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Preface

Over the last decades progress in our understanding of the pathophysiology, epide-
miology, and therapeutic approaches to hypertension has led this condition to be 
viewed differently from the past. Hypertension, initially classified as primary and 
secondary, is now subdivided into a much larger number of phenotypes based on 
demographics, comorbidities, presence or absence of other risk factors, or target 
organ involvement. Genetic involvement is also now clearer. The aim of this book is 
to discuss the multiple new aspects (some of which novel) of the hypertension dis-
ease. Sections are devoted to the general aspects of hypertension including the clini-
cal importance of blood pressure values different from the conventional office ones, 
the relevance to pathophysiology and prognosis of circadian rhythm and seasonal 
variations in blood pressure, the temporal evolution of treated and untreated hyper-
tension, and the factors involved in the appearance and progression of a blood pres-
sure elevation, including the possible contribution of single or, for essential 
hypertension, multiple genes. Other sections deal with the clinical aspects of hyper-
tension, and the specific therapeutic options for each hypertension phenotype. This 
extends to prehypertension as well as to white coat, masked, renovascular, endo-
crine, pediatric, and gestational hypertension. Finally, the book reviews hyperten-
sion phenotypes that are less well known and dealt with by classical textbooks, i.e., 
calculus renal disease, stress-induced hypertension, pseudo-hypertension, paroxys-
mal pseudo-pheochromocytoma, and other rare causes of blood pressure elevation 
such as Turner syndrome, hypertension due to herbal and medicinal compounds and 
drugs, to call attention to these rarer conditions which are nevertheless mechanisti-
cally and clinically relevant.

We hope that physicians and investigators interested in hypertension will find the 
content of the book stimulating and useful to their professional activity.

Beirut, Lebanon� Adel E. Berbari 
Monza, Italy� Giuseppe Mancia
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1Introduction: Definition 
and Classification of Arterial Pressure 
Phenotypes

Lawrence R. Krakoff

1.1	 �Introduction

The title of this book and the range of topics that are covered in its chapters indicate 
a large, complex, and ever-growing body of medical science related to blood pres-
sure and, in particular, the application of that science to care of a very large fraction 
of the globe’s human population [1]. The cardiovascular scientist defines blood 
pressure as the measured force upon the blood at some point from within the heart 
to the vascular tree from arteries to capillaries to veins and back to the pump. 
Clinicians usually refer to the measurement of pressure in the upper arm (brachial 
artery pressure). Much of the population may consider blood pressure to overlap 
with “pressure,” meaning mental stress related to the “pressure” of work, family 
concerns, and various threats. “Blood pressure” alone may not be the optimal term 
for all these perspectives, so that more precise and meaningful terms are truly 
needed for an accurate set of definitions that capture current research in this very 
important area of cardiovascular medicine.

“Hypertension” or “high blood pressure” has been recognized since the nine-
teenth century as a disorder in which the systemic arterial pressure is persistently 
increased above a normal or safe level. The effect of hypertension is its association 
with adverse consequences for those with the disorder [2]. Initially recognized as a 
manifestation of chronic kidney disease, hypertension was subsequently identified 
in many without kidney disease, but who had specific causes for their high blood 
pressure. However, as the epidemiology of high blood pressure progressed, it soon 
became apparent that the large majority of those with high blood pressure had no 
other obvious disorder to account for their condition. Thus, the terms “essential 
hypertension, primary hypertension, and even idiopathic hypertension” entered 
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medical language, and secondary hypertension became the label for the far less 
common diseases, mostly of the kidneys or adrenal glands. Until the 1960s, clinical 
classification of normal and high blood pressure was binary and depended, with rare 
exception, on the stethoscope and mercury manometer of the doctor’s office or hos-
pital location.

The past 50 years have seen unprecedented growth in technology, physiology, 
pathology, pharmacology, epidemiology, and clinical care for those with disorders 
of systemic arterial pressure. It is now certain that the level of arterial pressure and 
its variability are traits that define phenotypes and that both genetic patterns and 
various lifestyles and exposures participate in defining that phenotype. The range of 
classifications and definitions for characterizing systemic arterial pressure and, 
most importantly, the linkages between these definitions to cardiovascular risk and 
its management have rapidly expanded. The following section of this introduction 
will survey the current classifications relevant to the phenotypes that define high and 
low arterial pressure that will be the detailed subjects of the following chapters of 
this book.

1.2	 �Which Pressure?

Recording the pressure wave form within arteries discloses several specific charac-
teristics: the peak or systolic pressure generated by cardiac stroke volume, the low-
est pressure between peaks or diastolic pressure, and the difference between systolic 
and diastolic pressure or pulse pressure. The mean arterial pressure is the average 
pressure for the entire cycle and is near to the diastolic pressure plus one third of the 
pulse pressure.

Brachial artery pressures have been the basis for past assessment of arterial pres-
sure whether in diagnostic studies or randomized trials of antihypertensive therapy. 
However, the actual systolic and diastolic pressures “seen” or exposed to the coro-
nary, carotid, cerebral, and renal arteries differ from brachial pressures and may be 
more closely related to pressure-related pathology. Noninvasive methods for assess-
ing central aortic pressure have been developed and explored to define large artery 
properties more precisely than relying on brachial measurements. Measuring cen-
tral aortic pressure may be a useful supplement for patient management [3]. 
Likewise assessing stiffness of large arteries has previously depended on the simple 
difference between systolic and diastolic brachial pressures, i.e., pulse pressure, but 
more accurate techniques relying on aortic pulse wave velocity and analysis of 
reflected waves are now available and being implemented in clinical research [4].

1.3	 �Classification of Systemic Arterial Pressure

Table 1.1 displays the definitions for normal and high blood pressure in adults, 
based on recent guidelines for clinic pressures. The terms isolated systolic hyperten-
sion or isolated diastolic hypertension apply when one of the pressures is elevated 

L.R. Krakoff



5

and the other is not, as shown in Table  1.2. During exercise, systolic pressure 
increases, but the change in diastolic pressure is less consistent. Also shown in 
Table 1.2 are criteria for exercise-related hypertension.

In routine clinical care, one or a few pressures are measured with uncertain meth-
ods despite available guidelines [5]. Improvement in accuracy for office measure-
ment has been recommended, in part by taking more measurements using automated 
devices, such as the BpTRU [6].

The determinants of arterial pressure are related to age. Elevated systolic pres-
sure, per se, has a somewhat different pathophysiology and significance for age <50 
and older populations. For the elderly, arterial fibrosis and calcification contribute to 
systolic elevations with wide pulse pressures [7]. Age norms for systolic and dia-
stolic pressures for pediatric and adolescent populations have been derived that 
define normal pressure, prehypertension, and hypertension in these age groups. 
These are based on specific age-related cutoffs for upper 90% and 95% percentiles 
[8]. This age-related definition of hypertension for children from age 10 and upward 
is significantly correlated with hypertension in adult life based on a long-term track-
ing study [9].

For accurate diagnosis or classification, useful and reliable methods are crucial. 
The development of accurate devices for use in both the clinic and out-of-the office 
settings has radically changed the spectrum for classification of systemic blood 
pressure [10]. In developed nations, ambulatory blood pressure monitors, home 

Table 1.1  Classification based on level of clinic pressures

Definition
Blood pressure 
range (mmHg) Comment/source

Normal-optimal pressure <120/80 All guidelines
Prehypertension 120–139/80–89 JNC-7 [20]
High normal pressure 130–139/85–89 EHS [21]
Hypertension ≥140/90 Most guidelines
Resistant hypertension ≥140/90 On treatment with 3+ antihypertensive drugs, 

usually including a diuretic [22]

Table 1.2  Other definitions. Comparison between systolic and diastolic hypertension

Definition
Clinic systolic 
pressure

Clinic diastolic 
pressure Comment

Isolated systolic 
hypertension

≥140 mmHg <90 mmHg In younger (<50) patients 
associated with high cardiac 
output. Well-trained athletes
Most frequent in patients 
>50 years related to increased 
arterial stiffness

Isolated diastolic 
hypertension

<140 mmHg ≥90 mmHg Seen in younger patients and 
associated with increased risk

Exercise 
hypertension [23]

≥210 mmHg for men ≥90 mmHg or 
≥10 mmHg 
increase

Associated with increased risk 
factors or left ventricular 
hypertrophy

≥190 mmHg for 
women

1  Introduction: Definition and Classification of Arterial Pressure Phenotypes
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blood pressure devices, and improved devices for multiple measurements in the 
clinic are widely available. Comparison between clinic pressures and out-of-office 
pressures has led to definition of white coat hypertension and masked hyperten-
sion, as described in Table 1.3. The importance of 24 h ambulatory blood pressure 
monitoring or home blood pressure monitoring has now been widely recognized as 
reflected in several national and international guidelines [11–15]. The integration 
of accurate home devices with telemedicine now links measurements to the pro-
vider’s medical record for ease in comparison between measurements in the unique 
environment of the clinic/office and the more usual environment of the patient’s 
activity [16].

Hypertension occurs most often without a specific cause and is now generally 
named essential hypertension in English or its equivalent in other languages. In the 
past, this condition has been labeled “primary hypertension” or “idiopathic hyper-
tension.” The latter term seems, to me, an admission of ignorance, whereas “essen-
tial” or “primary” hypertension conveys the implication that a built-in, possibly 
genetic setting explains why the pressure is increased. When genetic explanations 
emerge, the term “essential” hypertension may be replaced by such definitions as 
“polygenic” hypertension in contrast to “monogenic” hypertension that is already in 
use (see below).

Hypertension caused by or linked to a specific diagnostic entity had been called 
“secondary” hypertension in past literature. Most often this term referred to rare or 
infrequent diseases, such as various forms of chronic renal disease, e.g., those with 
proteinuria nephropathies or adult polycystic kidney disease. The JNC-7 guideline 
of 2003 introduced an alternate and more inclusive term “identifiable hypertension” 
that could be applied to such disorders as hypertension associated with obesity or 
with the sleep apnea syndromes [17]. Table 1.4 lists many of the diagnostic entities 
considered to be forms of identifiable hypertension. For some the specific patho-
physiology causing hypertension is well defined as in the very rare monogenic dis-
orders. The pathophysiologic links are far less clear in many disorders with some 
having polygenic patterns and others with dominant environmental or acquired 
traits, e.g., obesity.

Table 1.3  Classification based on comparison between clinic and out-of-office pressures

Definition Blood pressure range (mmHg)
Comment/source 
[24]

White coat hypertension Clinic pressures ≥140/90 and 24 h ABP 
<130/80 or home blood pressures 
<135/85

Untreated

White coat effect Clinic pressures ≥140/90 and 24 h ABP 
<130/80 daytime or home blood 
pressures <135/85

Treated patients

Masked hypertension Clinic pressures <140/90 and 24 h ABP 
>130/80 or home blood pressures 
>135/85

Untreated patients

Masked resistant or 
uncontrolled hypertension

Clinic pressures <140/90 and 24 h ABP 
>130/80 or home blood pressures 
>135/85

Treated patients

L.R. Krakoff
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1.3.1	 �Variability of Blood Pressure

Having multiple blood pressure acquired by one of the methods mentioned above, 
discernable patterns have been recognized that add to the complexity of simple 
diagnosis, but may add value for prediction of risk, especially for stroke and even-
tual therapy. At night, the normal expected variation in pressure is a 10–20% fall, 
the “dipper” pattern. Lack of this fall, “non-dipper” pattern, a nocturnal increase 
in pressure, the “reverse dipper” pattern, or a greater than normal fall in pressure 
“extreme dipper” pattern have been studied with relevance to risk of future cardio-
vascular disease. Seasonal patterns for blood pressure can be detected during the 
year, most likely due to changes in temperature from warmer to cooler months.

When several pressures are measured, the average and standard deviation can be 
calculated. Variabilities reflected in the standard deviation (SD) or coefficient of 
variation (CV) and SD/average have been the subjects of study [18, 19]. From 24-h 
ABPM or multiple home pressures, the intraindividual variability can be calcu-
lated. When multiple clinic pressures are available, intervisit variability or visit-to-
visit variability can be assessed. Interindividual variability can be derived from 
population or group studies in which variability can be compared within the cohort 
to arrive at normal and abnormal values. All of these estimates of variability are now 
the subject of active research.

Table 1.4  Identifiable hypertension

Prevalent forms of identifiable hypertension
 � Obesity hypertension
 � Sleep apnea syndrome
 � Associated with either type 1 or type 2 diabetes mellitus
Renal hypertension
 � Associated with various forms of chronic renal disease
 � Associated with genetic renal disease including polycystic kidney syndrome
 � Associated with monogenic renal tubular genetic disorders: Liddle’s syndrome, 

pseudohypoaldosteronism, etc.
Adrenal hypertension
 � Low-renin syndromes
 �   Primary aldosteronism
 �   Glucocorticoid remediable aldosteronism
 �   Congenital adrenal hyperplasia syndrome
 �     11-OHase deficiency, high DOC
 �   Apparent mineralocorticoid deficiency
 �     Genetic due to deficiency of 11-OH dehydrogenase
 �     Acquired due to licorice-like ingestion
 � Excess glucocorticoid syndromes
 �   Cushing’s syndrome due to pituitary tumors, adrenal adenoma, hyperplasia, or carcinoma
Drug related
 � Exogenous glucocorticoid use
 � NSAID use
 � Ephedrine and ephedrine-like sympathomimetic drugs
 � Cocaine
 � Cyclosporine and calcineurin inhibitors
 � Anti-vascular endothelial factor (VEGF) chemotherapeutic drugs: bevacizumab and related 

agents
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1.4	 �Summary

Many terms related to arterial pressure have become regularly used for describing 
clinically important classifications. Improved methods for accurately measuring 
pressure repeatedly throughout the spectrum of daily activities including the clinic 
visit have led to recognition that the clinic visit is a limited and perhaps misleading 
site for assessing prognosis and the effect of therapy. However, these insights have 
yet to be fully translated into a practical application for use in many populations, 
especially when resources are limited. Among the challenges for clinical research in 
hypertension are the efforts to develop effective and cost-effective strategies that 
maximize both prediction of individual risk and monitoring treatment.
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2.1	 �The Physiology of Individual Blood Pressure Indices

The two major physiologic components of blood pressure (BP) are mean arterial 
pressure (MAP) and pulse pressure (PP) [1, 2]. MAP is the interaction of (a) cardiac 
output and (b) systemic vascular resistance (SVR): MAP = cardiac output × SVR. PP 
also depends on two major components: (a) left ventricular ejection characteristics 
and (b) the stiffness of the aorta. The familiar peak of systolic blood pressure (SBP) 
and minimum of diastolic blood pressure (DBP) represent a weighted sum and dif-
ference of MAP and PP, respectively. Key points to remember: (1) DBP rises with 
increased SVR but falls with increased arterial stiffness, (2) PP represents a surro-
gate measurement of central elastic artery stiffness in the presence of a constant 
cardiac output and heart rate, and (3) central arterial stiffening results in a change in 
three BP components—(a) a rise in PP leading to (b) a rise in SBP and (c) a fall in 
DBP.

2.2	 �Age-Related BP Indices

The cross-sectional National Health and Nutrition Examination Survey (NHANES 
III, 1988–91) [3] and the 1997 longitudinal Framingham Heart Study [4] (Fig. 2.1) 
have shown that DBP increases with age in young adults but levels off by about 
50 years of age and begins to decrease by 60 years of age. SBP also increases in 
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young adults although the rate of increase in SBP is less than DBP, resulting in a 
modest decrease in PP through midlife. Thereafter, SBP continues to rise, while 
DBP falls, resulting in widening of PP after midlife as the increase in SBP and fall 
in DBP accelerate with more vascular aging [4]. Elevated MAP, as a measure of 
steady-state resistance, is the dominant factor in the almost parallel rise in SBP and 
DBP during early adulthood. Widening PP, a marker of large artery stiffness, is the 
dominant change in BP from midlife onward.

2.3	 �BP Indices in the US Population by Age and Sex

The NHANES III, 1988–1991 [5], showed that the predominant forms of hyperten-
sion among those age  <50  years are isolated diastolic hypertension (IDH, 
SBP <140 mmHg and DBP ≥90 mmHg) and systolic-diastolic hypertension (SDH, 
SBP ≥140 mmHg and DBP ≥90 mmHg), which together account for approximately 
80% of persons with hypertension from age 18 to 49 years (Fig. 2.2) [5]. Interestingly, 
the other 20% of the young adults present with isolated systolic hypertension (ISH) 
and with a male-to-female predominance of 10:1 [6]. This subtype of isolated sys-
tolic hypertension was associated with increased cardiac output and stroke volume 
[6]; although previously labeled spurious by some investigators [7], there is now 
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evidence of long-term cardiovascular disease (CVD) risk [8]. Chirinos et al. [9], 
using the NHANES survey population, found obesity to be associated with hyper-
tension in all age groups and both genders, but there was a higher odds of obesity in 
younger men with IDH and SDH.

By the same token, NHANES showed that three out of four adults with hyperten-
sion were aged 50 or older [5]. Moreover, about 80% of untreated or inadequately 
treated individuals with hypertension from age 50 onward had ISH, which by defini-
tion in this age range represents increased arterial stiffness [5].

2.4	 �The Development of Isolated Systolic Hypertension (ISH)

By age of 50 years the predominant form of hypertension is ISH, accounting for 
more than 75% by the age of 50–59, 80% by the age of 60–69, and 90% by the age 
70 years or older [5]. Thus, ISH is the most common subtype of hypertension in the 
older age population. Furthermore, a 2001 Framingham Heart Study analysis 
showed that normotensive persons reaching age 65 had a 90% lifetime risk of devel-
oping hypertension, almost exclusively of the ISH subtype, if they lived another 
20–25 years [10].
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Age (y)

17% 16% 16% 20% 20% 11%

Distribution of Hypertension Subtype in the Untreated
Hypertensive Population by Age (NHANES III) 

ISH (SBP ³140 mm Hg and DBP <90 mm Hg)
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0
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Frequency of
hypertension
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untreated

hypertensives
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} Diastolic Hypertension

Fig. 2.2  Frequency distribution of untreated hypertensive individuals by age and hypertension 
subtype. Numbers at the tops of bars represent the overall percentage distribution of all subtypes 
of untreated hypertension in the age group (NHANES III, 1988–1994) (from Franklin SS et al 
(2001). Hypertension 37:869–874, with permission)
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Therefore, hypertensives fall into one of two categories: first, a smaller group 
(26%) of younger (age <50 years) patients, predominantly male (63%) individuals 
with diastolic hypertension out of proportion to systolic hypertension (primarily 
IDH and SDH) and, second, a larger group (74%) of older (age ≥50 years) patients, 
predominantly female (58%) individuals with systolic hypertension out of propor-
tion to diastolic hypertension (primarily ISH).

2.5	 �Two Pathways for the Development of ISH Indices

The NHANES III survey [5] showed that ISH becomes the dominant hypertensive 
subtype by midlife (50–59 years of age). Importantly, there are two divergent pat-
terns for the development of ISH (Fig. 2.3), as shown in a 2005 Framingham Heart 
Study analysis. People with untreated or poorly treated diastolic hypertension (often 
called essential hypertension) at a younger adult age may transition from IDH to 
SDH and ultimately to ISH as they become older and as their arteries become stiffer; 
this transition is often called “burned-out diastolic hypertension.” Approximately 
41% of patients (with a male predominance) convert to ISH from antecedent dia-
stolic hypertension (either or both IDH and SDH) [11]. In contrast, the remaining 
59% of people (with a female predominance) developed de novo ISH without going 
through a stage of diastolic hypertension [11].

Pathways for the development of New-Onset
Isolated Systolic Hypertension (ISH)

DBP ≥ 95 mm HgDBP < 90 mm Hg DBP 90-94 mm Hg

59 %
Average maximum
DBP = 80.8 mm Hg

17.7 %
Average maximum
DBP = 99.4 mm Hg

23.3 %
Average maximum
DBP = 91.6 mmHg

De novo ISH

Burned-out  EH

Fig. 2.3  Of subjects who developed ISH, 59% did not have antecedent diastolic hypertension 
(de novo ISH) either at baseline or any examination before ISH onset (average maximum DBP of 
80.8 mmHg). 23% had a maximum DBP of 90–94 mmHg (average maximum DBP of 91.6 mmHg), 
and 18% had a maximum DBP of 95 mmHg or higher (average maximum DBP of 99.4 mmHg)—
identified as burned-out diastolic hypertension (either IDH and/or SDH) (modified from Franklin 
SS et al (2005). Circulation 111:1121–1127, with permission)
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2.6	 �Value of BP Indices in the Diagnosis of CHD Risk

The potential clinical value of the widening of PP as a CVD risk factor was first 
introduced in a seminal publication by Darne and associates in 1989 [12]. These 
findings were confirmed in elderly participants from a 1999 analysis of 
Framingham Heart Study data, which demonstrated that coronary heart disease 
(CHD) risk increased with lower DBP at any level of SBP ≥120 mmHg, suggest-
ing that higher PP was an important predictor of CVD risk [13]. Indeed, neither 
SBP nor DBP was superior to PP in predicting CHD risk [13]. These result sup-
ported the conclusion that in older individuals with identical SBP, those with ISH 
are at greater risk for CHD than those with SDH [13]. Furthermore, age plays an 
important role in influencing the relation of BP indices to CHD risk. In persons 
<50 years of age, DBP is a stronger predictor of CHD risk than SBP or PP as 
shown in a 2001 Framingham Heart Study analysis [14], suggesting that increased 
SVR and higher MAP play important roles in CHD risk [14]. From age ≥60 years 
on, there is a shift from DBP to SBP and PP as predictors of CHD risk, suggesting 
that large artery stiffness becomes the dominant hemodynamic determinant of 
CVD risk [14].

2.7	 �The Value of Paired BP Indices in Predicting CVD Risk

Despite emerging evidence that persons with ISH and wide PP are at considerable 
excess CVD risk, the question of which of the BP indices was the best predictor of 
CVD risk remained somewhat controversial. Indeed, the Prospective Studies 
Collaboration [15] and Asia-Pacific Cohort Studies Collaboration [16] concluded 
that MAP was superior to PP, while other studies [17, 18] concluded that SBP was 
superior to PP in predicting CVD risk. A 2009 Framingham Heart Study reexamined 
this question by comparing combined versus single BP components [19]. Pooled 
logistic regression was used within 12 serial 4-year intervals from 1952 to 2000, 
starting with a new index baseline BP for each 4-year cycle. Continuous and categor-
ical models were compared for prediction of various CVD events (CHD, heart fail-
ure, and stroke) [19]. Categorical models in 6 × 6 cross-classification bar graphs were 
constructed to test for odds of the likelihood of CVD events for the combination of 
SBP and DBP (Fig. 2.4a) and for PP and MAP (Fig. 2.4b) and adjusted for age, sex, 
total cholesterol, smoking, body mass index, diabetes, and secular trend [19]. Using 
the combination of two BP components in Fig. 2.4a, b, respectively, rather than sin-
gle BP components separately, improved the fit for predicting CVD risk [19]. 
Introducing the interaction terms in Fig. 2.4a, b further improved the fit over the main 
effects of the two-component models, indicating that the effect of one BP component 
on risk varied accordingly to the level of the other [19]. These results confirmed the 
superiority of combining SBP and DBP as noted in the MRFIT study [20] and 
extended the findings to older adults and to women [19].

Indeed, both two-component models were superior to any single BP component 
in predicting CVD risk because they assessed both pulsatile and steady-flow load; a 
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Odds ratios (95% CI) of CVD risk by PP and MAP groups
in a 3-dimentional bar graph
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Fig. 2.4  (a) Odds ratios for the likelihood of a cardiovascular event with combined PP and MAP 
categories in a 6 × 6 cross-classification bar graph, adjusted for age, sex, total cholesterol, smok-
ing, body mass index, diabetes, and secular trend. An interaction term PP × MAP improved the 
model fit (from Franklin SS et al (2009). Hypertension 119:243–250, with permission). (b) Odds 
ratios for the likelihood of a cardiovascular event with combined SBP and DBP categories in a 
6 × 6 cross-classification bar graph, adjusted for age, sex, total cholesterol, smoking, body mass 
index, diabetes, and secular trend. An interaction term of SBP × DBP improved the model fit (from 
Franklin SS et al (2009). Hypertension 119:243–250, with permission)
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single BP component could not do this. Furthermore, single BP components as pre-
dictors of CVD risk in prior studies examined a limited spectrum of the overall 
hypertensive population by age, sex, and other covariates. When PP, a measure of 
stiffness, was combined with MAP, a measurement of resistance and steady-flow 
load, there was a monotonic relation of each BP component to risk. Furthermore, one 
could relate the two major physiologic components of hydraulic load to clinical out-
come [19]. The current 2003 Joint National Committee (JNC-7) guidelines consider 
both SBP and DBP, whichever is higher, in determining staging of BP; however, they 
undervalue the CVD risk of increased arterial stiffness, as manifested by a high SBP 
and a low DBP [21]. Using the Joint National Committee Report (JNC-7) for CVD 
risk classification, a DBP <70 mmHg as compared to DBP ≥70–89 mmHg is associ-
ated with additional risk equivalent to ~20 mmHg higher SBP, i.e., it is equivalent to 
a shift from prehypertension to stage 1 or from stage 1 to stage 2 hypertension [19, 
21]. Moreover, the European Society of Hypertension has recognized widened PP as 
a distinct risk factor that is separate from elevated SBP in older individuals [22].

2.8	 �Components of PP Associated with Higher CVD Risk

The relation between PP and CVD risk can be further elucidated by studying the 
components of PP. PP represents the pulsatile portion of BP and can be separated 
into forward and reflected pressure waves. From these two waveforms, the forward 
(FWA) and reflected wave amplitude (RWA) can be calculated as well as the global 
reflection coefficient (RC, the ratio of RWA and FWA).

There is some disagreement on whether the forward or reflected wave is a better 
correlate of CVD risk. In a multivariable model adjusting for standard CVD risk 
factors, Framingham Heart Study data showed that greater FWA was associated 
with a higher risk of CVD, while RC had no relation with events [23]. Other papers 
have found RWA to be a better predictor of CVD risk than FWA. However, these 
studies did not measure central aortic flow directly and instead used a single typical 
flow waveform for all participants or derived pseudo-flow waveforms for analysis 
[24–26], whereas the Framingham Heart Study measured flow directly for each 
participant [23]. Additionally, the observed relation between RWA and CVD risk 
may be due to the strong relation between FWA and RWA. As noted above, RC is 
not associated with CVD risk [23]. Since RC represents the ratio of RWA and FWA, 
a CVD risk-related increase in FWA would result in a secondary CVD risk-related 
increase in RWA at any given level of RC.

The age-related increase in PP is overwhelmingly attributable to an increase in 
FWA, with modest contributions from RWA and timing of the reflected wave. FWA 
and PP change in similar fashions throughout age (initially decreasing with age 
before midlife and then rising dramatically with age after midlife). In contrast, mea-
sures of wave reflection, such as augmentation index, increase with age in young 
adults, when PP is falling, and plateau or fall after midlife, when PP increases mark-
edly. Consistent with the foregoing observations, FWA has been found to account 
for most of the variability in central and peripheral PP in both younger (<50 years; 
80% and 66%, respectively) and older people (≥50 years; 90% and 84%, respec-
tively) [27]. The observed relations between FWA and PP further indicate that FWA 
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may play a primary role in the pathogenesis of hypertension and CVD. It would be 
interesting for future studies to investigate the pulsatile hemodynamic effects of 
hypertensive drugs that reduce MAP but increase peak flow, potentially increasing 
FWA and PP and thereby limiting beneficial effects of treatment.

2.9	 �Central Pressure and CVD Risk

There is controversy over whether central or peripheral pressure is better at predict-
ing CVD risk. Multiple studies and a meta-analysis have suggested that central 
pressure is better than peripheral pressure at predicting surrogate end points (LVH, 
diastolic dysfunction, increased CIMT, etc.) and major CVD events [28–34]. 
However, these studies may be affected by differing technique, assumptions about a 
lack of amplification between the brachial and radial artery, and calibration methods 
[35–37]. In contrast to these studies, Framingham Heart Study data has shown that 
central systolic and PP are not predictive of CVD events after considering conven-
tional arm SBP. A recent Framingham Heart Study analysis of the SphygmoCor 
algorithm applied to radial waveforms recorded at the same visit showed no incre-
mental value of central pressure after considering peripheral pressure [38]. Indeed, 
when brachial systolic pressure was added to a model that already included central 
aortic systolic pressure, there was an improvement in model fit implying that bra-
chial pressure provided additional prognostic information compared to the central 
BP obtained from the SphygmoCor algorithm [38]. Additionally, during post-
midlife aging when CVD starts to become more common, the difference between 
central and peripheral pressure diminishes; analysis of data from the Framingham 
Heart Study, where the average participant age was 62 years, showed that central 
systolic and PP had a very strong correlation (R > 0.95) with the corresponding 
components of peripheral pressure [38].

Due to the strong correlation between central and peripheral PP in older individu-
als and the Framingham Heart Study observation that current peripheral BP measure-
ments are as good if not better than current central BP measurements at predicting 
CVD events, it seems that peripheral pressure provides an adequate estimate of blood 
pressure-related risk for the time being. If new techniques for measuring central pres-
sure directly, independently of peripheral pressure calibration, are developed, then 
central BP may prove to be a stronger predictor of future CVD risk. In addition, it is 
important to note that changes in the central pressure waveform may differ dramati-
cally from change in the peripheral pressure waveform following vasodilator medi-
cation [39–41]. Differing effects of BP treatment on central as compared to peripheral 
blood pressure may have prognostic importance and require further study.

2.10	 �The Role of J-Curve BP Indices in Predicting CVD Risk

Controversy persists regarding the significance of BP J-curves of increased CVD 
risk as they relate to older people with ISH [42]. The controversy is not about the 
existence of the DBP J-curve, but rather as to potential causes. One possibility is 
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that excess risk associated with low DBP could be the result of ISH with widened 
PP, secondary to a rise in SBP and a fall in DBP—markers of increased arterial stiff-
ness and a proven CVD risk factor [42]. Indeed, the 2009 Framingham Heart Study 
analysis found that CVD risk increased at both the low and high extremes of DBP 
when combined with ISH in the two-component model in a sample free of antihy-
pertensive therapy and antecedent CVD events [19]. Therefore, the J-curve relation 
to CVD risk presumably reflected increased arterial stiffness as manifested by a low 
DBP and wide PP, rather than adverse effects of excessive DBP lowering with anti-
hypertensive medications. Importantly, data from the NHANES 1999–2006 con-
firmed that DBP <70 mmHg versus DBP of 70–89 mmHg with a prevalence of 30% 
among untreated persons with ISH was associated with increased CVD risk; 
advanced age, female sex, and diabetes mellitus, but not treatment status, were asso-
ciated with the low DBP value [43].

The second J-curve possibility is that a low DBP and coexisting low SBP may 
be an epiphenomenon related to an underlying chronic debilitating illness or car-
diac dysfunction—so-called reversed causality [44]. As a third possibility, the low 
DBP J-curve in association with ISH may represent antihypertensive therapy-
induced lowering of DBP, which leads to myocardial ischemia and increased risk 
for an acute coronary event [45]. In the presence of high-grade stenosis of coro-
nary arteries, increased risk of myocardial infarction with antihypertensive ther-
apy-induced decrease in BP may well occur [45], but is by far the least common 
occurrence of the J-curve phenomenon. Indeed, the risk of plaque disruption that 
leads to acute coronary syndromes depends more on plaque composition, plaque 
vulnerability (plaque type), and the degree of pulsatile stress than on the degree of 
coronary artery stenosis (plaque size) [46]. Not surprisingly, therefore, the major-
ity of myocardial infarctions (>70–85%) occur from plaque rupture in coronary 
arteries that have <50% stenosis [46]. By the same token, a 2015 Framingham 
Heart Study analysis showed that persons with an initial CVD event and persistent 
ISH in combination with a DBP <70 mmHg vs. DBP 70–89 mmHg had increased 
risk for recurrent CVD events, largely independent of antihypertensive treatment 
status [47]. Nevertheless, because of the many factors that result in J-curve risks, 
only a prospective trial with baseline and pre-event BP determinations can estab-
lish the presence and frequency of treatment-induced increase risk.
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3Role of Circadian Rhythms and Seasonal 
Variation in BP Levels

Pietro Amedeo Modesti and Danilo Malandrino

3.1	 �Introduction

High blood pressure (BP) causes more deaths than any other risk factors, including 
diabetes and cigarette smoking [1], so the diagnosis of hypertension is a key ele-
ment for clinical practice. To reach the diagnosis, blood pressure values higher than 
the ideal maximum limits have to be registered in repeated occasions. This point is 
the first implication of the inherent biological BP short- and long-term variability 
[2]. In general, when observing repeated measurements in the same subject, rela-
tively high (or relatively low) observations are likely to be followed by less extreme 
ones nearer the subject’s true mean, a phenomenon defined as “regression to the 
mean.” Taking multiple measurements across several weeks is thus the first measure 
to attenuate the influence of within-person BP variability, and this procedure is con-
sistently recommended by guidelines for the diagnosis of hypertension in the clini-
cal setting [3].

The problem arises whenever baseline measurements taken at a single visit are 
used both for selection of participants and for comparisons with pressures obtained 
later. The limited possibility to have the diagnosis confirmed at repeated visits is a 
common bias in epidemiological studies [4]. A regression to the mean is also 
observed in intervention studies, the studies with higher starting baseline blood 
pressures usually demonstrating greater responses in the placebo group [5]. When 
the goal is to estimate the risk of developing a future hypertension, the incidence in 
studies that have diagnosed hypertension based on more visits is usually less than 
that detected in the studies that have made the diagnosis on the basis of a single visit 
[6]. Finally some patients may be receiving unnecessary antihypertensive drug ther-
apy leading to wasted resources and the potential for adverse drug effects.
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The 24 h pattern typical of diurnally active normotensive and uncomplicated 
hypertensive persons displays small BP increase before the termination of night-
time sleep, striking rise upon morning awakening, and decline by 10–20% in SBP 
and of lesser amount in DBP, during sleep relative to wake-time means. Individuals 
with this normal nighttime reduction are known as dippers (extreme dipping 
>20% nocturnal BP fall). Nondipping are usually defined for nocturnal BP fall 
<10% and reverse dipping being defined for increased nocturnal BP [2]. The 
introduction of ambulatory blood pressure monitoring (ABPM) in clinical prac-
tice offered a useful tool to avoid misdiagnosis and overtreatment [6]. The value 
of ABPM is superior to office BP measurement for predicting clinical outcomes. 
According to a recent meta-analysis [6], each 10 mmHg increment in 24 h systolic 
ABPM, adjusted for OBPM, was consistently and statistically significantly asso-
ciated with an increased risk for fatal and nonfatal stroke (hazard ratios ranging 
from 1.28 to 1.40 and fatal and nonfatal cardiovascular event hazard ratios rang-
ing from 1.11 to 1.42).

The knowledge of the main physiological factors involved in the timing and 
amplitude of BP fluctuations may improve the accuracy of diagnosis and monitor-
ing of hypertension.

3.2	 �Factors Influencing Circadian Rhythm

The BP decrease during sleep time is associated to the reduction in physical and 
mental activity, change in body position, and lower activity of the autonomic 
nervous system. BP is lowest during deep (stages 3/4) sleep and highest, 
although on average not to the level when fully awake, during less deep (stages 
1/2 and rapid eye movement [REM]) sleep. Blunted or absent reductions in 
nighttime BP have been reported in subjects working during the night [7] and in 
those who have poorer sleep quality as a result of more waking episodes deter-
mined by actigraphic data [8, 9]. Although the mechanisms underlying the loss 
of the nocturnal reduction in BP are not completely understood [10], individuals 
with a nondipping BP pattern have been found to have increased sympathetic 
nervous system activity [11], decreased parasympathetic nervous system activ-
ity [12], and higher levels of epinephrine and norepinephrine when compared to 
individuals with a normal reduction in nighttime BP [11]. In addition to physi-
ological factors such as sleep and physical activity, environmental factors such 
as climate or seasonality may also significantly affect the variability of blood 
pressure. The influence of seasonality on blood pressure has implications for 
clinical practice. CV risk assessment in the single patient might give different 
results when performed in hot months (summer) or in cold months (winter), 
with blood pressure measurement being a key element for risk stratification. 
Likewise estimation of mean BP levels in population studies may vary accord-
ing to the period of the year [13]. Different behavioral factors, such as diet and 
physical activity, also vary with seasonality. The influence of seasonality should 
thus be separated from environmental (climate, pollution) or behavioral (physi-
cal activity, diet) variations.
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3.3	 �Seasonal BP Variations

Among the different environmental variables known to affect blood pressure, sea-
sonality has relevant implications either in clinics or in research. The influence of 
the season on blood pressure measurements performed in the clinics was first 
described by Rose [14]. In clinical trials, seasonality can be associated with larger 
BP variations than those induced by drugs [15]. The standardization for room tem-
perature largely removed the effect of the season on BP in the UK Heart Disease 
Prevention Project [16]. Therefore, guidelines consistently recommend the impor-
tance of a standardized room temperature in hypertension clinics. However, also 
when BP measurements are made in comfortably warm rooms, a negative relation-
ship between outdoor temperature and BP values was observed (Table 3.1) [13].

These environmentally related BP variations may indeed influence results of epi-
demiological studies as revealed in a large-scale population-based study where 
office, home, and 24 h ambulatory systolic and diastolic BPs were lower in summer 
and higher in winter both in normotensive and in hypertensive individuals [24].

Seasonal adaptation of antihypertensive drugs is not specifically considered in 
hypertension guidelines because treatment targets are defined by BP values. 
However, in the daily clinical practice, physicians are often faced with the effects of 
warm temperature which may cause BP to reduce during summer with the potential 
implications of falls or acute renal failure especially in the elderly.

Likewise the absolute increase in BP values observed during winter could potentially 
contribute to increase the risk for cardiovascular (CV) events during the cold season. 
The general tendency of blood pressure (casual and ambulatory measures) to be higher 
in winter than in summer may contribute to the higher cardiovascular mortality observed 
in winter [25]. On the other hand, a nonrandom distribution of enrollments over the year 
can bias results of clinical trials aimed at assessing the antihypertensive effect of a drug 
and of epidemiological surveys aimed at assessing hypertension burden.

Fluctuations in temperature are therefore usually considered as a major independent 
determinant for seasonal BP variations. However, the relationship between seasonality 

Table 3.1  Average increase in office systolic blood pressure per 1 °C reduction in environmental 
temperature

Author (ref.) Population Age (years) Temperature mmHg/−1 °C
Madsen et al. [17] 18,770 30–77 Outdoora 0.15
Modesti et al. [18] 6404 30–80 Outdoora 0.13
Barnett et al. [19] 115,434 35–64 Outdoora 0.19

– – Indoor 0.31
Alpérovitch et al. [20] 8801 >65 Outdoorb 0.15
Kent et al. [21] 26,018 >45 Outdoorc 0.21
Lewington et al. [22] 510,000 35–74 Outdoord 0.57 (>5 °C)
Modesti et al. [23] 1847 21–90 Outdoora 0.19

– – PET 0.34

PET mean 24 h environmental temperature measured at personal level
aMean 24 h outdoor temperature measured by the local meteorological office
bTemperature measured at 11 a.m. by the local meteorological office
cDaily maximum temperature provided by National Aeronautics and Space Administration’s 
(NASA’s) Marshall Space Flight Center
dMean monthly outdoor temperature
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and outdoor temperature is more complex, involving both long-term regulatory factors 
and acute responses to environmental temperatures. Although the short- and long-term 
BP response to climate may overlap, they may not be identical. Average 24 h ambula-
tory blood pressure is indeed higher on cold days (outdoor temperature <10th percen-
tile) than in warm days (outdoor temperature >90th percentile) [18]. In the long term 
(during summer), the reduction in daytime BP values during hot weather is however 
also associated with a significant increase in nighttime BP values [18, 26] (Fig. 3.1).

Conversely, when the short-/medium-term response to climate change is specifi-
cally investigated, a different pattern of response is observed because the onset of a 
cold weather front is followed within 2 days by a concordant increase of 24 h, day-
time, and nighttime ambulatory BP. More precisely, changes observed in nighttime 
and 24 h ABP values following climate acute changes were concordant [27]. These 
observations suggest that although the short-/medium-term and long-term BP response 
to climate and season may partially overlap, when considering temperature only, we 
cannot disentangle the short-term from the long-term BP response at nighttime.

Some methodological issues have to be considered. Firstly, it is likely that other 
components (diet, exercise) potentially contribute in the relationship between season 
and BP. As an example, milder sleep problems associated with hot weather or an 
enhanced physical activity in summer time might contribute to nighttime BP increase. 
Seasonal diet changes have been observed. In a large (38,037 participants) popula-
tion-based cohort prospective study performed from 1979 to 2008 [28], highly statisti-
cally significant seasonal patterns were observed with increases in traditional CVD 
risk factors in colder or darker periods. However, the magnitude of the seasonal differ-
ences was likely too small to contribute to acute CVD events. The relatively small 
changes are probably because the population of Tromsø is well adapted to a harsh 
climate, as better protection to seasonal influences may prevent winter excess of in 
CVD events. In Israel, 94 male industrial employees were screened twice in 1 year, 
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Fig. 3.1  Systolic BP in subjects aged <50 years and >65 years during days with low and high 
outdoor temperature (*p <0.05) (modified from [18])
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and the seasonal increase in fat and cholesterol intake at winter time was found to be 
associated with changes in BMI and serum cholesterol [29]. A significant trend for 
change in the values of cholesterol, LDL-C, and HDL-C in different seasons, with 
higher cholesterol and LDL-C values in winter than in summer, was also observed in 
a cross-sectional study including 2890 men and 4004 women 20–64 years old from 
the participants of Tehran Lipid and Glucose Study (TLGS) performed between 1999 
and 2001 [30]. Seasonal variation in amplitude, type, and intensity of physical activity 
was also observed, with total activity increasing in summer in comparison to winter 
[31–33]. Secondly, the inclusion of a single meteorological variable in data analysis 
has limitations. Usually, only temperature is considered although humidity level and 
high ground-level wind turbulence may enhance the thermal perception of cold dis-
comfort notwithstanding relatively high air temperature. Wind speed increase was 
observed to induce the same BP increase at different air temperatures [27]. Therefore, 
the relationship between skin temperature and air temperature is significantly affected 
by other weather variables. Finally, from a methodological point of view, obtaining 
true measurements of exposition is the main problem when investigating the effects of 
climate on human health especially when the aim is to disentangle the effects of cli-
mate from those of seasonality. As an example, a reduced intensity in ultraviolet light 
during winter might also reduce epidermal photosynthesis of vitamin D3 and parathy-
roid hormone, which was shown in turn to be associated with elevated BP levels [34]. 
However, direct sunlight exposition can be hardly estimated both in the single subject 
and in population studies. As regards measurement of temperature, important expo-
sure misclassification also exists. During winter, people generally spend most of their 
time indoors in regulated environments where the temperature is held constant and the 
exposition to outdoor temperature is usually limited. In Europe, both thermal effi-
ciency of housing and the behavioral capability to cope with cold weather were indeed 
found to increase with latitude [35]. In England and Wales, the association of year-to-
year variation in excess winter mortality with the number of cold days in winter 
(<5  °C), evident until the mid-1970, has recently disappeared [36], and the link 
between winter temperature and excess winter mortality is no longer as strong as 
before. Historical trends in excess winter mortality are also showing a gradual reduc-
tion for deaths between 1980 and 2011 [37]. In the reanalysis of BP data collected 
within the WHO MONICA Project [19] (collection period ranging from 1979 to 
1997), the random effects for season on the main risk factor for CV events (BP) were 
latitude dependent (left panel, Fig. 3.2). In a more recent analysis [6], where the large 
majority of studies were performed after 1997 (only seven studies were started before 
1977), no association between the estimated amplitude of seasonal BP variations and 
latitude was observed (right panel, Fig. 3.2).

Those changes might be probably linked to the improved energy efficiency of 
homes and housing quality [36]. The measurement of temperature at the personal 
level (PET) by using portable thermometers [39] may importantly reduce exposure 
misclassification. In a recent study, aimed at disentangling the effects of tempera-
ture [23] from those of seasonality, temperature was measured at the personal level 
in patients undergoing ambulatory BP monitoring. In addition, the number of hours 
between sunrise and sunset was also included in multiple regression analysis as a 
continuous measure of seasonality. The study for the first time provided evidence 
that temperature and seasonality independently affect blood pressure. More 
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precisely, daytime systolic blood pressure was independently affected by air tem-
perature, whereas nighttime SBP and morning BP surge were mainly affected by 
seasonality [23]. The direct effect of PET on 24 h SBP was evident in subjects aged 
more than 65 years, thus indicating that temperature-associated 24 h ambulatory BP 
changes are more pronounced with aging (Table 3.2) [23].

Fig. 3.2  Left panel: Population-specific seasonal change in systolic blood pressure against lati-
tude in the WHO MONICA Project [19] (collection period ranging from 1979 to 1997). Right 
panel: Estimated amplitude of seasonal changes in blood pressure by latitude in a more recent 
analysis [38] where the large majority of studies were performed after 1997

Table 3.2  Independent predictors of systolic blood pressure at multivariate linear regression analysis

Systolic BP Variables B
95% Cl

pLower Upper
Daytime Daytime heart rate (bpm) 0.03 0.01 0.06 0.003

Daytime relative humidity (%) 0.00 −0.02 0.02 0.714
Daytime AP (hPa) 0.00 −0.04 0.04 0.966
Daylight (h) −0.05 −0.21 0.11 0.531
Daytime PET (°C) −0.14 −0.25 −0.02 0.023

Multiple r = 0.914; n = 1802
Nighttime Nighttime heart rate (bpm) 0.15 0.09 0.21 0.001

Nighttime relative humidity (%) 0.03 −0.01 0.08 0.150
Nighttime AP (hPa) −0.01 −0.09 0.06 0.718
Daylight (h) 0.63 0.37 0.90 0.001
Nighttime PET (°C) −0.01 −0.12 0.11 0.931

Multiple r = 0.668; n = 1787
Morning surge 24-h heart rate (bpm) −0.05 −0.11 0.02 0.148

24-h relative humidity (%) −0.01 −0.06 0.04 0.690
24-h AP (hPa) 0.04 −0.05 0.12 0.381
Daylight (h) −0.54 −0.87 −0.21 0.001
Δ PET (°C) 0.01 −0.13 0.15 0.892

Multiple r = 0.473; n = 1700

PET personal-level environmental temperature, AP atmospheric pressure. Δ PET = Morning PET 
minus the lowest nighttime PET. Data are adjusted for office systolic BP, age, gender, BMI, and 
drug treatment (adapted from [23])
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3.4	 �Clinical Implications

Cross-sectional and observation surveys indicate that health interventions targeted 
at better protection against cold weather (e.g., improved home heating and reduced 
exposition to cold climate) may be particularly effective in the elderly [40–42].

Nighttime BP seems to be mainly related with seasonality, with temperature 
mainly affecting daytime BP values. In addition to air temperature, any seasonal 
diet changes (alcohol, vegetable, and salt intake), adiposity, or physical activity 
could potentially also lead to changes in blood pressure.

Coupled with reduced fluid intake, with advancing age, there is a decrease in 
total body water. Because of their low water reserves, the elderly are suggested to 
learn to drink regularly when not thirsty and to moderately increase their salt intake 
when they sweat [42]. The independent association between blood pressure increase 
at nighttime in the elderly and daylight hours might stay against this simplistic 
explanation. The large majority of experimental studies are indeed confined to 
short-term (up to few days) exposition of aged subjects to high temperature, whereas 
no information is available on blood volume adaptation in the long term. It might 
thus be hypothesized that blood volume adaptation, resulting in BP increase at 
nighttime, might occur in the long term in the elderly. This response might be modu-
lated between spring and summer because the night BP levels are highest in spring, 
although the daily hours of light show the highest level in summer.

The importance of seasonal BP variations is now considered in most clinical 
trials. Conversely although the possibility of a higher prevalence of hypertension 
during winter compared with summer was recently reported, only one population 
study specifically investigated the possible bias introduced by environmental tem-
perature on hypertension burden assessment in a large survey [43]. According to 
the HYDY study [43], the odds ratio for hypertension diagnosis was 0.98 (95% Cl 
0.96–0.99) per 1 °C of temperature measured at home (logistic regression analyses 
adjusted for age, gender, education, and average air temperature at the two survey 
visits).

Seasonal BP variations have relevant implication in the clinical practice espe-
cially regarding antihypertensive treatments. Retrospective analyses of published 
trial data have concluded that antihypertensive drug classes may differ in their 
effects on intersession visit-to-visit blood pressure variability and associated risk of 
stroke [44, 45]. However, these post hoc analyses lacked actual intersession infor-
mation for individual trial participants, adherence to drugs, duration of drug action, 
or adjustment for climate or seasonality. According to previous evidence, antihyper-
tensive drugs do not prevent seasonal variation in BP [46]. Likewise antihyperten-
sive drugs (metoprolol, carvedilol, lisinopril, eprosartan, amlodipine, and HCTZ) 
did not markedly affect the size of the cold-induced rise of BP compared to placebo 
or no drug in normo- and hypertensive subjects. However, it is possible that heat-
exposed subjects need lower dosages or at least less frequently combination therapy 
because of lower BP in warm conditions. Most importantly, subjects exposed to 
extreme temperature changes must have a more careful follow-up.

Addressing the importance of the environment on BP during hypertension man-
agement and diagnosis, and the possible interactions with patient features, may have 
relevant implications in clinical and research settings.

3  Role of Circadian Rhythms and Seasonal Variation in BP Levels
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�Conclusions
The control for concurrent environmental changes is to be considered both in 
clinical practice and in research studies. In the daily clinical practice, ABPM is 
important in monitoring the antihypertensive treatment in elderly patients under 
conditions of unstable and often “extreme” temperature exposures. Short-term 
temperature changes mainly affect BP during daytime (temperature as a negative 
predictor), whereas seasonality mainly affects nighttime SBP (with daylight 
hours as positive predictor) and morning BP surge (with daylight hours as nega-
tive predictor). The design of clinical trials should consider the months for 
enrollments, with long-term seasonal BP variations being especially relevant in 
the elderly. PET is to be considered as the gold standard to reduce exposure mis-
classification in research studies. The number of daylight hours can be consid-
ered as a continuous measure of seasonality to be included in multivariate 
analysis. Although potentially important, the measurement of sunshine exposi-
tion is more critical.

Population surveys in general should routinely factor in the seasonal variation 
in blood pressure. Epidemiological surveys aimed at estimating hypertension 
burden in a community may include environmental temperature measured indoor 
as a variable potentially affecting results rather than considering outdoor tem-
perature only. Awareness of this phenomenon will result in more personalized, 
tailored dosages of antihypertensive medications.
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4Natural History of Treated and Untreated 
Hypertension

Massimo Volpe and Carmine Savoia

4.1	 �Hypertension and Target Organ Damage

Elevated blood pressure is the most prevalent and relevant risk factor for death and 
disability worldwide. Hypertension occurs in more than one billion individuals caus-
ing an estimated 9.4 million deaths every year [1]. Overall the prevalence of hyper-
tension appears to be around 40% of the general population, with a steep increase 
with aging from 7% in individuals age 18–39 to 65% in individuals over age 59 [2]. 
There are clear differences in the average blood pressure levels across countries, with 
no systematic trends toward blood pressure changes in the past decade [3]. During 
middle and older age, blood pressure is strongly and directly related to cardiovascu-
lar and overall mortality [4]. This association seems to exist across large and diverse 
population groups aged 40–89 years, including men and women from different eth-
nicities, with and without established vascular disease [4–6].

Prospective cohort studies have reported a continuous log-linear association 
between blood pressure and vascular events over a wide range, apparently begin-
ning at values of 115 mmHg for systolic and 75 mmHg for diastolic with no appar-
ent threshold [4]. Notably, taking into account the continuous and direct relationship 
between blood pressure and cardiovascular disease, most blood pressure-associated 
cardiovascular complications occur in individuals with prehypertension. In the 
Framingham Heart Study, compared with the subjects with optimal blood pressure, 
those with high-normal blood pressure showed a significantly increased risk of car-
diovascular disease independent of other risk factors, and a nonsignificant trend 
toward an increased incidence of events was also shown in the group with normal 
blood pressure [7].
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About half of hypertensive patients develop related end-organ damage if blood 
pressure is left untreated over 7–10  years. The remaining patients exhibit a less 
impactful course with hypertensive complications occurring slowly. Fewer than 5% 
of people with hypertension enter a very rapid, sometimes malignant course with 
rapid deterioration in cardiac, renal, and neurologic function.

Tissue- and organ-deteriorating and remodeling processes induced by the hyper-
tensive status may impair the physiology and the structure of the heart, large- and 
medium-sized arteries, kidneys, and brain. Thus, the presentation of the target organ 
complications in hypertensive patients may reflect different pathophysiological 
abnormalities including diastolic and systolic dysfunction, left ventricular hypertro-
phy, endocardial scarring, congestive heart failure (39% of cases in men and 59% in 
women), and coronary disease; accelerated atherosclerosis and aneurysm formation 
(with or without dissection); stroke (both hemorrhagic and thrombotic infarction); 
and nephrosclerosis (with and without renal failure) [8].

Stroke mortality is often viewed as a surrogate of hypertension consequences, because 
hypertension is regarded as the most important cause of this event. A close relationship 
between prevalence of hypertension and mortality for stroke has been reported [9]. 
Nowadays, Western European countries exhibit a downward trend, in contrast to Eastern 
European countries which show an increase in death rates from stroke [10].

It should be noted that only a small fraction of the hypertensive population pres-
ents with an elevation of blood pressure alone, whereas the majority of the patients 
have additional cardiovascular risk factors. Population studies have clearly shown 
that the total cardiovascular risk exceed the sum of its individual components when 
blood pressure elevation is concomitantly associated with other cardiovascular risk 
factors. Therefore, international guidelines emphasize that prevention of coronary 
heart disease should be related to quantification and target of global cardiovascular 
risk [3, 11–16]. Several methods and tools have been developed for estimating total 
cardiovascular risk, although all currently available models for cardiovascular risk 
assessment have some methodological and conceptual limitations [3, 17–25].

Based on those methods, for more than a decade, international guidelines for the 
management of hypertension have stratified cardiovascular risk in different catego-
ries, based on blood pressure values, the presence of other cardiovascular risk fac-
tors, diabetes or asymptomatic organ damage, as well as symptomatic cardiovascular 
disease or chronic kidney disease or cardiovascular events [3, 11–16]. The large 
number of patients with hypertension is identified at low, moderate, high, or very 
high risk. The estimation of total cardiovascular risk may be easy to evaluate in 
specific subgroups of patients, especially those at high or very high cardiovascular 
risk, such as patients with diabetes or with severely elevated single risk factors or 
with established cardiovascular disease. Those are the patients that require intensive 
cardiovascular risk-reducing measures.

It should be emphasized that for the management of hypertensive patients, the 
recognition of target organ damage is crucial, even when asymptomatic, in view of 
the fact that the presence of target organ damage is the expression of organ abnor-
malities promoted by hypertension (i.e., heart, kidney, brain) which markedly 
increases the cardiovascular risk in the cardiovascular continuum.
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If the blood pressure elevation is identified and properly managed early in the 
natural history of hypertension and adequate antihypertensive strategies (i.e., life-
style changes, drugs) are timely initiated together with the control of the other car-
diovascular risk factors, the reduction of cardiovascular risk and/or normalization of 
target organ damage may be achieved and the prognosis obviously improved [3, 
17–25].

4.2	 �Pathophysiology of Vascular Changes in Hypertension 
and Hypertensive (Pheno)Types

Hypertension commonly produces structural changes in arteries, arterioles, and tar-
get organs in several patterns as a consequence of the mechanical effects of blood 
pressure and shear stress, as well as of the action of neurohormonal systems includ-
ing the renin-angiotensin-aldosterone system, endothelins, catecholamines, as well 
as agents generated in perivascular fat and inflammatory mediators (i.e., different 
cytokines and chemokines and immune mediators, such as lymphocytes and macro-
phages and their products). Resistance arteries may play an important role in the 
development of hypertension and may also contribute to the pathogenesis of cardio-
vascular complications. Chronically elevated blood pressure induces vascular stretch 
that initiates complex signal transduction cascades leading to vascular remodeling 
[26–28]. Angiotensin II, one of the final products of the renin-angiotensin-aldosterone 
system, may induce vascular remodeling and injury by several mechanisms includ-
ing vasoconstriction, cell growth, generation of reactive oxygen species (ROS), and 
inflammation. Also the endothelium is a crucial regulator of vascular tone. Its func-
tion is impaired in patients with hypertension, with reduced nitric oxide-mediated 
vasodilation, and with increased vascular tone that is associated with a proinflamma-
tory and prothrombotic state, as well as vascular remodeling [29, 30].

Experimental and clinical data support the notion that the hypertension subtypes 
defined by isolated or combined elevations of systolic and diastolic blood pressure 
reflect distinct pathophysiological mechanisms in the vasculature, have different 
prognostic implications, and may require a different therapeutic approach [31, 32].

During the prehypertension phase which could be defined as the combination of 
normal plus high-normal blood pressure categories (blood pressure values ranged 
120–139 for systolic or 80–89 for diastolic), repetitive perturbations of cardiovascu-
lar homeostasis occur, reflecting an array of hereditary and environmental factors. 
With the course of time, these small changes accumulate and yield larger patho-
physiologic changes that are recognizable as early hypertension. In the setting of 
cardiovascular disease prevention, this condition recognizes individuals at increased 
risk of developing progressive vasculopathy with stiffening of the aorta and elastic 
arteries over time [33]. Early vascular remodeling and endothelial dysfunction usu-
ally evolve to increased peripheral vascular resistance, reflecting an array of genetic, 
environmental, and homeostatic factors. Early functional perturbations may be 
slight and reversible, whereas subsequent chronic large changes tend to be larger, 
slower, and irreversible.
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The vascular phenotype of hypertension differs according to the age of subjects. 
Essential hypertension is characterized by increased peripheral vascular resistance 
to blood flow, which occurs generally as a result of energy dissipation in small arter-
ies and arterioles, particularly in younger individuals, whereas late in life, large 
artery stiffening results in raised systolic blood pressure. Enhanced constriction of 
resistance arteries in hypertension may increase peripheral resistance by reducing 
lumen diameter [34, 35]. In younger individuals with elevated blood pressure, vas-
cular remodeling occurs in small arteries and arterioles. It is usually eutrophic with 
a reduced lumen diameter and normal media cross section, reduced or enhanced 
stiffness, and increased extracellular matrix deposition and associated with endo-
thelial dysfunction. In severe or advanced stage of hypertension, as well as in sec-
ondary forms and refractory hypertension, hypertrophic vascular remodeling of 
small arteries and arterioles may be found. A predominant rise in arteriolar resis-
tance may lead to isolated diastolic hypertension if arterial stiffness is normal or low 
or combined systo-diastolic hypertension if large artery stiffness also increases.

Arterial hypertension as well as aging and the concomitant intervention of other 
cardiovascular risk factors may increase arterial stiffness in large conduit arteries. 
Thus, systolic blood pressure tends to increase with age leading to an elevated fre-
quency of isolated systolic hypertension in the elderly associated with a large pulse 
pressure [36]. This type of hypertension may reflect diffuse atherosclerotic pro-
cesses and therefore is considered an important determinant of cardiovascular risk. 
As blood pressure remains elevated for a prolonged time, particularly in subjects 
older than 55 years of age, vascular changes occur predominantly in large, conduit 
arteries (i.e., aorta), which become stiffer as arteriosclerosis develops, resulting in 
increased pulse pressure. The increase in the stiffness of the aorta and large elastic 
arteries, not accompanied by a rise in arteriolar resistance, may lead to isolated 
systolic hypertension. This occurs in a degree that depends on associated cardiovas-
cular risk factors, progression of atherosclerosis, and inflammatory accumulation of 
lipids in the intima, triggered in part by endothelial dysfunction, dyslipidemia, age, 
smoking, and diabetes. Low-grade inflammation localized in vascular and perivas-
cular tissue, including fat, is recognized as an important contributor to the patho-
physiology of hypertension [37], to the initiation and progression of atherosclerosis, 
and to the development of cardiovascular disease [28, 38]. Inflammation of large 
arteries exerts its effects in part by contributing to endothelial dysfunction and 
increasing vascular stiffness.

Vascular stiffness can be evaluated by carotid-femoral pulse wave velocity 
(PWV) and, at some degree, by pulse pressure which is increased with aging and in 
hypertensive patients and is significantly and independently associated with both 
target organ damage and increased risk for cardiovascular morbidity and mortality 
[39]. In view of the progressive stiffening of the conduit arteries, the progressive 
amplification of the pressure wave during transmission from the aorta to peripheral 
arteries is attenuated with aging particularly in hypertensive patients. This can rep-
resent a confounding factor in the assessment of hypertension subtypes [31, 32] 
since brachial diastolic blood pressure may overestimate aortic blood pressure, par-
ticularly in young subjects. Hence, among patients younger than age 65, pulse 
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pressure and systolic blood pressure predict outcomes better than diastolic blood 
pressure [40]; this is even more striking in patients aging over 65. In those people 
only elevated systolic blood pressure and pulse pressure predict risk of adverse car-
diovascular events and total mortality [41].

Major intervention trials showed that drug therapy generally produces a greater 
degree of diastolic than systolic blood pressure control, so that it is currently 
reported that elevated systolic blood pressure is more difficult to control, especially 
in the elderly. For example, in the Hypertension Optimal Treatment (HOT) study 
[42], more than 90% of subjects achieved diastolic blood pressure normalization, 
whereas less than 50% achieved systolic blood pressure normalization. In the 
Antihypertensive and Lipid-Lowering Trial to Prevent Heart Attack (ALLHAT) 
[43] and the Controlled Onset Verapamil Investigation of Cardiovascular Events 
(CONVINCE) trials [44], approximately 90% of participants had their diastolic 
blood pressure normalized after 2 years of treatment, whereas about 50% achieved 
systolic blood pressure normalization. In treated hypertensive subjects, those with 
uncontrolled systolic blood pressure were at higher risk of cardiovascular disease 
than those with uncontrolled diastolic blood pressure after adjustment for confound-
ing factors [45]. Thus, effective systolic blood pressure control is the real challenge 
and the main focus of treatment.

The vascular disease of hypertension, by promoting tissue under perfusion and 
progression of atherosclerosis, contributes to myocardial ischemia and cardiovascu-
lar events, heart failure, stroke, nephrosclerosis and chronic kidney disease, and 
peripheral vascular disease.

Target organ damage in hypertension results from blood pressure load and the 
activity of neurohormonal effects and is in large measure a consequence of vascular 
injury that occurs in hypertension. Vascular complications of hypertension include 
changes in the structure and function of large and small arteries, as well as acceler-
ating the progression of atherosclerosis [34, 35]. Endothelial dysfunction is recog-
nized as a key early determinant in the progression to atherosclerosis and is now 
well established to be independently associated with increased cardiovascular risk 
[30]. An activated renin-angiotensin system plays a key role in the pathophysiology 
of endothelial dysfunction in hypertension [46] since it is in part responsible for 
triggering vascular inflammation by inducing oxidative stress, resulting in upregula-
tion of inflammatory mediators.

4.3	 �Defining the Targets in Hypertension Management

Extensive evidence from randomized controlled trials has demonstrated benefit of 
blood pressure-lowering strategies in reducing cardiovascular events in individuals 
with hypertension [47–49] even at high-normal blood pressure levels, since about 
half of the total blood pressure-attributable disease burden occurs in people with 
systolic blood pressure lower than 140 mmHg [50]. The best approach to reduce 
blood pressure remains subject to controversy [13, 51, 52]. Patients with sustained 
elevations of blood pressure most often progress to established hypertension as well 
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as to target organ damage development. Preventing end-organ damage by control-
ling hypertension and the other risk factors is more effective than trying to reverse 
the changes once established. Nevertheless, controlling blood pressure after end-
organ damage has developed also carries proven benefit. The therapeutic approach 
should consider total cardiovascular risk in addition to blood pressure levels in order 
to maximize cost-effectiveness of the management of hypertension and related car-
diovascular risk.

Nonpharmacologic therapy may be sufficient for mild elevations in blood pres-
sure in patients without other risk factors. For instance, reducing sodium intake, 
alcohol intake, and obesity lowered the incidence of hypertension from a 5-year trial 
in patients with high-normal blood pressure [53]. In high-risk individuals, antihy-
pertensive treatment strategies, initiation and intensity of treatment, and particularly 
the use of drug combinations, as well as other treatments for controlling other car-
diovascular risk factors and/or subclinical target organ damage, may be different 
from those to be implemented in lower-risk individuals. Indeed, there is evidence 
that, in high-risk individuals, blood pressure control is more difficult and more fre-
quently requires the combination of different antihypertensive drugs also with other 
therapies, such as aggressive lipid-lowering treatments.

The large variety of antihypertensive drug options requires individualization for 
particular patients and a careful and thoughtful balance of antihypertensive efficacy, 
cost-effectiveness, and compelling indications and contraindications. However, 
whether blood pressure-lowering treatment reduces the risk of cardiovascular dis-
ease in all types of patient populations remains unclear.

Successful reductions in blood pressure and other cardiovascular risk factors can 
dramatically reduce the incidence of cerebrovascular and coronary morbidity and 
mortality, especially for individuals with the highest elevations of blood pressure, 
those with multiple risk factors, and the elderly. Effective therapy lowers the overall 
relative risk of congestive heart failure in randomized controlled trials [3]. In 
patients with chronic renal failure, tight blood pressure control slows decline in 
renal function [54]. Among patients with prior stroke or transient ischemic attack, 
blood pressure lowering reduces the risk of dementia and cognitive decline [55].

However, evidence for the protective effects of pharmacologically induced blood 
pressure reduction in individuals with lower blood pressure or with comorbidities is 
less solid [56–59].

Modern drug-based therapeutic approach has the capacity to reduce blood pres-
sure in a high percentage of patients with hypertension [60, 61]. Nevertheless, over 
the past decade, observational clinical studies and surveys have shown that the prev-
alence of hypertension increased by about 10%. Nearly one third of patients were 
unaware of their condition. Although two thirds were told to adopt lifestyle changes 
or take medications, the percentage of hypertensives consistently controlled with 
medications has remained low (only 30% achieved blood pressure control 
≤140/90  mmHg) [62], being this related to a number of factors including poor 
adherence and physician’s inertia. Over the past 30 years, data from different sur-
veys suggest that 30–40% of treated hypertensive patients reached the suggested 
target [2]. Also in Italy, in a large population of treated hypertensive patients 
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followed in outpatient clinics, hypertension centers, or general practice, through one 
decade of observation, ~60% of hypertensive patients were treated, and among 
these only 33% achieved effective blood pressure control. Therefore, more effective 
interventions to improve management of hypertension are needed [63].

In this regard, interventional trials consistently showed that it is possible to 
achieve effective blood pressure targets in about 70% of treated hypertensive patients 
with different cardiovascular risk profiles, especially through the use of rational, 
effective, and well-tolerated combination therapies. Since about 70–80% of treated 
hypertensive patients require a combination therapy based on at least two classes of 
drugs in order to achieve the recommended blood pressure goals, it is of great impor-
tance to implement this strategy in routine clinical practice [64]. Among the various 
combination therapies currently available for hypertension treatment and control, the 
use of those strategies based on drugs that antagonize the renin-angiotensin system, 
such as angiotensin II type 1 receptor antagonists (angiotensin receptor blockers) and 
ACE inhibitors, in combination with diuretics and/or calcium channel blockers, has 
been shown to significantly reduce the risk of major cardiovascular events and to 
improve patient compliance to treatment, resulting in a greater antihypertensive effi-
cacy and better tolerability compared with monotherapy [65].

Effective and well-tolerated single-pill combination therapies are now available. 
This type of therapeutic approach may improve adherence and simplify treatment. 
The combination of a renin-angiotensin system blocker with a calcium channel 
blocker and a diuretic improves adherence to therapy [65].

A better control of blood pressure in hypertensive patients may largely contribute 
to modifying the natural course of the disease which is still characterized by high 
level of morbidity and mortality.

The actual blood pressure thresholds at which treatment should be initiated and 
the target levels at which blood pressure should be maintained still remain a topic of 
debate. In particular what has been less clear is whether there is further cardiovas-
cular benefit when blood pressure is treated more intensively to a goal lower than 
140/90 mmHg.

Most major hypertension treatment guidelines still suggest that clinicians should 
try to treat adults to a blood pressure target of ≤140/90 mmHg [3, 11–16]. However, 
after years of recommendations for a low target blood pressure in hypertensive 
patients, particularly those with diabetes or previous cardiovascular or renal disease, 
major guidelines on hypertension management have reevaluated the concept of the 
“lower the better.” Hence, they have reversed a trend toward lower blood pressure 
thresholds and targets, recommending targets below 140/90 mmHg in most patients, 
particularly for those at high risk [3, 11–16]. In the elderly patients, a target of blood 
pressure <150/90 mmHg was recommended.

Several publications in recent years (most derived from non-randomized clinical 
trial) have supported this notion suggested by the hypothesized “J-curve” effect of 
blood pressure treatment, defined as the occurrence of additional cardiovascular 
events when the blood pressure is lowered beyond the level required to maintain 
tissue perfusion [66]. This concept has led to the concern that excessive lowering of 
blood pressure could increase the risk of cardiovascular events, although the notion 

4  Natural History of Treated and Untreated Hypertension



40

of the J-curve should be referred primarily to diastolic and not systolic blood pres-
sure reduction, in terms of additional harm for the reduction of diastolic blood pres-
sure  <65  mmHg [67–69]. Thus, targets for diastolic blood pressure  <90  mmHg 
seem safe in the J-curve phenomenon. Moreover, in diabetic patients, previous 
guidelines recommended target blood pressure levels of around 130/85  mmHg. 
After the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial [70], 
this statement was challenged since in a population of 4733 patients with type 2 
diabetes, an intensive blood pressure-lowering therapy (systolic blood pres-
sure <120 mmHg) did not report a significant difference in overall cardiovascular 
event rates as compared to standard target of systolic blood pressure <140 mmHg. 
Therefore, the last European guidelines recommend target blood pressure levels 
of <140/85 mmHg in diabetic patients. By contrast, a systematic review of trials of 
more versus less blood pressure-lowering regimen reported a significant reduction 
in major vascular events [71].

Nevertheless recent evidence has challenged again this orientation in the man-
agement of hypertension. The Systolic Blood Pressure Intervention Trial (SPRINT) 
has recently shown that intensive systolic blood pressure control (to <120 mmHg) 
reduced the incidence of cardiovascular events and mortality by 25% (5.2% vs. 
6.8%; hazard ratio 0.75; 95% confidence interval 0.64–0.89) compared with stan-
dard systolic blood pressure control (135–139 mmHg) in a population of 9361 sub-
jects aged  ≥50  years at increased risk for cardiovascular events, not including 
patients with diabetes and previous stroke. This may imply the need to reevaluate 
again blood pressure targets in hypertensive patients at high risk for cardiovascular 
events [72]. However, uncertainty remains as to whether such benefits hold for high-
risk individuals excluded from the trial, especially those with diabetes or cerebro-
vascular disease [59]. Very recently two meta-analyses further support the notion of 
the implementation of intensive blood pressure control in high-risk hypertensive 
patients. A meta-analysis of 19 treat-to-target trials (in about 45,000 subjects) and a 
7 mmHg mean systolic blood pressure reduction (from 140 to 133 mmHg) led to a 
14% (95% confidence interval 0.78–0.96) reduction in major cardiovascular events 
[73]. These beneficial effects were consistent across major patient subgroups and 
types of interventions, and significant gains could be achieved from further lower-
ing of systolic blood pressure to lower than 140 mmHg. Although an increase in 
hypotension occurred as a result of more intensive blood pressure lowering, includ-
ing serious hypotensive events, there was no suggestion that these adverse effects 
would outweigh the benefits of treatment in high-risk patient populations.

In a second meta-analysis of 129 studies (over 600,000 subjects included) in 
various populations of hypertensive patients including those at relatively low blood 
pressure levels at baseline, those at high risk, and those presenting previous cardio-
vascular and cerebrovascular events, blood pressure-lowering treatment signifi-
cantly reduced the risk of cardiovascular disease and death realized from a 10 mmHg 
systolic blood pressure reduction similarly across different quintiles of baseline sys-
tolic blood pressure (<130, 130–139, 140–149, 150–159, ≥160 mmHg) [74]. No 
significant trend toward increased risk was reported for any outcome (major cardio-
vascular events, coronary heart disease, stroke, heart failure, renal failure, and 
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all-cause mortality). Thus, a J-shaped relationship could not be substantiated, and 
the treatment effects were unlikely to be attenuated in trials that included partici-
pants with low systolic blood pressures at baseline, particularly those with less than 
130 mmHg. However, it remains unclear whether a concomitant reduction in dia-
stolic blood pressure (which is more directly related to the J-curve phenomenon) 
could also result in a reduced rate of cardiovascular events.

Although the SPRINT trial and the two meta-analyses included studies with het-
erogeneous cohorts, as well as the focus of intensive therapy was only on systolic 
blood pressure, the impact for the clinical practice appears dramatic in terms of the 
need of redefining blood pressure thresholds and targets. Therefore, expert consen-
sus and guideline implementation will be probably required in order to properly 
address the issue of management of hypertensive patients.
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5The Kidneys, Volume and Blood Pressure 
Regulation, and Hypertension

Joey P. Granger and Frank T. Spradley

5.1	 �Introduction

Control of blood pressure is important in that it is a critical determinant of blood 
flow and oxygen and nutrient delivery to all tissues of the body. The control of blood 
pressure is complex and time-dependent and involves the integration of neural, hor-
monal, physical, and autacoid factors. While short-term blood pressure regulation is 
achieved through rapid alterations in cardiac output and/or total peripheral resis-
tance, long-term control of blood pressure involves more slowly acting systems and 
is intimately linked to the regulation of extracellular fluid volume. Extracellular 
fluid volume is determined by the balance of intake and excretion of sodium and 
water by the kidneys.

Several decades ago, Guyton and Coleman [1] proposed that if an increase in 
blood pressure could produce sustained increases in sodium and water excretion 
through a renal-pressure natriuresis and diuresis mechanism, then this system would 
have a near infinite gain for the long-term control of arterial pressure by regulating 
blood volume. In addition, they proposed that elevation in blood pressure above the 
normal the set point for blood pressure control only occurs when factors impair the 
sodium and fluid excretory ability of the kidney and shifts the relation between 
sodium excretion and arterial pressure toward higher levels [1–3]. While there is 
strong theoretical and experimental evidence that the kidney is a major determinant 
of the long-term control of arterial pressure, the initial cause of abnormal pressure 
natriuresis and hypertension need not be intrinsic to the kidney [1–4]. The focus of 
this chapter is to review the importance of the kidneys in the long-term regulation of 
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extracellular volume and blood pressure and briefly summarize the various intra- 
and extrarenal factors that contribute to abnormal pressure natriuresis in 
hypertension.

5.2	 �Long-Term Regulation of Extracellular Volume 
and Blood Pressure

Extracellular fluid volume is controlled by various neural, hormonal, autacoid, and 
physical factors that regulate the excretion of salt and water by the kidneys. The 
renal-body fluid system concept predicts that a higher sodium and fluid intake than 
output would lead to an increase in extracellular volume and arterial pressure (see 
Fig. 5.1). If the excretory ability of the kidney is not impaired, the increase in arte-
rial pressure raises sodium excretion and extracellular fluid volume would then 
decrease, thereby reducing venous return and cardiac output until blood pressure 
returns to normal and fluid intake and output are reestablished. Conversely, when 

Basic Renal-body Fluid Mechanism for
Long-term Blood Pressure Control
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Fig. 5.1  Basic renal-body fluid feedback mechanism for long-term regulation of blood pressure 
and body fluid volumes (redrawn from [1])
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sodium and fluid output exceeds intake, extracellular fluid volume, blood volume, 
venous return, and cardiac output fall, which ultimately leads to a decrease in blood 
pressure below normal. This decrease in arterial pressure causes the kidneys to 
retain sodium and water until fluid balance is achieved and blood pressure is restored 
to the normal set point. Thus, according to the renal-body fluid feedback mechanism 
concept, the set point for long-term blood pressure control is the arterial pressure at 
which sodium and water intake and output are at equilibrium (see Fig. 5.2) [1–3].

A key component of this mechanism for regulating salt and water balance is 
pressure natriuresis/diuresis, which is the effect of increased arterial pressure to 
raise sodium and water excretion. An important feature of pressure natriuresis is 
that various hormonal and neural control systems can amplify or blunt the pressure 
natriuresis mechanism [1–3, 5–8]. For example, in most individuals, chronic 
increases in sodium intake are associated with only small changes in arterial pres-
sure. The lack of significant increases in arterial pressure in response to elevations 
in sodium intake is due to a number of very effective volume control systems that 
are activated by extracellular volume expansion. For example, in response to 
increases in sodium intake, decreased formation of antinatriuretic hormones and/or 
increased formation of natriuretic factors enhance the effectiveness of pressure 
natriuresis and allow sodium balance to be maintained with little or no increase in 
arterial pressure. On the other hand, excessive activation of antinatriuretic systems 
or abnormalities in natriuretic systems can reduce the effectiveness of pressure 
natriuresis, thereby necessitating greater increases in arterial pressure to maintain 
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sodium and water balance. Thus, excessive activation of antinatriuretic systems or 
abnormalities in natriuretic systems impairs the excretory ability of the kidney and 
shifts the relation between sodium excretion and arterial pressure toward higher 
levels and resets the set point for long-term blood pressure control (see Fig. 5.2).

While total peripheral resistance and cardiac output are determinants of arterial 
pressure, one prediction of the renal-body fluid feedback mechanism is that if the 
pressure natriuresis mechanism is not impaired, a primary increase in total periph-
eral resistance or increases in cardiac pumping ability would not result in long-term 
alterations in arterial pressure [1, 2, 5–8]. For instance, an increase in total periph-
eral resistance would result in an immediate elevation in arterial pressure (see 
Fig. 5.1). The increase in arterial pressure would increase sodium and water excre-
tion, via pressure natriuresis. As long as fluid excretion exceeds fluid intake, extra-
cellular fluid volume will continue to decrease, reducing venous return and cardiac 
output, until blood pressure returns to normal and fluid balance is reestablished. 
Thus, primary increases in total peripheral resistance or increases in cardiac pump-
ing do not result in long-term alterations in arterial pressure; thus, hypertension can 
develop only when physiological and/or pathophysiological factors impair the 
excretory ability of the kidney and shifts the relation between sodium excretion and 
arterial pressure toward higher levels [1–3, 5–8].

