and environmental variables. Next, we show how to develop appropriate

strategies for water quality/quantity management using modeling approaches. We

also discuss future directions for the use of LTER data in ecological informatics.
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Fig. 20.1 Annual trends of the major environmental variables at Site 9 [(a) rainfall (bar) and total
dam discharge (line), (b) river flow rate (line) and chlorophyll-a (bar), (c) dominant cyanobacteria

average cell density, (d) dominant diatom average cell density)
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20.2 Characteristics of the Nakdong River

The Nakdong River is located in the northern temperate region (35~37�N,
127~129�E), with four distinct seasons (cold winter in January, 30-year average

�1.7 �C; hot summer in August, average 24.8 �C). The annual average rainfall is

1202 mm, with more than 60% occurring in summertime due to seasonal monsoons

(referred to as Jangma in Korean; mainly late June to mid-July) and several

typhoons (mostly during July to September). In contrast, 5% of annual rainfall

occurs in wintertime, which implies a seasonal drought following the rainy season.

In South Korea, summer concentrated rainfall is a major factor affecting annual

water quality. Due to the imbalance in annual rainfall, South Korea is recognized as

the most water-stressed country among the Organization for Economic

Co-operation and Development (OECD) countries (Marchal et al. 2012).

Spatial heterogeneity in rainfall distribution is also present throughout the

Nakdong River basin (Fig. 20.3). The upper reaches of the river experience a

W
at

er
 tm

ep
er

at
ur

e 
(O

C
)

0

10

20

30

40

M
. a

er
ug

in
os

a 
(c

el
ls

 m
L-1

)

101

102

103

104

105

106

107

108

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

S.
 h

an
tz

sc
hi

i  (
ce

lls
 m

L-1
)

100

101

102

103

104

105

106

A

B
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frequent shortage in rainfall (annual average, 985.9 mm), while excessive rainfall

occurs in the lower reaches of the river (annual average, 1539.9 mm; Korean

Meteorological Administration 2008). The reduced rainfall of the upper reaches

frequently increases problems in water security (Fig. 20.3).

Except for the upper reaches and tributaries, the riverbed slope for the main

channel is low (ca. 17:10,000). This pattern is more clearly observed in the lower

160 km of the river where the transition to the estuary is very gradual (1/10,000),

and hence a long retention time is observed. It has been reported that water velocity

in the main channel increases only during the summer rainy season (Ha et al. 2002).

Due to low water velocity from autumn to the following spring, sedimentation

increases, resulting in a predominance of sand in the riverbed. The dominance of

sand in the river bed appears about 330 km upriver from the estuarine barrage

(Jeong et al. 2010a). Considering the river length (ca. 525 km), sand deposition

occurs quickly in the main channel.

To mitigate meteorological-hydrological variation, four large multipurpose

dams and one estuarine barrage are in operation (Fig. 20.3). They were built to

ameliorate water security problems caused by the spatiotemporal heterogeneity of

rainfall. The Nakdong River has become a “regulated river system.” Furthermore,

the estuarine barrage has divided the estuarine area into freshwater and saline

zones, resulting in the loss of a gradual transition (e.g., brackish zone). Levee con-

struction intensively modified the river’s main channel, and it is difficult to find a

natural or near-natural riparian zone except in the mountainous reaches upstream.

Several industrial cities and two metropolitan cities are situated in the river’s
mid and lower reaches, and the gradual increase in demand for water resources

along with pollutant-loading is believed to accelerate eutrophication (Jeong et al.

2010a). On the other hand, the estuarine barrage has resulted in an accumulation of

pollutants in the lower reach. Consequently, cyanobacteria blooms have been

observed since 1991. An exceptional summer drought over 3 consecutive years

(1994–1996) triggered an explosive increase in cyanobacteria density during the

summer, with following diatom blooms in winter.

Korean national policy has exacerbated water quality issues in the Nakdong

River. Since the Korean War in the mid-twentieth century, Korean national policies

have focused on economic development, which facilitated channelization and

wetland loss due to reclamation in the 1960s and 1970s. In particular, wetland

loss implies a decrease in nutrient filtering opportunities, and the resultant excessive

nutrient loading is responsible for eutrophication of the river system.

In 2011, an extensive 2-year river modification program concluded, including

levee strengthening, dredging, and weir construction. The Nakdong River now has

eight large weirs in the main channel, at 20-km intervals. As a consequence, frag-

mentation of the river channel and its associated habitats has occurred, cyano-

bacteria blooms have increased, and lentic organisms such as Pectinatella magnifica
have been reported in the main channel (Jo et al. 2014; Seo et al. 2012).
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20.2.1 Nakdong River’s Limnological Characteristics

To understand HAB dynamics in the Nakdong River more effectively, the Limno-

logy Laboratory of the Pusan National University initiated monitoring in 1993, in

conjunction with an ongoing plankton LTER program at nine monitoring sites (six

main channel sites and three tributary sites) at weekly or biweekly intervals for the

last 20 years. The primary main channel site (Site 9; more frequently monitoring on

a weekly basis) is 27 km away from the estuarine barrage and the remaining main

channel sites (Sites 1, 3, 5, 7, and 8 on a biweekly basis) are located in the upper

river reaches from the primary site at 20-km intervals (Fig. 20.3). Three major

tributary sites are positioned near the confluences between the main channel and the

tributaries (Sites 2, 4, and 6 on a biweekly basis). The tributaries for Sites 4 and

6 have multipurpose dams in their upstream reaches. We monitored the physico-

chemical characteristics and the phyto- and zooplankton abundances for all study

sites. The objectives of the LTER program were as follows: using the accumulated

dataset, (1) examine the long-term water quality changes and HAB dynamics,

(2) investigate the interactions between grazers (mainly zooplankton) and prey

(mainly phytoplankton), (3) understand the corresponding behavior of plankton to

hydrological variations through ecological modeling, and (4) explore appropriate

management strategies for controlling HABs.

The limnological parameters at Site 9 (weekly monitoring) showed a strong

seasonality in accordance with temperature and rainfall changes in the Nakdong

River (Ha et al. 1998). Average concentrations of total nitrogen (TN) and total

phosphorus (TP) were 3.6 � 1.3 mg L�1 and 139.5 � 132.8 μg L�1 (n ¼ 1119,

respectively). They tended to increase in dry springs (late April to May) and imme-

diately decreased when concentrated summer rainfall occurred (Kim et al. 2011).

The sites closest to the estuarine barrage, i.e., Hanam (Site 8) andMulgeum (Site 9),

showed higher nutrient concentrations than other sites.

The Geum-ho River is the most upstream among our monitoring sites. This river

runs through the large city, Daegu, which derives a large amount of the point-source

nutrient loading to the Nakdong River. Nutrient concentrations at the other tribu-

taries (Nam River and Hwang River) were lower than at the Guem-ho River.

In the early 1990s, nutrient concentrations were very high. Temporal trends

show a decrease in nutrient concentration over the past two decades due to signifi-

cant water quality improvements (e.g., sewage treatment plant upgrade, reduction

of total emission volume of water pollutants and nonpoint pollution source, and

effective livestock wastewater management) (Son 2013a, b). In drought years, this

nutrient concentration was connected to phytoplankton blooms.

Zooplankton abundance was higher in spring and fall and lower in summer and

winter. The seasonal pattern of rotifers was similar to that for total zooplankton.

This reflects the fact that rotifers (Brachionus calyciflorus, B. rubens, Keratella
cochlearis, and Polyarthra) strongly dominated the zooplankton community in all

locations. TN and TP increases in spring were related to increased time of water

residence, which played the most important role in the abundance of large
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zooplankton (e.g., Daphnia), resulting in excessive grazing impacts. The relation-

ship between zooplankton abundance and residence time is stronger in the lower

river basin (Mulgeum) than in the mid-river basin (Kim et al. 2000, 2012a; Kim and

Joo 2000).

In the Nakdong River, two HAB events consistently occur, i.e., summer cyano-

bacteria blooms mainly dominated by Microcystis aeruginosa and winter diatom

blooms (Kim et al. 2011). A severe cyanobacteria bloom occurred in 1994–1996

when summer rainfall was relatively scarce (ca. 490.5 mm) compared with the

30-year average summer rainfall (ca. 660.2 mm). In contrast, it seemed that suffi-

cient rainfall in 1998–1999 suppressed bloom formation. Jeong et al. (2011a) and

Kim et al. (2011) emphasized that there was a significant negative relationship

between rainfall and cyanobacteria blooms in the river system. Furthermore, Jeong

et al. (2011a) reported that summer concentrated rainfall in year (t) affected the

increase of dam discharge the following spring [i.e., spring in year (t þ 1)]. The

remaining phytoplankton bloom events are characterized by winter diatom species

(Stephanodiscus hantzschii) (Ha et al. 1998, 2002). During winter, grazers typically
disappear due to low water temperatures (4–6 �C) (Kim et al. 2000); thus, it is

expected that a phytoplankton increase would not be limited by grazer populations.

A series of LTER studies have revealed that low water temperature, increased water

retention time, and a decrease in silica allowed the species to drastically increase

during winter (Jeong et al. 2008; Kim et al. 2007a). Kim et al. (2008) found, based

on growth experiments, that S. hantzschii isolated from the Nakdong River favored

relatively lower water temperatures (4–8 �C). Kim et al. (2007a) stressed that a

winter drought might fuel an abrupt increase in diatom abundance (Fig. 20.4).

