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Preface

Over the last decades progress in our understanding of the pathophysiology, epide-
miology, and therapeutic approaches to hypertension has led this condition to be
viewed differently from the past. Hypertension, initially classified as primary and
secondary, is now subdivided into a much larger number of phenotypes based on
demographics, comorbidities, presence or absence of other risk factors, or target
organ involvement. Genetic involvement is also now clearer. The aim of this book is
to discuss the multiple new aspects (some of which novel) of the hypertension dis-
ease. Sections are devoted to the general aspects of hypertension including the clini-
cal importance of blood pressure values different from the conventional office ones,
the relevance to pathophysiology and prognosis of circadian rthythm and seasonal
variations in blood pressure, the temporal evolution of treated and untreated hyper-
tension, and the factors involved in the appearance and progression of a blood pres-
sure elevation, including the possible contribution of single or, for essential
hypertension, multiple genes. Other sections deal with the clinical aspects of hyper-
tension, and the specific therapeutic options for each hypertension phenotype. This
extends to prehypertension as well as to white coat, masked, renovascular, endo-
crine, pediatric, and gestational hypertension. Finally, the book reviews hyperten-
sion phenotypes that are less well known and dealt with by classical textbooks, i.e.,
calculus renal disease, stress-induced hypertension, pseudo-hypertension, paroxys-
mal pseudo-pheochromocytoma, and other rare causes of blood pressure elevation
such as Turner syndrome, hypertension due to herbal and medicinal compounds and
drugs, to call attention to these rarer conditions which are nevertheless mechanisti-
cally and clinically relevant.

We hope that physicians and investigators interested in hypertension will find the
content of the book stimulating and useful to their professional activity.

Beirut, Lebanon Adel E. Berbari
Monza, Italy Giuseppe Mancia
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Introduction: Definition
and Classification of Arterial Pressure
Phenotypes

Lawrence R. Krakoff

1.1 Introduction

The title of this book and the range of topics that are covered in its chapters indicate
a large, complex, and ever-growing body of medical science related to blood pres-
sure and, in particular, the application of that science to care of a very large fraction
of the globe’s human population [1]. The cardiovascular scientist defines blood
pressure as the measured force upon the blood at some point from within the heart
to the vascular tree from arteries to capillaries to veins and back to the pump.
Clinicians usually refer to the measurement of pressure in the upper arm (brachial
artery pressure). Much of the population may consider blood pressure to overlap
with “pressure,” meaning mental stress related to the “pressure” of work, family
concerns, and various threats. “Blood pressure” alone may not be the optimal term
for all these perspectives, so that more precise and meaningful terms are truly
needed for an accurate set of definitions that capture current research in this very
important area of cardiovascular medicine.

“Hypertension” or “high blood pressure” has been recognized since the nine-
teenth century as a disorder in which the systemic arterial pressure is persistently
increased above a normal or safe level. The effect of hypertension is its association
with adverse consequences for those with the disorder [2]. Initially recognized as a
manifestation of chronic kidney disease, hypertension was subsequently identified
in many without kidney disease, but who had specific causes for their high blood
pressure. However, as the epidemiology of high blood pressure progressed, it soon
became apparent that the large majority of those with high blood pressure had no
other obvious disorder to account for their condition. Thus, the terms “essential
hypertension, primary hypertension, and even idiopathic hypertension” entered
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medical language, and secondary hypertension became the label for the far less
common diseases, mostly of the kidneys or adrenal glands. Until the 1960s, clinical
classification of normal and high blood pressure was binary and depended, with rare
exception, on the stethoscope and mercury manometer of the doctor’s office or hos-
pital location.

The past 50 years have seen unprecedented growth in technology, physiology,
pathology, pharmacology, epidemiology, and clinical care for those with disorders
of systemic arterial pressure. It is now certain that the level of arterial pressure and
its variability are traits that define phenotypes and that both genetic patterns and
various lifestyles and exposures participate in defining that phenotype. The range of
classifications and definitions for characterizing systemic arterial pressure and,
most importantly, the linkages between these definitions to cardiovascular risk and
its management have rapidly expanded. The following section of this introduction
will survey the current classifications relevant to the phenotypes that define high and
low arterial pressure that will be the detailed subjects of the following chapters of
this book.

1.2 Which Pressure?

Recording the pressure wave form within arteries discloses several specific charac-
teristics: the peak or systolic pressure generated by cardiac stroke volume, the low-
est pressure between peaks or diastolic pressure, and the difference between systolic
and diastolic pressure or pulse pressure. The mean arterial pressure is the average
pressure for the entire cycle and is near to the diastolic pressure plus one third of the
pulse pressure.

Brachial artery pressures have been the basis for past assessment of arterial pres-
sure whether in diagnostic studies or randomized trials of antihypertensive therapy.
However, the actual systolic and diastolic pressures “seen’” or exposed to the coro-
nary, carotid, cerebral, and renal arteries differ from brachial pressures and may be
more closely related to pressure-related pathology. Noninvasive methods for assess-
ing central aortic pressure have been developed and explored to define large artery
properties more precisely than relying on brachial measurements. Measuring cen-
tral aortic pressure may be a useful supplement for patient management [3].
Likewise assessing stiffness of large arteries has previously depended on the simple
difference between systolic and diastolic brachial pressures, i.e., pulse pressure, but
more accurate techniques relying on aortic pulse wave velocity and analysis of
reflected waves are now available and being implemented in clinical research [4].

1.3  Classification of Systemic Arterial Pressure

Table 1.1 displays the definitions for normal and high blood pressure in adults,
based on recent guidelines for clinic pressures. The terms isolated systolic hyperten-
sion or isolated diastolic hypertension apply when one of the pressures is elevated
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Table 1.1 Classification based on level of clinic pressures

Blood pressure

Definition range (mmHg) Comment/source

Normal-optimal pressure  <120/80 All guidelines

Prehypertension 120-139/80-89 INC-7 [20]

High normal pressure 130-139/85-89 EHS [21]

Hypertension >140/90 Most guidelines

Resistant hypertension >140/90 On treatment with 3+ antihypertensive drugs,

usually including a diuretic [22]

Table 1.2 Other definitions. Comparison between systolic and diastolic hypertension

Clinic systolic Clinic diastolic
Definition pressure pressure Comment
Isolated systolic >140 mmHg <90 mmHg In younger (<50) patients
hypertension associated with high cardiac
output. Well-trained athletes
Most frequent in patients
>50 years related to increased
arterial stiffness
Isolated diastolic <140 mmHg >90 mmHg Seen in younger patients and
hypertension associated with increased risk
Exercise >210 mmHg for men >90 mmHg or  Associated with increased risk
hypertension [23] >190 mmHg for >10 mmHg factors or left ventricular
women increase hypertrophy

and the other is not, as shown in Table 1.2. During exercise, systolic pressure
increases, but the change in diastolic pressure is less consistent. Also shown in
Table 1.2 are criteria for exercise-related hypertension.

In routine clinical care, one or a few pressures are measured with uncertain meth-
ods despite available guidelines [5]. Improvement in accuracy for office measure-
ment has been recommended, in part by taking more measurements using automated
devices, such as the BpTRU [6].

The determinants of arterial pressure are related to age. Elevated systolic pres-
sure, per se, has a somewhat different pathophysiology and significance for age <50
and older populations. For the elderly, arterial fibrosis and calcification contribute to
systolic elevations with wide pulse pressures [7]. Age norms for systolic and dia-
stolic pressures for pediatric and adolescent populations have been derived that
define normal pressure, prehypertension, and hypertension in these age groups.
These are based on specific age-related cutoffs for upper 90% and 95% percentiles
[8]. This age-related definition of hypertension for children from age 10 and upward
is significantly correlated with hypertension in adult life based on a long-term track-
ing study [9].

For accurate diagnosis or classification, useful and reliable methods are crucial.
The development of accurate devices for use in both the clinic and out-of-the office
settings has radically changed the spectrum for classification of systemic blood
pressure [10]. In developed nations, ambulatory blood pressure monitors, home
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Table 1.3 Classification based on comparison between clinic and out-of-office pressures

Comment/source
Definition Blood pressure range (mmHg) [24]
White coat hypertension Clinic pressures >140/90 and 24 h ABP  Untreated
<130/80 or home blood pressures
<135/85
White coat effect Clinic pressures >140/90 and 24 h ABP  Treated patients
<130/80 daytime or home blood
pressures <135/85
Masked hypertension Clinic pressures <140/90 and 24 h ABP  Untreated patients
>130/80 or home blood pressures
>135/85
Masked resistant or Clinic pressures <140/90 and 24 h ABP  Treated patients
uncontrolled hypertension >130/80 or home blood pressures
>135/85

blood pressure devices, and improved devices for multiple measurements in the
clinic are widely available. Comparison between clinic pressures and out-of-office
pressures has led to definition of white coat hypertension and masked hyperten-
sion, as described in Table 1.3. The importance of 24 h ambulatory blood pressure
monitoring or home blood pressure monitoring has now been widely recognized as
reflected in several national and international guidelines [11-15]. The integration
of accurate home devices with telemedicine now links measurements to the pro-
vider’s medical record for ease in comparison between measurements in the unique
environment of the clinic/office and the more usual environment of the patient’s
activity [16].

Hypertension occurs most often without a specific cause and is now generally
named essential hypertension in English or its equivalent in other languages. In the
past, this condition has been labeled “primary hypertension” or “idiopathic hyper-
tension.” The latter term seems, to me, an admission of ignorance, whereas “essen-
tial” or “primary” hypertension conveys the implication that a built-in, possibly
genetic setting explains why the pressure is increased. When genetic explanations
emerge, the term “essential” hypertension may be replaced by such definitions as
“polygenic” hypertension in contrast to “monogenic” hypertension that is already in
use (see below).

Hypertension caused by or linked to a specific diagnostic entity had been called
“secondary” hypertension in past literature. Most often this term referred to rare or
infrequent diseases, such as various forms of chronic renal disease, e.g., those with
proteinuria nephropathies or adult polycystic kidney disease. The INC-7 guideline
of 2003 introduced an alternate and more inclusive term “identifiable hypertension”
that could be applied to such disorders as hypertension associated with obesity or
with the sleep apnea syndromes [17]. Table 1.4 lists many of the diagnostic entities
considered to be forms of identifiable hypertension. For some the specific patho-
physiology causing hypertension is well defined as in the very rare monogenic dis-
orders. The pathophysiologic links are far less clear in many disorders with some
having polygenic patterns and others with dominant environmental or acquired
traits, e.g., obesity.
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Table 1.4 Identifiable hypertension

Prevalent forms of identifiable hypertension
Obesity hypertension
Sleep apnea syndrome
Associated with either type 1 or type 2 diabetes mellitus
Renal hypertension
Associated with various forms of chronic renal disease
Associated with genetic renal disease including polycystic kidney syndrome
Associated with monogenic renal tubular genetic disorders: Liddle’s syndrome,
pseudohypoaldosteronism, etc.
Adrenal hypertension
Low-renin syndromes
Primary aldosteronism
Glucocorticoid remediable aldosteronism
Congenital adrenal hyperplasia syndrome
11-OHase deficiency, high DOC
Apparent mineralocorticoid deficiency
Genetic due to deficiency of 11-OH dehydrogenase
Acquired due to licorice-like ingestion
Excess glucocorticoid syndromes
Cushing’s syndrome due to pituitary tumors, adrenal adenoma, hyperplasia, or carcinoma
Drug related
Exogenous glucocorticoid use
NSAID use
Ephedrine and ephedrine-like sympathomimetic drugs
Cocaine
Cyclosporine and calcineurin inhibitors
Anti-vascular endothelial factor (VEGF) chemotherapeutic drugs: bevacizumab and related
agents

1.3.1 Variability of Blood Pressure

Having multiple blood pressure acquired by one of the methods mentioned above,
discernable patterns have been recognized that add to the complexity of simple
diagnosis, but may add value for prediction of risk, especially for stroke and even-
tual therapy. At night, the normal expected variation in pressure is a 10-20% fall,
the “dipper” pattern. Lack of this fall, “non-dipper” pattern, a nocturnal increase
in pressure, the “reverse dipper” pattern, or a greater than normal fall in pressure
“extreme dipper” pattern have been studied with relevance to risk of future cardio-
vascular disease. Seasonal patterns for blood pressure can be detected during the
year, most likely due to changes in temperature from warmer to cooler months.

When several pressures are measured, the average and standard deviation can be
calculated. Variabilities reflected in the standard deviation (SD) or coefficient of
variation (CV) and SD/average have been the subjects of study [18, 19]. From 24-h
ABPM or multiple home pressures, the intraindividual variability can be calcu-
lated. When multiple clinic pressures are available, intervisit variability or visit-to-
visit variability can be assessed. Interindividual variability can be derived from
population or group studies in which variability can be compared within the cohort
to arrive at normal and abnormal values. All of these estimates of variability are now
the subject of active research.
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1.4  Summary

Many terms related to arterial pressure have become regularly used for describing
clinically important classifications. Improved methods for accurately measuring
pressure repeatedly throughout the spectrum of daily activities including the clinic
visit have led to recognition that the clinic visit is a limited and perhaps misleading
site for assessing prognosis and the effect of therapy. However, these insights have
yet to be fully translated into a practical application for use in many populations,
especially when resources are limited. Among the challenges for clinical research in
hypertension are the efforts to develop effective and cost-effective strategies that
maximize both prediction of individual risk and monitoring treatment.
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Diagnostic and Prognostic Significance 2
of Blood Pressure Indices

Stanley S. Franklin, Vanessa Bell, and Gary F. Mitchell

2.1 The Physiology of Individual Blood Pressure Indices

The two major physiologic components of blood pressure (BP) are mean arterial
pressure (MAP) and pulse pressure (PP) [1, 2]. MAP is the interaction of (a) cardiac
output and (b) systemic vascular resistance (SVR): MAP = cardiac output x SVR. PP
also depends on two major components: (a) left ventricular ejection characteristics
and (b) the stiffness of the aorta. The familiar peak of systolic blood pressure (SBP)
and minimum of diastolic blood pressure (DBP) represent a weighted sum and dif-
ference of MAP and PP, respectively. Key points to remember: (1) DBP rises with
increased SVR but falls with increased arterial stiffness, (2) PP represents a surro-
gate measurement of central elastic artery stiffness in the presence of a constant
cardiac output and heart rate, and (3) central arterial stiffening results in a change in
three BP components—(a) a rise in PP leading to (b) a rise in SBP and (c) a fall in
DBP.

2.2  Age-Related BP Indices

The cross-sectional National Health and Nutrition Examination Survey (NHANES
III, 1988-91) [3] and the 1997 longitudinal Framingham Heart Study [4] (Fig. 2.1)
have shown that DBP increases with age in young adults but levels off by about
50 years of age and begins to decrease by 60 years of age. SBP also increases in
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Age-related changes in blood pressure: The Framingham Heart Study
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Fig. 2.1 Arterial pressure components by age: group-averaged data for all subjects and with
deaths, MI, and CHF excluded. Averaged blood pressure levels from all available data from each
subject within 5-year age intervals (30-34 through 80-84) by SBO groupings 1 through 4 (modi-
fied from Franklin SS (1997). Circulation 96:308-315, with permission)

young adults although the rate of increase in SBP is less than DBP, resulting in a
modest decrease in PP through midlife. Thereafter, SBP continues to rise, while
DBP falls, resulting in widening of PP after midlife as the increase in SBP and fall
in DBP accelerate with more vascular aging [4]. Elevated MAP, as a measure of
steady-state resistance, is the dominant factor in the almost parallel rise in SBP and
DBP during early adulthood. Widening PP, a marker of large artery stiffness, is the
dominant change in BP from midlife onward.

2.3  BPIndices in the US Population by Age and Sex

The NHANES III, 1988-1991 [5], showed that the predominant forms of hyperten-
sion among those age <50 years are isolated diastolic hypertension (IDH,
SBP <140 mmHg and DBP >90 mmHg) and systolic-diastolic hypertension (SDH,
SBP >140 mmHg and DBP >90 mmHg), which together account for approximately
80% of persons with hypertension from age 18 to 49 years (Fig. 2.2) [5]. Interestingly,
the other 20% of the young adults present with isolated systolic hypertension (ISH)
and with a male-to-female predominance of 10:1 [6]. This subtype of isolated sys-
tolic hypertension was associated with increased cardiac output and stroke volume
[6]; although previously labeled spurious by some investigators [7], there is now
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ISH (SBP =140 mm Hg and DBP <90 mm Hg)
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Fig. 2.2 Frequency distribution of untreated hypertensive individuals by age and hypertension
subtype. Numbers at the tops of bars represent the overall percentage distribution of all subtypes
of untreated hypertension in the age group (NHANES III, 1988-1994) (from Franklin SS et al
(2001). Hypertension 37:869—-874, with permission)

evidence of long-term cardiovascular disease (CVD) risk [8]. Chirinos et al. [9],
using the NHANES survey population, found obesity to be associated with hyper-
tension in all age groups and both genders, but there was a higher odds of obesity in
younger men with IDH and SDH.

By the same token, NHANES showed that three out of four adults with hyperten-
sion were aged 50 or older [5]. Moreover, about 80% of untreated or inadequately
treated individuals with hypertension from age 50 onward had ISH, which by defini-
tion in this age range represents increased arterial stiffness [5].

24 The Development of Isolated Systolic Hypertension (ISH)

By age of 50 years the predominant form of hypertension is ISH, accounting for
more than 75% by the age of 50-59, 80% by the age of 60-69, and 90% by the age
70 years or older [5]. Thus, ISH is the most common subtype of hypertension in the
older age population. Furthermore, a 2001 Framingham Heart Study analysis
showed that normotensive persons reaching age 65 had a 90% lifetime risk of devel-
oping hypertension, almost exclusively of the ISH subtype, if they lived another
20-25 years [10].
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Therefore, hypertensives fall into one of two categories: first, a smaller group
(26%) of younger (age <50 years) patients, predominantly male (63%) individuals
with diastolic hypertension out of proportion to systolic hypertension (primarily
IDH and SDH) and, second, a larger group (74%) of older (age >50 years) patients,
predominantly female (58%) individuals with systolic hypertension out of propor-
tion to diastolic hypertension (primarily ISH).

2.5 Two Pathways for the Development of ISH Indices

The NHANES I1I survey [5] showed that ISH becomes the dominant hypertensive
subtype by midlife (50-59 years of age). Importantly, there are two divergent pat-
terns for the development of ISH (Fig. 2.3), as shown in a 2005 Framingham Heart
Study analysis. People with untreated or poorly treated diastolic hypertension (often
called essential hypertension) at a younger adult age may transition from IDH to
SDH and ultimately to ISH as they become older and as their arteries become stiffer;
this transition is often called “burned-out diastolic hypertension.” Approximately
41% of patients (with a male predominance) convert to ISH from antecedent dia-
stolic hypertension (either or both IDH and SDH) [11]. In contrast, the remaining
59% of people (with a female predominance) developed de novo ISH without going
through a stage of diastolic hypertension [11].

17.7 %

Average maximum
DBP = 99.4 mm Hg /

59 %
Average maximum

23.3% DBP = 80.8 mm Hg

Average maximum
DBP = 91.6 mmHg

I DBP < 90 mm Hg DBP 90-94 mm Hg [l DBP > 95 mm Hg

Fig. 2.3 Of subjects who developed ISH, 59% did not have antecedent diastolic hypertension
(de novo ISH) either at baseline or any examination before ISH onset (average maximum DBP of
80.8 mmHg). 23% had a maximum DBP of 90-94 mmHg (average maximum DBP of 91.6 mmHg),
and 18% had a maximum DBP of 95 mmHg or higher (average maximum DBP of 99.4 mmHg)
identified as burned-out diastolic hypertension (either IDH and/or SDH) (modified from Franklin
SS et al (2005). Circulation 111:1121-1127, with permission)
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2.6 Value of BP Indices in the Diagnosis of CHD Risk

The potential clinical value of the widening of PP as a CVD risk factor was first
introduced in a seminal publication by Darne and associates in 1989 [12]. These
findings were confirmed in elderly participants from a 1999 analysis of
Framingham Heart Study data, which demonstrated that coronary heart disease
(CHD) risk increased with lower DBP at any level of SBP >120 mmHg, suggest-
ing that higher PP was an important predictor of CVD risk [13]. Indeed, neither
SBP nor DBP was superior to PP in predicting CHD risk [13]. These result sup-
ported the conclusion that in older individuals with identical SBP, those with ISH
are at greater risk for CHD than those with SDH [13]. Furthermore, age plays an
important role in influencing the relation of BP indices to CHD risk. In persons
<50 years of age, DBP is a stronger predictor of CHD risk than SBP or PP as
shown in a 2001 Framingham Heart Study analysis [14], suggesting that increased
SVR and higher MAP play important roles in CHD risk [14]. From age >60 years
on, there is a shift from DBP to SBP and PP as predictors of CHD risk, suggesting
that large artery stiffness becomes the dominant hemodynamic determinant of
CVD risk [14].

2.7 TheValue of Paired BP Indices in Predicting CVD Risk

Despite emerging evidence that persons with ISH and wide PP are at considerable
excess CVD risk, the question of which of the BP indices was the best predictor of
CVD risk remained somewhat controversial. Indeed, the Prospective Studies
Collaboration [15] and Asia-Pacific Cohort Studies Collaboration [16] concluded
that MAP was superior to PP, while other studies [17, 18] concluded that SBP was
superior to PP in predicting CVD risk. A 2009 Framingham Heart Study reexamined
this question by comparing combined versus single BP components [19]. Pooled
logistic regression was used within 12 serial 4-year intervals from 1952 to 2000,
starting with a new index baseline BP for each 4-year cycle. Continuous and categor-
ical models were compared for prediction of various CVD events (CHD, heart fail-
ure, and stroke) [19]. Categorical models in 6 x 6 cross-classification bar graphs were
constructed to test for odds of the likelihood of CVD events for the combination of
SBP and DBP (Fig. 2.4a) and for PP and MAP (Fig. 2.4b) and adjusted for age, sex,
total cholesterol, smoking, body mass index, diabetes, and secular trend [19]. Using
the combination of two BP components in Fig. 2.4a, b, respectively, rather than sin-
gle BP components separately, improved the fit for predicting CVD risk [19].
Introducing the interaction terms in Fig. 2.4a, b further improved the fit over the main
effects of the two-component models, indicating that the effect of one BP component
on risk varied accordingly to the level of the other [19]. These results confirmed the
superiority of combining SBP and DBP as noted in the MRFIT study [20] and
extended the findings to older adults and to women [19].

Indeed, both two-component models were superior to any single BP component
in predicting CVD risk because they assessed both pulsatile and steady-flow load; a
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Fig. 2.4 (a) Odds ratios for the likelihood of a cardiovascular event with combined PP and MAP
categories in a 6 x 6 cross-classification bar graph, adjusted for age, sex, total cholesterol, smok-
ing, body mass index, diabetes, and secular trend. An interaction term PP x MAP improved the
model fit (from Franklin SS et al (2009). Hypertension 119:243-250, with permission). (b) Odds
ratios for the likelihood of a cardiovascular event with combined SBP and DBP categories in a
6 x 6 cross-classification bar graph, adjusted for age, sex, total cholesterol, smoking, body mass
index, diabetes, and secular trend. An interaction term of SBP x DBP improved the model fit (from

Franklin SS et al (2009). Hypertension 119:243-250, with permission)
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single BP component could not do this. Furthermore, single BP components as pre-
dictors of CVD risk in prior studies examined a limited spectrum of the overall
hypertensive population by age, sex, and other covariates. When PP, a measure of
stiffness, was combined with MAP, a measurement of resistance and steady-flow
load, there was a monotonic relation of each BP component to risk. Furthermore, one
could relate the two major physiologic components of hydraulic load to clinical out-
come [19]. The current 2003 Joint National Committee (JNC-7) guidelines consider
both SBP and DBP, whichever is higher, in determining staging of BP; however, they
undervalue the CVD risk of increased arterial stiffness, as manifested by a high SBP
and a low DBP [21]. Using the Joint National Committee Report (JNC-7) for CVD
risk classification, a DBP <70 mmHg as compared to DBP >70-89 mmHg is associ-
ated with additional risk equivalent to ~20 mmHg higher SBP, i.e., it is equivalent to
a shift from prehypertension to stage 1 or from stage 1 to stage 2 hypertension [19,
21]. Moreover, the European Society of Hypertension has recognized widened PP as
a distinct risk factor that is separate from elevated SBP in older individuals [22].

2.8 Components of PP Associated with Higher CVD Risk

The relation between PP and CVD risk can be further elucidated by studying the
components of PP. PP represents the pulsatile portion of BP and can be separated
into forward and reflected pressure waves. From these two waveforms, the forward
(FWA) and reflected wave amplitude (RWA) can be calculated as well as the global
reflection coefficient (RC, the ratio of RWA and FWA).

There is some disagreement on whether the forward or reflected wave is a better
correlate of CVD risk. In a multivariable model adjusting for standard CVD risk
factors, Framingham Heart Study data showed that greater FWA was associated
with a higher risk of CVD, while RC had no relation with events [23]. Other papers
have found RWA to be a better predictor of CVD risk than FWA. However, these
studies did not measure central aortic flow directly and instead used a single typical
flow waveform for all participants or derived pseudo-flow waveforms for analysis
[24-26], whereas the Framingham Heart Study measured flow directly for each
participant [23]. Additionally, the observed relation between RWA and CVD risk
may be due to the strong relation between FWA and RWA. As noted above, RC is
not associated with CVD risk [23]. Since RC represents the ratio of RWA and FWA,
a CVD risk-related increase in FWA would result in a secondary CVD risk-related
increase in RWA at any given level of RC.

The age-related increase in PP is overwhelmingly attributable to an increase in
FWA, with modest contributions from RWA and timing of the reflected wave. FWA
and PP change in similar fashions throughout age (initially decreasing with age
before midlife and then rising dramatically with age after midlife). In contrast, mea-
sures of wave reflection, such as augmentation index, increase with age in young
adults, when PP is falling, and plateau or fall after midlife, when PP increases mark-
edly. Consistent with the foregoing observations, FWA has been found to account
for most of the variability in central and peripheral PP in both younger (<50 years;
80% and 66%, respectively) and older people (=50 years; 90% and 84%, respec-
tively) [27]. The observed relations between FWA and PP further indicate that FWA
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may play a primary role in the pathogenesis of hypertension and CVD. It would be
interesting for future studies to investigate the pulsatile hemodynamic effects of
hypertensive drugs that reduce MAP but increase peak flow, potentially increasing
FWA and PP and thereby limiting beneficial effects of treatment.

2.9 Central Pressure and CVD Risk

There is controversy over whether central or peripheral pressure is better at predict-
ing CVD risk. Multiple studies and a meta-analysis have suggested that central
pressure is better than peripheral pressure at predicting surrogate end points (LVH,
diastolic dysfunction, increased CIMT, etc.) and major CVD events [28-34].
However, these studies may be affected by differing technique, assumptions about a
lack of amplification between the brachial and radial artery, and calibration methods
[35-37]. In contrast to these studies, Framingham Heart Study data has shown that
central systolic and PP are not predictive of CVD events after considering conven-
tional arm SBP. A recent Framingham Heart Study analysis of the SphygmoCor
algorithm applied to radial waveforms recorded at the same visit showed no incre-
mental value of central pressure after considering peripheral pressure [38]. Indeed,
when brachial systolic pressure was added to a model that already included central
aortic systolic pressure, there was an improvement in model fit implying that bra-
chial pressure provided additional prognostic information compared to the central
BP obtained from the SphygmoCor algorithm [38]. Additionally, during post-
midlife aging when CVD starts to become more common, the difference between
central and peripheral pressure diminishes; analysis of data from the Framingham
Heart Study, where the average participant age was 62 years, showed that central
systolic and PP had a very strong correlation (R > 0.95) with the corresponding
components of peripheral pressure [38].

Due to the strong correlation between central and peripheral PP in older individu-
als and the Framingham Heart Study observation that current peripheral BP measure-
ments are as good if not better than current central BP measurements at predicting
CVD events, it seems that peripheral pressure provides an adequate estimate of blood
pressure-related risk for the time being. If new techniques for measuring central pres-
sure directly, independently of peripheral pressure calibration, are developed, then
central BP may prove to be a stronger predictor of future CVD risk. In addition, it is
important to note that changes in the central pressure waveform may differ dramati-
cally from change in the peripheral pressure waveform following vasodilator medi-
cation [39-41]. Differing effects of BP treatment on central as compared to peripheral
blood pressure may have prognostic importance and require further study.

2.10 The Role of J-Curve BP Indices in Predicting CVD Risk

Controversy persists regarding the significance of BP J-curves of increased CVD
risk as they relate to older people with ISH [42]. The controversy is not about the
existence of the DBP J-curve, but rather as to potential causes. One possibility is
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that excess risk associated with low DBP could be the result of ISH with widened
PP, secondary to a rise in SBP and a fall in DBP—markers of increased arterial stiff-
ness and a proven CVD risk factor [42]. Indeed, the 2009 Framingham Heart Study
analysis found that CVD risk increased at both the low and high extremes of DBP
when combined with ISH in the two-component model in a sample free of antihy-
pertensive therapy and antecedent CVD events [19]. Therefore, the J-curve relation
to CVD risk presumably reflected increased arterial stiffness as manifested by a low
DBP and wide PP, rather than adverse effects of excessive DBP lowering with anti-
hypertensive medications. Importantly, data from the NHANES 1999-2006 con-
firmed that DBP <70 mmHg versus DBP of 70-89 mmHg with a prevalence of 30%
among untreated persons with ISH was associated with increased CVD risk;
advanced age, female sex, and diabetes mellitus, but not treatment status, were asso-
ciated with the low DBP value [43].

The second J-curve possibility is that a low DBP and coexisting low SBP may
be an epiphenomenon related to an underlying chronic debilitating illness or car-
diac dysfunction—so-called reversed causality [44]. As a third possibility, the low
DBP J-curve in association with ISH may represent antihypertensive therapy-
induced lowering of DBP, which leads to myocardial ischemia and increased risk
for an acute coronary event [45]. In the presence of high-grade stenosis of coro-
nary arteries, increased risk of myocardial infarction with antihypertensive ther-
apy-induced decrease in BP may well occur [45], but is by far the least common
occurrence of the J-curve phenomenon. Indeed, the risk of plaque disruption that
leads to acute coronary syndromes depends more on plaque composition, plaque
vulnerability (plaque type), and the degree of pulsatile stress than on the degree of
coronary artery stenosis (plaque size) [46]. Not surprisingly, therefore, the major-
ity of myocardial infarctions (>70-85%) occur from plaque rupture in coronary
arteries that have <50% stenosis [46]. By the same token, a 2015 Framingham
Heart Study analysis showed that persons with an initial CVD event and persistent
ISH in combination with a DBP <70 mmHg vs. DBP 70-89 mmHg had increased
risk for recurrent CVD events, largely independent of antihypertensive treatment
status [47]. Nevertheless, because of the many factors that result in J-curve risks,
only a prospective trial with baseline and pre-event BP determinations can estab-
lish the presence and frequency of treatment-induced increase risk.
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Role of Circadian Rhythms and Seasonal 3
Variation in BP Levels

Pietro Amedeo Modesti and Danilo Malandrino

3.1 Introduction

High blood pressure (BP) causes more deaths than any other risk factors, including
diabetes and cigarette smoking [1], so the diagnosis of hypertension is a key ele-
ment for clinical practice. To reach the diagnosis, blood pressure values higher than
the ideal maximum limits have to be registered in repeated occasions. This point is
the first implication of the inherent biological BP short- and long-term variability
[2]. In general, when observing repeated measurements in the same subject, rela-
tively high (or relatively low) observations are likely to be followed by less extreme
ones nearer the subject’s true mean, a phenomenon defined as “regression to the
mean.” Taking multiple measurements across several weeks is thus the first measure
to attenuate the influence of within-person BP variability, and this procedure is con-
sistently recommended by guidelines for the diagnosis of hypertension in the clini-
cal setting [3].

The problem arises whenever baseline measurements taken at a single visit are
used both for selection of participants and for comparisons with pressures obtained
later. The limited possibility to have the diagnosis confirmed at repeated visits is a
common bias in epidemiological studies [4]. A regression to the mean is also
observed in intervention studies, the studies with higher starting baseline blood
pressures usually demonstrating greater responses in the placebo group [5]. When
the goal is to estimate the risk of developing a future hypertension, the incidence in
studies that have diagnosed hypertension based on more visits is usually less than
that detected in the studies that have made the diagnosis on the basis of a single visit
[6]. Finally some patients may be receiving unnecessary antihypertensive drug ther-
apy leading to wasted resources and the potential for adverse drug effects.
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The 24 h pattern typical of diurnally active normotensive and uncomplicated
hypertensive persons displays small BP increase before the termination of night-
time sleep, striking rise upon morning awakening, and decline by 10-20% in SBP
and of lesser amount in DBP, during sleep relative to wake-time means. Individuals
with this normal nighttime reduction are known as dippers (extreme dipping
>20% nocturnal BP fall). Nondipping are usually defined for nocturnal BP fall
<10% and reverse dipping being defined for increased nocturnal BP [2]. The
introduction of ambulatory blood pressure monitoring (ABPM) in clinical prac-
tice offered a useful tool to avoid misdiagnosis and overtreatment [6]. The value
of ABPM is superior to office BP measurement for predicting clinical outcomes.
According to a recent meta-analysis [6], each 10 mmHg increment in 24 h systolic
ABPM, adjusted for OBPM, was consistently and statistically significantly asso-
ciated with an increased risk for fatal and nonfatal stroke (hazard ratios ranging
from 1.28 to 1.40 and fatal and nonfatal cardiovascular event hazard ratios rang-
ing from 1.11 to 1.42).

The knowledge of the main physiological factors involved in the timing and
amplitude of BP fluctuations may improve the accuracy of diagnosis and monitor-
ing of hypertension.

3.2  Factors Influencing Circadian Rhythm

The BP decrease during sleep time is associated to the reduction in physical and
mental activity, change in body position, and lower activity of the autonomic
nervous system. BP is lowest during deep (stages 3/4) sleep and highest,
although on average not to the level when fully awake, during less deep (stages
1/2 and rapid eye movement [REM]) sleep. Blunted or absent reductions in
nighttime BP have been reported in subjects working during the night [7] and in
those who have poorer sleep quality as a result of more waking episodes deter-
mined by actigraphic data [8, 9]. Although the mechanisms underlying the loss
of the nocturnal reduction in BP are not completely understood [10], individuals
with a nondipping BP pattern have been found to have increased sympathetic
nervous system activity [11], decreased parasympathetic nervous system activ-
ity [12], and higher levels of epinephrine and norepinephrine when compared to
individuals with a normal reduction in nighttime BP [11]. In addition to physi-
ological factors such as sleep and physical activity, environmental factors such
as climate or seasonality may also significantly affect the variability of blood
pressure. The influence of seasonality on blood pressure has implications for
clinical practice. CV risk assessment in the single patient might give different
results when performed in hot months (summer) or in cold months (winter),
with blood pressure measurement being a key element for risk stratification.
Likewise estimation of mean BP levels in population studies may vary accord-
ing to the period of the year [13]. Different behavioral factors, such as diet and
physical activity, also vary with seasonality. The influence of seasonality should
thus be separated from environmental (climate, pollution) or behavioral (physi-
cal activity, diet) variations.
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3.3 Seasonal BP Variations

Among the different environmental variables known to affect blood pressure, sea-
sonality has relevant implications either in clinics or in research. The influence of
the season on blood pressure measurements performed in the clinics was first
described by Rose [14]. In clinical trials, seasonality can be associated with larger
BP variations than those induced by drugs [15]. The standardization for room tem-
perature largely removed the effect of the season on BP in the UK Heart Disease
Prevention Project [16]. Therefore, guidelines consistently recommend the impor-
tance of a standardized room temperature in hypertension clinics. However, also
when BP measurements are made in comfortably warm rooms, a negative relation-
ship between outdoor temperature and BP values was observed (Table 3.1) [13].

These environmentally related BP variations may indeed influence results of epi-
demiological studies as revealed in a large-scale population-based study where
office, home, and 24 h ambulatory systolic and diastolic BPs were lower in summer
and higher in winter both in normotensive and in hypertensive individuals [24].

Seasonal adaptation of antihypertensive drugs is not specifically considered in
hypertension guidelines because treatment targets are defined by BP values.
However, in the daily clinical practice, physicians are often faced with the effects of
warm temperature which may cause BP to reduce during summer with the potential
implications of falls or acute renal failure especially in the elderly.

Likewise the absolute increase in BP values observed during winter could potentially
contribute to increase the risk for cardiovascular (CV) events during the cold season.
The general tendency of blood pressure (casual and ambulatory measures) to be higher
in winter than in summer may contribute to the higher cardiovascular mortality observed
in winter [25]. On the other hand, a nonrandom distribution of enrollments over the year
can bias results of clinical trials aimed at assessing the antihypertensive effect of a drug
and of epidemiological surveys aimed at assessing hypertension burden.

Fluctuations in temperature are therefore usually considered as a major independent
determinant for seasonal BP variations. However, the relationship between seasonality

Table 3.1 Average increase in office systolic blood pressure per 1 °C reduction in environmental
temperature

Author (ref.) Population ~ Age (years) Temperature = mmHg/—1 °C
Madsen et al. [17] 18,770 30-77 Outdoor® 0.15
Modesti et al. [18] 6404 30-80 Outdoor? 0.13
Barnett et al. [19] 115,434 35-64 Outdoor? 0.19

- - Indoor 0.31
Alpérovitch et al. [20] 8801 >65 Outdoor® 0.15
Kent et al. [21] 26,018 >45 Outdoor® 0.21
Lewington et al. [22] 510,000 35-74 Outdoor? 0.57 (>5 °C)
Modesti et al. [23] 1847 21-90 Outdoor® 0.19

- - PET 0.34

PET mean 24 h environmental temperature measured at personal level

“Mean 24 h outdoor temperature measured by the local meteorological office

"Temperature measured at 11 a.m. by the local meteorological office

‘Daily maximum temperature provided by National Aeronautics and Space Administration’s
(NASA’s) Marshall Space Flight Center

dMean monthly outdoor temperature
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Fig. 3.1 Systolic BP in subjects aged <50 years and >65 years during days with low and high
outdoor temperature (*p <0.05) (modified from [18])

and outdoor temperature is more complex, involving both long-term regulatory factors
and acute responses to environmental temperatures. Although the short- and long-term
BP response to climate may overlap, they may not be identical. Average 24 h ambula-
tory blood pressure is indeed higher on cold days (outdoor temperature <10th percen-
tile) than in warm days (outdoor temperature >90th percentile) [18]. In the long term
(during summer), the reduction in daytime BP values during hot weather is however
also associated with a significant increase in nighttime BP values [18, 26] (Fig. 3.1).
Conversely, when the short-/medium-term response to climate change is specifi-
cally investigated, a different pattern of response is observed because the onset of a
cold weather front is followed within 2 days by a concordant increase of 24 h, day-
time, and nighttime ambulatory BP. More precisely, changes observed in nighttime
and 24 h ABP values following climate acute changes were concordant [27]. These
observations suggest that although the short-/medium-term and long-term BP response
to climate and season may partially overlap, when considering temperature only, we
cannot disentangle the short-term from the long-term BP response at nighttime.
Some methodological issues have to be considered. Firstly, it is likely that other
components (diet, exercise) potentially contribute in the relationship between season
and BP. As an example, milder sleep problems associated with hot weather or an
enhanced physical activity in summer time might contribute to nighttime BP increase.
Seasonal diet changes have been observed. In a large (38,037 participants) popula-
tion-based cohort prospective study performed from 1979 to 2008 [28], highly statisti-
cally significant seasonal patterns were observed with increases in traditional CVD
risk factors in colder or darker periods. However, the magnitude of the seasonal differ-
ences was likely too small to contribute to acute CVD events. The relatively small
changes are probably because the population of Tromsg is well adapted to a harsh
climate, as better protection to seasonal influences may prevent winter excess of in
CVD events. In Israel, 94 male industrial employees were screened twice in 1 year,
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and the seasonal increase in fat and cholesterol intake at winter time was found to be
associated with changes in BMI and serum cholesterol [29]. A significant trend for
change in the values of cholesterol, LDL-C, and HDL-C in different seasons, with
higher cholesterol and LDL-C values in winter than in summer, was also observed in
a cross-sectional study including 2890 men and 4004 women 20-64 years old from
the participants of Tehran Lipid and Glucose Study (TLGS) performed between 1999
and 2001 [30]. Seasonal variation in amplitude, type, and intensity of physical activity
was also observed, with total activity increasing in summer in comparison to winter
[31-33]. Secondly, the inclusion of a single meteorological variable in data analysis
has limitations. Usually, only temperature is considered although humidity level and
high ground-level wind turbulence may enhance the thermal perception of cold dis-
comfort notwithstanding relatively high air temperature. Wind speed increase was
observed to induce the same BP increase at different air temperatures [27]. Therefore,
the relationship between skin temperature and air temperature is significantly affected
by other weather variables. Finally, from a methodological point of view, obtaining
true measurements of exposition is the main problem when investigating the effects of
climate on human health especially when the aim is to disentangle the effects of cli-
mate from those of seasonality. As an example, a reduced intensity in ultraviolet light
during winter might also reduce epidermal photosynthesis of vitamin D3 and parathy-
roid hormone, which was shown in turn to be associated with elevated BP levels [34].
However, direct sunlight exposition can be hardly estimated both in the single subject
and in population studies. As regards measurement of temperature, important expo-
sure misclassification also exists. During winter, people generally spend most of their
time indoors in regulated environments where the temperature is held constant and the
exposition to outdoor temperature is usually limited. In Europe, both thermal effi-
ciency of housing and the behavioral capability to cope with cold weather were indeed
found to increase with latitude [35]. In England and Wales, the association of year-to-
year variation in excess winter mortality with the number of cold days in winter
(<5 °C), evident until the mid-1970, has recently disappeared [36], and the link
between winter temperature and excess winter mortality is no longer as strong as
before. Historical trends in excess winter mortality are also showing a gradual reduc-
tion for deaths between 1980 and 2011 [37]. In the reanalysis of BP data collected
within the WHO MONICA Project [19] (collection period ranging from 1979 to
1997), the random effects for season on the main risk factor for CV events (BP) were
latitude dependent (left panel, Fig. 3.2). In a more recent analysis [6], where the large
majority of studies were performed after 1997 (only seven studies were started before
1977), no association between the estimated amplitude of seasonal BP variations and
latitude was observed (right panel, Fig. 3.2).

Those changes might be probably linked to the improved energy efficiency of
homes and housing quality [36]. The measurement of temperature at the personal
level (PET) by using portable thermometers [39] may importantly reduce exposure
misclassification. In a recent study, aimed at disentangling the effects of tempera-
ture [23] from those of seasonality, temperature was measured at the personal level
in patients undergoing ambulatory BP monitoring. In addition, the number of hours
between sunrise and sunset was also included in multiple regression analysis as a
continuous measure of seasonality. The study for the first time provided evidence
that temperature and seasonality independently affect blood pressure. More
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Fig. 3.2 Left panel: Population-specific seasonal change in systolic blood pressure against lati-
tude in the WHO MONICA Project [19] (collection period ranging from 1979 to 1997). Right
panel: Estimated amplitude of seasonal changes in blood pressure by latitude in a more recent
analysis [38] where the large majority of studies were performed after 1997

Table 3.2 Independent predictors of systolic blood pressure at multivariate linear regression analysis

Systolic BP

Daytime

Multiple

Nighttime

Multiple

Morning surge

Multiple

Variables

Daytime heart rate (bpm)

Daytime relative humidity (%)

Daytime AP (hPa)

Daylight (h)

Daytime PET (°C)
r=0.914; n = 1802

Nighttime heart rate (bpm)

Nighttime relative humidity (%)

Nighttime AP (hPa)
Daylight (h)
Nighttime PET (°C)
r=0.668; n= 1787
24-h heart rate (bpm)

24-h relative humidity (%)

24-h AP (hPa)

Daylight (h)

A PET (°C)
r=0.473; n= 1700

B
0.03
0.00
0.00

—-0.05

—0.14

0.15
0.03
—-0.01
0.63
—-0.01

—0.05
—-0.01
0.04
—0.54
0.01

95% Cl1
Lower Upper p
0.01 0.06  0.003
—-0.02 0.02 0.714
—-0.04 0.04  0.966
—-0.21 0.11  0.531
-025 -0.02 0.023
0.09 0.21  0.001
—-0.01 0.08  0.150
—-0.09 0.06 0.718
0.37 0.90  0.001
-0.12 0.11  0.931
—0.11 0.02 0.148
—0.06 0.04  0.690
—0.05 0.12  0.381
-0.87 —=0.21  0.001
—-0.13 0.15  0.892

PET personal-level environmental temperature, AP atmospheric pressure. A PET = Morning PET
minus the lowest nighttime PET. Data are adjusted for office systolic BP, age, gender, BMI, and
drug treatment (adapted from [23])

precisely, daytime systolic blood pressure was independently affected by air tem-
perature, whereas nighttime SBP and morning BP surge were mainly affected by
seasonality [23]. The direct effect of PET on 24 h SBP was evident in subjects aged
more than 65 years, thus indicating that temperature-associated 24 h ambulatory BP
changes are more pronounced with aging (Table 3.2) [23].
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3.4 Clinical Implications

Cross-sectional and observation surveys indicate that health interventions targeted
at better protection against cold weather (e.g., improved home heating and reduced
exposition to cold climate) may be particularly effective in the elderly [40—42].

Nighttime BP seems to be mainly related with seasonality, with temperature
mainly affecting daytime BP values. In addition to air temperature, any seasonal
diet changes (alcohol, vegetable, and salt intake), adiposity, or physical activity
could potentially also lead to changes in blood pressure.

Coupled with reduced fluid intake, with advancing age, there is a decrease in
total body water. Because of their low water reserves, the elderly are suggested to
learn to drink regularly when not thirsty and to moderately increase their salt intake
when they sweat [42]. The independent association between blood pressure increase
at nighttime in the elderly and daylight hours might stay against this simplistic
explanation. The large majority of experimental studies are indeed confined to
short-term (up to few days) exposition of aged subjects to high temperature, whereas
no information is available on blood volume adaptation in the long term. It might
thus be hypothesized that blood volume adaptation, resulting in BP increase at
nighttime, might occur in the long term in the elderly. This response might be modu-
lated between spring and summer because the night BP levels are highest in spring,
although the daily hours of light show the highest level in summer.

The importance of seasonal BP variations is now considered in most clinical
trials. Conversely although the possibility of a higher prevalence of hypertension
during winter compared with summer was recently reported, only one population
study specifically investigated the possible bias introduced by environmental tem-
perature on hypertension burden assessment in a large survey [43]. According to
the HYDY study [43], the odds ratio for hypertension diagnosis was 0.98 (95% Cl
0.96-0.99) per 1 °C of temperature measured at home (logistic regression analyses
adjusted for age, gender, education, and average air temperature at the two survey
visits).

Seasonal BP variations have relevant implication in the clinical practice espe-
cially regarding antihypertensive treatments. Retrospective analyses of published
trial data have concluded that antihypertensive drug classes may differ in their
effects on intersession visit-to-visit blood pressure variability and associated risk of
stroke [44, 45]. However, these post hoc analyses lacked actual intersession infor-
mation for individual trial participants, adherence to drugs, duration of drug action,
or adjustment for climate or seasonality. According to previous evidence, antihyper-
tensive drugs do not prevent seasonal variation in BP [46]. Likewise antihyperten-
sive drugs (metoprolol, carvedilol, lisinopril, eprosartan, amlodipine, and HCTZ)
did not markedly affect the size of the cold-induced rise of BP compared to placebo
or no drug in normo- and hypertensive subjects. However, it is possible that heat-
exposed subjects need lower dosages or at least less frequently combination therapy
because of lower BP in warm conditions. Most importantly, subjects exposed to
extreme temperature changes must have a more careful follow-up.

Addressing the importance of the environment on BP during hypertension man-
agement and diagnosis, and the possible interactions with patient features, may have
relevant implications in clinical and research settings.
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Conclusions

The control for concurrent environmental changes is to be considered both in
clinical practice and in research studies. In the daily clinical practice, ABPM is
important in monitoring the antihypertensive treatment in elderly patients under
conditions of unstable and often “extreme” temperature exposures. Short-term
temperature changes mainly affect BP during daytime (temperature as a negative
predictor), whereas seasonality mainly affects nighttime SBP (with daylight
hours as positive predictor) and morning BP surge (with daylight hours as nega-
tive predictor). The design of clinical trials should consider the months for
enrollments, with long-term seasonal BP variations being especially relevant in
the elderly. PET is to be considered as the gold standard to reduce exposure mis-
classification in research studies. The number of daylight hours can be consid-
ered as a continuous measure of seasonality to be included in multivariate
analysis. Although potentially important, the measurement of sunshine exposi-
tion is more critical.

Population surveys in general should routinely factor in the seasonal variation
in blood pressure. Epidemiological surveys aimed at estimating hypertension
burden in a community may include environmental temperature measured indoor
as a variable potentially affecting results rather than considering outdoor tem-
perature only. Awareness of this phenomenon will result in more personalized,
tailored dosages of antihypertensive medications.
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Natural History of Treated and Untreated 4
Hypertension
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4.1 Hypertension and Target Organ Damage

Elevated blood pressure is the most prevalent and relevant risk factor for death and
disability worldwide. Hypertension occurs in more than one billion individuals caus-
ing an estimated 9.4 million deaths every year [1]. Overall the prevalence of hyper-
tension appears to be around 40% of the general population, with a steep increase
with aging from 7% in individuals age 18-39 to 65% in individuals over age 59 [2].
There are clear differences in the average blood pressure levels across countries, with
no systematic trends toward blood pressure changes in the past decade [3]. During
middle and older age, blood pressure is strongly and directly related to cardiovascu-
lar and overall mortality [4]. This association seems to exist across large and diverse
population groups aged 40—89 years, including men and women from different eth-
nicities, with and without established vascular disease [4-6].

Prospective cohort studies have reported a continuous log-linear association
between blood pressure and vascular events over a wide range, apparently begin-
ning at values of 115 mmHg for systolic and 75 mmHg for diastolic with no appar-
ent threshold [4]. Notably, taking into account the continuous and direct relationship
between blood pressure and cardiovascular disease, most blood pressure-associated
cardiovascular complications occur in individuals with prehypertension. In the
Framingham Heart Study, compared with the subjects with optimal blood pressure,
those with high-normal blood pressure showed a significantly increased risk of car-
diovascular disease independent of other risk factors, and a nonsignificant trend
toward an increased incidence of events was also shown in the group with normal
blood pressure [7].
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About half of hypertensive patients develop related end-organ damage if blood
pressure is left untreated over 7-10 years. The remaining patients exhibit a less
impactful course with hypertensive complications occurring slowly. Fewer than 5%
of people with hypertension enter a very rapid, sometimes malignant course with
rapid deterioration in cardiac, renal, and neurologic function.

Tissue- and organ-deteriorating and remodeling processes induced by the hyper-
tensive status may impair the physiology and the structure of the heart, large- and
medium-sized arteries, kidneys, and brain. Thus, the presentation of the target organ
complications in hypertensive patients may reflect different pathophysiological
abnormalities including diastolic and systolic dysfunction, left ventricular hypertro-
phy, endocardial scarring, congestive heart failure (39% of cases in men and 59% in
women), and coronary disease; accelerated atherosclerosis and aneurysm formation
(with or without dissection); stroke (both hemorrhagic and thrombotic infarction);
and nephrosclerosis (with and without renal failure) [8].

Stroke mortality is often viewed as a surrogate of hypertension consequences, because
hypertension is regarded as the most important cause of this event. A close relationship
between prevalence of hypertension and mortality for stroke has been reported [9].
Nowadays, Western European countries exhibit a downward trend, in contrast to Eastern
European countries which show an increase in death rates from stroke [10].

It should be noted that only a small fraction of the hypertensive population pres-
ents with an elevation of blood pressure alone, whereas the majority of the patients
have additional cardiovascular risk factors. Population studies have clearly shown
that the total cardiovascular risk exceed the sum of its individual components when
blood pressure elevation is concomitantly associated with other cardiovascular risk
factors. Therefore, international guidelines emphasize that prevention of coronary
heart disease should be related to quantification and target of global cardiovascular
risk [3, 11-16]. Several methods and tools have been developed for estimating total
cardiovascular risk, although all currently available models for cardiovascular risk
assessment have some methodological and conceptual limitations [3, 17-25].

Based on those methods, for more than a decade, international guidelines for the
management of hypertension have stratified cardiovascular risk in different catego-
ries, based on blood pressure values, the presence of other cardiovascular risk fac-
tors, diabetes or asymptomatic organ damage, as well as symptomatic cardiovascular
disease or chronic kidney disease or cardiovascular events [3, 11-16]. The large
number of patients with hypertension is identified at low, moderate, high, or very
high risk. The estimation of total cardiovascular risk may be easy to evaluate in
specific subgroups of patients, especially those at high or very high cardiovascular
risk, such as patients with diabetes or with severely elevated single risk factors or
with established cardiovascular disease. Those are the patients that require intensive
cardiovascular risk-reducing measures.

It should be emphasized that for the management of hypertensive patients, the
recognition of target organ damage is crucial, even when asymptomatic, in view of
the fact that the presence of target organ damage is the expression of organ abnor-
malities promoted by hypertension (i.e., heart, kidney, brain) which markedly
increases the cardiovascular risk in the cardiovascular continuum.
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If the blood pressure elevation is identified and properly managed early in the
natural history of hypertension and adequate antihypertensive strategies (i.e., life-
style changes, drugs) are timely initiated together with the control of the other car-
diovascular risk factors, the reduction of cardiovascular risk and/or normalization of
target organ damage may be achieved and the prognosis obviously improved [3,
17-25].

4.2 Pathophysiology of Vascular Changes in Hypertension
and Hypertensive (Pheno)Types

Hypertension commonly produces structural changes in arteries, arterioles, and tar-
get organs in several patterns as a consequence of the mechanical effects of blood
pressure and shear stress, as well as of the action of neurohormonal systems includ-
ing the renin-angiotensin-aldosterone system, endothelins, catecholamines, as well
as agents generated in perivascular fat and inflammatory mediators (i.e., different
cytokines and chemokines and immune mediators, such as lymphocytes and macro-
phages and their products). Resistance arteries may play an important role in the
development of hypertension and may also contribute to the pathogenesis of cardio-
vascular complications. Chronically elevated blood pressure induces vascular stretch
that initiates complex signal transduction cascades leading to vascular remodeling
[26-28]. Angiotensin I1, one of the final products of the renin-angiotensin-aldosterone
system, may induce vascular remodeling and injury by several mechanisms includ-
ing vasoconstriction, cell growth, generation of reactive oxygen species (ROS), and
inflammation. Also the endothelium is a crucial regulator of vascular tone. Its func-
tion is impaired in patients with hypertension, with reduced nitric oxide-mediated
vasodilation, and with increased vascular tone that is associated with a proinflamma-
tory and prothrombotic state, as well as vascular remodeling [29, 30].

Experimental and clinical data support the notion that the hypertension subtypes
defined by isolated or combined elevations of systolic and diastolic blood pressure
reflect distinct pathophysiological mechanisms in the vasculature, have different
prognostic implications, and may require a different therapeutic approach [31, 32].

During the prehypertension phase which could be defined as the combination of
normal plus high-normal blood pressure categories (blood pressure values ranged
120-1309 for systolic or 80-89 for diastolic), repetitive perturbations of cardiovascu-
lar homeostasis occur, reflecting an array of hereditary and environmental factors.
With the course of time, these small changes accumulate and yield larger patho-
physiologic changes that are recognizable as early hypertension. In the setting of
cardiovascular disease prevention, this condition recognizes individuals at increased
risk of developing progressive vasculopathy with stiffening of the aorta and elastic
arteries over time [33]. Early vascular remodeling and endothelial dysfunction usu-
ally evolve to increased peripheral vascular resistance, reflecting an array of genetic,
environmental, and homeostatic factors. Early functional perturbations may be
slight and reversible, whereas subsequent chronic large changes tend to be larger,
slower, and irreversible.
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The vascular phenotype of hypertension differs according to the age of subjects.
Essential hypertension is characterized by increased peripheral vascular resistance
to blood flow, which occurs generally as a result of energy dissipation in small arter-
ies and arterioles, particularly in younger individuals, whereas late in life, large
artery stiffening results in raised systolic blood pressure. Enhanced constriction of
resistance arteries in hypertension may increase peripheral resistance by reducing
lumen diameter [34, 35]. In younger individuals with elevated blood pressure, vas-
cular remodeling occurs in small arteries and arterioles. It is usually eutrophic with
a reduced lumen diameter and normal media cross section, reduced or enhanced
stiffness, and increased extracellular matrix deposition and associated with endo-
thelial dysfunction. In severe or advanced stage of hypertension, as well as in sec-
ondary forms and refractory hypertension, hypertrophic vascular remodeling of
small arteries and arterioles may be found. A predominant rise in arteriolar resis-
tance may lead to isolated diastolic hypertension if arterial stiffness is normal or low
or combined systo-diastolic hypertension if large artery stiffness also increases.

Arterial hypertension as well as aging and the concomitant intervention of other
cardiovascular risk factors may increase arterial stiffness in large conduit arteries.
Thus, systolic blood pressure tends to increase with age leading to an elevated fre-
quency of isolated systolic hypertension in the elderly associated with a large pulse
pressure [36]. This type of hypertension may reflect diffuse atherosclerotic pro-
cesses and therefore is considered an important determinant of cardiovascular risk.
As blood pressure remains elevated for a prolonged time, particularly in subjects
older than 55 years of age, vascular changes occur predominantly in large, conduit
arteries (i.e., aorta), which become stiffer as arteriosclerosis develops, resulting in
increased pulse pressure. The increase in the stiffness of the aorta and large elastic
arteries, not accompanied by a rise in arteriolar resistance, may lead to isolated
systolic hypertension. This occurs in a degree that depends on associated cardiovas-
cular risk factors, progression of atherosclerosis, and inflammatory accumulation of
lipids in the intima, triggered in part by endothelial dysfunction, dyslipidemia, age,
smoking, and diabetes. Low-grade inflammation localized in vascular and perivas-
cular tissue, including fat, is recognized as an important contributor to the patho-
physiology of hypertension [37], to the initiation and progression of atherosclerosis,
and to the development of cardiovascular disease [28, 38]. Inflammation of large
arteries exerts its effects in part by contributing to endothelial dysfunction and
increasing vascular stiffness.

Vascular stiffness can be evaluated by carotid-femoral pulse wave velocity
(PWV) and, at some degree, by pulse pressure which is increased with aging and in
hypertensive patients and is significantly and independently associated with both
target organ damage and increased risk for cardiovascular morbidity and mortality
[39]. In view of the progressive stiffening of the conduit arteries, the progressive
amplification of the pressure wave during transmission from the aorta to peripheral
arteries is attenuated with aging particularly in hypertensive patients. This can rep-
resent a confounding factor in the assessment of hypertension subtypes [31, 32]
since brachial diastolic blood pressure may overestimate aortic blood pressure, par-
ticularly in young subjects. Hence, among patients younger than age 65, pulse
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pressure and systolic blood pressure predict outcomes better than diastolic blood
pressure [40]; this is even more striking in patients aging over 65. In those people
only elevated systolic blood pressure and pulse pressure predict risk of adverse car-
diovascular events and total mortality [41].

Major intervention trials showed that drug therapy generally produces a greater
degree of diastolic than systolic blood pressure control, so that it is currently
reported that elevated systolic blood pressure is more difficult to control, especially
in the elderly. For example, in the Hypertension Optimal Treatment (HOT) study
[42], more than 90% of subjects achieved diastolic blood pressure normalization,
whereas less than 50% achieved systolic blood pressure normalization. In the
Antihypertensive and Lipid-Lowering Trial to Prevent Heart Attack (ALLHAT)
[43] and the Controlled Onset Verapamil Investigation of Cardiovascular Events
(CONVINCE) trials [44], approximately 90% of participants had their diastolic
blood pressure normalized after 2 years of treatment, whereas about 50% achieved
systolic blood pressure normalization. In treated hypertensive subjects, those with
uncontrolled systolic blood pressure were at higher risk of cardiovascular disease
than those with uncontrolled diastolic blood pressure after adjustment for confound-
ing factors [45]. Thus, effective systolic blood pressure control is the real challenge
and the main focus of treatment.

The vascular disease of hypertension, by promoting tissue under perfusion and
progression of atherosclerosis, contributes to myocardial ischemia and cardiovascu-
lar events, heart failure, stroke, nephrosclerosis and chronic kidney disease, and
peripheral vascular disease.

Target organ damage in hypertension results from blood pressure load and the
activity of neurohormonal effects and is in large measure a consequence of vascular
injury that occurs in hypertension. Vascular complications of hypertension include
changes in the structure and function of large and small arteries, as well as acceler-
ating the progression of atherosclerosis [34, 35]. Endothelial dysfunction is recog-
nized as a key early determinant in the progression to atherosclerosis and is now
well established to be independently associated with increased cardiovascular risk
[30]. An activated renin-angiotensin system plays a key role in the pathophysiology
of endothelial dysfunction in hypertension [46] since it is in part responsible for
triggering vascular inflammation by inducing oxidative stress, resulting in upregula-
tion of inflammatory mediators.

4.3 Defining the Targets in Hypertension Management

Extensive evidence from randomized controlled trials has demonstrated benefit of
blood pressure-lowering strategies in reducing cardiovascular events in individuals
with hypertension [47—49] even at high-normal blood pressure levels, since about
half of the total blood pressure-attributable disease burden occurs in people with
systolic blood pressure lower than 140 mmHg [50]. The best approach to reduce
blood pressure remains subject to controversy [13, 51, 52]. Patients with sustained
elevations of blood pressure most often progress to established hypertension as well
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as to target organ damage development. Preventing end-organ damage by control-
ling hypertension and the other risk factors is more effective than trying to reverse
the changes once established. Nevertheless, controlling blood pressure after end-
organ damage has developed also carries proven benefit. The therapeutic approach
should consider total cardiovascular risk in addition to blood pressure levels in order
to maximize cost-effectiveness of the management of hypertension and related car-
diovascular risk.

Nonpharmacologic therapy may be sufficient for mild elevations in blood pres-
sure in patients without other risk factors. For instance, reducing sodium intake,
alcohol intake, and obesity lowered the incidence of hypertension from a 5-year trial
in patients with high-normal blood pressure [53]. In high-risk individuals, antihy-
pertensive treatment strategies, initiation and intensity of treatment, and particularly
the use of drug combinations, as well as other treatments for controlling other car-
diovascular risk factors and/or subclinical target organ damage, may be different
from those to be implemented in lower-risk individuals. Indeed, there is evidence
that, in high-risk individuals, blood pressure control is more difficult and more fre-
quently requires the combination of different antihypertensive drugs also with other
therapies, such as aggressive lipid-lowering treatments.

The large variety of antihypertensive drug options requires individualization for
particular patients and a careful and thoughtful balance of antihypertensive efficacy,
cost-effectiveness, and compelling indications and contraindications. However,
whether blood pressure-lowering treatment reduces the risk of cardiovascular dis-
ease in all types of patient populations remains unclear.

Successful reductions in blood pressure and other cardiovascular risk factors can
dramatically reduce the incidence of cerebrovascular and coronary morbidity and
mortality, especially for individuals with the highest elevations of blood pressure,
those with multiple risk factors, and the elderly. Effective therapy lowers the overall
relative risk of congestive heart failure in randomized controlled trials [3]. In
patients with chronic renal failure, tight blood pressure control slows decline in
renal function [54]. Among patients with prior stroke or transient ischemic attack,
blood pressure lowering reduces the risk of dementia and cognitive decline [55].

However, evidence for the protective effects of pharmacologically induced blood
pressure reduction in individuals with lower blood pressure or with comorbidities is
less solid [56-59].

Modern drug-based therapeutic approach has the capacity to reduce blood pres-
sure in a high percentage of patients with hypertension [60, 61]. Nevertheless, over
the past decade, observational clinical studies and surveys have shown that the prev-
alence of hypertension increased by about 10%. Nearly one third of patients were
unaware of their condition. Although two thirds were told to adopt lifestyle changes
or take medications, the percentage of hypertensives consistently controlled with
medications has remained low (only 30% achieved blood pressure control
<140/90 mmHg) [62], being this related to a number of factors including poor
adherence and physician’s inertia. Over the past 30 years, data from different sur-
veys suggest that 30-40% of treated hypertensive patients reached the suggested
target [2]. Also in Italy, in a large population of treated hypertensive patients
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followed in outpatient clinics, hypertension centers, or general practice, through one
decade of observation, ~60% of hypertensive patients were treated, and among
these only 33% achieved effective blood pressure control. Therefore, more effective
interventions to improve management of hypertension are needed [63].

In this regard, interventional trials consistently showed that it is possible to
achieve effective blood pressure targets in about 70% of treated hypertensive patients
with different cardiovascular risk profiles, especially through the use of rational,
effective, and well-tolerated combination therapies. Since about 70-80% of treated
hypertensive patients require a combination therapy based on at least two classes of
drugs in order to achieve the recommended blood pressure goals, it is of great impor-
tance to implement this strategy in routine clinical practice [64]. Among the various
combination therapies currently available for hypertension treatment and control, the
use of those strategies based on drugs that antagonize the renin-angiotensin system,
such as angiotensin II type 1 receptor antagonists (angiotensin receptor blockers) and
ACE inhibitors, in combination with diuretics and/or calcium channel blockers, has
been shown to significantly reduce the risk of major cardiovascular events and to
improve patient compliance to treatment, resulting in a greater antihypertensive effi-
cacy and better tolerability compared with monotherapy [65].

Effective and well-tolerated single-pill combination therapies are now available.
This type of therapeutic approach may improve adherence and simplify treatment.
The combination of a renin-angiotensin system blocker with a calcium channel
blocker and a diuretic improves adherence to therapy [65].

A better control of blood pressure in hypertensive patients may largely contribute
to modifying the natural course of the disease which is still characterized by high
level of morbidity and mortality.

The actual blood pressure thresholds at which treatment should be initiated and
the target levels at which blood pressure should be maintained still remain a topic of
debate. In particular what has been less clear is whether there is further cardiovas-
cular benefit when blood pressure is treated more intensively to a goal lower than
140/90 mmHg.

Most major hypertension treatment guidelines still suggest that clinicians should
try to treat adults to a blood pressure target of <140/90 mmHg [3, 11-16]. However,
after years of recommendations for a low target blood pressure in hypertensive
patients, particularly those with diabetes or previous cardiovascular or renal disease,
major guidelines on hypertension management have reevaluated the concept of the
“lower the better.” Hence, they have reversed a trend toward lower blood pressure
thresholds and targets, recommending targets below 140/90 mmHg in most patients,
particularly for those at high risk [3, 11-16]. In the elderly patients, a target of blood
pressure <150/90 mmHg was recommended.

Several publications in recent years (most derived from non-randomized clinical
trial) have supported this notion suggested by the hypothesized “J-curve” effect of
blood pressure treatment, defined as the occurrence of additional cardiovascular
events when the blood pressure is lowered beyond the level required to maintain
tissue perfusion [66]. This concept has led to the concern that excessive lowering of
blood pressure could increase the risk of cardiovascular events, although the notion
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of the J-curve should be referred primarily to diastolic and not systolic blood pres-
sure reduction, in terms of additional harm for the reduction of diastolic blood pres-
sure <65 mmHg [67-69]. Thus, targets for diastolic blood pressure <90 mmHg
seem safe in the J-curve phenomenon. Moreover, in diabetic patients, previous
guidelines recommended target blood pressure levels of around 130/85 mmHg.
After the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial [70],
this statement was challenged since in a population of 4733 patients with type 2
diabetes, an intensive blood pressure-lowering therapy (systolic blood pres-
sure <120 mmHg) did not report a significant difference in overall cardiovascular
event rates as compared to standard target of systolic blood pressure <140 mmHg.
Therefore, the last European guidelines recommend target blood pressure levels
of <140/85 mmHg in diabetic patients. By contrast, a systematic review of trials of
more versus less blood pressure-lowering regimen reported a significant reduction
in major vascular events [71].

Nevertheless recent evidence has challenged again this orientation in the man-
agement of hypertension. The Systolic Blood Pressure Intervention Trial (SPRINT)
has recently shown that intensive systolic blood pressure control (to <120 mmHg)
reduced the incidence of cardiovascular events and mortality by 25% (5.2% vs.
6.8%; hazard ratio 0.75; 95% confidence interval 0.64-0.89) compared with stan-
dard systolic blood pressure control (135-139 mmHg) in a population of 9361 sub-
jects aged >50 years at increased risk for cardiovascular events, not including
patients with diabetes and previous stroke. This may imply the need to reevaluate
again blood pressure targets in hypertensive patients at high risk for cardiovascular
events [72]. However, uncertainty remains as to whether such benefits hold for high-
risk individuals excluded from the trial, especially those with diabetes or cerebro-
vascular disease [59]. Very recently two meta-analyses further support the notion of
the implementation of intensive blood pressure control in high-risk hypertensive
patients. A meta-analysis of 19 treat-to-target trials (in about 45,000 subjects) and a
7 mmHg mean systolic blood pressure reduction (from 140 to 133 mmHg) led to a
14% (95% confidence interval 0.78-0.96) reduction in major cardiovascular events
[73]. These beneficial effects were consistent across major patient subgroups and
types of interventions, and significant gains could be achieved from further lower-
ing of systolic blood pressure to lower than 140 mmHg. Although an increase in
hypotension occurred as a result of more intensive blood pressure lowering, includ-
ing serious hypotensive events, there was no suggestion that these adverse effects
would outweigh the benefits of treatment in high-risk patient populations.

In a second meta-analysis of 129 studies (over 600,000 subjects included) in
various populations of hypertensive patients including those at relatively low blood
pressure levels at baseline, those at high risk, and those presenting previous cardio-
vascular and cerebrovascular events, blood pressure-lowering treatment signifi-
cantly reduced the risk of cardiovascular disease and death realized from a 10 mmHg
systolic blood pressure reduction similarly across different quintiles of baseline sys-
tolic blood pressure (<130, 130-139, 140-149, 150-159, >160 mmHg) [74]. No
significant trend toward increased risk was reported for any outcome (major cardio-
vascular events, coronary heart disease, stroke, heart failure, renal failure, and
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all-cause mortality). Thus, a J-shaped relationship could not be substantiated, and
the treatment effects were unlikely to be attenuated in trials that included partici-
pants with low systolic blood pressures at baseline, particularly those with less than
130 mmHg. However, it remains unclear whether a concomitant reduction in dia-
stolic blood pressure (which is more directly related to the J-curve phenomenon)
could also result in a reduced rate of cardiovascular events.

Although the SPRINT trial and the two meta-analyses included studies with het-
erogeneous cohorts, as well as the focus of intensive therapy was only on systolic
blood pressure, the impact for the clinical practice appears dramatic in terms of the
need of redefining blood pressure thresholds and targets. Therefore, expert consen-
sus and guideline implementation will be probably required in order to properly
address the issue of management of hypertensive patients.
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The Kidneys, Volume and Blood Pressure 5
Regulation, and Hypertension

Joey P. Granger and Frank T. Spradley

5.1 Introduction

Control of blood pressure is important in that it is a critical determinant of blood
flow and oxygen and nutrient delivery to all tissues of the body. The control of blood
pressure is complex and time-dependent and involves the integration of neural, hor-
monal, physical, and autacoid factors. While short-term blood pressure regulation is
achieved through rapid alterations in cardiac output and/or total peripheral resis-
tance, long-term control of blood pressure involves more slowly acting systems and
is intimately linked to the regulation of extracellular fluid volume. Extracellular
fluid volume is determined by the balance of intake and excretion of sodium and
water by the kidneys.

Several decades ago, Guyton and Coleman [1] proposed that if an increase in
blood pressure could produce sustained increases in sodium and water excretion
through a renal-pressure natriuresis and diuresis mechanism, then this system would
have a near infinite gain for the long-term control of arterial pressure by regulating
blood volume. In addition, they proposed that elevation in blood pressure above the
normal the set point for blood pressure control only occurs when factors impair the
sodium and fluid excretory ability of the kidney and shifts the relation between
sodium excretion and arterial pressure toward higher levels [1-3]. While there is
strong theoretical and experimental evidence that the kidney is a major determinant
of the long-term control of arterial pressure, the initial cause of abnormal pressure
natriuresis and hypertension need not be intrinsic to the kidney [1-4]. The focus of
this chapter is to review the importance of the kidneys in the long-term regulation of
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extracellular volume and blood pressure and briefly summarize the various intra-
and extrarenal factors that contribute to abnormal pressure natriuresis in
hypertension.

5.2 Long-Term Regulation of Extracellular Volume
and Blood Pressure

Extracellular fluid volume is controlled by various neural, hormonal, autacoid, and
physical factors that regulate the excretion of salt and water by the kidneys. The
renal-body fluid system concept predicts that a higher sodium and fluid intake than
output would lead to an increase in extracellular volume and arterial pressure (see
Fig. 5.1). If the excretory ability of the kidney is not impaired, the increase in arte-
rial pressure raises sodium excretion and extracellular fluid volume would then
decrease, thereby reducing venous return and cardiac output until blood pressure
returns to normal and fluid intake and output are reestablished. Conversely, when

Basic Renal-body Fluid Mechanism for
Long-term Blood Pressure Control

This relationship is
altered in chronic
hypertensive states.
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Fig. 5.1 Basic renal-body fluid feedback mechanism for long-term regulation of blood pressure
and body fluid volumes (redrawn from [1])
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sodium and fluid output exceeds intake, extracellular fluid volume, blood volume,
venous return, and cardiac output fall, which ultimately leads to a decrease in blood
pressure below normal. This decrease in arterial pressure causes the kidneys to
retain sodium and water until fluid balance is achieved and blood pressure is restored
to the normal set point. Thus, according to the renal-body fluid feedback mechanism
concept, the set point for long-term blood pressure control is the arterial pressure at
which sodium and water intake and output are at equilibrium (see Fig. 5.2) [1-3].
A key component of this mechanism for regulating salt and water balance is
pressure natriuresis/diuresis, which is the effect of increased arterial pressure to
raise sodium and water excretion. An important feature of pressure natriuresis is
that various hormonal and neural control systems can amplify or blunt the pressure
natriuresis mechanism [1-3, 5-8]. For example, in most individuals, chronic
increases in sodium intake are associated with only small changes in arterial pres-
sure. The lack of significant increases in arterial pressure in response to elevations
in sodium intake is due to a number of very effective volume control systems that
are activated by extracellular volume expansion. For example, in response to
increases in sodium intake, decreased formation of antinatriuretic hormones and/or
increased formation of natriuretic factors enhance the effectiveness of pressure
natriuresis and allow sodium balance to be maintained with little or no increase in
arterial pressure. On the other hand, excessive activation of antinatriuretic systems
or abnormalities in natriuretic systems can reduce the effectiveness of pressure
natriuresis, thereby necessitating greater increases in arterial pressure to maintain
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Fig. 5.2 Effects of chronic aldosterone infusion on sodium excretion when renal perfusion pres-
sure was allowed to increase (left panel) or was servo-controlled (right panel). Notice that when
renal perfusion pressure was prevented from increasing, “escape” from sodium retention did not
occur, and cumulative sodium balance and systemic arterial pressure continued to increase
(redrawn from [12])
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sodium and water balance. Thus, excessive activation of antinatriuretic systems or
abnormalities in natriuretic systems impairs the excretory ability of the kidney and
shifts the relation between sodium excretion and arterial pressure toward higher
levels and resets the set point for long-term blood pressure control (see Fig. 5.2).

While total peripheral resistance and cardiac output are determinants of arterial
pressure, one prediction of the renal-body fluid feedback mechanism is that if the
pressure natriuresis mechanism is not impaired, a primary increase in total periph-
eral resistance or increases in cardiac pumping ability would not result in long-term
alterations in arterial pressure [1, 2, 5-8]. For instance, an increase in total periph-
eral resistance would result in an immediate elevation in arterial pressure (see
Fig. 5.1). The increase in arterial pressure would increase sodium and water excre-
tion, via pressure natriuresis. As long as fluid excretion exceeds fluid intake, extra-
cellular fluid volume will continue to decrease, reducing venous return and cardiac
output, until blood pressure returns to normal and fluid balance is reestablished.
Thus, primary increases in total peripheral resistance or increases in cardiac pump-
ing do not result in long-term alterations in arterial pressure; thus, hypertension can
develop only when physiological and/or pathophysiological factors impair the
excretory ability of the kidney and shifts the relation between sodium excretion and
arterial pressure toward higher levels [1-3, 5-8].

5.3  Pressure Natriuresis: A Key Factor in Maintaining
Sodium Balance in Hypertension

Another important prediction of the renal-body fluid feedback control system con-
cept is that an increase in blood pressure in hypertensive states is an essential com-
pensatory mechanism that allows sodium balance to be maintained in the face of an
underlying sodium-retaining defect [5—8]. To determine the importance of the pres-
sure natriuresis mechanism in achieving sodium balance caused by aldosterone
excess, Hall and colleagues [6] examined the long-term effects of aldosterone on
sodium excretion and arterial pressure in normal dogs and in dogs where renal
artery pressure was prevented from increasing with an electronically servo-
controlled aortic occluder. In dogs in which renal artery pressure was permitted to
increase during chronic aldosterone infusion, sodium excretion decreased markedly
on the first day and then returned to control levels on days 2-3 of aldosterone infu-
sion as arterial pressure increased (see Fig. 5.3). In contrast, in dogs in which renal
artery pressure was prevented from increasing, sodium excretion decreased on the
first day and remained below sodium intake for the 7 days of aldosterone infusion.
The sustained sodium retention resulted in dramatic increases in cumulative sodium
balance and systemic arterial pressure. The results from this study clearly demon-
strated that an increase in renal arterial pressure is essential in allowing the kidneys
to override the chronic sodium-retaining actions of aldosterone and to achieve nor-
mal sodium balance. Similar findings were reported from the same group during
chronic administration of other sodium-retaining hormones, such as angiotensin
(ang) II and norepinephrine [7, 8].
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Altered Pressure Natriuresis in Hypertension
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Fig. 5.3 Steady-state relationships between arterial pressure and urinary sodium excretion and
sodium intake for control dogs with normal kidneys and for dogs with a rightward hypertensive
shift in the pressure natriuresis relationship in salt-sensitive and salt-resistant hypertension [6]

5.4 Impaired Renal-Pressure Natriuresis in Hypertension
Caused by Intra- and Extrarenal Factors

An important observation that points toward abnormal kidney function as a key fac-
tor in causing hypertension is that almost all forms of experimental hypertension are
caused by perturbations to the kidneys that alter renal hemodynamics or tubular
reabsorption and reduce the kidney’s ability to excrete sodium and water. For exam-
ple, constriction of the renal arteries, compression of the kidneys, and administra-
tion of sodium-retaining hormones such as ang II or aldosterone are all associated
with either decreases in renal blood flow and GFR and/or increases in renal tubular
reabsorption prior to development of hypertension [5—8]. Further evidence support-
ing an important role for the kidneys in the development and maintenance of hyper-
tension is that in all known monogenic forms of human hypertension, the common
pathway to hypertension appears to be increased renal tubular reabsorption caused
by mutations that directly increase renal electrolyte transport (e.g., Liddle’s or
Gordon’s syndromes) or the synthesis and/or activity of antinatriuretic hormones
(e.g., glucocorticoid-remediable aldosteronism) [4-8].