5.3	 �Pressure Natriuresis: A Key Factor in Maintaining 
Sodium Balance in Hypertension

Another important prediction of the renal-body fluid feedback control system con-
cept is that an increase in blood pressure in hypertensive states is an essential com-
pensatory mechanism that allows sodium balance to be maintained in the face of an 
underlying sodium-retaining defect [5–8]. To determine the importance of the pres-
sure natriuresis mechanism in achieving sodium balance caused by aldosterone 
excess, Hall and colleagues [6] examined the long-term effects of aldosterone on 
sodium excretion and arterial pressure in normal dogs and in dogs where renal 
artery pressure was prevented from increasing with an electronically servo-
controlled aortic occluder. In dogs in which renal artery pressure was permitted to 
increase during chronic aldosterone infusion, sodium excretion decreased markedly 
on the first day and then returned to control levels on days 2–3 of aldosterone infu-
sion as arterial pressure increased (see Fig. 5.3). In contrast, in dogs in which renal 
artery pressure was prevented from increasing, sodium excretion decreased on the 
first day and remained below sodium intake for the 7 days of aldosterone infusion. 
The sustained sodium retention resulted in dramatic increases in cumulative sodium 
balance and systemic arterial pressure. The results from this study clearly demon-
strated that an increase in renal arterial pressure is essential in allowing the kidneys 
to override the chronic sodium-retaining actions of aldosterone and to achieve nor-
mal sodium balance. Similar findings were reported from the same group during 
chronic administration of other sodium-retaining hormones, such as angiotensin 
(ang) II and norepinephrine [7, 8].
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5.4	 �Impaired Renal-Pressure Natriuresis in Hypertension 
Caused by Intra- and Extrarenal Factors

An important observation that points toward abnormal kidney function as a key fac-
tor in causing hypertension is that almost all forms of experimental hypertension are 
caused by perturbations to the kidneys that alter renal hemodynamics or tubular 
reabsorption and reduce the kidney’s ability to excrete sodium and water. For exam-
ple, constriction of the renal arteries, compression of the kidneys, and administra-
tion of sodium-retaining hormones such as ang II or aldosterone are all associated 
with either decreases in renal blood flow and GFR and/or increases in renal tubular 
reabsorption prior to development of hypertension [5–8]. Further evidence support-
ing an important role for the kidneys in the development and maintenance of hyper-
tension is that in all known monogenic forms of human hypertension, the common 
pathway to hypertension appears to be increased renal tubular reabsorption caused 
by mutations that directly increase renal electrolyte transport (e.g., Liddle’s or 
Gordon’s syndromes) or the synthesis and/or activity of antinatriuretic hormones 
(e.g., glucocorticoid-remediable aldosteronism) [4–8].

A shift in the pressure natriuresis relationship can occur as a result of intrarenal 
abnormalities such as excess formation of ang II, reactive oxygen species, inflam-
matory cytokines and endothelin-1 (via ETA receptor activation) or decreased syn-
thesis of nitric oxide and natriuretic prostanoids, decreased renal medullary 
production of ET-1 (and decreased ETB receptor activation), or even genetic defects 
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that enhance renal sodium transport systems. In other instances, the altered kidney 
function is caused by extrarenal disturbances, such as increased renal sympathetic 
nervous activity (RSNA) or excessive formation of antinatriuretic hormones such as 
aldosterone. The remaining portion of this chapter will discuss how these and other 
intra- and extrarenal factors impair renal-pressure natriuresis and lead to the devel-
opment of chronic hypertension (see Table 5.1).

Angiotensin II, the kidney, and hypertension. The renin-angiotensin system 
(RAS) plays a critical role in the long-term regulation of extracellular fluid volume 
and blood pressure and is involved in the pathogenesis of various forms of hyper-
tension, including renovascular hypertension and human essential hypertension [7, 
10]. The RAS, via AT1 receptor, plays an important role in maintaining sodium 
balance and a relatively normal pressure as sodium intake is altered from low to 
high levels [5].

The effect of ang II to reduce renal-pressure natriuresis and cause hypertension 
is the result of its effects to directly or indirectly stimulate sodium transport [9–11]. 
While AT1 receptors are prominently expressed in the kidney, they are also expressed 
in the heart, blood vessels, adrenal glands, and the brain [11–14]. Because AT1 
receptors are ubiquitously expressed, dissecting the quantitative importance of each 
individual organ system, including the kidney, in the long-term regulation of blood 
pressure has been difficult. Utilizing a combined gene targeting with renal cross 
transplantation approach, Coffman and colleagues examined the role of AT1 recep-
tors in the kidney and their contribution to the development of ang II-induced hyper-
tension [11–14]. They found that ang II causes hypertension primarily through 
effects on AT1 receptors in the kidney associated with reduced urinary sodium 
excretion, independent of actions of the sympathetic nervous system or aldosterone. 
When AT1 receptors are eliminated from the kidney, the extrarenal AT1 receptors 
are not sufficient to induce hypertension (see Fig. 5.4). Coffman and colleagues also 
reported that deletion of AT1 receptors in the proximal tubule alone reduces 

Table 5.1  Partial list of 
factors affecting renal 
pressure natriuresis in 
hypertension

Prohypertensive—antinatriuretic factors
Angiotensin II
Aldosterone
Renal sympathetic nerve activity
Endothelin (via ETa receptor activation)
Vascular 20-HETE (hydroxyeicosatetraenoic acid)
Immune factors and inflammatory cytokines
Reactive oxygen species
Renal vascular stenosis
Glomerular disease
Genetic defects in renal sodium transporters
Deficiency of antihypertensive—natriuretic factors
Nitric oxide
Prostaglandins
Renal tubular 20-HETE
EETS
Atrial natriuretic peptide
Renal medullary endothelin (via loss of ETb receptor activation)
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proximal fluid reabsorption, alters expression of key sodium transporters, improves 
pressure natriuresis, and significantly attenuates ang II-induced hypertension [11–
14]. Collectively, these findings highlight the critical role of the kidney in the patho-
genesis of ang II-dependent hypertension. In addition, they suggest that the major 
mechanism of action of RAS blockade in hypertension is attenuation of ang II sig-
naling in the kidney.

Aldosterone, the kidney, and hypertension. In addition to primary hyperaldoste-
ronism, excess activation of mineralocorticoid receptor by aldosterone has also 
been implicated in several forms of human hypertension, including renovascular 
hypertension, patients with resistant hypertension, and obesity-related hypertension 
[15–20]. Aldosterone plays an important role in the chronic regulation of blood 
pressure via its sodium-retaining actions on the kidney. Aldosterone alters the renal-
pressure natriuresis relationship by enhancing sodium transport in the distal tubules 
and cortical collecting ducts. The sodium-retaining effect of aldosterone is due to 

200

Wild-type

Systemic KO

Kidney KO

Total KO180

160

140

120

M
A

P
 (

m
m

 H
g)

100

80
pre 5

Day of Ang II Infusion
10 15 20

Fig. 5.4  A dominant role for renal AT1A receptors in blood pressure control was demonstrated 
using four groups of cross-kidney transplanted mice, namely, whole-body AT1A expressing (wild 
type), AT1A expressing systemically but not in the kidney (systemic AT1A), AT1A expressing only in 
the kidney (kidney KO), and no AT1A in either location (total KO). Mice then received 21 days of 
ang II infusion. Blood pressure response to ang II in the systemic KO recapitulated that of the wild-
type group by day 12 of ang II infusion. Absence of renal AT1A receptors in the kidney KO animals 
ameliorated ang II-induced hypertension. Total KO blood pressure shows minimal response to ang 
II infusion [44]

5  The Kidneys, Volume and Blood Pressure Regulation, and Hypertension



54

binding of aldosterone to intracellular mineralocorticoid receptor and activation of 
transcription by target genes. These target genes, in turn, stimulate synthesis or 
activation of the sodium-potassium ATPase pump on the basolateral epithelial 
membrane and activation of amiloride-sensitive sodium channels on the luminal 
side of the epithelial membrane [18].

As sodium intake is increased to high levels, aldosterone levels are suppressed, 
allowing sodium excretion to increase to match sodium intake. Conversely, when 
sodium intake is restricted, aldosterone levels increase, and sodium excretion is 
reduced to match the low sodium intake. Thus, a change in aldosterone production 
in response to changes in sodium intake is another important hormone in the main-
tenance of sodium balance. An inability to suppress aldosterone production in 
response to increases in sodium intake therefore is another potential mechanism for 
salt-sensitive hypertension in humans.

The renal sympathetic nervous system. Another system that can reduce the renal-
pressure natriuresis relationship and cause chronic hypertension is the renal sympa-
thetic nervous system [21, 22]. The kidneys receive extensive sympathetic 
innervation, and increases in RSNA reduce sodium excretion by increasing tubular 
reabsorption or decreasing the filtered load of sodium via α-adrenergic receptor 
activation [21, 22]. Renal nerves can act directly on the tubule to increase sodium 
reabsorption or indirectly by increasing renal vascular resistance and reducing med-
ullary blood flow and renal interstitial pressure. In addition, increases in RSNA can 
enhance tubule reabsorption by activating the RAS.

Excessive activation of the renal sympathetic nervous system has been implicated in 
the pathogenesis of several experimental and genetic forms of hypertension [21, 22]. 
Evidence for a role of the renal nerves in hypertension derives from animal studies 
showing that renal denervation attenuates or delays the development of hypertension in 
several forms of experimental hypertension [21, 22]. One particular experimental form 
of hypertension that is mediated via enhanced RSNA is obesity-related hypertension 
[21, 22]. Obesity is often associated with increased sympathetic activity [21, 22]. To 
determine the role of renal nerves in mediating the sodium retention and hypertension 
associated with obesity, Kassab and colleagues [23] examined the hemodynamic and 
renal excretory responses to a high-fat diet in control and bilaterally renal-denervated 
dogs (see Fig. 5.5). In response to a high-fat diet, body weight increased similarly in the 
control and bilaterally renal-denervated groups. Arterial pressure increased by 15% in 
the control group but, in sharp contrast, 5 weeks of a high-fat diet in the bilaterally 
renal-denervated group did not significantly increase arterial pressure. Furthermore, 
after 5 weeks of a high-fat diet, cumulative sodium retention was 455 ± 85 mmol in the 
control group and only 252  ±  47  mmol in the bilaterally renal-denervated group. 
Similar increases in glomerular filtration rate and renal plasma flow occurred in both 
groups in response to the high-fat diet, indicating that the sodium retention in response 
to a high-fat diet was due to enhanced sodium reabsorption [23]. The results of this 
study indicate that the renal nerves play an important role in mediating the sodium 
retention and hypertension associated with obesity.

While there is growing evidence for a role of the renal sympathetic nervous sys-
tem in the development of several animal models of hypertension, the importance of 
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renal nerves in the pathogenesis of human hypertension has yet to be fully eluci-
dated [21, 22]. Application of the norepinephrine spillover methodology in humans 
has demonstrated activation of the sympathetic nervous outflow to the kidneys in 
humans with essential hypertension [21, 22]. Renal norepinephrine spillover, on 
average, is elevated two- to threefold in both normal weight patients with essential 
hypertension and in those with obesity-related hypertension [21, 22].

Evidence for a potential role of renal nerves in human hypertension are the find-
ings that ablation of the renal sympathetic nerves with a radiofrequency-emitting 
catheter inserted percutaneously significantly reduces blood pressure in patients with 
resistant hypertension [24–26]. Symplicity HTN-1 and HTN-2 demonstrated signifi-
cant reductions of blood pressure within 6 months of the procedure. In contrast, the 
Symplicity HTN-3 trial, which controlled for factors believed to influence the out-
come, including the addition of a sham arm, yielded a much lower blood pressure 
reduction compared with the Symplicity HTN-1 and HTN-2 trials [24–26]. The 
exact reasons for the variable findings with the renal ablation procedure may be mul-
tiple including inadequate renal denervation. While some studies support a potential 
role for renal nerves in patients with resistant hypertension, it also remains unclear as 
to the relative importance of destruction of renal afferent versus efferent nerves in the 
antihypertensive effect achieved by the radiofrequency ablation procedure [26].

The renal endothelin system. Endothelin-1 (ET-1) is derived from preproendo-
thelin, which is cleaved after translation to form proendothelin [27–29]. 
Proendothelin is cleaved in the presence of a converting enzyme to produce the 21 
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amino acid peptide, ET-1. ET-1 receptor binding sites have been identified through-
out the body with the greatest numbers of receptors in the kidneys. ET-1 can either 
elicit a prohypertensive, antinatriuretic effect by activating endothelin type A (ETA) 
receptors and causing renal vasoconstriction or an antihypertensive, natriuretic 
effect via endothelin type B (ETB) receptor activation (see Fig. 5.6). Thus, the abil-
ity of ET-1 to influence blood pressure regulation and renal-pressure natriuresis is 
highly dependent on where ET-1 is produced in the kidney and which renal ET 
receptor type is activated [27–29].

ET-1, via ETA receptor activation, exerts a variety of actions within the kidney 
that, if sustained chronically, could contribute to the development of hypertension 
and progressive renal injury [27–29]. ET-1 decreases GFR and renal plasma flow 
[27–29]. Long-term effects of ET-1 on the kidney include stimulation of mesangial 
cell proliferation and extracellular matrix deposition as well as stimulation of vas-
cular smooth muscle hypertrophy in renal resistance vessels [27–29]. Previous 
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Fig. 5.6  Pro- and antihypertensive actions of endothelin-1 (ET-1). The ability of ET-1 to influence 
blood pressure regulation and renal-pressure natriuresis is highly dependent on where ET-1 is pro-
duced and which renal ET receptor type is activated. ET-1 can elicit a prohypertensive, antinatri-
uretic effect by activating ETA receptors in the kidneys. Activation of renal ETA receptors increases 
renal vascular resistance (RVR), which decreases renal plasma flow (RPF) and glomerular filtration 
rate (GFR) and enhances sodium reabsorption by decreasing peritubular capillary hydrostatic pres-
sure (Pc). The net effect of renal ETA receptor activation would be increased in sodium retention and 
blood pressure. Conversely, ET-1 can elicit an antihypertensive, natriuretic effect via ETB receptor 
activation. Activation of the renal ETB receptor leads to enhanced synthesis of nitric oxide (NO) and 
prostaglandin E2 (PG) and suppression of the renin-angiotensin system. The net effect of renal ETB 
receptor activation would be decreases in sodium retention and blood pressure
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studies have indicated that expression of ET-1 is greatly enhanced in animal models 
of severe hypertension with renal vascular hypertrophy and in models of progres-
sive renal injury [27–29]. In addition, treatment with endothelin receptor antago-
nists attenuated the hypertension and small artery morphologic changes and 
improved kidney function in these models [30, 31]. An interesting unanswered 
question that emerges is whether the beneficial effect of the ETA blockade in reduc-
ing renal injury is mediated through reducing blood pressure or through direct renal 
mechanisms. Moreover, the importance of selective ETA blockade in human hyper-
tension remains unknown [32–34].

While much attention has been given to the role of ET-1 in the pathophysiology 
of cardiovascular and renal disease acting via an ETA receptor, recent studies indi-
cate an important physiological role for ET-1 in the regulation of sodium balance 
and arterial pressure via ETB receptor activation. The most compelling evidence that 
the endothelin system may play a significant role in the regulation of sodium bal-
ance and arterial pressure are the reports that transgenic animals deficient in ETB 
receptors develop a severe form of salt-sensitive hypertension [35]. Additional evi-
dence comes from studies indicating that pharmacological antagonism of ETB 
receptors produces significant hypertension in rats [35–38].

The collecting duct ETB receptor appears to be an important physiologic regula-
tor of renal sodium excretion and blood pressure. Ge and colleagues [39, 40] 
reported that disruption of ETB receptors in the collecting duct cells of mice was 
found to produce significant hypertension that was salt-sensitive. Collecting duct 
ETB KO mice on a normal sodium diet were hypertensive. Collecting duct ETB 
knockout mice on a high-sodium diet had worsened hypertension, reduced urinary 
sodium excretion, and excessive weight gain [39]. Similar findings were found in 
mice with combined ETB and ETA receptor KO in the collecting duct cells [40] 
These findings provide strong evidence that the collecting duct ETB receptor is an 
important physiologic regulator of renal sodium excretion and blood pressure.

Nitric oxide (NO) deficiency and hypertension. All components of the NO system 
are located within the kidney, and pharmacological or genetic disruption of this sys-
tem results in a sustained hypertension associated with reductions in renal hemody-
namics and pressure natriuresis [41–44]. The magnitude of the increase in blood 
pressure is also dependent on dietary sodium intake. These findings have led to the 
concept that NO is not only important in the long-term regulation of sodium balance 
and blood pressure but also to the notion that abnormalities in NO production results 
in altered pressure natriuresis and a salt-sensitive form of hypertension. Several lines 
of evidence suggest that NO may play an important role in the regulation of sodium 
balance and in pathogenesis of salt-sensitive hypertension [41–45]. An increase in 
renal NO production or release, as evidence by increased urinary excretion of NO 
metabolites or the NO second messenger, cyclic GMP, has been reported to be essen-
tial for the maintenance of normotension during a dietary salt challenge. Prevention of 
this increase in renal NO production results in salt-sensitive hypertension [41–45].

Reductions in NO synthesis also reduce sodium excretory function either through 
direct effects on tubular transport or through changes in intrarenal physical factors, 
such as renal interstitial hydrostatic pressure or medullary blood flow [46, 47]. 
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Consistent with this concept are observations that the acute infusion of an NO syn-
thase inhibitor directly into the renal medulla significantly reduces papillary blood 
flow, renal interstitial hydrostatic pressure, and decreases urinary sodium and water 
excretion without affecting glomerular filtration rate or systemic pressure [41, 46, 
47]. Chronic medullary interstitial infusion of nitric oxide synthase inhibitors into 
conscious rats results in sustained reductions in medullary blood flow, sustained 
sodium and water retention, and hypertension, which are reversed when the infusion 
is discontinued (see Fig. 5.7). These findings demonstrate that reductions in medul-
lary blood flow may be another important mechanism whereby inhibition of NO in 
the kidney leads to a hypertensive shift in pressure natriuresis [46].

140

-0.8

-0.4

0.8

0.4

0.6

0.8

1

1.2

0.4

0

130

120

M
ea

n 
A

rt
er

ia
l P

re
ss

ur
e 

(m
m

H
g)

S
od

iu
m

 B
al

an
ce

 (
m

E
q)

M
ed

ul
la

ry
 B

lo
od

 F
lo

w
 (

V
ol

ts
)

110

100

Days

Fig. 5.7  Effects of chronic 
renal medullary interstitial 
infusion of the nonselective 
nitric oxide synthase 
inhibitor L-NAME 
(8.6 mg/kg/day) on renal 
medullary blood flow 
(top), daily sodium balance 
(middle), and mean arterial 
blood pressure (bottom) in 
conscious male Sprague-
Dawley rats. The space 
between the vertical 
dashed lines indicates the 
L-NAME infusion period 
whereby the left line is the 
beginning and the right 
line is when infusion was 
halted. *Significant 
difference from control 
(P <0.05) (redrawn from 
[46])

J.P. Granger and F.T. Spradley



59

Atrial natriuretic peptide. Atrial natriuretic peptide (ANP) elicits an antihyper-
tensive, natriuretic effect via its receptors (NPR). ANP is 28 amino acid peptide 
synthesized and released from atrial cardiocytes in response to stretch [48]. Once 
ANP is released from the atria, it enhances sodium excretion through extrarenal and 
intrarenal mechanisms [48]. A deficiency in ANP production or a defect in its recep-
tors may reduce pressure natriuresis and lead to hypertension by enhancing tubular 
sodium reabsorption either directly by enhancing the active tubular transport of 
sodium or indirectly via alterations in medullary blood flow, physical factors, and 
intrarenal hormones.

Plasma levels of ANP are elevated in numerous physiological conditions associ-
ated with enhanced sodium excretion [48]. Acute saline load to induce blood vol-
ume expansion consistently elevates circulating levels of ANP. Some, but not all, 
investigators have reported that chronic increases in dietary sodium intake raise 
circulating levels of ANP. Several studies have reported that infusions of exogenous 
ANP at rates that result in physiologically relevant plasma concentrations, compa-
rable to those observed during volume expansion, have significant renal and cardio-
vascular effects [49]. Infusion of ANP at a rate that causes a twofold increase in 
plasma ANP elicits significant natriuresis, especially in the presence of other natri-
uretic stimuli, such as high renal perfusion pressure [49]. Long-term physiological 
elevations in plasma ANP also shift the renal-pressure natriuresis relationship and 
reduce arterial pressure [49].

The development of genetic mouse models that exhibit chronic alterations in 
expression of the genes for ANP or its receptors (NPR-A, NPR-C) has also provided 
compelling evidence for a role of ANP in chronic regulation of renal-pressure natri-
uresis and blood pressure [50, 51]. Transgenic mice overexpressing the ANP gene 
are hypotensive relative to the non-transgenic littermates, whereas mice harboring 
functional disruptions of the ANP or NPR-A genes are hypertensive. The ANP gene 
“KO” mice develop a salt-sensitive form of hypertension in association with failure 
to adequately suppress the RAS [50, 51]. These findings suggest that genetic defi-
ciencies in ANP or natriuretic receptor activity could play a role in the pathogenesis 
of salt-sensitive hypertension.

Arachidonic acid metabolites. Cyclooxygenase metabolizes arachidonic acid 
into prostaglandin (PG) G2 and subsequently to PGH2, which is then further metab-
olized by tissue-specific isomerases to PGs and thromboxane [52, 53]. Although the 
kidney produces many types of PGs with multiple functions, the major renal pros-
taglandin controlling sodium excretion is PGE2 [52, 53]. However, production of 
other arachidonic acid metabolites, such as prostacyclin, thromboxane, and 
20-HETE (hydroxyeicosatetraenoic acid), may also influence renal-pressure natri-
uresis and blood pressure regulation. The largest production of PGE2 occurs in the 
medulla with decreasing synthesis in the cortex. PGE2 is synthesized and rapidly 
inactivated and, once synthesized, is released and not stored. Once released, PGE2 
influences sodium transport by several intrarenal mechanisms.

Inhibition of PG synthesis with nonselective or selective inhibitors of cyclooxy-
genase-2 (COX-2) activity induces or exacerbates salt-sensitive hypertension, an 
effect that has been attributed to inhibition of renal COX-2 activity and subsequent 
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increase in renal sodium transport. Zhang et al. recently reported that macrophages 
isolated from kidneys of high-salt-treated mice have increased levels of COX-2 and 
microsomal PGE synthase-1 (mPGES-1) [54]. Furthermore, they showed that bone 
marrow transplantation from either COX-2-deficient or mPGES-1-deficient mice 
into WT mice or macrophage-specific deletion of the PGE2 type 4 (EP4) receptor 
induced salt-sensitive hypertension and increased phosphorylation of the renal 
sodium chloride cotransporter (NCC). These studies suggest that COX-2-derived 
PGE2 in hematopoietic cells plays an important role in response to chronically 
increased dietary sodium intake and also indicate that inhibiting COX-2 expression 
or activity in hematopoietic cells can result in a predisposition to salt-sensitive 
hypertension [54].

In addition to renal PGs generated via the COX pathway, other eicosanoids that 
inhibit tubular sodium transport are produced by cytochrome P450 (CYP) mono-
oxygenase metabolism of arachidonic acid [53]. CYP enzymes metabolize arachi-
donic acid primarily to 20-HETE and EETs. It is known that 20-HETE is a potent 
constrictor of the renal vasculature, but interestingly, 20-HETE and EETS inhibit 
sodium reabsorption in the proximal tubule and TALH.

The renal production of CYP metabolites of arachidonic acid is altered in genetic 
and experimental models of hypertension, and this system contributes to the reset-
ting of pressure natriuresis and the development of hypertension. In the SHR, the 
renal production of 20-HETE is increased, and inhibitors of the formation of 
20-HETE decrease arterial pressure [53]. Blockade of 20-HETE synthesis also 
reduces blood pressure or improves renal function in deoxycorticosterone acetate 
(DOCA)-salt, ang II-infused, and Lyon hypertensive rats [53]. In contrast, 20-HETE 
formation is reduced in the TALH of Dahl salt-sensitive rats, and this contributes to 
elevated sodium reabsorption [53]. Enhanced 20-HETE synthesis improves pres-
sure natriuresis and lowers blood pressure in Dahl salt-sensitive rats, whereas inhib-
itors of 20-HETE production promote the development of hypertension in Lewis 
rats [53].

Oxidative stress. Recent studies suggest that reactive oxygen species (ROS) may 
play a role in the initiation and progression of cardiovascular dysfunction associated 
with diseases, such as hyperlipidemia, diabetes mellitus, and hypertension [54–56]. 
In many forms of hypertension, the increased ROS are derived from NAD(P)H oxi-
dases, which could serve as a triggering mechanism for uncoupling endothelial 
NOS by oxidants, resulting in reduced bioavailability of NO [54–56].

ROS produced by migrating inflammatory cells and/or vascular cells have dis-
tinct functional effects on each cell type [54]. These effects include endothelial 
dysfunction, renal tubule sodium transport, cell growth, migration, inflammatory 
gene expression, and matrix regulation. ROS, by renal hemodynamics and renal 
tubule cell function, can play a role in altering renal-pressure natriuresis and blood 
pressure regulation [54, 57].

Growing experimental evidence supports a role for ROS in various animal mod-
els of sodium-sensitive hypertension [58, 59]. The Dahl salt-sensitive rat has 
increased vascular and renal superoxide production and increased levels of H2O2. 
The renal protein expression of superoxide dismutase (SOD) is decreased in the 
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kidney of Dahl salt-sensitive rats, and long-term administration of tempol, an SOD 
mimetic, significantly decreases arterial pressure and renal damage. Another salt-
sensitive model, the stroke-prone spontaneously hypertensive rat (SHRSP), has 
elevated levels of superoxide and decreased total plasma antioxidant capacity. 
Superoxide production is also increased in the DOCA-salt hypertensive rat [58, 59]. 
Treatment of the DOCA-salt rats with apocynin, an NADPH oxidase inhibitor/ROS 
scavenger, decreases aortic superoxide production and arterial pressure [58, 59].

The importance of oxidative stress in human hypertension is unclear. An imbal-
ance between total oxidant production and the antioxidant capacity in human hyper-
tension has been reported to occur in some but not all studies. The equivocal findings 
in human studies are most likely due to difficulty of assessing oxidative stress in 
humans. Moreover, most of recent human studies have found that vitamin E and C 
supplementation has little or no effect on blood pressure. However, it should be 
noted that these are relatively weak antioxidants, and further studies are needed to 
assess the role of ROS in human hypertension.

Inflammatory cytokines and the immune system in hypertension and renal injury. 
Growing evidence over the last 5 years supports the concept that both innate and 
adaptive immunity contribute to the development of hypertension and hypertensive 
renal injury [60–66]. Macrophages and T cells accumulate in the kidney of hyper-
tensive animals and are thought to contribute to altered renal hemodynamics and 
tubular function in hypertension [60–66]. Findings that plasma levels of pro-
inflammatory cytokines correlate with increased blood pressure in human hyperten-
sion and in some experimental animal models of hypertension also provide 
additional support for a role for cytokines in hypertension [60–66]. Moreover, sev-
eral studies have demonstrated that chronic increases in plasma cytokines, compa-
rable to concentrations observed in the hypertension associated with hypertension 
preeclampsia, cause significant and sustained increases in blood pressure [64].

Animal studies utilizing genetic deletion of cytokines or its receptors support a 
role of cytokines in hypertension. For example, mice with knockout of IL-6 have 
significantly lower blood pressure than wild-type mice during 2 weeks of ang II 
infusion [65]. Although these findings demonstrate a significant role for IL-6  in 
mediating the chronic hypertensive response to ang II in mice, the importance of 
inflammatory cytokines in the pathogenesis and progression of the various forms of 
human hypertension is unclear and is currently an area of active investigation.

Results from several recent studies also suggest that T cells play a role in the 
progression of hypertension [66–70]. Harrison and colleagues proposed that hyper-
tensive stimuli lead to renal injury, neoantigen formation, and eventual T-cell activa-
tion within the kidney [66]. T-cell-derived signals promote entry of other 
inflammatory cells such as macrophages, which results in renal vasoconstriction 
and increased sodium reabsorption, thereby increasing the severity of the hyperten-
sion (see Fig. 5.8). Supporting this concept are results from studies in RAG-1−/− 
mice, which lack T cells and B cells [66–68]. These mice do not develop the degree 
of hypertension in response to ang II infusion as wild-type mice, an observation that 
was attributed to lack of T cells [66–68]. Moreover, chronic ang II infusion was 
associated with a greater number of activated T cells as well as increased RANTES, 
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a chemotactic protein, in the vasculature and perivascular fat. These observations 
were confirmed by Crowley et al. using a model very similar to the RAG-1−/− mice 
[66–68]. They reported that ang II hypertension, renal injury, left ventricular hyper-
trophy, and cardiac fibrosis were prevented in SCID mice lacking T cells [66].

Although there is growing evidence suggesting that the immune system plays a 
role in the progression of hypertension, the mechanisms by which hypertension 
stimulates an immune response remain unclear but might involve the formation of 
neoantigens that activate adaptive immunity [66, 70]. Moreover, while findings in 
experimental models of hypertension are intriguing, the importance of the immune 
system in the pathogenesis of hypertension in humans remains to be determined., 
However, in a very interesting recent study, Itani and colleagues used a humanized 
mouse model in which the murine immune system was replaced by the human 
immune system to determine whether human T cells are activated in hypertension 
[69]. They reported that a hypertensive stimulus of ang II promoted accumulation of 
human T cells in the kidney, aorta, and lymph nodes of these humanized mice. The 
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Fig. 5.8  Proposed role of T cells and inflammation in progression of chronic hypertension. Initial 
hypertensive stimuli leads to renal injury, neoantigen formation, and eventual T-cell activation 
within the kidney. T-cell-derived signals promote entry of other inflammatory cells, such as mac-
rophages, which result in renal vasoconstriction and sodium reabsorption, thereby increasing the 
severity of hypertension and cardiovascular-renal disease (redrawn from [20])
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cells exhibited an increase in the memory cell marker CD45RO. In addition, CD3− 
CD45+ cells were increased in lymph nodes of ang II-infused mice. They also dem-
onstrated that circulating T cells of humans with hypertension exhibit evidence of 
activation, as indicated by an increased percent of memory T cells and an increase 
in production of IL-17A and IFN-γ [69]. Thus, human T cells become activated and 
invade critical end-organ tissues in response to ang tempol, a superoxide dismutase 
mimetic II hypertension in the humanized mouse model.
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6Nervous System

Gino Seravalle, Gianmaria Brambilla, Daniela Prata Pizzala, 
and Guido Grassi

6.1	 �Methods of Investigating Sympathetic Activity

A growing interest in the role of the sympathetic nervous system in the pathogenesis 
of hypertension and cardiovascular disease is mainly driven by developments in 
methods used to investigate adrenergic activity [1, 2]. The most commonly used 
techniques include (a) measurements of plasma catecholamines, (b) regional nor-
adrenaline spillover, (c) assessment of baroreceptor function, (d) spectral analysis 
of heart rate variability, (e) microneurography, and (f) imaging techniques.

6.1.1	 �Catecholamines

For many years, the only way to measure sympathetic activity was to assess cate-
cholamines and their metabolites in urine. Further progress came with the intro-
duction of high-performance liquid chromatography (HPLC) to measure 
catecholamine levels in the plasma of venous and subsequently also arterial blood 
samples. The interpretation of studies based on blood catecholamine measure-
ments is, however, confounded by many factors [3]: (a) Only 5–10% of the nor-
adrenaline released is ultimately found in the circulation; (b) plasma and urinary 
levels depend not only on catecholamine release but also on their reuptake and 
further metabolism; (c) renal function has a major effect on urinary catecholamine 
excretion; (d) there is large regional variation in sympathetic activity in various 
organs and organ systems affecting cardiovascular regulation, such as resistance 
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vessels, the heart, the kidneys, and the central nervous system; thus catecholamine 
levels may reflect “overall” sympathetic activity; (e) catecholamine level measure-
ments are poorly reproducible; (f) this is a static method of assessing sympathetic 
activity which is, in fact, dynamically regulated.

Plasma and urine catecholamine levels are an indirect indicator of sympathetic 
activity and thus have only a limited use in research applications.

6.1.2	 �Regional Catecholamine Spillover

In the 1980s, a technique of radioisotope-based measurements of regional catechol-
amine spillover has been introduced [1, 4]. This method has several advantages over 
measuring catecholamine levels: (a) it is possible to distinguish the contribution of 
increased release and reduced reuptake to the overall increased noradrenaline level 
and (b) more precise evaluation of sympathetic activity in selected organs such as 
the heart or kidneys is possible by comparing noradrenaline levels in arterial and 
venous blood samples drawn from specific vessels.

The potential role of impaired neuronal noradrenaline reuptake can be directly 
assessed by infusion of the noradrenaline transport inhibitor desipramine [5]. 
Noradrenaline stores in the human heart could be estimated by quantifying the pro-
cessing inside sympathetic nerves of tritiated noradrenaline to its intraneuronal 
metabolite, tritiated dihydroxyphenylglycol (DHPG), coupled with measurement of 
the specific activity of DHPG in coronary sinus plasma.

Because of its invasiveness and thus the need for arterial and venous catheteriza-
tion, this method is used only for research purposes.

6.1.3	 �Baroreceptor Function Testing

The most commonly used method of evaluating baroreceptor function is the phen-
ylephrine test. Intravenous phenylephrine bolus or infusion results in increased 
blood pressure and reflex bradycardia as reflected by an increased R-R interval. The 
measure of baroreceptor function is R-R interval prolongation (in ms) related to a 
1 mmHg increase in blood pressure. Baroreflex sensitivity can also be assessed by 
the sequence technique [6, 7], in which the slope of the regression line between the 
spontaneous increases or reductions in systolic blood pressure and the related 
lengthening or shortening in the pulse interval is calculated over spontaneous 
sequences of three or more consecutive beats.

Recently, a new method for quantifying the spontaneous baroreflex activity of 
the adrenergic tone has been developed [8, 9]. Briefly, sympathetic baroreflex sen-
sitivity was assessed by using the slope of the linear portion of the relationship 
between muscle sympathetic nerve activity and diastolic blood pressure. For this 
analysis, sympathetic nerve activity values were combined into 3 mmHg bins that 
have been shown to reduce the statistical impact of the non-baroreflex beat-to-beat 
variability in muscle sympathetic nerve activity.
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6.1.4	 �Spectral Analysis of Heart Rate Variability

Spectral analysis of heart rate variability allows noninvasive testing of the auto-
nomic function [10, 11]. This is based on a cyclic variation of a series of R-R inter-
vals. Sinus rhythm variability is largerly related to autonomic activity. The analysis 
is performed using a fast Fourier transform or the autoregression method. Power 
spectrum analysis reveals low-frequency (0.04–0.15 Hz; LF) and high-frequency 
(0.15–0.4 Hz; HF) components. The respiratory-related HF component is attributed 
mainly to vagal mechanisms. By contrast, different hypotheses have been proposed 
for the LF oscillation of R-R variability. In several studies, the LF component was 
not related to rates of noradrenaline spillover from the heart and/or muscle sympa-
thetic nerve traffic [12]. Thus, while the LF/HF ratio may be considered as a marker 
of sympathovagal balance, it is unjustified to consider the low-frequency power a 
surrogate measure of sympathetic nerve firing.

6.1.5	 �Microneurography

Microneurography is the only method allowing direct measurements of adrenergic 
activity in humans [1, 12, 13]. The testing is usually done in the peroneal nerve 
using microelectrodes with a diameter of approx. 100 μm and an electrode tip diam-
eter of 1–5 μm.

Microneurography allows the activity of postganglionic sympathetic fibers 
innervating either skeletal muscle (muscle sympathetic nerve activity, MSNA) [1, 
12, 13] or skin (skin sympathetic nerve activity, SSNA) to be recorded [1, 12].

The activity of sympathetic fibers innervating resistance vessels in skeletal mus-
cle is the major factor affecting peripheral flow and resistance. Sympathetic traffic 
in skeletal muscle sympathetic nerves is synchronized with the heart rate, so the 
firing rate in impulses per minute cannot exceed the heart rate. The so-called resting 
sympathetic activity is thus defined as the mean number of impulses per minute or 
100 heartbeats. This allows comparisons of sympathetic activity to be made between 
groups.

A major advantage of microneurography is that it is an opportunity not only to 
assess precisely resting sympathetic activity but also to track changes in cardiovas-
cular regulation in response to various stimuli. These changes in sympathetic activ-
ity are extremely dynamic in nature, with a significant increase or reduction in firing 
rate seen within seconds. There are some methods to evaluate sympathetic reactivity 
(mental “arithmetic” test, mirror drawing test, hand grip test, “cold pressor” test).

An important tool for evaluating sympathetic reactivity is the combination of 
microneurography with baroreceptor and chemoreceptor function testing. 
Baroreceptor function may be assessed using both mechanical and pharmacological 
methods. A collar-shaped pressure chamber modulating transmural pressure in the 
carotid sinuses is used to decompress baroreceptors. Baroreceptor function may be 
assessed by evaluating changes in sympathetic activity following administration of 
sodium nitroprusside and phenylephrine. Adrenergic activity increases when blood 
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pressure is reduced and decreases when blood pressure rises. The measure of baro-
receptor function is the change in sympathetic activity related to lowering or increas-
ing blood pressure by 1 mmHg.

Not only firing rate but also amplitude is used to evaluate changes in sympathetic 
activity in response to stress. Total activity is defined as the sum of the amplitudes 
of all impulses. Assuming that resting total activity is 100%, relative changes in 
activity during testing may be measured.

A tilt test is an important diagnostic method in cardiovascular disease. The use 
of microneurography during tilt testing is limited by the risk of microelectrode 
reposition during tilting. A special chamber involving the lower part of the body 
is therefore used to simulate tilting. A gradual increase in lower body negative 
pressure results in a reduction of central venous pressure and decompression of 
cardiopulmonary mechanoreceptors and arterial baroreceptors. In contrast to the 
activity of sympathetic fibers innervating resistance vessels, SSNA does not 
depend on changes in blood pressure, and sympathetic nerve traffic is not syn-
chronized with the heart rate, with some impulses extending for several heart-
beats. SSNA is largely related to thermogenesis. In addition, it is affected by 
emotional stress and auditory stimuli. Complete silence is thus required to record 
SSNA. Simultaneous recording of MSNA and SSNA makes it possible to deter-
mine whether the increase in sympathetic activity occurs only in the cardiovascu-
lar system (increased MSNA but not SSNA) or is more generalized (both MSNA 
and SSNA are increased).

Microneurographic studies are characterized by excellent reproducibility [14], 
both when comparing same-day recording and recordings performed several 
months and even years apart. The safety of microneurography is an important 
issue. This was confirmed in a prospective follow-up study involving hundreds of 
subjects [15].

Microneurographic findings should not be analyzed apart from hemodynamic 
data. Microneurography is thus particularly useful when used together with other 
research techniques such as the following: (a) continuous blood pressure measure-
ments (either invasive or noninvasive using the Finapres device), (b) central venous 
pressure measurement, (c) peripheral flow and resistance measurement using pleth-
ysmography, and (d) assessment of metabolic parameters.

6.1.6	 �Imaging Techniques

Several imaging methods have recently been introduced to assess sympathetic activ-
ity in humans. These techniques, utilizing both positron emission tomography and 
single photon emission computed tomography scanning, have been used to evaluate 
the anatomy of sympathetic innervations. The most widely used scanning agents 
include [123I]meta-iodobenzylguanidine (MIBG), 6-[18F]fluorodopamine, and [11C]
hydroxyephedrine [12]. These methods have demonstrated sympathetic denervation 
in patients with pure autonomic failure.
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6.2	 �Sympathetic Influences in the Blood Pressure 
Regulation

The sympathetic nervous system is a major regulatory element of cardiac output and 
systemic vascular resistance, i.e., the major effector components of neural blood 
pressure regulation. Tonic sympathetic activity is mainly generated by neurons 
located in the rostral ventrolateral medulla (RVLM) and regulated by arterial baro-
receptors, cardiopulmonary mechanoreceptors, and chemoreceptors. Sympathetic 
activity is also modulated by neurons in the limbic system, the hypothalamus, and 
the cortex [16]. Neurotransmitters involved are epinephrine that is released from 
adrenal medulla, whereas norepinephrine is released mainly from the nerve termi-
nals where it is stored as subcellular granules [17]. Stimulus induces norepinephrine 
release into the synaptic clefts where it exerts its effects (vasoconstriction and 
increase in blood pressure); the large part is inactivated by reuptake by storage gran-
ules, and the remainder escapes into systemic circulation. Because only 20% of 
norepinephrine appears in the circulation, plasma levels are merely a rough indica-
tor of sympathetic tone [2]. Adrenergic and dopaminergic receptors are the main 
target sites through which neurotransmitters exert their vasomotor action (Table 6.1). 
Activation of the α-receptors leads to vasoconstriction, whereas activation of the 
β-receptors increases cardiac output. The precise physiological activity of the dopa-
minergic receptors in blood pressure regulation is not completely understood. 
Animal models deficient of α1-receptors are resistant to vasopressor stimuli [18]. 
Stimulation of α1-receptors may favor cardiovascular hypertrophy, while stimula-
tion of α2-receptors leads to vasodilation. Both β1- and β2-receptors have an influ-
ence on the heart rate and cardiac output, and less on vascular resistance. All the 
subtypes of dopamine receptors play a role in cardiovascular and renal function and 
in particular on hormonal signaling, renal sodium, and blood flow [19]. A large 
body of evidences has also shown that blood pressure and blood volume regulation 
closely depends on the interactions between sympathetic nervous system, the renin-
angiotensin system, and renal sodium excretion [20–22]. Electrical stimulation of 
renal sympathetic nerves increases renin release from juxtaglomerular cells, both 
through changes in renal blood flow and direct stimulation of β-adrenergic recep-
tors, and exerts anti-natriuretic effects by a direct action on tubular renal sodium 
reabsorption.

6.2.1	 �Effect of Sympathetic Activation on Cardiovascular 
Regulation

Sympathetic activation leads to increased heart rate (through β1-receptor activation) 
and peripheral vasoconstriction (through α1-receptor activation). Thus, sympathetic 
activity exerts a direct effect on the two major parameters determining blood pres-
sure, namely, peripheral resistance and cardiac output. When discussing the effect of 
the sympathetic nervous system on blood pressure level, the counteracting effect of 
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the parasympathetic system should also be considered. The regulatory effect of the 
sympathetic system involves both the heart and the resistance vessels, while the para-
sympathetic system affects mainly the heart. Increased sympathetic tone in hyperten-
sion is associated with reduced parasympathetic tone. Physiologically, elevated 
blood pressure caused by increased sympathetic activity leads to baroreflex activa-
tion, in turn resulting in inhibition of the sympathetic activity and the return of blood 
pressure to baseline values. It appears now well established that baroreceptor con-
tributes not only to short- but also long-term regulation of blood pressure levels 
[23, 24]. It is likely that the anteroventral region of the third ventricle plays an impor-
tant role in the long-term regulation of blood pressure, sympathetic activity, and 
fluid/volume homeostasis. This region of the brain is sensitive to circulating hor-
mones, blood pressure, and fluid/volume changes. These pathways are synchronized 
and routed to the paraventricular nucleus of the hypothalamus which is the transmit-
ter of excitatory and inhibitory signals for long-term blood pressure control.

Table 6.1  Sites and effect of activation of adrenergic receptors

Receptor Sites Effect of activation
α1,A,B,C Smooth muscle: blood vessel, iris, circular 

muscle of the ureter, uterus, bladder, rectal 
sphincter

Constriction

Intestine Relaxation
Heart Positive inotropic, trophic
Salivary glands Salivation
Adipose tissue Glycogenolysis
Sweat glands Sweating
Proximal renal tubules Sodium absorption, 

gluconeogenesis
α2,A,B,C Presynaptic nerve ending Inhibition of noradrenaline 

release
Platelets Aggregation, degranulation
Pancreas Inhibition of insulin secretion
Adipose tissue Inhibition of lipolysis
Blood vessel smooth muscle Constriction
Kidney Inhibition of renin secretion

β1 Heart Positive inotropic and 
chronotropic, trophic

Adipose tissue Lipolysis
Kidney Renin secretion

β2 Liver Glycogenolysis, 
gluconeogenesis

Skeletal muscle Glycogenolysis, lactate release
Smooth muscle: bronchi, uterus, intestine, 
skeletal muscle blood vessels, bladder detrusor

Relaxation

Pancreas Amylase secretion
Salivary glands Salivation

β3 Adipose tissue Lipolysis
Skeletal muscle Thermogenesis

I1 Medulla Blood pressure elevation
Kidney Tubular sodium absorption

I2 Monoamine oxidase ?
I3 Pancreas Insulin secretion
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6.3	 �Increased Adrenergic Tone in the Development 
of the Hypertensive State

Increased adrenergic activity in patients with hypertension is supported by various 
lines of evidence, including measurements of heart rate and catecholamine levels, 
and data obtained using microneurographic approach. The simplest indicator of 
adrenergic activation is tachycardia [2, 25]. Tachycardia related to hyperkinetic cir-
culation is often seen in subjects with borderline hypertension, particularly among 
young men, and is accompanied by increased plasma noradrenaline levels. 
Tachycardia and increased cardiac output are thought to be hemodynamic hallmarks 
of early hypertension; this condition is not usually associated with increased periph-
eral resistance.

The presence of hyperkinetic circulation is associated with disturbed autonomic 
balance as assessed by heart rate variability [26]. Decreased total heart rate vari-
ability, attenuation of the high-frequency spectral component dependent on para-
sympathetic activity, and an increased LF/HF ratio, suggesting sympathetic 
activation, have been found in patients with hypertension. Norepinephrine spillover 
from the neuroeffector junctions is increased in young subjects with borderline 
blood pressure elevation. This enhanced release takes place particularly in the kid-
ney and in the heart, that is, two organs with a key role in blood pressure homeo-
static control [27]. An increase in central sympathetic outflow in young borderline 
hypertensive subjects has been also obtained by microneurographic studies [28]. 
The complex borderline hypertension syndrome, however, is characterized by other 
abnormalities involving the hemodynamic state, the metabolic and hormonal pro-
file, as well as the hemorheological condition. Several of these abnormalities are 
triggered and reinforced by autonomic alterations. This appears to be particularly 
the case for metabolic disarray, which is frequently detected in the early hyperten-
sive phases and includes hyperinsulinemia, insulin resistance, dyslipidemia, and 
hypercholesterolemia. Most of these alterations, with visceral obesity, represent the 
main features of the metabolic syndrome and are characterized by a hyperadrener-
gic tone [29, 30].

6.3.1	 �Increased Adrenergic Tone in the Progression 
of Hypertensive State

Several evidences have clearly shown that in man although parasympathetic dys-
function remains stable in the hypertensive state, the sympathetic activation 
undergoes a progressive potentiation [1, 2]. Microneurographic approach per-
formed in subjects with normal blood flow, with moderate essential hyperten-
sion, and with essential hypertension of a more severe degree, has clearly shown 
(Fig. 6.1) a paralleled progressive increase in blood pressure values and sympa-
thetic nerve traffic in these three conditions, suggesting a key role of adrenergic 
neural factors not only in the development but also in the progression of the 
hypertensive state [31].
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A few other issues related to the autonomic alterations characterizing essential 
hypertension deserve to be mentioned. First, the sympathetic overactivity is not 
only a feature of the established condition. The prehypertensive state, that is, the 
category of patients characterized by blood pressure values ranging from 135 to 
140 mmHg for systolic and 85–90 mmHg for diastolic and with a high risk of devel-
oping a “true” hypertensive state [32], shows sympathetic nerve traffic values 
greater for magnitude than the ones detected in the true normotensive state (Fig. 6.1), 
and this is independent on the presence of a family history of hypertension [33, 34]. 
In these subjects the sympathetic activation does not seem to be confined to periph-
eral circulation, but it rather occurs also at cardiac level as suggested by the increase 
in low-frequency component of heart rate variability [35]. The presence of an early 
sympathetic activation may concur together with other factors to the development of 
the target organ damage and may also represent a mechanism which participates at 
the progression of the high-normal blood pressure to the established hypertensive 
state.

Second, the sympathetic overactivity is not only a feature of young and middle-
age hypertensives, but it also occurs in elderly hypertensives, even when the blood 
pressure elevation selectively affects systolic values (Fig.  6.1) [36]. Third, the 
hypertension-related increase in adrenergic outflow appears to be specific for some 
cardiovascular districts, such as the heart, the kidneys, and the skeletal muscle vas-
culature, and peculiar to the hypertensive state of essential nature [27, 31, 37]. 
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Fig. 6.1  Mean values of muscle sympathetic nerve traffic (MSNA) expressed as burst incidence 
corrected for heart rate values (bursts/100 heartbeats), in normotensive subjects (NT, BP 120–
129/80–84  mmHg) and in patients with high-normal blood pressure (HN, BP 130–139/85–
89  mmHg), moderate (M, BP 140–145/90–95  mmHg) and severe (S, BP  >145/>95  mmHg) 
hypertension (HT), and isolated systolic hypertension (ISH, BP >160/<90  mmHg), white-coat 
(WC, elevated office BP/normal 24-h BP) and masked (MK, normal office BP/elevated 24-h BP) 
hypertension, extreme dippers (EXD, nighttime BP reduction >20%), and reverse (RED, nighttime 
BP increased) dippers. Asterisk (**p  <0.01) refers to the level of statistical significance vs 
NT. Figure based on data from [31, 32, 36, 39, 40]
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Fourth, independently from the measurement (in- or out-of-office), sympathetic 
activity is increased both in “white-coat” hypertension (elevated clinic but normal 
ambulatory blood pressure) and in “masked” hypertension (normal clinic but ele-
vated ambulatory blood pressure) (Fig.  6.1) [38, 39]. An important observation 
comes from the 24-h blood pressure recording and in particular from the day/night 
blood pressure difference. Hypertensive patients with the so-called reverse dipping 
pattern profile (i.e., those patients in whom blood pressure values do not undergo 
any reduction during nighttime but rather show a tendency to increase) are charac-
terized by a more pronounced sympathetic activation than that seen in dipper hyper-
tensives (Fig. 6.1) [40].

The increase in sympathetic cardiovascular influences is involved not only in 
favoring the progression of blood pressure elevation but also in promoting 
hypertension-related target organ damage [1, 2]. A marked increase in sympathetic 
nerve traffic and in cardiac norepinephrine spillover has been observed in left ven-
tricular hypertrophy, in left ventricular dysfunction, and in congestive heart failure 
[41–43]. This is also the case for the hypertension-related deterioration in renal 
function that may promote the occurrence of an overt renal insufficiency [44]. In 
this case sympathetic activity appears to be involved in the pathogenesis of the dis-
ease, given the evidence that adrenergic activation is detectable in the initial stages 
of the renal dysfunction [45].

6.4	 �Mechanisms Leading to Sympathetic Activation 
and New Hypothesis

What triggers sympathetic neural activation in causing the blood pressure elevation 
is not fully understood. Mechanisms such as psychological stress, exaggerated 
renin-angiotensin system activity, baroreceptor and chemoreceptor dysfunction, 
and brainstem activation have been proposed as possible causes, but none is clearly 
demonstrated in human hypertension [1, 2]. As far as reflex mechanisms are con-
cerned, there is evidence that arterial baroreceptors reflexes, cardiopulmonary 
reflexes, and chemoreceptor reflexes are impaired in human hypertension [2]. In 
hypertension, however, baroreceptor impairment has been documented for the para-
sympathetic but not for the sympathetic component of the reflex, unless congestive 
heart failure or left ventricular dysfunction is concomitantly detected [2, 43]. Indeed, 
although the arterial baroreceptor regulation of heart rate has been shown to be reset 
and blunted, the modulation of both blood pressure and sympathetic nerve traffic 
exerted by this reflexogenic area does not appear to undergo any impairment, both 
in mild and severe hypertension [31]. However, reflex influences from other reflexo-
genic areas appear to be altered in hypertension. This is the case for the cardiopul-
monary reflex, whose control of vascular resistance and renin release from the 
kidney is markedly reduced, especially in hypertensive subjects with left ventricular 
hypertrophy [2]. This is also the case for the arterial chemoreflex, whose reflex 
restraint on adrenergic drive is blunted in hypertension, particularly when obesity, 
metabolic syndrome, or sleep apnea is concomitantly present [2]. Other hypotheses 
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to explain the autonomic dysfunction in hypertension are as follows: (a) the meta-
bolic hypothesis takes into account the role of hyperinsulinemia and the related 
insulin resistance frequently accompanying the hypertensive state [2]; (b) the acti-
vation of humoral systems (such as nitric oxide, endothelins, vasopressin, leptin-
melanocortin system, atrial natriuretic peptides, brain natriuretic factors, and 
renin-angiotensin system) may adversely interfere with the autonomic control [2].

Two emerging factors that need to be mentioned for the relation with and the 
influence on the adrenergic tone are represented by “old” classic cardiovascular risk 
factors with renewed interest. The first one is the asymmetric dimethylarginine, a 
marker of vascular dysfunction which in patients with chronic kidney disease has 
been shown to be a strong predictor of fatal and nonfatal cardiovascular events and 
cardiac organ damage [46, 47]. In these patients, dimethylarginine values showed 
an increase that was paralleled to the degree of the sympathetic activation (Fig. 6.2). 
The second “classic” risk marker which gained new interest in cardiovascular prog-
nosis is uric acid, whose increased blood circulating levels have been associated 
with a greater incidence of hypertension, kidney disease, as well as vascular and 
cardiac events [48]. This marker has shown a link with adrenergic neural drive. In 
this case, however, the relationship appears to be significant only in patients with 
chronic kidney disease and not in healthy subjects or in hypertensive patients due to 
the close dependence of uric acid on the deranged renal function which “per se” is 
associated with an augmented sympathetic drive [45].

Future researches will be focalized on mechanisms of sympathetic function and 
in particular on the influence of genetic-neurobiology pathway of essential hyper-
tension on the sympathetic neural drive. In selected populations, for example, an 
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Fig. 6.2  Values of asymmetric dimethylarginine (ADMA) in hypertensive patients with renal fail-
ure subdivided in three groups according to muscle sympathetic nerve traffic (MSNA) tertile val-
ues. Data are shown as means ± standard errors. Figure based on data from [47]

G. Seravalle et al.



77

overexpression of adrenergic alpha-1A-receptor gene [49] or β2-adrenoreceptor 
polymorphism [50] has been shown to be related with adrenergic overactivity, and 
this is also the case for genetic hemochromatosis indicating the role of iron overload 
in sustaining the adrenergic overdrive of this condition [51]. The second area that 
will need to be developed concerns the relation between the sympathetic nervous 
system and the autoimmune and inflammatory systems [52].
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7Hormonal Systems

Sébastien Foulquier, Ludovit Paulis, Elena Kaschina, 
Pawel Namsolleck, and Thomas Unger

7.1	 �Introduction

Hormonal systems are largely involved in blood pressure regulation and water and 
salt homeostasis. Importantly, they are also involved in development and progres-
sion of cardiovascular and renal diseases. Here, we discuss recent findings about 
the impact of renin-angiotensin, aldosterone, vasopressin, and natriuretic peptide 
systems on blood pressure regulation and development of hypertension.

7.2	 �The Renin-Angiotensin System

The renin-angiotensin system (RAS) is not only an important regulator of blood 
pressure and body fluid in short term but is also involved in the pathology of 
hypertension and high blood pressure-associated organ alterations. For this rea-
son, it is one of the therapeutically most exploited neurohumoral systems [1]. 
Recently, novel RAS peptides and receptors were identified that extend our view 
of the RAS, provide a rationale for some previously unanswered questions, and 
suggest exciting putative therapeutic implications for the future.
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7.2.1	 �From Renin to Angiotensin II

RAS activation starts with the release of renin from renal juxtaglomerular cells. These 
are innervated by sympathetic nerve fibers, localized closely to the afferent arteriole as 
well as to the cells of macula densa in the distal convoluted tubule. The release of renin 
is stimulated by several factors including β-sympathetic stimulation, reduced Na+ load 
in the distal tubule, or reduced renal perfusion [2]. Renin is a glycoprotein that is syn-
thetized in the form of prorenin and converted to its active form by the renal neuroen-
docrine convertase 1 or cathepsin B. However, prorenin is also constitutively being 
released from the kidneys at high concentration and might bind to the (pro)renin recep-
tor (P)RR in the tissues [3]. The (P)RR enhances the activity of renin and unmasks the 
activity of prorenin. Independently on renin enzymatic activity, the (P)RR activates 
promyelocytic zinc finger (PLZF) [4], protein-phosphatidylinositol 3-kinase (PI3-K), 
and eventually mitogen-activated protein kinases (MAPKs) followed by anti-apopto-
sis, proliferation, and enhanced protein synthesis [5, 6]. However, the role of the (P)RR 
in the pathophysiology of cardiovascular diseases is still controversial [5, 7] as is the 
role of the renin-angiotensin systems described in a variety of tissues.

The enzymatic activity of renin converts the protein angiotensinogen [8] to the 
decapeptide angiotensin I (Ang I). This conversion represents the rate-limiting step 
in RAS activation. The substrate for the reaction, angiotensinogen, is expressed in 
abundance mainly by the liver and provides the source for most of the plasmatic 
Ang I. The rate of Ang I generation in the plasma is denominated plasma renin 
activity (PRA) and serves as an important diagnostic indicator. Some angiotensino-
gen is expressed also in tissues (including the kidneys) locally and serves as a sub-
strate for the local paracrine Ang I formation.

The circulating and locally expressed carboxypeptidase angiotensin-converting 
enzyme (ACE) then converts Ang I to angiotensin II (Ang II) by cleaving the two 
C-terminal amino acids from Ang I [9]. ACE is a hydrolytic enzymatic glycoprotein 
with two active zinc-binding domains. Most of the ACE is membrane bound to 
endothelial cells (in particular in the lungs), but there is a soluble circulating ACE 
form as well. ACE also partly inactivates the NO-dependent vasodilator bradykinin 
[10]. Besides ACE, Ang I may also be converted to Ang II (in particular in condi-
tions of inhibited ACE) by chymase, carboxypeptidase, cathepsin G, or tonin.

7.2.2	 �Classical Renin-Angiotensin System

In the initial classical RAS concept [11], Ang II was responsible for most of the RAS 
effects via its angiotensin AT1 receptor (AT1R). The AT1R is abundantly expressed 
including vascular smooth muscle cells, renal tubular cells, mesangial cells, juxtaglo-
merular cells, cardiomyocytes, fibroblasts, suprarenal cortex, or central nervous sys-
tem. The AT1R action is modulated by adaptors such as AT1 receptor-associated 
protein (ATRAP), AT1 receptor-associated protein 1 (ARAP1), or the AT1R- and 
AT2R-interacting protein (ATIP) [12]. The AT1R is a seven-transmembrane domain 
Gq/i-coupled receptor. Its stimulation results in phospholipase C activation and adeny-
lyl cyclase inhibition (see review for detailed signal transduction [13]). This translates 
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to the physiologic action of Ang II, of which arterial vasoconstriction was the first 
described [14]. Via renal vasoconstriction, AT1R stimulation leads to reduced renal 
blood flow and medullary blood flow with subsequent efferent arteriole constriction 
resulting in increased filtration pressure. On the other hand, AT1R activation on mesan-
gial cells leads to their constriction and reduction of glomerular filtration area. In addi-
tion, the AT1R directly activates sodium reabsorption transporters in the proximal 
tubule [15–17]. As a result, the short-term effect of AT1R stimulation is blood pressure 
increase due to vasoconstriction, which is stabilized in midterm due to sodium reten-
tion and a shift of the diuresis-blood pressure curve to higher blood pressure values. In 
the central nervous system, the AT1R activates the hypothalamic thirst center and vaso-
pressin release leading to further volume expansion and blood pressure rise. At the 
same time, however, the AT1R mediates a direct negative short feedback loop by inhib-
iting renin release from the juxtaglomerular cells [18], while the blood pressure-driven 
diuresis and sodium excretion generate a further long feedback loop on renin release.

In addition to the acute effects of AT1R activation, the stimulation of this receptor 
in long term produces further effects with important physiological implications. 
AT1R promotes inflammation, cardiomyocyte hypertrophy, proliferation of fibro-
blasts, and the synthesis of extracellular matrix [19]. While at first, these effects 
provide a mean to adapt to the increased hemodynamic load, they ultimately result 
in left ventricular hypertrophy and fibrosis, arteriosclerosis, atherosclerosis, and 
renal glomerulosclerosis [19]. The direct AT1R-mediated effects are complemented 
by those of aldosterone (see “Aldosterone” paragraph).

7.2.3	 �Clinical Implications

Several clinical situations feature an increased RAS activity, most notably renovas-
cular hypertension. Unilateral renal artery stenosis (due to atherosclerosis, fibro-
muscular dysplasia, or a congenital defect) leads to renin release and Ang 
II-dependent hypertension. Experimentally, such situation is mimicked by the two-
kidney-one-clip (2K1C) hypertension model [20]. While the clipped kidney pro-
duces excessive amounts of renin, the other kidney allows for volume normalization. 
Clinically, renovascular hypertension can be diagnosed by the use of the ACE inhib-
itory test displaying a plasma renin activity increase after ACEI administration.

The therapeutic importance of the classical RAS concept is documented by the 
established use of RAS-blocking therapies such as ACE inhibitors (ACEIs), AT1R 
blockers (ARBs), and direct renin inhibitors (DRIs) but also mineralocorticoid 
receptor antagonists (MRAs) and β-blockers (BBs). First, large clinical trials in 
hypertension (CAPP, STOP-2) or high-risk patients (HOPE) have demonstrated that 
ACEIs were at least non-inferior or even superior compared to conventional stan-
dard therapy [21–23]. Then, the ARBs were shown to be non-inferior or superior to 
β-blockers [24], calcium antagonists [25], or ACE inhibitors [26] with regard to 
cardiovascular morbidity and mortality reduction in hypertension or high-risk 
patients. While both ACEIs and ARBs reduced the onset of new diabetes mellitus 
[27], the ARBs are better tolerated than ACEIs in terms of dry cough [26]. Finally, 
in 2007 the first-in-class DRI, aliskiren, was introduced. In head-to-head 
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comparison aliskiren was non-inferior in blood pressure reduction when compared 
to ARBs [28], ACEIs [29], hydrochlorothiazide [30], and atenolol [31]. However, 
clinical trials have also shown that a simultaneous dual RAS blockade should be 
avoided. In the ALTITUDE trial in patients with type 2 diabetes and renal impair-
ment, aliskiren added on top of conventional antihypertensive treatment (including 
ACEI or ARB) increased the incidence of almost all primary end point components 
(cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, resuscitated 
sudden death, doubling of serum creatinine, end-stage renal disease/renal death) 
[32]. In the ONTARGET trial, the ACEI + ARB combination did not provide any 
benefit compared to either monotherapy [26]. In the recent decade, our extended 
view of the RAS improved our understanding of a (dual) RAS modulation and sug-
gested new possible therapeutic targets as well.

7.2.4	 �The Recent Fingerprint of RAS Peptides

The RAS should be viewed more as a complex net of peptides rather than a simple 
cascade [33]. The spectrum of angiotensin peptides is much broader than just Ang I 
and Ang II. The angiotensins are denominated according to their amino acid com-
position expressed as the ordinal number of the first and last amino acid with refer-
ence to its position in the decapeptide Ang I (i.e., 1–10) numbered from the 
amino-terminus to the carboxy-terminus. The concentrations of the angiotensin 
peptides are determined by the activity of the interlinking proteases and form a 
complex net in a dynamic equilibrium (Fig. 7.1). The angiotensin peptides exercise 
their physiological activity not only via the AT1R but also via AT2R, AT3R, AT4R, or 
Mas receptor (Table 7.1) and at both systemic and tissular levels [34].

7.2.5	 �The Novel “Protective” Arm of RAS

The action of several of the angiotensin peptides and receptors included in the 
extended view of the RAS demonstrates properties and actions at least partly oppos-
ing the classical RAS concept. Thus, they are considered to be the “protective” arm 
of RAS [35]. It was hypothesized that the protective/deleterious RAS affects the 
physiological outcome in addition to the concentration of the Ang II alone [36]. 
Some of these angiotensin peptides and related enzymes are of particular interest.

Under basal conditions, the AT2R is much less expressed compared to the AT1R. 
However, in several cardiovascular pathologies, such as hypertension or left ven-
tricular hypertrophy, the AT2R expression is increased [19]. Similar to the AT1R, the 
AT2R is a seven-transmembrane domain G-coupled receptor, but its intracellular 
signaling pathways appear uncanonical. The AT2-associated pathways include NO/
cGMP activation [37], inhibition of mitogen-activated protein kinases (MAPKs) by 
protein phosphatases [38], phospholipase A2 stimulation [39], or disruption of 
AT1R signaling by AT1R-AT2R heterodimerization [40]. Similar to the AT1R, the 
effects of AT2R stimulation are modulated by adaptor proteins such as the 
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AT1R- and AT2R-interacting protein (ATIP  =  ATBP) or AT2R-binding protein of 
50 kDa [12, 41]. The functional effects associated with AT2R stimulation include 
antiproliferation, anti-inflammation, vasodilation, and axonal regeneration [42–46]. 
Using the selective AT2R agonist, compound 21 [47], it was demonstrated that the 
AT2R stimulation improved systolic and diastolic function in rats after myocardial 
infarction [48, 49], reduced vascular fibrosis in two models of experimental hyper-
tension [50, 51], protected against nephropathy in doxorubicin-treated rats [52] and 
in 2K1C hypertension [53], and improved cognitive/neurological outcome in dia-
betic mice [54], spinal cord injury [55], or autoimmune encephalitis [56].
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Fig. 7.1  The RAS-Fingerprint. Angiotensinogen (AGT) and angiotensin peptides (identified by 
first-last amino acid in brackets) interlinked by the respective peptidases: ACE angiotensin-
converting enzyme, ACE2 angiotensin-converting enzyme 2, NEP neprilysin (neutral endopepti-
dase), AP aminopeptidases, DAP dipeptidyl aminopeptidase. The peptides are linked to several 
receptors, such as the angiotensin AT1 receptor (AT1R), AT2 receptor (AT2R), AT3 receptor 
(AT3R), and AT4 receptor (AT4R, equivalent to IRAP, insulin-regulated aminopeptidase), the Mas 
receptor, and the (pro)renin receptor ((P)RR). The RAS is distinctly modulated by different estab-
lished therapies (RI renin inhibitor, ACEI ACE inhibitor, ARB angiotensin receptor blocker) (modi-
fied with permission from Attaquant Ltd.)
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In contrast to the AT1R and AT2R, much less is known about the AT3R and AT4R 
[57]. AT4R (also the insulin-regulated aminopeptidase, IRAP) is widely expressed 
in several tissues including the myocardium, and its expression is upregulated in 
pathological situations [58]. The major natural ligand for this receptor is the Ang IV 
(3–8) which has some low affinity for the AT1R and AT2R as well [59]. By binding 
to the AT4R, Ang IV (3–8) inhibits its aminopeptidase activity with putative anti-
inflammatory and antiproliferative activity. Up to date, it was shown that Ang IV 
(3–8) via the AT4R enhances atrial natriuretic peptide A levels [60] and protects 
against myocardial ischemia-reperfusion injury by activating PI3K-Akt-mTOR 
pathway and inhibiting apoptosis [61].

For the Mas receptor, the natural ligand is the Ang (1–7). The mas receptor is a 
seven-transmembrane domain unconventional G-protein-coupled receptor sharing 
a 31% sequence identity with the AT2R [62]. The intracellular pathways and func-
tional effects triggered by Mas- and AT2R stimulation are strikingly similar. They 
include phosphatase stimulation and antiproliferative and anti-inflammatory 
effects [63]. The blockade of either AT2R or Mas receptor seems to block the 
effects of the other receptor, probably due to their heterodimerization [63]. The 
non-peptide Mas agonist, AVE-0991, decreased mean arterial pressure in 

Table 7.1  Effects of RAS receptor modulation

AT1R activation Vasoconstriction
Sodium reabsorption, sodium and water retention
Thirst triggering and oxytocin release
Adrenocorticotropin, prolactin, oxytocin release
Increased sympathetic nerve activity
Blood pressure increase
Fibrosis, Apoptosis
Inflammation
Proliferation (e.g., vascular smooth muscle cells, fibroblasts)
Extracellular matrix synthesis and fibrosis
Cardiomyocyte hypertrophy
Aldosterone secretion

AT2R activation Anti-inflammatory effects
Antifibrotic effects
Antiproliferative effects
Apoptosis
Neuroprotection and neuroregeneration
NO release
Vasodilation, Nephroprotection

AT4R (IRAP) inhibition Anti-inflammatory effects
Antifibrotic effects
NO release
Memory and learning improvements

Mas activation Anti-inflammatory effects
Antifibrotic effects
Antiproliferative effect on vascular smooth muscle cells
Increased baroreflex sensitivity
NO release

Modified from Romero et al. [113]
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DOCA-salt-induced hypertension in rats and protected against renal injury 
[64–66]. With regard to the effects of the Mas receptor, the pathways responsible 
for Ang (1–7) formation gain interest. Ang (1–7) might be formed from Ang II 
(1–8) via the activity of angiotensin-converting enzyme 2 (ACE2). ACE2 is a car-
boxypeptidase cleaving the last C-terminal amino acid. Alternatively, Ang (1–7) 
may be produced from Ang I (1–10) by the sequential activity of ACE2 and ACE 
with the Ang (1–9) as an intermediate or directly by the activity of the neutral 
endopeptidase (NEP, neprilysin). Indeed, the ACE2 levels in stroke prone sponta-
neously hypertensive are reduced [67], and recombinant human ACE2 prevented 
cardiac remodeling in Ang II-treated ACE2 knockout mice [68]. On the other hand, 
in healthy volunteers, recombinant ACE2 did not produce a significant effect in 
blood pressure despite reducing Ang II (1–8) and increasing Ang (1–7) and Ang 
(1–5) levels [69]. NEP inhibition was investigated as a possible antihypertensive 
therapeutic target because it cleaves some vasoactive factors such as endothelin, 
natriuretic peptides, and kinins [70]. Due to its effect on Ang I (1–10) cleavage and 
Ang (1–7) production, NEP inhibition needs to be combined with RAS blockade. 
The trials OCTAVE and OVERTURE showed that combined ACE/NEP inhibition 
was effective in hypertension and heart failure, but was also associated with more 
frequent angioedema [71, 72]. When NEP inhibition was combined with an ARB 
in the LCZ696 molecule, it reduced sitting systolic and diastolic blood pressure 
more than the corresponding ARB doses without any angioedema in this study 
[73]. In patients with heart failure and preserved ejection fraction, LCZ696 effec-
tively reduced N-terminal pro b-type natriuretic peptide levels and preserved glo-
merular filtration rate [74, 75]. In heart failure with reduced ejection fraction, 
LCZ696 reduced the primary end point by 20%, all-cause mortality by 16%, and 
cardiovascular mortality by 20% compared to ACEI causing the premature halt of 
the PARADIGM-HF trial [76].

7.3	 �Aldosterone

In 1952 Sylvia and James Tait isolated a steroid hormone from adrenal cortex and 
named it electrocortin.1 Two years later, in collaboration with Tadeusz Reichstein, 
they elucidated the entire chemical structure as 11β-21-dihydroxy-18-oxo-pregn-4-
ene-3,20-dione and renamed it aldosterone.1 This most potent sodium-retaining fac-
tor in mammals was termed a mineralocorticoid and has become a focus of 
hypertension research.

In 1958, Franz Gross suggested that the kidney releases an aldosterone-
stimulating factor responsible for aldosterone secretion [77]. By that, he was the 
first to discover the cross talk between kidney and adrenal gland. Based on the 
finding that the inverse relationship between sodium balance and the secretion of 
aldosterone is reflected in the content of renin in the kidney, Franz Gross proposed 
that the renin-angiotensin system might play a part in the regulation of the adrenal 
function [77]. Later on, several groups of investigators could confirm that Ang II 
stimulates aldosterone secretion.1 The other major stimulus for aldosterone 
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secretion, potassium, was described by Giroud and colleagues in 1956 [78]. Since 
then, aldosterone has been established as the primary mineralocorticoid that plays 
a central role in the regulation of blood pressure, blood volume, and salt 
household.

7.3.1	 �Aldosterone Synthesis

Aldosterone binds to mineralocorticoid receptors (MR) in the kidney, colon, and 
sweat glands and induces sodium (and water) reabsorption and potassium excre-
tion [79]. Aldosterone is synthesized from cholesterol in the zona glomerulosa of 
the adrenal cortex by a series of enzymatic reactions. Its production is regulated 
by the CYP11B2 gene which encodes aldosterone synthase (ALDOS, cytochrome 
P450 11B2) (Fig. 7.2). This enzyme, located in the mitochondria, catalyzes the 
final three rate-limiting steps of aldosterone synthesis from deoxycorticosterone. 
The glucocorticoid, cortisol, has a higher affinity to MR than aldosterone, but in 
kidneys and other target tissues for aldosterone, the enzyme 11-beta-hydroxyster-
oid dehydrogenase (11-beta-HSD2) metabolizes cortisol to cortisone which does 
not bind to the MR. In the case of deficiency of this enzyme, cortisol acts as a 
mineralocorticoid.

The main regulators of aldosterone synthesis and secretion are Ang II [80], the 
concentration of extracellular potassium, and adrenocorticotropic hormone 
(ACTH) [81] (Fig. 7.2). Aldosterone release is controlled by the juxtaglomerular 
apparatus, which is sensitive to the composition of the fluid in the distal tube. A 
decrease in sodium chloride concentration of the filtrate is sensed by macula densa 
cells which stimulate the release of renin. This leads to the formation of Ang II and 
stimulation of the aldosterone synthesis via the activation of the AT1R which, in 
turn, upregulates the CYP11 B2 gene encoding ALDOS in the zona glomerulosa of 
the adrenal cortex. The stimulant effect of Ang II on aldosterone synthesis and 
release is enhanced under conditions of hyponatremia or hyperkaliemia. In part of 
hypertensive individuals, the sensitivity of the adrenal gland to Ang II and, subse-
quently, aldosterone production is modulated by dietary salt intake and sympa-
thetic activation [82]. Moreover, chronic stimulation by Ang II induces zona 
glomerulosa hypertrophy and hyperplasia, increased CYP11B2 expression, and, 
hence, aldosterone secretion [83].

Low plasma sodium or high plasma potassium concentrations affect the zona 
glomerulosa cells of the adrenal directly, stimulating aldosterone release. Increased 
extracellular potassium causes zona glomerulosa cell membrane depolarization, 
leading to the opening of voltage-dependent L- and T-type calcium channels, rise in 
calcium, and activation of calmodulin and CaM kinases which phosphorylate tran-
scription factors to stimulate CYP11B2 gene transcription [84]. Secretory products 
from adipocytes have also been suggested to upregulate ALDOS expression and 
stimulate the synthesis of aldosterone [85].
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7.3.2	 �Primary Aldosteronism

The role of aldosterone in hypertension has been first suggested by Michał Lityński 
in 1953 [86]. Conn and Louis (1954) provided the causal evidence when they treated 
a case of hypertension by surgical removal of large adrenal adenoma [87].

Primary aldosteronism or hyperaldosteronism, also known as Conn’s syndrome, 
is characterized by hypertension and an inappropriately high aldosterone levels that 

Fig. 7.2  Mechanisms of aldosterone-mediated arterial hypertension. Renal sodium and water reten-
tion, increased peripheral resistance, and stimulation of the sympathetic nervous system are the major 
pathogenetic pathways of aldosterone-induced hypertension. Renin is synthesized by the juxtaglo-
merular cells of the kidney. Renin catalyzes the conversion of angiotensinogen to angiotensin I, 
which is converted by angiotensin-converting enzyme (ACE) to angiotensin II (Ang II). Ang II, via 
the AT1 receptor (AT1R), increases the synthesis of aldosterone by upregulating the CYP11B2 gene, 
which encodes the enzyme aldosterone synthase (ALDOS) in the zona glomerulosa of the adrenal 
cortex. ALDOS catalyzes the synthesis of aldosterone in the adrenal cortex. In the kidney, aldoste-
rone binds to the cytoplasmic mineralocorticoid receptor (MR); the aldosterone-MR complex 
migrates to the nucleus and leads to a gene-specific transcription of genes crucial for transepithelial 
sodium transport such as the epithelial sodium channel (ENaC) and the Na+/K+ adenosine triphospha-
tase. Sodium and fluid retention cause volume overload. Aldosterone excess in the vessels promotes 
vascular remodeling and induces inflammation, oxidative stress, endothelial dysfunction, and vaso-
constriction. Brain MRI plays a role in increased sympathoexcitatory responses. Excess aldosterone 
secretion can be counteracted by aldosterone antagonists or by selective inhibitors of aldosterone 
synthase. Abbreviations: ACTH adrenocorticotropic hormone, Ang II angiotensin II, AT1 angiotensin 
AT1 receptor, A aldosterone, ALDOS aldosterone synthase, MR mineralocorticoid receptor, ENaC 
epithelial Na+ channel, NADPH nicotinamid-denin-dinucleotid-phosphate, MCP1 macrophage che-
moattractant protein-1, TNF-α tumor necrosis factor alpha, TGF-s transforming growth factor beta, 
NO nitric oxide
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cannot be suppressed by sodium loading. Moreover, patients may have hypokalemia 
and low plasma renin activity. It is assumed that volume expansion associated with 
increased aldosterone levels inhibits renin secretion. Therefore, the aldosterone-to-
renin ratio is recommended as screening tool for primary aldosteronism [88]. 
Underlying causes of primary aldosteronism include idiopathic hyperaldosteron-
ism, primary adrenal (glomerulosa) hyperplasia, familial hyperaldosteronism, and 
aldosterone-producing adenoma or carcinoma. Primary aldosteronism may account 
for more than 10% of patients with hypertension [89].

7.3.3	 �Aldosterone and Hypertension

Secondary hyperaldosteronism occurs by a perceived drop in intravascular volume 
due to reduced cardiac output. In patients with cardiac failure, for instance, aldo-
sterone may reach plasma levels up to 60-fold higher in comparison with healthy 
subjects [90].

Clinical evidence shows that aldosterone contributes to the pathogenesis of 
hypertension beyond primary aldosteronism [91]. Jaques Genest et  al. also sug-
gested that human arterial hypertension is a state of mild chronic hyperaldosteron-
ism [92]. Later, results from the Framingham Heart Disease Epidemiology Study 
demonstrated that aldosterone levels within the upper part of the physiological 
range predispose normotensive subjects to the development of hypertension [93].  
Moreover, up to 15% of hypertensive patients have increased aldosterone-to-renin 
ratios, and in patients with drug-resistant hypertension, this parameter was reported 
to rise up to 25% [94]. Remarkably, genetic risk factor such as polymorphisms of 
the CYP11B2 gene, which encodes ALDOS, may contribute to hypertension in sub-
jects with a raised aldosterone-to-renin ratio [95].

7.3.4	 �Mechanisms of Aldosterone Action in Hypertension

The major pathogenetic pathways of aldosterone-induced hypertension include 
renal sodium and water retention, increased peripheral resistance, and stimulation 
of the sympathetic nervous system [91] (Fig. 7.2).

In the kidney, aldosterone induces genomic and non-genomic effects. In the 
epithelial cells of the late distal tubule and collecting duct, aldosterone binds to 
cytoplasmic MR, which is a member of the nuclear receptor family of ligand-
dependent transcription factors [96]. The aldosterone-MR complex migrates to the 
nucleus and binds on the DNA to a specific hormone response element which 
leads to a gene-specific transcription. The transcribed genes are crucial for tran-
sepithelial sodium transport, including the epithelial sodium channel (ENaC), the 
Na+/K+ adenosine triphosphatase, and their regulatory proteins. Serum- and glu-
cocorticoid-induced kinase 1 (SGK1), an aldosterone-induced regulatory protein, 
leads to retrieve of ENaC at the apical surface by phosphorylating an ubiquitin 
ligase Nedd4-2. As a result, sodium reabsorption is sustained. The reabsorbed 
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sodium is transported to the extracellular compartment via the action of the Na+/
K+ adenosine triphosphatase at the basolateral surface. Thus, the reabsorption of 
Na+ (and subsequent reabsorption of Cl− and H2O) and secretion of K+ and H+ are 
increased [83].