Kilham (1971) reported that S. hantzschii did not respond sensitively to low silica

concentrations, which are frequently observed in the Nakdong River between

November and the following February.

20.3 Ecological Informatics and the Nakdong River

20.3.1 Applicability of Machine Learning to River Modeling
(~2000s)

The primary objective of the early modeling studies of the Nakdong River was to

explore the ecological information residing in the dataset originating from multi-

site studies (more than 500 sites). In that period, the most popular analytical method

for large ecological datasets (species abundance with various metadata) used multi-

variate statistics such as canonical correlation analysis (CCA). Unfortunately,

statistics-based approaches had limitations in explaining the ecological data com-

plexity. Alternatively, applications of machine learning (ML) algorithms such as

artificial neural networks (ANN), fuzzy logic (FL), or evolutionary computation

(EC) to those ecological datasets were successful in the ordination of data or the

prediction of interested species abundances (Park et al. 2003, 2004, 2006).
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Fig. 20.4 Diatom-forecasting model results by Kim et al. (2007a). Predictive uncertainty based on

the perturbation (�S.D.) of water temperature (a), Andong dam discharge (b), Secchi depth (c),

silica concentration (d). Sensitivity results of the diatom based on simultaneously perturbed inputs

including silica, water temperature, dam discharge, and Secchi depth; low and high dam discharge

and storage (e and f, respectively), low and high dam discharge and storage under the condition of

high Secchi depth (g and h, respectively)
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An early application of ML to river time-series data can be found in Jeong et al.

(2001). After Recknagel (1997) applied an ANN to the prediction of cyanobacteria

blooms in Lake Kasumigaura (Japan), they reported the successful application of a

recurrent neural network (RNN) to time-series prediction of phytoplankton biomass

(chlorophyll-a) using a 5-year weekly limnological dataset. Further application of

the RNN to river phytoplankton blooms can be found in Jeong et al. (2006a), in

which they developed a 7-day-ahead predictive model for M. aeruginosa and

S. hantzschii. From those results, they reported that an internal loop generating

additional input data to external input (i.e., the raw environmental data used in

training) in RNN training was helpful for time-series prediction, and they deter-

mined that river phytoplankton blooms were largely affected by upstream dam

flow–river flow controls and nutrient conditions.

Besides ANN modeling, a series of EC modeling attempts for the prediction of

phytoplankton blooms were implemented for the Nakdong River data. EC is an

adaptive method that mimics biological processes of evolution, natural selection,

and genetic variation. Jeong et al. (2003) utilized a genetic programming

(GP) algorithm for the development of an M. aeruginosa predictive equation

model. In their study, they emphasized that the GP algorithm might assure the

search for an optimal ecological model through a global search and that the predict-

ability of the time-series cyanobacteria species was sufficient. Furthermore, by

using a time-delayed input in the model training process, they successfully achieved

a short-term future prediction. The other related study applied a hybrid evolutionary

algorithm (HEA) based on rule discovery to the Nakdong River data for forecasting

chlorophyll-a and for elucidating complex nonlinear relationships between

input and output variables (Cao et al. 2006; Joo et al. 2003; Kim et al. 2007a).

20.3.2 Ecological Elucidation of HAB Dynamics
in the Nakdong River

After the evaluation of machine learning applicability, KLTER data for the

Nakdong River was used to identify the relationship between HABs and the envi-

ronment through sensitivity and scenario analyses. The basic assumptions for this

process were described in Jeong et al. (2007); as the upstream dam discharge

increased, smaller magnitude HABs were observed. This pattern also appeared in

other regions such as Australia (Maheshwari et al. 1995; Maier et al. 2001, 2004;

Walker and Thoms 1993). The negative relationship between river flow and dam

discharge and HABs was simulated in a series of ecological modeling studies

focused on phytoplankton dynamics. Sensitivity analysis revealed that increased

dam discharge rates maintained a lower level of chlorophyll-a in the river (Jeong

et al. 2010b). From a species point of view, sensitivity analysis indicated that

increases in dam discharge and river flow hindered the development of HABs by

M. aeruginosa (Jeong et al. 2006a; Kim et al. 2007a). Furthermore, when a simple

scenario (water temperature, þ3 �C; upriver dam discharge rate, �10 m3 s�1) was
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applied to the model developed by Jeong et al. (2006a), the magnitude of the

summer HABs was extended and several HABs occurrences were predicted

(Joo et al. 2008).

There is also another example of ecological explanation based on machine

learning applications. Kim et al. (2007a) generated empirical nonlinear equations

using GP, and elucidated complex mechanisms of winter diatom blooms that

recurrenly occurred in the Nakdong River. Through different sensitivity analyses,

they articulated that the winter blooms could be mainly driven by S. hantzschii that
outcompeted the other phytoplankton at the low level of silica concentration and

water temperature in the Nakdong River. Specifically, they speculated that a

decrease in water temperature might cause stress to and threaten the survival of

other phytoplankton species. Intensive competition for nutrients, such as SiO2,

between the diatoms in autumn (mainly from September to November) caused

when Si:P< 10, often resulted in a dominance of S. hantzschii in lake environments

(Kilham et al. 1986; Kolmakov et al. 2002). Furthermore, a decrease in water tem-

perature affected the survival rate of grazers (e.g., zooplankton). Kolmakov et al.

(2002) attempted a multiple sensitivity analysis and concluded that S. hantzschii
proliferation in the river resulted from a combination of three environmental factors

(low water temperature, Si:P ratio and photosynthetically active radiation).

As shown in Jeong et al. (2006b), the selection of appropriate input variables was

important to assure the representativeness of the developed models. One simple

method to facilitate the selection could come from an EC application (Kim et al.

2007a). EC modeling allows one to search for appropriate input variables in the

model development process. If multiple candidate equation models are available, it

is possible to compare the input variable selectivity between the models. Frequently

adopted input variables can be regarded as more important in determining target

variables. Jeong et al. (2003) and Kim et al. (2007a) reported that water temper-

ature, dissolved oxygen (DO), pH, and Secchi transparency were frequently

selected among variables and these variables were helpful for selecting the best

out of multiple candidate models. Furthermore, the fewer number of input variables

makes the model structure understood more easily when the model performance is

reasonably acceptable. Thus, it is desirable to adopt several variables that can be

easily monitored and that greatly increase the model performance. In this context,

Kim et al. (2007a) considered variable selectivity thoroughly, and Kim et al.

(2012b) showed different sensitivity of input variables according to short-

(1-week) and long-term (1-year) forecasting.

In addition to relating the input environments–output pattern, one attempt

revealed that machine learning offers the potential to implement autoregressive

data processing. Jeong et al. (2008) developed a simple neural network model,

namely the temporal autoregressive RNN. They expected that a delayed input of

external data (i.e., n-week previous cell density) and internal data loop by a time-

delayed recurrent neural network might allow the network model to predict future

cell density (i.e., cell density of n-weeks ahead) using previous cell density.

Jeong et al. (2008) reported that the timing of bloom formation and accuracy of

cell density prediction were acceptable, and the seasonality of input data did not
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affect predictability. From this evidence, it is believed that ML (machine learning)

algorithms are flexible enough for the purposes of ecological modeling.

20.3.3 Model Applications: Scenarios for Smart Flow

In a regulated river system, humans control the river flow using hydraulic structures

such as dams and weirs in order to manage water resource demands. This artificial

control is typically more intensive in East Asia because summer concentrated

rainfall is practically the only source of water. If a dry summer persists, the

hydraulic structures regulate the rate of water flow more strictly to maintain

minimum water levels. Cyanobacteria density has explosively increased when a

stable water environment persisted in the river (Joo et al. 2003; Kim et al. 2007b),

and Jeong et al. (2007) warned of an increased probability of cyanobacteria proli-

feration when two or more consecutive summers were dry.

Several studies implemented in the Nakdong River considered the potential

applicability of “smart flow” for the reduction of HABs. Cyanobacteria density is

frequently diminished when a sudden discharge of water occurs (Maier et al. 2001;

Webster et al. 2000). Based on this information, summer rainfall and controlled

dam discharge can decrease summer cyanobacteria blooms and winter diatom

blooms until spring of the next year (i.e., summer to the next spring; Jeong et al.

2011a). In order to control blooms more efficiently, we added an estuarine barrage

for regulation. Hong et al. (2014) hypothesized a simultaneous operation of

“upriver dams discharge increased and the estuarine barrage discharge decreased”

can make flushing þ dilution effect for reducing phytoplankton density (Fig. 20.5).

20.4 Future Research

In our studies, we have demonstrated a variety of data sources, from plankton to

mammals, available from the Nakdong River basin. These data can be used for an

interdisciplinary approach. We introduce a variety of research results and possi-

ble future research projects.