A shift in the pressure natriuresis relationship can occur as a result of intrarenal
abnormalities such as excess formation of ang II, reactive oxygen species, inflam-
matory cytokines and endothelin-1 (via ET, receptor activation) or decreased syn-
thesis of nitric oxide and natriuretic prostanoids, decreased renal medullary
production of ET-1 (and decreased ETjy receptor activation), or even genetic defects
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Table 5.1 Partial list of Prohypertensive—antinatriuretic factors
factors affecting renal Angiotensin II

pressure natriuresis in Aldosterone

hypertension Renal sympathetic nerve activity

Endothelin (via ETa receptor activation)

Vascular 20-HETE (hydroxyeicosatetraenoic acid)
Immune factors and inflammatory cytokines
Reactive oxygen species

Renal vascular stenosis

Glomerular disease

Genetic defects in renal sodium transporters
Deficiency of antihypertensive—natriuretic factors
Nitric oxide

Prostaglandins

Renal tubular 20-HETE

EETS

Atrial natriuretic peptide

Renal medullary endothelin (via loss of ETb receptor activation)

that enhance renal sodium transport systems. In other instances, the altered kidney
function is caused by extrarenal disturbances, such as increased renal sympathetic
nervous activity (RSNA) or excessive formation of antinatriuretic hormones such as
aldosterone. The remaining portion of this chapter will discuss how these and other
intra- and extrarenal factors impair renal-pressure natriuresis and lead to the devel-
opment of chronic hypertension (see Table 5.1).

Angiotensin II, the kidney, and hypertension. The renin-angiotensin system
(RAS) plays a critical role in the long-term regulation of extracellular fluid volume
and blood pressure and is involved in the pathogenesis of various forms of hyper-
tension, including renovascular hypertension and human essential hypertension [7,
10]. The RAS, via AT1 receptor, plays an important role in maintaining sodium
balance and a relatively normal pressure as sodium intake is altered from low to
high levels [5].

The effect of ang II to reduce renal-pressure natriuresis and cause hypertension
is the result of its effects to directly or indirectly stimulate sodium transport [9-11].
While AT1 receptors are prominently expressed in the kidney, they are also expressed
in the heart, blood vessels, adrenal glands, and the brain [11-14]. Because AT1
receptors are ubiquitously expressed, dissecting the quantitative importance of each
individual organ system, including the kidney, in the long-term regulation of blood
pressure has been difficult. Utilizing a combined gene targeting with renal cross
transplantation approach, Coffman and colleagues examined the role of AT1 recep-
tors in the kidney and their contribution to the development of ang II-induced hyper-
tension [11-14]. They found that ang II causes hypertension primarily through
effects on AT1 receptors in the kidney associated with reduced urinary sodium
excretion, independent of actions of the sympathetic nervous system or aldosterone.
When AT1 receptors are eliminated from the kidney, the extrarenal AT1 receptors
are not sufficient to induce hypertension (see Fig. 5.4). Coffman and colleagues also
reported that deletion of AT1 receptors in the proximal tubule alone reduces
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Fig. 5.4 A dominant role for renal AT, receptors in blood pressure control was demonstrated
using four groups of cross-kidney transplanted mice, namely, whole-body AT, expressing (wild
type), AT, expressing systemically but not in the kidney (systemic AT} ,), AT, expressing only in
the kidney (kidney KO), and no AT}, in either location (total KO). Mice then received 21 days of
ang Il infusion. Blood pressure response to ang Il in the systemic KO recapitulated that of the wild-
type group by day 12 of ang II infusion. Absence of renal AT, receptors in the kidney KO animals
ameliorated ang II-induced hypertension. Total KO blood pressure shows minimal response to ang
1I infusion [44]

proximal fluid reabsorption, alters expression of key sodium transporters, improves
pressure natriuresis, and significantly attenuates ang II-induced hypertension [11-
14]. Collectively, these findings highlight the critical role of the kidney in the patho-
genesis of ang II-dependent hypertension. In addition, they suggest that the major
mechanism of action of RAS blockade in hypertension is attenuation of ang II sig-
naling in the kidney.

Aldosterone, the kidney, and hypertension. In addition to primary hyperaldoste-
ronism, excess activation of mineralocorticoid receptor by aldosterone has also
been implicated in several forms of human hypertension, including renovascular
hypertension, patients with resistant hypertension, and obesity-related hypertension
[15-20]. Aldosterone plays an important role in the chronic regulation of blood
pressure via its sodium-retaining actions on the kidney. Aldosterone alters the renal-
pressure natriuresis relationship by enhancing sodium transport in the distal tubules
and cortical collecting ducts. The sodium-retaining effect of aldosterone is due to
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binding of aldosterone to intracellular mineralocorticoid receptor and activation of
transcription by target genes. These target genes, in turn, stimulate synthesis or
activation of the sodium-potassium ATPase pump on the basolateral epithelial
membrane and activation of amiloride-sensitive sodium channels on the luminal
side of the epithelial membrane [18].

As sodium intake is increased to high levels, aldosterone levels are suppressed,
allowing sodium excretion to increase to match sodium intake. Conversely, when
sodium intake is restricted, aldosterone levels increase, and sodium excretion is
reduced to match the low sodium intake. Thus, a change in aldosterone production
in response to changes in sodium intake is another important hormone in the main-
tenance of sodium balance. An inability to suppress aldosterone production in
response to increases in sodium intake therefore is another potential mechanism for
salt-sensitive hypertension in humans.

The renal sympathetic nervous system. Another system that can reduce the renal-
pressure natriuresis relationship and cause chronic hypertension is the renal sympa-
thetic nervous system [21, 22]. The kidneys receive extensive sympathetic
innervation, and increases in RSNA reduce sodium excretion by increasing tubular
reabsorption or decreasing the filtered load of sodium via a-adrenergic receptor
activation [21, 22]. Renal nerves can act directly on the tubule to increase sodium
reabsorption or indirectly by increasing renal vascular resistance and reducing med-
ullary blood flow and renal interstitial pressure. In addition, increases in RSNA can
enhance tubule reabsorption by activating the RAS.

Excessive activation of the renal sympathetic nervous system has been implicated in
the pathogenesis of several experimental and genetic forms of hypertension [21, 22].
Evidence for a role of the renal nerves in hypertension derives from animal studies
showing that renal denervation attenuates or delays the development of hypertension in
several forms of experimental hypertension [21, 22]. One particular experimental form
of hypertension that is mediated via enhanced RSNA is obesity-related hypertension
[21, 22]. Obesity is often associated with increased sympathetic activity [21, 22]. To
determine the role of renal nerves in mediating the sodium retention and hypertension
associated with obesity, Kassab and colleagues [23] examined the hemodynamic and
renal excretory responses to a high-fat diet in control and bilaterally renal-denervated
dogs (see Fig. 5.5). In response to a high-fat diet, body weight increased similarly in the
control and bilaterally renal-denervated groups. Arterial pressure increased by 15% in
the control group but, in sharp contrast, 5 weeks of a high-fat diet in the bilaterally
renal-denervated group did not significantly increase arterial pressure. Furthermore,
after 5 weeks of a high-fat diet, cumulative sodium retention was 455 + 85 mmol in the
control group and only 252 + 47 mmol in the bilaterally renal-denervated group.
Similar increases in glomerular filtration rate and renal plasma flow occurred in both
groups in response to the high-fat diet, indicating that the sodium retention in response
to a high-fat diet was due to enhanced sodium reabsorption [23]. The results of this
study indicate that the renal nerves play an important role in mediating the sodium
retention and hypertension associated with obesity.

While there is growing evidence for a role of the renal sympathetic nervous sys-
tem in the development of several animal models of hypertension, the importance of
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Fig. 5.5 Changes in body weight and arterial pressure (Panel A) and cumulative sodium balance
(Panel B) in response to a high-fat diet in dogs with innervated and denervated kidneys (redrawn
from [58])

renal nerves in the pathogenesis of human hypertension has yet to be fully eluci-
dated [21, 22]. Application of the norepinephrine spillover methodology in humans
has demonstrated activation of the sympathetic nervous outflow to the kidneys in
humans with essential hypertension [21, 22]. Renal norepinephrine spillover, on
average, is elevated two- to threefold in both normal weight patients with essential
hypertension and in those with obesity-related hypertension [21, 22].

Evidence for a potential role of renal nerves in human hypertension are the find-
ings that ablation of the renal sympathetic nerves with a radiofrequency-emitting
catheter inserted percutaneously significantly reduces blood pressure in patients with
resistant hypertension [24-26]. Symplicity HTN-1 and HTN-2 demonstrated signifi-
cant reductions of blood pressure within 6 months of the procedure. In contrast, the
Symplicity HTN-3 trial, which controlled for factors believed to influence the out-
come, including the addition of a sham arm, yielded a much lower blood pressure
reduction compared with the Symplicity HTN-1 and HTN-2 trials [24-26]. The
exact reasons for the variable findings with the renal ablation procedure may be mul-
tiple including inadequate renal denervation. While some studies support a potential
role for renal nerves in patients with resistant hypertension, it also remains unclear as
to the relative importance of destruction of renal afferent versus efferent nerves in the
antihypertensive effect achieved by the radiofrequency ablation procedure [26].

The renal endothelin system. Endothelin-1 (ET-1) is derived from preproendo-
thelin, which is cleaved after translation to form proendothelin [27-29].
Proendothelin is cleaved in the presence of a converting enzyme to produce the 21
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amino acid peptide, ET-1. ET-1 receptor binding sites have been identified through-
out the body with the greatest numbers of receptors in the kidneys. ET-1 can either
elicit a prohypertensive, antinatriuretic effect by activating endothelin type A (ET,,
receptors and causing renal vasoconstriction or an antihypertensive, natriuretic
effect via endothelin type B (ETg) receptor activation (see Fig. 5.6). Thus, the abil-
ity of ET-1 to influence blood pressure regulation and renal-pressure natriuresis is
highly dependent on where ET-1 is produced in the kidney and which renal ET
receptor type is activated [27-29].

ET-1, via ET, receptor activation, exerts a variety of actions within the kidney
that, if sustained chronically, could contribute to the development of hypertension
and progressive renal injury [27-29]. ET-1 decreases GFR and renal plasma flow
[27-29]. Long-term effects of ET-1 on the kidney include stimulation of mesangial
cell proliferation and extracellular matrix deposition as well as stimulation of vas-
cular smooth muscle hypertrophy in renal resistance vessels [27-29]. Previous
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Fig.5.6 Pro- and antihypertensive actions of endothelin-1 (ET-1). The ability of ET-1 to influence
blood pressure regulation and renal-pressure natriuresis is highly dependent on where ET-1 is pro-
duced and which renal ET receptor type is activated. ET-1 can elicit a prohypertensive, antinatri-
uretic effect by activating ET, receptors in the kidneys. Activation of renal ET, receptors increases
renal vascular resistance (RVR), which decreases renal plasma flow (RPF) and glomerular filtration
rate (GFR) and enhances sodium reabsorption by decreasing peritubular capillary hydrostatic pres-
sure (Pc). The net effect of renal ET, receptor activation would be increased in sodium retention and
blood pressure. Conversely, ET-1 can elicit an antihypertensive, natriuretic effect via ETy receptor
activation. Activation of the renal ET} receptor leads to enhanced synthesis of nitric oxide (NO) and
prostaglandin E, (PG) and suppression of the renin-angiotensin system. The net effect of renal ETy
receptor activation would be decreases in sodium retention and blood pressure
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studies have indicated that expression of ET-1 is greatly enhanced in animal models
of severe hypertension with renal vascular hypertrophy and in models of progres-
sive renal injury [27-29]. In addition, treatment with endothelin receptor antago-
nists attenuated the hypertension and small artery morphologic changes and
improved kidney function in these models [30, 31]. An interesting unanswered
question that emerges is whether the beneficial effect of the ET, blockade in reduc-
ing renal injury is mediated through reducing blood pressure or through direct renal
mechanisms. Moreover, the importance of selective ET, blockade in human hyper-
tension remains unknown [32-34].

While much attention has been given to the role of ET-1 in the pathophysiology
of cardiovascular and renal disease acting via an ET, receptor, recent studies indi-
cate an important physiological role for ET-1 in the regulation of sodium balance
and arterial pressure via ETj receptor activation. The most compelling evidence that
the endothelin system may play a significant role in the regulation of sodium bal-
ance and arterial pressure are the reports that transgenic animals deficient in ETy
receptors develop a severe form of salt-sensitive hypertension [35]. Additional evi-
dence comes from studies indicating that pharmacological antagonism of ETjy
receptors produces significant hypertension in rats [35-38].

The collecting duct ETy receptor appears to be an important physiologic regula-
tor of renal sodium excretion and blood pressure. Ge and colleagues [39, 40]
reported that disruption of ETjy receptors in the collecting duct cells of mice was
found to produce significant hypertension that was salt-sensitive. Collecting duct
ETyz KO mice on a normal sodium diet were hypertensive. Collecting duct ETg
knockout mice on a high-sodium diet had worsened hypertension, reduced urinary
sodium excretion, and excessive weight gain [39]. Similar findings were found in
mice with combined ETy and ET, receptor KO in the collecting duct cells [40]
These findings provide strong evidence that the collecting duct ETy receptor is an
important physiologic regulator of renal sodium excretion and blood pressure.

Nitric oxide (NO) deficiency and hypertension. All components of the NO system
are located within the kidney, and pharmacological or genetic disruption of this sys-
tem results in a sustained hypertension associated with reductions in renal hemody-
namics and pressure natriuresis [41-44]. The magnitude of the increase in blood
pressure is also dependent on dietary sodium intake. These findings have led to the
concept that NO is not only important in the long-term regulation of sodium balance
and blood pressure but also to the notion that abnormalities in NO production results
in altered pressure natriuresis and a salt-sensitive form of hypertension. Several lines
of evidence suggest that NO may play an important role in the regulation of sodium
balance and in pathogenesis of salt-sensitive hypertension [41-45]. An increase in
renal NO production or release, as evidence by increased urinary excretion of NO
metabolites or the NO second messenger, cyclic GMP, has been reported to be essen-
tial for the maintenance of normotension during a dietary salt challenge. Prevention of
this increase in renal NO production results in salt-sensitive hypertension [41-45].

Reductions in NO synthesis also reduce sodium excretory function either through
direct effects on tubular transport or through changes in intrarenal physical factors,
such as renal interstitial hydrostatic pressure or medullary blood flow [46, 47].
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Consistent with this concept are observations that the acute infusion of an NO syn-
thase inhibitor directly into the renal medulla significantly reduces papillary blood
flow, renal interstitial hydrostatic pressure, and decreases urinary sodium and water
excretion without affecting glomerular filtration rate or systemic pressure [41, 46,
47]. Chronic medullary interstitial infusion of nitric oxide synthase inhibitors into
conscious rats results in sustained reductions in medullary blood flow, sustained
sodium and water retention, and hypertension, which are reversed when the infusion
is discontinued (see Fig. 5.7). These findings demonstrate that reductions in medul-
lary blood flow may be another important mechanism whereby inhibition of NO in
the kidney leads to a hypertensive shift in pressure natriuresis [46].
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Atrial natriuretic peptide. Atrial natriuretic peptide (ANP) elicits an antihyper-
tensive, natriuretic effect via its receptors (NPR). ANP is 28 amino acid peptide
synthesized and released from atrial cardiocytes in response to stretch [48]. Once
ANP is released from the atria, it enhances sodium excretion through extrarenal and
intrarenal mechanisms [48]. A deficiency in ANP production or a defect in its recep-
tors may reduce pressure natriuresis and lead to hypertension by enhancing tubular
sodium reabsorption either directly by enhancing the active tubular transport of
sodium or indirectly via alterations in medullary blood flow, physical factors, and
intrarenal hormones.

Plasma levels of ANP are elevated in numerous physiological conditions associ-
ated with enhanced sodium excretion [48]. Acute saline load to induce blood vol-
ume expansion consistently elevates circulating levels of ANP. Some, but not all,
investigators have reported that chronic increases in dietary sodium intake raise
circulating levels of ANP. Several studies have reported that infusions of exogenous
ANP at rates that result in physiologically relevant plasma concentrations, compa-
rable to those observed during volume expansion, have significant renal and cardio-
vascular effects [49]. Infusion of ANP at a rate that causes a twofold increase in
plasma ANP elicits significant natriuresis, especially in the presence of other natri-
uretic stimuli, such as high renal perfusion pressure [49]. Long-term physiological
elevations in plasma ANP also shift the renal-pressure natriuresis relationship and
reduce arterial pressure [49].

The development of genetic mouse models that exhibit chronic alterations in
expression of the genes for ANP or its receptors (NPR-A, NPR-C) has also provided
compelling evidence for a role of ANP in chronic regulation of renal-pressure natri-
uresis and blood pressure [50, 51]. Transgenic mice overexpressing the ANP gene
are hypotensive relative to the non-transgenic littermates, whereas mice harboring
functional disruptions of the ANP or NPR-A genes are hypertensive. The ANP gene
“KO” mice develop a salt-sensitive form of hypertension in association with failure
to adequately suppress the RAS [50, 51]. These findings suggest that genetic defi-
ciencies in ANP or natriuretic receptor activity could play a role in the pathogenesis
of salt-sensitive hypertension.

Arachidonic acid metabolites. Cyclooxygenase metabolizes arachidonic acid
into prostaglandin (PG) G, and subsequently to PGH,, which is then further metab-
olized by tissue-specific isomerases to PGs and thromboxane [52, 53]. Although the
kidney produces many types of PGs with multiple functions, the major renal pros-
taglandin controlling sodium excretion is PGE, [52, 53]. However, production of
other arachidonic acid metabolites, such as prostacyclin, thromboxane, and
20-HETE (hydroxyeicosatetraenoic acid), may also influence renal-pressure natri-
uresis and blood pressure regulation. The largest production of PGE, occurs in the
medulla with decreasing synthesis in the cortex. PGE, is synthesized and rapidly
inactivated and, once synthesized, is released and not stored. Once released, PGE,
influences sodium transport by several intrarenal mechanisms.

Inhibition of PG synthesis with nonselective or selective inhibitors of cyclooxy-
genase-2 (COX-2) activity induces or exacerbates salt-sensitive hypertension, an
effect that has been attributed to inhibition of renal COX-2 activity and subsequent
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increase in renal sodium transport. Zhang et al. recently reported that macrophages
isolated from kidneys of high-salt-treated mice have increased levels of COX-2 and
microsomal PGE synthase-1 (mPGES-1) [54]. Furthermore, they showed that bone
marrow transplantation from either COX-2-deficient or mPGES-1-deficient mice
into WT mice or macrophage-specific deletion of the PGE, type 4 (EP4) receptor
induced salt-sensitive hypertension and increased phosphorylation of the renal
sodium chloride cotransporter (NCC). These studies suggest that COX-2-derived
PGE, in hematopoietic cells plays an important role in response to chronically
increased dietary sodium intake and also indicate that inhibiting COX-2 expression
or activity in hematopoietic cells can result in a predisposition to salt-sensitive
hypertension [54].

In addition to renal PGs generated via the COX pathway, other eicosanoids that
inhibit tubular sodium transport are produced by cytochrome P450 (CYP) mono-
oxygenase metabolism of arachidonic acid [53]. CYP enzymes metabolize arachi-
donic acid primarily to 20-HETE and EETs. It is known that 20-HETE is a potent
constrictor of the renal vasculature, but interestingly, 20-HETE and EETS inhibit
sodium reabsorption in the proximal tubule and TALH.

The renal production of CYP metabolites of arachidonic acid is altered in genetic
and experimental models of hypertension, and this system contributes to the reset-
ting of pressure natriuresis and the development of hypertension. In the SHR, the
renal production of 20-HETE is increased, and inhibitors of the formation of
20-HETE decrease arterial pressure [53]. Blockade of 20-HETE synthesis also
reduces blood pressure or improves renal function in deoxycorticosterone acetate
(DOCA)-salt, ang II-infused, and Lyon hypertensive rats [53]. In contrast, 20-HETE
formation is reduced in the TALH of Dahl salt-sensitive rats, and this contributes to
elevated sodium reabsorption [53]. Enhanced 20-HETE synthesis improves pres-
sure natriuresis and lowers blood pressure in Dahl salt-sensitive rats, whereas inhib-
itors of 20-HETE production promote the development of hypertension in Lewis
rats [53].

Oxidative stress. Recent studies suggest that reactive oxygen species (ROS) may
play a role in the initiation and progression of cardiovascular dysfunction associated
with diseases, such as hyperlipidemia, diabetes mellitus, and hypertension [54-56].
In many forms of hypertension, the increased ROS are derived from NAD(P)H oxi-
dases, which could serve as a triggering mechanism for uncoupling endothelial
NOS by oxidants, resulting in reduced bioavailability of NO [54-56].

ROS produced by migrating inflammatory cells and/or vascular cells have dis-
tinct functional effects on each cell type [54]. These effects include endothelial
dysfunction, renal tubule sodium transport, cell growth, migration, inflammatory
gene expression, and matrix regulation. ROS, by renal hemodynamics and renal
tubule cell function, can play a role in altering renal-pressure natriuresis and blood
pressure regulation [54, 57].

Growing experimental evidence supports a role for ROS in various animal mod-
els of sodium-sensitive hypertension [58, 59]. The Dahl salt-sensitive rat has
increased vascular and renal superoxide production and increased levels of H,O,.
The renal protein expression of superoxide dismutase (SOD) is decreased in the
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kidney of Dahl salt-sensitive rats, and long-term administration of tempol, an SOD
mimetic, significantly decreases arterial pressure and renal damage. Another salt-
sensitive model, the stroke-prone spontaneously hypertensive rat (SHRSP), has
elevated levels of superoxide and decreased total plasma antioxidant capacity.
Superoxide production is also increased in the DOCA-salt hypertensive rat [58, 59].
Treatment of the DOCA-salt rats with apocynin, an NADPH oxidase inhibitor/ROS
scavenger, decreases aortic superoxide production and arterial pressure [58, 59].

The importance of oxidative stress in human hypertension is unclear. An imbal-
ance between total oxidant production and the antioxidant capacity in human hyper-
tension has been reported to occur in some but not all studies. The equivocal findings
in human studies are most likely due to difficulty of assessing oxidative stress in
humans. Moreover, most of recent human studies have found that vitamin E and C
supplementation has little or no effect on blood pressure. However, it should be
noted that these are relatively weak antioxidants, and further studies are needed to
assess the role of ROS in human hypertension.

Inflammatory cytokines and the immune system in hypertension and renal injury.
Growing evidence over the last 5 years supports the concept that both innate and
adaptive immunity contribute to the development of hypertension and hypertensive
renal injury [60-66]. Macrophages and T cells accumulate in the kidney of hyper-
tensive animals and are thought to contribute to altered renal hemodynamics and
tubular function in hypertension [60-66]. Findings that plasma levels of pro-
inflammatory cytokines correlate with increased blood pressure in human hyperten-
sion and in some experimental animal models of hypertension also provide
additional support for a role for cytokines in hypertension [60—-66]. Moreover, sev-
eral studies have demonstrated that chronic increases in plasma cytokines, compa-
rable to concentrations observed in the hypertension associated with hypertension
preeclampsia, cause significant and sustained increases in blood pressure [64].

Animal studies utilizing genetic deletion of cytokines or its receptors support a
role of cytokines in hypertension. For example, mice with knockout of IL-6 have
significantly lower blood pressure than wild-type mice during 2 weeks of ang II
infusion [65]. Although these findings demonstrate a significant role for IL-6 in
mediating the chronic hypertensive response to ang II in mice, the importance of
inflammatory cytokines in the pathogenesis and progression of the various forms of
human hypertension is unclear and is currently an area of active investigation.

Results from several recent studies also suggest that T cells play a role in the
progression of hypertension [66—70]. Harrison and colleagues proposed that hyper-
tensive stimuli lead to renal injury, neoantigen formation, and eventual T-cell activa-
tion within the kidney [66]. T-cell-derived signals promote entry of other
inflammatory cells such as macrophages, which results in renal vasoconstriction
and increased sodium reabsorption, thereby increasing the severity of the hyperten-
sion (see Fig. 5.8). Supporting this concept are results from studies in RAG-17/~
mice, which lack T cells and B cells [66—-68]. These mice do not develop the degree
of hypertension in response to ang II infusion as wild-type mice, an observation that
was attributed to lack of T cells [66-68]. Moreover, chronic ang II infusion was
associated with a greater number of activated T cells as well as increased RANTES,
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a chemotactic protein, in the vasculature and perivascular fat. These observations
were confirmed by Crowley et al. using a model very similar to the RAG-1-"~ mice
[66-68]. They reported that ang II hypertension, renal injury, left ventricular hyper-
trophy, and cardiac fibrosis were prevented in SCID mice lacking T cells [66].
Although there is growing evidence suggesting that the immune system plays a
role in the progression of hypertension, the mechanisms by which hypertension
stimulates an immune response remain unclear but might involve the formation of
neoantigens that activate adaptive immunity [66, 70]. Moreover, while findings in
experimental models of hypertension are intriguing, the importance of the immune
system in the pathogenesis of hypertension in humans remains to be determined.,
However, in a very interesting recent study, Itani and colleagues used a humanized
mouse model in which the murine immune system was replaced by the human
immune system to determine whether human T cells are activated in hypertension
[69]. They reported that a hypertensive stimulus of ang II promoted accumulation of
human T cells in the kidney, aorta, and lymph nodes of these humanized mice. The
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Fig. 5.8 Proposed role of T cells and inflammation in progression of chronic hypertension. Initial
hypertensive stimuli leads to renal injury, neoantigen formation, and eventual T-cell activation
within the kidney. T-cell-derived signals promote entry of other inflammatory cells, such as mac-
rophages, which result in renal vasoconstriction and sodium reabsorption, thereby increasing the
severity of hypertension and cardiovascular-renal disease (redrawn from [20])
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cells exhibited an increase in the memory cell marker CD45RO. In addition, CD3~
CD45" cells were increased in lymph nodes of ang II-infused mice. They also dem-
onstrated that circulating T cells of humans with hypertension exhibit evidence of
activation, as indicated by an increased percent of memory T cells and an increase
in production of IL-17A and IFN-y [69]. Thus, human T cells become activated and
invade critical end-organ tissues in response to ang tempol, a superoxide dismutase
mimetic I hypertension in the humanized mouse model.
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6.1 Methods of Investigating Sympathetic Activity

A growing interest in the role of the sympathetic nervous system in the pathogenesis
of hypertension and cardiovascular disease is mainly driven by developments in
methods used to investigate adrenergic activity [1, 2]. The most commonly used
techniques include (a) measurements of plasma catecholamines, (b) regional nor-
adrenaline spillover, (c) assessment of baroreceptor function, (d) spectral analysis
of heart rate variability, (e) microneurography, and (f) imaging techniques.

6.1.1 Catecholamines

For many years, the only way to measure sympathetic activity was to assess cate-
cholamines and their metabolites in urine. Further progress came with the intro-
duction of high-performance liquid chromatography (HPLC) to measure
catecholamine levels in the plasma of venous and subsequently also arterial blood
samples. The interpretation of studies based on blood catecholamine measure-
ments is, however, confounded by many factors [3]: (a) Only 5-10% of the nor-
adrenaline released is ultimately found in the circulation; (b) plasma and urinary
levels depend not only on catecholamine release but also on their reuptake and
further metabolism; (c) renal function has a major effect on urinary catecholamine
excretion; (d) there is large regional variation in sympathetic activity in various
organs and organ systems affecting cardiovascular regulation, such as resistance
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vessels, the heart, the kidneys, and the central nervous system; thus catecholamine
levels may reflect “overall” sympathetic activity; (e) catecholamine level measure-
ments are poorly reproducible; (f) this is a static method of assessing sympathetic
activity which is, in fact, dynamically regulated.

Plasma and urine catecholamine levels are an indirect indicator of sympathetic
activity and thus have only a limited use in research applications.

6.1.2 Regional Catecholamine Spillover

In the 1980s, a technique of radioisotope-based measurements of regional catechol-
amine spillover has been introduced [1, 4]. This method has several advantages over
measuring catecholamine levels: (a) it is possible to distinguish the contribution of
increased release and reduced reuptake to the overall increased noradrenaline level
and (b) more precise evaluation of sympathetic activity in selected organs such as
the heart or kidneys is possible by comparing noradrenaline levels in arterial and
venous blood samples drawn from specific vessels.

The potential role of impaired neuronal noradrenaline reuptake can be directly
assessed by infusion of the noradrenaline transport inhibitor desipramine [5].
Noradrenaline stores in the human heart could be estimated by quantifying the pro-
cessing inside sympathetic nerves of tritiated noradrenaline to its intraneuronal
metabolite, tritiated dihydroxyphenylglycol (DHPG), coupled with measurement of
the specific activity of DHPG in coronary sinus plasma.

Because of its invasiveness and thus the need for arterial and venous catheteriza-
tion, this method is used only for research purposes.

6.1.3 Baroreceptor Function Testing

The most commonly used method of evaluating baroreceptor function is the phen-
ylephrine test. Intravenous phenylephrine bolus or infusion results in increased
blood pressure and reflex bradycardia as reflected by an increased R-R interval. The
measure of baroreceptor function is R-R interval prolongation (in ms) related to a
1 mmHg increase in blood pressure. Baroreflex sensitivity can also be assessed by
the sequence technique [6, 7], in which the slope of the regression line between the
spontaneous increases or reductions in systolic blood pressure and the related
lengthening or shortening in the pulse interval is calculated over spontaneous
sequences of three or more consecutive beats.

Recently, a new method for quantifying the spontaneous baroreflex activity of
the adrenergic tone has been developed [8, 9]. Briefly, sympathetic baroreflex sen-
sitivity was assessed by using the slope of the linear portion of the relationship
between muscle sympathetic nerve activity and diastolic blood pressure. For this
analysis, sympathetic nerve activity values were combined into 3 mmHg bins that
have been shown to reduce the statistical impact of the non-baroreflex beat-to-beat
variability in muscle sympathetic nerve activity.
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6.1.4 Spectral Analysis of Heart Rate Variability

Spectral analysis of heart rate variability allows noninvasive testing of the auto-
nomic function [10, 11]. This is based on a cyclic variation of a series of R-R inter-
vals. Sinus rhythm variability is largerly related to autonomic activity. The analysis
is performed using a fast Fourier transform or the autoregression method. Power
spectrum analysis reveals low-frequency (0.04-0.15 Hz; LF) and high-frequency
(0.15-0.4 Hz; HF) components. The respiratory-related HF component is attributed
mainly to vagal mechanisms. By contrast, different hypotheses have been proposed
for the LF oscillation of R-R variability. In several studies, the LF component was
not related to rates of noradrenaline spillover from the heart and/or muscle sympa-
thetic nerve traffic [12]. Thus, while the LF/HF ratio may be considered as a marker
of sympathovagal balance, it is unjustified to consider the low-frequency power a
surrogate measure of sympathetic nerve firing.

6.1.5 Microneurography

Microneurography is the only method allowing direct measurements of adrenergic
activity in humans [1, 12, 13]. The testing is usually done in the peroneal nerve
using microelectrodes with a diameter of approx. 100 pm and an electrode tip diam-
eter of 1-5 pm.

Microneurography allows the activity of postganglionic sympathetic fibers
innervating either skeletal muscle (muscle sympathetic nerve activity, MSNA) [1,
12, 13] or skin (skin sympathetic nerve activity, SSNA) to be recorded [1, 12].

The activity of sympathetic fibers innervating resistance vessels in skeletal mus-
cle is the major factor affecting peripheral flow and resistance. Sympathetic traffic
in skeletal muscle sympathetic nerves is synchronized with the heart rate, so the
firing rate in impulses per minute cannot exceed the heart rate. The so-called resting
sympathetic activity is thus defined as the mean number of impulses per minute or
100 heartbeats. This allows comparisons of sympathetic activity to be made between
groups.

A major advantage of microneurography is that it is an opportunity not only to
assess precisely resting sympathetic activity but also to track changes in cardiovas-
cular regulation in response to various stimuli. These changes in sympathetic activ-
ity are extremely dynamic in nature, with a significant increase or reduction in firing
rate seen within seconds. There are some methods to evaluate sympathetic reactivity
(mental “arithmetic” test, mirror drawing test, hand grip test, “cold pressor” test).

An important tool for evaluating sympathetic reactivity is the combination of
microneurography with baroreceptor and chemoreceptor function testing.
Baroreceptor function may be assessed using both mechanical and pharmacological
methods. A collar-shaped pressure chamber modulating transmural pressure in the
carotid sinuses is used to decompress baroreceptors. Baroreceptor function may be
assessed by evaluating changes in sympathetic activity following administration of
sodium nitroprusside and phenylephrine. Adrenergic activity increases when blood
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pressure is reduced and decreases when blood pressure rises. The measure of baro-
receptor function is the change in sympathetic activity related to lowering or increas-
ing blood pressure by 1 mmHg.

Not only firing rate but also amplitude is used to evaluate changes in sympathetic
activity in response to stress. Total activity is defined as the sum of the amplitudes
of all impulses. Assuming that resting total activity is 100%, relative changes in
activity during testing may be measured.

A tilt test is an important diagnostic method in cardiovascular disease. The use
of microneurography during tilt testing is limited by the risk of microelectrode
reposition during tilting. A special chamber involving the lower part of the body
is therefore used to simulate tilting. A gradual increase in lower body negative
pressure results in a reduction of central venous pressure and decompression of
cardiopulmonary mechanoreceptors and arterial baroreceptors. In contrast to the
activity of sympathetic fibers innervating resistance vessels, SSNA does not
depend on changes in blood pressure, and sympathetic nerve traffic is not syn-
chronized with the heart rate, with some impulses extending for several heart-
beats. SSNA is largely related to thermogenesis. In addition, it is affected by
emotional stress and auditory stimuli. Complete silence is thus required to record
SSNA. Simultaneous recording of MSNA and SSNA makes it possible to deter-
mine whether the increase in sympathetic activity occurs only in the cardiovascu-
lar system (increased MSNA but not SSNA) or is more generalized (both MSNA
and SSNA are increased).

Microneurographic studies are characterized by excellent reproducibility [14],
both when comparing same-day recording and recordings performed several
months and even years apart. The safety of microneurography is an important
issue. This was confirmed in a prospective follow-up study involving hundreds of
subjects [15].

Microneurographic findings should not be analyzed apart from hemodynamic
data. Microneurography is thus particularly useful when used together with other
research techniques such as the following: (a) continuous blood pressure measure-
ments (either invasive or noninvasive using the Finapres device), (b) central venous
pressure measurement, (c) peripheral flow and resistance measurement using pleth-
ysmography, and (d) assessment of metabolic parameters.

6.1.6 Imaging Techniques

Several imaging methods have recently been introduced to assess sympathetic activ-
ity in humans. These techniques, utilizing both positron emission tomography and
single photon emission computed tomography scanning, have been used to evaluate
the anatomy of sympathetic innervations. The most widely used scanning agents
include [’ I]meta-iodobenzylguanidine (MIBG), 6-['®F]fluorodopamine, and [''C]
hydroxyephedrine [12]. These methods have demonstrated sympathetic denervation
in patients with pure autonomic failure.
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6.2  Sympathetic Influences in the Blood Pressure
Regulation

The sympathetic nervous system is a major regulatory element of cardiac output and
systemic vascular resistance, i.e., the major effector components of neural blood
pressure regulation. Tonic sympathetic activity is mainly generated by neurons
located in the rostral ventrolateral medulla (RVLM) and regulated by arterial baro-
receptors, cardiopulmonary mechanoreceptors, and chemoreceptors. Sympathetic
activity is also modulated by neurons in the limbic system, the hypothalamus, and
the cortex [16]. Neurotransmitters involved are epinephrine that is released from
adrenal medulla, whereas norepinephrine is released mainly from the nerve termi-
nals where it is stored as subcellular granules [17]. Stimulus induces norepinephrine
release into the synaptic clefts where it exerts its effects (vasoconstriction and
increase in blood pressure); the large part is inactivated by reuptake by storage gran-
ules, and the remainder escapes into systemic circulation. Because only 20% of
norepinephrine appears in the circulation, plasma levels are merely a rough indica-
tor of sympathetic tone [2]. Adrenergic and dopaminergic receptors are the main
target sites through which neurotransmitters exert their vasomotor action (Table 6.1).
Activation of the a-receptors leads to vasoconstriction, whereas activation of the
B-receptors increases cardiac output. The precise physiological activity of the dopa-
minergic receptors in blood pressure regulation is not completely understood.
Animal models deficient of a;-receptors are resistant to vasopressor stimuli [18].
Stimulation of a;-receptors may favor cardiovascular hypertrophy, while stimula-
tion of a,-receptors leads to vasodilation. Both f;- and p,-receptors have an influ-
ence on the heart rate and cardiac output, and less on vascular resistance. All the
subtypes of dopamine receptors play a role in cardiovascular and renal function and
in particular on hormonal signaling, renal sodium, and blood flow [19]. A large
body of evidences has also shown that blood pressure and blood volume regulation
closely depends on the interactions between sympathetic nervous system, the renin-
angiotensin system, and renal sodium excretion [20-22]. Electrical stimulation of
renal sympathetic nerves increases renin release from juxtaglomerular cells, both
through changes in renal blood flow and direct stimulation of pB-adrenergic recep-
tors, and exerts anti-natriuretic effects by a direct action on tubular renal sodium
reabsorption.

6.2.1 Effect of Sympathetic Activation on Cardiovascular
Regulation

Sympathetic activation leads to increased heart rate (through f3,-receptor activation)
and peripheral vasoconstriction (through o;-receptor activation). Thus, sympathetic
activity exerts a direct effect on the two major parameters determining blood pres-
sure, namely, peripheral resistance and cardiac output. When discussing the effect of
the sympathetic nervous system on blood pressure level, the counteracting effect of
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Table 6.1 Sites and effect of activation of adrenergic receptors

Receptor  Sites Effect of activation
O ABC Smooth muscle: blood vessel, iris, circular Constriction
muscle of the ureter, uterus, bladder, rectal
sphincter
Intestine Relaxation
Heart Positive inotropic, trophic
Salivary glands Salivation
Adipose tissue Glycogenolysis
Sweat glands Sweating
Proximal renal tubules Sodium absorption,
gluconeogenesis
0 ABC Presynaptic nerve ending Inhibition of noradrenaline
release
Platelets Aggregation, degranulation
Pancreas Inhibition of insulin secretion
Adipose tissue Inhibition of lipolysis
Blood vessel smooth muscle Constriction
Kidney Inhibition of renin secretion
By Heart Positive inotropic and
chronotropic, trophic
Adipose tissue Lipolysis
Kidney Renin secretion
B Liver Glycogenolysis,
gluconeogenesis
Skeletal muscle Glycogenolysis, lactate release
Smooth muscle: bronchi, uterus, intestine, Relaxation
skeletal muscle blood vessels, bladder detrusor
Pancreas Amylase secretion
Salivary glands Salivation
Bs Adipose tissue Lipolysis
Skeletal muscle Thermogenesis
I Medulla Blood pressure elevation
Kidney Tubular sodium absorption
I, Monoamine oxidase ?
I; Pancreas Insulin secretion

the parasympathetic system should also be considered. The regulatory effect of the
sympathetic system involves both the heart and the resistance vessels, while the para-
sympathetic system affects mainly the heart. Increased sympathetic tone in hyperten-
sion is associated with reduced parasympathetic tone. Physiologically, elevated
blood pressure caused by increased sympathetic activity leads to baroreflex activa-
tion, in turn resulting in inhibition of the sympathetic activity and the return of blood
pressure to baseline values. It appears now well established that baroreceptor con-
tributes not only to short- but also long-term regulation of blood pressure levels
[23, 24]. It is likely that the anteroventral region of the third ventricle plays an impor-
tant role in the long-term regulation of blood pressure, sympathetic activity, and
fluid/volume homeostasis. This region of the brain is sensitive to circulating hor-
mones, blood pressure, and fluid/volume changes. These pathways are synchronized
and routed to the paraventricular nucleus of the hypothalamus which is the transmit-
ter of excitatory and inhibitory signals for long-term blood pressure control.
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6.3 Increased Adrenergic Tone in the Development
of the Hypertensive State

Increased adrenergic activity in patients with hypertension is supported by various
lines of evidence, including measurements of heart rate and catecholamine levels,
and data obtained using microneurographic approach. The simplest indicator of
adrenergic activation is tachycardia [2, 25]. Tachycardia related to hyperkinetic cir-
culation is often seen in subjects with borderline hypertension, particularly among
young men, and is accompanied by increased plasma noradrenaline levels.
Tachycardia and increased cardiac output are thought to be hemodynamic hallmarks
of early hypertension; this condition is not usually associated with increased periph-
eral resistance.

The presence of hyperkinetic circulation is associated with disturbed autonomic
balance as assessed by heart rate variability [26]. Decreased total heart rate vari-
ability, attenuation of the high-frequency spectral component dependent on para-
sympathetic activity, and an increased LF/HF ratio, suggesting sympathetic
activation, have been found in patients with hypertension. Norepinephrine spillover
from the neuroeffector junctions is increased in young subjects with borderline
blood pressure elevation. This enhanced release takes place particularly in the kid-
ney and in the heart, that is, two organs with a key role in blood pressure homeo-
static control [27]. An increase in central sympathetic outflow in young borderline
hypertensive subjects has been also obtained by microneurographic studies [28].
The complex borderline hypertension syndrome, however, is characterized by other
abnormalities involving the hemodynamic state, the metabolic and hormonal pro-
file, as well as the hemorheological condition. Several of these abnormalities are
triggered and reinforced by autonomic alterations. This appears to be particularly
the case for metabolic disarray, which is frequently detected in the early hyperten-
sive phases and includes hyperinsulinemia, insulin resistance, dyslipidemia, and
hypercholesterolemia. Most of these alterations, with visceral obesity, represent the
main features of the metabolic syndrome and are characterized by a hyperadrener-
gic tone [29, 30].

6.3.1 Increased Adrenergic Tone in the Progression
of Hypertensive State

Several evidences have clearly shown that in man although parasympathetic dys-
function remains stable in the hypertensive state, the sympathetic activation
undergoes a progressive potentiation [1, 2]. Microneurographic approach per-
formed in subjects with normal blood flow, with moderate essential hyperten-
sion, and with essential hypertension of a more severe degree, has clearly shown
(Fig. 6.1) a paralleled progressive increase in blood pressure values and sympa-
thetic nerve traffic in these three conditions, suggesting a key role of adrenergic
neural factors not only in the development but also in the progression of the
hypertensive state [31].
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Fig. 6.1 Mean values of muscle sympathetic nerve traffic (MSNA) expressed as burst incidence
corrected for heart rate values (bursts/100 heartbeats), in normotensive subjects (NT, BP 120-
129/80-84 mmHg) and in patients with high-normal blood pressure (HN, BP 130-139/85-
89 mmHg), moderate (M, BP 140-145/90-95 mmHg) and severe (S, BP >145/>95 mmHg)
hypertension (HT), and isolated systolic hypertension (ISH, BP >160/<90 mmHg), white-coat
(WC, elevated office BP/normal 24-h BP) and masked (MK, normal office BP/elevated 24-h BP)
hypertension, extreme dippers (EXD, nighttime BP reduction >20%), and reverse (RED, nighttime
BP increased) dippers. Asterisk (**p <0.01) refers to the level of statistical significance vs
NT. Figure based on data from [31, 32, 36, 39, 40]

A few other issues related to the autonomic alterations characterizing essential
hypertension deserve to be mentioned. First, the sympathetic overactivity is not
only a feature of the established condition. The prehypertensive state, that is, the
category of patients characterized by blood pressure values ranging from 135 to
140 mmHg for systolic and 85-90 mmHg for diastolic and with a high risk of devel-
oping a “true” hypertensive state [32], shows sympathetic nerve traffic values
greater for magnitude than the ones detected in the true normotensive state (Fig. 6.1),
and this is independent on the presence of a family history of hypertension [33, 34].
In these subjects the sympathetic activation does not seem to be confined to periph-
eral circulation, but it rather occurs also at cardiac level as suggested by the increase
in low-frequency component of heart rate variability [35]. The presence of an early
sympathetic activation may concur together with other factors to the development of
the target organ damage and may also represent a mechanism which participates at
the progression of the high-normal blood pressure to the established hypertensive
state.

Second, the sympathetic overactivity is not only a feature of young and middle-
age hypertensives, but it also occurs in elderly hypertensives, even when the blood
pressure elevation selectively affects systolic values (Fig. 6.1) [36]. Third, the
hypertension-related increase in adrenergic outflow appears to be specific for some
cardiovascular districts, such as the heart, the kidneys, and the skeletal muscle vas-
culature, and peculiar to the hypertensive state of essential nature [27, 31, 37].
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Fourth, independently from the measurement (in- or out-of-office), sympathetic
activity is increased both in “white-coat” hypertension (elevated clinic but normal
ambulatory blood pressure) and in “masked” hypertension (normal clinic but ele-
vated ambulatory blood pressure) (Fig. 6.1) [38, 39]. An important observation
comes from the 24-h blood pressure recording and in particular from the day/night
blood pressure difference. Hypertensive patients with the so-called reverse dipping
pattern profile (i.e., those patients in whom blood pressure values do not undergo
any reduction during nighttime but rather show a tendency to increase) are charac-
terized by a more pronounced sympathetic activation than that seen in dipper hyper-
tensives (Fig. 6.1) [40].

The increase in sympathetic cardiovascular influences is involved not only in
favoring the progression of blood pressure elevation but also in promoting
hypertension-related target organ damage [1, 2]. A marked increase in sympathetic
nerve traffic and in cardiac norepinephrine spillover has been observed in left ven-
tricular hypertrophy, in left ventricular dysfunction, and in congestive heart failure
[41-43]. This is also the case for the hypertension-related deterioration in renal
function that may promote the occurrence of an overt renal insufficiency [44]. In
this case sympathetic activity appears to be involved in the pathogenesis of the dis-
ease, given the evidence that adrenergic activation is detectable in the initial stages
of the renal dysfunction [45].

6.4 Mechanisms Leading to Sympathetic Activation
and New Hypothesis

What triggers sympathetic neural activation in causing the blood pressure elevation
is not fully understood. Mechanisms such as psychological stress, exaggerated
renin-angiotensin system activity, baroreceptor and chemoreceptor dysfunction,
and brainstem activation have been proposed as possible causes, but none is clearly
demonstrated in human hypertension [1, 2]. As far as reflex mechanisms are con-
cerned, there is evidence that arterial baroreceptors reflexes, cardiopulmonary
reflexes, and chemoreceptor reflexes are impaired in human hypertension [2]. In
hypertension, however, baroreceptor impairment has been documented for the para-
sympathetic but not for the sympathetic component of the reflex, unless congestive
heart failure or left ventricular dysfunction is concomitantly detected [2, 43]. Indeed,
although the arterial baroreceptor regulation of heart rate has been shown to be reset
and blunted, the modulation of both blood pressure and sympathetic nerve traffic
exerted by this reflexogenic area does not appear to undergo any impairment, both
in mild and severe hypertension [31]. However, reflex influences from other reflexo-
genic areas appear to be altered in hypertension. This is the case for the cardiopul-
monary reflex, whose control of vascular resistance and renin release from the
kidney is markedly reduced, especially in hypertensive subjects with left ventricular
hypertrophy [2]. This is also the case for the arterial chemoreflex, whose reflex
restraint on adrenergic drive is blunted in hypertension, particularly when obesity,
metabolic syndrome, or sleep apnea is concomitantly present [2]. Other hypotheses
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to explain the autonomic dysfunction in hypertension are as follows: (a) the meta-
bolic hypothesis takes into account the role of hyperinsulinemia and the related
insulin resistance frequently accompanying the hypertensive state [2]; (b) the acti-
vation of humoral systems (such as nitric oxide, endothelins, vasopressin, leptin-
melanocortin system, atrial natriuretic peptides, brain natriuretic factors, and
renin-angiotensin system) may adversely interfere with the autonomic control [2].

Two emerging factors that need to be mentioned for the relation with and the
influence on the adrenergic tone are represented by “old” classic cardiovascular risk
factors with renewed interest. The first one is the asymmetric dimethylarginine, a
marker of vascular dysfunction which in patients with chronic kidney disease has
been shown to be a strong predictor of fatal and nonfatal cardiovascular events and
cardiac organ damage [46, 47]. In these patients, dimethylarginine values showed
an increase that was paralleled to the degree of the sympathetic activation (Fig. 6.2).
The second “classic” risk marker which gained new interest in cardiovascular prog-
nosis is uric acid, whose increased blood circulating levels have been associated
with a greater incidence of hypertension, kidney disease, as well as vascular and
cardiac events [48]. This marker has shown a link with adrenergic neural drive. In
this case, however, the relationship appears to be significant only in patients with
chronic kidney disease and not in healthy subjects or in hypertensive patients due to
the close dependence of uric acid on the deranged renal function which “per se” is
associated with an augmented sympathetic drive [45].

Future researches will be focalized on mechanisms of sympathetic function and
in particular on the influence of genetic-neurobiology pathway of essential hyper-
tension on the sympathetic neural drive. In selected populations, for example, an
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overexpression of adrenergic alpha-1A-receptor gene [49] or f,-adrenoreceptor
polymorphism [50] has been shown to be related with adrenergic overactivity, and
this is also the case for genetic hemochromatosis indicating the role of iron overload
in sustaining the adrenergic overdrive of this condition [51]. The second area that
will need to be developed concerns the relation between the sympathetic nervous
system and the autoimmune and inflammatory systems [52].
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Sébastien Foulquier, Ludovit Paulis, Elena Kaschina,
Pawel Namsolleck, and Thomas Unger

7.1 Introduction

Hormonal systems are largely involved in blood pressure regulation and water and
salt homeostasis. Importantly, they are also involved in development and progres-
sion of cardiovascular and renal diseases. Here, we discuss recent findings about
the impact of renin-angiotensin, aldosterone, vasopressin, and natriuretic peptide
systems on blood pressure regulation and development of hypertension.

7.2  The Renin-Angiotensin System

The renin-angiotensin system (RAS) is not only an important regulator of blood
pressure and body fluid in short term but is also involved in the pathology of
hypertension and high blood pressure-associated organ alterations. For this rea-
son, it is one of the therapeutically most exploited neurohumoral systems [1].
Recently, novel RAS peptides and receptors were identified that extend our view
of the RAS, provide a rationale for some previously unanswered questions, and
suggest exciting putative therapeutic implications for the future.
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7.2.1 From Renin to Angiotensin Il

RAS activation starts with the release of renin from renal juxtaglomerular cells. These
are innervated by sympathetic nerve fibers, localized closely to the afferent arteriole as
well as to the cells of macula densa in the distal convoluted tubule. The release of renin
is stimulated by several factors including 3-sympathetic stimulation, reduced Na* load
in the distal tubule, or reduced renal perfusion [2]. Renin is a glycoprotein that is syn-
thetized in the form of prorenin and converted to its active form by the renal neuroen-
docrine convertase 1 or cathepsin B. However, prorenin is also constitutively being
released from the kidneys at high concentration and might bind to the (pro)renin recep-
tor (P)RR in the tissues [3]. The (P)RR enhances the activity of renin and unmasks the
activity of prorenin. Independently on renin enzymatic activity, the (P)RR activates
promyelocytic zinc finger (PLZF) [4], protein-phosphatidylinositol 3-kinase (PI3-K),
and eventually mitogen-activated protein kinases (MAPKs) followed by anti-apopto-
sis, proliferation, and enhanced protein synthesis [5, 6]. However, the role of the (P)RR
in the pathophysiology of cardiovascular diseases is still controversial [5, 7] as is the
role of the renin-angiotensin systems described in a variety of tissues.

The enzymatic activity of renin converts the protein angiotensinogen [8] to the
decapeptide angiotensin I (Ang I). This conversion represents the rate-limiting step
in RAS activation. The substrate for the reaction, angiotensinogen, is expressed in
abundance mainly by the liver and provides the source for most of the plasmatic
Ang L. The rate of Ang I generation in the plasma is denominated plasma renin
activity (PRA) and serves as an important diagnostic indicator. Some angiotensino-
gen is expressed also in tissues (including the kidneys) locally and serves as a sub-
strate for the local paracrine Ang I formation.

The circulating and locally expressed carboxypeptidase angiotensin-converting
enzyme (ACE) then converts Ang I to angiotensin II (Ang II) by cleaving the two
C-terminal amino acids from Ang I [9]. ACE is a hydrolytic enzymatic glycoprotein
with two active zinc-binding domains. Most of the ACE is membrane bound to
endothelial cells (in particular in the lungs), but there is a soluble circulating ACE
form as well. ACE also partly inactivates the NO-dependent vasodilator bradykinin
[10]. Besides ACE, Ang I may also be converted to Ang II (in particular in condi-
tions of inhibited ACE) by chymase, carboxypeptidase, cathepsin G, or tonin.

7.2.2 C(Classical Renin-Angiotensin System

In the initial classical RAS concept [11], Ang II was responsible for most of the RAS
effects via its angiotensin AT1 receptor (AT,R). The AT|R is abundantly expressed
including vascular smooth muscle cells, renal tubular cells, mesangial cells, juxtaglo-
merular cells, cardiomyocytes, fibroblasts, suprarenal cortex, or central nervous sys-
tem. The AT|R action is modulated by adaptors such as AT1 receptor-associated
protein (ATRAP), AT, receptor-associated protein 1 (ARAPI1), or the AT1R- and
AT2R-interacting protein (ATIP) [12]. The AT\R is a seven-transmembrane domain
Gyi-coupled receptor. Its stimulation results in phospholipase C activation and adeny-
Iyl cyclase inhibition (see review for detailed signal transduction [13]). This translates
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to the physiologic action of Ang II, of which arterial vasoconstriction was the first
described [14]. Via renal vasoconstriction, AT;R stimulation leads to reduced renal
blood flow and medullary blood flow with subsequent efferent arteriole constriction
resulting in increased filtration pressure. On the other hand, AT R activation on mesan-
gial cells leads to their constriction and reduction of glomerular filtration area. In addi-
tion, the AT R directly activates sodium reabsorption transporters in the proximal
tubule [15-17]. As a result, the short-term effect of AT,R stimulation is blood pressure
increase due to vasoconstriction, which is stabilized in midterm due to sodium reten-
tion and a shift of the diuresis-blood pressure curve to higher blood pressure values. In
the central nervous system, the AT\ R activates the hypothalamic thirst center and vaso-
pressin release leading to further volume expansion and blood pressure rise. At the
same time, however, the AT|R mediates a direct negative short feedback loop by inhib-
iting renin release from the juxtaglomerular cells [18], while the blood pressure-driven
diuresis and sodium excretion generate a further long feedback loop on renin release.

In addition to the acute effects of AT R activation, the stimulation of this receptor
in long term produces further effects with important physiological implications.
AT R promotes inflammation, cardiomyocyte hypertrophy, proliferation of fibro-
blasts, and the synthesis of extracellular matrix [19]. While at first, these effects
provide a mean to adapt to the increased hemodynamic load, they ultimately result
in left ventricular hypertrophy and fibrosis, arteriosclerosis, atherosclerosis, and
renal glomerulosclerosis [19]. The direct AT,R-mediated effects are complemented
by those of aldosterone (see “Aldosterone” paragraph).

7.2.3 Clinical Implications

Several clinical situations feature an increased RAS activity, most notably renovas-
cular hypertension. Unilateral renal artery stenosis (due to atherosclerosis, fibro-
muscular dysplasia, or a congenital defect) leads to renin release and Ang
II-dependent hypertension. Experimentally, such situation is mimicked by the two-
kidney-one-clip (2K1C) hypertension model [20]. While the clipped kidney pro-
duces excessive amounts of renin, the other kidney allows for volume normalization.
Clinically, renovascular hypertension can be diagnosed by the use of the ACE inhib-
itory test displaying a plasma renin activity increase after ACEI administration.
The therapeutic importance of the classical RAS concept is documented by the
established use of RAS-blocking therapies such as ACE inhibitors (ACEIs), AT,R
blockers (ARBs), and direct renin inhibitors (DRIs) but also mineralocorticoid
receptor antagonists (MRAs) and f-blockers (BBs). First, large clinical trials in
hypertension (CAPP, STOP-2) or high-risk patients (HOPE) have demonstrated that
ACEIs were at least non-inferior or even superior compared to conventional stan-
dard therapy [21-23]. Then, the ARBs were shown to be non-inferior or superior to
B-blockers [24], calcium antagonists [25], or ACE inhibitors [26] with regard to
cardiovascular morbidity and mortality reduction in hypertension or high-risk
patients. While both ACEIs and ARBs reduced the onset of new diabetes mellitus
[27], the ARBs are better tolerated than ACEIs in terms of dry cough [26]. Finally,
in 2007 the first-in-class DRI, aliskiren, was introduced. In head-to-head
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comparison aliskiren was non-inferior in blood pressure reduction when compared
to ARBs [28], ACEIs [29], hydrochlorothiazide [30], and atenolol [31]. However,
clinical trials have also shown that a simultaneous dual RAS blockade should be
avoided. In the ALTITUDE trial in patients with type 2 diabetes and renal impair-
ment, aliskiren added on top of conventional antihypertensive treatment (including
ACEI or ARB) increased the incidence of almost all primary end point components
(cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, resuscitated
sudden death, doubling of serum creatinine, end-stage renal disease/renal death)
[32]. In the ONTARGET trial, the ACEI + ARB combination did not provide any
benefit compared to either monotherapy [26]. In the recent decade, our extended
view of the RAS improved our understanding of a (dual) RAS modulation and sug-
gested new possible therapeutic targets as well.

7.2.4 The Recent Fingerprint of RAS Peptides

The RAS should be viewed more as a complex net of peptides rather than a simple
cascade [33]. The spectrum of angiotensin peptides is much broader than just Ang I
and Ang II. The angiotensins are denominated according to their amino acid com-
position expressed as the ordinal number of the first and last amino acid with refer-
ence to its position in the decapeptide Ang I (i.e., 1-10) numbered from the
amino-terminus to the carboxy-terminus. The concentrations of the angiotensin
peptides are determined by the activity of the interlinking proteases and form a
complex net in a dynamic equilibrium (Fig. 7.1). The angiotensin peptides exercise
their physiological activity not only via the AT,R but also via AT,R, AT;R, AT,R, or
Mas receptor (Table 7.1) and at both systemic and tissular levels [34].

7.2.5 The Novel“Protective” Arm of RAS

The action of several of the angiotensin peptides and receptors included in the
extended view of the RAS demonstrates properties and actions at least partly oppos-
ing the classical RAS concept. Thus, they are considered to be the “protective” arm
of RAS [35]. It was hypothesized that the protective/deleterious RAS affects the
physiological outcome in addition to the concentration of the Ang II alone [36].
Some of these angiotensin peptides and related enzymes are of particular interest.
Under basal conditions, the AT,R is much less expressed compared to the AT R.
However, in several cardiovascular pathologies, such as hypertension or left ven-
tricular hypertrophy, the AT,R expression is increased [19]. Similar to the AT R, the
AT,R is a seven-transmembrane domain G-coupled receptor, but its intracellular
signaling pathways appear uncanonical. The AT,-associated pathways include NO/
c¢GMP activation [37], inhibition of mitogen-activated protein kinases (MAPKs) by
protein phosphatases [38], phospholipase A2 stimulation [39], or disruption of
AT R signaling by AT ,R-AT,R heterodimerization [40]. Similar to the AT|R, the
effects of AT,R stimulation are modulated by adaptor proteins such as the
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Ang
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Fig. 7.1 The RAS-Fingerprint. Angiotensinogen (AGT) and angiotensin peptides (identified by
first-last amino acid in brackets) interlinked by the respective peptidases: ACE angiotensin-
converting enzyme, ACE2 angiotensin-converting enzyme 2, NEP neprilysin (neutral endopepti-
dase), AP aminopeptidases, DAP dipeptidyl aminopeptidase. The peptides are linked to several
receptors, such as the angiotensin AT1 receptor (AT;R), AT2 receptor (AT,R), AT3 receptor
(AT3R), and AT4 receptor (AT R, equivalent to IRAP, insulin-regulated aminopeptidase), the Mas
receptor, and the (pro)renin receptor ((P)RR). The RAS is distinctly modulated by different estab-
lished therapies (R/ renin inhibitor, ACEI ACE inhibitor, ARB angiotensin receptor blocker) (modi-
fied with permission from Attaquant Ltd.)

AT R- and AT,R-interacting protein (ATIP = ATBP) or AT,R-binding protein of
50 kDa [12, 41]. The functional effects associated with AT,R stimulation include
antiproliferation, anti-inflammation, vasodilation, and axonal regeneration [42—46].
Using the selective AT,R agonist, compound 21 [47], it was demonstrated that the
AT,R stimulation improved systolic and diastolic function in rats after myocardial
infarction [48, 49], reduced vascular fibrosis in two models of experimental hyper-
tension [50, 51], protected against nephropathy in doxorubicin-treated rats [52] and
in 2K1C hypertension [53], and improved cognitive/neurological outcome in dia-
betic mice [54], spinal cord injury [55], or autoimmune encephalitis [56].
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Table 7.1 Effects of RAS receptor modulation

ATI1R activation Vasoconstriction
Sodium reabsorption, sodium and water retention
Thirst triggering and oxytocin release
Adrenocorticotropin, prolactin, oxytocin release
Increased sympathetic nerve activity
Blood pressure increase
Fibrosis, Apoptosis
Inflammation
Proliferation (e.g., vascular smooth muscle cells, fibroblasts)
Extracellular matrix synthesis and fibrosis
Cardiomyocyte hypertrophy
Aldosterone secretion
AT2R activation Anti-inflammatory effects
Antifibrotic effects
Antiproliferative effects
Apoptosis
Neuroprotection and neuroregeneration
NO release
Vasodilation, Nephroprotection
AT4R (IRAP) inhibition Anti-inflammatory effects
Antifibrotic effects
NO release
Memory and learning improvements
Mas activation Anti-inflammatory effects
Antifibrotic effects
Antiproliferative effect on vascular smooth muscle cells
Increased baroreflex sensitivity
NO release

Modified from Romero et al. [113]

In contrast to the AT R and AT,R, much less is known about the AT;R and AT,R
[57]. AT R (also the insulin-regulated aminopeptidase, IRAP) is widely expressed
in several tissues including the myocardium, and its expression is upregulated in
pathological situations [58]. The major natural ligand for this receptor is the Ang [V
(3-8) which has some low affinity for the AT|R and AT,R as well [59]. By binding
to the AT,R, Ang IV (3-8) inhibits its aminopeptidase activity with putative anti-
inflammatory and antiproliferative activity. Up to date, it was shown that Ang IV
(3-8) via the AT,R enhances atrial natriuretic peptide A levels [60] and protects
against myocardial ischemia-reperfusion injury by activating PI3K-Akt-mTOR
pathway and inhibiting apoptosis [61].

For the Mas receptor, the natural ligand is the Ang (1-7). The mas receptor is a
seven-transmembrane domain unconventional G-protein-coupled receptor sharing
a 31% sequence identity with the AT,R [62]. The intracellular pathways and func-
tional effects triggered by Mas- and AT,R stimulation are strikingly similar. They
include phosphatase stimulation and antiproliferative and anti-inflammatory
effects [63]. The blockade of either AT,R or Mas receptor seems to block the
effects of the other receptor, probably due to their heterodimerization [63]. The
non-peptide Mas agonist, AVE-0991, decreased mean arterial pressure in
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DOCA-salt-induced hypertension in rats and protected against renal injury
[64-66]. With regard to the effects of the Mas receptor, the pathways responsible
for Ang (1-7) formation gain interest. Ang (1-7) might be formed from Ang II
(1-8) via the activity of angiotensin-converting enzyme 2 (ACE2). ACE2 is a car-
boxypeptidase cleaving the last C-terminal amino acid. Alternatively, Ang (1-7)
may be produced from Ang I (1-10) by the sequential activity of ACE2 and ACE
with the Ang (1-9) as an intermediate or directly by the activity of the neutral
endopeptidase (NEP, neprilysin). Indeed, the ACE2 levels in stroke prone sponta-
neously hypertensive are reduced [67], and recombinant human ACE2 prevented
cardiac remodeling in Ang II-treated ACE2 knockout mice [68]. On the other hand,
in healthy volunteers, recombinant ACE2 did not produce a significant effect in
blood pressure despite reducing Ang II (1-8) and increasing Ang (1-7) and Ang
(1-5) levels [69]. NEP inhibition was investigated as a possible antihypertensive
therapeutic target because it cleaves some vasoactive factors such as endothelin,
natriuretic peptides, and kinins [70]. Due to its effect on Ang I (1-10) cleavage and
Ang (1-7) production, NEP inhibition needs to be combined with RAS blockade.
The trials OCTAVE and OVERTURE showed that combined ACE/NEP inhibition
was effective in hypertension and heart failure, but was also associated with more
frequent angioedema [71, 72]. When NEP inhibition was combined with an ARB
in the LCZ696 molecule, it reduced sitting systolic and diastolic blood pressure
more than the corresponding ARB doses without any angioedema in this study
[73]. In patients with heart failure and preserved ejection fraction, LCZ696 effec-
tively reduced N-terminal pro b-type natriuretic peptide levels and preserved glo-
merular filtration rate [74, 75]. In heart failure with reduced ejection fraction,
LCZ696 reduced the primary end point by 20%, all-cause mortality by 16%, and
cardiovascular mortality by 20% compared to ACEI causing the premature halt of
the PARADIGM-HF trial [76].

7.3 Aldosterone

In 1952 Sylvia and James Tait isolated a steroid hormone from adrenal cortex and
named it electrocortin.! Two years later, in collaboration with Tadeusz Reichstein,
they elucidated the entire chemical structure as 11p-21-dihydroxy-18-oxo-pregn-4-
ene-3,20-dione and renamed it aldosterone.! This most potent sodium-retaining fac-
tor in mammals was termed a mineralocorticoid and has become a focus of
hypertension research.

In 1958, Franz Gross suggested that the kidney releases an aldosterone-
stimulating factor responsible for aldosterone secretion [77]. By that, he was the
first to discover the cross talk between kidney and adrenal gland. Based on the
finding that the inverse relationship between sodium balance and the secretion of
aldosterone is reflected in the content of renin in the kidney, Franz Gross proposed
that the renin-angiotensin system might play a part in the regulation of the adrenal
function [77]. Later on, several groups of investigators could confirm that Ang II
stimulates aldosterone secretion.! The other major stimulus for aldosterone
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secretion, potassium, was described by Giroud and colleagues in 1956 [78]. Since
then, aldosterone has been established as the primary mineralocorticoid that plays
a central role in the regulation of blood pressure, blood volume, and salt
household.

7.3.1 Aldosterone Synthesis

Aldosterone binds to mineralocorticoid receptors (MR) in the kidney, colon, and
sweat glands and induces sodium (and water) reabsorption and potassium excre-
tion [79]. Aldosterone is synthesized from cholesterol in the zona glomerulosa of
the adrenal cortex by a series of enzymatic reactions. Its production is regulated
by the CYP11B2 gene which encodes aldosterone synthase (ALDOS, cytochrome
P450 11B2) (Fig. 7.2). This enzyme, located in the mitochondria, catalyzes the
final three rate-limiting steps of aldosterone synthesis from deoxycorticosterone.
The glucocorticoid, cortisol, has a higher affinity to MR than aldosterone, but in
kidneys and other target tissues for aldosterone, the enzyme 11-beta-hydroxyster-
oid dehydrogenase (11-beta-HSD?2) metabolizes cortisol to cortisone which does
not bind to the MR. In the case of deficiency of this enzyme, cortisol acts as a
mineralocorticoid.

The main regulators of aldosterone synthesis and secretion are Ang II [80], the
concentration of extracellular potassium, and adrenocorticotropic hormone
(ACTH) [81] (Fig. 7.2). Aldosterone release is controlled by the juxtaglomerular
apparatus, which is sensitive to the composition of the fluid in the distal tube. A
decrease in sodium chloride concentration of the filtrate is sensed by macula densa
cells which stimulate the release of renin. This leads to the formation of Ang II and
stimulation of the aldosterone synthesis via the activation of the AT1R which, in
turn, upregulates the CYP/1 B2 gene encoding ALDOS in the zona glomerulosa of
the adrenal cortex. The stimulant effect of Ang II on aldosterone synthesis and
release is enhanced under conditions of hyponatremia or hyperkaliemia. In part of
hypertensive individuals, the sensitivity of the adrenal gland to Ang II and, subse-
quently, aldosterone production is modulated by dietary salt intake and sympa-
thetic activation [82]. Moreover, chronic stimulation by Ang II induces zona
glomerulosa hypertrophy and hyperplasia, increased CYPI/B2 expression, and,
hence, aldosterone secretion [83].

Low plasma sodium or high plasma potassium concentrations affect the zona
glomerulosa cells of the adrenal directly, stimulating aldosterone release. Increased
extracellular potassium causes zona glomerulosa cell membrane depolarization,
leading to the opening of voltage-dependent L- and T-type calcium channels, rise in
calcium, and activation of calmodulin and CaM kinases which phosphorylate tran-
scription factors to stimulate CYP//B2 gene transcription [84]. Secretory products
from adipocytes have also been suggested to upregulate ALDOS expression and
stimulate the synthesis of aldosterone [85].
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Fig.7.2 Mechanisms of aldosterone-mediated arterial hypertension. Renal sodium and water reten-
tion, increased peripheral resistance, and stimulation of the sympathetic nervous system are the major
pathogenetic pathways of aldosterone-induced hypertension. Renin is synthesized by the juxtaglo-
merular cells of the kidney. Renin catalyzes the conversion of angiotensinogen to angiotensin I,
which is converted by angiotensin-converting enzyme (ACE) to angiotensin II (Ang II). Ang II, via
the AT1 receptor (AT1R), increases the synthesis of aldosterone by upregulating the CYP/1B2 gene,
which encodes the enzyme aldosterone synthase (ALDOS) in the zona glomerulosa of the adrenal
cortex. ALDOS catalyzes the synthesis of aldosterone in the adrenal cortex. In the kidney, aldoste-
rone binds to the cytoplasmic mineralocorticoid receptor (MR); the aldosterone-MR complex
migrates to the nucleus and leads to a gene-specific transcription of genes crucial for transepithelial
sodium transport such as the epithelial sodium channel (ENaC) and the Na*/K* adenosine triphospha-
tase. Sodium and fluid retention cause volume overload. Aldosterone excess in the vessels promotes
vascular remodeling and induces inflammation, oxidative stress, endothelial dysfunction, and vaso-
constriction. Brain MRI plays a role in increased sympathoexcitatory responses. Excess aldosterone
secretion can be counteracted by aldosterone antagonists or by selective inhibitors of aldosterone
synthase. Abbreviations: ACTH adrenocorticotropic hormone, Ang II angiotensin II, AT/ angiotensin
AT1 receptor, A aldosterone, ALDOS aldosterone synthase, MR mineralocorticoid receptor, ENaC
epithelial Na* channel, NADPH nicotinamid-denin-dinucleotid-phosphate, MCP/ macrophage che-
moattractant protein-1, TNF-a tumor necrosis factor alpha, TGF-s transforming growth factor beta,
NO nitric oxide

7.3.2 Primary Aldosteronism

The role of aldosterone in hypertension has been first suggested by Michat Litynski
in 1953 [86]. Conn and Louis (1954) provided the causal evidence when they treated
a case of hypertension by surgical removal of large adrenal adenoma [87].

Primary aldosteronism or hyperaldosteronism, also known as Conn’s syndrome,
is characterized by hypertension and an inappropriately high aldosterone levels that
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cannot be suppressed by sodium loading. Moreover, patients may have hypokalemia
and low plasma renin activity. It is assumed that volume expansion associated with
increased aldosterone levels inhibits renin secretion. Therefore, the aldosterone-to-
renin ratio is recommended as screening tool for primary aldosteronism [88].
Underlying causes of primary aldosteronism include idiopathic hyperaldosteron-
ism, primary adrenal (glomerulosa) hyperplasia, familial hyperaldosteronism, and
aldosterone-producing adenoma or carcinoma. Primary aldosteronism may account
for more than 10% of patients with hypertension [89].

7.3.3 Aldosterone and Hypertension

Secondary hyperaldosteronism occurs by a perceived drop in intravascular volume
due to reduced cardiac output. In patients with cardiac failure, for instance, aldo-
sterone may reach plasma levels up to 60-fold higher in comparison with healthy
subjects [90].

Clinical evidence shows that aldosterone contributes to the pathogenesis of
hypertension beyond primary aldosteronism [91]. Jaques Genest et al. also sug-
gested that human arterial hypertension is a state of mild chronic hyperaldosteron-
ism [92]. Later, results from the Framingham Heart Disease Epidemiology Study
demonstrated that aldosterone levels within the upper part of the physiological
range predispose normotensive subjects to the development of hypertension [93].
Moreover, up to 15% of hypertensive patients have increased aldosterone-to-renin
ratios, and in patients with drug-resistant hypertension, this parameter was reported
to rise up to 25% [94]. Remarkably, genetic risk factor such as polymorphisms of
the CYP11B2 gene, which encodes ALDOS, may contribute to hypertension in sub-
jects with a raised aldosterone-to-renin ratio [95].

7.3.4 Mechanisms of Aldosterone Action in Hypertension

The major pathogenetic pathways of aldosterone-induced hypertension include
renal sodium and water retention, increased peripheral resistance, and stimulation
of the sympathetic nervous system [91] (Fig. 7.2).

In the kidney, aldosterone induces genomic and non-genomic effects. In the
epithelial cells of the late distal tubule and collecting duct, aldosterone binds to
cytoplasmic MR, which is a member of the nuclear receptor family of ligand-
dependent transcription factors [96]. The aldosterone-MR complex migrates to the
nucleus and binds on the DNA to a specific hormone response element which
leads to a gene-specific transcription. The transcribed genes are crucial for tran-
sepithelial sodium transport, including the epithelial sodium channel (ENaC), the
Na+/K+ adenosine triphosphatase, and their regulatory proteins. Serum- and glu-
cocorticoid-induced kinase 1 (SGK1), an aldosterone-induced regulatory protein,
leads to retrieve of ENaC at the apical surface by phosphorylating an ubiquitin
ligase Nedd4-2. As a result, sodium reabsorption is sustained. The reabsorbed
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sodium is transported to the extracellular compartment via the action of the Na*/
K* adenosine triphosphatase at the basolateral surface. Thus, the reabsorption of
Na* (and subsequent reabsorption of Cl~ and H,0) and secretion of K* and H* are
increased [83].

In addition to genomic effects described above, aldosterone induces rapid effects
predominantly in non-epithelial cells such as vascular smooth cells, endothelial
cells, cardiac myocytes, and kidney cells [97]. These non-genomic actions are medi-
ated through second messenger systems IP3, DAG, cyclic AMP, and subsequent
Ca* regulation [97] and may be important for vascular regulation.

The effects of aldosterone on blood pressure regulation extend beyond
increased intravascular fluid retention and volume overload. Aldosterone modu-
lates vascular tone by increasing pressor responses to catecholamines and impair-
ing the vasodilatory response to acetylcholine as well as by upregulation of the
AT, receptor [83]. Hyperaldosteronism also causes vasoconstriction by limiting
bioavailability of endothelial nitric oxide and by increasing intracellular calcium
in the vascular smooth cells [98]. In addition, aldosterone excess promotes vascu-
lar hypertrophy and fibrosis followed by vascular remodeling and increased arte-
rial stiffness [99]. Hyperaldosteronism also activates inflammation and oxidative
stress, alters fibrinolysis by increasing plasminogen activator inhibitor-1 expres-
sion, and promotes tissue apoptosis and fibrosis [100]. Importantly, the cellular
pathways regulated by aldosterone via the MR and Ang II via its AT R type seem
to reinforce each other [101].

Experimental studies demonstrated that aldosterone agonists and antagonists
influence blood pressure when they are infused directly into the brain [102]. Brain
MR may play a role in increased salt appetite and increased sympathoexcitatory
responses [91], although the central sites and mechanisms of mineralocorticoid-
mediated pressor responses remain controversial [103].

7.3.5 Aldosterone Antagonists

Excess aldosterone secretion can be counteracted by aldosterone antagonists
(Fig. 7.2). This class of drugs offers therapeutic benefits for both lowering blood
pressure and preventing end-organ damage. Spironolactone, the first MR antago-
nist, was developed more than 50 years ago [104]. It attenuates the effects of aldo-
sterone and is used for the treatment of hypertension, primary aldosteronism, and
peripheral edema associated with heart failure. Monotherapy with spironolactone
was shown to be effective in patients with low-renin essential hypertension [105]. In
patients with low renin levels and high aldosterone-to-renin ratio, spironolactone
decreased blood pressure as effectively as thiazide diuretics [106]. Low-dose spi-
ronolactone is also beneficial by patients with resistant hypertension even irrespec-
tive of renin and aldosterone concentrations [107, 108]. Moreover, a recent
randomized, double-blind, crossover trial PATHWAY-2 demonstrated that spirono-
lactone was the most effective add-on drug for the treatment of resistant hyperten-
sion [109]. However, spironolactone lacks specificity for the MR. It activates also
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steroid progesterone and androgen receptors leading to progestational and antian-
drogenic side effects such as menstrual irregularities in women and sexual dysfunc-
tion with gynecomastia in men. This led to the development of a more selective,
“second-generation” aldosterone receptor antagonist eplerenone which is less prone
to cause steroid-like side effects.

Eplerenone provides well-tolerated blood pressure reduction in patients with
low-renin essential hypertension and mild-to-moderate hypertension or in hyperten-
sive patients when administered as add-on therapy [91]. Unfortunately, eplerenone
features a reduced potency [110]. Therefore, despite of its better tolerability over
spironolactone [111], the indication for hypertension is not recognized except in the
presence of intolerance to spironolactone [112].

Hyperkaliemia is a serious dose-related adverse effect of both spironolactone and
eplerenone. The risk of hyperkalemia is minimized by serum K* and renal function
monitoring and avoidance of concurrent therapies associated with hyperkalemia.

Other nonsteroidal aldosterone antagonists are being developed [113]. Finerenone,
previously called BAY94-8662, for instance, has greater affinity to the MR than
eplerenone [114]. In patients with chronic heart failure and renal disease, finerenone
may achieve equivalent organ-protective effects with reduced levels of electrolyte dis-
turbance compared with steroid-based MR antagonists [115]. However, finerenone
does not significantly influence systolic blood pressure [114].

An alternative approach is to inhibit aldosterone synthesis by selective inhibitors
of aldosterone synthase [110, 116] (Fig. 7.2). The first orally active aldosterone
synthase inhibitor, LC1699, has been tested in patients with resistant hypertension
and primary hyperaldosteronism [110]. Unfortunately, due to lack of selectivity, LC
1699 at higher doses also inhibits 11-beta-hydroxylase which regulates cortisol syn-
thesis. Thus, more selective substances will have to be developed. FAD 286, an
aromatase inhibitor, decreased plasma aldosterone concentrations and thereby
decreased blood pressure and improved cardiac and renal target organ damage in
several animal models [113].

Altogether, recent scientific advances highlight the role of aldosterone as a key
cardiovascular hormone. Inhibition of aldosterone action can be beneficial in the
treatment of hypertension and end-organ damage.