In addition to genomic effects described above, aldosterone induces rapid effects 
predominantly in non-epithelial cells such as vascular smooth cells, endothelial 
cells, cardiac myocytes, and kidney cells [97]. These non-genomic actions are medi-
ated through second messenger systems IP3, DAG, cyclic AMP, and subsequent 
Ca2+ regulation [97] and may be important for vascular regulation.

The effects of aldosterone on blood pressure regulation extend beyond 
increased intravascular fluid retention and volume overload. Aldosterone modu-
lates vascular tone by increasing pressor responses to catecholamines and impair-
ing the vasodilatory response to acetylcholine as well as by upregulation of the 
AT1 receptor [83]. Hyperaldosteronism also causes vasoconstriction by limiting 
bioavailability of endothelial nitric oxide and by increasing intracellular calcium 
in the vascular smooth cells [98]. In addition, aldosterone excess promotes vascu-
lar hypertrophy and fibrosis followed by vascular remodeling and increased arte-
rial stiffness [99]. Hyperaldosteronism also activates inflammation and oxidative 
stress, alters fibrinolysis by increasing plasminogen activator inhibitor-1 expres-
sion, and promotes tissue apoptosis and fibrosis [100]. Importantly, the cellular 
pathways regulated by aldosterone via the MR and Ang II via its AT1R type seem 
to reinforce each other [101].

Experimental studies demonstrated that aldosterone agonists and antagonists 
influence blood pressure when they are infused directly into the brain [102]. Brain 
MR may play a role in increased salt appetite and increased sympathoexcitatory 
responses [91], although the central sites and mechanisms of mineralocorticoid-
mediated pressor responses remain controversial [103].

7.3.5	 �Aldosterone Antagonists

Excess aldosterone secretion can be counteracted by aldosterone antagonists 
(Fig. 7.2). This class of drugs offers therapeutic benefits for both lowering blood 
pressure and preventing end-organ damage. Spironolactone, the first MR antago-
nist, was developed more than 50 years ago [104]. It attenuates the effects of aldo-
sterone and is used for the treatment of hypertension, primary aldosteronism, and 
peripheral edema associated with heart failure. Monotherapy with spironolactone 
was shown to be effective in patients with low-renin essential hypertension [105]. In 
patients with low renin levels and high aldosterone-to-renin ratio, spironolactone 
decreased blood pressure as effectively as thiazide diuretics [106]. Low-dose spi-
ronolactone is also beneficial by patients with resistant hypertension even irrespec-
tive of renin and aldosterone concentrations [107, 108]. Moreover, a recent 
randomized, double-blind, crossover trial PATHWAY-2 demonstrated that spirono-
lactone was the most effective add-on drug for the treatment of resistant hyperten-
sion [109]. However, spironolactone lacks specificity for the MR. It activates also 
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steroid progesterone and androgen receptors leading to progestational and antian-
drogenic side effects such as menstrual irregularities in women and sexual dysfunc-
tion with gynecomastia in men. This led to the development of a more selective, 
“second-generation” aldosterone receptor antagonist eplerenone which is less prone 
to cause steroid-like side effects.

Eplerenone provides well-tolerated blood pressure reduction in patients with 
low-renin essential hypertension and mild-to-moderate hypertension or in hyperten-
sive patients when administered as add-on therapy [91]. Unfortunately, eplerenone 
features a reduced potency [110]. Therefore, despite of its better tolerability over 
spironolactone [111], the indication for hypertension is not recognized except in the 
presence of intolerance to spironolactone [112].

Hyperkaliemia is a serious dose-related adverse effect of both spironolactone and 
eplerenone. The risk of hyperkalemia is minimized by serum K+ and renal function 
monitoring and avoidance of concurrent therapies associated with hyperkalemia.

Other nonsteroidal aldosterone antagonists are being developed [113]. Finerenone, 
previously called BAY94-8662, for instance, has greater affinity to the MR than 
eplerenone [114]. In patients with chronic heart failure and renal disease, finerenone 
may achieve equivalent organ-protective effects with reduced levels of electrolyte dis-
turbance compared with steroid-based MR antagonists [115]. However, finerenone 
does not significantly influence systolic blood pressure [114].

An alternative approach is to inhibit aldosterone synthesis by selective inhibitors 
of aldosterone synthase [110, 116] (Fig.  7.2). The first orally active aldosterone 
synthase inhibitor, LC1699, has been tested in patients with resistant hypertension 
and primary hyperaldosteronism [110]. Unfortunately, due to lack of selectivity, LC 
1699 at higher doses also inhibits 11-beta-hydroxylase which regulates cortisol syn-
thesis. Thus, more selective substances will have to be developed. FAD 286, an 
aromatase inhibitor, decreased plasma aldosterone concentrations and thereby 
decreased blood pressure and improved cardiac and renal target organ damage in 
several animal models [113].

Altogether, recent scientific advances highlight the role of aldosterone as a key 
cardiovascular hormone. Inhibition of aldosterone action can be beneficial in the 
treatment of hypertension and end-organ damage.

7.4	 �Vasopressin

Vasopressin (or arginine vasopressin, AVP) is a nonapeptide produced by the neurons 
of the hypothalamus [117]. Initially identified in 1895 as a pressor hormone [118], it 
has been recognized two decades later as a potent antidiuretic peptide and is therefore 
also known as “antidiuretic hormone” (ADH) [119]. The differential pressor and 
diuretic actions are mediated by different G-protein-coupled vasopressin receptors. 
These encompass three main subtypes: the vasopressin V1a, V1b, and V2 receptors 
(V1aR, V1bR, V2R). The V1aR are expressed abundantly in vascular smooth muscle 
cells, and their stimulation is responsible for the vasopressor effect, while the V1bR 
are pituitary receptors stimulating the release of ACTH.  Both V1aR and V1bR 
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mediate their main actions via the Gq-phosphatidylinositol and 1,2-diacylglycerol 
signaling pathway [120]. The V2R, mainly localized in the renal collecting duct, are 
involved in the antidiuretic action of vasopressin [121]. Its intracellular signaling 
involves the Gs-adenylate cyclase/cAMP/PKA pathway that results in an increased 
expression and insertion of aquaporin-2 channels with a subsequent increased water 
reabsorption across the cells from the collecting duct [122].

Since vasopressin levels have been found elevated in animal models of hyperten-
sion [123, 124] and in some forms of human hypertension [121, 125], the potential 
contribution of vasopressin to the development of hypertension will be addressed.

7.4.1	 �Vasopressor Contribution

Blockade of the V1aR for 4 weeks in prehypertensive SHR could attenuate the 
development of hypertension in adult SHR [126]. This was further supported by 
an increase of plasma vasopressin and of renal V1aR gene and protein expressions 
parallel to hypertension development [127]. However, once hypertension was 
fully established, plasma vasopressin decreased and V1aR gene and protein 
expressions were downregulated [127]. This was observed together with an undis-
turbed V2R expression over the studied period in SHR, and it was not present in 
the normotensive strain. The authors suggested that the administration of V1aR 
antagonists in the prehypertensive state could thus allow the prevention of hyper-
tension in patients at risk.

However, in another hypertensive model (L-NAME), V1aR antagonism could 
not attenuate hypertension and renal dysfunction [128]. A further blood pressure 
increase was even observed at the end of treatment although renal and mesenteric 
vasoconstriction to vasopressin was attenuated [128]. This suggested that V1aR 
activation does not contribute to hypertension induced by inhibition of NO 
synthesis.

Moreover, the vasoconstrictor nature of vasopressin has been questioned by the 
observation of vasopressin-induced vasodilation in some studies [129–132]. The 
differential vasoreactive response to vasopressin may reflect different experimental 
environments [133, 134] but may also be linked to the binding of vasopressin to 
endothelial oxytocin- and P2 purinergic receptors (OTR and P2R, respectively) 
[135, 136]. Binding of vasopressin to P2R stimulates phospholipase A2 and nitric 
oxide synthase, resulting in increased production of prostacyclin and nitric oxide, 
respectively, both leading to vasodilatation [137]. Binding to the endothelial OTR 
also results in a release of nitric oxide and vasodilation. Therefore, further knowl-
edge of the function and distribution of vasopressin receptors in the course of hyper-
tension development seems essential to understand the apparent contradictory 
effects of vasopressin on vascular function. In addition, while it is known that vaso-
pressin can potentiate the vasoconstriction induced by norepinephrine [138] and 
Ang II [139–141], the underlying mechanisms remain to be discovered in order to 
unveil a potential contribution of vasopressin-mediated increased vascular resis-
tance to the development of hypertension.
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Finally, clinical studies are also not conclusive. In well-hydrated volunteers and in 
patients with a mild form of essential hypertension, V1bR blockade did not alter 
blood pressure [142, 143]. However in patients with more severe forms of hyperten-
sion, in which plasma vasopressin was found to be elevated, V1R blockade induced 
a modest but consistent blood pressure decrease [144]. More recently, in hyperten-
sive patients, blockade of the V1aR with a synthetic antagonist during osmotic stimu-
lation resulted in a transient vasodilation without blood pressure reduction [145].

7.4.2	 �Antinatriuretic Contribution

An increased plasma osmolality triggers the secretion of vasopressin from vaso-
pressinergic neurons in the neurohypophysis. It has been suggested that increased 
vasopressin levels could participate in the blood pressure elevation, not via its 
V1aR-mediated effects (which actually facilitate sodium excretion) but via actions 
mediated by V2R [121]. The acute administration of a selective V2R agonist was 
able to increase urine osmolarity, to reduce urine flow rate, and to reduce sodium 
excretion in rats as well as in humans [121]. Following a prolonged V2R stimula-
tion, blood pressure was even raised by ∼10 mmHg in normotensive rats. In addi-
tion, treatment with a selective nonpeptide V2R antagonist in DOCA-salt 
hypertensive mice or SHR could limit or even prevent the rise in blood pressure 
[146, 147].

7.4.3	 �Central Contribution

Vasopressin is synthesized by neurons located in the paraventricular nucleus and 
median preoptic and supraoptic nuclei. Those neurons can be depolarized by hyper-
tonic conditions promoting thus the release of a vasopressin precursor or hyperpo-
larized by hypotonic conditions to limit its release. Finally, the vasopressin precursor 
migrates to the posterior pituitary, from which it is released into the circulation 
[133].

First evidences for a central contribution were obtained in studies involving 
spontaneously hypertensive rats (SHR-SP) in which vasopressin concentrations in 
plasma and brain stem were reduced compared to normotensive Wistar Kyoto 
(WKY) rats [148, 149]. Recent investigations have been performed to assess 
whether vasopressin neurons are excited in hypertensive states [150]. This was stud-
ied in an inducible angiotensin-dependent hypertensive model, the Cyp1a1-Ren2 
rat. The basal firing rate of vasopressin neurons was higher in hypertensive rats. In 
addition, the baroreflex-induced inhibition of vasopressin neurons was lost in hyper-
tensive rats [150]. This demonstrates that the activity of vasopressin neurons is 
increased at the onset of hypertension, potentially due to a reduced baroreflex inhi-
bition of those neurons.

The excitatory state of vasopressin neurons has also been studied recently in the 
context of salt-dependent hypertension [151]. It is known that the plasmatic 
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concentration of vasopressin is elevated in salt-dependent hypertensive models, 
such as the deoxycorticosterone acetate-salt model [152–155]. In this model, the 
authors could demonstrate that vasopressin neurons of the hypertensive animals 
exhibited a depolarizing excitatory response via the γ-aminobutyric acid (GABA), 
whereas GABA functions as an inhibitory transmitter for vasopressin neurons in 
control animals. This GABAergic excitation of vasopressin neurons was associated 
with an increased vasopressin release and a blood pressure increase [151].

Taken together, the exact contribution of vasopressin to the development of 
hypertension remains unclear and seems to depend on the type and stage of hyper-
tension. Further work with vasopressin analogues is thus required to decipher its 
role in the development and maintenance of hypertension.

7.5	 �Natriuretic Peptides

The presence of natriuretic peptides (NP) has been postulated over 50 years ago; 
however only in 1981, Bold et al. demonstrated their endocrine function in regulat-
ing fluid homeostasis [156]. In the following years, three distinct natriuretic pep-
tides have been isolated and described: ANP atrial natriuretic factor (ANF), isolated 
from rat atrium [157], as well as BNP and CNP, both purified from porcine brain 
extracts [158, 159]. In 1995 Lang et al. described for the first time a sensitive and 
specific radioimmunoassay for ANF [160]. Primarily NPs have been linked to natri-
uresis and diuresis. Recently, other physiological functions of NPs have been 
described, including vasodilation, anti-inflammation, and anti-fibrosis [161]. In the 
following, structure and synthesis, biological functions in health and disease, as 
well as novel pharmacological strategies targeting NPs will be discussed.

7.5.1	 �Expression, Structure, and Synthesis of NP and Its 
Receptors

All NPs are synthesized as precursors, i.e., prepro-NPs, and processed to pro-NPs 
by peptidases [162]. The 126 amino acid (AA) pro-ANP is primarily expressed and 
stored in granules in atria and upon stimulation released and converted to the mature 
28 AA ANP by corin, a transmembrane serine protease [163]. The 108 AA pro-BNP 
is mainly expressed in cardiac ventricles and cleaved by corin or furin to its 32 AA 
biologically active form BNP [164]. The human 103 AA pro-CNP is widely 
expressed in the brain tissue; however it is also synthesized in the kidney, bone, 
blood vessels, and heart [165]. Furin mediates conversion of pro-CNP to its active 
form CNP-53 [166] which may further be processed to CNP-22 by an unknown 
extracellular enzyme [167].

There are three distinct natriuretic peptide receptors, NPR-A, NPR-B, and NPR-
C, but only the first two mediate the well-known physiological actions of NPs [161]. 
Binding of NPs to NPR-A and NPR-B activates guanylyl cyclase resulting in the 
synthesis of cGMP (Fig.  7.3), an intracellular second messenger. GMP, in turn, 
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mediates the physiological effects of NP by binding to the three major effectors: 
cGMP-gated ion channels, phosphodiesterases (PDEs), and cGMP-dependent pro-
tein kinases (PKGs) [167]. The third NP receptor, NPR-C, has no guanylyl cyclase 
domain, and it is primarily viewed as a clearance receptor that removes NPs from 
the circulation through receptor-mediated internalization and degradation (Fig. 7.3) 
[161]. In addition to the NPR-C-mediated clearance, NPs can be enzymatically 
degraded by neutral endopeptidase (NEP) [167] and insulin-degrading enzyme 
(IDE) [168] (Fig. 7.3).

7.5.2	 �Biological Function in Health and Disease

Classically, NPs have been linked to natriuresis and diuresis due to renal hemody-
namic and direct tubular actions. ANP increases glomerular filtration rate [169] and 
inhibits sodium reabsorption in the proximal and distal nephrons [170] and tubular 
water transport in cortical collecting ducts [169]. Finally, the inhibitory effect of 
systemically or centrally applied ANP on Ang II-mediated sodium and water trans-
port has been demonstrated [171, 172]. Unger et al. showed that ANP, in contrast to 
its peripheral natriuretic actions, is antinatriuretic when centrally applied [172, 173].

Infusion of either ANP or BNP lowers blood pressure in animals, whereas CNP 
has no significant impact on hemodynamics [174]. In contrast, in hypertensive 
human subjects, only ANP showed a blood pressure-lowering effect [175] whereas 
BNP did not [176]. Furthermore, in human healthy volunteers, infusion of either 
ANP or BNP concomitantly with Ang II lowered blood pressure to a similar extent, 

Fig. 7.3  Natriuretic peptide system. Natriuretic peptide-binding receptors (blue), intracellular 
signaling (generation of cGMP), and degradation processes (NPR-C receptor, NEP, and IDE). 
Abbreviations: NPR natriuretic peptide receptor, ANP A-type (atrial) natriuretic peptide, BNP 
B-type (brain) natriuretic peptide, CNP C-type natriuretic peptide, M-ANP pharmacological ago-
nist of NPR-A receptor, CD-NP pharmacological agonist of NPR-A and NPR-B receptors, NEP 
neutral endopeptidase (neprilysin), NEPi pharmacological inhibitor of NEP, IDE insulin-degrading 
enzyme, GTP guanosine triphosphate, cGMP cyclic guanosine monophosphate

S. Foulquier et al.



97

indicating that both NPs have an impact on pressor responses to angiotensin [177]. 
The mechanisms involved in the BP-lowering effects of NPs are complex and include 
not only the abovementioned increased natriuresis and diuresis but also arterial veno-
dilation, vascular permeability, and direct suppression of the renin-angiotensin-
aldosterone system and sympathetic nervous system [178].

Preclinical studies have demonstrated that NPs can protect against pathological 
cardiac remodeling, including hypertrophy, inflammation, and fibrosis [161, 162, 
170]. Knocking out of ANP or NPR-A in mice led to cardiac hypertrophy in a blood 
pressure-independent manner [179, 180], whereas ANP overexpression resulted in 
smaller hearts as compared to wild-type animals [181]. Anti-inflammatory actions 
of ANP [182], BNP [183], and CNP [184] in cardiac tissue have been demonstrated 
in animal models of cardiac hypertrophy, myocardial infarction, and myocarditis. In 
addition, all three NPs promote antifibrosis in cardiac tissue [182, 185, 186].

7.5.3	 �Pharmacological Strategies Targeting NPs

Intravenous administration of NPs had beneficial effects in animal models of car-
diovascular and renal diseases. However, due to the short half-life, native or recom-
binant NPs cannot be applied in routine clinical use. Therefore, recombinant forms 
of NPs that are resistant to enzymatic degradation have been developed.

M-ANP (Fig. 7.3) possesses a greater resistance to enzymatic degradation than 
native ANP [187]. In preclinical studies, it has BP-lowering effects, promotes natriure-
sis and diuresis, increases renal blood flow and GFR, and suppresses the RAAS [187, 
188]. Currently, M-ANP undergoes clinical trials in patients with hypertension [189].

A novel class of natriuretic peptides, represented by CD-NP (cenderitide), with 
greater resistance to enzymatic degradation has been developed [190]. In contrast to 
CNP, CD-NP activates both NPR-A and NPR-B receptors (Fig. 7.3), promotes sub-
sequent natriuresis and diuresis, inhibits cardiac fibrosis, and reduces systolic blood 
pressure [162, 191].

Another strategy to target NPs is NEP inhibition (Fig. 7.3), which also inhibits the 
degradation of NPs and activates NP receptors by raising the concentrations of 
endogenous NPs. However, clinical trials with pure NEP inhibitors showed no effects 
but several side effects related to the rising concentration of other vasoactive peptides 
(including Ang I, Ang II, substance P, and endothelin) [161]. Therefore, NEP inhibi-
tion with concomitant RAS inhibition was considered to be a better choice.

The most extensively studied dual NEP/ACE inhibitor was omapatrilat [192]. 
Although this compound showed a significant reduction in composite end points 
compared to lisinopril in heart failure patients in the IMPRESS trial [193], larger tri-
als like OVERTURE failed to show any advantage over enalapril in combined risk of 
death or hospitalization for heart failure [71]. An increased incidence of angioedema, 
most likely due to the bradykinin-potentiating effects of ACE inhibition, in subse-
quent studies led to the interruption of the clinical development of omapatrilat [192].

In view of the abovementioned side effects of NEP inhibition (alone or in com-
bination with ACE inhibition), a combination of NEP inhibition with AT1R 

7  Hormonal Systems



98

blockade instead of ACE inhibition was thought to be of advantage. The first class 
angiotensin receptor neprilysin inhibitor (ARNI) is LCZ696, which comprises 
molecular moieties of the AT1 receptor antagonist, valsartan, and of the NEP inhibi-
tor prodrug, sacubitril, at a 1:1 molar ratio in a single molecule [194]. In preclinical 
studies, LCZ696 engendered pronounced vasodilatation, natriuresis, diuresis, and 
inhibition of fibrosis and hypertrophy [191]. In clinical studies, LCZ696 lowers BP 
and reduces NT-pro-BNP, a marker of LV wall stress, left atrial dimension, and 
volume and volume index in hypertensive and heart failure patients [76, 195, 196].

Natriuretic peptides play an important role not only in water and salt homeostasis 
but also provide tissue protection in cardiovascular and renal diseases. The complex-
ity of the natriuretic peptide system including the ligand-specific effects of NPs, sig-
naling pathways mediated by the NP receptors, and the cross talk between NP system 
and RAAS and the sympathetic nervous system requires further investigation. This 
may lead to a development of novel pharmacological strategies, targeting the NP 
system more selectively and with higher efficacy than currently available drugs.
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8Vasoactive Peptides
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Abbreviations

ACE	 Angiotensin-converting enzyme
Ang I	 Angiotensin I
Ang II	 Angiotensin II
Ang III	 Angiotensin III
Ang IV	 Angiotensin IV
ANP	 Atrial natriuretic peptide
AT1R	 Angiotensin II type 1 receptor
AT2R	 Angiotensin II type 2 receptor
AVP	 Vasopressin
B1	 Bradykinin type 1 receptor
B2	 Bradykinin type 2 receptor
BNP	 Brain natriuretic peptide
CD8	 Cluster of differentiation 8
CD-80	 Cluster of differentiation 80
CD-86	 Cluster of differentiation 86
DNA	 Deoxyribonucleic acid
ERK-1	 Extracellular signal-regulated kinases types 1
ERK-2	 Extracellular signal-regulated kinases types 2
Hsp27	 Heat shock protein 27
IFN-γ	 Interferon gamma
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IL-1β	 Interleukin-1β
IL-23	 Interleukin-23
IL-6	 Interleukin-6
LVH	 Left ventricular hypertrophy
MAPK	 Mitogen-activated protein kinase
MMP	 Metalloproteinase
MMP-2	 Metalloproteinase-2
MMP-9	 Metalloproteinase-9
MMPs	 Metalloproteinases
NO	 Nitric oxide
NPY	 Neuropeptide Y
NTS	 Nucleus of the tractus solitarius
PGI2	 Prostacyclin
RAAS	 Renin-angiotensin-aldosterone system
ROS	 Reactive oxygen species
TGF β-1	 Transforming growth factor β-1
TIMPs	 Tissue inhibitor of metalloproteinases

8.1	 �Introduction

Vasoactive peptides have an important role in vascular tone regulation, and their 
imbalance determines high blood pressure levels and cardiovascular remodeling in 
arterial hypertension: lack of balance in the renin-angiotensin-aldosterone system 
(RAAS) as well as in its receptors (AT1R and AT2R), deactivation of the kallikrein-
kinin vasodilator products, decreases of cardiac natriuretic peptides (ANP and BNP) 
and vasopressin (AVP), and vasoconstriction induced by neuropeptide Y (NPY) are 
the most significant disorders related to the pathophysiology of vessel inflammation, 
increased activity of vascular growth factors, and myocardial damage in this com-
plex disease. This chapter will approach the structure, biosynthesis, and pathophysi-
ological mechanisms involved in both human hypertension and cardiovascular 
impairment in the presence of these peptide system alterations. Also, in spite of not 
being peptide systems, but correlated to those described here, metalloproteinases, 
adipocytokines, and immune activation deserve some general considerations because 
of their interactions with the pathophysiology of hypertensive heart disease.

8.2	 �Classical Renin-Angiotensin-Aldosterone System

Activation of the renin-angiotensin-aldosterone system (RAAS) results in the release 
of several vasoactive peptides. The classical cascade of this system begins with the 
synthesis of angiotensinogen, a globulin of 14 amino acids produced by the liver and 
distributed in the bloodstream. Angiotensinogen undergoes proteolytic conversion to 
angiotensin I (Ang I) by the action of renin, a proteolytic enzyme synthesized in the 
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juxtaglomerular apparatus of the kidneys. Renin is considered a key enzyme in 
RAAS activation as it acts on prorenin/renin receptors, which are transmembrane 
receptors highly expressed in mesangial cells, adipocytes, heart cells, brain cells, and 
the vascular smooth muscle [1, 2]. Prorenin accounts for 70–90% of the circulating 
renin in normal subjects, and its binding to prorenin/renin receptors promotes an 
increase in the catalytic conversion of angiotensinogen to Ang I [3, 4]. Also, the 
binding of prorenin to its receptor activates an intracellular signaling cascade with 
the activation of mitogen-activated protein kinase (MAPK) and extracellular signal-
regulated kinases types 1 and 2 (ERK-1 and ERK-2) and the phosphorylation of heat 
shock protein 27 (Hsp27), which promotes an increase in the synthesis of DNA, 
collagen type 1, fibronectin, and transforming growth factor β-1 (TGF β-1). All of 
these are important mediators of tissue remodeling and the fibrotic process [4].

The inactive decapeptide Ang I, formed by the cleavage of angiotensinogen, is con-
verted into an octapeptide vasoconstrictor, angiotensin II (Ang II), by the action of the 
angiotensin-converting enzyme (ACE). ACE is a dipeptidyl carboxypeptidase found 
mainly in the endothelium of the pulmonary capillaries (40%) and other vascular beds 
(60%) such as the heart and coronary arteries [5, 6]. This enzyme also takes part in the 
kallikrein-kinin system promoting the inactivation of bradykinin, a potent vasodilator 
[7–9]. The reduction of bradykinin stimulation on its type 1 (B1) and type 2 (B2) recep-
tors decreases the release of NO from endothelial cells and the production of arachidonic 
acid from phospholipase A2, the latter leading to less formation of other vasodilators 
including prostacyclin (PGI2) [10–13]. Even though the RAAS cascade is widely distrib-
uted throughout the body, the main source of renin is the juxtaglomerular apparatus while 
ACE is present on the cell surface of endothelial cells, especially in the lungs. The current 
view is that >90% of tissue Ang II is synthesized locally and not taken up from plasma 
but depends on renin and largely, if not completely, on hepatic angiotensinogen [14, 15].

8.3	 �Angiotensin II and AT Receptors (AT1R and AT2R)

Ang II acts on Ang II type 1 (AT1R) and Ang II type 2 (AT2R) receptors, two recep-
tors with opposite actions. The binding of Ang II to the AT1R receptor causes con-
traction of vascular smooth muscle cells (vasoconstriction), interstitial fibrosis, cell 
growth, cell migration, and release of aldosterone from the adrenal gland [16]. 
Aldosterone apart from raising the blood pressure is implicated in the pathogenesis 
of cardiac hypertrophy, fibrosis, cardiac and vascular remodeling, ventricular 
arrhythmias, and atrial fibrillation [17–20]. Recent studies show that Ang II seems 
to form oxygen free radicals besides being present in inflammation processes, ath-
erosclerotic disease, and vascular aging [21]. AT1R is found in large numbers in the 
kidneys, heart, liver, vessels, and brain. Ang II via AT2R promotes protective actions 
by inducing vasodilation and the release of NO and inhibiting cell growth (Fig. 8.1).

It is well known that hyperactivity of the sympathetic nervous system, another 
pivotal mechanism present in hypertension, leads to increased activity of renal beta-
receptors resulting in the conversion of prorenin to the active form of renin, thus 
triggering activation of the RAAS cascade.
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Finally, the effects of angiotensin II (Ang II), via AT1R/AT2R, on vascular remod-
eling and constriction/vasodilation involve transforming growth factor-β (TGF-β) 
signaling by the TGF-β receptor and mitogen-activated protein kinase (MAPK) 
activation after AT1R stimulation. These mechanisms regulate the transcription of 
target genes such as those in matrix metalloproteinases (MMPs), plasminogen acti-
vator inhibitor-1 (PAI-1), and connective tissue growth factor (CTGF) resulting in 
cardiac and vascular proliferation, increased extracellular matrix production and 
fibrosis, differentiation, and inflammation. In summary, through these complex and 
imbricated intracellular systems, cardiovascular remodeling and target organ dam-
age are due to the activation of pathways that promote proliferation, migration, 
apoptosis, and balance between the synthesis/degradation of the extracellular matrix 
of cardiac and vascular proteins [22].

8.4	 �Nonclassical Renin-Angiotensin-Aldosterone Pathways

Some recent RAAS pathways are composed by angiotensin 1-7 (Ang 1-7), angio-
tensin 1-9 (Ang 1-9), angiotensin 1-12 (Ang 1-12), angiotensin III (Ang III), angio-
tensin IV (Ang IV), and other new components of this system. The actions of these 
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Fig. 8.1  Activation of classical renin-angiotensin-aldosterone system (RAAS) cascade results in 
vasoconstriction, fibrosis, hypertrophy, inflammation, and sympathoexcitation and increases blood 
pressure and target organ damage. Angiotensin I (Ang I), formed by the cleavage of angiotensino-
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(AT2R) receptors, two receptors with opposite actions
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pathways are opposite to those of the classical RAAS pathway promoting vasodila-
tion by the release of vasodilator substances such as NO and prostaglandins and 
causing natriuresis and reducing oxidative stress [23].

Ang II, when cleaved by angiotensin-converting enzyme 2 (ACE-2) and other 
endopeptidases, produces Ang 1-7. This heptapeptide (Ang 1-7) when bound to its 
MAS receptor, a G protein (GPCR), has a vasodilating effect potentiating bradykinin-
induced vasodilation, and thus it plays an important counter-regulation role to the 
vasoconstrictor effect of Ang II. Other beneficial effects of Ang 1-7 have also been 
described, such as protection against heart failure, reduction of thrombosis, intersti-
tial fibrosis, cell proliferation and myocardial hypertrophy, and modulation of the 
production of arginine-vasopressin peptide AVP (antidiuretic hormone—ADH) [24].

Ang 1-9 is found in the plasma of healthy individuals and in patients taking ACE 
inhibitors or AT1R blockers. Experimentally, increased plasma concentrations of 
Ang 1-9 were demonstrated in the cardiac tissue of rats after heart attacks. The main 
product of the degradation of Ang II in human hearts is Ang 1-9. It is probably 
formed by the action of chymases, ACE, or carboxypeptidase A. Furthermore, the 
main cleavage product of Ang I in human platelets is Ang 1-9 and not Ang II as was 
thought [25]. Recently, protective effects of Ang 1-9 against cardiac and vascular 
remodeling have been described [26].

Ang 1-12 is described as a pro-peptide resulting from the breakdown of angioten-
sinogen; now it is considered a precursor to the formation of tissue angiotensin. Some 
studies have shown that this angiotensin may be a functional precursor in the forma-
tion of Ang I in the absence of circulating renin [27]. Ang 1-12 has been detected in 
the intestine, liver, lung, adrenal glands, heart, brain, and pancreas at higher levels 
than the levels of Ang I [28]. One of the observations that supports the hypothesis that 
Ang 1-12 can act as an endogenous substrate for the production of Ang II came from 
the fact that its vasoconstrictor effect is prevented by blocking the RAAS with ACE 
inhibitors or Ang II receptor blockers (ARBs) in experimental models [29].

Studies show that the conversion of Ang1-12 into Ang II is mediated by ACE in 
the systemic circulation and by chymase in the heart [30, 31]. Divergence from 
Ang1-12 metabolic pathways may be highly tissue specific, as one report suggested 
that neprilysin could also act as Ang 1-12 convertase in the kidney. Neprilysin is a 
metalloproteinase member of the M13 family of proteases which also includes 
endothelin-converting enzyme (ECE). Neprilysin activity in the kidney is much 
higher than the activity of renal ACE, suggesting that neprilysin converts Ang 1-12 
into Ang I in the kidney.

New findings demonstrate the existence of additional alternate mechanisms for 
the generation of angiotensin peptide upstream from Ang I. Chymase is the critical 
Ang II-forming enzyme in humans, and so renin is not the only enzyme that gener-
ates Ang II; this increases the complexity of the RAAS [27].

Ang A is a peptide of the RAAS synthesized by enzymatic decarboxylation of 
Ang II. It has an AT1R-dependent vasoconstrictor effect similar to Ang II, increasing 
the blood pressure, promoting coronary vasoconstriction, and reducing the myocar-
dial contractility force and heart rate. The importance of the participation of Ang A 
in the RAAS highlights the significance of the observation of the limited effects of 
AT1R blockers [32].
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Almandine is a recently identified peptide of the RAAS, with biological activity simi-
lar to Ang 1-7; it has a vasodilating effect and an action on Mas-related gene D (MrgD) 
receptors of the central nervous system. Almandine is formed by the action of ACE-2 
on Ang A, thus reinforcing the important role of ACE-2 in the RAAS. Experimentally, 
almandine has antihypertensive and cardioprotective effects (Fig. 8.2) [33].

8.5	 �Physiological Role of Angiotensin III and IV

In physiological conditions, Ang II under the action of aminopeptidase A is con-
verted into Ang III. Circulating Ang III is found at low concentrations; however, it 
exists in various organs, especially in the brain, kidneys, and heart [34].
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Fig. 8.2  Nonclassical renin-angiotensin-aldosterone system (RAAS) pathways—composed by 
angiotensin 1-7 (Ang 1-7), angiotensin 1-9 (Ang 1-9), angiotensin 1-12 (Ang 1-12), angiotensin III 
(Ang III), angiotensin IV (Ang IV), and other new components of this system. The actions of these 
pathways are opposite to those of the classical RAAS pathway promoting vasodilation by the 
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ing oxidative stress. Ang II, when cleaved by angiotensin-converting enzyme 2 (ACE-2) and other 
endopeptidases (neutral endopeptidases—NEP), produces Ang 1-7, which, when bound to its MAS 
receptor, a G protein (GPCR), has a vasodilating effect potentiating bradykinin-induced vasodila-
tion. Other beneficial effects of Ang 1-7 include protection against heart failure, the reduction of 
thrombosis, interstitial fibrosis, cell proliferation and myocardial hypertrophy, and modulation of 
the production of arginine-vasopressin peptide AVP. Alamandine is a recently identified peptide 
with biological activity similar to Ang 1-7; it acts on Mas-related gene D (MrgD) receptors of the 
central nervous system. Alamandine is formed by the action of ACE-2 from angiotensin A
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Ang III is a potent inducer of AVP production, increasing central sympathetic activ-
ity and promoting the release of aldosterone and causing vasoconstriction in a manner 
similar to Ang II. It is also known that it acts on the solitary tract/vagal complex causing 
changes in baroreflex sensitivity in a similar way to Ang II. One of the peculiarities of 
Ang III is that its production is not completely blocked by ACE inhibitors as Ang III is 
produced by other pathways. To date, there is no evidence for a specific Ang III recep-
tor. In the kidney, Ang III normally binds to the AT1R and AT2R receptors, and the 
reported natriuretic and anti-natriuretic effects of Ang III may be dose dependent on 
whether the AT1R or AT2R receptor is activated [35, 36] (Fig. 8.3).

The major endogenous receptor ligand for AT2R-mediated natriuretic responses 
appears to be Ang III and not Ang II [37]. Recent studies have demonstrated that 
Ang II must be metabolized to Ang III by aminopeptidase A in order to induce natri-
uresis and that inhibition of aminopeptidase N increases intrarenal Ang III and Ang 
III-induced natriuresis [38].

Ang IV is formed from Ang III by the action of aminopeptidase N. Ang IV is a 
biologically active peptide that became of great interest after insulin-regulated 
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Fig. 8.3  The brain renin-angiotensin-aldosterone system (RAAS) pathway. In physiological con-
ditions, Ang II under the action of aminopeptidase A (APA) is converted into Ang III especially in 
the brain, kidneys, and heart. Ang III is a potent inducer of arginine-vasopressin peptide (AVP) 
production, increases central sympathetic activity, and releases and inhibits baroreflex, thereby 
increasing blood pressure, releasing aldosterone, and causing vasoconstriction in a manner similar 
to Ang II. One of the peculiarities of Ang III is that its production is not completely blocked by 
ACE inhibitors as Ang III is produced by other pathways. Ang IV is formed from Ang III by the 
action of aminopeptidase N. Ang IV is a biologically active peptide that became of great interest 
after insulin-regulated aminopeptidase (IRAP) was described. Ang IV has a binding site probably 
for an AT4 receptor. The solid bold arrows indicate RAAS classical pathways, the dotted arrows 
indicate brain RAAS pathways, the dotted gray lines indicate cross talk between the systems, and 
the solid bold line indicates inhibition of baroreflex. ROS reactive oxygen species, NTS nucleus of 
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aminopeptidase (IRAP) was described. Ang IV has a binding site probably for an 
AT4 receptor [39]. With an important role in cognitive function, renal function, and 
growth of cardiac fibroblasts and vascular smooth muscle cells, Ang IV, when bound 
to its receptor, causes renal vasodilation and increased expressions of plasminogen 
activator inhibitor-1 (PAI-1), interleukin-6, intercellular adhesion molecules (ICAM-
1), and tumor necrosis factor [40].

8.6	 �Cardiac Natriuretic Peptides (ANP and BNP)

After the initial description of the existence of natriuretic peptides with vasodilatory 
activity by De Bold et al. [41], atrial natriuretic (ANP) and brain natriuretic peptides 
(BNP) produced in atrial and ventricular cardiomyocytes were identified and con-
sidered cardiac natriuretic hormones (CHN) with endocrine, autocrine, and para-
crine activity. Moreover, a natriuretic peptide, called C-type natriuretic peptide 
(CNP), is produced by endothelial cells, and a peptide named urodilatin, encoded by 
the same gene as ANP and with similar characteristics, is produced in kidney tubu-
lar cells and secreted in the urine.

The activity of the cardiac natriuretic hormone system depends on both the pro-
duction/release of these peptides and the activation of inactive precursors (proANP 
and proBNP) in peripheral tissues and signal transduction by specific receptors.

Prohormones (proANP and proBNP), synthesized by cardiomyocytes, are 
cleaved into two fragments, a long inactive fragment which includes the NT peptide 
(NT-proANP and NT-proBNP) and a short active fragment (ANP and BNP). The 
proANP and proBNP are stored by atrial cardiomyocytes in secretory granules.

The main stimulus for the secretion/release of ANP and BNP is distension of 
the atrial and ventricular cardiomyocytes [42, 43]. However, endothelin-1, alpha-
adrenergic agonists, and Ang II also stimulate the production/release of cardiac 
natriuretic peptides [44]. Furthermore, other mediators, such as vasopressin, glu-
cocorticoids, thyroid hormones, steroids, and cytokines such as TNF-alpha and 
interleukin-1 and interleukin-6, can also stimulate the production and secretion 
of cardiac natriuretic peptides [45, 46]. NO has a regulatory role as it inhibits the 
production/release of these peptides. The involvement of glucagon-like peptide-1 
(GLP-1) was recently implicated in the regulation of the production/release of 
ANP. This incretin secreted by endocrine cells in the small intestine stimulates 
insulin secretion in the pancreas. Consequently, GLP-1 analogs or dipeptidyl 
peptidase-4 inhibitors can help to control the blood pressure in diabetic patients 
[47]. The observation of the expression of GLP-1 receptor genes in the atria with 
subsequent activation promoted by the production/release of ANP suggests that 
the antihypertensive effect of GLP-1 receptor agonists is mediated by this 
pathway.

Cardiac natriuretic peptides (ANP and BNP) and CNP have similar biological 
effects including direct diuresis, natriuresis, vasodilation, and anti-inflammatory 
action on smooth muscle cells and cardiomyocytes [48] as well as a protective effect 
against vascular dysfunction and vascular remodeling [49]. These effects are mediated 
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by adenylate cyclase-coupled receptors (NPR-A) and guanylate cyclase-coupled 
receptors (NPR-B) which are widely distributed throughout the body, including in the 
kidneys, vascular smooth muscle, adrenal glands, brain, and heart. The biological 
effects of ANP and BNP are mediated by the NPR-A receptor, while the NPR-B 
receptor is linked to CNP signaling. A third specific receptor, the natriuretic peptide 
receptor C (NPR-C), which is not bound to guanylate cyclase, has the essential func-
tion of removing all natriuretic peptides (Fig. 8.4) [50].

Natriuretic peptides play an important role in maintaining blood pressure and 
blood volume [51]. These peptides regulate blood pressure by the direct relaxation 
of vascular smooth muscles, suppression of RAAS activity, reduced aldosterone 
secretion, reduced activation of the sympathetic system, and inhibition of endothe-
lin-1 secretion. Intravascular volume control is obtained by directly influencing 
electrolyte balance via changes in endothelial permeability and the inhibition of 
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uretic peptide (BNP). ACE angiotensin-converting enzyme, Ang angiotensin, ANP atrial natriuretic 
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sodium reabsorption in the proximal and distal nephrons, resulting in natriuresis, 
diuresis, and reduction of intravascular volume and blood pressure. These changes 
in electrolyte balance are mediated by ANP and BNP. Moreover, ANP increases 
renal plasma flow and the glomerular filtration rate, thereby optimizing renal func-
tion. However, ANP changes the endothelial capillary permeability promoting 
redistribution of plasma proteins and fluid between the interstitial and intravascular 
spaces [52, 53]. These classical endocrine functions are important mechanisms of 
cardiac natriuretic peptides. Meanwhile, autocrine and paracrine activities involve 
the inhibition or reduction of cardiovascular remodeling, hypertrophy, fibrosis, and 
inflammation [54]. Both ANP and BNP participate in this protective mechanism 
against the actions of Ang II, endothelin-1, sympathetic activity, and inflammatory 
mediators that participate in cardiovascular remodeling and inflammation, playing 
an important role by neutralizing the effects of the activation of the RAAS and sym-
pathetic nervous system.

Cardiac natriuretic peptides are cleared from circulation by endocytosis via 
NPR-C and by degradation by neprilysin (NEP), an endopeptidase expressed pri-
marily in the kidneys, which is dependent on zinc bound to the membrane that 
hydrolyzes peptides on the amino side of hydrophobic residues. Neprilysin has a 
short NT domain, a cytoplasmic transmembrane helix, and a C-terminal extracel-
lular domain with a zinc atom as the active site [55].

NEP has a high affinity for ANP and CNP and less affinity for BNP. However, 
NEP also degrades other vasoactive peptides both vasodilating peptides (such as 
substance P and bradykinin) and vasoconstrictors (such as Ang II and endothelin-1); 
therefore, it has an important role in maintaining the balance between vasodilator 
and vasoconstrictor peptides.

Knowledge of cardiovascular and renal effects of ANPs is an important therapeu-
tic tool for hypertension and conditions associated with volume overload [55, 56]. 
Accordingly, improvements in the endogenous activity of these peptides and the 
inactivation of the degradation pathway by inhibiting NEP and blocking other com-
ponents of the RAAS are alternatives to increase the activity of cardiac natriuretic 
peptides (Fig. 8.5).

8.7	 �Vasopressin (AVP)

AVP is synthesized and released by the neurohypophysis (posterior lobe of the pitu-
itary gland) in response to reduced blood volume, a drop in blood pressure, or 
hypernatremia. AVP participates in the maintenance of body water, regulating the 
osmotic balance and blood pressure by influencing water excretion by the kidneys. 
Baroreceptors, located in the carotid sinus, aortic arch, and left atrium, detect blood 
pressure reductions and directly stimulate neurons located in the supraoptic and 
hypothalamic paraventricular nuclei promoting the release of AVP.  Furthermore, 
hypothalamic osmoreceptors detect variations <1% in plasma osmolality and trig-
ger the release of AVP with a consequent reduction of renal medullary flow that 
exerts a powerful antidiuretic effect and increases permeability to water in 
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collecting tubules [57]. Extrapituitary AVP production occurs in the sympathetic 
ganglia, kidney, and testis. The synthesis of AVP involves pre-pro-AVP and pro-
AVP precursors that are cleaved by a cascade of enzymes including copeptin 
(CTproAVP) and neurophysin II [58].

AVP is also an important mediator of adaptive response to acute and chronic 
stress with the activation of the hypothalamic-pituitary-adrenal axis and sympa-
thetic catecholaminergic system in response to stimuli such as physical stress and 
acute events involving reductions in blood pressure or blood volume. In these cir-
cumstances, the release of AVP exceeds its normal concentration by 100 to 1000 
times [59].

The plasma half-life of AVP is 5–20 min, and clearance of AVP occurs through 
the kidney (50–70%) and to a lesser extent through the liver. Inactivation by circu-
lating and endothelial endopeptidases and aminopeptidase also occurs. AVP acts on 
three types of receptors, V1a, V2, and V3 (V1b receptors) [60]. Acting on V1a 
receptors located in vascular smooth muscle cells, platelets, and smooth muscle of 
the uterus, AVP causes arteriolar vasoconstriction, while on V1a receptors, located 
in hepatocytes, it promotes glycogenolysis.

Activation of the V2 receptor is associated with an increase in the intracellular 
cyclic AMP concentration which increases the expression of aquaporin-2 channels 
in the apical membrane of the tubular cell of the distal nephron and subsequent 
reabsorption of water into the interstitium [61]. V3 receptors (also called V1b recep-
tors) distributed in the anterior pituitary gland, brain, pancreas, and heart are 
involved in the secretion of the adrenocorticotropic hormone (ACTH), synthesis 
and release of insulin and glucagon, body temperature control, and neuromodula-
tion of memory (Fig. 8.6).

Angiotensinogen

Renin

Ang I

ACE

Ang II

Inactive
peptides

ANP BNP

Inactive peptides

Bradykinin Inactive peptides

Neutral endopeptidase 

(NEP)

Fig. 8.5  Schematic representation to show the central role of vasopeptidase inhibition for the 
metabolism of angiotensin II, bradykinin, and natriuretic peptides

8  Vasoactive Peptides



118

AVP plasma concentrations are low (1–3 pg/mL) under physiological conditions; 
however, their concentration can reach 10–20 pg/mL promoting intense renal vaso-
constriction with significant changes in the pressure/diuresis/natriuresis. However, 
AVP also promotes cutaneous, splanchnic, and coronary vasoconstriction and vaso-
dilatation in the muscular territory, which together results in variable effects on the 
blood pressure. Important inhibitory effects of baroreflex and the sympathetic ner-
vous system are observed with AVP resulting in attenuation of the potent vasocon-
strictor effect of this peptide. Consequently, modest blood pressure elevations are 
seen with physiological elevations of AVP, and thus the antidiuretic effect of AVP 
occurs without modification of the induced diuresis pressure. It is noteworthy that 
in the absence of autonomic reflex mechanisms, the vasopressor effect of AVP is 
exacerbated. This situation is common in patients with diabetes and autonomic dys-
function, a condition in which a V1 receptor blocker causes significant reductions in 
blood pressure. Also interesting is the observation of the effect of blockade of AVP 
V1 receptors in individuals of African descent who respond better to this therapy 
than non-African descendants. The true role of AVP in hypertension is not fully 
understood as differences in AVP plasma levels are observed between men (30%) 
and women (7%). However, high AVP concentrations are found in patients with 
malignant hypertension, heart failure, and preeclampsia; in these water retention 
conditions, the redistribution of volume and regional flow can cause greater eleva-
tions in blood pressure [57, 62].
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8.8	 �Neuropeptide Y

NPY is widely distributed in the central nervous system, including in the hypothala-
mus, ventrolateral region of the medulla oblongata (bulb), nucleus of the tractus 
solitarius, locus coeruleus, and preganglionic neurons of the spinal cord. It has an 
important inhibitory effect of sympathetic neurotransmission, and it is a mediator of 
the central leptin signaling pathway and potentiates the release of vasopressin in the 
neurohypophysis. By these mechanisms, NYP participates in the control of thirst, 
appetite, blood pressure, and the energy metabolism [63].

NPY, expressed in the sympathetic ganglia and the fibers that innervate blood 
vessels and the heart and kidneys, also has actions in the peripheral nervous sys-
tem; it coexists with norepinephrine in peripheral neurons to promote a potent 
vasoconstrictor effect. The effects of NPY are mediated by the Y1, Y2, and Y5 
receptors. NPY bound to Y1 receptors inhibits adenylate cyclase and increases in 
intracellular calcium. In the central nervous system, Y1 receptors are associated 
with hypotension, while peripheral stimulation via Y1 receptors causes vasocon-
striction and potentiation of the vasoconstriction effects of norepinephrine, Ang II, 
and serotonin, particularly in small vessels of the coronary, cerebral, and splanch-
nic beds [64].

NPY generally acts on postsynaptic Y2 receptors reducing the concentration of 
intracellular calcium by the inhibition of N-type calcium channels in nerve endings. 
In the central nervous system, vascular bed, heart, and kidneys, NPY inhibits the 
release of neurotransmitters including norepinephrine and glutamate [65].

The stimulation of Y5 receptors by NPY promotes natriuresis and is involved in 
cardiovascular remodeling [66].

Increased plasma levels of NPY can be found in situations of exacerbated sym-
pathetic activity such as stress, exercise, hemorrhage, and myocardial infarction. 
However, NPY, unlike other vasoactive peptides that cause vasoconstriction and an 
antidiuretic effect, promotes increased urine output, reducing the release of renin, 
increasing the release of ANP, and changing the function of the Na+/K+-ATPase 
pump in the proximal tubule of the nephron with marked diuretic and antihyperten-
sive effects [67].

8.9	 �Non-Peptide Systems Related to Hypertensive Disease

8.9.1	 �Metalloproteinases

Matrix MMPs are a family of zinc-dependent proteases that are widely known to 
degrade the components of the extracellular matrix. Interestingly, many other roles 
of these enzymes, especially in the cardiovascular system, are now being exten-
sively studied [68, 69]. However, whereas abnormal MMP levels have been 
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described in many conditions associated with increased cardiovascular risk [70–72], 
it is perplexing that there are inconsistent findings with regard to MMP levels in 
hypertensive patients. While some studies showed increased MMP levels/activity in 
hypertensive patients compared with normotensive controls [73–76], other studies 
showed similar levels or decreased levels. It is possible that the significant differ-
ences between studies may reflect a lack of the control of relevant factors that may 
modify MMP levels in patients including drug treatment and accompanying dis-
eases, as well as pre-analytical issues, such as the use of inappropriate samples to 
assess circulating MMP levels.

The balance between MMPs and tissue inhibitor of metalloproteinases (TIMPs) 
is essential for cardiovascular remodeling [77, 78]. For example, MMP-2 and 
MMP-9 have also been associated with arterial hypertension by degradation of the 
extracellular matrix, elastin, and collagen type IV and are also involved in the break-
down of interstitial collagen types I, II, and III. Thus, elevated levels of MMPs can 
result in a change in the elastin/collagen ratio and a reduction in the elasticity of the 
vascular wall. On the other hand, increased activity of TIMPs is associated with 
reduced degradation of collagen type I, which plays an important role in the patho-
physiology of hypertension as well as in resistance to antihypertensive medication 
[79–81].

8.9.2	 �Adipocytokines

Adipocytokines, such as adiponectin, resistin, and leptin, are hormones produced by 
the fatty tissue and may be involved in multiple pathologic conditions, including 
inflammation and arterial stiffness in hypertension. Interestingly, the RAAS compo-
nents have been associated with adiponectin and resistin plasma concentrations, and 
one study demonstrated that aldosterone inhibits adiponectin expression and protein 
production in 3T3-L1 adipocytes, suggesting that adiponectin may mediate the 
action of aldosterone in insulin resistance and cardiovascular events [82]. Also note-
worthy, patients with primary hyperaldosteronism demonstrated higher resistin lev-
els and cardiac morphological changes, independently of the presence of metabolic 
syndrome, suggesting a possible aldosterone-mediated resistin role in patients with 
cardiovascular risk [83].

Besides its renal effects on decreasing natriuresis, leptin has additional detrimen-
tal effects in the cardiovascular system such as promoting atherosclerosis by stimu-
lating monocyte migration inflammation and thrombosis processes, hypertrophy of 
cardiomyocytes, and myocardial extracellular matrix remodeling [84, 85]. Clinical 
trials have demonstrated that the majority of obese patients have increased levels of 
leptin accompanied by selective leptin resistance status that explains, at least par-
tially, obesity-associated hypertension.

Resistin is a protein predominantly synthesized by macrophages, but it is also in 
the adipose tissue and is increased under inflammatory conditions [86]. Some studies 
demonstrated that levels of this adipokine are increased in obesity, insulin resistance, 
and hypertension [87]. However, these findings are conflicting and the lack of studies 
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has provided some challenges to achieve clear conclusions. Moreover, resistin 
showed proinflammatory properties by increasing secretion of cell adhesion mole-
cules and other cytokines such as tumor necrosis factor-α and interleukin-6 [88].

Adiponectin is the most abundant adipokine produced by adipocytes. Low 
plasma levels of adiponectin are considered a predictor of cardiovascular outcomes 
in the general population and among patients with diabetes [89]. Moreover, it is 
associated with endothelial dysfunction, progression of left ventricular hypertrophy 
(LVH), and arterial stiffness [90]. Previous studies have shown that hypoadiponec-
tinemia is an independent risk factor for hypertension and resistant hypertension 
and also predicts the development of hypertension in normotensive patients after 
adjustment for confounding factors [91]. Interestingly, the RAAS components have 
been associated with adiponectin regulation, and the direct effect of aldosterone on 
adipose tissue has been investigated. Patients with hyperaldosteronism have lower 
levels of adiponectin compared with hypertensive patients. Thus, pharmacologic 
strategies to increase adiponectin levels may be beneficial to prevent cardiovascular 
damage and metabolic disorders in hypertension.

8.9.3	 �Immune Activation

Vascular oxidative injury accompanies many common conditions associated with 
hypertension. Very recent experiments have defined a link between oxidative stress 
and immune activation in hypertension. These have shown that hypertension is 
associated with the formation of reactive oxygen species in dendritic cells that leads 
to the formation of gamma ketoaldehydes or isoketals. These rapidly adduct to pro-
tein lysines and are presented by dendritic cells as neoantigens that activate T cells 
and promote hypertension. Thus, cells of both the innate and adaptive immune sys-
tems contribute to dysfunction and end-organ damage in hypertension. Therapeutic 
interventions to reduce activation of these cells may prove beneficial in reducing 
end-organ damage and prevent the consequences of hypertension including myo-
cardial infarction, heart failure, renal failure, and stroke [92].

In experimental models of hypertension, dendritic cells with highly oxidative 
proteins (isoketals) accumulated IL-6, IL-1β, and IL-23 and CD80 and CD86 
costimulatory molecules. These “activated” dendritic cells promoted T cell, particu-
larly CD8+, proliferation, the production of IFN-γ and IL-17A, and hypertension. 
Reactive oxygen species scavengers such as tempol normalized blood pressure and 
prevented vascular inflammation, aortic stiffening, and hypertension, events associ-
ated with T-cell activation. Together, these results define a pathway linking vascular 
oxidant stress to immune activation and aortic stiffening and provide an insight into 
the systemic inflammation encountered in common vascular diseases such as hyper-
tension [93].

Interestingly, plasma F2-isoprostanes, which are produced in concert with these 
oxidatively modified proteins, were found elevated in humans with treated hyper-
tension and were markedly elevated in patients with resistant hypertension. These 
oxidative-modified proteins were also markedly elevated in circulating monocytes 
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from humans with hypertension. These data reveal that hypertension activates den-
dritic cells, in large part by promoting the formation of isoketals, and suggest that 
reducing isoketals has potential as a treatment strategy for this disease [94].

These translational findings correlating the immune system and hypertension 
may have clinical application in further clinical studies.

8.10	 �Final Considerations

Because of the diversity of local and systemic actions, interactions with other new and 
important blood pressure regulation systems as well as cardiovascular remodeling 
pathophysiology, further research, and better biological understanding of the vasoac-
tive peptides constitute a cornerstone for future steps in hypertension therapy.
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9Endothelial Function

Rosa Maria Bruno, Agostino Virdis, and Stefano Taddei

9.1	 �Endothelial Function: Basic Concepts

The endothelium consists in a cellular monolayer that covers the inner wall of all 
vessels in the cardiovascular system. While until the beginning of the 1980s the 
endothelium was considered a passive stratum with the main role of filter between 
the bloodstream and the vascular wall, now it is considered as the biggest autocrine-
paracrine organ in humans, involved in the regulation of multiple biological pro-
cesses in different settings, including cardiovascular system, immune system, central 
nervous system, and erectile function, producing a variety of different molecules, 
among which the most important is nitric oxide (NO). More than 30  years ago, 
Furchgott et  al. demonstrated that in isolated rabbit aorta, acetylcholine-induced 
vasodilation occurred only in the presence of an intact endothelium, releasing an 
endothelium-derived relaxing factor [1], which was later identified as NO [2].

During the last three decades, a large body of evidence identified endothelial 
dysfunction consequent to a reduced NO availability as the early step of the athero-
sclerotic process and as a pivotal mechanism in the pathophysiology of cardiovas-
cular disease. Standardized methodologies were set up for invasive and noninvasive 
techniques. Concomitantly, several pathways and mechanisms of endothelial dys-
function in different conditions and vascular districts have been demonstrated. 
Furthermore, endothelial function has been extensively utilized for cardiovascular 
risk stratification, to test new cardiovascular drugs, and to investigate the clinical 
impact of emerging cardiovascular risk factors, such as environmental factors and 
non-primarily cardiovascular diseases [3, 4].

NO is produced from the amino acid l-arginine, the enzyme NO synthase (NOS), 
whose isoform present in the endothelium is called endothelial NOS (eNOS). NO 
release from endothelium is determined by receptor-mediated mechanisms 
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(acetylcholine, bradykinin, serotonin, substance P, adenosine diphosphate), but also 
by mechanical stimuli (Fig. 9.1) [5]. In particular, shear stress, namely, tangential 
cyclic stress generated on vascular walls by blood flow, is probably the most power-
ful mechanism of stimulated NO release [2, 6].

Once NO is produced by endothelial cells, it diffuses through cell membranes 
reaching vascular smooth muscle cells; there, NO activates cytosolic guanylate 
cyclase and thus elevates intracellular levels of cyclic guanosine monophosphate 
(cGMP), which acts as a second messenger, inducing vasodilation by the reduction 
of cytosolic concentration of calcium ion. At this level, NO exerts its cardiovascular 
protective role by relaxing media smooth muscle cells, preventing leukocyte adhe-
sion and migration into the arterial wall, muscle cell proliferation, platelet adhesion 
and aggregation, and adhesion molecule expression.

The half-life of NO and therefore its biological activity are critically influenced 
by the presence of reactive oxygen species (ROS) such as superoxide: this free radi-
cal rapidly reacts with NO to form the highly reactive intermediate peroxynitrite 
(ONOO−). The formation of nitroso compounds has multiple negative effects: 
reducing NO availability, having direct vasoconstrictor and cytotoxic effects, and 
impairing the activity of the prostacyclin synthase and eNOS. Other ROS, such as 
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the dismutation product of superoxide, hydrogen peroxide, and hypochlorous acid, 
cannot be considered as free radicals, but have a powerful oxidizing capacity, which 
further contributes to oxidative stress within vascular tissues [7]. It is widely docu-
mented that in several disease conditions, including the presence of cardiovascular 
risk factors such as hypertension, ROS excess is predominant, and the endothelium 
undergoes functional and structural alterations, thus losing its protective role and 
becoming a proatherosclerotic structure. In the earliest stages, the principal endo-
thelial alteration is merely functional and addressed as “endothelial dysfunction” 
[4]. The fundamental feature of this condition is the impaired NO bioavailability. 
This can be the consequence of either a reduced production by NO synthase (e.g., 
due to high levels of asymmetric dimethylarginine, ADMA, a competitive inhibitor 
of eNOS) or, more frequently, as above mentioned, of an increased breakdown by 
ROS. Finally, NO actions may be antagonized by endothelium-derived contracting 
factors [8].

As already mentioned, endothelial dysfunction in the peripheral and in the coro-
nary arteries loses its vascular protective role, thus becoming not only a contributor 
to the progression of atherosclerosis but also a marker for cardiovascular risk and 
cardiovascular events.

Endothelial dysfunction, detected as the presence of reduced vasodilating 
response to endothelial stimuli, has been associated with major cardiovascular risk 
factors, such as aging, hyperhomocysteinemia, postmenopausal state, smoking, dia-
betes, hypercholesterolemia, and hypertension. The presence of multiple risk fac-
tors, each contributing to the development of impaired NO bioavailability by 
different mechanisms, may be able to determine a progressive worsening of endo-
thelial function. Accordingly, some authors hypothesized that endothelial dysfunc-
tion may be not only a consequence or a collateral feature of risk factors but also a 
possible pathogenetic mechanism for their onset, though to date conflicting evi-
dence exists [9].

9.2	 �Endothelial Dysfunction in Hypertension

Homogeneous literature convincingly demonstrates that endothelial dysfunction is a 
hallmark of the hypertensive patient [10, 11]. So far the main cause of hypertension-
related endothelial dysfunction, in humans as well as in experimental animals, has 
been identified with an increased NO breakdown. In particular, hypertension-related 
endothelial dysfunction has been demonstrated to be the consequence of increased 
production of ROS [11], mainly superoxide anions, which are highly reactive and 
destroy NO, thus reducing its bioavailability [7]. Various enzymatic and nonenzy-
matic sources of ROS have been described to be activated in endothelial cells, smooth 
muscle cells, and inflammatory cells within the arterial wall of hypertensive patients, 
including nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, cyclo-
oxygenase [12], xanthine oxidase, and uncoupled eNOS [13] (Fig.  9.1). In the 
attempt to compensate for NO deficiency, endothelium-dependent vasodilation is 
partially maintained by the production and release of endothelium-derived 

9  Endothelial Function



130

vasodilators other than NO, such as prostanoids and other endothelium-derived 
hyperpolarizing factors [14].

Despite this large body of evidence coming from mechanistic studies, the exact 
relationship between endothelial dysfunction and hypertension is still a matter of 
debate, with some authors suggesting a “vicious circle” hypothesis, which is a bidi-
rectional relationship [9]. However, several facts go against this hypothesis, as sum-
marized below.

First, it is important to remember that endothelial dysfunction is not a specific 
feature of hypertension, but it is also a feature of other pathological conditions, i.e., 
diabetes mellitus, hypercholesterolemia, hyperhomocysteinemia, and obesity, not 
characterized by high blood pressure, in which reduced NO availability occurs [4]. 
Furthermore, in large cross-sectional population studies, an association between the 
degree of endothelial dysfunction and blood pressure values has been demonstrated, 
though not univocally [15, 16]. Indeed, the association of endothelial function with 
BP values depends also upon the technique used, with a direct correlation with flow-
mediated dilation (FMD) and an inverse correlation with peripheral arterial tonometry 
[17, 18]. Thus, whether a cause-effect relationship exists, and which is its direction, is 
still a matter of debate. For example, the presence of elevated blood pressure in a 
cohort of Finnish teenagers was predictive of impaired FMD after 21 years of follow-
up [19], while to our knowledge, no prospective study has tested yet the hypothesis 
that lower FMD predisposes to future development of hypertension.

One of the facts in favor of a role for endothelial dysfunction in the development 
of hypertension relates to genetic aspects. Taddei et  al. found that normotensive 
offspring of hypertensive patients had significantly impaired response to ACh in 
comparison to normotensive offspring of normotensive patients, due to a defect in 
the l-arginine-NO pathway [20]. Conversely, other studies found only a modest 
heritability of FMD in the Framingham study participants [16], while the heritabil-
ity of BP values is considerably higher [21].

Endothelial dysfunction has been associated with vascular target organ damage. 
The first observation of a relationship between increased carotid intima-media 
thickness (IMT) and endothelial dysfunction was shown in the forearm microcircu-
lation of untreated hypertensive patients [22]. In a cross-sectional study in middle-
aged healthy men, there was no evident correlation between brachial FMD and IMT 
[23], whereas FMD predicted IMT progression in hypertensive, postmenopausal 
women [24]. Similarly, endothelial function was not related with arterial stiffness, 
measured as pulse wave velocity, in healthy subjects [25] and in nondiabetic hyper-
tensive patients, while a significant relationship in hypertensive patients with diabe-
tes shows up [26]. In contrast, a weaker relationship has been found with cardiac 
and renal organ damage. For example, Treasure et  al. found that left ventricular 
hypertrophy is associated with impaired endothelium-mediated relaxation in human 
coronary resistance vessels of hypertensive patients [27], while in other studies no 
significant difference in FMD was observed between patients with or without left 
ventricular hypertrophy or among patients with different geometric patterns [28]. 
Furthermore, despite that both microalbuminuria and endothelial dysfunction are 
considered as expressions of endothelial pathology, no correlation between urinary 
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albumin excretion and vasodilatation in response to acetylcholine or to sodium 
nitroprusside in the forearm microcirculation occurred in essential hypertensive 
patients [29].

Several nonpharmacological and pharmacological approaches have been 
demonstrated to improve or reverse endothelial dysfunction (Table  9.1), 
although their effect is never selective and usually also targets one or more tra-
ditional cardiovascular risk factors [9, 30]. Although in acute studies the use of 
high-dose antioxidant vitamins is extremely effective in restoring normal endo-
thelial function, interventional studies using oral administration of these sub-
stances (i.e., vitamins C and E) failed to provide consistent data. However, 
recently, other antioxidant compounds, such as the flavonoids contained in red 
wine and chocolate, have been found to ameliorate endothelial function in 
peripheral large arteries. Among cardiovascular drugs, β-blockers and diuretics 
are invariably found to have little or no effect on endothelium-dependent vaso-
dilation. On the other side, calcium channel blockers have been consistently 
shown to reverse impaired endothelium-dependent vasodilation, mainly in the 
microcirculation, with conflicting results in the brachial artery flow-mediated 
dilation. ACE inhibitors and angiotensin receptor blockers have been shown to 
ameliorate endothelium-dependent vasodilation in several experimental set-
tings, exploring both coronary and peripheral large arteries, but conflicting 
results have been obtained in the microcirculation. Also lipid-lowering drugs 
such as statins and insulin-sensitizing agents such as glitazones are able to 
improve endothelial function. Given these data, it is conceivable that the thera-
peutic correction of endothelial dysfunction may lead to an improvement of 
prognosis in patients with cardiovascular risk factors or cardiovascular disease. 
However, scant data are available on this topic, and most of the conclusions that 
can be drawn are highly speculative. Antihypertensive drugs per se do not nec-
essarily improve endothelial function [31], and compounds improving vascular 
function such as antioxidants [32] do not necessarily lower blood pressure or 
may do it through different mechanisms [33].

Table 9.1  Summary of the effect of antihypertensive drugs on endothelial function in the macro- 
and in the microcirculation

Drug classes
Macrocirculation (coronary 
epicardial artery, brachial artery)

Microcirculation (coronary and 
forearm microcirculation)

Thiazide diuretics = =
Aldosterone 
antagonists

= ↑ ↑

Beta-blockers = ↑ =
Calcium channel 
blockers

= ↑ ↑↑

ACE inhibitors ↑↑ =↑
AT1-receptor 
blockers

=↑ =↑

Renin inhibitors = ↑
Adapted, with permission, from [30]
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Taken together, these results do not support the hypothesis that endothelial dys-
function might induce hypertension. On the other hand, a possible exception may be 
represented by preeclampsia, a hypertensive condition complicating up to 15% of 
human pregnancies, whose incidence is on the rise due to increased maternal age 
and obesity: in this disease, endothelial dysfunction might play a pathogenetic role 
and represent a reasonable therapeutic target [34].

The most important open question is probably which is the prognostic role of 
endothelial dysfunction in hypertension. Other biomarkers of subclinical athero-
sclerosis have outperformed endothelial function testing in prediction of cardio-
vascular events in the general population, though to date a number of 
methodological issues avoid to draw firm conclusions [35, 36]; furthermore, few 
studies specifically addressed this question in the hypertensive population. Indeed, 
in 172 prospectively identified uncomplicated hypertensive patients, followed up 
for 95 months, a reduced FMD was associated with an increased risk of cardiovas-
cular events after adjustment for traditional cardiovascular risk factors [37]. 
However, there is the intriguing possibility that serial assessments by noninvasive 
techniques might increase the predictive value and the clinical significance of 
endothelial dysfunction. Lack of restoration of endothelial function despite opti-
mal treatment might identify a subset of “non-responders,” who might be suitable 
for new therapeutic approaches, specifically targeting the endothelium. This 
hypothesis was tested in patients with systemic lupus erythematosus [38], in 
patients with coronary artery disease [39], but also in a sample of 400 postmeno-
pausal hypertensive women without evidence of coronary artery disease at base-
line and 6 months after effectively treating blood pressure. In those women whose 
FMD has not improved, there was a sevenfold increase in cardiovascular events 
during follow-up [40]. In this scenario, the possibility of improving endothelial 
function pharmacologically in hypertensive patients is appealing (Table  9.1). 
Furthermore, nutraceuticals as well as other cardiovascular drugs might have a 
beneficial effect on vascular function and might help reduce the residual cardio-
vascular risk in hypertensive patients [41].
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10Genetics of Blood Pressure 
and Hypertension
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and Anna F. Dominiczak

The role of genetics in blood pressure regulation and hypertension is established 
through multiple strands of evidence. Family and twin studies have shown that BP 
is a heritable trait, with heritability ranging from 15 to 40% for the clinic SBP and 
from 15 to 30% for clinical DBP; a higher heritability was noted for the ABPM 
(sleep) around 69% and 51% for SBP and DBP, respectively [1–3]. The risk of 
hypertension is significantly increased in subjects with one or two hypertensive par-
ents, and BP levels correlate more in monozygotic twins than dizygotic twins [4, 5]. 
Secondly, the existence of rare monogenic forms of hypertension and the identifica-
tion of their underlying causal mutations have enhanced our understanding of 
molecular pathways that regulate BP regulation [6]. Finally, accruing evidence from 
genome-wide association studies (GWAS) highlights the role of common variants 
in BP regulation and points to novel pathways that may lead to novel therapies [7].

10.1	 �Monogenic Forms of Hypertension

Discovery of the monogenic Mendelian forms of hypertension has mainly been 
through positional cloning using large family pedigrees, with multiple members of 
the family showing a clear inheritance pattern. Patients with these types of disorders 
represent less than 1% of the hypertensive population and are considered to have 
secondary hypertension. Mutations causing monogenic hypertension are character-
ised by being rare with a major defect that usually disrupts a single pathway. Given 
the complexity and the presence of several systems and physiological pathways that 
control BP, it is surprising that most of the identified monogenic hypertension 
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syndromes are due to mutation in genes that play key roles in renal sodium handling 
[6, 7]. Table 10.1 summarises the different forms of monogenic hypertension and 
their key features and causal genes.

10.2	 �Polygenic Pathways of BP Regulation and Hypertension

Several GWAS have been conducted using BP as a quantitative trait or by using a 
binary definition of hypertension. All the significant GWAS signals are summarised 
in Table 10.2. The first GWAS was a case-control design from the Wellcome Trust 
Case Control Consortium (WTCCC), published in 2007 [8]. The study examined 7 
common complex diseases using 2000 cases each and 3000 shared controls. The 
study genotyped approximately 500,000 SNPs using the 500 K Affymetrix SNP 
chip and reported a total of 24 significant disease-SNP association signals 
(p < 5.0 × 10−7). Hypertension was the only trait without any significant association 
signal across the genome. Similarly, in the first GWAS that analysed BP as a quan-
titative trait in the Framingham Heart Study using almost 71,000 SNPs, 1400 related 
individuals revealed no significant results [9]. This study used six primary pheno-
types for BP derived from single and long-term averaged (LTA) SBP and DBP. These 
two studies represent the first attempts at applying the GWAS approach for hyper-
tension and BP, and the important lessons taken from these two attempts influenced 
the study designs of future studies that yielded strong signals. The key message was 
the complexity of hypertension and the need for having much larger sample size to 
discover association signals for genetic marker with low effect sizes.

The first two successful GWAS for BP were reported in 2009 by two large con-
sortia, the Cohorts for Heart and Aging Research in Genomic Epidemiology 
(CHARGE) study [10] and the Global Blood Pressure Genetic (Global BPgen) 
study [11]. Both studies analysed BP as a quantitative trait. The CHARGE consor-
tium included six population-based cohorts of European ancestry with a total sam-
ple size of 29,000 individuals, and the Global BPgen consisted of 17 cohorts with a 
total sample size of 34,000 at the discovery phase. The two consortia tested the 
association of SBP and DBP as the primary phenotypes, using a cross-sectional 
measurement with addition of a fixed value of 15/10  mmHg or 10/5  mmHg for 
individuals taking antihypertensive therapies in CHARGE and Global BPgen, 
respectively. In order to combine the results from different cohorts, genotype impu-
tation, using linkage disequilibrium patterns, was used to fill in missing markers 
across all the included cohorts, thus allowing merger of genotypes from different 
genotyping chips and platforms. The final association tests were performed in 
almost 2.5 million genotyped or imputed SNPs and discovered 13 loci indepen-
dently associated with SBP or DBP at a level of genome-wide significance 
(p < 5.0 × 10−8) [10, 11]. Each study reported eight loci with three loci overlapping 
in both studies. These two studies have been followed by further GWAS, and the 
results of these studies are summarised in Table 10.2. In addition, most of the loci 
reported in these two studies were novel except for some loci such as CYP17A1-
NT5C2 and MTHFR-NPPB, the former has been associated with a rare Mendelian 
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form of hypertension, and the latter lies in a region that has previously been associ-
ated with BP and hypertension [12].

In 2011, the International Consortium for Blood Pressure Genome-wide 
Association Studies (ICBP-GWAS) published the largest meta-analysis for systolic 
and diastolic blood pressure in >69,899 European individuals, followed by valida-
tion in 132,000 individuals [13]. The SNP association analyses were performed 
under an additive genetic model, which assumes that the effect conferred by an 
allele is increased by r-fold for heterozygotes and 2r-fold for homozygotes. The 
model was adjusted for sex, BMI, age, and age2 (to account for the middle-age pla-
teau of DBP). Also, a fixed value of 15/10 mmHg was added to individuals taking 
antihypertensive treatment to account for treatment effect. The study identified 29 
independent SNPs at 28 loci, of which 16 loci were novel and the remaining 13 loci 
were a replication of the previously reported loci in CHARGE or Global BPgen. 
Although the majority of SNPs identified by ICBP were intragenic, some loci were 
in gene desert regions or in genomic regions that have no gene encoding protein 
with a biological plausible effect on BP.

A second study was also carried out by the ICBP consortium using mean arterial 
pressure (MAP) and pulse pressure (PP) as primary phenotypes with the addition of 
further six studies in the consortia, increasing the total discovery sample size to 
more than 74,000 individuals [14]. The study identified four novel loci associated 
with PP and two loci associated with MAP, with one locus associated with both 
traits near FIGN. The important finding of this study was that three of the four loci 
associated with PP were found to have an opposite effect in SBP and DBP, unlike 
the majority of BP variants that exerts effect in the same direction on SBP and DBP, 
which suggests the presence of genetic pathways that may differentially influence 
SBP and DBP. The study has also showed that most of MAP variants were also 
associated with both SBP and DBP, suggesting a high correlation between these 
three BP traits.

Whilst most of the GWAS for BP have taken the quantitative route studying BP 
as a continuous variable, two studies analysed hypertension as a binary trait [15, 
16]. The first study identified a novel locus located in the promoter region of uro-
modulin gene (UMOD), which is exclusively expressed in the kidney and may influ-
ence BP by a novel sodium homeostatic pathway [15]. This study employed an 
alternative strategy to minimise misclassification bias and increase statistical power 
by selecting individuals from the extreme of the BP distribution; this strategy has 
allowed a sharper contrast between cases and controls. The second study used a 
classical case-control approach using the HYPERGENES Project and identified a 
new locus in the promoter region of the endothelial NO synthase gene, which is a 
critical mediator for cardiovascular homeostasis and BP control via vascular tone 
regulation [16].

GWAS for populations other than European descent were also performed with 
the aim of replicating the variants identified in European populations and also find-
ing new population-specific loci. The Asian Genetic Epidemiology Network Blood 
Pressure (AGEN-BP) was the largest non-European GWAS that included more than 
30,000 individuals in the discovery stage and 20,000 for replication [17]. AGEN-BP 
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identified six novel loci and confirmed seven loci previously reported in CHARGE 
and Global BPgen. The Continental Origins and Genetic Epidemiology Network 
(COGENT) study performed trans-ethnic meta-analysis GWAS with a discovery 
sample size of 29,000 individuals of African-American (AA) origin [18]. The repli-
cation sample included a mixed ethnic background of European and East Asian 
origins due to a lack of sufficient samples from AA. The COGENT study reported 
five loci associated with SBP or DBP, three of which were not previously reported 
to be associated with BP. A Chinese GWAS reported three novel loci and replicated 
14 previously reported BP loci [19]. The success of replicating the previously 
reported loci for European population in the other population suggests that the 
physiologic effects of these loci may be generalised across populations with diverse 
genetic backgrounds. Yet, identifying novel loci also suggests that populations with 
different genetic backgrounds may have a unique genetic factor as a result of differ-
ences in allele frequencies or population-specific factors that interact with genes to 
influence BP.

Long-term averaging (LTA) of repeated BP measures has been used within lon-
gitudinal cohorts rather than analysing single BP measurement to improve the phe-
notype precision [20]. This identified 39 association signals at 19 loci and two novel 
gene loci KCNK3 and CRIP3. The study has also estimated a 20% improvement in 
statistical power with using the LTA approach over the single-visit method. 
Modelling gene x age interactions to detect SNPs with age-specific genetic effects 
on BP which would otherwise have been missed from a standard main-effect model 
identified a variant near MIR126 [21]. The SNPs with the largest age-gene interac-
tion in three loci (CASZ1, EHBP1L1, and GOSR2) displayed opposite directions of 
effect by increasing BP in the young and decreasing BP in the old, by a difference 
in the effect size that can reach up to 1.58 mmHg [21]. An important message from 
this study is that pooling data from different studies with a wide range of age distri-
bution may obscure genetic effects that are age dependent.

Gene × environmental interaction was assessed in two other studies with smaller 
sample sizes; gene-alcohol interaction analysis in one study [22] identified a SNP 
rs10826334 near SLC16A9 whose effect was modulated by both the number of alco-
holic drinks and the ounces of alcohol consumed per week. SBP decreased by 
3.8  mmHg in those consuming 14 drinks/week compared to only 0.46  in non-
drinkers. Gene × smoking and gene x education interactions were explored in two 
other studies but these await replication [23, 24].

10.3	 �Genetic Mechanisms of BP Regulation 
and Dysregulation

We now have a greater understanding of the pathways of BP regulation that are 
influenced by genes (Fig. 10.1). Whilst most of these pathways have emerged from 
studies of rare monogenic syndromes, GWAS studies are slowly revealing novel 
pathways. An outline of the molecular pathways of these variants that affect blood 
pressure and lead to disease is summarised below and in Table 10.1.
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10.4	 �Glucocorticoid-Remediable Aldosteronism or Familial 
Hyperaldosteronism Type 1

This is a rare autosomal dominant disorder caused by a chimeric gene containing the 
5′ regulatory sequences of 11β-hydroxylase (CYP11B1, which confers ACTH respon-
siveness) fused with the distal coding sequences of aldosterone synthase (CYP11B2) 
leading to ACTH rather than angiotensin II or potassium as the main controller of 
aldosterone secretion [25]. The specific treatment for hypertension in these individu-
als is low-dose glucocorticoids to suppress ACTH secretion or amiloride, which 
directly blocks the epithelial sodium channel (ENaC), or spironolactone, which blocks 
binding of aldosterone to the mineralocorticoid receptor (MCR).

Fig. 10.1  Genetic landscape of monogenic and polygenic blood pressure/hypertension syn-
dromes, causal genes, and GWAS loci. Tracks from outside-in are sequential genes within BP loci 
(blue, genes in GWAS loci; red, monogenic genes; green, monogenic genes and with SNPs in 
blood pressure GWAS); monogenic blood pressure syndromes
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10.5	 �Apparent Mineralocorticoid Excess

The main defect in AME is absence or reduced activity of 11β-hydroxysteroid dehy-
drogenase (HSD11B2), resulting in hypertension in which cortisol acts as if it were 
a potent mineralocorticoid [26]. Normally, both cortisol and aldosterone have MCR 
agonist activity, and HSD11B2 is protective by metabolising cortisol to prevent its 
binding to the MCR. Acquired deficiency of this enzyme may result from its inhibi-
tion by glycyrrhizic acid (the active metabolite from licorice, certain brands of 
chewing tobacco, and carbenoxolone). Patients diagnosed with AME syndrome 
respond well to low-sodium diet and spironolactone, which blocks binding of both 
cortisol and aldosterone to the MCR.