20.4.1 Scale Up: From Sites to Basin

The Four Major Rivers Restoration Project was completed in 2011 by the Korean

government, which resulted in enormous changes to the river ecosystem. These

changes are comparable to those for the estuarine barrage constructed in 1987,

which resulted in the clear separation of the pre-existing brackish area into fresh-

water and saline zones. Both weir construction (eight weirs normal pool level; max:

47.0 m, average: 24.3 m) and intensive dredging of the main channel increased
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Fig. 20.5 Chlorophyll-a prediction model using HEA and scenario analysis results [(a) The thin
line with blank circles is the monthly averaged predicted chlorophyll a concentration, and the

black dots are the observed chlorophyll-a concentrations for every month. The thick solid lines
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water retention time and have caused drastic changes in the phytoplankton assem-

blage. Since the completion of the river project, summer HABs have been observed

across the entire river channel (The blooms occurred mainly in the lower part of the

river before the project). In this regard, appropriate remediation strategies should be

urgently established to prevent the HAB expansion. For example, given the highly

intensive summer rainfall and multiple dams’ hydrocapacity in the Nakdong River

basin, Jeong et al. (2007) proposed effective flow regulations (e.g., strong pulse

discharge) in order to flush out the HABs in the river (Fig. 20.6). They emphasized

Fig. 20.6 Diagram depicting the river regulation mechanism with respect to climate changes and

phytoplankton population dynamics [modified from Jeong et al. (2007)]. According to rainfall in

rainy season, dam and weir storage and discharge, HAB control strategies can be adopted to

regulated river using dilution and flushing by artificial structures

Fig. 20.5 (continued) indicate 95% of the credible interval for the prediction. Chlorophyll-a

concentration responses based on different scenarios of hydrological control. (b) Sole control of

upriver dams; (c) Sole control of the estuarine barrage. (d) Simultaneous application of both dams

and the estuarine barrage (Hong et al. 2014)]
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that river flow control by means of upriver dam discharge regulation was a crucial

factor for mitigation of HAB occurrence in those years with sufficient or moderate

annual rainfall. However, excessive proliferation of algae in dry years was not

considered. Further development of ecological models may elucidate the relation-

ship between HABs and water environments with regard to river modifications.

HABs are also influenced by nutrient concentrations, which are largely related to

basin nutrient loading. If information about basin loading and in-water nutrients is

available, sensitivity and scenario analyses may help in the development of appro-

priate nutrient control strategies, with an aim of reducing HABs in conjunction with

flow regulation.

20.4.2 Ecological Informatics and KLTER

KLTER data accumulated from the Nakdong River is a valuable source of infor-

mation to assess the impact of climate variations on biological entities in a regu-

lated river system. A recent study has shown that HABs in the Nakdong River were

closely related to the Indian Ocean Dipole (IOD) (Jeong and Joo 2016). The

researchers emphasized that as the IOD became positive, moisture convection

was directed toward western Africa, leading to severe droughts throughout

East Asia, including the Korean Peninsula. The droughts are considered as a

causal factor of cyanobacteria increases in South Korea. In this regard, we antici-

pate that well-developed ecological models will be able to guide water-resources

management in response to climate changes. Subsequently, the relationship identi-

fied in the previous modeling stage will allow us to discover feasible adaptations to

climate change (Jones et al. 2012).

The Nakdong River estuary is an important habitat for migratory birds (swans,

mallards, wild geese, etc.) in the East Asian-Australasian flyway. Currently, more

than 10 years’ KLTER data for migratory birds are available, and one migratory

species, the little tern (Sternula albifrons), has been intensively studied using a

number of ecological informatics methods. Hybrid evolutionary algorithm (HEA)

was used to find the most appropriate conditions for nest site selection for the

bird species (Jeong et al. 2011b), which successfully elucidated the site selection

hypotheses postulated by other research groups. In addition, a continuous wavelet

transformation (CWT) has revealed that this species significantly responded to the

Korean monsoon rainfall, and the arrival of individual birds at the estuary the

following year was negatively affected by the previous year’s monsoon rainfall

and onset dates (Jang et al. 2014).

A fish community investigation (seasonal monitoring) in the Nakdong River has

been conducted for more than 10 years at three sites in the river’s main channel.

Specifically, the distribution and dispersal of exotic species [largemouth bass

(Micropterus salmoides) and bluegill (Lepomis macrochirus)] have been inten-

sively monitored (Jo et al. 2011). Researchers successfully identified a gradual

increase of exotic species’ relative abundance and their continuous impact on native
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prey species. Long-term monitoring for a mammalian species (nutria, Myocastor
coypus) has been initiated to discover relationships between species dispersion and

their surrounding environments. Using 3 years of monitoring data, Hong et al.

(2015) determined that a persistently cold winter (total number of days below

�4 �C) was significantly correlated with nutria occurrence. Furthermore, an exten-

sive comparison between monitoring data and the literature showed that

alien species’ habitats are extending north in response to increases in temperature.

Thus, the accumulation of exotic species data will allow identification of the rela-

tionship between species distribution and global warming.

Since the completion of the Four Major Rivers Restoration Project, Pectinatella
magnifica, a bryozoan, has been widely observed throughout the Nakdong River

basin. There are limited studies of this species. Particularly in 2014, it was the most

frequent environmental news topic in Korea. The causes of bryozoan events are

presumably due to increased retention time along with higher water temperatures

(Choi et al. 2015; Jo et al. 2014); however, further studies are required to reveal the

causes.

20.5 Conclusions

The Nakdong River is a regulated river, and a number of artificial structures (dams,

weirs, and estuarine barrage) regulate flow in this river. Inter-annual variation of

precipitation in the Nakdong River basin has significantly influenced dam opera-

tion, thereby affecting the frequency of HAB occurrence as well as the hydraulic

residence time of water. KLTER helps us understand complex patterns associated

with flow regulation in Korean river ecosystem. KLTER data allow quantitative

assessments of ecosystem health and integrity with respect to a large, complex, and

regulated river ecosystem in South Korea.
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Chapter 21

From Ecological Informatics to the Generation

of Ecological Knowledge: Long-TermResearch

in the English Lake District

S.C. Maberly, D. Ciar, J.A. Elliott, I.D. Jones, C.S. Reynolds,

S.J. Thackeray, and I.J. Winfield

Abstract Lakes are highly connected systems that are affected by a hierarchy of

stressors operating at different scales, making them particularly sensitive to anthro-

pogenic perturbation. Traditionally, lakes are studied as a whole system ‘from
physics to fish’ and long-term monitoring programmes were initiated on this

basis, some starting over a century ago. This chapter describes the long-term

monitoring programme on the Cumbrian lakes, UK, how it is operated and how

its scientific value is increased by combining it with additional activities. Case-

studies are presented on the advances long-term research has made to testing

ecological theory and understanding teleconnexions and phenology. Automatic

high-frequency measurements are an important complementary approach that has

been made possible by technological revolutions in computing, and telecommuni-

cations. They provide a window into the true dynamic nature of lakes that cannot be

achieved by manual sampling. The large volume of data produced can now be

quality controlled and analysed by bespoke software that has been developed in

recent years by a global network of lake and data scientists. Finally, lake models

constructed using the insights from monitoring, as well as experiments, are power-

ful ways to identify knowledge gaps and allow forecasts to be made of future

responses to environmental change or management intervention. As other

approaches become incorporated into lake research, such as Earth Observation

and citizen science, the scale of knowledge about the system will increase, improv-

ing our ability to provide robust scientific advice for the sustainable management of

these fragile, but important ecosystems.
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21.1 Introduction

Lakes are usually distinct features in the landscape whose clear boundaries belie the

fact that they are highly-connected with their immediate landscape, airshed and,

through biogeochemical cycles, with the planet. This was not fully recognised in the

past when there was a tendency to focus on a lake as the system of interest, perhaps

by analogy with approaches and concepts developed in the field of oceanography.

However, modern studies recognise that lakes are influenced by stressors operating

at a hierarchy of scales from local processes in the catchment, regional weather

patterns, atmospheric deposition and invasion from regional species-pools, and

global change (Maberly and Elliott 2012). The external stressors, and the complex

internal interactions that they trigger, control the structure and function of lakes.

Humans rely on lakes for a wide range of benefits including water supply, food

production, hydropower generation, flood control, tourism and less tangible, but

important, aesthetic and cultural fulfilment. They have also been used as a conve-

nient means of waste disposal which brings into particularly sharp focus the tension

between the requirement to derive goods and services from our environments and

the need to use them sustainably.

The English Lake District, situated in Cumbria in north-west England

(Fig. 21.1), is part of the Lake District National Park. The lakes were formed

around 14,000 to 15,000 years ago after the retreat of glaciers at the end of the

last ice age (Pearsall and Pennington 1947). The glaciers produced a pattern of lakes

radiating from a central dome of high land with a current maximum elevation of

978 m. Over 200 lakes with an area of greater than 0.001 km2 are present in the

national park and 10 lakes have an area greater than 1 km2 including England’s
largest natural lake, Windermere (Pickering 2001). The variety of lake elevation,

catchment geology and soils, lake depth, morphometry, flushing rate and trophic

state (Talling 1999) in such a small geographic area is unusual and provides a

valuable opportunity to distinguish between the effects of local, regional and global

stressors. Partly because of this, the lakes are among the best studied in the world in

terms of intensity, and duration of research on all aspects of lake ecology.