7.4  Vasopressin

Vasopressin (or arginine vasopressin, AVP) is a nonapeptide produced by the neurons
of the hypothalamus [117]. Initially identified in 1895 as a pressor hormone [118], it
has been recognized two decades later as a potent antidiuretic peptide and is therefore
also known as “antidiuretic hormone” (ADH) [119]. The differential pressor and
diuretic actions are mediated by different G-protein-coupled vasopressin receptors.
These encompass three main subtypes: the vasopressin V1a, V1b, and V2 receptors
(V1aR, V1IbR, V2R). The V1aR are expressed abundantly in vascular smooth muscle
cells, and their stimulation is responsible for the vasopressor effect, while the V1bR
are pituitary receptors stimulating the release of ACTH. Both V1aR and V1bR
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mediate their main actions via the Gg-phosphatidylinositol and 1,2-diacylglycerol
signaling pathway [120]. The V2R, mainly localized in the renal collecting duct, are
involved in the antidiuretic action of vasopressin [121]. Its intracellular signaling
involves the Gs-adenylate cyclase/cAMP/PKA pathway that results in an increased
expression and insertion of aquaporin-2 channels with a subsequent increased water
reabsorption across the cells from the collecting duct [122].

Since vasopressin levels have been found elevated in animal models of hyperten-
sion [123, 124] and in some forms of human hypertension [121, 125], the potential
contribution of vasopressin to the development of hypertension will be addressed.

7.4.1 Vasopressor Contribution

Blockade of the V1aR for 4 weeks in prehypertensive SHR could attenuate the
development of hypertension in adult SHR [126]. This was further supported by
an increase of plasma vasopressin and of renal V1aR gene and protein expressions
parallel to hypertension development [127]. However, once hypertension was
fully established, plasma vasopressin decreased and V1aR gene and protein
expressions were downregulated [127]. This was observed together with an undis-
turbed V2R expression over the studied period in SHR, and it was not present in
the normotensive strain. The authors suggested that the administration of V1aR
antagonists in the prehypertensive state could thus allow the prevention of hyper-
tension in patients at risk.

However, in another hypertensive model (L-NAME), V1aR antagonism could
not attenuate hypertension and renal dysfunction [128]. A further blood pressure
increase was even observed at the end of treatment although renal and mesenteric
vasoconstriction to vasopressin was attenuated [128]. This suggested that V1aR
activation does not contribute to hypertension induced by inhibition of NO
synthesis.

Moreover, the vasoconstrictor nature of vasopressin has been questioned by the
observation of vasopressin-induced vasodilation in some studies [129-132]. The
differential vasoreactive response to vasopressin may reflect different experimental
environments [133, 134] but may also be linked to the binding of vasopressin to
endothelial oxytocin- and P2 purinergic receptors (OTR and P2R, respectively)
[135, 136]. Binding of vasopressin to P2R stimulates phospholipase A2 and nitric
oxide synthase, resulting in increased production of prostacyclin and nitric oxide,
respectively, both leading to vasodilatation [137]. Binding to the endothelial OTR
also results in a release of nitric oxide and vasodilation. Therefore, further knowl-
edge of the function and distribution of vasopressin receptors in the course of hyper-
tension development seems essential to understand the apparent contradictory
effects of vasopressin on vascular function. In addition, while it is known that vaso-
pressin can potentiate the vasoconstriction induced by norepinephrine [138] and
Ang II [139-141], the underlying mechanisms remain to be discovered in order to
unveil a potential contribution of vasopressin-mediated increased vascular resis-
tance to the development of hypertension.
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Finally, clinical studies are also not conclusive. In well-hydrated volunteers and in
patients with a mild form of essential hypertension, V1bR blockade did not alter
blood pressure [142, 143]. However in patients with more severe forms of hyperten-
sion, in which plasma vasopressin was found to be elevated, VIR blockade induced
a modest but consistent blood pressure decrease [144]. More recently, in hyperten-
sive patients, blockade of the V1aR with a synthetic antagonist during osmotic stimu-
lation resulted in a transient vasodilation without blood pressure reduction [145].

7.4.2 Antinatriuretic Contribution

An increased plasma osmolality triggers the secretion of vasopressin from vaso-
pressinergic neurons in the neurohypophysis. It has been suggested that increased
vasopressin levels could participate in the blood pressure elevation, not via its
Vl1aR-mediated effects (which actually facilitate sodium excretion) but via actions
mediated by V2R [121]. The acute administration of a selective V2R agonist was
able to increase urine osmolarity, to reduce urine flow rate, and to reduce sodium
excretion in rats as well as in humans [121]. Following a prolonged V2R stimula-
tion, blood pressure was even raised by ~10 mmHg in normotensive rats. In addi-
tion, treatment with a selective nonpeptide V2R antagonist in DOCA-salt
hypertensive mice or SHR could limit or even prevent the rise in blood pressure
[146, 147].

7.4.3 Central Contribution

Vasopressin is synthesized by neurons located in the paraventricular nucleus and
median preoptic and supraoptic nuclei. Those neurons can be depolarized by hyper-
tonic conditions promoting thus the release of a vasopressin precursor or hyperpo-
larized by hypotonic conditions to limit its release. Finally, the vasopressin precursor
migrates to the posterior pituitary, from which it is released into the circulation
[133].

First evidences for a central contribution were obtained in studies involving
spontaneously hypertensive rats (SHR-SP) in which vasopressin concentrations in
plasma and brain stem were reduced compared to normotensive Wistar Kyoto
(WKY) rats [148, 149]. Recent investigations have been performed to assess
whether vasopressin neurons are excited in hypertensive states [150]. This was stud-
ied in an inducible angiotensin-dependent hypertensive model, the Cyplal-Ren2
rat. The basal firing rate of vasopressin neurons was higher in hypertensive rats. In
addition, the baroreflex-induced inhibition of vasopressin neurons was lost in hyper-
tensive rats [150]. This demonstrates that the activity of vasopressin neurons is
increased at the onset of hypertension, potentially due to a reduced baroreflex inhi-
bition of those neurons.

The excitatory state of vasopressin neurons has also been studied recently in the
context of salt-dependent hypertension [151]. It is known that the plasmatic
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concentration of vasopressin is elevated in salt-dependent hypertensive models,
such as the deoxycorticosterone acetate-salt model [152—155]. In this model, the
authors could demonstrate that vasopressin neurons of the hypertensive animals
exhibited a depolarizing excitatory response via the y-aminobutyric acid (GABA),
whereas GABA functions as an inhibitory transmitter for vasopressin neurons in
control animals. This GABAergic excitation of vasopressin neurons was associated
with an increased vasopressin release and a blood pressure increase [151].

Taken together, the exact contribution of vasopressin to the development of
hypertension remains unclear and seems to depend on the type and stage of hyper-
tension. Further work with vasopressin analogues is thus required to decipher its
role in the development and maintenance of hypertension.

7.5 Natriuretic Peptides

The presence of natriuretic peptides (NP) has been postulated over 50 years ago;
however only in 1981, Bold et al. demonstrated their endocrine function in regulat-
ing fluid homeostasis [156]. In the following years, three distinct natriuretic pep-
tides have been isolated and described: ANP atrial natriuretic factor (ANF), isolated
from rat atrium [157], as well as BNP and CNP, both purified from porcine brain
extracts [158, 159]. In 1995 Lang et al. described for the first time a sensitive and
specific radioimmunoassay for ANF [160]. Primarily NPs have been linked to natri-
uresis and diuresis. Recently, other physiological functions of NPs have been
described, including vasodilation, anti-inflammation, and anti-fibrosis [161]. In the
following, structure and synthesis, biological functions in health and disease, as
well as novel pharmacological strategies targeting NPs will be discussed.

7.5.1 Expression, Structure, and Synthesis of NP and Its
Receptors

All NPs are synthesized as precursors, i.e., prepro-NPs, and processed to pro-NPs
by peptidases [162]. The 126 amino acid (AA) pro-ANP is primarily expressed and
stored in granules in atria and upon stimulation released and converted to the mature
28 AA ANP by corin, a transmembrane serine protease [163]. The 108 AA pro-BNP
is mainly expressed in cardiac ventricles and cleaved by corin or furin to its 32 AA
biologically active form BNP [164]. The human 103 AA pro-CNP is widely
expressed in the brain tissue; however it is also synthesized in the kidney, bone,
blood vessels, and heart [165]. Furin mediates conversion of pro-CNP to its active
form CNP-53 [166] which may further be processed to CNP-22 by an unknown
extracellular enzyme [167].

There are three distinct natriuretic peptide receptors, NPR-A, NPR-B, and NPR-
C, but only the first two mediate the well-known physiological actions of NPs [161].
Binding of NPs to NPR-A and NPR-B activates guanylyl cyclase resulting in the
synthesis of cGMP (Fig. 7.3), an intracellular second messenger. GMP, in turn,
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signaling (generation of cGMP), and degradation processes (NPR-C receptor, NEP, and IDE).
Abbreviations: NPR natriuretic peptide receptor, ANP A-type (atrial) natriuretic peptide, BNP
B-type (brain) natriuretic peptide, CNP C-type natriuretic peptide, M-ANP pharmacological ago-
nist of NPR-A receptor, CD-NP pharmacological agonist of NPR-A and NPR-B receptors, NEP
neutral endopeptidase (neprilysin), NEPi pharmacological inhibitor of NEP, /DE insulin-degrading
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mediates the physiological effects of NP by binding to the three major effectors:
c¢GMP-gated ion channels, phosphodiesterases (PDEs), and cGMP-dependent pro-
tein kinases (PKGs) [167]. The third NP receptor, NPR-C, has no guanylyl cyclase
domain, and it is primarily viewed as a clearance receptor that removes NPs from
the circulation through receptor-mediated internalization and degradation (Fig. 7.3)
[161]. In addition to the NPR-C-mediated clearance, NPs can be enzymatically
degraded by neutral endopeptidase (NEP) [167] and insulin-degrading enzyme
(IDE) [168] (Fig. 7.3).

7.5.2 Biological Function in Health and Disease

Classically, NPs have been linked to natriuresis and diuresis due to renal hemody-
namic and direct tubular actions. ANP increases glomerular filtration rate [169] and
inhibits sodium reabsorption in the proximal and distal nephrons [170] and tubular
water transport in cortical collecting ducts [169]. Finally, the inhibitory effect of
systemically or centrally applied ANP on Ang II-mediated sodium and water trans-
port has been demonstrated [171, 172]. Unger et al. showed that ANP, in contrast to
its peripheral natriuretic actions, is antinatriuretic when centrally applied [172, 173].

Infusion of either ANP or BNP lowers blood pressure in animals, whereas CNP
has no significant impact on hemodynamics [174]. In contrast, in hypertensive
human subjects, only ANP showed a blood pressure-lowering effect [175] whereas
BNP did not [176]. Furthermore, in human healthy volunteers, infusion of either
ANP or BNP concomitantly with Ang II lowered blood pressure to a similar extent,
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indicating that both NPs have an impact on pressor responses to angiotensin [177].
The mechanisms involved in the BP-lowering effects of NPs are complex and include
not only the abovementioned increased natriuresis and diuresis but also arterial veno-
dilation, vascular permeability, and direct suppression of the renin-angiotensin-
aldosterone system and sympathetic nervous system [178].

Preclinical studies have demonstrated that NPs can protect against pathological
cardiac remodeling, including hypertrophy, inflammation, and fibrosis [161, 162,
170]. Knocking out of ANP or NPR-A in mice led to cardiac hypertrophy in a blood
pressure-independent manner [179, 180], whereas ANP overexpression resulted in
smaller hearts as compared to wild-type animals [181]. Anti-inflammatory actions
of ANP [182], BNP [183], and CNP [184] in cardiac tissue have been demonstrated
in animal models of cardiac hypertrophy, myocardial infarction, and myocarditis. In
addition, all three NPs promote antifibrosis in cardiac tissue [182, 185, 186].

7.5.3 Pharmacological Strategies Targeting NPs

Intravenous administration of NPs had beneficial effects in animal models of car-
diovascular and renal diseases. However, due to the short half-life, native or recom-
binant NPs cannot be applied in routine clinical use. Therefore, recombinant forms
of NPs that are resistant to enzymatic degradation have been developed.

M-ANP (Fig. 7.3) possesses a greater resistance to enzymatic degradation than
native ANP [187]. In preclinical studies, it has BP-lowering effects, promotes natriure-
sis and diuresis, increases renal blood flow and GFR, and suppresses the RAAS [187,
188]. Currently, M-ANP undergoes clinical trials in patients with hypertension [189].

A novel class of natriuretic peptides, represented by CD-NP (cenderitide), with
greater resistance to enzymatic degradation has been developed [190]. In contrast to
CNP, CD-NP activates both NPR-A and NPR-B receptors (Fig. 7.3), promotes sub-
sequent natriuresis and diuresis, inhibits cardiac fibrosis, and reduces systolic blood
pressure [162, 191].

Another strategy to target NPs is NEP inhibition (Fig. 7.3), which also inhibits the
degradation of NPs and activates NP receptors by raising the concentrations of
endogenous NPs. However, clinical trials with pure NEP inhibitors showed no effects
but several side effects related to the rising concentration of other vasoactive peptides
(including Ang I, Ang II, substance P, and endothelin) [161]. Therefore, NEP inhibi-
tion with concomitant RAS inhibition was considered to be a better choice.

The most extensively studied dual NEP/ACE inhibitor was omapatrilat [192].
Although this compound showed a significant reduction in composite end points
compared to lisinopril in heart failure patients in the IMPRESS trial [193], larger tri-
als like OVERTURE failed to show any advantage over enalapril in combined risk of
death or hospitalization for heart failure [71]. An increased incidence of angioedema,
most likely due to the bradykinin-potentiating effects of ACE inhibition, in subse-
quent studies led to the interruption of the clinical development of omapatrilat [192].

In view of the abovementioned side effects of NEP inhibition (alone or in com-
bination with ACE inhibition), a combination of NEP inhibition with ATIR
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blockade instead of ACE inhibition was thought to be of advantage. The first class
angiotensin receptor neprilysin inhibitor (ARNI) is LCZ696, which comprises
molecular moieties of the AT1 receptor antagonist, valsartan, and of the NEP inhibi-
tor prodrug, sacubitril, at a 1:1 molar ratio in a single molecule [194]. In preclinical
studies, LCZ696 engendered pronounced vasodilatation, natriuresis, diuresis, and
inhibition of fibrosis and hypertrophy [191]. In clinical studies, LCZ696 lowers BP
and reduces NT-pro-BNP, a marker of LV wall stress, left atrial dimension, and
volume and volume index in hypertensive and heart failure patients [76, 195, 196].
Natriuretic peptides play an important role not only in water and salt homeostasis
but also provide tissue protection in cardiovascular and renal diseases. The complex-
ity of the natriuretic peptide system including the ligand-specific effects of NPs, sig-
naling pathways mediated by the NP receptors, and the cross talk between NP system
and RAAS and the sympathetic nervous system requires further investigation. This
may lead to a development of novel pharmacological strategies, targeting the NP
system more selectively and with higher efficacy than currently available drugs.
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TIMPs Tissue inhibitor of metalloproteinases

8.1 Introduction

Vasoactive peptides have an important role in vascular tone regulation, and their
imbalance determines high blood pressure levels and cardiovascular remodeling in
arterial hypertension: lack of balance in the renin-angiotensin-aldosterone system
(RAAS) as well as in its receptors (AT|R and AT,R), deactivation of the kallikrein-
kinin vasodilator products, decreases of cardiac natriuretic peptides (ANP and BNP)
and vasopressin (AVP), and vasoconstriction induced by neuropeptide Y (NPY) are
the most significant disorders related to the pathophysiology of vessel inflammation,
increased activity of vascular growth factors, and myocardial damage in this com-
plex disease. This chapter will approach the structure, biosynthesis, and pathophysi-
ological mechanisms involved in both human hypertension and cardiovascular
impairment in the presence of these peptide system alterations. Also, in spite of not
being peptide systems, but correlated to those described here, metalloproteinases,
adipocytokines, and immune activation deserve some general considerations because
of their interactions with the pathophysiology of hypertensive heart disease.

8.2  Classical Renin-Angiotensin-Aldosterone System

Activation of the renin-angiotensin-aldosterone system (RAAS) results in the release
of several vasoactive peptides. The classical cascade of this system begins with the
synthesis of angiotensinogen, a globulin of 14 amino acids produced by the liver and
distributed in the bloodstream. Angiotensinogen undergoes proteolytic conversion to
angiotensin I (Ang I) by the action of renin, a proteolytic enzyme synthesized in the
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juxtaglomerular apparatus of the kidneys. Renin is considered a key enzyme in
RAAS activation as it acts on prorenin/renin receptors, which are transmembrane
receptors highly expressed in mesangial cells, adipocytes, heart cells, brain cells, and
the vascular smooth muscle [1, 2]. Prorenin accounts for 70-90% of the circulating
renin in normal subjects, and its binding to prorenin/renin receptors promotes an
increase in the catalytic conversion of angiotensinogen to Ang I [3, 4]. Also, the
binding of prorenin to its receptor activates an intracellular signaling cascade with
the activation of mitogen-activated protein kinase (MAPK) and extracellular signal-
regulated kinases types 1 and 2 (ERK-1 and ERK-2) and the phosphorylation of heat
shock protein 27 (Hsp27), which promotes an increase in the synthesis of DNA,
collagen type 1, fibronectin, and transforming growth factor f-1 (TGF p-1). All of
these are important mediators of tissue remodeling and the fibrotic process [4].

The inactive decapeptide Ang I, formed by the cleavage of angiotensinogen, is con-
verted into an octapeptide vasoconstrictor, angiotensin II (Ang II), by the action of the
angiotensin-converting enzyme (ACE). ACE is a dipeptidyl carboxypeptidase found
mainly in the endothelium of the pulmonary capillaries (40%) and other vascular beds
(60%) such as the heart and coronary arteries [5, 6]. This enzyme also takes part in the
kallikrein-kinin system promoting the inactivation of bradykinin, a potent vasodilator
[7-9]. The reduction of bradykinin stimulation on its type 1 (B1) and type 2 (B2) recep-
tors decreases the release of NO from endothelial cells and the production of arachidonic
acid from phospholipase A,, the latter leading to less formation of other vasodilators
including prostacyclin (PGIL,) [10-13]. Even though the RAAS cascade is widely distrib-
uted throughout the body, the main source of renin is the juxtaglomerular apparatus while
ACE is present on the cell surface of endothelial cells, especially in the lungs. The current
view is that >90% of tissue Ang II is synthesized locally and not taken up from plasma
but depends on renin and largely, if not completely, on hepatic angiotensinogen [14, 15].

8.3 Angiotensin Il and AT Receptors (AT;R and AT,R)

Ang II acts on Ang II type 1 (AT R) and Ang II type 2 (AT,R) receptors, two recep-
tors with opposite actions. The binding of Ang II to the AT,R receptor causes con-
traction of vascular smooth muscle cells (vasoconstriction), interstitial fibrosis, cell
growth, cell migration, and release of aldosterone from the adrenal gland [16].
Aldosterone apart from raising the blood pressure is implicated in the pathogenesis
of cardiac hypertrophy, fibrosis, cardiac and vascular remodeling, ventricular
arrhythmias, and atrial fibrillation [17-20]. Recent studies show that Ang II seems
to form oxygen free radicals besides being present in inflammation processes, ath-
erosclerotic disease, and vascular aging [21]. AT|R is found in large numbers in the
kidneys, heart, liver, vessels, and brain. Ang II via AT,R promotes protective actions
by inducing vasodilation and the release of NO and inhibiting cell growth (Fig. 8.1).

It is well known that hyperactivity of the sympathetic nervous system, another
pivotal mechanism present in hypertension, leads to increased activity of renal beta-
receptors resulting in the conversion of prorenin to the active form of renin, thus
triggering activation of the RAAS cascade.



110 J.C. Yugar-Toledo et al.

Angiotensinogen

Renin

Angiotensin |

Angiotensin Enzyme
Converting

Bradykinin

Angiotensin Il

Vasodilation

AT, receptors AT, receptors

Vasoconstriction Vasodilatation
Fibrosis Anti-fibrosis
Hypertrophy Anti-growth
Inflammation Anti-inflammation
Sympatho-excitation Sympatho-inhibition
Aldosterone synthesis Reduction of oxidative stress

Fig. 8.1 Activation of classical renin-angiotensin-aldosterone system (RAAS) cascade results in
vasoconstriction, fibrosis, hypertrophy, inflammation, and sympathoexcitation and increases blood
pressure and target organ damage. Angiotensin I (Ang I), formed by the cleavage of angiotensino-
gen under the action of renin, is converted into angiotensin II (Ang II) by the action of the ACE.
Furthermore, activation of ACE promotes the inactivation of bradykinin. Bradykinin acts on type
1 (B1) and type 2 (B2) receptors, both of which stimulate the release of NO from endothelial cells.
B2 receptors activate phospholipase A, that releases arachidonic acid leading to the formation of
other vasodilators including prostacyclin. Ang II acts on Ang II type 1 (AT,R) and Ang II type 2
(AT,R) receptors, two receptors with opposite actions

Finally, the effects of angiotensin II (Ang II), via AT, R/AT,R, on vascular remod-
eling and constriction/vasodilation involve transforming growth factor-3 (TGF-p)
signaling by the TGF-p receptor and mitogen-activated protein kinase (MAPK)
activation after AT|R stimulation. These mechanisms regulate the transcription of
target genes such as those in matrix metalloproteinases (MMPs), plasminogen acti-
vator inhibitor-1 (PAI-1), and connective tissue growth factor (CTGF) resulting in
cardiac and vascular proliferation, increased extracellular matrix production and
fibrosis, differentiation, and inflammation. In summary, through these complex and
imbricated intracellular systems, cardiovascular remodeling and target organ dam-
age are due to the activation of pathways that promote proliferation, migration,
apoptosis, and balance between the synthesis/degradation of the extracellular matrix
of cardiac and vascular proteins [22].

8.4 Nonclassical Renin-Angiotensin-Aldosterone Pathways

Some recent RAAS pathways are composed by angiotensin 1-7 (Ang 1-7), angio-
tensin 1-9 (Ang 1-9), angiotensin 1-12 (Ang 1-12), angiotensin III (Ang III), angio-
tensin IV (Ang IV), and other new components of this system. The actions of these
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pathways are opposite to those of the classical RAAS pathway promoting vasodila-
tion by the release of vasodilator substances such as NO and prostaglandins and
causing natriuresis and reducing oxidative stress [23].

Ang II, when cleaved by angiotensin-converting enzyme 2 (ACE-2) and other
endopeptidases, produces Ang 1-7. This heptapeptide (Ang 1-7) when bound to its
MAS receptor, a G protein (GPCR), has a vasodilating effect potentiating bradykinin-
induced vasodilation, and thus it plays an important counter-regulation role to the
vasoconstrictor effect of Ang II. Other beneficial effects of Ang 1-7 have also been
described, such as protection against heart failure, reduction of thrombosis, intersti-
tial fibrosis, cell proliferation and myocardial hypertrophy, and modulation of the
production of arginine-vasopressin peptide AVP (antidiuretic hormone—ADH) [24].

Ang 1-9 is found in the plasma of healthy individuals and in patients taking ACE
inhibitors or AT,R blockers. Experimentally, increased plasma concentrations of
Ang 1-9 were demonstrated in the cardiac tissue of rats after heart attacks. The main
product of the degradation of Ang II in human hearts is Ang 1-9. It is probably
formed by the action of chymases, ACE, or carboxypeptidase A. Furthermore, the
main cleavage product of Ang I in human platelets is Ang 1-9 and not Ang II as was
thought [25]. Recently, protective effects of Ang 1-9 against cardiac and vascular
remodeling have been described [26].

Ang 1-12 is described as a pro-peptide resulting from the breakdown of angioten-
sinogen; now it is considered a precursor to the formation of tissue angiotensin. Some
studies have shown that this angiotensin may be a functional precursor in the forma-
tion of Ang I in the absence of circulating renin [27]. Ang 1-12 has been detected in
the intestine, liver, lung, adrenal glands, heart, brain, and pancreas at higher levels
than the levels of Ang I [28]. One of the observations that supports the hypothesis that
Ang 1-12 can act as an endogenous substrate for the production of Ang II came from
the fact that its vasoconstrictor effect is prevented by blocking the RAAS with ACE
inhibitors or Ang II receptor blockers (ARBs) in experimental models [29].

Studies show that the conversion of Angl-12 into Ang II is mediated by ACE in
the systemic circulation and by chymase in the heart [30, 31]. Divergence from
Ang1-12 metabolic pathways may be highly tissue specific, as one report suggested
that neprilysin could also act as Ang 1-12 convertase in the kidney. Neprilysin is a
metalloproteinase member of the M13 family of proteases which also includes
endothelin-converting enzyme (ECE). Neprilysin activity in the kidney is much
higher than the activity of renal ACE, suggesting that neprilysin converts Ang 1-12
into Ang I in the kidney.

New findings demonstrate the existence of additional alternate mechanisms for
the generation of angiotensin peptide upstream from Ang I. Chymase is the critical
Ang II-forming enzyme in humans, and so renin is not the only enzyme that gener-
ates Ang II; this increases the complexity of the RAAS [27].

Ang A is a peptide of the RAAS synthesized by enzymatic decarboxylation of
Ang II. It has an AT R-dependent vasoconstrictor effect similar to Ang II, increasing
the blood pressure, promoting coronary vasoconstriction, and reducing the myocar-
dial contractility force and heart rate. The importance of the participation of Ang A
in the RAAS highlights the significance of the observation of the limited effects of
AT R blockers [32].
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Almandine is a recently identified peptide of the RAAS, with biological activity simi-
lar to Ang 1-7; it has a vasodilating effect and an action on Mas-related gene D (MrgD)
receptors of the central nervous system. Almandine is formed by the action of ACE-2
on Ang A, thus reinforcing the important role of ACE-2 in the RAAS. Experimentally,
almandine has antihypertensive and cardioprotective effects (Fig. 8.2) [33].

8.5 Physiological Role of Angiotensin lll and IV

In physiological conditions, Ang II under the action of aminopeptidase A is con-
verted into Ang III. Circulating Ang III is found at low concentrations; however, it
exists in various organs, especially in the brain, kidneys, and heart [34].
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Fig. 8.2 Nonclassical renin-angiotensin-aldosterone system (RAAS) pathways—composed by
angiotensin 1-7 (Ang 1-7), angiotensin 1-9 (Ang 1-9), angiotensin 1-12 (Ang 1-12), angiotensin III
(Ang III), angiotensin IV (Ang IV), and other new components of this system. The actions of these
pathways are opposite to those of the classical RAAS pathway promoting vasodilation by the
release of vasodilator substances such as NO and prostaglandins and causing natriuresis and reduc-
ing oxidative stress. Ang II, when cleaved by angiotensin-converting enzyme 2 (ACE-2) and other
endopeptidases (neutral endopeptidases—NEP), produces Ang 1-7, which, when bound to its MAS
receptor, a G protein (GPCR), has a vasodilating effect potentiating bradykinin-induced vasodila-
tion. Other beneficial effects of Ang 1-7 include protection against heart failure, the reduction of
thrombosis, interstitial fibrosis, cell proliferation and myocardial hypertrophy, and modulation of
the production of arginine-vasopressin peptide AVP. Alamandine is a recently identified peptide
with biological activity similar to Ang 1-7; it acts on Mas-related gene D (MrgD) receptors of the
central nervous system. Alamandine is formed by the action of ACE-2 from angiotensin A
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Ang III is a potent inducer of AVP production, increasing central sympathetic activ-
ity and promoting the release of aldosterone and causing vasoconstriction in a manner
similar to Ang II. It is also known that it acts on the solitary tract/vagal complex causing
changes in baroreflex sensitivity in a similar way to Ang II. One of the peculiarities of
Ang 111 is that its production is not completely blocked by ACE inhibitors as Ang III is
produced by other pathways. To date, there is no evidence for a specific Ang III recep-
tor. In the kidney, Ang III normally binds to the AT|R and AT,R receptors, and the
reported natriuretic and anti-natriuretic effects of Ang III may be dose dependent on
whether the AT R or AT,R receptor is activated [35, 36] (Fig. 8.3).

The major endogenous receptor ligand for AT,R-mediated natriuretic responses
appears to be Ang III and not Ang II [37]. Recent studies have demonstrated that
Ang I must be metabolized to Ang III by aminopeptidase A in order to induce natri-
uresis and that inhibition of aminopeptidase N increases intrarenal Ang III and Ang
III-induced natriuresis [38].

Ang IV is formed from Ang III by the action of aminopeptidase N. Ang IV is a
biologically active peptide that became of great interest after insulin-regulated
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Fig. 8.3 The brain renin-angiotensin-aldosterone system (RAAS) pathway. In physiological con-
ditions, Ang II under the action of aminopeptidase A (APA) is converted into Ang III especially in
the brain, kidneys, and heart. Ang III is a potent inducer of arginine-vasopressin peptide (AVP)
production, increases central sympathetic activity, and releases and inhibits baroreflex, thereby
increasing blood pressure, releasing aldosterone, and causing vasoconstriction in a manner similar
to Ang II. One of the peculiarities of Ang III is that its production is not completely blocked by
ACE inhibitors as Ang III is produced by other pathways. Ang IV is formed from Ang III by the
action of aminopeptidase N. Ang IV is a biologically active peptide that became of great interest
after insulin-regulated aminopeptidase (IRAP) was described. Ang IV has a binding site probably
for an AT4 receptor. The solid bold arrows indicate RAAS classical pathways, the dotted arrows
indicate brain RAAS pathways, the dotted gray lines indicate cross talk between the systems, and
the solid bold line indicates inhibition of baroreflex. ROS reactive oxygen species, NTS nucleus of
the tractus solitarius
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aminopeptidase (IRAP) was described. Ang IV has a binding site probably for an
AT4 receptor [39]. With an important role in cognitive function, renal function, and
growth of cardiac fibroblasts and vascular smooth muscle cells, Ang IV, when bound
to its receptor, causes renal vasodilation and increased expressions of plasminogen
activator inhibitor-1 (PAI-1), interleukin-6, intercellular adhesion molecules (ICAM-
1), and tumor necrosis factor [40].

8.6 Cardiac Natriuretic Peptides (ANP and BNP)

After the initial description of the existence of natriuretic peptides with vasodilatory
activity by De Bold et al. [41], atrial natriuretic (ANP) and brain natriuretic peptides
(BNP) produced in atrial and ventricular cardiomyocytes were identified and con-
sidered cardiac natriuretic hormones (CHN) with endocrine, autocrine, and para-
crine activity. Moreover, a natriuretic peptide, called C-type natriuretic peptide
(CNP), is produced by endothelial cells, and a peptide named urodilatin, encoded by
the same gene as ANP and with similar characteristics, is produced in kidney tubu-
lar cells and secreted in the urine.

The activity of the cardiac natriuretic hormone system depends on both the pro-
duction/release of these peptides and the activation of inactive precursors (proANP
and proBNP) in peripheral tissues and signal transduction by specific receptors.

Prohormones (proANP and proBNP), synthesized by cardiomyocytes, are
cleaved into two fragments, a long inactive fragment which includes the NT peptide
(NT-proANP and NT-proBNP) and a short active fragment (ANP and BNP). The
proANP and proBNP are stored by atrial cardiomyocytes in secretory granules.

The main stimulus for the secretion/release of ANP and BNP is distension of
the atrial and ventricular cardiomyocytes [42, 43]. However, endothelin-1, alpha-
adrenergic agonists, and Ang II also stimulate the production/release of cardiac
natriuretic peptides [44]. Furthermore, other mediators, such as vasopressin, glu-
cocorticoids, thyroid hormones, steroids, and cytokines such as TNF-alpha and
interleukin-1 and interleukin-6, can also stimulate the production and secretion
of cardiac natriuretic peptides [45, 46]. NO has a regulatory role as it inhibits the
production/release of these peptides. The involvement of glucagon-like peptide-1
(GLP-1) was recently implicated in the regulation of the production/release of
ANP. This incretin secreted by endocrine cells in the small intestine stimulates
insulin secretion in the pancreas. Consequently, GLP-1 analogs or dipeptidyl
peptidase-4 inhibitors can help to control the blood pressure in diabetic patients
[47]. The observation of the expression of GLP-1 receptor genes in the atria with
subsequent activation promoted by the production/release of ANP suggests that
the antihypertensive effect of GLP-1 receptor agonists is mediated by this
pathway.

Cardiac natriuretic peptides (ANP and BNP) and CNP have similar biological
effects including direct diuresis, natriuresis, vasodilation, and anti-inflammatory
action on smooth muscle cells and cardiomyocytes [48] as well as a protective effect
against vascular dysfunction and vascular remodeling [49]. These effects are mediated
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by adenylate cyclase-coupled receptors (NPR-A) and guanylate cyclase-coupled
receptors (NPR-B) which are widely distributed throughout the body, including in the
kidneys, vascular smooth muscle, adrenal glands, brain, and heart. The biological
effects of ANP and BNP are mediated by the NPR-A receptor, while the NPR-B
receptor is linked to CNP signaling. A third specific receptor, the natriuretic peptide
receptor C (NPR-C), which is not bound to guanylate cyclase, has the essential func-
tion of removing all natriuretic peptides (Fig. 8.4) [50].

Natriuretic peptides play an important role in maintaining blood pressure and
blood volume [51]. These peptides regulate blood pressure by the direct relaxation
of vascular smooth muscles, suppression of RAAS activity, reduced aldosterone
secretion, reduced activation of the sympathetic system, and inhibition of endothe-
lin-1 secretion. Intravascular volume control is obtained by directly influencing
electrolyte balance via changes in endothelial permeability and the inhibition of

SNS, ANP, BNP and RAAS

ANP BNP

Angiotensinogen

o |

Ang |

assssssssssassassaes Angl|

AT, receptors AT, receptors

0

fibrosis

Hypertrophy — cardiac }‘_

Diuresis — natriuresis
Reduction in aldosterone secretion
Reduction in blood pressure

| Restore endothelial function

Vasoconstriction
Endothelial dysfunction A
Synthesis of aldosterone Vasodilatation
Increase sodium intake Reduction of oxidative stress
Hypertension Reduction of BP
Injury to target organs Protection of target organs

Fig. 8.4 Schematic representation of the relationships in the sympathetic nervous system (SNS),
renin-angiotensin-aldosterone system (RAAS), atrial natriuretic peptide (ANP), and brain natri-
uretic peptide (BNP). ACE angiotensin-converting enzyme, Ang angiotensin, ANP atrial natriuretic
peptide, BNP B-type natriuretic peptide, BP blood pressure, NP natriuretic peptide, RAAS renin-
angiotensin-aldosterone system, SNS sympathetic nervous system. These peptides regulate blood
pressure by the direct relaxation of vascular smooth muscles, suppression of RAAS activity,
reduced aldosterone secretion, reduced activation of the sympathetic system, and inhibition of
endothelin-1 secretion. Intravascular volume control is obtained by directly influencing electrolyte
balance via changes in endothelial permeability and the inhibition of sodium reabsorption in the
proximal and distal nephrons, resulting in natriuresis, diuresis, and reduction of intravascular vol-
ume and blood pressure. The solid lines indicate principal pathways, whereas the dotted lines
indicate negative feedback
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sodium reabsorption in the proximal and distal nephrons, resulting in natriuresis,
diuresis, and reduction of intravascular volume and blood pressure. These changes
in electrolyte balance are mediated by ANP and BNP. Moreover, ANP increases
renal plasma flow and the glomerular filtration rate, thereby optimizing renal func-
tion. However, ANP changes the endothelial capillary permeability promoting
redistribution of plasma proteins and fluid between the interstitial and intravascular
spaces [52, 53]. These classical endocrine functions are important mechanisms of
cardiac natriuretic peptides. Meanwhile, autocrine and paracrine activities involve
the inhibition or reduction of cardiovascular remodeling, hypertrophy, fibrosis, and
inflammation [54]. Both ANP and BNP participate in this protective mechanism
against the actions of Ang II, endothelin-1, sympathetic activity, and inflammatory
mediators that participate in cardiovascular remodeling and inflammation, playing
an important role by neutralizing the effects of the activation of the RAAS and sym-
pathetic nervous system.

Cardiac natriuretic peptides are cleared from circulation by endocytosis via
NPR-C and by degradation by neprilysin (NEP), an endopeptidase expressed pri-
marily in the kidneys, which is dependent on zinc bound to the membrane that
hydrolyzes peptides on the amino side of hydrophobic residues. Neprilysin has a
short NT domain, a cytoplasmic transmembrane helix, and a C-terminal extracel-
lular domain with a zinc atom as the active site [55].

NEP has a high affinity for ANP and CNP and less affinity for BNP. However,
NEP also degrades other vasoactive peptides both vasodilating peptides (such as
substance P and bradykinin) and vasoconstrictors (such as Ang II and endothelin-1);
therefore, it has an important role in maintaining the balance between vasodilator
and vasoconstrictor peptides.

Knowledge of cardiovascular and renal effects of ANPs is an important therapeu-
tic tool for hypertension and conditions associated with volume overload [55, 56].
Accordingly, improvements in the endogenous activity of these peptides and the
inactivation of the degradation pathway by inhibiting NEP and blocking other com-
ponents of the RAAS are alternatives to increase the activity of cardiac natriuretic
peptides (Fig. 8.5).

8.7 Vasopressin (AVP)

AVP is synthesized and released by the neurohypophysis (posterior lobe of the pitu-
itary gland) in response to reduced blood volume, a drop in blood pressure, or
hypernatremia. AVP participates in the maintenance of body water, regulating the
osmotic balance and blood pressure by influencing water excretion by the kidneys.
Baroreceptors, located in the carotid sinus, aortic arch, and left atrium, detect blood
pressure reductions and directly stimulate neurons located in the supraoptic and
hypothalamic paraventricular nuclei promoting the release of AVP. Furthermore,
hypothalamic osmoreceptors detect variations <1% in plasma osmolality and trig-
ger the release of AVP with a consequent reduction of renal medullary flow that
exerts a powerful antidiuretic effect and increases permeability to water in
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Fig. 8.5 Schematic representation to show the central role of vasopeptidase inhibition for the
metabolism of angiotensin II, bradykinin, and natriuretic peptides

collecting tubules [57]. Extrapituitary AVP production occurs in the sympathetic
ganglia, kidney, and testis. The synthesis of AVP involves pre-pro-AVP and pro-
AVP precursors that are cleaved by a cascade of enzymes including copeptin
(CTproAVP) and neurophysin II [58].

AVP is also an important mediator of adaptive response to acute and chronic
stress with the activation of the hypothalamic-pituitary-adrenal axis and sympa-
thetic catecholaminergic system in response to stimuli such as physical stress and
acute events involving reductions in blood pressure or blood volume. In these cir-
cumstances, the release of AVP exceeds its normal concentration by 100 to 1000
times [59].

The plasma half-life of AVP is 5-20 min, and clearance of AVP occurs through
the kidney (50-70%) and to a lesser extent through the liver. Inactivation by circu-
lating and endothelial endopeptidases and aminopeptidase also occurs. AVP acts on
three types of receptors, Vla, V2, and V3 (V1b receptors) [60]. Acting on Vla
receptors located in vascular smooth muscle cells, platelets, and smooth muscle of
the uterus, AVP causes arteriolar vasoconstriction, while on V1a receptors, located
in hepatocytes, it promotes glycogenolysis.

Activation of the V2 receptor is associated with an increase in the intracellular
cyclic AMP concentration which increases the expression of aquaporin-2 channels
in the apical membrane of the tubular cell of the distal nephron and subsequent
reabsorption of water into the interstitium [61]. V3 receptors (also called V1b recep-
tors) distributed in the anterior pituitary gland, brain, pancreas, and heart are
involved in the secretion of the adrenocorticotropic hormone (ACTH), synthesis
and release of insulin and glucagon, body temperature control, and neuromodula-
tion of memory (Fig. 8.6).
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l Arginine Vasopressin Peptide |

Receptor V1a | Receptor V2 I | Receptor V1b (V3) |

Vascular smooth muscle cell | | Renal medulla | Anterior
pituitary gland
]
Vasoconstriction Retention of water Stimulates the
Increases the post-load Increases the pre-load secretion of ACTH and

B-endorphins

Cardiomyocytes

Positive inotropic effect
Hypertrophy and remodeling

Fig. 8.6 Arginine-vasopressin peptide (AVP): the role of each AVP subtype receptor on blood
pressure and the kidney

AVP plasma concentrations are low (1-3 pg/mL) under physiological conditions;
however, their concentration can reach 10-20 pg/mL promoting intense renal vaso-
constriction with significant changes in the pressure/diuresis/natriuresis. However,
AVP also promotes cutaneous, splanchnic, and coronary vasoconstriction and vaso-
dilatation in the muscular territory, which together results in variable effects on the
blood pressure. Important inhibitory effects of baroreflex and the sympathetic ner-
vous system are observed with AVP resulting in attenuation of the potent vasocon-
strictor effect of this peptide. Consequently, modest blood pressure elevations are
seen with physiological elevations of AVP, and thus the antidiuretic effect of AVP
occurs without modification of the induced diuresis pressure. It is noteworthy that
in the absence of autonomic reflex mechanisms, the vasopressor effect of AVP is
exacerbated. This situation is common in patients with diabetes and autonomic dys-
function, a condition in which a V1 receptor blocker causes significant reductions in
blood pressure. Also interesting is the observation of the effect of blockade of AVP
V1 receptors in individuals of African descent who respond better to this therapy
than non-African descendants. The true role of AVP in hypertension is not fully
understood as differences in AVP plasma levels are observed between men (30%)
and women (7%). However, high AVP concentrations are found in patients with
malignant hypertension, heart failure, and preeclampsia; in these water retention
conditions, the redistribution of volume and regional flow can cause greater eleva-
tions in blood pressure [57, 62].
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8.8  NeuropeptideY

NPY is widely distributed in the central nervous system, including in the hypothala-
mus, ventrolateral region of the medulla oblongata (bulb), nucleus of the tractus
solitarius, locus coeruleus, and preganglionic neurons of the spinal cord. It has an
important inhibitory effect of sympathetic neurotransmission, and it is a mediator of
the central leptin signaling pathway and potentiates the release of vasopressin in the
neurohypophysis. By these mechanisms, NYP participates in the control of thirst,
appetite, blood pressure, and the energy metabolism [63].

NPY, expressed in the sympathetic ganglia and the fibers that innervate blood
vessels and the heart and kidneys, also has actions in the peripheral nervous sys-
tem; it coexists with norepinephrine in peripheral neurons to promote a potent
vasoconstrictor effect. The effects of NPY are mediated by the Y1, Y2, and Y5
receptors. NPY bound to Y1 receptors inhibits adenylate cyclase and increases in
intracellular calcium. In the central nervous system, Y1 receptors are associated
with hypotension, while peripheral stimulation via Y1 receptors causes vasocon-
striction and potentiation of the vasoconstriction effects of norepinephrine, Ang II,
and serotonin, particularly in small vessels of the coronary, cerebral, and splanch-
nic beds [64].

NPY generally acts on postsynaptic Y2 receptors reducing the concentration of
intracellular calcium by the inhibition of N-type calcium channels in nerve endings.
In the central nervous system, vascular bed, heart, and kidneys, NPY inhibits the
release of neurotransmitters including norepinephrine and glutamate [65].

The stimulation of Y5 receptors by NPY promotes natriuresis and is involved in
cardiovascular remodeling [66].

Increased plasma levels of NPY can be found in situations of exacerbated sym-
pathetic activity such as stress, exercise, hemorrhage, and myocardial infarction.
However, NPY, unlike other vasoactive peptides that cause vasoconstriction and an
antidiuretic effect, promotes increased urine output, reducing the release of renin,
increasing the release of ANP, and changing the function of the Na*/K*-ATPase
pump in the proximal tubule of the nephron with marked diuretic and antihyperten-
sive effects [67].

8.9 Non-Peptide Systems Related to Hypertensive Disease
8.9.1 Metalloproteinases

Matrix MMPs are a family of zinc-dependent proteases that are widely known to
degrade the components of the extracellular matrix. Interestingly, many other roles
of these enzymes, especially in the cardiovascular system, are now being exten-
sively studied [68, 69]. However, whereas abnormal MMP levels have been
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described in many conditions associated with increased cardiovascular risk [70-72],
it is perplexing that there are inconsistent findings with regard to MMP levels in
hypertensive patients. While some studies showed increased MMP levels/activity in
hypertensive patients compared with normotensive controls [73—76], other studies
showed similar levels or decreased levels. It is possible that the significant differ-
ences between studies may reflect a lack of the control of relevant factors that may
modify MMP levels in patients including drug treatment and accompanying dis-
eases, as well as pre-analytical issues, such as the use of inappropriate samples to
assess circulating MMP levels.

The balance between MMPs and tissue inhibitor of metalloproteinases (TIMPs)
is essential for cardiovascular remodeling [77, 78]. For example, MMP-2 and
MMP-9 have also been associated with arterial hypertension by degradation of the
extracellular matrix, elastin, and collagen type IV and are also involved in the break-
down of interstitial collagen types I, I, and III. Thus, elevated levels of MMPs can
result in a change in the elastin/collagen ratio and a reduction in the elasticity of the
vascular wall. On the other hand, increased activity of TIMPs is associated with
reduced degradation of collagen type I, which plays an important role in the patho-
physiology of hypertension as well as in resistance to antihypertensive medication
[79-81].

8.9.2 Adipocytokines

Adipocytokines, such as adiponectin, resistin, and leptin, are hormones produced by
the fatty tissue and may be involved in multiple pathologic conditions, including
inflammation and arterial stiffness in hypertension. Interestingly, the RAAS compo-
nents have been associated with adiponectin and resistin plasma concentrations, and
one study demonstrated that aldosterone inhibits adiponectin expression and protein
production in 3T3-L1 adipocytes, suggesting that adiponectin may mediate the
action of aldosterone in insulin resistance and cardiovascular events [82]. Also note-
worthy, patients with primary hyperaldosteronism demonstrated higher resistin lev-
els and cardiac morphological changes, independently of the presence of metabolic
syndrome, suggesting a possible aldosterone-mediated resistin role in patients with
cardiovascular risk [83].

Besides its renal effects on decreasing natriuresis, leptin has additional detrimen-
tal effects in the cardiovascular system such as promoting atherosclerosis by stimu-
lating monocyte migration inflammation and thrombosis processes, hypertrophy of
cardiomyocytes, and myocardial extracellular matrix remodeling [84, 85]. Clinical
trials have demonstrated that the majority of obese patients have increased levels of
leptin accompanied by selective leptin resistance status that explains, at least par-
tially, obesity-associated hypertension.

Resistin is a protein predominantly synthesized by macrophages, but it is also in
the adipose tissue and is increased under inflammatory conditions [86]. Some studies
demonstrated that levels of this adipokine are increased in obesity, insulin resistance,
and hypertension [87]. However, these findings are conflicting and the lack of studies
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has provided some challenges to achieve clear conclusions. Moreover, resistin
showed proinflammatory properties by increasing secretion of cell adhesion mole-
cules and other cytokines such as tumor necrosis factor-a and interleukin-6 [88].

Adiponectin is the most abundant adipokine produced by adipocytes. Low
plasma levels of adiponectin are considered a predictor of cardiovascular outcomes
in the general population and among patients with diabetes [89]. Moreover, it is
associated with endothelial dysfunction, progression of left ventricular hypertrophy
(LVH), and arterial stiffness [90]. Previous studies have shown that hypoadiponec-
tinemia is an independent risk factor for hypertension and resistant hypertension
and also predicts the development of hypertension in normotensive patients after
adjustment for confounding factors [91]. Interestingly, the RAAS components have
been associated with adiponectin regulation, and the direct effect of aldosterone on
adipose tissue has been investigated. Patients with hyperaldosteronism have lower
levels of adiponectin compared with hypertensive patients. Thus, pharmacologic
strategies to increase adiponectin levels may be beneficial to prevent cardiovascular
damage and metabolic disorders in hypertension.

8.9.3 Immune Activation

Vascular oxidative injury accompanies many common conditions associated with
hypertension. Very recent experiments have defined a link between oxidative stress
and immune activation in hypertension. These have shown that hypertension is
associated with the formation of reactive oxygen species in dendritic cells that leads
to the formation of gamma ketoaldehydes or isoketals. These rapidly adduct to pro-
tein lysines and are presented by dendritic cells as neoantigens that activate T cells
and promote hypertension. Thus, cells of both the innate and adaptive immune sys-
tems contribute to dysfunction and end-organ damage in hypertension. Therapeutic
interventions to reduce activation of these cells may prove beneficial in reducing
end-organ damage and prevent the consequences of hypertension including myo-
cardial infarction, heart failure, renal failure, and stroke [92].

In experimental models of hypertension, dendritic cells with highly oxidative
proteins (isoketals) accumulated IL-6, IL-1p, and IL-23 and CD80 and CD86
costimulatory molecules. These “activated” dendritic cells promoted T cell, particu-
larly CD8*, proliferation, the production of IFN-y and IL-17A, and hypertension.
Reactive oxygen species scavengers such as tempol normalized blood pressure and
prevented vascular inflammation, aortic stiffening, and hypertension, events associ-
ated with T-cell activation. Together, these results define a pathway linking vascular
oxidant stress to immune activation and aortic stiffening and provide an insight into
the systemic inflammation encountered in common vascular diseases such as hyper-
tension [93].

Interestingly, plasma F2-isoprostanes, which are produced in concert with these
oxidatively modified proteins, were found elevated in humans with treated hyper-
tension and were markedly elevated in patients with resistant hypertension. These
oxidative-modified proteins were also markedly elevated in circulating monocytes
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from humans with hypertension. These data reveal that hypertension activates den-
dritic cells, in large part by promoting the formation of isoketals, and suggest that
reducing isoketals has potential as a treatment strategy for this disease [94].

These translational findings correlating the immune system and hypertension
may have clinical application in further clinical studies.

8.10 Final Considerations

Because of the diversity of local and systemic actions, interactions with other new and
important blood pressure regulation systems as well as cardiovascular remodeling
pathophysiology, further research, and better biological understanding of the vasoac-
tive peptides constitute a cornerstone for future steps in hypertension therapy.
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Endothelial Function

Rosa Maria Bruno, Agostino Virdis, and Stefano Taddei

9.1 Endothelial Function: Basic Concepts

The endothelium consists in a cellular monolayer that covers the inner wall of all
vessels in the cardiovascular system. While until the beginning of the 1980s the
endothelium was considered a passive stratum with the main role of filter between
the bloodstream and the vascular wall, now it is considered as the biggest autocrine-
paracrine organ in humans, involved in the regulation of multiple biological pro-
cesses in different settings, including cardiovascular system, immune system, central
nervous system, and erectile function, producing a variety of different molecules,
among which the most important is nitric oxide (NO). More than 30 years ago,
Furchgott et al. demonstrated that in isolated rabbit aorta, acetylcholine-induced
vasodilation occurred only in the presence of an intact endothelium, releasing an
endothelium-derived relaxing factor [1], which was later identified as NO [2].

During the last three decades, a large body of evidence identified endothelial
dysfunction consequent to a reduced NO availability as the early step of the athero-
sclerotic process and as a pivotal mechanism in the pathophysiology of cardiovas-
cular disease. Standardized methodologies were set up for invasive and noninvasive
techniques. Concomitantly, several pathways and mechanisms of endothelial dys-
function in different conditions and vascular districts have been demonstrated.
Furthermore, endothelial function has been extensively utilized for cardiovascular
risk stratification, to test new cardiovascular drugs, and to investigate the clinical
impact of emerging cardiovascular risk factors, such as environmental factors and
non-primarily cardiovascular diseases [3, 4].

NO is produced from the amino acid L-arginine, the enzyme NO synthase (NOS),
whose isoform present in the endothelium is called endothelial NOS (eNOS). NO
release from endothelium is determined by receptor-mediated mechanisms
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Fig. 9.1 Nitric oxide (NO) and other endothelium-derived factors and their role on vascular
homeostasis. TGF transforming growth factor, AT angiotensin, ATG angiotensinogen, ET endothe-
lin, ACE angiotensin converting enzyme, 7X thromboxane, PG prostaglandin, NADPH nicotin-
amide adenine dinucleotide phosphate, eNOS endothelial NO synthase, 7-Arg L-Arginine, ACh
acetylcholine, ADP adenosine diphosphate, cGMP cyclic guanosine monophosphate, EDHF
endothelium-derived hyperpolarizing factors, 5-HT serotonin, and BK bradykinin. Cited, with per-
mission from [5]

(acetylcholine, bradykinin, serotonin, substance P, adenosine diphosphate), but also
by mechanical stimuli (Fig. 9.1) [5]. In particular, shear stress, namely, tangential
cyclic stress generated on vascular walls by blood flow, is probably the most power-
ful mechanism of stimulated NO release [2, 6].

Once NO is produced by endothelial cells, it diffuses through cell membranes
reaching vascular smooth muscle cells; there, NO activates cytosolic guanylate
cyclase and thus elevates intracellular levels of cyclic guanosine monophosphate
(cGMP), which acts as a second messenger, inducing vasodilation by the reduction
of cytosolic concentration of calcium ion. At this level, NO exerts its cardiovascular
protective role by relaxing media smooth muscle cells, preventing leukocyte adhe-
sion and migration into the arterial wall, muscle cell proliferation, platelet adhesion
and aggregation, and adhesion molecule expression.

The half-life of NO and therefore its biological activity are critically influenced
by the presence of reactive oxygen species (ROS) such as superoxide: this free radi-
cal rapidly reacts with NO to form the highly reactive intermediate peroxynitrite
(ONOO"). The formation of nitroso compounds has multiple negative effects:
reducing NO availability, having direct vasoconstrictor and cytotoxic effects, and
impairing the activity of the prostacyclin synthase and eNOS. Other ROS, such as
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the dismutation product of superoxide, hydrogen peroxide, and hypochlorous acid,
cannot be considered as free radicals, but have a powerful oxidizing capacity, which
further contributes to oxidative stress within vascular tissues [7]. It is widely docu-
mented that in several disease conditions, including the presence of cardiovascular
risk factors such as hypertension, ROS excess is predominant, and the endothelium
undergoes functional and structural alterations, thus losing its protective role and
becoming a proatherosclerotic structure. In the earliest stages, the principal endo-
thelial alteration is merely functional and addressed as “endothelial dysfunction”
[4]. The fundamental feature of this condition is the impaired NO bioavailability.
This can be the consequence of either a reduced production by NO synthase (e.g.,
due to high levels of asymmetric dimethylarginine, ADMA, a competitive inhibitor
of eNOS) or, more frequently, as above mentioned, of an increased breakdown by
ROS. Finally, NO actions may be antagonized by endothelium-derived contracting
factors [8].

As already mentioned, endothelial dysfunction in the peripheral and in the coro-
nary arteries loses its vascular protective role, thus becoming not only a contributor
to the progression of atherosclerosis but also a marker for cardiovascular risk and
cardiovascular events.

Endothelial dysfunction, detected as the presence of reduced vasodilating
response to endothelial stimuli, has been associated with major cardiovascular risk
factors, such as aging, hyperhomocysteinemia, postmenopausal state, smoking, dia-
betes, hypercholesterolemia, and hypertension. The presence of multiple risk fac-
tors, each contributing to the development of impaired NO bioavailability by
different mechanisms, may be able to determine a progressive worsening of endo-
thelial function. Accordingly, some authors hypothesized that endothelial dysfunc-
tion may be not only a consequence or a collateral feature of risk factors but also a
possible pathogenetic mechanism for their onset, though to date conflicting evi-
dence exists [9].

9.2  Endothelial Dysfunction in Hypertension

Homogeneous literature convincingly demonstrates that endothelial dysfunction is a
hallmark of the hypertensive patient [10, 11]. So far the main cause of hypertension-
related endothelial dysfunction, in humans as well as in experimental animals, has
been identified with an increased NO breakdown. In particular, hypertension-related
endothelial dysfunction has been demonstrated to be the consequence of increased
production of ROS [11], mainly superoxide anions, which are highly reactive and
destroy NO, thus reducing its bioavailability [7]. Various enzymatic and nonenzy-
matic sources of ROS have been described to be activated in endothelial cells, smooth
muscle cells, and inflammatory cells within the arterial wall of hypertensive patients,
including nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, cyclo-
oxygenase [12], xanthine oxidase, and uncoupled eNOS [13] (Fig. 9.1). In the
attempt to compensate for NO deficiency, endothelium-dependent vasodilation is
partially maintained by the production and release of endothelium-derived
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vasodilators other than NO, such as prostanoids and other endothelium-derived
hyperpolarizing factors [14].

Despite this large body of evidence coming from mechanistic studies, the exact
relationship between endothelial dysfunction and hypertension is still a matter of
debate, with some authors suggesting a “vicious circle” hypothesis, which is a bidi-
rectional relationship [9]. However, several facts go against this hypothesis, as sum-
marized below.

First, it is important to remember that endothelial dysfunction is not a specific
feature of hypertension, but it is also a feature of other pathological conditions, i.e.,
diabetes mellitus, hypercholesterolemia, hyperhomocysteinemia, and obesity, not
characterized by high blood pressure, in which reduced NO availability occurs [4].
Furthermore, in large cross-sectional population studies, an association between the
degree of endothelial dysfunction and blood pressure values has been demonstrated,
though not univocally [15, 16]. Indeed, the association of endothelial function with
BP values depends also upon the technique used, with a direct correlation with flow-
mediated dilation (FMD) and an inverse correlation with peripheral arterial tonometry
[17, 18]. Thus, whether a cause-effect relationship exists, and which is its direction, is
still a matter of debate. For example, the presence of elevated blood pressure in a
cohort of Finnish teenagers was predictive of impaired FMD after 21 years of follow-
up [19], while to our knowledge, no prospective study has tested yet the hypothesis
that lower FMD predisposes to future development of hypertension.

One of the facts in favor of a role for endothelial dysfunction in the development
of hypertension relates to genetic aspects. Taddei et al. found that normotensive
offspring of hypertensive patients had significantly impaired response to ACh in
comparison to normotensive offspring of normotensive patients, due to a defect in
the L-arginine-NO pathway [20]. Conversely, other studies found only a modest
heritability of FMD in the Framingham study participants [16], while the heritabil-
ity of BP values is considerably higher [21].

Endothelial dysfunction has been associated with vascular target organ damage.
The first observation of a relationship between increased carotid intima-media
thickness (IMT) and endothelial dysfunction was shown in the forearm microcircu-
lation of untreated hypertensive patients [22]. In a cross-sectional study in middle-
aged healthy men, there was no evident correlation between brachial FMD and IMT
[23], whereas FMD predicted IMT progression in hypertensive, postmenopausal
women [24]. Similarly, endothelial function was not related with arterial stiffness,
measured as pulse wave velocity, in healthy subjects [25] and in nondiabetic hyper-
tensive patients, while a significant relationship in hypertensive patients with diabe-
tes shows up [26]. In contrast, a weaker relationship has been found with cardiac
and renal organ damage. For example, Treasure et al. found that left ventricular
hypertrophy is associated with impaired endothelium-mediated relaxation in human
coronary resistance vessels of hypertensive patients [27], while in other studies no
significant difference in FMD was observed between patients with or without left
ventricular hypertrophy or among patients with different geometric patterns [28].
Furthermore, despite that both microalbuminuria and endothelial dysfunction are
considered as expressions of endothelial pathology, no correlation between urinary
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Table 9.1 Summary of the effect of antihypertensive drugs on endothelial function in the macro-
and in the microcirculation

Macrocirculation (coronary Microcirculation (coronary and
Drug classes epicardial artery, brachial artery) forearm microcirculation)
Thiazide diuretics = =
Aldosterone =1 1
antagonists
Beta-blockers =1 =
Calcium channel =1 ™
blockers
ACE inhibitors " =
AT1-receptor = =
blockers
Renin inhibitors = T

Adapted, with permission, from [30]

albumin excretion and vasodilatation in response to acetylcholine or to sodium
nitroprusside in the forearm microcirculation occurred in essential hypertensive
patients [29].

Several nonpharmacological and pharmacological approaches have been
demonstrated to improve or reverse endothelial dysfunction (Table 9.1),
although their effect is never selective and usually also targets one or more tra-
ditional cardiovascular risk factors [9, 30]. Although in acute studies the use of
high-dose antioxidant vitamins is extremely effective in restoring normal endo-
thelial function, interventional studies using oral administration of these sub-
stances (i.e., vitamins C and E) failed to provide consistent data. However,
recently, other antioxidant compounds, such as the flavonoids contained in red
wine and chocolate, have been found to ameliorate endothelial function in
peripheral large arteries. Among cardiovascular drugs, f-blockers and diuretics
are invariably found to have little or no effect on endothelium-dependent vaso-
dilation. On the other side, calcium channel blockers have been consistently
shown to reverse impaired endothelium-dependent vasodilation, mainly in the
microcirculation, with conflicting results in the brachial artery flow-mediated
dilation. ACE inhibitors and angiotensin receptor blockers have been shown to
ameliorate endothelium-dependent vasodilation in several experimental set-
tings, exploring both coronary and peripheral large arteries, but conflicting
results have been obtained in the microcirculation. Also lipid-lowering drugs
such as statins and insulin-sensitizing agents such as glitazones are able to
improve endothelial function. Given these data, it is conceivable that the thera-
peutic correction of endothelial dysfunction may lead to an improvement of
prognosis in patients with cardiovascular risk factors or cardiovascular disease.
However, scant data are available on this topic, and most of the conclusions that
can be drawn are highly speculative. Antihypertensive drugs per se do not nec-
essarily improve endothelial function [31], and compounds improving vascular
function such as antioxidants [32] do not necessarily lower blood pressure or
may do it through different mechanisms [33].
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Taken together, these results do not support the hypothesis that endothelial dys-
function might induce hypertension. On the other hand, a possible exception may be
represented by preeclampsia, a hypertensive condition complicating up to 15% of
human pregnancies, whose incidence is on the rise due to increased maternal age
and obesity: in this disease, endothelial dysfunction might play a pathogenetic role
and represent a reasonable therapeutic target [34].

The most important open question is probably which is the prognostic role of
endothelial dysfunction in hypertension. Other biomarkers of subclinical athero-
sclerosis have outperformed endothelial function testing in prediction of cardio-
vascular events in the general population, though to date a number of
methodological issues avoid to draw firm conclusions [35, 36]; furthermore, few
studies specifically addressed this question in the hypertensive population. Indeed,
in 172 prospectively identified uncomplicated hypertensive patients, followed up
for 95 months, a reduced FMD was associated with an increased risk of cardiovas-
cular events after adjustment for traditional cardiovascular risk factors [37].
However, there is the intriguing possibility that serial assessments by noninvasive
techniques might increase the predictive value and the clinical significance of
endothelial dysfunction. Lack of restoration of endothelial function despite opti-
mal treatment might identify a subset of “non-responders,” who might be suitable
for new therapeutic approaches, specifically targeting the endothelium. This
hypothesis was tested in patients with systemic lupus erythematosus [38], in
patients with coronary artery disease [39], but also in a sample of 400 postmeno-
pausal hypertensive women without evidence of coronary artery disease at base-
line and 6 months after effectively treating blood pressure. In those women whose
FMD has not improved, there was a sevenfold increase in cardiovascular events
during follow-up [40]. In this scenario, the possibility of improving endothelial
function pharmacologically in hypertensive patients is appealing (Table 9.1).
Furthermore, nutraceuticals as well as other cardiovascular drugs might have a
beneficial effect on vascular function and might help reduce the residual cardio-
vascular risk in hypertensive patients [41].
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Genetics of Blood Pressure 1 0
and Hypertension

Sandosh Padmanabhan, Li-En Tan,
and Anna F. Dominiczak

The role of genetics in blood pressure regulation and hypertension is established
through multiple strands of evidence. Family and twin studies have shown that BP
is a heritable trait, with heritability ranging from 15 to 40% for the clinic SBP and
from 15 to 30% for clinical DBP; a higher heritability was noted for the ABPM
(sleep) around 69% and 51% for SBP and DBP, respectively [1-3]. The risk of
hypertension is significantly increased in subjects with one or two hypertensive par-
ents, and BP levels correlate more in monozygotic twins than dizygotic twins [4, 5].
Secondly, the existence of rare monogenic forms of hypertension and the identifica-
tion of their underlying causal mutations have enhanced our understanding of
molecular pathways that regulate BP regulation [6]. Finally, accruing evidence from
genome-wide association studies (GWAS) highlights the role of common variants
in BP regulation and points to novel pathways that may lead to novel therapies [7].

10.1 Monogenic Forms of Hypertension

Discovery of the monogenic Mendelian forms of hypertension has mainly been
through positional cloning using large family pedigrees, with multiple members of
the family showing a clear inheritance pattern. Patients with these types of disorders
represent less than 1% of the hypertensive population and are considered to have
secondary hypertension. Mutations causing monogenic hypertension are character-
ised by being rare with a major defect that usually disrupts a single pathway. Given
the complexity and the presence of several systems and physiological pathways that
control BP, it is surprising that most of the identified monogenic hypertension
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syndromes are due to mutation in genes that play key roles in renal sodium handling
[6, 7]. Table 10.1 summarises the different forms of monogenic hypertension and
their key features and causal genes.

10.2 Polygenic Pathways of BP Regulation and Hypertension

Several GWAS have been conducted using BP as a quantitative trait or by using a
binary definition of hypertension. All the significant GWAS signals are summarised
in Table 10.2. The first GWAS was a case-control design from the Wellcome Trust
Case Control Consortium (WTCCC), published in 2007 [8]. The study examined 7
common complex diseases using 2000 cases each and 3000 shared controls. The
study genotyped approximately 500,000 SNPs using the 500 K Affymetrix SNP
chip and reported a total of 24 significant disease-SNP association signals
(p <5.0 x 1077). Hypertension was the only trait without any significant association
signal across the genome. Similarly, in the first GWAS that analysed BP as a quan-
titative trait in the Framingham Heart Study using almost 71,000 SNPs, 1400 related
individuals revealed no significant results [9]. This study used six primary pheno-
types for BP derived from single and long-term averaged (LTA) SBP and DBP. These
two studies represent the first attempts at applying the GWAS approach for hyper-
tension and BP, and the important lessons taken from these two attempts influenced
the study designs of future studies that yielded strong signals. The key message was
the complexity of hypertension and the need for having much larger sample size to
discover association signals for genetic marker with low effect sizes.

The first two successful GWAS for BP were reported in 2009 by two large con-
sortia, the Cohorts for Heart and Aging Research in Genomic Epidemiology
(CHARGE) study [10] and the Global Blood Pressure Genetic (Global BPgen)
study [11]. Both studies analysed BP as a quantitative trait. The CHARGE consor-
tium included six population-based cohorts of European ancestry with a total sam-
ple size of 29,000 individuals, and the Global BPgen consisted of 17 cohorts with a
total sample size of 34,000 at the discovery phase. The two consortia tested the
association of SBP and DBP as the primary phenotypes, using a cross-sectional
measurement with addition of a fixed value of 15/10 mmHg or 10/5 mmHg for
individuals taking antihypertensive therapies in CHARGE and Global BPgen,
respectively. In order to combine the results from different cohorts, genotype impu-
tation, using linkage disequilibrium patterns, was used to fill in missing markers
across all the included cohorts, thus allowing merger of genotypes from different
genotyping chips and platforms. The final association tests were performed in
almost 2.5 million genotyped or imputed SNPs and discovered 13 loci indepen-
dently associated with SBP or DBP at a level of genome-wide significance
(p <5.0x 107%) [10, 11]. Each study reported eight loci with three loci overlapping
in both studies. These two studies have been followed by further GWAS, and the
results of these studies are summarised in Table 10.2. In addition, most of the loci
reported in these two studies were novel except for some loci such as CYP17A1-
NT5C2 and MTHFR-NPPB, the former has been associated with a rare Mendelian
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form of hypertension, and the latter lies in a region that has previously been associ-
ated with BP and hypertension [12].

In 2011, the International Consortium for Blood Pressure Genome-wide
Association Studies (ICBP-GWAS) published the largest meta-analysis for systolic
and diastolic blood pressure in >69,899 European individuals, followed by valida-
tion in 132,000 individuals [13]. The SNP association analyses were performed
under an additive genetic model, which assumes that the effect conferred by an
allele is increased by r-fold for heterozygotes and 2r-fold for homozygotes. The
model was adjusted for sex, BMI, age, and age? (to account for the middle-age pla-
teau of DBP). Also, a fixed value of 15/10 mmHg was added to individuals taking
antihypertensive treatment to account for treatment effect. The study identified 29
independent SNPs at 28 loci, of which 16 loci were novel and the remaining 13 loci
were a replication of the previously reported loci in CHARGE or Global BPgen.
Although the majority of SNPs identified by ICBP were intragenic, some loci were
in gene desert regions or in genomic regions that have no gene encoding protein
with a biological plausible effect on BP.

A second study was also carried out by the ICBP consortium using mean arterial
pressure (MAP) and pulse pressure (PP) as primary phenotypes with the addition of
further six studies in the consortia, increasing the total discovery sample size to
more than 74,000 individuals [14]. The study identified four novel loci associated
with PP and two loci associated with MAP, with one locus associated with both
traits near FIGN. The important finding of this study was that three of the four loci
associated with PP were found to have an opposite effect in SBP and DBP, unlike
the majority of BP variants that exerts effect in the same direction on SBP and DBP,
which suggests the presence of genetic pathways that may differentially influence
SBP and DBP. The study has also showed that most of MAP variants were also
associated with both SBP and DBP, suggesting a high correlation between these
three BP traits.

Whilst most of the GWAS for BP have taken the quantitative route studying BP
as a continuous variable, two studies analysed hypertension as a binary trait [15,
16]. The first study identified a novel locus located in the promoter region of uro-
modulin gene (UMOD), which is exclusively expressed in the kidney and may influ-
ence BP by a novel sodium homeostatic pathway [15]. This study employed an
alternative strategy to minimise misclassification bias and increase statistical power
by selecting individuals from the extreme of the BP distribution; this strategy has
allowed a sharper contrast between cases and controls. The second study used a
classical case-control approach using the HYPERGENES Project and identified a
new locus in the promoter region of the endothelial NO synthase gene, which is a
critical mediator for cardiovascular homeostasis and BP control via vascular tone
regulation [16].

GWAS for populations other than European descent were also performed with
the aim of replicating the variants identified in European populations and also find-
ing new population-specific loci. The Asian Genetic Epidemiology Network Blood
Pressure (AGEN-BP) was the largest non-European GWAS that included more than
30,000 individuals in the discovery stage and 20,000 for replication [17]. AGEN-BP
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identified six novel loci and confirmed seven loci previously reported in CHARGE
and Global BPgen. The Continental Origins and Genetic Epidemiology Network
(COGENT) study performed trans-ethnic meta-analysis GWAS with a discovery
sample size of 29,000 individuals of African-American (AA) origin [18]. The repli-
cation sample included a mixed ethnic background of European and East Asian
origins due to a lack of sufficient samples from AA. The COGENT study reported
five loci associated with SBP or DBP, three of which were not previously reported
to be associated with BP. A Chinese GWAS reported three novel loci and replicated
14 previously reported BP loci [19]. The success of replicating the previously
reported loci for European population in the other population suggests that the
physiologic effects of these loci may be generalised across populations with diverse
genetic backgrounds. Yet, identifying novel loci also suggests that populations with
different genetic backgrounds may have a unique genetic factor as a result of differ-
ences in allele frequencies or population-specific factors that interact with genes to
influence BP.

Long-term averaging (LTA) of repeated BP measures has been used within lon-
gitudinal cohorts rather than analysing single BP measurement to improve the phe-
notype precision [20]. This identified 39 association signals at 19 loci and two novel
gene loci KCNK3 and CRIP3. The study has also estimated a 20% improvement in
statistical power with using the LTA approach over the single-visit method.
Modelling gene x age interactions to detect SNPs with age-specific genetic effects
on BP which would otherwise have been missed from a standard main-effect model
identified a variant near MIR126 [21]. The SNPs with the largest age-gene interac-
tion in three loci (CASZI, EHBPILI, and GOSR?2) displayed opposite directions of
effect by increasing BP in the young and decreasing BP in the old, by a difference
in the effect size that can reach up to 1.58 mmHg [21]. An important message from
this study is that pooling data from different studies with a wide range of age distri-
bution may obscure genetic effects that are age dependent.

Gene x environmental interaction was assessed in two other studies with smaller
sample sizes; gene-alcohol interaction analysis in one study [22] identified a SNP
rs10826334 near SLC16A9 whose effect was modulated by both the number of alco-
holic drinks and the ounces of alcohol consumed per week. SBP decreased by
3.8 mmHg in those consuming 14 drinks/week compared to only 0.46 in non-
drinkers. Gene x smoking and gene x education interactions were explored in two
other studies but these await replication [23, 24].

10.3 Genetic Mechanisms of BP Regulation
and Dysregulation

We now have a greater understanding of the pathways of BP regulation that are
influenced by genes (Fig. 10.1). Whilst most of these pathways have emerged from
studies of rare monogenic syndromes, GWAS studies are slowly revealing novel
pathways. An outline of the molecular pathways of these variants that affect blood
pressure and lead to disease is summarised below and in Table 10.1.
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Fig. 10.1 Genetic landscape of monogenic and polygenic blood pressure/hypertension syn-
dromes, causal genes, and GWAS loci. Tracks from outside-in are sequential genes within BP loci
(blue, genes in GWAS loci; red, monogenic genes; green, monogenic genes and with SNPs in
blood pressure GWAS); monogenic blood pressure syndromes

10.4 Glucocorticoid-Remediable Aldosteronism or Familial
Hyperaldosteronism Type 1

This is a rare autosomal dominant disorder caused by a chimeric gene containing the
5’ regulatory sequences of 11f-hydroxylase (CYP11B1, which confers ACTH respon-
siveness) fused with the distal coding sequences of aldosterone synthase (CYP11B2)
leading to ACTH rather than angiotensin II or potassium as the main controller of
aldosterone secretion [25]. The specific treatment for hypertension in these individu-
als is low-dose glucocorticoids to suppress ACTH secretion or amiloride, which
directly blocks the epithelial sodium channel (ENaC), or spironolactone, which blocks
binding of aldosterone to the mineralocorticoid receptor (MCR).
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10.5 Apparent Mineralocorticoid Excess

The main defect in AME is absence or reduced activity of 11p-hydroxysteroid dehy-
drogenase (HSD11B2), resulting in hypertension in which cortisol acts as if it were
a potent mineralocorticoid [26]. Normally, both cortisol and aldosterone have MCR
agonist activity, and HSD11B2 is protective by metabolising cortisol to prevent its
binding to the MCR. Acquired deficiency of this enzyme may result from its inhibi-
tion by glycyrrhizic acid (the active metabolite from licorice, certain brands of
chewing tobacco, and carbenoxolone). Patients diagnosed with AME syndrome
respond well to low-sodium diet and spironolactone, which blocks binding of both
cortisol and aldosterone to the MCR.

10.6 Pseudohypoaldosteronism Type Il (Gordon’s Syndrome)

This is a form of hypertension associated with hyperkalaemia, nonanion gap meta-
bolic acidosis, and increased salt reabsorption by the kidney. The WNK (with no
lysine [K]) kinases play central roles in regulating mammalian BP by initiating a
signalling pathway that controls the activity of critical ion cotransporters in the
kidney NCC (Na*/Cl~ ion cotransporter) and NKCC2 (Na*/K*/2CI~ cotransporter
2). Gordon’s syndrome is caused by mutations in WNK1, WNK4, Kelch-like 3
(KLHL3), and Cullin 3 (CUL3) genes. CUL3 and KLHL3 mutations putatively
inhibit the ubiquitylation of WNK4 and probably other WNK isoforms, resulting in
the overactivation of NCC/NKCC?2 ion cotransporters and consequently increased
salt retention and hypertension [27, 28]. Treatment consists of either a low-salt diet
or thiazide diuretics, aimed at decreasing chloride intake and blocking Na*-Cl~
cotransporter activity, respectively.

10.7 Liddle Syndrome

This is an autosomal dominant condition with a clinical picture of hypertension
and aldosterone excess but with low aldosterone and renin levels. It is caused by
mutations in the genes coding the f or y subunits of ENaC (SCNNIB, SCNNIG),
resulting in deletions of proline-rich regions which are essential for binding of
Nedd4-2 (NEDDA4L), a regulatory repressor that promotes channel degradation
[29]. The inability of f and y subunits to bind Nedd4 results in constitutive
expression of sodium channels and prolongation of the half-life of ENaCs at the
renal distal tubule apical cell surface, leading to increased rates of sodium reab-
sorption, volume expansion, and hypertension. Treatment of Liddle syndrome
with amiloride or triamterene lowers BP and corrects the hypokalaemia and
acidosis.
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10.8 Bartter’s Syndrome

This is a salt-losing condition characterised by hypokalaemic metabolic alkalosis
and normal or low blood pressure with increased renin activity and high aldosterone
levels. The defective mechanism is located in the thick ascending limb (TAL) of
Henle’s loop and comprises loss of function of NKCC?2 or a group of other proteins
which lead to secondary loss of function of NKCC2-ROMK channel, chloride chan-
nel Kb (CIC-Kb), Bartin, and calcium-sensing receptor (CaSR) [30]. Clinical and
laboratory findings among patients with Bartter’s syndrome resemble those of
chronic abuse of loop diuretics. Patients with Bartter’s syndrome, especially those
with antenatal manifestation, exhibit increased urine levels of prostaglandin E2
(PGE2) and diminished susceptibility to the pressor effect of Ang II and norepi-
nephrine. Patients with Bartter’s syndrome are more prone to life-threatening com-
plications, especially during the postnatal period, such as volume depletion,
diarrhoea, spasm, fever, and dangerous hypokalaemia. Chronic therapy of underly-
ing abnormalities such as increased prostaglandin synthesis and RAAS activity,
which aggravate electrolyte and acid-base disturbances, includes potassium supple-
mentation and the use of cyclooxygenase inhibitors, angiotensin-converting enzyme
(ACE) inhibitors, and potassium-sparing diuretics.

10.9 Gitelman’s Syndrome

In Gitelman’s syndrome, the defective mechanism is located in the distal convoluted
tubule and comprises loss of function of the sodium chloride cotransporter (NCC)
[31]. Clinical and laboratory findings among patients with Gitelman’s syndrome
resemble those of chronic abuse of thiazide diuretics. The prevalence of Gitelman’s
syndrome is estimated to be 1:40,000 in the general population, and the prevalence
of heterozygotes in the Caucasian population is approximately 1%. Chronic treat-
ment of patients with Gitelman’s syndrome comprises oral potassium and magne-
sium supplementation with adequate salt and water consumption in order to maintain
effective extracellular volume. Indomethacin, amiloride, and eplerenone have been
used to treat hypokalaemia.

10.10 Primary Aldosteronism

Individuals with primary aldosteronism constitutively produce aldosterone from the
adrenal gland, resulting in hypertension with variable hypokalaemia and a sup-
pressed circulating renin. It is estimated that <40% of aldosterone-producing ade-
nomas (APAs) harbour a gain-of-function somatic mutation in a K* channel,
KCNIJS5, which results in membrane depolarization and enhanced aldosterone pro-
duction. Mutations in three other genes have been discovered in a further 7% of
APAs-ATP1A1, encoding the al subunit of Na*/K*-ATPase itself; ATP2B3, encod-
ing a plasma membrane Ca’*-ATPase 3 homologous to the sarcoplasmic
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endoplasmic reticulum Ca®-ATPases (SERCA); and CACNAILD, encoding an
L-type Ca’* channel, CaV1.3 [32]. A substantial proportion of APAs resembling
adrenal zona glomerulosa cells harbour gain-of-function mutations in genes impor-
tant for the regulation of Na* and Ca*, ATP1A1, and CACNAID, respectively,
whereas KCNJ5 mutations are common in APAs resembling cortisol-secreting cells
of the adrenal zona fasciculate [33]. The distinction between APA and bilateral
hyperplasia is clinically important because removal of the affected adrenal gland in
APAs cures or ameliorates hypertension in the majority of patients, whereas bilat-
eral adrenal hyperplasia requires lifelong treatment with an aldosterone antagonist
and bilateral adrenalectomy not indicated.