10.6	 �Pseudohypoaldosteronism Type II (Gordon’s Syndrome)

This is a form of hypertension associated with hyperkalaemia, nonanion gap meta-
bolic acidosis, and increased salt reabsorption by the kidney. The WNK (with no 
lysine [K]) kinases play central roles in regulating mammalian BP by initiating a 
signalling pathway that controls the activity of critical ion cotransporters in the 
kidney NCC (Na+/Cl− ion cotransporter) and NKCC2 (Na+/K+/2Cl− cotransporter 
2). Gordon’s syndrome is caused by mutations in WNK1, WNK4, Kelch-like 3 
(KLHL3), and Cullin 3 (CUL3) genes. CUL3 and KLHL3 mutations putatively 
inhibit the ubiquitylation of WNK4 and probably other WNK isoforms, resulting in 
the overactivation of NCC/NKCC2 ion cotransporters and consequently increased 
salt retention and hypertension [27, 28]. Treatment consists of either a low-salt diet 
or thiazide diuretics, aimed at decreasing chloride intake and blocking Na+-Cl− 
cotransporter activity, respectively.

10.7	 �Liddle Syndrome

This is an autosomal dominant condition with a clinical picture of hypertension 
and aldosterone excess but with low aldosterone and renin levels. It is caused by 
mutations in the genes coding the β or γ subunits of ENaC (SCNN1B, SCNN1G), 
resulting in deletions of proline-rich regions which are essential for binding of 
Nedd4-2 (NEDD4L), a regulatory repressor that promotes channel degradation 
[29]. The inability of β and γ subunits to bind Nedd4 results in constitutive 
expression of sodium channels and prolongation of the half-life of ENaCs at the 
renal distal tubule apical cell surface, leading to increased rates of sodium reab-
sorption, volume expansion, and hypertension. Treatment of Liddle syndrome 
with amiloride or triamterene lowers BP and corrects the hypokalaemia and 
acidosis.
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10.8	 �Bartter’s Syndrome

This is a salt-losing condition characterised by hypokalaemic metabolic alkalosis 
and normal or low blood pressure with increased renin activity and high aldosterone 
levels. The defective mechanism is located in the thick ascending limb (TAL) of 
Henle’s loop and comprises loss of function of NKCC2 or a group of other proteins 
which lead to secondary loss of function of NKCC2-ROMK channel, chloride chan-
nel Kb (ClC-Kb), Bartin, and calcium-sensing receptor (CaSR) [30]. Clinical and 
laboratory findings among patients with Bartter’s syndrome resemble those of 
chronic abuse of loop diuretics. Patients with Bartter’s syndrome, especially those 
with antenatal manifestation, exhibit increased urine levels of prostaglandin E2 
(PGE2) and diminished susceptibility to the pressor effect of Ang II and norepi-
nephrine. Patients with Bartter’s syndrome are more prone to life-threatening com-
plications, especially during the postnatal period, such as volume depletion, 
diarrhoea, spasm, fever, and dangerous hypokalaemia. Chronic therapy of underly-
ing abnormalities such as increased prostaglandin synthesis and RAAS activity, 
which aggravate electrolyte and acid-base disturbances, includes potassium supple-
mentation and the use of cyclooxygenase inhibitors, angiotensin-converting enzyme 
(ACE) inhibitors, and potassium-sparing diuretics.

10.9	 �Gitelman’s Syndrome

In Gitelman’s syndrome, the defective mechanism is located in the distal convoluted 
tubule and comprises loss of function of the sodium chloride cotransporter (NCC) 
[31]. Clinical and laboratory findings among patients with Gitelman’s syndrome 
resemble those of chronic abuse of thiazide diuretics. The prevalence of Gitelman’s 
syndrome is estimated to be 1:40,000 in the general population, and the prevalence 
of heterozygotes in the Caucasian population is approximately 1%. Chronic treat-
ment of patients with Gitelman’s syndrome comprises oral potassium and magne-
sium supplementation with adequate salt and water consumption in order to maintain 
effective extracellular volume. Indomethacin, amiloride, and eplerenone have been 
used to treat hypokalaemia.

10.10	 �Primary Aldosteronism

Individuals with primary aldosteronism constitutively produce aldosterone from the 
adrenal gland, resulting in hypertension with variable hypokalaemia and a sup-
pressed circulating renin. It is estimated that ≤40% of aldosterone-producing ade-
nomas (APAs) harbour a gain-of-function somatic mutation in a K+ channel, 
KCNJ5, which results in membrane depolarization and enhanced aldosterone pro-
duction. Mutations in three other genes have been discovered in a further 7% of 
APAs-ATP1A1, encoding the α1 subunit of Na+/K+-ATPase itself; ATP2B3, encod-
ing a plasma membrane Ca2+-ATPase 3 homologous to the sarcoplasmic 
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endoplasmic reticulum Ca2+-ATPases (SERCA); and CACNA1D, encoding an 
L-type Ca2+ channel, CaV1.3 [32]. A substantial proportion of APAs resembling 
adrenal zona glomerulosa cells harbour gain-of-function mutations in genes impor-
tant for the regulation of Na+ and Ca2+, ATP1A1, and CACNA1D, respectively, 
whereas KCNJ5 mutations are common in APAs resembling cortisol-secreting cells 
of the adrenal zona fasciculate [33]. The distinction between APA and bilateral 
hyperplasia is clinically important because removal of the affected adrenal gland in 
APAs cures or ameliorates hypertension in the majority of patients, whereas bilat-
eral adrenal hyperplasia requires lifelong treatment with an aldosterone antagonist 
and bilateral adrenalectomy not indicated.

10.11	 �Phaeochromocytomas and Paragangliomas

Phaeochromocytomas and paragangliomas are rare neuroendocrine tumours of the 
adrenal glands and the sympathetic and parasympathetic paraganglia. Autosomal 
dominantly inherited phaeochromocytomas are caused by a variety of RET proto-
oncogene mutations. Other pheochromocytoma susceptibility genes include the 
tumour suppressor gene VHL observed in families with von Hippel-Lindau syn-
drome and the gene that encodes succinate dehydrogenase subunits A, B, C, and D 
(SDHA, SDHB, SDHC, and SDHD, respectively) with heterozygous germline muta-
tions of SDHB, SDHC, and SDHD causing the well-characterised familial 
pheochromocytoma-paraganglioma syndromes known, respectively, as paragangli-
oma 4, paraganglioma 3, and paraganglioma 1 [34]. Newer predisposing genes for 
pheochromocytoma/paraganglioma include KIF1Bbeta, PHD2, and SDHAF2 [34].

10.12	 �Uromodulin

A GWAS of BP extremes showed the minor G allele of a UMOD promoter SNP, 
rs13333226, and was associated with a lower risk of hypertension and reduced uri-
nary UMOD excretion [15]. Uromodulin gene expression is exclusively localised to 
the thick ascending limb of the loop of Henle (TAL) in the kidney where 25% of the 
filtered sodium is reabsorbed. UMOD knockout mice demonstrated an increased 
localization of the salt-retaining NKCC2 (sodium-potassium-chloride cotransporter 
2) in subapical vesicles of TAL cells with reduced phosphorylation, both resulting in 
reduced cotransporter activity [35]. This results in greater sodium excretion as com-
pared to wild-type mice, translating to 20 mmHg lower BP in the knockout mice at 
baseline, as measured by radiotelemetry [36]. Notably, this difference in BP was 
exacerbated with salt loading, where the knockout mice were resistant to its hyper-
tensive effects [36]. Conversely, UMOD overexpression caused a dose-dependent 
increase in UMOD expression and excretion, associated with an increase in BP [37]. 
The main sodium transporter in TAL is NKCC2 which is blocked by the commonly 
used loop diuretic furosemide. Trudu et al. [37] showed furosemide treatment signifi-
cantly enhanced natriuresis and reduced BP levels both in the transgenic mice and in 
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the hypertensive individuals homozygous for the UMOD increasing allele. Thus 
GWAS has directed focus on a novel pathway of BP regulation involving altered 
expression of uromodulin which appears to influence sodium homeostasis and opens 
an avenue for translational studies to discover or repurpose drugs for treatment of 
hypertension.

10.13	 �Natriuretic Peptide

Common SNPs in the chromosomal region containing NPPA and NPPB, the genes 
encoding the ANP and BNP pro-peptides, are associated with circulating levels of 
the natriuretic peptides and also associated with BP [11, 12]. The GWAS SNP 
rs5068 lies in the 3′-UTR of the NPPA gene which encodes the pro-peptide of ANP, 
NT-proANP.  Healthy volunteers, which were homozygous for the risk allele of 
rs5068, showed lower NT-proANP expression possibly mediated through a 
microRNA miR-425 and provide a putative mechanism to explain how the risk 
allele reduces ANP level and consequently increases BP [38]. The genetic effect of 
rs5068 on circulating NT-proANP levels is comparable with the environmental 
change induced by switching from an extremely low-salt diet (230 mg/d) to a diet 
with salt content typical of a Western diet (4600 mg/d) [38].

10.14	 �Missing Heritability

Despite the identification of numerous SNPs associated with hypertension and 
BP traits, the proportion of phenotypic variance that is explained by all of these 
loci together is less than 2.5%. This phenomenon has been described as the prob-
lem of “missing heritability” and is not restricted to BP traits [39]. For instance, 
a classic complex trait such as height which has a very large heritability estimate 
from family studies (about 80%) has less than 10% of the phenotypic variance 
explained from the SNPs identified using very large sample sizes (>180,000 indi-
viduals). A different way of estimating heritability using SNP data of unrelated 
individuals is the GCTA approach introduced by Yang et al. (h2

SNP) [40]. This is 
based on estimating the heritability from unrelated individuals using common 
SNPs with the assumption that heritability estimates in unrelated individuals are 
only attributable to the common SNPs, whilst the estimation in related individu-
als is attributed to the entire genome. Applying this method to systolic blood 
pressure has shown that h2

SNP was about 24%, which is approximately 50% of the 
heritability estimates from other twin studies, and about 80% of the same study 
heritability estimate (h2 = 30%) [41]. Furthermore, the number of independent 
variants with similar effect size to those reported in the ICBP study was esti-
mated to be 116 (95% CI, 57–174), which can collectively explain around 2.2% 
of the phenotypic variance for BP phenotypes, compared with only 0.9% 
explained by the 29 SNPs identified by ICBP [13]. These findings indicate that a 
large proportion of the heritability of BP is “hidden” rather than “missing” 
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because of large number of common variants, each of which has too small an 
effect to be detected at the stringent genome-wide significance level using cur-
rent sample sizes.

10.15	 �Emerging Insights from Other Omics: Metabolomics

Other omic technologies such as metabolomics are potentially powerful tools to iden-
tify molecular pathways. They can capture both intrinsic and extrinsic factors, and 
their dynamic nature makes them ideal for measuring physiological response to exter-
nal stimuli or the development of pathogenic processes. Metabolomics is the system-
atic study of metabolites, which are small molecules, generated by the process of 
metabolism, and has been important in elucidating the pathways underlying metabolic 
disorders. Small molecule metabolites have an important role in biological systems 
and can help define candidate systems in the pathogenesis of hypertension. 
Furthermore, metabolomic markers are closer to the phenotype of interest in contrast 
to the genotype which is static and unchanged throughout life. Metabolomic profiling 
of over 3000 adult twins identified a putative novel pathway for BP regulation involv-
ing a dicarboxylic acid (hexadecanedioate) with a causal role supported by in vivo 
studies in rats [42]. The role of hexadecanedioate in a vascular mechanism for hyper-
tension is supported by evidence from a study of pulmonary hypertension, indicating 
a disruption of β-oxidation and an increase of ω-oxidation in this condition and point-
ing to a putative role in elevating pressure in both the systemic and the pulmonary 
circulations [43]. The strongest genetic association seen with hexadecanedioate maps 
to SLCO1B1, an association previously reported in a metabolome-wide genetic study 
in Caucasians [44]. Targeted metabolomic profiling in the European Prospective 
Investigation Into Cancer and Nutrition (EPIC)-Potsdam study showed higher con-
centrations of serine and glycine, and acyl-alkyl-phosphatidylcholines C42:4 and 
C44:3 tended to be associated with higher and diacyl-phosphatidylcholines C38:4 and 
C38:3 with lower predicted 10-year hypertension-free survival [45]. Other metabolite 
associations with incident hypertension and blood pressure come from two US studies 
which found 4-hydroxyhippurate, a metabolic sex steroid pattern, and two diacylglyc-
erols 16:0/22:5 and 16:0/22:6 to be associated with blood pressure and incident hyper-
tension [46, 47]. Finally, Menni et al. showed 12 metabolites to be strongly associated 
with pulse wave velocity with uridine and phenylacetylglutamine, and serine appears 
strongly correlated with PWV in women [48].

�Conclusions
Genomics has provided us with a deep understanding of the genetic architecture 
of hypertension and blood pressure regulation. The studies of monogenic disor-
ders have resulted in a catalogue of critical genes involved in blood pressure 
regulation, whilst genome-wide association studies are just beginning to yield 
insights into common variants that affect blood pressure. The emerging encour-
aging results from metabolomic profiling in hypertension indicate that these sig-
nals will be more tractable, and integrating genomics and metabolomics may 
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accelerate functional studies. The full promise of genetic studies will be realised 
when these results translate into clinical benefit either in terms of risk prediction, 
treatment stratification, or new drug discovery.
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11Monogenic Forms of Hypertension

Hakan R. Toka

11.1	 �Introduction

Hypertension is a significant risk factor for cardiovascular morbidity, affecting more 
than 25% of the adult population, and a worldwide leading cause for cardiovascular 
mortality [1–3]. Blood pressure goals and treatment strategies remain debated 
despite numerous clinical hypertension trials and development of more efficient 
drugs during the last few decades. Ethnic background and comorbidities play a role 
in achieving adequate blood pressure control.

Since the human genome project [4], advances in nucleotide sequencing and 
computing have led to identification of allelic gene variation among various popula-
tions, predisposing to disease susceptibility. One of the first to notice inheritance of 
hypertension was the German physician Wilhelm Weitz (1881–1969), who reported 
that family members of hypertensive individuals were more likely to have elevated 
blood pressure themselves [5]. The British physician Sir George Pickering reported 
that blood pressure variation in the general population follows a Gaussian distribu-
tion and that the etiology of hypertension is multifactorial, caused by multiple genes 
and environmental factors [6]. The role of genetic factors on blood pressure was 
demonstrated by extensive twin studies, which made remarkable contributions. 
Monozygotic twins have high concordance of blood pressure levels ranging from 
~48 to ~60% for systolic and ~34–67% for diastolic blood pressure [7]. In addition, 
the identification of single genes with large effects on blood pressure variation 
helped tremendously to define primary physiologic mechanisms, revealing previ-
ously unknown disease mechanisms [8, 9]. Initially large families with noticeable 
blood pressure variation were studied with microsatellite marker and linkage analy-
sis. In some instances, candidate gene analysis was utilized in conditions that had 
been previously studied in great detail. Next-generation sequencing and advanced 
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computational tools have made it possible to identify more disease genes in small 
pedigrees and individuals with extremes of blood pressure variation [10, 11]. The 
relevance of recognizing rare diseases caused by single-gene defects has been sub-
stantiated by studies in the general population; rare allelic variation in Mendelian 
disease genes has been shown to affect blood pressure variation in the Framingham 
population, supporting that the same genes contribute to common phenotypes [12].

Monogenic hypertension and syndromes of renal salt wasting associated with 
lower blood pressure are reviewed here, comparing distinct molecular pathways of 
blood pressure regulation.

11.2	 �Monogenic Hypertension

11.2.1	 �Increased Sodium Reabsorption in the Distal Nephron

11.2.1.1	 �Glucocorticoid-Remediable Aldosteronism (Familial 
Hyperaldosteronism Type 1; OMIM #103900)

Glucocorticoid-remediable aldosteronism (GRA) is an autosomal disorder with vari-
able increase in aldosterone secretion in response to ACTH. Affected individuals are 
often suspected of having primary hyperaldosteronism; however computerized 
tomography scanning of the adrenal glands will be negative for adrenal adenoma. 
GRA features salt-sensitive hypertension, associated with low renin levels, mild 
hypokalemia, and metabolic alkalosis (Table  11.1). A distinguishing biochemical 
feature is the presence of abnormal urinary steroid metabolites (18-hydroxycortisol 
and 18-oxocortisol), which helped recognizing the etiology of this condition. Linkage 
analysis of a large kindred with GRA localized the responsible gene to chromosome 
8q21. At this locus resides aldosterone synthase (encoded by the gene CYP11B2 – 
cytochrome P450, family 11, subfamily B, polypeptide 2), which produces aldoste-
rone in the zona glomerulosa via regulation by angiotensin 2. The neighboring gene 
at this locus, CYP11B1 (11β-hydroxylase), has a highly similar nucleotide sequence 
(~95%) and is regulated by ACTH, participating in the final steps of glucocorticoid 
production. An unequal crossing-over at this chromosomal location, consisting of the 
regulatory region of the 11β-hydroxylase gene and the main structural portion of 
aldosterone synthase gene (Fig.  11.1), leads to the formation of a chimeric gene 
CYP11B1/CYP11B2. The protein of this chimera performs all of the same actions of 
the aldosterone and however is regulated by ACTH. Glucocorticoid steroid treatment 
ameliorates hypertension via suppression of the chimeric gene in the adrenal zona 
fasciculata, giving this condition its name [13, 14].

11.2.1.2	 �Apparent Mineralocorticoid Excess Syndrome (AME; 
OMIM #218030)

The clinic presentation of apparent mineralocorticoid excess (AME) can be simi-
lar to GRA (Table 11.1); however, contrary to GRA, the inheritance is autosomal 
recessive and the urine analysis is negative for abnormal steroid metabolites. 
Instead, urinary free cortisol-to-cortisone ratio is elevated (ratio  >0.5) in the 
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setting of normal serum cortisol levels. Severe nephrocalcinosis and bilateral 
renal cysts have been reported in some cases; the etiology is not entirely clear but 
may be related in part due to chronic, long-standing hypokalemia. The elevated 
urinary cortisol-to-cortisone ratio was useful in identifying the gene defect, 
because cortisol can bind and activate the mineralocorticoid receptor (MR). This 
activation is inhibited by the 11β-hydroxysteroid dehydrogenase enzyme (11β-
HSD), which rapidly oxidizes cortisol to the inactive metabolite cortisone. This 
mechanism is important, because at baseline circulating concentrations of cortisol 
are several orders of magnitude higher than aldosterone. Candidate gene analysis 
in individuals with AME identified bi-allelic loss-of-function mutations in the 
kidney isoform of 11β-HSD, rendering 11β-HSD2 incapable of converting corti-
sol to cortisone [15]. Low-sodium diet, MR antagonists, and ENaC blockers are 
used to treat patients with AME. Individuals ingesting large amounts of licorice or 
other glycyrrhetinic acid-containing substances (e.g., certain liquors, chewing 
tobaccos, etc.) can develop the features of AME due to inhibition of 11β-HSD2 by 
glycyrrhetinic acid [16].

Aldo synthase

11b-hydroxylase

11b-hydroxylase

Aldo synthaseAldo synthase

zona glomerulosa zona fasciculata

Ang II ACTH

ACTH ACTHAng II

zona glomerulosa zona fasciculata

a. Normal adrenal gland

b. Glucorticoid-remediable aldosteronism

Chr. 8q21

Unequal crossing over

Fig. 11.1  In glucocorticoid-remediable aldosteronism (GRA), an unequal crossing-over of two 
neighboring genes, CYP11B1 (11β-hydroxylase) and CYP11B2 (aldosterone synthase), leads to a 
gene fusion. The resulting chimeric gene product consists of the regulatory 5′ region of the 
11β-hydroxylase and the structural portion of aldosterone synthase, performing all of the same 
functions as aldosterone, however being regulated by ACTH (adrenocorticotropic hormone) 
instead of angiotensin 2
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11.2.1.3	 �Liddle Syndrome (OMIM #218030)
Grant Liddle was the first to describe this autosomal dominant condition, in which 
affected individuals feature early, and frequently severe, hypertension associated 
with metabolic alkalosis and hypokalemia [17]. Both renin and aldosterone levels 
are suppressed. Hypertension is not responsive to spironolactone treatment, how-
ever improves with ENaC blockers [18]. Candidate gene analysis identified gain-of-
function mutations in two out of its three ENaC subunits as causes for this syndrome 
(Fig. 11.2). Missense mutations or deletions in the cytoplasmic tails of the β- or the 
γ-subunit lead to impaired deactivation of ENaC from the tubular cell surface in the 
renal collecting duct [19, 20]. The mutations are reported in a proline-rich PY motif 
(also called PPPXY), which interact with tryptophan-rich WW-domains of proteins 
that are known for ubiquitination and degradation of cell surface proteins. The cyto-
plasmic tails of ENaC are also believed to play an important role for endocytosis via 
clathrin-coated pits [21]. In Liddle syndrome, internalization of the ENaC channels 
from the cell surface is impaired, leading to constitutively active sodium reabsorp-
tion (Fig. 11.2), which explains the extraordinary efficacy of ENaC blockers in the 
treatment of this syndrome (Table 11.1). Treatment with amiloride is preferred over 
triamterene due to a longer half-life and decreased risk of crystallizing in acidic 
urine, which can lead to irreversible renal tubular injury in rare cases [22].

Cell surface a

a a

Clathrin-coated pits
PPPXY

WW domain

Cell surface

Cell surface

Cell surface

Clathrin

PPPXY

a. ENaC regulation b. Liddle syndrome 

Ubiquitination Endocytosis

Na+

WW domain

b

b b

b b

g

g g

g g

a a ab b bg g g

Fig. 11.2  (a) The epithelial sodium channel ENaC is a membrane protein consisting of three 
subunits (α, β, and γ) forming a heteromeric channel, whose surface expression (activity) is regu-
lated by ubiquitination and clathrin-dependent endocytosis. A peptide sequence—PPPXY—in the 
cytoplasmic tails of the ENaC subunits interacts with tryptophan-rich WW-domains of ubiquitin-
protein ligase such as NEDD4-2 (not shown), degrading cell surface proteins. (b) Missense muta-
tions or deletions in PPPXY of either the β- or the γ-subunit lead to impaired deactivation of ENaC 
from the cell surface, leading to increased sodium reabsorption by a constitutively active ENaC
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11.2.1.4	 �Activating Mutation in the Mineralocorticoid Receptor 
(Autosomal Dominant Hypertension with Severe 
Exacerbation in Pregnancy; OMIM #605115)

Candidate gene screening in individuals with features resembling Liddle’s syn-
drome, who tested negative for ENaC mutations, led to the identification of a gain-
of-function mutation in the MR gene NR3C2 [23]. The heterozygous mutation in 
one affected family was found at codon 810 of NR3C2, resulting in a leucine (L) 
amino acid substitution for serine (S). The mode of transmission is autosomal domi-
nant (Table  11.1). Affected females exhibited severe gestational hypertension, 
which suggested that other steroids may act as agonists of mutated 
MR-S810L. Structural protein analysis revealed that the mutation allowed for acti-
vation by steroids lacking the 21-hydroxyl group such as progesterone. This modi-
fication also explains why in in vitro studies spironolactone acts as an agonist of 
mutated MR-S810L [23].

11.2.1.5	 �Aldosterone-Producing Adrenal Adenomas (Familial 
Hyperaldosteronism Type III; OMIM #613677)

Aldosterone-producing adrenal adenomas (APAs) are a frequent cause for second-
ary hypertension due to renin-independent excess production of aldosterone in the 
adrenal gland [24]. Individuals with APA have typically negative family history 
(Table 11.1). Patients are identified due to hypokalemia and feature a characteristic 
unilateral adrenal mass on computerized tomography. Adrenal vein sampling dem-
onstrates predominant aldosterone secretion from the gland harboring the tumor and 
is crucial for the diagnosis, allowing to distinguish APA from idiopathic hyperaldo-
steronism (bilateral adrenal hyperplasia).

A rare monogenic form of primary hyperaldosteronism with autosomal-
dominant mode of inheritance was identified in one family with bilateral familial 
adrenal adenomas associated with severe hypertension [25]. Mutational analysis 
revealed a novel germline mutation (T158A) within a highly conserved residue of 
KCNJ5, encoding for the inwardly rectifying potassium channel Kir3.4. Structural 
proteomics and in  vitro experiments suggest that KCNJ5 mutations can lead to 
chronic depolarization of zona glomerulosa cells in the adrenal glands and thereby 
increase cell proliferation and aldosterone production [26, 27]. Independently per-
formed exome sequencing studies from APA tissues revealed that ~30–40% harbor 
somatic mutations at highly conserved residues on KCNJ5 (either G151R or 
L168R) [28, 29].

Since the discovery of KCNJ5 as the main mechanism for the etiology of APA, 
somatic mutations in other, less frequently affected genes have been recognized. 
These include somatic gain-of-function in CACNA1D, encoding a voltage-gated 
calcium channel [30]; loss-of-function in ATP1A1, encoding the Na/K-ATPase 
α1-subunit [31]; and loss-of-function in ATP2B3, encoding a calcium ATPase [32]. 
Primary hyperaldosteronism due to somatic CACNA1D mutations affect ~12% of 
individuals, who can feature seizures and neurological abnormalities (OMIM 
#615474). Interestingly, there is a gender discrepancy in the frequency of APA gene 
mutations; at least twice as many more females than males carry somatic mutations 
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in KCNJ5 (29), whereas mostly males will have somatic mutations in ATP1A1 and 
ATP2B3 [32]. The frequency of ATP1A1 and ATP2B3 as cause for APA has been 
estimated ~5% and 1–2%, respectively [32].

11.2.1.6	 �Congenital Adrenal Hyperplasia (CAH; OMIM #202110, 
#202010)

Congenital adrenal hyperplasia (CAH) syndromes are autosomal recessive inherited 
conditions, resulting from mutations in genes that facilitate biochemical steroidogen-
esis in the adrenal glands. In this condition, the adrenal glands produce deficient 
amounts of cortisol while secreting either excessive or deficient amounts of sex hor-
mones and mineralocorticoid steroids during prenatal development [33]. The CAH 
syndromes are classified into common, so-called salt-wasting or simple-virilizing 
CAH, mostly due to 21α-hydroxylase deficiency, and the rarer, non-classical forms, 
which cause ~5–10% of CAH cases. Only nonclassical CAH is associated with 
hypertension, which is caused by increased production of mineralocorticoid precur-
sors (11-deoxy corticosterone and corticosterone). The cause is loss-of-function 
mutations in CYP11B1 (enzyme 11β-hydroxylase, OMIM #202010) or CYP17A1 
(enzyme 17α-hydroxylase, OMIM #202110) [33]. While ACTH and mineralocorti-
coids are increased, both cortisol and sex steroids are decreased. Hypertension can 
develop in childhood due to volume expansion and is associated with hypokalemia 
and metabolic alkalosis (Table  11.1). Treatment with glucocorticoids suppresses 
ACTH, thereby decreasing mineralocorticoid precursor production and alleviating 
hypertension [34]. Other features in CAH include female virilization (CYP11B1 
mutations) and ambiguous genitalia in genetic males or ovarian dysfunction at 
puberty in genetic females (CYP17A1 mutations).

11.2.1.7	 �Pseudohypoaldosteronism Type II (Hypertension 
Hyperkalemia Syndrome; OMIM #614491, #614492, 
#614495, #614496)

Pseudohypoaldosteronism type II (PHA II) is a unique form of rare hypertension 
syndromes associated with hyperkalemia and metabolic acidosis [35] (Table 11.1). 
Hypercalciuria has been reported in some cases, making this syndrome a near mir-
ror image of Gitelman syndrome [36]. Renin is typically suppressed whereas aldo-
sterone levels can be elevated due to hyperkalemia. The hypertension is 
chloride-dependent because the exchange of bicarbonate or citrate infusions 
instead of chloride can ameliorate blood pressure elevation [37]. To date, four 
genes have been identified causing this heterogeneous syndrome, including intronic 
deletions in the With-No-Lysine(K) kinase WNK1 (PHA type IIB) and missense 
mutations in WNK4 (PHA type IIC). Both were discovered by linkage analysis of 
large pedigrees with autosomal dominant inheritance of PHA II [38]. The WNK 
mutation leads to increased sodium reabsorption via activation of the sodium-
chloride cotransporter (NCC) in the distal convoluted tubule (DCT), regardless of 
volume status; simultaneously renal tubular potassium excretion is decreased in 
PHA II (via inhibition of ROMK, the apical renal outer medullary potassium chan-
nel) despite hyperkalemia [39].
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Since the discovery of the WNKs, various functions in the kidney have been 
identified. WNK4 is regulated by intracellular chloride concentration [Cl]i. In 
conditions of high [Cl]i, WNK4 seems to act as an inhibitor of NCC via heterodi-
mer formation with other WNKs. In contrast, when [Cl]i is low, WNK4 can acti-
vate NCC. This modulation of WNK4 by [Cl]i has been shown to account for the 
potassium-sensing properties of the distal convoluted tubule [40]. Besides NCC 
and ROMK regulation in the distal convoluted tubule, a WNK kinase cascade 
including the SGK1 (serum/glucocorticoid regulated kinase 1)/Nedd4-2 complex 
is believed to regulate ENaC in the cortical collecting duct [41]. Interestingly, the 
modulation of all channels and transporter by WNKs occurs via the phosphoryla-
tion of other serine-threonine kinases such as the SPAK (Ste20-related proline-
alanine-rich kinase)/OSR1 (oxidative stress-responsive kinase) complex, which 
regulates NCC [42]. In addition, extrarenal WNK kinases have been identified in 
numerous other tissues, making them a potential drug target not only for blood 
pressure regulation and potassium handling but also for cystic fibrosis (WNK4) 
and central nervous system disorders (WNK2 and WNK3), including autism, epi-
lepsy, and stroke [43–45].

Other gene defects causing PHA II have been identified by exome sequencing: 
KLHL3 (Kelch-like 3, PHA type IID) and CUL3 (Cullin3, PHA type IIE) genes 
form a RING-type E3 ligase ubiquitination system, which regulates the abun-
dance of WNKs in the distal nephron [46]. Impaired ubiquitination of NCC from 
the luminal cell surface is the speculated mechanism for PHA type IID and IIE 
[42, 46].

All PHA II genes lead to increased stability and/or function of NCC at the cell 
surface, resulting in hyperkalemic hypertension; however the PHA II phenotype can 
vary greatly. Patients affected by de novo CUL3 mutations are more severely 
affected as they develop PHA II at younger age and present with more severe hyper-
kalemia and acidosis. In contrast, patients with WNK1 mutations feature typically 
mild hyperkalemia with hypertension occurring at later age. Nevertheless, thiazide 
diuretics are a very effective treatment for all forms of PHA II, regardless of gene 
defect and severity of presenting features [36].

11.2.2	 �Sympathetic Nervous System Hyperactivity: Hereditary 
Familial Pheochromocytoma (OMIM #171300)

Pheochromocytomas (PCCs) are rare catecholamine-producing tumors, associated 
with variable symptoms depending on type and secretory pattern of produced 
catecholamine(s). Hypertension in PCC is elicited by increased sympathetic activity 
and can present as labile or paroxysmal, frequently complicated by orthostatic 
hypotension. Plasma renin activity and aldosterone levels are both elevated due to 
decreased intravascular volume and increased renin secretion; hypokalemia can be 
seen [47]. Over ~90% of PCCs occur in the adrenal gland, whereas ~10% can be 
found in extra-adrenal tissue (paragangliomas). PCC can be malignant and metasta-
size (~10%) and also occur bilaterally (~10%).
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Overall, known genetic mutations may account for the pathogenesis of ~60% of 
PCCs and paragangliomas [48]. PCCs can present as part of hereditary syndromes, 
which include the phakomatosis von Hippel-Lindau syndrome (OMIM #193300), 
multiple endocrine neoplasia (MEN) types IIA (#171400) and IIB (#162300), and 
neurofibromatosis I (#162200). The most frequent cause of inherited PCC is gain-
of-function mutation in the RET proto-oncogene causing MEN type II [49], which 
can feature medullary thyroid cancer (types IIA and IIB), hyperparathyroidism 
(type IIA), and mucosal neuromas (type IIB). Mutations in genes encoding for the 
subunits of the succinate dehydrogenase (SDH) protein complex are frequently the 
cause for paragangliomas [50]. A recent exome sequencing study from non-
syndromic PCC tissues identified novel, amino acid-changing somatic mutations in 
genes associated with apoptosis-related pathways. Particularly, mutations in the 
“cancer” gene KMT2D (lysine (K)-specific methyltransferase 2D) were discovered 
more frequently (~14%) [51].

The treatment of choice for PCCs is surgical resection of the affected adrenal 
gland(s) or the catecholamine-producing paraganglioma, respectively. Irreversible 
alpha-blockade prior to surgery and use of beta-blockers is mandatory to prevent 
life-threatening hypertensive complications [47].

11.2.3	 �Pathway Affecting Vascular Resistance: Hypertension 
Brachydactyly Syndrome (HBS; OMIM #112410)

A hypertension syndrome associated with brachydactyly was first described in 
1973 in a large Turkish kindred [52]. The condition has autosomal dominant pattern 
of inheritance and has 100% penetrance of all features. Affected individuals are of 
short stature, develop hypertension in early childhood, and have decreased life 
expectancy when untreated [53]. Hand X-rays show shortened metacarpal bones 
(brachydactyly type E), cone-shaped epiphysis, and short end phalanx of the thumb 
(brachydactyly type B) [54]. Blood pressure in HBS is not salt-sensitive; the renin-
angiotensin-aldosterone and catecholamine axis function normally. Left ventricular 
cardiac hypertrophy or retinopathy despite severe hypertension are absent [55, 56]. 
Affected individuals require two or more antihypertensive drugs to lower blood 
pressure [57]. Baroreceptor reflex response is abnormal, resulting in an excessive 
increase of blood pressure with sympathetic stimuli [58]. In addition, neurovascular 
anomalies at the left ventrolateral medulla oblongata can be found on MRI in all 
affected individuals [59]. The significance of this finding is unclear.

The gene locus was mapped to chromosome 12p [53], containing a complex 
chromosomal rearrangement of unclear significance [54, 60]. The disease gene for 
this condition was discovered by utilizing genome sequencing in affected individu-
als from six unrelated families; all displayed novel gain-of-function mutations in 
highly conserved residues in exon 4 of the phosphodiesterase 3A gene PDE3A [61]. 
In vitro analyses of mesenchymal stem cell-derived vascular smooth muscle cells 
(VSMCs) and chondrocytes obtained from affected individuals suggested increased 
protein kinase A-mediated PDE3A phosphorylation as disease mechanism. The 

11  Monogenic Forms of Hypertension

http://en.wikipedia.org/wiki/Medullary_thyroid_cancer


166

mutations lead to increase in PDE3A’s cAMP-hydrolytic activity and thereby 
enhance cell proliferation. The level of phosphorylated vasodilator-stimulated phos-
phoprotein is diminished in VSMCs, suggesting altered vascular smooth muscle 
function. Cell-based studies demonstrated that available PDE3A inhibitors suppress 
the mutant isoforms [62]. Although the exact molecular mechanisms for this syn-
drome are still being investigated, VSMC-expressed PDE3A is an interesting thera-
peutic target for the treatment of hypertension.

11.2.4	 �Pathway with Unclear Mechanism: Mitochondrial 
Hypomagnesemia, Hypertension, 
and Hypercholesterolemia Syndrome (OMIM #500005)

A hypercholesterolemia, hypertension, and hypomagnesemia syndrome was 
described in a family with 142 members [63]. Sequencing of the mitochondrial 
genome identified a homoplasmic mutation substituting cytidine for uridine imme-
diately 5-prime to the mitochondrial tRNA anticodon for isoleucine (Ile) in all 
members of the maternal lineage, indicating mitochondrial inheritance. In silico 
analysis showed that uridine at this position is nearly invariant among tRNAs sta-
bilizing the tRNA anticodon loop. Hypertension, hypomagnesemia, and hypercho-
lesterolemia each showed ~50% penetrance among adults on the maternal lineage. 
The prevalence of hypertension showed marked age dependence, increasing from 
~5% in subjects under age of 30 years to ~95% in those over the age of 50 years. 
In vivo NMR (nuclear magnetic resonance) spectroscopy of striated muscle in one 
affected individual showed decrease in ATP production [63]. Given the loss of 
mitochondrial function with aging due to increased defects in the mitochondrial 
genome, increased blood pressure could be explained by loss of ATP production, 
which has been associated with hypertension in the animal model (63). The 
increased presence of reactive oxygen species (ROS) secondary to mitochondrial 
dysfunction is also a possible mechanism for hypertension [64]. In addition, epide-
miological studies have shown that children of hypertensive mothers are more 
likely to develop hypertension, suggesting that the mitochondrial genome could be 
associated with inheriting hypertension [65]. The exact mechanism(s) of this mito-
chondrial syndrome remain unknown.

11.3	 �Genetic Syndromes of Decreased Blood Pressure

11.3.1	 �Renal Sodium Wasting in the Thick Ascending Limb: 
Bartter Syndrome (OMIM #601678, #241200, #607364, 
#602522)

Bartter syndrome refers to a heterogeneous group of disorders that are unified by 
autosomal recessive transmission of pronounced renal salt wasting, hypokalemic 
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metabolic alkalosis, and hypercalciuria (Table 11.2). The mechanism is a defect in 
the reabsorption of sodium chloride in the thick ascending limb (TAL), where ~30% 
of filtered salt is normally reabsorbed via coordinated operation of apical and baso-
lateral transporters and channels that generate a lumen-positive electrical potential 
across the epithelial layer (Fig. 11.3). Reduced function of TAL transporters or chan-
nels, secondary either to pharmacological inhibition (loop diuretics) or genetic muta-
tions (i.e. Bartter syndrome), is associated with renal salt wasting [65].

Neonatal (also known as antenatal) Bartter syndrome is the most common form 
and is associated with polyhydramnios during pregnancy. Newborn infants feature 
polyuria and polydipsia, requiring parenteral fluid administration for severe volume 
contraction. Frequently hypercalciuria is present and nephrocalcinosis will develop, 
leading to renal failure. Neonatal Bartter syndrome is caused by homozygous or 
compound heterozygous loss-of-function mutations in the sodium-potassium-
2chloride cotransporter (NKCC2) gene (Bartter type 1) or in the renal outer medul-
lary potassium channel (ROMK) gene (Bartter type 2) [66, 67]. In comparison, type 
3 or “classic” Bartter is caused by loss-of-function mutations in the voltage-gated 
chloride channel Kb (CLCNKB) gene and is usually diagnosed at school age or 
later [68]. In type 3, increased urinary calcium excretion is significantly milder and 
nephrocalcinosis is not present; however kidney stones can develop later in life. 
Renal function is typically normal; however, progression to end-stage renal disease 
has been described in some cases [69]. Bartter type 4 is caused by mutations in bart-
tin (BSND), an accessory β-subunit for CLCNKB in the TAL [70]. Because barttin 
is also expressed in stria vascularis cells of the inner ear, where it serves as β-subunit 
of a highly similar chloride channel (CLCNKA), affected individuals typically fea-
ture sensorineural hearing loss.

Gain-of-function mutations in the calcium-sensing receptor gene (CASR) can 
feature renal salt wasting and hypercalciuria, thereby mimicking Bartter syndrome 
[71]. PTH levels are severely suppressed in this syndrome, which is known as auto-
somal dominant hypocalcemia (OMIM #601198); by some this syndrome is classi-
fied as Bartter type 5 due to the presence of renal salt wasting, hypokalemia, and 
hypercalciuria.

Table 11.2  Bartter’s syndrome: salt-wasting nephropathies due to abnormal function of the thick 
ascending limb (TAL)

Type Inheritance
Serum 
K+

Serum 
pH Renin Aldosterone Treatment Locus

Disease gene 
(protein)

1
2
3
4

AR
AR
AR
AR

↓
↓
↓
↓

↑
↑
↑
↑

↑
↑
↑
↑

↑
↑
↑
↑

Increase 
salt intake 
(for all 
types)

15q21
11q24
1p36
1p32

SLC12A1 
(NKCC2)
KCNJ1 
(ROMK)
CLCNKB
BSND

AR autosomal recessive; AD autosomal dominant; SLC12A1 solute carrier family 12, member 1; 
KCNJ1 potassium inwardly rectifying channel, subfamily J, member 1; CLCNKB chloride chan-
nel, voltage-sensitive Kb; BSND barttin
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11.3.2	 �Renal Sodium Wasting in the Distal Convoluted Tubule 
and/or Collecting Duct

11.3.2.1	 �Gitelman Syndrome (OMIM #263800)
Gitelman syndrome is an autosomal recessive condition, in which affected individuals 
present with symptoms identical to those who are on thiazide diuretics, featuring 
hypokalemia, hypomagnesemia, metabolic alkalosis, and associated renal sodium 
wasting (Table  11.3). Linkage analysis in several unrelated families identified the 
thiazide-sensitive sodium chloride cotransporter (NCC) gene SLC12A3 as cause for 
this disease. Both homozygous and compound heterozygous loss-of-function 

Na+

2Cl-

K+

K+

3Na+

2K+

Cl-

Urine Interstitium

CIC-Kb

+ -

Mg2+

Ca2+

Mg2+

Ca2+

CaSR

Na+,K+

ATPase

NKCC2

Bartter Syndrome

TAL

BSND

CLDN 14/16/19

Type 2

Type 1

Type 3

Type 4

-

ROMK

Fig. 11.3  Schematic illustration of a tubular epithelial cell in the thick ascending limb (TAL). 
Loss of function of the apical sodium-potassium-2 chloride cotransporter (NKCC2) or the renal 
outer medullary potassium channel (ROMK) cause neonatal Bartter type 1 or type 2, respectively. 
Classic Bartter or type 3 is caused by loss of function of the voltage-gated chloride channel Kb 
(CLCNKB), located at the basolateral membrane. A defect in CLCNKB’s β-subunit barttin causes 
a similar phenotype and however is associated with sensorineural deafness due to barttin’s pres-
ence in the inner ear (type 4). A phenocopy of Bartter (by some classified as type 5) is caused by 
gain-of-function mutations in the calcium-sensing receptor (CASR), which is a negative regulator 
of paracellular calcium and magnesium transport (modulating a tight junctional claudin complex, 
illustrated by red arrow). Altered electrochemical driving forces in the TAL may explain the Bartter 
features observed. Abbreviations: BSND barttin; CLDN claudin
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mutations have been reported [72]. Affected individuals can be asymptomatic; 
however, muscular cramps, weakness, and irritability related to hypomagnesemia and 
hypokalemia can occur. More severe symptoms such as paralysis and cardiac arrest 
are rare but have been reported [73]. Interestingly, individuals with heterozygous loss-
of-function mutation, with only one mutated NCC allele (estimated prevalence ~0.5–
1% in Caucasian population), may have a survival benefit due to lower blood pressure 
levels and increased bone mineral density [12, 74].

11.3.2.2	 �Pseudohypoaldosteronism Type I (OMIM #177735, 
#264350)

Pseudohypoaldosteronism (PHA) type I is a salt-wasting nephropathy characterized 
by unresponsiveness to mineralocorticoids [75, 76]. Affected individuals present 
with hyperkalemic acidosis despite high aldosterone levels and show significant 
improvement with high-salt diet (Table 11.3). Two genetic subtypes can be distin-
guished, type IA, inherited in an autosomal dominant fashion, and type IB, transmit-
ted in autosomal recessive pattern. Type IA is caused by mutations in the 
mineralocorticoid receptor gene NR3C2 and has a milder phenotype [75]. In infancy, 
affected children display frequent vomiting, failure to thrive, and short stature; labs 
feature hyponatremia, hyperkalemia, and urinary salt wasting. PHA type IA 
improves with age, and affected individuals can be asymptomatic when they reach 
adulthood and however remain susceptible to volume depletion. The recessive form, 
type IB, is caused by loss-of-function mutations in any one of the three genes encod-
ing for the α-, β-, or γ-subunits of ENaC, leading to decreased channel activity and 
thereby severe renal salt wasting [76]. PHA type IB presents a near mirror image of 
Liddle syndrome. Sodium content is also increased in saliva, sweat, and stool. 
Multiple organ systems are affected and the mortality is high in the neonatal period. 
Respiratory failure is a frequent complication, sometimes leading to misdiagnosis 
of cystic fibrosis.

11.3.2.3	 �Epilepsy, Ataxia, Sensorineural Deafness, 
and Tubulopathy (EAST Syndrome; OMIM #612780)

EAST syndrome features salt-wasting tubulopathy associated with neurological 
abnormalities [77, 78]. The mode is autosomal recessive and consanguinity has 
been described in some families. The responsible gene was mapped by linkage anal-
ysis to chromosome 1q23 (KCNJ10) and encodes for the inwardly rectifying potas-
sium channel Kir4.1. It is expressed in the basolateral membranes of the distal 
convoluted tubule (DCT), connecting tubule (CNT), and also collecting duct epithe-
lia. The electrolyte and acid-base abnormalities in EAST are similar to Gitelman 
syndrome, featuring hypokalemia, hypomagnesemia, and metabolic alkalosis 
(Table 11.3). Renin and aldosterone levels are both elevated. Affected individuals 
compensate for renal salt losses with increased salt consumption, thereby typically 
maintaining normal blood pressure [77]. The proposed mechanism is that KCNJ10 
loss-of-function mutations impair the activity of the Na/K-ATPase at the basolateral 
membrane, thereby decreasing transepithelial sodium transport in the DCT, CNT, 
and CD [78]. Due to expression of Kir4.1 in neuronal tissue, including the inner ear, 
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various additional features are present. Mice deficient in KCNJ10 exhibit striking 
pathology of the entire central nervous system and display renal salt wasting and 
volume contraction as well [79].

11.3.2.4	 �Renal Tubular Dysgenesis (RTD; 267,430)
Autosomal recessive transmitted RTD is a heterogeneous developmental disorder, 
characterized by abnormal renal tubular formation associated with persistent fetal 
oligoanuria and severe hypotension. In utero or perinatal death is frequently observed 
in affected children [80]. Parental consanguinity has been reported in ~1/3 of cases 
[81]. Infants surviving the neonatal period display severe and refractory hypotension 
requiring vasopressors, respiratory assistance, and kidney replacement therapy. 
Death at birth occurs frequently due to pulmonary hypoplasia and respiratory failure. 
Only few individuals with RTD survive after days or weeks of intensive care [81]. 
Kidney histopathology showed absence of differentiated proximal tubular cells, 
which is the pathological hallmark of this disorder. All renal tubules appear abnor-
mally developed, primitive, and reminiscent of collecting tubules. Postnatal skull 
ossification defects (so-called hypocalvaria) are often seen. RTD is caused by loss-
of-function mutations in four genes, all encoding for proteins of the renin-angiotensin 
system (RAS). The genes shown in Table 11.3 include REN (renin), AGT (angioten-
sinogen), ACE (angiotensin-converting enzyme), and AGT1R (angiotensin II recep-
tor type 1). A similar phenotype can be seen in children whose mothers were exposed 
to RAS blockers during pregnancy (known as ACEi fetopathy) [82].

�Conclusion

Research on rare monogenic hypertension and its counterpart, syndromes with 
lower blood pressure, has been insightful to understanding disease mechanisms 
affecting blood pressure variation. It is likely that the combined effects of rare 
allelic variation in the described genes and others regulate blood pressure varia-
tion in the general population [12]. Studies on monogenic hypertension along 
with blood pressure genomics described elsewhere in this textbook will advance 
our understanding of hypertension, define new drug targets, and improve treat-
ment and prevention.
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12.1	 �Turner Syndrome and Associated Cardiovascular 
Disease

Turner syndrome (TS) is a rare chromosomal disorder, occurring in 1 per 2000 to 1 
per 5000 live-born girls [1–3]. Monosomy X is present in about half of the cases; the 
others present a structural X chromosome aberration or a mosaic karyotype [4, 5]. 
The phenotype of TS is highly variable, but short stature and gonadal failure are 
characteristic features. Congenital and acquired cardiovascular disease, renal abnor-
malities and endocrine and neurocognitive disorders are frequently associated [6].

Compared to the ‘general’ population, morbidity and mortality are increased, car-
diovascular disease being the most important cause of premature death [7–10]: the 
risk to die from cardiovascular disease is four times higher in TS patients than in the 
general population [8], and life expectancy is reduced by a decade. Cardiovascular 
anomalies are found in up to half of the TS patients and mainly involve the left side 
of the cardiovascular system. Bicuspid aortic valve (BAV), aortic arch anomalies, 
including coarctation, and progressive dilation of the ascending aorta [6, 11–13] are 
the most frequent. Aortic dissection is a relatively rare but frequently fatal complica-
tion in TS patients that often occurs at a young age [9, 14].

In TS patients, arterial hypertension (AHT) is a highly prevalent risk factor for 
cerebrovascular disease and aortic dissection adding significantly to the medical 
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burden of the syndrome. Compared to the general population, the relative risk for 
AHT-related morbidity is 2.9 [15], and the incidence of death related to hypertensive 
disease is sixfold increased [8].

12.2	 �Definition and Prevalence of Hypertension in Turner 
Syndrome

12.2.1	 �Definition of Arterial Hypertension

The definition of arterial hypertension in adults and children is presented in 
Table 12.1.

12.2.2	 �Prevalence of Arterial Hypertension in Adult Turner 
Patients

Prospective data on blood pressure measurements and the prevalence of AHT in TS are 
scarce [19]. Most publications report blood pressure values in TS that are higher com-
pared to healthy age-matched controls [20–26], but this is not confirmed by all [27–
29]. The prevalence of AHT in adult TS patients ranges from 15 to 58%; both systolic 
and diastolic hypertension are reported. This variation can be partially explained by 
the different definitions of AHT used and by divergence in the population characteris-
tics (age, race and lifestyle) [19]. Data on nocturnal dipping patterns in adult TS 
patients are scarce; a blunted dipping (dipping <10%) is reported in 13% [23, 25].

Table 12.1  Definition of arterial hypertension for adults and children

Adults Children
Hypertension
In-office BP SBP ≥140 mmHg and/or 

DBP ≥90 mmHg[16]
SBP and/or DBP >p95for age, sex 
and height[17]

24-h ABPM 24 h SBP ≥130 mmHg and/or 
DBP ≥80 mmHg[16]

SBP and/or DBP >p95for age, sex 
and height[18]

Daytime SBP day ≥135 mmHg and/or DBP day 
≥85 mmHg[16]

SBP day or DBP day >p95for age, 
sex and height[18]

Isolated nocturnal hypertension
Ambulatory BP SBP night ≥120 mmHg and/or DBP 

night ≥70 mmHg and SBP 
day <135 mmHg and DBP day 
<85 mmHg[16]

SBP night and/or DBD 
night >p95for age, sex and height 
and SBP day and/or DBD day 
<p95for age, sex and height[18]

Blunted nocturnal dipping
24-h ambulatory 
BP

[(1-SBP night/SBP day)*100] ≤10% [(1-SBP night/SBP 
day)*100] ≤10%

BP blood pressure, ABPM ambulatory blood pressure monitoring, SBP systolic blood pressure, 
DBP diastolic blood pressure, BP night mean systolic blood pressure during night time, SBP day 
mean systolic blood pressure during daytime, >p95 above the 95th percentile, <p95 below the 
95th percentile
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12.2.3	 �Prevalence of Arterial Hypertension in Paediatric Turner 
Patients

The prevalence of AHT in young TS girls ranges from 0 to 40% [29–34] with a vari-
ability that cannot be explained by different definitions of AHT (all studies define 
hypertension as a blood pressure above the 95th percentile for sex, age and height) 
but rather by divergence in the population characteristics [19]. Abnormal nocturnal 
dipping (<10%) is found in up to 57% of paediatric TS patients [29, 31, 33].

12.3	 �Aetiology of Hypertension in Turner Syndrome

The aetiology of AHT in TS is poorly understood and presumably multifactorial [35].

12.3.1	 �Essential Hypertension

Overweight and obesity, established risk factors for AHT, are highly prevalent in TS 
[36], and TS patients have an increased risk for both type 1 and 2 diabetes [37]. The 
sympathetic nervous system—an important factor in blood pressure regulation 
[38]—is over-activated in TS leading to an increased BP and a higher heart rate [39, 
40]. Oestrogens are involved in the regulation of the autonomous nerve system and 
the vascular function, the latter by modulating a variety of biological cascades (e.g. 
RAA system and endothelin) and by their antioxidant activity [41]. Oestrogen defi-
ciency, characteristic for TS, is at least partially responsible for the sympathetic 
overstimulation seen in TS [39, 40]. In the general population, increased stiffness of 
the aortic wall is an important cause of increasing systolic blood pressure with 
advancing age [42, 43]. Interestingly, in patients with TS with and without a bicus-
pid aortic valve or aortic coarctation, an early increase of aortic stiffness parameters 
has been documented, which might contribute to the increased prevalence of hyper-
tension [21, 44–46]. The impact of hormone replacement therapy on BP remains 
subject of debate, although some studies describe a lowering of diastolic blood pres-
sure [23, 47, 48], a decrease of augmentation index [49] and a reduction in carotid 
intima-media thickness [50].

12.3.2	 �Secondary Hypertension

AHT can develop secondary to structural cardiovascular or renal defects. In TS, 
coarctation is found in 4–15% of patients [11, 13, 37, 51], and the aortic arch is 
often hypoplastic [11, 51]. No statistically significant association between aortic 
arch anomalies and elevated BP was found in TS [52, 53], but this observation could 
have been biased by the small number of coarctation patients included in the stud-
ies. However, other publications do describe a relationship between an elongated 
transverse arch with abnormal curvature and elevated BP [11, 53]. Malformations 
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of the kidney and the collecting system are found in 38–41% of TS girls [52, 54]. 
Although they can evolve towards renal scarring, there is no significant association 
between their presence and AHT in TS girls [52]. Also classical renovascular AHT 
in TS is rare.

12.4	 �Hypertension and Acquired Cardiovascular Disease 
in Turner Syndrome

AHT is a well-established risk factor for aortic dissection, an often fatal complica-
tion in TS patients [55]; Stanford type A aortic dissections are the most common. 
The incidence in TS is estimated at 36/100,000 Turner years [9] which is 12 times 
higher than in the general population [56]. Dissection often occurs at a young age, 
with a mean of 30.7 years (range, 4–64 years) [14]. Arterial hypertension is present 
in about half of the reported cases; other acknowledged risk markers are BAV, aortic 
coarctation, aortic dilation and pregnancy. However, dissection also occurs in TS 
patients without obvious risk factors [9, 14, 55].

Aortic dilation, which may proceed to aortic dissection, is found in 20–30% of 
TS patients and can present from childhood. The link between BP and aortic dila-
tion remains a subject of debate [24, 28, 53, 57–60].

Elevated systolic blood pressure, together with advancing age and body surface 
area, plays a role in the development of the left ventricular hypertrophy that is found 
in 23% of adult TS patients [61].

12.5	 �Diagnosis of Hypertension in Turner Syndrome

12.5.1	 �Blood Pressure Measurement

Correct diagnosis of AHT requires a standardised office BP measurement with the 
use of an appropriate-sized cuff [16] at least once a year. At the first visit, BP should 
be measured at both arms in the sitting position; the arm with the higher value is 
taken as reference for subsequent visits. To detect obstructive aortic arch malforma-
tions, BP is also measured in a supine position at the four limbs where the value at 
the legs should be at least equal or higher than the one obtained at the arm, compa-
rable to the ankle-arm index.

If the systolic office BP exceeds 130 mmHg and/or the diastolic BP 80 mmHg 
(or the 95th percentile for children), 24-h ambulatory blood pressure measurement 
(ABPM) at the arm with the highest value is recommended. In patients without 
office AHT, it seems appropriate to screen with a 24-h ABPM at transition from the 
paediatric to the adult TS clinic and from then on at least once every 5 years to 
detect masked hypertension or a blunted dipping pattern or nocturnal hypertension. 
Measurements on a more regular basis are advised in the case of concomitant BAV, 
coarctation, dilation of the aorta, renal abnormalities, end-organ damage or associ-
ated cardiovascular risk factors.
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12.5.2	 �Elaboration After Diagnosis of Hypertension

Secondary AHT should be ruled out at the moment of a new diagnosis of 
AHT.  Elaboration includes evaluation of renal function, ultrasound of the renal 
arteries and the kidneys, evaluation of the thyroid function, a cardiac ultrasound and 
cardiac MRI with angiography of the aorta (if not recently performed) to rule out 
coarctation of the aorta. If the anamnesis reveals complaints suggestive of phaeo-
chromocytoma, measurement of catecholamines and metanephrines in 24-h urine 
and/or plasma should be performed. Obstructive sleep apnoea syndrome should be 
ruled out in patients with a history of snoring [62], in case of nocturnal hypertension 
or severe obesity. Drugs predisposing to hypertension should be asked for.

12.5.3	 �Screening for End-Organ Damage

Chronic AHT causes vascular changes leading to organ damage in the kidney (kid-
ney failure), the eyes (retinopathy), the heart (left ventricular hypertrophy, ischaemic 
heart disease), the brain (cerebrovascular accidents) and other great vessels (aortic 
aneurysm and low extremity peripheral artery disease). Data on the prevalence of 
these complications in TS are lacking, but ischaemic heart disease and cerebrovascu-
lar disease are important contributors to the increased mortality in TS [8]. Screening 
for end-organ damage should therefore be performed according to the hypertension 
guidelines [16].

12.6	 �Treatment of Arterial Hypertension in Turner Patients

12.6.1	 �Treatment Strategy in Adult TS Patients

Cut-off values for the initiation of BP treatment in TS remain a subject of debate. 
There are no evidence-based guidelines, but in view of the potentially increased risk 
for aortic dilation and the detrimental effect of AHT in the evolution to aortic dis-
section, lower-than-conventional BP thresholds seem appropriate, especially in 
patients with associated aortic disease [63, 64]. A therapeutic flowchart based on BP 
and associated cardiovascular pathology is presented in Fig. 12.1 [19]. Patients with 
additional cardiovascular risk factors should be treated according to the interna-
tional guidelines on hypertension [16].

As in the general population, treatment of AHT consists primarily of appropriate 
lifestyle measures. Overweight and poor physical fitness are major issues in TS, and 
efforts should be made to reduce weight and improve physical exercise. There are 
no data comparing different pharmacologic antihypertensive therapies in TS 
patients. Most recommendations suggest beta-blockers as first-line therapy, given 
their favourable effect on aortic dilation and the risk of dissection. This has been 
proven in patients with Marfan syndrome [39, 63–65], but clear evidence in Turner 
syndrome is lacking. However, beta-blockers have a positive effect on the sinus 
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tachycardia frequently encountered in TS patients [39, 40]. As studies show an 
increased RAA activation in Turner syndrome, ACE inhibitors (ACEI) or angioten-
sin receptor blockers (ARB) are a reasonable alternative, especially in the presence 
of left ventricular hypertrophy and diabetes or the metabolic syndrome [34]. Both 
ACEI and ARB have teratogenic properties and cannot be used during pregnancy. 
Table 12.2 presents a scheme for the initiation of pharmacological treatment, based 
on associated pathology.

Additional risk factors should be diagnosed and treated appropriately. This 
includes optimisation of thyroid function, hyperlipidemia and diabetes. The effect of 
treatment must be regularly checked, preferably with 24-h ABPM. If the target BP is 
not achieved, combination antihypertensive therapy should be considered [16].

Women with isolated insufficient nocturnal dipping should be followed more 
closely, and lifestyle changes should be encouraged. If isolated nocturnal AHT appears, 
treatment with evening administration of the medication could be considered [66].

12.6.2	 �Treatment Strategy in Paediatric TS Patients

There are no data on the optimal blood pressure treatment goals in young TS 
patients. It seems reasonable to use the reference values for the general paediatric 
population that are expressed for sex, age and height, as this probably avoids bias 
due to the short stature of Turner girls [17]. BP values between the 90th and 95th 
percentile for age and height indicate a prehypertensive state and require close fol-
low-up. A healthier lifestyle is promoted including weight reduction, enough sleep, 

office BP measurement 1x/year

If SBP >130 mmHg and/or DBP >80 mmHg: perfom ABPM

blunted  noctumal dipping
with mean day time SBP <130 mm Hg

and mean day time DBP<80 mmHg

mean day time SBP ≥130 mm Hg and <135 mmHg
and

mean day time DBP ≥80 mmHg and <85 mmHg

mean day time SBP ≥135 mmHg 
and/or

mean day time DBP ≥85 mmHg 

mean night time SBP
<120 mm Hg

and
mean night time SBP

<70 mmHg

mean night time SBP
≥120 mm Hg

and/or
mean night time DBP

≥70 mmHg

TS without cardio-
vascular defect*

TS with cardio-
vascular defect*

Lifestyle advice Lifestyle advice
Pharmacological treatment

Lifestyle advice
Pharmacological treatment

Lifestyle advice Lifestyle advice
Consider pharmacological

treatment
with evening dose

Fig. 12.1  Treatment algorithm in adult TS patients. *Cardiovascular defects: bicuspid aortic 
valve, aortic coarctation or dilation of the ascending aorta >20 mm/m2. TS patients with additional 
cardiovascular risk factors are treated according to the international guidelines on arterial hyper-
tension (2013 ESH/ESC Guidelines for the management of arterial hypertension. Eur Heart J 
2013;34:1925–1938)
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healthy diet and physical activity. Children with BP values between 95th and 99th 
percentile require lifestyle advice and repetitive measurements to confirm the diag-
nosis of AHT [17]. If the BP exceeds the 99th percentile, pharmacological treatment 
should be initiated. The optimal choice of treatment is similar to the one for the 
adult population.

12.6.3	 �Treatment Strategy in Pregnant Turner Patients

Pregnant TS patients are at an increased risk for hypertension and preeclampsia. 
During gestation, BP should be checked regularly and AHT treated rigorously. Even 
if the BP is within normal limits, preventive treatment with a beta-blocker could be 
considered [67]. Coarctation, severe dilation of the aorta (ASI  >25  mm/m2) and 
uncontrolled AHT are formal contraindications for pregnancy [67].
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LVH	 LV hypertrophy
OR	 Odds ratio
PIUMA	 Progetto Ipertensione Umbria Monitoraggio Ambulatoriale
RAAS	 Renin-angiotensin-aldosterone system
RES	 Reliability of M-mode Echocardiographic Study
RR	 Relative risk
RWT	 Relative wall thickness

13.1	 �Introduction

Hypertensive heart disease (HHD) encompasses a wide spectrum of abnormalities 
that represent the accumulation of a lifetime of functional and structural adaptations 
to increased blood pressure (BP) load (Fig. 13.1). The clinical presentation of HHD 
is dependent on some demographic factors (including age, sex, and race), comorbid 
conditions (including obesity, diabetes mellitus, or peripheral arterial disease), and 
duration and severity of hypertension [1–3].

Hypertensive patients may develop a variety of cardiac structural and functional 
changes, including increased left ventricular (LV) mass, LV systolic and diastolic 
dysfunction, impairment of coronary reserve, arrhythmias, and enlargement of left 
atrial and aortic root [4].

Of the several adverse changes in cardiovascular (CV) morphology and function 
that occur in association with hypertension, most attention has been focused on LV 
hypertrophy (LVH) for its detrimental impact on CV morbidity and mortality [4].

This chapter summarizes the present state of knowledge in this active area of 
broad interest. Specifically, we aimed to provide an overview of recent contributions 
on the mechanisms and prognostic impact of HHD.

Fig. 13.1  The wide spectrum of hypertensive heart disease. BP blood pressure, LVH left ventricu-
lar hypertrophy, CHD coronary heart disease, HF heart failure
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To this purpose, we searched for experimental, clinical studies and systematic 
overviews using research methodology filters [5]. The following research terms 
were used: “hypertension,” “hypertensive heart disease,” “heart,” “left ventricular 
hypertrophy,” “left ventricular mass,” and “prognosis.” We also checked the refer-
ence list of identified articles and previous systematic reviews to find other relevant 
studies.

13.2	 �Mechanisms

Hemodynamic load is the fundamental stimulus to begin the sequence of biological 
events ultimately leading to development of HHD [4, 6].

Early in the development of HHD, cardiac involvement may be manifested by 
findings associated with a hyperdynamic circulation. These may include a faster 
heart rate, greater cardiac output than normal, an increased myocardial contractility 
with increased oxygen consumption, and increased circulating catecholamine or 
responsiveness of the myocardial and vascular beta-adrenergic receptor sites [7].

Arterial pressure rises in parallel with total peripheral resistance, the classic 
hemodynamic hallmark of hypertension. This increased pressure overload imposed 
on the left ventricle results in a structural hypertrophic adaptation [7]. Increased 
wall stress and strain provide a stimulus for signaling to cause mRNA transcription 
to increase muscular proteins [8–10]. This prompt nuclear reaction is finalized to 
protect the myocardium from excessive wall tension by minimizing oxygen con-
sumption and simultaneously producing sufficient strength to provide the body tis-
sue with the required nutriment by maintaining or even increasing cardiac output 
[8–10].

The development of HHD, however, may not be totally explained by hemody-
namic pressure overload. Recognizable non-hemodynamic factors such as geno-
type, gender, and body size eventually regulate the growth of LV mass by at least in 
part influencing loading conditions [4, 8].

Of note, adiposity may induce important structural and functional alterations in 
the heart [11]. The likelihood of LVH is greater in either obese normotensive or 
hypertensive individuals than in their nonobese counterparts. Interestingly, besides 
the growth and the changes in the composition of motor units (cardiomyocytes), 
interstitial fat infiltration and triglyceride accumulation in the contractile elements 
importantly contribute to LV mass accrual, hypertrophy, and geometric pattern 
[11–13].

Other non-hemodynamic factors may contribute to generate the cascade of 
molecular changes that eventually triggers the increase in LV mass and the develop-
ment of HDD.

In this context, insulin and insulin growth factors may stimulate the growth of LV 
mass [14–16]: it has been recently proposed that insulin resistance contributes to the 
development of LVH through multiple mechanisms including the accentuation of 
sympathetic nervous system activity, the disordered sodium reabsorption in the kid-
ney, the growth of smooth muscle cells in blood vessels, and the generation of insu-
lin growth factor-1 [4, 14–18].
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The renin-angiotensin-aldosterone system (RAAS), an important control system 
for BP and intravascular volume, may also induce LVH and fibrosis [19]. The main 
causal mechanism is the increase in BP, which leads to increased LV wall stress. 
However, some of the RAAS components (including aldosterone and angiotensin 
II) play direct effects on the cardiomyocytes. Angiotensin II not only activates intra-
cellular reactions which ultimately increase LV mass but also promotes atheroscle-
rosis through proliferation of vascular smooth muscle cells and production of 
extracellular matrix protein [20].

Endothelin, a potent vasoconstrictor, stimulates both vascular cell growth and 
migration [21] and myocyte growth [22]. In a landmark study investigating the 
role of endogenous endothelin-1  in the development of cardiac hypertrophy 
in  vivo, Ichikawa and coworkers [22] examined the effect of an endothelin-A 
receptor antagonist on the development of ventricular hypertrophy in rats with 
monocrotaline-induced pulmonary hypertension. Briefly, they demonstrated that 
blocking the action of endothelin-1 with a receptor antagonist ameliorates cardiac 
hypertrophy and that this action is not mediated by ameliorating hemodynamic 
changes [22].

There also is evidence of an inverse association, independent of BP levels, 
between high-density lipoprotein (HDL) cholesterol and LV mass [23]. In a cross-
sectional analysis of the “Progetto Ipertensione Umbria Monitoraggio 
Ambulatoriale” (PIUMA) study, we investigated the association between HDL cho-
lesterol and echocardiographic LV mass in 1306 never-treated subjects with essen-
tial hypertension [23]. HDL cholesterol showed an inverse association with LV 
mass (r = −0.30, p < 0.001). No association was found between LV mass and other 
lipoprotein components. In a multivariable analysis, we also demonstrated that low 
HDL cholesterol (p < 0.001) was an independent predictor of LV mass after the 
significant contribution of average 24-h BP, body mass index (BMI), height, stroke 
volume, and age [23].

As a possible explanation for the effects of low HDL-C on cardiac structural and 
functional alterations, therefore, the involvement of insulin resistance and hyperinsu-
linemia should be considered [23]. In fact, the serum levels of HDL cholesterol are 
inversely correlated with serum insulin levels, and some studies have reported that 
hyperinsulinemia is related to LVH in hypertensive patients [23]. Another possible 
mechanism is the detrimental effect of low HDL cholesterol levels on endothelial 
function, which has been associated, in turn, with LVH in hypertensive patients [23].

13.3	 �Microcirculation

The presence of LVH reflects a network of functional and structural changes in the 
myocardium: impaired coronary hemodynamics with reduced coronary blood flow 
and reserve [24], myocardial interstitial adaptations, and cardiomyocyte changes 
(Fig. 13.2) [25].

Atherosclerosis of large arteries and increased resistance of muscular arterioles 
increase the afterload leading to hypertrophy of cardiomyocytes [26]. Concurrently, 
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collagen deposition promotes abnormal fibrosis within the myocardial interstitium. 
Ventricular fibrosis hinders the elasticity of myocardium and systolic function 
[27–29].

Additional mechanisms which may account for impaired coronary hemodynam-
ics include [17]: (1) coronary arteriolar compression by the hypertrophied and 
stiffer left ventricle produced by ventricular fibrosis, (2) inadequate sizing of coro-
nary vessels [30], (3) increased arteriolar wall thickening and arteriolar wall-to-
lumen diameter [31], (4) insufficient microvessel growth to prevent dilution because 
of the greater increase in other myocardial components with a consequent decrease 
of microvascular density [32, 33], and (5) increased LV chamber diameter reflecting 
myocyte hypertrophy and collagen deposition (Fig. 13.2) [26].

In this context, results of some experimental studies clearly supported the notion 
that LVH involves changes in myocardial tissue architecture consisting of perivas-
cular and myocardial fibrosis and medial thickening of intramyocardial coronary 
arteries, in addition to myocyte hypertrophy.

Fig. 13.2  Main effects of chronic pressure overload on left ventricle, including impaired coronary 
hemodynamics with reduced coronary blood flow and reserve, myocardial interstitial adaptations, 
and cardiomyocyte changes
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Breisch and coworkers [34] analyzed the effects of pressure overload hypertro-
phy in the LV myocardium of adult cats after 4, 7, 30, 120, and 248 days of 90% 
constriction of the ascending aorta. Analysis of the microvasculature at different 
times after constriction of the aorta showed that capillary density and coronary 
reserve decreased with increasing time of hypertrophy. The combination of such 
alterations in flow reserve and capillary density might play an important role in the 
transition from a compensated to a failing heart.

Similarly, Tomanek and coworkers [35] analyzed the adverse effects on the 
coronary microvasculature of late-onset hypertension in middle-aged and senes-
cent rats with renal wrap hypertension of 3-month duration. Compared with con-
trol rats, wall-to-lumen ratios of arterioles with lumen diameters less than 25 μm 
were higher in the hypertensive groups by some 30%, whereas larger arterioles 
did not show consistent intergroup differences. Capillary numerical density was 
markedly reduced in the hypertensive animals of both age groups. The observed 
microvascular alterations occurred in the absence of an absolute increase in LV 
mass, but in presence of cardiocyte hypertrophy. Thus, decrements in capillary 
numerical density were not only due to inadequate growth but reflected an abso-
lute reduction in the number of these vessels associated with cardiocyte loss. The 
authors concluded that late-onset hypertension in middle-aged and senescent rats 
is characterized by LV wall remodeling that includes microvascular alterations 
that would be expected to limit maximal myocardial flow and O2 supply to the 
cardiomyocyte [35].

13.4	 �Diagnosis of Left Ventricular Hypertrophy

LVH is a common finding in patients with CV disease (CVD) and CVD risk factors. 
In the clinical practice, it is generally diagnosed by electrocardiogram (ECG) or by 
echocardiography [1]. Echocardiography is generally preferred for confirming the 
presence of LVH since the sensitivity of the different ECG criteria may be as low as 
7–35% with mild LVH and only 10–50% with moderate to severe disease [36]. 
Nevertheless, ECG is more readily available and easy to perform and interpret and 
is less expensive than echocardiography. Thus, if echocardiography is unavailable 
or too expensive, appropriate ECG criteria can be used to detect increased LV mass.

13.4.1	 �Electrocardiography

The principal ECG changes associated with LVH are increased QRS voltage and 
duration, left axis deviation, changes in instantaneous and mean QRS vectors, repo-
larization abnormalities (ST segment and T wave changes), and abnormalities in the 
P wave (Fig. 13.3).

These changes have been correlated with direct or indirect assessments of ven-
tricular size or mass to establish electrocardiographic criteria for the diagnosis of 
hypertrophy [36].
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Many criteria have been developed to diagnose LVH on an ECG. Commonly 
used criteria for the ECG diagnosis of LVH are given below:

–– Cornell voltage [37]
–– Sokolow-Lyon index [38]
–– Romhilt-Estes score ≥5 [39]
–– Typical strain [40]
–– Perugia score [41]

Briefly, the Sokolow-Lyon index [38] is defined by the sum of the S wave in lead 
V1 plus the tallest R wave in leads V5 and V6 ≥ 3.5 mV (35 mm); the Cornell voltage 

Fig. 13.3  Major 
electrocardiogram findings 
induced by left ventricular 
hypertrophy. An increase 
in left ventricular mass 
augments the amplitude of 
voltage generated by these 
fibers and is usually 
associated with widening 
of the QRS duration and 
leftward QRS axis. 
Furthermore, severe left 
ventricular hypertrophy is 
associated with ST 
depressions and T wave 
inversions due to alteration 
in repolarization of 
hypertrophied muscle and 
relative subendocardial 
ischemia. Patients with 
LVH may also develop 
abnormalities in left atrial 
depolarization due to 
conduction delay or actual 
atrial enlargement. LV left 
ventricular
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[37] is defined by the sum of the S wave in lead V3 plus the R wave lead in 
aVL > 2.8 mV (28 mm) in men and >2.0 mV (20 mm) in women; the Romhilt-Estes 
point score system [39] is computed giving different weights to specific findings (a 
score of 5 or more indicates “definite” LVH; a score of 4 indicates “probable” LVH); 
the Perugia score [41] is defined by the presence of a typical strain pattern and/or a 
modified Cornell voltage (sum of the S wave in V3 plus the R wave in aVL > 2.0 mV 
in women and >2.4  mV in men); typical strain pattern [40] was defined by 
a ≥ 0.5 mm depression of the J point, T wave inversion with asymmetric branches 
and rapid return to baseline.

Several approaches have been recently proposed in order to improve the diagnos-
tic performance of ECG for LVH. Since most ECG criteria for LV hypertrophy are 
poorly sensitive, but highly specific, combination of different ECG criteria and 
anthropometric measures in a single index allowed improvement in sensitivity with 
preservation of specificity.

In this context, a recent analysis of the PIUMA study demonstrated that amplifi-
cation of Cornell voltage by BMI improves performance of ECG for diagnosis of 
LVH [36].

LVH at ECG by the new score (BMI-corrected Perugia score) is defined by typi-
cal strain pattern or a Cornell-BMI product >604 mm kg/m2, according to the fol-
lowing formula:

Cornell-BMI product (mm kg/m2) = ((R wave amplitude in lead aVL + S wave 
depth in lead V3) × BMI)

Of note, this new criterion allows immediate diagnosis of LVH with a rapid 
visual inspection of the traditional ECG (measurement of Cornell voltage and 
assessment of strain pattern) combined with calculation of BMI [36].

In terms of sensitivity, the new score performed better than traditional criteria 
widely used in clinical practice (namely, Romhilt-Estes point score, presence of 
typical strain, Sokolow-Lyon and Cornell voltages, and Perugia score) [36].

By the comparison of receiver operating characteristic (ROC) curve areas between 
the different ECG criteria for LVH, the BMI-corrected Perugia score was associated 
with significantly higher area under the curve (AUC) values when compared with other 
ECG criteria of LVH, whatever the echocardiographic reference (all p <0.0001) [36].

13.4.2	 �Prognosis of ECG Left Ventricular Hypertrophy

The Framingham Heart Study [42] first showed that subjects with ECG evidence of 
LVH at entry and a serial increase in ECG voltage over time were twice as likely to 
suffer a major CV event over the subsequent years when compared with subjects with 
a serial decrease in voltage.

More recently, other studies have confirmed the association between LVH defined 
at ECG and increased CV risk [41, 43–47]. However, the magnitude of such associa-
tion has varied widely among the studies [41, 45–48]. Aside from differences in 
patient population and adjustment for different confounders, the use of different 
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ECG criteria in these studies may account for a significant part of the variability in 
risk prediction [49].

In particular, LVH defined by the presence of a LV strain pattern on the ECG 
confers a worse prognosis than LVH by an increased voltage pattern alone [50].

Rautaharju and coworkers [51] compared the relative risks (RRs) of some ECG 
criteria, including both voltage-only criteria (Sokolow-Lyon and Cornell voltage) 
and criteria incorporating repolarization abnormalities. When adjusted for several 
confounders, they found that LVH by the Sokolow-Lyon criterion was a not signifi-
cant predictor of CV mortality.

Similarly, Larsen and coworkers [50] studied the relative prognostic values of 
different combinations of Minnesota code pertaining to LVH.  Specifically, they 
compared codes that identified LVH by voltage only with codes incorporating volt-
age and various repolarization changes, including ST depression, T inversions, and 
LV strain pattern. After adjustment for covariates (including age, BP, heart rate, 
BMI, cholesterol levels, physical exercise, history of smoking, diabetes, alcohol, 
and family history of ischemic heart disease), voltage-only LVH was the only pat-
tern of LVH that was not found to be significantly associated with CV mortality.

13.4.3	 �Echocardiography

Echocardiography is one of the most important noninvasive imaging methods in the 
evaluation of cardiac morphology and dynamics.

Although echocardiography is more sensitive than ECG for diagnosis of LVH, 
health professionals need to consider some critical issues in the echocardiographic 
estimation of LV mass, definition of the cutoff values for diagnosis of LVH, and 
clinical implications of serial changes in LV mass [52]. In other words, the apparent 
simplicity in LV mass evaluation by echocardiography conceals several critical 
aspects that may limit its clinical validity [52].

Serial echocardiographic estimates of LV mass may be associated with disturb-
ing variability [53, 54]. In the Reliability of M-mode Echocardiographic Study 
(RES), two M-mode tracings were recorded in the same session and after 3–10 days 
in the absence of treatment, and the tracings were read by two observers in each 
center [53]. Results showed that serial changes in LV mass by 15%, 13%, and 10% 
have a probability of 90%, 80%, and 75%, respectively, of representing a true bio-
logical variation and not a chance effect. Thus, a reduction of LV mass by 10% or 
less in a follow-up study has one probability over four of being solely a chance 
effect, not a true biological phenomenon [35]. Conversely, a reduction of LV mass 
by 15% or more has only one probability over ten of being a chance effect [53].

Furthermore, reproducibility of LV mass estimation and body size indexing and 
other adjustments may influence both the clinical and epidemiologic use of echocar-
diography in the investigation of the LV structure.

Although LV mass calculations derived from the available formulas [55–58] 
(Table  13.1) are strictly and linearly correlated, the final crude estimations may 
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differ by more than 20% [59]. In addition, different formulas may yield distinct cut 
point values for the diagnosis of LVH (Table 13.2).