Perhaps because of the apparent homogeneity of the open-water, there is a long

tradition in freshwater research of undertaking ‘ecosystem ecology’ (Moss 2012)

that studies different components of the system ‘from physics to fish’. A holistic

approach to limnology was also stimulated by the founding of specialist laborato-

ries on the shores of lakes such as those on Pl€on in Germany in 1891 and on Lake

Fure in Denmark in 1897, founded by Carl Wesenberg-Lund (Sand-Jensen 1997)

and similar stations in Sweden, Hungary and elsewhere. In the United Kingdom, the

Freshwater Biological Association (FBA), founded in 1929, established a labora-

tory on the shores of Windermere in the English Lake District (Talling 2008). In

addition to experiments and development of new techniques and equipment, it was

natural for the scientists to start to monitor regularly the physical, chemical and

biological conditions in Windermere and nearby lakes.
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Following the establishment of appropriate infrastructure by the FBA in 1931,

Windermere’s fish populations immediately became a subject of research with

Allen (1935) describing the diet and seasonal migrations of perch (Perca
fluviatilis), its most numerous fish species. However, the subsequent outbreak of

World War II in September 1939 shifted the nature of fish research at Windermere

towards applied fisheries objectives given the constraints imposed on the UK’s
marine fisheries. A capture fishery for the lake’s perch was quickly established

(Worthington 1942) and developed (Worthington 1950), along with an associated

culling programme of the lake’s pike (Esox lucius) as described by Le Cren (2001).
Together with contemporary work on Windermere’s formerly commercially

exploited Arctic charr (Salvelinus alpinus) (Kipling 1972), these fisheries activities
evolved into a unique long-term monitoring programme for these three contrasting

species which continues to the present (Craig et al. 2015). Its results have improved

scientific understanding of the Windermere ecosystem and the ‘overfishing prob-

lem’ which challenges marine fisheries biologists around the world.

In 1945, John W.G. Lund began to study four lakes, (i.e. the North and South

Basins of Windermere, Esthwaite Water and Blelham Tarn) in order to determine

Fig. 21.1 Map of the English Lake District showing the major lakes and its location within Great

Britain (inset). The watersheds for the main study lakes are shown by dotted lines [adapted with

permission from Maberly and Elliott (2012)]
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the causes of seasonal phytoplankton growth. This continued after his retirement in

1977 and became, unintentially and serendipitously, a long-term monitoring

programme. The research was transferred to the newly formed Institute of Fresh-

water Ecology in 1989 and this institute was later merged with other government

funded institutes to form the Centre for Ecology & Hydrology (CEH). Today, CEH

continues this long-term research, which comprises fortnightly studies on seven

lake basins. The 65 years of research in this area was celebrated in a special issue of

the journal Freshwater Biology in 2012 (Maberly and Elliott 2012).

Many key ecological concepts relating to food webs and energy flow, alternative

stable states and ecological theory have been developed in lakes. However their

study is also essential if we are to understand lakes so that we can manage them

sustainably. Long-term monitoring produces an extremely valuable insight into

how lakes have responded to past perturbations. Seasonal, inter-annual and decadal

patterns of change can be discerned, and where many aspects of the system are

studied in parallel, attribution of the causes of change can begin to be made.

Lakes are highly dynamic systems; the microbial populations that drive many of

their functions have generation times that are much shorter than the typical tradi-

tional sampling interval. In addition, short-term events, such as a sudden storm, can

have a large effect on the temperature structure of a lake with profound effects for a

range of factors including underwater light climate (via the depth of the mixed

layer), nutrient cycling and oxygen profiles. The development of appropriate

sensors, computing hardware and software and communication technologies has

allowed samples to be collected automatically at minute intervals, dramatically

increasing our appreciation of higher-frequency dynamics.

However, no programme can monitor all the complex variables that affect lakes.

Furthermore, as the size of the human population and the sophistication of society

increases, new, previously unforeseen stressors and problems arise that need to be

assessed and their effects understood. As a result, complementary approaches are

needed to characterise more fully how lakes currently operate and may respond to

future challenges. The conceptual model for how we undertake our research in the

English Lake District was characterised by Maberly and Elliott (2012) as the ‘four
Ms’ (Fig. 21.2): Monitoring, Mechanisms, Models and Management. These interact

and reinforce each other. Experimentation can provide causal understanding of the

mechanisms behind the patterns and processes observed in the field. They can range

from laboratory experiments that allow the investigator a high level of control, but

inevitably sacrifice ecological realism. Experimental approaches can be scaled up

to address this issue, increasing realism at the expense of control and replication, to

shore-based mesocosms (e.g. Liboriussen et al. 2005), in lake mesocosms

(e.g. Lack and Lund 1974) and whole lake experiments (e.g. Schindler 1990).

Secondly, the process-based understanding these monitoring and mechanistic stud-

ies produce can be encapsulated into process-based or statistical models. These help

to refine understanding and identifying knowledge gaps and also allow lake

responses to future change, including management intervention, to be forecast

(e.g. Reynolds et al. 2001).
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This chapter describes how these distinct and complementary approaches have

been applied in the English Lake District; a case study in holistic ecology that

integrates science from different disciplines. This information can be communi-

cated to decision-makers responsible for the sustainable management of an essen-

tial human resource in the face of growing and multiplying stressors.

21.2 Methods and Data

The early years of the FBA were characterised by wide-ranging and careful

development of novel equipment and methods to study fresh waters. Once

established, however, the methods used to collect and analyse the data in the

long-term monitoring programme were fairly conservative: there was a tendency

to trade-off the use of the most modern methods in favour of using a method that

may have been in use for decades, in order to preserve the continuity of the long-

term records. For example, Talling (1993) first introduced measurement of phyto-

plankton chlorophyll a as a routine method in 1964 using extraction in boiling

methanol and spectrophotometric analysis. The same method has been used since

then, although other solvents (e.g. ethanol), and methods of analysis

(e.g. fluorescence or high performance liquid chromatography) are commonly

used elsewhere. In another example, the method for the analysis of nitrate, was

changed from using phenol disulphonic acid to using the cadium/copper hydrazine

reduction technique after 1971 (Heaney et al. 1988). A long overlap where both

methods were used in parallel allowed differences between the two methods to be

MONITORING
Spatial or long-term data

on the current state or
historic response to

environmental perturbation

MECHANISMS
Robust understanding,

often derived from
experiments, of processes
& the causes of patterns

MODELLING
Refining understanding &

forecasting future
responses

MANAGEMENT
Local actions to produce

desired ‘ecosystem goods
& services’

Fig. 21.2 Interactions

between different scientific

approaches and links to

ecosystem management use

in the study of lakes in the

English Lake District

[adapted with permission

from Maberly and Elliott

(2012)]
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thoroughly characterised. The chemical methods of water analysis that had been

developed and tested were standardised and described in a widely used booklet

(Mackereth et al. 1978).

The methods used to sample Windermere’s fish populations have also been

subjected to a very conservative approach, with those employed to monitor its

Arctic charr, perch and pike populations being rooted in the passive sampling

equipment and single-species approaches of the 1940s; each conducted annually

over periods of approximately 6 weeks. Specifically, Arctic charr are monitored by

essentially non-destructive gill netting during the late autumn on a spawning

ground in the lake’s north basin which produces information on relative abundance,

sizes, ages and the timing of spawning (Winfield et al. 2008a). Somewhat similarly,

perch are sampled using a bespoke design of trap set in inshore areas of both basins

during the spring which produces information on relative abundance, sizes, ages

and the timing of spawning (Paxton et al. 2004). Finally, pike are sampled using a

single mesh gill net in inshore areas of both basins during the late autumn which

produces information on relative abundance, sizes, ages, fecundities and diet

(Winfield et al. 2008b, 2012).

In addition to the continuation of the above long-term sampling and data sets,

since the early 1990s fish research at Windermere has also expanded to include new

approaches. This has included the use of recreational angler catch-per-unit-effort

data for the Arctic charr populations of both basins of the lake (Winfield et al.

2008a) and the systematic use of survey gill nets to sample the entire fish commu-

nity rather than only selected species. The latter has enabled monitoring not only of

certain native species but also of introduced and expanding species such as roach

(Rutilus rutilus) (Winfield et al. 2008a, b). Activities have also included the

pioneering use of hydroacoustics to gather information on fish abundance and

distribution (Winfield et al. 2007; Jones et al. 2008; Hateley et al. 2013) and,

most recently, the exploration of environmental DNA techniques as an alternative

and non-destructive means of determining fish species presence and relative abun-

dance (Hänfling et al. 2016). Notably, this development and application of

hydroacoustics and environmental DNA (eDNA) approaches was facilitated by

the availability of unparalleled long-term background data on the lake’s fish

community derived from the established netting techniques begun in the 1940s.

High-frequency monitoring in the past was severely limited by the available

technology. For example, Frempong (1983) made high-frequency measurements of

temperature over depth for periods of a few days per campaign between 1977 and

1978, recording data on multi-channel chart recorders, with obvious limitations for

data collection and analysis. Over a decade later, Davison et al. (1994) were able to

measure pH at high-frequency in a stream flowing into a lake district lake because

of advances in the technology of sensors (pH electrodes with an inbuilt amplifier

overcoming problems of measuring a high impedance signal) and dataloggers. A

similar system was used by Maberly (1996) to collect 15-min temperature and pH

measurements in Esthwaite Water that started at the end of 1992 and has continued

until the present. The increasing availability of sensors, more capable dataloggers,
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software and computing and telecommunications has revolutionised high-

frequency measurements in lakes (see Sect. 21.4).