10.11 Phaeochromocytomas and Paragangliomas

Phaeochromocytomas and paragangliomas are rare neuroendocrine tumours of the
adrenal glands and the sympathetic and parasympathetic paraganglia. Autosomal
dominantly inherited phaeochromocytomas are caused by a variety of RET proto-
oncogene mutations. Other pheochromocytoma susceptibility genes include the
tumour suppressor gene VHL observed in families with von Hippel-Lindau syn-
drome and the gene that encodes succinate dehydrogenase subunits A, B, C, and D
(SDHA, SDHB, SDHC, and SDHD, respectively) with heterozygous germline muta-
tions of SDHB, SDHC, and SDHD causing the well-characterised familial
pheochromocytoma-paraganglioma syndromes known, respectively, as paragangli-
oma 4, paraganglioma 3, and paraganglioma 1 [34]. Newer predisposing genes for
pheochromocytoma/paraganglioma include KIF1Bbeta, PHD2, and SDHAF2 [34].

10.12 Uromodulin

A GWAS of BP extremes showed the minor G allele of a UMOD promoter SNP,
rs13333226, and was associated with a lower risk of hypertension and reduced uri-
nary UMOD excretion [15]. Uromodulin gene expression is exclusively localised to
the thick ascending limb of the loop of Henle (TAL) in the kidney where 25% of the
filtered sodium is reabsorbed. UMOD knockout mice demonstrated an increased
localization of the salt-retaining NKCC2 (sodium-potassium-chloride cotransporter
2) in subapical vesicles of TAL cells with reduced phosphorylation, both resulting in
reduced cotransporter activity [35]. This results in greater sodium excretion as com-
pared to wild-type mice, translating to 20 mmHg lower BP in the knockout mice at
baseline, as measured by radiotelemetry [36]. Notably, this difference in BP was
exacerbated with salt loading, where the knockout mice were resistant to its hyper-
tensive effects [36]. Conversely, UMOD overexpression caused a dose-dependent
increase in UMOD expression and excretion, associated with an increase in BP [37].
The main sodium transporter in TAL is NKCC2 which is blocked by the commonly
used loop diuretic furosemide. Trudu et al. [37] showed furosemide treatment signifi-
cantly enhanced natriuresis and reduced BP levels both in the transgenic mice and in
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the hypertensive individuals homozygous for the UMOD increasing allele. Thus
GWAS has directed focus on a novel pathway of BP regulation involving altered
expression of uromodulin which appears to influence sodium homeostasis and opens
an avenue for translational studies to discover or repurpose drugs for treatment of
hypertension.

10.13 Natriuretic Peptide

Common SNPs in the chromosomal region containing NPPA and NPPB, the genes
encoding the ANP and BNP pro-peptides, are associated with circulating levels of
the natriuretic peptides and also associated with BP [11, 12]. The GWAS SNP
rs5068 lies in the 3'-UTR of the NPPA gene which encodes the pro-peptide of ANP,
NT-proANP. Healthy volunteers, which were homozygous for the risk allele of
rs5068, showed lower NT-proANP expression possibly mediated through a
microRNA miR-425 and provide a putative mechanism to explain how the risk
allele reduces ANP level and consequently increases BP [38]. The genetic effect of
rs5068 on circulating NT-proANP levels is comparable with the environmental
change induced by switching from an extremely low-salt diet (230 mg/d) to a diet
with salt content typical of a Western diet (4600 mg/d) [38].

10.14 Missing Heritability

Despite the identification of numerous SNPs associated with hypertension and
BP traits, the proportion of phenotypic variance that is explained by all of these
loci together is less than 2.5%. This phenomenon has been described as the prob-
lem of “missing heritability” and is not restricted to BP traits [39]. For instance,
a classic complex trait such as height which has a very large heritability estimate
from family studies (about 80%) has less than 10% of the phenotypic variance
explained from the SNPs identified using very large sample sizes (>180,000 indi-
viduals). A different way of estimating heritability using SNP data of unrelated
individuals is the GCTA approach introduced by Yang et al. (h%xp) [40]. This is
based on estimating the heritability from unrelated individuals using common
SNPs with the assumption that heritability estimates in unrelated individuals are
only attributable to the common SNPs, whilst the estimation in related individu-
als is attributed to the entire genome. Applying this method to systolic blood
pressure has shown that i’ was about 24%, which is approximately 50% of the
heritability estimates from other twin studies, and about 80% of the same study
heritability estimate (h*> = 30%) [41]. Furthermore, the number of independent
variants with similar effect size to those reported in the ICBP study was esti-
mated to be 116 (95% CI, 57-174), which can collectively explain around 2.2%
of the phenotypic variance for BP phenotypes, compared with only 0.9%
explained by the 29 SNPs identified by ICBP [13]. These findings indicate that a
large proportion of the heritability of BP is “hidden” rather than “missing”



10 Genetics of Blood Pressure and Hypertension 151

because of large number of common variants, each of which has too small an
effect to be detected at the stringent genome-wide significance level using cur-
rent sample sizes.

10.15 Emerging Insights from Other Omics: Metabolomics

Other omic technologies such as metabolomics are potentially powerful tools to iden-
tify molecular pathways. They can capture both intrinsic and extrinsic factors, and
their dynamic nature makes them ideal for measuring physiological response to exter-
nal stimuli or the development of pathogenic processes. Metabolomics is the system-
atic study of metabolites, which are small molecules, generated by the process of
metabolism, and has been important in elucidating the pathways underlying metabolic
disorders. Small molecule metabolites have an important role in biological systems
and can help define candidate systems in the pathogenesis of hypertension.
Furthermore, metabolomic markers are closer to the phenotype of interest in contrast
to the genotype which is static and unchanged throughout life. Metabolomic profiling
of over 3000 adult twins identified a putative novel pathway for BP regulation involv-
ing a dicarboxylic acid (hexadecanedioate) with a causal role supported by in vivo
studies in rats [42]. The role of hexadecanedioate in a vascular mechanism for hyper-
tension is supported by evidence from a study of pulmonary hypertension, indicating
a disruption of B-oxidation and an increase of ®-oxidation in this condition and point-
ing to a putative role in elevating pressure in both the systemic and the pulmonary
circulations [43]. The strongest genetic association seen with hexadecanedioate maps
to SLCO1B1, an association previously reported in a metabolome-wide genetic study
in Caucasians [44]. Targeted metabolomic profiling in the European Prospective
Investigation Into Cancer and Nutrition (EPIC)-Potsdam study showed higher con-
centrations of serine and glycine, and acyl-alkyl-phosphatidylcholines C42:4 and
C44:3 tended to be associated with higher and diacyl-phosphatidylcholines C38:4 and
C38:3 with lower predicted 10-year hypertension-free survival [45]. Other metabolite
associations with incident hypertension and blood pressure come from two US studies
which found 4-hydroxyhippurate, a metabolic sex steroid pattern, and two diacylglyc-
erols 16:0/22:5 and 16:0/22:6 to be associated with blood pressure and incident hyper-
tension [46, 47]. Finally, Menni et al. showed 12 metabolites to be strongly associated
with pulse wave velocity with uridine and phenylacetylglutamine, and serine appears
strongly correlated with PWV in women [48].

Conclusions

Genomics has provided us with a deep understanding of the genetic architecture
of hypertension and blood pressure regulation. The studies of monogenic disor-
ders have resulted in a catalogue of critical genes involved in blood pressure
regulation, whilst genome-wide association studies are just beginning to yield
insights into common variants that affect blood pressure. The emerging encour-
aging results from metabolomic profiling in hypertension indicate that these sig-
nals will be more tractable, and integrating genomics and metabolomics may
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accelerate functional studies. The full promise of genetic studies will be realised
when these results translate into clinical benefit either in terms of risk prediction,
treatment stratification, or new drug discovery.
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Hakan R. Toka

11.1 Introduction

Hypertension is a significant risk factor for cardiovascular morbidity, affecting more
than 25% of the adult population, and a worldwide leading cause for cardiovascular
mortality [1-3]. Blood pressure goals and treatment strategies remain debated
despite numerous clinical hypertension trials and development of more efficient
drugs during the last few decades. Ethnic background and comorbidities play a role
in achieving adequate blood pressure control.

Since the human genome project [4], advances in nucleotide sequencing and
computing have led to identification of allelic gene variation among various popula-
tions, predisposing to disease susceptibility. One of the first to notice inheritance of
hypertension was the German physician Wilhelm Weitz (1881-1969), who reported
that family members of hypertensive individuals were more likely to have elevated
blood pressure themselves [5]. The British physician Sir George Pickering reported
that blood pressure variation in the general population follows a Gaussian distribu-
tion and that the etiology of hypertension is multifactorial, caused by multiple genes
and environmental factors [6]. The role of genetic factors on blood pressure was
demonstrated by extensive twin studies, which made remarkable contributions.
Monozygotic twins have high concordance of blood pressure levels ranging from
~48 to ~60% for systolic and ~34—67% for diastolic blood pressure [7]. In addition,
the identification of single genes with large effects on blood pressure variation
helped tremendously to define primary physiologic mechanisms, revealing previ-
ously unknown disease mechanisms [8, 9]. Initially large families with noticeable
blood pressure variation were studied with microsatellite marker and linkage analy-
sis. In some instances, candidate gene analysis was utilized in conditions that had
been previously studied in great detail. Next-generation sequencing and advanced
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computational tools have made it possible to identify more disease genes in small
pedigrees and individuals with extremes of blood pressure variation [10, 11]. The
relevance of recognizing rare diseases caused by single-gene defects has been sub-
stantiated by studies in the general population; rare allelic variation in Mendelian
disease genes has been shown to affect blood pressure variation in the Framingham
population, supporting that the same genes contribute to common phenotypes [12].

Monogenic hypertension and syndromes of renal salt wasting associated with
lower blood pressure are reviewed here, comparing distinct molecular pathways of
blood pressure regulation.

11.2 Monogenic Hypertension
11.2.1 Increased Sodium Reabsorption in the Distal Nephron

11.2.1.1 Glucocorticoid-Remediable Aldosteronism (Familial
Hyperaldosteronism Type 1; OMIM #103900)

Glucocorticoid-remediable aldosteronism (GRA) is an autosomal disorder with vari-
able increase in aldosterone secretion in response to ACTH. Affected individuals are
often suspected of having primary hyperaldosteronism; however computerized
tomography scanning of the adrenal glands will be negative for adrenal adenoma.
GRA features salt-sensitive hypertension, associated with low renin levels, mild
hypokalemia, and metabolic alkalosis (Table 11.1). A distinguishing biochemical
feature is the presence of abnormal urinary steroid metabolites (18-hydroxycortisol
and 18-oxocortisol), which helped recognizing the etiology of this condition. Linkage
analysis of a large kindred with GRA localized the responsible gene to chromosome
8q21. At this locus resides aldosterone synthase (encoded by the gene CYPI11B2 —
cytochrome P450, family 11, subfamily B, polypeptide 2), which produces aldoste-
rone in the zona glomerulosa via regulation by angiotensin 2. The neighboring gene
at this locus, CYP11B1 (11B-hydroxylase), has a highly similar nucleotide sequence
(~95%) and is regulated by ACTH, participating in the final steps of glucocorticoid
production. An unequal crossing-over at this chromosomal location, consisting of the
regulatory region of the 11p-hydroxylase gene and the main structural portion of
aldosterone synthase gene (Fig. 11.1), leads to the formation of a chimeric gene
CYP11B1/CYP11B2. The protein of this chimera performs all of the same actions of
the aldosterone and however is regulated by ACTH. Glucocorticoid steroid treatment
ameliorates hypertension via suppression of the chimeric gene in the adrenal zona
fasciculata, giving this condition its name [13, 14].

11.2.1.2 Apparent Mineralocorticoid Excess Syndrome (AME;

OMIM #218030)
The clinic presentation of apparent mineralocorticoid excess (AME) can be simi-
lar to GRA (Table 11.1); however, contrary to GRA, the inheritance is autosomal
recessive and the urine analysis is negative for abnormal steroid metabolites.
Instead, urinary free cortisol-to-cortisone ratio is elevated (ratio >0.5) in the
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a. Normal adrenal gland

zona glomerulosa zona fasciculata
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b. Glucorticoid-remediable aldosteronjsm
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Fig. 11.1 In glucocorticoid-remediable aldosteronism (GRA), an unequal crossing-over of two
neighboring genes, CYP11B1 (11p-hydroxylase) and CYP11B2 (aldosterone synthase), leads to a
gene fusion. The resulting chimeric gene product consists of the regulatory 5’ region of the
11B-hydroxylase and the structural portion of aldosterone synthase, performing all of the same
functions as aldosterone, however being regulated by ACTH (adrenocorticotropic hormone)
instead of angiotensin 2

|-

setting of normal serum cortisol levels. Severe nephrocalcinosis and bilateral
renal cysts have been reported in some cases; the etiology is not entirely clear but
may be related in part due to chronic, long-standing hypokalemia. The elevated
urinary cortisol-to-cortisone ratio was useful in identifying the gene defect,
because cortisol can bind and activate the mineralocorticoid receptor (MR). This
activation is inhibited by the 11f-hydroxysteroid dehydrogenase enzyme (11p-
HSD), which rapidly oxidizes cortisol to the inactive metabolite cortisone. This
mechanism is important, because at baseline circulating concentrations of cortisol
are several orders of magnitude higher than aldosterone. Candidate gene analysis
in individuals with AME identified bi-allelic loss-of-function mutations in the
kidney isoform of 11B-HSD, rendering 11B-HSD?2 incapable of converting corti-
sol to cortisone [15]. Low-sodium diet, MR antagonists, and ENaC blockers are
used to treat patients with AME. Individuals ingesting large amounts of licorice or
other glycyrrhetinic acid-containing substances (e.g., certain liquors, chewing
tobaccos, etc.) can develop the features of AME due to inhibition of 113-HSD2 by
glycyrrhetinic acid [16].
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a. ENaC regulation b. Liddle syndrome
By B o B o By
Cell surface —aM—aMY— Cell surface !# X
i V4 i
4 i 4 i
Ubiquitination  Endocytosis y/4 4
4 i v i
P/ i s

o i
by I}

& B

i
Y B
—— Cell surfface —— —M— Cell surface —!}!Y— lNa+
B B

a b o v PRRXY
L 9
«— PPPXY 7
I Clathrin-coated pits

WW domain

Clathrin
WW domain

Fig. 11.2 (a) The epithelial sodium channel ENaC is a membrane protein consisting of three
subunits (o, B, and y) forming a heteromeric channel, whose surface expression (activity) is regu-
lated by ubiquitination and clathrin-dependent endocytosis. A peptide sequence—PPPXY—in the
cytoplasmic tails of the ENaC subunits interacts with tryptophan-rich WW-domains of ubiquitin-
protein ligase such as NEDD4-2 (not shown), degrading cell surface proteins. (b) Missense muta-
tions or deletions in PPPXY of either the - or the y-subunit lead to impaired deactivation of ENaC
from the cell surface, leading to increased sodium reabsorption by a constitutively active ENaC

11.2.1.3 Liddle Syndrome (OMIM #218030)

Grant Liddle was the first to describe this autosomal dominant condition, in which
affected individuals feature early, and frequently severe, hypertension associated
with metabolic alkalosis and hypokalemia [17]. Both renin and aldosterone levels
are suppressed. Hypertension is not responsive to spironolactone treatment, how-
ever improves with ENaC blockers [18]. Candidate gene analysis identified gain-of-
function mutations in two out of its three ENaC subunits as causes for this syndrome
(Fig. 11.2). Missense mutations or deletions in the cytoplasmic tails of the - or the
y-subunit lead to impaired deactivation of ENaC from the tubular cell surface in the
renal collecting duct [19, 20]. The mutations are reported in a proline-rich PY motif
(also called PPPXY), which interact with tryptophan-rich WW-domains of proteins
that are known for ubiquitination and degradation of cell surface proteins. The cyto-
plasmic tails of ENaC are also believed to play an important role for endocytosis via
clathrin-coated pits [21]. In Liddle syndrome, internalization of the ENaC channels
from the cell surface is impaired, leading to constitutively active sodium reabsorp-
tion (Fig. 11.2), which explains the extraordinary efficacy of ENaC blockers in the
treatment of this syndrome (Table 11.1). Treatment with amiloride is preferred over
triamterene due to a longer half-life and decreased risk of crystallizing in acidic
urine, which can lead to irreversible renal tubular injury in rare cases [22].
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11.2.1.4 Activating Mutation in the Mineralocorticoid Receptor
(Autosomal Dominant Hypertension with Severe
Exacerbation in Pregnancy; OMIM #605115)
Candidate gene screening in individuals with features resembling Liddle’s syn-
drome, who tested negative for ENaC mutations, led to the identification of a gain-
of-function mutation in the MR gene NR3C2 [23]. The heterozygous mutation in
one affected family was found at codon 810 of NR3C2, resulting in a leucine (L)
amino acid substitution for serine (S). The mode of transmission is autosomal domi-
nant (Table 11.1). Affected females exhibited severe gestational hypertension,
which suggested that other steroids may act as agonists of mutated
MR-S810L. Structural protein analysis revealed that the mutation allowed for acti-
vation by steroids lacking the 21-hydroxyl group such as progesterone. This modi-
fication also explains why in in vitro studies spironolactone acts as an agonist of
mutated MR-S810L [23].

11.2.1.5 Aldosterone-Producing Adrenal Adenomas (Familial
Hyperaldosteronism Type Ill; OMIM #613677)

Aldosterone-producing adrenal adenomas (APAs) are a frequent cause for second-
ary hypertension due to renin-independent excess production of aldosterone in the
adrenal gland [24]. Individuals with APA have typically negative family history
(Table 11.1). Patients are identified due to hypokalemia and feature a characteristic
unilateral adrenal mass on computerized tomography. Adrenal vein sampling dem-
onstrates predominant aldosterone secretion from the gland harboring the tumor and
is crucial for the diagnosis, allowing to distinguish APA from idiopathic hyperaldo-
steronism (bilateral adrenal hyperplasia).

A rare monogenic form of primary hyperaldosteronism with autosomal-
dominant mode of inheritance was identified in one family with bilateral familial
adrenal adenomas associated with severe hypertension [25]. Mutational analysis
revealed a novel germline mutation (T158A) within a highly conserved residue of
KCNJ5, encoding for the inwardly rectifying potassium channel Kir3.4. Structural
proteomics and in vitro experiments suggest that KCNJ5 mutations can lead to
chronic depolarization of zona glomerulosa cells in the adrenal glands and thereby
increase cell proliferation and aldosterone production [26, 27]. Independently per-
formed exome sequencing studies from APA tissues revealed that ~30—40% harbor
somatic mutations at highly conserved residues on KCNJ5 (either G151R or
L168R) [28, 29].

Since the discovery of KCNJ5 as the main mechanism for the etiology of APA,
somatic mutations in other, less frequently affected genes have been recognized.
These include somatic gain-of-function in CACNAID, encoding a voltage-gated
calcium channel [30]; loss-of-function in ATPIAI, encoding the Na/K-ATPase
al-subunit [31]; and loss-of-function in ATP2B3, encoding a calcium ATPase [32].
Primary hyperaldosteronism due to somatic CACNAID mutations affect ~12% of
individuals, who can feature seizures and neurological abnormalities (OMIM
#615474). Interestingly, there is a gender discrepancy in the frequency of APA gene
mutations; at least twice as many more females than males carry somatic mutations
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in KCNJ5 (29), whereas mostly males will have somatic mutations in ATP/AI and
ATP2B3 [32]. The frequency of ATP1A1 and ATP2B3 as cause for APA has been
estimated ~5% and 1-2%, respectively [32].

11.2.1.6 Congenital Adrenal Hyperplasia (CAH; OMIM #202110,
#202010)

Congenital adrenal hyperplasia (CAH) syndromes are autosomal recessive inherited
conditions, resulting from mutations in genes that facilitate biochemical steroidogen-
esis in the adrenal glands. In this condition, the adrenal glands produce deficient
amounts of cortisol while secreting either excessive or deficient amounts of sex hor-
mones and mineralocorticoid steroids during prenatal development [33]. The CAH
syndromes are classified into common, so-called salt-wasting or simple-virilizing
CAH, mostly due to 21a-hydroxylase deficiency, and the rarer, non-classical forms,
which cause ~5-10% of CAH cases. Only nonclassical CAH is associated with
hypertension, which is caused by increased production of mineralocorticoid precur-
sors (11-deoxy corticosterone and corticosterone). The cause is loss-of-function
mutations in CYP/IBI (enzyme 11f-hydroxylase, OMIM #202010) or CYP17A1
(enzyme 17a-hydroxylase, OMIM #202110) [33]. While ACTH and mineralocorti-
coids are increased, both cortisol and sex steroids are decreased. Hypertension can
develop in childhood due to volume expansion and is associated with hypokalemia
and metabolic alkalosis (Table 11.1). Treatment with glucocorticoids suppresses
ACTH, thereby decreasing mineralocorticoid precursor production and alleviating
hypertension [34]. Other features in CAH include female virilization (CYP1IB1
mutations) and ambiguous genitalia in genetic males or ovarian dysfunction at
puberty in genetic females (CYP17A1 mutations).

11.2.1.7 Pseudohypoaldosteronism Type Il (Hypertension
Hyperkalemia Syndrome; OMIM #614491, #614492,
#614495, #614496)
Pseudohypoaldosteronism type II (PHA 1II) is a unique form of rare hypertension
syndromes associated with hyperkalemia and metabolic acidosis [35] (Table 11.1).
Hypercalciuria has been reported in some cases, making this syndrome a near mir-
ror image of Gitelman syndrome [36]. Renin is typically suppressed whereas aldo-
sterone levels can be elevated due to hyperkalemia. The hypertension is
chloride-dependent because the exchange of bicarbonate or citrate infusions
instead of chloride can ameliorate blood pressure elevation [37]. To date, four
genes have been identified causing this heterogeneous syndrome, including intronic
deletions in the With-No-Lysine(K) kinase WNKI (PHA type IIB) and missense
mutations in WNK4 (PHA type IIC). Both were discovered by linkage analysis of
large pedigrees with autosomal dominant inheritance of PHA II [38]. The WNK
mutation leads to increased sodium reabsorption via activation of the sodium-
chloride cotransporter (NCC) in the distal convoluted tubule (DCT), regardless of
volume status; simultaneously renal tubular potassium excretion is decreased in
PHA 1I (via inhibition of ROMK, the apical renal outer medullary potassium chan-
nel) despite hyperkalemia [39].
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Since the discovery of the WNKs, various functions in the kidney have been
identified. WNK4 is regulated by intracellular chloride concentration [Cl]i. In
conditions of high [Cl]i, WNK4 seems to act as an inhibitor of NCC via heterodi-
mer formation with other WNKs. In contrast, when [Cl]i is low, WNK4 can acti-
vate NCC. This modulation of WNK4 by [Cl]i has been shown to account for the
potassium-sensing properties of the distal convoluted tubule [40]. Besides NCC
and ROMK regulation in the distal convoluted tubule, a WNK kinase cascade
including the SGK1 (serum/glucocorticoid regulated kinase 1)/Nedd4-2 complex
is believed to regulate ENaC in the cortical collecting duct [41]. Interestingly, the
modulation of all channels and transporter by WNKs occurs via the phosphoryla-
tion of other serine-threonine kinases such as the SPAK (Ste20-related proline-
alanine-rich kinase)/OSRI1 (oxidative stress-responsive kinase) complex, which
regulates NCC [42]. In addition, extrarenal WNK kinases have been identified in
numerous other tissues, making them a potential drug target not only for blood
pressure regulation and potassium handling but also for cystic fibrosis (WNK4)
and central nervous system disorders (WNK2 and WNK3), including autism, epi-
lepsy, and stroke [43—-45].

Other gene defects causing PHA II have been identified by exome sequencing:
KLHL3 (Kelch-like 3, PHA type IID) and CUL3 (Cullin3, PHA type IIE) genes
form a RING-type E3 ligase ubiquitination system, which regulates the abun-
dance of WNKs in the distal nephron [46]. Impaired ubiquitination of NCC from
the luminal cell surface is the speculated mechanism for PHA type IID and IIE
[42, 46].

All PHA 1I genes lead to increased stability and/or function of NCC at the cell
surface, resulting in hyperkalemic hypertension; however the PHA II phenotype can
vary greatly. Patients affected by de novo CUL3 mutations are more severely
affected as they develop PHA II at younger age and present with more severe hyper-
kalemia and acidosis. In contrast, patients with WNKI mutations feature typically
mild hyperkalemia with hypertension occurring at later age. Nevertheless, thiazide
diuretics are a very effective treatment for all forms of PHA II, regardless of gene
defect and severity of presenting features [36].

11.2.2 Sympathetic Nervous System Hyperactivity: Hereditary
Familial Pheochromocytoma (OMIM #171300)

Pheochromocytomas (PCCs) are rare catecholamine-producing tumors, associated
with variable symptoms depending on type and secretory pattern of produced
catecholamine(s). Hypertension in PCC is elicited by increased sympathetic activity
and can present as labile or paroxysmal, frequently complicated by orthostatic
hypotension. Plasma renin activity and aldosterone levels are both elevated due to
decreased intravascular volume and increased renin secretion; hypokalemia can be
seen [47]. Over ~90% of PCCs occur in the adrenal gland, whereas ~10% can be
found in extra-adrenal tissue (paragangliomas). PCC can be malignant and metasta-
size (~10%) and also occur bilaterally (~10%).
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Overall, known genetic mutations may account for the pathogenesis of ~60% of
PCCs and paragangliomas [48]. PCCs can present as part of hereditary syndromes,
which include the phakomatosis von Hippel-Lindau syndrome (OMIM #193300),
multiple endocrine neoplasia (MEN) types IIA (#171400) and IIB (#162300), and
neurofibromatosis I (#162200). The most frequent cause of inherited PCC is gain-
of-function mutation in the RET proto-oncogene causing MEN type II [49], which
can feature medullary thyroid cancer (types IIA and IIB), hyperparathyroidism
(type IIA), and mucosal neuromas (type I1IB). Mutations in genes encoding for the
subunits of the succinate dehydrogenase (SDH) protein complex are frequently the
cause for paragangliomas [50]. A recent exome sequencing study from non-
syndromic PCC tissues identified novel, amino acid-changing somatic mutations in
genes associated with apoptosis-related pathways. Particularly, mutations in the
“cancer” gene KMT2D (lysine (K)-specific methyltransferase 2D) were discovered
more frequently (~14%) [51].

The treatment of choice for PCCs is surgical resection of the affected adrenal
gland(s) or the catecholamine-producing paraganglioma, respectively. Irreversible
alpha-blockade prior to surgery and use of beta-blockers is mandatory to prevent
life-threatening hypertensive complications [47].

11.2.3 Pathway Affecting Vascular Resistance: Hypertension
Brachydactyly Syndrome (HBS; OMIM #112410)

A hypertension syndrome associated with brachydactyly was first described in
1973 in a large Turkish kindred [52]. The condition has autosomal dominant pattern
of inheritance and has 100% penetrance of all features. Affected individuals are of
short stature, develop hypertension in early childhood, and have decreased life
expectancy when untreated [53]. Hand X-rays show shortened metacarpal bones
(brachydactyly type E), cone-shaped epiphysis, and short end phalanx of the thumb
(brachydactyly type B) [54]. Blood pressure in HBS is not salt-sensitive; the renin-
angiotensin-aldosterone and catecholamine axis function normally. Left ventricular
cardiac hypertrophy or retinopathy despite severe hypertension are absent [55, 56].
Affected individuals require two or more antihypertensive drugs to lower blood
pressure [57]. Baroreceptor reflex response is abnormal, resulting in an excessive
increase of blood pressure with sympathetic stimuli [58]. In addition, neurovascular
anomalies at the left ventrolateral medulla oblongata can be found on MRI in all
affected individuals [59]. The significance of this finding is unclear.

The gene locus was mapped to chromosome 12p [53], containing a complex
chromosomal rearrangement of unclear significance [54, 60]. The disease gene for
this condition was discovered by utilizing genome sequencing in affected individu-
als from six unrelated families; all displayed novel gain-of-function mutations in
highly conserved residues in exon 4 of the phosphodiesterase 3A gene PDE3A [61].
In vitro analyses of mesenchymal stem cell-derived vascular smooth muscle cells
(VSMCs) and chondrocytes obtained from affected individuals suggested increased
protein kinase A-mediated PDE3A phosphorylation as disease mechanism. The
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mutations lead to increase in PDE3A’s cAMP-hydrolytic activity and thereby
enhance cell proliferation. The level of phosphorylated vasodilator-stimulated phos-
phoprotein is diminished in VSMCs, suggesting altered vascular smooth muscle
function. Cell-based studies demonstrated that available PDE3A inhibitors suppress
the mutant isoforms [62]. Although the exact molecular mechanisms for this syn-
drome are still being investigated, VSMC-expressed PDE3A is an interesting thera-
peutic target for the treatment of hypertension.

11.2.4 Pathway with Unclear Mechanism: Mitochondrial
Hypomagnesemia, Hypertension,
and Hypercholesterolemia Syndrome (OMIM #500005)

A hypercholesterolemia, hypertension, and hypomagnesemia syndrome was
described in a family with 142 members [63]. Sequencing of the mitochondrial
genome identified a homoplasmic mutation substituting cytidine for uridine imme-
diately 5-prime to the mitochondrial tRNA anticodon for isoleucine (Ile) in all
members of the maternal lineage, indicating mitochondrial inheritance. In silico
analysis showed that uridine at this position is nearly invariant among tRNAs sta-
bilizing the tRNA anticodon loop. Hypertension, hypomagnesemia, and hypercho-
lesterolemia each showed ~50% penetrance among adults on the maternal lineage.
The prevalence of hypertension showed marked age dependence, increasing from
~5% in subjects under age of 30 years to ~95% in those over the age of 50 years.
In vivo NMR (nuclear magnetic resonance) spectroscopy of striated muscle in one
affected individual showed decrease in ATP production [63]. Given the loss of
mitochondrial function with aging due to increased defects in the mitochondrial
genome, increased blood pressure could be explained by loss of ATP production,
which has been associated with hypertension in the animal model (63). The
increased presence of reactive oxygen species (ROS) secondary to mitochondrial
dysfunction is also a possible mechanism for hypertension [64]. In addition, epide-
miological studies have shown that children of hypertensive mothers are more
likely to develop hypertension, suggesting that the mitochondrial genome could be
associated with inheriting hypertension [65]. The exact mechanism(s) of this mito-
chondrial syndrome remain unknown.

11.3 Genetic Syndromes of Decreased Blood Pressure

11.3.1 Renal Sodium Wasting in the Thick Ascending Limb:
Bartter Syndrome (OMIM #601678, #241200, #607364,
#602522)

Bartter syndrome refers to a heterogeneous group of disorders that are unified by
autosomal recessive transmission of pronounced renal salt wasting, hypokalemic
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Table 11.2 Bartter’s syndrome: salt-wasting nephropathies due to abnormal function of the thick
ascending limb (TAL)

Serum Serum Disease gene

Type Inheritance K* pH Renin Aldosterone Treatment Locus (protein)

1 AR 1 T 1 1 Increase 15g21 SLCI12Al1

2 AR | 1 0 0 salt intake 11q24 (NKCC2)

3 AR l ) T T (for all 1p36  KCNIJ1

4 AR ) 1 T T types) 1p32  (ROMK)
CLCNKB
BSND

AR autosomal recessive; AD autosomal dominant; SLC/2A1 solute carrier family 12, member 1;
KCNJ1 potassium inwardly rectifying channel, subfamily J, member 1; CLCNKB chloride chan-
nel, voltage-sensitive Kb; BSND barttin

metabolic alkalosis, and hypercalciuria (Table 11.2). The mechanism is a defect in
the reabsorption of sodium chloride in the thick ascending limb (TAL), where ~30%
of filtered salt is normally reabsorbed via coordinated operation of apical and baso-
lateral transporters and channels that generate a lumen-positive electrical potential
across the epithelial layer (Fig. 11.3). Reduced function of TAL transporters or chan-
nels, secondary either to pharmacological inhibition (loop diuretics) or genetic muta-
tions (i.e. Bartter syndrome), is associated with renal salt wasting [65].

Neonatal (also known as antenatal) Bartter syndrome is the most common form
and is associated with polyhydramnios during pregnancy. Newborn infants feature
polyuria and polydipsia, requiring parenteral fluid administration for severe volume
contraction. Frequently hypercalciuria is present and nephrocalcinosis will develop,
leading to renal failure. Neonatal Bartter syndrome is caused by homozygous or
compound heterozygous loss-of-function mutations in the sodium-potassium-
2chloride cotransporter (NKCC2) gene (Bartter type 1) or in the renal outer medul-
lary potassium channel (ROMK) gene (Bartter type 2) [66, 67]. In comparison, type
3 or “classic” Bartter is caused by loss-of-function mutations in the voltage-gated
chloride channel Kb (CLCNKB) gene and is usually diagnosed at school age or
later [68]. In type 3, increased urinary calcium excretion is significantly milder and
nephrocalcinosis is not present; however kidney stones can develop later in life.
Renal function is typically normal; however, progression to end-stage renal disease
has been described in some cases [69]. Bartter type 4 is caused by mutations in bart-
tin (BSND), an accessory p-subunit for CLCNKB in the TAL [70]. Because barttin
is also expressed in stria vascularis cells of the inner ear, where it serves as f-subunit
of a highly similar chloride channel (CLCNKA), affected individuals typically fea-
ture sensorineural hearing loss.

Gain-of-function mutations in the calcium-sensing receptor gene (CASR) can
feature renal salt wasting and hypercalciuria, thereby mimicking Bartter syndrome
[71]. PTH levels are severely suppressed in this syndrome, which is known as auto-
somal dominant hypocalcemia (OMIM #601198); by some this syndrome is classi-
fied as Bartter type 5 due to the presence of renal salt wasting, hypokalemia, and
hypercalciuria.
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Bartter Syndrome

Urine TAL Interstitium

Ca2+ e
CLDN 14/16/19

Fig. 11.3 Schematic illustration of a tubular epithelial cell in the thick ascending limb (TAL).
Loss of function of the apical sodium-potassium-2 chloride cotransporter (NKCC2) or the renal
outer medullary potassium channel (ROMK) cause neonatal Bartter type 1 or type 2, respectively.
Classic Bartter or type 3 is caused by loss of function of the voltage-gated chloride channel Kb
(CLCNKB), located at the basolateral membrane. A defect in CLCNKB’s f-subunit barttin causes
a similar phenotype and however is associated with sensorineural deafness due to barttin’s pres-
ence in the inner ear (type 4). A phenocopy of Bartter (by some classified as type 5) is caused by
gain-of-function mutations in the calcium-sensing receptor (CASR), which is a negative regulator
of paracellular calcium and magnesium transport (modulating a tight junctional claudin complex,
illustrated by red arrow). Altered electrochemical driving forces in the TAL may explain the Bartter
features observed. Abbreviations: BSND barttin; CLDN claudin

11.3.2 Renal Sodium Wasting in the Distal Convoluted Tubule
and/or Collecting Duct

11.3.2.1 Gitelman Syndrome (OMIM #263800)

Gitelman syndrome is an autosomal recessive condition, in which affected individuals
present with symptoms identical to those who are on thiazide diuretics, featuring
hypokalemia, hypomagnesemia, metabolic alkalosis, and associated renal sodium
wasting (Table 11.3). Linkage analysis in several unrelated families identified the
thiazide-sensitive sodium chloride cotransporter (NCC) gene SLCI2A3 as cause for
this disease. Both homozygous and compound heterozygous loss-of-function
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mutations have been reported [72]. Affected individuals can be asymptomatic;
however, muscular cramps, weakness, and irritability related to hypomagnesemia and
hypokalemia can occur. More severe symptoms such as paralysis and cardiac arrest
are rare but have been reported [73]. Interestingly, individuals with heterozygous loss-
of-function mutation, with only one mutated NCC allele (estimated prevalence ~0.5—
1% in Caucasian population), may have a survival benefit due to lower blood pressure
levels and increased bone mineral density [12, 74].

11.3.2.2 Pseudohypoaldosteronism Type | (OMIM #177735,
#264350)

Pseudohypoaldosteronism (PHA) type I is a salt-wasting nephropathy characterized
by unresponsiveness to mineralocorticoids [75, 76]. Affected individuals present
with hyperkalemic acidosis despite high aldosterone levels and show significant
improvement with high-salt diet (Table 11.3). Two genetic subtypes can be distin-
guished, type IA, inherited in an autosomal dominant fashion, and type IB, transmit-
ted in autosomal recessive pattern. Type IA is caused by mutations in the
mineralocorticoid receptor gene NR3C2 and has a milder phenotype [75]. In infancy,
affected children display frequent vomiting, failure to thrive, and short stature; labs
feature hyponatremia, hyperkalemia, and urinary salt wasting. PHA type IA
improves with age, and affected individuals can be asymptomatic when they reach
adulthood and however remain susceptible to volume depletion. The recessive form,
type IB, is caused by loss-of-function mutations in any one of the three genes encod-
ing for the -, -, or y-subunits of ENaC, leading to decreased channel activity and
thereby severe renal salt wasting [76]. PHA type IB presents a near mirror image of
Liddle syndrome. Sodium content is also increased in saliva, sweat, and stool.
Multiple organ systems are affected and the mortality is high in the neonatal period.
Respiratory failure is a frequent complication, sometimes leading to misdiagnosis
of cystic fibrosis.

11.3.2.3 Epilepsy, Ataxia, Sensorineural Deafness,
and Tubulopathy (EAST Syndrome; OMIM #612780)

EAST syndrome features salt-wasting tubulopathy associated with neurological
abnormalities [77, 78]. The mode is autosomal recessive and consanguinity has
been described in some families. The responsible gene was mapped by linkage anal-
ysis to chromosome 1q23 (KCNJ10) and encodes for the inwardly rectifying potas-
sium channel Kir4.1. It is expressed in the basolateral membranes of the distal
convoluted tubule (DCT), connecting tubule (CNT), and also collecting duct epithe-
lia. The electrolyte and acid-base abnormalities in EAST are similar to Gitelman
syndrome, featuring hypokalemia, hypomagnesemia, and metabolic alkalosis
(Table 11.3). Renin and aldosterone levels are both elevated. Affected individuals
compensate for renal salt losses with increased salt consumption, thereby typically
maintaining normal blood pressure [77]. The proposed mechanism is that KCNJ10
loss-of-function mutations impair the activity of the Na/K-ATPase at the basolateral
membrane, thereby decreasing transepithelial sodium transport in the DCT, CNT,
and CD [78]. Due to expression of Kir4.1 in neuronal tissue, including the inner ear,
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various additional features are present. Mice deficient in KCNJ/0 exhibit striking
pathology of the entire central nervous system and display renal salt wasting and
volume contraction as well [79].

11.3.2.4 Renal Tubular Dysgenesis (RTD; 267,430)

Autosomal recessive transmitted RTD is a heterogeneous developmental disorder,
characterized by abnormal renal tubular formation associated with persistent fetal
oligoanuria and severe hypotension. In utero or perinatal death is frequently observed
in affected children [80]. Parental consanguinity has been reported in ~1/3 of cases
[81]. Infants surviving the neonatal period display severe and refractory hypotension
requiring vasopressors, respiratory assistance, and kidney replacement therapy.
Death at birth occurs frequently due to pulmonary hypoplasia and respiratory failure.
Only few individuals with RTD survive after days or weeks of intensive care [81].
Kidney histopathology showed absence of differentiated proximal tubular cells,
which is the pathological hallmark of this disorder. All renal tubules appear abnor-
mally developed, primitive, and reminiscent of collecting tubules. Postnatal skull
ossification defects (so-called hypocalvaria) are often seen. RTD is caused by loss-
of-function mutations in four genes, all encoding for proteins of the renin-angiotensin
system (RAS). The genes shown in Table 11.3 include REN (renin), AGT (angioten-
sinogen), ACE (angiotensin-converting enzyme), and AGT1R (angiotensin II recep-
tor type 1). A similar phenotype can be seen in children whose mothers were exposed
to RAS blockers during pregnancy (known as ACEi fetopathy) [82].

Conclusion

Research on rare monogenic hypertension and its counterpart, syndromes with
lower blood pressure, has been insightful to understanding disease mechanisms
affecting blood pressure variation. It is likely that the combined effects of rare
allelic variation in the described genes and others regulate blood pressure varia-
tion in the general population [12]. Studies on monogenic hypertension along
with blood pressure genomics described elsewhere in this textbook will advance
our understanding of hypertension, define new drug targets, and improve treat-
ment and prevention.
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12.1 Turner Syndrome and Associated Cardiovascular
Disease

Turner syndrome (TS) is a rare chromosomal disorder, occurring in 1 per 2000 to 1
per 5000 live-born girls [1-3]. Monosomy X is present in about half of the cases; the
others present a structural X chromosome aberration or a mosaic karyotype [4, 5].
The phenotype of TS is highly variable, but short stature and gonadal failure are
characteristic features. Congenital and acquired cardiovascular disease, renal abnor-
malities and endocrine and neurocognitive disorders are frequently associated [6].

Compared to the ‘general’ population, morbidity and mortality are increased, car-
diovascular disease being the most important cause of premature death [7—10]: the
risk to die from cardiovascular disease is four times higher in TS patients than in the
general population [8], and life expectancy is reduced by a decade. Cardiovascular
anomalies are found in up to half of the TS patients and mainly involve the left side
of the cardiovascular system. Bicuspid aortic valve (BAV), aortic arch anomalies,
including coarctation, and progressive dilation of the ascending aorta [6, 11-13] are
the most frequent. Aortic dissection is a relatively rare but frequently fatal complica-
tion in TS patients that often occurs at a young age [9, 14].

In TS patients, arterial hypertension (AHT) is a highly prevalent risk factor for
cerebrovascular disease and aortic dissection adding significantly to the medical
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burden of the syndrome. Compared to the general population, the relative risk for
AHT-related morbidity is 2.9 [15], and the incidence of death related to hypertensive
disease is sixfold increased [8].

12.2 Definition and Prevalence of Hypertension in Turner
Syndrome

12.2.1 Definition of Arterial Hypertension

The definition of arterial hypertension in adults and children is presented in
Table 12.1.

12.2.2 Prevalence of Arterial Hypertension in Adult Turner
Patients

Prospective data on blood pressure measurements and the prevalence of AHT in TS are
scarce [19]. Most publications report blood pressure values in TS that are higher com-
pared to healthy age-matched controls [20-26], but this is not confirmed by all [27-
29]. The prevalence of AHT in adult TS patients ranges from 15 to 58%; both systolic
and diastolic hypertension are reported. This variation can be partially explained by
the different definitions of AHT used and by divergence in the population characteris-
tics (age, race and lifestyle) [19]. Data on nocturnal dipping patterns in adult TS
patients are scarce; a blunted dipping (dipping <10%) is reported in 13% [23, 25].

Table 12.1 Definition of arterial hypertension for adults and children

Adults Children

Hypertension

In-office BP SBP >140 mmHg and/or SBP and/or DBP >p95for age, sex
DBP >90 mmHg[16] and height[17]

24-h ABPM 24 h SBP >130 mmHg and/or SBP and/or DBP >p95for age, sex
DBP >80 mmHg[16] and height[18]

Daytime SBP day >135 mmHg and/or DBP day SBP day or DBP day >p95for age,
>85 mmHg[16] sex and height[18]

Isolated nocturnal hypertension
Ambulatory BP SBP night >120 mmHg and/or DBP SBP night and/or DBD

night >70 mmHg and SBP night >p95for age, sex and height
day <135 mmHg and DBP day and SBP day and/or DBD day
<85 mmHg[16] <p95for age, sex and height[18]

Blunted nocturnal dipping
24-h ambulatory  [(1-SBP night/SBP day)*100] <10% [(1-SBP night/SBP
BP day)*100] <10%

BP blood pressure, ABPM ambulatory blood pressure monitoring, SBP systolic blood pressure,
DBP diastolic blood pressure, BP night mean systolic blood pressure during night time, SBP day
mean systolic blood pressure during daytime, >p95 above the 95th percentile, <p95 below the
95th percentile
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12.2.3 Prevalence of Arterial Hypertension in Paediatric Turner
Patients

The prevalence of AHT in young TS girls ranges from 0 to 40% [29-34] with a vari-
ability that cannot be explained by different definitions of AHT (all studies define
hypertension as a blood pressure above the 95th percentile for sex, age and height)
but rather by divergence in the population characteristics [19]. Abnormal nocturnal
dipping (<10%) is found in up to 57% of paediatric TS patients [29, 31, 33].

12.3 Aetiology of Hypertension in Turner Syndrome

The aetiology of AHT in TS is poorly understood and presumably multifactorial [35].

12.3.1 Essential Hypertension

Overweight and obesity, established risk factors for AHT, are highly prevalent in TS
[36], and TS patients have an increased risk for both type 1 and 2 diabetes [37]. The
sympathetic nervous system—an important factor in blood pressure regulation
[38]—is over-activated in TS leading to an increased BP and a higher heart rate [39,
40]. Oestrogens are involved in the regulation of the autonomous nerve system and
the vascular function, the latter by modulating a variety of biological cascades (e.g.
RAA system and endothelin) and by their antioxidant activity [41]. Oestrogen defi-
ciency, characteristic for TS, is at least partially responsible for the sympathetic
overstimulation seen in TS [39, 40]. In the general population, increased stiffness of
the aortic wall is an important cause of increasing systolic blood pressure with
advancing age [42, 43]. Interestingly, in patients with TS with and without a bicus-
pid aortic valve or aortic coarctation, an early increase of aortic stiffness parameters
has been documented, which might contribute to the increased prevalence of hyper-
tension [21, 44—46]. The impact of hormone replacement therapy on BP remains
subject of debate, although some studies describe a lowering of diastolic blood pres-
sure [23, 47, 48], a decrease of augmentation index [49] and a reduction in carotid
intima-media thickness [50].

12.3.2 Secondary Hypertension

AHT can develop secondary to structural cardiovascular or renal defects. In TS,
coarctation is found in 4—15% of patients [11, 13, 37, 51], and the aortic arch is
often hypoplastic [11, 51]. No statistically significant association between aortic
arch anomalies and elevated BP was found in TS [52, 53], but this observation could
have been biased by the small number of coarctation patients included in the stud-
ies. However, other publications do describe a relationship between an elongated
transverse arch with abnormal curvature and elevated BP [11, 53]. Malformations
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of the kidney and the collecting system are found in 38—41% of TS girls [52, 54].
Although they can evolve towards renal scarring, there is no significant association
between their presence and AHT in TS girls [52]. Also classical renovascular AHT
in TS is rare.

12.4 Hypertension and Acquired Cardiovascular Disease
in Turner Syndrome

AHT is a well-established risk factor for aortic dissection, an often fatal complica-
tion in TS patients [55]; Stanford type A aortic dissections are the most common.
The incidence in TS is estimated at 36/100,000 Turner years [9] which is 12 times
higher than in the general population [56]. Dissection often occurs at a young age,
with a mean of 30.7 years (range, 4-64 years) [14]. Arterial hypertension is present
in about half of the reported cases; other acknowledged risk markers are BAV, aortic
coarctation, aortic dilation and pregnancy. However, dissection also occurs in TS
patients without obvious risk factors [9, 14, 55].

Aortic dilation, which may proceed to aortic dissection, is found in 20-30% of
TS patients and can present from childhood. The link between BP and aortic dila-
tion remains a subject of debate [24, 28, 53, 57-60].

Elevated systolic blood pressure, together with advancing age and body surface
area, plays a role in the development of the left ventricular hypertrophy that is found
in 23% of adult TS patients [61].

12.5 Diagnosis of Hypertension in Turner Syndrome
12.5.1 Blood Pressure Measurement

Correct diagnosis of AHT requires a standardised office BP measurement with the
use of an appropriate-sized cuff [16] at least once a year. At the first visit, BP should
be measured at both arms in the sitting position; the arm with the higher value is
taken as reference for subsequent visits. To detect obstructive aortic arch malforma-
tions, BP is also measured in a supine position at the four limbs where the value at
the legs should be at least equal or higher than the one obtained at the arm, compa-
rable to the ankle-arm index.

If the systolic office BP exceeds 130 mmHg and/or the diastolic BP 80 mmHg
(or the 95th percentile for children), 24-h ambulatory blood pressure measurement
(ABPM) at the arm with the highest value is recommended. In patients without
office AHT, it seems appropriate to screen with a 24-h ABPM at transition from the
paediatric to the adult TS clinic and from then on at least once every 5 years to
detect masked hypertension or a blunted dipping pattern or nocturnal hypertension.
Measurements on a more regular basis are advised in the case of concomitant BAV,
coarctation, dilation of the aorta, renal abnormalities, end-organ damage or associ-
ated cardiovascular risk factors.
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12.5.2 Elaboration After Diagnosis of Hypertension

Secondary AHT should be ruled out at the moment of a new diagnosis of
AHT. Elaboration includes evaluation of renal function, ultrasound of the renal
arteries and the kidneys, evaluation of the thyroid function, a cardiac ultrasound and
cardiac MRI with angiography of the aorta (if not recently performed) to rule out
coarctation of the aorta. If the anamnesis reveals complaints suggestive of phaeo-
chromocytoma, measurement of catecholamines and metanephrines in 24-h urine
and/or plasma should be performed. Obstructive sleep apnoea syndrome should be
ruled out in patients with a history of snoring [62], in case of nocturnal hypertension
or severe obesity. Drugs predisposing to hypertension should be asked for.

12.5.3 Screening for End-Organ Damage

Chronic AHT causes vascular changes leading to organ damage in the kidney (kid-
ney failure), the eyes (retinopathy), the heart (left ventricular hypertrophy, ischaemic
heart disease), the brain (cerebrovascular accidents) and other great vessels (aortic
aneurysm and low extremity peripheral artery disease). Data on the prevalence of
these complications in TS are lacking, but ischaemic heart disease and cerebrovascu-
lar disease are important contributors to the increased mortality in TS [8]. Screening
for end-organ damage should therefore be performed according to the hypertension
guidelines [16].

12.6 Treatment of Arterial Hypertension in Turner Patients
12.6.1 Treatment Strategy in Adult TS Patients

Cut-off values for the initiation of BP treatment in TS remain a subject of debate.
There are no evidence-based guidelines, but in view of the potentially increased risk
for aortic dilation and the detrimental effect of AHT in the evolution to aortic dis-
section, lower-than-conventional BP thresholds seem appropriate, especially in
patients with associated aortic disease [63, 64]. A therapeutic flowchart based on BP
and associated cardiovascular pathology is presented in Fig. 12.1 [19]. Patients with
additional cardiovascular risk factors should be treated according to the interna-
tional guidelines on hypertension [16].

As in the general population, treatment of AHT consists primarily of appropriate
lifestyle measures. Overweight and poor physical fitness are major issues in TS, and
efforts should be made to reduce weight and improve physical exercise. There are
no data comparing different pharmacologic antihypertensive therapies in TS
patients. Most recommendations suggest beta-blockers as first-line therapy, given
their favourable effect on aortic dilation and the risk of dissection. This has been
proven in patients with Marfan syndrome [39, 63—65], but clear evidence in Turner
syndrome is lacking. However, beta-blockers have a positive effect on the sinus
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office BP measurement 1x/year

[

If SBP >130 mmHg and/or DBP >80 mmHg: perfom ABPM

blunted noctumal dipping mean day time SBP =130 mm Hg and <135 mmHg mean day time SBP >135 mmHg
with mean day time SBP <130 mm Hg and and/or
and mean day time DBP<80 mmHg mean day time DBP >80 mmHg and <85 mmHg mean day time DBP =85 mmHg
mean night time SBP mean night time SBP TS without cardio- TS with cardio-
<120 mm Hg >120 mm Hg vascular defect* vascular defect*
and and/or
mean night time SBP mean night time DBP
<70 mmHg >70 mmHg

Lifestyle advice Lifestyle advice Lifestyle advice Lifestyle advice Lifestyle advice

Consider pharmacological Pharmacological treatment Pharmacological treatment

treatment
with evening dose

Fig. 12.1 Treatment algorithm in adult TS patients. “Cardiovascular defects: bicuspid aortic
valve, aortic coarctation or dilation of the ascending aorta >20 mm/m?>. TS patients with additional
cardiovascular risk factors are treated according to the international guidelines on arterial hyper-
tension (2013 ESH/ESC Guidelines for the management of arterial hypertension. Eur Heart J
2013;34:1925-1938)

tachycardia frequently encountered in TS patients [39, 40]. As studies show an
increased RAA activation in Turner syndrome, ACE inhibitors (ACEI) or angioten-
sin receptor blockers (ARB) are a reasonable alternative, especially in the presence
of left ventricular hypertrophy and diabetes or the metabolic syndrome [34]. Both
ACEI and ARB have teratogenic properties and cannot be used during pregnancy.
Table 12.2 presents a scheme for the initiation of pharmacological treatment, based
on associated pathology.

Additional risk factors should be diagnosed and treated appropriately. This
includes optimisation of thyroid function, hyperlipidemia and diabetes. The effect of
treatment must be regularly checked, preferably with 24-h ABPM. If the target BP is
not achieved, combination antihypertensive therapy should be considered [16].

Women with isolated insufficient nocturnal dipping should be followed more
closely, and lifestyle changes should be encouraged. If isolated nocturnal AHT appears,
treatment with evening administration of the medication could be considered [66].

12.6.2 Treatment Strategy in Paediatric TS Patients

There are no data on the optimal blood pressure treatment goals in young TS
patients. It seems reasonable to use the reference values for the general paediatric
population that are expressed for sex, age and height, as this probably avoids bias
due to the short stature of Turner girls [17]. BP values between the 90th and 95th
percentile for age and height indicate a prehypertensive state and require close fol-
low-up. A healthier lifestyle is promoted including weight reduction, enough sleep,
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Table 12.2 Initiation of antihypertensive treatment in TS patients, based on associated
pathology

Indication Pharmacological treatment

Isolated hypertension Beta-blocker
If contraindicated or not tolerated: ACE inhibitor or angiotensin
receptor blocker or calcium channel blocker

Associated dilation of the Beta-blocker

aorta If contraindicated or not tolerated: angiotensin receptor
antagonist

Associated systolic ACE inhibitor

ventricular dysfunction Angiotensin receptor antagonist

Beta-blocker

Associate a diuretic if necessary

Associate a mineralocorticoid receptor blocker if necessary
Associated left ventricular ACE inhibitor
hypertrophy Angiotensin receptor blocker

Beta-blocker

Calcium channel blocker

Associate a diuretic if necessary

Associate a mineralocorticoid receptor antagonist if necessary
Metabolic syndrome ACE inhibitor

Angiotensin receptor blocker

Calcium channel blocker
Pregnancy Beta-blocker (labetalol or metoprolol)

Methyldopa

Associate long-acting calcium channel blocker if necessary

healthy diet and physical activity. Children with BP values between 95th and 99th
percentile require lifestyle advice and repetitive measurements to confirm the diag-
nosis of AHT [17]. If the BP exceeds the 99th percentile, pharmacological treatment
should be initiated. The optimal choice of treatment is similar to the one for the
adult population.

12.6.3 Treatment Strategy in Pregnant Turner Patients

Pregnant TS patients are at an increased risk for hypertension and preeclampsia.
During gestation, BP should be checked regularly and AHT treated rigorously. Even
if the BP is within normal limits, preventive treatment with a beta-blocker could be
considered [67]. Coarctation, severe dilation of the aorta (ASI >25 mm/m?) and
uncontrolled AHT are formal contraindications for pregnancy [67].
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LVH LV hypertrophy

OR Odds ratio

PIUMA Progetto Ipertensione Umbria Monitoraggio Ambulatoriale
RAAS Renin-angiotensin-aldosterone system

RES Reliability of M-mode Echocardiographic Study

RR Relative risk

RWT  Relative wall thickness

13.1 Introduction

Hypertensive heart disease (HHD) encompasses a wide spectrum of abnormalities
that represent the accumulation of a lifetime of functional and structural adaptations
to increased blood pressure (BP) load (Fig. 13.1). The clinical presentation of HHD
is dependent on some demographic factors (including age, sex, and race), comorbid
conditions (including obesity, diabetes mellitus, or peripheral arterial disease), and
duration and severity of hypertension [1-3].

Hypertensive patients may develop a variety of cardiac structural and functional
changes, including increased left ventricular (LV) mass, LV systolic and diastolic
dysfunction, impairment of coronary reserve, arrhythmias, and enlargement of left
atrial and aortic root [4].

Of the several adverse changes in cardiovascular (CV) morphology and function
that occur in association with hypertension, most attention has been focused on LV
hypertrophy (LVH) for its detrimental impact on CV morbidity and mortality [4].

This chapter summarizes the present state of knowledge in this active area of
broad interest. Specifically, we aimed to provide an overview of recent contributions
on the mechanisms and prognostic impact of HHD.

Hypertensive Heart Disease

Systolic
dysfunction

| I

Increased . S Congestive
BP load Atrial fibrillation HF

Diastolic
dysfunction

Fig. 13.1 The wide spectrum of hypertensive heart disease. BP blood pressure, LVH left ventricu-
lar hypertrophy, CHD coronary heart disease, HF heart failure
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To this purpose, we searched for experimental, clinical studies and systematic
overviews using research methodology filters [5]. The following research terms
were used: “hypertension,” “hypertensive heart disease,” “heart,” “left ventricular
hypertrophy,” “left ventricular mass,” and “prognosis.” We also checked the refer-
ence list of identified articles and previous systematic reviews to find other relevant
studies.

13.2 Mechanisms

Hemodynamic load is the fundamental stimulus to begin the sequence of biological
events ultimately leading to development of HHD [4, 6].

Early in the development of HHD, cardiac involvement may be manifested by
findings associated with a hyperdynamic circulation. These may include a faster
heart rate, greater cardiac output than normal, an increased myocardial contractility
with increased oxygen consumption, and increased circulating catecholamine or
responsiveness of the myocardial and vascular beta-adrenergic receptor sites [7].

Arterial pressure rises in parallel with total peripheral resistance, the classic
hemodynamic hallmark of hypertension. This increased pressure overload imposed
on the left ventricle results in a structural hypertrophic adaptation [7]. Increased
wall stress and strain provide a stimulus for signaling to cause mRNA transcription
to increase muscular proteins [8§—10]. This prompt nuclear reaction is finalized to
protect the myocardium from excessive wall tension by minimizing oxygen con-
sumption and simultaneously producing sufficient strength to provide the body tis-
sue with the required nutriment by maintaining or even increasing cardiac output
[8-10].

The development of HHD, however, may not be totally explained by hemody-
namic pressure overload. Recognizable non-hemodynamic factors such as geno-
type, gender, and body size eventually regulate the growth of LV mass by at least in
part influencing loading conditions [4, 8].

Of note, adiposity may induce important structural and functional alterations in
the heart [11]. The likelihood of LVH is greater in either obese normotensive or
hypertensive individuals than in their nonobese counterparts. Interestingly, besides
the growth and the changes in the composition of motor units (cardiomyocytes),
interstitial fat infiltration and triglyceride accumulation in the contractile elements
importantly contribute to LV mass accrual, hypertrophy, and geometric pattern
[11-13].

Other non-hemodynamic factors may contribute to generate the cascade of
molecular changes that eventually triggers the increase in LV mass and the develop-
ment of HDD.

In this context, insulin and insulin growth factors may stimulate the growth of LV
mass [14—16]: it has been recently proposed that insulin resistance contributes to the
development of LVH through multiple mechanisms including the accentuation of
sympathetic nervous system activity, the disordered sodium reabsorption in the kid-
ney, the growth of smooth muscle cells in blood vessels, and the generation of insu-
lin growth factor-1 [4, 14-18].
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The renin-angiotensin-aldosterone system (RAAS), an important control system
for BP and intravascular volume, may also induce LVH and fibrosis [19]. The main
causal mechanism is the increase in BP, which leads to increased LV wall stress.
However, some of the RAAS components (including aldosterone and angiotensin
II) play direct effects on the cardiomyocytes. Angiotensin II not only activates intra-
cellular reactions which ultimately increase LV mass but also promotes atheroscle-
rosis through proliferation of vascular smooth muscle cells and production of
extracellular matrix protein [20].

Endothelin, a potent vasoconstrictor, stimulates both vascular cell growth and
migration [21] and myocyte growth [22]. In a landmark study investigating the
role of endogenous endothelin-1 in the development of cardiac hypertrophy
in vivo, Ichikawa and coworkers [22] examined the effect of an endothelin-A
receptor antagonist on the development of ventricular hypertrophy in rats with
monocrotaline-induced pulmonary hypertension. Briefly, they demonstrated that
blocking the action of endothelin-1 with a receptor antagonist ameliorates cardiac
hypertrophy and that this action is not mediated by ameliorating hemodynamic
changes [22].

There also is evidence of an inverse association, independent of BP levels,
between high-density lipoprotein (HDL) cholesterol and LV mass [23]. In a cross-
sectional analysis of the “Progetto Ipertensione Umbria Monitoraggio
Ambulatoriale” (PIUMA) study, we investigated the association between HDL cho-
lesterol and echocardiographic LV mass in 1306 never-treated subjects with essen-
tial hypertension [23]. HDL cholesterol showed an inverse association with LV
mass (r = —0.30, p <0.001). No association was found between LV mass and other
lipoprotein components. In a multivariable analysis, we also demonstrated that low
HDL cholesterol (p < 0.001) was an independent predictor of LV mass after the
significant contribution of average 24-h BP, body mass index (BMI), height, stroke
volume, and age [23].

As a possible explanation for the effects of low HDL-C on cardiac structural and
functional alterations, therefore, the involvement of insulin resistance and hyperinsu-
linemia should be considered [23]. In fact, the serum levels of HDL cholesterol are
inversely correlated with serum insulin levels, and some studies have reported that
hyperinsulinemia is related to LVH in hypertensive patients [23]. Another possible
mechanism is the detrimental effect of low HDL cholesterol levels on endothelial
function, which has been associated, in turn, with LVH in hypertensive patients [23].

13.3 Microcirculation

The presence of LVH reflects a network of functional and structural changes in the
myocardium: impaired coronary hemodynamics with reduced coronary blood flow
and reserve [24], myocardial interstitial adaptations, and cardiomyocyte changes
(Fig. 13.2) [25].

Atherosclerosis of large arteries and increased resistance of muscular arterioles
increase the afterload leading to hypertrophy of cardiomyocytes [26]. Concurrently,
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Fig. 13.2 Main effects of chronic pressure overload on left ventricle, including impaired coronary
hemodynamics with reduced coronary blood flow and reserve, myocardial interstitial adaptations,
and cardiomyocyte changes

collagen deposition promotes abnormal fibrosis within the myocardial interstitium.
Ventricular fibrosis hinders the elasticity of myocardium and systolic function
[27-29].

Additional mechanisms which may account for impaired coronary hemodynam-
ics include [17]: (1) coronary arteriolar compression by the hypertrophied and
stiffer left ventricle produced by ventricular fibrosis, (2) inadequate sizing of coro-
nary vessels [30], (3) increased arteriolar wall thickening and arteriolar wall-to-
lumen diameter [31], (4) insufficient microvessel growth to prevent dilution because
of the greater increase in other myocardial components with a consequent decrease
of microvascular density [32, 33], and (5) increased LV chamber diameter reflecting
myocyte hypertrophy and collagen deposition (Fig. 13.2) [26].

In this context, results of some experimental studies clearly supported the notion
that LVH involves changes in myocardial tissue architecture consisting of perivas-
cular and myocardial fibrosis and medial thickening of intramyocardial coronary
arteries, in addition to myocyte hypertrophy.
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Breisch and coworkers [34] analyzed the effects of pressure overload hypertro-
phy in the LV myocardium of adult cats after 4, 7, 30, 120, and 248 days of 90%
constriction of the ascending aorta. Analysis of the microvasculature at different
times after constriction of the aorta showed that capillary density and coronary
reserve decreased with increasing time of hypertrophy. The combination of such
alterations in flow reserve and capillary density might play an important role in the
transition from a compensated to a failing heart.

Similarly, Tomanek and coworkers [35] analyzed the adverse effects on the
coronary microvasculature of late-onset hypertension in middle-aged and senes-
cent rats with renal wrap hypertension of 3-month duration. Compared with con-
trol rats, wall-to-lumen ratios of arterioles with lumen diameters less than 25 pm
were higher in the hypertensive groups by some 30%, whereas larger arterioles
did not show consistent intergroup differences. Capillary numerical density was
markedly reduced in the hypertensive animals of both age groups. The observed
microvascular alterations occurred in the absence of an absolute increase in LV
mass, but in presence of cardiocyte hypertrophy. Thus, decrements in capillary
numerical density were not only due to inadequate growth but reflected an abso-
lute reduction in the number of these vessels associated with cardiocyte loss. The
authors concluded that late-onset hypertension in middle-aged and senescent rats
is characterized by LV wall remodeling that includes microvascular alterations
that would be expected to limit maximal myocardial flow and O, supply to the
cardiomyocyte [35].

13.4 Diagnosis of Left Ventricular Hypertrophy

LVH is a common finding in patients with CV disease (CVD) and CVD risk factors.
In the clinical practice, it is generally diagnosed by electrocardiogram (ECG) or by
echocardiography [1]. Echocardiography is generally preferred for confirming the
presence of LVH since the sensitivity of the different ECG criteria may be as low as
7-35% with mild LVH and only 10-50% with moderate to severe disease [36].
Nevertheless, ECG is more readily available and easy to perform and interpret and
is less expensive than echocardiography. Thus, if echocardiography is unavailable
or too expensive, appropriate ECG criteria can be used to detect increased LV mass.

13.4.1 Electrocardiography

The principal ECG changes associated with LVH are increased QRS voltage and
duration, left axis deviation, changes in instantaneous and mean QRS vectors, repo-
larization abnormalities (ST segment and T wave changes), and abnormalities in the
P wave (Fig. 13.3).

These changes have been correlated with direct or indirect assessments of ven-
tricular size or mass to establish electrocardiographic criteria for the diagnosis of
hypertrophy [36].
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Many criteria have been developed to diagnose LVH on an ECG. Commonly
used criteria for the ECG diagnosis of LVH are given below:

— Cornell voltage [37]

— Sokolow-Lyon index [38]

— Romihilt-Estes score >5 [39]
— Typical strain [40]

— Perugia score [41]

Briefly, the Sokolow-Lyon index [38] is defined by the sum of the S wave in lead
V, plus the tallest R wave in leads Vs and V¢ > 3.5 mV (35 mm); the Cornell voltage
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[37] is defined by the sum of the S wave in lead V; plus the R wave lead in
aVL > 2.8 mV (28 mm) in men and >2.0 mV (20 mm) in women; the Romhilt-Estes
point score system [39] is computed giving different weights to specific findings (a
score of 5 or more indicates “definite” LVH; a score of 4 indicates “probable” LVH);
the Perugia score [41] is defined by the presence of a typical strain pattern and/or a
modified Cornell voltage (sum of the S wave in V; plus the R wave in aVL >2.0 mV
in women and >2.4 mV in men); typical strain pattern [40] was defined by
a > 0.5 mm depression of the J point, T wave inversion with asymmetric branches
and rapid return to baseline.

Several approaches have been recently proposed in order to improve the diagnos-
tic performance of ECG for LVH. Since most ECG criteria for LV hypertrophy are
poorly sensitive, but highly specific, combination of different ECG criteria and
anthropometric measures in a single index allowed improvement in sensitivity with
preservation of specificity.

In this context, a recent analysis of the PIUMA study demonstrated that amplifi-
cation of Cornell voltage by BMI improves performance of ECG for diagnosis of
LVH [36].

LVH at ECG by the new score (BMI-corrected Perugia score) is defined by typi-
cal strain pattern or a Cornell-BMI product >604 mm kg/m?, according to the fol-
lowing formula:

Cornell-BMI product (mm kg/m?) = ((R wave amplitude in lead aVL + S wave
depth in lead V3) x BMI)

Of note, this new criterion allows immediate diagnosis of LVH with a rapid
visual inspection of the traditional ECG (measurement of Cornell voltage and
assessment of strain pattern) combined with calculation of BMI [36].

In terms of sensitivity, the new score performed better than traditional criteria
widely used in clinical practice (namely, Romhilt-Estes point score, presence of
typical strain, Sokolow-Lyon and Cornell voltages, and Perugia score) [36].

By the comparison of receiver operating characteristic (ROC) curve areas between
the different ECG criteria for LVH, the BMI-corrected Perugia score was associated
with significantly higher area under the curve (AUC) values when compared with other
ECG criteria of LVH, whatever the echocardiographic reference (all p <0.0001) [36].

13.4.2 Prognosis of ECG Left Ventricular Hypertrophy

The Framingham Heart Study [42] first showed that subjects with ECG evidence of
LVH at entry and a serial increase in ECG voltage over time were twice as likely to
suffer a major CV event over the subsequent years when compared with subjects with
a serial decrease in voltage.

More recently, other studies have confirmed the association between LVH defined
at ECG and increased CV risk [41, 43—47]. However, the magnitude of such associa-
tion has varied widely among the studies [41, 45-48]. Aside from differences in
patient population and adjustment for different confounders, the use of different
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ECG criteria in these studies may account for a significant part of the variability in
risk prediction [49].

In particular, LVH defined by the presence of a LV strain pattern on the ECG
confers a worse prognosis than LVH by an increased voltage pattern alone [50].

Rautaharju and coworkers [51] compared the relative risks (RRs) of some ECG
criteria, including both voltage-only criteria (Sokolow-Lyon and Cornell voltage)
and criteria incorporating repolarization abnormalities. When adjusted for several
confounders, they found that LVH by the Sokolow-Lyon criterion was a not signifi-
cant predictor of CV mortality.

Similarly, Larsen and coworkers [50] studied the relative prognostic values of
different combinations of Minnesota code pertaining to LVH. Specifically, they
compared codes that identified LVH by voltage only with codes incorporating volt-
age and various repolarization changes, including ST depression, T inversions, and
LV strain pattern. After adjustment for covariates (including age, BP, heart rate,
BMI, cholesterol levels, physical exercise, history of smoking, diabetes, alcohol,
and family history of ischemic heart disease), voltage-only LVH was the only pat-
tern of LVH that was not found to be significantly associated with CV mortality.

13.4.3 Echocardiography

Echocardiography is one of the most important noninvasive imaging methods in the
evaluation of cardiac morphology and dynamics.

Although echocardiography is more sensitive than ECG for diagnosis of LVH,
health professionals need to consider some critical issues in the echocardiographic
estimation of LV mass, definition of the cutoff values for diagnosis of LVH, and
clinical implications of serial changes in LV mass [52]. In other words, the apparent
simplicity in LV mass evaluation by echocardiography conceals several critical
aspects that may limit its clinical validity [52].

Serial echocardiographic estimates of LV mass may be associated with disturb-
ing variability [53, 54]. In the Reliability of M-mode Echocardiographic Study
(RES), two M-mode tracings were recorded in the same session and after 3—10 days
in the absence of treatment, and the tracings were read by two observers in each
center [53]. Results showed that serial changes in LV mass by 15%, 13%, and 10%
have a probability of 90%, 80%, and 75%, respectively, of representing a true bio-
logical variation and not a chance effect. Thus, a reduction of LV mass by 10% or
less in a follow-up study has one probability over four of being solely a chance
effect, not a true biological phenomenon [35]. Conversely, a reduction of LV mass
by 15% or more has only one probability over ten of being a chance effect [53].

Furthermore, reproducibility of LV mass estimation and body size indexing and
other adjustments may influence both the clinical and epidemiologic use of echocar-
diography in the investigation of the LV structure.

Although LV mass calculations derived from the available formulas [55-58]
(Table 13.1) are strictly and linearly correlated, the final crude estimations may
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Table 13.1 Formulas to estimate left ventricular mass by echocardiography

LV mass formulas (g)

LV mass (Troy [55]) = 1.05 x ([LVIDD + PWTD + IVSTD]? — [LVIDD]%)

LV mass (Devereux [56]) = 1.04 x ([LVIDD + PWTD + IVSTD]? — [LVIDD]?) — 13.6

LV mass (Devereux [57]) = 0.8 x (1.04 x ([LVIDD + PWTD + IVSTD]? — [LVIDD]%)) + 0.6
Linear predictor of LV mass ([58]) = LVED + IVSTD + PWTD

LV left ventricular, LVIDD LV internal diameter in diastole, PWTD posterior wall thickness in
diastole, /VSTD interventricular septum thickness in diastole, LVED LV external diameter

Table 13.2 Echocardiographic cut points to define left ventricular hypertrophy

Cutoff points for LV hypertrophy Ref. Men Women
LV mass/BSA (g/m>) [60] >116 >104
LV mass/BSA (g/m>°) [61] >125 >110
LV mass/BSA (g/m>?) [59] >131 >100
LV mass/BSA (g/m>?) [62] >125 >125
LV mass/height (g/m) [59] >143 >102
LV mass/height (g/m) [63] >126 >105
LV mass/height*’ (g/m*7) [63] >51.0 >51.0
LV mass/height>” (g/m?7) [63] >49.2 >46.7
Linear predictor (cm) [58] >9.8 >9.8

LV left ventricular, BSA body surface area

differ by more than 20% [59]. In addition, different formulas may yield distinct cut
point values for the diagnosis of LVH (Table 13.2).

Specifically, several indexes for body size correction have been proposed, such
as height, allometric height adjustments, weight, body surface area (BSA), BMI,
and fat-free mass (Table 13.2). The best way for normalization of LV mass is still
controversial. Different adjustment criteria and their standard cut points may result
in a different prevalence of LVH [59].

13.4.4 Prognosis of Echocardiographic Left Ventricular
Hypertrophy

With the advent of echocardiography, it has been recognized that electrocardiogra-
phy may be relatively insensitive for detecting prognostically important increases in
LV mass [45, 64]. In particular, milder increases in LV mass could be detected only
by echocardiography, and additional epidemiological data have demonstrated that a
strong gradient exists between increased echocardiographic LV mass and increased
CV risk [62, 65, 66].

Levy and colleagues demonstrated a progressive increase in risk associated to
LV mass, even at levels not considered as “hypertrophic” [66]; more recently, in a
subset of 1925 Italian hypertensive patients [67], CVD increased monotonically
with more than a fourfold increase in risk between the lowest and highest LV mass
quintiles. Notably, clinically relevant increment in CV risk was identified in patients
with LV mass below the limits usually employed for LVH definition.
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These findings have been subsequently confirmed in a prespecified analysis of
the Losartan Intervention for Endpoint Reduction (LIFE) study [68], carried out in
patients with essential hypertension, electrocardiographic evidence of LVH at entry,
and availability of LV echocardiographic study at randomization and during follow-
up. In that study, lower values of LV mass during treatment were associated with
lower rates of CVD, and such an effect was additional to the benefit provided by
BP-lowering and treatment modality [68].

However, it is still unclear whether different criteria for definition of LVH exert
a different prognostic impact. Addressing this topic, Liao and colleagues [69] com-
pared the predictive value of echocardiographic LVH using various methods of
indexation of LV mass. They observed that an increase in any LV mass index was
associated with similar risk of death from all causes and cardiac diseases. Although
LVH assessed by mass indexed for BSA using conventional partition values pro-
vided somewhat better prediction, the adjusted relative risk was in general not sig-
nificantly different from LVH based on other indexes [69].

Similar results were obtained by Gosse and coworkers [70]. In their analysis, they
documented that different indexations of LV mass (height, height*’, or BSA) had
similar predictive values for CV complications [70].

13.5 Reversal of Left Ventricular Hypertrophy

The hypothesis that a reduction of LV mass in hypertensive patients was linked with
a better outcome generated a great interest from researchers and clinicians. In this
context, a recent analysis by Gosse and coworkers [70] highlighted the prognostic
implications of serial changes in LV mass during pharmacological treatment for
hypertension. In their registry, a prospective sub-study cohort was assembled in
which echocardiography was obtained at baseline and after an average follow-up of
5 years. Increasing reductions in echocardiographic LV mass were associated with
greater reductions in CV event rates, independently of the baseline LV mass. In
addition, patients with LVH regression showed similar survival than patients with
persistence of normal LV mass [70].

The results of this study are impressive for the concordance with other echocar-
diographic prospective studies, with respect to the link between regression of LVH
and reduction of major CV events in essential hypertension.

In a study from France [71], the incidence of CV events was 4.8% in hyperten-
sive subjects without LVH, 9.6% in those with regression of LVH, and 15% in those
without regression of LVH.

Similar data have been also reported by Koren et al. [72]. CV event rate during a
5-year follow-up was 9.2 and 28.6% for patients with regression of LVH (or persis-
tence of normal LV mass) and with new development (or persistence of LVH),
respectively.

In a long-term Italian study [73], hypertensive patients underwent a LV echocar-
diographic study before therapy and after 10 years of treatment. The rate of CV
events was higher in the patients who had not achieved regression of LVH at
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follow-up compared with those with persistently normal LV mass. Furthermore,
patients with regression of LVH showed an event rate similar to those with persis-
tently normal LV mass [73].

In a subsequent analysis of the PITUMA study [74], the lesser CV risk associated
with regression of LVH (1.58 events per 100 person-years in subjects with LVH
regression vs. 6.27 in those with persistent LVH) remained significant in a multivari-
able analysis which included BP changes as assessed by 24-h ambulatory
monitoring.

A pooled analysis [75] of four studies (including 1064 hypertensive subjects
aged 45-51 and 106 major CV events) showed that compared to subjects with lack
of regression or new development of LVH, those who achieved regression of LVH
showed a 59% lesser risk of subsequent CV disease (95% confidence intervals [CI],
22-79; p = 0.007). The lesser risk of events associated with regression of LVH was
consistent across the individual studies. Compared to subjects with regression of
LVH, those with persistently normal LV mass showed a similar risk of subsequent
events (odds ratio [OR] 0.64, 95% CI, 0.31-1.30; p = 0.21).

However, since the event risk was 36% lower among the subjects who never
experienced LVH compared to those with regression and the confidence intervals
were wide, the meta-analysis did not provide definite evidence that regression of
LVH reduces the risk of subsequent events to the same level as that of subjects who
never experienced LVH [75].

To further clarify these aspects, a cumulative meta-analysis of seven studies for
a total of 2954 patients and 339 CV events recently investigated how evidence pro-
gressed in this field.

Results support the hypothesis that a persistently normal LV mass is thus the
most favorable prognostic phenotype (Fig. 13.4). Patients with persistently normal
LV mass showed a markedly lower risk of CV events when compared with those
with persistence or new development of LVH (OR, 0.28; 95% CI, 0.20 to 0.39;
p <0.0001, I> =26.1%). In terms of absolute risk difference, a persistently normal
LV mass was associated with a significant 15% reduction in the risk of CV events
(Fig. 13.4). Regression of LVH was associated with a cumulative 58% lower risk of
CV events when compared to persistence or new development of LVH during fol-
low-up (OR, 0.42; 95% CI, 0.23 to 0.77; p = 0.0048, I* = 59.6%; absolute risk dif-
ference, —13%). However, and most importantly, patients with LVH regression still
had a 56% higher risk of CV events than those with persistently normal LV mass
(OR, 1.56; 95% CI, 1.04 to 2.36; p = 0.033, I = 1.2%; absolute risk difference,
+3%) (Fig. 13.4).