Specifically, several indexes for body size correction have been proposed, such 
as height, allometric height adjustments, weight, body surface area (BSA), BMI, 
and fat-free mass (Table 13.2). The best way for normalization of LV mass is still 
controversial. Different adjustment criteria and their standard cut points may result 
in a different prevalence of LVH [59].

13.4.4	 �Prognosis of Echocardiographic Left Ventricular 
Hypertrophy

With the advent of echocardiography, it has been recognized that electrocardiogra-
phy may be relatively insensitive for detecting prognostically important increases in 
LV mass [45, 64]. In particular, milder increases in LV mass could be detected only 
by echocardiography, and additional epidemiological data have demonstrated that a 
strong gradient exists between increased echocardiographic LV mass and increased 
CV risk [62, 65, 66].

Levy and colleagues demonstrated a progressive increase in risk associated to 
LV mass, even at levels not considered as “hypertrophic” [66]; more recently, in a 
subset of 1925 Italian hypertensive patients [67], CVD increased monotonically 
with more than a fourfold increase in risk between the lowest and highest LV mass 
quintiles. Notably, clinically relevant increment in CV risk was identified in patients 
with LV mass below the limits usually employed for LVH definition.

Table 13.1  Formulas to estimate left ventricular mass by echocardiography

LV mass formulas (g)
LV mass (Troy [55]) = 1.05 × ([LVIDD + PWTD + IVSTD]3 – [LVIDD]3)
LV mass (Devereux [56]) = 1.04 × ([LVIDD + PWTD + IVSTD]3 – [LVIDD]3) – 13.6
LV mass (Devereux [57]) = 0.8 × (1.04 × ([LVIDD + PWTD + IVSTD]3 – [LVIDD]3)) + 0.6
Linear predictor of LV mass ([58]) = LVED + IVSTD + PWTD

LV left ventricular, LVIDD LV internal diameter in diastole, PWTD posterior wall thickness in 
diastole, IVSTD interventricular septum thickness in diastole, LVED LV external diameter

Table 13.2  Echocardiographic cut points to define left ventricular hypertrophy

Cutoff points for LV hypertrophy Ref. Men Women
LV mass/BSA (g/m2.0) [60] >116 >104
LV mass/BSA (g/m2.0) [61] >125 >110
LV mass/BSA (g/m2.0) [59] >131 >100
LV mass/BSA (g/m2.0) [62] >125 >125
LV mass/height (g/m) [59] >143 >102
LV mass/height (g/m) [63] >126 >105
LV mass/height2.7 (g/m2.7) [63] >51.0 >51.0
LV mass/height2.7 (g/m2.7) [63] >49.2 >46.7
Linear predictor (cm) [58] >9.8 >9.8

LV left ventricular, BSA body surface area
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These findings have been subsequently confirmed in a prespecified analysis of 
the Losartan Intervention for Endpoint Reduction (LIFE) study [68], carried out in 
patients with essential hypertension, electrocardiographic evidence of LVH at entry, 
and availability of LV echocardiographic study at randomization and during follow-
up. In that study, lower values of LV mass during treatment were associated with 
lower rates of CVD, and such an effect was additional to the benefit provided by 
BP-lowering and treatment modality [68].

However, it is still unclear whether different criteria for definition of LVH exert 
a different prognostic impact. Addressing this topic, Liao and colleagues [69] com-
pared the predictive value of echocardiographic LVH using various methods of 
indexation of LV mass. They observed that an increase in any LV mass index was 
associated with similar risk of death from all causes and cardiac diseases. Although 
LVH assessed by mass indexed for BSA using conventional partition values pro-
vided somewhat better prediction, the adjusted relative risk was in general not sig-
nificantly different from LVH based on other indexes [69].

Similar results were obtained by Gosse and coworkers [70]. In their analysis, they 
documented that different indexations of LV mass (height, height2.7, or BSA) had 
similar predictive values for CV complications [70].

13.5	 �Reversal of Left Ventricular Hypertrophy

The hypothesis that a reduction of LV mass in hypertensive patients was linked with 
a better outcome generated a great interest from researchers and clinicians. In this 
context, a recent analysis by Gosse and coworkers [70] highlighted the prognostic 
implications of serial changes in LV mass during pharmacological treatment for 
hypertension. In their registry, a prospective sub-study cohort was assembled in 
which echocardiography was obtained at baseline and after an average follow-up of 
5 years. Increasing reductions in echocardiographic LV mass were associated with 
greater reductions in CV event rates, independently of the baseline LV mass. In 
addition, patients with LVH regression showed similar survival than patients with 
persistence of normal LV mass [70].

The results of this study are impressive for the concordance with other echocar-
diographic prospective studies, with respect to the link between regression of LVH 
and reduction of major CV events in essential hypertension.

In a study from France [71], the incidence of CV events was 4.8% in hyperten-
sive subjects without LVH, 9.6% in those with regression of LVH, and 15% in those 
without regression of LVH.

Similar data have been also reported by Koren et al. [72]. CV event rate during a 
5-year follow-up was 9.2 and 28.6% for patients with regression of LVH (or persis-
tence of normal LV mass) and with new development (or persistence of LVH), 
respectively.

In a long-term Italian study [73], hypertensive patients underwent a LV echocar-
diographic study before therapy and after 10 years of treatment. The rate of CV 
events was higher in the patients who had not achieved regression of LVH at 
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follow-up compared with those with persistently normal LV mass. Furthermore, 
patients with regression of LVH showed an event rate similar to those with persis-
tently normal LV mass [73].

In a subsequent analysis of the PIUMA study [74], the lesser CV risk associated 
with regression of LVH (1.58 events per 100 person-years in subjects with LVH 
regression vs. 6.27 in those with persistent LVH) remained significant in a multivari-
able analysis which included BP changes as assessed by 24-h ambulatory 
monitoring.

A pooled analysis [75] of four studies (including 1064 hypertensive subjects 
aged 45–51 and 106 major CV events) showed that compared to subjects with lack 
of regression or new development of LVH, those who achieved regression of LVH 
showed a 59% lesser risk of subsequent CV disease (95% confidence intervals [CI], 
22–79; p = 0.007). The lesser risk of events associated with regression of LVH was 
consistent across the individual studies. Compared to subjects with regression of 
LVH, those with persistently normal LV mass showed a similar risk of subsequent 
events (odds ratio [OR] 0.64, 95% CI, 0.31–1.30; p = 0.21).

However, since the event risk was 36% lower among the subjects who never 
experienced LVH compared to those with regression and the confidence intervals 
were wide, the meta-analysis did not provide definite evidence that regression of 
LVH reduces the risk of subsequent events to the same level as that of subjects who 
never experienced LVH [75].

To further clarify these aspects, a cumulative meta-analysis of seven studies for 
a total of 2954 patients and 339 CV events recently investigated how evidence pro-
gressed in this field.

Results support the hypothesis that a persistently normal LV mass is thus the 
most favorable prognostic phenotype (Fig. 13.4). Patients with persistently normal 
LV mass showed a markedly lower risk of CV events when compared with those 
with persistence or new development of LVH (OR, 0.28; 95% CI, 0.20 to 0.39; 
p < 0.0001, I2 = 26.1%). In terms of absolute risk difference, a persistently normal 
LV mass was associated with a significant 15% reduction in the risk of CV events 
(Fig. 13.4). Regression of LVH was associated with a cumulative 58% lower risk of 
CV events when compared to persistence or new development of LVH during fol-
low-up (OR, 0.42; 95% CI, 0.23 to 0.77; p = 0.0048, I2 = 59.6%; absolute risk dif-
ference, −13%). However, and most importantly, patients with LVH regression still 
had a 56% higher risk of CV events than those with persistently normal LV mass 
(OR, 1.56; 95% CI, 1.04 to 2.36; p = 0.033, I2 = 1.2%; absolute risk difference, 
+3%) (Fig. 13.4).

13.6	 �Left Ventricular Geometry

Usually, four distinct LV geometric patterns are considered to stratify patients with 
hypertension: normal geometry, concentric remodeling, concentric hypertrophy, 
and eccentric hypertrophy (Fig. 13.5).
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LV geometry can be described by calculating the relative wall thickness (RWT) 
as a function of septum or posterior wall thickness divided by the internal diameter 
at tele-diastole [77]. Arbitrary threshold values for RWT are generally used to dif-
ferentiate normal geometry from concentric remodeling in subjects with normal LV 
mass and eccentric hypertrophy from concentric hypertrophy in subjects with 
increased LV mass [77]. While the typical feature of concentric LV hypertrophy is 
the increase in wall thickness, eccentric LVH describes a pattern in which both LV 
internal diameter and wall thickness are increased (Fig. 13.5).

Fig. 13.4  Results of a cumulative meta-analysis of seven clinical studies comparing cardiovascular 
outcome in patients with persistently normal left ventricular mass versus those with persistence or new 
development of left ventricular hypertrophy (upper panel), patients with LVH regression versus those 
with persistence or new development of LVH (middle panel), and patients with regression of left ven-
tricular hypertrophy versus those with persistently normal LV mass (lower panel). The figure reports 
the risk (odds ratio) for cardiovascular events. LV left ventricular, CV cardiovascular, OR odds ratio
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Although this classification permits identification of determined adaptive pro-
cesses, cohort studies evaluating geometric patterns impact on the incidence of CV 
events provided mixed results showing that the additional prognostic role of geo-
metric patterns over LVH was lesser than initially supposed [62, 76, 78, 79].

In general, in longitudinal studies, the risk of CV disease seems to be higher in 
subjects with concentric remodeling than in those with normal LV geometry and 
also greater in subjects with concentric LVH than in those with eccentric LVH 
(Fig. 13.5) [62, 71, 76, 79–81].

Koren and coworkers [62] found a 10-year incidence of CV events of 31% in 
patients with concentric hypertrophy compared to 11% in those with normal geom-
etry; an Italian study [76] found a relative risk of 2.6  in patients with concentric 
remodeling compared to normal geometry patients; Krumholz and coworkers [79] 
showed a relative risk of 2.1 for all-cause mortality with concentric hypertrophy, but 
not additional risk in those classified as concentric remodeling.

However, since LV mass tends to be greater in subjects with concentric remodel-
ing than in those with normal geometry, and even greater in subjects with concentric 
LVH than in those with eccentric LVH, the independent prognostic value of LV 
geometry tends to be reduced or abolished because of the overwhelming prognostic 
value of LV mass itself [62, 71, 76, 79–81].

13.7	 �Coronary Heart Disease

The increased CV risk associated with HDD is due in part to myocardial ischemia 
that can be induced by a variety of factors [82]. They include a reduced density of 
capillaries, medial wall thickening of arterioles, perivascular fibrosis, endothelial 

Fig. 13.5  Prognostic value of the four different patterns of left ventricular geometry in the PIUMA 
study (data from [76]). LV left ventricular, relative wall thickness = [(2 × posterior wall thickness)/LV 
diastolic diameter] or [(septal wall thickness + posterior wall thickness)/LV diastolic diameter]
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dysfunction with the limited ability of the coronary arteries to dilate in response to 
decreased perfusion or during vasodilatory stress, and the direct compression of the 
endocardial capillaries by the enlarged muscle mass [1, 82].

In this context, some experimental and epidemiological data support the evi-
dence that all these factors decrease coronary reserve and have important clinical 
implications [1].

Briefly, the hypertrophied myocardium is more susceptible than normal myocar-
dium to the effects of ischemia, increased heart weight is an independent predictor 
of plaque rupture with superimposed thrombus [83], the increase in cardiovascular 
risk is directly related to the degree of increase in LV mass, and coronary occlusion 
is associated with a greater degree of infarction and a higher mortality rate than seen 
in the absence of LVH [1, 62, 66, 84].

13.8	 �Arrhythmias

HHD has been associated with both ventricular and supraventricular arrhythmias 
[85–87]. Although a link between arrhythmias and HHD is clearly documented in 
observational study, potential mechanisms explaining such association are not com-
pletely understood.

13.8.1	 �Ventricular Arrhythmias

The increased risk for arrhythmias and sudden cardiac death in HHD has been asso-
ciated with increased ventricular ectopic activity [86]. Experimental models showed 
increased vulnerability to inducible polymorphic ventricular fibrillation in the pres-
ence of LVH induced by aortic band. Notably, these abnormalities disappeared with 
LVH regression after removal of the aortic band [88].

Moreover, myocardial fibrosis could cause local variations in the conduction 
velocities precipitating ventricular arrhythmias. Specifically, the irregular hypertro-
phy pattern and local areas of fibrosis in LVH can impede the homogeneous propa-
gation of the electric impulse throughout the myocardium and its subsequent 
recovery [89].

Other proposed mechanisms of ventricular arrhythmias include lengthening of 
the action potential duration, reduced action potential upstroke velocity, slower 
membrane repolarization, the generation of early and delayed after-depolarizations, 
and beat-to-beat changes in repolarization [90, 91].

Messerli and coworkers [87] found that patients with HHD had higher-grade 
ventricular ectopic activity, such as coupled premature ventricular contractions 
and multifocal premature ventricular contractions, than those without LVH or 
than normotensive subjects. More recently, reports from Framingham showed that 
electrocardiographic LVH is a BP-independent risk factor for sudden cardiac 
death [48, 92].
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13.8.2	 �Supraventricular Arrhythmias

Supraventricular arrhythmias are commonly associated with HHD. LVH (both con-
centric and eccentric types) seems to have a greater impact on the frequency of atrial 
arrhythmias (primarily atrial fibrillation [AF]), with the concentric type being more 
closely associated with supraventricular premature beats and AF [93].

The importance of LVH in the development AF was illustrated in a study of 2482 
subjects with essential hypertension followed for up to 16 years [94]. During fol-
low-up, advancing age and increased LV mass were the only independent predictors 
of developing AF. For every one standard deviation increase on LV mass, the risk of 
AF increased by 20% [94].

LVH identified by cardiac magnetic resonance imaging has also been shown to be 
associated with AF. In a cohort of 4942 patients followed for a median of 6.9 years, 
the risk of AF was significantly higher in patients with LVH identified by either mag-
netic resonance imaging or ECG-derived voltage measurements of LVH [95].

In a meta-analysis of ten studies involving 27,141 patients, the risk of supraven-
tricular arrhythmias was significantly higher in patients with LVH (OR 3.4 com-
pared with no LV hypertrophy; 95% CI 1.67.3), although there was significant 
heterogeneity among the baseline covariates in the included studies [85].

Electrical and structural remodeling of the left atrium is a key step in the progres-
sion from hypertension to AF. Two distinct abnormalities in atrial electrical proper-
ties occur early in HDD and are associated with the development and maintenance 
of AF: the prolongation of atrial conduction velocity as assessed by the signal-
averaged p-wave duration and the decrease in atrial refractoriness [96, 97]. There is 
also accumulation of calcium within atrial myocytes, leading to a reduction of the 
inward L-type Ca2+ current, which in turn contributes to the shortening of the atrial 
effective refractory period and the promotion and maintenance of multiple wavelet-
reentry circuits [98]. In addition, structural remodeling of the atria occurs in parallel 
with the changes of electrical remodeling. These structural changes include dilata-
tion and increasing atrial fibrosis [99]. Key to this fibrotic process is the deposition 
of increased amounts of connective tissue between individual cells and with the 
deposition of large amounts of collagen and fibronectin [100]. This leads to separa-
tion of myocytes from one another and subsequent impairment of atrial conduction 
at the microscopic level. These changes culminate in alterations in the biophysical 
properties of atrial tissue, allowing the initiation and perpetuation of AF [17, 18, 
101].

13.9	 �Heart Failure

The physiologic alterations which occur as a result of anatomical changes in HHD 
include disturbances of myocardial blood flow, the development of an arrhythmo-
genic myocardial substrate, and diastolic dysfunction. The latter is directly related 
to the degree of myocardial fibrosis and is the hemodynamic hallmark of HDD.
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When diastolic dysfunction is present, LV end-diastolic pressure increases out of 
proportion to volume and may be elevated at rest or with exertion leading to clinical 
heart failure (HF).

Although it has been assumed that LVH may lead to systolic dysfunction [102], 
it is not well known whether LVH resulting from hypertension is a major risk factor 
for systolic HF independent of coronary artery disease [103].

To date, hypertension may lead to HF due to systolic dysfunction in association 
with underlying coronary heart disease. If atherosclerotic epicardial coronary dis-
ease is present, then there may be areas of intermittent segmental flow compromise. 
With coronary occlusion and myocardial infarction, regional myofibrillar dropout 
leads to segmental wall motion abnormalities and maladaptive ventricular remodel-
ing, usually with ventricular dilation, interstitial fibrosis, and hypertrophy of surviv-
ing myocytes.

From an epidemiological standpoint, in the Framingham Heart Study, hyperten-
sion accounted for 39% of HF cases in men and 59% in women [6, 16–19]. Overall, 
about 20% of individuals with HF have antecedent ECG-LVH and 60% to 70% 
demonstrate echo-LVH [32].

13.10	 �Therapeutic Implications

HHD includes LVH, ventricular stiffness, and systolic and diastolic dysfunction. In 
addition, this syndrome operates in parallel with ischemic heart disease and ulti-
mately causes HF, if inadequately treated.

BP control and therapeutic strategies aimed to reverse HHD is associated with a 
reduction in CV risk. Nevertheless, in everyday practice and clinical trials, it is quite 
difficult to establish whether a given antihypertensive drug is superior to another in 
treating HHD.

Indeed, hypertensive subjects have often to combine several drugs with different 
mechanisms of action (i.e., diuretics, ACE inhibitors (ACE-Is), angiotensin II recep-
tor blockers (ARBs), and calcium channel blockers (CCBs)) in order to achieve an 
adequate control of BP. Subjects with LVH, who generally have higher BP levels 
than those without, frequently need treatment with multiple drugs. As a result, the 
merit of LVH regression cannot be precisely attributed to a specific drug class in 
clinical trials.

In a meta-analysis of 80 trials [104] that included 146 and 17 active treatment 
and placebo arms, ACE-Is, ARBs, and calcium channel blockers CCBs were more 
potent than diuretics and beta-blockers in reducing LV mass. Specifically, after 
adjustments for length of therapy and degree of BP lowering, the relative reductions 
in LV mass index were 13%, 11%, 10%, 8%, and 6% for ARBs, CCBs, ACE inhibi-
tors, diuretics, and beta-blockers, respectively [104]. However, some of these trials 
were small and of short duration. It has been suggested that clinical trials testing 
differences between different drugs on LVH should have a randomized double-blind 
design and should last 1 year minimum. Subjects of both genders should be enrolled 
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and there should be at least 150 to 200 patients per treatment arm. In addition, an 
anatomically validated method of cardiac imaging should be used [48].

The Studio Italiano Sugli Effetti CARDIOvascolari del Controllo della Pressione 
Arteriosa SIStolica (Cardio-Sis) [105] showed that a tight BP control beyond cur-
rently recommended levels reduces the risk for LVH (primary outcome) and major 
CV events (secondary outcome), when compared with a usual BP control. Cardio-Sis 
involved a total of 1111 nondiabetic individuals aged 55 years or older with systolic 
BP ≥ 150 mmHg who were randomly assigned to a target systolic BP < 140 mmHg 
(“usual” BP control) or <130 mmHg (tight BP control) [105]. By the end of the study, 
17.0% of the usual-control group had ECG-documented LVH compared with 11.4% 
of the tight-control group (OR 0.63; 95% CI 0.43–0.91; p = 0.013) [105].

13.11	 �Perspectives

In this overview, we have summarized the currently available experimental and 
clinical data on HHD.  It is worth noting that the potential mechanisms linking 
increased LV mass to the risk of major CV disease are still uncertain. Several factors 
seem to exert a sort of “two-way effect” by increasing LV mass and, in the same 
time, promoting development and progression of atherosclerotic lesions [106–108]. 
Elevated BP stimulates both LVH and atherosclerosis [109]. LV mass, intima-media 
thickness [110], and carotid atherosclerosis [110, 111] progress in parallel, and arte-
rial stiffness, expressed by the pulse wave velocity and partly reflecting generalized 
atherosclerosis at the level of large elastic arteries, is associated with LVH indepen-
dently of BP [4, 112]. Similarly, the mechanisms through which regression of LVH 
reduces the risk of CV disease in hypertensive subjects are still unclear [113]. 
Regression of LVH is associated with numerous cardiac benefits, such as improved 
systolic mid-wall performance, normalized autonomic function, enhanced coronary 
reserve, improved diastolic filling, and decreased ventricular arrhythmia [114]. 
Thus, it can be speculated that LVH regression may reflect a decreased level of 
activity, in the long term, of one or more factors potentially active on atherosclero-
sis. Conversely, lack of regression of LVH may be a marker for a more advanced 
progression of atherosclerosis.

In conclusion, these observations appear to strengthen the pivotal role of LV mass 
in the wide spectrum of HHD [41, 66, 84, 102, 115]. LV mass should primarily con-
sidered as a biological assay which reflects and integrates the long-term level of activ-
ity of several hemodynamic and non-hemodynamic factors potentially active on the 
heart and atherosclerosis [4, 8, 116–118]. Thus, early diagnosis of increased LV mass 
should lead to a more aggressive control of CV risk factors in hypertensive patients.
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14Perioperative Cardiac Surgery 
Hypertension

Solomon Aronson

14.1	 �Introduction

Worldwide, an estimated one in three adults has hypertension with the total number 
of affected people estimated to be greater than one billion [1–3]. Hypertension 
(HTN) is a major modifiable risk factor for cardiovascular disease that affects 
approximately 80 million (32.6%) adults in the United States. The incidence is pro-
jected to increase to approximately 38% by 2030 [4]. According to the National 
Health and Nutrition Examination Survey data from 2009 to 2012, only 54% of 
hypertensive adults in the United States had their condition under control; 77% 
were currently treated; 83% were aware of their condition; and 17% were undiag-
nosed [5]. The economic impact of morbidity and mortality resulting from hyper-
tension is substantial. The additional health-care costs exceeded $70 billion in 2010 
and are expected to soar to approximately $200 billion by 2030 [6, 7]. When sub-
jected to the stresses of cardiovascular surgery, patients with preexisting hyperten-
sion are subject to wide swings in intraoperative blood pressure and are at increased 
risk of short- and long-term adverse outcomes [8–16]. Defining appropriate BP 
guardrails remains elusive, and defining acceptable perioperative target BP thresh-
olds is a complex medical decision which depends on several factors including the 
patient physiology profile and procedural need.

Intraoperative HTN, independent of preexisting HTN, is common during cardiac 
surgery, and its management can impact outcomes. Importantly, intraoperative HTN 
occurs in patients without any prior history of HTN [17–20]. The etiology of intra-
operative HTN is multifactorial and mechanistically discrete from that of nonsurgi-
cal hypertension. Postoperative hypertension for up to 48 h post-procedure is also 
common after cardiac surgery and is related to a durable increase in sympathetic 
tone and ongoing fluid mobilization and shifts [8–10].
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Defining a “target” blood pressure (BP) during the intraoperative or postopera-
tive period is a routine part of anesthesia and cardiac surgical patient care, yet there 
is surprisingly little objective evidence on the appropriate clinical goals. Because of 
comorbidities and the magnitude of acute physiologic stress, intraoperative BP 
management in the cardiac surgical patient remains an area of active best-practice 
research. The specific impact of postoperative BP on outcomes in cardiac surgery 
patients remains poorly understood in part due to a wide variety of underlying con-
tributors to postoperative BP changes and that there is no single established defini-
tion nor standard of care for the treatment of postoperative HTN [20–25]. Gaps 
regarding our understanding of optimal clinical goals for pre-, intra-, and postopera-
tive blood pressure (BP) management in patients undergoing cardiac surgery as well 
as the consequences of achieving or failing to achieve those goals remain. In this 
setting, it is understood that preoperative hypertension is predictive of poor postop-
erative outcomes with a growing appreciation that heretofore clinically acceptable 
changes in intraoperative BP may also independently be associated with short- and 
long-term adverse outcomes. The impact of postoperative BP on outcomes follow-
ing cardiac surgery has remained less clear until a recent retrospective analysis of 
cardiac surgery patients [26].

14.2	 �BP and Outcomes During Cardiovascular Surgery

14.2.1	 �Preoperative Period

Among patients undergoing cardiac surgery, preexisting hypertension exists in over 
two-thirds of all patients. Preexisting hypertension introduces challenges, as it has 
been shown that the autoregulatory capacity of the brain [27–29] and kidney is 
impaired, potentially influencing end-organ tolerance of high or low blood pres-
sures. As a result, the therapeutic window of intra- and postoperative acceptable 
blood pressure is narrowed and shifted to the right in these patients.

There is evidence that isolated systolic hypertension (ISH) and pulse pressure 
(PP) are independently associated with adverse cardiovascular outcomes [11–16]. 
Isolated systolic hypertension (ISH) increases in prevalence with age. Evidence also 
indicates that adverse ischemic cardiac and cerebral vascular disease increase with 
age-adjusted increasing SBP. Data on the relationship of preoperative ISH to peri-
operative outcome have been reported in cardiac surgery. ISH was associated with 
a 40% increase in perioperative cardiovascular morbidity following coronary artery 
bypass graft [11]. Interestingly, this risk remained, regardless of preoperative anti-
hypertension medication, anesthetic techniques, or other perioperative cardiovascu-
lar risk factors.

In addition, among patients undergoing cardiac surgery, the mean pulse pressure 
was shown to be associated with adverse outcome. PP was greater in patients who 
suffered a stroke (81 vs. 65  mmHg) in such a manner that with each additional 
10 mmHg there was additive risk (odds ratio [OR], 1.35; confidence interval [CI], 
1.13–1.62; P  =  0.001) [15]. It was also independently observed that a renal 
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dysfunction outcome as well as death from cardiac and cerebral causes was also 
directly associated to increasing preoperative PP among these patient population 
[13, 16] (Figs. 14.1, 14.2, and 14.3).

Patients with preoperative pulse pressure hypertension or isolated systolic hyper-
tension tend to be older (70  ±  8  years) than propensity-matched normotensive 
patients [16], while patients with isolated diastolic hypertension tend to be younger 
(60 ± 9 years) than normotensive patients (64 ± 10 years; P <0.001). The incidence 
of a renal composite event occurred nearly two times as often in patients with PP 
hypertension (PPH), PP >80 mmHg, compared with patients without PPH (5% vs. 
2.9% for renal dysfunction and 5.5% vs. 2.5% for renal failure), with a progressive 
increase in the risk of renal composite above a PP threshold of 40 mmHg. Moreover, 
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patients with PPH were nearly three times more likely to have a renal-related death 
compared with those without PPH (3.7% vs. 1.1%).

14.2.2	 �Intraoperative Period

The conditions that cause an acute change in systemic hemodynamics during sur-
gery are common and include acute changes in systemic vascular resistance due to 
anesthesia depth, surgical stimulation, aortic occlusive clamping and unclamping, 
cannulation and decannulation, fluid shifts, hemorrhage, drug effects, as well as the 
inflammatory response associated with cardiopulmonary bypass (CPB) [16, 17]. 
These changes commonly occur in the setting of insufficient intravascular volume 
and likely effect patients differently, depending on their underlying vascular physi-
ology and compliance, fibrinolytic activity, hypercoagulability, vasomotor reactiv-
ity, and/or plaque rupture vulnerability [30, 31]. It is possible that the autoregulatory 
range is distinctly different across individuals with an altered autoregulatory range 
leading to organ hypoperfusion in some individuals, despite what may be deemed to 
be a “clinically acceptable” BP.

The active management of BP during cardiovascular surgery has been reported 
to be extremely common (88% of all cases). Perhaps this behavior reflects that 
poorly controlled BP during surgery is not tolerated in part because of safety con-
cerns related to ischemia modulation, the need for aortovascular stress-strain 
modulation (e.g., clamping, unclamping), maintaining adequate perfusion condi-
tions during CPB, and balancing these pressure-perfusion requirements with surgi-
cal bleeding concerns throughout surgery. It is well understood that hypertension 
increases myocardial oxygen consumption and left ventricular end-diastolic pres-
sure and contributes to subendocardial hypoperfusion and myocardial ischemia. It 
also increases the risk of stroke, neuron-cognitive dysfunction, and renal dysfunc-
tion and contributes to surgical bleeding from anastomotic sites [32–34]. In addi-
tion, poorly controlled BP during surgery can trigger hyper-inflammatory and 
procoagulation conditions, including platelet activation, which may compromise 
microvascular blood flow [35, 36].

Combined events
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Fig. 14.3  The composite 
outcome of stroke, death, 
and myocardial infarction 
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proportionate to and 
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from [14]; Eur J 
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2008;33:971–976). X axis 
represents age ranges by 
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Over three million intraoperative blood pressure evaluations were analyzed in 
over 7500 patients [18]. Systolic blood pressure variability outside a predefined 
upper and lower blood pressure range was measured and tested to predict 30-day 
mortality in patients undergoing cardiac surgery (Fig. 14.4). It was observed that 
mean duration of systolic excursion [outside a range of 105  mmHg (lower)–
130 mmHg (upper)] predicted 30-day mortality (OR = 1.03 per minute, 95% CI 
[1.02–1.39], P <0.0001). The same hypothesis was tested and independently con-
firmed in the ECLIPSE trials [19] where BP excursion outside a target systolic 
range was found to be associated with increased postoperative mortality and 
increased postoperative renal injury. Intraoperative systolic blood pressure variabil-
ity was again determined in over 7000 patients and characterized by frequency, 
magnitude (mmHg), duration (min), area under curve (mmHg*min), and % change 
from baseline [37]. Multivariable linear regression demonstrated an association 
between % changes in SBP below baseline to % delta creatinine (p <0.0016). The 
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percent change of intraoperative systolic BP below presenting preoperative or base-
line BP is associated with the percent increase change from baseline in creatinine 
observed following cardiac surgery (Fig. 14.5). Intraoperative BP variability was 
also associated with delayed time to extubation and increased postoperative length 
of stay (LOS) [38].

14.2.3	 �Postoperative Period

Postoperative hypertension has an arbitrary definition but is understood to have an 
increased incidence of neurologic deficits and operative mortality. Typically, 
patients who exhibit postoperative hypertension have some form of hypertension 
prior to surgery. Postoperative hypertension can be due to a variety of causes, 
including pain, anxiety, hypercarbia, hypercapnia, hypothermia, volume overload, 
and bladder distension. Studies have found an elevation in plasma epinephrine and 
norepinephrine concentrations, suggesting an enhanced sympathetic response to 
surgery [39–42]. This evidence points to a sympathetic trigger in the development 
of postoperative hypertension.

We conducted a retrospective outcome analysis [26] of all cardiac surgery 
patients cared for at a single institution (Charité Hospital, Berlin, Germany) over a 
7-year period (2006–2012). Patients were admitted to the cardiac surgical intensive 
care unit post-surgery, and BP targets were defined and adhered to by strict protocol. 
Consequences of success or failure at meeting those targets on medical outcomes 
and health resource utilization were evaluated in 5225 patients. Although 90% of 
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patients had systolic BP values less than 130 mmHg upon arrival to the ICU, 70% 
were ultimately treated for high blood pressure within the first 24 h of their postop-
erative ICU stay. Among the patients who required postoperative antihypertensive 
treatment, 78% had a history of preoperative HTN. Patients treated for high blood 
pressure compared to matched case normotensive patients had a higher in-hospital 
mortality rate (4.97% vs. 1.32%, p <0.001) and a longer hospital stay (p = 0.024). 
In hypertensive patients, serum creatinine levels from postoperative day (POD) 1 
through POD 7 compared to baseline were increased, and postoperative renal dys-
function occurred more often (25.3% vs. 19.7%, p = 0.027).

14.3	 �Discussion

BP monitoring during the perioperative period more than any other single parameter 
remains a core tenet of provider vigilance, and BP management remains an impor-
tant focus of perioperative clinical care. Despite this ubiquity, however, BP manage-
ment considerations are not well supported by a robust evidence base. Existing 
evidence suggest that heretofore clinically acceptable guidelines for intraoperative 
and/or postoperative BP management after cardiac surgeries deserve reexamination, 
as adverse outcomes were observed while adhering to commonly endorsed defini-
tions and management strategies. Due to diverse patient demography, coexisting 
conditions, and the wide variety of underlying contributors to the perioperative BP 
alterations, to date, no single established definition nor standard of care for the treat-
ment of perioperative HTN exists.
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15Hypertension: Supravalvular Aortic 
Stenosis
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15.1	 �Introduction

Supravalvular aortic stenosis (SVAS) is an uncommon form of congenital left ven-
tricular outflow tract obstruction, defined as an obstruction originating at the superior 
margins of the sinus of Valsalva, just above the level of the coronary arteries [1, 2]. 
Supravalvular aortic stenosis was first described in 1930 by an Italian pathologist and 
may present as part of a syndrome, most commonly Williams syndrome, or as a sepa-
rate non-syndromic genetic entity [3]. Supravalvular aortic stenosis is caused by a 
defect in the elastin gene (ELN), and Williams syndrome is caused by a microdeletion 
of the chromosome region 7q11.23 that includes ELN. Although SVAS is a rare con-
genital cardiac lesion during fetal and early postnatal life, the stenosis may become 
progressively more severe with age [4]. An hourglass deformity is most commonly 
described, or more rarely, a diffuse narrowing may be seen [1]. Hypertension has been 
reported in up to 70% of patients with SVAS, and the risk of hypertension increases 
over time [5, 6]. A clear etiology is not always evident, but diffuse aortic narrowing 
and/or renal artery stenosis should be considered. Lifelong follow-up and blood pres-
sure monitoring is paramount in the treatment of such patients.

15.2	 �Incidence

The incidence of Williams syndrome is 1 in 10,000 live births [7]. Reported rates of 
SVAS in infants with Williams syndrome vary in the literature between 45 and 75% 
[6, 8–10]. Although no statistical data from population studies exist, overall 
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estimated incidence of SVAS including both syndromic and non-syndromic forms 
is between 1:20,000 and 50,000 live births [11, 12].

15.3	 �Etiology

Williams syndrome, also known as Williams–Beuren syndrome, is caused by a 
microdeletion of 1.5–1.8  million base pairs at 7q11.23 and encompasses 26–28 
genes [13], including ELN [14]. Williams et al. initially described the syndrome in 
1961 as a triad which involved SVAS, learning disability, and dysmorphic facial 
features [15]. Hemizygosity of ELN coding for the elastin protein is responsible for 
the vascular abnormalities found in Williams syndrome [16], and the remaining 
genes account for the other typical phenotypic features. Although familial variants 
can occur, the majority of cases are caused by de novo microdeletions [17]. Variable 
expressivity and reduced penetrance are observed in Williams syndrome [18].

Non-syndromic supravalvular aortic stenosis is a separate genetic entity [19, 20] 
that also features disruption of ELN [21, 22]. It occurs as a consequence of haploin-
sufficiency of ELN. It is caused most commonly by a microdeletion [21–23]. Point 
mutations have also been reported [24, 25], and less commonly, it may occur as a 
result of missense mutations, which account for 10% of cases [11]. ELN is composed 
of 34 exons, spans 45 Kb of genomic sequence, and produces a transcript of 3.5 Kb 
comprising 2.2  Kb of coding sequences. Non-syndromic SVAS is an autosomal 
dominant disease [21], with incomplete penetrance and variable expressivity [11].

15.4	 �Pathophysiology

Reduced elastin synthesis is observed in both syndromic and non-syndromic forms 
of SVAS. This occurs in conjunction with vascular smooth muscle cell proliferation, 
although the exact pathways linking elastin deficiency to vascular cell proliferation 
have yet to be identified [14]. Histologic features in the ascending aorta of affected 
individuals include diseased media, increased number of diseased hypertrophied 
smooth muscle cells, increased collagen content, and elastic tissue in the form of 
broken and disorganized elastin fibers [26, 27].

15.5	 �Classification: Anatomy

Supravalvular aortic stenosis has two morphologic anatomic forms on echocardio-
graphic studies interrogating the ascending aorta, each of which includes evidence 
of stenosis distal to the valvular cusps [28]:

	1.	 An hourglass deformity of the ascending aorta with a corresponding luminal nar-
rowing at a level just distal to the coronary artery ostia is most commonly 
described and occurs in 50–75% of patients.
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	2.	 A diffuse narrowing of variable length of the ascending aorta may also occur and 
is reported in <25% of patients and is often associated with stenosis of the bra-
chiocephalic vessels [2, 29].

15.6	 �Clinical Presentation

Following from the reports of Williams and Beuren et  al., it was realized that 
Williams syndrome can present with a constellation of distinctive phenotypic char-
acteristics [15, 30].

Infants with Williams syndrome may have low growth velocities both pre- and 
postnatally. Microcephaly occurs in almost one third of infants [31]. Feeding diffi-
culties and failure to thrive are common in the first 2 years of life, but in some cases, 
children may present with short stature later in childhood [32].

Typical facial features include short upturned nose, flat nasal bridge, long phil-
trum, wide mouth, large lips, micrognathia, a stellate pattern of the irises, widely 
spaced teeth, and periorbital fullness [5].

Cardiovascular lesions are present in up to 93% of Williams syndrome patients 
presenting in the first year of life [33]. Supravalvular aortic stenosis may be sus-
pected when an ejection systolic murmur radiating to the carotids +/− a thrill in 
the suprasternal notch is appreciated on clinical exam. Depending on the severity 
of the lesions, a large number of patients can be followed up clinically without 
immediate intervention. Table  15.1 outlines a follow-up strategy devised by 
Collins et al. and modified from the AHA guidelines [8, 34]. The Coanda effect 
may also be present when four-limb blood pressures are assessed, with blood 
pressure disparity between arms and right upper arm pressure often greater than 
the left by a magnitude of 20 mmHg. This effect is caused by the tendency of a jet 
stream, in this case the jet caused by supravalvular aortic stenosis to adhere to a 
wall. Blood flow through the stenotic region has preference for the brachioce-
phalic vessels and results in increased right upper limb blood pressure compared 
to the left [35].

Sensorineural hearing loss is common, is often progressive in nature, and can be exac-
erbated by conductive hearing loss secondary to recurrent middle ear infections [36]. 

Table 15.1  Cardiovascular evaluation and follow-up of patients with Williams syndrome [34]

Examination every 3 months during the first year of life, then annually until 5 years of age, and 
biennially or triennially thereafter
Four-extremity blood pressures at each visit until adolescence
ECG at each visit to assess LVH
24-h ambulatory ECG at 1 year of age, annually until 5 years of age, and then biennially
Echocardiography at presentation, at least annually until 5 years of age, and then as needed if 
heart disease is present
CT or MRI of the aorta if severe SVAS is present; imaging of head and neck vessels should also 
be considered if diffuse SVAS
Renal ultrasound if hypertensive or if abdominal bruits are auscultated. Ultrasound of carotids 
if carotid bruits are present
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Some children have connective tissue abnormalities with lax skin and hypermobile joints 
on exam. Hernias and diverticula may also be found.

Children may present with developmental delay [37], and most children have mild 
to moderate learning disabilities, but their verbal strength exceeds a reported mean IQ 
of 50–60 [38, 39]. Later in childhood, children are often described as overfriendly or 
hypersocial, with a characteristic ebullient “cocktail personality.” However, behav-
ioral problems are common, including inattention and hyperactivity, and almost 50% 
of children may be diagnosed with autism spectrum disorders [40–42].

Idiopathic hypercalcemia will be present in 50% of infants and resolves during 
childhood [8, 43]. Other associations are delayed toilet training, nocturnal enuresis 
[44], and precocious puberty [45, 46].

ECGs in patients with Williams syndrome may display abnormalities of cardiac 
repolarization, long corrected QT intervals (QTc), and electrical criteria for right 
ventricular hypertrophy and/or left ventricular hypertrophy [47].

15.7	 �Associated Lesions

Renal artery stenosis: In the reported incidence, between 7 and 58% of patients with 
Williams syndrome [8, 48, 49] and 40% of patients with hypertension and Williams 
syndrome have renal artery stenosis [8].

Aortic valve abnormalities: The localization of the lesion has implications and in 
50% of individuals can result in premature degeneration of the aortic valve.

Pulmonary branch stenosis: Both Williams syndrome and non-syndromic supra-
valvular aortic stenosis are associated with pulmonary branch stenosis [1]. Peripheral 
pulmonary artery stenosis improves with time, and SVAS either progresses or 
remains stable in Williams syndrome [6, 34, 50]. Supravalvular aortic stenosis asso-
ciated with peripheral pulmonary stenosis has also been reported in other genetic 
syndromes such as Alagille syndrome 1, neurofibromatosis type 1, and Noonan syn-
drome type 1 [3].

Coronary artery disease: Pressure of the left ventricle is raised based on severity of 
the obstruction. Coronary arteries proximal to the obstruction have the same pressure 
resulting in dilatation, hypertrophy, intimal thickening, and premature atherosclerosis 
[8]. As a result, there is increased resistance to blood flow and elevated left heart pres-
sure, and concentric left ventricular hypertrophy results from obstruction [35] and 
exacerbates ischemia. Premature coronary artery disease has been reported in 28–45% 
of patients with SVAS [1, 51]. Chest pain or dyspnea secondary to SVAS with coronary 
artery abnormalities and sudden death during exercise have also been reported [52].

15.8	 �Molecular Diagnosis

Ewart was the first to use fluorescent in situ hybridization (FISH) analysis to dem-
onstrate hemizygosity of the ELN locus in patients with Williams syndrome [53], 
and FISH is now the standard diagnostic tool when Williams syndrome is 
suspected.
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In non-syndromic SVAS, FISH analysis is also the investigation of choice to 
detect ELN deletions which are the most common mutations in SVAS. Mutation 
screening will detect point mutations. Family screening and preclinical diagnosis 
are possible. However, genetic counseling is limited by the large variety of muta-
tions that can cause SVAS [11]. Also the severity of the disease varies widely within 
families, which further limits the value of genetic counseling [12, 23, 54].

15.9	 �Hypertension

The prevalence of hypertension in Williams syndrome is highly variable in the lit-
erature ranging between 5 and 70% [6, 14, 17, 48, 55–60]. Also, screening for 
hypertension is not universal in this population, which suggests that hypertension is 
probably underestimated in patients. In a recent cohort study by Bouchireb et al., 
the mean age when hypertension was diagnosed was 4.7 years [49]. Over 90% of 
patients diagnosed with hypertension were asymptomatic at the time of diagnosis; 
however, a number of patients presented with ischemic stroke and myocardial 
infarctions. Therefore, screening, early diagnosis, and treatment are important in 
order to reduce the already important vascular risk in patients with Williams syn-
drome [49].

Hypertension is often related to the lack of vessel distensibility [61]. Daniels 
et  al. first described the causal relationship between vascular abnormalities and 
hypertension in Williams syndrome [62]. Elastin levels are responsible for the dis-
tensibility of the aorta during systole and subsequent recoil during diastole. 
Hydrodynamic energy is stored during systole and released during diastole known 
as the Windkessel effect [63], and loss produces a wide pulse pressure with elevated 
systolic blood pressure and reduced diastolic aortic pressures.

In many patients, hypertension without SVAS is found which suggests that 
hypertension in Williams syndrome is multifactorial and not solely related to 
SVAS. The incidence of renal artery narrowing in Williams syndrome is as high as 
60% [48, 64] and is an important cause of hypertension in patients with Williams 
syndrome. Wessel et al. found that mean heart rates are higher over time in both 
normo- and hypertensive patients with William syndrome [56], suggesting that a 
high sympathetic activity might play a role in hypertension. Broder et al. found that 
hypertension is significantly more common in William syndrome patients with a 
history of infantile hypercalcemia [59], but no direct causal relationship between 
hypercalcemia and hypertension has been described.

There is little information focusing on medical treatment of hypertension in chil-
dren with Williams syndrome, and there are no international guidelines, and data-
based recommendations for antihypertensive therapies cannot be made [14]. 
Calcium channel blockers and angiotensin-converting enzyme (ACE) inhibitors 
have been frequently used in many retrospective series [6, 17, 49]. However, thera-
peutic options for systemic hypertension in patients with Williams syndrome must 
take into consideration the potential presence of renal artery stenosis. Thus, the use 
of ACE inhibitors is contraindicated unless renal artery stenosis has been defini-
tively excluded. The link between infantile hypercalcemia and hypertension 
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suggests a role for calcium channel blockade, and calcium channel blockers of the 
dihydropyridine type have been reported to be effective for the treatment of hyper-
tension in patients with Williams syndrome [59]. Some authors recommend beta-
blockers as first-line agents, as sympathetic overactivity may contribute to the 
development of hypertension [56]. The use of beta-blocker therapy for hypertension 
has the attractive additional benefit of potentially decreasing the risk of ventricular 
arrhythmia or an increased adrenergic response, as well as sudden death, in patients 
with prolongation of the QTc [34].

Beta-blocker and calcium channel blocker drugs have been utilized frequently in 
several of the retrospective series [6, 56, 60, 65], and although medical treatment in 
Williams syndrome can be challenging so that multidrug regimens may be required 
for adequate control of blood pressure, either agent may be appropriate as a first-
line treatment.

Patients with hypertension resistant to drug therapy should be studied for reno-
vascular etiology. Percutaneous transluminal renal angioplasty has been performed 
for the treatment of renal artery stenosis in patients with Williams syndrome [66]. 
Angioplasty can be an effective treatment when the stenosis is isolated, but success 
rates for cure or reducing the need for medical treatment are highly variable in the 
literature and at present are not encouraging [49, 66].

Approximately 20% of patients with WS will require surgical or transcatheter 
interventions for cardiovascular abnormalities, the majority of which will be needed 
by 15 years of age [9]. Surgical intervention is most commonly undertaken for SVAS 
because transcatheter balloon angioplasty has been found to be ineffective [9, 67, 68]. 
Surgical approaches to SVAS have evolved over time and include the use of an 
inverted Y-shaped patch [29] and the modified Brom (three-sinus) technique. The lat-
ter has been shown to have excellent outcomes without the need for reintervention and 
is increasingly being used [69]. The overall survival of patients with SVAS was esti-
mated at 90 ± 7%, 84 ± 9%, and 82 ± 10% at 5, 10, and 20 years, respectively [70]. 
Freedom from late reoperation in the same cohort was estimated at 97 ± 4%, 93 ± 7%, 
and 86 ± 10% at 5, 10, and 20 years, respectively. However, in those patients with the 
diffuse type of SVAS, as many as 35% will require reintervention [71].

�Conclusion
Hypertension is common in patients with Williams syndrome, and screening is 
important. Etiology is multifactorial, and causes including SVAS and renal artery 
stenosis need to be investigated. Medical treatment may be challenging, and cal-
cium channel blockade or beta-blockers should be considered as first-line agents.
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16Coarctation of the Aorta

Harsimran S. Singh, Omar Kalim, Mark Osten, 
Lee N. Benson, and Eric M. Horlick

16.1	 �Introduction

Aortic coarctation is an uncommon but partially reversible cause of secondary 
hypertension. In this chapter, we will discuss the pathophysiology, epidemiology, 
and clinical presentation. We will review the known mechanisms for hypertension 
development in coarctation. Finally, we will consider medical, surgical, and inter-
ventional treatment strategies for coarctation and their effects on hypertension and 
overall prognosis.
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16.2	 �Epidemiology and Associations

Aortic coarctation is defined as a narrowing or stenosis in an aortic segment. Most 
commonly, discrete coarctation is focal and juxtaductal, near the insertion of the 
ligamentum arteriosum in the upper segment of the descending thoracic aorta (i.e., 
aortic isthmus). Other anatomic presentations of coarctation include diffuse aortic 
arch hypoplasia, abdominal aortic stenosis, and even aortic atresia when the obstruc-
tion is absolute (Fig. 16.1).

Coarctation represents 6–8% of congenital heart defects (CHD) with an inci-
dence of 1 in 2500 live births and a male-to-female predominance of about 1.5–1 
[1]. It can occur either as an isolated lesion or in association with bicuspid aortic 
valve (BAV), Turner’s syndrome, patent ductus arteriosus (PDA), mitral valve 
abnormalities, ventricular septal defect (VSD), and additional left heart obstructive 
lesions (e.g., Shone’s complex or hypoplastic left heart syndrome) [2–6]. Abdominal 
aortic coarctation also referred to as midaortic syndrome typically includes aortic 
hypoplasia, and it is associated with renal artery stenosis [7]. The term simple 
coarctation implies an absence of additional intracardiac pathology (other than BAV 
or PDA), whereas complex coarctation is associated with additional forms of CHD.

16.3	 �Histology and Genetics

Morphologically, the tissue ridge (often circumferential) that comprises focal coarc-
tation intrudes into the aortic lumen leading to obstruction. While there remains 
controversy as to its development, there are several hypotheses including (1) hemo-
dynamic effects in development from low flow state and (2) abnormal migration of 
ductal tissue [2].

a b

ii

i

iii

i ii iii

DA

Fig. 16.1  Classification of coarctation of the aorta. (a) Coarctation can be (i) preductal, occurring 
proximal to the ductus arteriosus (DA); (ii) juxtaductal, occurring at the level of the DA; and (iii) 
postductal, occurring distal to the DA. (b) Aortic arch interruption is essentially a complete form 
of coarctation, in which there is a gap between the ascending and descending thoracic aorta. The 
interruption can be (i) distal to the left subclavian artery, (ii) between the left carotid and left sub-
clavian arteries, and (iii) between the innominate and left carotid arteries. Printed with permission 
from artist Mr. Talmur Ahmed
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The hemodynamic hypothesis considers abnormal ductal flow and/or unfavor-
able angulation of ductal insertion to the isthmus during fetal development that 
leads to coarctation upon ductal closure at birth [2]. A mechanism of medial infold-
ing and migration of ductal tissue with surrounding secondary cystic medial necro-
sis has been supported by pathology specimens finding a sling of ductal tissue at the 
isthmus and even in hypoplastic arch tissue [6].

Several studies have focused on the maldevelopment of neural crest cells that 
could broadly tie in coarctation with the company that it keeps (e.g., outflow tract 
and noncardiac vascular anomalies) [8, 9]. The Notch signaling pathway appears to 
have an important role in cardiovascular development. Defects in the Notch path-
way have been linked with neural crest abnormalities and cardiovascular defects in 
both mice and humans, including aortic arch malformations [10].

16.4	 �Mechanism of Hypertension Development

When the degree of aortic obstruction is significant, areas below the level of coarc-
tation see decreased blood pressure and perfusion relative to proximal arterial beds. 
In discrete juxtaductal coarctation, this leads to reduced blood pressure to abdomi-
nal organs including the kidneys and lower extremities in comparison to the upper 
extremities, coronary arteries, and cerebral vasculature. The lack of renal blood flow 
leads to activation of the renin-angiotensin system (RAS) thereby increasing periph-
eral afterload and intrarenal sodium uptake (Fig. 16.2).

To some extent the body can mitigate hypoperfusion by development of collater-
als later in life that arise from above the coarctation segment and provide perfusion 
past the obstruction. There are two anatomic sources of collateral circulation that 
can develop (1) anterior circulation, bilateral internal mammary arteries connecting 
to external iliacs via epigastric arteries, and (2) posterior circulation, thyrocervical 
arteries to descending aorta via intracostal arteries [11]. There is considerable varia-
tion in collateral development that is not well understood.

There are two proposed mechanisms of hypertension development in coarcta-
tion: (1) direct consequence of mechanical obstruction and (2) maladaptation of the 
RAS [2]. The mechanical obstruction of coarctation may mandate a higher blood 
pressure to allow for systemic flow through the increased systemic vascular resis-
tance (SVR) inherent in aortic obstruction or from small-caliber collateral vessels. 
Based on this mechanism, the treatment of secondary hypertension would be resec-
tion of the coarctation to allow unhindered aortic flow. However, this mechanism 
alone does not adequately explain the variability in hypertension reduction after 
coarctation repair or the late hypertension that can develop in patients years later 
[12]. In addition, the severity of obstruction does not always correlate with hyper-
tension severity [2].

This humoral theory of RAS activation secondary to renal underperfusion is con-
jectured to be the primary mechanism of late hypertension and vascular abnormali-
ties in coarctation patients [2]. Animal studies transplanting one kidney proximal to 
the coarctation segment demonstrate significant reduction in SVR and blood pres-
sure [12, 13]. This explains why measured SVR is often increased even distal to the 
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obstruction. Nonetheless, human and animal studies of coarctation have not consis-
tently documented increased renin levels [14].

16.5	 �Clinical Presentation and Diagnosis

It is the specifics of (1) coarctation location (e.g., arch, juxtaductal, or abdominal); 
(2) severity of stenosis, ranging from mild obstruction to total occlusion with tho-
racic collaterals; and (3) concomitant cardiac and vascular abnormalities that dictate 

Angiotensin II

Angiotensin II increases blood pressure
by:

1. Vasoconstriction
2. Stimulating secretion of
    aldosterone, which increases
    Na+ reabsorption, further
    increasing blood pressure

↓ blood flow distal to narrowing

↓ perfusion of organs, including renal
hypoperfusion

↑ afterload due to narrowing of
aorta  

↑ systolic pressure in left
ventricle and proximal aorta

Angiotensinogen
Renin

Angiotensin I
ACE

Renin-Angiotensin-
Aldosterone System

Coarctation of
the aorta

RA

RV

DAO

LV

LA

PA

AO

Fig. 16.2  Mechanism of hypertension in patients with coarctation of the aorta. (1) The narrowed 
aorta results in decreased blood flow distal to the obstruction, which leads to hypoperfusion of the 
organs, including the kidneys. The kidneys respond by activating the renin-angiotensin-aldosterone 
axis to normalize blood pressure. This results in normalization of blood pressure in the lower 
extremities with adequate perfusion of the organs but at the expense of increased blood pressure in 
the upper body. (2) The narrowed aorta also forces the left ventricle to contract more forcefully to 
maintain cardiac output, thus increasing systolic pressure in the left ventricle and proximal aorta
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the age of clinical presentation and severity of illness. Symptoms can range from 
patients being asymptomatic with a murmur to a constellation of hypertension, clau-
dication, hypertensive headaches, and congestive heart failure. In cases where the 
coarctation segment involves the left subclavian artery ostium, reversal of left ver-
tebral flow at high outputs can lead to subclavian steal syndrome.

Most coarctation patients will be diagnosed in childhood based on physical 
exam, clinical symptoms, or as part of a secondary hypertension work-up. There are 
some patients with a combination of minimal symptoms, adequate collateral devel-
opment, and/or inadequate access to informed health care who are not diagnosed 
until much later in life. Patients with inadequate collateral development across the 
coarctation will be more symptomatic with greater propensity for distal hypoperfu-
sion. Abdominal aortic coarctation nearly always is diagnosed in neonatal period 
and can present with life-threatening neonatal hypertension.

One notable extracardiac vascular association of coarctation is the increased 
incidence of saccular berry aneurysms (3–5%) in the circle of Willis. This coupled 
with upper extremity and cerebrovascular hypertension creates the potential for 
aneurysmal rupture, which can be fatal or result in a debilitating stroke. Any sugges-
tive neurologic symptoms (e.g., acute severe headache or sudden neurologic loss) 
should trigger evaluation for this condition by CT, MRI, or angiography. Given the 
clinical association, many advocate routine lifetime screening for cerebral aneu-
rysms, even in the absence of symptoms.

A thorough cardiovascular exam should assess for evidence of LV pressure over-
load/hypertrophy through a prominent LV point of maximal impulse, decreased 
ventricular compliance via the presence of an S4, severe obstructive coarctation 
with or without collateral flow by the presence of systolic and/or continuous mur-
murs on the front chest, back, or abdomen. As BAV is found in 80% of coarctation 
patients, there may be signs of the bicuspid valve including a systolic click and a 
murmur of regurgitation or stenosis. Pulses should be palpated in all extremities and 
may be absent or diminished in the femoral artery, dorsalis pedis, and posterior tibi-
alis. Simultaneous pulse measurement of brachial and femoral artery can reveal a 
brachiofemoral delay implying obstruction to lower extremity blood flow.

All patients presenting with hypertension or prehypertension, especially at an 
early age, should have four-extremity blood pressure measurements upon initial eval-
uation. In patients without significant aortic obstruction or vascular disease, the prin-
ciple of pressure amplification ensures that the lower extremities have higher blood 
pressure readings than upper extremities. In patients with coarctation or obstructive 
peripheral vascular disease, noninvasive assessment of lower extremity blood pres-
sure can be reduced to absent. In general, four-extremity blood pressure should also 
help rule out aortic arch involvement of the coarctation if both upper extremity blood 
pressures are equal. However, there is a higher incidence in coarctation of anomalous 
right subclavian artery from descending aorta (~5%) compared to standard popula-
tion. In the absence of aortic imaging, this can make it challenging for the unaware 
clinician to distinguish juxtaductal coarctation from arch hypoplasia.

Aortic imaging is crucial for coarctation diagnosis and evaluation including 
echocardiography, CT, and MRI, though classic rib notching and thoracic collaterals 
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and aortic patterns from pre- and post-stenotic dilation can be appreciated on chest 
X-ray. Echocardiography will reveal associated congenital heart defects in addition 
to visualizing bicuspid aortic valves with corresponding aortopathy of the root and 
ascending aorta. In adults, suprasternal notch views of the aortic arch and descend-
ing aorta can help visualize the juxtaductal region on 2D echo and quantify coarc-
tation gradients using continuous-wave Doppler. In general, peak gradients from 
echo overestimate the gradients achieved by extremity blood pressures or in the 
catheterization laboratory. When coarctation is severe, pulse-wave Doppler of the 
abdominal aorta can display a dulled systolic peak and increased diastolic flow.

16.6	 �Medical Therapy in Repaired Coarctation

There are a few studies with conflicting findings to guide treatment of early or late 
hypertension in repaired coarctation patients [15–17]. Prior to coarctation repair, 
blood pressure control can be challenging and require polypharmacy. Blood pres-
sure treatment may be limited by underperfusion below the coarctation level, leading 
to symptoms such as claudication or signs of underperfusion of abdominal organs.

Given the presumed mechanisms of hypertension development in coarctation, it 
is not surprising that ACE inhibitors, ARBs, and beta blockers are often first-line 
therapies. In two open-label prospective trials, enalapril and candesartan were 
slightly more effective in lowering blood pressure and reducing LV mass index 
compared to atenolol [16, 17]. In another study, metoprolol was more effective than 
candesartan to effectively lower blood pressure [15]. As such there is no definitive 
evidence as to the choice of antihypertensive. Similar to the state of affairs in hyper-
tension as a whole, the goal to treat high blood pressure may supersede choice of 
therapeutics.

16.7	 �Surgical and Interventional Treatment of Coarctation

In adults, the majority of patients followed with aortic coarctation have either 
unrepaired disease with a new diagnosis or recurrent coarctation with prior 
repair. Indications for treatment include a gradient or blood pressure differential 
≥20 mmHg or a peak gradient <20 mmHg in the presence of significant collaterals. 
Additional considerations include symptoms related to coarctation, upper extrem-
ity hypertension, hypertensive response to exercise, and pathologic left ventricular 
hypertrophy [18, 19]. The European Society of Cardiology guidelines provide a 
Class IIb recommendation for treatment when the aortic narrowing is ≥50% of the 
aortic diameter at the diaphragm, regardless of pressure gradient or the presence of 
hypertension [19, 20].

Both surgical and interventional approaches are viable therapies for coarctation; 
the choice of modality depends on patient age and size, technical suitability, con-
comitant cardiovascular abnormalities, and institutional experience [20]. In neo-
nates, surgery remains the standard of care with operative survival ~99%. In 
children, stenting is possible when the aorta can accommodate a stent that maybe 

H.S. Singh et al.



239

expanded to larger adult diameters in the future. In adults, stenting and surgery are 
considered depending on the anatomic details and comorbid conditions though 
coarctation surgery in adults does have higher perioperative risk. Surgical repair has 
been shown to have 91% survival at 20 years when surgery is performed <14 yo and 
79% survival when >14 yo [21].

There are multiple surgical approaches that have been used to repair coarctation 
(Fig. 16.3)—each technique has pros and cons (Fig. 16.4a) [22]. Crafoord first per-
formed aortic resection with end-to-end anastomosis in 1944 though recurrence 
rates were over 50% [20, 23]. This technique was later modified by Amato in 1977 
to include a broader longitudinal resection and extended anastomosis. In many 
modern-day institutions, extended end-to-end repair remains the preferred surgical 
technique with low mortality and low restenosis rates of 4–11% [22, 24].

Additional surgical methods include aortic patch augmentation described by 
Vosschulte in 1961 which allows for the resection of longer coarctation segments 
with low recoarctation rates of 5–12% [25]. However, there is an increased risk of 
aneurysm formation along the patch in 18–50% of patients [22]. Subclavian flap 
repair was developed by Waldhausen and Nahrwold in 1966 that uses left subcla-
vian tissue to augment the lumen. This negates the need for patch material, however 
does leave the scepter of subclavian steal or arm claudication in the future [26]. 
Interposition grafts (either homografts or Dacron based) were used as early as 1951 
by Gross. There are inherent limitations to growth with this technique in children, 
and there is a risk of aneurysm formation at the suture lines of the graft [22]. Still 
this technique is used successfully in adults [27]. Ascending-to-descending aorta 
bypass grafts can intuitively avoid the complication of recoarctation; however this 
technique does entail its own concerns of long-term graft patency [28].

a b c d e f

Fig. 16.3  Different types of surgical repair for aortic coarctation. (a) End-to-end anastomosis. 
The coarctation segment is resected and the aorta is reapproximated. (b) Patch augmentation. The 
aorta is incised longitudinally and covered with a patch of polytetrafluoroethylene. (c) Interposition 
graft. (d) Ascending-to-descending aorta bypass graft. (e) Subclavian flap. After performing an 
extended aortotomy, the left subclavian artery is sewn over the isthmus of the aorta. (f) Extended 
aortic arch repair. This is done when there is severe transverse arch hypoplasia. Permission to use 
illustrations obtained from Dr. J. P. M. Hamer at the University of Groningen, The Netherlands
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Fig. 16.4  Prognosis of patients with coarctation of the aorta. (a) Type of aortic coarctation repair 
stratified by decade. (b) Long-term survival rates of patients with aortic coarctation repair (~70%) 
vs. age- and sex-matched population (~90%). (c) Comparison of hypertension pre- and postopera-
tively at various time intervals of follow-up. Permission to use figures obtained from Brown ML 
et al (2013) J Am Coll Cardiol 62(11):1020–1025
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While balloon angioplasty remains a feasible option for focal coarctation, there 
are higher rates of recurrence (50% vs. 21%) compared to surgery [29]. Other pub-
lications have found balloon angioplasty of discrete coarctation to be a durable 
therapy with reported follow-up from 8 to 15 years in small prospective cohorts [30, 
31]. Compared to angioplasty alone, stenting helps prevent elastic recoil of the 
aorta, requires less aortic overexpansion in treatment (thus decreasing risk of aneu-
rysm formation), and still allows the possibility of future re-dilation [32–35]. In 
many institutions, covered stents have become a preferred strategy over bare metal 
stents [36]. The aortic covering can help mitigate many aortic wall complications 
(e.g., intimal tear or intramural hematoma). In the USA, the Cheatham Platinum 
(CP) stent (NuMED, Hopkinton, NY) has been approved by the FDA in 2016 for 
treatment of aortic coarctation (Fig. 16.5).

a b

c d

Fig. 16.5  (a–d) Interventional repair of coarctation with covered CP stent. Once the stent is put 
in position and fully dilated, normal blood flow is restored. An alternative to stent placement is 
balloon dilation, which is preferred in children and neonates due to concerns about stent size—
smaller stents cannot undergo serial dilation to keep pace with somatic growth, and larger stents 
may not fit into the femoral artery of smaller patients
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There is limited prospective data comparing surgery with stenting [32, 37, 38]. 
Several cohorts and one meta-analysis have suggested comparable rates of proce-
dural success with overall reduction in periprocedural morbidity and length of hos-
pital stay tempered by slight increase in rates of restenosis or reintervention [39–41]. 
The Congenital Cardiovascular Interventional Study Consortium has published the 
largest prospective comparisons of stent, balloon, and surgery [20, 42]. Stenting had 
a lower short-term complication rate (12.5%) compared to surgery (25%) and bal-
loon angioplasty (44%). Complications include moderate or severe re-obstruction, 
aortic wall injury, and stent fracture. Total re-interventions were higher with stent-
ing compared to other modalities though the majority of these were staged interven-
tions for further stent expansion in native coarctation [20].

16.8	 �Hypertension After Coarctation Treatment

Surgical or interventional repair remains the mainstay treatment for native or recur-
rent coarctation. These interventions change the natural history of disease with 
improved survival and decreased vascular complications of MI and stroke though 
life expectancy curves of even repaired coarctation remain below in those of age- 
and gender-matched population (Fig. 16.4b) [2, 43, 44]. Its effects on hypertension, 
however, are more complex.

Both surgical and interventional repair of coarctation have been shown to 
decrease hypertension in the short-to-medium term or make it more manageable 
with pharmacotherapy (Fig. 16.4c) [45–47]. While preprocedural hypertension will 
regress or improve, especially if coarctation repair is performed earlier in life, many 
patients remain at risk for developing systemic arteriopathy including late hyperten-
sion [21, 48, 49].

After surgical or interventional repair, one national cohort study suggested 
a 20-year freedom from hypertension of only 51% and 79%, respectively [50]. 
Coarctation had a statistically significant odds ratio of 15.7 for late development 
of hypertension and 6.6 for stroke (Fig. 16.6) [48]. In Hager et al. cohort study of 
nearly 500 operated patients, prevalence of hypertension was over 50%, most related 
to duration of follow-up, as nearly all patients >55 yo were hypertensive [51, 52].

Even in adult patients who had successful coarctation repair with “normal range” 
resting blood pressures, accentuated systolic blood pressure and pulse pressure 
response was observed during daytime activities with higher LV mass measure-
ments [53]. This was determined to be partly secondary to upper limb conduit artery 
dysfunction, finding a reduced brachial artery vascular response to both endothelium-
dependent flow-mediated dilation and glyceryl trinitrate administration compared 
to age- and gender-matched controls. Even in normotensive patients after coarcta-
tion repair, vascular studies have suggested a shift in the relationship between vas-
cular resistance and central venous pressure, suggesting a reset of the integrated 
cardiopulmonary-arterial baroreflex [54].
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Fig. 16.6  The age group distribution of the number (a) and the incidence (b) of patients with 
coarctation of the aorta and systemic hypertension. (c) The age group distribution of cerebrovascu-
lar accident (CVA). Permission to use figures obtained from Wu MH et al (2015) Am J Cardiol 
116(5):779–784
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Another potential contributor to development of late hypertension in treated 
coarctation may be residual juxtaductal coarctation gradient or mild transverse aor-
tic arch hypoplasia (TAA). Cases of de novo coarctation or repaired coarctation 
with residual gradients have found stenting to eliminate even mild coarctation 
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(clinical gradient of ~20  mmHg) to help reduce systolic blood pressure in the 
medium term [47, 51].

After repair, a number of patients will appear to have TAA on imaging in the 
absence of any resting arm-leg gradient. While traditionally this is considered 
benign, there is one study linking it to late hypertension with an odds ratio 6.4 [55]. 
It is not known whether the operative risks of a more aggressive surgical arch recon-
struction would ameliorate this increased risk of late hypertension.

This potential for late hypertension and late vascular complications demands 
careful monitoring and follow-up of all coarctation patients. Early emphasis of life-
style modifications including optimal weight, diet, and aggressive pharmacologic 
treatment of coarctation should be the mainstay. Management of other reversible 
risk factors such as smoking cessation and hyperlipidemia should be emphasized 
from an early age.

�Conclusion
Aortic coarctation remains a rare but important secondary cause of hypertension. 
The diagnosis should be considered and can be excluded through simple physical 
examination and confirmed through vascular and cardiac imaging techniques. 
Surgical and interventional repair of aortic coarctation is corrective with good 
medium- and long-term outcomes. While coarctation repair will ameliorate 
hypertension, these patients remain at risk for the development of late hyperten-
sion and future vascular abnormalities. All coarctation patients should receive 
lifelong care and risk factor modification.
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17Atrial Fibrillation and Hypertension:  
Two Entities That Usually Coexist

S. Giannitsi, M.S. Kallistratos, L.E. Poulimenos, 
and A.J. Manolis

17.1	 �Epidemiology of Atrial Fibrillation

Atrial fibrillation is the most common sustained arrhythmia in humans, and its 
prevalence is 1–2% of the general population worldwide [1]. It affects six million 
people in Europe, while it is expected that its incidence will increase up to 2.5-fold 
over the next 50 years. It is estimated that atrial fibrillation poses a high economic 
burden for the healthcare system, since it is responsible for up to one third of the 
hospitalizations for cardiac arrhythmias. Subjects, who have reached the age of 40, 
present a lifetime risk of 25% for developing atrial fibrillation, and its incidence 
increases as the population ages [2]. Atrial fibrillation affects significantly morbid-
ity and mortality (two- to sevenfold increased risk for stroke, two- to threefold 
increased risk for dementia, and threefold increased risk for heart failure), while it 
is responsible for approximately 20% of all strokes. Finally, undiagnosed or silent 
episodes of atrial fibrillation may be the main cause of cryptogenic strokes [3–5].

17.2	 �Etiology of Atrial Fibrillation

Different risk factors are responsible for the development of atrial fibrillation. 
Among the most established and well identified are age, hypertension (which forms 
a physiopathologic substrate favoring atrial fibrillation), coronary artery disease 
(>20% of the patients with AF), heart failure (30% of the patients with AF), valvular 
disease, congenital heart disease, hyperthyroidism, chemotherapeutic agents, obe-
sity, diabetes mellitus, chronic obstructive pulmonary disease, sleep apnea, and 
chronic kidney disease [6]. Hypertension (HTN) is the most common cause of atrial 
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fibrillation encountered in clinical practice. Epidemiologic studies have shown that 
HTN is associated with 1.8-fold increased risk of developing new-onset atrial fibril-
lation and 1.5-fold risk of progression to permanent atrial fibrillation. In an analysis 
of the Framingham Heart Study, men and women with hypertension had 50 and 
40% higher risk of developing atrial fibrillation, respectively. In many different 
atrial fibrillation clinical trials, 49–90% of the participants suffered from HTN, indi-
cating that these two entities usually coexist. Hypertension is the most prevalent 
concomitant medical condition in patients with atrial fibrillation, in both Europe 
and the USA [7].

17.3	 �Hypertension and Atrial Fibrillation: Pathophysiological 
Mechanism and Linkage

Hypertension per se increases the risk of atrial fibrillation by about twofold, and it 
is likely to be a reversible causative factor of atrial fibrillation. Untreated or subop-
timal treated hypertension leads to left ventricular hypertrophy, one of the most 
important subclinical organ damages responsible for major cardiovascular events 
including atrial fibrillation. In the Framingham Heart Study, the levels of the sys-
tolic blood pressure and the duration of hypertension predicted the adverse atrial 
remodeling [8]. Moreover, pulse pressure was associated with the incidence of atrial 
fibrillation [9]. Many studies gave proof that hypertension is an independent risk 
factor for atrial fibrillation. In an analysis of 5000 individuals in the Cardiovascular 
Health Study, it was found that patients with 10 mmHg higher baseline systolic 
blood pressure had an 11% increased risk of atrial fibrillation over the 3-year fol-
low-up. Once left ventricular hypertrophy is established, left ventricular compliance 
decreases; stiffness, filling pressures, as well as left ventricular wall stress increase; 
and as a consequence the sympathetic nervous system and the renin-angiotensin-
aldosterone system are activated.

Moreover, in the atria, alterations characterized by proliferation and differentia-
tion of fibroblasts into myofibroblasts, enhanced connective tissue deposition, fibro-
sis, intracellular substrate accumulation, and inflammatory changes, lead to 
structural remodeling. These structural alterations result in electrical dissociation 
between atrial muscle bundles and local conduction heterogeneities that facilitate 
the initiation and perpetuation of atrial fibrillation. Over the time, tissue remodeling 
promotes and maintains atrial arrhythmia. Atrial remodeling consists of three com-
ponents: electrical remodeling mainly due to intracellular changes in calcium han-
dling, contractile remodeling, and structural tissue remodeling which needs weeks 
or months to occur and affects the function of the heart muscle [10, 11].

17.4	 �Consequences of Atrial Fibrillation

Loss of atrial contraction and atrioventricular synchrony affects the hemodynamics 
during atrial fibrillation. It may reduce the cardiac output up to 15%, may induce 
tachycardiomyopathy, or may cause functional mitral regurgitation (due to atrial 
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dilatation and hence mitral annular dilatation or due to the tachycardia-induced 
ventricular dilatation). Decreased blood flow and stasis are mainly responsible for 
the thrombotic material that usually exists in the left atrial appendage. This is a 
major risk factor for stroke. Atrial fibrillation is responsible for 15–20% of all isch-
emic strokes [12], increases the risk of stroke four- to fivefold, and is an indepen-
dent risk factor for stroke severity and recurrence. Atrial fibrillation also affects the 
cognitive function and the quality of life of patients [13]. It is known that the coex-
istence of atrial fibrillation and hypertension triples the annual risk for stroke.

17.5	 �Diagnosis

Atrial fibrillation may present with palpitations, dizziness, anxiety, weakness, and 
shortness of breath or may be silent and identified in an incidental ECG or by car-
diac rhythm management devices (pacemakers-ICDs). More serious symptoms like 
chest pain, severe dyspnea, or hemodynamic instability may be attributed to the 
serious comorbidities such as ischemic heart disease or heart failure. When there is 
suspicion for atrial fibrillation, a 12-lead ECG should be performed, and it is a fact 
that a considerable number of clinicians still need to improve their ability to recog-
nize this type of arrhythmia [14]. Complete history, physical examination, blood 
pressure measurement, echocardiography, and basic laboratory workup should be 
performed in every patient with newly diagnosed atrial fibrillation. Atrial fibrillation 
is classified as first diagnosed (irrespective of the duration or the presence and 
severity of the related symptoms), paroxysmal (self-terminating usually within 
48 hours or in fewer than 7 days), persistent (that lasts more than 7 days or requires 
termination by cardioversion either with drugs or by direct current cardioversion), 
long-standing persistent (that lasted more than 1 year when patient decided to adopt 
a rhythm control strategy), and permanent (the presence of arrhythmia is accepted 
by the patient and the physician) [15].

17.6	 �Risk Stratification and Prevention of Thromboembolism 
from Atrial Fibrillation in Hypertensive Patients: 
Therapeutic Management

The main complications of atrial fibrillation are thromboembolism and impair-
ment of the left ventricular function. History of stroke or transient ischemic attack, 
increasing age, hypertension, and structural heart disease are identifiable predictors 
of stroke in patients with atrial fibrillation. The simplest risk stratification scheme 
was CHADS2 score which has been lately revised as CHA2DS2VASc score (each 
letter stands for congestive heart failure, hypertension, age ≥75 years (doubled), 
diabetes mellitus, prior stroke or TIA or thromboembolism, vascular disease, age 
65–74, and sex category (i.e., female sex), respectively) that is used by the current 
guidelines and identifies more precisely patients at low risk for developing throm-
boembolic episodes. Patients with CHA2DS2VASc >1 should take antithrombotic 
therapy either with vitamin K antagonist or new oral anticoagulants (oral direct 
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thrombin inhibitor or oral factor Xa inhibitors). In any case a discussion with the 
patient on the advantages and disadvantages of each approach and safety issues 
should be obligatory. Moreover, the risk of bleeding should be calculated before 
starting anticoagulation therapy. A helpful tool for this purpose is the HAS-BLED 
score (the HAS-BLED mnemonic stands for hypertension, abnormal renal and 
liver function, stroke, bleeding, labile INRs, elderly, drugs or alcohol). A result 
≥3 indicates a patient with high risk for bleeding, and some caution and regular 
review of the patient are needed. Nevertheless, the most intriguing fact is that con-
ditions as hypertension or age confer to both an increased thrombotic risk as by the 
CHA2DS2VASc score and an increased hemorrhagic risk as assessed by the HAS-
BLED score. In patients receiving anticoagulant therapy, optimal control of their 
blood pressure has the further advantage of reducing bleeding events.

A lot of trials have been conducted investigating patients with atrial fibrillation 
but none to estimate on purpose the direct effect of antihypertensive agents on the 
risk of atrial fibrillation. The results available are derived only from meta-analyses 
and post hoc analyses of randomized trials [16].

17.7	 �Major Antihypertensive Drug Classes  
and Atrial Fibrillation

Secondary analyses of trials showed a benefit in primary prevention of atrial fibril-
lation when using renin-angiotensin-aldosterone system (RAAS) blocking agents as 
antihypertensives, but one should keep in mind that these trials were not designed 
to investigate atrial fibrillation. Blockade of the RAAS may prevent left atrial dila-
tion, atrial fibrosis, atrial dysfunction, and slowing of conduction velocity or may 
have antiarrhythmic properties. Their effect on atrial remodeling and their antifi-
brillatory, antifibrotic, and anti-inflammatory properties may explain the reduction 
in new-onset atrial fibrillation [17]. Some studies have found that ARBs (angio-
tensin receptor blockers) (losartan, valsartan) are better in primary prevention of 
atrial fibrillation than β blockers (atenolol) (LIFE study: the Losartan Intervention 
For End Point Reduction in Hypertension) [18]. In addition, one meta-analysis has 
shown a statistically significant 25% reduction in RR of incident atrial fibrillation 
[19]. Likewise, several studies with calcium channel blocker (amlodipine) had 
shown similar results in patients with heart failure. On the contrary, these findings 
were not confirmed by other studies that included high-risk patients, such as the 
PRofeSS [20] (Telmisartan to prevent recurrent stroke and cardiovascular events) 
and TRANSCEND (Telmisartan Randomized AssessmeNt Study in ACE iNtolerant 
subjects with cardiovascular Disease) [21], where the authors didn’t find a protec-
tive effect of ARBs vs. placebo on new-onset atrial fibrillation (although the abso-
lute numbers of participants were low and the detection power of the analysis may 
have been insufficient). Moreover, in the ACTIVE I (Atrial fibrillation Clopidogrel 
Trial with Irbesartan for prevention of Vascular Events) [22] trial, irbesartan did 
not improve survival in patients with established atrial fibrillation. In ONTARGET 
study [23] (Ongoing Telmisartan Alone and in Combination with Ramipril Global 
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End Point Trial), ARBs showed no difference from ACEs in the prevention of new-
onset atrial fibrillation.

As for the secondary prevention, meta-analyses of some small randomized con-
trolled trials showed a significant 45–50% reduction in the relative risk (RR) of 
recurrent atrial fibrillation, but these recurrences could not be avoided when ARBs 
were coadministered with antiarrhythmic therapy in CAPRAF, GISSI-AF, and 
ANTIPAF trials [24].

A meta-analysis has shown that beta-blockers in heart failure demonstrate a 27% 
reduction in atrial fibrillation onset [25]. As it was mentioned above, in hyperten-
sion trials like the LIFE study, the use of ARB was superior to beta-blocker in reduc-
ing the risk of recurrent atrial fibrillation. Beta-blockers are recommended as 
antihypertensive therapy in patients with atrial fibrillation and high ventricular rates. 
There is a possibility that beta-blockers maintain sinus rhythm, especially in heart 
failure and in cardiac postoperative settings. Beta-blockers may act by preventing 
adverse remodeling and ischemia and by reducing the sympathetic system activa-
tion. However, recurrence rate of atrial fibrillation is high even under beta-blocker 
prophylaxis, and they are no longer considered as effective rhythm control agents 
(except sotalol which should be considered as a class III antiarrhythmic rather than 
as a beta-blocker).