There has also been a revolution, brought about by computing power, in the way

data are stored and analysed. Early in the monitoring programme, field data and

subsequent laboratory analyses were stored in notebooks, data tabulated and

analysed using mental arithmetic, slide-rules or more recently electronic calcula-

tors, and graphs were drawn by hand. Starting in the mid 1980s, data were

transcribed to a relational database; initially R:Base, latterly Oracle, by AE Irish.

Short 4-letter codes were used to represent lakes, variables etc. and data were

entered twice independently and validated to improve data quality. The ability to

store, collate and analyse data electronically has greatly increased their value and

usability. The current Oracle database serves as a long-term storage system,

collating the different types of data using standardised styles, ensuring correct

data formatting for future use.

Initially, the high-frequency data, such as the 15-min pH-data, were downloaded

manually from a data-logger to a field computer and then uploaded into a Microsoft

Excel spreadsheet. Later, data were downloaded automatically into a spreadsheet

by telemetry over the General Packet Radio Service (GPRS) data network directly

to the data server. However, as the volume of data increased because of the greater

number of sensors and increased frequency of collection, storing data in spread-

sheets started to become impractical. The increasing size of recorded high-

frequency data made manipulation and validation tasks unwieldly, and so the data

repository was transferred to an Oracle-based relational database. The raw high-

frequency data are now automatically ingested into the database, where a suite of

quality control (QC) checks are triggered to validate the data, followed by aggre-

gation processes to create hourly and daily summaries. These data are then made

available for browsing, download and analysis through a web-based client. The

automation and scripting of data ingestion and QC tasks creates a known processing

chain for data provenance, from the initial observations to making the data available

to browse and download, that was not possible when using spreadsheets for storage.

While the above methods provide acceptable access and means of analysis at a

local level, the use of proprietary storage and access designs can be a barrier to the

sharing, integration, and analysis of data which is necessary when working at

regional and larger scales with data from a number of different sources

(e.g. Woolway et al. 2016). To provide standardised data representation and

wider access, both for observations and metadata, ongoing research is evaluating

a move to a system that employs the Sensor Web Enablement specifications

(Conover et al. 2010), and the Semantic Sensor Network Ontology (Compton

et al. 2012). These standards, and the technologies that build upon them, provide

a foundation for creating systems that can automatically access, integrate, and

analyse data from multiple sources, and provide scientists with straightforward

data access across the data repositories that implement these standards. This pro-

vides another step towards broader data discovery, access, and integration of the

high-frequency data that was initiated by moving from spreadsheets to a relational

database, and will continue by moving towards international standards.
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21.3 Case Studies of the Application of Long-Term

Research to Generating Ecological Knowledge

The purpose of long-term research is partly to detect changes in the structure and

function of the system being studied and to attribute causes of change. More than

that, along with other activities (Fig. 21.2 and see Sects. 21.4–21.6), it produces

ecological knowledge of how lake ecosystems function. Three case-study examples

are given below describing how novel, and globally-relevant, ecological knowledge

has been generated from long-term research in the English Lake District.

21.3.1 Lake Teleconnexions

To deliberately misquote the English metaphysical poet John Donne, ‘No lake is an
island. . ..’. This is obviously true for the input of energy, materials and propagules

from the catchment and ‘air-shed’ but it is also, maybe more surprisingly, true of

large scale processes seemingly operating at a distance. One of the first of these

teleconnexions to be shown to affect lakes was the demonstration that the position

of the North Wall of the Gulf Stream in theWestern Atlantic affected the ecology of

Windermere over 6000 km away (George and Taylor 1995). A Gulf Stream Index

time-series, constructed from the position of the Gulf Stream, was strongly nega-

tively correlated with interannual changes in the summer biomass of zooplankton in

Windermere. The hypothesised mechanism behind the teleconnexion is that the

Gulf Stream affects the strength of summer stratification which in turn controls the

timing of edible phytoplankton which are in turn eaten by the zooplankton. This

example demonstrates the sensitivity of lakes to physical forcing and also under-

lines the fact that bottom-up processes can have a profound effect on higher trophic

levels.

In an example from Esthwaite Water, George (2002) showed that the summer

phytoplankton biomass, as chlorophyll a, was also linked to the Gulf Stream Index.

The suggested mechanism was the relationship between a negative Gulf Stream

Index and strong summer winds causing a deeper early summer thermocline and

greater entrainment of nutrients into the epilimnion from depth, which supports

more phytoplankton growth.

The North Atlantic Oscillation (NAO) is a well-known weather pattern (Hurrell

1995) with derived records extending back to the 1860s based on sea-level air

pressure at the Iceland Low and the Azores High. It controls winter weather in

Europe by influencing the strength of winds blowing off the Atlantic. When the

pressure difference is large between the Iceland Low and the Azores High

(a positive NAO index), westerly winds from the Atlantic are strong, bringing

mild, wet and windy weather in winter. A smaller pressure difference or a pressure

reversal (a negative NAO index) produces cooler, drier and less windy weather in

winter with more influence from air from the continent instead of the Atlantic.
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George et al. (2004) analysed data from the winters (December to February) of

1961 to 1997. Four adjacent lakes in the English Lake District were studied:

Windermere North Basin, Windermere South Basin, Esthwaite Water and Blelham

Tarn, that had contrasting size, flushing time and productivity as well as long-term

data. They showed that some features, such as winter water temperature, responded

positively and coherently to a NAO index (George et al. 2004). The larger the NAO

index, the warmer the water temperature (Fig. 21.3). In another example, the winter

concentration of nitrate in the four lake basins was negatively correlated with the

NAO index: higher concentrations were found in all four lakes when the NAO

index was negative. Again the response was highly coherent (Fig. 21.3) and this

was suggested to be caused by mild winter temperatures increasing the loss rate of

nitrate from the catchment, via plant uptake and microbial denitrification, leading to

higher concentrations in the lake. In contrast, some responses differed among the

four lakes. So for example, winter chlorophyll a concentration was affected by the

NAO index in the smaller, rapidly flushed lakes, but not in the larger less rapidly

flushed lakes (Fig. 21.3). This non-coherent response appeared to be linked to the

rainfall aspect of the NAO. High winter rainfall, associated with a positive NAO

index, reduced winter concentrations of chlorophyll a in rapidly flushed lakes such

as Blelham Tarn, but had little effect on less sensitive lakes with a longer retention

time such as the North Basin of Windermere. Features such as the NAO can also

affect higher trophic levels. Thus, for example, Elliott and colleagues (2000b)

showed that the emergence of sea trout fry in a Lake District stream correlated

with the NAO because of the influence of the NAO on water temperature.
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Fig. 21.3 The effect of the North Atlantic Oscillation on winter conditions in four contrasting

lakes in the English Lake District [adapted with permission from George et al. (2004)]. (a)

Correlation between winter water temperature, nitrate concentration and phytoplankton chloro-

phyll a and the North Atlantic Oscillation index. (b) The correlation of winter phytoplankton

chlorophyll a and the North Atlantic Oscillation index as a function of mean lake retention time.

The horizontal dashed line represents P ¼ 0.05
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Where responses of lakes to a regional weather pattern are coherent, inter-annual

variation in phenology and other responses, may also be coherent across large areas

of the landscape or continent. However, some characteristics of a lake, especially

those driven by their susceptibility to flushing, mean that lakes will vary in their

sensitivity and potentially direction of response, to some features of the NAO and

other weather patterns.

The NAO is one of a number of climate indices including the El Nino-Southern

Oscillation (ENSO), the Arctic Oscillation (AO) and the Pacific Decadal Oscilla-

tion (PDO). Many of these indices are linked: thus the NAO and AO are closely

related and the NAO and Gulf Stream position are also linked, albeit with a time lag

so that the position of the Gulf Stream is correlated with the NAO 2 years earlier

(George 2002). The position and strength of the jet stream at around 12 km in the

troposphere above the Earth’s surface also has a major effect on our weather and is

potentially linked to regional climate indices such as the NAO or AO. RossbyWave

Breaking (Thorncroft et al. 1993) associated with the jet stream provides a potential

mechanism that links processes in the atmosphere with conditions on the Earth’s
surface. Strong and Maberly (2011) showed that there was a strong correlation

between the frequency of cyclonic and anticyclonic Rossby Wave Breaking and the

surface temperature of lakes in the English Lake District. Rossby Wave Breaking

explained between 54 and 69% of the interannual variation in lake temperature in

the four seasons. The all-year-round effect of Rossby Wave Breaking contrasts with

the NAO which is largely a winter phenomenon, although it can have longer-lasting

effects in some lakes operating through a ‘memory’ within the food web (Straile

2000).

Long-term research in the English Lake District has led, therefore, to the

appreciation that large scale processes such as the Gulf Stream, NAO and Rossby

Waves control the structure and function of lakes and can act to produce coherent

temporal responses for some properties over large spatial scales. Truly, ‘no lake is

an island’.

21.3.2 Phenology

Shifts in the timing of the biological seasons provide some of the most compelling

evidence that climate change is already having a discernible effect upon ecosystems

(IPCC 2014). These changes are only apparent as a result of ongoing long-term

monitoring schemes that continue to generate important biological data from

ecologically-diverse systems across the world. Long-term research has revealed

that species and populations vary greatly in the extent to which their seasonal

activities have shifted, with possible consequences for ecological interactions and

ecosystem functioning (Thackeray et al. 2010).