13.6 Left Ventricular Geometry

Usually, four distinct LV geometric patterns are considered to stratify patients with
hypertension: normal geometry, concentric remodeling, concentric hypertrophy,
and eccentric hypertrophy (Fig. 13.5).
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Fig. 13.4 Results of a cumulative meta-analysis of seven clinical studies comparing cardiovascular
outcome in patients with persistently normal left ventricular mass versus those with persistence or new
development of left ventricular hypertrophy (upper panel), patients with LVH regression versus those
with persistence or new development of LVH (middle panel), and patients with regression of left ven-
tricular hypertrophy versus those with persistently normal LV mass (lower panel). The figure reports
the risk (odds ratio) for cardiovascular events. LV left ventricular, CV cardiovascular, OR odds ratio

LV geometry can be described by calculating the relative wall thickness (RWT)
as a function of septum or posterior wall thickness divided by the internal diameter
at tele-diastole [77]. Arbitrary threshold values for RWT are generally used to dif-
ferentiate normal geometry from concentric remodeling in subjects with normal LV
mass and eccentric hypertrophy from concentric hypertrophy in subjects with
increased LV mass [77]. While the typical feature of concentric LV hypertrophy is
the increase in wall thickness, eccentric LVH describes a pattern in which both LV
internal diameter and wall thickness are increased (Fig. 13.5).
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Fig. 13.5 Prognostic value of the four different patterns of left ventricular geometry in the PIUMA
study (data from [76]). LV left ventricular, relative wall thickness = [(2 x posterior wall thickness)/LV
diastolic diameter] or [(septal wall thickness + posterior wall thickness)/LV diastolic diameter]

Although this classification permits identification of determined adaptive pro-
cesses, cohort studies evaluating geometric patterns impact on the incidence of CV
events provided mixed results showing that the additional prognostic role of geo-
metric patterns over LVH was lesser than initially supposed [62, 76, 78, 79].

In general, in longitudinal studies, the risk of CV disease seems to be higher in
subjects with concentric remodeling than in those with normal LV geometry and
also greater in subjects with concentric LVH than in those with eccentric LVH
(Fig. 13.5) [62, 71, 76, 79-81].

Koren and coworkers [62] found a 10-year incidence of CV events of 31% in
patients with concentric hypertrophy compared to 11% in those with normal geom-
etry; an Italian study [76] found a relative risk of 2.6 in patients with concentric
remodeling compared to normal geometry patients; Krumholz and coworkers [79]
showed a relative risk of 2.1 for all-cause mortality with concentric hypertrophy, but
not additional risk in those classified as concentric remodeling.

However, since LV mass tends to be greater in subjects with concentric remodel-
ing than in those with normal geometry, and even greater in subjects with concentric
LVH than in those with eccentric LVH, the independent prognostic value of LV
geometry tends to be reduced or abolished because of the overwhelming prognostic
value of LV mass itself [62, 71, 76, 79-81].

13.7 Coronary Heart Disease

The increased CV risk associated with HDD is due in part to myocardial ischemia
that can be induced by a variety of factors [82]. They include a reduced density of
capillaries, medial wall thickening of arterioles, perivascular fibrosis, endothelial
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dysfunction with the limited ability of the coronary arteries to dilate in response to
decreased perfusion or during vasodilatory stress, and the direct compression of the
endocardial capillaries by the enlarged muscle mass [1, 82].

In this context, some experimental and epidemiological data support the evi-
dence that all these factors decrease coronary reserve and have important clinical
implications [1].

Briefly, the hypertrophied myocardium is more susceptible than normal myocar-
dium to the effects of ischemia, increased heart weight is an independent predictor
of plaque rupture with superimposed thrombus [83], the increase in cardiovascular
risk is directly related to the degree of increase in LV mass, and coronary occlusion
is associated with a greater degree of infarction and a higher mortality rate than seen
in the absence of LVH [1, 62, 66, 84].

13.8 Arrhythmias

HHD has been associated with both ventricular and supraventricular arrhythmias
[85-87]. Although a link between arrhythmias and HHD is clearly documented in
observational study, potential mechanisms explaining such association are not com-
pletely understood.

13.8.1 Ventricular Arrhythmias

The increased risk for arrhythmias and sudden cardiac death in HHD has been asso-
ciated with increased ventricular ectopic activity [86]. Experimental models showed
increased vulnerability to inducible polymorphic ventricular fibrillation in the pres-
ence of LVH induced by aortic band. Notably, these abnormalities disappeared with
LVH regression after removal of the aortic band [88].

Moreover, myocardial fibrosis could cause local variations in the conduction
velocities precipitating ventricular arrhythmias. Specifically, the irregular hypertro-
phy pattern and local areas of fibrosis in LVH can impede the homogeneous propa-
gation of the electric impulse throughout the myocardium and its subsequent
recovery [89].

Other proposed mechanisms of ventricular arrhythmias include lengthening of
the action potential duration, reduced action potential upstroke velocity, slower
membrane repolarization, the generation of early and delayed after-depolarizations,
and beat-to-beat changes in repolarization [90, 91].

Messerli and coworkers [87] found that patients with HHD had higher-grade
ventricular ectopic activity, such as coupled premature ventricular contractions
and multifocal premature ventricular contractions, than those without LVH or
than normotensive subjects. More recently, reports from Framingham showed that
electrocardiographic LVH is a BP-independent risk factor for sudden cardiac
death [48, 92].
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13.8.2 Supraventricular Arrhythmias

Supraventricular arrhythmias are commonly associated with HHD. LVH (both con-
centric and eccentric types) seems to have a greater impact on the frequency of atrial
arrhythmias (primarily atrial fibrillation [AF]), with the concentric type being more
closely associated with supraventricular premature beats and AF [93].

The importance of LVH in the development AF was illustrated in a study of 2482
subjects with essential hypertension followed for up to 16 years [94]. During fol-
low-up, advancing age and increased LV mass were the only independent predictors
of developing AF. For every one standard deviation increase on LV mass, the risk of
AF increased by 20% [94].

LVH identified by cardiac magnetic resonance imaging has also been shown to be
associated with AF. In a cohort of 4942 patients followed for a median of 6.9 years,
the risk of AF was significantly higher in patients with LVH identified by either mag-
netic resonance imaging or ECG-derived voltage measurements of LVH [95].

In a meta-analysis of ten studies involving 27,141 patients, the risk of supraven-
tricular arrhythmias was significantly higher in patients with LVH (OR 3.4 com-
pared with no LV hypertrophy; 95% CI 1.67.3), although there was significant
heterogeneity among the baseline covariates in the included studies [85].

Electrical and structural remodeling of the left atrium is a key step in the progres-
sion from hypertension to AF. Two distinct abnormalities in atrial electrical proper-
ties occur early in HDD and are associated with the development and maintenance
of AF: the prolongation of atrial conduction velocity as assessed by the signal-
averaged p-wave duration and the decrease in atrial refractoriness [96, 97]. There is
also accumulation of calcium within atrial myocytes, leading to a reduction of the
inward L-type Ca?* current, which in turn contributes to the shortening of the atrial
effective refractory period and the promotion and maintenance of multiple wavelet-
reentry circuits [98]. In addition, structural remodeling of the atria occurs in parallel
with the changes of electrical remodeling. These structural changes include dilata-
tion and increasing atrial fibrosis [99]. Key to this fibrotic process is the deposition
of increased amounts of connective tissue between individual cells and with the
deposition of large amounts of collagen and fibronectin [100]. This leads to separa-
tion of myocytes from one another and subsequent impairment of atrial conduction
at the microscopic level. These changes culminate in alterations in the biophysical
properties of atrial tissue, allowing the initiation and perpetuation of AF [17, 18,
101].

13.9 Heart Failure

The physiologic alterations which occur as a result of anatomical changes in HHD
include disturbances of myocardial blood flow, the development of an arrhythmo-
genic myocardial substrate, and diastolic dysfunction. The latter is directly related
to the degree of myocardial fibrosis and is the hemodynamic hallmark of HDD.
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When diastolic dysfunction is present, LV end-diastolic pressure increases out of
proportion to volume and may be elevated at rest or with exertion leading to clinical
heart failure (HF).

Although it has been assumed that LVH may lead to systolic dysfunction [102],
it is not well known whether LVH resulting from hypertension is a major risk factor
for systolic HF independent of coronary artery disease [103].

To date, hypertension may lead to HF due to systolic dysfunction in association
with underlying coronary heart disease. If atherosclerotic epicardial coronary dis-
ease is present, then there may be areas of intermittent segmental flow compromise.
With coronary occlusion and myocardial infarction, regional myofibrillar dropout
leads to segmental wall motion abnormalities and maladaptive ventricular remodel-
ing, usually with ventricular dilation, interstitial fibrosis, and hypertrophy of surviv-
ing myocytes.

From an epidemiological standpoint, in the Framingham Heart Study, hyperten-
sion accounted for 39% of HF cases in men and 59% in women [6, 16—-19]. Overall,
about 20% of individuals with HF have antecedent ECG-LVH and 60% to 70%
demonstrate echo-LVH [32].

13.10 Therapeutic Implications

HHD includes LVH, ventricular stiffness, and systolic and diastolic dysfunction. In
addition, this syndrome operates in parallel with ischemic heart disease and ulti-
mately causes HF, if inadequately treated.

BP control and therapeutic strategies aimed to reverse HHD is associated with a
reduction in CV risk. Nevertheless, in everyday practice and clinical trials, it is quite
difficult to establish whether a given antihypertensive drug is superior to another in
treating HHD.

Indeed, hypertensive subjects have often to combine several drugs with different
mechanisms of action (i.e., diuretics, ACE inhibitors (ACE-Is), angiotensin II recep-
tor blockers (ARBs), and calcium channel blockers (CCBs)) in order to achieve an
adequate control of BP. Subjects with LVH, who generally have higher BP levels
than those without, frequently need treatment with multiple drugs. As a result, the
merit of LVH regression cannot be precisely attributed to a specific drug class in
clinical trials.

In a meta-analysis of 80 trials [104] that included 146 and 17 active treatment
and placebo arms, ACE-Is, ARBs, and calcium channel blockers CCBs were more
potent than diuretics and beta-blockers in reducing LV mass. Specifically, after
adjustments for length of therapy and degree of BP lowering, the relative reductions
in LV mass index were 13%, 11%, 10%, 8%, and 6% for ARBs, CCBs, ACE inhibi-
tors, diuretics, and beta-blockers, respectively [104]. However, some of these trials
were small and of short duration. It has been suggested that clinical trials testing
differences between different drugs on LVH should have a randomized double-blind
design and should last 1 year minimum. Subjects of both genders should be enrolled
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and there should be at least 150 to 200 patients per treatment arm. In addition, an
anatomically validated method of cardiac imaging should be used [48].

The Studio Italiano Sugli Effetti CARDIOvascolari del Controllo della Pressione
Arteriosa SIStolica (Cardio-Sis) [105] showed that a tight BP control beyond cur-
rently recommended levels reduces the risk for LVH (primary outcome) and major
CV events (secondary outcome), when compared with a usual BP control. Cardio-Sis
involved a total of 1111 nondiabetic individuals aged 55 years or older with systolic
BP > 150 mmHg who were randomly assigned to a target systolic BP < 140 mmHg

“usual” BP control) or <130 mmHg (tight BP control) [105]. By the end of the study,
17.0% of the usual-control group had ECG-documented LVH compared with 11.4%
of the tight-control group (OR 0.63; 95% C1 0.43-0.91; p = 0.013) [105].

13.11 Perspectives

In this overview, we have summarized the currently available experimental and
clinical data on HHD. It is worth noting that the potential mechanisms linking
increased LV mass to the risk of major CV disease are still uncertain. Several factors
seem to exert a sort of “two-way effect” by increasing LV mass and, in the same
time, promoting development and progression of atherosclerotic lesions [106—108].
Elevated BP stimulates both LVH and atherosclerosis [109]. LV mass, intima-media
thickness [110], and carotid atherosclerosis [110, 111] progress in parallel, and arte-
rial stiffness, expressed by the pulse wave velocity and partly reflecting generalized
atherosclerosis at the level of large elastic arteries, is associated with LVH indepen-
dently of BP [4, 112]. Similarly, the mechanisms through which regression of LVH
reduces the risk of CV disease in hypertensive subjects are still unclear [113].
Regression of LVH is associated with numerous cardiac benefits, such as improved
systolic mid-wall performance, normalized autonomic function, enhanced coronary
reserve, improved diastolic filling, and decreased ventricular arrhythmia [114].
Thus, it can be speculated that LVH regression may reflect a decreased level of
activity, in the long term, of one or more factors potentially active on atherosclero-
sis. Conversely, lack of regression of LVH may be a marker for a more advanced
progression of atherosclerosis.

In conclusion, these observations appear to strengthen the pivotal role of LV mass
in the wide spectrum of HHD [41, 66, 84, 102, 115]. LV mass should primarily con-
sidered as a biological assay which reflects and integrates the long-term level of activ-
ity of several hemodynamic and non-hemodynamic factors potentially active on the
heart and atherosclerosis [4, 8, 116-118]. Thus, early diagnosis of increased LV mass
should lead to a more aggressive control of CV risk factors in hypertensive patients.
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Hypertension

Solomon Aronson

14.1 Introduction

Worldwide, an estimated one in three adults has hypertension with the total number
of affected people estimated to be greater than one billion [1-3]. Hypertension
(HTN) is a major modifiable risk factor for cardiovascular disease that affects
approximately 80 million (32.6%) adults in the United States. The incidence is pro-
jected to increase to approximately 38% by 2030 [4]. According to the National
Health and Nutrition Examination Survey data from 2009 to 2012, only 54% of
hypertensive adults in the United States had their condition under control; 77%
were currently treated; 83% were aware of their condition; and 17% were undiag-
nosed [5]. The economic impact of morbidity and mortality resulting from hyper-
tension is substantial. The additional health-care costs exceeded $70 billion in 2010
and are expected to soar to approximately $200 billion by 2030 [6, 7]. When sub-
jected to the stresses of cardiovascular surgery, patients with preexisting hyperten-
sion are subject to wide swings in intraoperative blood pressure and are at increased
risk of short- and long-term adverse outcomes [8—16]. Defining appropriate BP
guardrails remains elusive, and defining acceptable perioperative target BP thresh-
olds is a complex medical decision which depends on several factors including the
patient physiology profile and procedural need.

Intraoperative HTN, independent of preexisting HTN, is common during cardiac
surgery, and its management can impact outcomes. Importantly, intraoperative HTN
occurs in patients without any prior history of HTN [17-20]. The etiology of intra-
operative HTN is multifactorial and mechanistically discrete from that of nonsurgi-
cal hypertension. Postoperative hypertension for up to 48 h post-procedure is also
common after cardiac surgery and is related to a durable increase in sympathetic
tone and ongoing fluid mobilization and shifts [§—10].
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Defining a “target” blood pressure (BP) during the intraoperative or postopera-
tive period is a routine part of anesthesia and cardiac surgical patient care, yet there
is surprisingly little objective evidence on the appropriate clinical goals. Because of
comorbidities and the magnitude of acute physiologic stress, intraoperative BP
management in the cardiac surgical patient remains an area of active best-practice
research. The specific impact of postoperative BP on outcomes in cardiac surgery
patients remains poorly understood in part due to a wide variety of underlying con-
tributors to postoperative BP changes and that there is no single established defini-
tion nor standard of care for the treatment of postoperative HTN [20-25]. Gaps
regarding our understanding of optimal clinical goals for pre-, intra-, and postopera-
tive blood pressure (BP) management in patients undergoing cardiac surgery as well
as the consequences of achieving or failing to achieve those goals remain. In this
setting, it is understood that preoperative hypertension is predictive of poor postop-
erative outcomes with a growing appreciation that heretofore clinically acceptable
changes in intraoperative BP may also independently be associated with short- and
long-term adverse outcomes. The impact of postoperative BP on outcomes follow-
ing cardiac surgery has remained less clear until a recent retrospective analysis of
cardiac surgery patients [26].

14.2 BP and Outcomes During Cardiovascular Surgery
14.2.1 Preoperative Period

Among patients undergoing cardiac surgery, preexisting hypertension exists in over
two-thirds of all patients. Preexisting hypertension introduces challenges, as it has
been shown that the autoregulatory capacity of the brain [27-29] and kidney is
impaired, potentially influencing end-organ tolerance of high or low blood pres-
sures. As a result, the therapeutic window of intra- and postoperative acceptable
blood pressure is narrowed and shifted to the right in these patients.

There is evidence that isolated systolic hypertension (ISH) and pulse pressure
(PP) are independently associated with adverse cardiovascular outcomes [11-16].
Isolated systolic hypertension (ISH) increases in prevalence with age. Evidence also
indicates that adverse ischemic cardiac and cerebral vascular disease increase with
age-adjusted increasing SBP. Data on the relationship of preoperative ISH to peri-
operative outcome have been reported in cardiac surgery. ISH was associated with
a40% increase in perioperative cardiovascular morbidity following coronary artery
bypass graft [11]. Interestingly, this risk remained, regardless of preoperative anti-
hypertension medication, anesthetic techniques, or other perioperative cardiovascu-
lar risk factors.

In addition, among patients undergoing cardiac surgery, the mean pulse pressure
was shown to be associated with adverse outcome. PP was greater in patients who
suffered a stroke (81 vs. 65 mmHg) in such a manner that with each additional
10 mmHg there was additive risk (odds ratio [OR], 1.35; confidence interval [CI],
1.13-1.62; P = 0.001) [15]. It was also independently observed that a renal
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dysfunction outcome as well as death from cardiac and cerebral causes was also
directly associated to increasing preoperative PP among these patient population
[13, 16] (Figs. 14.1, 14.2, and 14.3).

Patients with preoperative pulse pressure hypertension or isolated systolic hyper-
tension tend to be older (70 = 8 years) than propensity-matched normotensive
patients [16], while patients with isolated diastolic hypertension tend to be younger
(60 + 9 years) than normotensive patients (64 + 10 years; P <0.001). The incidence
of a renal composite event occurred nearly two times as often in patients with PP
hypertension (PPH), PP >80 mmHg, compared with patients without PPH (5% vs.
2.9% for renal dysfunction and 5.5% vs. 2.5% for renal failure), with a progressive
increase in the risk of renal composite above a PP threshold of 40 mmHg. Moreover,
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patients with PPH were nearly three times more likely to have a renal-related death
compared with those without PPH (3.7% vs. 1.1%).

14.2.2 Intraoperative Period

The conditions that cause an acute change in systemic hemodynamics during sur-
gery are common and include acute changes in systemic vascular resistance due to
anesthesia depth, surgical stimulation, aortic occlusive clamping and unclamping,
cannulation and decannulation, fluid shifts, hemorrhage, drug effects, as well as the
inflammatory response associated with cardiopulmonary bypass (CPB) [16, 17].
These changes commonly occur in the setting of insufficient intravascular volume
and likely effect patients differently, depending on their underlying vascular physi-
ology and compliance, fibrinolytic activity, hypercoagulability, vasomotor reactiv-
ity, and/or plaque rupture vulnerability [30, 31]. It is possible that the autoregulatory
range is distinctly different across individuals with an altered autoregulatory range
leading to organ hypoperfusion in some individuals, despite what may be deemed to
be a “clinically acceptable” BP.

The active management of BP during cardiovascular surgery has been reported
to be extremely common (88% of all cases). Perhaps this behavior reflects that
poorly controlled BP during surgery is not tolerated in part because of safety con-
cerns related to ischemia modulation, the need for aortovascular stress-strain
modulation (e.g., clamping, unclamping), maintaining adequate perfusion condi-
tions during CPB, and balancing these pressure-perfusion requirements with surgi-
cal bleeding concerns throughout surgery. It is well understood that hypertension
increases myocardial oxygen consumption and left ventricular end-diastolic pres-
sure and contributes to subendocardial hypoperfusion and myocardial ischemia. It
also increases the risk of stroke, neuron-cognitive dysfunction, and renal dysfunc-
tion and contributes to surgical bleeding from anastomotic sites [32-34]. In addi-
tion, poorly controlled BP during surgery can trigger hyper-inflammatory and
procoagulation conditions, including platelet activation, which may compromise
microvascular blood flow [35, 36].



14 Perioperative Cardiac Surgery Hypertension 217

Over three million intraoperative blood pressure evaluations were analyzed in
over 7500 patients [18]. Systolic blood pressure variability outside a predefined
upper and lower blood pressure range was measured and tested to predict 30-day
mortality in patients undergoing cardiac surgery (Fig. 14.4). It was observed that
mean duration of systolic excursion [outside a range of 105 mmHg (lower)-
130 mmHg (upper)] predicted 30-day mortality (OR = 1.03 per minute, 95% CI
[1.02-1.39], P <0.0001). The same hypothesis was tested and independently con-
firmed in the ECLIPSE trials [19] where BP excursion outside a target systolic
range was found to be associated with increased postoperative mortality and
increased postoperative renal injury. Intraoperative systolic blood pressure variabil-
ity was again determined in over 7000 patients and characterized by frequency,
magnitude (mmHg), duration (min), area under curve (mmHg*min), and % change
from baseline [37]. Multivariable linear regression demonstrated an association
between % changes in SBP below baseline to % delta creatinine (p <0.0016). The
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percent change of intraoperative systolic BP below presenting preoperative or base-
line BP is associated with the percent increase change from baseline in creatinine
observed following cardiac surgery (Fig. 14.5). Intraoperative BP variability was
also associated with delayed time to extubation and increased postoperative length
of stay (LOS) [38].

14.2.3 Postoperative Period

Postoperative hypertension has an arbitrary definition but is understood to have an
increased incidence of neurologic deficits and operative mortality. Typically,
patients who exhibit postoperative hypertension have some form of hypertension
prior to surgery. Postoperative hypertension can be due to a variety of causes,
including pain, anxiety, hypercarbia, hypercapnia, hypothermia, volume overload,
and bladder distension. Studies have found an elevation in plasma epinephrine and
norepinephrine concentrations, suggesting an enhanced sympathetic response to
surgery [39-42]. This evidence points to a sympathetic trigger in the development
of postoperative hypertension.

We conducted a retrospective outcome analysis [26] of all cardiac surgery
patients cared for at a single institution (Charité Hospital, Berlin, Germany) over a
7-year period (2006-2012). Patients were admitted to the cardiac surgical intensive
care unit post-surgery, and BP targets were defined and adhered to by strict protocol.
Consequences of success or failure at meeting those targets on medical outcomes
and health resource utilization were evaluated in 5225 patients. Although 90% of
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patients had systolic BP values less than 130 mmHg upon arrival to the ICU, 70%
were ultimately treated for high blood pressure within the first 24 h of their postop-
erative ICU stay. Among the patients who required postoperative antihypertensive
treatment, 78% had a history of preoperative HTN. Patients treated for high blood
pressure compared to matched case normotensive patients had a higher in-hospital
mortality rate (4.97% vs. 1.32%, p <0.001) and a longer hospital stay (p = 0.024).
In hypertensive patients, serum creatinine levels from postoperative day (POD) 1
through POD 7 compared to baseline were increased, and postoperative renal dys-
function occurred more often (25.3% vs. 19.7%, p = 0.027).

14.3 Discussion

BP monitoring during the perioperative period more than any other single parameter
remains a core tenet of provider vigilance, and BP management remains an impor-
tant focus of perioperative clinical care. Despite this ubiquity, however, BP manage-
ment considerations are not well supported by a robust evidence base. Existing
evidence suggest that heretofore clinically acceptable guidelines for intraoperative
and/or postoperative BP management after cardiac surgeries deserve reexamination,
as adverse outcomes were observed while adhering to commonly endorsed defini-
tions and management strategies. Due to diverse patient demography, coexisting
conditions, and the wide variety of underlying contributors to the perioperative BP
alterations, to date, no single established definition nor standard of care for the treat-
ment of perioperative HTN exists.
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Hypertension: Supravalvular Aortic 1 5
Stenosis

Daragh Finn and Colin J. McMahon

15.1 Introduction

Supravalvular aortic stenosis (SVAS) is an uncommon form of congenital left ven-
tricular outflow tract obstruction, defined as an obstruction originating at the superior
margins of the sinus of Valsalva, just above the level of the coronary arteries [1, 2].
Supravalvular aortic stenosis was first described in 1930 by an Italian pathologist and
may present as part of a syndrome, most commonly Williams syndrome, or as a sepa-
rate non-syndromic genetic entity [3]. Supravalvular aortic stenosis is caused by a
defect in the elastin gene (ELN), and Williams syndrome is caused by a microdeletion
of the chromosome region 7q11.23 that includes ELN. Although SVAS is a rare con-
genital cardiac lesion during fetal and early postnatal life, the stenosis may become
progressively more severe with age [4]. An hourglass deformity is most commonly
described, or more rarely, a diffuse narrowing may be seen [1]. Hypertension has been
reported in up to 70% of patients with SVAS, and the risk of hypertension increases
over time [5, 6]. A clear etiology is not always evident, but diffuse aortic narrowing
and/or renal artery stenosis should be considered. Lifelong follow-up and blood pres-
sure monitoring is paramount in the treatment of such patients.

15.2 Incidence

The incidence of Williams syndrome is 1 in 10,000 live births [7]. Reported rates of
SVAS in infants with Williams syndrome vary in the literature between 45 and 75%
[6, 8-10]. Although no statistical data from population studies exist, overall
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estimated incidence of SVAS including both syndromic and non-syndromic forms
is between 1:20,000 and 50,000 live births [11, 12].

15.3 Etiology

Williams syndrome, also known as Williams—Beuren syndrome, is caused by a
microdeletion of 1.5-1.8 million base pairs at 7q11.23 and encompasses 26-28
genes [13], including ELN [14]. Williams et al. initially described the syndrome in
1961 as a triad which involved SVAS, learning disability, and dysmorphic facial
features [15]. Hemizygosity of ELN coding for the elastin protein is responsible for
the vascular abnormalities found in Williams syndrome [16], and the remaining
genes account for the other typical phenotypic features. Although familial variants
can occur, the majority of cases are caused by de novo microdeletions [17]. Variable
expressivity and reduced penetrance are observed in Williams syndrome [18].
Non-syndromic supravalvular aortic stenosis is a separate genetic entity [19, 20]
that also features disruption of ELN [21, 22]. It occurs as a consequence of haploin-
sufficiency of ELN. It is caused most commonly by a microdeletion [21-23]. Point
mutations have also been reported [24, 25], and less commonly, it may occur as a
result of missense mutations, which account for 10% of cases [11]. ELN is composed
of 34 exons, spans 45 Kb of genomic sequence, and produces a transcript of 3.5 Kb
comprising 2.2 Kb of coding sequences. Non-syndromic SVAS is an autosomal
dominant disease [21], with incomplete penetrance and variable expressivity [11].

15.4 Pathophysiology

Reduced elastin synthesis is observed in both syndromic and non-syndromic forms
of SVAS. This occurs in conjunction with vascular smooth muscle cell proliferation,
although the exact pathways linking elastin deficiency to vascular cell proliferation
have yet to be identified [14]. Histologic features in the ascending aorta of affected
individuals include diseased media, increased number of diseased hypertrophied
smooth muscle cells, increased collagen content, and elastic tissue in the form of
broken and disorganized elastin fibers [26, 27].

15.5 Classification: Anatomy

Supravalvular aortic stenosis has two morphologic anatomic forms on echocardio-
graphic studies interrogating the ascending aorta, each of which includes evidence
of stenosis distal to the valvular cusps [28]:

1. An hourglass deformity of the ascending aorta with a corresponding luminal nar-
rowing at a level just distal to the coronary artery ostia is most commonly
described and occurs in 50-75% of patients.
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2. A diffuse narrowing of variable length of the ascending aorta may also occur and
is reported in <25% of patients and is often associated with stenosis of the bra-
chiocephalic vessels [2, 29].

15.6 Clinical Presentation

Following from the reports of Williams and Beuren et al., it was realized that
Williams syndrome can present with a constellation of distinctive phenotypic char-
acteristics [15, 30].

Infants with Williams syndrome may have low growth velocities both pre- and
postnatally. Microcephaly occurs in almost one third of infants [31]. Feeding diffi-
culties and failure to thrive are common in the first 2 years of life, but in some cases,
children may present with short stature later in childhood [32].

Typical facial features include short upturned nose, flat nasal bridge, long phil-
trum, wide mouth, large lips, micrognathia, a stellate pattern of the irises, widely
spaced teeth, and periorbital fullness [5].

Cardiovascular lesions are present in up to 93% of Williams syndrome patients
presenting in the first year of life [33]. Supravalvular aortic stenosis may be sus-
pected when an ejection systolic murmur radiating to the carotids +/— a thrill in
the suprasternal notch is appreciated on clinical exam. Depending on the severity
of the lesions, a large number of patients can be followed up clinically without
immediate intervention. Table 15.1 outlines a follow-up strategy devised by
Collins et al. and modified from the AHA guidelines [8, 34]. The Coanda effect
may also be present when four-limb blood pressures are assessed, with blood
pressure disparity between arms and right upper arm pressure often greater than
the left by a magnitude of 20 mmHg. This effect is caused by the tendency of a jet
stream, in this case the jet caused by supravalvular aortic stenosis to adhere to a
wall. Blood flow through the stenotic region has preference for the brachioce-
phalic vessels and results in increased right upper limb blood pressure compared
to the left [35].

Sensorineural hearing loss is common, is often progressive in nature, and can be exac-
erbated by conductive hearing loss secondary to recurrent middle ear infections [36].

Table 15.1 Cardiovascular evaluation and follow-up of patients with Williams syndrome [34]

Examination every 3 months during the first year of life, then annually until 5 years of age, and
biennially or triennially thereafter

Four-extremity blood pressures at each visit until adolescence

ECG at each visit to assess LVH

24-h ambulatory ECG at 1 year of age, annually until 5 years of age, and then biennially
Echocardiography at presentation, at least annually until 5 years of age, and then as needed if
heart disease is present

CT or MRI of the aorta if severe SVAS is present; imaging of head and neck vessels should also
be considered if diffuse SVAS

Renal ultrasound if hypertensive or if abdominal bruits are auscultated. Ultrasound of carotids
if carotid bruits are present
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Some children have connective tissue abnormalities with lax skin and hypermobile joints
on exam. Hernias and diverticula may also be found.

Children may present with developmental delay [37], and most children have mild
to moderate learning disabilities, but their verbal strength exceeds a reported mean 1Q
of 50-60 [38, 39]. Later in childhood, children are often described as overfriendly or
hypersocial, with a characteristic ebullient “cocktail personality.” However, behav-
ioral problems are common, including inattention and hyperactivity, and almost 50%
of children may be diagnosed with autism spectrum disorders [40—42].

Idiopathic hypercalcemia will be present in 50% of infants and resolves during
childhood [8, 43]. Other associations are delayed toilet training, nocturnal enuresis
[44], and precocious puberty [45, 46].

ECGs in patients with Williams syndrome may display abnormalities of cardiac
repolarization, long corrected QT intervals (QTc), and electrical criteria for right
ventricular hypertrophy and/or left ventricular hypertrophy [47].

15.7 Associated Lesions

Renal artery stenosis: In the reported incidence, between 7 and 58% of patients with
Williams syndrome [8, 48, 49] and 40% of patients with hypertension and Williams
syndrome have renal artery stenosis [8].

Aortic valve abnormalities: The localization of the lesion has implications and in
50% of individuals can result in premature degeneration of the aortic valve.

Pulmonary branch stenosis: Both Williams syndrome and non-syndromic supra-
valvular aortic stenosis are associated with pulmonary branch stenosis [1]. Peripheral
pulmonary artery stenosis improves with time, and SVAS either progresses or
remains stable in Williams syndrome [6, 34, 50]. Supravalvular aortic stenosis asso-
ciated with peripheral pulmonary stenosis has also been reported in other genetic
syndromes such as Alagille syndrome 1, neurofibromatosis type 1, and Noonan syn-
drome type 1 [3].

Coronary artery disease: Pressure of the left ventricle is raised based on severity of
the obstruction. Coronary arteries proximal to the obstruction have the same pressure
resulting in dilatation, hypertrophy, intimal thickening, and premature atherosclerosis
[8]. As a result, there is increased resistance to blood flow and elevated left heart pres-
sure, and concentric left ventricular hypertrophy results from obstruction [35] and
exacerbates ischemia. Premature coronary artery disease has been reported in 28-45%
of patients with SVAS [1, 51]. Chest pain or dyspnea secondary to SVAS with coronary
artery abnormalities and sudden death during exercise have also been reported [52].

15.8 Molecular Diagnosis

Ewart was the first to use fluorescent in situ hybridization (FISH) analysis to dem-
onstrate hemizygosity of the ELN locus in patients with Williams syndrome [53],
and FISH is now the standard diagnostic tool when Williams syndrome is
suspected.
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In non-syndromic SVAS, FISH analysis is also the investigation of choice to
detect ELN deletions which are the most common mutations in SVAS. Mutation
screening will detect point mutations. Family screening and preclinical diagnosis
are possible. However, genetic counseling is limited by the large variety of muta-
tions that can cause SVAS [11]. Also the severity of the disease varies widely within
families, which further limits the value of genetic counseling [12, 23, 54].

15.9 Hypertension

The prevalence of hypertension in Williams syndrome is highly variable in the lit-
erature ranging between 5 and 70% [6, 14, 17, 48, 55-60]. Also, screening for
hypertension is not universal in this population, which suggests that hypertension is
probably underestimated in patients. In a recent cohort study by Bouchireb et al.,
the mean age when hypertension was diagnosed was 4.7 years [49]. Over 90% of
patients diagnosed with hypertension were asymptomatic at the time of diagnosis;
however, a number of patients presented with ischemic stroke and myocardial
infarctions. Therefore, screening, early diagnosis, and treatment are important in
order to reduce the already important vascular risk in patients with Williams syn-
drome [49].

Hypertension is often related to the lack of vessel distensibility [61]. Daniels
et al. first described the causal relationship between vascular abnormalities and
hypertension in Williams syndrome [62]. Elastin levels are responsible for the dis-
tensibility of the aorta during systole and subsequent recoil during diastole.
Hydrodynamic energy is stored during systole and released during diastole known
as the Windkessel effect [63], and loss produces a wide pulse pressure with elevated
systolic blood pressure and reduced diastolic aortic pressures.

In many patients, hypertension without SVAS is found which suggests that
hypertension in Williams syndrome is multifactorial and not solely related to
SVAS. The incidence of renal artery narrowing in Williams syndrome is as high as
60% [48, 64] and is an important cause of hypertension in patients with Williams
syndrome. Wessel et al. found that mean heart rates are higher over time in both
normo- and hypertensive patients with William syndrome [56], suggesting that a
high sympathetic activity might play a role in hypertension. Broder et al. found that
hypertension is significantly more common in William syndrome patients with a
history of infantile hypercalcemia [59], but no direct causal relationship between
hypercalcemia and hypertension has been described.

There is little information focusing on medical treatment of hypertension in chil-
dren with Williams syndrome, and there are no international guidelines, and data-
based recommendations for antihypertensive therapies cannot be made [14].
Calcium channel blockers and angiotensin-converting enzyme (ACE) inhibitors
have been frequently used in many retrospective series [6, 17, 49]. However, thera-
peutic options for systemic hypertension in patients with Williams syndrome must
take into consideration the potential presence of renal artery stenosis. Thus, the use
of ACE inhibitors is contraindicated unless renal artery stenosis has been defini-
tively excluded. The link between infantile hypercalcemia and hypertension
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suggests a role for calcium channel blockade, and calcium channel blockers of the
dihydropyridine type have been reported to be effective for the treatment of hyper-
tension in patients with Williams syndrome [59]. Some authors recommend beta-
blockers as first-line agents, as sympathetic overactivity may contribute to the
development of hypertension [56]. The use of beta-blocker therapy for hypertension
has the attractive additional benefit of potentially decreasing the risk of ventricular
arrhythmia or an increased adrenergic response, as well as sudden death, in patients
with prolongation of the QTc [34].

Beta-blocker and calcium channel blocker drugs have been utilized frequently in
several of the retrospective series [6, 56, 60, 65], and although medical treatment in
Williams syndrome can be challenging so that multidrug regimens may be required
for adequate control of blood pressure, either agent may be appropriate as a first-
line treatment.

Patients with hypertension resistant to drug therapy should be studied for reno-
vascular etiology. Percutaneous transluminal renal angioplasty has been performed
for the treatment of renal artery stenosis in patients with Williams syndrome [66].
Angioplasty can be an effective treatment when the stenosis is isolated, but success
rates for cure or reducing the need for medical treatment are highly variable in the
literature and at present are not encouraging [49, 66].

Approximately 20% of patients with WS will require surgical or transcatheter
interventions for cardiovascular abnormalities, the majority of which will be needed
by 15 years of age [9]. Surgical intervention is most commonly undertaken for SVAS
because transcatheter balloon angioplasty has been found to be ineffective [9, 67, 68].
Surgical approaches to SVAS have evolved over time and include the use of an
inverted Y-shaped patch [29] and the modified Brom (three-sinus) technique. The lat-
ter has been shown to have excellent outcomes without the need for reintervention and
is increasingly being used [69]. The overall survival of patients with SVAS was esti-
mated at 90 £ 7%, 84 + 9%, and 82 + 10% at 5, 10, and 20 years, respectively [70].
Freedom from late reoperation in the same cohort was estimated at 97 + 4%, 93 + 7%,
and 86 + 10% at 5, 10, and 20 years, respectively. However, in those patients with the
diffuse type of SVAS, as many as 35% will require reintervention [71].

Conclusion

Hypertension is common in patients with Williams syndrome, and screening is
important. Etiology is multifactorial, and causes including SVAS and renal artery
stenosis need to be investigated. Medical treatment may be challenging, and cal-
cium channel blockade or beta-blockers should be considered as first-line agents.
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16.1 Introduction

Aortic coarctation is an uncommon but partially reversible cause of secondary
hypertension. In this chapter, we will discuss the pathophysiology, epidemiology,
and clinical presentation. We will review the known mechanisms for hypertension
development in coarctation. Finally, we will consider medical, surgical, and inter-
ventional treatment strategies for coarctation and their effects on hypertension and
overall prognosis.
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Fig. 16.1 Classification of coarctation of the aorta. (a) Coarctation can be (i) preductal, occurring
proximal to the ductus arteriosus (DA); (ii) juxtaductal, occurring at the level of the DA; and (iii)
postductal, occurring distal to the DA. (b) Aortic arch interruption is essentially a complete form
of coarctation, in which there is a gap between the ascending and descending thoracic aorta. The
interruption can be (i) distal to the left subclavian artery, (ii) between the left carotid and left sub-
clavian arteries, and (iii) between the innominate and left carotid arteries. Printed with permission
from artist Mr. Talmur Ahmed

16.2 Epidemiology and Associations

Aortic coarctation is defined as a narrowing or stenosis in an aortic segment. Most
commonly, discrete coarctation is focal and juxtaductal, near the insertion of the
ligamentum arteriosum in the upper segment of the descending thoracic aorta (i.e.,
aortic isthmus). Other anatomic presentations of coarctation include diffuse aortic
arch hypoplasia, abdominal aortic stenosis, and even aortic atresia when the obstruc-
tion is absolute (Fig. 16.1).

Coarctation represents 6-8% of congenital heart defects (CHD) with an inci-
dence of 1 in 2500 live births and a male-to-female predominance of about 1.5-1
[1]. It can occur either as an isolated lesion or in association with bicuspid aortic
valve (BAV), Turner’s syndrome, patent ductus arteriosus (PDA), mitral valve
abnormalities, ventricular septal defect (VSD), and additional left heart obstructive
lesions (e.g., Shone’s complex or hypoplastic left heart syndrome) [2—6]. Abdominal
aortic coarctation also referred to as midaortic syndrome typically includes aortic
hypoplasia, and it is associated with renal artery stenosis [7]. The term simple
coarctation implies an absence of additional intracardiac pathology (other than BAV
or PDA), whereas complex coarctation is associated with additional forms of CHD.

16.3 Histology and Genetics

Morphologically, the tissue ridge (often circumferential) that comprises focal coarc-
tation intrudes into the aortic lumen leading to obstruction. While there remains
controversy as to its development, there are several hypotheses including (1) hemo-
dynamic effects in development from low flow state and (2) abnormal migration of
ductal tissue [2].
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The hemodynamic hypothesis considers abnormal ductal flow and/or unfavor-
able angulation of ductal insertion to the isthmus during fetal development that
leads to coarctation upon ductal closure at birth [2]. A mechanism of medial infold-
ing and migration of ductal tissue with surrounding secondary cystic medial necro-
sis has been supported by pathology specimens finding a sling of ductal tissue at the
isthmus and even in hypoplastic arch tissue [6].

Several studies have focused on the maldevelopment of neural crest cells that
could broadly tie in coarctation with the company that it keeps (e.g., outflow tract
and noncardiac vascular anomalies) [8, 9]. The Notch signaling pathway appears to
have an important role in cardiovascular development. Defects in the Notch path-
way have been linked with neural crest abnormalities and cardiovascular defects in
both mice and humans, including aortic arch malformations [10].

16.4 Mechanism of Hypertension Development

When the degree of aortic obstruction is significant, areas below the level of coarc-
tation see decreased blood pressure and perfusion relative to proximal arterial beds.
In discrete juxtaductal coarctation, this leads to reduced blood pressure to abdomi-
nal organs including the kidneys and lower extremities in comparison to the upper
extremities, coronary arteries, and cerebral vasculature. The lack of renal blood flow
leads to activation of the renin-angiotensin system (RAS) thereby increasing periph-
eral afterload and intrarenal sodium uptake (Fig. 16.2).

To some extent the body can mitigate hypoperfusion by development of collater-
als later in life that arise from above the coarctation segment and provide perfusion
past the obstruction. There are two anatomic sources of collateral circulation that
can develop (1) anterior circulation, bilateral internal mammary arteries connecting
to external iliacs via epigastric arteries, and (2) posterior circulation, thyrocervical
arteries to descending aorta via intracostal arteries [11]. There is considerable varia-
tion in collateral development that is not well understood.

There are two proposed mechanisms of hypertension development in coarcta-
tion: (1) direct consequence of mechanical obstruction and (2) maladaptation of the
RAS [2]. The mechanical obstruction of coarctation may mandate a higher blood
pressure to allow for systemic flow through the increased systemic vascular resis-
tance (SVR) inherent in aortic obstruction or from small-caliber collateral vessels.
Based on this mechanism, the treatment of secondary hypertension would be resec-
tion of the coarctation to allow unhindered aortic flow. However, this mechanism
alone does not adequately explain the variability in hypertension reduction after
coarctation repair or the late hypertension that can develop in patients years later
[12]. In addition, the severity of obstruction does not always correlate with hyper-
tension severity [2].

This humoral theory of RAS activation secondary to renal underperfusion is con-
jectured to be the primary mechanism of late hypertension and vascular abnormali-
ties in coarctation patients [2]. Animal studies transplanting one kidney proximal to
the coarctation segment demonstrate significant reduction in SVR and blood pres-
sure [12, 13]. This explains why measured SVR is often increased even distal to the
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Fig. 16.2 Mechanism of hypertension in patients with coarctation of the aorta. (/) The narrowed
aorta results in decreased blood flow distal to the obstruction, which leads to hypoperfusion of the
organs, including the kidneys. The kidneys respond by activating the renin-angiotensin-aldosterone
axis to normalize blood pressure. This results in normalization of blood pressure in the lower
extremities with adequate perfusion of the organs but at the expense of increased blood pressure in
the upper body. (2) The narrowed aorta also forces the left ventricle to contract more forcefully to
maintain cardiac output, thus increasing systolic pressure in the left ventricle and proximal aorta

obstruction. Nonetheless, human and animal studies of coarctation have not consis-
tently documented increased renin levels [14].

16.5 Clinical Presentation and Diagnosis

It is the specifics of (1) coarctation location (e.g., arch, juxtaductal, or abdominal);
(2) severity of stenosis, ranging from mild obstruction to total occlusion with tho-
racic collaterals; and (3) concomitant cardiac and vascular abnormalities that dictate
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the age of clinical presentation and severity of illness. Symptoms can range from
patients being asymptomatic with a murmur to a constellation of hypertension, clau-
dication, hypertensive headaches, and congestive heart failure. In cases where the
coarctation segment involves the left subclavian artery ostium, reversal of left ver-
tebral flow at high outputs can lead to subclavian steal syndrome.

Most coarctation patients will be diagnosed in childhood based on physical
exam, clinical symptoms, or as part of a secondary hypertension work-up. There are
some patients with a combination of minimal symptoms, adequate collateral devel-
opment, and/or inadequate access to informed health care who are not diagnosed
until much later in life. Patients with inadequate collateral development across the
coarctation will be more symptomatic with greater propensity for distal hypoperfu-
sion. Abdominal aortic coarctation nearly always is diagnosed in neonatal period
and can present with life-threatening neonatal hypertension.

One notable extracardiac vascular association of coarctation is the increased
incidence of saccular berry aneurysms (3—5%) in the circle of Willis. This coupled
with upper extremity and cerebrovascular hypertension creates the potential for
aneurysmal rupture, which can be fatal or result in a debilitating stroke. Any sugges-
tive neurologic symptoms (e.g., acute severe headache or sudden neurologic loss)
should trigger evaluation for this condition by CT, MRI, or angiography. Given the
clinical association, many advocate routine lifetime screening for cerebral aneu-
rysms, even in the absence of symptoms.

A thorough cardiovascular exam should assess for evidence of LV pressure over-
load/hypertrophy through a prominent LV point of maximal impulse, decreased
ventricular compliance via the presence of an S4, severe obstructive coarctation
with or without collateral flow by the presence of systolic and/or continuous mur-
murs on the front chest, back, or abdomen. As BAV is found in 80% of coarctation
patients, there may be signs of the bicuspid valve including a systolic click and a
murmur of regurgitation or stenosis. Pulses should be palpated in all extremities and
may be absent or diminished in the femoral artery, dorsalis pedis, and posterior tibi-
alis. Simultaneous pulse measurement of brachial and femoral artery can reveal a
brachiofemoral delay implying obstruction to lower extremity blood flow.

All patients presenting with hypertension or prehypertension, especially at an
early age, should have four-extremity blood pressure measurements upon initial eval-
uation. In patients without significant aortic obstruction or vascular disease, the prin-
ciple of pressure amplification ensures that the lower extremities have higher blood
pressure readings than upper extremities. In patients with coarctation or obstructive
peripheral vascular disease, noninvasive assessment of lower extremity blood pres-
sure can be reduced to absent. In general, four-extremity blood pressure should also
help rule out aortic arch involvement of the coarctation if both upper extremity blood
pressures are equal. However, there is a higher incidence in coarctation of anomalous
right subclavian artery from descending aorta (~5%) compared to standard popula-
tion. In the absence of aortic imaging, this can make it challenging for the unaware
clinician to distinguish juxtaductal coarctation from arch hypoplasia.

Aortic imaging is crucial for coarctation diagnosis and evaluation including
echocardiography, CT, and MRI, though classic rib notching and thoracic collaterals
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and aortic patterns from pre- and post-stenotic dilation can be appreciated on chest
X-ray. Echocardiography will reveal associated congenital heart defects in addition
to visualizing bicuspid aortic valves with corresponding aortopathy of the root and
ascending aorta. In adults, suprasternal notch views of the aortic arch and descend-
ing aorta can help visualize the juxtaductal region on 2D echo and quantify coarc-
tation gradients using continuous-wave Doppler. In general, peak gradients from
echo overestimate the gradients achieved by extremity blood pressures or in the
catheterization laboratory. When coarctation is severe, pulse-wave Doppler of the
abdominal aorta can display a dulled systolic peak and increased diastolic flow.

16.6 Medical Therapy in Repaired Coarctation

There are a few studies with conflicting findings to guide treatment of early or late
hypertension in repaired coarctation patients [15—17]. Prior to coarctation repair,
blood pressure control can be challenging and require polypharmacy. Blood pres-
sure treatment may be limited by underperfusion below the coarctation level, leading
to symptoms such as claudication or signs of underperfusion of abdominal organs.

Given the presumed mechanisms of hypertension development in coarctation, it
is not surprising that ACE inhibitors, ARBs, and beta blockers are often first-line
therapies. In two open-label prospective trials, enalapril and candesartan were
slightly more effective in lowering blood pressure and reducing LV mass index
compared to atenolol [16, 17]. In another study, metoprolol was more effective than
candesartan to effectively lower blood pressure [15]. As such there is no definitive
evidence as to the choice of antihypertensive. Similar to the state of affairs in hyper-
tension as a whole, the goal to treat high blood pressure may supersede choice of
therapeutics.

16.7 Surgical and Interventional Treatment of Coarctation

In adults, the majority of patients followed with aortic coarctation have either
unrepaired disease with a new diagnosis or recurrent coarctation with prior
repair. Indications for treatment include a gradient or blood pressure differential
>20 mmHg or a peak gradient <20 mmHg in the presence of significant collaterals.
Additional considerations include symptoms related to coarctation, upper extrem-
ity hypertension, hypertensive response to exercise, and pathologic left ventricular
hypertrophy [18, 19]. The European Society of Cardiology guidelines provide a
Class IIb recommendation for treatment when the aortic narrowing is >50% of the
aortic diameter at the diaphragm, regardless of pressure gradient or the presence of
hypertension [19, 20].

Both surgical and interventional approaches are viable therapies for coarctation;
the choice of modality depends on patient age and size, technical suitability, con-
comitant cardiovascular abnormalities, and institutional experience [20]. In neo-
nates, surgery remains the standard of care with operative survival ~99%. In
children, stenting is possible when the aorta can accommodate a stent that maybe
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expanded to larger adult diameters in the future. In adults, stenting and surgery are
considered depending on the anatomic details and comorbid conditions though
coarctation surgery in adults does have higher perioperative risk. Surgical repair has
been shown to have 91% survival at 20 years when surgery is performed <14 yo and
79% survival when >14 yo [21].

There are multiple surgical approaches that have been used to repair coarctation
(Fig. 16.3)—each technique has pros and cons (Fig. 16.4a) [22]. Crafoord first per-
formed aortic resection with end-to-end anastomosis in 1944 though recurrence
rates were over 50% [20, 23]. This technique was later modified by Amato in 1977
to include a broader longitudinal resection and extended anastomosis. In many
modern-day institutions, extended end-to-end repair remains the preferred surgical
technique with low mortality and low restenosis rates of 4—11% [22, 24].

Additional surgical methods include aortic patch augmentation described by
Vosschulte in 1961 which allows for the resection of longer coarctation segments
with low recoarctation rates of 5-12% [25]. However, there is an increased risk of
aneurysm formation along the patch in 18-50% of patients [22]. Subclavian flap
repair was developed by Waldhausen and Nahrwold in 1966 that uses left subcla-
vian tissue to augment the lumen. This negates the need for patch material, however
does leave the scepter of subclavian steal or arm claudication in the future [26].
Interposition grafts (either homografts or Dacron based) were used as early as 1951
by Gross. There are inherent limitations to growth with this technique in children,
and there is a risk of aneurysm formation at the suture lines of the graft [22]. Still
this technique is used successfully in adults [27]. Ascending-to-descending aorta
bypass grafts can intuitively avoid the complication of recoarctation; however this
technique does entail its own concerns of long-term graft patency [28].
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Fig. 16.3 Different types of surgical repair for aortic coarctation. (a) End-to-end anastomosis.
The coarctation segment is resected and the aorta is reapproximated. (b) Patch augmentation. The
aorta is incised longitudinally and covered with a patch of polytetrafluoroethylene. (¢) Interposition
graft. (d) Ascending-to-descending aorta bypass graft. (e) Subclavian flap. After performing an
extended aortotomy, the left subclavian artery is sewn over the isthmus of the aorta. (f) Extended
aortic arch repair. This is done when there is severe transverse arch hypoplasia. Permission to use
illustrations obtained from Dr. J. P. M. Hamer at the University of Groningen, The Netherlands
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Fig. 16.4 Prognosis of patients with coarctation of the aorta. (a) Type of aortic coarctation repair
stratified by decade. (b) Long-term survival rates of patients with aortic coarctation repair (~70%)
vs. age- and sex-matched population (~90%). (¢) Comparison of hypertension pre- and postopera-
tively at various time intervals of follow-up. Permission to use figures obtained from Brown ML
et al (2013) J Am Coll Cardiol 62(11):1020-1025
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While balloon angioplasty remains a feasible option for focal coarctation, there
are higher rates of recurrence (50% vs. 21%) compared to surgery [29]. Other pub-
lications have found balloon angioplasty of discrete coarctation to be a durable
therapy with reported follow-up from 8 to 15 years in small prospective cohorts [30,
31]. Compared to angioplasty alone, stenting helps prevent elastic recoil of the
aorta, requires less aortic overexpansion in treatment (thus decreasing risk of aneu-
rysm formation), and still allows the possibility of future re-dilation [32-35]. In
many institutions, covered stents have become a preferred strategy over bare metal
stents [36]. The aortic covering can help mitigate many aortic wall complications
(e.g., intimal tear or intramural hematoma). In the USA, the Cheatham Platinum
(CP) stent (NuMED, Hopkinton, NY) has been approved by the FDA in 2016 for
treatment of aortic coarctation (Fig. 16.5).

Fig. 16.5 (a—d) Interventional repair of coarctation with covered CP stent. Once the stent is put
in position and fully dilated, normal blood flow is restored. An alternative to stent placement is
balloon dilation, which is preferred in children and neonates due to concerns about stent size—
smaller stents cannot undergo serial dilation to keep pace with somatic growth, and larger stents
may not fit into the femoral artery of smaller patients
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There is limited prospective data comparing surgery with stenting [32, 37, 38].
Several cohorts and one meta-analysis have suggested comparable rates of proce-
dural success with overall reduction in periprocedural morbidity and length of hos-
pital stay tempered by slight increase in rates of restenosis or reintervention [39—41].
The Congenital Cardiovascular Interventional Study Consortium has published the
largest prospective comparisons of stent, balloon, and surgery [20, 42]. Stenting had
a lower short-term complication rate (12.5%) compared to surgery (25%) and bal-
loon angioplasty (44%). Complications include moderate or severe re-obstruction,
aortic wall injury, and stent fracture. Total re-interventions were higher with stent-
ing compared to other modalities though the majority of these were staged interven-
tions for further stent expansion in native coarctation [20].

16.8 Hypertension After Coarctation Treatment

Surgical or interventional repair remains the mainstay treatment for native or recur-
rent coarctation. These interventions change the natural history of disease with
improved survival and decreased vascular complications of MI and stroke though
life expectancy curves of even repaired coarctation remain below in those of age-
and gender-matched population (Fig. 16.4b) [2, 43, 44]. Its effects on hypertension,
however, are more complex.

Both surgical and interventional repair of coarctation have been shown to
decrease hypertension in the short-to-medium term or make it more manageable
with pharmacotherapy (Fig. 16.4c) [45-47]. While preprocedural hypertension will
regress or improve, especially if coarctation repair is performed earlier in life, many
patients remain at risk for developing systemic arteriopathy including late hyperten-
sion [21, 48, 49].

After surgical or interventional repair, one national cohort study suggested
a 20-year freedom from hypertension of only 51% and 79%, respectively [50].
Coarctation had a statistically significant odds ratio of 15.7 for late development
of hypertension and 6.6 for stroke (Fig. 16.6) [48]. In Hager et al. cohort study of
nearly 500 operated patients, prevalence of hypertension was over 50%, most related
to duration of follow-up, as nearly all patients >55 yo were hypertensive [51, 52].

Even in adult patients who had successful coarctation repair with “normal range”
resting blood pressures, accentuated systolic blood pressure and pulse pressure
response was observed during daytime activities with higher LV mass measure-
ments [53]. This was determined to be partly secondary to upper limb conduit artery
dysfunction, finding a reduced brachial artery vascular response to both endothelium-
dependent flow-mediated dilation and glyceryl trinitrate administration compared
to age- and gender-matched controls. Even in normotensive patients after coarcta-
tion repair, vascular studies have suggested a shift in the relationship between vas-
cular resistance and central venous pressure, suggesting a reset of the integrated
cardiopulmonary-arterial baroreflex [54].
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Another potential contributor to development of late hypertension in treated
coarctation may be residual juxtaductal coarctation gradient or mild transverse aor-
tic arch hypoplasia (TAA). Cases of de novo coarctation or repaired coarctation
with residual gradients have found stenting to eliminate even mild coarctation
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Fig. 16.6 The age group distribution of the number (a) and the incidence (b) of patients with
coarctation of the aorta and systemic hypertension. (¢) The age group distribution of cerebrovascu-
lar accident (CVA). Permission to use figures obtained from Wu MH et al (2015) Am J Cardiol
116(5):779-784
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(clinical gradient of ~20 mmHg) to help reduce systolic blood pressure in the
medium term [47, 51].

After repair, a number of patients will appear to have TAA on imaging in the
absence of any resting arm-leg gradient. While traditionally this is considered
benign, there is one study linking it to late hypertension with an odds ratio 6.4 [55].
It is not known whether the operative risks of a more aggressive surgical arch recon-
struction would ameliorate this increased risk of late hypertension.

This potential for late hypertension and late vascular complications demands
careful monitoring and follow-up of all coarctation patients. Early emphasis of life-
style modifications including optimal weight, diet, and aggressive pharmacologic
treatment of coarctation should be the mainstay. Management of other reversible
risk factors such as smoking cessation and hyperlipidemia should be emphasized
from an early age.

Conclusion

Aortic coarctation remains a rare but important secondary cause of hypertension.
The diagnosis should be considered and can be excluded through simple physical
examination and confirmed through vascular and cardiac imaging techniques.
Surgical and interventional repair of aortic coarctation is corrective with good
medium- and long-term outcomes. While coarctation repair will ameliorate
hypertension, these patients remain at risk for the development of late hyperten-
sion and future vascular abnormalities. All coarctation patients should receive
lifelong care and risk factor modification.
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Atrial Fibrillation and Hypertension: 1 7
Two Entities That Usually Coexist
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17.1 Epidemiology of Atrial Fibrillation

Atrial fibrillation is the most common sustained arrhythmia in humans, and its
prevalence is 1-2% of the general population worldwide [1]. It affects six million
people in Europe, while it is expected that its incidence will increase up to 2.5-fold
over the next 50 years. It is estimated that atrial fibrillation poses a high economic
burden for the healthcare system, since it is responsible for up to one third of the
hospitalizations for cardiac arrhythmias. Subjects, who have reached the age of 40,
present a lifetime risk of 25% for developing atrial fibrillation, and its incidence
increases as the population ages [2]. Atrial fibrillation affects significantly morbid-
ity and mortality (two- to sevenfold increased risk for stroke, two- to threefold
increased risk for dementia, and threefold increased risk for heart failure), while it
is responsible for approximately 20% of all strokes. Finally, undiagnosed or silent
episodes of atrial fibrillation may be the main cause of cryptogenic strokes [3-5].

17.2 Etiology of Atrial Fibrillation

Different risk factors are responsible for the development of atrial fibrillation.
Among the most established and well identified are age, hypertension (which forms
a physiopathologic substrate favoring atrial fibrillation), coronary artery disease
(>20% of the patients with AF), heart failure (30% of the patients with AF), valvular
disease, congenital heart disease, hyperthyroidism, chemotherapeutic agents, obe-
sity, diabetes mellitus, chronic obstructive pulmonary disease, sleep apnea, and
chronic kidney disease [6]. Hypertension (HTN) is the most common cause of atrial
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fibrillation encountered in clinical practice. Epidemiologic studies have shown that
HTN is associated with 1.8-fold increased risk of developing new-onset atrial fibril-
lation and 1.5-fold risk of progression to permanent atrial fibrillation. In an analysis
of the Framingham Heart Study, men and women with hypertension had 50 and
40% higher risk of developing atrial fibrillation, respectively. In many different
atrial fibrillation clinical trials, 49-90% of the participants suffered from HTN, indi-
cating that these two entities usually coexist. Hypertension is the most prevalent
concomitant medical condition in patients with atrial fibrillation, in both Europe
and the USA [7].

17.3 Hypertension and Atrial Fibrillation: Pathophysiological
Mechanism and Linkage

Hypertension per se increases the risk of atrial fibrillation by about twofold, and it
is likely to be a reversible causative factor of atrial fibrillation. Untreated or subop-
timal treated hypertension leads to left ventricular hypertrophy, one of the most
important subclinical organ damages responsible for major cardiovascular events
including atrial fibrillation. In the Framingham Heart Study, the levels of the sys-
tolic blood pressure and the duration of hypertension predicted the adverse atrial
remodeling [8]. Moreover, pulse pressure was associated with the incidence of atrial
fibrillation [9]. Many studies gave proof that hypertension is an independent risk
factor for atrial fibrillation. In an analysis of 5000 individuals in the Cardiovascular
Health Study, it was found that patients with 10 mmHg higher baseline systolic
blood pressure had an 11% increased risk of atrial fibrillation over the 3-year fol-
low-up. Once left ventricular hypertrophy is established, left ventricular compliance
decreases; stiffness, filling pressures, as well as left ventricular wall stress increase;
and as a consequence the sympathetic nervous system and the renin-angiotensin-
aldosterone system are activated.

Moreover, in the atria, alterations characterized by proliferation and differentia-
tion of fibroblasts into myofibroblasts, enhanced connective tissue deposition, fibro-
sis, intracellular substrate accumulation, and inflammatory changes, lead to
structural remodeling. These structural alterations result in electrical dissociation
between atrial muscle bundles and local conduction heterogeneities that facilitate
the initiation and perpetuation of atrial fibrillation. Over the time, tissue remodeling
promotes and maintains atrial arrhythmia. Atrial remodeling consists of three com-
ponents: electrical remodeling mainly due to intracellular changes in calcium han-
dling, contractile remodeling, and structural tissue remodeling which needs weeks
or months to occur and affects the function of the heart muscle [10, 11].

17.4 Consequences of Atrial Fibrillation

Loss of atrial contraction and atrioventricular synchrony affects the hemodynamics
during atrial fibrillation. It may reduce the cardiac output up to 15%, may induce
tachycardiomyopathy, or may cause functional mitral regurgitation (due to atrial
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dilatation and hence mitral annular dilatation or due to the tachycardia-induced
ventricular dilatation). Decreased blood flow and stasis are mainly responsible for
the thrombotic material that usually exists in the left atrial appendage. This is a
major risk factor for stroke. Atrial fibrillation is responsible for 15-20% of all isch-
emic strokes [12], increases the risk of stroke four- to fivefold, and is an indepen-
dent risk factor for stroke severity and recurrence. Atrial fibrillation also affects the
cognitive function and the quality of life of patients [13]. It is known that the coex-
istence of atrial fibrillation and hypertension triples the annual risk for stroke.

17.5 Diagnosis

Atrial fibrillation may present with palpitations, dizziness, anxiety, weakness, and
shortness of breath or may be silent and identified in an incidental ECG or by car-
diac rhythm management devices (pacemakers-ICDs). More serious symptoms like
chest pain, severe dyspnea, or hemodynamic instability may be attributed to the
serious comorbidities such as ischemic heart disease or heart failure. When there is
suspicion for atrial fibrillation, a 12-lead ECG should be performed, and it is a fact
that a considerable number of clinicians still need to improve their ability to recog-
nize this type of arrhythmia [14]. Complete history, physical examination, blood
pressure measurement, echocardiography, and basic laboratory workup should be
performed in every patient with newly diagnosed atrial fibrillation. Atrial fibrillation
is classified as first diagnosed (irrespective of the duration or the presence and
severity of the related symptoms), paroxysmal (self-terminating usually within
48 hours or in fewer than 7 days), persistent (that lasts more than 7 days or requires
termination by cardioversion either with drugs or by direct current cardioversion),
long-standing persistent (that lasted more than 1 year when patient decided to adopt
a thythm control strategy), and permanent (the presence of arrhythmia is accepted
by the patient and the physician) [15].

17.6 Risk Stratification and Prevention of Thromboembolism
from Atrial Fibrillation in Hypertensive Patients:
Therapeutic Management

The main complications of atrial fibrillation are thromboembolism and impair-
ment of the left ventricular function. History of stroke or transient ischemic attack,
increasing age, hypertension, and structural heart disease are identifiable predictors
of stroke in patients with atrial fibrillation. The simplest risk stratification scheme
was CHADS, score which has been lately revised as CHA,DS,VASc score (each
letter stands for congestive heart failure, hypertension, age >75 years (doubled),
diabetes mellitus, prior stroke or TIA or thromboembolism, vascular disease, age
65-74, and sex category (i.e., female sex), respectively) that is used by the current
guidelines and identifies more precisely patients at low risk for developing throm-
boembolic episodes. Patients with CHA,DS,VASc >1 should take antithrombotic
therapy either with vitamin K antagonist or new oral anticoagulants (oral direct
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thrombin inhibitor or oral factor X, inhibitors). In any case a discussion with the
patient on the advantages and disadvantages of each approach and safety issues
should be obligatory. Moreover, the risk of bleeding should be calculated before
starting anticoagulation therapy. A helpful tool for this purpose is the HAS-BLED
score (the HAS-BLED mnemonic stands for hypertension, abnormal renal and
liver function, stroke, bleeding, labile INRs, elderly, drugs or alcohol). A result
>3 indicates a patient with high risk for bleeding, and some caution and regular
review of the patient are needed. Nevertheless, the most intriguing fact is that con-
ditions as hypertension or age confer to both an increased thrombotic risk as by the
CHA,DS,VASc score and an increased hemorrhagic risk as assessed by the HAS-
BLED score. In patients receiving anticoagulant therapy, optimal control of their
blood pressure has the further advantage of reducing bleeding events.

A lot of trials have been conducted investigating patients with atrial fibrillation
but none to estimate on purpose the direct effect of antihypertensive agents on the
risk of atrial fibrillation. The results available are derived only from meta-analyses
and post hoc analyses of randomized trials [16].

17.7 Major Antihypertensive Drug Classes
and Atrial Fibrillation

Secondary analyses of trials showed a benefit in primary prevention of atrial fibril-
lation when using renin-angiotensin-aldosterone system (RAAS) blocking agents as
antihypertensives, but one should keep in mind that these trials were not designed
to investigate atrial fibrillation. Blockade of the RAAS may prevent left atrial dila-
tion, atrial fibrosis, atrial dysfunction, and slowing of conduction velocity or may
have antiarrthythmic properties. Their effect on atrial remodeling and their antifi-
brillatory, antifibrotic, and anti-inflammatory properties may explain the reduction
in new-onset atrial fibrillation [17]. Some studies have found that ARBs (angio-
tensin receptor blockers) (losartan, valsartan) are better in primary prevention of
atrial fibrillation than p blockers (atenolol) (LIFE study: the Losartan Intervention
For End Point Reduction in Hypertension) [18]. In addition, one meta-analysis has
shown a statistically significant 25% reduction in RR of incident atrial fibrillation
[19]. Likewise, several studies with calcium channel blocker (amlodipine) had
shown similar results in patients with heart failure. On the contrary, these findings
were not confirmed by other studies that included high-risk patients, such as the
PRofeSS [20] (Telmisartan to prevent recurrent stroke and cardiovascular events)
and TRANSCEND (Telmisartan Randomized AssessmeNt Study in ACE iNtolerant
subjects with cardiovascular Disease) [21], where the authors didn’t find a protec-
tive effect of ARBs vs. placebo on new-onset atrial fibrillation (although the abso-
Iute numbers of participants were low and the detection power of the analysis may
have been insufficient). Moreover, in the ACTIVE I (Atrial fibrillation Clopidogrel
Trial with Irbesartan for prevention of Vascular Events) [22] trial, irbesartan did
not improve survival in patients with established atrial fibrillation. In ONTARGET
study [23] (Ongoing Telmisartan Alone and in Combination with Ramipril Global
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End Point Trial), ARBs showed no difference from ACE:s in the prevention of new-
onset atrial fibrillation.

As for the secondary prevention, meta-analyses of some small randomized con-
trolled trials showed a significant 45-50% reduction in the relative risk (RR) of
recurrent atrial fibrillation, but these recurrences could not be avoided when ARBs
were coadministered with antiarrhythmic therapy in CAPRAF, GISSI-AF, and
ANTIPAF trials [24].

A meta-analysis has shown that beta-blockers in heart failure demonstrate a 27%
reduction in atrial fibrillation onset [25]. As it was mentioned above, in hyperten-
sion trials like the LIFE study, the use of ARB was superior to beta-blocker in reduc-
ing the risk of recurrent atrial fibrillation. Beta-blockers are recommended as
antihypertensive therapy in patients with atrial fibrillation and high ventricular rates.
There is a possibility that beta-blockers maintain sinus rhythm, especially in heart
failure and in cardiac postoperative settings. Beta-blockers may act by preventing
adverse remodeling and ischemia and by reducing the sympathetic system activa-
tion. However, recurrence rate of atrial fibrillation is high even under beta-blocker
prophylaxis, and they are no longer considered as effective rhythm control agents
(except sotalol which should be considered as a class III antiarrhythmic rather than
as a beta-blocker).

Calcium channel blockers have antihypertensive properties and could theoreti-
cally attenuate the calcium overload in tachycardia-induced electrical remodeling
of the atria. Different trials, for example, as the VALUE study [26], have com-
pared CCBs with other antihypertensive agents for their effectiveness in prevent-
ing new-onset atrial fibrillation, nevertheless with disappointing results. On the
other hand, several studies with calcium channel blocker (amlodipine) had shown
a statistically significant reduction in RR of incident atrial fibrillation in patients
with heart failure.

Diuretics have not been adequately investigated for their ability to prevent new-
onset atrial fibrillation. They have significant antihypertensive effects, but their
potential proarrhythmic risk due to hypokalemia or hypomagnesemia should not be
overlooked.

Patients with primary hyperaldosteronism have a 12-fold higher risk of develop-
ing atrial fibrillation than their matched counterparts with essential hypertension.
The role aldosterone antagonists have not been studied in humans, but preliminary
results of ongoing trials indicate that the use of spironolactone reduces the inci-
dence of recurrent atrial fibrillation in hypertensives with mild left ventricular dys-
function. In patients with systolic heart failure and mild symptoms, eplerenone
reduced the incidence of new-onset atrial fibrillation [27].

While antihypertensive therapy is associated with a significant 10% relative
reduction in the risk of atrial fibrillation, this effect is confined to patients with heart
failure, with no clear benefit in population without heart failure according to a large
recent meta-analysis [28].

Current ESH/ESC guidelines for the management of arterial hypertension
[18] suggest that the use of ACE inhibitors and angiotensin receptor blockers in
patients who suffer from hypertension and are at high risk of new or recurrent atrial
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fibrillation may be beneficial (class Ila Level of evidence C). The same indication
is given for the initiation of beta-blockers or mineralocorticoid receptor antagonists
in hypertensive patients in whom heart failure coexist. In any case this indication is
based on consensus of opinion of the experts or small studies, retrospective studies,
and registries, and the results and benefits (in terms of AF prevention) are conflict-
ing and controversial.

Conclusion

Hypertensive patients are at high risk of developing atrial fibrillation, and patients
with atrial fibrillation often suffer from high levels of blood pressure. Both of
these entities may confer on serious cardiovascular outcomes. Awareness of this
increased risk warrants a closer follow up of these patients, treatment of atrial
fibrillation with appropriate regimens and control of the levels of blood pressure
as mentioned above.
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18.1 Effects of OSAS on Mechanisms of Integrated
Cardiovascular Regulation

18.1.1 Effects of OSAS on Neural Reflex Mechanisms
of Cardiovascular Modulation

Recurrent episodes of airway obstruction during sleep lead to significant respiratory
and ventilatory changes (hypoxemia, reoxygenation, hypercapnia, changes in pul-
monary volume, reduced intrathoracic pressures) with important effects on mecha-
nisms of integrated autonomic cardiovascular modulation, in particular, activation
of central and peripheral chemoreflexes and dysfunction of arterial, cardiopulmo-
nary, and cardiac baroreflexes. The overall effect is a marked sympathetic activa-
tion, a major determinant of the autonomic and hemodynamic alterations observed
in OSAS patients (Fig. 18.1).
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Fig. 18.1 Effects of OSAS on mechanisms of cardiovascular regulation; the resultant neural,
humoral, metabolic, and hemodynamic alterations; and their consequences for cardiovascular risk.
CV cardiovascular, LV left ventricular, RAAS renin-angiotensin-aldosterone system, ROS reactive
oxygen species, ET-1 endothelin-1, NOS nitric oxide synthase, NO nitric oxide, LVH left ventricu-
lar hypertrophy, BP blood pressure, NOMD nitric oxide-mediated dilatation, CKD chronic kidney
disease, CHF congestive heart failure, /M7 intima-media thickness

In normal physiological conditions, control of BP levels is achieved through
a complex combination between central and reflex neural influences, leading to a
continuous modulation of efferent sympathetic and parasympathetic nerve activity
and the associated activity of neurohormonal systems primarily regulated by the
hypothalamus. The sympathetic activation in OSAS is largely explained by stimula-
tion of the peripheral and central chemoreflexes, triggered by the reductions in arte-
rial oxygen content and by hypercapnia, respectively. The importance of arterial
chemoreceptors has been highlighted by studies showing their relevant influence on
neural circulatory control even during conditions of normoxia [1]. Indeed, elimina-
tion of the influences of arterial chemoreceptors using 100% oxygen in a double-
blind study showed that in patients with OSA, suppression of the chemoreflexes
slowed heart rate and decreased MSNA (Fig. 18.2).

Furthermore, the autonomic, hemodynamic, and ventilator responses to periph-
eral chemoreceptor activation by hypoxia are selectively potentiated in patients with
OSA [3].

Moreover, in OSAS, the sustained chemoreflex activation, the related adrenergic
overactivity, and the resulting hypertension may blunt and/or reset arterial and car-
diopulmonary reflexes which in turn may lead to chemoreflex potentiation [3, 4].

In addition, repetitive sympathetic activation and blood pressure (BP) surges
during sleep may also cause cardiac baroreflex impairment leading to a reduced
sympathoinhibition and to impaired cardiac parasympathetic modulation [5, 6] fur-
ther contributing to adrenergic overdrive and rise in BP levels (Fig. 18.3). In
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Fig. 18.2 Recordings of muscle sympathetic nerve activity (MSNA) in a single patient with
obstructive sleep apnea (OSA) during administration of 100% oxygen (top) and room air (bottom).
MSNA, mean arterial pressure (MAP), and heart rate (HR) decreased during administration of
100% oxygen but did not change during administration of room air. Taken from Narkiewicz et al.
[2] by permission

particular, the observation of a reduced spontaneous cardiac baroreflex sensitivity
(as assessed by the sequence method) and the absence of 24-h baroreflex modula-
tion (i.e., blunted increase in baroreflex sensitivity during sleep compared with its
values during wakefulness) in OSAS patients [5] have provided indirect support to
the concept that baroreflex dysfunction and not only chemoreceptor stimulation by
hypoxia may contribute to the acute and long-term sympathetic activation in OSAS
patients (Fig. 18.3). The depressed cardiac baroreflex sensitivity during sleep may
thus in turn contribute to the pathophysiology of BP elevation in OSAS patients.

This concept has been further supported by the results of interventional studies
in OSAS patients showing a significant improvement in baroreflex sensitivity after
long-term implementation of CPAP treatment [7-9].

Further evidence that sleep-related breathing disorders may induce alterations
in autonomic cardiovascular modulation has been provided by a study in untreated
subjects with OSAS of different severity indicating that excessive daytime sleepi-
ness is accompanied by lower baroreflex sensitivity and significantly higher low-
to-high frequency power ratio of heart rate variability (which is believed to be a
marker of sympatho-vagal balance in cardiac regulation) during the different stages
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Fig. 18.3 Relationship between spontaneous baroreflex sensitivity (BRS) and the severity of
obstructive sleep apnea syndrome, as quantified by the apnea-hypopnea index (AHI). Data are
shown as individual values in 11 patients separately for a period of wakefulness (W), a period of
non-rapid-eye-movement (REM) sleep (NREM) and a period of REM sleep (REM). Taken from
Parati et al. [5] by permission

of nocturnal sleep as compared not only to control subjects but also to OSAS
patients without daytime somnolence [10] (Fig. 18.4).

The consequence of chemoreflex activation and impairment of arterial, cardiac,
and cardiopulmonary reflexes is sympathetic nervous system activation, which is
considered a major pathophysiological mechanism underlying the alterations in BP
regulation reported in OSAS (Fig. 18.1). Normal sleep is associated with important
changes in BP and heart rate (HR) which are dependent upon sleep stage and appear
to be mediated primarily by changes in autonomic circulatory control [11]. During
non-REM sleep, there is a reduction in HR, BP, and sympathetic nerve traffic. This
overall inhibition of the cardiovascular system increases progressively from Stage I
to Stage I'V. During Stage IV sleep, HR, BP, and sympathetic activities are lowest.
During REM sleep, there is a marked increase in sympathetic activity about twofold
the levels seen during wakefulness. In patients with OSA, sympathetic activity and
BP during sleep are determined primarily by the responses to apneas. The duration
of apnea and the level of oxygen desaturation are key factors in causing sympathetic
activation during the episodes of obstructive sleep apnea. During the apnea, sympa-
thetic activity rises gradually. At the end of the apnea, when oxygen desaturation
and carbon dioxide retention are most marked, sympathetic activity is greatest [12].
On release of the airway obstruction and resumption of breathing, increased cardiac
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by permission

output together with the vasoconstricted peripheral vasculature results in marked
increases in BP levels.

Since most patients have repetitive apneas throughout the night, the sympathetic-
hemodynamic profile of these subjects is determined by the apneas and consists of
repetitive increases in sympathetic activity and surges of BP with an important
interindividual variability [5, 13, 14].

These disturbances in HR and BP oscillatory profiles may be secondary to sev-
eral factors including autonomic responses to sleep and apnea, as well as altered
patterns of respiration.

The activation of the sympathetic nervous system in OSAS has been consistently
demonstrated by studies implementing direct techniques for assessment of sympa-
thetic nervous system activity (i.e., recording of efferent postganglionic muscle
sympathetic nerve activity via microneurography (MSNA) and assessment of nor-
epinephrine plasma levels. In these reports an increase in central sympathetic drive
was positively correlated with important increases in BP levels during resumption
of ventilation after each apneic episode [12] (Fig. 18.5a). Moreover, sleep fragmen-
tation, related to repeated arousals after each apnea-hypopnea event, might play an
additional role in this context.
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Fig.18.5 (a)Recordings of sympathetic nerve activity (SNA), respiration (RESP), and blood pres-
sure (BP) during 3 min of Stage II sleep, showing incessant oscillations in BP and SNA in response
to the repetitive OSAs. These oscillations occurred continuously during sleep, throughout all sleep
stages. (b) Recordings of SNA during wakefulness in patients with OSAS and matched controls
showing high levels of SNA in patients with OSA. Taken from Somers et al. [12], by permission

Of remark, the sympathetic activation in OSAS subjects is not only limited to
nighttime but may persist even after resuming normal breathing pattern during day-
time wakefulness, despite normal arterial oxygen saturation and carbon dioxide lev-
els[12, 15] (Fig. 18.5b). Reinforcing this concept, several long-term implementation
of continuous positive airway pressure (CPAP) resulted in marked reductions in
sympathetic nerve traffic [12] and BP levels [16] both during nighttime and daytime
wakefulness [17], further supporting the pathogenetic role of the sympathetic acti-
vation in explaining BP elevation in OSAS.