Calcium channel blockers have antihypertensive properties and could theoreti-
cally attenuate the calcium overload in tachycardia-induced electrical remodeling 
of the atria. Different trials, for example, as the VALUE study [26], have com-
pared CCBs with other antihypertensive agents for their effectiveness in prevent-
ing new-onset atrial fibrillation, nevertheless with disappointing results. On the 
other hand, several studies with calcium channel blocker (amlodipine) had shown 
a statistically significant reduction in RR of incident atrial fibrillation in patients 
with heart failure.

Diuretics have not been adequately investigated for their ability to prevent new-
onset atrial fibrillation. They have significant antihypertensive effects, but their 
potential proarrhythmic risk due to hypokalemia or hypomagnesemia should not be 
overlooked.

Patients with primary hyperaldosteronism have a 12-fold higher risk of develop-
ing atrial fibrillation than their matched counterparts with essential hypertension. 
The role aldosterone antagonists have not been studied in humans, but preliminary 
results of ongoing trials indicate that the use of spironolactone reduces the inci-
dence of recurrent atrial fibrillation in hypertensives with mild left ventricular dys-
function. In patients with systolic heart failure and mild symptoms, eplerenone 
reduced the incidence of new-onset atrial fibrillation [27].

While antihypertensive therapy is associated with a significant 10% relative 
reduction in the risk of atrial fibrillation, this effect is confined to patients with heart 
failure, with no clear benefit in population without heart failure according to a large 
recent meta-analysis [28].

Current ESH/ESC guidelines for the management of arterial hypertension 
[18] suggest that the use of ACE inhibitors and angiotensin receptor blockers in 
patients who suffer from hypertension and are at high risk of new or recurrent atrial 

17  Atrial Fibrillation and Hypertension: Two Entities That Usually Coexist



254

fibrillation may be beneficial (class IIa Level of evidence C). The same indication 
is given for the initiation of beta-blockers or mineralocorticoid receptor antagonists 
in hypertensive patients in whom heart failure coexist. In any case this indication is 
based on consensus of opinion of the experts or small studies, retrospective studies, 
and registries, and the results and benefits (in terms of AF prevention) are conflict-
ing and controversial.

�Conclusion
Hypertensive patients are at high risk of developing atrial fibrillation, and patients 
with atrial fibrillation often suffer from high levels of blood pressure. Both of 
these entities may confer on serious cardiovascular outcomes. Awareness of this 
increased risk warrants a closer follow up of these patients, treatment of atrial 
fibrillation with appropriate regimens and control of the levels of blood pressure 
as mentioned above.
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18Sleep Disturbances/Sleep Apnea

Gianfranco Parati, Carolina Lombardi, Krzysztof Narkiewicz, 
Jacek Wolf, and Juan Eugenio Ochoa

18.1	 �Effects of OSAS on Mechanisms of Integrated 
Cardiovascular Regulation

18.1.1	 �Effects of OSAS on Neural Reflex Mechanisms 
of Cardiovascular Modulation

Recurrent episodes of airway obstruction during sleep lead to significant respiratory 
and ventilatory changes (hypoxemia, reoxygenation, hypercapnia, changes in pul-
monary volume, reduced intrathoracic pressures) with important effects on mecha-
nisms of integrated autonomic cardiovascular modulation, in particular, activation 
of central and peripheral chemoreflexes and dysfunction of arterial, cardiopulmo-
nary, and cardiac baroreflexes. The overall effect is a marked sympathetic activa-
tion, a major determinant of the autonomic and hemodynamic alterations observed 
in OSAS patients (Fig. 18.1).
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In normal physiological conditions, control of BP levels is achieved through 
a complex combination between central and reflex neural influences, leading to a 
continuous modulation of efferent sympathetic and parasympathetic nerve activity 
and the associated activity of neurohormonal systems primarily regulated by the 
hypothalamus. The sympathetic activation in OSAS is largely explained by stimula-
tion of the peripheral and central chemoreflexes, triggered by the reductions in arte-
rial oxygen content and by hypercapnia, respectively. The importance of arterial 
chemoreceptors has been highlighted by studies showing their relevant influence on 
neural circulatory control even during conditions of normoxia [1]. Indeed, elimina-
tion of the influences of arterial chemoreceptors using 100% oxygen in a double-
blind study showed that in patients with OSA, suppression of the chemoreflexes 
slowed heart rate and decreased MSNA (Fig. 18.2).

Furthermore, the autonomic, hemodynamic, and ventilator responses to periph-
eral chemoreceptor activation by hypoxia are selectively potentiated in patients with 
OSA [3].

Moreover, in OSAS, the sustained chemoreflex activation, the related adrenergic 
overactivity, and the resulting hypertension may blunt and/or reset arterial and car-
diopulmonary reflexes which in turn may lead to chemoreflex potentiation [3, 4].

In addition, repetitive sympathetic activation and blood pressure (BP) surges 
during sleep may also cause cardiac baroreflex impairment leading to a reduced 
sympathoinhibition and to impaired cardiac parasympathetic modulation [5, 6] fur-
ther contributing to adrenergic overdrive and rise in BP levels (Fig.  18.3). In 
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Fig. 18.1  Effects of OSAS on mechanisms of cardiovascular regulation; the resultant neural, 
humoral, metabolic, and hemodynamic alterations; and their consequences for cardiovascular risk. 
CV cardiovascular, LV left ventricular, RAAS renin-angiotensin-aldosterone system, ROS reactive 
oxygen species, ET-1 endothelin-1, NOS nitric oxide synthase, NO nitric oxide, LVH left ventricu-
lar hypertrophy, BP blood pressure, NOMD nitric oxide-mediated dilatation, CKD chronic kidney 
disease, CHF congestive heart failure, IMT intima-media thickness
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particular, the observation of a reduced spontaneous cardiac baroreflex sensitivity 
(as assessed by the sequence method) and the absence of 24-h baroreflex modula-
tion (i.e., blunted increase in baroreflex sensitivity during sleep compared with its 
values during wakefulness) in OSAS patients [5] have provided indirect support to 
the concept that baroreflex dysfunction and not only chemoreceptor stimulation by 
hypoxia may contribute to the acute and long-term sympathetic activation in OSAS 
patients (Fig. 18.3). The depressed cardiac baroreflex sensitivity during sleep may 
thus in turn contribute to the pathophysiology of BP elevation in OSAS patients.

This concept has been further supported by the results of interventional studies 
in OSAS patients showing a significant improvement in baroreflex sensitivity after 
long-term implementation of CPAP treatment [7–9].

Further evidence that sleep-related breathing disorders may induce alterations 
in autonomic cardiovascular modulation has been provided by a study in untreated 
subjects with OSAS of different severity indicating that excessive daytime sleepi-
ness is accompanied by lower baroreflex sensitivity and significantly higher low-
to-high frequency power ratio of heart rate variability (which is believed to be a 
marker of sympatho-vagal balance in cardiac regulation) during the different stages 
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Fig. 18.2  Recordings of muscle sympathetic nerve activity (MSNA) in a single patient with 
obstructive sleep apnea (OSA) during administration of 100% oxygen (top) and room air (bottom). 
MSNA, mean arterial pressure (MAP), and heart rate (HR) decreased during administration of 
100% oxygen but did not change during administration of room air. Taken from Narkiewicz et al. 
[2] by permission
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of nocturnal sleep as compared not only to control subjects but also to OSAS 
patients without daytime somnolence [10] (Fig. 18.4).

The consequence of chemoreflex activation and impairment of arterial, cardiac, 
and cardiopulmonary reflexes is sympathetic nervous system activation, which is 
considered a major pathophysiological mechanism underlying the alterations in BP 
regulation reported in OSAS (Fig. 18.1). Normal sleep is associated with important 
changes in BP and heart rate (HR) which are dependent upon sleep stage and appear 
to be mediated primarily by changes in autonomic circulatory control [11]. During 
non-REM sleep, there is a reduction in HR, BP, and sympathetic nerve traffic. This 
overall inhibition of the cardiovascular system increases progressively from Stage I 
to Stage IV. During Stage IV sleep, HR, BP, and sympathetic activities are lowest. 
During REM sleep, there is a marked increase in sympathetic activity about twofold 
the levels seen during wakefulness. In patients with OSA, sympathetic activity and 
BP during sleep are determined primarily by the responses to apneas. The duration 
of apnea and the level of oxygen desaturation are key factors in causing sympathetic 
activation during the episodes of obstructive sleep apnea. During the apnea, sympa-
thetic activity rises gradually. At the end of the apnea, when oxygen desaturation 
and carbon dioxide retention are most marked, sympathetic activity is greatest [12]. 
On release of the airway obstruction and resumption of breathing, increased cardiac 
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output together with the vasoconstricted peripheral vasculature results in marked 
increases in BP levels.

Since most patients have repetitive apneas throughout the night, the sympathetic-
hemodynamic profile of these subjects is determined by the apneas and consists of 
repetitive increases in sympathetic activity and surges of BP with an important 
interindividual variability [5, 13, 14].

These disturbances in HR and BP oscillatory profiles may be secondary to sev-
eral factors including autonomic responses to sleep and apnea, as well as altered 
patterns of respiration.

The activation of the sympathetic nervous system in OSAS has been consistently 
demonstrated by studies implementing direct techniques for assessment of sympa-
thetic nervous system activity (i.e., recording of efferent postganglionic muscle 
sympathetic nerve activity via microneurography (MSNA) and assessment of nor-
epinephrine plasma levels. In these reports an increase in central sympathetic drive 
was positively correlated with important increases in BP levels during resumption 
of ventilation after each apneic episode [12] (Fig. 18.5a). Moreover, sleep fragmen-
tation, related to repeated arousals after each apnea-hypopnea event, might play an 
additional role in this context.
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powers of RRI (LF⁄HF), in healthy controls without sleep-related breathing disorders (SRBD, 
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by permission

18  Sleep Disturbances/Sleep Apnea



264

Of remark, the sympathetic activation in OSAS subjects is not only limited to 
nighttime but may persist even after resuming normal breathing pattern during day-
time wakefulness, despite normal arterial oxygen saturation and carbon dioxide lev-
els [12, 15] (Fig. 18.5b). Reinforcing this concept, several long-term implementation 
of continuous positive airway pressure (CPAP) resulted in marked reductions in 
sympathetic nerve traffic [12] and BP levels [16] both during nighttime and daytime 
wakefulness [17], further supporting the pathogenetic role of the sympathetic acti-
vation in explaining BP elevation in OSAS.

18.1.2	 �Effects of OSAS on Humoral Regulatory Mechanisms

The frequent association of OSAS with hyperaldosteronism reported in patients 
with resistant hypertension has led to suggest that activation of renin-angiotensin-
aldosterone system and OSAS may interact on a pathophysiological basis contrib-
uting to BP elevation [18–20]. Although evidence is still needed to determine the 
causality of this association, it has been hypothesized that OSAS may contribute to 
the pathogenesis of resistant hypertension by stimulating aldosterone secretion [21] 
(Fig. 18.1). This concept has been supported by several studies showing positive 
and significant correlations between plasma aldosterone concentrations and OSAS 
severity in patients with resistant hypertension but not in normotensive subjects 
nor in treated hypertensives with BP controlled [22]. It is likely that aldosterone 
excess by promoting fluid accumulation in the neck, and thus increasing upper air-
way resistance, may increase the severity of OSAS and the related increase in BP 
levels [23, 24]. Indirect evidence favoring this concept has been provided by inter-
ventional studies in subjects with OSAS and resistant hypertension where addi-
tion of spironolactone to current antihypertensive treatment resulted in significant 
reductions in the severity of OSA (i.e., reductions in apnea-hypopnea index and the 
number of central and obstructive events) on top of its BP-lowering effects [25]. 
Additional evidence is still needed, however, to consistently determine a causal 
association between aldosterone excess in OSAS and resistant hypertension.
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Fig. 18.5  (a) Recordings of sympathetic nerve activity (SNA), respiration (RESP), and blood pres-
sure (BP) during 3 min of Stage II sleep, showing incessant oscillations in BP and SNA in response 
to the repetitive OSAs. These oscillations occurred continuously during sleep, throughout all sleep 
stages. (b) Recordings of SNA during wakefulness in patients with OSAS and matched controls 
showing high levels of SNA in patients with OSA. Taken from Somers et al. [12], by permission
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18.1.3	 �Effects of OSAS on Endothelial Function

The intermittent hypoxia, the associated neural and humoral alterations and repeated 
BP surges during OSA episodes may contribute to impairment in endothelial func-
tion. In turn, the inhibition of nitric oxide (NO) production, decreased vasodilata-
tion, and increased vasoconstriction associated with endothelial dysfunction may 
substantially contribute to BP elevation (Fig. 18.1). Several studies assessing bra-
chial artery endothelium-dependent flow-mediated dilation (FMD, an indirect 
marker of endothelial NO-mediated reactivity) and forearm blood flow responses to 
different stimuli (i.e., infusion of acetylcholine, sodium nitroprusside, nitroglyc-
erin) have shown that compared to healthy controls, patients with OSAS often 
exhibit an impairment of resistance-vessel endothelium-dependent vasodilation [26, 
27]. Even when accounting for important confounding factors such as body weight, 
brachial artery FMD has been shown to be significantly lower in normal-weight 
OSAS patients than in OSAS-free controls [28]. Remarkably, interventional studies 
have shown substantial improvements in different indices of endothelial function 
following implementation of regular CPAP use in subjects with hypertension and 
OSAS [27–29] which indirectly supports a role for endothelial dysfunction in the 
pathogenesis of OSAS-related arterial hypertension.

On the other hand, repetitive episodes of hypoxia/reoxygenation during transient 
cessation of breathing in OSA may also reduce nitric oxide (NO) availability, pro-
moting vascular endothelial inflammation and elevated oxidative stress [26, 27, 
30–32] (Fig. 18.1). When compared to OSAS-free controls and regardless of the 
presence of obesity, OSAS patients have been shown to present a reduced expres-
sion of endothelial NO synthase (eNOS) and phosphorylated eNOS (proteins which 
regulate basal nitric oxide production and activity) as well as an increased expres-
sion of nitrotyrosine (a marker of oxidative stress) and of NFk-B (a marker of 
inflammation) [28]. Most importantly, after 1  month of regular treatment with 
CPAP, flow-mediated dilation, expression of eNOS, and phosphorylated eNOS 
were significantly increased, whereas expression of nitrotyrosine and nuclear fac-
tor-K B were decreased [28]. It has also been proposed that intermittent hypoxia/
hypercapnia by increasing production/release of endothelin-1 (ET-1), i.e., a potent 
vasoconstrictor with mitogenic effects [33], may contribute to the pathogenesis of 
hypertension. Altered vascular responsiveness to neural mechanisms, as a result of 
vasoconstriction and/or structural vascular changes, may interfere with BP regula-
tion. This has been supported by experimental studies in rats showing significant 
increases in plasma levels of endothelin-1 and higher BP levels in rats exposed to 
intermittent hypoxia (i.e., cycles of hypoxia/hypercapnia of 8  h a day during 
11 days) compared to those breathing normoxic air [34]. Data from several studies 
have indicated that selective activation of inflammatory pathways may be an addi-
tional important molecular mechanism for the pathogenesis of arterial hypertension 
in OSAS. This has been supported by translational studies showing a selective acti-
vation of the pro-inflammatory transcription factor NFk-B in HeLa cells of OSAS 
patients exposed to intermittent hypoxia/reoxygenation cycles [35]. In addition, 
compared to healthy controls, subjects with OSAS showed significantly higher lev-
els of circulating pro-inflammatory cytokines (i.e., tumor necrosis factor-alpha and 
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the adaptive factor erythropoietin) as well as higher levels of circulating neutro-
phils. Interestingly, levels of tumor necrosis factor-alpha (TNF-alpha) were normal-
ized after 6  weeks of continuous treatment with CPAP [35]. Other studies have 
shown that compared to healthy controls, serum levels of inflammatory markers 
(i.e., C-reactive protein, CRP) are significantly higher in OSAS patients and inde-
pendently associated with OSAS severity [36]. Besides, interventional studies have 
shown significant reductions in serum levels of C-reactive protein and interleukin-6 
following implementation of regular CPAP treatment [37]. Finally, evidence has 
also been provided that OSAS may induce activation of adhesion molecules partici-
pating in inflammation. This has been supported by case-control studies showing 
significantly higher levels of intercellular adhesion molecule-1 (ICAM-1), vascular 
cell adhesion molecule-1 (VCAM-1), and L-selectin in OSAS patients compared to 
healthy controls [38].

18.1.4	 �Effects of OSAS on Vascular Function

OSAS may induce not only endothelial dysfunction and inflammation but also 
important changes in vascular structure and function. This has been supported by 
studies showing abnormal myocardial perfusion, attenuated brachial artery reactiv-
ity, and reduced cutaneous perfusion response in OSAS patients as compared to 
healthy controls [29]. A systematic review of relevant studies has also indicated 
an independent effect of OSAS on arterial stiffness, which in turn may contribute 
to elevation in BP levels and to resistant hypertension [39] (Fig. 18.1). A number 
of studies have consistently reported significantly higher values of carotid-femoral 
pulse wave velocity (cfPWV) (which is considered the “gold-standard” measure of 
aortic stiffness), in patients with OSAS compared to healthy controls [39, 40]. Of 
note, the increase in cfPWV has been shown to be directly related to the severity of 
OSAS and to be even higher in subjects with OSAS and associated hypertension or 
in the presence of other cardiovascular risk factors [41]. In Asian populations, several 
studies implementing brachial-ankle PWV (baPWV) have also reported significant 
associations between OSAS and increased arterial stiffness [42]. Even when com-
parisons have been performed between individuals with or without OSAS entirely 
free from other CV risk factors, an independent effect of OSAS on arterial stiffening 
has been reported [43]. Remarkably, in randomized interventional studies, effective 
treatment of OSAS with CPAP has been associated with significant decreases in 
arterial stiffness [44, 45]. In one of such reports, CPAP was also associated with sig-
nificant reductions in sympathetic nerve activity and in ambulatory BP (ABP) levels 
and with significant improvements in arterial baroreflex sensitivity [44].

18.1.5	 �Metabolic Effects of OSAS

A number of studies have confirmed the association between OSAS and metabolic 
alterations (i.e., insulin and leptin resistance) which in turn may contribute to altera-
tions in glucose metabolism and to the pathogenesis of arterial hypertension 
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(Fig. 18.1). Although alterations in glucose metabolism are thought to be the conse-
quence of other conditions associated with OSAS (i.e., an increased BMI, metabolic 
syndrome, and/or type 2 diabetes) rather than being OSAS outcomes, evidence has 
been provided that OSAS, independently of the presence of other confounding fac-
tors, is associated with alterations in glucose metabolism which may indeed favor 
development of type 2 diabetes [46]. In addition, interventional studies have shown 
the efficacy of regular CPAP treatment in improving the abnormalities in glucose 
metabolism in OSAS patients [46]. Compared to healthy controls, OSAS patients 
have also been shown to have a higher degree of insulin and leptin resistance [47–49] 
even after accounting for body fat content [50]. Although the above-mentioned met-
abolic alterations should theoretically contribute to the pathogenesis of hypertension 
in OSAS, their relative contribution to BP elevation independently of other concomi-
tant factors still needs to be further explored.

18.2	 �Autonomic and Hemodynamic Responses to Impaired 
Integrated Cardiovascular Control in OSAS

The marked sympathetic activation resulting from chemoreceptor activation and 
impaired baroreflex control of circulation in OSAS causes significant increases in 
central sympathetic drive to the heart and peripheral circulation and in plasma cat-
echolamines, leading to important autonomic and hemodynamic changes (vasocon-
striction, elevated blood pressure and blood pressure variability, elevated heart rate, 
and reduced heart rate variability). Activation of the RAAS and the associated 
hyperaldosteronism also contribute to the hemodynamic imbalance in OSAS by 
causing fluid retention. Of note, the magnitude of these alterations has been directly 
associated to the severity of OSAS. This not only promotes future development of 
hypertension but also makes hypertension occurring in OSAS more severe and 
resistant to antihypertensive treatment [51–54] and associated with profound altera-
tions in day-to-night BP changes (i.e., marked increases in BP levels and in BP 
variability during nighttime) [55, 56]. Of remark, alterations in cardiovascular vari-
ability in OSAS are not limited to the nighttime hours, during which OSA episodes 
occur, but are often sustained also during the daytime. Evidence of this has been 
provided by studies implementing direct assessment of MSNA indicating that the 
sympathetic overdrive in OSAS is persistent also during daytime, and by case-
control studies using 24-h ABPM confirming that ABP levels in subjects with OSAS 
are elevated not only during the nighttime sleep but also during daytime wakeful-
ness [57–59].

Reinforcing this concept, other studies have also found increase in central sym-
pathetic drive to be associated with alterations in circadian BP variation (i.e., 
absence of nocturnal BP fall or increase in BP at night) and with nocturnal hyper-
tension in OSAS patients [60]. Additional studies implementing noninvasive assess-
ment of cardiovascular variability either in the time or in the frequency domain 
(spectral analysis) along with direct estimation of central sympathetic drive through 
MSNA, have provided evidence that autonomic cardiovascular modulation and car-
diovascular variability in OSAS are impaired even during wakefulness. Overall, 
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these studies have shown that compared to controls, OSAS patients are character-
ized by elevated HR and average BP levels, increased blood pressure variability 
(BPV), and reduced heart rate variability (HRV) when applying spectral analysis to 
BP and HR recordings. In OSAS subjects a relative predominance of the LF com-
ponent over the HF component of RR interval has been shown, the LF/HF ratio of 
RR variability being significantly increased in patients with moderate-to-severe 
OSAS versus controls and versus patients with mild OSAS. Notably, the degree of 
these alterations has been shown to be directly related to the severity of OSAS [61] 
(Fig. 18.6).

It was also shown that compared to healthy controls, patients with OSAS exhibit 
faster HR, increased BP variability, and markedly elevated muscle sympathetic 
nerve activity not only during nighttime sleep but also during wakefulness when 
breathing patterns are normal and no evidence of hypoxia or hypercapnia is apparent 
(Fig. 18.7).

Of note, apnea-hypopnea index was inversely correlated with RR interval and 
directly related with both MSNA and systolic BP variability. In turn, MSNA was 
inversely correlated with RR interval and RR variability and directly related to sys-
tolic BP variability [61].

Evidence from recent studies has indicated that OSAS increases nighttime BP 
variability in patients with hypertension, the increase being proportional to the 
severity of OSAS [56]. This may be another pathway linking sleep abnormalities to 
cardiovascular disease. Finally, the abnormalities in indices of autonomic cardio-
vascular modulation observed in normotensive OSAS patients, in whom absolute 
BP levels were similar to those of non-OSAS subjects, have led to suggest that an 
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abnormal cardiovascular variability may precede, and possibly even predispose to, 
the development of hypertension in patients with OSAS [61].

18.3	 �Epidemiological Evidence Supporting the Association 
of Elevated BP with OSAS

OSAS is not only a recognized cause of secondary hypertension [51–54] but is also 
associated with a high prevalence of alterations in BP regulation, which make 
hypertension more severe and resistant to antihypertensive treatment. A number of 
studies either in the general population or in cohorts of OSAS patients [52, 54, 62–
65] have indicated a variable frequency of hypertension in subjects with OSAS 
which may range from 35 to 80% [66, 67]. Conversely, when properly investigated, 
OSAS has been shown to be present in up to 40% of hypertensive subjects [23]. 
Although the association between OSAS and hypertension frequently overlaps with 
the presence of other cardiovascular risk factors such as increased BMI and obesity 
[68–70], longitudinal studies have supported the association between OSAS and 
hypertension independently of other potential contributing factors indicating that 
OSAS is not only associated with an increased risk of prevalent hypertension but 
may predict future development of hypertension, in particular if not properly treated 
[53, 65, 70, 71] (Fig. 18.8).

Furthermore, in the Wisconsin Sleep Cohort Study, a dose-response relationship 
between sleep-disordered breathing at baseline and the development of hypertension 
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after 4 years of follow-up was reported independently of baseline BP levels, BMI, 
neck and waist circumference, age, sex, and other potential confounders [53].

Because OSAS interferes with several mechanisms involved in BP regulation, 
hypertension in OSAS tends to be more severe and resistant to antihypertensive 
treatment, the degree of BP elevation being proportional to the severity of the dis-
ease [52, 72, 73]. Conversely, in adult patients with drug-resistant hypertension, in 
whom an extremely high prevalence of OSA of about 80% has been reported [74], 
the rates of BP control decrease as the severity of sleep-related breathing disorder 
increases [52].

Compared to normal subjects, hypertension in subjects with OSAS is more fre-
quently associated with alterations in day-to-night BP changes (i.e., nocturnal 
hypertension and non-dipping profile of BP on 24-h ABPM) [52, 72, 73].

Indeed, hypertension related to OSAS is predominantly nocturnal in its early 
stages and frequently accompanied by a non-dipper profile of BP (i.e., nocturnal BP 
fall <10% compared to daytime BP levels) [67, 75]. Remarkably, the degree of 
impairment in nocturnal BP fall has been found to be related to the severity of 
OSAS [76]. On the other hand, an increased prevalence of alterations in day-to-
night BP profiles and nocturnal hypertension has been reported in subjects with 
resistant hypertension regardless of the presence of OSAS [77–79]. It is thus 
expected that alterations in day-to-night BP changes might be even more pro-
nounced in subjects with OSAS and resistant hypertension [80, 81].

18.4	 �Prognostic Significance of OSAS-Related Hypertension

Evidence from several studies has supported an independent association between 
OSAS and cardiovascular disease [82]. When it comes to subclinical organ damage, 
evidence has been provided that OSAS is independently associated with cardiac 
(i.e., LV hypertrophy and dysfunction) [45, 83, 84], vascular (i.e., increased carotid 
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intima-media thickness, increased arterial stiffness) [39], renal organ damage (i.e., 
increased urinary albumin excretion) [85, 86], and endothelial dysfunction (i.e., 
blunted endothelium-dependent dilatation) [39]. OSAS, particularly if severe, has 
been linked to fatal and nonfatal cardiovascular events including cardiac arrhythmia 
(bradycardia, A-V block, atrial fibrillation), cardiac ischemia (coronary artery dis-
ease, myocardial infarction, nocturnal ST-segment depression, nocturnal angina), 
and cerebrovascular disease [87–91], with systolic and diastolic dysfunction and 
development and progression of congestive heart failure [89] and with all-cause 
mortality [92, 93] (Fig. 18.9). However, because the link between OSAS and cardio-
vascular disease may be related to age, obesity, and visceral adiposity, in some of 
these studies, the associations have lost strength when adjusting for these factors. 
Evidence has also been provided that resistant hypertension which is more frequent 
among OSAS patients considerably increases the risk for cardiovascular complica-
tions including myocardial infarction, stroke, congestive heart failure, and chronic 
kidney disease [77, 94, 95]. In consideration of the increased CV risk associated 
with OSAS and resistant hypertension, current guidelines for the management of 
arterial hypertension include OSAS among the modifiable causes to be considered 
in the diagnostic approach to resistant hypertension, in order to properly manage 
both of these conditions [96, 97]. It should be mentioned however, that no studies 
have specifically addressed how and to which extent the addition of hypertension to 
OSAS may increase the risk of cardiovascular disease independently of other car-
diovascular risk factors that are often clustered in the context of OSAS. Although 
OSAS and resistant hypertension have been shown to be independent predictors of 
cardiovascular prognosis, evidence is still needed to determine the actual prognostic 
relevance of their interaction independently of other concomitant cardiovascular 
risk factors.

Not only the presence of resistant hypertension but also the higher frequency of 
alterations in day-to-night BP profiles and nocturnal hypertension contribute to the 
elevated cardiovascular risk of OSAS patients. As mentioned above, nocturnal sym-
pathetic activation during OSAS episodes importantly contributes to increases in 
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BP during sleep, thus attenuating the physiologic nocturnal dipping of BP (i.e., on 
average by 10–20% of daytime BP values) or even increasing nocturnal BP levels 
(rising pattern of nighttime BP). It is thus not surprising the high frequency of non-
dipping profile of BP reported in OSAS patients independently of the presence of 
hypertension [98]. From a prognostic point of view, identification of nocturnal 
hypertension and alterations in day-to-night BP changes in subjects with OSAS-
related hypertension is of upmost relevance on the background of the evidence 
showing the superior prognostic value of nocturnal BP levels compared to awake or 
24-h BP means in predicting cardiovascular morbidity and mortality [99–104], 
development of cardiovascular events [99, 100, 105–107], as well as overall mortal-
ity [99–101, 106, 108, 109]. Identification of “non-dipping” pattern of BP in OSAS 
patients is also important if we consider that subjects in whom nocturnal decrease 
in BP is blunted have been reported to have a higher prevalence of subclinical organ 
damage [110, 111] and an increased risk of cardiovascular events [112] and mortal-
ity [104], which is even higher in patients in whom BP increases rather than 
decreases at night (so called risers or “inverted dippers”). Despite the very high 
prevalence of nocturnal hypertension and alterations in day-to-night BP changes in 
OSAS patients, these are often undiagnosed (thus representing a form of so called 
masked resistant hypertension), mainly because BP measurements are prevalently 
measured during daytime at the moment of the clinical visit. Given their relevant 
prognostic value, alterations in circadian BP should be properly investigated in 
patients with OSAS-resistant hypertension through the use of 24-h ABPM in order 
to guide antihypertensive treatment toward their normalization and optimization of 
cardiovascular protection.

18.5	 �Diagnostic Approach to OSAS-Related Hypertension

Confirming the diagnosis of OSAS in subjects with hypertension and in particular 
in those with resistant hypertension is relevant in order to implement specific treat-
ment strategies (i.e., CPAP, weight reduction). This might allow achievement of BP 
control reducing the elevated cardiovascular risk of these subjects. Polysomnography 
is currently considered the standard technique for diagnosis of OSAS and requires 
simultaneous monitoring of several cardiovascular and respiratory variables during 
night sleep (i.e., sleep, air flow, respiratory effort, oxygen saturation, and brain 
activity through electroencephalogram). Based on the number of apneas and hypop-
neas lasting >10 s during each hour of recording, the severity of the disease is graded 
using the apnea-hypopnea index (AHI) [113]. Whether polysomnography should be 
employed systematically in individuals with resistant hypertension is still a matter 
of debate in the absence of cost-effectiveness studies supporting this suggestion. 
According to a recent position paper of the European Respiratory Society (ERS)/
European Society of Hypertension (ESH) [114], polysomnography should be per-
formed in all subjects with a high pretest probability of OSA based on structured 
questionnaires (e.g., Epworth and Berlin questionnaires).

G. Parati et al.



273

Considering the extremely high frequency of alterations in ambulatory BP 
profiles during nighttime in subjects with resistant hypertension and OSAS, the task 
force of the ERS/ESH also recommends performing ABPM in order to identify 
alterations in day-to-night BP changes in subjects with resistant hypertension in 
order to guide the decision to perform polysomnography in subjects with otherwise 
a low probability of OSA based on questionnaires. Indeed, in subjects with a low 
pretest probability of OSAS, polysomnography is only recommended in those who 
present alterations in day-to-night BP changes (i.e., non-dipping pattern of BP) 
(Fig. 18.10).

It is worth mentioning that before starting the instrumental tests to discard 
OSAS, a first step in the diagnostic approach of the patient with suspected OSAS-
related hypertension consists in confirming whether resistance to antihypertensive 
treatment is true or corresponds to false resistance. Current guidelines for the man-
agement of arterial hypertension define resistant hypertension as the persistence 
of BP values above the BP goal (i.e., ≥140/90 mmHg for office systolic/diastolic 
BP) despite the concomitant use of three optimally dosed antihypertensive medica-
tions from different classes at near-maximal doses, one of which should ideally be 

Pre-test probability
of OSA#

Elevated or high normal
conventional BP (SBP ≥130

or DBP ≥85 mmHg)

Normal conventional BP
(SBP <130 and DBP

<85 mmHg)

ABPM

Dipper

Clinical follow-up

Nondipper

PSG
according to guidelines

PSG
according to guidelines

If OSA +

ABPM (if not performed previously)

Adequate treatment

Follow-up PSG + ABPM

Low

ABPM and PSG
according to guidelines

Elevated or high normal
conventional BP (SBP ≥130

or DBP ≥85 mmHg)

Normal conventional BP
(SBP <130 and DBP

<85 mmHg)

High

Fig. 18.10  Proposed algorithm for the diagnostic management of patients with hypertension 
associated with obstructive sleep apnea (OSA). BP blood pressure, SBP systolic BP, DBP diastolic 
BP, ABPM ambulatory blood pressure monitoring, PSG polysomnography. According to clinical 
evaluation and questionnaires, e.g., Epworth and Berlin, ¶ hypertension guidelines recommend 
use of home BP monitoring in most hypertensive patients. Reproduced by permission from Parati 
et al. [114]
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a diuretic [96, 97]. However, this definition is based on office BP measurements 
which have acknowledged limitations in assessing BP control including the inher-
ent inaccuracy of the technique, the observer’s bias and digit preference, a variable 
interference by the “white-coat effect,” and the inability of this approach to collect 
information on BP during subjects’ usual activities and over a long period of time 
[115]. Thus, for confirmation of true resistant hypertension, out-of-office BP mea-
suring techniques such as ambulatory and/or home BP monitoring (which are not 
affected by the limitations of office BP) should be performed in addition to office 
BP measurements. Based on the measures obtained with these methods, a substan-
tial and sometimes larger than expected number of subjects initially diagnosed with 
resistant hypertension or with BP control based on OBP may actually correspond to 
false-resistant hypertension or white-coat resistant hypertension (i.e., elevated OBP 
but normal out-of-office BP values) or to masked hypertension (i.e., normal OBP 
but elevated out-of-office BP values) [77, 116, 117].

From a prognostic point of view, identification of OSAS patients with true resis-
tant hypertension as well as of those with masked resistant hypertension (treated 
patients with normal OBP and elevated ABP or HBP) [118, 119] is of the highest rel-
evance on the background of the evidence showing these conditions to be associated 
with a higher prevalence of target organ damage [120, 121], as well as with a higher 
risk of future cardiovascular and renal events when compared to those with true BP 
control [107, 122, 123] which ultimately translates in greater healthcare costs [124, 
125], [73]. The most recent European arterial hypertension guidelines have included 
OSAS among the causes responsible for true resistant hypertension [97].

18.6	 �Effects of Different Therapeutic Strategies  
on OSAS-Related Hypertension

18.6.1	 �Effects of Lifestyle Changes and Weight Loss  
on OSAS-Related Hypertension

Obesity is the single most important cause of OSAS and elevation in BP levels. It is 
thus expected that weight loss might reduce the severity of OSAS and BP levels. 
Indeed, in subjects who achieve significant reductions in body weight either through 
dietary [126], pharmacological [127], or surgical [128] measures, considerable 
reductions of various indices of OSA severity (i.e., AHI) and in BP levels have been 
reported. In particular, bariatric surgery has been shown to be a highly effective 
measure to achieve OSAS improvement and BP control as supported by a large 
meta-analysis of 136 randomized controlled trials [129]. It has to be emphasized 
that BP was normalized in 61.7% of patients and normalized or better controlled in 
78.5%. Obstructive sleep apnea was cured in 85.7% of patients and was cured or 
improved in 83.6% of patients [129]. However, despite its efficacy, bariatric surgery 
is reserved for selected patients groups, i.e., type 2 diabetes mellitus, patients with 
severe obesity (BMI >35 kg/m2), and moderately obese patients (BMI 30–35 kg/m2) 
who are inadequately controlled by conventional medical and behavioral therapies 
to reduce body weight.
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18.6.2	 �Effects of CPAP Treatment on OSAS-Related Hypertension

Nasal continuous positive airway pressure (CPAP) is currently considered the 
optimal treatment for OSA [130]. When properly implemented, CPAP not only pro-
vides relative instant relief of clinical symptoms [131] and reduction in the severity 
of OSA (i.e., AHI) but also improves many of the acute and chronic pathophysio-
logical alterations induced by OSAS, such as arterial baroreflex impairment and 
sympathetic activation [44], systemic inflammation [28, 35, 37], endothelial dys-
function [27–29], RAAS activation [132], arterial stiffness [44, 45], and metabolic 
alterations (insulin resistance) [46].

Notably, CPAP use has been shown to induce marked and acute reductions in 
MSNA not only during nighttime sleep but also during daytime wakefulness if 
maintained in the long term [12] (Fig. 18.11).

Although improvements in these pathophysiological alterations should theoreti-
cally translate into substantial BP reductions, most interventional trials in OSAS 
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Fig. 18.11  Elimination of apneas by continuous positive airway pressure (CPAP) reduces muscle 
sympathetic nerve activity (SNA) and prevents blood pressure (BP) surge during rapid eye move-
ment (REM) sleep. Taken from Somers et al. [12] by permission
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and subsequent meta-analyses have indicated that although CPAP has a significant 
effect on BP levels, the overall effect on 24-h, daytime, and nighttime systolic and 
diastolic ambulatory BP levels is rather small (in the order of 1–3  mmHg only) 
[133–135]. In spite of this, the effects of CPAP on BP levels have been shown to be 
variable as a function of patients’ compliance with nocturnal CPAP, of the number 
of CPAP hours during nighttime, and of the implementation of ambulatory BP mon-
itoring to assess its effects. In some subgroups of patients, in particular those with 
more severe OSAS [136] or with resistant hypertension [137], substantial effects of 
CPAP on BP levels have been reported. Indeed, effective CPAP treatment in patients 
with moderate-to-severe OSAS has been shown to induce important reductions both 
in day- and nighttime BP levels [136]. This has also been the case of subjects with 
resistant hypertension in whom regular CPAP implementation has resulted in 
marked reductions in ambulatory BP levels not only during nighttime but also dur-
ing daytime wakefulness [137]. In a study addressing the effects of 1-year treatment 
with CPAP, whereas no effects on BP levels were observed in patients with BP 
controlled at baseline, marked and significant reductions in BP levels were observed 
in subjects with resistant hypertension [138].

A critical aspect when assessing the clinical effects of CPAP is to guarantee 
patients’ adherence to therapy. Given the mechanical nature of CPAP (i.e., facial 
interface mask and the pressure required to prevent airway collapse), this therapeu-
tic intervention is not always well accepted by patients specially those free of OSA-
related symptoms. Indeed, compliance with CPAP has been shown to be directly 
related to the severity of OSAS [80]. On the other hand, several studies have indi-
cated that in order to observe an effect of CPAP on BP, CPAP treatment should be 
implemented for enough time and for a sufficient number of hours per night and its 
effects on BP levels ideally assessed by means of ABPM. Proof of this has been 
provided by several studies in OSAS in which the benefits of CPAP have been evi-
dent only in subjects with confirmed resistant hypertension (i.e., persistent elevation 
both in office and out-of-office BP levels), in whom CPAP has been implemented 
for at least 3 months and for more than 5.8 h per night [139]. A positive effect of 
CPAP has also been reported in non-sleepy hypertensive patients with OSA, among 
whom the most significant reductions in BP have been observed in those patients 
using CPAP for more than 5.6 h per night [80]. Further studies are still needed, 
however, focusing on early start of CPAP treatment before hypertensive organ dam-
age develops and makes hypertension control more difficult, in order to better deter-
mine whether CPAP implementation in OSAS patients with hypertension is indeed 
associated with better BP control rates and/or with reduction in the number of anti-
hypertensive medications needed in order to achieve BP control.

A recent meta-analysis of RCTs [140] addressing the effect of CPAP on BP in 
patients with OSAS and hypertension evaluated seven RCTs reporting 24-h ABP 
data. Overall, CPAP was associated with significant reductions in 24-h ambulatory 
systolic (S) BP (−2.32 mm Hg; 95% confidence interval [CI], −3.65 to −1.00) and 
diastolic (D) BP (−1.98 mm Hg; 95% CI, −2.82 to −1.14). CPAP led to more sig-
nificant improvement in nocturnal SBP than that in daytime SBP. Subgroup analysis 
showed that patients with resistant hypertension or receiving antihypertensive drugs 
benefited most from CPAP. Meta-regression indicated that CPAP compliance, age, 
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and baseline SBP were positively correlated with decrease in 24-h DBP, but not with 
reduction in 24-h SBP.

A recent study addressing the effect of CPAP treatment on BP in patients with 
OSA and resistant hypertension reported that CPAP treatment for 12 weeks com-
pared with untreated OSA patients as controls resulted in a significant decrease in 
24-h mean BP (3.1 mm Hg [95% CI, 0.6 to 5.6]; P = 0.02) and 24-h DBP (3.2 mm 
Hg [95% CI, 1.0 to 5.4]; P = 0.005) but not in 24-h SBP (3.1 mm Hg [95% CI, −0.6 
to 6.7]; P = 0.10). Moreover, the percentage of patients displaying a nocturnal BP 
dipping pattern at the 12-week follow-up was greater in the CPAP group than in the 
control group (35.9% vs 21.6%; adjusted odds ratio [OR], 2.4 [95% CI, 1.2 to 5.1]; 
P = 0.02) [141].

Another study evaluated the effect of CPAP on BP in patients with resistant 
hypertension and OSAS in the frame of a RCT with blinded assessment of outcomes 
in 117 patients with moderate/severe OSAS, defined by an AHI ≥15. Subjects were 
randomized to 6-month CPAP treatment (57 patients) or no therapy (60 patients), 
while maintaining antihypertensive treatment. Clinic and 24-h ABPs were obtained 
before and after 6-month treatment. Primary outcomes were changes in clinic and 
ambulatory BPs and in nocturnal BP fall patterns. On intention-to-treat analysis, 
there was no significant difference in any BP change, neither in nocturnal BP fall, 
between CPAP and control groups. The best effect of CPAP was on nighttime SBP 
in per-protocol analysis, with a tendentially, although non significant, greater reduc-
tion of 4.7 mm Hg (95% Cl, −11.3 to +3.1 mm Hg; P = 0.24) and an increase in 
nocturnal BP fall of 2.2% (95% Cl, −1.6% to +5.8%; P = 0.25), in comparison with 
control group. The conclusion of this study is that CPAP treatment had no signifi-
cant effect on clinic and ambulatory BPs in patients with resistant hypertension and 
moderate/severe OSAS, although a beneficial effect on nighttime SBP and on noc-
turnal BP fall might exist in patients with uncontrolled ambulatory BP levels [142].

Overall, also in the light of these recent trials, the reported poor efficacy of CPAP 
in reducing BP levels in OSAS patients with hypertension may depend on a combi-
nation of different factors, including poor patients’ compliance with nocturnal 
CPAP use, too short treatment duration, inaccurate CPAP calibration, failure to use 
24-h ABPM to evaluate CPAP effects on BP, and, most importantly, delayed use of 
CPAP in the clinical history of OSA patients, when hypertension may have become 
more resistant to treatment due to appearance of organ damage [80, 81].

18.7	 �Effects of Instrumental, Alternative Therapeutic 
Approaches to CPAP on OSAS-Related Hypertension

Recent studies have provided evidence that effective oral appliance (OA), i.e., an 
important alternative therapy to CPAP for patients with mild to moderate OSA, not 
only is effective in improving the severity of the disease but also in reducing BP 
levels in hypertensive OSAS patients [143, 144]. Although systematic reviews and a 
meta-analyses of available literature showed a favorable effect of OAs on SBP, MAP, 
and DBP, however, since most of the studies included were observational, this ques-
tion remains still to be defined, ideally on the frame of well-designed interventional 
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RCT’s [145]. Evidence has also been provided that treatment during 3 months with 
a specific oral jaw-positioning appliance improves cardiac autonomic modulation in 
otherwise healthy patients with OSA of mild degree [146] and that use of an adjust-
able mandibular advancement device is not inferior to CPAP in its impact on 24-h 
mean ambulatory BP [147].

18.8	 �Effects of Renal Sympathetic Denervation  
in OSAS-Related Resistant Hypertension

Sympathetic activation in OSAS determines an increase in sympathetic drive to the 
heart, the peripheral vasculature, and the kidneys. In relation to the latter, the sym-
pathetic nerves arriving to the renal district have been identified as a major contrib-
uting factor to the pathophysiology of hypertension both in experimental models 
and in human studies [148]. This has been the basis for the development of interven-
tional strategies aimed at modulating renal sympathetic nerve activity through 
radiofrequency catheter-based renal sympathetic denervation (RND) [149]. In sub-
jects with uncontrolled hypertension, RND has been shown to induce significant 
reductions in renal sympathetic efferent nerve activity, in whole-body sympathetic 
nerve activity and norepinephrine spillover, as well as substantial and sustained 
reductions in BP levels [150]. A small, interventional study in OSAS patients who 
were refractory to lifestyle modifications, weight loss, pharmacological treatment, 
and CPAP have also suggested that RND may represent an effective strategy for the 
management of resistant hypertension associated with OSAS, inducing significant 
and sustained changes in BP levels at 3 and 6 months of follow-up [151]. Remarkably, 
the changes in BP levels reported in this study have also been accompanied by 
improvements in OSAS severity as indicated by the significant reductions in AHI at 
3 and 6 months after denervation [151]. Renal sympathetic denervation might thus 
represent a potentially useful option for the management of resistant hypertension 
in OSAS patients, who are refractory to lifestyle modifications, weight loss, phar-
macological treatment, and CPAP. Nonetheless, given the very small sample size of 
this paper, adequately powered longitudinal studies are needed to confirm these 
anecdotal findings and to assess the long-term impact of RND on hypertension con-
trol, as well as its benefits in terms of organ damage and incidence of cardiovascular 
morbid-mortality in subjects with OSAS.

18.9	 �Do Different Antihypertensive Drug Classes Have 
Different Effects on OSAS-Related Hypertension?

Different antihypertensive drug classes might have a differential effect on the patho-
physiological mechanisms involved in the pathogenesis of OSAS-related hyperten-
sion. However, the few studies that have comparatively assessed the BP-lowering 
effects of different drug classes in OSAS have been of small size, and their statistical 
power was limited to derive consistent conclusions. In a randomized study assessing 
the effects of different classes of antihypertensive drugs (i.e., beta-blockers, calcium 
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antagonists, angiotensin converting enzyme inhibitors, angiotensin receptor block-
ers, and thiazide diuretics) on office and ambulatory BP levels in patients with hyper-
tension and OSAS, no significant differences between drug classes were observed 
in their ability to reduce office and daytime ambulatory BP levels. However, treat-
ment with β-blockers was more effective in reducing nighttime ambulatory BP than 
administration of other compounds, probably through their effects on sympathetic 
activation. In general, however, no consistent evidence has been provided support-
ing a superior antihypertensive efficacy of any antihypertensive drug in OSAS 
patients [152]. Long-term effects of treatment with different antihypertensive agents 
on hypertension severity in OSAS have not been systematically addressed in clini-
cal trials, however. Evidence is therefore still needed in order to identify preferred 
compounds for an adequate BP control in this group of high-risk patients.

Recent studies in resistant hypertension have suggested that spironolactone 
should be considered in all patients with uncontrolled hypertension on three or more 
antihypertensive agents [153]. In some studies, addition of spironolactone in doses 
of 25–50 mg a day to the current antihypertensive treatment in resistant hyperten-
sive patients was shown to reduce the severity of OSAS on top of its BP-lowering 
effects [25]. This is in line with the concept that aldosterone-mediated chronic fluid 
retention may influence severity of OSA.

Finally, several studies have explored the role of chronotherapy for improving 
BP control and profiles of BP variation in OSAS. Evidence from a crossover study 
indicated that evening dosing of antihypertensive drugs improves nighttime BP and 
dipping status in non-sleepy patients with OSA, irrespective of CPAP application 
[154]. Another study by Kario et al. showed that nighttime dosing of both vasodilat-
ing and sympatholytic antihypertensive drugs is effective to reduce sleep BP but 
with different BP-lowering profiles [155].

�Conclusions
The pathogenesis of OSAS-related hypertension is likely to be multifactorial, 
involving alterations in several regulatory systems. OSAS is associated with 
impairment in important mechanisms of cardiovascular regulation, in particular 
with neural central and reflex mechanisms involved in BP control.

However, the mechanisms by which OSAS promotes arterial hypertension 
still need to be better understood. Evidence has also been provided that indepen-
dently of the presence of arterial hypertension, heart failure, or other comorbidi-
ties, OSAS is associated with important autonomic and hemodynamic changes 
which not only promote future development of hypertension but make hyperten-
sion occurring in OSAS more severe and resistant to antihypertensive treatment 
[51–54] and associated with profound alterations in day-to-night BP changes 
[52, 72, 73]. Remarkably, a dose-response relationship between OSAS severity 
and the degree of BP elevation [52, 72, 73] has been shown.

Although OSAS and drug-resistant hypertension are independent predic-
tors of cardiovascular morbi-mortality, evidence from longitudinal studies 
is still needed to determine the actual prognostic relevance of OSAS-related 
hypertension. In a subject with resistant hypertension and suspected OSAS, 
ABPM should be performed whenever possible for confirmation of resistant 
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hypertension, for identification of alterations in day-night BP changes and in 
order to define the need of performing additional diagnostic procedures (i.e., 
polysomnography) and/or implementing more aggressive pharmacological or 
interventional strategies for the management of resistant hypertension. In turn, 
identification of OSAS and proper implementation of specific treatment strate-
gies (i.e., CPAP) in subjects with resistant hypertension might favor achievement 
of BP control optimizing cardiovascular protection. Evidence from additional 
longitudinal interventional studies in OSAS controlling for potential confound-
ers (i.e., visceral obesity, increased BMI) is still needed, however, not only to 
determine the prognostic relevance of the interaction between OSAS and hyper-
tension but also for determining whether treating OSAS in resistant HT confers 
significant benefits in terms of cardiovascular protection.
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19.1	 �Introduction

Psychosocial risk factors—defined broadly as the influence of social factors on an 
individual’s psychological process and perceptions or behavior and to the interrela-
tion of behavioral and social factors—have long been implicated as potential con-
tributors to the etiology of hypertension (HTN) [1]. Central to this definition is the 
premise that psychosocial factors affect HTN through changes in psychobiological 
processes (i.e., stress tolerance) and/or through changes in individual’s behaviors 
(i.e., adherence to treatment/diet). In recent years, researchers have sought to char-
acterize the pathways through which psychosocial factors operate—the places they 
emerge, the people they affect, and the positive and negative health outcomes they 
are associated with—in order to develop intervention strategies targeted at modify-
ing the psychobiological processes and individual behaviors that affect the course of 
HTN. As a result, national guidelines recommend psychosocial intervention as a 
means to prevent or delay the onset of HTN [2–4]. Public policymakers have also 
begun to consider the effects of psychosocial factors on population health in the 
development of public health strategies to reduce health inequities.

In this book chapter, we provide a synthesis of the literature to enhance our 
understanding of the psychosocial risk factors that contribute to HTN and provide 
directions for future research. This chapter is structured based on six major catego-
ries of psychosocial stressors: mental health (depression, anxiety, post-traumatic 
stress disorder [PTSD]), personality factors, occupational stressors, housing insta-
bility, interpersonal relationships (social support, racial discrimination, loneliness), 
and sleep quality (see Table 19.1).
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19.2	 �Mental Health

19.2.1	 �Depression

Much of the previous research has focused on the biological and behavioral mecha-
nisms that may explain how depression relates to incident HTN. Specifically, since 
depression and HTN share common biologic and behavioral characteristics, both 
diseases tend to be risk factors of each other [3, 4, 52]. For example, several stud-
ies have documented higher rates of unhealthy lifestyle behaviors such as physical 
inactivity, smoking, alcohol abuse, and obesity with an increased risk of HTN 
among individuals with depressive symptomatology [4, 52, 53]. Gender, age, and 
race/ethnicity have also been frequently explored as moderators of the depression-
HTN association. In a prospective study, women with greater depressive symptom-
atology (assessed by the Center for Epidemiologic Studies Depression (CES-D) 
scale) [52] exhibited higher systolic blood pressure (SBP) over the 29-year follow-
up; the reverse was true for men [53]. In another study, men reporting high levels 
of hopelessness, a subcomponent of depression, were three times more likely to 
develop HTN over a 4-year period than men who were not hopeless (95% confi-
dence interval [95CI], 1.56–6.67) [54]. Using the CES-D or the use of antidepres-
sant medication as a marker of depression, Delaney et al. [55] found no association 
between depressive symptoms and incident HTN at 2 years among a multiethnic 
sample [55]. However, a diagnosis of major depression was associated with a 60% 
increased risk of developing HTN over a 10-year period in the Canadian National 
Population Health Survey (hazard ratio [HR],1.6; 95CI, 1.2–2.1) [56].

To extend these findings, Gangwisch et al. [57] assessed insomnia and sleep 
duration as mediators of the depression-HTN link in a prospective cohort from the 
first National Health and Nutrition Examination Survey (NHANES I). Consistent 
with predictions, the presence of depression (CES-D) and sleep duration (either 
short or long) was associated with higher HTN incidence; middle-aged sub-
jects (ages 32–59 years) with depression at baseline had a 44% greater odds of 
being diagnosed with HTN over the 10-year period [57]. Hostility has also been 
examined as a potential moderator of the depression-HTN association. Men with 
“anger-in” scores (i.e., suppressed anger) in the highest tertile had a 1.5-fold age-
adjusted relative risk of HTN in the Circulatory Risk in Communities Study as 
compared with those in the lowest tertile; there was no association in women 
[58]. High hostility scores were also associated with incident HTN, after adjust-
ing for depression (Beck Depression Inventory) in a prospective study of African 
Americans with type 1 diabetes [5].

19.2.2	 �Comorbid Anxiety and Depression

HTN incidence has oftentimes been precipitated by the dual effects of anxi-
ety and depression. In a prospective study of adults with three study points 
(baseline, years 11 and 22), symptoms of anxiety and depression (measured by 
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the ADI-12 Index, Hopkins Symptom Checklist-25, and Hospital Anxiety and 
Depression Scale (HADS)) showed a negative association with incident HTN such 
that higher symptomatology (≥80th percentile) predicted lower SBP and diastolic 
BP (DBP; odds ratio [OR], 0.80; 95CI, 0.70–0.92) and a higher odds of hypotension 
(BP < 120/75 mmHg; OR, 1.20; 95CI, 1.05–1.36) after 22 years of follow-up [6]. In 
contrast, increases in symptom severity, assessed with the HADS, were associated 
with an increased likelihood of HTN in the Dutch Famine Birth Cohort Study [7]. 
Finally, the diagnosis of an anxiety disorder was associated with a fourfold increase 
in the risk of developing HTN 1 year later (95CI, 1.18–14.56) in a cohort of normo-
tensive individuals, while having a mood disorder [8].

19.2.3	 �Psychological Distress

Psychological distress refers to the unique discomforting, emotional state experi-
enced by an individual in response to a specific stressor or demand that results in 
harm, either temporary or permanent, to the person [9]. Exposure to traumatic life 
events induces high levels of psychological distress including PTSD. In a retrospec-
tive study of elderly participants, those who reported reexperiencing trauma-related 
symptoms exhibited significantly higher rates of HTN than those who reported no 
symptom reoccurrence (OR, 1.32; 95CI, 0.96–1.82) [10]. Using the short Kessler 
Screening for Psychological Distress, high levels of distress predicted incident HTN 
in a South African cohort. Higher levels of “nervousness” in particular were associ-
ated with a twofold increase in the risk of developing HTN (95CI, 1.23–3.26) [11].

A cross-sectional study conducted 7–19 weeks after the 2011 Tohoku tsunami 
showed that a natural disaster creating prolific damages such as disruptions in ame-
nities (i.e., gas supply) and discontinuity of everyday routines (i.e., taking antihy-
pertensive medications) was associated with higher BP levels among victims in 
areas of more flooding [12]. Among victims not on antihypertensive medications at 
baseline, there was a dose-dependent association between BP and flooding height 
above sea level and disruption of the gas supply [12]. In a second study, young male 
veterans with PTSD referred to outpatient psychiatry in a Veterans Affairs Healthcare 
System had significantly higher BP compared to those without PTSD (BP, 133.8/87.6 
vs. 122.3/78.6 mmHg). The prevalence of HTN was 34.1% among patients with 
PTSD compared to 16.3% without PTSD [13].

19.2.4	 �Stress-Induced Paroxysmal Hypertension

Paroxysmal hypertension or pseudopheochromocytoma is characterized by sudden 
onsets of hypertensive paroxysms, BP elevation associated with physical symptoms 
(i.e., headache, flushing, fatigue, dizziness), and, in many cases, is linked to psycho-
social factors such as a history of severe abuse or trauma, panic disorder, or defen-
sive personality [14, 59]. This distinct psychosocial profile provides an important 
diagnostic clue and enables a confident diagnosis of pseudopheochromocytoma 
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rather than a diagnosis by default [19]. Despite this, many physicians are unfamiliar 
with the underlying cause of the condition and feel ill-equipped to treat it [15]. An 
evaluation of patient’s psychosocial profile would prove to be an extremely valuable 
first step in identifying the appropriate course of treatment to both manage BP and 
mitigate the psychological problems that perpetuate the condition [21].

19.3	 �Personality Factors

Similar to research on mental health, studies linking attributes of personality to 
HTN incidence have been inconsistent. Mommersteeg et al. [16] found no associa-
tion between Type D personality (negative affectivity; social inhibition) and HTN in 
a 7-year study of German airline manufacturing employees. Alternatively, using 
“the Big Five personality traits” of neuroticism, extraversion, openness, conscien-
tiousness, and agreeableness, Turiano et al. [17] found that higher levels of consci-
entiousness predicted lower BP over a 10-year period, while higher levels of 
neuroticism predicted higher BP. Higher levels of psychological well-being (i.e., 
feeling full of life, optimism) were associated with 9–11% reduction in HTN risk in 
a prospective study of British civil servants from the Whitehall II cohort [18].

19.4	 �Occupational Stress

Majority of evidence on occupational stress stems from cross-sectional studies that 
focus on specific professions and explore common themes including job insecurity, 
work hours, job strain, job control, and wages. In a study of bus conductors, the 
prevalence of HTN gradually increased as the duration of service increased, with 
the highest rate (36.3%) among those with service duration >30 years [19]. A cross-
sectional study of male professional drivers (city and intercity bus drivers, truck and 
taxi drivers) [20] showed associations between the Occupational Stress Index (OSI; 
i.e., jobs characterized by high demand, conflict/uncertainty, underload, time pres-
sure, aversive exposures) and HTN (OR, 5.5; 95CI, 2.24–7.95). Total OSI had a 
gradient effect demonstrating that BP readings were highest among city bus drivers 
and the lowest in truck and taxi drivers. There was also a strong association between 
total OSI and HTN (OR, 5.59; 95CI, 2.24–7.95). Underload (short-cycle monoto-
nous work) was the strongest individual correlate of HTN (OR, 1.18; 95CI, 1.04–
2.58) [20]. Likewise, a prospective study of bus drivers showed that the average 
number of hours of driving per week predicted higher DBP over a 2-year period 
[21]. Finally, a cross-sectional study [22] sought to determine the relative contribu-
tions of specific types of stressors (work or home) of HTN in a cohort of men and 
women. In the total sample, general stress was associated with HTN (OR, 1.25; 
95CI, 1.08–1.45), accounting for 9.1% of the increased risk [22]. Women showed a 
greater risk of HTN if they experienced stress at work or at home (OR, 1.29; 95CI, 
1.03–1.61 and OR, 1.23; 95CI, 1.00–1.51, respectively); this relationship was not 
significant in men.
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The role of psychosocial stressors on HTN incidence is also dependent on factors 
concurrent with the occupation itself: working conditions, work environment, and 
job insecurity. Regarding job insecurity, a retrospective study examined the impact 
of downsizing on HTN risk over a 5-year period among 13,000 employees from a 
large aluminum company [23]. While salaried workers had lower rates of HTN 
overall, individuals that survived layoffs at high-layoff plants exhibited an elevated 
risk of being diagnosed with HTN at the 5-year follow-up (OR, 1.60; 95CI, 1.04–
2.48) [23]. Increases in area-level unemployment were also associated with a higher 
incidence of HTN. In a prospective study, occupational status related to being a law 
enforcement officer predicted higher levels of SBP across the 7-year study [24]. 
Wiernik et al. [25] also analyzed the longitudinal effects of occupational status in 
combination with sex on HTN incidence. Baseline-perceived stress was associated 
with a linear increase in HTN incidence over an average of 6 years in women report-
ing medium or low occupational status [25].

Work organization factors such as high levels of job strain were associated with 
higher rates of incident HTN in a cohort of automobile manufacturer employees. 
Specifically, working 10 overtime hours per week was associated with 3.29 more 
claims for incident HTN per 1000 employees per year [26]. Using claims data from 
the sickness, accident, and disability insurance, there was a positive correlation 
among long work hours and psychological distress with incident HTN in a 6-year 
retrospective study [26]. Overall, skilled workers and assembly plant workers had 
higher rates of HTN; female production workers conferred the greatest risk. Finally, 
low job control was more strongly associated with incident HTN among men than 
women over a 9-year follow-up in the Canadian Community Health Survey [27].

The work environment and interactions between colleagues also significantly 
contribute to HTN incidence. Lamy et al. [28] examined the association between 
collective stressors at the work unit level (i.e., low support, poor information 
exchange, poor relationships with superiors, inability to take paid leave) and the 
2-year incidence of HTN among normotensive female hospital registered nurses 
and nursing assistants. Results showed that organizational work factors influenced 
the 2-year risk of HTN independently of work factors at the individual level (i.e., 
workload and occupational stress), baseline BP, age, and body mass index [28]. 
Occupational stress measured as Effort-Reward Imbalance (ERI)—which sug-
gests that work-related benefits depend upon a reciprocal relationship between 
efforts and rewards at work—was associated with incident HTN at 3  years in 
white-collar workers [29]. In women ≥45 years old, the cumulative incidence of 
HTN was 2.78 (95CI, 1.26–6.10) times higher among those exposed to ERI at 
both times [29].

Quite commonly, socioeconomic status is associated with or a contributing fac-
tor to the aforementioned occupational stressors. In a cross-sectional study of 
African Americans who participated in the Jackson Heart Study, higher income in 
women was associated with lower prevalence of HTN and lower levels of stress 
[30]. In a prospective study [31], low wages were also negatively associated with 
HTN incidence in employees. Doubling the wage by a 100% increase was associ-
ated with a 25–30% decrease in the risk of HTN [31].
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19.5	 �Housing Instability

Housing instability—assessed as the frequency of moving, house crowding, and 
occupying a residence without paying rent or money—has also been associated 
with an increased risk of HTN. White women participating in the Coronary Artery 
Risk Development in Young Adults (CARDIA) study with unstable housing had 
four times the rate of incident HTN than white women with stable housing (inci-
dence rate ratio (IRR), 4.7; 95CI, 2.4–9.2) [32].

19.6	 �Relationship Quality

Beyond the individual and everyday psychosocial stressors, interpersonal relation-
ships or lack thereof increase the likelihood of developing HTN. Such stressors occur 
in forms of loneliness, social capital, racial discrimination, and caregiver demands.

19.6.1	 �Loneliness

Among a multiethnic sample in the Chicago Health, Aging, and Social Relations 
Study, higher scores on the UCLA Loneliness Scale-Revised at baseline were asso-
ciated with a 3.6 mmHg increase in SBP each year of follow-up, which equated to 
a 14.4  mmHg greater increase in SBP over the 4-year study [33]. The effect of 
loneliness was independent of other risk factors for HTN including age, race, gen-
der, cardiovascular (CV) medications, comorbid health conditions, depressive 
symptoms, social support, stress, hostility, and other CV risk factors (i.e., diabetes, 
stroke). Similarly, a cross-sectional study of 1880 community residents aged 
≥60 years found that nearly one-third of respondents reported a high level of loneli-
ness, which was associated with a HTN prevalence rate of 39% [34].

19.6.2	 �Social Capital and Support

Social capital, defined as the number of interactions with friends, neighbors, social 
clubs, etc., has shown to impact HTN outcomes [35]. Data from the Health and 
Retirement Study showed a 41% reduced odds (95CI, 0.42–0.84) in developing 
HTN over the 14-year study among older adults with 4–5 social ties [36]. However, 
in the Doetinchem Cohort Study, there was no association between negative or posi-
tive experiences of social support and risk of incident HTN over a 10-year period 
among middle-aged participants [37].

19.6.3	 �Racial Discrimination

Racial discrimination has been hypothesized to serve as a chronic psychosocial 
stressor contributing to the disproportionately higher rates of HTN among African 
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Americans as compared to Whites [38]. Much of the research to date has examined 
the effects of individual-level or interpersonal racism on HTN, with a majority 
employing cross-sectional study designs. While several studies have found no asso-
ciation between perceived racial discrimination and HTN in the cross-sectional 
studies [39], data from the Metro Atlanta Heart Disease Study [60] found that 
African Americans who reported moderate to very high levels of stress due to racial 
discrimination were twice as likely to be hypertensive than those with “no to low” 
stress. In the CARDIA study [61], experiences of racial discrimination and unfair 
treatment were associated with a 4–7 mmHg increase in BP among working-class 
African Americans. Finally, in a prospective study of African American women, 
positive associations between perceived racism and unfair treatment on incident 
HTN were only seen in two subgroups of women: those born outside the USA (IRR, 
1.6; 95CI, 0.7–3.3) and who grew up in predominantly white neighborhoods (IRR, 
1.7; 95CI, 0.9–3.4) [62].

19.6.4	 �Interpersonal Relationships

Interpersonal relationships in the form of positive and negative interactions can also 
have profound effects on HTN. In the National Longitudinal Study of Adolescent 
Health [40], adolescent males (grades 7–12) who experienced severe victimization 
had a 2.66 mmHg (95CI, 0.05–5.28) higher SBP and a 59% increased odds (95CI, 
1.07–2.37) of incident HTN in adulthood compared to males who were not exposed. 
Intimate partner violence was not associated with BP in women. The demands of 
spousal care giving (assessed by the care recipient’s report of how much assistance 
they need with activities of daily living in the past month) predicted incident HTN 
(risk ratio (RR), 1.36; 95CI, 1.01–1.83) among caregivers currently experiencing 
demands as well as those experiencing long-term demands (14+ h/week; RR, 2.29; 
95CI, 1.17–4.49) [41].

19.7	 �Sleep Quality

Recent psychosocial literature has examined poor sleep quality and other sleep-
related behaviors as risk factors for HTN. Under this umbrella, research includes 
sleep duration, sleep architecture, sleep disorders, and chronic insomnia.

19.7.1	 �Insomnia

Previous research has theorized that the frequency of insomnia symptoms leads to 
increased HTN risk. In a test of this hypothesis, Vozoris et al. [42] found no associa-
tion between BP and insomnia symptoms (i.e., difficulty falling asleep, nocturnal 
awakenings, undesired early morning awakening, sleep maintenance, etc.) regard-
less of symptom frequency in the 2005–2006 and 2007–2008 NHANES surveys. In 
contrast, Fernandez-Mendoza et al. [43] found a significant relationship between 
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insomnia and HTN incidence in the Penn State Cohort. Individuals with chronic 
insomnia (duration of ≥1 year) in combination with objective short sleep duration 
(sleep <6 h during weeknights) exhibited a fourfold increase in incident HTN com-
pared to normal sleepers (sleep ≥6 h; OR, 3.75; 95CI, 1.58–8.95) [43]. Moreover, 
individuals who reported poor sleep (moderate-to-severe complaint of difficulty 
falling asleep and/or staying asleep, early awakening, or non-restorative sleep) and 
had objective short sleep duration exhibited a 1.8 increased odds of developing inci-
dent HTN over the 7.5-year follow-up (95CI, 1.04–3.12) [43]. On the other hand, 
participants that reported chronic insomnia or poor sleep, but who also had objec-
tive sleep duration ≥6 h, had no increased risk of HTN.

19.7.2	 �Sleep Disorders and Breathing

Five studies of sleep quality, broadly defined as studies including sleep duration, 
sleep complaints, and sleep disorders, have examined associations with HTN.  In 
a 2011 study, Fung et  al. [44] used home polysomnography to examine the role 
of sleep-disordered breathing, sleep duration, and sleep architecture in older men 
(age ≥ 65 years). After adjusting for known CV risk factors and other key sleep 
variables (i.e., respiratory disturbance index, hypoxemia, central apnea index, total 
sleep duration in minutes, overall arousal index, sleep efficiency, wake after sleep 
onset in minutes, and % of time in sleep stages), men with poor sleep architec-
ture (lowest percentile of slow-wave sleep [SWS]) had a 1.8-fold increase in inci-
dent HTN compared to men with the highest SWS (95CI, 1.18–2.80). In a second 
study with the same cohort of men, Fung et al. [45] found no association between 
total sleep time, percent sleep (estimate of sleep efficiency), sleep latency, wake 
after sleep onset, and incident HTN.  Gupta and Knapp found that patients with 
obstructive sleep apnea plus insomnia had significantly higher odds of developing 
HTN (OR, 1.83; 95CI, 1.27–2.65) [46]. In a cross-sectional survey, sleep disor-
ders by itself were not associated with HTN; however, significant associations were 
observed among adults with concurrent sleep disorders and short sleep (OR, 2.30; 
95CI, 1.49–3.56) and with sleep disorders, short sleep, and poor sleep (OR, 1.84; 
95CI, 1.13–2.98) [47]. In the PROOF-SYNAPSE study [48], sleep fragmentation 
measured by the autonomic arousal index was associated with elevated diurnal and 
24-h SBP as well as a higher risk of 24-h systolic HTN (OR, 1.70; 95CI, 1.04–2.80).

19.8	 �Discussion

Psychosocial stressors play an important role in advancing our understanding of the 
etiology of HTN. Overall, there is strong evidence across various study designs, 
including prospective, retrospective, and cross-sectional cohorts, that occupational 
stressors, housing instability, loneliness, and stressors related to interpersonal rela-
tionships increase the risk of developing HTN.  In some cases, the psychosocial 
stressor is an even more potent risk factor for HTN than traditional CV factors [49]. 
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Despite this evidence, inconsistent results within subsets of psychosocial stressors 
such as mental health, racial discrimination, personality, and sleep quality persist. 
Namely, current studies exhibit three main limitations: (1) shortcomings in the 
study design, (2) confounding of moderating and mediating variables on the 
stressor-HTN association, and (3) limited inclusion of diverse populations. Below, 
we discuss each of these limitations in order to stimulate future research.

First, methodological differences across studies—in terms of measurement and 
study duration—hamper the ability to make definitive conclusions about impact. 
For example, a 2012 meta-analysis on the depression-HTN association concluded 
that much of the documented relationships between depression and HTN were 
based on study duration (longer duration associated with greater incidence) and the 
inclusion of a baseline depression measure [50]. Adequate length of follow-up is 
needed to identify a sufficient number of HTN cases in order to avoid type I error 
[51]. Evidence from this chapter also suggests that it is more advantageous to assess 
the cumulative effect of psychosocial factors overtime as this has implications for 
the directionality and significance of the association with HTN.

Studies within each psychosocial stressor also employed a diverse range of 
measures that limits the ability to decipher which stressor is of greatest relevance 
to incident HTN. For example, several mental health studies evaluated constructs 
of depression and anxiety separately (i.e., CES-D), while others used combined 
measures (i.e., HADS) [6, 57]. Similarly, measures of racial discrimination ranged 
from global assessments of experiences with discrimination to episodes related to 
specific settings (i.e., occupational or healthcare) [39, 62]. In examining sleep qual-
ity, the use of various measures across studies resulted in conflicting findings even 
within the same study sample. This was evident in the studies by Fung et al. [45], 
whereby the study using actigraphy-measured sleep variables resulted in a signifi-
cant association with incident HTN in contrast to a second study [44] which found 
no relationship when home measurements were used. These findings suggest that 
objective measures of sleep duration may be of clinical significance rather than 
the subjective nature of sleep complaints. Therefore, careful consideration must be 
given to the variables being assessed as research suggests that there are particular 
dimensions of stressors that may not be implicated in the etiology of HTN.

Second, it is of utmost importance to examine the moderators and mediators of 
the stressor-HTN relationship. As shown in this chapter, findings often differed by 
sex and age of the participants. Thus, inconsistencies across studies may be an arti-
fact of the analytic approach rather than a true null effect. More recently, researchers 
are examining the interaction between different types of psychosocial stressors such 
as depression and sleep. Findings indicate that treating sleep complications in 
depressed individuals may substantially mitigate HTN risk, more so than if they 
were treated alone. In order to advance the field, such work requires developing a 
conceptual model of the stressor-HTN associations, based on previous work, so that 
the extent to which these factors contribute to disease progression overtime may 
become clearer.

Third, few studies included a diverse cohort of participants that reflect the cur-
rent demographic shift to an increasingly older and racial/ethnically diverse 
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population. Such variation is essential to examining whether these factors operate 
differently based on characteristics of the population. Indeed, studies examining the 
role of discrimination on the etiology of HTN are sorely absent from the literature. 
Finally, adequacy of the psychosocial measure may change depending on popula-
tion being assessed, and selected measures should be carefully evaluated before 
being employed in the study.

In summary, this chapter calls for a whole-person approach—considering both 
clinical and psychosocial risk factors—when examining the development and pro-
gression of HTN. Psychosocial stress is often complex and multifaceted with stress-
ors occurring across multiple settings and lifestyle behaviors playing a significant 
role as well. Despite the methodological challenges outlined above, it is critically 
important for healthcare organizations to work toward systematically screening for 
and treating patients with high psychosocial stress if we are to make a sustained 
impact on the relentless burden of HTN.
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20Central Nervous System Disorders: 
Transient Ischemic Attack and Stroke 
(Ischemic/Hemorrhagic)

Shoichiro Sato and Craig S. Anderson

Stroke is the second most common cause of death, accounting for approximately 
10% of all deaths, and is the third most common cause of disability, on a global scale 
in 2010 [1]. About 70% of all strokes occur in low- and middle-income countries.

Stroke includes several diseases which cause occlusion or rupture of cerebral 
vessels leading to ischemic or hemorrhagic stroke. In the past, the definition of 
stroke was based on duration of symptoms. Symptoms lasting less than 24 h were 
considered as transient ischemic attack (TIA). However, advanced brain imaging 
techniques have led to a reconsideration of ischemic brain injury, such that up to 
one-third of patients with symptoms lasting less than 24 h actually have cerebral 
infarction. Subsequently, a new “tissue” definition of TIA has been produced of “a 
transient episode of neurological dysfunction caused by focal brain, spinal cord or 
retinal ischemia, without acute infarction” [2].

Ischemic stroke accounts for about 80–85% of strokes in western populations. It 
can be classified into several subtypes based on presumed ecology: large vessel ath-
erosclerosis (e.g., artery-to-artery embolism from carotid stenosis or hemodynamic 
infarction), cardioembolism (e.g., embolism because of atrial fibrillation [AF] or val-
vular heart disease), cerebral small vessel disease (CSVD or the so-called lacunar 
stroke), and a heterogeneous mixture of other causes such as arterial dissection and 
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hematological disorders. Hemorrhagic stroke can also be divided into two main types 
according to the site of the bleeding: spontaneous intracerebral hemorrhage (ICH) 
which occurs within the parenchyma of the brain, most commonly due to CSVD, or 
secondary to antithrombotic use (anticoagulation or antiplatelet therapy) or cerebral 
amyloid angiopathy. ICH can also be caused by structural brain lesions (e.g., arte-
riovenous malformation, cavernoma, etc.) and systemic diseases that affect platelet 
function or coagulopathy. Subarachnoid hemorrhage (SAH) is due to extravasation 
of blood into the subarachnoid space between the pial and arachnoid membranes and 
is mainly (about 80%) caused by the rupture or “blister” of an intracranial aneurysm.

Elevated BP is the important underlying risk factor for all types of stroke, includ-
ing TIA [3]. In this chapter, we review the acute hypertensive response, cerebral 
autoregulation, and BP management for ischemic/hemorrhagic stroke and TIA 
while introducing relevant trial results and highlighting current challenges and 
future directions.

20.1	 �Acute Hypertensive Response

Acute hypertensive response, which is a physiological response to brain damage 
[4], is defined as persistent elevation of BP, systolic BP of 140 mmHg or more, or 
diastolic BP of 90 mmHg or more, typically demonstrated on two recordings taken 
5 min apart within the first 24 h of symptom onset [5]. In a systematic review, 52% 
of patients with stroke were reported to have an acute hypertensive response on 
admission to hospital. Possible causes of this response include poorly treated or 
undiagnosed hypertension, activation of the neuroendocrine system, increased car-
diac output, pain, dehydration, and mental distress due to the setting of hospitaliza-
tion. BP in patients with acute stroke gradually decreases by an average systolic BP 
level of 10 mmHg in the first 24 h and 20 mmHg during the first 10 days after onset, 
regardless of the use of antihypertensive medication [6].

20.2	 �Cerebral Autoregulation

Cerebral blood flow (CBF) is defined as the volume of blood flowing into a speci-
fied amount of brain in a specific time, and cerebral perfusion pressure is defined as 
the difference between mean arterial pressure and intracranial pressure. CBF is con-
trolled by the cerebral perfusion pressure and the cerebrovascular resistance. Under 
normal conditions, cerebral perfusion pressure is maintained within a tight range 
(between 50 and 150  mmHg), despite fluctuations of mean arterial pressure, as 
shown with a solid curve in Fig. 20.1 [7]. This autoregulation is mediated by change 
in diameter of cerebral vasculature, which is one of the determinants of cerebrovas-
cular resistance according to the change of BP. When BP decreases under the lower 
autoregulatory limit, there can be decreased cerebral perfusion pressure, with wors-
ening hypoperfusion and potentially resulting in progression of cerebral ischemia, 
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and when BP exceeds the upper the limit, increased cerebral perfusion pressure 
could cause cerebral edema and hemorrhage. As long-standing high BP, or hyper-
tension, may produce a rightward shift of the autoregulatory curve (dotted curve in 
Fig. 20.1), patients with hypertension are potentially less tolerant of decreased BP 
[8]. Moreover, as autoregulation may also be impaired after acute stroke, even in 
patients without history of hypertension, it is important to consider that a patient’s 
cerebral perfusion pressure could change according to changes in systemic BP.

20.3	 �BP Management in Ischemic Stroke and TIA

20.3.1	 �Acute Ischemic Stroke and TIA

Most studies including meta-analysis are consistent in showing significant positive 
relationships between increasing systolic BP and various adverse outcomes such 
as death, disability, neurological deterioration, and recurrent ischemic events after 
stroke [9], whereas some studies suggest that low (<130 mm Hg) and large decreases 
in BP are also related to poor outcome [10]. However, such associations may not be 
causal, because patients with more severe stroke may have a more prominent acute 
hypertensive response and lower BP as a preterminal event. Even so, the concern of 
clinicians has been that the initiation of intensive BP-lowering treatment early after 
acute ischemic stroke could reduce cerebral edema and cause hemorrhagic transfor-
mation of ischemic tissue, leading to further mass effect and recurrent stroke and 
other serious cardiovascular events. Therefore, the issue of early intensive BP therapy 
has been of great interest of stroke trialists as whether it could improve outcomes.
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The Scandinavian Candesartan Acute Stroke Trial (SCAST) [11] randomly allo-
cated patients with acute stroke and systolic BP of 140 mmHg or higher and to 
treatment with the angiotensin-receptor blocker (ARB), candesartan, or placebo. 
Mean systolic BP difference between treatment groups at 7 days was 5 mmHg, and 
no differences were observed in the risk of the co-primary outcome, a composite 
vascular endpoint and functional outcome during 6  months after randomization. 
The Efficacy of Nitric Oxide in Stroke (ENOS) [12] randomly assigned patients 
with an acute stroke and systolic BP of 140–220 mmHg to a transdermal glyceryl 
trinitrate patch group or to an inert glyceryl trinitrate (control) group within 48 h of 
the onset of symptoms and continued for 7  days. The baseline mean BP of 
167/90 mmHg was significantly decreased by 7/4 mmHg after the first dose in glyc-
eryl trinitrate group compared to control group. The result was that the 90-day pri-
mary functional outcome did not differ in either treatment comparison nor was there 
any difference across any of the secondary outcome measures that included activi-
ties of daily living, cognition, health-related quality of life, and mood.