Generally, fresh waters have been under-represented in global assessments of

phenological change and this has limited our ability to make projections and

inferences regarding ecological impacts in these systems. Long-term research
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from the English Lake District has made a major contribution to filling this

important knowledge gap. The availability of multi-decadal time series data on

taxa fulfilling various ecological roles, has allowed the detection of seasonal shifts

in the timing of plankton population growth and fish spawning (Fig. 21.4), the

identification of potential drivers of these changes, and assessments of possible

ecosystem impacts. This research has shown that the seasonal growth period of the

phytoplankton primary producers has changed over the long-term, in parallel with

similar changes in terrestrial plants, but that these changes vary greatly among

species (Thackeray et al. 2008; Meis et al. 2009; Feuchtmayr et al. 2012). This work

challenged the assumption that water temperature is the sole influential driver of

seasonal change, showing that varying nutrient availability over time can also have

an important influence upon seasonality. Subsequent work has shown that seasonal

shifts are not restricted to the phytoplankton but are also apparent at higher levels in

the food web, for zooplankton grazers and fish (Thackeray et al. 2012, 2013;

Fig. 21.4 Long-term changes in the seasonal timing of phytoplankton (a, b) and zooplankton (c,

d) spring population growth, and perch spawning (e, f). Data are shown for the North (a, c, e) and

South (b, d, f) basins of Windermere. Points show the original phenological event data and lines
show average seasonal timings for distinct event classes. In plots a–d, solid lines show the mean

seasonal timing of time-of-onset type metrics (circles), and dashed lines show the mean seasonal

timing of time-of-peak/middle type metrics (square symbols). For the perch data, only peak/

middle type metrics were calculated [reproduced with permission from Thackeray et al. (2013)]
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Ohlberger et al. 2014) (Fig. 21.4). These studies have demonstrated that the extent

to which seasonal shifts de-synchronise species interactions is highly variable; with

stronger evidence of disrupted interactions affecting fish than affecting zooplankton

grazers. The whole-system ethos underlying the monitoring of these sentinel

systems has been central to our ability to detect physical and chemical drivers of

change, as well as impacts felt at the ecosystem scale.

Data from long-term research on the Lakes in the English Lake District have also

been used to explore, and refine, the way in which ecological information from

lakes is processed to make inferences about phenological change. Often, the

seasonal timing of biological events can be mathematically described in a variety

of different ways e.g. the timing of peak abundance, or of populations exceeding a

threshold. The choice of phenological metric can potentially affect estimates of

changing seasonal timing, and also observed relationships with potential environ-

mental drivers (Thackeray et al. 2012, 2013). Using our long-term data we have

advocated to the wider research community that the choice of phenological metric,

or indicator, must be made carefully in relation to research questions and objectives

each time environmental data are to be analysed.

Phenological research in the English Lake District also illustrates the way in

which expectations based upon theoretical considerations can be verified against

“real world” observational data. Prior to the time series analyses cited above,

Reynolds (1990, 1997) used prior knowledge on the dynamics of phytoplankton

populations, accrued over years of careful experimentation and independent obser-

vation, to construct a theory of the impacts of shifting nutrient availability upon

phytoplankton phenology. Later analyses then verified these expectations against

observed ecological phenomena. Furthermore, using the independently-developed

phytoplankton community model PROTECH (Sect. 21.5), it has been possible to

re-create phenological responses observed in the field, in a virtual environment

(Elliott et al. 2006). The results of long-term research in the English Lake District

have also generated new expectations on the likely importance of phenological

change in plankton communities (Thackeray et al. 2012), which are already being

confronted with observational data from other systems (Atkinson et al. 2015).

21.3.3 Testing Ecological Theory

The duration and quality of the Windermere long-term data sets offer unique

opportunities to test ecological theories at spatial and temporal scales which are

otherwise unachievable. This is particularly the case for fish populations, for which

typically large home ranges and great individual longevities pose particular chal-

lenges to evolutionary and population ecologists. Here, illustrative examples are

given for tests of evolutionary ecology utilising the Windermere pike data and test

of population biology using the Windermere perch data. In each case, the tests use

data collected over many decades and in both basins of the lake and cover the lake’s
major piscivore and planktivore, respectively.
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In evolutionary ecology, the ideal free distribution (IFD) theory originally

developed by Fretwell and Lucas (1969) predicts that mobile animals living within

an environment containing patches of contrasting quality will, if certain assump-

tions are met, distribute themselves such that mean individual fitness amongst those

patches will be equalised. Originally proposed for birds, IFD quickly established

itself as one of the most influential theories in evolutionary ecology and has been

applied to a wide range of mobile taxa. However, most aquatic tests of IFD have

been in the context of individuals foraging over relatively short time periods

(e.g. Lampert et al. 2003; Shepherd and Litvak 2004). Furthermore, few of these

or terrestrial studies have compared predicted with observed distributions and those

that have done so have based their predictions on theory alone. To the best of our

knowledge, large-scale studies using observed a priori knowledge of the relation-
ship between fitness and population density were absent.

In the above context, Haugen et al. (2006) explored the movements of pike

between the North and South basins of Windermere using 40 years of capture-

mark-recapture tagging data. Fitness functions were derived, specific to pike

population density and to basin, incorporating probabilities of survival and dis-

persal together with fecundity estimates. These descriptors were then used together

with IFD theory to predict the changing distribution of pike between the two basins

of the lake in response to changing conditions, with the intersection of the fitness

surfaces for the two basins used to derive expected spatial distributions. In addition,

these model-based predictions were then compared with observed multi-decade

spatial distributions, which included an experimental manipulation of basin-

specific pike population density carried out between 1956 and 1962.

Comparison of the spatial distributions predicted by IFD with those actually

observed revealed a remarkably high degree of agreement (Fig. 21.5) and demon-

strated that pike is ideal free distributed between Windermere’s two basins. Over

the study period as a whole, there was a net migration from the less productive

North Basin to the more eutrophic South Basin. However, the experimental manip-

ulation of pike population density in the late 1950s and early 1960s switched the net

migration direction, further demonstrating that pike in Windermere choose their

habitat in accordance with IFD theory. As remarked by Haugen et al. (2006), such a

test of IFD theory had not been undertaken before on such a large field scale in

aquatic or terrestrial systems and so this study has application beyond the under-

standing of pike movements within Windermere.

Fish have long been used as model species in studies of the dynamics of stage-

structured populations and the plasticity of perch in this context makes this species

particularly utilitarian (e.g. ten Brink et al. 2015). Recently developed theoretical

models of stage-structured consumer–resource systems have shown that life-stage-

specific biomass overcompensation (i.e. an increase in stage-specific biomass over

that of pre-disturbance conditions) can arise in response to increased mortality rates

if these release the surviving individuals from competition. If growth, maturation,

and/or reproduction are food-dependent processes, as they have clearly been shown

to be for perch in Windermere (Craig et al. 2015), then this indirect density-

dependent effect may lead to higher growth rates, faster maturation, and/or
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increased adult fecundity. However, as for IFD theory, tests of such models are

extremely rare in the field and have been largely confined to relatively short-term

laboratory studies.

The long-term Windermere perch data were used by Ohlberger et al. (2011) to

parameterise a stage-structured population model simulating the effects of

increased adult mortality caused by a disease outbreak in 1976. Remarkably, this

outbreak had a much higher prevalence among adult, compared to juvenile, indi-

viduals and was subsequently estimated to have killed 98% of adult perch in the

lake (Bucke et al. 1979). The model predicted biomass overcompensation by

juveniles in response to increased adult mortality caused by a shift in food-

dependent growth and reproduction rates. The addition to the model of cannibalism

between these life stages reinforced this compensatory response caused by the

release of juveniles from intraspecific predation at high adult mortality rates.

Model predictions were strongly supported by observations, revealing that the

disease outbreak induced a strong decrease in adult biomass and a corresponding

increase in juvenile biomass (Fig. 21.6). Age-specific adult fecundity and size-at-

age were both higher after the disease outbreak, suggesting that the disease-induced

mortality released adult perch from competition and so increased their somatic and

reproductive growth. Higher juvenile survival after the disease outbreak caused by

Fig. 21.5 The isodar (i.e. the intersection line between fitness surfaces for the north and south

basins, thick black line) and the corresponding 95% confidence boundary lines (dotted lines)
predicted for Windermere pike by the ideal free distribution theory. Numbers attached to grey
lines represent isocline values for the difference between basins of the estimated realised fitness

values, where the zero isocline constitutes the predicted isodar. The red open dots represent annual
pike abundance estimates over a 50 years period and the red line is the estimated linear isodar for

these abundances. [Redrawn with permission from Haugen et al. (2006)]
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a release from cannibalism probably contributed to the observed biomass overcom-

pensation. These findings have general implications for predicting population- and

community-level responses to increased size-selective mortality caused by disease

outbreaks or similarly size-specific impacts such as those arising from exploitation

by fisheries or other forms of harvest.