18.1.2 Effects of OSAS on Humoral Regulatory Mechanisms

The frequent association of OSAS with hyperaldosteronism reported in patients
with resistant hypertension has led to suggest that activation of renin-angiotensin-
aldosterone system and OSAS may interact on a pathophysiological basis contrib-
uting to BP elevation [18-20]. Although evidence is still needed to determine the
causality of this association, it has been hypothesized that OSAS may contribute to
the pathogenesis of resistant hypertension by stimulating aldosterone secretion [21]
(Fig. 18.1). This concept has been supported by several studies showing positive
and significant correlations between plasma aldosterone concentrations and OSAS
severity in patients with resistant hypertension but not in normotensive subjects
nor in treated hypertensives with BP controlled [22]. It is likely that aldosterone
excess by promoting fluid accumulation in the neck, and thus increasing upper air-
way resistance, may increase the severity of OSAS and the related increase in BP
levels [23, 24]. Indirect evidence favoring this concept has been provided by inter-
ventional studies in subjects with OSAS and resistant hypertension where addi-
tion of spironolactone to current antihypertensive treatment resulted in significant
reductions in the severity of OSA (i.e., reductions in apnea-hypopnea index and the
number of central and obstructive events) on top of its BP-lowering effects [25].
Additional evidence is still needed, however, to consistently determine a causal
association between aldosterone excess in OSAS and resistant hypertension.
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18.1.3 Effects of OSAS on Endothelial Function

The intermittent hypoxia, the associated neural and humoral alterations and repeated
BP surges during OSA episodes may contribute to impairment in endothelial func-
tion. In turn, the inhibition of nitric oxide (NO) production, decreased vasodilata-
tion, and increased vasoconstriction associated with endothelial dysfunction may
substantially contribute to BP elevation (Fig. 18.1). Several studies assessing bra-
chial artery endothelium-dependent flow-mediated dilation (FMD, an indirect
marker of endothelial NO-mediated reactivity) and forearm blood flow responses to
different stimuli (i.e., infusion of acetylcholine, sodium nitroprusside, nitroglyc-
erin) have shown that compared to healthy controls, patients with OSAS often
exhibit an impairment of resistance-vessel endothelium-dependent vasodilation [26,
27]. Even when accounting for important confounding factors such as body weight,
brachial artery FMD has been shown to be significantly lower in normal-weight
OSAS patients than in OSAS-free controls [28]. Remarkably, interventional studies
have shown substantial improvements in different indices of endothelial function
following implementation of regular CPAP use in subjects with hypertension and
OSAS [27-29] which indirectly supports a role for endothelial dysfunction in the
pathogenesis of OSAS-related arterial hypertension.

On the other hand, repetitive episodes of hypoxia/reoxygenation during transient
cessation of breathing in OSA may also reduce nitric oxide (NO) availability, pro-
moting vascular endothelial inflammation and elevated oxidative stress [26, 27,
30-32] (Fig. 18.1). When compared to OSAS-free controls and regardless of the
presence of obesity, OSAS patients have been shown to present a reduced expres-
sion of endothelial NO synthase (eNOS) and phosphorylated eNOS (proteins which
regulate basal nitric oxide production and activity) as well as an increased expres-
sion of nitrotyrosine (a marker of oxidative stress) and of NFk-B (a marker of
inflammation) [28]. Most importantly, after 1 month of regular treatment with
CPAP, flow-mediated dilation, expression of eNOS, and phosphorylated eNOS
were significantly increased, whereas expression of nitrotyrosine and nuclear fac-
tor-K B were decreased [28]. It has also been proposed that intermittent hypoxia/
hypercapnia by increasing production/release of endothelin-1 (ET-1), i.e., a potent
vasoconstrictor with mitogenic effects [33], may contribute to the pathogenesis of
hypertension. Altered vascular responsiveness to neural mechanisms, as a result of
vasoconstriction and/or structural vascular changes, may interfere with BP regula-
tion. This has been supported by experimental studies in rats showing significant
increases in plasma levels of endothelin-1 and higher BP levels in rats exposed to
intermittent hypoxia (i.e., cycles of hypoxia/hypercapnia of 8 h a day during
11 days) compared to those breathing normoxic air [34]. Data from several studies
have indicated that selective activation of inflammatory pathways may be an addi-
tional important molecular mechanism for the pathogenesis of arterial hypertension
in OSAS. This has been supported by translational studies showing a selective acti-
vation of the pro-inflammatory transcription factor NFk-B in HeLa cells of OSAS
patients exposed to intermittent hypoxia/reoxygenation cycles [35]. In addition,
compared to healthy controls, subjects with OSAS showed significantly higher lev-
els of circulating pro-inflammatory cytokines (i.e., tumor necrosis factor-alpha and
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the adaptive factor erythropoietin) as well as higher levels of circulating neutro-
phils. Interestingly, levels of tumor necrosis factor-alpha (TNF-alpha) were normal-
ized after 6 weeks of continuous treatment with CPAP [35]. Other studies have
shown that compared to healthy controls, serum levels of inflammatory markers
(i.e., C-reactive protein, CRP) are significantly higher in OSAS patients and inde-
pendently associated with OSAS severity [36]. Besides, interventional studies have
shown significant reductions in serum levels of C-reactive protein and interleukin-6
following implementation of regular CPAP treatment [37]. Finally, evidence has
also been provided that OSAS may induce activation of adhesion molecules partici-
pating in inflammation. This has been supported by case-control studies showing
significantly higher levels of intercellular adhesion molecule-1 (ICAM-1), vascular
cell adhesion molecule-1 (VCAM-1), and L-selectin in OSAS patients compared to
healthy controls [38].

18.1.4 Effects of OSAS on Vascular Function

OSAS may induce not only endothelial dysfunction and inflammation but also
important changes in vascular structure and function. This has been supported by
studies showing abnormal myocardial perfusion, attenuated brachial artery reactiv-
ity, and reduced cutaneous perfusion response in OSAS patients as compared to
healthy controls [29]. A systematic review of relevant studies has also indicated
an independent effect of OSAS on arterial stiffness, which in turn may contribute
to elevation in BP levels and to resistant hypertension [39] (Fig. 18.1). A number
of studies have consistently reported significantly higher values of carotid-femoral
pulse wave velocity (cfPWV) (which is considered the “gold-standard” measure of
aortic stiffness), in patients with OSAS compared to healthy controls [39, 40]. Of
note, the increase in cfPWYV has been shown to be directly related to the severity of
OSAS and to be even higher in subjects with OSAS and associated hypertension or
in the presence of other cardiovascular risk factors [41]. In Asian populations, several
studies implementing brachial-ankle PWV (baPWV) have also reported significant
associations between OSAS and increased arterial stiffness [42]. Even when com-
parisons have been performed between individuals with or without OSAS entirely
free from other CV risk factors, an independent effect of OSAS on arterial stiffening
has been reported [43]. Remarkably, in randomized interventional studies, effective
treatment of OSAS with CPAP has been associated with significant decreases in
arterial stiffness [44, 45]. In one of such reports, CPAP was also associated with sig-
nificant reductions in sympathetic nerve activity and in ambulatory BP (ABP) levels
and with significant improvements in arterial baroreflex sensitivity [44].

18.1.5 Metabolic Effects of OSAS

A number of studies have confirmed the association between OSAS and metabolic
alterations (i.e., insulin and leptin resistance) which in turn may contribute to altera-
tions in glucose metabolism and to the pathogenesis of arterial hypertension
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(Fig. 18.1). Although alterations in glucose metabolism are thought to be the conse-
quence of other conditions associated with OSAS (i.e., an increased BMI, metabolic
syndrome, and/or type 2 diabetes) rather than being OSAS outcomes, evidence has
been provided that OSAS, independently of the presence of other confounding fac-
tors, is associated with alterations in glucose metabolism which may indeed favor
development of type 2 diabetes [46]. In addition, interventional studies have shown
the efficacy of regular CPAP treatment in improving the abnormalities in glucose
metabolism in OSAS patients [46]. Compared to healthy controls, OSAS patients
have also been shown to have a higher degree of insulin and leptin resistance [47-49]
even after accounting for body fat content [50]. Although the above-mentioned met-
abolic alterations should theoretically contribute to the pathogenesis of hypertension
in OSAS, their relative contribution to BP elevation independently of other concomi-
tant factors still needs to be further explored.

18.2 Autonomic and Hemodynamic Responses to Impaired
Integrated Cardiovascular Control in OSAS

The marked sympathetic activation resulting from chemoreceptor activation and
impaired baroreflex control of circulation in OSAS causes significant increases in
central sympathetic drive to the heart and peripheral circulation and in plasma cat-
echolamines, leading to important autonomic and hemodynamic changes (vasocon-
striction, elevated blood pressure and blood pressure variability, elevated heart rate,
and reduced heart rate variability). Activation of the RAAS and the associated
hyperaldosteronism also contribute to the hemodynamic imbalance in OSAS by
causing fluid retention. Of note, the magnitude of these alterations has been directly
associated to the severity of OSAS. This not only promotes future development of
hypertension but also makes hypertension occurring in OSAS more severe and
resistant to antihypertensive treatment [51-54] and associated with profound altera-
tions in day-to-night BP changes (i.e., marked increases in BP levels and in BP
variability during nighttime) [55, 56]. Of remark, alterations in cardiovascular vari-
ability in OSAS are not limited to the nighttime hours, during which OSA episodes
occur, but are often sustained also during the daytime. Evidence of this has been
provided by studies implementing direct assessment of MSNA indicating that the
sympathetic overdrive in OSAS is persistent also during daytime, and by case-
control studies using 24-h ABPM confirming that ABP levels in subjects with OSAS
are elevated not only during the nighttime sleep but also during daytime wakeful-
ness [57-59].

Reinforcing this concept, other studies have also found increase in central sym-
pathetic drive to be associated with alterations in circadian BP variation (i.e.,
absence of nocturnal BP fall or increase in BP at night) and with nocturnal hyper-
tension in OSAS patients [60]. Additional studies implementing noninvasive assess-
ment of cardiovascular variability either in the time or in the frequency domain
(spectral analysis) along with direct estimation of central sympathetic drive through
MSNA, have provided evidence that autonomic cardiovascular modulation and car-
diovascular variability in OSAS are impaired even during wakefulness. Overall,
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these studies have shown that compared to controls, OSAS patients are character-
ized by elevated HR and average BP levels, increased blood pressure variability
(BPV), and reduced heart rate variability (HRV) when applying spectral analysis to
BP and HR recordings. In OSAS subjects a relative predominance of the LF com-
ponent over the HF component of RR interval has been shown, the LF/HF ratio of
RR variability being significantly increased in patients with moderate-to-severe
OSAS versus controls and versus patients with mild OSAS. Notably, the degree of
these alterations has been shown to be directly related to the severity of OSAS [61]
(Fig. 18.6).

It was also shown that compared to healthy controls, patients with OSAS exhibit
faster HR, increased BP variability, and markedly elevated muscle sympathetic
nerve activity not only during nighttime sleep but also during wakefulness when
breathing patterns are normal and no evidence of hypoxia or hypercapnia is apparent
(Fig. 18.7).

Of note, apnea-hypopnea index was inversely correlated with RR interval and
directly related with both MSNA and systolic BP variability. In turn, MSNA was
inversely correlated with RR interval and RR variability and directly related to sys-
tolic BP variability [61].

Evidence from recent studies has indicated that OSAS increases nighttime BP
variability in patients with hypertension, the increase being proportional to the
severity of OSAS [56]. This may be another pathway linking sleep abnormalities to
cardiovascular disease. Finally, the abnormalities in indices of autonomic cardio-
vascular modulation observed in normotensive OSAS patients, in whom absolute
BP levels were similar to those of non-OSAS subjects, have led to suggest that an
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Fig. 18.7 Electrocardiogram (ECG), blood pressure, sympathetic neurograms, and respiration in
a control subject (left panel) and in a patient with severe obstructive sleep apnea (OSA; right).
Taken from Narkiewicz et al. [61] by permission

abnormal cardiovascular variability may precede, and possibly even predispose to,
the development of hypertension in patients with OSAS [61].

18.3 Epidemiological Evidence Supporting the Association
of Elevated BP with OSAS

OSAS is not only a recognized cause of secondary hypertension [51-54] but is also
associated with a high prevalence of alterations in BP regulation, which make
hypertension more severe and resistant to antihypertensive treatment. A number of
studies either in the general population or in cohorts of OSAS patients [52, 54, 62—
65] have indicated a variable frequency of hypertension in subjects with OSAS
which may range from 35 to 80% [66, 67]. Conversely, when properly investigated,
OSAS has been shown to be present in up to 40% of hypertensive subjects [23].
Although the association between OSAS and hypertension frequently overlaps with
the presence of other cardiovascular risk factors such as increased BMI and obesity
[68-70], longitudinal studies have supported the association between OSAS and
hypertension independently of other potential contributing factors indicating that
OSAS is not only associated with an increased risk of prevalent hypertension but
may predict future development of hypertension, in particular if not properly treated
[53, 65,70, 71] (Fig. 18.8).

Furthermore, in the Wisconsin Sleep Cohort Study, a dose-response relationship
between sleep-disordered breathing at baseline and the development of hypertension
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Fig. 18.8 Predicted increase in systolic blood pressure (SBP) and in diastolic blood pressure
(DBP) associated with sleep-disordered breathing at three body mass index (BMI) categories in the
Wisconsin Sleep Cohort Study. Modified from Young et al. [65] by permission

after 4 years of follow-up was reported independently of baseline BP levels, BMI,
neck and waist circumference, age, sex, and other potential confounders [53].

Because OSAS interferes with several mechanisms involved in BP regulation,
hypertension in OSAS tends to be more severe and resistant to antihypertensive
treatment, the degree of BP elevation being proportional to the severity of the dis-
ease [52, 72, 73]. Conversely, in adult patients with drug-resistant hypertension, in
whom an extremely high prevalence of OSA of about 80% has been reported [74],
the rates of BP control decrease as the severity of sleep-related breathing disorder
increases [52].

Compared to normal subjects, hypertension in subjects with OSAS is more fre-
quently associated with alterations in day-to-night BP changes (i.e., nocturnal
hypertension and non-dipping profile of BP on 24-h ABPM) [52, 72, 73].

Indeed, hypertension related to OSAS is predominantly nocturnal in its early
stages and frequently accompanied by a non-dipper profile of BP (i.e., nocturnal BP
fall <10% compared to daytime BP levels) [67, 75]. Remarkably, the degree of
impairment in nocturnal BP fall has been found to be related to the severity of
OSAS [76]. On the other hand, an increased prevalence of alterations in day-to-
night BP profiles and nocturnal hypertension has been reported in subjects with
resistant hypertension regardless of the presence of OSAS [77-79]. It is thus
expected that alterations in day-to-night BP changes might be even more pro-
nounced in subjects with OSAS and resistant hypertension [80, 81].

18.4 Prognostic Significance of OSAS-Related Hypertension

Evidence from several studies has supported an independent association between
OSAS and cardiovascular disease [82]. When it comes to subclinical organ damage,
evidence has been provided that OSAS is independently associated with cardiac
(i.e., LV hypertrophy and dysfunction) [45, 83, 84], vascular (i.e., increased carotid
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intima-media thickness, increased arterial stiffness) [39], renal organ damage (i.e.,
increased urinary albumin excretion) [85, 86], and endothelial dysfunction (i.e.,
blunted endothelium-dependent dilatation) [39]. OSAS, particularly if severe, has
been linked to fatal and nonfatal cardiovascular events including cardiac arrhythmia
(bradycardia, A-V block, atrial fibrillation), cardiac ischemia (coronary artery dis-
ease, myocardial infarction, nocturnal ST-segment depression, nocturnal angina),
and cerebrovascular disease [87-91], with systolic and diastolic dysfunction and
development and progression of congestive heart failure [89] and with all-cause
mortality [92, 93] (Fig. 18.9). However, because the link between OSAS and cardio-
vascular disease may be related to age, obesity, and visceral adiposity, in some of
these studies, the associations have lost strength when adjusting for these factors.
Evidence has also been provided that resistant hypertension which is more frequent
among OSAS patients considerably increases the risk for cardiovascular complica-
tions including myocardial infarction, stroke, congestive heart failure, and chronic
kidney disease [77, 94, 95]. In consideration of the increased CV risk associated
with OSAS and resistant hypertension, current guidelines for the management of
arterial hypertension include OSAS among the modifiable causes to be considered
in the diagnostic approach to resistant hypertension, in order to properly manage
both of these conditions [96, 97]. It should be mentioned however, that no studies
have specifically addressed how and to which extent the addition of hypertension to
OSAS may increase the risk of cardiovascular disease independently of other car-
diovascular risk factors that are often clustered in the context of OSAS. Although
OSAS and resistant hypertension have been shown to be independent predictors of
cardiovascular prognosis, evidence is still needed to determine the actual prognostic
relevance of their interaction independently of other concomitant cardiovascular
risk factors.

Not only the presence of resistant hypertension but also the higher frequency of
alterations in day-to-night BP profiles and nocturnal hypertension contribute to the
elevated cardiovascular risk of OSAS patients. As mentioned above, nocturnal sym-
pathetic activation during OSAS episodes importantly contributes to increases in
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Fig. 18.9 Kaplan-Meier estimates of the probability of event-free survival (left panel) and overall
survival (right panel) among patients with the obstructive sleep apnea syndrome and controls.
Modified by permission from Yaggi et al. [87]
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BP during sleep, thus attenuating the physiologic nocturnal dipping of BP (i.e., on
average by 10-20% of daytime BP values) or even increasing nocturnal BP levels
(rising pattern of nighttime BP). It is thus not surprising the high frequency of non-
dipping profile of BP reported in OSAS patients independently of the presence of
hypertension [98]. From a prognostic point of view, identification of nocturnal
hypertension and alterations in day-to-night BP changes in subjects with OSAS-
related hypertension is of upmost relevance on the background of the evidence
showing the superior prognostic value of nocturnal BP levels compared to awake or
24-h BP means in predicting cardiovascular morbidity and mortality [99-104],
development of cardiovascular events [99, 100, 105-107], as well as overall mortal-
ity [99-101, 106, 108, 109]. Identification of “non-dipping” pattern of BP in OSAS
patients is also important if we consider that subjects in whom nocturnal decrease
in BP is blunted have been reported to have a higher prevalence of subclinical organ
damage [110, 111] and an increased risk of cardiovascular events [112] and mortal-
ity [104], which is even higher in patients in whom BP increases rather than
decreases at night (so called risers or “inverted dippers”). Despite the very high
prevalence of nocturnal hypertension and alterations in day-to-night BP changes in
OSAS patients, these are often undiagnosed (thus representing a form of so called
masked resistant hypertension), mainly because BP measurements are prevalently
measured during daytime at the moment of the clinical visit. Given their relevant
prognostic value, alterations in circadian BP should be properly investigated in
patients with OSAS-resistant hypertension through the use of 24-h ABPM in order
to guide antihypertensive treatment toward their normalization and optimization of
cardiovascular protection.

18.5 Diagnostic Approach to OSAS-Related Hypertension

Confirming the diagnosis of OSAS in subjects with hypertension and in particular
in those with resistant hypertension is relevant in order to implement specific treat-
ment strategies (i.e., CPAP, weight reduction). This might allow achievement of BP
control reducing the elevated cardiovascular risk of these subjects. Polysomnography
is currently considered the standard technique for diagnosis of OSAS and requires
simultaneous monitoring of several cardiovascular and respiratory variables during
night sleep (i.e., sleep, air flow, respiratory effort, oxygen saturation, and brain
activity through electroencephalogram). Based on the number of apneas and hypop-
neas lasting >10 s during each hour of recording, the severity of the disease is graded
using the apnea-hypopnea index (AHI) [113]. Whether polysomnography should be
employed systematically in individuals with resistant hypertension is still a matter
of debate in the absence of cost-effectiveness studies supporting this suggestion.
According to a recent position paper of the European Respiratory Society (ERS)/
European Society of Hypertension (ESH) [114], polysomnography should be per-
formed in all subjects with a high pretest probability of OSA based on structured
questionnaires (e.g., Epworth and Berlin questionnaires).
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Considering the extremely high frequency of alterations in ambulatory BP
profiles during nighttime in subjects with resistant hypertension and OSAS, the task
force of the ERS/ESH also recommends performing ABPM in order to identify
alterations in day-to-night BP changes in subjects with resistant hypertension in
order to guide the decision to perform polysomnography in subjects with otherwise
a low probability of OSA based on questionnaires. Indeed, in subjects with a low
pretest probability of OSAS, polysomnography is only recommended in those who
present alterations in day-to-night BP changes (i.e., non-dipping pattern of BP)
(Fig. 18.10).

It is worth mentioning that before starting the instrumental tests to discard
OSAS, a first step in the diagnostic approach of the patient with suspected OSAS-
related hypertension consists in confirming whether resistance to antihypertensive
treatment is true or corresponds to false resistance. Current guidelines for the man-
agement of arterial hypertension define resistant hypertension as the persistence
of BP values above the BP goal (i.e., >140/90 mmHg for office systolic/diastolic
BP) despite the concomitant use of three optimally dosed antihypertensive medica-
tions from different classes at near-maximal doses, one of which should ideally be

Pre-test probability

of OSA#
I
[ 1
| High | | Low
I I
[ 1 [ 1
Elevated or high normal Normal conventional BP Elevated or high normal Normal conventional BP
conventional BP (SBP >130 (SBP <130 and DBP conventional BP (SBP >130 (SBP <130 and DBP
or DBP >85 mmHg) <85 mmHg) or DBP >85 mmHg) <85 mmHg)
ABPM and PSG PSG L ABPM
according to guidelines according to guidelines

I—I—I

| Nondipper | | Dipper |

RS Clinical follow-y
according to guidelines P

If OSA +
I

ABPM (if not performed previously)

Adequate treatment
I
Follow-up PSG + ABPM

Fig. 18.10 Proposed algorithm for the diagnostic management of patients with hypertension
associated with obstructive sleep apnea (OSA). BP blood pressure, SBP systolic BP, DBP diastolic
BP, ABPM ambulatory blood pressure monitoring, PSG polysomnography. According to clinical
evaluation and questionnaires, e.g., Epworth and Berlin, T hypertension guidelines recommend
use of home BP monitoring in most hypertensive patients. Reproduced by permission from Parati
etal. [114]
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a diuretic [96, 97]. However, this definition is based on office BP measurements
which have acknowledged limitations in assessing BP control including the inher-
ent inaccuracy of the technique, the observer’s bias and digit preference, a variable
interference by the “white-coat effect,” and the inability of this approach to collect
information on BP during subjects’ usual activities and over a long period of time
[115]. Thus, for confirmation of true resistant hypertension, out-of-office BP mea-
suring techniques such as ambulatory and/or home BP monitoring (which are not
affected by the limitations of office BP) should be performed in addition to office
BP measurements. Based on the measures obtained with these methods, a substan-
tial and sometimes larger than expected number of subjects initially diagnosed with
resistant hypertension or with BP control based on OBP may actually correspond to
false-resistant hypertension or white-coat resistant hypertension (i.e., elevated OBP
but normal out-of-office BP values) or to masked hypertension (i.e., normal OBP
but elevated out-of-office BP values) [77, 116, 117].

From a prognostic point of view, identification of OSAS patients with true resis-
tant hypertension as well as of those with masked resistant hypertension (treated
patients with normal OBP and elevated ABP or HBP) [118, 119] is of the highest rel-
evance on the background of the evidence showing these conditions to be associated
with a higher prevalence of target organ damage [120, 121], as well as with a higher
risk of future cardiovascular and renal events when compared to those with true BP
control [107, 122, 123] which ultimately translates in greater healthcare costs [124,
125], [73]. The most recent European arterial hypertension guidelines have included
OSAS among the causes responsible for true resistant hypertension [97].

18.6 Effects of Different Therapeutic Strategies
on OSAS-Related Hypertension

18.6.1 Effects of Lifestyle Changes and Weight Loss
on OSAS-Related Hypertension

Obesity is the single most important cause of OSAS and elevation in BP levels. It is
thus expected that weight loss might reduce the severity of OSAS and BP levels.
Indeed, in subjects who achieve significant reductions in body weight either through
dietary [126], pharmacological [127], or surgical [128] measures, considerable
reductions of various indices of OSA severity (i.e., AHI) and in BP levels have been
reported. In particular, bariatric surgery has been shown to be a highly effective
measure to achieve OSAS improvement and BP control as supported by a large
meta-analysis of 136 randomized controlled trials [129]. It has to be emphasized
that BP was normalized in 61.7% of patients and normalized or better controlled in
78.5%. Obstructive sleep apnea was cured in 85.7% of patients and was cured or
improved in 83.6% of patients [129]. However, despite its efficacy, bariatric surgery
is reserved for selected patients groups, i.e., type 2 diabetes mellitus, patients with
severe obesity (BMI >35 kg/m?), and moderately obese patients (BMI 30-35 kg/m?)
who are inadequately controlled by conventional medical and behavioral therapies
to reduce body weight.
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18.6.2 Effects of CPAP Treatment on OSAS-Related Hypertension

Nasal continuous positive airway pressure (CPAP) is currently considered the
optimal treatment for OSA [130]. When properly implemented, CPAP not only pro-
vides relative instant relief of clinical symptoms [131] and reduction in the severity
of OSA (i.e., AHI) but also improves many of the acute and chronic pathophysio-
logical alterations induced by OSAS, such as arterial baroreflex impairment and
sympathetic activation [44], systemic inflammation [28, 35, 37], endothelial dys-
function [27-29], RAAS activation [132], arterial stiffness [44, 45], and metabolic
alterations (insulin resistance) [46].

Notably, CPAP use has been shown to induce marked and acute reductions in
MSNA not only during nighttime sleep but also during daytime wakefulness if
maintained in the long term [12] (Fig. 18.11).

Although improvements in these pathophysiological alterations should theoreti-
cally translate into substantial BP reductions, most interventional trials in OSAS
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Fig.18.11 Elimination of apneas by continuous positive airway pressure (CPAP) reduces muscle
sympathetic nerve activity (SNA) and prevents blood pressure (BP) surge during rapid eye move-
ment (REM) sleep. Taken from Somers et al. [12] by permission
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and subsequent meta-analyses have indicated that although CPAP has a significant
effect on BP levels, the overall effect on 24-h, daytime, and nighttime systolic and
diastolic ambulatory BP levels is rather small (in the order of 1-3 mmHg only)
[133-135]. In spite of this, the effects of CPAP on BP levels have been shown to be
variable as a function of patients’ compliance with nocturnal CPAP, of the number
of CPAP hours during nighttime, and of the implementation of ambulatory BP mon-
itoring to assess its effects. In some subgroups of patients, in particular those with
more severe OSAS [136] or with resistant hypertension [137], substantial effects of
CPAP on BP levels have been reported. Indeed, effective CPAP treatment in patients
with moderate-to-severe OSAS has been shown to induce important reductions both
in day- and nighttime BP levels [136]. This has also been the case of subjects with
resistant hypertension in whom regular CPAP implementation has resulted in
marked reductions in ambulatory BP levels not only during nighttime but also dur-
ing daytime wakefulness [137]. In a study addressing the effects of 1-year treatment
with CPAP, whereas no effects on BP levels were observed in patients with BP
controlled at baseline, marked and significant reductions in BP levels were observed
in subjects with resistant hypertension [138].

A critical aspect when assessing the clinical effects of CPAP is to guarantee
patients’ adherence to therapy. Given the mechanical nature of CPAP (i.e., facial
interface mask and the pressure required to prevent airway collapse), this therapeu-
tic intervention is not always well accepted by patients specially those free of OSA-
related symptoms. Indeed, compliance with CPAP has been shown to be directly
related to the severity of OSAS [80]. On the other hand, several studies have indi-
cated that in order to observe an effect of CPAP on BP, CPAP treatment should be
implemented for enough time and for a sufficient number of hours per night and its
effects on BP levels ideally assessed by means of ABPM. Proof of this has been
provided by several studies in OSAS in which the benefits of CPAP have been evi-
dent only in subjects with confirmed resistant hypertension (i.e., persistent elevation
both in office and out-of-office BP levels), in whom CPAP has been implemented
for at least 3 months and for more than 5.8 h per night [139]. A positive effect of
CPAP has also been reported in non-sleepy hypertensive patients with OSA, among
whom the most significant reductions in BP have been observed in those patients
using CPAP for more than 5.6 h per night [80]. Further studies are still needed,
however, focusing on early start of CPAP treatment before hypertensive organ dam-
age develops and makes hypertension control more difficult, in order to better deter-
mine whether CPAP implementation in OSAS patients with hypertension is indeed
associated with better BP control rates and/or with reduction in the number of anti-
hypertensive medications needed in order to achieve BP control.

A recent meta-analysis of RCTs [140] addressing the effect of CPAP on BP in
patients with OSAS and hypertension evaluated seven RCTs reporting 24-h ABP
data. Overall, CPAP was associated with significant reductions in 24-h ambulatory
systolic (S) BP (—2.32 mm Hg; 95% confidence interval [CI], —3.65 to —1.00) and
diastolic (D) BP (—1.98 mm Hg; 95% CI, —2.82 to —1.14). CPAP led to more sig-
nificant improvement in nocturnal SBP than that in daytime SBP. Subgroup analysis
showed that patients with resistant hypertension or receiving antihypertensive drugs
benefited most from CPAP. Meta-regression indicated that CPAP compliance, age,
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and baseline SBP were positively correlated with decrease in 24-h DBP, but not with
reduction in 24-h SBP.

A recent study addressing the effect of CPAP treatment on BP in patients with
OSA and resistant hypertension reported that CPAP treatment for 12 weeks com-
pared with untreated OSA patients as controls resulted in a significant decrease in
24-h mean BP (3.1 mm Hg [95% CI, 0.6 to 5.6]; P = 0.02) and 24-h DBP (3.2 mm
Hg [95% CI, 1.0 to 5.4]; P = 0.005) but not in 24-h SBP (3.1 mm Hg [95% CI, —0.6
to 6.7]; P = 0.10). Moreover, the percentage of patients displaying a nocturnal BP
dipping pattern at the 12-week follow-up was greater in the CPAP group than in the
control group (35.9% vs 21.6%; adjusted odds ratio [OR], 2.4 [95% CI, 1.2 to 5.1];
P=0.02) [141].

Another study evaluated the effect of CPAP on BP in patients with resistant
hypertension and OSAS in the frame of a RCT with blinded assessment of outcomes
in 117 patients with moderate/severe OSAS, defined by an AHI >15. Subjects were
randomized to 6-month CPAP treatment (57 patients) or no therapy (60 patients),
while maintaining antihypertensive treatment. Clinic and 24-h ABPs were obtained
before and after 6-month treatment. Primary outcomes were changes in clinic and
ambulatory BPs and in nocturnal BP fall patterns. On intention-to-treat analysis,
there was no significant difference in any BP change, neither in nocturnal BP fall,
between CPAP and control groups. The best effect of CPAP was on nighttime SBP
in per-protocol analysis, with a tendentially, although non significant, greater reduc-
tion of 4.7 mm Hg (95% Cl, —11.3 to +3.1 mm Hg; P = 0.24) and an increase in
nocturnal BP fall of 2.2% (95% Cl, —1.6% to +5.8%; P = 0.25), in comparison with
control group. The conclusion of this study is that CPAP treatment had no signifi-
cant effect on clinic and ambulatory BPs in patients with resistant hypertension and
moderate/severe OSAS, although a beneficial effect on nighttime SBP and on noc-
turnal BP fall might exist in patients with uncontrolled ambulatory BP levels [142].

Overall, also in the light of these recent trials, the reported poor efficacy of CPAP
in reducing BP levels in OSAS patients with hypertension may depend on a combi-
nation of different factors, including poor patients’ compliance with nocturnal
CPAP use, too short treatment duration, inaccurate CPAP calibration, failure to use
24-h ABPM to evaluate CPAP effects on BP, and, most importantly, delayed use of
CPAP in the clinical history of OSA patients, when hypertension may have become
more resistant to treatment due to appearance of organ damage [80, 81].

18.7 Effects of Instrumental, Alternative Therapeutic
Approaches to CPAP on OSAS-Related Hypertension

Recent studies have provided evidence that effective oral appliance (OA), i.e., an
important alternative therapy to CPAP for patients with mild to moderate OSA, not
only is effective in improving the severity of the disease but also in reducing BP
levels in hypertensive OSAS patients [143, 144]. Although systematic reviews and a
meta-analyses of available literature showed a favorable effect of OAs on SBP, MAP,
and DBP, however, since most of the studies included were observational, this ques-
tion remains still to be defined, ideally on the frame of well-designed interventional
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RCT’s [145]. Evidence has also been provided that treatment during 3 months with
a specific oral jaw-positioning appliance improves cardiac autonomic modulation in
otherwise healthy patients with OSA of mild degree [146] and that use of an adjust-
able mandibular advancement device is not inferior to CPAP in its impact on 24-h
mean ambulatory BP [147].

18.8 Effects of Renal Sympathetic Denervation
in OSAS-Related Resistant Hypertension

Sympathetic activation in OSAS determines an increase in sympathetic drive to the
heart, the peripheral vasculature, and the kidneys. In relation to the latter, the sym-
pathetic nerves arriving to the renal district have been identified as a major contrib-
uting factor to the pathophysiology of hypertension both in experimental models
and in human studies [148]. This has been the basis for the development of interven-
tional strategies aimed at modulating renal sympathetic nerve activity through
radiofrequency catheter-based renal sympathetic denervation (RND) [149]. In sub-
jects with uncontrolled hypertension, RND has been shown to induce significant
reductions in renal sympathetic efferent nerve activity, in whole-body sympathetic
nerve activity and norepinephrine spillover, as well as substantial and sustained
reductions in BP levels [150]. A small, interventional study in OSAS patients who
were refractory to lifestyle modifications, weight loss, pharmacological treatment,
and CPAP have also suggested that RND may represent an effective strategy for the
management of resistant hypertension associated with OSAS, inducing significant
and sustained changes in BP levels at 3 and 6 months of follow-up [151]. Remarkably,
the changes in BP levels reported in this study have also been accompanied by
improvements in OSAS severity as indicated by the significant reductions in AHI at
3 and 6 months after denervation [151]. Renal sympathetic denervation might thus
represent a potentially useful option for the management of resistant hypertension
in OSAS patients, who are refractory to lifestyle modifications, weight loss, phar-
macological treatment, and CPAP. Nonetheless, given the very small sample size of
this paper, adequately powered longitudinal studies are needed to confirm these
anecdotal findings and to assess the long-term impact of RND on hypertension con-
trol, as well as its benefits in terms of organ damage and incidence of cardiovascular
morbid-mortality in subjects with OSAS.

18.9 Do Different Antihypertensive Drug Classes Have
Different Effects on OSAS-Related Hypertension?

Different antihypertensive drug classes might have a differential effect on the patho-
physiological mechanisms involved in the pathogenesis of OSAS-related hyperten-
sion. However, the few studies that have comparatively assessed the BP-lowering
effects of different drug classes in OSAS have been of small size, and their statistical
power was limited to derive consistent conclusions. In a randomized study assessing
the effects of different classes of antihypertensive drugs (i.e., beta-blockers, calcium
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antagonists, angiotensin converting enzyme inhibitors, angiotensin receptor block-
ers, and thiazide diuretics) on office and ambulatory BP levels in patients with hyper-
tension and OSAS, no significant differences between drug classes were observed
in their ability to reduce office and daytime ambulatory BP levels. However, treat-
ment with B-blockers was more effective in reducing nighttime ambulatory BP than
administration of other compounds, probably through their effects on sympathetic
activation. In general, however, no consistent evidence has been provided support-
ing a superior antihypertensive efficacy of any antihypertensive drug in OSAS
patients [152]. Long-term effects of treatment with different antihypertensive agents
on hypertension severity in OSAS have not been systematically addressed in clini-
cal trials, however. Evidence is therefore still needed in order to identify preferred
compounds for an adequate BP control in this group of high-risk patients.

Recent studies in resistant hypertension have suggested that spironolactone
should be considered in all patients with uncontrolled hypertension on three or more
antihypertensive agents [153]. In some studies, addition of spironolactone in doses
of 25-50 mg a day to the current antihypertensive treatment in resistant hyperten-
sive patients was shown to reduce the severity of OSAS on top of its BP-lowering
effects [25]. This is in line with the concept that aldosterone-mediated chronic fluid
retention may influence severity of OSA.

Finally, several studies have explored the role of chronotherapy for improving
BP control and profiles of BP variation in OSAS. Evidence from a crossover study
indicated that evening dosing of antihypertensive drugs improves nighttime BP and
dipping status in non-sleepy patients with OSA, irrespective of CPAP application
[154]. Another study by Kario et al. showed that nighttime dosing of both vasodilat-
ing and sympatholytic antihypertensive drugs is effective to reduce sleep BP but
with different BP-lowering profiles [155].

Conclusions

The pathogenesis of OSAS-related hypertension is likely to be multifactorial,
involving alterations in several regulatory systems. OSAS is associated with
impairment in important mechanisms of cardiovascular regulation, in particular
with neural central and reflex mechanisms involved in BP control.

However, the mechanisms by which OSAS promotes arterial hypertension
still need to be better understood. Evidence has also been provided that indepen-
dently of the presence of arterial hypertension, heart failure, or other comorbidi-
ties, OSAS is associated with important autonomic and hemodynamic changes
which not only promote future development of hypertension but make hyperten-
sion occurring in OSAS more severe and resistant to antihypertensive treatment
[51-54] and associated with profound alterations in day-to-night BP changes
[52, 72, 73]. Remarkably, a dose-response relationship between OSAS severity
and the degree of BP elevation [52, 72, 73] has been shown.

Although OSAS and drug-resistant hypertension are independent predic-
tors of cardiovascular morbi-mortality, evidence from longitudinal studies
is still needed to determine the actual prognostic relevance of OSAS-related
hypertension. In a subject with resistant hypertension and suspected OSAS,
ABPM should be performed whenever possible for confirmation of resistant
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hypertension, for identification of alterations in day-night BP changes and in
order to define the need of performing additional diagnostic procedures (i.e.,
polysomnography) and/or implementing more aggressive pharmacological or
interventional strategies for the management of resistant hypertension. In turn,
identification of OSAS and proper implementation of specific treatment strate-
gies (i.e., CPAP) in subjects with resistant hypertension might favor achievement
of BP control optimizing cardiovascular protection. Evidence from additional
longitudinal interventional studies in OSAS controlling for potential confound-
ers (i.e., visceral obesity, increased BMI) is still needed, however, not only to
determine the prognostic relevance of the interaction between OSAS and hyper-
tension but also for determining whether treating OSAS in resistant HT confers
significant benefits in terms of cardiovascular protection.
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19.1 Introduction

Psychosocial risk factors—defined broadly as the influence of social factors on an
individual’s psychological process and perceptions or behavior and to the interrela-
tion of behavioral and social factors—have long been implicated as potential con-
tributors to the etiology of hypertension (HTN) [1]. Central to this definition is the
premise that psychosocial factors affect HTN through changes in psychobiological
processes (i.e., stress tolerance) and/or through changes in individual’s behaviors
(i.e., adherence to treatment/diet). In recent years, researchers have sought to char-
acterize the pathways through which psychosocial factors operate—the places they
emerge, the people they affect, and the positive and negative health outcomes they
are associated with—in order to develop intervention strategies targeted at modify-
ing the psychobiological processes and individual behaviors that affect the course of
HTN. As a result, national guidelines recommend psychosocial intervention as a
means to prevent or delay the onset of HTN [2—4]. Public policymakers have also
begun to consider the effects of psychosocial factors on population health in the
development of public health strategies to reduce health inequities.

In this book chapter, we provide a synthesis of the literature to enhance our
understanding of the psychosocial risk factors that contribute to HTN and provide
directions for future research. This chapter is structured based on six major catego-
ries of psychosocial stressors: mental health (depression, anxiety, post-traumatic
stress disorder [PTSD]), personality factors, occupational stressors, housing insta-
bility, interpersonal relationships (social support, racial discrimination, loneliness),
and sleep quality (see Table 19.1).
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19.2 Mental Health
19.2.1 Depression

Much of the previous research has focused on the biological and behavioral mecha-
nisms that may explain how depression relates to incident HTN. Specifically, since
depression and HTN share common biologic and behavioral characteristics, both
diseases tend to be risk factors of each other [3, 4, 52]. For example, several stud-
ies have documented higher rates of unhealthy lifestyle behaviors such as physical
inactivity, smoking, alcohol abuse, and obesity with an increased risk of HTN
among individuals with depressive symptomatology [4, 52, 53]. Gender, age, and
race/ethnicity have also been frequently explored as moderators of the depression-
HTN association. In a prospective study, women with greater depressive symptom-
atology (assessed by the Center for Epidemiologic Studies Depression (CES-D)
scale) [52] exhibited higher systolic blood pressure (SBP) over the 29-year follow-
up; the reverse was true for men [53]. In another study, men reporting high levels
of hopelessness, a subcomponent of depression, were three times more likely to
develop HTN over a 4-year period than men who were not hopeless (95% confi-
dence interval [95CI], 1.56-6.67) [54]. Using the CES-D or the use of antidepres-
sant medication as a marker of depression, Delaney et al. [55] found no association
between depressive symptoms and incident HTN at 2 years among a multiethnic
sample [55]. However, a diagnosis of major depression was associated with a 60%
increased risk of developing HTN over a 10-year period in the Canadian National
Population Health Survey (hazard ratio [HR],1.6; 95CI, 1.2-2.1) [56].

To extend these findings, Gangwisch et al. [57] assessed insomnia and sleep
duration as mediators of the depression-HTN link in a prospective cohort from the
first National Health and Nutrition Examination Survey (NHANES I). Consistent
with predictions, the presence of depression (CES-D) and sleep duration (either
short or long) was associated with higher HTN incidence; middle-aged sub-
jects (ages 32-59 years) with depression at baseline had a 44% greater odds of
being diagnosed with HTN over the 10-year period [57]. Hostility has also been
examined as a potential moderator of the depression-HTN association. Men with
“anger-in” scores (i.e., suppressed anger) in the highest tertile had a 1.5-fold age-
adjusted relative risk of HTN in the Circulatory Risk in Communities Study as
compared with those in the lowest tertile; there was no association in women
[58]. High hostility scores were also associated with incident HTN, after adjust-
ing for depression (Beck Depression Inventory) in a prospective study of African
Americans with type 1 diabetes [5].

19.2.2 Comorbid Anxiety and Depression
HTN incidence has oftentimes been precipitated by the dual effects of anxi-

ety and depression. In a prospective study of adults with three study points
(baseline, years 11 and 22), symptoms of anxiety and depression (measured by
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the ADI-12 Index, Hopkins Symptom Checklist-25, and Hospital Anxiety and
Depression Scale (HADS)) showed a negative association with incident HTN such
that higher symptomatology (>80th percentile) predicted lower SBP and diastolic
BP (DBP; odds ratio [OR], 0.80; 95CI, 0.70-0.92) and a higher odds of hypotension
(BP < 120/75 mmHg; OR, 1.20; 95CI, 1.05-1.36) after 22 years of follow-up [6]. In
contrast, increases in symptom severity, assessed with the HADS, were associated
with an increased likelihood of HTN in the Dutch Famine Birth Cohort Study [7].
Finally, the diagnosis of an anxiety disorder was associated with a fourfold increase
in the risk of developing HTN 1 year later (95CI, 1.18-14.56) in a cohort of normo-
tensive individuals, while having a mood disorder [8].

19.2.3 Psychological Distress

Psychological distress refers to the unique discomforting, emotional state experi-
enced by an individual in response to a specific stressor or demand that results in
harm, either temporary or permanent, to the person [9]. Exposure to traumatic life
events induces high levels of psychological distress including PTSD. In a retrospec-
tive study of elderly participants, those who reported reexperiencing trauma-related
symptoms exhibited significantly higher rates of HTN than those who reported no
symptom reoccurrence (OR, 1.32; 95CI, 0.96-1.82) [10]. Using the short Kessler
Screening for Psychological Distress, high levels of distress predicted incident HTN
in a South African cohort. Higher levels of “nervousness” in particular were associ-
ated with a twofold increase in the risk of developing HTN (95CI, 1.23-3.26) [11].

A cross-sectional study conducted 7-19 weeks after the 2011 Tohoku tsunami
showed that a natural disaster creating prolific damages such as disruptions in ame-
nities (i.e., gas supply) and discontinuity of everyday routines (i.e., taking antihy-
pertensive medications) was associated with higher BP levels among victims in
areas of more flooding [12]. Among victims not on antihypertensive medications at
baseline, there was a dose-dependent association between BP and flooding height
above sea level and disruption of the gas supply [12]. In a second study, young male
veterans with PTSD referred to outpatient psychiatry in a Veterans Affairs Healthcare
System had significantly higher BP compared to those without PTSD (BP, 133.8/87.6
vs. 122.3/78.6 mmHg). The prevalence of HTN was 34.1% among patients with
PTSD compared to 16.3% without PTSD [13].

19.2.4 Stress-Induced Paroxysmal Hypertension

Paroxysmal hypertension or pseudopheochromocytoma is characterized by sudden
onsets of hypertensive paroxysms, BP elevation associated with physical symptoms
(i.e., headache, flushing, fatigue, dizziness), and, in many cases, is linked to psycho-
social factors such as a history of severe abuse or trauma, panic disorder, or defen-
sive personality [14, 59]. This distinct psychosocial profile provides an important
diagnostic clue and enables a confident diagnosis of pseudopheochromocytoma
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rather than a diagnosis by default [19]. Despite this, many physicians are unfamiliar
with the underlying cause of the condition and feel ill-equipped to treat it [15]. An
evaluation of patient’s psychosocial profile would prove to be an extremely valuable
first step in identifying the appropriate course of treatment to both manage BP and
mitigate the psychological problems that perpetuate the condition [21].

19.3 Personality Factors

Similar to research on mental health, studies linking attributes of personality to
HTN incidence have been inconsistent. Mommersteeg et al. [16] found no associa-
tion between Type D personality (negative affectivity; social inhibition) and HTN in
a 7-year study of German airline manufacturing employees. Alternatively, using
“the Big Five personality traits” of neuroticism, extraversion, openness, conscien-
tiousness, and agreeableness, Turiano et al. [17] found that higher levels of consci-
entiousness predicted lower BP over a 10-year period, while higher levels of
neuroticism predicted higher BP. Higher levels of psychological well-being (i.e.,
feeling full of life, optimism) were associated with 9—11% reduction in HTN risk in
a prospective study of British civil servants from the Whitehall II cohort [18].

19.4 Occupational Stress

Majority of evidence on occupational stress stems from cross-sectional studies that
focus on specific professions and explore common themes including job insecurity,
work hours, job strain, job control, and wages. In a study of bus conductors, the
prevalence of HTN gradually increased as the duration of service increased, with
the highest rate (36.3%) among those with service duration >30 years [19]. A cross-
sectional study of male professional drivers (city and intercity bus drivers, truck and
taxi drivers) [20] showed associations between the Occupational Stress Index (OSI;
i.e., jobs characterized by high demand, conflict/uncertainty, underload, time pres-
sure, aversive exposures) and HTN (OR, 5.5; 95CI, 2.24-7.95). Total OSI had a
gradient effect demonstrating that BP readings were highest among city bus drivers
and the lowest in truck and taxi drivers. There was also a strong association between
total OSI and HTN (OR, 5.59; 95CI, 2.24-7.95). Underload (short-cycle monoto-
nous work) was the strongest individual correlate of HTN (OR, 1.18; 95CI, 1.04—
2.58) [20]. Likewise, a prospective study of bus drivers showed that the average
number of hours of driving per week predicted higher DBP over a 2-year period
[21]. Finally, a cross-sectional study [22] sought to determine the relative contribu-
tions of specific types of stressors (work or home) of HTN in a cohort of men and
women. In the total sample, general stress was associated with HTN (OR, 1.25;
95ClI, 1.08-1.45), accounting for 9.1% of the increased risk [22]. Women showed a
greater risk of HTN if they experienced stress at work or at home (OR, 1.29; 95CI,
1.03-1.61 and OR, 1.23; 95CI, 1.00-1.51, respectively); this relationship was not
significant in men.
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The role of psychosocial stressors on HTN incidence is also dependent on factors
concurrent with the occupation itself: working conditions, work environment, and
job insecurity. Regarding job insecurity, a retrospective study examined the impact
of downsizing on HTN risk over a 5-year period among 13,000 employees from a
large aluminum company [23]. While salaried workers had lower rates of HTN
overall, individuals that survived layoffs at high-layoff plants exhibited an elevated
risk of being diagnosed with HTN at the 5-year follow-up (OR, 1.60; 95CI, 1.04—
2.48) [23]. Increases in area-level unemployment were also associated with a higher
incidence of HTN. In a prospective study, occupational status related to being a law
enforcement officer predicted higher levels of SBP across the 7-year study [24].
Wiernik et al. [25] also analyzed the longitudinal effects of occupational status in
combination with sex on HTN incidence. Baseline-perceived stress was associated
with a linear increase in HTN incidence over an average of 6 years in women report-
ing medium or low occupational status [25].

Work organization factors such as high levels of job strain were associated with
higher rates of incident HTN in a cohort of automobile manufacturer employees.
Specifically, working 10 overtime hours per week was associated with 3.29 more
claims for incident HTN per 1000 employees per year [26]. Using claims data from
the sickness, accident, and disability insurance, there was a positive correlation
among long work hours and psychological distress with incident HTN in a 6-year
retrospective study [26]. Overall, skilled workers and assembly plant workers had
higher rates of HTN; female production workers conferred the greatest risk. Finally,
low job control was more strongly associated with incident HTN among men than
women over a 9-year follow-up in the Canadian Community Health Survey [27].

The work environment and interactions between colleagues also significantly
contribute to HTN incidence. Lamy et al. [28] examined the association between
collective stressors at the work unit level (i.e., low support, poor information
exchange, poor relationships with superiors, inability to take paid leave) and the
2-year incidence of HTN among normotensive female hospital registered nurses
and nursing assistants. Results showed that organizational work factors influenced
the 2-year risk of HTN independently of work factors at the individual level (i.e.,
workload and occupational stress), baseline BP, age, and body mass index [28].
Occupational stress measured as Effort-Reward Imbalance (ERI)—which sug-
gests that work-related benefits depend upon a reciprocal relationship between
efforts and rewards at work—was associated with incident HTN at 3 years in
white-collar workers [29]. In women >45 years old, the cumulative incidence of
HTN was 2.78 (95CI, 1.26-6.10) times higher among those exposed to ERI at
both times [29].

Quite commonly, socioeconomic status is associated with or a contributing fac-
tor to the aforementioned occupational stressors. In a cross-sectional study of
African Americans who participated in the Jackson Heart Study, higher income in
women was associated with lower prevalence of HTN and lower levels of stress
[30]. In a prospective study [31], low wages were also negatively associated with
HTN incidence in employees. Doubling the wage by a 100% increase was associ-
ated with a 25-30% decrease in the risk of HTN [31].
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19.5 Housing Instability

Housing instability—assessed as the frequency of moving, house crowding, and
occupying a residence without paying rent or money—has also been associated
with an increased risk of HTN. White women participating in the Coronary Artery
Risk Development in Young Adults (CARDIA) study with unstable housing had
four times the rate of incident HTN than white women with stable housing (inci-
dence rate ratio (IRR), 4.7; 95CI, 2.4-9.2) [32].

19.6 Relationship Quality

Beyond the individual and everyday psychosocial stressors, interpersonal relation-
ships or lack thereof increase the likelihood of developing HTN. Such stressors occur
in forms of loneliness, social capital, racial discrimination, and caregiver demands.

19.6.1 Loneliness

Among a multiethnic sample in the Chicago Health, Aging, and Social Relations
Study, higher scores on the UCLA Loneliness Scale-Revised at baseline were asso-
ciated with a 3.6 mmHg increase in SBP each year of follow-up, which equated to
a 14.4 mmHg greater increase in SBP over the 4-year study [33]. The effect of
loneliness was independent of other risk factors for HTN including age, race, gen-
der, cardiovascular (CV) medications, comorbid health conditions, depressive
symptoms, social support, stress, hostility, and other CV risk factors (i.e., diabetes,
stroke). Similarly, a cross-sectional study of 1880 community residents aged
>60 years found that nearly one-third of respondents reported a high level of loneli-
ness, which was associated with a HTN prevalence rate of 39% [34].

19.6.2 Social Capital and Support

Social capital, defined as the number of interactions with friends, neighbors, social
clubs, etc., has shown to impact HTN outcomes [35]. Data from the Health and
Retirement Study showed a 41% reduced odds (95CI, 0.42-0.84) in developing
HTN over the 14-year study among older adults with 4-5 social ties [36]. However,
in the Doetinchem Cohort Study, there was no association between negative or posi-
tive experiences of social support and risk of incident HTN over a 10-year period
among middle-aged participants [37].

19.6.3 Racial Discrimination

Racial discrimination has been hypothesized to serve as a chronic psychosocial
stressor contributing to the disproportionately higher rates of HTN among African
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Americans as compared to Whites [38]. Much of the research to date has examined
the effects of individual-level or interpersonal racism on HTN, with a majority
employing cross-sectional study designs. While several studies have found no asso-
ciation between perceived racial discrimination and HTN in the cross-sectional
studies [39], data from the Metro Atlanta Heart Disease Study [60] found that
African Americans who reported moderate to very high levels of stress due to racial
discrimination were twice as likely to be hypertensive than those with “no to low”
stress. In the CARDIA study [61], experiences of racial discrimination and unfair
treatment were associated with a 4-7 mmHg increase in BP among working-class
African Americans. Finally, in a prospective study of African American women,
positive associations between perceived racism and unfair treatment on incident
HTN were only seen in two subgroups of women: those born outside the USA (IRR,
1.6; 95CI, 0.7-3.3) and who grew up in predominantly white neighborhoods (IRR,
1.7; 95CI, 0.9-3.4) [62].

19.6.4 Interpersonal Relationships

Interpersonal relationships in the form of positive and negative interactions can also
have profound effects on HTN. In the National Longitudinal Study of Adolescent
Health [40], adolescent males (grades 7-12) who experienced severe victimization
had a 2.66 mmHg (95CI, 0.05-5.28) higher SBP and a 59% increased odds (95ClI,
1.07-2.37) of incident HTN in adulthood compared to males who were not exposed.
Intimate partner violence was not associated with BP in women. The demands of
spousal care giving (assessed by the care recipient’s report of how much assistance
they need with activities of daily living in the past month) predicted incident HTN
(risk ratio (RR), 1.36; 95CI, 1.01-1.83) among caregivers currently experiencing
demands as well as those experiencing long-term demands (14+ h/week; RR, 2.29;
95CI, 1.17-4.49) [41].

19.7 Sleep Quality

Recent psychosocial literature has examined poor sleep quality and other sleep-
related behaviors as risk factors for HTN. Under this umbrella, research includes
sleep duration, sleep architecture, sleep disorders, and chronic insomnia.

19.7.1 Insomnia

Previous research has theorized that the frequency of insomnia symptoms leads to
increased HTN risk. In a test of this hypothesis, Vozoris et al. [42] found no associa-
tion between BP and insomnia symptoms (i.e., difficulty falling asleep, nocturnal
awakenings, undesired early morning awakening, sleep maintenance, etc.) regard-
less of symptom frequency in the 2005-2006 and 2007-2008 NHANES surveys. In
contrast, Fernandez-Mendoza et al. [43] found a significant relationship between
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insomnia and HTN incidence in the Penn State Cohort. Individuals with chronic
insomnia (duration of >1 year) in combination with objective short sleep duration
(sleep <6 h during weeknights) exhibited a fourfold increase in incident HTN com-
pared to normal sleepers (sleep >6 h; OR, 3.75; 95CI, 1.58-8.95) [43]. Moreover,
individuals who reported poor sleep (moderate-to-severe complaint of difficulty
falling asleep and/or staying asleep, early awakening, or non-restorative sleep) and
had objective short sleep duration exhibited a 1.8 increased odds of developing inci-
dent HTN over the 7.5-year follow-up (95CI, 1.04-3.12) [43]. On the other hand,
participants that reported chronic insomnia or poor sleep, but who also had objec-
tive sleep duration >6 h, had no increased risk of HTN.

19.7.2 Sleep Disorders and Breathing

Five studies of sleep quality, broadly defined as studies including sleep duration,
sleep complaints, and sleep disorders, have examined associations with HTN. In
a 2011 study, Fung et al. [44] used home polysomnography to examine the role
of sleep-disordered breathing, sleep duration, and sleep architecture in older men
(age > 65 years). After adjusting for known CV risk factors and other key sleep
variables (i.e., respiratory disturbance index, hypoxemia, central apnea index, total
sleep duration in minutes, overall arousal index, sleep efficiency, wake after sleep
onset in minutes, and % of time in sleep stages), men with poor sleep architec-
ture (lowest percentile of slow-wave sleep [SWS]) had a 1.8-fold increase in inci-
dent HTN compared to men with the highest SWS (95CI, 1.18-2.80). In a second
study with the same cohort of men, Fung et al. [45] found no association between
total sleep time, percent sleep (estimate of sleep efficiency), sleep latency, wake
after sleep onset, and incident HTN. Gupta and Knapp found that patients with
obstructive sleep apnea plus insomnia had significantly higher odds of developing
HTN (OR, 1.83; 95CI, 1.27-2.65) [46]. In a cross-sectional survey, sleep disor-
ders by itself were not associated with HTN; however, significant associations were
observed among adults with concurrent sleep disorders and short sleep (OR, 2.30;
95ClI, 1.49-3.56) and with sleep disorders, short sleep, and poor sleep (OR, 1.84;
95CI, 1.13-2.98) [47]. In the PROOF-SYNAPSE study [48], sleep fragmentation
measured by the autonomic arousal index was associated with elevated diurnal and
24-h SBP as well as a higher risk of 24-h systolic HTN (OR, 1.70; 95CI, 1.04-2.80).

19.8 Discussion

Psychosocial stressors play an important role in advancing our understanding of the
etiology of HTN. Overall, there is strong evidence across various study designs,
including prospective, retrospective, and cross-sectional cohorts, that occupational
stressors, housing instability, loneliness, and stressors related to interpersonal rela-
tionships increase the risk of developing HTN. In some cases, the psychosocial
stressor is an even more potent risk factor for HTN than traditional CV factors [49].
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Despite this evidence, inconsistent results within subsets of psychosocial stressors
such as mental health, racial discrimination, personality, and sleep quality persist.
Namely, current studies exhibit three main limitations: (1) shortcomings in the
study design, (2) confounding of moderating and mediating variables on the
stressor-HTN association, and (3) limited inclusion of diverse populations. Below,
we discuss each of these limitations in order to stimulate future research.

First, methodological differences across studies—in terms of measurement and
study duration—hamper the ability to make definitive conclusions about impact.
For example, a 2012 meta-analysis on the depression-HTN association concluded
that much of the documented relationships between depression and HTN were
based on study duration (longer duration associated with greater incidence) and the
inclusion of a baseline depression measure [50]. Adequate length of follow-up is
needed to identify a sufficient number of HTN cases in order to avoid type I error
[51]. Evidence from this chapter also suggests that it is more advantageous to assess
the cumulative effect of psychosocial factors overtime as this has implications for
the directionality and significance of the association with HTN.

Studies within each psychosocial stressor also employed a diverse range of
measures that limits the ability to decipher which stressor is of greatest relevance
to incident HTN. For example, several mental health studies evaluated constructs
of depression and anxiety separately (i.e., CES-D), while others used combined
measures (i.e., HADS) [6, 57]. Similarly, measures of racial discrimination ranged
from global assessments of experiences with discrimination to episodes related to
specific settings (i.e., occupational or healthcare) [39, 62]. In examining sleep qual-
ity, the use of various measures across studies resulted in conflicting findings even
within the same study sample. This was evident in the studies by Fung et al. [45],
whereby the study using actigraphy-measured sleep variables resulted in a signifi-
cant association with incident HTN in contrast to a second study [44] which found
no relationship when home measurements were used. These findings suggest that
objective measures of sleep duration may be of clinical significance rather than
the subjective nature of sleep complaints. Therefore, careful consideration must be
given to the variables being assessed as research suggests that there are particular
dimensions of stressors that may not be implicated in the etiology of HTN.

Second, it is of utmost importance to examine the moderators and mediators of
the stressor-HTN relationship. As shown in this chapter, findings often differed by
sex and age of the participants. Thus, inconsistencies across studies may be an arti-
fact of the analytic approach rather than a true null effect. More recently, researchers
are examining the interaction between different types of psychosocial stressors such
as depression and sleep. Findings indicate that treating sleep complications in
depressed individuals may substantially mitigate HTN risk, more so than if they
were treated alone. In order to advance the field, such work requires developing a
conceptual model of the stressor-HTN associations, based on previous work, so that
the extent to which these factors contribute to disease progression overtime may
become clearer.

Third, few studies included a diverse cohort of participants that reflect the cur-
rent demographic shift to an increasingly older and racial/ethnically diverse
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population. Such variation is essential to examining whether these factors operate
differently based on characteristics of the population. Indeed, studies examining the
role of discrimination on the etiology of HTN are sorely absent from the literature.
Finally, adequacy of the psychosocial measure may change depending on popula-
tion being assessed, and selected measures should be carefully evaluated before
being employed in the study.

In summary, this chapter calls for a whole-person approach—considering both
clinical and psychosocial risk factors—when examining the development and pro-
gression of HTN. Psychosocial stress is often complex and multifaceted with stress-
ors occurring across multiple settings and lifestyle behaviors playing a significant
role as well. Despite the methodological challenges outlined above, it is critically
important for healthcare organizations to work toward systematically screening for
and treating patients with high psychosocial stress if we are to make a sustained
impact on the relentless burden of HTN.
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Central Nervous System Disorders: 20
Transient Ischemic Attack and Stroke
(Ischemic/Hemorrhagic)

Shoichiro Sato and Craig S. Anderson

Stroke is the second most common cause of death, accounting for approximately
10% of all deaths, and is the third most common cause of disability, on a global scale
in 2010 [1]. About 70% of all strokes occur in low- and middle-income countries.

Stroke includes several diseases which cause occlusion or rupture of cerebral
vessels leading to ischemic or hemorrhagic stroke. In the past, the definition of
stroke was based on duration of symptoms. Symptoms lasting less than 24 h were
considered as transient ischemic attack (TTA). However, advanced brain imaging
techniques have led to a reconsideration of ischemic brain injury, such that up to
one-third of patients with symptoms lasting less than 24 h actually have cerebral
infarction. Subsequently, a new “tissue” definition of TIA has been produced of “a
transient episode of neurological dysfunction caused by focal brain, spinal cord or
retinal ischemia, without acute infarction” [2].

Ischemic stroke accounts for about 80-85% of strokes in western populations. It
can be classified into several subtypes based on presumed ecology: large vessel ath-
erosclerosis (e.g., artery-to-artery embolism from carotid stenosis or hemodynamic
infarction), cardioembolism (e.g., embolism because of atrial fibrillation [AF] or val-
vular heart disease), cerebral small vessel disease (CSVD or the so-called lacunar
stroke), and a heterogeneous mixture of other causes such as arterial dissection and
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hematological disorders. Hemorrhagic stroke can also be divided into two main types
according to the site of the bleeding: spontaneous intracerebral hemorrhage (ICH)
which occurs within the parenchyma of the brain, most commonly due to CSVD, or
secondary to antithrombotic use (anticoagulation or antiplatelet therapy) or cerebral
amyloid angiopathy. ICH can also be caused by structural brain lesions (e.g., arte-
riovenous malformation, cavernoma, etc.) and systemic diseases that affect platelet
function or coagulopathy. Subarachnoid hemorrhage (SAH) is due to extravasation
of blood into the subarachnoid space between the pial and arachnoid membranes and
is mainly (about 80%) caused by the rupture or “blister” of an intracranial aneurysm.

Elevated BP is the important underlying risk factor for all types of stroke, includ-
ing TIA [3]. In this chapter, we review the acute hypertensive response, cerebral
autoregulation, and BP management for ischemic/hemorrhagic stroke and TIA
while introducing relevant trial results and highlighting current challenges and
future directions.

20.1 Acute Hypertensive Response

Acute hypertensive response, which is a physiological response to brain damage
[4], is defined as persistent elevation of BP, systolic BP of 140 mmHg or more, or
diastolic BP of 90 mmHg or more, typically demonstrated on two recordings taken
5 min apart within the first 24 h of symptom onset [5]. In a systematic review, 52%
of patients with stroke were reported to have an acute hypertensive response on
admission to hospital. Possible causes of this response include poorly treated or
undiagnosed hypertension, activation of the neuroendocrine system, increased car-
diac output, pain, dehydration, and mental distress due to the setting of hospitaliza-
tion. BP in patients with acute stroke gradually decreases by an average systolic BP
level of 10 mmHg in the first 24 h and 20 mmHg during the first 10 days after onset,
regardless of the use of antihypertensive medication [6].

20.2 Cerebral Autoregulation

Cerebral blood flow (CBF) is defined as the volume of blood flowing into a speci-
fied amount of brain in a specific time, and cerebral perfusion pressure is defined as
the difference between mean arterial pressure and intracranial pressure. CBF is con-
trolled by the cerebral perfusion pressure and the cerebrovascular resistance. Under
normal conditions, cerebral perfusion pressure is maintained within a tight range
(between 50 and 150 mmHg), despite fluctuations of mean arterial pressure, as
shown with a solid curve in Fig. 20.1 [7]. This autoregulation is mediated by change
in diameter of cerebral vasculature, which is one of the determinants of cerebrovas-
cular resistance according to the change of BP. When BP decreases under the lower
autoregulatory limit, there can be decreased cerebral perfusion pressure, with wors-
ening hypoperfusion and potentially resulting in progression of cerebral ischemia,
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Fig.20.1 Autoregulation maintains cerebral blood flow relatively constant between a mean arterial
pressure of between 50 and 150 mmHg. The range may be right shifted in chronically hypertensive
patients. CBF cerebral blood flow, MAP mean arterial pressure [From Ruland S, Aiyagari V (2007)
Cerebral autoregulation and blood pressure lowering. Hypertension 49 (5):977-978]

and when BP exceeds the upper the limit, increased cerebral perfusion pressure
could cause cerebral edema and hemorrhage. As long-standing high BP, or hyper-
tension, may produce a rightward shift of the autoregulatory curve (dotted curve in
Fig. 20.1), patients with hypertension are potentially less tolerant of decreased BP
[8]. Moreover, as autoregulation may also be impaired after acute stroke, even in
patients without history of hypertension, it is important to consider that a patient’s
cerebral perfusion pressure could change according to changes in systemic BP.

20.3 BP Management in Ischemic Stroke and TIA
20.3.1 Acute Ischemic Stroke and TIA

Most studies including meta-analysis are consistent in showing significant positive
relationships between increasing systolic BP and various adverse outcomes such
as death, disability, neurological deterioration, and recurrent ischemic events after
stroke [9], whereas some studies suggest that low (<130 mm Hg) and large decreases
in BP are also related to poor outcome [10]. However, such associations may not be
causal, because patients with more severe stroke may have a more prominent acute
hypertensive response and lower BP as a preterminal event. Even so, the concern of
clinicians has been that the initiation of intensive BP-lowering treatment early after
acute ischemic stroke could reduce cerebral edema and cause hemorrhagic transfor-
mation of ischemic tissue, leading to further mass effect and recurrent stroke and
other serious cardiovascular events. Therefore, the issue of early intensive BP therapy
has been of great interest of stroke trialists as whether it could improve outcomes.
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The Scandinavian Candesartan Acute Stroke Trial (SCAST) [11] randomly allo-
cated patients with acute stroke and systolic BP of 140 mmHg or higher and to
treatment with the angiotensin-receptor blocker (ARB), candesartan, or placebo.
Mean systolic BP difference between treatment groups at 7 days was 5 mmHg, and
no differences were observed in the risk of the co-primary outcome, a composite
vascular endpoint and functional outcome during 6 months after randomization.
The Efficacy of Nitric Oxide in Stroke (ENOS) [12] randomly assigned patients
with an acute stroke and systolic BP of 140-220 mmHg to a transdermal glyceryl
trinitrate patch group or to an inert glyceryl trinitrate (control) group within 48 h of
the onset of symptoms and continued for 7 days. The baseline mean BP of
167/90 mmHg was significantly decreased by 7/4 mmHg after the first dose in glyc-
eryl trinitrate group compared to control group. The result was that the 90-day pri-
mary functional outcome did not differ in either treatment comparison nor was there
any difference across any of the secondary outcome measures that included activi-
ties of daily living, cognition, health-related quality of life, and mood.

Even after these large-scale individual trials and a meta-analysis of them and
others [13], controversy persists with regard to optimal BP range and therapeutic
benefit of BP lowering in acute ischemic stroke. The Enhanced Control of
Hypertension and Thrombolysis in Stroke Study (ENCHANTED) [14] aims to
determine the effectiveness of intensive (systolic BP target 130-140 mmHg) vs.
standard (<185 mmHg) BP lowering (BP arm) in over 2000 patients with acute
ischemic stroke who are treated with recombinant tissue plasminogen activator
(rtPA). The results of this study are projected to be available in 2019 and will hope-
fully provide further evidence regarding hyperacute BP management in thrombolysis-
eligible patients with acute ischemic stroke.

As over half of patients who present with an acute stroke are already on antihy-
pertensive treatment, a clinical dilemma has been as to whether to continue or stop
these preexisting drugs during the acute phase after stroke. The Continue or Stop
post-Stroke Antihypertensives Collaborative Study (COSSACS) [15] randomly
assigned non-dysphagic patients with acute stroke either to continue taking or to
stop the antihypertensive agents for 14 days. Although there were between-group
differences in BP (13/8 mmHg) over the 2 weeks, there was no significant differ-
ence in the primary outcome of death or dependency at 14 weeks and death and
serious cardiovascular events rate at 6 months. In the continue versus stop existing
antihypertensive arm of the ENOS trial [12], where a subset of patients were allo-
cated to continue antihypertensive medications as compared to patients who were
randomized to stop them, the results were similarly neutral for any difference in
functional outcome. Overall, these trials have shown that there is no clear benefit or
harm by continuing preexisting antihypertensive drugs in the first few hours or days
following acute ischemic stroke.

20.3.2 Acute Ischemic Stroke Treated with Thrombolysis

Thrombolytic therapy with intravenous rtPA is an established treatment for acute isch-
emic stroke despite increasing the early risks of symptomatic ICH and death [16].
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Post-hoc analysis of the 624 patients who participated in the pivotal National
Institutes of Neurological Diseases and Stroke (NINDS) rtPA trial that dem-
onstrated the efficacy and the license for alteplase indicated that patients with a
systolic BP of >185 mmHg and/or a diastolic BP of >110 mmHg before random-
ization who received BP lowering therapy had worse outcomes compared to those
who did not receive such treatment, despite similar levels of elevated BP [17]. A
study with another thrombolytic agent (streptokinase), the Australian Streptokinase
(ASK) trial in which patients with SBP >185 mmHg were not excluded, showed an
association between elevated BP at baseline and increased risk of major ICH [18].
In addition, large international registry studies of thrombolysis with alteplase con-
ducted in 2000s, the Safe Implementation of Thrombolysis in Stroke-Monitoring
STudy (SITS-MOST) [19] and the Safe Implementation of Thrombolysis in Stroke—
International Stroke Thrombolysis Register (SITS-ISTR) [20], also showed that
elevated baseline systolic BP was associated with symptomatic ICH. Intriguingly, a
recent large single-center observational study has shown that BP during the initial
24 h after ischemic stroke treated with intravenous thrombolysis or intra-arterial
therapies depended on the vascular recanalization status (reopening or no reopen-
ing); a J-shaped association was evident between BP and outcome in no-reopening
group, whereas the association was linear in the reopening group (lower BP, good
outcome) [21].

The current American Heart Association (AHA)/American Stroke Association
(ASA) guidelines recommend target BP levels of <185/110 mmHg before adminis-
tration of intravenous rtPA and afterward of <180/105 mmHg for at least the first
24 h (Class I; Level of Evidence B) but without any recommendations about a lower
level of BP control [22]. The previously mentioned BP Arm of the ENCHANTED
study is addressing this issue and should elucidate the role of early intensive BP
lowering for patients receiving thrombolysis, particularly as to whether the treat-
ment reduces the risk of a poor outcome and symptomatic ICH [23].

20.3.3 Secondary Prevention in Ischemic Stroke and TIA

Treatment of hypertension is the most important secondary prevention strategy
for patients with a history of ischemic stroke or TIA. The prevalence of hyperten-
sion in patients with ischemic stroke is 60—70% [24] and a near linear relationship
between level of BP and risk of recurrent stroke and other major cardiovascular
events (Fig. 20.2) [25].

Several randomized controlled trials have demonstrated clear benefits of long-
term BP lowering for the secondary prevention of stroke. The Perindopril Protection
against Recurrent Stroke Study (PROGRESS) [26], in particular, assigned partici-
pants with prior any stroke or TIA to the angiotensin-converting enzyme inhibitor
(ACE-]), perindopril, alone or in combination with the diuretic, indapamide, or
matching placebo(s). During an average of 4 years of follow-up, BP was 9/4 mmHg
lower in the active treatment group as compared with the placebo group, and the
treatment reduced the risk of fatal or nonfatal stroke (the primary endpoint) by 28%.
A greater BP reduction (—12/5 mmHg) and risk reduction (43%) were observed in
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Fig.20.2 Relative risk of stroke according to usual diastolic and systolic blood pressure. Vertical
lines represent 95% confidence intervals (CI), and solid squares are proportional to number of
strokes in each category [From Rodgers A, MacMahon S, Gamble G et al (1996) Blood pressure
and risk of stroke in patients with cerebrovascular disease. BMJ 313 (7050):147]

those patients who received combination therapy, whereas less BP reduction
(—=5/3 mm Hg) and no significant risk reduction were evident in those who received
perindopril alone (Fig. 20.3) [26]. A post-hoc analysis of the trial showed that
lower-achieved follow-up BP levels, down to approximately 115/75 mmHg, were
associated with greater reduction in the rate of recurrent stroke and without any
increased risks (i.e., J-curve) of recurrent events at the lowest BP levels [27]. The
Prevention Regimen for Effectively Avoiding Second Strokes (PRoFESS) trial [28]
in which an ARB, telmisartan, and placebo were compared among patients with
acute ischemic stroke showed no significant effect on recurrent stroke despite a
4/2 mmHg lower BP in the active treatment group during an average of 2.5 years of
follow-up. These two trials indicate that modest BP lowering through inhibition of
the renin-angiotensin system does not translate into improved clinical outcomes and
reduced short-term risk of recurrent stroke.

A recent updated meta-analysis has shown that every 10 mmHg reduction in
systolic BP is associated with a significantly 26% reduced risk of stroke in patients
with a history of cerebrovascular diseases [29], which supports an older meta-
analysis of reduced recurrent stroke-associated greater magnitude of BP lowering
[30]. However, clinical practice is strongly influenced by direct randomized evi-
dence of any benefits and safety of more intensive long-term BP-lowering treat-
ment. The most relevant in this regard is the Secondary Prevention of Small
Subcortical Strokes (SPS3) trial [31], which randomized patients with CSVD lacu-
nar stroke into two target systolic BP levels of <130 and 130-149 mmHg. After
1 year, the mean achieved systolic BP levels were 127 mmHg and 138 mmHg in the
two groups, but after a mean 3.7 years of follow-up, there was no significant differ-
ence in rates of recurrent stroke, fatal or disabling stroke, and the composite out-
come of myocardial infarction or vascular death. However, the rate of serious
adverse events related to hypotension was similar in the two groups.
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Fig.20.3 Effects of study treatment on stroke and major vascular events in subgroups of patients.
Hazard ratios (and 95% confidence intervals [CI]) for hypertensive and non-hypertensive sub-
groups standardised to study-wide proportions of patients for whom combination or single-drug
therapy was planned [From PROGRESS Collaborative Group (2001) Randomized trial of a
perindopril-based blood-pressure-lowering regimen among 6,105 individuals with previous stroke
or transient ischaemic attack. Lancet 358 (9287):1033-1041]

There was also not enough information of a benefit of specific drug classes
regarding secondary prevention after ischemic stroke and TIA. A meta-analysis
based on 135,715 individuals from 22 trials did not show any substantial differences
among different BP-lowering regimens on any of the major cardiovascular events
(stroke, coronary heart disease, heart failure, and cardiovascular death) [32].

Most recently, the Systolic Blood Pressure Intervention Trial (SPRINT) [33]
demonstrated the benefits of intensive BP control (systolic <120 mmHg) as com-
pared to standard BP control (<140 mmHg) among subjects who were aged
>50 years with hypertension and at high risk of cardiovascular disease without a
history of diabetes mellitus or stroke. The trial showed a significant 25% relative
risk reduction in the primary composite outcome of myocardial infarction, acute
coronary syndrome, stroke, heart failure, or cardiovascular death). However, given
that the treatment benefit of intensive BP control was mainly due to decreased risk
of heart failure and death and that patients with prior stroke were excluded, there is
uncertainty over the extrapolation of these findings into stricter BP lowering to a
target of <120 mmHg in people with ischemic stroke or TIA.

An ongoing clinical trial focused on strict BP control to prevent recurrent vascu-
lar events in patients with stroke is the Stroke in Hypertension Optimal Treatment
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(SHOT) [34], an open randomized trial with a multifactorial design comparing three
different systolic BP targets (<145-135, <135-125, and <125 mmHg) and two dif-
ferent LDL-C targets. The trial aims to enroll 7500 participants who are aged
65 years or more with a history of hypertension and stroke or TIA within the previ-
ous 6 months.

20.4 BP Managementin Hemorrhagic Stroke

20.4.1 AcuteICH

Elevated BP is observed in approximately four-fifths of patients with acute ICH
[35], and a history of hypertension is associated with more frequent and higher lev-
els of BP on presentation. A population-based study from the UK reported that
poststroke BP was markedly elevated compared to usual premorbid levels in patients
with acute ICH, whereas BP after major acute ischemic stroke was much closer to
premorbid levels [36].

Elevated BP is also related to higher risk of neurological deterioration and poor
outcome including death and disability [37]. In terms of increase in hematoma vol-
ume (or hematoma growth), which is a strong independent predictor of neurological
deterioration and subsequent poor outcome after ICH [38], observational studies
demonstrated that patients with elevated BP are more likely to have hematoma
growth [39]. Furthermore, it is suggested that elevated BP was related to worsening
of brain edema in patients with acute stroke by a prospective observational study of
patients with either ischemic or hemorrhagic stroke enrolled within 3 h of onset
which reported systolic BP during the initial 24 h was associated with an increased
risk of brain edema [40].

There had been a concern against BP lowering in ICH regarding the poten-
tial risk of ischemia of brain tissue surrounding hematoma induced by possible
depletion of cerebral perfusion pressure [41], particularly in patients with altered
cerebral autoregulation [7]. Nevertheless, several observational studies have dis-
credited the concern by showing no significant relationship between BP lower-
ing and perihematomal cerebral blood flow in patients with acute ICH [42], and
safety of BP lowering on cerebral blood flow in acute setting was confirmed in the
Intracerebral Haemorrhage Acutely Decreasing Arterial Pressure (ICH-ADAPT)
trial [43]. In ICH-ADAPT, 75 patients with small- to medium-sized ICH within 24 h
of onset were randomized to BP lowering to a systolic BP target of <150 mmHg or
<180 mmHg. There was no significant decrease in perihematomal cerebral blood
flow measured with computed tomography perfusion imaging at 2 h (the primary
outcome) in relation with intensive BP lowering.