Even after these large-scale individual trials and a meta-analysis of them and 
others [13], controversy persists with regard to optimal BP range and therapeutic 
benefit of BP lowering in acute ischemic stroke. The Enhanced Control of 
Hypertension and Thrombolysis in Stroke Study (ENCHANTED) [14] aims to 
determine the effectiveness of intensive (systolic BP target 130–140  mmHg) vs. 
standard (<185  mmHg) BP lowering (BP arm) in over 2000 patients with acute 
ischemic stroke who are treated with recombinant tissue plasminogen activator 
(rtPA). The results of this study are projected to be available in 2019 and will hope-
fully provide further evidence regarding hyperacute BP management in thrombolysis-
eligible patients with acute ischemic stroke.

As over half of patients who present with an acute stroke are already on antihy-
pertensive treatment, a clinical dilemma has been as to whether to continue or stop 
these preexisting drugs during the acute phase after stroke. The Continue or Stop 
post-Stroke Antihypertensives Collaborative Study (COSSACS) [15] randomly 
assigned non-dysphagic patients with acute stroke either to continue taking or to 
stop the antihypertensive agents for 14 days. Although there were between-group 
differences in BP (13/8 mmHg) over the 2 weeks, there was no significant differ-
ence in the primary outcome of death or dependency at 14 weeks and death and 
serious cardiovascular events rate at 6 months. In the continue versus stop existing 
antihypertensive arm of the ENOS trial [12], where a subset of patients were allo-
cated to continue antihypertensive medications as compared to patients who were 
randomized to stop them, the results were similarly neutral for any difference in 
functional outcome. Overall, these trials have shown that there is no clear benefit or 
harm by continuing preexisting antihypertensive drugs in the first few hours or days 
following acute ischemic stroke.

20.3.2	 �Acute Ischemic Stroke Treated with Thrombolysis

Thrombolytic therapy with intravenous rtPA is an established treatment for acute isch-
emic stroke despite increasing the early risks of symptomatic ICH and death [16].
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Post-hoc analysis of the 624 patients who participated in the pivotal National 
Institutes of Neurological Diseases and Stroke (NINDS) rtPA trial that dem-
onstrated the efficacy and the license for alteplase indicated that patients with a 
systolic BP of >185 mmHg and/or a diastolic BP of >110 mmHg before random-
ization who received BP lowering therapy had worse outcomes compared to those 
who did not receive such treatment, despite similar levels of elevated BP [17]. A 
study with another thrombolytic agent (streptokinase), the Australian Streptokinase 
(ASK) trial in which patients with SBP >185 mmHg were not excluded, showed an 
association between elevated BP at baseline and increased risk of major ICH [18]. 
In addition, large international registry studies of thrombolysis with alteplase con-
ducted in 2000s, the Safe Implementation of Thrombolysis in Stroke-Monitoring 
STudy (SITS-MOST) [19] and the Safe Implementation of Thrombolysis in Stroke–
International Stroke Thrombolysis Register (SITS-ISTR) [20], also showed that 
elevated baseline systolic BP was associated with symptomatic ICH. Intriguingly, a 
recent large single-center observational study has shown that BP during the initial 
24 h after ischemic stroke treated with intravenous thrombolysis or intra-arterial 
therapies depended on the vascular recanalization status (reopening or no reopen-
ing); a J-shaped association was evident between BP and outcome in no-reopening 
group, whereas the association was linear in the reopening group (lower BP, good 
outcome) [21].

The current American Heart Association (AHA)/American Stroke Association 
(ASA) guidelines recommend target BP levels of ≤185/110 mmHg before adminis-
tration of intravenous rtPA and afterward of <180/105 mmHg for at least the first 
24 h (Class I; Level of Evidence B) but without any recommendations about a lower 
level of BP control [22]. The previously mentioned BP Arm of the ENCHANTED 
study is addressing this issue and should elucidate the role of early intensive BP 
lowering for patients receiving thrombolysis, particularly as to whether the treat-
ment reduces the risk of a poor outcome and symptomatic ICH [23].

20.3.3	 �Secondary Prevention in Ischemic Stroke and TIA

Treatment of hypertension is the most important secondary prevention strategy 
for patients with a history of ischemic stroke or TIA. The prevalence of hyperten-
sion in patients with ischemic stroke is 60–70% [24] and a near linear relationship 
between level of BP and risk of recurrent stroke and other major cardiovascular 
events (Fig. 20.2) [25].

Several randomized controlled trials have demonstrated clear benefits of long-
term BP lowering for the secondary prevention of stroke. The Perindopril Protection 
against Recurrent Stroke Study (PROGRESS) [26], in particular, assigned partici-
pants with prior any stroke or TIA to the angiotensin-converting enzyme inhibitor 
(ACE-I), perindopril, alone or in combination with the diuretic, indapamide, or 
matching placebo(s). During an average of 4 years of follow-up, BP was 9/4 mmHg 
lower in the active treatment group as compared with the placebo group, and the 
treatment reduced the risk of fatal or nonfatal stroke (the primary endpoint) by 28%. 
A greater BP reduction (−12/5 mmHg) and risk reduction (43%) were observed in 
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those patients who received combination therapy, whereas less BP reduction 
(−5/3 mm Hg) and no significant risk reduction were evident in those who received 
perindopril alone (Fig.  20.3) [26]. A post-hoc analysis of the trial showed that 
lower-achieved follow-up BP levels, down to approximately 115/75 mmHg, were 
associated with greater reduction in the rate of recurrent stroke and without any 
increased risks (i.e., J-curve) of recurrent events at the lowest BP levels [27]. The 
Prevention Regimen for Effectively Avoiding Second Strokes (PRoFESS) trial [28] 
in which an ARB, telmisartan, and placebo were compared among patients with 
acute ischemic stroke showed no significant effect on recurrent stroke despite a 
4/2 mmHg lower BP in the active treatment group during an average of 2.5 years of 
follow-up. These two trials indicate that modest BP lowering through inhibition of 
the renin-angiotensin system does not translate into improved clinical outcomes and 
reduced short-term risk of recurrent stroke.

A recent updated meta-analysis has shown that every 10  mmHg reduction in 
systolic BP is associated with a significantly 26% reduced risk of stroke in patients 
with a history of cerebrovascular diseases [29], which supports an older meta-
analysis of reduced recurrent stroke-associated greater magnitude of BP lowering 
[30]. However, clinical practice is strongly influenced by direct randomized evi-
dence of any benefits and safety of more intensive long-term BP-lowering treat-
ment. The most relevant in this regard is the Secondary Prevention of Small 
Subcortical Strokes (SPS3) trial [31], which randomized patients with CSVD lacu-
nar stroke into two target systolic BP levels of <130 and 130–149 mmHg. After 
1 year, the mean achieved systolic BP levels were 127 mmHg and 138 mmHg in the 
two groups, but after a mean 3.7 years of follow-up, there was no significant differ-
ence in rates of recurrent stroke, fatal or disabling stroke, and the composite out-
come of myocardial infarction or vascular death. However, the rate of serious 
adverse events related to hypotension was similar in the two groups.
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There was also not enough information of a benefit of specific drug classes 
regarding secondary prevention after ischemic stroke and TIA.  A meta-analysis 
based on 135,715 individuals from 22 trials did not show any substantial differences 
among different BP-lowering regimens on any of the major cardiovascular events 
(stroke, coronary heart disease, heart failure, and cardiovascular death) [32].

Most recently, the Systolic Blood Pressure Intervention Trial (SPRINT) [33] 
demonstrated the benefits of intensive BP control (systolic <120 mmHg) as com-
pared to standard BP control (<140  mmHg) among subjects who were aged 
≥50 years with hypertension and at high risk of cardiovascular disease without a 
history of diabetes mellitus or stroke. The trial showed a significant 25% relative 
risk reduction in the primary composite outcome of myocardial infarction, acute 
coronary syndrome, stroke, heart failure, or cardiovascular death). However, given 
that the treatment benefit of intensive BP control was mainly due to decreased risk 
of heart failure and death and that patients with prior stroke were excluded, there is 
uncertainty over the extrapolation of these findings into stricter BP lowering to a 
target of <120 mmHg in people with ischemic stroke or TIA.

An ongoing clinical trial focused on strict BP control to prevent recurrent vascu-
lar events in patients with stroke is the Stroke in Hypertension Optimal Treatment 
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5% (–19 to 23)

32% (17 to 44)

27% (8 to 42)

40% (29 to 49)

4% (–15 to 20)

29% (16 to 40)

24% (9 to 37)

0.5 1.0 2.0
Hazard ratio

Single drug    157/1281    165/1280

Hypertensive 163/1464    235/1452

Non-              
hypertensive

Combination  231/1770    367/1774

Single drug    227/1281    237/1280

Hypertensive 240/1464    331/1452

Non-               
hypertensive

Total events  458/3051    604/3054

Major vascular events

28% (17 to 38)

26% (16 to 34)

Active Placebo
Favours
active

Favours
placebo

Relative risk
reduction (95% CI)

144/1587    185/1602

218/1587    273/1602

Fig. 20.3  Effects of study treatment on stroke and major vascular events in subgroups of patients. 
Hazard ratios (and 95% confidence intervals [CI]) for hypertensive and non-hypertensive sub-
groups standardised to study-wide proportions of patients for whom combination or single-drug 
therapy was planned [From PROGRESS Collaborative Group (2001) Randomized trial of a 
perindopril-based blood-pressure-lowering regimen among 6,105 individuals with previous stroke 
or transient ischaemic attack. Lancet 358 (9287):1033–1041]
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(SHOT) [34], an open randomized trial with a multifactorial design comparing three 
different systolic BP targets (<145–135, <135–125, and <125  mmHg) and two dif-
ferent LDL-C targets. The trial aims to enroll 7500 participants who are aged 
65 years or more with a history of hypertension and stroke or TIA within the previ-
ous 6 months.

20.4	 �BP Management in Hemorrhagic Stroke

20.4.1	 �Acute ICH

Elevated BP is observed in approximately four-fifths of patients with acute ICH 
[35], and a history of hypertension is associated with more frequent and higher lev-
els of BP on presentation. A population-based study from the UK reported that 
poststroke BP was markedly elevated compared to usual premorbid levels in patients 
with acute ICH, whereas BP after major acute ischemic stroke was much closer to 
premorbid levels [36].

Elevated BP is also related to higher risk of neurological deterioration and poor 
outcome including death and disability [37]. In terms of increase in hematoma vol-
ume (or hematoma growth), which is a strong independent predictor of neurological 
deterioration and subsequent poor outcome after ICH [38], observational studies 
demonstrated that patients with elevated BP are more likely to have hematoma 
growth [39]. Furthermore, it is suggested that elevated BP was related to worsening 
of brain edema in patients with acute stroke by a prospective observational study of 
patients with either ischemic or hemorrhagic stroke enrolled within 3 h of onset 
which reported systolic BP during the initial 24 h was associated with an increased 
risk of brain edema [40].

There had been a concern against BP lowering in ICH regarding the poten-
tial risk of ischemia of brain tissue surrounding hematoma induced by possible 
depletion of cerebral perfusion pressure [41], particularly in patients with altered 
cerebral autoregulation [7]. Nevertheless, several observational studies have dis-
credited the concern by showing no significant relationship between BP lower-
ing and perihematomal cerebral blood flow in patients with acute ICH [42], and 
safety of BP lowering on cerebral blood flow in acute setting was confirmed in the 
Intracerebral Haemorrhage Acutely Decreasing Arterial Pressure (ICH-ADAPT) 
trial [43]. In ICH-ADAPT, 75 patients with small- to medium-sized ICH within 24 h 
of onset were randomized to BP lowering to a systolic BP target of <150 mmHg or 
<180 mmHg. There was no significant decrease in perihematomal cerebral blood 
flow measured with computed tomography perfusion imaging at 2 h (the primary 
outcome) in relation with intensive BP lowering.

The main phase of Intensive Blood Pressure Reduction in Acute Cerebral 
Hemorrhage Trial (INTERACT2) [44] is the pivotal clinical trial that showed 
improved functional outcomes with no harm for patients with ICH who received 
target-driven, early intensive BP-lowering treatment. In INTERACT2, 2839 patients 
with imaging-confirmed ICH, elevated systolic BP (150–220  mmHg) were 
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randomly allocated to an intensive BP lowering to <140 mmHg within 1 h and con-
tinued for 7 days or standard management of systolic BP to <180 mmHg. The fre-
quency of death or major disability (the primary outcome) was 52% and 56% in the 
intensive and standard BP-lowering treatment groups, respectively, producing an 
odds ratio (OR) of 0.87 (95% confidence interval [CI], 0.75–1.01; P  =  0.06). 
Analyses on the prespecified key secondary outcome of an ordinal shift analysis of 
entire range of modified Rankin Scale demonstrated that the intensive BP-lowering 
group had significantly higher rates of functional recovery at 90  days (OR for 
greater disability 0.87; 95% CI 0.77–1.00) and significantly better health-related 
quality of life as measured on European Quality of Life Scale (EQ-5D) utility score, 
than the guideline group. Furthermore, the effects of intensive BP lowering were 
consistent across several prespecified subgroups including age, region of enroll-
ment, time from onset to randomization, baseline severity, and hematoma volume. 
Although an imaging substudy of INTERACT2 including 967 patients who under-
went sequential brain computed tomography demonstrated modest but insignificant 
reduction in hematoma growth during initial 24 h from intensive BP lowering, the 
effect becomes significant in a meta-analysis of four randomized controlled trials 
including INTERACT2 [45].

The most recently completed clinical trial of intensive BP lowering in acute 
ICH is the Antihypertensive Treatment for Acute Cerebral Hemorrhage (ATACH) 
II, which compared very early (<4.5 h) and “very intensive” BP lowering (SBP of 
<140 mmHg) using an intravenous nicardipine-based regime for 24 h and “stan-
dard” systolic BP reduction (systolic BP of 140–180 mmHg) [46]. The rate of death 
and disability at 90 days was 38.7% in the very intensive treatment group and 37.7% 
of the standard treatment group (adjusted relative risk 1.04, 95% confidence inter-
val 0.85–1.27). Moreover, there was no significant difference between the groups 
in the distribution of scores on the mRS or the EQ-5D utility metric. While there 
were no overall significant differences in treatment-related serious adverse events 
within 72 h, there were significantly more renal-related adverse events in the more 
intensive group (9.0% versus 4.0%, p = 0.001) and borderline more serious adverse 
events in this group by 90  days (adjusted relative risk 1.30, 95% CI 1.00–1.69; 
p = 0.05). Intriguingly, the proportion of patients with hematoma growth, defined 
as >33% increase in the volume of ICH during the initial 24  h, was 18.9% and 
24.4% in the intensive and standard treatment group, respectively (adjusted relative 
risk 0.78, 95% CI 0.58–1.03; p = 0.08). All the patients enrolled in the ATACH-II 
trial had elevated systolic BP of >180 mmHg (average at presentation 200 mmHg), 
while only about a half (48%) of participants in the INTERACT2 had this same 
level of systolic BP. Mean minimum systolic BP of intensive treatment group in 
ATACH-II was below 130 mmHg (129 mmHg and 122 mmHg for 0–2 and 2–24 h, 
respectively). The protocol-defined level for cessation of intravenous BP lowering 
in INTERACT2 was <130 mmHg whereas <110 mm Hg in the ATACH-II. A sub-
analysis of INTERACT2 demonstrated that achieved post-randomization systolic 
BP, which was the mean systolic BP during the initial 24 h, of 130–139 mmHg 
was associated with better outcomes, and modest increase in the risk of worse out-
come was observed for achieved SBP <130 mmHg [47]. The differences between 
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INTERACT2 and ATACH-II suggest that very intensive and rapid BP lowering to 
treatment targets <130 mmHg in patients with very high BP could negate the benefit 
of the treatment.

20.4.2	 �Secondary Prevention in ICH

Poor BP control is related to increased risk of recurrence ICH regardless of sub-
type (i.e., lobar versus non-lobar) [48]. In PROGRESS trial, of 660 subjects with 
a history of ICH at baseline, a 49% (95% CI 20–67%) relative risk reduction was 
observed on recurrent stroke, and lower BP level was continuously associated with 
lower risk of recurrent ICH [27]. Similar effects of BP lowering for the prevention 
of ICH were also seen in the SPS3 trial [31], in which there was 63% relative risk 
reduction on ICH as compared to insignificant reductions in all recurrent stroke and 
recurrent ischemic stroke. The PRoFESS trial did not show any significant benefits 
of early initiation of BP lowering for total stroke or ICH [49], but a meta-regression 
analysis of all these randomized trials suggests that the PRoFESS findings may 
simply be explained by the very small systolic BP difference achieved between 
randomized groups, with a clear dose-response relationship apparent for systolic 
BP and reduction in ICH risk (Fig. 20.4) [50]. These data suggest that much stricter 
control BP than currently recommended for patients with a history of ICH is safe 
and could provide large benefits in terms of prevention of recurrent ICH and serious 
cardiovascular events.
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Fig. 20.4  Reduction in hemorrhagic stroke vs. systolic blood pressure reduction in previous ran-
domized controlled trials [From Sato S, Carcel C, Anderson CS (2015) Blood pressure manage-
ment after intracerebral hemorrhage. Curr Treat Options Neurol 17 (12):49]
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The ideal antihypertensive agent/regime to achieve and maintain good long-term 
BP control after ICH remains uncertain. Most patients with hypertension require two 
or more antihypertensive agents to achieve adequate BP control [51], whereas mul-
tiple tablets can negatively impact on adherence and/or attendance to scheduled visits 
[52]. Therefore, a simpler and more tolerable treatment regimen, such as a polypill 
approach, could achieve higher levels of BP control with adherence in this patient 
group than is currently being achieved in practice. The ongoing Triple therapy preven-
tion of Recurrent Intracerebral Disease EveNts Trial (TRIDENT), which is a double-
blind, placebo-controlled trial, aims to determine the effectiveness of more intensive 
BP lowering by a fixed low-dose combination of BP-lowering agents (telmisartan, 
amlodipine, and indapamide–“Triple Pill” strategy) on top of standard of care, on 
the time to first occurrence of recurrent stroke among over 4200 patients with ICH.

20.4.3	 �SAH

Hypertension is a risk factor for both the occurrence of aneurysmal SAH and its 
rebleeding. Rebleeding, which is often followed by elevated systolic BP 
(>150 mmHg), is most likely to occur in the first 24 h of initial bleeding, with a rate 
of 4–17% [53]. Elevated BP before aneurysm obliteration increases the risk of 
rebleeding and subsequent worse outcome. The AHA/ASA guidelines [54] recom-
mend that between the time of symptom onset and aneurysm obliteration, BP should 
be controlled with a titratable agent to balance the risk of stroke, hypertension-
related bleeding, and maintenance of cerebral perfusion pressure (Class I; Level of 
Evidence B). However, the optimal magnitude of BP control to reduce the risk of 
rebleeding has not been established, although a decrease in systolic BP to 160 mmHg 
would seem reasonable (Class IIa; Level of Evidence C). A multicenter observa-
tional study involving 5612 patients with aneurysmal SAH [55] showed that a sys-
tolic BP of between 120 and 140 mmHg was most common prior to rebleeding. It is 
also reported that despite an aggressive management strategy in which oral nimodip-
ine was given unless systolic BP was less than 120 mmHg, 40 (7%) of 574 patients 
had rebleeding [56]. Thus, it is an unanswered question as to whether more inten-
sive BP lowering than is currently recommended in guidelines provides any addi-
tional benefit to patients.

Delayed cerebral ischemia can be due to vasospasm from reversible narrowing of 
cerebral arteries. This complication most commonly occurs within 4–14 days after 
SAH, lasts for 2–4 weeks, and is a major contributor to morbidity and mortality [57]. 
Despite lacking of evidence from randomized controlled trials, several studies suggest 
that induced hemodynamic treatment including induced hypertension may increase 
CBF through the narrowed vessels in the setting of impaired cerebral autoregulation, 
thereby improving outcome [58]. However, it should be noted that induced hyperten-
sion may increase the risk for hypertensive encephalopathy/reversible leukoencepha-
lopathy syndrome and hemorrhagic transformation of ischemia [59].
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20.5	 �Summary

Although ischemic/hemorrhagic stroke and TIA could be caused by various under-
lying pathophysiology, elevated BP is the common and important risk factor for 
them. There is still no clear evidence that intensive lowering of BP in the setting of 
acute ischemic stroke or TIA influences outcome. However, emerging evidence in 
terms of BP management in acute ICH suggests that intensive lowering of BP with 
a systolic target of 130–140 mm Hg improves functional outcomes. Long-term BP 
lowering is the most significant intervention for the secondary prevention of stroke, 
but it still remains to be determined that optimal magnitude of BP lowering or regi-
mens to achieve the BP. As stroke is such a common disease, establishment of opti-
mal BP management, even though which could have relatively small benefit to each 
patient, could provide a sizable effect in reducing the global burden of stroke.
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21.1	 �Introduction

Hypertension and chronic kidney disease (CKD) are global public health challenges 
due to their growing prevalence worldwide [1–3] and the associated higher risk for 
fatal and nonfatal cardiovascular (CV) events [4, 5]. These two conditions are 
strictly interrelated because elevated blood pressure (BP) not only is a main compli-
cation of CKD [6, 7] but can also act as its determinant [8].

A recent meta-analysis provides evidence that in the general population [8], over 
a median of 6 years of follow-up, the adjusted risk of GFR <60 mL/min/1.73 m2 is 
more than 75% greater in hypertensive versus normotensive individuals. Similarly, 
in individuals with prehypertension (systolic BP of 120–139 mm Hg and/or dia-
stolic BP of 80–89 mm Hg), risk of developing low GFR is increased by 25%. When 
systolic and diastolic BP was considered as continuous variables, risk of CKD 
increased by about 10% for each 10 mm Hg higher level of either BP component.

In patients with overt CKD, GFR decline is associated with a higher prevalence 
of hypertension and worse control rates. Indeed, BP is elevated in approximately 
80–85% of patients with non-dialysis CKD [9], and the prevalence of hypertension 
increases progressively from 65% to 95% as the GFR falls from 85 to 15  mL/
min/1.73 m2 [10].

Hypertension constitutes a major risk factor for the progression of renal disease, 
especially in proteinuric patients [7, 11], as well as for the high CV risk observed 
since the early stages of CKD independently of proteinuria level [5]. Therefore, the 
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antihypertensive therapy in CKD aims at slowing progression of kidney failure and 
reducing CV risk. However, in these patients, hypertension is often refractory to the 
treatment [12–16]. Therefore, BP-lowering strategies must take into account the 
complex pathogenesis of hypertension in CKD and, especially, the concomitant 
presence of albuminuria that substantially modifies the prognosis of CKD patients 
[17]. This latter concept is highlighted by the new classification of CKD (Fig. 21.1), 
where improved risk stratification is attained by combining GFR levels with albu-
minuria category (normal to mild, moderate, and severe) [18].

21.2	 �Pathogenesis of Hypertension in CKD

A variety of factors account for the high prevalence of hypertension in CKD, includ-
ing the reduction of sodium excretion, the increased activity of the renin-angiotensin-
aldosterone system (RAAS), and the sympathetic nervous system [19–21].

The main disorder in CKD is the salt and water retention that occurs in the major-
ity of patients with reduced glomerular filtration rate (GFR). The resulting expan-
sion of the extracellular volume (ECV) allows preserving the external balance of 
sodium but causes the development of persistent hypertension. In these patients, 
entity of ECV expansion strictly depends on the severity of GFR impairment and 
corresponds to approximately 5–10% of body weight, even in the absence of periph-
eral edema [19]. Of note, salt sensitivity of BP is not a feature limited to the advanced 
stages of CKD but begins before the development of clear hypertension and severe 
GFR decline [22, 23]. The common impairment of sodium excretion in renal 
patients may also explain the higher prevalence of nocturnal hypertension in CKD 
versus essential hypertension [24, 25].

Furthermore, in CKD patients, systemic hypertension is maintained by the acti-
vation of RAAS, which is inappropriate when considering the ECV expansion [20]. 
The ensuing glomerular hyperfiltration may contribute to the progressive kidney 
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injury [20]. Finally, hypoxemia of renal tissue due to kidney damage activates the 
central nervous system via afferent nerves that in turn increases sympathetic activity 
thus contributing to the genesis of hypertension [21].

Notably, CKD is associated with premature vascular aging, characterized by 
accelerated arteriosclerosis and/or endothelial dysfunction caused by impaired 
nitric oxide synthesis [26, 27]. Rigidity of arterial wall attenuates baroreceptor con-
trol of efferent sympathetic activity and vagal activation. Reduced baroreflex sensi-
tivity maintains high sympathetic activity directed to the heart, blood vessels, and 
kidney, which contributes to increasing BP [28, 29].

Additional pathogenetic mechanisms of hypertension in CKD are secondary 
hyperparathyroidism (leading to vasoconstriction and hypertension by means of 
increased intracellular calcium concentration) [30] and eventual treatment with 
erythropoietin (by means of increased blood viscosity and/or release of vasocon-
strictive factors).

21.3	 �Optimal BP Target in CKD

BP control is a cornerstone of management of CKD patients. However, the BP tar-
get for this population remains ill defined since there is no solid evidence on the 
optimal BP goal [31].

For many years international guidelines have recommended a BP < 130/80 mmHg 
in all patients with CKD patients in attempt to slow the renal progression and to 
reduce the high CV risk [32–34]. However, this BP goal has not been validated in 
randomized controlled trials being mainly driven by data obtained in either observa-
tional and post-hoc analyses of trials [35–40] or meta-analyses [41, 42]. In particu-
lar, MDRD study [35–37], AASK trial [38, 39], and REIN-2 trial [40] failed to show 
benefit for clinical outcomes from the low versus usual blood pressure targets. Only 
MDRD study follow-up (post-trial observational study) showed a 23% reduction of 
the risk for kidney failure in the group assigned to the low target [12]. More recently, 
the randomized Systolic Blood Pressure Intervention Trial (SPRINT) has shown 
that intensive BP control (<120  mmHg), as compared to standard control 
(<140 mmHg), did not reduce the CV and renal risk in the subgroup of patients with 
CKD [43]. Conversely, intensive treatment was associated with higher rates of 
hypotensive episodes and acute renal injury.

The inconclusive results on the prognostic role of BP target in patients with CKD 
might relate to the limited ability of clinic BP readings to adequately stratify the 
global risk of this high-risk population [44–46]. This hypothesis will be verified by 
the ancillary study of SPRINT trial in 600 patients undergone to ABPM [47].

Although there are far less data in CKD patients to inform the best approach, 
current guideline recommendations suggest that no single BP target is optimal for 
all CKD patients and encourage individualization of treatment depending on age, 
severity of albuminuria, and comorbidities, in contrast with the “one size fits all” 
viewpoint that has previously been endorsed. Table 21.1 summarizes the BP goals 
in each CKD subpopulation proposed by K/DIGO [48]. Briefly, because proteinuria 
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amplifies both cardiac and renal risks [17, 49–52], current guidelines suggest a 
lower target of ≤130/80 mmHg for patients with CKD and albumin excretion rate 
of ≥30 mg/24 h (i.e., those with either micro- or macroalbuminuria), whereas in 
patients without albuminuria, BP should be ≤140/90 mm Hg. Recommendations 
are almost identical in CKD patients with diabetes [53–58] and without diabetes 
[11, 12, 36, 59] (Table 21.1). Current guidelines suggest to pay particular attention 
in elderly patients, which constitute the most rapidly growing population of CKD 
patients, despite evidence-based recommendations for elderly CKD patients are 
scarce and inconclusive. Nonetheless, BP levels <140/90 mm Hg have been recom-
mended in all CKD patients by American College of Cardiology Foundation and 
American Heart Association (ACCF/AHA) and National Institute for Health and 
Clinical Excellence (NICE) as well [59, 60].

21.4	 �Which BP Measurement in CKD Patients?

Hypertension is usually diagnosed and treated based on BP readings obtained in the 
clinic; however, BP may considerably differ when measured at home. Out-of-office 
BP measurements include ABPM lasting 24 h and home BP monitoring (HBPM) in 
which patients record BP at home while seated and resting. Both assessments allow 
disclosing abnormal pressor profiles, as white coat hypertension (high clinic BP but 
normal ABPM or HBPM) or masked hypertension (normal clinic BP but high 
ABPM or HBPM), while ABPM also provides an accurate picture of circadian 
rhythm of BP and the evaluation of nocturnal dip. Indeed, BP is physiologically 
10–20% lower during sleep as compared to daytime. Accordingly, a night/day BP 
ratio between 0.8 and 0.9 is considered normal, and patients are defined as “dipper,” 
while the lack of nighttime BP reduction of at least 10% allows diagnosing the “ 
non-dipper” status. More specifically, a decline of nocturnal BP between 0 and 10% 
(night/day BP ratio 0.9–1.0) defines patients as “non-dipper,” whereas if nocturnal 
BP is higher than diurnal BP (night/day BP ratio > 1.0), it defines patients as “reverse 
dipper.” Occasionally, some patients, defined as “extreme dipper,” experience a 
marked reduction of night BP greater than 20% (night/day BP ratio < 0.8) [61].

Several observational studies in CKD population have found that ABPM is supe-
rior to office-based measurements in predicting end-stage renal disease (ESRD), 
cardiovascular events, and death [62–65]. In particular, Agarwal and Andersen dem-
onstrated in a cohort of 217 veterans with CKD followed for a median of 3.5 years, 
the superiority of ABPM over clinical BP for predicting a composite endpoint of 
death or ESRD [63]. Similar results were obtained when considering HBPM versus 

Table 21.1  BP goals recommended by K/DIGO in CDK patients with and without diabetes [48]

Albuminuria levels
<30 mg/day 30–300 mg/day >300 mg/day

Diabetics ≤140/90 ≤130/80 ≤130/80
Non-diabetics ≤140/90 ≤130/80 ≤130/80
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office BP in the same cohort [65]. Furthermore, an analysis of 617 CKD patients in 
the African American Study of Kidney Disease and Hypertension (AASK) study 
confirmed the superiority of ABPM for predicting both CV events and a composite 
of death, ESRD, or doubling of serum creatinine over a median follow-up of 5 years 
[64]. Finally, Minutolo et al. reported that in a cohort of 436 CKD patients followed 
for a median of 4.2 years, office BP did not predict CV events or composite of death 
and ESRD, while high BP at ABPM, and in particular nighttime values, increased 
the risk of adverse outcome [65]. In that study, the cardiorenal risk increased signifi-
cantly when daytime or nighttime BP exceeded 135/85 and 120/70 mmHg, respec-
tively. These data confirmed that normality thresholds for daytime and nighttime BP 
proposed for essential hypertension might be confidently applied also to patients 
with CKD [65].

21.5	 �Out-of-Office BP Measurements in CKD

21.5.1	 �Altered BP Profiles in CKD

A meta-analysis evaluating prevalence of altered BP profiles in CKD patients [66] 
reported that WCH was more frequent (18%) than hypertensive population (13%), 
whereas MH was less prevalent in CKD (8%) with respect to essential hypertension 
(11%) [67, 68]. However, recent studies not included in the meta-analysis have 
provided discrepant prevalence rates of abnormal BP profiles [69–74]. Indeed, as 
reported in Table  21.2, the prevalence of WCH ranged between 5% and 29%, 
whereas MH occurred in 5–31% patients. This variability may be explained by the 
ethnicity of cohorts, since the prevalence of WCH is higher than that of MH in 
Caucasian patients [69–71], while the opposite was found in studies enrolling Afro-
American or Asian patients [72–74].

Given the technical and economic barriers to routine implementation of ABPM, 
a critical question is on the timing of these measurements, that is, when to perform 
an out-of-office measurement of BP to detect altered BP profiles or, alternatively, 
what clinical and demographic conditions may predict the presence of WCH or MH 
and therefore indicate the need of ABPM. Two studies addressed this issue in CKD 
patients [75, 76]. Minutolo et al. reported that, among 228 CKD patients stages 2–5 
with high-office BP, 40% of patients had a WCH, and this condition was 

Table 21.2  Prevalence of white coat hypertension and masked hypertension in CKD cohorts

Cohort
Thresholds for defining BP profiles (mmHg)

WCH (%) MH (%)Office BP ABPM
Italian cohort [69] <140/90 Day/night <135/85/<120/70 22.1 14.5
Spanish registry [70] <140/90 24 h BP <130/80 28.8 7.0
Veterans cohort [71] <130/80 Awake BP <130/80 24.6 4.7
AASK study [74] <140/90 Daytime BP <135/85 5.3 25.1
JAC-CKD cohort [72] <140/90 24 h BP <130/80 5.6 30.9
Chinese cohort [73] ≤140/90 24 h BP ≤130/80 9.7 18.2
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significantly associated to proteinuria >1 g/day (odds ratio 3.12) and higher-office 
BP (odds ratio 1.61 for each 10 mmHg) [75]. Agarwal et al. in a cohort of 333 CKD 
patients (stages 2–4) with normal clinic BP (<140/90 mmHg) found that MH was a 
common condition whose prevalence varied from 27% (using daytime BP) to 33% 
(using 24 h BP) and should be suspected when clinic BP is in the prehypertensive 
range [76].

The more accurate estimates of hypertensive status offered by ABPM with 
respect to clinic BP translate into better risk stratification. Indeed, when using the 
two BP measurements (office and ambulatory) to detect altered BP profiles, renal 
and cardiovascular prognosis of CKD patients with sustained hypertension (office 
and ABPM not at goal) was worse than that of normotensive patients (both office and 
ABPM at goal). Similarly, cardiorenal risk of patients with MH (office at goal and 
ABPM not at goal) was similar to those with sustained hypertension and higher than 
normotensive patients. Conversely, having WCH (office not at goal and ABPM at 
goal) was not associated with higher risk for any event. These findings clearly sug-
gest that the different prognosis can be ascribed to poor control of the ambulatory 
BP (as occurs in sustained hypertension and MH) rather than to higher-office BP 
(WCH). The prognosis associated with pressor profiles was independent from the 
office and ambulatory thresholds used to define BP profiles [69]. It is important to 
note that classifying patients based on both clinic and out-of-office BP has relevant 
therapeutic implications. Indeed, physicians should avoid therapy intensification in 
WCH in order to prevent harmful ischemia-induced episodes affecting renal, cere-
bral, and cardiac function, particularly at nighttime [75] and in elderly patients [77], 
but they must reinforce antihypertensive therapy in MH to reduce their higher risk 
due to uncontrolled ambulatory BP.

The importance of combining clinic and out-of-office BP appears also in CKD 
patients with resistant hypertension (RH), in which out-of-office BP monitoring 
allows to distinguish between pseudoresistance (WCH) and true RH. Indeed, while 
30% of patients were defined as resistant on the basis of only clinic BP measure-
ments, pseudoresistance (ABP at goal in RH patients) was common (24% of these 
patients and 7% of whole cohort). Also in this setting, better estimate of hyperten-
sive status by ABPM translates into a better risk stratification. Indeed, patients with 
normal ABPM (controls and pseudoresistant patients) had the best prognosis for 
either outcome independent of their RH status, while the higher risk for cardiorenal 
events was observed only in true RH [15].

21.5.2	 �Altered Circadian Profile in CKD

The distinctive characteristic of ABPM is its ability of obtaining information on 
nighttime BP that is now considered the ABPM component more strictly linked to 
adverse outcome [78]. Indeed, even when daytime BP is well controlled, the pres-
ence of nocturnal hypertension portends a greater risk of renal progression [62].

The lack of physiological BP decline during nighttime (non-dipping status) 
occurs frequently in CKD patients being consistently above 50% in all cohorts 
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considered [69, 71–74], with increasing rates in elderly and advanced CKD [77]. 
In a group of 459 CKD patients regularly followed in renal clinics, the risk of being 
non-dipper was significantly associated to older age, diabetes, left ventricular 
hypertrophy, and anemia [77]. In a large Japanese cohort of CKD patients, non-
dipping status has been associated also to more advanced CKD, seasonal variation 
and, as expected, to nocturia [72]. Altered circadian profiles are strongly associated 
with adverse clinical outcomes in CKD [62–64], similarly to what was reported in 
general population and essential hypertension [79]. In particular, non-dippers and 
reverse dippers with CKD displayed a twofold greater CV risk and a 60–70% higher 
risk of renal events [62]. Agarwal and Andersen reported similar results in a cohort 
of veterans with CKD and highlighted that a similar risk of CV outcomes occurred 
by using day or night versus awake or sleep BP and that dipping defined as a ratio 
confers a greater CV risk compared to dipping when defined as absolute change 
[64]. Nocturnal hypertension also represents a potential target for therapy; indeed 
non-dippers may benefit of a “chronotherapeutic” antihypertensive approach. This 
intervention consists in the administration of drugs at bedtime in order to restore the 
physiologic BP decline at night. This approach has been tested in a pilot uncon-
trolled study, in which one antihypertensive drug was switched to bedtime in 32 
CKD non-dipper patients [24]. ABPM was repeated at 8 weeks, and 87.5% of the 
subjects became dippers. Of note, restoring the normal nocturnal dip was associated 
with a significant reduction of proteinuria [24]. More recently, a randomized con-
trolled open-label crossover trial was performed in 147 participants to the AASK 
study, 76% being non-dipper. This study did not confirm a significant BP reduction 
at night when either one antihypertensive drug or all drugs were administered at 
bedtime as compared with administration of therapy in the morning [80]. Finally, a 
randomized trial tested effectiveness of chronotherapy in 661 CKD patients (66% 
non-dippers at baseline) and reported a surprising 65% reduction in the relative risk 
of the composite endpoint of death or CV events [81].

In patients with uncontrolled daytime and nighttime systolic BP, the reassess-
ment of ABPM may be helpful. Specifically, a second ambulatory monitoring, 
obtained 1 year after the first one, allows to correctly reclassifying as at risk from 
15% to 22% of patients [82]. In particular, CKD patients not reaching the goal at the 
two ABPM had the worst renal prognosis, while patients not at goal at baseline but 
reaching the goal at second ABPM were not exposed to a greater renal risk.

21.6	 �Treatment of Hypertension in CKD Patients

21.6.1	 �Low-Salt Diet

Generally, the first step in the BP management is lifestyle modifications, such as 
achieving or maintaining a healthy weight (BMI 20–25 kg/m2), limiting salt and 
alcohol intake, and increasing physical exercise [48]. Because of volume expansion 
occurring in CKD patients, the pivotal intervention is certainly represented by the 
restriction of sodium intake below 100 mmol/day (corresponding to less than 6 g of 
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salt). In patients with CKD, moderate reduction of salt intake allows a much greater 
BP decrease in comparison with hypertensive patients with normal GFR undergoing 
major restriction of salt intake (salt sensitivity of BP) [22, 83, 84]. Specifically, 
Koomans et al. found that a mean decrease of sodium intake of about 6 g/d led to a 
decrease of mean BP of about 12 mm Hg [84]. More recently, data from Chronic 
Renal Insufficiency Cohort (CRIC) study showed that among 3757 patients with 
CKD, higher urinary sodium excretion was associated with increased risk of CVD 
[85]. Furthermore, dietary sodium restriction may also act indirectly by enhanc-
ing the antihypertensive effects of angiotensin-converting enzyme inhibitors 
(CEIs) [86].

However, this dietary measure is scarcely implemented in CKD population regu-
larly followed in nephrology clinics (<20% of patients have a salt intake below 6 g/
day) [87, 88]. This is a paradoxical condition if one considers that, as mentioned 
above, CKD is typically characterized by high-salt sensitivity [84] that becomes 
evident from early CKD stages [22].

21.6.2	 �Diuretics

Due to the poor adherence to low-salt diet, diuretics are needed to decrease volume 
expansion and ameliorate BP control in the majority of CKD patients. Two critical 
points in the diuretic treatment of CKD patients are the selection of the class of diuretic 
and titration of the dosage according to degree of kidney failure [89]. Indeed while 
patients with mild renal impairment (GFR >40 mL/min/1.73 m2) may respond to thia-
zide diuretics, those with more advanced CKD require the use of more potent loop 
diuretics; furthermore, the lower is the GFR, the higher must be the dose of furose-
mide or torasemide [89]. In a clinical trial performed in patients with GFR in the range 
10–40 mL/min, correction of volume expansion (evidenced by body weight reduction 
of 2.0 kg coupled with a marked reduction in BP) was safely induced by oral admin-
istration of furosemide at the following daily doses: 1.0, 2.5, and 4.0 mg/kg body 
weight in patients with GFRs of 40–31, 30–20, and 19–10 mL/min, respectively [90]. 
Therefore, to improve the diuretic management is helpful to start diuretic treatment 
with a low dose that can be progressively increased if body weight does not decrease. 
The lack of a significant body weight reduction (0.4–0.6 kg/day) despite increasing 
diuretic doses likely suggests the presence of diuretic resistance that can be overcome 
by adding other agents (such as metolazone) in order to limit the breaking phenome-
non (sodium over-reabsorption in the distal segments of renal tubule) [91].

In the cases of the hypertension refractory to the treatment, it may be helpful to 
use spironolactone at the dose of 25–100 mg/day that is efficacious in non-CKD 
patients with diagnosis of RH [92]. However, assessment of spironolactone efficacy 
has not been tested in patients with renal impairment that are at higher risk of hyper-
kalemia. Disappointingly enough, nephrologists are today still reluctant to use ade-
quately loop diuretics in their hypertensive CKD patients. This erroneous attitude 
cannot be justified by the fear of side effects, which are infrequent, usually revers-
ible and predictable when the patient is regularly followed [93].
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21.6.3	 �Inhibitors of RAAS

The CEIs or angiotensin receptor blockers (ARBs) are more effective than other 
antihypertensive drugs in slowing the progression of proteinuric diabetic [54–59] 
and nondiabetic CKD [11, 36, 60]. This specific renoprotective effect significantly 
exceeds that associated with antihypertensive drugs not active on RAAS and appears 
to be essentially caused by their specific antiproteinuric effect. Experimental stud-
ies, in fact, have demonstrated for anti-RAAS agents a decrease in intraglomerular 
pressure by predominant vasodilation of the efferent arteriole resistance and 
improved glomerular permselectivity [94, 95]. Antiproteinuric effect is more promi-
nent when patients are kept on a low-sodium diet [96] or are treated with diuretics 
[97] because relative volume depletion results in enhanced angiotensin II depen-
dence of the glomerular microcirculation.

A critical (actual) issue is the role of CEI-ARB combination therapy. Additive 
antiproteinuric effect and concomitant increased efficacy in terms of slowing 
CKD progression have been reported only in proteinuric nondiabetic CKD 
patients affected by IgA nephropathy [98]. Conversely, ONTARGET trial showed 
that in high-risk vascular disease/diabetes patients, the combination of the CEI 
plus ARB was associated with more adverse events with no additional benefit 
[99]. However, the very low prevalence of significant albuminuria among partici-
pants was indicative of ischemic nephropathy as leading cause of renal disease; 
in these conditions, dual blockade of RAAS is not required (no need of protein-
uria reduction) and may expose patients to greater risk of worsening of renal 
function especially in the setting of clinical trial in which drug withdrawal is not 
allowed [99].

It is important to emphasize that although the benefits of RAAS inhibitors hold 
true also in patients with advanced CKD [100], the safety of CEIs or ARBs therapy 
in the advanced CKD needs a tight control of volume status, changes of GFR, and 
serum potassium. In fact, clinically significant hyperkalemia and reductions in GFR 
can occur in patients receiving ACE-Is or ARBs, particularly when these agents are 
used together with NSAIDs, COX-2 inhibitors, or potassium-sparing diuretics. 
Furthermore, in patients who develop intercurrent illnesses that lead to dehydration 
as a result of diarrhea, vomiting, or fever, it is recommended to have temporary 
withdrawal of CEIs or ARBs until recovery.

At variance with proteinuric CKD, in patients with non-proteinuric renal dis-
ease, RAAS inhibitors are not specifically indicated; under these conditions, in 
fact, CEIs have not been found to be superior to standard therapy in slowing pro-
gression of the renal disease [101] despite there is some evidence that inhibitors of 
the RAAS system might prevent an increase in albuminuria [102, 103]. However, 
such studies have not been performed in patients with reduced GFR but normal 
urinary albumin excretion. Therefore, in patients with non-proteinuric nephropathy 
(i.e., ischemic or hypertensive renal diseases), therapy should be primarily based 
on achievement of optimal BP control to ameliorate renal and cardiovascular prog-
nosis with a careful evaluation of the balance of risks and benefits of the use of 
CEIs or ARBs [48].
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21.6.4	 �Other BP-Lowering Agents

Multidrug regimens are usually necessary to achieve BP goals by interfering with 
the different pathways involved in the complex pathogenesis of hypertension in 
patients with CKD. There is no evidence on the class of antihypertensive drugs to 
be used in CKD as third line, that is, after optimization of treatment with anti-RAAS 
and diuretics. All classes of antihypertensives may be used in CKD patients, keep-
ing in mind the pharmacokinetics of each drug, in order to avoid the accumulation 
of drug or active metabolites that could exacerbate concentration-dependent side 
effects. Furthermore, most of these drugs are effective vasodilators that may exac-
erbate fluid retention of CKD patients; for that reason their use should be postponed 
once euvolemia is achieved by dietary salt restriction or adequate diuretic therapy.

In summary, in CKD patients with albuminuria >30 mg/day, it is recommended 
to use CEIs or ARBs as first-line drugs taking into account their protective effects 
on CKD progression [7, 11] and CV outcomes [103, 104]. In non-albuminuric 
patients, there is no solid evidence to suggest one specific class of antihypertensive, 
besides and beyond diuretics. Therefore, after a low-salt diet is implemented and 
anti-RAAS and adequate doses of loop diuretics have been used, additional antihy-
pertensive agents can be decided on the basis of comorbidities (heart failure, myo-
cardial infarction, asthma, chronic obstructive pulmonary disease, etc.).
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22Calculus Renal Disease

Attilio Losito

22.1	 �Epidemiology

Nephrolithiasis is widespread across the world with incidence and prevalence that 
vary among different geographical areas, as does the composition of kidney stones. 
The majority of stones are made of calcium (>80%) complexed with oxalate and/or 
phosphate. The presence of oxalate ranges between 45 and 73% and that of phos-
phate between 10 and 25%. Stones made of uric acid range between 7 and 14% [1]. 
In industrialized nations, the historical annual incidence was reported between 0.5% 
and 1.9% [2, 3]. During the last decades a trend toward increased incidence and 
prevalence has been observed worldwide. The lifetime prevalence in the United 
States has increased from 2.62%, observed in years 1964–1972, to 5.2% in years 
1988–1994. Germany, Spain, and Italy have shown the same trend [4–6].

In broad terms it is generally thought that kidney stone formation is the result of 
interaction between genetic and environmental factors. The increase in incidence 
and prevalence of nephrolithiasis has developed in such a short time that is not com-
patible with a genetic change. Lifestyle, instead, appears to have played an impor-
tant role in this trend. This is clearly shown in pediatric experience. Nephrolithiasis 
has become more common in children over the past few decades as a result of rapid 
variations in habits and increasing affluence. Changing socio-economic conditions 
have generated changes in the incidence and type of nephrolithiasis with respect to 
the site and the physicochemical composition of the calculi. Especially changes in 
dietary practices may be a key driving force [7].
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In adults, the present increase in the prevalence of KSD has been associated with 
the parallel increase in obesity. The last, in turn, is considered a consequence of the 
exaggerated consumption of starchy foods and high-fructose corn syrup. Consumption 
of animal protein has also increased in a number of countries, paralleling the accel-
eration of stone disease [8]. Furthermore an increased intake of sodium and sodium-
rich foods has been shown in some groups of stone formers [9]. All these factors act 
synergically with an individual genetic susceptibility to contribute to stone forma-
tion. Therefore, presently, in the epidemiology of nephrolithiasis, obesity and diet 
(particularly sodium intake and fructose-rich drinks) play an important role.

22.1.1	 �Association of Hypertension with Nephrolithiasis

Epidemiological data show a singular overlapping between hypertension and neph-
rolithiasis in terms of the age of prevalence and associated risk factors. Furthermore, 
the two conditions show a non-dissimilar epidemiological trend, a continuous 
increase in the last decades. The sharing of risk factors between the two conditions 
is only one of the elements that in the last few decades have raised the attention of 
researchers toward the relationship between hypertension and nephrolithiasis.

In 1967, Tibblin reported the results of a survey on 50-year-old men, randomly 
selected from the general population in Göteborg, Sweden. In this report an association 
of hypertension with kidney stone was shown for the first time [10]. In the following 
years, only few studies dealing with the association of hypertension with nephrolithia-
sis were published [11, 12]. The first study, formally designed to test the hypothesis 
that kidney stone disease is more frequent among hypertensive, was performed on 688 
male workers of the Olivetti factory near Naples [13]. The results showed that the risk 
of nephrolithiasis in treated hypertensive men was significantly higher than that in the 
normotensive group. The prevalence of a history of nephrolithiasis was 13.4% in the 
normotensive subjects, 20.3% in the untreated hypertensives, and 32.8% in the treated 
hypertensives. In the 8 years follow-up study on the same cohort, the prevalence of 
kidney stone was 16.7% in hypertensive subjects versus 8.5% in normotensive [14].

Although no answer was provided on what might be the pathogenetic factor link-
ing nephrolithiasis with hypertension, a hypothetical role for hypercalciuria was put 
forward.

An attempt to get an insight into factors linking hypertension to kidney stones 
formation was made by Borghi et al. [15]. They studied stone risk profile in a cohort 
of essential hypertension patients in comparison with normotensive controls. 
Hypertensive subjects had a greater risk of renal stone formation, especially when 
hypertension is associated with excessive body weight. During the follow-up hyper-
tensive patients had more stone episodes than controls (14.4% vs. 2.9%). Higher 
oxaluria and calciuria as well as supersaturation of calcium oxalate and uric acid 
were the differentiating factors between hypertensive and normotensive subjects. 
The urine of hypertensive women differed from that of control women in having 
higher excretion of calcium, phosphorus, and oxalate and in supersaturation of cal-
cium oxalate. For the first time urinary excretion of lithogenic compound was 
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reported in association with essential hypertension. Most of the factors highlighted 
in this study, supposedly linking hypertension to nephrolithiasis, became the most 
investigated in the following years. Thenceforth the investigational approach 
changed and the association between nephrolithiasis and hypertension was assessed, 
studying patients affected by nephrolithiasis and looking in these for the prevalence 
of hypertension and hypothetical linking factors.

Examining a cohort of 258 stone formers, Cupisti et al. did not find a higher preva-
lence of hypertension than the general population [16]. In a following investigation, 
Madore et al. studied 4111 patients with nephrolithiasis and found in men a significant 
association of this condition with hypertension [17]. Moreover in 79.5% of patients, 
nephrolithiasis was prior or concomitant with the diagnosis of hypertension. More 
recently a follow-up study in stone formers has shown that the presence of hyperten-
sion is significantly associated with the recurrence of stone formation [18]. High 
blood pressure has also been shown in women with nephrolithiasis and coronary heart 
disease, confirming the relevance of this association [19]. Notable studies showing an 
association between hypertension and KSD are shown in Table 22.1.

22.1.2	 �Factors Linking Hypertension to Nephrolithiasis

The approach to investigate the association of nephrolithiasis with hypertension 
starting from stone formers cohorts promoted research based not only on stone 
composition but also on urine excretion of lithogenic solutes and supersaturation 
and on more general predisposing factors (Table 22.2). In this setting, several litho-
genic solutes have been studied individually and in association.

Table 22.1  Association between hypertension and nephrolithiasis

Prevalence of hypertension in nephrolithiasis
Author Year Prevalence vs. non-stone formers
Madore 1998 24% Higher
Strazzullo 2001 57% Higher
Prevalence of nephrolithiasis in hypertension
Author Year Prevalence vs. non-hypertensive*
Tibblin 1967 ~30% Higher
Cirillo 1988 ~50% Higher
Cappuccio 1990 ~70% Higher
Borghi 1999 ~100% Higher

*Approximate estimates deduced from original papers

Table 22.2  Factors linking 
nephrolithiasis to 
hypertension

General factors Urine components
BMI, obesity, metabolic syndrome Calcium
Female sex Sodium
Uricemia Oxalate
Genetics Citrate
Dietary fructose Acids
Dietary sodium
Reduced GFR
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22.1.3	 �Calcium and Sodium

The first singled-out component was calcium. This is not only the most common 
component of kidney stones, but it is also involved in the pathogenesis of hyper-
tension [20, 21]. It has been proposed that in patients with essential hyperten-
sion, renal calcium handling is altered in such a way that urinary calcium 
excretion is increased at each level of sodium output [22]. This renal alteration is 
the consequence of a diffuse cell membrane defect in the cellular handling of 
sodium and calcium at a number of sites. An indirect evidence of hypercalciuria 
in hypertension comes also from studies on bone mineralization. Essential hyper-
tension is associated with reduced bone density in the elderly [23]. Clinical stud-
ies have also confirmed hypercalciuria as a link between hypertension and 
nephrolithiasis [24]. In a retrospective study on a large cohort of stone formers, 
Eisner et  al. found that hypertension was associated only with significantly 
increased urine calcium and not with other urinary components [25]. The evi-
dence at genetic level, supporting the link between calciuria and hypertension, 
was found both in animals and humans. The molecular defect linking Na+ and 
Ca2+ renal reabsorption has been detected in mice [26]. At clinical level the use 
of a classical genetic approach has produced further evidence on the link between 
hypertension and nephrolithiasis. The investigation of the aggregation of hyper-
tension and KSD in families of patients with KSD and hypercalciuria has shown 
that the disturbance in calcium metabolism in hypertension and KSD has a 
genetic basis [27]. Although rare, Gordon syndrome, a genetic syndrome charac-
terized by hypertension, hyperkalemia, and hypercalciuria, is a good example in 
which nephrolithiasis and hypertension are linked by hypercalciuria based on a 
genetic defect [28].

Dietary sodium has been linked to the process of kidney stone formation for 
many years. It was shown experimentally in normal subjects in whom a high 
sodium diet produced an increased tendency for the crystallization of calcium 
salts in urine [29]. Moreover, in calcium stone-forming patients, high sodium 
chloride intake was associated with low bone density and hypercalciuria [30]. 
The link between the risk of stone forming and sodium intake is clearly estab-
lished. The underlying pathophysiological mechanisms may lie either within the 
kidney itself or in a more general derangement. In fact these changes may be 
secondary to a primary renal tubular defect (“renal calcium leak” hypothesis) or 
to the effect of central volume expansion often seen in hypertension that in turn 
may be one consequence of the excess of sodium in the diet [31]. In a reanalysis 
of cohort of kidney stone formers, we found that higher blood pressure was 
associated with higher renal excretion of sodium (Fig. 22.1). Therefore sodium 
intake and high calcium excretion are an example of how hypertension and cal-
cium stone formation are intertwined and linked. These findings suggest also a 
dietetic approach to these conditions aimed at definite pathophysiological 
targets [32].
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22.1.4	 �Citrate and Acids

New information on the association of hypertension with nephrolithiasis comes 
from studies on large cohorts. The Nurses’ Health Study I (older women; N = 1284), 
Nurses’ Health Study II (younger women; N = 952), and the Health Professionals 
Follow-up Study (men; N = 788) are three cohorts followed for years. In partici-
pants with nephrolithiasis, urinary calcium levels were not related consistently to 
hypertension. Instead, lower urinary citrate excretion was associated independently 
with prevalent hypertension [33]. Other studies confirmed the association of low 
urinary citrate with hypertension, but highlighted other potential factors [34]. 
Following investigations were addressed to factors that regulate urinary citrate 
excretion and may play a role in hypertension. Taylor suggested that hypocitraturia 
is due to increased citrate reabsorption in proximal tubules as a consequence of 
subclinical metabolic acidosis in hypertensive individuals. In fact animal and human 
studies have shown in salt-sensitive hypertension an increased acid excretion as a 
consequence of metabolic acid over production [35, 36]. In a study in stone formers 
in whom a complete set of urinary components and oversaturation was performed, 
citraturia was lower in patients with higher blood pressure [34] (Fig. 22.2). On the 
whole, low urine pH and citrate appear to be not only markers of hypertension asso-
ciated with nephrolithiasis but also part of the pathophysiological process [36].
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22.1.5	 �Lifestyle, Diet, and Systemic Factors

Urinary citrate excretion is regulated by several factors. In stone formers, they 
themselves might also play a role in the development of hypertension.

Among those are insulin resistance and lifestyle. Studies have shown that 
higher level of insulin resistance is associated with lower urinary citrate excretion 
and that hypocitraturic patients show a greater insulin resistance than normoci-
traturic calcium stone formers [37]. With respect to lifestyle, there are many fac-
tors associated with citrate excretion. Hypertension is independently associated 
with lower 24-h urinary citrate excretion, but other several dietary and lifestyle 
factors and medical conditions are associated with hypo- and hypercitraturia [38]. 
Some constitutional factors, such as body mass index, are also associated with 
hypocitraturia [39]. This makes things less clear since it is well established that 
high BMI is strongly associated with hypertension [40]. Therefore many lifestyle 
and constitutional factors associated with hypocitraturia are also associated with 
hypertension.

Among the dietary factors potentially responsible of stone formation and hyper-
tension is fructose. The consumption of this artificial sweetener is associated with 
an increased risk of kidney stones [41]. The underlying mechanism seems to be the 
effect of consumption of fructose on the level of supersaturation in the urine, but no 
clear-cut evidence has been produced yet.

On the other hand, a cross-sectional analysis using the data collected from the 
National Health and Nutrition Examination Survey has shown that high fructose intake, 
in the form of added sugar, independently associates with higher BP levels among US 
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adults without a history of hypertension [42]. Also in this case, the mechanism linking 
fructose intake to hypertension has not been clearly established. Yet studies in animals 
have shown that fructose may raise BP via several mechanisms, including stimulation of 
uric acid, inhibition of endothelial nitric oxide synthase system, and stimulation of the 
sympathetic nervous system, or by directly increasing sodium absorption in the gut [42]. 
Uricemia is one of the most suspected links. In the general population, a direct relation-
ship between serum uric acid levels and BP has been shown [43, 44]. This relationship 
is also present in nephrolithiasis. In stone formers the association between hypertension 
and uric acid has been repeatedly reported [45, 46]. We found a direct relationship 
between uricemia and blood pressure in a cohort of stone formers [34] (Fig. 22.3). The 
supposed mechanism lies in uricemia-induced microvascular changes that in turn lead 
to endothelial dysfunction, a precursor to both coronary artery disease and hypertension. 
Among the several hypothetical explanations for this association in stone formers, there 
is one pointing specifically at a reduction of kidney function. In a retrospective analysis, 
uric acid stone formers had a small, significant reduction of creatinine clearance [47].

22.1.6	 �Obesity and BMI

We have seen that some dietary habits, such as high sodium and fructose intake, are 
associated with hypertension in nephrolithiasis. Yet inappropriate diet, and life-
style, may also play a role indirectly, increasing BMI and promoting obesity. 
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The association between overweight and obesity and the prevalence of high BP has 
been known for some time [48].

The finding of an association between increased BMI and history of kidney 
stones is more recent. Curham et  al. analyzed the data from the Nurses’ Health 
Study II and the Health Professionals Follow-Up Study including a total of 140,905 
subjects and looked for an association of body size and risk of kidney stones [49, 
50]. They found an association of prevalence and incidence of kidney stones with 
weight and BMI. The magnitude of risk was higher in female than in male. These 
separated data showed a sharing of a risk factor between hypertension and nephro-
lithiasis, in the presence of increased BMI or obesity. A subsequent analysis of data 
from the Third National Health and Nutrition Examination Survey was addressed to 
estimating the association between the history of stone disease and hypertension 
[51]. In women, it was estimated that stone formers had a 69% increase in risk of 
hypertension. The risk increased with body mass index in both sexes, but was more 
pronounced in women. These findings therefore support the link between kidney 
stone disease and hypertension and suggest that overweight women stone formers 
may be at significantly increased risk for hypertension. The association of obesity 
with hypertension in women was confirmed in a following study investigating meta-
bolic syndrome and nephrolithiasis in an inpatient population [52]. On the whole 
there is adequate evidence to support a role for inappropriate diet and obesity in the 
association of nephrolithiasis with hypertension [53]. There are also strong sugges-
tions that some individual component of the metabolic syndrome, particularly insu-
lin resistance, might play the same role [54]. A clear-cut evidence of this relationship 
has not been provided yet. In this setting we must take into account a recent inves-
tigation of autonomic dysfunction in idiopathic recurrent kidney stone formers [55]. 
The results showed that patients with recurrent stone formation have a subtle auto-
nomic dysfunction resulting in increased blood BP and abnormal cardiovascular 
control. This study introduces further a component in the already complex picture 
of the relationship between nephrolithiasis and hypertension.

In conclusion, we have a certainty that kidney stone formers have a high proba-
bility of becoming hypertensive, and conversely, hypertensive subjects are at risk of 
nephrolithiasis. We now know that there are several links between the two condi-
tions. Or, more precisely, we know that there are risk factors shared by the two 
conditions and that in different instances, different factors appear to link hyperten-
sion to nephrolithiasis. Finally, the association with hypertension contributes to the 
increased risk of cardiovascular disease recently reported in kidney stone formers.
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23Uric Acid-Hypertension Relationships

Adel E. Berbari, Najla A. Daouk, and Giuseppe Mancia

23.1	 �Introduction

It is well established that high serum uric acid levels are associated with deposition 
of uric acid crystals in tissues of several target organs and formation of urinary cal-
culi and nephrolithiasis [1]. Further there is increasing evidence that chronic hyper-
uricemia is a major risk for future hypertension, cardiorenal disease, and metabolic 
disorders [2–9].

Serum uric acid levels in the population tend to increase [10]. Several factors 
contribute to the increase in serum uric acid levels, namely, changing dietary pat-
terns, increasing body weight and obesity, chronic administration of certain classes 
of therapeutic agents, and improved life expectancy [2].

The aim of this chapter is to summarize relevant studies concerning uric acid and 
possible links to hypertension and renal and cardiovascular diseases.

23.2	 �Uric Acid-Cardiorenal Relationship

23.2.1	 �Historical Background

Uric acid was first associated with primary hypertension in 1874 by Mohamed 
[11]. Mohamed, who noted that many of his hypertensive patients had a family 
history of gout, proposed that uric acid might play an important role in the 
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pathogenesis of essential hypertension [12]. Several years later, Haig linked uric 
acid to elevated blood pressure (BP) [13, 14]. Further, in an address to the 
American Medical Association in 1897, Davis contented that gout was a major 
cause of hypertension and manifested renal tubulointerstitial and arteriolar vas-
cular diseases and ventricular hypertrophy [15]. In 1913, a French group of 
investigators reported that the injection of uric acid into rabbits could increase 
BP [16].

Although the association between increased serum uric acid and hypertension 
was repeatedly reported in the early part of the twentieth century, it received little 
attention by scientific organizations and documents [17, 18]. Serum uric acid was 
even ignored in clinical practice [18, 19]. However, from the late 1980s, a large 
number of clinical and experimental studies were published, documenting the prog-
nostic significance of serum uric acid, reviving the interest in this parameter as a 
major risk for hypertension, and cardiorenal diseases [20].

23.2.2	 �Uric Acid: Generation, Excretion, and Biochemical 
Reactions

Uric acid (7,9-dihydro-1H-purine-2,6,8(3H)-trione; 8-hydroxyxanthine; purine-
2,6,8-triol; 2,6,8-trioxypurine) is a weak, odorless, colorless, and tasteless organic 
acid. It is poorly soluble at urinary physiological pH = 5.0–6.0 with a concentration 
not exceeding 15 mg/dL [21]. However, at a urinary pH = 7.0 and in non-acidic 
solutions, uric acid solubility increases significantly with a concentration often 
equal to or exceeding 200 mg/dL [21]. At pH = 7.4 and at 37 °C, about 98% of uric 
acid is ionized as monosodium urate [22]. At the uric acid concentration of the 
extracellular fluid, serum is supersaturated with monosodium urate at uric acid con-
centration more than 6.5 mg/L [23].

Serum uric acid levels follow a circadian rhythm with higher uric acid levels dur-
ing the night and first morning hours.

Uric acid is not regularly ingested, although dietary intake appears to provide a 
significant source of urate precursors [24].

The liver is the major site of uric acid production from both exogenous and 
endogenous purines, which are derived from dietary sources and nucleic acid 
metabolism [25]. Biochemical reactions catalyzed by two enzyme systems, xan-
thine dehydrogenase and xanthine oxidase, mediate the breakdown of purines into 
xanthine and hypoxanthine [2, 25]. In turn, the latter two compounds are metabo-
lized to the poorly soluble uric acid [25]. In most mammals, uric acid is further 
degraded to allantoin, a very soluble and easily eliminated product by uricase, an 
oxidative enzyme located in the peroxisomes of the hepatocytes (Fig. 23.1) [25]. In 
contrast, in humans and great apes, due to the lack of hepatic uricase from genetic 
mutation, the poorly soluble uric acid is the final breakdown product of purine 
metabolism [25].
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As a result of these biochemical and functional differences, serum uric acid lev-
els are significantly higher in humans than in other mammalians [21].

23.2.2.1	 �Homeostasis
With a functional pKa of about 5.75 and an arterial blood pH = 7.40, uric acid, the 
poorly soluble end product of purine metabolism, dissociates and circulates as the 
urate anion:
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The body urate pool in an adult male is about 1200 mg, representing about twice 
the amount in an adult female [26]. This gender difference has been attributed to the 
greater renal urate excretion in premenopausal females due to the biologic effects of 
estrogenic hormones [26].

23.2.2.2	 �Uric Acid Elimination
Homeostasis of serum uric acid is maintained by two mechanisms, namely, renal 
and gastrointestinal [25]. Under normal physiologic conditions, metabolism of 
urate by human tissues is negligible.

The poorly soluble intracellular uric acid is transported into the circulation by a 
complex mechanism [27]. Upon reaching the circulation, serum uric acid is excreted 
by the kidneys and the gastrointestinal tract [25].

Renal Clearance
About 2/3 of the daily turnover of urate in humans is excreted by the kidneys through 
glomerular filtration and tubular processes [25].
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Fig. 23.1  Genesis of uric acid/allantoin production
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Protein binding accounts for only about 5% of the circulating urate [22]. Thus, 
almost all of the circulating urate is freely filterable at the glomerulus [22].

Tubular handling of urate takes place at the proximal tubule and is characterized 
by three processes, namely, presecretory reabsorption, secretion, and postsecretory 
reabsorption [21, 22].

Most of the filtered urate is reabsorbed in the early part of the proximal tubule 
(the so-called presecretory reabsorption phase) [21, 22]. This process is followed by 
secretion which occurs in the S2 segment of the proximal tubule and returns about 
50% of the filtered urate back into the tubular lumen [28]. The secreted urate under-
goes further reabsorption (the so-called postsecretory reabsorption) and occurs in S3 
segment of the proximal tubule [28].

About 90% of the secreted urate undergoes postsecretory reabsorption [22, 28]. 
Thus, only about 7–12% of the filtered urate is excreted [22].

Gastrointestinal Degradation
The remaining 1/3 of the urate load is excreted by the gastrointestinal tract [25].

Recent evidence suggests that the entry of urate into the intestines is both passive 
and active [29]. In the gut, urate is almost completely degraded by intestinal bacte-
ria, with little being found in the stools [30].

23.2.2.3	 �Biologic Effects of Uric Acid
Serum urate is not an inert molecule, but possesses several biological actions that 
could be either beneficial or detrimental [25].

Antioxidant Properties
Urate may act as an aqueous antioxidant. Along with ascorbate, urate is one of the most 
important antioxidants in the plasma reacting with a large number of oxidants [31].  
In particular, by scavenging superoxide anions, it blocks the reaction of superoxide 
with nitric oxide and prevents the formation of peroxynitrite which is a very toxic 
product to the cells [32]. Uric acid may also prevent the degradation of extracellular 
superoxide, an extracellular enzyme which is critical in blocking the reaction and inac-
tivation of nitric oxide by superoxide anions [25].

Adverse Reactions
In contrast to its beneficial actions, urate has a large number of adverse effects on 
vascular structures.

Endothelial dysfunction: Urate may contribute to endothelial dysfunction. Uric 
acid infusions in healthy human subjects result in impaired acetylcholine-induced 
vasodilatation in the forearm, documenting impaired endothelial nitric oxide (NO) 
release [33]. In experimental animals, mild hyperuricemia inhibits the NO system in 
the kidney [33].

The mechanism by which uric acid (urate) impairs endothelial function may be 
related to a pro-oxidative action under certain conditions [2].

Proliferation of vascular smooth muscle cells: Uric acid (urate) also stimulates 
proliferation of vascular muscle cells by activating intracellular protein metabolism 
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resulting in proliferative and pro-inflammatory reactions which produce growth fac-
tors, vasoconstriction, and pro-inflammatory molecules [2, 34–36].

23.2.3	 �Hyperuricemia

23.2.3.1	 �Definition
Hyperuricemia is generally defined as serum urate levels of >6.5–7.0  mg/dL in 
males and >6 mg/dL in females [31]. However, the definition of hyperuricemia has 
been difficult to assess around the mean of serum urate levels in the population [22].

Different criteria have been used to determine which levels of serum urate define 
hyperuricemia. First, based in its physiochemical properties, serum urate is super-
saturated at a concentration greater than 6.5 mg/dL in the extracellular fluid [22]. It 
has been recommended to consider serum urate levels greater than 7.0 and 6.0 mg/
dL in males and females, respectively, to represent hyperuricemia [22]. Second, age 
has a significant effect on serum urate levels. Serum urate levels are lower in chil-
dren than in adults [22, 25, 38]. With the entry into male puberty, values increase 
toward normal adult male range [22, 25, 38]. Further, compared to their male 
counterparts, premenopausal females have lower serum urate values, attributed to 
the higher renal urate handling [22, 38]. However, with the onset of menopause, 
serum urate levels tend to increase, approaching those in males of corresponding 
age [22, 38].

Third, several studies have demonstrated that serum uric acid levels cluster in 
families, suggesting that genetic factors modulate the regulation of this molecule 
[39]. Twin studies, path analysis and segregation analysis methods, estimate that the 
heritability of serum uric acid ranges between 0.40 and 0.73 [39–41].

Genome-wide association studies revealed that numerous candidate genes are 
involved in the regulation of serum uric acid levels [42]. About thirty gene vari-
ants have been identified, explaining about 7% of the variation in serum uric acid 
levels [42].

The gene most strongly associated with serum uric acid resides on chromosome 
4 and codes for SLC2A9 (also known as GLUT9), a key urate transporter which 
localizes to both apical and basolateral membranes of the human renal proximal 
tubular cells in vitro [43]. Recent studies have shown that SLC2A9 is involved in 
renal and gastrointestinal excretion of uric acid and is implicated in antioxidant 
defense [44].

The causality of serum uric acid and cardiovascular disease has been explored by 
genome-wide association and Mendelian randomization studies. However, the 
results of these studies have been contradictory.

Investigating the association between a missense nucleotide polymorphism in 
the LC2A9 gene and BP, Passa found that a decrease in serum uric acid levels cor-
related with lower systolic BP, depending on the salt intake [43]. On the other 
hand, using a genetic score approach in the Rotterdam Study, Sedaghat et  al. 
reported that in thirty gene variants higher serum uric acid was associated with 
lower systolic and diastolic blood pressure levels, but only in the subgroup of 
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subjects responsive to diuretics [45]. In contrast, in a family-based study which 
included 449 subjects in a homogenous population, Mallamaci et al. reported that 
there was a strong correlation between a variant GLUT9 (SLC2A9) gene, hyper-
uricemia, and increase in some BP components, namely, clinic systolic BP (SBP) 
and white coat effect (defined as the difference between clinic SBP and daytime 
systolic ambulatory BP) [46]. However, not all studies demonstrated a relation 
between genetic factors, serum uric acid, and BP.  In their study, Pelinor et  al. 
reported no evidence for causal association for a variant SLC2A9 gene, with serum 
uric acid and systolic and diastolic BP [47].

Several other chromosome regions that influence serum uric acid have been iden-
tified [48, 49]. Nath et  al. identified a major locus on chromosome 6q22–23 for 
serum uric acid using data from 644 participants in the San Antonio Family Heart 
Study [49]. In this cohort, serum uric acid was found to exhibit a significant herita-
bility of 0.42 [49].

The association of a variant gene on chromosome 6q22–23 with serum uric acid 
is of particular interest. Studies have indicated that 6q22–23 chromosome region 
contains genes that influence familial IgA nephropathy (IgAN) [50]. Hyperuricemia 
appears to predispose the progression of familial IgAN [51]. Further, serum uric 
acid levels correlate with histologic and immunochemical glomerular and tubuloin-
terstitial changes in IgAN [51].

Fourth, epidemiologic studies have reported that both environmental health traits and 
pharmacologic agents may account for variation in serum uric acid levels [22, 52, 53].

High serum uric acid levels are strongly associated with a large number of health 
traits such as obesity, waist circumference, insulin resistance, type 2 diabetes, and 
renal disease [52–54]. Further, these health traits are characterized by a high herita-
bility, suggesting that a set of common genes may influence serum uric acid and 
these health traits [49]. These observations suggest that both environmental health 
conditions and genetic background influence serum uric acid levels [2, 49].

In the San Antonio Family Heart Study, significant genetic correlations were 
observed between uric acid and cardiovascular risk traits such as obesity, waist cir-
cumference, body mass index (BMI), and systolic and pulse pressures with correla-
tions spanning from 0.37 to 0.68 [49]. The strongest evidence for linkage with serum 
uric acid occurred between two genetic variants on chromosome 6q22–23 [49].

Hyperuricemia can be caused by a small number of inherited enzyme defects 
which lead to purine overproduction such as overactivity of phosphoribosylpyro-
phosphate synthase, decreased activity of hypoxanthine phosphoribosyltransferase, 
and glycogen storage disease [2, 22]. Additional causes of hyperuricemia include 
food products and pharmacologic agents and drugs (Table 23.1) [2, 22, 55, 56].

As discussed in previous sections, there is no universally accepted definition of 
hyperuricemia. For purposes related to crystal deposition disease (gout, nephroli-
thiasis), a physicochemical definition of hyperuricemia based upon solubility prop-
erties of urate in body fluids is recommended [57–59]. This definition corresponds 
to a serum urate concentration of equal to or greater than 7 mg/dL [57–59]. However, 
a definition of hyperuricemia appropriate to the non-crystal deposition disorders 
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(hypertension, cardiorenal disease) has been more problematic for two reasons: (1) 
the high prevalence of asymptomatic hyperuricemia, using serum urate concentra-
tions exceeding saturation but within two standard deviations of the population 
mean [60], and (2) the association of serum urate levels with cardiovascular disor-
ders (hypertension, cardiorenal disease) occurring at subsaturation concentrations 
[61, 62].

Other experts recommend using a serum urate concentration exceeding 6 mg/dL 
as a definition of hyperuricemia [61–64]. This recommendation is based on the 
assumption that goal serum urate concentration of less than 6 mg/dL appears to be 
associated with reduction in both clinical consequences of hyperuricemia and recur-
rence of gout [61–64].

23.2.3.2	 �Prevalence
As mentioned in other sections of this chapter, several factors influence the levels of 
serum uric acid, making it difficult to recommend a normal set of values (Table 23.2). 
However, based on epidemiologic and clinical studies, the following cutoff val-
ues of serum uric acid levels have been considered to denote an upper limit refer-
ence range, with 5 mg/dL for children, 7 mg/dL for men, and 6 mg/dL for women 
[37, 61].

Hyperuricemia is a very common abnormal laboratory test encountered in clini-
cal practice.

In the general population, hyperuricemia is present in 17% of adult males in 
France, in 7% of adult males in Spain, and in 13.7% of men in North China [22, 65, 
66]. In the USA, the estimated prevalence of hyperuricemia as reported in the US 
National Health and Nutrition Examination Survey (NHANES) 2007–2008 is about 
23%, with rates higher in Afro-Americans than in other American ethnic groups 
[10]. Certain aboriginal populations in the Pacific regions exhibit very high preva-
lent rates of 41% [67].

Further, worldwide, the prevalence of hyperuricemia has increased substantially 
in recent decades [68]. The progressive increase in serum uric acid levels has been 
attributed to the increasing prevalence of obesity and increased consumption of 
sugar-sweetened beverages, foods rich in purines, and alcohol [69–74].

In a recent Italian survey, using a cutoff uric acid level of 6 mg/dL, the prevalence 
of hyperuricemia increased from 8.5% in 2005 to 11.9% in 2009 [75]. Likewise, a 
study from Japan revealed an increased prevalence of hyperuricemia over a 10-year 
follow-up [76].

Hyperuricemia is a frequent finding in hypertension in adults, adolescents, and 
children (Table 23.3).

Table 23.1  Determinants of 
elevated serum uric acid 
levels

Production Excretion
•  Rare enzymatic defects •  Impaired renal excretion
•  High cell turnover
•  Alcohol ingestion
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Table 23.2  Causes of 
secondary hyperuricemia

Drugs/pharmacologic agents
•  Diuretics
•  Cyclosporine
•  Low-dose salicylates
•  Beta blockers
•  Ethambutol
•  Pyrazinamide
•  Levodopa
•  Laxative abuse
•  Ethanol
•  Salt restriction
Dietary products
•  Meat
	 –  Beef lamb, pork
	 –  Internal organs
 �     Liver
 �     Kidney
 �     Heart
•  Seafood

	 –  Mussels
	 –  Crab
	 –  Shrimps
	 –  Sardines
	 –  Caviar
	 –  Anchovies
•  Poultry
	 –  Chicken
	 –  Duck
•  Dried peas/beans/legumes
	 –  Baked beans
	 –  Kidney beans
	 –  Peas
•  Vegetables
	 –  Asparagus
	 –  Cauliflower
	 –  Spinach
	 –  Mushrooms

•  Whole grains
•  Fructose

Table 23.3  Incidence of 
increased serum uric acid 
levels in various population

Phenotype Rate (%)
US general population 5
Untreated hypertension 25
Treated hypertension 50
General hypertensive population 40–60
Malignant hypertension ± renal failure 75–100

Among the earliest studies linking serum uric acid to hypertension, Cannon 
reported the coexistence of hyperuricemia in 25–50% of untreated primary adult 
hypertension and in 75% of renal and/or malignant hypertension [77]. Following 
these early reports, several studies documented that the relationship between serum 
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uric acid and BP is continuous and is observed in Afro-Americans, whites, and 
Asians [78–80]. In one study, 50% of adults with asymptomatic hyperuricemia 
(defined as serum uric acid >7 mg/dL in males and >6.5 mg/dL in females) were 
hypertensive [20, 81]. Likewise, about 60–65% of patients with gout have hyperten-
sion [82]. In addition, the incidence of hyperuricemia appears to correlate with anti-
hypertensive therapy and severity indices of the hypertensive process [77, 83, 84].

However, the association of serum uric acid with BP appears to be age dependent 
and weakens with aging. The relation of serum uric acid, BP, and age was evaluated 
in a study of over 45,000 healthy Koreans who underwent a routine health examina-
tion and never received any uricosuric or antihypertensive agents [85]. In subjects 
younger than 60 years of both genders, an increase in serum uric acid was strongly 
associated with an elevation in both systolic and diastolic blood pressures [85]. The 
association was stronger in females [85]. In contrast, in subjects 60 years or older, 
the association of serum uric acid and BP weakens and may even be lost [85].