21.4 Automatic High-Frequency Monitoring

Long-term monitoring of lakes provides an invaluable resource for understanding

the ecosystem, but monthly, fortnightly or even weekly monitoring cannot capture

time-scales at which meteorological drivers and ecosystem processes act. In the

past this was a limitation which was difficult to overcome, but the recent advance-

ments in sensor technology, computing power and communications has enabled a

new branch of ecosystem monitoring to develop: automated, in situ, and high-

frequency. An example is the deployment in 2006 of a monitoring buoy in Blelham

Tarn, a small, but reasonably deep (surface area, 0.1 km2; maximum depth, 14.5 m),

eutrophic lake in the English Lake District, which has since provided a suite of

meteorological and limnological data every 4 min to supplement the traditional

fortnightly monitoring which has been undertaken on this lake for decades. The

sizable floating buoy, securely anchored to the lake bed, is sufficiently large to

provide a stable platform for a meteorological station including instruments to

measure solar radiation, air temperature, wind speed and relative humidity, with a

chain of 12 temperature sensors hanging from 0.5 m below the surface of the lake to

12.0 m depth.

The benefit of these high-frequency data were highlighted by Jennings et al.

(2012) in a study of episodic events taking place in different lakes across the world.

Fig. 21.6 Time series of the ratio between juvenile and adult perch biomass in the (a) North and

(b) South Basins of Windermere, showing a transition of the biomass distribution from being

dominated by adults (ratio <1) to being dominated by juveniles (ratio >1) following a major

disease outbreak in 1976 (vertical dashed line). [Redrawn with permission from Ohlberger et al.

(2011)]
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For Blelham Tarn, the long-term research has shown oxygen depletion at depth to

be a major problem, linked to thermal stratification restricting the supply of oxygen

from the surface to depth (Foley et al. 2012). However, the precise meteorological

and lake physical factors controlling oxygen depletion could not easily be eluci-

dated using the long-term data. Analysis of the fortnightly collected data from 2006

showed that, by late summer, the deep water of the lake had become virtually

anoxic, with oxygen concentrations below 1 mg L�1 at depths as shallow as 5 m. In

early September, though, this fortnightly record showed substantial re-oxygenation

at 5 m, though the lake clearly remained anoxic just a metre below. Analysis of the

temperature profiles taken during the field sampling suggested a mixing event may

have occurred bringing surface oxygen back down to 5 m, but little other informa-

tion could be gleaned (Fig. 21.7). When did this mixing occur? How long did it last?

What caused the mixing? Why did an apparently similar level of mixing not

re-oxygenate that depth a month later?

Fortunately, the monitoring buoy that had been installed earlier in the summer,

provided the means to answer these questions. Just replacing the fortnightly-

resolution temperature series with the hourly-averaged temperature data collected

from the buoy (Fig. 21.8) immediately indicated that a noticeable mixing event had,

indeed, occurred in the lake. Its effects were felt down to 8 m in the water, but the

event took place a couple of days before the field sampling. The high-frequency

data also demonstrated that stratification re-asserted itself shortly after the fort-

nightly data had been collected.

To obtain more detailed answers to our ‘when’, ‘how’, ‘what’ and ‘why’
questions there is another obstacle to overcome. The advantages of high-frequency

data collection are obvious, but a subtle disadvantage is that it is too easy to become

overwhelmed by the sheer weight of the data. One data point every 4 min means

that in 2 h of data collection there are more data to analyse than provided in a whole

year of manual sampling every 2 weeks. Dealing with these data therefore demands

the use of efficient and systematic analysing techniques. To this end, scientists from

GLEON (The Global Lake Ecological Observatory Network), a grassroots organi-

sation of limnologists working with high-frequency in situ data, and NETLAKE, an
European Union Cost Action aimed at the European buoy-user community, have

Fig. 21.7 Oxygen

concentration (circles) at
5 m (black) and 6 m

(orange) and temperatures

(triangles) at 0 m (grey),
2 m (yellow), 4 m (blue),
5 m (green) and 6 m

(purple) manually collected

every 2 weeks in Blelham

Tarn in 2006. Note oxygen

at 5 m and 6 m is virtually

identical most of the time
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collaborated to develop user-friendly software to facilitate analysis of data typically

collected from this type of monitoring buoy. One such piece of software, Lake

Analyzer (Read et al. 2011), was written specifically to calculate useful lake physics

parameters from high-frequency temperature profiles and meteorological data

(Global Lakes Ecological Observatory Network, Lake Analyzer. http://www.

gleon.org/research/projects/lake-analyzer).

Applying Lake Analyzer to the data from Blelham Tarn enabled the mixed

depth, here defined as the first depth in the interpolated temperature profile for

which the density gradient exceeded 0.1 kg m�3 m�1, to be readily calculated.

Combining this information with the calculated temperature differences between

4 m and 5 m, which became oxygenated, and 4 m and 6 m, which stayed deoxy-

genated, allowed the mixing event to be understood (Fig. 21.9). While surface

temperatures had been cooling and stratification weakening for several weeks, the

substantive mixing took place on 1st and 2nd September; the mixed layer deepened

during this time from 3 to 5 m, entraining the 5 m monitoring depth into the

oxygenated epilimnion, the temperature difference between 4 m and 5 m falling

Fig. 21.8 Measurements of oxygen concentration and temperature in Blelham Tarn in 2006. (a)

Manually collected oxygen concentrations (circles) at 5 m (black) and 6 m (orange) and temper-

atures at 0.5 (light blue), 1 (orange), 2 (light grey), 3 (gold), 4 (blue), 5 (green), 6 (dark blue),
7 (dark red), 8 (dark grey), 9 (mustard), 10 (indigo) and 12 m (dark green) measured from the

buoy; (b) Oxygen concentration (circles) at 5 m (black) and 6 m (orange), temperature difference,

Td, between 4 m and 5 m (blue) and between 4 m and 6 m (green) and mixed depth, zm (grey). Note
in both panels that oxygen at 5 m and 6 m is virtually identical most of the time
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to a fraction of a degree in the process. While some effects of mixing were clearly

felt at 6 m, nevertheless there remained a non-negligible temperature, and therefore

density, gradient above that depth, providing sufficient resistance to prevent the

penetration of oxygenated water. In fact, by the time of field sampling, around

mid-morning on 4th September, the stratification was already beginning to recover,

and within a couple of days the 5 m monitoring depth had become detrained from

the epilimnion and the process of deoxygenation had resumed. It also became clear

that when the site was monitored on 2nd October the 5 m depth was still just

beneath the mixed layer and, though the stratification was severely weakened, the

density gradient above 5 m was still larger than it had been during the early

September mixing event. Thus, entrainment was beginning and re-oxygenation

imminent, but had not yet occurred.

A further GLEON/NETLAKE software development was Lake Heat Flux Ana-

lyzer (Woolway et al. 2015), which facilitates the somewhat complicated calcula-

tions of atmospheric surface fluxes from the high-frequency data readily collected

on in situ monitoring buoys (Global Lakes Ecological Observatory Network.

HeatFluxAnalyzer Web. http://heatfluxanalyzer.gleon.org/). This software enabled

the calculation of the various surface fluxes driving the cycles of heating and

cooling in a lake, and the terms necessary for calculating the vertical turbulent

wind energy flux (Wuest et al. 2000). Highlighting the fortnight around the mixing

Fig. 21.9 Temperature and

heat fluxes in Blelham Tarn

in 2006. (a) Temperature

difference between 4 m and

5 m, Td (blue), mixed depth,

zm (grey), total heat flux,
Qtot (green), and scaled

turbulent wind energy flux,

P10 (purple). Time of

manual sampling marked

with a black line; (b)
Surface heat fluxes: long-

wave out (yellow), long-
wave in (grey), net solar
radiation (purple), sensible
heat flux (blue) and latent

heat flux (green). Time of

manual sampling marked

with a black line. Note long-
wave in and solar

designated positive if a

downwards flux (lake

heating), while long-wave

out, sensible heat and latent

heat designated positive if

an upward flux (lake

cooling)
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event it can be seen (Fig. 21.9) that it was sustained wind mixing which initially

drove the de-stratification on 1st September, but on 2nd September the wind was

mostly quiescent except for a couple of hours. It was, however, clearly an unusually

cool day with the day-time heating being substantially lower than for the rest of the

period. This low heating was insufficient to provide resistance to just 2 h of very

strong winds that afternoon which quickly deepened the mixed layer by a whole

metre, re-oxygenating the 5 m layer in the water column. In fact, the wind provided

even greater mixing energy the next day, but as the heating had returned to more

typical values those winds were not sufficient to deepen the mixed layer further.

More information still can be obtained. The total heat flux is a combination of

different heating and cooling processes: upward and downward long-wave radia-

tion, evaporative cooling, the sensible heat flux driven by air-water temperature

differences, and solar radiation. Investigation of these individual fluxes (Fig. 21.9)

calculated using Lake Heat Flux Analyzer, showed that the unusually low heating

on 2nd September was a result of depressed solar radiation: it was evidently a very

cloudy day. Thus, a full pattern finally emerges. The lake was cooling towards the

end of August, and strong winds on 1st September weakened the stratification

further, allowing the combination of exceedingly overcast conditions and a couple

of hours of high winds on 2nd September finally to open up the 5 m layer to

oxygenation. Very strong winds the following day, accompanied, as they were, by a

more typical level of diurnal heating for the season, proved insufficient to force the

epilimnion any deeper. By 4th September, when the manual monitoring took place,

the stratification was already recovering and the deoxygenation process beginning

again, remaining unchecked until, coincidentally, just after the field sampling a

month later.