The main phase of Intensive Blood Pressure Reduction in Acute Cerebral
Hemorrhage Trial (INTERACT?2) [44] is the pivotal clinical trial that showed
improved functional outcomes with no harm for patients with ICH who received
target-driven, early intensive BP-lowering treatment. In INTERACT?2, 2839 patients
with imaging-confirmed ICH, elevated systolic BP (150-220 mmHg) were
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randomly allocated to an intensive BP lowering to <140 mmHg within 1 h and con-
tinued for 7 days or standard management of systolic BP to <180 mmHg. The fre-
quency of death or major disability (the primary outcome) was 52% and 56% in the
intensive and standard BP-lowering treatment groups, respectively, producing an
odds ratio (OR) of 0.87 (95% confidence interval [CI], 0.75-1.01; P = 0.06).
Analyses on the prespecified key secondary outcome of an ordinal shift analysis of
entire range of modified Rankin Scale demonstrated that the intensive BP-lowering
group had significantly higher rates of functional recovery at 90 days (OR for
greater disability 0.87; 95% CI 0.77-1.00) and significantly better health-related
quality of life as measured on European Quality of Life Scale (EQ-5D) utility score,
than the guideline group. Furthermore, the effects of intensive BP lowering were
consistent across several prespecified subgroups including age, region of enroll-
ment, time from onset to randomization, baseline severity, and hematoma volume.
Although an imaging substudy of INTERACT?2 including 967 patients who under-
went sequential brain computed tomography demonstrated modest but insignificant
reduction in hematoma growth during initial 24 h from intensive BP lowering, the
effect becomes significant in a meta-analysis of four randomized controlled trials
including INTERACT?2 [45].

The most recently completed clinical trial of intensive BP lowering in acute
ICH is the Antihypertensive Treatment for Acute Cerebral Hemorrhage (ATACH)
II, which compared very early (<4.5 h) and “very intensive” BP lowering (SBP of
<140 mmHg) using an intravenous nicardipine-based regime for 24 h and “‘stan-
dard” systolic BP reduction (systolic BP of 140—-180 mmHg) [46]. The rate of death
and disability at 90 days was 38.7% in the very intensive treatment group and 37.7%
of the standard treatment group (adjusted relative risk 1.04, 95% confidence inter-
val 0.85-1.27). Moreover, there was no significant difference between the groups
in the distribution of scores on the mRS or the EQ-5D utility metric. While there
were no overall significant differences in treatment-related serious adverse events
within 72 h, there were significantly more renal-related adverse events in the more
intensive group (9.0% versus 4.0%, p = 0.001) and borderline more serious adverse
events in this group by 90 days (adjusted relative risk 1.30, 95% CI 1.00-1.69;
p = 0.05). Intriguingly, the proportion of patients with hematoma growth, defined
as >33% increase in the volume of ICH during the initial 24 h, was 18.9% and
24.4% in the intensive and standard treatment group, respectively (adjusted relative
risk 0.78, 95% CI 0.58-1.03; p = 0.08). All the patients enrolled in the ATACH-II
trial had elevated systolic BP of >180 mmHg (average at presentation 200 mmHg),
while only about a half (48%) of participants in the INTERACT?2 had this same
level of systolic BP. Mean minimum systolic BP of intensive treatment group in
ATACH-II was below 130 mmHg (129 mmHg and 122 mmHg for 0-2 and 2-24 h,
respectively). The protocol-defined level for cessation of intravenous BP lowering
in INTERACT?2 was <130 mmHg whereas <110 mm Hg in the ATACH-II. A sub-
analysis of INTERACT?2 demonstrated that achieved post-randomization systolic
BP, which was the mean systolic BP during the initial 24 h, of 130-139 mmHg
was associated with better outcomes, and modest increase in the risk of worse out-
come was observed for achieved SBP <130 mmHg [47]. The differences between
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INTERACT?2 and ATACH-II suggest that very intensive and rapid BP lowering to
treatment targets <130 mmHg in patients with very high BP could negate the benefit
of the treatment.

20.4.2 Secondary Prevention in ICH

Poor BP control is related to increased risk of recurrence ICH regardless of sub-
type (i.e., lobar versus non-lobar) [48]. In PROGRESS trial, of 660 subjects with
a history of ICH at baseline, a 49% (95% CI 20-67%) relative risk reduction was
observed on recurrent stroke, and lower BP level was continuously associated with
lower risk of recurrent ICH [27]. Similar effects of BP lowering for the prevention
of ICH were also seen in the SPS3 trial [31], in which there was 63% relative risk
reduction on ICH as compared to insignificant reductions in all recurrent stroke and
recurrent ischemic stroke. The PRoFESS trial did not show any significant benefits
of early initiation of BP lowering for total stroke or ICH [49], but a meta-regression
analysis of all these randomized trials suggests that the PROFESS findings may
simply be explained by the very small systolic BP difference achieved between
randomized groups, with a clear dose-response relationship apparent for systolic
BP and reduction in ICH risk (Fig. 20.4) [50]. These data suggest that much stricter
control BP than currently recommended for patients with a history of ICH is safe
and could provide large benefits in terms of prevention of recurrent ICH and serious
cardiovascular events.
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Fig. 20.4 Reduction in hemorrhagic stroke vs. systolic blood pressure reduction in previous ran-
domized controlled trials [From Sato S, Carcel C, Anderson CS (2015) Blood pressure manage-
ment after intracerebral hemorrhage. Curr Treat Options Neurol 17 (12):49]
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The ideal antihypertensive agent/regime to achieve and maintain good long-term
BP control after ICH remains uncertain. Most patients with hypertension require two
or more antihypertensive agents to achieve adequate BP control [51], whereas mul-
tiple tablets can negatively impact on adherence and/or attendance to scheduled visits
[52]. Therefore, a simpler and more tolerable treatment regimen, such as a polypill
approach, could achieve higher levels of BP control with adherence in this patient
group than is currently being achieved in practice. The ongoing Triple therapy preven-
tion of Recurrent Intracerebral Disease EveNts Trial (TRIDENT), which is a double-
blind, placebo-controlled trial, aims to determine the effectiveness of more intensive
BP lowering by a fixed low-dose combination of BP-lowering agents (telmisartan,
amlodipine, and indapamide—“Triple Pill” strategy) on top of standard of care, on
the time to first occurrence of recurrent stroke among over 4200 patients with ICH.

20.4.3 SAH

Hypertension is a risk factor for both the occurrence of aneurysmal SAH and its
rebleeding. Rebleeding, which is often followed by elevated systolic BP
(>150 mmHg), is most likely to occur in the first 24 h of initial bleeding, with a rate
of 4-17% [53]. Elevated BP before aneurysm obliteration increases the risk of
rebleeding and subsequent worse outcome. The AHA/ASA guidelines [54] recom-
mend that between the time of symptom onset and aneurysm obliteration, BP should
be controlled with a titratable agent to balance the risk of stroke, hypertension-
related bleeding, and maintenance of cerebral perfusion pressure (Class I; Level of
Evidence B). However, the optimal magnitude of BP control to reduce the risk of
rebleeding has not been established, although a decrease in systolic BP to 160 mmHg
would seem reasonable (Class Ila; Level of Evidence C). A multicenter observa-
tional study involving 5612 patients with aneurysmal SAH [55] showed that a sys-
tolic BP of between 120 and 140 mmHg was most common prior to rebleeding. It is
also reported that despite an aggressive management strategy in which oral nimodip-
ine was given unless systolic BP was less than 120 mmHg, 40 (7%) of 574 patients
had rebleeding [56]. Thus, it is an unanswered question as to whether more inten-
sive BP lowering than is currently recommended in guidelines provides any addi-
tional benefit to patients.

Delayed cerebral ischemia can be due to vasospasm from reversible narrowing of
cerebral arteries. This complication most commonly occurs within 4-14 days after
SAH, lasts for 24 weeks, and is a major contributor to morbidity and mortality [57].
Despite lacking of evidence from randomized controlled trials, several studies suggest
that induced hemodynamic treatment including induced hypertension may increase
CBF through the narrowed vessels in the setting of impaired cerebral autoregulation,
thereby improving outcome [58]. However, it should be noted that induced hyperten-
sion may increase the risk for hypertensive encephalopathy/reversible leukoencepha-
lopathy syndrome and hemorrhagic transformation of ischemia [59].
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20.5 Summary

Although ischemic/hemorrhagic stroke and TIA could be caused by various under-
lying pathophysiology, elevated BP is the common and important risk factor for
them. There is still no clear evidence that intensive lowering of BP in the setting of
acute ischemic stroke or TIA influences outcome. However, emerging evidence in
terms of BP management in acute ICH suggests that intensive lowering of BP with
a systolic target of 130-140 mm Hg improves functional outcomes. Long-term BP
lowering is the most significant intervention for the secondary prevention of stroke,
but it still remains to be determined that optimal magnitude of BP lowering or regi-
mens to achieve the BP. As stroke is such a common disease, establishment of opti-
mal BP management, even though which could have relatively small benefit to each
patient, could provide a sizable effect in reducing the global burden of stroke.
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21.1 Introduction

Hypertension and chronic kidney disease (CKD) are global public health challenges
due to their growing prevalence worldwide [1-3] and the associated higher risk for
fatal and nonfatal cardiovascular (CV) events [4, 5]. These two conditions are
strictly interrelated because elevated blood pressure (BP) not only is a main compli-
cation of CKD [6, 7] but can also act as its determinant [8].

A recent meta-analysis provides evidence that in the general population [8], over
a median of 6 years of follow-up, the adjusted risk of GFR <60 mL/min/1.73 m? is
more than 75% greater in hypertensive versus normotensive individuals. Similarly,
in individuals with prehypertension (systolic BP of 120-139 mm Hg and/or dia-
stolic BP of 80-89 mm Hg), risk of developing low GFR is increased by 25%. When
systolic and diastolic BP was considered as continuous variables, risk of CKD
increased by about 10% for each 10 mm Hg higher level of either BP component.

In patients with overt CKD, GFR decline is associated with a higher prevalence
of hypertension and worse control rates. Indeed, BP is elevated in approximately
80-85% of patients with non-dialysis CKD [9], and the prevalence of hypertension
increases progressively from 65% to 95% as the GFR falls from 85 to 15 mL/
min/1.73 m? [10].

Hypertension constitutes a major risk factor for the progression of renal disease,
especially in proteinuric patients [7, 11], as well as for the high CV risk observed
since the early stages of CKD independently of proteinuria level [5]. Therefore, the
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antihypertensive therapy in CKD aims at slowing progression of kidney failure and
reducing CV risk. However, in these patients, hypertension is often refractory to the
treatment [12-16]. Therefore, BP-lowering strategies must take into account the
complex pathogenesis of hypertension in CKD and, especially, the concomitant
presence of albuminuria that substantially modifies the prognosis of CKD patients
[17]. This latter concept is highlighted by the new classification of CKD (Fig. 21.1),
where improved risk stratification is attained by combining GFR levels with albu-
minuria category (normal to mild, moderate, and severe) [18].

21.2 Pathogenesis of Hypertension in CKD

A variety of factors account for the high prevalence of hypertension in CKD, includ-
ing the reduction of sodium excretion, the increased activity of the renin-angiotensin-
aldosterone system (RAAS), and the sympathetic nervous system [19-21].

The main disorder in CKD is the salt and water retention that occurs in the major-
ity of patients with reduced glomerular filtration rate (GFR). The resulting expan-
sion of the extracellular volume (ECV) allows preserving the external balance of
sodium but causes the development of persistent hypertension. In these patients,
entity of ECV expansion strictly depends on the severity of GFR impairment and
corresponds to approximately 5—10% of body weight, even in the absence of periph-
eral edema [19]. Of note, salt sensitivity of BP is not a feature limited to the advanced
stages of CKD but begins before the development of clear hypertension and severe
GFR decline [22, 23]. The common impairment of sodium excretion in renal
patients may also explain the higher prevalence of nocturnal hypertension in CKD
versus essential hypertension [24, 25].

Furthermore, in CKD patients, systemic hypertension is maintained by the acti-
vation of RAAS, which is inappropriate when considering the ECV expansion [20].
The ensuing glomerular hyperfiltration may contribute to the progressive kidney
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injury [20]. Finally, hypoxemia of renal tissue due to kidney damage activates the
central nervous system via afferent nerves that in turn increases sympathetic activity
thus contributing to the genesis of hypertension [21].

Notably, CKD is associated with premature vascular aging, characterized by
accelerated arteriosclerosis and/or endothelial dysfunction caused by impaired
nitric oxide synthesis [26, 27]. Rigidity of arterial wall attenuates baroreceptor con-
trol of efferent sympathetic activity and vagal activation. Reduced baroreflex sensi-
tivity maintains high sympathetic activity directed to the heart, blood vessels, and
kidney, which contributes to increasing BP [28, 29].

Additional pathogenetic mechanisms of hypertension in CKD are secondary
hyperparathyroidism (leading to vasoconstriction and hypertension by means of
increased intracellular calcium concentration) [30] and eventual treatment with
erythropoietin (by means of increased blood viscosity and/or release of vasocon-
strictive factors).

21.3 Optimal BP Target in CKD

BP control is a cornerstone of management of CKD patients. However, the BP tar-
get for this population remains ill defined since there is no solid evidence on the
optimal BP goal [31].

For many years international guidelines have recommended a BP < 130/80 mmHg
in all patients with CKD patients in attempt to slow the renal progression and to
reduce the high CV risk [32-34]. However, this BP goal has not been validated in
randomized controlled trials being mainly driven by data obtained in either observa-
tional and post-hoc analyses of trials [35-40] or meta-analyses [41, 42]. In particu-
lar, MDRD study [35-37], AASK trial [38, 39], and REIN-2 trial [40] failed to show
benefit for clinical outcomes from the low versus usual blood pressure targets. Only
MDRD study follow-up (post-trial observational study) showed a 23% reduction of
the risk for kidney failure in the group assigned to the low target [12]. More recently,
the randomized Systolic Blood Pressure Intervention Trial (SPRINT) has shown
that intensive BP control (<120 mmHg), as compared to standard control
(<140 mmHg), did not reduce the CV and renal risk in the subgroup of patients with
CKD [43]. Conversely, intensive treatment was associated with higher rates of
hypotensive episodes and acute renal injury.

The inconclusive results on the prognostic role of BP target in patients with CKD
might relate to the limited ability of clinic BP readings to adequately stratify the
global risk of this high-risk population [44—46]. This hypothesis will be verified by
the ancillary study of SPRINT trial in 600 patients undergone to ABPM [47].

Although there are far less data in CKD patients to inform the best approach,
current guideline recommendations suggest that no single BP target is optimal for
all CKD patients and encourage individualization of treatment depending on age,
severity of albuminuria, and comorbidities, in contrast with the “one size fits all”
viewpoint that has previously been endorsed. Table 21.1 summarizes the BP goals
in each CKD subpopulation proposed by K/DIGO [48]. Briefly, because proteinuria
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Table 21.1 BP goals recommended by K/DIGO in CDK patients with and without diabetes [48]

Albuminuria levels

<30 mg/day 30-300 mg/day >300 mg/day
Diabetics <140/90 <130/80 <130/80
Non-diabetics <140/90 <130/80 <130/80

amplifies both cardiac and renal risks [17, 49-52], current guidelines suggest a
lower target of <130/80 mmHg for patients with CKD and albumin excretion rate
of >30 mg/24 h (i.e., those with either micro- or macroalbuminuria), whereas in
patients without albuminuria, BP should be <140/90 mm Hg. Recommendations
are almost identical in CKD patients with diabetes [53-58] and without diabetes
[11, 12,36, 59] (Table 21.1). Current guidelines suggest to pay particular attention
in elderly patients, which constitute the most rapidly growing population of CKD
patients, despite evidence-based recommendations for elderly CKD patients are
scarce and inconclusive. Nonetheless, BP levels <140/90 mm Hg have been recom-
mended in all CKD patients by American College of Cardiology Foundation and
American Heart Association (ACCF/AHA) and National Institute for Health and
Clinical Excellence (NICE) as well [59, 60].

21.4 Which BP Measurement in CKD Patients?

Hypertension is usually diagnosed and treated based on BP readings obtained in the
clinic; however, BP may considerably differ when measured at home. Out-of-office
BP measurements include ABPM lasting 24 h and home BP monitoring (HBPM) in
which patients record BP at home while seated and resting. Both assessments allow
disclosing abnormal pressor profiles, as white coat hypertension (high clinic BP but
normal ABPM or HBPM) or masked hypertension (normal clinic BP but high
ABPM or HBPM), while ABPM also provides an accurate picture of circadian
rhythm of BP and the evaluation of nocturnal dip. Indeed, BP is physiologically
10-20% lower during sleep as compared to daytime. Accordingly, a night/day BP
ratio between 0.8 and 0.9 is considered normal, and patients are defined as “dipper,”
while the lack of nighttime BP reduction of at least 10% allows diagnosing the “
non-dipper” status. More specifically, a decline of nocturnal BP between 0 and 10%
(night/day BP ratio 0.9-1.0) defines patients as ‘“non-dipper,” whereas if nocturnal
BP is higher than diurnal BP (night/day BP ratio > 1.0), it defines patients as “reverse
dipper.” Occasionally, some patients, defined as “extreme dipper,” experience a
marked reduction of night BP greater than 20% (night/day BP ratio < 0.8) [61].
Several observational studies in CKD population have found that ABPM is supe-
rior to office-based measurements in predicting end-stage renal disease (ESRD),
cardiovascular events, and death [62—65]. In particular, Agarwal and Andersen dem-
onstrated in a cohort of 217 veterans with CKD followed for a median of 3.5 years,
the superiority of ABPM over clinical BP for predicting a composite endpoint of
death or ESRD [63]. Similar results were obtained when considering HBPM versus
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office BP in the same cohort [65]. Furthermore, an analysis of 617 CKD patients in
the African American Study of Kidney Disease and Hypertension (AASK) study
confirmed the superiority of ABPM for predicting both CV events and a composite
of death, ESRD, or doubling of serum creatinine over a median follow-up of 5 years
[64]. Finally, Minutolo et al. reported that in a cohort of 436 CKD patients followed
for a median of 4.2 years, office BP did not predict CV events or composite of death
and ESRD, while high BP at ABPM, and in particular nighttime values, increased
the risk of adverse outcome [65]. In that study, the cardiorenal risk increased signifi-
cantly when daytime or nighttime BP exceeded 135/85 and 120/70 mmHg, respec-
tively. These data confirmed that normality thresholds for daytime and nighttime BP
proposed for essential hypertension might be confidently applied also to patients
with CKD [65].

21.5 Out-of-Office BP Measurements in CKD
21.5.1 Altered BP Profiles in CKD

A meta-analysis evaluating prevalence of altered BP profiles in CKD patients [66]
reported that WCH was more frequent (18%) than hypertensive population (13%),
whereas MH was less prevalent in CKD (8%) with respect to essential hypertension
(11%) [67, 68]. However, recent studies not included in the meta-analysis have
provided discrepant prevalence rates of abnormal BP profiles [69-74]. Indeed, as
reported in Table 21.2, the prevalence of WCH ranged between 5% and 29%,
whereas MH occurred in 5-31% patients. This variability may be explained by the
ethnicity of cohorts, since the prevalence of WCH is higher than that of MH in
Caucasian patients [69—71], while the opposite was found in studies enrolling Afro-
American or Asian patients [72-74].

Given the technical and economic barriers to routine implementation of ABPM,
a critical question is on the timing of these measurements, that is, when to perform
an out-of-office measurement of BP to detect altered BP profiles or, alternatively,
what clinical and demographic conditions may predict the presence of WCH or MH
and therefore indicate the need of ABPM. Two studies addressed this issue in CKD
patients [75, 76]. Minutolo et al. reported that, among 228 CKD patients stages 2—5
with high-office BP, 40% of patients had a WCH, and this condition was

Table 21.2 Prevalence of white coat hypertension and masked hypertension in CKD cohorts
Thresholds for defining BP profiles (mmHg)

Cohort Office BP  ABPM WCH (%) MH (%)
Italian cohort [69] <140/90 Day/night <135/85/<120/70 22.1 14.5
Spanish registry [70] <140/90 24 h BP <130/80 28.8 7.0
Veterans cohort [71] <130/80 Awake BP <130/80 24.6 4.7
AASK study [74] <140/90 Daytime BP <135/85 5.3 25.1
JAC-CKD cohort [72]  <140/90 24 h BP <130/80 5.6 30.9

Chinese cohort [73] <140/90 24 h BP <130/80 9.7 18.2
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significantly associated to proteinuria >1 g/day (odds ratio 3.12) and higher-office
BP (odds ratio 1.61 for each 10 mmHg) [75]. Agarwal et al. in a cohort of 333 CKD
patients (stages 2—4) with normal clinic BP (<140/90 mmHg) found that MH was a
common condition whose prevalence varied from 27% (using daytime BP) to 33%
(using 24 h BP) and should be suspected when clinic BP is in the prehypertensive
range [76].

The more accurate estimates of hypertensive status offered by ABPM with
respect to clinic BP translate into better risk stratification. Indeed, when using the
two BP measurements (office and ambulatory) to detect altered BP profiles, renal
and cardiovascular prognosis of CKD patients with sustained hypertension (office
and ABPM not at goal) was worse than that of normotensive patients (both office and
ABPM at goal). Similarly, cardiorenal risk of patients with MH (office at goal and
ABPM not at goal) was similar to those with sustained hypertension and higher than
normotensive patients. Conversely, having WCH (office not at goal and ABPM at
goal) was not associated with higher risk for any event. These findings clearly sug-
gest that the different prognosis can be ascribed to poor control of the ambulatory
BP (as occurs in sustained hypertension and MH) rather than to higher-office BP
(WCH). The prognosis associated with pressor profiles was independent from the
office and ambulatory thresholds used to define BP profiles [69]. It is important to
note that classifying patients based on both clinic and out-of-office BP has relevant
therapeutic implications. Indeed, physicians should avoid therapy intensification in
WCH in order to prevent harmful ischemia-induced episodes affecting renal, cere-
bral, and cardiac function, particularly at nighttime [75] and in elderly patients [77],
but they must reinforce antihypertensive therapy in MH to reduce their higher risk
due to uncontrolled ambulatory BP.

The importance of combining clinic and out-of-office BP appears also in CKD
patients with resistant hypertension (RH), in which out-of-office BP monitoring
allows to distinguish between pseudoresistance (WCH) and true RH. Indeed, while
30% of patients were defined as resistant on the basis of only clinic BP measure-
ments, pseudoresistance (ABP at goal in RH patients) was common (24% of these
patients and 7% of whole cohort). Also in this setting, better estimate of hyperten-
sive status by ABPM translates into a better risk stratification. Indeed, patients with
normal ABPM (controls and pseudoresistant patients) had the best prognosis for
either outcome independent of their RH status, while the higher risk for cardiorenal
events was observed only in true RH [15].

21.5.2 Altered Circadian Profile in CKD

The distinctive characteristic of ABPM is its ability of obtaining information on
nighttime BP that is now considered the ABPM component more strictly linked to
adverse outcome [78]. Indeed, even when daytime BP is well controlled, the pres-
ence of nocturnal hypertension portends a greater risk of renal progression [62].
The lack of physiological BP decline during nighttime (non-dipping status)
occurs frequently in CKD patients being consistently above 50% in all cohorts
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considered [69, 71-74], with increasing rates in elderly and advanced CKD [77].
In a group of 459 CKD patients regularly followed in renal clinics, the risk of being
non-dipper was significantly associated to older age, diabetes, left ventricular
hypertrophy, and anemia [77]. In a large Japanese cohort of CKD patients, non-
dipping status has been associated also to more advanced CKD, seasonal variation
and, as expected, to nocturia [72]. Altered circadian profiles are strongly associated
with adverse clinical outcomes in CKD [62-64], similarly to what was reported in
general population and essential hypertension [79]. In particular, non-dippers and
reverse dippers with CKD displayed a twofold greater CV risk and a 60—70% higher
risk of renal events [62]. Agarwal and Andersen reported similar results in a cohort
of veterans with CKD and highlighted that a similar risk of CV outcomes occurred
by using day or night versus awake or sleep BP and that dipping defined as a ratio
confers a greater CV risk compared to dipping when defined as absolute change
[64]. Nocturnal hypertension also represents a potential target for therapy; indeed
non-dippers may benefit of a “chronotherapeutic” antihypertensive approach. This
intervention consists in the administration of drugs at bedtime in order to restore the
physiologic BP decline at night. This approach has been tested in a pilot uncon-
trolled study, in which one antihypertensive drug was switched to bedtime in 32
CKD non-dipper patients [24]. ABPM was repeated at 8 weeks, and 87.5% of the
subjects became dippers. Of note, restoring the normal nocturnal dip was associated
with a significant reduction of proteinuria [24]. More recently, a randomized con-
trolled open-label crossover trial was performed in 147 participants to the AASK
study, 76% being non-dipper. This study did not confirm a significant BP reduction
at night when either one antihypertensive drug or all drugs were administered at
bedtime as compared with administration of therapy in the morning [80]. Finally, a
randomized trial tested effectiveness of chronotherapy in 661 CKD patients (66%
non-dippers at baseline) and reported a surprising 65% reduction in the relative risk
of the composite endpoint of death or CV events [81].

In patients with uncontrolled daytime and nighttime systolic BP, the reassess-
ment of ABPM may be helpful. Specifically, a second ambulatory monitoring,
obtained 1 year after the first one, allows to correctly reclassifying as at risk from
15% to 22% of patients [82]. In particular, CKD patients not reaching the goal at the
two ABPM had the worst renal prognosis, while patients not at goal at baseline but
reaching the goal at second ABPM were not exposed to a greater renal risk.

21.6 Treatment of Hypertension in CKD Patients

21.6.1 Low-Salt Diet

Generally, the first step in the BP management is lifestyle modifications, such as
achieving or maintaining a healthy weight (BMI 20-25 kg/m?), limiting salt and
alcohol intake, and increasing physical exercise [48]. Because of volume expansion
occurring in CKD patients, the pivotal intervention is certainly represented by the
restriction of sodium intake below 100 mmol/day (corresponding to less than 6 g of
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salt). In patients with CKD, moderate reduction of salt intake allows a much greater
BP decrease in comparison with hypertensive patients with normal GFR undergoing
major restriction of salt intake (salt sensitivity of BP) [22, 83, 84]. Specifically,
Koomans et al. found that a mean decrease of sodium intake of about 6 g/d led to a
decrease of mean BP of about 12 mm Hg [84]. More recently, data from Chronic
Renal Insufficiency Cohort (CRIC) study showed that among 3757 patients with
CKD, higher urinary sodium excretion was associated with increased risk of CVD
[85]. Furthermore, dietary sodium restriction may also act indirectly by enhanc-
ing the antihypertensive effects of angiotensin-converting enzyme inhibitors
(CEIs) [86].

However, this dietary measure is scarcely implemented in CKD population regu-
larly followed in nephrology clinics (<20% of patients have a salt intake below 6 g/
day) [87, 88]. This is a paradoxical condition if one considers that, as mentioned
above, CKD is typically characterized by high-salt sensitivity [84] that becomes
evident from early CKD stages [22].

21.6.2 Diuretics

Due to the poor adherence to low-salt diet, diuretics are needed to decrease volume
expansion and ameliorate BP control in the majority of CKD patients. Two critical
points in the diuretic treatment of CKD patients are the selection of the class of diuretic
and titration of the dosage according to degree of kidney failure [89]. Indeed while
patients with mild renal impairment (GFR >40 mL/min/1.73 m?) may respond to thia-
zide diuretics, those with more advanced CKD require the use of more potent loop
diuretics; furthermore, the lower is the GFR, the higher must be the dose of furose-
mide or torasemide [89]. In a clinical trial performed in patients with GFR in the range
1040 mL/min, correction of volume expansion (evidenced by body weight reduction
of 2.0 kg coupled with a marked reduction in BP) was safely induced by oral admin-
istration of furosemide at the following daily doses: 1.0, 2.5, and 4.0mg/kg body
weight in patients with GFRs of 40-31, 30-20, and 19-10 mL/min, respectively [90].
Therefore, to improve the diuretic management is helpful to start diuretic treatment
with a low dose that can be progressively increased if body weight does not decrease.
The lack of a significant body weight reduction (0.4-0.6 kg/day) despite increasing
diuretic doses likely suggests the presence of diuretic resistance that can be overcome
by adding other agents (such as metolazone) in order to limit the breaking phenome-
non (sodium over-reabsorption in the distal segments of renal tubule) [91].

In the cases of the hypertension refractory to the treatment, it may be helpful to
use spironolactone at the dose of 25-100 mg/day that is efficacious in non-CKD
patients with diagnosis of RH [92]. However, assessment of spironolactone efficacy
has not been tested in patients with renal impairment that are at higher risk of hyper-
kalemia. Disappointingly enough, nephrologists are today still reluctant to use ade-
quately loop diuretics in their hypertensive CKD patients. This erroneous attitude
cannot be justified by the fear of side effects, which are infrequent, usually revers-
ible and predictable when the patient is regularly followed [93].
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21.6.3 Inhibitors of RAAS

The CElIs or angiotensin receptor blockers (ARBs) are more effective than other
antihypertensive drugs in slowing the progression of proteinuric diabetic [54-59]
and nondiabetic CKD [11, 36, 60]. This specific renoprotective effect significantly
exceeds that associated with antihypertensive drugs not active on RAAS and appears
to be essentially caused by their specific antiproteinuric effect. Experimental stud-
ies, in fact, have demonstrated for anti-RAAS agents a decrease in intraglomerular
pressure by predominant vasodilation of the efferent arteriole resistance and
improved glomerular permselectivity [94, 95]. Antiproteinuric effect is more promi-
nent when patients are kept on a low-sodium diet [96] or are treated with diuretics
[97] because relative volume depletion results in enhanced angiotensin II depen-
dence of the glomerular microcirculation.

A critical (actual) issue is the role of CEI-ARB combination therapy. Additive
antiproteinuric effect and concomitant increased efficacy in terms of slowing
CKD progression have been reported only in proteinuric nondiabetic CKD
patients affected by IgA nephropathy [98]. Conversely, ONTARGET trial showed
that in high-risk vascular disease/diabetes patients, the combination of the CEI
plus ARB was associated with more adverse events with no additional benefit
[99]. However, the very low prevalence of significant albuminuria among partici-
pants was indicative of ischemic nephropathy as leading cause of renal disease;
in these conditions, dual blockade of RAAS is not required (no need of protein-
uria reduction) and may expose patients to greater risk of worsening of renal
function especially in the setting of clinical trial in which drug withdrawal is not
allowed [99].

It is important to emphasize that although the benefits of RAAS inhibitors hold
true also in patients with advanced CKD [100], the safety of CEIs or ARBs therapy
in the advanced CKD needs a tight control of volume status, changes of GFR, and
serum potassium. In fact, clinically significant hyperkalemia and reductions in GFR
can occur in patients receiving ACE-Is or ARBs, particularly when these agents are
used together with NSAIDs, COX-2 inhibitors, or potassium-sparing diuretics.
Furthermore, in patients who develop intercurrent illnesses that lead to dehydration
as a result of diarrhea, vomiting, or fever, it is recommended to have temporary
withdrawal of CEIs or ARBs until recovery.

At variance with proteinuric CKD, in patients with non-proteinuric renal dis-
ease, RAAS inhibitors are not specifically indicated; under these conditions, in
fact, CEIs have not been found to be superior to standard therapy in slowing pro-
gression of the renal disease [101] despite there is some evidence that inhibitors of
the RAAS system might prevent an increase in albuminuria [102, 103]. However,
such studies have not been performed in patients with reduced GFR but normal
urinary albumin excretion. Therefore, in patients with non-proteinuric nephropathy
(i.e., ischemic or hypertensive renal diseases), therapy should be primarily based
on achievement of optimal BP control to ameliorate renal and cardiovascular prog-
nosis with a careful evaluation of the balance of risks and benefits of the use of
CEIs or ARBs [48].



334 S.Borrelliet al.

21.6.4 Other BP-Lowering Agents

Multidrug regimens are usually necessary to achieve BP goals by interfering with
the different pathways involved in the complex pathogenesis of hypertension in
patients with CKD. There is no evidence on the class of antihypertensive drugs to
be used in CKD as third line, that is, after optimization of treatment with anti-RAAS
and diuretics. All classes of antihypertensives may be used in CKD patients, keep-
ing in mind the pharmacokinetics of each drug, in order to avoid the accumulation
of drug or active metabolites that could exacerbate concentration-dependent side
effects. Furthermore, most of these drugs are effective vasodilators that may exac-
erbate fluid retention of CKD patients; for that reason their use should be postponed
once euvolemia is achieved by dietary salt restriction or adequate diuretic therapy.

In summary, in CKD patients with albuminuria >30 mg/day, it is recommended
to use CEIs or ARBs as first-line drugs taking into account their protective effects
on CKD progression [7, 11] and CV outcomes [103, 104]. In non-albuminuric
patients, there is no solid evidence to suggest one specific class of antihypertensive,
besides and beyond diuretics. Therefore, after a low-salt diet is implemented and
anti-RAAS and adequate doses of loop diuretics have been used, additional antihy-
pertensive agents can be decided on the basis of comorbidities (heart failure, myo-
cardial infarction, asthma, chronic obstructive pulmonary disease, etc.).
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22.1 Epidemiology

Nephrolithiasis is widespread across the world with incidence and prevalence that
vary among different geographical areas, as does the composition of kidney stones.
The majority of stones are made of calcium (>80%) complexed with oxalate and/or
phosphate. The presence of oxalate ranges between 45 and 73% and that of phos-
phate between 10 and 25%. Stones made of uric acid range between 7 and 14% [1].
In industrialized nations, the historical annual incidence was reported between 0.5%
and 1.9% [2, 3]. During the last decades a trend toward increased incidence and
prevalence has been observed worldwide. The lifetime prevalence in the United
States has increased from 2.62%, observed in years 1964—-1972, to 5.2% in years
1988-1994. Germany, Spain, and Italy have shown the same trend [4-6].

In broad terms it is generally thought that kidney stone formation is the result of
interaction between genetic and environmental factors. The increase in incidence
and prevalence of nephrolithiasis has developed in such a short time that is not com-
patible with a genetic change. Lifestyle, instead, appears to have played an impor-
tant role in this trend. This is clearly shown in pediatric experience. Nephrolithiasis
has become more common in children over the past few decades as a result of rapid
variations in habits and increasing affluence. Changing socio-economic conditions
have generated changes in the incidence and type of nephrolithiasis with respect to
the site and the physicochemical composition of the calculi. Especially changes in
dietary practices may be a key driving force [7].
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In adults, the present increase in the prevalence of KSD has been associated with
the parallel increase in obesity. The last, in turn, is considered a consequence of the
exaggerated consumption of starchy foods and high-fructose corn syrup. Consumption
of animal protein has also increased in a number of countries, paralleling the accel-
eration of stone disease [8]. Furthermore an increased intake of sodium and sodium-
rich foods has been shown in some groups of stone formers [9]. All these factors act
synergically with an individual genetic susceptibility to contribute to stone forma-
tion. Therefore, presently, in the epidemiology of nephrolithiasis, obesity and diet
(particularly sodium intake and fructose-rich drinks) play an important role.

22.1.1 Association of Hypertension with Nephrolithiasis

Epidemiological data show a singular overlapping between hypertension and neph-
rolithiasis in terms of the age of prevalence and associated risk factors. Furthermore,
the two conditions show a non-dissimilar epidemiological trend, a continuous
increase in the last decades. The sharing of risk factors between the two conditions
is only one of the elements that in the last few decades have raised the attention of
researchers toward the relationship between hypertension and nephrolithiasis.

In 1967, Tibblin reported the results of a survey on 50-year-old men, randomly
selected from the general population in Goteborg, Sweden. In this report an association
of hypertension with kidney stone was shown for the first time [10]. In the following
years, only few studies dealing with the association of hypertension with nephrolithia-
sis were published [11, 12]. The first study, formally designed to test the hypothesis
that kidney stone disease is more frequent among hypertensive, was performed on 688
male workers of the Olivetti factory near Naples [13]. The results showed that the risk
of nephrolithiasis in treated hypertensive men was significantly higher than that in the
normotensive group. The prevalence of a history of nephrolithiasis was 13.4% in the
normotensive subjects, 20.3% in the untreated hypertensives, and 32.8% in the treated
hypertensives. In the 8 years follow-up study on the same cohort, the prevalence of
kidney stone was 16.7% in hypertensive subjects versus 8.5% in normotensive [14].

Although no answer was provided on what might be the pathogenetic factor link-
ing nephrolithiasis with hypertension, a hypothetical role for hypercalciuria was put
forward.

An attempt to get an insight into factors linking hypertension to kidney stones
formation was made by Borghi et al. [15]. They studied stone risk profile in a cohort
of essential hypertension patients in comparison with normotensive controls.
Hypertensive subjects had a greater risk of renal stone formation, especially when
hypertension is associated with excessive body weight. During the follow-up hyper-
tensive patients had more stone episodes than controls (14.4% vs. 2.9%). Higher
oxaluria and calciuria as well as supersaturation of calcium oxalate and uric acid
were the differentiating factors between hypertensive and normotensive subjects.
The urine of hypertensive women differed from that of control women in having
higher excretion of calcium, phosphorus, and oxalate and in supersaturation of cal-
cium oxalate. For the first time urinary excretion of lithogenic compound was
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reported in association with essential hypertension. Most of the factors highlighted
in this study, supposedly linking hypertension to nephrolithiasis, became the most
investigated in the following years. Thenceforth the investigational approach
changed and the association between nephrolithiasis and hypertension was assessed,
studying patients affected by nephrolithiasis and looking in these for the prevalence
of hypertension and hypothetical linking factors.

Examining a cohort of 258 stone formers, Cupisti et al. did not find a higher preva-
lence of hypertension than the general population [16]. In a following investigation,
Madore et al. studied 4111 patients with nephrolithiasis and found in men a significant
association of this condition with hypertension [17]. Moreover in 79.5% of patients,
nephrolithiasis was prior or concomitant with the diagnosis of hypertension. More
recently a follow-up study in stone formers has shown that the presence of hyperten-
sion is significantly associated with the recurrence of stone formation [18]. High
blood pressure has also been shown in women with nephrolithiasis and coronary heart
disease, confirming the relevance of this association [19]. Notable studies showing an
association between hypertension and KSD are shown in Table 22.1.

22.1.2 Factors Linking Hypertension to Nephrolithiasis

The approach to investigate the association of nephrolithiasis with hypertension
starting from stone formers cohorts promoted research based not only on stone
composition but also on urine excretion of lithogenic solutes and supersaturation
and on more general predisposing factors (Table 22.2). In this setting, several litho-
genic solutes have been studied individually and in association.

Table 22.1 Association between hypertension and nephrolithiasis

Prevalence of hypertension in nephrolithiasis

Author Year Prevalence vs. non-stone formers
Madore 1998  24% Higher

Strazzullo 2001  57% Higher

Prevalence of nephrolithiasis in hypertension

Author Year Prevalence vs. non-hypertensive*
Tibblin 1967  ~30% Higher

Cirillo 1988  ~50% Higher

Cappuccio 1990  ~70% Higher

Borghi 1999  ~100% Higher

*Approximate estimates deduced from original papers

Table 2.2.? Factors linking General factors Urine components
nephrollth}asm to BMI, obesity, metabolic syndrome Calcium
hypertension Female sex Sodium

Uricemia Oxalate

Genetics Citrate

Dietary fructose Acids

Dietary sodium
Reduced GFR
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22.1.3 Calcium and Sodium

The first singled-out component was calcium. This is not only the most common
component of kidney stones, but it is also involved in the pathogenesis of hyper-
tension [20, 21]. It has been proposed that in patients with essential hyperten-
sion, renal calcium handling is altered in such a way that urinary calcium
excretion is increased at each level of sodium output [22]. This renal alteration is
the consequence of a diffuse cell membrane defect in the cellular handling of
sodium and calcium at a number of sites. An indirect evidence of hypercalciuria
in hypertension comes also from studies on bone mineralization. Essential hyper-
tension is associated with reduced bone density in the elderly [23]. Clinical stud-
ies have also confirmed hypercalciuria as a link between hypertension and
nephrolithiasis [24]. In a retrospective study on a large cohort of stone formers,
Eisner et al. found that hypertension was associated only with significantly
increased urine calcium and not with other urinary components [25]. The evi-
dence at genetic level, supporting the link between calciuria and hypertension,
was found both in animals and humans. The molecular defect linking Na* and
Ca?* renal reabsorption has been detected in mice [26]. At clinical level the use
of a classical genetic approach has produced further evidence on the link between
hypertension and nephrolithiasis. The investigation of the aggregation of hyper-
tension and KSD in families of patients with KSD and hypercalciuria has shown
that the disturbance in calcium metabolism in hypertension and KSD has a
genetic basis [27]. Although rare, Gordon syndrome, a genetic syndrome charac-
terized by hypertension, hyperkalemia, and hypercalciuria, is a good example in
which nephrolithiasis and hypertension are linked by hypercalciuria based on a
genetic defect [28].

Dietary sodium has been linked to the process of kidney stone formation for
many years. It was shown experimentally in normal subjects in whom a high
sodium diet produced an increased tendency for the crystallization of calcium
salts in urine [29]. Moreover, in calcium stone-forming patients, high sodium
chloride intake was associated with low bone density and hypercalciuria [30].
The link between the risk of stone forming and sodium intake is clearly estab-
lished. The underlying pathophysiological mechanisms may lie either within the
kidney itself or in a more general derangement. In fact these changes may be
secondary to a primary renal tubular defect (“renal calcium leak” hypothesis) or
to the effect of central volume expansion often seen in hypertension that in turn
may be one consequence of the excess of sodium in the diet [31]. In a reanalysis
of cohort of kidney stone formers, we found that higher blood pressure was
associated with higher renal excretion of sodium (Fig. 22.1). Therefore sodium
intake and high calcium excretion are an example of how hypertension and cal-
cium stone formation are intertwined and linked. These findings suggest also a
dietetic approach to these conditions aimed at definite pathophysiological
targets [32].
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Fig. 22.1 Renal sodium excretion in 234 patients with different types of stones. Patients are
grouped by systolic blood pressure. *Significant difference with the reference group (SBP
<120 mmHg). Unpublished analysis of reported data [35]

22.1.4 Citrate and Acids

New information on the association of hypertension with nephrolithiasis comes
from studies on large cohorts. The Nurses’ Health Study I (older women; N = 1284),
Nurses” Health Study II (younger women; N = 952), and the Health Professionals
Follow-up Study (men; N = 788) are three cohorts followed for years. In partici-
pants with nephrolithiasis, urinary calcium levels were not related consistently to
hypertension. Instead, lower urinary citrate excretion was associated independently
with prevalent hypertension [33]. Other studies confirmed the association of low
urinary citrate with hypertension, but highlighted other potential factors [34].
Following investigations were addressed to factors that regulate urinary citrate
excretion and may play a role in hypertension. Taylor suggested that hypocitraturia
is due to increased citrate reabsorption in proximal tubules as a consequence of
subclinical metabolic acidosis in hypertensive individuals. In fact animal and human
studies have shown in salt-sensitive hypertension an increased acid excretion as a
consequence of metabolic acid over production [35, 36]. In a study in stone formers
in whom a complete set of urinary components and oversaturation was performed,
citraturia was lower in patients with higher blood pressure [34] (Fig. 22.2). On the
whole, low urine pH and citrate appear to be not only markers of hypertension asso-
ciated with nephrolithiasis but also part of the pathophysiological process [36].



346 A. Losito

Urine citrate and systolic blood pressure

250 -
22,0
20,0 - 19,0
17,5

<
d 150 - 14,7
S
£
£
I
©
£ 10,0 -
o
(0]
£
=}

50 -

0,0 . ; '
SBPmmHg <120 120-139 140-159 >160

Fig.22.2 Urine citrate and systolic blood pressure. Patients are grouped by systolic blood pressure.
*Significant difference with SBP <120 mmHg. Unpublished analysis of reported data [35]

22.1.5 Lifestyle, Diet, and Systemic Factors

Urinary citrate excretion is regulated by several factors. In stone formers, they
themselves might also play a role in the development of hypertension.

Among those are insulin resistance and lifestyle. Studies have shown that
higher level of insulin resistance is associated with lower urinary citrate excretion
and that hypocitraturic patients show a greater insulin resistance than normoci-
traturic calcium stone formers [37]. With respect to lifestyle, there are many fac-
tors associated with citrate excretion. Hypertension is independently associated
with lower 24-h urinary citrate excretion, but other several dietary and lifestyle
factors and medical conditions are associated with hypo- and hypercitraturia [38].
Some constitutional factors, such as body mass index, are also associated with
hypocitraturia [39]. This makes things less clear since it is well established that
high BMI is strongly associated with hypertension [40]. Therefore many lifestyle
and constitutional factors associated with hypocitraturia are also associated with
hypertension.

Among the dietary factors potentially responsible of stone formation and hyper-
tension is fructose. The consumption of this artificial sweetener is associated with
an increased risk of kidney stones [41]. The underlying mechanism seems to be the
effect of consumption of fructose on the level of supersaturation in the urine, but no
clear-cut evidence has been produced yet.

On the other hand, a cross-sectional analysis using the data collected from the
National Health and Nutrition Examination Survey has shown that high fructose intake,
in the form of added sugar, independently associates with higher BP levels among US
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adults without a history of hypertension [42]. Also in this case, the mechanism linking
fructose intake to hypertension has not been clearly established. Yet studies in animals
have shown that fructose may raise BP via several mechanisms, including stimulation of
uric acid, inhibition of endothelial nitric oxide synthase system, and stimulation of the
sympathetic nervous system, or by directly increasing sodium absorption in the gut [42].
Uricemia is one of the most suspected links. In the general population, a direct relation-
ship between serum uric acid levels and BP has been shown [43, 44]. This relationship
is also present in nephrolithiasis. In stone formers the association between hypertension
and uric acid has been repeatedly reported [45, 46]. We found a direct relationship
between uricemia and blood pressure in a cohort of stone formers [34] (Fig. 22.3). The
supposed mechanism lies in uricemia-induced microvascular changes that in turn lead
to endothelial dysfunction, a precursor to both coronary artery disease and hypertension.
Among the several hypothetical explanations for this association in stone formers, there
is one pointing specifically at a reduction of kidney function. In a retrospective analysis,
uric acid stone formers had a small, significant reduction of creatinine clearance [47].

22.1.6 Obesity and BMI

We have seen that some dietary habits, such as high sodium and fructose intake, are
associated with hypertension in nephrolithiasis. Yet inappropriate diet, and life-
style, may also play a role indirectly, increasing BMI and promoting obesity.
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The association between overweight and obesity and the prevalence of high BP has
been known for some time [48].

The finding of an association between increased BMI and history of kidney
stones is more recent. Curham et al. analyzed the data from the Nurses’ Health
Study II and the Health Professionals Follow-Up Study including a total of 140,905
subjects and looked for an association of body size and risk of kidney stones [49,
50]. They found an association of prevalence and incidence of kidney stones with
weight and BMI. The magnitude of risk was higher in female than in male. These
separated data showed a sharing of a risk factor between hypertension and nephro-
lithiasis, in the presence of increased BMI or obesity. A subsequent analysis of data
from the Third National Health and Nutrition Examination Survey was addressed to
estimating the association between the history of stone disease and hypertension
[51]. In women, it was estimated that stone formers had a 69% increase in risk of
hypertension. The risk increased with body mass index in both sexes, but was more
pronounced in women. These findings therefore support the link between kidney
stone disease and hypertension and suggest that overweight women stone formers
may be at significantly increased risk for hypertension. The association of obesity
with hypertension in women was confirmed in a following study investigating meta-
bolic syndrome and nephrolithiasis in an inpatient population [52]. On the whole
there is adequate evidence to support a role for inappropriate diet and obesity in the
association of nephrolithiasis with hypertension [53]. There are also strong sugges-
tions that some individual component of the metabolic syndrome, particularly insu-
lin resistance, might play the same role [54]. A clear-cut evidence of this relationship
has not been provided yet. In this setting we must take into account a recent inves-
tigation of autonomic dysfunction in idiopathic recurrent kidney stone formers [55].
The results showed that patients with recurrent stone formation have a subtle auto-
nomic dysfunction resulting in increased blood BP and abnormal cardiovascular
control. This study introduces further a component in the already complex picture
of the relationship between nephrolithiasis and hypertension.

In conclusion, we have a certainty that kidney stone formers have a high proba-
bility of becoming hypertensive, and conversely, hypertensive subjects are at risk of
nephrolithiasis. We now know that there are several links between the two condi-
tions. Or, more precisely, we know that there are risk factors shared by the two
conditions and that in different instances, different factors appear to link hyperten-
sion to nephrolithiasis. Finally, the association with hypertension contributes to the
increased risk of cardiovascular disease recently reported in kidney stone formers.
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Uric Acid-Hypertension Relationships 2 3

Adel E. Berbari, Najla A. Daouk, and Giuseppe Mancia

23.1 Introduction

It is well established that high serum uric acid levels are associated with deposition
of uric acid crystals in tissues of several target organs and formation of urinary cal-
culi and nephrolithiasis [1]. Further there is increasing evidence that chronic hyper-
uricemia is a major risk for future hypertension, cardiorenal disease, and metabolic
disorders [2-9].

Serum uric acid levels in the population tend to increase [10]. Several factors
contribute to the increase in serum uric acid levels, namely, changing dietary pat-
terns, increasing body weight and obesity, chronic administration of certain classes
of therapeutic agents, and improved life expectancy [2].

The aim of this chapter is to summarize relevant studies concerning uric acid and
possible links to hypertension and renal and cardiovascular diseases.

23.2 Uric Acid-Cardiorenal Relationship
23.2.1 Historical Background
Uric acid was first associated with primary hypertension in 1874 by Mohamed

[11]. Mohamed, who noted that many of his hypertensive patients had a family
history of gout, proposed that uric acid might play an important role in the
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pathogenesis of essential hypertension [12]. Several years later, Haig linked uric
acid to elevated blood pressure (BP) [13, 14]. Further, in an address to the
American Medical Association in 1897, Davis contented that gout was a major
cause of hypertension and manifested renal tubulointerstitial and arteriolar vas-
cular diseases and ventricular hypertrophy [15]. In 1913, a French group of
investigators reported that the injection of uric acid into rabbits could increase
BP [16].

Although the association between increased serum uric acid and hypertension
was repeatedly reported in the early part of the twentieth century, it received little
attention by scientific organizations and documents [17, 18]. Serum uric acid was
even ignored in clinical practice [18, 19]. However, from the late 1980s, a large
number of clinical and experimental studies were published, documenting the prog-
nostic significance of serum uric acid, reviving the interest in this parameter as a
major risk for hypertension, and cardiorenal diseases [20].

23.2.2 Uric Acid: Generation, Excretion, and Biochemical
Reactions

Uric acid (7,9-dihydro-1H-purine-2,6,8(3H)-trione; 8-hydroxyxanthine; purine-
2,6,8-triol; 2,6,8-trioxypurine) is a weak, odorless, colorless, and tasteless organic
acid. It is poorly soluble at urinary physiological pH = 5.0-6.0 with a concentration
not exceeding 15 mg/dL [21]. However, at a urinary pH = 7.0 and in non-acidic
solutions, uric acid solubility increases significantly with a concentration often
equal to or exceeding 200 mg/dL [21]. At pH = 7.4 and at 37 °C, about 98% of uric
acid is ionized as monosodium urate [22]. At the uric acid concentration of the
extracellular fluid, serum is supersaturated with monosodium urate at uric acid con-
centration more than 6.5 mg/L [23].

Serum uric acid levels follow a circadian rhythm with higher uric acid levels dur-
ing the night and first morning hours.

Uric acid is not regularly ingested, although dietary intake appears to provide a
significant source of urate precursors [24].

The liver is the major site of uric acid production from both exogenous and
endogenous purines, which are derived from dietary sources and nucleic acid
metabolism [25]. Biochemical reactions catalyzed by two enzyme systems, xan-
thine dehydrogenase and xanthine oxidase, mediate the breakdown of purines into
xanthine and hypoxanthine [2, 25]. In turn, the latter two compounds are metabo-
lized to the poorly soluble uric acid [25]. In most mammals, uric acid is further
degraded to allantoin, a very soluble and easily eliminated product by uricase, an
oxidative enzyme located in the peroxisomes of the hepatocytes (Fig. 23.1) [25]. In
contrast, in humans and great apes, due to the lack of hepatic uricase from genetic
mutation, the poorly soluble uric acid is the final breakdown product of purine
metabolism [25].
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As a result of these biochemical and functional differences, serum uric acid lev-
els are significantly higher in humans than in other mammalians [21].

Fig. 23.1 Genesis of uric acid/allantoin production

23.2.2.1 Homeostasis

With a functional pKa of about 5.75 and an arterial blood pH = 7.40, uric acid, the
poorly soluble end product of purine metabolism, dissociates and circulates as the
urate anion:

pKa=5.75
Uricacid — urate+H
pH=7.40

The body urate pool in an adult male is about 1200 mg, representing about twice
the amount in an adult female [26]. This gender difference has been attributed to the
greater renal urate excretion in premenopausal females due to the biologic effects of
estrogenic hormones [26].

23.2.2.2 Uric Acid Elimination
Homeostasis of serum uric acid is maintained by two mechanisms, namely, renal
and gastrointestinal [25]. Under normal physiologic conditions, metabolism of
urate by human tissues is negligible.

The poorly soluble intracellular uric acid is transported into the circulation by a
complex mechanism [27]. Upon reaching the circulation, serum uric acid is excreted
by the kidneys and the gastrointestinal tract [25].

Renal Clearance
About 2/3 of the daily turnover of urate in humans is excreted by the kidneys through
glomerular filtration and tubular processes [25].
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Protein binding accounts for only about 5% of the circulating urate [22]. Thus,
almost all of the circulating urate is freely filterable at the glomerulus [22].

Tubular handling of urate takes place at the proximal tubule and is characterized
by three processes, namely, presecretory reabsorption, secretion, and postsecretory
reabsorption [21, 22].

Most of the filtered urate is reabsorbed in the early part of the proximal tubule
(the so-called presecretory reabsorption phase) [21, 22]. This process is followed by
secretion which occurs in the S, segment of the proximal tubule and returns about
50% of the filtered urate back into the tubular lumen [28]. The secreted urate under-
goes further reabsorption (the so-called postsecretory reabsorption) and occurs in S3
segment of the proximal tubule [28].

About 90% of the secreted urate undergoes postsecretory reabsorption [22, 28].
Thus, only about 7-12% of the filtered urate is excreted [22].

Gastrointestinal Degradation

The remaining 1/3 of the urate load is excreted by the gastrointestinal tract [25].
Recent evidence suggests that the entry of urate into the intestines is both passive

and active [29]. In the gut, urate is almost completely degraded by intestinal bacte-

ria, with little being found in the stools [30].

23.2.2.3 Biologic Effects of Uric Acid
Serum urate is not an inert molecule, but possesses several biological actions that
could be either beneficial or detrimental [25].

Antioxidant Properties

Urate may act as an aqueous antioxidant. Along with ascorbate, urate is one of the most
important antioxidants in the plasma reacting with a large number of oxidants [31].
In particular, by scavenging superoxide anions, it blocks the reaction of superoxide
with nitric oxide and prevents the formation of peroxynitrite which is a very toxic
product to the cells [32]. Uric acid may also prevent the degradation of extracellular
superoxide, an extracellular enzyme which is critical in blocking the reaction and inac-
tivation of nitric oxide by superoxide anions [25].

Adverse Reactions
In contrast to its beneficial actions, urate has a large number of adverse effects on
vascular structures.

Endothelial dysfunction: Urate may contribute to endothelial dysfunction. Uric
acid infusions in healthy human subjects result in impaired acetylcholine-induced
vasodilatation in the forearm, documenting impaired endothelial nitric oxide (NO)
release [33]. In experimental animals, mild hyperuricemia inhibits the NO system in
the kidney [33].

The mechanism by which uric acid (urate) impairs endothelial function may be
related to a pro-oxidative action under certain conditions [2].

Proliferation of vascular smooth muscle cells: Uric acid (urate) also stimulates
proliferation of vascular muscle cells by activating intracellular protein metabolism
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resulting in proliferative and pro-inflammatory reactions which produce growth fac-
tors, vasoconstriction, and pro-inflammatory molecules [2, 34-36].

23.2.3 Hyperuricemia

23.2.3.1 Definition

Hyperuricemia is generally defined as serum urate levels of >6.5-7.0 mg/dL in
males and >6 mg/dL in females [31]. However, the definition of hyperuricemia has
been difficult to assess around the mean of serum urate levels in the population [22].

Different criteria have been used to determine which levels of serum urate define
hyperuricemia. First, based in its physiochemical properties, serum urate is super-
saturated at a concentration greater than 6.5 mg/dL in the extracellular fluid [22]. It
has been recommended to consider serum urate levels greater than 7.0 and 6.0 mg/
dL in males and females, respectively, to represent hyperuricemia [22]. Second, age
has a significant effect on serum urate levels. Serum urate levels are lower in chil-
dren than in adults [22, 25, 38]. With the entry into male puberty, values increase
toward normal adult male range [22, 25, 38]. Further, compared to their male
counterparts, premenopausal females have lower serum urate values, attributed to
the higher renal urate handling [22, 38]. However, with the onset of menopause,
serum urate levels tend to increase, approaching those in males of corresponding
age [22, 38].

Third, several studies have demonstrated that serum uric acid levels cluster in
families, suggesting that genetic factors modulate the regulation of this molecule
[39]. Twin studies, path analysis and segregation analysis methods, estimate that the
heritability of serum uric acid ranges between 0.40 and 0.73 [39-41].

Genome-wide association studies revealed that numerous candidate genes are
involved in the regulation of serum uric acid levels [42]. About thirty gene vari-
ants have been identified, explaining about 7% of the variation in serum uric acid
levels [42].

The gene most strongly associated with serum uric acid resides on chromosome
4 and codes for SLC2A9 (also known as GLUTY), a key urate transporter which
localizes to both apical and basolateral membranes of the human renal proximal
tubular cells in vitro [43]. Recent studies have shown that SLC2A9 is involved in
renal and gastrointestinal excretion of uric acid and is implicated in antioxidant
defense [44].

The causality of serum uric acid and cardiovascular disease has been explored by
genome-wide association and Mendelian randomization studies. However, the
results of these studies have been contradictory.

Investigating the association between a missense nucleotide polymorphism in
the LC2A9 gene and BP, Passa found that a decrease in serum uric acid levels cor-
related with lower systolic BP, depending on the salt intake [43]. On the other
hand, using a genetic score approach in the Rotterdam Study, Sedaghat et al.
reported that in thirty gene variants higher serum uric acid was associated with
lower systolic and diastolic blood pressure levels, but only in the subgroup of



356 A.E. Berbari et al.

subjects responsive to diuretics [45]. In contrast, in a family-based study which
included 449 subjects in a homogenous population, Mallamaci et al. reported that
there was a strong correlation between a variant GLUT9 (SLC2A9) gene, hyper-
uricemia, and increase in some BP components, namely, clinic systolic BP (SBP)
and white coat effect (defined as the difference between clinic SBP and daytime
systolic ambulatory BP) [46]. However, not all studies demonstrated a relation
between genetic factors, serum uric acid, and BP. In their study, Pelinor et al.
reported no evidence for causal association for a variant SLC2A9 gene, with serum
uric acid and systolic and diastolic BP [47].

Several other chromosome regions that influence serum uric acid have been iden-
tified [48, 49]. Nath et al. identified a major locus on chromosome 6q22-23 for
serum uric acid using data from 644 participants in the San Antonio Family Heart
Study [49]. In this cohort, serum uric acid was found to exhibit a significant herita-
bility of 0.42 [49].

The association of a variant gene on chromosome 6q22-23 with serum uric acid
is of particular interest. Studies have indicated that 6q22—-23 chromosome region
contains genes that influence familial IgA nephropathy (IgAN) [50]. Hyperuricemia
appears to predispose the progression of familial IgAN [51]. Further, serum uric
acid levels correlate with histologic and immunochemical glomerular and tubuloin-
terstitial changes in IgAN [51].

Fourth, epidemiologic studies have reported that both environmental health traits and
pharmacologic agents may account for variation in serum uric acid levels [22, 52, 53].

High serum uric acid levels are strongly associated with a large number of health
traits such as obesity, waist circumference, insulin resistance, type 2 diabetes, and
renal disease [52—54]. Further, these health traits are characterized by a high herita-
bility, suggesting that a set of common genes may influence serum uric acid and
these health traits [49]. These observations suggest that both environmental health
conditions and genetic background influence serum uric acid levels [2, 49].

In the San Antonio Family Heart Study, significant genetic correlations were
observed between uric acid and cardiovascular risk traits such as obesity, waist cir-
cumference, body mass index (BMI), and systolic and pulse pressures with correla-
tions spanning from 0.37 to 0.68 [49]. The strongest evidence for linkage with serum
uric acid occurred between two genetic variants on chromosome 6q22-23 [49].

Hyperuricemia can be caused by a small number of inherited enzyme defects
which lead to purine overproduction such as overactivity of phosphoribosylpyro-
phosphate synthase, decreased activity of hypoxanthine phosphoribosyltransferase,
and glycogen storage disease [2, 22]. Additional causes of hyperuricemia include
food products and pharmacologic agents and drugs (Table 23.1) [2, 22, 55, 56].

As discussed in previous sections, there is no universally accepted definition of
hyperuricemia. For purposes related to crystal deposition disease (gout, nephroli-
thiasis), a physicochemical definition of hyperuricemia based upon solubility prop-
erties of urate in body fluids is recommended [57-59]. This definition corresponds
to a serum urate concentration of equal to or greater than 7 mg/dL [57-59]. However,
a definition of hyperuricemia appropriate to the non-crystal deposition disorders
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Table 23.1 Determinants of Production Excretion
elevated serum uric acid R

lovel Rare enzymatic defects ¢ Impaired renal excretion
evels .

High cell turnover
e Alcohol ingestion

(hypertension, cardiorenal disease) has been more problematic for two reasons: (1)
the high prevalence of asymptomatic hyperuricemia, using serum urate concentra-
tions exceeding saturation but within two standard deviations of the population
mean [60], and (2) the association of serum urate levels with cardiovascular disor-
ders (hypertension, cardiorenal disease) occurring at subsaturation concentrations
[61, 62].

Other experts recommend using a serum urate concentration exceeding 6 mg/dL
as a definition of hyperuricemia [61-64]. This recommendation is based on the
assumption that goal serum urate concentration of less than 6 mg/dL appears to be
associated with reduction in both clinical consequences of hyperuricemia and recur-
rence of gout [61-64].

23.2.3.2 Prevalence

As mentioned in other sections of this chapter, several factors influence the levels of
serum uric acid, making it difficult to recommend a normal set of values (Table 23.2).
However, based on epidemiologic and clinical studies, the following cutoff val-
ues of serum uric acid levels have been considered to denote an upper limit refer-
ence range, with 5 mg/dL for children, 7 mg/dL for men, and 6 mg/dL for women
[37, 61].

Hyperuricemia is a very common abnormal laboratory test encountered in clini-
cal practice.

In the general population, hyperuricemia is present in 17% of adult males in
France, in 7% of adult males in Spain, and in 13.7% of men in North China [22, 65,
66]. In the USA, the estimated prevalence of hyperuricemia as reported in the US
National Health and Nutrition Examination Survey (NHANES) 2007-2008 is about
23%, with rates higher in Afro-Americans than in other American ethnic groups
[10]. Certain aboriginal populations in the Pacific regions exhibit very high preva-
lent rates of 41% [67].

Further, worldwide, the prevalence of hyperuricemia has increased substantially
in recent decades [68]. The progressive increase in serum uric acid levels has been
attributed to the increasing prevalence of obesity and increased consumption of
sugar-sweetened beverages, foods rich in purines, and alcohol [69-74].

In arecent Italian survey, using a cutoff uric acid level of 6 mg/dL, the prevalence
of hyperuricemia increased from 8.5% in 2005 to 11.9% in 2009 [75]. Likewise, a
study from Japan revealed an increased prevalence of hyperuricemia over a 10-year
follow-up [76].

Hyperuricemia is a frequent finding in hypertension in adults, adolescents, and
children (Table 23.3).
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Table 23.2 Causes of
secondary hyperuricemia

Table 23.3 Incidence of
increased serum uric acid
levels in various population

Drugs/pharmacologic agents

Diuretics
Cyclosporine
Low-dose salicylates
Beta blockers
Ethambutol
Pyrazinamide
Levodopa

Laxative abuse
Ethanol

Salt restriction

Dietary products

Meat
— Beef lamb, pork
— Internal organs
Liver
Kidney
Heart
Seafood
— Mussels
— Crab
— Shrimps
— Sardines
— Caviar
— Anchovies
Poultry
— Chicken
— Duck
Dried peas/beans/legumes
— Baked beans
— Kidney beans
— Peas
Vegetables
— Asparagus
— Cauliflower
— Spinach
— Mushrooms
Whole grains
Fructose

Phenotype

US general population
Untreated hypertension
Treated hypertension

General hypertensive population
Malignant hypertension + renal failure

Rate (%)
5

25

50

40-60

75-100

Among the earliest studies linking serum uric acid to hypertension, Cannon
reported the coexistence of hyperuricemia in 25-50% of untreated primary adult
hypertension and in 75% of renal and/or malignant hypertension [77]. Following
these early reports, several studies documented that the relationship between serum
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uric acid and BP is continuous and is observed in Afro-Americans, whites, and
Asians [78-80]. In one study, 50% of adults with asymptomatic hyperuricemia
(defined as serum uric acid >7 mg/dL in males and >6.5 mg/dL in females) were
hypertensive [20, 81]. Likewise, about 60—-65% of patients with gout have hyperten-
sion [82]. In addition, the incidence of hyperuricemia appears to correlate with anti-
hypertensive therapy and severity indices of the hypertensive process [77, 83, 84].

However, the association of serum uric acid with BP appears to be age dependent
and weakens with aging. The relation of serum uric acid, BP, and age was evaluated
in a study of over 45,000 healthy Koreans who underwent a routine health examina-
tion and never received any uricosuric or antihypertensive agents [85]. In subjects
younger than 60 years of both genders, an increase in serum uric acid was strongly
associated with an elevation in both systolic and diastolic blood pressures [85]. The
association was stronger in females [85]. In contrast, in subjects 60 years or older,
the association of serum uric acid and BP weakens and may even be lost [85].

Hyperuricemia is commonly observed also in pediatric and adolescent
hypertension.

Forty to 70% of hypertensive children and adolescents have primary hyperten-
sion without an identifiable etiology [86]. Feig et al. evaluated 125 hypertensive
children with never previously treated hypertension, with an age range of 6 to
18 years and a mean of 13.4 years and 40 age-matched normotensive controls [61].
Serum uric acid levels of >6.5 mg/dL. were found in 89% in primary hypertension,
in 30% in secondary hypertension, and in none in white coat hypertension and nor-
motensive controls (Table 23.4) [61]. The association of serum uric acid and BP was
also examined in the National Survey 1999-2006, a large nationally representative
cohort of US adolescents, a population with a low prevalence of cardiovascular
disease and risk factors [62]. Among 6036 adolescents, with an age range of
12—17 years and mean of 14.7 years, 17% were obese, 3.3% were hypertensive
(defined as systolic and diastolic blood pressure >95% for age, sex, and height), and
34% had an elevated serum uric acid levels >5.5 mg/dL [62]. Compared with serum
uric acid levels <5.5 mg/dL, participants with a serum uric acid level of >5.5 mg/dL.
had two times greater risk of having increased blood pressure [62].

23.2.3.3 Hypertension

Epidemiology

Human and animal studies have repeatedly indicated an independent association
between serum uric acid and the risk of hypertension [61, 62]. Several epidemio-
logic and clinical studies have examined the link between hyperuricemia and risk of
hypertension.

Table 23.4 Incidence of

=2 X Hypertension phenotype Prevalence (%)
hyperurlc.emlz.i In new onset Essential hypertension 89
hypertensllorl 19 adolescents Secondary hypertension 30
(serum uric acid >5.5 mg/dL) White coat hypertension 0

(83] Normotensive controls 0
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A cohort of 125 children, with an age range of 6-18 years and a mean of
13.4 + 3.3 years, was evaluated for never-treated new onset hypertension [61].
Compared to normotensive controls (mean BP = 108 + 11.4/62.4 + 6.4 mmHg),
hypertensive subjects with primary (essential) hypertension (mean BP = 146 = 10.7
/82.2 + 11.2 mmHg) had significantly higher serum uric acid levels (6.7 + 1.3 vs.
3.6 £ 0.8 mg/dL) [61]. In this study, there was a tight and linear correlation between
serum uric acid levels and systolic and diastolic blood pressures [61]. Each 1 mg/dL
increase in serum uric acid level was associated with an average increase of
14 mmHg in systolic BP and 7 mmHg in diastolic BP [61]. Similar findings were
reported in larger cross-sectional studies. In a study which included 501 children at
high cardiovascular risk with an age range of 6—18 years and a mean of 10.8 years
referred for evaluation, 33.3% and 40.5% were overweight or obese, respectively,
17.4% had prehypertension, and 27.1% were hypertensive [87]. Serum uric acid
levels were directly related to systolic and diastolic blood pressures. Compared to
normotensive children, the risk of prehypertension or hypertension increased by at
least 50% for each 1 mg/dL increase in serum uric acid level and doubled for chil-
dren in the gender-specific top serum uric acid quartile [87]. The Bogalusa Heart
Study examined the association between increased serum uric acid and BP levels in
childhood and primary hypertension in early adulthood [88]. This study enrolled
577 whites and blacks as children aged 5-17 years and adults aged 18-33 years with
a follow-up period of 12 years [88]. Childhood serum uric acid was significantly
correlated with both childhood and adult systolic and diastolic blood pressures [88].
In a multivariate regression analysis, adjusting for age, sex, race, and childhood
body index, serum uric acid levels were significant predictors of adult diastolic BP,
whereas change of serum uric acid was a significant predictor of systolic BP [88].
These findings suggest that increased serum uric acid levels in childhood are associ-
ated with an elevation in BP which persists into adulthood [88].

A number of recent studies have examined the association between uric acid, BP,
and incident hypertension in middle-aged and elderly subjects. In a large meta-
analysis of 18 cohort studies representing data from 55,607 subjects, hyperuricemia
was associated with an increased risk of incident hypertension (adjusted risk ratio—
RR—1.41) [89]. For every 1 mg/dL increase in serum uric acid level, the pooled RR
for incident hypertension, after adjusting for potential confounding, was 1.13 [89].
The risk was more pronounced in younger individuals and in women [89]. The
Brisighella Heart Study confirmed the association between serum uric acid and
hypertension [4]. In this landmark study which enrolled 619 male and female par-
ticipants, aged 14-84 years, free of cardiovascular disease and not receiving any
antihypertensive, antidiabetic, or uricosuric medications, the prevalence of hyper-
tension was strongly related to quartiles of serum uric acid [4]. After adjustment for
a large number of parameters, significant differences in the prevalence of hyperten-
sion were reported between second and third quartiles (23% vs. 36.4%) and between
third and fourth quartiles (36.4% vs. 56.3%) [4]. The PAMELA (Pressioni Arteriose
Monitorate E Loro Associazioni) study which enrolled 9045 participants from an
urban population tested the relation between baseline serum uric acid, cardiovascu-
lar disease, metabolic variables, and new onset office and out-of-office (home and
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ambulatory) hypertension [90]. After 10 years of follow-up, baseline serum uric
acid was associated with an abnormal metabolic profile, target organ involvement,
and independently predicted new onset of out-of-office systolic BP values [90]. For
every 1 mg/dL increase in serum uric acid, after adjustment for all potential con-
founders, the increased risk of developing new onset home and ambulatory hyper-
tension was 34% and 29%, respectively [90]. An increase in serum uric acid of
1 mg/dL also independently predicted cardiovascular and all-cause mortality [90].

Most of the studies that assessed the correlation between hyperuricemia and new
onset hypertension included younger subjects, namely, children, adolescents, and
young adults [86—88]. The Health Professionals Follow-Up study, a cohort study of
59,529 males, examined the independent association between serum uric acid and
risk for incident hypertension among older men aged 47-81 years [91]. Serum uric
acid was associated positively and significantly with risk of incident hypertension
among men younger than 60 years (RR = 1.38) but not among men who were
>60 years of age (RR =0.9). In the quartile analysis, a trend toward a positive asso-
ciation between serum uric acid and risk for hypertension was observed among
younger but not among older men [91]. Comparing participants in the highest uric
acid quartile with those in the lowest, the multivariable RR was 2.01 for men
<60 years of age and 0.81 for men >60 years of age [91]. A large Korean study
confirmed the lack of association between serum uric acid and BP in male and
female participants >60 years of age [85].

Preeclampsia is characterized by a marked increase in serum uric acid levels in
both mother and fetus [92]. However, the relation of hyperuricemia to the outcome
of pregnancy in preeclampsia, a phenotype of severe gestational hypertension,
remains inconclusive [92]. A case-control study examined fetal outcome data from
972 pregnancies collected from 1999 to 2002 [93]. In women with gestational
hypertension, hyperuricemia was associated with shorter gestations and small infant
birth weight centiles and increased risk of preterm birth and small-for-gestational-
age infants [93]. The risk of these outcomes was increased even in the absence of
proteinuria and, occasionally, even in the absence of hypertension [93]. Women
with hypertension, hyperuricemia, and proteinuria were at a greater risk than those
with hypertension and proteinuria alone [93]. In another study, the relation between
maternal uric acid and maternal and fetal outcome was evaluated prospectively in
206 primiparas and singleton pregnancy with recent onset of gestational hyperten-
sion [94]. After a follow-up to 1-month postdelivery, the maternal serum uric acid at
5.20 mg/dL (309 pmol/L) cutoff was a predictor of preeclampsia with an adjusted
odds ratio of 7.1 (p <0.001) and delivery of a small-for-gestational-age infant, with
an adjusted odds ratio of 1.6 (p <0.02) [94].

These observations suggest that hyperuricemia may identify a phenotype of ges-
tational hypertension associated with significant risk [95]. In a study of 62 pregnant
women with gestational hypertension but without proteinuria, the characteristic pre-
eclamptic renal lesion, referred to as glomeruloendotheliosis, was found only in
women with hyperuricemia [95].

Serum uric acid appears to be a risk, not only for hypertension but also for milder
degrees of elevated BP levels. In a community-based study of 14,451 Chinese
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subjects, a linear interaction was observed between serum uric acid and risk of pre-
hypertension, especially at serum uric acid levels between 3.4 mg/dL (200 pmol/L)
and 6.4 mg/dL (380 pmol/L) [96]. In contrast, in this study as well as in others, this
correlation was lost in subjects older than 60 years of age [89, 96].

Studies in recent past decades indicate that increased serum uric acid is associ-
ated with novel cardiovascular risk markers such as blood pressure variability
(BPV), insulin resistance, and salt sensitivity.

BPV obtained by 24-h ambulatory BP monitoring is associated with target organ
involvement, cardiovascular events, and mortality in hypertensive patients [97, 98].
In a study of 300 patients (mean age 57.3 + 13.6 years) with untreated essential
hypertension, log serum uric acid was positively correlated with 24-h systolic BPV,
day and night systolic and diastolic BPV (Pearson’s coefficients of 0.246, 0.280,
and 0.353, respectively) [99].

Reduced insulin sensitivity and hyperinsulinemia have been postulated to par-
ticipate in the pathogenesis of uric acid-associated incident hypertension [100-102].
The interaction between serum uric acid, serum insulin, and incident hypertension
has been evaluated in 1496 nonobese healthy women, aged 32-52 years without
hypertension, diabetes mellitus, or coronary artery disease at baseline from the sec-
ond Nurses’ Health Study [100]. After simultaneous control of all biomarkers, esti-
mated glomerular filtration rate, and total cholesterol levels, only serum uric acid
and serum insulin levels were independently associated with incident hypertension
[102]. Comparing the highest and lowest quartiles of serum uric acid levels, the
odds ratio of incident hypertension was 1.89 [102]. A similar comparison yielded an
odds ratio of 2.03 for serum insulin levels [102]. Assuming an estimated annual
basal incidence of 14.6 per 1000, 30.8% of hypertension in young women occurred
with a serum uric acid of 3.4 mg/dL (304 pmol/L) or greater and in 24.2% with
serum insulin levels of 2.9 mg/dL (174 pmol/L) or greater [102].

In experimental animals, chronic and persistent hyperuricemia is associated with
hypertension, renal parenchymal and microvascular lesions, and salt sensitivity
[103]. The relationship between uric acid metabolism and renal tubular sodium han-
dling was assessed in the Olivetti Factory study which included 592 men aged
32-68 years and represented a sample of the general population. The clearance of
lithium was used as a proxy for segmental renal tubular sodium handling [104].
Serum uric acid level was inversely and significantly associated with fractional
excretion of lithium (r = —22) indicating that the higher the serum uric acid level the
greater the amount of sodium reabsorbed at nephron sites proximal to the distal
tubule [104]. These findings demonstrate a link between hyperuricemia and increased
proximal tubular sodium reabsorption, possibly through hyperinsulinemia [104].

Mechanisms

It is well established that increased serum uric acid levels correlates with incident
hypertension [85-89]. However, the observation that serum uric acid appears to be
a good predictor of hypertension does not necessarily imply an etiologic role as
both hypertension and hyperuricemia may be the result of a common underlying
pathology [105].
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Numerous hypotheses have been postulated to explain the causal link between
serum uric acid levels and hypertension. Evidence supporting a causal role of uric acid
in hypertension comes from experimental studies in laboratory animals [106, 107].
To determine the effect of uric acid on BP in laboratory animals, serum uric acid levels
were increased by administration of oxonic acid, a uricase inhibitor [106, 107]. Rats
develop hypertension which is characterized by two phases, an early phase of revers-
ible BP elevation and a late phase contributing to irreversible hypertension [106, 107].
In rats treated with oxonic acid, the uric acid inhibitor, serum uric acid increases lead-
ing to a gradual rise in BP over a period of 2-3 weeks, proportional to the degree of
increase in serum uric acid [106, 107]. The renin-angiotensin system is stimulated,
and nitric oxide synthesis is inhibited, causing systemic and renal vasoconstriction
[106, 107]. This early phase of hypertension can be reversed by withdrawal of oxonic
acid or administration of uric acid-reducing drugs (allopurinol or benziodarone) or
blockers of renin-angiotensin system [106].

In contrast, the second phase of hypertension is characterized by prolonged and
persistent elevation in serum uric acid levels, renal microvascular lesions and tubuloin-
terstitial changes, chronic renal impairment, and irreversible hypertension [106, 107].
Tissue culture models have demonstrated that uric acid enters vascular smooth muscle
cells inciting a cascade of biochemical reactions [108]. This cascade results in prolif-
eration of vascular smooth muscle cells, reduced compliance of the renal afferent arte-
rioles, and a sodium-sensitive hypertension [103, 108-110]. In rats, these
histopathologic changes and the hypertension persist for several years and cannot be
reversed by urate-lowering therapy [108].

In humans, epidemiologic and cross-sectional studies and clinical trials lend sup-
port for the causal link between hyperuricemia and incident hypertension [85-89].
Further, the etiologic association between serum uric acid and BP elevations appear
to be stronger in younger than older hypertensive populations and in women [62, 89].

Several older and more recent studies have shown that hyperuricemia is a fre-
quent biochemical finding in hypertensive children, adolescents, and young adults
[61, 89, 108]. In the Moscow Children’s Hypertension Study, elevated serum uric
acid levels (>8 mg/dL) were reported in 9.5% of children with normal BP, in 49%
in children with borderline hypertension, and in 73% of those with moderate to
severe hypertension [108]. In the Hungarian Children’s Study which included
17,624 children followed up for 13 years, hyperuricemia was a strong risk factor for
the development of hypertension [111]. In a small study, hypertensive adolescents,
aged 13-18 years, had increased serum uric acid levels (>6.5 mg/dL) and peripheral
plasma renin activity [112]. In a more recent study which classified hypertension
into phenotypes, hypertension was more common in primary (essential) than in
secondary hypertension [61]. Elevated serum uric acid levels (>5.5 mg/dL) were
reported in about 90% of adolescents with essential hypertension (serum uric acid =
6.7 = 1.3 mg/dL), whereas serum uric acid levels were significantly lower in those
with secondary hypertension (serum uric acid = 4.3 + 1.4 mg/dL) and in white coat
hypertension (serum uric acid = 3.6 + 0.7 mg/dL) [61].

Hyperuricemic children and adolescents with new onset essential hypertension
are generally overweight or obese and exhibit normal renal function and several
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features of the metabolic syndrome, although the latter may be absent in some
patients [62, 113].

Uric acid-lowering therapy has been recently used to test the causal role of serum
uric acid in hypertension in both younger (children, adolescents) and older (middle-
aged and elderly subjects) populations.

In one study, 30 adolescents with new onset essential hypertension received
either allopurinol or placebo in a randomized, double-blinded, crossover trial [114].
In the 20 of the 30 participants, while on allopurinol, their BP became normal, and
their serum uric acid levels fell to <5.5 mg/dL compared to 3% while on placebo; of
the ten children who remained hypertensive, their serum uric acid levels did not
reach target serum uric acid reduction [114].

In the follow-up clinical trial, obese children with prehypertension/grade 1
hypertension were randomized into three groups to receive placebo; allopurinol, a
uricosuric and xanthine oxidase inhibitor; or probenecid, a uricosuric agent [114].
Children on placebo had a slight but insignificant fall in systolic BP. In contrast,
patients on active treatment experienced a marked reduction in office-measured
SBP/DBP, with an average fall of —10.1/—8.0 and —10.2/—8.8 mmHg for allopuri-
nol- and probenecid-treated groups, respectively [115]. Ambulatory 24-h BP moni-
toring revealed the same pattern [115].

These data indicate that the mechanism of BP lowering is associated with serum
uric acid reduction, independently of allopurinol-induced xanthine oxidase inhibi-
tion [115].

The pathophysiologic mechanism of hyperuricemia in recent onset childhood/
adolescent essential (primary) hypertension has not been completely elucidated.

Serum uric acid concentration is frequently increased in adult borderline, mild
and moderately severe hypertension [77, 116]. The hyperuricemia has been attrib-
uted to increased renovascular resistance and reduced renal blood flow [116]. In
support of this hypothesis, several investigations demonstrated that in normotensive
subjects, infusion of norepinephrine or angiotensin II is associated with an elevation
in BP, hyperuricemia, and reduced renal blood flow [117]. Discontinuation of the
pressor infusions leads to normalization of BP, serum uric acid concentration, and
renal blood flow [117].

The phenotype of childhood/adolescent new onset essential hypertension may be
reminiscent of the early phase of oxonic-induced hyperuricemia which is character-
ized by hypertension, enhanced renin-angiotensin system, inhibition of nitric oxide
systems, and reversible renovascular hemodynamic alterations [106, 107].

It has been postulated that, in addition to elevated serum uric acid concentrations,
disturbances in uric acid production may contribute to BP elevation and hyperten-
sion [118, 119]. Overactivity of xanthine oxidase, the rate-limiting enzyme in purine
metabolism, may lead to a relative decrease in the more upstream purine metabo-
lites, characterized by higher ratios of xanthinic/hypoxanthine, uric acid/xanthine,
and uric acid/hypoxanthine [118].

A study which included 246 healthy school-age children, with a mean age of
7.1 = 0.4 years, from the KOALA Birth Cohort Study, evaluated the association
between purine metabolite ratios, serum uric acid concentrations, and BP [118].
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The findings revealed that in school-age children with a high BP, increased serum
uric acid concentration and purine metabolite ratios are associated with higher dia-
stolic BP z scores, a hemodynamic evidence of increased systemic vascular resis-
tance, lending further support to causal role of serum uric acid in the development
of hypertension [118, 120].

Whether serum uric acid has a direct causal role in the development of hyperten-
sion in older adults is not clear. A recent analysis of 6984 patients receiving treatment
for hypertension did not reveal a relationship between baseline serum uric acid con-
centration and long-term BP changes, although higher uric acid concentration was
associated with a decline in renal function [121]. Further, it is not clear whether uric
acid-reducing therapy lowers BP in hypertensive adults. A metaanalysis which com-
bined data from ten clinical trials of 738 participants revealed that allopurinol admin-
istration was associated with a small reduction in systolic BP (3.3 mmHg) [122].
A recent study evaluated changes in BP after initiation of allopurinol therapy in
hypertensive patients, aged >65 years using data from the UK Clinical Practice
Research Datalink [123]. The study, which included 365 allopurinol treated and 6678
controls, demonstrated that allopurinol-treated participants had a mild but significant
reduction in both systolic and diastolic blood pressures (2.1/1.7 mmHg, respectively)
[123]. There was a trend toward a greater fall in BP in the high-dose allopurinol
group [123]. Further, the change in BP was not related to baseline serum uric acid
concentrations [123].

Classification

The pathophysiologic mechanisms that define the relationship between serum uric
acid levels and the development of hypertension have not been completely eluci-
dated [105]. However, it is postulated that different pathologic factors underlie dif-
ferent phenotypes of hyperuricemia-associated hypertension.

Hyperuricemia-Hypertension Phenotype in Younger Populations

In hypertensive children, adolescents, and young adults, a population with mini-
mal vascular disease, hyperuricemia is both a marker and a causal factor in new
onset incident hypertension [85, 87-89, 108]. Normalization of both serum uric
acid and BP levels with uric acid-reducing therapy provides support for this
hypothesis [114, 118, 120].

The phenotype of hyperuricemic hypertension in the young, which is reminis-
cent of the early phase of oxonic-induced hyperuricemia BP elevation in experi-
mental animals, is characterized by overweight/obesity, features of the metabolic
syndrome, enhanced renal renin-angiotensin system, inhibited endothelial nitric
oxide synthesis, increased renovascular resistance and impaired renal blood flow
and a potentially reversible BP elevation with uricosuric therapy, and/or blockade of
the renin-angiotensin system [52, 53].

Hyperuricemia-Hypertension Phenotype in Older Populations
In middle-aged and elderly hypertensive populations, hyperuricemia is a frequent
laboratory manifestation and a major risk for cardiorenal conditions [77]. It is
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however unclear whether serum uric acid plays any role in the initiation or mainte-
nance of BP elevation in this age group [85, 91, 121]. Further, studies have reported
that the association between serum uric acid and BP weakens with age and with the
duration of hypertension [85].

Several factors have been postulated to participate in the increase in serum uric
acid concentrations in older populations including ischemia, reduced renal blood
flow and impaired renal function, metabolic factors, drugs, and dietary products [2,
22,55, 56]. In turn, hyperuricemia increases the levels of tissue-toxic reactive oxygen
species through enhanced activity of xanthine oxidoreductase enzyme [122, 124].
In addition, it induces alterations in the structural and functional properties of the
vascular wall and stimulates the vascular renin-angiotensin system [125]. These reac-
tions lead to target organ damage and cardiovascular complications [87, 121].

Allopurinol administration improves cardiorenal outcome and causes BP reduc-
tion, which is of lesser magnitude than that observed in younger hyperuricemic
hypertensive populations [123]. However, higher doses of allopurinol are required
to achieve these therapeutic effects [122, 123, 126].

Gestational Hyperuricemia-Hypertension Phenotype (Preeclampsia)

Among the hypertensive disorders of pregnancy, preeclampsia remains one of the
most important causes of maternal and fetal morbidity and mortality [94]. Increased
serum uric acid concentration is both one of the characteristic features and a predic-
tor of preeclampsia [93, 94].

In women with gestation hypertension, hyperuricemia is associated with
shorter gestations and increased risk of preterm birth and small-for-gestational-
age infants [93].

Although preeclampsia is characterized also by hypertension and proteinuria,
hyperuricemia portends a greater risk of poor pregnancy outcome than elevated BP
levels, increased urinary protein excretion, or even both [93].

Hyperuricemia appears as effective as proteinuria in identifying gestational
hypertensive pregnancies at risk [93].

The pathophysiologic association between hyperuricemia and preeclampsia has
not been completely elucidated. It has been postulated that hyperuricemia may par-
ticipate in the development of preeclampsia by mediating both systemic and glo-
merular hypertension and renal pathological lesions [127].

23.2.3.4 Cardiovascular Diseases

Serum uric acid is frequently elevated in subjects at cardiovascular risk [37].
Hypertensive patients with hyperuricemia have a three- to fivefold increased risk of
coronary or cerebrovascular disease compared with hypertensive patients with nor-
mal serum uric acid levels [128]. Further, there is a clear epidemiologic association
between asymptomatic hyperuricemia and incident hypertension, heart failure,
myocardial infarction, stroke, obesity, metabolic syndrome, and diabetes [37, 77,
129-131]. The relation between serum uric acid concentration and endovascular
disease is not limited to frank hyperuricemia defined as >7 mg/dL (420 pmol/L) in
men and >6 mg/dL (360 pmol/L) in women but is also observed with serum uric
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acid levels considered to be in the normal to high range (>5.2-5.5 mg/dL = 310-
330 pmol/L) [61, 132]. However, it remains controversial whether serum uric acid
plays a causal role in the development of cardiovascular disease or is simply a
marker of traditional cardiovascular disease risk factor [37].

Recent reports from the Framingham Heart Study and Atherosclerotic Risk in
Communities (ARIC) Study which collectively involve over 200,000 men and women
claim no association between serum uric acid and incident cardiovascular disease in
multivariable models [133, 134]. In contrast, other studies documented an indepen-
dent association of serum uric acid with cardiovascular disease. Reanalysis of the
SHEP (Systolic Hypertension in the Elderly Program) trial found that serum uric acid
levels determine outcome independent of other parameters such as BP [135]. Patients
treated successfully for hypertension with diuretics who also had an increase in their
serum uric acid levels >10 mg/dL (600 pmol/L) while on treatment failed to show any
benefit in cardiovascular event rates when compared to placebo [135]. In a large
cohort of individuals taking part in the Third National Health and Nutrition Survey,
an increased risk of all-cause and cardiac mortality was associated with increasing
serum uric acid levels during a 10-year follow-up [136]. Likewise, a prospective
study reported that serum uric acid was an independent predictor of cardiovascular
and all-cause mortality as well as development of new onset hypertension [90]. The
results of the LIFE Study provided additional support for an association between
baseline serum uric acid and increased risk of cardiovascular events [137]. Attenuation
of the increase in serum uric acid by losartan over 4.8 years reduced cardiovascular
events in the high-risk population [137].

In contrast to its adverse effects on the cardiovascular system, serum uric acid
appears to provide a protective action on certain neurologic disorders such as neu-
rodegenerative disease, Parkinson’s disease, multiple sclerosis, and Alzheimer’s
disease/dementia [138—140]. In addition, elevated serum uric acid concentrations
have been associated with lower all-cause and cardiovascular mortality in patients
receiving hemodialysis treatment [128].

It has been postulated that these beneficial actions of hyperuricemia in neurologic
disorders may be due, at least partly, to the antioxidant properties of uric acid [141].

Target organ involvement is a known risk for cardiovascular outcome. In a study
which was part of a larger trial (MAGIC—Microalbuminuria: A Genoa Investigation
on Complications), the relation between serum uric acid and target organ damage
was evaluated in 425 middle-aged (age range 20-67 years) untreated patients with
essential hypertension [142]. Patients with target organ damage had significantly
higher serum uric acid levels [142]. Each standard deviation increase in serum uric
acid was associated with a 75% higher risk of having left ventricular hypertrophy
and a two-times greater risk of having carotid abnormalities (increased carotid
intima-media thickness) and 12% prevalence of microalbuminuria [142].

23.2.3.5 Kidney Disease

Hyperuricemia is highly prevalent in patients with chronic kidney disease, reflect-
ing reduced efficiency of renal excretion of uric acid and associated with hypouri-
cosuria [143]. Hyperuricemia as defined as a serum uric acid of >6.5 mg/dL
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(390 pmol/L) in women and >7 mg/dL (420 pmol/L) in men occurs in many renal
diseases [3].

The role of uric acid in the initiation and progression of chronic kidney disease
remains controversial. Recent epidemiological and experimental evidence suggests
a role for uric acid, not only by a marker of reduced kidney function but also as a
causal risk for the development and progression of renal disease.

Several epidemiological surveys and prospective studies have documented an
association between hyperuricemia and risk of new onset kidney disease. In the
Okinawa General Health Maintenance Association study, which included 6400
Japanese participants with normal renal function at baseline, serum uric acid levels
>8 mg/dL (480 umol/L) were associated with a 2.9 and tenfold increased risk of
developing chronic kidney disease (defined as serum creatinine levels >1.4 mg/dL in
men and >1.2 mg/dL in women) within 2 years in men and women, respectively
[144]. An elevated serum uric acid level was even more predictive for the develop-
ment of renal insufficiency than proteinuria [144]. The relations between serum uric
acid levels and incident kidney disease (defined as glomerular filtration rate-GFR-
decrease of >15 mL/min/1.73m? with a final GFR <60 mL/min/1.73m?) were also
evaluated in over 13,000 participants with intact kidney function in two community-
based cohorts [134]. During a follow-up period of 8.5 years, each 1 mg/dL greater
uric acid level at baseline was associated with an approximately 10% increase in risk
of kidney disease in multivariable adjusted models [134].

The association among longitudinal BP, renal function, and cardiovascular out-
comes was also explored in a large cohort of treated hypertension, attending the
Glasgow BP clinic [121]. The study which included over 6000 patients revealed that
serum uric acid was independently associated with decline in renal function.
Comparing patients in the first quartile of serum uric acid, the relative decrease in
GFR in the fourth quartile was 10.7 mL/min/1.73 m? in men and 12.2 mL/min/1.73 m?
in women [121]. Further, serum uric acid was independently associated with cardio-
vascular and all-cause mortality only in women [121]. On the other hand, there was
no relationship between longitudinal BP control and uric acid level, suggesting that
hyperuricemia does not alter the efficacy of contemporary hypertension management
[121]. Hyperuricemia has been reported to be an independent risk factor for progres-
sion of IgA nephropathy [145]. The association between serum uric acid and risk of
incident chronic kidney disease may be dose response dependent [146]. A prospective
study of over 21,000 patients followed up for a median of 7 years with different serum
uric acid levels but same baseline estimated glomerular filtration rate (¢GFR) [146].
Mild hyperuricemia (7-8.9 mg/dL/420-534 pmol/L) nearly doubled the risk for inci-
dent kidney disease, while more severe hyperuricemia (>9 mg/dL / 2540 pmol/L)
tripled the risk [146]. The association of serum uric acid—incident chronic kidney
disease—persisted despite multiple adjustments by statistical models [146]. These
data indicate that hyperuricemia precedes reduction in GFR [146].

In a randomized clinical trial in 54 hyperuricemic patients with stages 3 and 4
CKD, allopurinol therapy, compared to placebo, during a 1-year follow-up was
associated with a significant reduction in serum uric acid levels and delay in pro-
gression of CKD (defined as an increase in serum creatinine level >40% of baseline
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or the need for replacement therapy suggesting that hyperuricemia may be nephro-
toxic in CKD, accelerating progression to end-stage renal disease) [147].

In contrast, other studies failed to substantiate a relationship between serum uric
acid concentrations and chronic kidney disease. In a separate analysis of 5800 par-
ticipants from the Cardiovascular Health Study (CHS), there was no association
between serum uric acid concentrations and incident CKD defined as eGFR <60 mL/
min/1.73 m? [143]. Likewise in a cohort of patients with predominantly nondiabetic
stages 3 and 4 CKD, hyperuricemia was not an independent predictor of progres-
sion to end-stage renal failure [8].

Experimental studies on rodents provide support for the causal role of serum uric
acid in initiation of chronic kidney disease. Oxonic-induced hyperuricemia in rats
caused a slow development of albuminuria, preglomerular arteriopathy, glomerulo-
sclerosis, tubulointerstitial changes, and hypertension [107]. Controlling hyperuri-
cemia with hypouricosuric agents, in the early phase of the process, prevents
microvascular and histopathologic injury and preserves renal function in these ani-
mals [106, 107].

The question of whether a specific gouty or chronic urate nephropathy exists has
been posed frequently [148]. The current evidence cannot definitely prove or refute
the hypothesis [148].

Kidney disease and hypertension are highly prevalent in gout and hyperuricemia
[134]. Using data from over 5700 participants aged 20 years or older in the National
Health and Nutrition Examination Survey 2007-2008, 74% had hypertension, and
71% had chronic kidney disease stage >2 [149]. With increasing levels of hyper-
uricemia, there was a graded increase in prevalence of these comorbidities [149].
The histopathologic alterations in the kidneys of patients with chronic hyperurice-
mia were obtained from reports of kidney biopsies or autopsies performed before
the advent of uricosuric therapy. Microscopically, the lesions consist of microtophi
of uric acid, usually located in the medulla or papilla associated with a chronic
interstitial inflammation, arteriolar nephrosclerosis, and glomerulosclerosis [150].
However, there was little correlation between the development of gouty or urate
nephropathy and either clinical and laboratory abnormalities or level of serum uric
acid [37, 150]. This has been attributed to the fact that these patients often have
hypertension, diabetes mellitus, dyslipidemia, and older age, all of which by them-
selves can cause renal injury, nephrosclerosis, and renal failure [150].

23.2.3.6 Acute Urate Nephropathy
In addition to its role in the pathogenesis of chronic kidney disease, hyperuricemia
may cause acute kidney injury leading to acute renal failure [151]. Experimental
and clinical data provide support for the direct and indirect role for uric acid in the
development of acute kidney injury [152].

Acute Hyperuricemic Obstructive Nephropathy (Crystal-Dependent
Mechanism of Kidney Injury)

This type of acute renal failure, a complication of tumor lysis syndrome, is
caused by intrarenal deposition of crystals leading to tubular obstruction [152].
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Administration of cytotoxic therapy to large volume, rapidly proliferating hema-
tologic malignancies and some solid tumors, causes release and degradation by
the liver of nucleic acids with production of uric acid and acidic metabolites
[152]. Serum uric acid rises acutely and rapidly to levels often >12 mg/dL
(>720 pmol/L) resulting in marked uricosuria, acidic urine, intravascular volume
contraction and intraluminal formation, and deposition of macro- and microcrys-
tals of uric acid in the distal tubules and collecting ducts with obstruction of
tubular lumina [152].

The aim of therapy is prevention of acute renal failure prior to and during chemo-
therapy by adequate hydration, alkalinization of the urine, and administration of
allopurinol, a xanthine inhibitor, and urate oxidase inhibitors [152, 153].

Despite recent advances in therapy, 5-6% of at risk pediatric and adult patients
receiving chemotherapy develop acute renal failure [151]. About 40-50% of these
patients require dialysis treatment with associated all-cause mortality in excess of
50% [151].

Ischemic Acute Hyperuricemic Acute Renal Failure (Crystal-Independent
Mechanism of Acute Kidney Injury)

There is increasing experimental and clinical evidence that uric acid may cause
acute kidney injury and acute kidney failure by crystal independent mechanisms
[106]. Several studies have reported that acute kidney injury may be precipi-
tated by milder degrees of elevation of serum uric acid concentration [152]. In
subjects undergoing elective but high risk cardiovascular surgery, serum uric
acid levels of >6.1 mg/dL (366 pmol/L) increased the risk of postoperative acute
kidney injury by fourfold, independently of baseline serum uric acid level and
other classical cardiovascular risk factors or previous cardiac surgery [152,
154]. Further, in none of the patients who developed acute kidney injury, the
preoperative serum uric acid concentration was >10 mg/dL (600 pmol/L) [152,
154]. In a retrospective analysis of two large randomized studies of patients
with coronary artery bypass surgery {(GUARDIAN: Guard during Ischemia
Against Necrosis: 11,590 patients) and (EXPEDITION: Sodium-Proton
Exchange Inhibition to Prevent Coronary Events in Acute Cardiac Conditions:
5761 patients)}, the presence of preoperative or postoperative serum uric acid
level >7.5 mg/dL (450 pmol/L) was associated with a two to fourfold increased
risk of developing acute kidney injury, after controlling several other factors
[151, 152].

Several pathophysiologic pathways have been implicated in the pathogenesis of
crystal-independent acute kidney injury. Inflammatory responses, oxidative stress,
endothelial dysfunction, and enhanced renin-angiotensin system contribute to renal
vasoconstriction, preglomerular arteriopathy, and impaired renal autoregulation
[151, 152]. Several of these pathologic factors have been documented in oxonic-
mediated hyperuricemia in animal models and in the human [54, 106].

The management of crystal-independent acute kidney injury remains unclear.
Diuretics do not appear to protect against the development of acute renal failure, but
may even prolong recovery of renal function [151, 155].
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23.3 Association of Fructose Consumption, Hyperuricemia,
Metabolic Disorders, and Cardiorenal Diseases

The prevalence of hyperuricemia has doubled worldwide [68, 156]. Hyperuricemia
has been associated with the metabolic syndrome and implicated as a risk factor in
the etiology of hypertension, atherosclerosis, insulin resistance, diabetes mellitus,
and kidney disease [4, 6-8]. Among dietary products, consumption of sugar-
sweetened beverages can induce hyperuricemia [157-159]. Although these bever-
ages do not contain purines, they contain large amounts of sweeteners including
sucrose (composed of 50% fructose and 50% glucose), fructose, and high-fructose
corn syrup (composed of 55% fructose and 45% glucose) [73, 160]. Both fructose
and high-fructose corn syrup have been associated with elevated levels of serum
uric acid [161].

Fructose is an isomer of dextrose synthesized from corn syrup and is currently
used as a sweetener in preference to naturally occurring sucrose [161]. Fructose is
unique among sugars in that it rapidly causes depletion of ATP and increases both
the generation and release of uric acid [162].

Experimental studies in animals support a link between fructose intake, hyper-
uricemia, and hypertension. Administration of fructose is associated with enhanced
sympathetic nervous and renin-angiotensin systems, increased heart rate, hyperuri-
cemia, sodium retention, renal structural and functional alterations, and hyperten-
sion [162-165]. In addition, fructose feeding induces also insulin resistance and the
metabolic syndrome [165]. However, fructose does not increase BP effectively in
rats except during active ingestion [162]. This observation has been attributed, at
least partly, to the presence of uricase enzyme in rats which blunts the BP response
to uric acid [162].

Epidemiological, cross-sectional, and clinical studies reported an association
between fructose intake, hyperuricemia, hypertension, and chronic kidney disease.
In the NHANES (1999-2004), a strong association between sugar-sweetened drinks,
uric acid levels, and hypertension was observed in adolescents [74]. Adolescents
with higher sugar-sweetened beverage consumption had higher serum uric acid lev-
els and systolic BP [74]. Similarly, a correlation between fructose from added sugars
and elevated BP levels was reported in the NHANES (2003-2006) [166].

Another cross-sectional study from Brazil examined the association between
type of softdrink consumption and BP in Brazilian adolescents [167]. Adolescents
consuming diet soft drinks had the highest BP levels compared to nonconsumers
and consumers of regular sugar-sweetened beverages [167]. Further, consumers
of sugar-sweetened beverages had greater values of BP compared to noncon-
sumers [167].

Consumption of fructose-rich drinks is associated with BP elevation. Acute
ingestion of 60 g of fructose (which is comparable to 12 ounces of soft drinks)
caused an increase in BP in healthy young adults [162]. Similarly, administration of
200 g of fructose per day for 2 weeks increased both fasting serum uric acid levels
and clinic and 24-h ambulatory BP in healthy adult men [162, 168]. Allopurinol
administration reduced both serum uric acid levels and BP [162, 168].
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In contrast to the other studies, the Nurse and Health Professionals study could
not document an association between fructose and BP elevation [169]. Further in
that study, the risk of hypertension and cardiovascular disease was attributed to fac-
tors other than or in addition to fructose [170].

There is increasing evidence that fructose may have a role in the development
of chronic kidney disease. In the NHANES (1999-2004) study, consumption of
one or more sugar containing beverages was associated with an increased risk of
albuminuria [171]. Further, in the Atherosclerotic Risk in Communities (ARIC)
study, the odds ratio for chronic kidney disease (eGFR <60 mL/min/1.73 m?)
increased significantly to 2.59 among participants who drank more than one
sugar-sweetened soda per day and had a serum uric acid level of >9 mg/dL
(540 pmol/L) [159].

23.4 Thiazide Diuretics, Hyperuricemia, and Target Organ
Involvement

Thiazide diuretics, first introduced in 1957, remain the mainstay of antihypertensive
therapy as monotherapy or in combination with other agents [172—-174]. Clinical
trials have demonstrated the effectiveness of thiazide diuretics in reducing BP and
cardiovascular morbidity and mortality in uncomplicated essential hypertension
[173, 174]. However, the use of these medications is associated with serious adverse
reactions including hyperuricemia, hypokalemia, metabolic disturbances, and target
organ involvement [175].

In this section, discussion will be limited to adverse reactions of the thiazide-
induced hyperuricemia.

Thiazide diuretics can induce hyperuricemia even at low dose (Table 23.5) [176].
Thiazide-induced hyperuricemia has been reported to be associated with an
enhanced cardiovascular risk. In the Systematic Worksite Treatment Program which
included over 7000 mild to moderately hypertensive subjects followed for 20 years,
the risk of cardiovascular events was significantly increased in those who had a high
serum uric acid level [177]. Similarly, in the Systolic Hypertension in the Elderly
Program (SHEP) trial, the reduction in risk of coronary artery events observed with
chlorthalidone was completely abolished in those subjects whose uric acid levels
increased more than 1 mg/dL during treatment, despite adequate BP control [135].

The thiazide-induced increase in serum uric acid is independent of hypokalemia
[175].

Thiazide diuretics may cause renal damage. Both clinical and population studies
have reported that thiazide diuretics are not renoprotective, but may even accelerate

Table 23.5 Diuretic-induced Diuretic Once daily dose (mg/day)
elevation in serum uric acid Hydrochlorothiazide 12.5
(low dose) Chlorthalidone 12.5-25

Bendrofluazide 1.25

Indapamide 1
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the progression of renal disease in the population [175]. In several randomized clini-
cal trials, the use of thiazides was associated with a greater decline in renal function
than with other antihypertensive compounds [175]. Further, it has been postulated
that thiazide use was epidemiologically associated with an increasing incidence of
end-stage renal disease (ESRD) in the USA [178].

Thiazide administration to animals causes kidney damage including glomerular
ischemia and medullary tubulointerstitial changes [175].

The mechanism of thiazide-associated kidney damage in animal has not been
elucidated, but appears to be multifactorial [179]. Hyperuricemia appears to play an
important role [108].

23.5 Indications for Urate-Reducing Therapy

Although there is increasing evidence for a link between hyperuricemia and risk of
hypertension and cardiorenal endpoints, the role of urate-reducing therapy remains
controversial.

Several drugs are known to lower serum uric acid. These include (1) uricosuric
drugs, such as probenecid, which increase urinary uric acid excretion; (2) xanthine
oxidase inhibitors such as allopurinol and febuxostat, which block the final step in
uric acid production; and (3) rasburicase, a recombinant urate oxidase enzyme
which converts uric acid to allantoin [180].

In the younger population with essential hypertension (children, adolescents,
young adults), hyperuricemia is both a marker and a causal link to new onset
hypertension [61, 87, 108]. Urate-reducing therapy normalizes both serum uric
acid levels and BP [61]. However, urate-lowering therapy is not indicated in this
age group [108]. First, there are no large clinical trials to confirm the therapeutic
antihypertensive efficacy of urate-reducing therapy [108]. Second, urate-lowering
therapy may be associated with serious adverse reactions. Allopurinol can cause a
rare but life-threatening reaction known as allopurinol hypersensitivity syndrome,
characterized by a rash, impaired renal function, hepatocellular injury, fever, eosin-
ophilia, and leukocytosis [181, 182]. This reaction has been reported in both ado-
lescent and adult hypertensive subjects and even in allopurinol treated gouty
patients [108, 181, 182]. Further, probenecid which interferes with the renal clear-
ance of numerous drugs can induce hyperuricemia and urate nephrolithiasis [108].
Third, the antihypertensive efficacy of traditional antihypertensive drugs is greater
than that provided by urate-reducing medications [108].

In contrast, in middle-aged and elderly subjects with essential hypertension, a
causal relationship between hyperuricemia and elevated BP is not obvious but
appears to be minimal [123]. In this older hypertensive population, hyperuricemia
represents more of a risk for cardiovascular and renal disease than a causal link with
hypertension [123].

BP changes and cardiovascular outcomes, after initiation of allopurinol, were
examined in elderly hypertensive subjects (>65 years) in the UK Clinical
Practice Research Datalink, a large computerized database [123]. Compared to
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controls, allopurinol administration induced a mild but significant fall in both
systolic and diastolic BP levels (2.1/1.7 mmHg, respectively). The fall in BP
was independent of baseline serum uric acid and tended to be larger with high
allopurinol doses [123].

In the same study, allopurinol treatment was associated with a reduced risk of
stroke by 50% and cardiac events by 39%. The reduction in cardiovascular events
was greater with higher allopurinol doses [126].

Allopurinol has been reported to improve target organ involvement in patients
with cardiovascular disease. In patients with ischemic heart disease, left ven-
tricular mass was reduced with high-dose allopurinol [183]. Similarly, the pro-
gression of chronic kidney disease is slowed down by both allopurinol and
febuxostat [184, 185].

The improvement in cardiorenal outcome was associated with reduction in serum
uric acid and may be linked to mechanisms unrelated to reduction in serum uric acid
but may be mediated by specific actions of xanthine oxidase agents [123].

Some studies also have examined the effect of urate-lowering therapy on some
indices of vascular function. Allopurinol administration reduced both central blood
pressure and progression of carotid intima-media thickness in patients with recent
ischemic stroke or transient ischemic attacks (TIA) [186]. However, the results on
endothelial function have been contradictory. Allopurinol administration normal-
ized endothelial function in type 2 diabetes with mild hypertension [187]. In con-
trast, urate-reducing agents (allopurinol and probenecid) had no effect on endothelial
dysfunction in normotensive overweight/obese young adults [188].

Non-pharmacologic approaches also have been recommended to reduce serum
uric acid and BP. Reduction in the consumption of sugar-sweetened beverages has
been associated with reduction in serum uric acid levels and BP [189]. Further,
regular physical activity appears to counteract the pathogenetic mechanisms
involved in the association between hyperuricemia and risk of future hypertension
preventing BP elevation [190].

Conclusion

Serum uric acid, a circulating end product of purine metabolism, is a major risk
for incident hypertension, cardiovascular disease, stroke, and chronic kidney dis-
ease. It is eliminated mainly by the kidney and to a lesser extent by the gastroin-
testinal tract. There is a positive correlation between serum uric acid concentration
and incident hypertension in children, adolescents, and younger adult hyperten-
sive population. This relationship is lost with aging and duration of
hypertension.

Hyperuricemia is a characteristic feature of new onset essential (primary)
hypertension in pediatric and younger adult hypertensive patients and appears to
be causally related to BP elevation. In contrast, hyperuricemia appears to act
more as a risk for cardiovascular disease rather than as an etiologic determinant
in older adult hypertensive patients.

In essential (primary) hypertension, elevated serum uric acid concentration is
induced by increased renovascular resistance and reduced renal blood flow.
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Uric acid-lowering therapy in younger hypertensive patients normalizes both

serum uric acid and BP levels, while in middle-aged and elderly hypertensive
subjects, it appears to be associated with reduction of cardiovascular risk and
progression of chronic kidney disease.
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Hypertension in Dialysis Patients: 2 4
Clinical Epidemiology, Pathogenesis,
Diagnosis, and Treatment

Pantelis A. Sarafidis, Panagiotis Georgianos,
and Carmine Zoccali

24.1 Introduction

Among end-stage renal disease (ESRD) patients receiving maintenance hemodialy-
sis or peritoneal dialysis, hypertension is very common, difficult to diagnose and
often poorly controlled [1]. Elevated blood pressure (BP), especially recorded out-
side of the hemodialysis unit with home or ambulatory BP monitoring, is associated
with shorter survival [2—4]. Sodium and volume overload is the most important
cause of hypertension in dialysis patients; accordingly, non-pharmacologic strate-
gies such as dietary sodium restriction, individualized dialysate sodium prescrip-
tion, and gradual dry-weight reduction should be the initial therapeutic approaches
to achieve BP control [1, 5]. However, this approach still remains inadequately
implemented [6, 7]. Even following proper management of sodium and volume
excess, hypertension remains poorly controlled in a substantial proportion of dialy-
sis patients; in these patients, pharmacologic therapy is obviously necessary to
control BP [1, 5].

In this chapter, we discuss the epidemiology, pathogenesis, diagnosis, and treat-
ment of hypertension among patients on dialysis in the light of currently available
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evidence derived from observational and randomized controlled studies; non-
pharmacological and pharmacological strategies to manage hypertension in dialysis
are both included in our discussion. We discuss data from the fewer relevant studies
in peritoneal dialysis patients, summarizing clinical evidence that may be useful for
the management of hypertension in these individuals.

24.2 Diagnosis

In the 2004 National Kidney Foundation Kidney Disease Outcomes Quality
Initiative (NKF-KDOQI) guideline document [8], the diagnosis of hypertension
among patients on hemodialysis was based on BP measurements obtained shortly
before or after dialysis, i.e., when predialysis BP is >140/90 mmHg or when postdi-
alysis BP is >130/80 mmHg, respectively [8]. Whether using conventional peridia-
Iytic BPrecordings is efficient to diagnose and guide the management of hypertension
in the hemodialysis population is a matter of debate for several reasons. Pre- and
postdialysis BP is typically recorded by the dialysis unit staff and without the neces-
sary attention to the technique of BP measurement and the prerequisites for objec-
tive office BP recordings [9]. The high variability of BP from pre- to postdialysis
and from one day to the next in response to the shifts and fluctuations in volume
status and other parameters during the intra- and interdialytic period is another
important issue that imposes particular difficulties in the accurate detection of
hypertension [10]. The typical pattern of hemodynamic response to ultrafiltration is
a BP decrease from pre- to postdialysis; the magnitude of intradialytic BP reduction
is at least partially related to the magnitude and the rate of volume withdrawal dur-
ing dialysis. The exact opposite phenomenon occurs during the out-of-dialysis
interval [11], with several studies showing that interdialytic weight gain is closely
associated with higher predialysis BP [12]. It is therefore not uncommon that predi-
alysis BP levels are within the hypertensive range, whereas postdialysis BP mea-
surements in the same patient are in the normotensive range. The poor diagnostic
accuracy of peridialytic BP recordings is supported by a meta-analysis of clinical
studies showing that both pre- and postdialysis BP provide imprecise estimates of
the mean interdialytic BP recorded with 44-h ambulatory BP monitoring [13].
Furthermore, peridialytic BP recordings have little or no prognostic relations with
mortality in hemodialysis patients [2, 3].

The rate of hypertension misdiagnosis when using peridialytic BP measurements
is unacceptably high [14]. Using BP measurements obtained during the dialysis ses-
sion in combination with the pre- and postdialysis BP may be an alternative approach
to improve the reproducibility, precision, and accuracy of hypertension diagnosis
among hemodialysis patients [15]. Intradialytic BP is usually recorded every 30 min
with the use of an oscillometric devices, sometimes attached to the dialysis machine.
In a diagnostic test study using 44-h interdialytic ambulatory BP as the reference
standard, the average intradialytic BP in combination with peridialytic BP was
shown to have greater diagnostic value compared with peridialytic BP recordings
alone [16]. A median intradialytic cutoff BP of 140/90 mmHg during a midweek
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dialysis session provided greater sensitivity and specificity in detecting interdialytic
hypertension as compared with pre- and postdialysis BP measurements [16].
Despite the fact that the diagnostic accuracy is improved when peridialytic BP
recordings are considered together with intradialytic BP, this approach should
remain a method of last resort, as BP measurements obtained outside of the dialysis
unit appear better methods for the diagnosis of hypertension in these patients [14].

Home BP monitoring is a widely applied and recommended international guide-
line method to diagnose and manage hypertension in the general population [17,
18]. Among patients on dialysis, home BP monitoring is reported to have several
advantages over conventional peridialytic BP recordings [19]. Compared with BP
recordings obtained pre- or postdialysis, home BP exhibits stronger associations
with mean 44-h ambulatory BP [20, 21]. In the Dry-Weight Reduction in
Hemodialysis Patients (DRIP) trial, changes in home BP after 4 and 8 weeks of dry-
weight probing were closely associated with the relevant changes in 44-h ambula-
tory BP; in contrast, predialysis and postdialysis BP recordings were unable to
detect the changes in ambulatory BP caused in response to dry-weight reduction
[22]. Contrary to the high variability and poor reproducibility of conventional perid-
ialytic BP recordings, home BP was shown to have high short-term reproducibility
from 1 week to the next [21]. Compared with the BP measurements obtained within
the dialysis unit, home BP exhibits stronger associations with indices of target-
organ damage [23-25] and represents a more powerful predictor of future cardio-
vascular events or all-cause mortality [2, 3].

The notion that home BP may be a useful tool to guide the management of hyper-
tension among dialysis patients is supported by a pilot study which randomized
65 hypertensive hemodialysis patients to have their antihypertensive drug therapy
adjusted either on the basis of routine predialysis BP recording or with the use of
home BP monitoring [26]. Over a mean follow-up period of 6 months, a signifi-
cant reduction in interdialytic ambulatory BP of 9/7 mmHg was noted in the home
BP-guided group, but not in the predialysis BP-guided group [26]. Another study ran-
domized 34 hemodialysis patients to home BP-guided management plus usual care or
usual care alone for management of hypertension. After 12 weeks of follow-up, the
use of home BP recordings in decision making resulted also in significant reduction
of the average weekly systolic BP as compared with the usual care alone [27].

Ambulatory BP monitoring is considered the “gold standard” method for diag-
nosing hypertension among patients receiving dialysis [1, 18, 28]. The superiority
of this technique over the conventional peridialytic BP measurements is strongly
supported by comparative studies showing that mean 44-h interdialytic BP can bet-
ter predict the presence of target-organ damage (such as echocardiographic LV
hypertrophy) [23] and is more closely associated with all-cause and cardiovascular
mortality [2, 4]. The use of ambulatory BP monitoring has also the advantage of
recording BP during nighttime, providing additional information with respect to the
circadian variation of BP; the presence of a non-dipping nocturnal BP pattern is
very common among dialysis patients and has been associated with LVH [29] and
increased risk of all-cause and cardiovascular mortality [30]. It is important noting
that the superiority of ambulatory BP monitoring over peridialytic BP recordings
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can only partially be explained by the higher number of BP measurements, as inter-
dialytic BP recordings retain their strong prognostic association with cardiovascular
outcomes even when a small number of randomly selected measurements are used
to assess the interdialytic BP burden [31]; the latter suggests that the location and
time frame covered and not the quantity of BP recordings are the major factor deter-
mining the strong prognostic significance of interdialytic ambulatory BP. Despite
the above advantages, ambulatory BP monitoring is still perceived as a technique
with limited applicability in dialysis patients in a reservation arising partly from the
fact that many studies on ambulatory BP monitoring in this population dialysis
patients were performed in a single American academic hemodialysis unit [2, 11,
23]. The high prevalence of non-dipping and nocturnal hypertension among dialysis
patients [32] suggests that the application of ABPM for the diagnosis and the treat-
ment of hypertension is more compelling than in the general population, where
ABPM has already been firmly recommended by different guidelines [33, 34].
Additional research efforts are needed in order to fully elucidate the particular indi-
cations, tolerability, and cost-effectiveness of ABPM. Until such studies are com-
pleted, the wide application of home BP monitoring should be encouraged as a
simple and efficient approach to measure BP and make therapeutic decisions among
patients on dialysis [14]. Figure 24.1 summarizes the thresholds to define hyperten-
sion using home and ambulatory BP monitoring proposed in a recent document of
the EURECA-m working group of ERA-EDTA [18].

Contrary to the typical decline in BP during dialysis, in approximately 10-15%
of dialysis patients, BP exhibits a “paradoxical” intradialytic elevation [35, 36].
Despite the fact that this abnormal pattern of intradialytic hemodynamic response
has been for long recognized, there is no universally agreed definition of intradialy-
sis hypertension. For example, in some studies, intradialysis hypertension was
defined as a rise of at least 10 mmHg in systolic BP during dialysis or immediately
postdialysis in a certain number of dialysis treatments [35, 36]. In other studies,
patients were considered as suffering from intradialysis hypertension when their BP

Definition

Hypertension in CKD and in dialysis patients should be defined on the basis of home (HBPM) or 24-h ambulatory BP monitoring (ABPM) during a
mid-week dialysis interval. Thresholds proposed by the ESH and the ESC can be adopted for CKD patients,® and those by the ASH,® for
hemodialysis patients, as below

Home BP measurements: >135/85 mmHg both for CKD patients and for hemodialysis patients.

Twenty-four- hour ambulatory BP >130/80 mmHg for CKD patients and >135/85 mmHg for hemodialysis patients. In hemodialysis patients,
ABPM should be performed during a mid-week dialysis interval and, whenever feasible, extended to 44 h.

For hemodialysis patients, no recommendation can be made on the basis of predialysis or postdialysis BP. When neither ABPM nor home BP
measurements are applicable in dialysis patients, the diagnosis and the management of hypertension can be made on the basis of conventional
BP (CBP) measurements taken during the dialysis interval. At variance with predialysis BP which has an U-shaped relationship with risk of death,
in the same patients, the average of 3 office measurements (obtained in the sitting position after at least 5 min of quiet rest by trained personnel)
is almost linearly related to the risk of the same outcome.?! The threshold of office BP (140/90 mmHg) recommended by current guidelines for the
definition of hypertension in CKD patients® can be extended also to hemodialysis patients.

Drug therapy goals

Particularly for hemodialysis patients, arterial pressure goals should be established individually, taking into account age, comorbid conditions,
cardiac function, and neurological status

ASH indicates American Society of Hypertension; ASN, American Society of Nephrology; BP, blood pressure; CKD, chronic kidney disease; ESC,
European Society of Cardiology; ESH, European Society of Hypertension; ESRD, end-stage renal disease.

Fig. 24.1 Definition of hypertension in CKD and in ESRD patients (reprinted with permission
from Parati et al. [18])
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showed a change of >0 mmHg from pre- to postdialysis; another definition was the
regression of all intradialytic BP measurements over time with a slope greater than
zero [37]. Of note, intradialysis hypertension is not solely related to mechanistic
changes exerted during the dialysis session but also related to the BP burden during
the interdialytic period. In a case-control study comparing the interdialytic BP pro-
file of 25 patients with intradialysis hypertension (increase in systolic BP >10 mmHg
from pre- to postdialysis in four out of six consecutive dialysis treatments) with that
of 25 age- and sex-matched controls with normal intradialytic hemodynamic
response, Van Buren et al. [38] made the important observation that intradialysis
hypertension is a phenomenon superimposed to systemic background hypertension.
Patients with intradialysis hypertension had higher 44-h interdialytic BP than con-
trols, as well as a gradual BP decline during the first 24 h after dialysis, which
contrasted with the (typical) gradual increase from postdialysis onward in patients
without intradialytic hypertension [38].

24.3 Epidemiology

The estimates of the prevalence, treatment, and control of hypertension among
patients on chronic dialysis are highly variable, depending on the definitions used to
diagnose hypertension as well as on the setting of BP measurement (i.e., routine
peridialytic BP recordings or interdialytic ambulatory BP monitoring) [39-43].

24.3.1 Epidemiology Based on Peridialytic BP Recordings

Hypertension is highly prevalent among patients with chronic kidney disease
(CKD) not yet on dialysis. In a cross-sectional analysis of 10,813 CKD patients
participating in the Kidney Early Evaluation Program (KEEP) in the USA, hyper-
tension (defined as BP >130/80 mmHg or use of antihypertensives) was detected in
86.2% of the overall study cohort; prevalence of hypertension exhibited a stepwise
increase with advancing stage of CKD, increasing from 79.1% in participants with
stage 1 CKD to approximately 95% % (or 91% with the use of 140/90 threshold) in
participants with stage 4 and 5 CKD [44]. An analysis of 238 patients with predialy-
sis CKD followed in a low clearance clinic in the UK confirmed that the prevalence
of hypertension is at 95% (Fig. 24.2) [45]; the mean estimated glomerular filtration
rate (¢GFR) in this cohort was 14.5 mL/min/1.73 m?, suggesting that nearly all
CKD patients just before the initiation of renal replacement therapy are already
hypertensives.

Initiation of dialysis per se may have a substantial impact on management of
hypertension, given the severely impaired ability of patients with advanced CKD
for sodium excretion and the fact that dialysis represents a potent therapeutic tool to
remove the sodium excess [1]. Achievement of sodium and volume control via dial-
ysis often decreases the need for antihypertensive drug therapy in incident dialysis
patients. It is therefore unsurprising that the rates of hypertension prevalence may
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be higher among predialysis CKD patients than among ESRD patients receiving
renal replacement therapy, as discussed below. Moreover, hypertension prevalence
after initiation of dialysis depends on the clinical policies adopted in the renal units
where the patients are being treated. In some renal units which apply long dialysis
and strict control of salt intake, hypertension has a lower prevalence than in those
which don’t apply such a clinical policy [46].

Using the definition of predialysis mean arterial pressure >114 mmHg, Salem
et al. [42] reported that the prevalence of hypertension among 649 hemodialysis
patients from ten dialysis units in Mississippi was 72%. Eighty percent of hyper-
tensive patients had combined systolic and diastolic hypertension and 20% isolated
systolic hypertension. Race, dialysis vintage, primary cause of ESRD, or adequacy
of dialysis had no association with the hypertension status in this study [42]. In
5369 patients participating in the Dialysis Morbidity and Mortality Study Wave
1 [40], the prevalence of hypertension was 63% using the JNC 6 classification
to define hypertension. A hypertension prevalence rate of 70% was reported in a
cross-sectional analysis of the baseline characteristics of 1238 chronic hemodialysis
patients enrolled in the HEMO study [41]. A more detailed evaluation of prevalence,
treatment, and control of hypertension was provided by a cross-sectional analysis
of 2535 clinically stable, hemodialysis patients participating in a multicenter trial
of the safety and tolerability of an intravenous iron preparation [39]. In this survey,
hypertension was defined as a 1-week average predialysis systolic BP >150 mmHg
or diastolic BP >85 mmHg or the use of antihypertensive drugs with prevalence at
86%, and despite the fact that 88% of hypertensives were treated, only 30% of them
had their BP adequately controlled [39]. Information on hypertension prevalence
in countries other than the USA is limited. In surveys made within the frame of the
DOPPS [47], the prevalence of hypertension was very high and rising over time in
all countries. In the last of these surveys [48], hypertension prevalence ranged from
78% in Japan to 95.9% in Germany. All the above estimates should be interpreted
within the context of the unavoidable limitation of the use of routine peridialytic BP
recordings to assess the hypertension status of study participants.



24 Hypertension in Dialysis Patients 389

24.3.2 Epidemiology Based on Interdialytic Ambulatory BP
Monitoring

A more valid estimation of hypertension prevalence and control among dialysis
patients was provided by a recent study using the “gold standard” method of 44-h
interdialytic ambulatory BP monitoring and defining hypertension as average sys-
tolic BP values >135 mmHg and/or diastolic BP >85 mmHg or the use of anti-
hypertensive medications in a population of 369 predominantly African-American
patients who received hemodialysis treatment in units affiliated with the Indiana
University in Indianapolis. The prevalence of hypertension was 82% [43], and
although 89% of hypertensives were treated with antihypertensive drugs, the rate
of adequate 44-h BP control was as low as 38% [43]. Poor hypertension control
in this study was associated with excessive antihypertensive drug use and volume
expansion as measured by the inferior vena cava diameter in expiration [49]. Of
note, other studies suggest that the higher the number of antihypertensive agents
prescribed, the greater the likelihood a dialysis patient to be on a volume-expanded
state [43]. Apart from this study in African-Americans, no large surveys reporting
hypertension prevalence based on ABPM have been made in other ethnicities and
in other countries.

24.3.3 The Association of BP with All-Cause and Cardiovascular
Mortality

The relationship of BP with all-cause and cause-specific mortality among patients
on dialysis is an issue surrounded by substantial controversy, due to the diverse pat-
terns of association between BP and mortality according to timing (i.e., predialysis,
postdialysis, or intradialysis) or the technique of BP measurement (i.e., peridialytic
BP recordings vs. interdialytic BP recording either with home or ambulatory BP
monitoring). Several studies have shown a U-shaped association of the BP recorded
either predialysis or postdialysis with all-cause and cardiovascular mortality [50—
52], a phenomenon described as “reverse epidemiology of hypertension” in the
dialysis population. This observation has raised substantial concerns on whether BP
lowering is a strategy associated with benefits for ESRD patients receiving hemodi-
alysis [53]. However, this U-shaped association seems to be due to the incapacity of
peridialytic BP recordings per se to describe the true BP load, rather than reflect a
true U-shaped relation of BP with cardiovascular morbidity and mortality.
Contrary to the unclear association of peridialytic BP recordings with all-cause
and cardiovascular mortality, prospective cohort studies have shown that interdia-
Iytic BP recorded either with home or with ambulatory BP monitoring associates
directly with mortality and cardiovascular events relevant to what happens in non-
dialysis populations. In a cohort of 57 treated hypertensive hemodialysis patients
prospectively followed for a mean period of 34.4+20.4 months, Amar et al. [4]
showed elevated 24-h ambulatory pulse pressure (PP) [relative risk (RR), 1.85 for
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each 10 mmHg increase in PP; 95% confidence intervals (CIs), 1.28-2.65] as well
as elevated nocturnal systolic BP (RR, 1.41 for each 10 mmHg increase in nocturnal
systolic BP; 95% Cls, 1.08-1.84) to be independently associated with increased risk
of cardiovascular mortality [4]. In larger study by Tripepi et al., in 168 nondiabetic
hemodialysis patients, nocturnal BP burden (as estimated by the night/day ratio)
was a direct predictor of death and cardiovascular events as well as of LVH [30]. In
a subsequent cohort study of 150 hemodialysis patients, Alborzi et al. [3] showed
that increasing interdialytic BP measured with home and ambulatory BP monitor-
ing was directly associated with heightened risk of mortality over a mean follow-up
period of 24 months. No such relationship was detectable using BP measurements
obtained before or after dialysis (Fig. 24.3) [3]. In a larger cohort of hemodialysis
patients followed for 32 months, Agarwal et al. confirmed that the higher quar-
tiles of home and 44-h ambulatory systolic BP were independently associated with
increased risk of mortality [2]. Once again, BP recorded outside of the dialysis unit
was of stronger prognostic significance as compared with BP recorded before or
after dialysis.

Additional support to the notion that out-of-dialysis BP recordings have closer
association with outcomes is provided by a recent prospective analysis of 326
patients participating in the Chronic Renal Insufficiency Cohort (CRIC) study [54].
The prognostic association of systolic BP with all-cause mortality was assessed in
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Fig.24.3 Hazard ratios for all-cause mortality for quartiles of predialysis, postdialysis, and home
and ambulatory systolic blood pressure (BP). Higher levels of home BP and ambulatory BP were
significantly associated with mortality, whereas pre- and postdialysis BP was not. P values are
those reported for linear trend. HD indicates hemodialysis and Q quartile (reproduced with permis-
sion from Alborzi et al. [3])
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three different time points of this prospective cohort: (1) when participants had stage
4 CKD (eGFR <30 mL/min/1.73 m?), (2) when participants initiated hemodialysis
and dialysis unit BP measurements were available, and (3) when incident hemodial-
ysis patients had an out-of-dialysis BP measurement obtained during a prespecified
follow-up visit at home [54]. Systolic BP had no association with mortality among
participants not yet on dialysis. In accordance with earlier reports from other cohorts
of hemodialysis patients, dialysis unit systolic BP provided a U-shaped association
with mortality. In contrast, a direct linear association between systolic BP and all-
cause mortality was evident when BP measurements were obtained outside of the
unit (HR, 1.26 for each 10 mmHg higher systolic BP; 95% Cls, 1.14-1.40) [54].

The pattern of intradialytic hemodynamic response (i.e., the change in BP from
pre- to postdialysis) has been also associated with increased risk of all-cause and
cardiovascular mortality [54, 55]. In this regard, Park et al. [56] revealed a U-shaped
association between intradialytic change in systolic BP and mortality. In a huge
cohort study of 113,215 US hemodialysis patients retrospectively followed over a
median period of 5 years, it was shown that drops in systolic BP from pre- to post-
dialysis between 30 and 0 mmHg were associated with better survival, but large
declines in systolic BP (>30 mmHg) and intradialytic rise in systolic BP of any
degree were both linked with increased risk of mortality [56].

24.3.4 Epidemiology of Hypertension Among Patients Receiving
Peritoneal Dialysis

The prevalence of hypertension among patients on peritoneal dialysis was evaluated
in a cross-sectional study conducted in 504 patients in 27 peritoneal dialysis centers
belonging to the Italian Co-operative Peritoneal Dialysis Study Group [57]. Valid
ambulatory BP measurements were obtained in 414 patients (82%) using the WHO/
ISH and the JNC 7 report criteria; Cocchi et al. reported that the prevalence of
hypertension was 88.1%. Applying the definition of a BP load >30% over a 24-h
ambulatory BP monitoring, the estimated prevalence of hypertension was lower
(69%). The average 24-h blood pressure in this study was 139+19/81+11 mmHg,
clearly indicating that the prevalence of hypertension as defined by the joint docu-
ment of the American Society of Nephrology and the American Society of
Hypertension (SBP >135 and/or DBP >85 mmHg) [1] exceeds 50-60% in the peri-
toneal dialysis population [57]. Of note, as much as 53% of patients in this study
were non-dippers and an additional 9% had an inverted day/night BP profile. Small
studies comparing the ambulatory BP profile between patients treated with auto-
mated peritoneal dialysis vs. continuous ambulatory peritoneal dialysis showed that
the average 24-h BP, diurnal BP variation, and BP control rates were no different
between these two modalities [58, 59]. Other studies have described an association
between BP and peritoneal transport status. Patients with high peritoneal transport
(reflecting poor peritoneal ultrafiltration) have higher BP levels during both daytime
and nighttime periods as well as higher LVMI as compared to “low transporters,”
and this difference most likely reflects volume overload triggered by high peritoneal
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transport in the first group. Volume expansion is more marked in peritoneal than in
hemodialysis patients [60], and these patients more frequently require antihyperten-
sive drugs (65%) than hemodialysis patients (38%, P<0.001). The detrimental role
of volume expansion in patients maintained on peritoneal dialysis is notorious [61].

Given the more continuous nature of renal replacement therapy and the absence
of cyclic variations in volume status and in several other metabolic parameters in
patients receiving peritoneal dialysis, it is long hypothesized that BP control and
diurnal variation of BP may be substantially different between patients treated with
peritoneal dialysis and those receiving thrice-weekly hemodialysis. However, only
two small studies have so far tested this hypothesis. Tonbul et al. [62] compared
the 44-h ambulatory BP profile of 22 hemodialysis patients with that of 24 patients
treated with continuous ambulatory peritoneal dialysis. Mean 44-h systolic and dia-
stolic BP was no different between the two dialytic modalities; however, in hemo-
dialysis nighttime BP recorded on the dialysis-off day was significantly higher,
and daytime BP recorded on the dialysis-on day was significantly lower than the
relevant BP recordings obtained in the same time periods in patients treated with
continuous ambulatory peritoneal dialysis [62]. Another comparative study includ-
ing 33 hemodialysis and 27 peritoneal dialysis patients showed that diurnal BP pat-
tern (i.e., dipping status) did not differ between the two dialytic modalities over a
48-h ambulatory BP recording, but average ambulatory systolic BP (142.1£16.3
vs. 130.4+17.1 mmHg, P<0.01) and systolic loads (54+29% vs. 30+31%, P<0.01)
were higher in those receiving hemodialysis [63]. It has to be noted, however, that
methodologically rigorous randomized comparisons between hemodialysis and
peritoneal dialysis are missing, and the studies performed so far are small and
largely inconclusive.

24.4 Pathogenesis

Increase in cardiac output or in peripheral vascular resistance or in both these hemo-
dynamic parameters may result in sustained BP elevation among patients on dialy-
sis. Undoubtedly, sodium and volume expansions are considered the prominent
pathogenic mechanisms of hypertension in these individuals. A number of non-
volume-mediated pathways, such as activation of the renin-angiotensin-aldosterone
and sympathetic nervous systems, structural arterial wall alterations related to the
long-term arteriosclerotic process, endothelial dysfunction, sleep apnea, and the use
of particular medications like erythropoietin-stimulating-agents (ESAs), are also
reported to play an important role in the complex mechanistic background of hyper-
tension in dialysis patients.

24.4.1 Volume Overload

In patients with ESRD, even when residual renal function is preserved, the sodium
and fluid excretory capacity is substantially impaired; subsequently, the presence of
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sodium and volume expansion is very common and often not easily identifiable in
dialysis patients. Moreover, patients with ESRD are those with the highest sodium
sensitivity of BP [64, 65]. In addition, it is now well documented that in addition to
classical osmotic volume expansion, sodium retention may occur in the form of
osmotically inactive sodium in the connective tissue and the skin where sodium
accumulates linked to glycosaminoglycans [66]. Such a non-osmotic sodium reten-
tion triggers local macrophage recruitment, lympho-angiogenesis, and hypertensive
mechanisms independent of those traditionally ascribed to isoosmotic volume
retention. In hemodialysis patients, sodium and water in skin and muscle are
increased and vascular endothelial growth factor is reduced as compared to age-
matched healthy individuals, and these phenomena may also contribute to hyperten-
sion [67]. Fluid and sodium accumulation between subsequent dialysis treatments
exerts a substantial impact on the patterns and rhythms of interdialytic BP, which is
superimposed on the circadian variation of BP. Among hemodialysis patients, BP
steadily increases during the interdialytic interval and the rate of BP increment is
directly proportional to the interdialytic weight gain [68]. Studies including 48-h
ambulatory monitoring of central hemodynamic indices in hemodialysis patients
showed a gradual increase in peripheral and central aortic BP between the intra- and
interdialytic periods [69]. Excess volume accumulation over the long interdialytic
interval in patients receiving thrice-weekly hemodialysis imposes an additional BP
load during the third interdialytic day (Fig. 24.4). In a study of 55 hemodialysis
patients having a 72-h ambulatory aortic BP monitoring, a significant increase of
5/3.5 mmHg in aortic BP was noted between the third and the second day of the
long interdialytic intervals; nighttime BP and the proportion of patients with a non-
dipping circadian BP pattern were also higher during the third interdialytic day [70].
Unless extracellular fluid and sodium overload is removed with ultrafiltration, a rise
in vascular resistance would sustain hypertension in these individuals. In this con-
text, strict volume and sodium control emerges as the principal target of therapy in
hypertensive patients with ESRD.

A0SBP (mmHg) |—— |

AoDBP (mmHg) h !

AoPP (mmHg)
MBP (mmHg) |

Alx (%)
AIX(75) (%)

B ADay(2)-Day(1)
@ ADay(3)-Day(2)

PWV(m/sec)

1 2 3 4 5 6

o 4

Fig. 24.4 Changes in aortic blood pressures, wave reflections, and arterial stiffness parameters
between the first and the second interdialytic day A[day(2)—day(1)], in comparison with relevant
changes between the second and the third interdialytic day A[day(3)—day(2)] (reprinted with per-
mission from Koutroumpas et al. [70])
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24.4.2 Renin-Angiotensin-Aldosterone System

Activation of the renin-angiotensin-aldosterone system (RAAS) even in patients
with ESRD under renal replacement therapy is long known [71, 72]. Plasma renin
activity (PRA) is maintained within the normal range in the majority of dialysis
patients; however, PRA may be inappropriately elevated in relation to the total
exchangeable sodium and may contribute to the sustained BP elevation [73]. This
notion is supported by clinical studies showing a significant increase in PRA and
plasma aldosterone levels from pre- to postdialysis, suggesting that residual func-
tioning nephrons in the failing kidneys of ESRD patients retain their ability to sense
acute changes in sodium and intravascular volume status that occur in response to
ultrafiltration [71, 73]. Additional support to the fact that BP elevation in a subset
of dialysis patients may be in part renin mediated is provided by earlier studies
showing a sustained BP reduction in hypertensive dialysis patients after the admin-
istration of the angiotensin II antagonist saralasin; removal of the native kidneys
from the BP responders was associated with long-term normalization of their BP
levels [74]. More recent studies have shown a dose-dependent elevation in pre- and
postdialysis PRA levels along with a parallel fall in 44-h [75] interdialytic ambula-
tory BP in response to the supervised administration of the angiotensin-converting
enzyme inhibitor (ACEI) lisinopril [75]. In addition to the above, the relationship
between PRA, aldosterone, and major clinical outcomes in dialysis patients is com-
plex and much influenced by malnutrition and inflammation. Indeed, independently
of predialysis BP, aldosterone is an inverse predictor of mortality and CV events in
this population, and this seemingly paradoxical relationship is abolished by adjust-
ment for inflammation, protein energy malnutrition, and volume expansion bio-
markers indicating that it is the mere expression of the confounding effect of these
factors [76].

24.4.3 Sympathetic Nervous System

Seminal microneurography studies assessing efferent sympathetic nerve activ-
ity have provided evidence that sympathetic overactivity is an important cause of
hypertension among patients on dialysis. These clinical studies showed a doubling
in the rate of sympathetic discharge in hemodialysis patients with intact native kid-
neys; in contrast, sympathetic nerve activity in bilaterally nephrectomized hemodi-
alysis patients was similar to that of healthy individuals [77]. Bilateral nephrectomy
of native failing kidneys was shown to be associated with sustained reduction in
peripheral vascular resistance as well as with dramatic drop in BP levels [78]. The
notion that sympathetic overactivity is implicated in the causal pathway of hyper-
tension in dialysis patients is also supported by recent reports in small groups of
patients suggesting that renal denervation exerts a significant BP-lowering effect and
improves sympathetic nerve discharge among dialysis patients with hypertension
that remains unresponsive to multidrug antihypertensive therapy and ultrafiltration
intensification [79, 80]. In a proof-of-concept study, Schlaich et al. [81] performed
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renal nerve ablation in 12 hemodialysis patients with uncontrolled hypertension
(office BP>140/90 mmHg) despite the current use of >3 antihypertensive drugs.
The procedure of renal denervation was feasible in nine out of 12 study participants;
among these patients, a significant drop of 28/10 mmHg in office BP was noted over
a mean 12-month-long follow-up period [81].

Renalase, an enzyme that metabolizes catecholamines and catecholamine-like
substances, may contribute to the excessive sympathetic overactivity and hyperten-
sion in CKD [82]. Renalase is a flavin adenine dinucleotide-dependent amine oxi-
dase which is secreted in the blood by the kidney [82]. Infusion of recombinant
renalase in rats produces a significant reduction in BP and heart rate, an effect pre-
dominantly mediated through reduced peripheral vascular tone and cardiac output
[83]. The plasma concentration of renalase was shown to be markedly decreased in
hemodialysis patients as compared to age- and sex-matched controls with normal
renal function [84].

24.4.4 Arterial Stiffness

Patients with ESRD display a distinct form of early increase in arterial stiffness, due
to a combination of factors, mostly relevant to inappropriate calcium-phosphate
homeostasis [85]. Among dialysis patients, arterial stiffness, as assessed by aortic
pulse wave velocity (PWYV), is a relevant determinant of the patterns and rhythms of
BP recorded over the entire interdialytic period [85-87]. Analyzing 11,833 interdia-
lytic BP measurements obtained from 125 hemodialysis patients with the use of a
generalized cosinor model, Agarwal et al. [86] showed that each one log increase in
aortic PWV was associated with a rise of 18.8/7.08 mmHg in the intercept of sys-
tolic/diastolic BP and with elevation of 11.7 mmHg in the intercept of PP. Increasing
aortic PWYV tended also to blunt the circadian amplitude of systolic BP and PP [86].
Subsequently, in a post hoc analysis of the HDPAL trial, it was shown that increas-
ing aortic PWV at baseline was an independent determinant of 44-h ambulatory
systolic BP and PP. After adjustment for several confounding factors, each 1-m/s
higher baseline aortic PWV was associated with 1.34-mmHg higher baseline sys-
tolic BP and 1.02-mmHg higher PP [87]. However, aortic PWV at baseline was
unable to predict the treatment-induced reduction in 44-h ambulatory systolic and
diastolic BP at 3, 6, and 12 months of follow-up [87]; the latter suggests that among
dialysis patients, arterial stiffness does not make hypertension more resistant to the
BP-lowering therapy. Studies evaluating acute changes in arterial stiffness indexes
during the interdialytic periods showed that augmentation index (AlIx) and central
aortic PP are increased during both 3-day and 2-day interdialytic intervals; aortic
and brachial PWV was unchanged in this short time frame [88]. This increase in
wave reflection indices was by 30% higher during the 3-day as compared to the
2-day interdialytic interval and was linearly associated with interdialytic weight
gain [88]. This observation was confirmed in subsequent studies showing a gradual
interdialytic increase in wave reflection indices and central aortic BP with the use of
ambulatory BP monitoring [69, 70].
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24.4.5 Endothelial Dysfunction

An imbalance between endothelium-derived vasoconstrictors and vasodilators in
favor of the former may be another mechanistic pathway of hypertension among
patients on dialysis [89]. This is supported by animal studies showing downregula-
tion of the endothelial and inducible nitric oxide synthase activity in 5/6 nephrecto-
mized rats, an alteration that resulted in sustained BP elevation [90]. Endothelial
dysfunction results from several mechanisms including high circulating levels of
asymmetric dimethylarginine (ADMA) [91, 92]; an endogenous nitric oxide syn-
thase inhibitor and its accumulation result in reduced generation of nitric oxide [93].
The higher levels of ADMA in ESRD result from both a diminished intracellular
degradation by desamino-D-argininehydrolase and diminished renal clearance of
ADMA, since this molecule is mainly excreted by the kidney [93]. Among ESRD
patients, ADMA is associated with increased LV relative wall thickness and reduced
ejection fraction. Importantly, prospective cohort studies have associated increased
ADMA levels with excessive risk of cardiovascular morbidity and mortality in
hemodialysis patients [91, 93].

24.4.6 Sleep Apnea

Sleep apnea is highly prevalent among dialysis patients and volume expansion may
be a major player in this alteration [94]. In the recumbent position, volume overload
may promote sleep-disordered breathing and nocturnal hypoxemia through an over-
night fluid shift from the legs to the neck soft tissues that increases peripharyngeal
and upper airway resistance [95]. Nocturnal hypoxemia in sleep apnea has been
associated with a reversed circadian BP pattern, triggering in this way nocturnal
hypertension. This notion is supported by a study of 32 hemodialysis patients show-
ing that those patients experiencing sleep apnea had higher nocturnal systolic BP
and higher LV relative wall thickness than those without sleep apnea; an inverse
relationship was noted between the average nocturnal arterial oxygen saturation and
LV relative wall thickness [29]. In another study, Abdel-Kader et al. [96] showed that
ESRD patients with sleep apnea had 7.1 times higher risk of developing resistant
hypertension (defined as office BP >140/90 mmHg despite the use of >3 different
antihypertensive agents); in contrast, no such association between sleep apnea and
resistant hypertension was noted among patients with non-dialysis-requiring CKD
[96]. Whether strict management of volume status improves sleep apnea symptoms
and restores the blunted nocturnal BP fall in dialysis patients still remains elusive.

24.4.7 Erythropoietin-Stimulating Agents
Hypertension is a common but frequently overlooked complication of erythropoie-

tin therapy [97]. New-onset hypertension or worsening of pre-existing hypertension
can be easily missed due to the high variability of BP in dialysis patients [10]
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particularly in the absence of properly performed home or ambulatory BP measure-
ments. Studies that did not detect BP elevation in response to erythropoietin therapy
may have managed hypertension more aggressively through intensification of anti-
hypertensive drug therapy and closer monitoring of volume status [97]. Existing
studies have associated erythropoietin-induced hypertension with increased circu-
lating endothelin-1 concentration or enhanced vasoconstrictive response to endo-
thelin-1 [98, 99], increased sensitivity to the pressor effect of angiotensin II [100],
and increased vascular reactivity to norepinephrine [101].

24.5 Treatment
24.5.1 Non-pharmacological Management of Hypertension

Once an accurate diagnosis of hypertension is made (see above), the management of
hypertension in dialysis patients should start with non-pharmacological therapeutic
measures aiming to control sodium and volume excess. This includes (1) dietary
sodium restriction [102, 103], (2) individualized prescription of the sodium concen-
tration in the dialysate to avoid intradialytic sodium loading, (3) proper adjustment
of dry weight, and (4) avoiding shorter dialysis. Outside the realm of hypertensive
urgencies and emergencies [6], and the fact that common antihypertensive agents
may be needed for other indications (i.e., f-blockers for angina symptoms, heart
failure, or rate control, RAS blockers for heart failure, etc.), administration of anti-
hypertensive drug therapy in dialysis patients considered to be volume overloaded
should follow the attainment of dry weight.

24.5.1.1 Restricting Dietary Sodium Intake

Among dialysis patients, restricting dietary sodium is proposed as a simple and
effective maneuver to limit the sense of thirst, reduce interdialytic weight gain, and
facilitate the achievement of dry weight [102]. Instead of dietary sodium restriction,
patients on dialysis are often instructed to avoid excess fluid accumulation during
the interdialytic interval. With the exception of treating hyponatremia, there is no
specific indication to prescribe fluid-restrictive diets in chronic dialysis patients
[104]. Currently available recommendations suggest that among dialysis patients,
dietary sodium intake should not exceed 1.5 g (or approximately 65 mmol) sodium
per day [103].

24.5.1.2 Individualizing the Dialysate Sodium Prescription

To ensure hemodynamic stability during dialysis and limit the risk of intradialytic
symptoms (i.e., disequilibrium, nausea, vomiting, muscle cramps, etc.), prescription
of a high dialysate sodium concentration was initially the most preferable therapeu-
tic choice for patients receiving long-term dialysis [105, 106]. Earlier studies sup-
ported the notion that high dialysate sodium minimizes the intradialytic hypotensive
episodes without worsening interdialytic hypertension [107, 108]. However, more
recent works challenged the conclusions of those studies and emphasized that a high
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dialysate sodium concentration may increase thirst and, therefore, interdialytic
weight gain leading to the need for higher ultrafiltration during the next dialysis
session [105, 106]. Indeed, in a study in 1084 hemodialysis patients, Munoz
Mendoza et al. [109] found that dialysate sodium prescriptions ranging from 136 to
149 (median, 140) mEq/L, with most patients being dialyzed against a positive
sodium gradient, resulted in over 90% of patients having a rise in serum sodium
across dialysis and thus higher postdialysis thirst and interdialysis weight gain. A
consensus document by the chief medical officers of US dialysis providers warns
against the use of dialysate with a sodium concentration exceeding predialysis
serum sodium [105, 106]. This increase in interdialytic weight gain leads to the
need for higher ultrafiltration during the next dialysis session, which may act as a
triggering factor for more frequent episodes of intradialytic hypotension and pre-
scription of even a higher dialysate sodium concentration, precipitating in this way
a vicious cycle [105, 106].

A positive intradialytic sodium balance may also arise in patients receiving
sodium-profiling dialysis. A randomized crossover study of 11 dialysis patients
compared the effect of performing sodium-profiling dialysis with a time-averaged
concentration (TAC) of dialysate sodium of 140 mmol/L [TAC(140)] vs. sodium-
profiling dialysis with a TAC of 147 mmol/L [TAC(147)] vs. conventional dialysis
with a dialysate sodium of 138 mmol/L [110]. An increase in mean 24-h interdia-
Iytic BP, in interdialytic weight gain, as well as in interdialytic discomfort symp-
toms was evident during the period of TAC(147) sodium-profiling dialysis as
compared with the periods of TAC(140) and TAC(138). Increase in interdialytic
weight gain and interdialytic systolic BP was directly proportional to the TAC of the
dialysate sodium [110].

The vicious cycle of intradialytic sodium loading can be interrupted by individu-
alizing the prescription of the sodium concentration in the dialysate. A single-blind,
randomized, crossover study compared the effect of individualized prescription of
the dialysate sodium concentration (the dialysate sodium set to match predialy-
sis sodium during standard dialysis applying a 138 mEq/L sodium concentration
multiplied by 0.95 to allow for the Gibbs-Donnan effect) with that of a standard
dialysate sodium concentration set to 138 mEq/L in nondiabetic, non-hypotension-
prone dialysis patients. Compared with the period of standard dialysate sodium,
a significant reduction in interdialytic weight gain (2.91+0.87 vs. 2.29+0.65 kg,
P<0.001), interdialytic thirst score, and episodes of intradialytic hypotension was
evident during the period of individualized dialysate sodium prescription [111]. A
pilot study using a biofeedback software system to progressively reduce postdialy-
sis plasma conductivity from 14.0 to 13.5 mS/cm [112] showed that this maneu-
ver resulted in significant reduction of postdialysis plasma sodium from 137.8 to
135.6 mmol/L. Diffusive sodium removal in addition to convective losses induced
a nearly 100 mmol/L higher net intradialytic sodium loss resulting in reduction
in the extracellular body water compartment, lower interdialytic weight gain, and
drop in predialysis BP [112]. In a subsequent single-blind, crossover study of 15
patients receiving thrice-weekly in-center, nocturnal dialysis, lowering the dialy-
sate sodium concentration from 140 to 136 or 134 mEq/L for a 12-week treatment
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period decreased interdialytic weight gain by 0.6+0.6 kg and predialysis systolic BP
by 8.3£14.9 mmHg without increasing intradialytic hypotensive episodes [113]. In
a 3-week, two-arm, randomized, crossover trial of 16 dialysis patients with intra-
dialysis hypertension, Inrig et al. [114] compared the effect of a high (5 mEq/L
above serum sodium) vs. a low dialysate sodium concentration (5 mEq/L below
serum sodium) on intradialytic BP and endothelium-derived vasoregulators. The
weekly averaged predialysis systolic BP was lower during the period of low dialy-
sate sodium concentration compared with dialysis treatments with high dialysate
sodium (parameter estimate, —9.9 mmHg; 95% CI, —13.3 to —6.4 mmHg; P<0.001)
[114]. Overall these studies suggest that a single dialysate sodium prescription may
not fit all patients. Individualizing the dialysate sodium prescription may facilitate
the achievement of euvolemia without aggravating the risk of intradialytic hemody-
namic instability.

Similarly to the low dialysate sodium in hemodialysis patients, increasing the
diffusive component of sodium removal with the use of low-sodium peritoneal dial-
ysis fluids is suggested to be an effective maneuver to improve BP control among
patients receiving peritoneal dialysis. In a nonrandomized interventional study
comparing a standard vs. a low-sodium peritoneal dialysis solution substituted for
one 3- to 5-h exchange over a mean follow-up period of 2 months, low-sodium
concentration in the dialysate resulted in a significant increase of 30-50 mmol/
dwell diffusive peritoneal sodium removal [115]. Associated benefits of this inter-
vention were significant reductions in the sense of thirst and total body water
assessed by bioelectrical impendence analysis, together with a significant fall of
8 mmHg in nighttime systolic BP [115]. Prescribing low-sodium dialysate solutions
and achieving adequate volume control through icodextrin solutions may have addi-
tive benefits in patients being on a volume-expanded state. A small, open-label ran-
domized study lasting 12 months showed that compared with standard glucose
peritoneal dialysis solutions, the use of icodextrin as an osmotic agent is associated
with better extracellular volume control and greater reduction in systolic and dia-
stolic 24-h ambulatory BP [116].

24.5.1.3 Probing of Dry Weight

The adequate management of dry weight among dialysis patients is challenging
[117]. The most important issue is the absence of a widely accepted definition of dry
weight. Sinha and Agarwal [118] defined dry weight as the lowest tolerated postdi-
alysis weight achieved through gentle and gradual reduction in postdialysis weight
at which patients experience minimal signs or symptoms of either hypovolemia or
hypervolemia [118].

Another challenge in the management of volume status among dialysis patients
is the absence of a single clinical test to reliably adjudicate whether a patient has
reached the “ideal” dry weight or whether the patient remains volume overloaded.
The presence of pedal edema is frequently used in daily clinical practice as a simple
physical sign to assess dry-weight achievement. The reliability of pedal edema as a
sign of volume excess was investigated in a cross-sectional analysis of 146 asymp-
tomatic dialysis patients, in which echocardiographic parameters, blood volume
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monitoring, plasma volume markers, and inflammatory markers were measured as
exposure variables, whereas pedal edema was assessed as an outcome variable
[119]. This study showed that pedal edema exhibited significant associations with
several cardiovascular risk factors such as age, body mass index, and LV mass
index. However, indices reflecting intravascular volume, such as inferior vena cava
diameter, blood volume monitoring, and plasma volume biomarkers, were not inde-
pendent determinants of the presence of pedal edema [119].

Achievement of dry weight is a long-term process, in which the interaction
between the doctor and the patient plays a prominent role. Dry-weight reduction is
often accompanied by uncomfortable intradialytic symptoms such as hypotension,
dizziness, cramps, nausea, and vomiting. Physicians often respond falsely to these
symptoms with therapeutic interventions such as cessation of ultrafiltration, intrave-
nous saline infusion, premature termination of dialysis, increasing the dialysate
sodium concentration or finally raising the dry weight, and subsequently increasing
the number of prescribed antihypertensive medications, which all finally act as bar-
riers to the dry-weight achievement [1, 106]. The strongest evidence that probing of
dry weight is an effective intervention in order to improve BP control among patients
on dialysis is provided by the DRIP trial [120]. In this trial, 100 long-term hyperten-
sive dialysis patients were randomly assigned to an intensive ultrafiltration group, in
which the dry weight was probed without increasing the frequency or duration of
dialysis; another 50 patients were randomly assigned to a control group, in which
patients had only physician visits without any modification in their volume status
[120]. The primary trial end point was the difference between the ultrafiltration and
control groups in the change of 44-h interdialytic ambulatory BP during follow-up.
Postdialysis weight was reduced by 0.9 kg at 4 weeks and resulted in a significant
reduction of 6.9 mmHg (95% CI, —12.4 to —1.3 mmHg) in systolic BP; diastolic BP
exhibited also a significant drop of 3.1 mmHg (95% CI, —6.2 to —0.02 mmHg). The
overall dry-weight reduction achieved at study completion (8 weeks) was 1 kg; the
associated BP-lowering benefit was a reduction of 6.6/3.3 mmHg in 44-h interdia-
lytic ambulatory BP at 8 weeks of dry-weight probing (Fig. 24.5) [120]. The DRIP
trial provided the net BP-lowering efficacy of dry-weight reduction, since back-
ground antihypertensive treatment of study participants remained unchanged
throughout the trial. Of importance, this benefit was seen without any deterioration
in parameters of health-related quality of life [120] and with a reduction in LV
chamber volume [121]. The findings of the DRIP trial are in general agreement with
previous uncontrolled observations in small series of patients [122-124].

In contrast to the above, benefits on BP control of intensification of ultrafiltration
without prolonging dialysis time may be counterbalanced by a higher risk of hospi-
talizations for cardiovascular complications and arteriovenous fistula clotting [125].
High ultrafiltration rates increase the risk of dialysis hypotension, and in one obser-
vational study, ultrafiltration rates greater than 12.4 mL/kg per hour were associated
with increased mortality [126]. Overall, dry-weight reduction may be more easily
and safely achieved in multiple sessions or by prolonging the dialysis time to
achieve a slower ultrafiltration rate, as discussed below.
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