Monitoring buoys, such as the one on Blelham Tarn, are now proliferating in

lakes across the globe, adding substantially to data collected from traditional field

sampling. New types of sensors are increasingly becoming available, affordable

and sufficiently reliable and stable to be left automatically monitoring in a lake. The

further development of analysis software, real-time telemetry providing the means

for real-time web visualisation, processing and forecasting, and the willingness of

scientists to collaborate and take part in multi-lake studies using high-frequency

data (e.g. Solomon et al. 2013; Woolway et al. 2016) give reasons to be optimistic

of the future potential for a profusion of scientific breakthroughs using these

complementary techniques.

21.5 Modeling

21.5.1 Benefits of Modeling

Long-term research greatly benefits from the development and application of

models. Models allow researchers to explore concepts and test hypotheses related
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to their observations. They can also facilitate the application of knowledge to other

systems different from those being studied. Ultimately, they are a simplified

expression of quantified understanding gained through the research. Here, we

follow the example of such a model and illustrate its practical application within

the English Lake District.

21.5.2 The PROTECH model

PROTECH [Phytoplankton RespOnses To Environmental CHange; (Elliott and

Reynolds 2010; Reynolds et al. 2012)] is a process-based lake phytoplankton

community model and is well established in its field (Trolle et al. 2012). It was

developed from a combination of laboratory experiments (Reynolds 1989) and the

Blelham Tarn field experiments (e.g. Reynolds et al. 1982, 1983). It predicts

phytoplankton species growth in daily time steps at different depths and responds

to changes in temperature, light and nutrient availability. A particular strength is its

ability to model different phytoplankton species using morphological relationships

from Reynolds (1989) (Fig. 21.10).

Of course, testing such a model was greatly facilitated by the availability of the

long-term data and has resulted in PROTECH being applied to many of the lakes in

the English Lake District with these data [e.g. Bassenthwaite Lake (Elliott et al.

2006), Blelham Tarn (Elliott et al. 2000a), Esthwaite Water (Elliott 2010) and

Windermere (Elliott 2012)]. It has also been applied locally at sites with less

Fig. 21.10 Example PROTECH simulation of eight different phytoplankton in Esthwaite Water

in 2003 [After Elliott (2010)]

474 S.C. Maberly et al.



extensive datasets such as at Loweswater (Norton et al. 2012), Wastwater (Elliott

and Thackeray 2004) and Ullswater (Bernhardt et al. 2008). These examples cover

a range of lake types from oligotrophic to eutrophic and from shallow to deep

(14.5–76 m). Such diversity and wide boundary ranges in typology provides a rich

source of data for testing that is vital for model development.

21.5.3 Hypothesis Testing

After sufficient assessment, which builds up confidence in a model, the model can

be a useful tool to test hypotheses or “what if” scenarios. A good example from the

English Lake District is that of the vendace [Coregonus albula (L.)] in

Bassenthwaite Lake. Vendace are a rare and protected fish species in the UK and,

today, one of the few natural populations occurs in Bassenthwaite Lake. They are

sensitive to warm water temperatures and to low oxygen concentrations and an

analysis of observed data from 1990–99 suggested that the available habitat for the

fish was sometimes constricted by increased water temperatures and decrease

oxygen concentrations (George et al. 2006). George et al. (2006) went further and

suggested that these factors restricting vendace habitat would be further enhanced

by projected climate change.

In order to test this hypothesis, PROTECH was coupled to a lake oxygen model,

LOX (Bell et al. 2006) and driven by 20 years of daily weather data (representing

the last two decades of the twenty-first century) from a Regional Climate Model

(RCM) to simulate vendace habitat volume in Bassenthwaite Lake (Elliott and Bell

2011). The results showed a forecast mean increase in water temperature of >2 �C.
In contrast, there was <10% decrease in oxygen concentration under the future

climate because, although the timing of phytoplankton growth was affected by

climate change, total algal biomass and hence the amount of carbon reaching the

hypolimnion was unaltered because nutrient loads to the lake were unchanged.

Unfortunately for the vendace, the temperature increase alone was sufficient to see

a marked decrease in available habitat volume: in all 20 future years, there were

periods of > 7 days where there was no suitable habitat available and in 16 years

there were periods of > 20 consecutive days when no habitat was available.

The example of Elliott and Bell (2011) shows the power of models in exploring

hypotheses and asking “what if” questions through the combination of observed

data recording the patterns of change and threats to the species; the application of

the model allowed an independent assessment to be made of those threats. It also

allows for expansion into the unknown, to assess quantitatively and to predict how

future changes might impact upon species. Such combinations of knowledge

remain powerful scientific tools and will inevitably help our understanding of

complex environmental systems.
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21.5.4 Models for Management

Finally, beyond the scientific benefits of such a tool, models can also be applied to

help with management issues that affect lakes by forecasting the effects of different

scenarios of change on particular aspects of lake condition. For example, in another

application of PROTECH to Bassenthwaite Lake, the relative effects of changing

nutrient load andwater temperature upon cyanobacteria bloomswere assessed (Elliott

et al. 2006). The study showed how combined increases in nutrient load and water

temperature both enhanced the size of cyanobacteria blooms (Fig. 21.11). However, it

also demonstrated that while increased water temperature did increase bloom size,

this change was greatly reduced if the nutrient supply to the lake was reduced.

Therefore, lake managers could reduce the impact of a global climate pressure upon

lakes though local management changes by striving to reduce nutrient loads.

21.6 Conclusions and Prospects

An ecosystem approach is needed in order to understand fully how a system

functions and responds to past and future environmental perturbation because

external pressures trigger a complex series of bottom-up and top-down interactions

Fig. 21.11 The maximum annual percentage abundance of cyanobacteria in the simulated

phytoplankton of Bassenthwaite Lake with changing nutrient load and water temperature [After

Elliott et al. (2006)]
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that can affect all aspects of a system (Maberly and Elliott 2012). In a long-term

programme, the data that are produced should be able to detect and attribute the

effects, not only known pressures, but also new types of perturbation that are often

the result of unexpected consequences resulting fromMan’s activities. An excellent
example of this is the routine measurements that led to the unexpected discovery of

the Antarctic ozone hole (Farman et al. 1985).

Lakes are particularly sensitive sentinel systems because they integrate

responses from the land and the atmosphere (Williamson et al. 2008). New tech-

nology is increasing the scale at which processes can be detected and understood.

For example, the high-frequency technology allows the full dynamics of lakes to be

captured. A second development that represents a huge opportunity for the study of

lakes is modern Earth Observation platforms. These can produce valuable synoptic

scientific information, albeit of the surface water, from a much larger range of lakes

than can be measured by traditional means. The value of this approach is growing

with the proliferation of systems with greater spatial resolution, allowing smaller

lakes to be studied, and a greater temporal coverage, potentially allowing more

frequent retrieval of data. This, in conjunction with global datasets on meteorology,

geography, land-use and human populations and land-use practices, some of which

also are produced by satellite, confer a powerful new opportunity to study and

manage lakes. This approach is being used by the UK project GloboLakes (www.

Globolakes.ac.uk). A third growing approach is the use of citizen scientists. These

can increase greatly the amount of data collected after appropriate training. In the

biodiversity field, this has been used very successfully to map changes in species

distribution (Roy et al. 2015). In limnology they have also been successfully used to

collect more data, more frequently, than can be afforded by more traditional means

(Canfield et al. 2002; Lottig et al. 2014).

In the current climate of austerity, long-term research programmes are under

increasing threat (Birkhead 2014). Long-term monitoring is invaluable for many

reasons but often, wrongly, regarded as a ‘Cinderella science’ (Nisbet 2007). This
threat is occurring internationally with, for example, threats of closure to the

Canadian Experimental Lakes Area, which has produced high-quality research

into how lakes respond to perturbation over 45 years, that were eventually resolved.

These issues tend to be cyclical and have been faced before. Embedding long-term

research in other activities may be one way of protecting their funding as it helps to

increase their relevance further. Also, the value of long-term data is greatly

increased when they are re-used by other scientists in different ways. While

undoubtedly desirable this creates issues that need to be handled thoughtfully.

For example, how is appropriate credit given to the scientists who collect the data

so that there is an incentive for them to continue the collection in the first place?

Furthermore, involving the original team is often necessary because they will have

important insights into the data and the study system that are nearly impossible to

capture in any metadata. One response to this is multi-author papers where the data

contributors are recognised for their contribution and also have the opportunity to

contribute their local expert knowledge and intellectual input. For example, the

recent paper by Woolway et al. (2016) collated and analysed data from 100 lakes

21 From Ecological Informatics to the Generation of Ecological Knowledge:. . . 477

http://www.globolakes.ac.uk
http://www.globolakes.ac.uk


around the world and had 28 authors on the paper. There is not yet a consensus on

the best way forward on this and consequently it is an area of current hot debate

(Mills et al. 2015, 2016; Whitlock et al. 2016). Nevertheless, the opportunities

provided by growing internationalisation of science collaboration are transforming

our global understanding of lake ecology and should be encouraged.
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