Hyperuricemia is commonly observed also in pediatric and adolescent 
hypertension.

Forty to 70% of hypertensive children and adolescents have primary hyperten-
sion without an identifiable etiology [86]. Feig et  al. evaluated 125 hypertensive 
children with never previously treated hypertension, with an age range of 6 to 
18 years and a mean of 13.4 years and 40 age-matched normotensive controls [61]. 
Serum uric acid levels of >6.5 mg/dL were found in 89% in primary hypertension, 
in 30% in secondary hypertension, and in none in white coat hypertension and nor-
motensive controls (Table 23.4) [61]. The association of serum uric acid and BP was 
also examined in the National Survey 1999–2006, a large nationally representative 
cohort of US adolescents, a population with a low prevalence of cardiovascular 
disease and risk factors [62]. Among 6036 adolescents, with an age range of 
12–17  years and mean of 14.7  years, 17% were obese, 3.3% were hypertensive 
(defined as systolic and diastolic blood pressure ≥95% for age, sex, and height), and 
34% had an elevated serum uric acid levels >5.5 mg/dL [62]. Compared with serum 
uric acid levels <5.5 mg/dL, participants with a serum uric acid level of >5.5 mg/dL 
had two times greater risk of having increased blood pressure [62].

23.2.3.3	 �Hypertension

Epidemiology
Human and animal studies have repeatedly indicated an independent association 
between serum uric acid and the risk of hypertension [61, 62]. Several epidemio-
logic and clinical studies have examined the link between hyperuricemia and risk of 
hypertension.

Table 23.4  Incidence of 
hyperuricemia in new onset 
hypertension in adolescents 
(serum uric acid >5.5 mg/dL) 
[83]

Hypertension phenotype Prevalence (%)
Essential hypertension 89
Secondary hypertension 30
White coat hypertension 0
Normotensive controls 0
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A cohort of 125 children, with an age range of 6–18  years and a mean of 
13.4  ±  3.3  years, was evaluated for never-treated new onset hypertension [61]. 
Compared to normotensive controls (mean BP = 108 ± 11.4/62.4 ± 6.4 mmHg), 
hypertensive subjects with primary (essential) hypertension (mean BP = 146 ± 10.7
/82.2 ± 11.2 mmHg) had significantly higher serum uric acid levels (6.7 ± 1.3 vs. 
3.6 ± 0.8 mg/dL) [61]. In this study, there was a tight and linear correlation between 
serum uric acid levels and systolic and diastolic blood pressures [61]. Each 1 mg/dL 
increase in serum uric acid level was associated with an average increase of 
14 mmHg in systolic BP and 7 mmHg in diastolic BP [61]. Similar findings were 
reported in larger cross-sectional studies. In a study which included 501 children at 
high cardiovascular risk with an age range of 6–18 years and a mean of 10.8 years 
referred for evaluation, 33.3% and 40.5% were overweight or obese, respectively, 
17.4% had prehypertension, and 27.1% were hypertensive [87]. Serum uric acid 
levels were directly related to systolic and diastolic blood pressures. Compared to 
normotensive children, the risk of prehypertension or hypertension increased by at 
least 50% for each 1 mg/dL increase in serum uric acid level and doubled for chil-
dren in the gender-specific top serum uric acid quartile [87]. The Bogalusa Heart 
Study examined the association between increased serum uric acid and BP levels in 
childhood and primary hypertension in early adulthood [88]. This study enrolled 
577 whites and blacks as children aged 5–17 years and adults aged 18–33 years with 
a follow-up period of 12 years [88]. Childhood serum uric acid was significantly 
correlated with both childhood and adult systolic and diastolic blood pressures [88]. 
In a multivariate regression analysis, adjusting for age, sex, race, and childhood 
body index, serum uric acid levels were significant predictors of adult diastolic BP, 
whereas change of serum uric acid was a significant predictor of systolic BP [88]. 
These findings suggest that increased serum uric acid levels in childhood are associ-
ated with an elevation in BP which persists into adulthood [88].

A number of recent studies have examined the association between uric acid, BP, 
and incident hypertension in middle-aged and elderly subjects. In a large meta-
analysis of 18 cohort studies representing data from 55,607 subjects, hyperuricemia 
was associated with an increased risk of incident hypertension (adjusted risk ratio—
RR—1.41) [89]. For every 1 mg/dL increase in serum uric acid level, the pooled RR 
for incident hypertension, after adjusting for potential confounding, was 1.13 [89]. 
The risk was more pronounced in younger individuals and in women [89]. The 
Brisighella Heart Study confirmed the association between serum uric acid and 
hypertension [4]. In this landmark study which enrolled 619 male and female par-
ticipants, aged 14–84 years, free of cardiovascular disease and not receiving any 
antihypertensive, antidiabetic, or uricosuric medications, the prevalence of hyper-
tension was strongly related to quartiles of serum uric acid [4]. After adjustment for 
a large number of parameters, significant differences in the prevalence of hyperten-
sion were reported between second and third quartiles (23% vs. 36.4%) and between 
third and fourth quartiles (36.4% vs. 56.3%) [4]. The PAMELA (Pressioni Arteriose 
Monitorate E Loro Associazioni) study which enrolled 9045 participants from an 
urban population tested the relation between baseline serum uric acid, cardiovascu-
lar disease, metabolic variables, and new onset office and out-of-office (home and 
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ambulatory) hypertension [90]. After 10  years of follow-up, baseline serum uric 
acid was associated with an abnormal metabolic profile, target organ involvement, 
and independently predicted new onset of out-of-office systolic BP values [90]. For 
every 1 mg/dL increase in serum uric acid, after adjustment for all potential con-
founders, the increased risk of developing new onset home and ambulatory hyper-
tension was 34% and 29%, respectively [90]. An increase in serum uric acid of 
1 mg/dL also independently predicted cardiovascular and all-cause mortality [90].

Most of the studies that assessed the correlation between hyperuricemia and new 
onset hypertension included younger subjects, namely, children, adolescents, and 
young adults [86–88]. The Health Professionals Follow-Up study, a cohort study of 
59,529 males, examined the independent association between serum uric acid and 
risk for incident hypertension among older men aged 47–81 years [91]. Serum uric 
acid was associated positively and significantly with risk of incident hypertension 
among men younger than 60  years (RR  =  1.38) but not among men who were 
≥60 years of age (RR = 0.9). In the quartile analysis, a trend toward a positive asso-
ciation between serum uric acid and risk for hypertension was observed among 
younger but not among older men [91]. Comparing participants in the highest uric 
acid quartile with those in the lowest, the multivariable RR was 2.01 for men 
<60 years of age and 0.81 for men ≥60 years of age [91]. A large Korean study 
confirmed the lack of association between serum uric acid and BP in male and 
female participants >60 years of age [85].

Preeclampsia is characterized by a marked increase in serum uric acid levels in 
both mother and fetus [92]. However, the relation of hyperuricemia to the outcome 
of pregnancy in preeclampsia, a phenotype of severe gestational hypertension, 
remains inconclusive [92]. A case-control study examined fetal outcome data from 
972 pregnancies collected from 1999 to 2002 [93]. In women with gestational 
hypertension, hyperuricemia was associated with shorter gestations and small infant 
birth weight centiles and increased risk of preterm birth and small-for-gestational-
age infants [93]. The risk of these outcomes was increased even in the absence of 
proteinuria and, occasionally, even in the absence of hypertension [93]. Women 
with hypertension, hyperuricemia, and proteinuria were at a greater risk than those 
with hypertension and proteinuria alone [93]. In another study, the relation between 
maternal uric acid and maternal and fetal outcome was evaluated prospectively in 
206 primiparas and singleton pregnancy with recent onset of gestational hyperten-
sion [94]. After a follow-up to 1-month postdelivery, the maternal serum uric acid at 
5.20 mg/dL (309 μmol/L) cutoff was a predictor of preeclampsia with an adjusted 
odds ratio of 7.1 (p <0.001) and delivery of a small-for-gestational-age infant, with 
an adjusted odds ratio of 1.6 (p <0.02) [94].

These observations suggest that hyperuricemia may identify a phenotype of ges-
tational hypertension associated with significant risk [95]. In a study of 62 pregnant 
women with gestational hypertension but without proteinuria, the characteristic pre-
eclamptic renal lesion, referred to as glomeruloendotheliosis, was found only in 
women with hyperuricemia [95].

Serum uric acid appears to be a risk, not only for hypertension but also for milder 
degrees of elevated BP levels. In a community-based study of 14,451 Chinese 
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subjects, a linear interaction was observed between serum uric acid and risk of pre-
hypertension, especially at serum uric acid levels between 3.4 mg/dL (200 μmol/L) 
and 6.4 mg/dL (380 μmol/L) [96]. In contrast, in this study as well as in others, this 
correlation was lost in subjects older than 60 years of age [89, 96].

Studies in recent past decades indicate that increased serum uric acid is associ-
ated with novel cardiovascular risk markers such as blood pressure variability 
(BPV), insulin resistance, and salt sensitivity.

BPV obtained by 24-h ambulatory BP monitoring is associated with target organ 
involvement, cardiovascular events, and mortality in hypertensive patients [97, 98]. 
In a study of 300 patients (mean age 57.3 ± 13.6 years) with untreated essential 
hypertension, log serum uric acid was positively correlated with 24-h systolic BPV, 
day and night systolic and diastolic BPV (Pearson’s coefficients of 0.246, 0.280, 
and 0.353, respectively) [99].

Reduced insulin sensitivity and hyperinsulinemia have been postulated to par-
ticipate in the pathogenesis of uric acid-associated incident hypertension [100–102]. 
The interaction between serum uric acid, serum insulin, and incident hypertension 
has been evaluated in 1496 nonobese healthy women, aged 32–52 years without 
hypertension, diabetes mellitus, or coronary artery disease at baseline from the sec-
ond Nurses’ Health Study [100]. After simultaneous control of all biomarkers, esti-
mated glomerular filtration rate, and total cholesterol levels, only serum uric acid 
and serum insulin levels were independently associated with incident hypertension 
[102]. Comparing the highest and lowest quartiles of serum uric acid levels, the 
odds ratio of incident hypertension was 1.89 [102]. A similar comparison yielded an 
odds ratio of 2.03 for serum insulin levels [102]. Assuming an estimated annual 
basal incidence of 14.6 per 1000, 30.8% of hypertension in young women occurred 
with a serum uric acid of 3.4 mg/dL (304 μmol/L) or greater and in 24.2% with 
serum insulin levels of 2.9 mg/dL (174 μmol/L) or greater [102].

In experimental animals, chronic and persistent hyperuricemia is associated with 
hypertension, renal parenchymal and microvascular lesions, and salt sensitivity 
[103]. The relationship between uric acid metabolism and renal tubular sodium han-
dling was assessed in the Olivetti Factory study which included 592 men aged 
32–68 years and represented a sample of the general population. The clearance of 
lithium was used as a proxy for segmental renal tubular sodium handling [104]. 
Serum uric acid level was inversely and significantly associated with fractional 
excretion of lithium (r = −22) indicating that the higher the serum uric acid level the 
greater the amount of sodium reabsorbed at nephron sites proximal to the distal 
tubule [104]. These findings demonstrate a link between hyperuricemia and increased 
proximal tubular sodium reabsorption, possibly through hyperinsulinemia [104].

Mechanisms
It is well established that increased serum uric acid levels correlates with incident 
hypertension [85–89]. However, the observation that serum uric acid appears to be 
a good predictor of hypertension does not necessarily imply an etiologic role as 
both hypertension and hyperuricemia may be the result of a common underlying 
pathology [105].
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Numerous hypotheses have been postulated to explain the causal link between 
serum uric acid levels and hypertension. Evidence supporting a causal role of uric acid 
in hypertension comes from experimental studies in laboratory animals [106, 107].  
To determine the effect of uric acid on BP in laboratory animals, serum uric acid levels 
were increased by administration of oxonic acid, a uricase inhibitor [106, 107]. Rats 
develop hypertension which is characterized by two phases, an early phase of revers-
ible BP elevation and a late phase contributing to irreversible hypertension [106, 107]. 
In rats treated with oxonic acid, the uric acid inhibitor, serum uric acid increases lead-
ing to a gradual rise in BP over a period of 2–3 weeks, proportional to the degree of 
increase in serum uric acid [106, 107]. The renin-angiotensin system is stimulated, 
and nitric oxide synthesis is inhibited, causing systemic and renal vasoconstriction 
[106, 107]. This early phase of hypertension can be reversed by withdrawal of oxonic 
acid or administration of uric acid-reducing drugs (allopurinol or benziodarone) or 
blockers of renin-angiotensin system [106].

In contrast, the second phase of hypertension is characterized by prolonged and 
persistent elevation in serum uric acid levels, renal microvascular lesions and tubuloin-
terstitial changes, chronic renal impairment, and irreversible hypertension [106, 107]. 
Tissue culture models have demonstrated that uric acid enters vascular smooth muscle 
cells inciting a cascade of biochemical reactions [108]. This cascade results in prolif-
eration of vascular smooth muscle cells, reduced compliance of the renal afferent arte-
rioles, and a sodium-sensitive hypertension [103, 108–110]. In rats, these 
histopathologic changes and the hypertension persist for several years and cannot be 
reversed by urate-lowering therapy [108].

In humans, epidemiologic and cross-sectional studies and clinical trials lend sup-
port for the causal link between hyperuricemia and incident hypertension [85–89]. 
Further, the etiologic association between serum uric acid and BP elevations appear 
to be stronger in younger than older hypertensive populations and in women [62, 89].

Several older and more recent studies have shown that hyperuricemia is a fre-
quent biochemical finding in hypertensive children, adolescents, and young adults 
[61, 89, 108]. In the Moscow Children’s Hypertension Study, elevated serum uric 
acid levels (>8 mg/dL) were reported in 9.5% of children with normal BP, in 49% 
in children with borderline hypertension, and in 73% of those with moderate to 
severe hypertension [108]. In the Hungarian Children’s Study which included 
17,624 children followed up for 13 years, hyperuricemia was a strong risk factor for 
the development of hypertension [111]. In a small study, hypertensive adolescents, 
aged 13–18 years, had increased serum uric acid levels (>6.5 mg/dL) and peripheral 
plasma renin activity [112]. In a more recent study which classified hypertension 
into phenotypes, hypertension was more common in primary (essential) than in 
secondary hypertension [61]. Elevated serum uric acid levels (>5.5 mg/dL) were 
reported in about 90% of adolescents with essential hypertension (serum uric acid = 
6.7 ± 1.3 mg/dL), whereas serum uric acid levels were significantly lower in those 
with secondary hypertension (serum uric acid = 4.3 ± 1.4 mg/dL) and in white coat 
hypertension (serum uric acid = 3.6 ± 0.7 mg/dL) [61].

Hyperuricemic children and adolescents with new onset essential hypertension 
are generally overweight or obese and exhibit normal renal function and several 
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features of the metabolic syndrome, although the latter may be absent in some 
patients [62, 113].

Uric acid-lowering therapy has been recently used to test the causal role of serum 
uric acid in hypertension in both younger (children, adolescents) and older (middle-
aged and elderly subjects) populations.

In one study, 30 adolescents with new onset essential hypertension received 
either allopurinol or placebo in a randomized, double-blinded, crossover trial [114]. 
In the 20 of the 30 participants, while on allopurinol, their BP became normal, and 
their serum uric acid levels fell to <5.5 mg/dL compared to 3% while on placebo; of 
the ten children who remained hypertensive, their serum uric acid levels did not 
reach target serum uric acid reduction [114].

In the follow-up clinical trial, obese children with prehypertension/grade 1 
hypertension were randomized into three groups to receive placebo; allopurinol, a 
uricosuric and xanthine oxidase inhibitor; or probenecid, a uricosuric agent [114]. 
Children on placebo had a slight but insignificant fall in systolic BP. In contrast, 
patients on active treatment experienced a marked reduction in office-measured 
SBP/DBP, with an average fall of −10.1/−8.0 and −10.2/−8.8 mmHg for allopuri-
nol- and probenecid-treated groups, respectively [115]. Ambulatory 24-h BP moni-
toring revealed the same pattern [115].

These data indicate that the mechanism of BP lowering is associated with serum 
uric acid reduction, independently of allopurinol-induced xanthine oxidase inhibi-
tion [115].

The pathophysiologic mechanism of hyperuricemia in recent onset childhood/
adolescent essential (primary) hypertension has not been completely elucidated.

Serum uric acid concentration is frequently increased in adult borderline, mild 
and moderately severe hypertension [77, 116]. The hyperuricemia has been attrib-
uted to increased renovascular resistance and reduced renal blood flow [116]. In 
support of this hypothesis, several investigations demonstrated that in normotensive 
subjects, infusion of norepinephrine or angiotensin II is associated with an elevation 
in BP, hyperuricemia, and reduced renal blood flow [117]. Discontinuation of the 
pressor infusions leads to normalization of BP, serum uric acid concentration, and 
renal blood flow [117].

The phenotype of childhood/adolescent new onset essential hypertension may be 
reminiscent of the early phase of oxonic-induced hyperuricemia which is character-
ized by hypertension, enhanced renin-angiotensin system, inhibition of nitric oxide 
systems, and reversible renovascular hemodynamic alterations [106, 107].

It has been postulated that, in addition to elevated serum uric acid concentrations, 
disturbances in uric acid production may contribute to BP elevation and hyperten-
sion [118, 119]. Overactivity of xanthine oxidase, the rate-limiting enzyme in purine 
metabolism, may lead to a relative decrease in the more upstream purine metabo-
lites, characterized by higher ratios of xanthinic/hypoxanthine, uric acid/xanthine, 
and uric acid/hypoxanthine [118].

A study which included 246 healthy school-age children, with a mean age of 
7.1 ± 0.4 years, from the KOALA Birth Cohort Study, evaluated the association 
between purine metabolite ratios, serum uric acid concentrations, and BP [118]. 

A.E. Berbari et al.



365

The findings revealed that in school-age children with a high BP, increased serum 
uric acid concentration and purine metabolite ratios are associated with higher dia-
stolic BP z scores, a hemodynamic evidence of increased systemic vascular resis-
tance, lending further support to causal role of serum uric acid in the development 
of hypertension [118, 120].

Whether serum uric acid has a direct causal role in the development of hyperten-
sion in older adults is not clear. A recent analysis of 6984 patients receiving treatment 
for hypertension did not reveal a relationship between baseline serum uric acid con-
centration and long-term BP changes, although higher uric acid concentration was 
associated with a decline in renal function [121]. Further, it is not clear whether uric 
acid-reducing therapy lowers BP in hypertensive adults. A metaanalysis which com-
bined data from ten clinical trials of 738 participants revealed that allopurinol admin-
istration was associated with a small reduction in systolic BP (3.3 mmHg) [122].  
A recent study evaluated changes in BP after initiation of allopurinol therapy in 
hypertensive patients, aged >65  years using data from the UK Clinical Practice 
Research Datalink [123]. The study, which included 365 allopurinol treated and 6678 
controls, demonstrated that allopurinol-treated participants had a mild but significant 
reduction in both systolic and diastolic blood pressures (2.1/1.7 mmHg, respectively) 
[123]. There was a trend toward a greater fall in BP in the high-dose allopurinol 
group [123]. Further, the change in BP was not related to baseline serum uric acid 
concentrations [123].

Classification
The pathophysiologic mechanisms that define the relationship between serum uric 
acid levels and the development of hypertension have not been completely eluci-
dated [105]. However, it is postulated that different pathologic factors underlie dif-
ferent phenotypes of hyperuricemia-associated hypertension.

Hyperuricemia-Hypertension Phenotype in Younger Populations
In hypertensive children, adolescents, and young adults, a population with mini-
mal vascular disease, hyperuricemia is both a marker and a causal factor in new 
onset incident hypertension [85, 87–89, 108]. Normalization of both serum uric 
acid and BP levels with uric acid-reducing therapy provides support for this 
hypothesis [114, 118, 120].

The phenotype of hyperuricemic hypertension in the young, which is reminis-
cent of the early phase of oxonic-induced hyperuricemia BP elevation in experi-
mental animals, is characterized by overweight/obesity, features of the metabolic 
syndrome, enhanced renal renin-angiotensin system, inhibited endothelial nitric 
oxide synthesis, increased renovascular resistance and impaired renal blood flow 
and a potentially reversible BP elevation with uricosuric therapy, and/or blockade of 
the renin-angiotensin system [52, 53].

Hyperuricemia-Hypertension Phenotype in Older Populations
In middle-aged and elderly hypertensive populations, hyperuricemia is a frequent 
laboratory manifestation and a major risk for cardiorenal conditions [77]. It is 
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however unclear whether serum uric acid plays any role in the initiation or mainte-
nance of BP elevation in this age group [85, 91, 121]. Further, studies have reported 
that the association between serum uric acid and BP weakens with age and with the 
duration of hypertension [85].

Several factors have been postulated to participate in the increase in serum uric 
acid concentrations in older populations including ischemia, reduced renal blood 
flow and impaired renal function, metabolic factors, drugs, and dietary products [2, 
22, 55, 56]. In turn, hyperuricemia increases the levels of tissue-toxic reactive oxygen 
species through enhanced activity of xanthine oxidoreductase enzyme [122, 124].  
In addition, it induces alterations in the structural and functional properties of the 
vascular wall and stimulates the vascular renin-angiotensin system [125]. These reac-
tions lead to target organ damage and cardiovascular complications [87, 121].

Allopurinol administration improves cardiorenal outcome and causes BP reduc-
tion, which is of lesser magnitude than that observed in younger hyperuricemic 
hypertensive populations [123]. However, higher doses of allopurinol are required 
to achieve these therapeutic effects [122, 123, 126].

Gestational Hyperuricemia-Hypertension Phenotype (Preeclampsia)
Among the hypertensive disorders of pregnancy, preeclampsia remains one of the 
most important causes of maternal and fetal morbidity and mortality [94]. Increased 
serum uric acid concentration is both one of the characteristic features and a predic-
tor of preeclampsia [93, 94].

In women with gestation hypertension, hyperuricemia is associated with 
shorter gestations and increased risk of preterm birth and small-for-gestational-
age infants [93].

Although preeclampsia is characterized also by hypertension and proteinuria, 
hyperuricemia portends a greater risk of poor pregnancy outcome than elevated BP 
levels, increased urinary protein excretion, or even both [93].

Hyperuricemia appears as effective as proteinuria in identifying gestational 
hypertensive pregnancies at risk [93].

The pathophysiologic association between hyperuricemia and preeclampsia has 
not been completely elucidated. It has been postulated that hyperuricemia may par-
ticipate in the development of preeclampsia by mediating both systemic and glo-
merular hypertension and renal pathological lesions [127].

23.2.3.4	 �Cardiovascular Diseases
Serum uric acid is frequently elevated in subjects at cardiovascular risk [37]. 
Hypertensive patients with hyperuricemia have a three- to fivefold increased risk of 
coronary or cerebrovascular disease compared with hypertensive patients with nor-
mal serum uric acid levels [128]. Further, there is a clear epidemiologic association 
between asymptomatic hyperuricemia and incident hypertension, heart failure, 
myocardial infarction, stroke, obesity, metabolic syndrome, and diabetes [37, 77, 
129–131]. The relation between serum uric acid concentration and endovascular 
disease is not limited to frank hyperuricemia defined as >7 mg/dL (420 μmol/L) in 
men and >6 mg/dL (360 μmol/L) in women but is also observed with serum uric 
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acid levels considered to be in the normal to high range (>5.2–5.5 mg/dL = 310–
330 μmol/L) [61, 132]. However, it remains controversial whether serum uric acid 
plays a causal role in the development of cardiovascular disease or is simply a 
marker of traditional cardiovascular disease risk factor [37].

Recent reports from the Framingham Heart Study and Atherosclerotic Risk in 
Communities (ARIC) Study which collectively involve over 200,000 men and women 
claim no association between serum uric acid and incident cardiovascular disease in 
multivariable models [133, 134]. In contrast, other studies documented an indepen-
dent association of serum uric acid with cardiovascular disease. Reanalysis of the 
SHEP (Systolic Hypertension in the Elderly Program) trial found that serum uric acid 
levels determine outcome independent of other parameters such as BP [135]. Patients 
treated successfully for hypertension with diuretics who also had an increase in their 
serum uric acid levels >10 mg/dL (600 μmol/L) while on treatment failed to show any 
benefit in cardiovascular event rates when compared to placebo [135]. In a large 
cohort of individuals taking part in the Third National Health and Nutrition Survey, 
an increased risk of all-cause and cardiac mortality was associated with increasing 
serum uric acid levels during a 10-year follow-up [136]. Likewise, a prospective 
study reported that serum uric acid was an independent predictor of cardiovascular 
and all-cause mortality as well as development of new onset hypertension [90]. The 
results of the LIFE Study provided additional support for an association between 
baseline serum uric acid and increased risk of cardiovascular events [137]. Attenuation 
of the increase in serum uric acid by losartan over 4.8 years reduced cardiovascular 
events in the high-risk population [137].

In contrast to its adverse effects on the cardiovascular system, serum uric acid 
appears to provide a protective action on certain neurologic disorders such as neu-
rodegenerative disease, Parkinson’s disease, multiple sclerosis, and Alzheimer’s 
disease/dementia [138–140]. In addition, elevated serum uric acid concentrations 
have been associated with lower all-cause and cardiovascular mortality in patients 
receiving hemodialysis treatment [128].

It has been postulated that these beneficial actions of hyperuricemia in neurologic 
disorders may be due, at least partly, to the antioxidant properties of uric acid [141].

Target organ involvement is a known risk for cardiovascular outcome. In a study 
which was part of a larger trial (MAGIC—Microalbuminuria: A Genoa Investigation 
on Complications), the relation between serum uric acid and target organ damage 
was evaluated in 425 middle-aged (age range 20–67 years) untreated patients with 
essential hypertension [142]. Patients with target organ damage had significantly 
higher serum uric acid levels [142]. Each standard deviation increase in serum uric 
acid was associated with a 75% higher risk of having left ventricular hypertrophy 
and a two-times greater risk of having carotid abnormalities (increased carotid 
intima-media thickness) and 12% prevalence of microalbuminuria [142].

23.2.3.5	 �Kidney Disease
Hyperuricemia is highly prevalent in patients with chronic kidney disease, reflect-
ing reduced efficiency of renal excretion of uric acid and associated with hypouri-
cosuria [143]. Hyperuricemia as defined as a serum uric acid of >6.5  mg/dL 
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(390 μmol/L) in women and >7 mg/dL (420 μmol/L) in men occurs in many renal 
diseases [3].

The role of uric acid in the initiation and progression of chronic kidney disease 
remains controversial. Recent epidemiological and experimental evidence suggests 
a role for uric acid, not only by a marker of reduced kidney function but also as a 
causal risk for the development and progression of renal disease.

Several epidemiological surveys and prospective studies have documented an 
association between hyperuricemia and risk of new onset kidney disease. In the 
Okinawa General Health Maintenance Association study, which included 6400 
Japanese participants with normal renal function at baseline, serum uric acid levels 
>8  mg/dL (480 μmol/L) were associated with a 2.9 and tenfold increased risk of 
developing chronic kidney disease (defined as serum creatinine levels >1.4 mg/dL in 
men and >1.2  mg/dL in women) within 2  years in men and women, respectively 
[144]. An elevated serum uric acid level was even more predictive for the develop-
ment of renal insufficiency than proteinuria [144]. The relations between serum uric 
acid levels and incident kidney disease (defined as glomerular filtration rate-GFR- 
decrease of ≥15 mL/min/1.73m2 with a final GFR <60 mL/min/1.73m2) were also 
evaluated in over 13,000 participants with intact kidney function in two community-
based cohorts [134]. During a follow-up period of 8.5 years, each 1 mg/dL greater 
uric acid level at baseline was associated with an approximately 10% increase in risk 
of kidney disease in multivariable adjusted models [134].

The association among longitudinal BP, renal function, and cardiovascular out-
comes was also explored in a large cohort of treated hypertension, attending the 
Glasgow BP clinic [121]. The study which included over 6000 patients revealed that 
serum uric acid was independently associated with decline in renal function. 
Comparing patients in the first quartile of serum uric acid, the relative decrease in 
GFR in the fourth quartile was 10.7 mL/min/1.73 m2 in men and 12.2 mL/min/1.73 m2 
in women [121]. Further, serum uric acid was independently associated with cardio-
vascular and all-cause mortality only in women [121]. On the other hand, there was 
no relationship between longitudinal BP control and uric acid level, suggesting that 
hyperuricemia does not alter the efficacy of contemporary hypertension management 
[121]. Hyperuricemia has been reported to be an independent risk factor for progres-
sion of IgA nephropathy [145]. The association between serum uric acid and risk of 
incident chronic kidney disease may be dose response dependent [146]. A prospective 
study of over 21,000 patients followed up for a median of 7 years with different serum 
uric acid levels but same baseline estimated glomerular filtration rate (eGFR) [146]. 
Mild hyperuricemia (7–8.9 mg/dL/420–534 μmol/L) nearly doubled the risk for inci-
dent kidney disease, while more severe hyperuricemia (≥9 mg/dL / ≥540 μmol/L) 
tripled the risk [146]. The association of serum uric acid—incident chronic kidney 
disease—persisted despite multiple adjustments by statistical models [146]. These 
data indicate that hyperuricemia precedes reduction in GFR [146].

In a randomized clinical trial in 54 hyperuricemic patients with stages 3 and 4 
CKD, allopurinol therapy, compared to placebo, during a 1-year follow-up was 
associated with a significant reduction in serum uric acid levels and delay in pro-
gression of CKD (defined as an increase in serum creatinine level >40% of baseline 
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or the need for replacement therapy suggesting that hyperuricemia may be nephro-
toxic in CKD, accelerating progression to end-stage renal disease) [147].

In contrast, other studies failed to substantiate a relationship between serum uric 
acid concentrations and chronic kidney disease. In a separate analysis of 5800 par-
ticipants from the Cardiovascular Health Study (CHS), there was no association 
between serum uric acid concentrations and incident CKD defined as eGFR <60 mL/
min/1.73 m2 [143]. Likewise in a cohort of patients with predominantly nondiabetic 
stages 3 and 4 CKD, hyperuricemia was not an independent predictor of progres-
sion to end-stage renal failure [8].

Experimental studies on rodents provide support for the causal role of serum uric 
acid in initiation of chronic kidney disease. Oxonic-induced hyperuricemia in rats 
caused a slow development of albuminuria, preglomerular arteriopathy, glomerulo-
sclerosis, tubulointerstitial changes, and hypertension [107]. Controlling hyperuri-
cemia with hypouricosuric agents, in the early phase of the process, prevents 
microvascular and histopathologic injury and preserves renal function in these ani-
mals [106, 107].

The question of whether a specific gouty or chronic urate nephropathy exists has 
been posed frequently [148]. The current evidence cannot definitely prove or refute 
the hypothesis [148].

Kidney disease and hypertension are highly prevalent in gout and hyperuricemia 
[134]. Using data from over 5700 participants aged 20 years or older in the National 
Health and Nutrition Examination Survey 2007–2008, 74% had hypertension, and 
71% had chronic kidney disease stage ≥2 [149]. With increasing levels of hyper-
uricemia, there was a graded increase in prevalence of these comorbidities [149]. 
The histopathologic alterations in the kidneys of patients with chronic hyperurice-
mia were obtained from reports of kidney biopsies or autopsies performed before 
the advent of uricosuric therapy. Microscopically, the lesions consist of microtophi 
of uric acid, usually located in the medulla or papilla associated with a chronic 
interstitial inflammation, arteriolar nephrosclerosis, and glomerulosclerosis [150]. 
However, there was little correlation between the development of gouty or urate 
nephropathy and either clinical and laboratory abnormalities or level of serum uric 
acid [37, 150]. This has been attributed to the fact that these patients often have 
hypertension, diabetes mellitus, dyslipidemia, and older age, all of which by them-
selves can cause renal injury, nephrosclerosis, and renal failure [150].

23.2.3.6	 �Acute Urate Nephropathy
In addition to its role in the pathogenesis of chronic kidney disease, hyperuricemia 
may cause acute kidney injury leading to acute renal failure [151]. Experimental 
and clinical data provide support for the direct and indirect role for uric acid in the 
development of acute kidney injury [152].

Acute Hyperuricemic Obstructive Nephropathy (Crystal-Dependent 
Mechanism of Kidney Injury)
This type of acute renal failure, a complication of tumor lysis syndrome, is 
caused by intrarenal deposition of crystals leading to tubular obstruction [152]. 
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Administration of cytotoxic therapy to large volume, rapidly proliferating hema-
tologic malignancies and some solid tumors, causes release and degradation by 
the liver of nucleic acids with production of uric acid and acidic metabolites 
[152]. Serum uric acid rises acutely and rapidly to levels often >12  mg/dL 
(>720 μmol/L) resulting in marked uricosuria, acidic urine, intravascular volume 
contraction and intraluminal formation, and deposition of macro- and microcrys-
tals of uric acid in the distal tubules and collecting ducts with obstruction of 
tubular lumina [152].

The aim of therapy is prevention of acute renal failure prior to and during chemo-
therapy by adequate hydration, alkalinization of the urine, and administration of 
allopurinol, a xanthine inhibitor, and urate oxidase inhibitors [152, 153].

Despite recent advances in therapy, 5–6% of at risk pediatric and adult patients 
receiving chemotherapy develop acute renal failure [151]. About 40–50% of these 
patients require dialysis treatment with associated all-cause mortality in excess of 
50% [151].

Ischemic Acute Hyperuricemic Acute Renal Failure (Crystal-Independent 
Mechanism of Acute Kidney Injury)
There is increasing experimental and clinical evidence that uric acid may cause 
acute kidney injury and acute kidney failure by crystal independent mechanisms 
[106]. Several studies have reported that acute kidney injury may be precipi-
tated by milder degrees of elevation of serum uric acid concentration [152]. In 
subjects undergoing elective but high risk cardiovascular surgery, serum uric 
acid levels of >6.1 mg/dL (366 μmol/L) increased the risk of postoperative acute 
kidney injury by fourfold, independently of baseline serum uric acid level and 
other classical cardiovascular risk factors or previous cardiac surgery [152, 
154]. Further, in none of the patients who developed acute kidney injury, the 
preoperative serum uric acid concentration was >10 mg/dL (600 μmol/L) [152, 
154]. In a retrospective analysis of two large randomized studies of patients 
with coronary artery bypass surgery {(GUARDIAN: Guard during Ischemia 
Against Necrosis: 11,590 patients) and (EXPEDITION: Sodium-Proton 
Exchange Inhibition to Prevent Coronary Events in Acute Cardiac Conditions: 
5761 patients)}, the presence of preoperative or postoperative serum uric acid 
level >7.5 mg/dL (450 μmol/L) was associated with a two to fourfold increased 
risk of developing acute kidney injury, after controlling several other factors 
[151, 152].

Several pathophysiologic pathways have been implicated in the pathogenesis of 
crystal-independent acute kidney injury. Inflammatory responses, oxidative stress, 
endothelial dysfunction, and enhanced renin-angiotensin system contribute to renal 
vasoconstriction, preglomerular arteriopathy, and impaired renal autoregulation 
[151, 152]. Several of these pathologic factors have been documented in oxonic-
mediated hyperuricemia in animal models and in the human [54, 106].

The management of crystal-independent acute kidney injury remains unclear. 
Diuretics do not appear to protect against the development of acute renal failure, but 
may even prolong recovery of renal function [151, 155].
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23.3	 �Association of Fructose Consumption, Hyperuricemia, 
Metabolic Disorders, and Cardiorenal Diseases

The prevalence of hyperuricemia has doubled worldwide [68, 156]. Hyperuricemia 
has been associated with the metabolic syndrome and implicated as a risk factor in 
the etiology of hypertension, atherosclerosis, insulin resistance, diabetes mellitus, 
and kidney disease [4, 6–8]. Among dietary products, consumption of sugar-
sweetened beverages can induce hyperuricemia [157–159]. Although these bever-
ages do not contain purines, they contain large amounts of sweeteners including 
sucrose (composed of 50% fructose and 50% glucose), fructose, and high-fructose 
corn syrup (composed of 55% fructose and 45% glucose) [73, 160]. Both fructose 
and high-fructose corn syrup have been associated with elevated levels of serum 
uric acid [161].

Fructose is an isomer of dextrose synthesized from corn syrup and is currently 
used as a sweetener in preference to naturally occurring sucrose [161]. Fructose is 
unique among sugars in that it rapidly causes depletion of ATP and increases both 
the generation and release of uric acid [162].

Experimental studies in animals support a link between fructose intake, hyper-
uricemia, and hypertension. Administration of fructose is associated with enhanced 
sympathetic nervous and renin-angiotensin systems, increased heart rate, hyperuri-
cemia, sodium retention, renal structural and functional alterations, and hyperten-
sion [162–165]. In addition, fructose feeding induces also insulin resistance and the 
metabolic syndrome [165]. However, fructose does not increase BP effectively in 
rats except during active ingestion [162]. This observation has been attributed, at 
least partly, to the presence of uricase enzyme in rats which blunts the BP response 
to uric acid [162].

Epidemiological, cross-sectional, and clinical studies reported an association 
between fructose intake, hyperuricemia, hypertension, and chronic kidney disease. 
In the NHANES (1999–2004), a strong association between sugar-sweetened drinks, 
uric acid levels, and hypertension was observed in adolescents [74]. Adolescents 
with higher sugar-sweetened beverage consumption had higher serum uric acid lev-
els and systolic BP [74]. Similarly, a correlation between fructose from added sugars 
and elevated BP levels was reported in the NHANES (2003–2006) [166].

Another cross-sectional study from Brazil examined the association between 
type of soft drink consumption and BP in Brazilian adolescents [167]. Adolescents 
consuming diet soft drinks had the highest BP levels compared to nonconsumers 
and consumers of regular sugar-sweetened beverages [167]. Further, consumers 
of sugar-sweetened beverages had greater values of BP compared to noncon-
sumers [167].

Consumption of fructose-rich drinks is associated with BP elevation. Acute 
ingestion of 60  g of fructose (which is comparable to 12 ounces of soft drinks) 
caused an increase in BP in healthy young adults [162]. Similarly, administration of 
200 g of fructose per day for 2 weeks increased both fasting serum uric acid levels 
and clinic and 24-h ambulatory BP in healthy adult men [162, 168]. Allopurinol 
administration reduced both serum uric acid levels and BP [162, 168].
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In contrast to the other studies, the Nurse and Health Professionals study could 
not document an association between fructose and BP elevation [169]. Further in 
that study, the risk of hypertension and cardiovascular disease was attributed to fac-
tors other than or in addition to fructose [170].

There is increasing evidence that fructose may have a role in the development 
of chronic kidney disease. In the NHANES (1999–2004) study, consumption of 
one or more sugar containing beverages was associated with an increased risk of 
albuminuria [171]. Further, in the Atherosclerotic Risk in Communities (ARIC) 
study, the odds ratio for chronic kidney disease (eGFR <60  mL/min/1.73  m2) 
increased significantly to 2.59 among participants who drank more than one 
sugar-sweetened soda per day and had a serum uric acid level of  >9  mg/dL 
(540 μmol/L) [159].

23.4	 �Thiazide Diuretics, Hyperuricemia, and Target Organ 
Involvement

Thiazide diuretics, first introduced in 1957, remain the mainstay of antihypertensive 
therapy as monotherapy or in combination with other agents [172–174]. Clinical 
trials have demonstrated the effectiveness of thiazide diuretics in reducing BP and 
cardiovascular morbidity and mortality in uncomplicated essential hypertension 
[173, 174]. However, the use of these medications is associated with serious adverse 
reactions including hyperuricemia, hypokalemia, metabolic disturbances, and target 
organ involvement [175].

In this section, discussion will be limited to adverse reactions of the thiazide-
induced hyperuricemia.

Thiazide diuretics can induce hyperuricemia even at low dose (Table 23.5) [176]. 
Thiazide-induced hyperuricemia has been reported to be associated with an 
enhanced cardiovascular risk. In the Systematic Worksite Treatment Program which 
included over 7000 mild to moderately hypertensive subjects followed for 20 years, 
the risk of cardiovascular events was significantly increased in those who had a high 
serum uric acid level [177]. Similarly, in the Systolic Hypertension in the Elderly 
Program (SHEP) trial, the reduction in risk of coronary artery events observed with 
chlorthalidone was completely abolished in those subjects whose uric acid levels 
increased more than 1 mg/dL during treatment, despite adequate BP control [135].

The thiazide-induced increase in serum uric acid is independent of hypokalemia 
[175].

Thiazide diuretics may cause renal damage. Both clinical and population studies 
have reported that thiazide diuretics are not renoprotective, but may even accelerate 

Table 23.5  Diuretic-induced 
elevation in serum uric acid 
(low dose)

Diuretic Once daily dose (mg/day)
Hydrochlorothiazide 12.5
Chlorthalidone 12.5–25
Bendrofluazide 1.25
Indapamide 1
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the progression of renal disease in the population [175]. In several randomized clini-
cal trials, the use of thiazides was associated with a greater decline in renal function 
than with other antihypertensive compounds [175]. Further, it has been postulated 
that thiazide use was epidemiologically associated with an increasing incidence of 
end-stage renal disease (ESRD) in the USA [178].

Thiazide administration to animals causes kidney damage including glomerular 
ischemia and medullary tubulointerstitial changes [175].

The mechanism of thiazide-associated kidney damage in animal has not been 
elucidated, but appears to be multifactorial [179]. Hyperuricemia appears to play an 
important role [108].

23.5	 �Indications for Urate-Reducing Therapy

Although there is increasing evidence for a link between hyperuricemia and risk of 
hypertension and cardiorenal endpoints, the role of urate-reducing therapy remains 
controversial.

Several drugs are known to lower serum uric acid. These include (1) uricosuric 
drugs, such as probenecid, which increase urinary uric acid excretion; (2) xanthine 
oxidase inhibitors such as allopurinol and febuxostat, which block the final step in 
uric acid production; and (3) rasburicase, a recombinant urate oxidase enzyme 
which converts uric acid to allantoin [180].

In the younger population with essential hypertension (children, adolescents, 
young adults), hyperuricemia is both a marker and a causal link to new onset 
hypertension [61, 87, 108]. Urate-reducing therapy normalizes both serum uric 
acid levels and BP [61]. However, urate-lowering therapy is not indicated in this 
age group [108]. First, there are no large clinical trials to confirm the therapeutic 
antihypertensive efficacy of urate-reducing therapy [108]. Second, urate-lowering 
therapy may be associated with serious adverse reactions. Allopurinol can cause a 
rare but life-threatening reaction known as allopurinol hypersensitivity syndrome, 
characterized by a rash, impaired renal function, hepatocellular injury, fever, eosin-
ophilia, and leukocytosis [181, 182]. This reaction has been reported in both ado-
lescent and adult hypertensive subjects and even in allopurinol treated gouty 
patients [108, 181, 182]. Further, probenecid which interferes with the renal clear-
ance of numerous drugs can induce hyperuricemia and urate nephrolithiasis [108]. 
Third, the antihypertensive efficacy of traditional antihypertensive drugs is greater 
than that provided by urate-reducing medications [108].

In contrast, in middle-aged and elderly subjects with essential hypertension, a 
causal relationship between hyperuricemia and elevated BP is not obvious but 
appears to be minimal [123]. In this older hypertensive population, hyperuricemia 
represents more of a risk for cardiovascular and renal disease than a causal link with 
hypertension [123].

BP changes and cardiovascular outcomes, after initiation of allopurinol, were 
examined in elderly hypertensive subjects (>65  years) in the UK Clinical 
Practice Research Datalink, a large computerized database [123]. Compared to 
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controls, allopurinol administration induced a mild but significant fall in both 
systolic and diastolic BP levels (2.1/1.7 mmHg, respectively). The fall in BP 
was independent of baseline serum uric acid and tended to be larger with high 
allopurinol doses [123].

In the same study, allopurinol treatment was associated with a reduced risk of 
stroke by 50% and cardiac events by 39%. The reduction in cardiovascular events 
was greater with higher allopurinol doses [126].

Allopurinol has been reported to improve target organ involvement in patients 
with cardiovascular disease. In patients with ischemic heart disease, left ven-
tricular mass was reduced with high-dose allopurinol [183]. Similarly, the pro-
gression of chronic kidney disease is slowed down by both allopurinol and 
febuxostat [184, 185].

The improvement in cardiorenal outcome was associated with reduction in serum 
uric acid and may be linked to mechanisms unrelated to reduction in serum uric acid 
but may be mediated by specific actions of xanthine oxidase agents [123].

Some studies also have examined the effect of urate-lowering therapy on some 
indices of vascular function. Allopurinol administration reduced both central blood 
pressure and progression of carotid intima-media thickness in patients with recent 
ischemic stroke or transient ischemic attacks (TIA) [186]. However, the results on 
endothelial function have been contradictory. Allopurinol administration normal-
ized endothelial function in type 2 diabetes with mild hypertension [187]. In con-
trast, urate-reducing agents (allopurinol and probenecid) had no effect on endothelial 
dysfunction in normotensive overweight/obese young adults [188].

Non-pharmacologic approaches also have been recommended to reduce serum 
uric acid and BP. Reduction in the consumption of sugar-sweetened beverages has 
been associated with reduction in serum uric acid levels and BP [189]. Further, 
regular physical activity appears to counteract the pathogenetic mechanisms 
involved in the association between hyperuricemia and risk of future hypertension 
preventing BP elevation [190].

�Conclusion
Serum uric acid, a circulating end product of purine metabolism, is a major risk 
for incident hypertension, cardiovascular disease, stroke, and chronic kidney dis-
ease. It is eliminated mainly by the kidney and to a lesser extent by the gastroin-
testinal tract. There is a positive correlation between serum uric acid concentration 
and incident hypertension in children, adolescents, and younger adult hyperten-
sive population. This relationship is lost with aging and duration of 
hypertension.

Hyperuricemia is a characteristic feature of new onset essential (primary) 
hypertension in pediatric and younger adult hypertensive patients and appears to 
be causally related to BP elevation. In contrast, hyperuricemia appears to act 
more as a risk for cardiovascular disease rather than as an etiologic determinant 
in older adult hypertensive patients.

In essential (primary) hypertension, elevated serum uric acid concentration is 
induced by increased renovascular resistance and reduced renal blood flow.
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Uric acid-lowering therapy in younger hypertensive patients normalizes both 
serum uric acid and BP levels, while in middle-aged and elderly hypertensive 
subjects, it appears to be associated with reduction of cardiovascular risk and 
progression of chronic kidney disease.
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24Hypertension in Dialysis Patients: 
Clinical Epidemiology, Pathogenesis, 
Diagnosis, and Treatment

Pantelis A. Sarafidis, Panagiotis Georgianos, 
and Carmine Zoccali

24.1	 �Introduction

Among end-stage renal disease (ESRD) patients receiving maintenance hemodialy-
sis or peritoneal dialysis, hypertension is very common, difficult to diagnose and 
often poorly controlled [1]. Elevated blood pressure (BP), especially recorded out-
side of the hemodialysis unit with home or ambulatory BP monitoring, is associated 
with shorter survival [2–4]. Sodium and volume overload is the most important 
cause of hypertension in dialysis patients; accordingly, non-pharmacologic strate-
gies such as dietary sodium restriction, individualized dialysate sodium prescrip-
tion, and gradual dry-weight reduction should be the initial therapeutic approaches 
to achieve BP control [1, 5]. However, this approach still remains inadequately 
implemented [6, 7]. Even following proper management of sodium and volume 
excess, hypertension remains poorly controlled in a substantial proportion of dialy-
sis patients; in these patients, pharmacologic therapy is obviously necessary to 
control BP [1, 5].

In this chapter, we discuss the epidemiology, pathogenesis, diagnosis, and treat-
ment of hypertension among patients on dialysis in the light of currently available 
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evidence derived from observational and randomized controlled studies; non-
pharmacological and pharmacological strategies to manage hypertension in dialysis 
are both included in our discussion. We discuss data from the fewer relevant studies 
in peritoneal dialysis patients, summarizing clinical evidence that may be useful for 
the management of hypertension in these individuals.

24.2	 �Diagnosis

In the 2004 National Kidney Foundation Kidney Disease Outcomes Quality 
Initiative (NKF-KDOQI) guideline document [8], the diagnosis of hypertension 
among patients on hemodialysis was based on BP measurements obtained shortly 
before or after dialysis, i.e., when predialysis BP is >140/90 mmHg or when postdi-
alysis BP is >130/80 mmHg, respectively [8]. Whether using conventional peridia-
lytic BP recordings is efficient to diagnose and guide the management of hypertension 
in the hemodialysis population is a matter of debate for several reasons. Pre- and 
postdialysis BP is typically recorded by the dialysis unit staff and without the neces-
sary attention to the technique of BP measurement and the prerequisites for objec-
tive office BP recordings [9]. The high variability of BP from pre- to postdialysis 
and from one day to the next in response to the shifts and fluctuations in volume 
status and other parameters during the intra- and interdialytic period is another 
important issue that imposes particular difficulties in the accurate detection of 
hypertension [10]. The typical pattern of hemodynamic response to ultrafiltration is 
a BP decrease from pre- to postdialysis; the magnitude of intradialytic BP reduction 
is at least partially related to the magnitude and the rate of volume withdrawal dur-
ing dialysis. The exact opposite phenomenon occurs during the out-of-dialysis 
interval [11], with several studies showing that interdialytic weight gain is closely 
associated with higher predialysis BP [12]. It is therefore not uncommon that predi-
alysis BP levels are within the hypertensive range, whereas postdialysis BP mea-
surements in the same patient are in the normotensive range. The poor diagnostic 
accuracy of peridialytic BP recordings is supported by a meta-analysis of clinical 
studies showing that both pre- and postdialysis BP provide imprecise estimates of 
the mean interdialytic BP recorded with 44-h ambulatory BP monitoring [13]. 
Furthermore, peridialytic BP recordings have little or no prognostic relations with 
mortality in hemodialysis patients [2, 3].

The rate of hypertension misdiagnosis when using peridialytic BP measurements 
is unacceptably high [14]. Using BP measurements obtained during the dialysis ses-
sion in combination with the pre- and postdialysis BP may be an alternative approach 
to improve the reproducibility, precision, and accuracy of hypertension diagnosis 
among hemodialysis patients [15]. Intradialytic BP is usually recorded every 30 min 
with the use of an oscillometric devices, sometimes attached to the dialysis machine. 
In a diagnostic test study using 44-h interdialytic ambulatory BP as the reference 
standard, the average intradialytic BP in combination with peridialytic BP was 
shown to have greater diagnostic value compared with peridialytic BP recordings 
alone [16]. A median intradialytic cutoff BP of 140/90 mmHg during a midweek 
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dialysis session provided greater sensitivity and specificity in detecting interdialytic 
hypertension as compared with pre- and postdialysis BP measurements [16]. 
Despite the fact that the diagnostic accuracy is improved when peridialytic BP 
recordings are considered together with intradialytic BP, this approach should 
remain a method of last resort, as BP measurements obtained outside of the dialysis 
unit appear better methods for the diagnosis of hypertension in these patients [14].

Home BP monitoring is a widely applied and recommended international guide-
line method to diagnose and manage hypertension in the general population [17, 
18]. Among patients on dialysis, home BP monitoring is reported to have several 
advantages over conventional peridialytic BP recordings [19]. Compared with BP 
recordings obtained pre- or postdialysis, home BP exhibits stronger associations 
with mean 44-h ambulatory BP [20, 21]. In the Dry-Weight Reduction in 
Hemodialysis Patients (DRIP) trial, changes in home BP after 4 and 8 weeks of dry-
weight probing were closely associated with the relevant changes in 44-h ambula-
tory BP; in contrast, predialysis and postdialysis BP recordings were unable to 
detect the changes in ambulatory BP caused in response to dry-weight reduction 
[22]. Contrary to the high variability and poor reproducibility of conventional perid-
ialytic BP recordings, home BP was shown to have high short-term reproducibility 
from 1 week to the next [21]. Compared with the BP measurements obtained within 
the dialysis unit, home BP exhibits stronger associations with indices of target-
organ damage [23–25] and represents a more powerful predictor of future cardio-
vascular events or all-cause mortality [2, 3].

The notion that home BP may be a useful tool to guide the management of hyper-
tension among dialysis patients is supported by a pilot study which randomized 
65 hypertensive hemodialysis patients to have their antihypertensive drug therapy 
adjusted either on the basis of routine predialysis BP recording or with the use of 
home BP monitoring [26]. Over a mean follow-up period of 6  months, a signifi-
cant reduction in interdialytic ambulatory BP of 9/7 mmHg was noted in the home 
BP-guided group, but not in the predialysis BP-guided group [26]. Another study ran-
domized 34 hemodialysis patients to home BP-guided management plus usual care or 
usual care alone for management of hypertension. After 12 weeks of follow-up, the 
use of home BP recordings in decision making resulted also in significant reduction 
of the average weekly systolic BP as compared with the usual care alone [27].

Ambulatory BP monitoring is considered the “gold standard” method for diag-
nosing hypertension among patients receiving dialysis [1, 18, 28]. The superiority 
of this technique over the conventional peridialytic BP measurements is strongly 
supported by comparative studies showing that mean 44-h interdialytic BP can bet-
ter predict the presence of target-organ damage (such as echocardiographic LV 
hypertrophy) [23] and is more closely associated with all-cause and cardiovascular 
mortality [2, 4]. The use of ambulatory BP monitoring has also the advantage of 
recording BP during nighttime, providing additional information with respect to the 
circadian variation of BP; the presence of a non-dipping nocturnal BP pattern is 
very common among dialysis patients and has been associated with LVH [29] and 
increased risk of all-cause and cardiovascular mortality [30]. It is important noting 
that the superiority of ambulatory BP monitoring over peridialytic BP recordings 
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can only partially be explained by the higher number of BP measurements, as inter-
dialytic BP recordings retain their strong prognostic association with cardiovascular 
outcomes even when a small number of randomly selected measurements are used 
to assess the interdialytic BP burden [31]; the latter suggests that the location and 
time frame covered and not the quantity of BP recordings are the major factor deter-
mining the strong prognostic significance of interdialytic ambulatory BP. Despite 
the above advantages, ambulatory BP monitoring is still perceived as a technique 
with limited applicability in dialysis patients in a reservation arising partly from the 
fact that many studies on ambulatory BP monitoring in this population dialysis 
patients were performed in a single American academic hemodialysis unit [2, 11, 
23]. The high prevalence of non-dipping and nocturnal hypertension among dialysis 
patients [32] suggests that the application of ABPM for the diagnosis and the treat-
ment of hypertension is more compelling than in the general population, where 
ABPM has already been firmly recommended by different guidelines [33, 34]. 
Additional research efforts are needed in order to fully elucidate the particular indi-
cations, tolerability, and cost-effectiveness of ABPM. Until such studies are com-
pleted, the wide application of home BP monitoring should be encouraged as a 
simple and efficient approach to measure BP and make therapeutic decisions among 
patients on dialysis [14]. Figure 24.1 summarizes the thresholds to define hyperten-
sion using home and ambulatory BP monitoring proposed in a recent document of 
the EURECA-m working group of ERA-EDTA [18].

Contrary to the typical decline in BP during dialysis, in approximately 10–15% 
of dialysis patients, BP exhibits a “paradoxical” intradialytic elevation [35, 36]. 
Despite the fact that this abnormal pattern of intradialytic hemodynamic response 
has been for long recognized, there is no universally agreed definition of intradialy-
sis hypertension. For example, in some studies, intradialysis hypertension was 
defined as a rise of at least 10 mmHg in systolic BP during dialysis or immediately 
postdialysis in a certain number of dialysis treatments [35, 36]. In other studies, 
patients were considered as suffering from intradialysis hypertension when their BP 

Hypertension in CKD and in dialysis patients should be defined on the basis of home (HBPM) or 24-h ambulatory BP monitoring (ABPM) during a 
mid-week dialysis interval. Thresholds proposed by the ESH and the ESC can be adopted for CKD patients,9 and those by the ASH,5 for 
hemodialysis patients, as below

Home BP measurements: ≥135/85 mmHg both for CKD patients and for hemodialysis patients.

Definition

Drug therapy goals

ASH indicates American Society of Hypertension; ASN, American Society of Nephrology; BP, blood pressure; CKD, chronic kidney disease; ESC,
European Society of Cardiology; ESH, European Society of Hypertension; ESRD, end-stage renal disease.

Particularly for hemodialysis patients, arterial pressure goals should be established individually, taking into account age, comorbid conditions,
cardiac function, and neurological status

Twenty-four- hour ambulatory BP ≥130/80 mmHg for CKD patients and  ≥135/85  mmHg for hemodialysis patients. In hemodialysis patients,
ABPM should be performed during a mid-week dialysis interval and, whenever feasible, extended to 44 h.

For hemodialysis patients, no recommendation can be made on the basis of predialysis or postdialysis BP. When neither ABPM nor home BP
measurements are applicable in dialysis patients, the diagnosis and the management of hypertension can be made on the basis of conventional
BP (CBP) measurements taken during the dialysis interval. At variance with predialysis BP which has an U-shaped relationship with risk of death,
in the same patients, the average of 3 office measurements (obtained in the sitting position after at least 5 min of quiet rest by trained personnel)
is almost linearly related to the risk of the same outcome.21 The threshold of office BP (140/90 mmHg) recommended by current guidelines for the
definition of hypertension in CKD patients9 can be extended also to hemodialysis patients.

Fig. 24.1  Definition of hypertension in CKD and in ESRD patients (reprinted with permission 
from Parati et al. [18])
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showed a change of >0 mmHg from pre- to postdialysis; another definition was the 
regression of all intradialytic BP measurements over time with a slope greater than 
zero [37]. Of note, intradialysis hypertension is not solely related to mechanistic 
changes exerted during the dialysis session but also related to the BP burden during 
the interdialytic period. In a case-control study comparing the interdialytic BP pro-
file of 25 patients with intradialysis hypertension (increase in systolic BP >10 mmHg 
from pre- to postdialysis in four out of six consecutive dialysis treatments) with that 
of 25 age- and sex-matched controls with normal intradialytic hemodynamic 
response, Van Buren et al. [38] made the important observation that intradialysis 
hypertension is a phenomenon superimposed to systemic background hypertension. 
Patients with intradialysis hypertension had higher 44-h interdialytic BP than con-
trols, as well as a gradual BP decline during the first 24  h after dialysis, which 
contrasted with the (typical) gradual increase from postdialysis onward in patients 
without intradialytic hypertension [38].

24.3	 �Epidemiology

The estimates of the prevalence, treatment, and control of hypertension among 
patients on chronic dialysis are highly variable, depending on the definitions used to 
diagnose hypertension as well as on the setting of BP measurement (i.e., routine 
peridialytic BP recordings or interdialytic ambulatory BP monitoring) [39–43].

24.3.1	 �Epidemiology Based on Peridialytic BP Recordings

Hypertension is highly prevalent among patients with chronic kidney disease 
(CKD) not yet on dialysis. In a cross-sectional analysis of 10,813 CKD patients 
participating in the Kidney Early Evaluation Program (KEEP) in the USA, hyper-
tension (defined as BP >130/80 mmHg or use of antihypertensives) was detected in 
86.2% of the overall study cohort; prevalence of hypertension exhibited a stepwise 
increase with advancing stage of CKD, increasing from 79.1% in participants with 
stage 1 CKD to approximately 95%% (or 91% with the use of 140/90 threshold) in 
participants with stage 4 and 5 CKD [44]. An analysis of 238 patients with predialy-
sis CKD followed in a low clearance clinic in the UK confirmed that the prevalence 
of hypertension is at 95% (Fig. 24.2) [45]; the mean estimated glomerular filtration 
rate (eGFR) in this cohort was 14.5  mL/min/1.73  m2, suggesting that nearly all 
CKD patients just before the initiation of renal replacement therapy are already 
hypertensives.

Initiation of dialysis per se may have a substantial impact on management of 
hypertension, given the severely impaired ability of patients with advanced CKD 
for sodium excretion and the fact that dialysis represents a potent therapeutic tool to 
remove the sodium excess [1]. Achievement of sodium and volume control via dial-
ysis often decreases the need for antihypertensive drug therapy in incident dialysis 
patients. It is therefore unsurprising that the rates of hypertension prevalence may 
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be higher among predialysis CKD patients than among ESRD patients receiving 
renal replacement therapy, as discussed below. Moreover, hypertension prevalence 
after initiation of dialysis depends on the clinical policies adopted in the renal units 
where the patients are being treated. In some renal units which apply long dialysis 
and strict control of salt intake, hypertension has a lower prevalence than in those 
which don’t apply such a clinical policy [46].

Using the definition of predialysis mean arterial pressure ≥114 mmHg, Salem 
et al. [42] reported that the prevalence of hypertension among 649 hemodialysis 
patients from ten dialysis units in Mississippi was 72%. Eighty percent of hyper-
tensive patients had combined systolic and diastolic hypertension and 20% isolated 
systolic hypertension. Race, dialysis vintage, primary cause of ESRD, or adequacy 
of dialysis had no association with the hypertension status in this study [42]. In 
5369 patients participating in the Dialysis Morbidity and Mortality Study Wave 
1 [40], the prevalence of hypertension was 63% using the JNC 6 classification 
to define hypertension. A hypertension prevalence rate of 70% was reported in a 
cross-sectional analysis of the baseline characteristics of 1238 chronic hemodialysis 
patients enrolled in the HEMO study [41]. A more detailed evaluation of prevalence, 
treatment, and control of hypertension was provided by a cross-sectional analysis 
of 2535 clinically stable, hemodialysis patients participating in a multicenter trial 
of the safety and tolerability of an intravenous iron preparation [39]. In this survey, 
hypertension was defined as a 1-week average predialysis systolic BP >150 mmHg 
or diastolic BP >85 mmHg or the use of antihypertensive drugs with prevalence at 
86%, and despite the fact that 88% of hypertensives were treated, only 30% of them 
had their BP adequately controlled [39]. Information on hypertension prevalence 
in countries other than the USA is limited. In surveys made within the frame of the 
DOPPS [47], the prevalence of hypertension was very high and rising over time in 
all countries. In the last of these surveys [48], hypertension prevalence ranged from 
78% in Japan to 95.9% in Germany. All the above estimates should be interpreted 
within the context of the unavoidable limitation of the use of routine peridialytic BP 
recordings to assess the hypertension status of study participants.
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Fig. 24.2  Prevalence (at the 
130/80 threshold for office 
BP), treatment, and control 
of hypertension in  
predialysis patients followed 
in a low clearance clinic 
with average eGFR  
14.5 mL/min/1.73 m2 
(reprinted with permission 
from Sarafidis et al. [45])
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24.3.2	 �Epidemiology Based on Interdialytic Ambulatory BP 
Monitoring

A more valid estimation of hypertension prevalence and control among dialysis 
patients was provided by a recent study using the “gold standard” method of 44-h 
interdialytic ambulatory BP monitoring and defining hypertension as average sys-
tolic BP values ≥135 mmHg and/or diastolic BP ≥85 mmHg or the use of anti-
hypertensive medications in a population of 369 predominantly African-American 
patients who received hemodialysis treatment in units affiliated with the Indiana 
University in Indianapolis. The prevalence of hypertension was 82% [43], and 
although 89% of hypertensives were treated with antihypertensive drugs, the rate 
of adequate 44-h BP control was as low as 38% [43]. Poor hypertension control 
in this study was associated with excessive antihypertensive drug use and volume 
expansion as measured by the inferior vena cava diameter in expiration [49]. Of 
note, other studies suggest that the higher the number of antihypertensive agents 
prescribed, the greater the likelihood a dialysis patient to be on a volume-expanded 
state [43]. Apart from this study in African-Americans, no large surveys reporting 
hypertension prevalence based on ABPM have been made in other ethnicities and 
in other countries.

24.3.3	 �The Association of BP with All-Cause and Cardiovascular 
Mortality

The relationship of BP with all-cause and cause-specific mortality among patients 
on dialysis is an issue surrounded by substantial controversy, due to the diverse pat-
terns of association between BP and mortality according to timing (i.e., predialysis, 
postdialysis, or intradialysis) or the technique of BP measurement (i.e., peridialytic 
BP recordings vs. interdialytic BP recording either with home or ambulatory BP 
monitoring). Several studies have shown a U-shaped association of the BP recorded 
either predialysis or postdialysis with all-cause and cardiovascular mortality [50–
52], a phenomenon described as “reverse epidemiology of hypertension” in the 
dialysis population. This observation has raised substantial concerns on whether BP 
lowering is a strategy associated with benefits for ESRD patients receiving hemodi-
alysis [53]. However, this U-shaped association seems to be due to the incapacity of 
peridialytic BP recordings per se to describe the true BP load, rather than reflect a 
true U-shaped relation of BP with cardiovascular morbidity and mortality.

Contrary to the unclear association of peridialytic BP recordings with all-cause 
and cardiovascular mortality, prospective cohort studies have shown that interdia-
lytic BP recorded either with home or with ambulatory BP monitoring associates 
directly with mortality and cardiovascular events relevant to what happens in non-
dialysis populations. In a cohort of 57 treated hypertensive hemodialysis patients 
prospectively followed for a mean period of 34.4±20.4  months, Amar et  al. [4] 
showed elevated 24-h ambulatory pulse pressure (PP) [relative risk (RR), 1.85 for 
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each 10 mmHg increase in PP; 95% confidence intervals (CIs), 1.28–2.65] as well 
as elevated nocturnal systolic BP (RR, 1.41 for each 10 mmHg increase in nocturnal 
systolic BP; 95% CIs, 1.08–1.84) to be independently associated with increased risk 
of cardiovascular mortality [4]. In larger study by Tripepi et al., in 168 nondiabetic 
hemodialysis patients, nocturnal BP burden (as estimated by the night/day ratio) 
was a direct predictor of death and cardiovascular events as well as of LVH [30]. In 
a subsequent cohort study of 150 hemodialysis patients, Alborzi et al. [3] showed 
that increasing interdialytic BP measured with home and ambulatory BP monitor-
ing was directly associated with heightened risk of mortality over a mean follow-up 
period of 24 months. No such relationship was detectable using BP measurements 
obtained before or after dialysis (Fig. 24.3) [3]. In a larger cohort of hemodialysis 
patients followed for 32  months, Agarwal et  al. confirmed that the higher quar-
tiles of home and 44-h ambulatory systolic BP were independently associated with 
increased risk of mortality [2]. Once again, BP recorded outside of the dialysis unit 
was of stronger prognostic significance as compared with BP recorded before or 
after dialysis.

Additional support to the notion that out-of-dialysis BP recordings have closer 
association with outcomes is provided by a recent prospective analysis of 326 
patients participating in the Chronic Renal Insufficiency Cohort (CRIC) study [54]. 
The prognostic association of systolic BP with all-cause mortality was assessed in 
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three different time points of this prospective cohort: (1) when participants had stage 
4 CKD (eGFR <30 mL/min/1.73 m2), (2) when participants initiated hemodialysis 
and dialysis unit BP measurements were available, and (3) when incident hemodial-
ysis patients had an out-of-dialysis BP measurement obtained during a prespecified 
follow-up visit at home [54]. Systolic BP had no association with mortality among 
participants not yet on dialysis. In accordance with earlier reports from other cohorts 
of hemodialysis patients, dialysis unit systolic BP provided a U-shaped association 
with mortality. In contrast, a direct linear association between systolic BP and all-
cause mortality was evident when BP measurements were obtained outside of the 
unit (HR, 1.26 for each 10 mmHg higher systolic BP; 95% CIs, 1.14–1.40) [54].

The pattern of intradialytic hemodynamic response (i.e., the change in BP from 
pre- to postdialysis) has been also associated with increased risk of all-cause and 
cardiovascular mortality [54, 55]. In this regard, Park et al. [56] revealed a U-shaped 
association between intradialytic change in systolic BP and mortality. In a huge 
cohort study of 113,215 US hemodialysis patients retrospectively followed over a 
median period of 5 years, it was shown that drops in systolic BP from pre- to post-
dialysis between 30 and 0 mmHg were associated with better survival, but large 
declines in systolic BP (>30 mmHg) and intradialytic rise in systolic BP of any 
degree were both linked with increased risk of mortality [56].

24.3.4	 �Epidemiology of Hypertension Among Patients Receiving 
Peritoneal Dialysis

The prevalence of hypertension among patients on peritoneal dialysis was evaluated 
in a cross-sectional study conducted in 504 patients in 27 peritoneal dialysis centers 
belonging to the Italian Co-operative Peritoneal Dialysis Study Group [57]. Valid 
ambulatory BP measurements were obtained in 414 patients (82%) using the WHO/
ISH and the JNC 7 report criteria; Cocchi et  al. reported that the prevalence of 
hypertension was 88.1%. Applying the definition of a BP load >30% over a 24-h 
ambulatory BP monitoring, the estimated prevalence of hypertension was lower 
(69%). The average 24-h blood pressure in this study was 139±19/81±11 mmHg, 
clearly indicating that the prevalence of hypertension as defined by the joint docu-
ment of the American Society of Nephrology and the American Society of 
Hypertension (SBP >135 and/or DBP >85 mmHg) [1] exceeds 50–60% in the peri-
toneal dialysis population [57]. Of note, as much as 53% of patients in this study 
were non-dippers and an additional 9% had an inverted day/night BP profile. Small 
studies comparing the ambulatory BP profile between patients treated with auto-
mated peritoneal dialysis vs. continuous ambulatory peritoneal dialysis showed that 
the average 24-h BP, diurnal BP variation, and BP control rates were no different 
between these two modalities [58, 59]. Other studies have described an association 
between BP and peritoneal transport status. Patients with high peritoneal transport 
(reflecting poor peritoneal ultrafiltration) have higher BP levels during both daytime 
and nighttime periods as well as higher LVMI as compared to “low transporters,” 
and this difference most likely reflects volume overload triggered by high peritoneal 
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transport in the first group. Volume expansion is more marked in peritoneal than in 
hemodialysis patients [60], and these patients more frequently require antihyperten-
sive drugs (65%) than hemodialysis patients (38%, P<0.001). The detrimental role 
of volume expansion in patients maintained on peritoneal dialysis is notorious [61].

Given the more continuous nature of renal replacement therapy and the absence 
of cyclic variations in volume status and in several other metabolic parameters in 
patients receiving peritoneal dialysis, it is long hypothesized that BP control and 
diurnal variation of BP may be substantially different between patients treated with 
peritoneal dialysis and those receiving thrice-weekly hemodialysis. However, only 
two small studies have so far tested this hypothesis. Tonbul et al. [62] compared 
the 44-h ambulatory BP profile of 22 hemodialysis patients with that of 24 patients 
treated with continuous ambulatory peritoneal dialysis. Mean 44-h systolic and dia-
stolic BP was no different between the two dialytic modalities; however, in hemo-
dialysis nighttime BP recorded on the dialysis-off day was significantly higher, 
and daytime BP recorded on the dialysis-on day was significantly lower than the 
relevant BP recordings obtained in the same time periods in patients treated with 
continuous ambulatory peritoneal dialysis [62]. Another comparative study includ-
ing 33 hemodialysis and 27 peritoneal dialysis patients showed that diurnal BP pat-
tern (i.e., dipping status) did not differ between the two dialytic modalities over a 
48-h ambulatory BP recording, but average ambulatory systolic BP (142.1±16.3 
vs. 130.4±17.1 mmHg, P<0.01) and systolic loads (54±29% vs. 30±31%, P<0.01) 
were higher in those receiving hemodialysis [63]. It has to be noted, however, that 
methodologically rigorous randomized comparisons between hemodialysis and 
peritoneal dialysis are missing, and the studies performed so far are small and 
largely inconclusive.

24.4	 �Pathogenesis

Increase in cardiac output or in peripheral vascular resistance or in both these hemo-
dynamic parameters may result in sustained BP elevation among patients on dialy-
sis. Undoubtedly, sodium and volume expansions are considered the prominent 
pathogenic mechanisms of hypertension in these individuals. A number of non-
volume-mediated pathways, such as activation of the renin-angiotensin-aldosterone 
and sympathetic nervous systems, structural arterial wall alterations related to the 
long-term arteriosclerotic process, endothelial dysfunction, sleep apnea, and the use 
of particular medications like erythropoietin-stimulating-agents (ESAs), are also 
reported to play an important role in the complex mechanistic background of hyper-
tension in dialysis patients.

24.4.1	 �Volume Overload

In patients with ESRD, even when residual renal function is preserved, the sodium 
and fluid excretory capacity is substantially impaired; subsequently, the presence of 
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sodium and volume expansion is very common and often not easily identifiable in 
dialysis patients. Moreover, patients with ESRD are those with the highest sodium 
sensitivity of BP [64, 65]. In addition, it is now well documented that in addition to 
classical osmotic volume expansion, sodium retention may occur in the form of 
osmotically inactive sodium in the connective tissue and the skin where sodium 
accumulates linked to glycosaminoglycans [66]. Such a non-osmotic sodium reten-
tion triggers local macrophage recruitment, lympho-angiogenesis, and hypertensive 
mechanisms independent of those traditionally ascribed to isoosmotic volume 
retention. In hemodialysis patients, sodium and water in skin and muscle are 
increased and vascular endothelial growth factor is reduced as compared to age-
matched healthy individuals, and these phenomena may also contribute to hyperten-
sion [67]. Fluid and sodium accumulation between subsequent dialysis treatments 
exerts a substantial impact on the patterns and rhythms of interdialytic BP, which is 
superimposed on the circadian variation of BP. Among hemodialysis patients, BP 
steadily increases during the interdialytic interval and the rate of BP increment is 
directly proportional to the interdialytic weight gain [68]. Studies including 48-h 
ambulatory monitoring of central hemodynamic indices in hemodialysis patients 
showed a gradual increase in peripheral and central aortic BP between the intra- and 
interdialytic periods [69]. Excess volume accumulation over the long interdialytic 
interval in patients receiving thrice-weekly hemodialysis imposes an additional BP 
load during the third interdialytic day (Fig. 24.4). In a study of 55 hemodialysis 
patients having a 72-h ambulatory aortic BP monitoring, a significant increase of 
5/3.5 mmHg in aortic BP was noted between the third and the second day of the 
long interdialytic intervals; nighttime BP and the proportion of patients with a non-
dipping circadian BP pattern were also higher during the third interdialytic day [70]. 
Unless extracellular fluid and sodium overload is removed with ultrafiltration, a rise 
in vascular resistance would sustain hypertension in these individuals. In this con-
text, strict volume and sodium control emerges as the principal target of therapy in 
hypertensive patients with ESRD.
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Fig. 24.4  Changes in aortic blood pressures, wave reflections, and arterial stiffness parameters 
between the first and the second interdialytic day Δ[day(2)–day(1)], in comparison with relevant 
changes between the second and the third interdialytic day Δ[day(3)–day(2)] (reprinted with per-
mission from Koutroumpas et al. [70])

24  Hypertension in Dialysis Patients



394

24.4.2	 �Renin-Angiotensin-Aldosterone System

Activation of the renin-angiotensin-aldosterone system (RAAS) even in patients 
with ESRD under renal replacement therapy is long known [71, 72]. Plasma renin 
activity (PRA) is maintained within the normal range in the majority of dialysis 
patients; however, PRA may be inappropriately elevated in relation to the total 
exchangeable sodium and may contribute to the sustained BP elevation [73]. This 
notion is supported by clinical studies showing a significant increase in PRA and 
plasma aldosterone levels from pre- to postdialysis, suggesting that residual func-
tioning nephrons in the failing kidneys of ESRD patients retain their ability to sense 
acute changes in sodium and intravascular volume status that occur in response to 
ultrafiltration [71, 73]. Additional support to the fact that BP elevation in a subset 
of dialysis patients may be in part renin mediated is provided by earlier studies 
showing a sustained BP reduction in hypertensive dialysis patients after the admin-
istration of the angiotensin II antagonist saralasin; removal of the native kidneys 
from the BP responders was associated with long-term normalization of their BP 
levels [74]. More recent studies have shown a dose-dependent elevation in pre- and 
postdialysis PRA levels along with a parallel fall in 44-h [75] interdialytic ambula-
tory BP in response to the supervised administration of the angiotensin-converting 
enzyme inhibitor (ACEI) lisinopril [75]. In addition to the above, the relationship 
between PRA, aldosterone, and major clinical outcomes in dialysis patients is com-
plex and much influenced by malnutrition and inflammation. Indeed, independently 
of predialysis BP, aldosterone is an inverse predictor of mortality and CV events in 
this population, and this seemingly paradoxical relationship is abolished by adjust-
ment for inflammation, protein energy malnutrition, and volume expansion bio-
markers indicating that it is the mere expression of the confounding effect of these 
factors [76].

24.4.3	 �Sympathetic Nervous System

Seminal microneurography studies assessing efferent sympathetic nerve activ-
ity have provided evidence that sympathetic overactivity is an important cause of 
hypertension among patients on dialysis. These clinical studies showed a doubling 
in the rate of sympathetic discharge in hemodialysis patients with intact native kid-
neys; in contrast, sympathetic nerve activity in bilaterally nephrectomized hemodi-
alysis patients was similar to that of healthy individuals [77]. Bilateral nephrectomy 
of native failing kidneys was shown to be associated with sustained reduction in 
peripheral vascular resistance as well as with dramatic drop in BP levels [78]. The 
notion that sympathetic overactivity is implicated in the causal pathway of hyper-
tension in dialysis patients is also supported by recent reports in small groups of 
patients suggesting that renal denervation exerts a significant BP-lowering effect and 
improves sympathetic nerve discharge among dialysis patients with hypertension 
that remains unresponsive to multidrug antihypertensive therapy and ultrafiltration 
intensification [79, 80]. In a proof-of-concept study, Schlaich et al. [81] performed 
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renal nerve ablation in 12 hemodialysis patients with uncontrolled hypertension 
(office BP>140/90 mmHg) despite the current use of ≥3 antihypertensive drugs. 
The procedure of renal denervation was feasible in nine out of 12 study participants; 
among these patients, a significant drop of 28/10 mmHg in office BP was noted over 
a mean 12-month-long follow-up period [81].

Renalase, an enzyme that metabolizes catecholamines and catecholamine-like 
substances, may contribute to the excessive sympathetic overactivity and hyperten-
sion in CKD [82]. Renalase is a flavin adenine dinucleotide-dependent amine oxi-
dase which is secreted in the blood by the kidney [82]. Infusion of recombinant 
renalase in rats produces a significant reduction in BP and heart rate, an effect pre-
dominantly mediated through reduced peripheral vascular tone and cardiac output 
[83]. The plasma concentration of renalase was shown to be markedly decreased in 
hemodialysis patients as compared to age- and sex-matched controls with normal 
renal function [84].

24.4.4	 �Arterial Stiffness

Patients with ESRD display a distinct form of early increase in arterial stiffness, due 
to a combination of factors, mostly relevant to inappropriate calcium-phosphate 
homeostasis [85]. Among dialysis patients, arterial stiffness, as assessed by aortic 
pulse wave velocity (PWV), is a relevant determinant of the patterns and rhythms of 
BP recorded over the entire interdialytic period [85–87]. Analyzing 11,833 interdia-
lytic BP measurements obtained from 125 hemodialysis patients with the use of a 
generalized cosinor model, Agarwal et al. [86] showed that each one log increase in 
aortic PWV was associated with a rise of 18.8/7.08 mmHg in the intercept of sys-
tolic/diastolic BP and with elevation of 11.7 mmHg in the intercept of PP. Increasing 
aortic PWV tended also to blunt the circadian amplitude of systolic BP and PP [86]. 
Subsequently, in a post hoc analysis of the HDPAL trial, it was shown that increas-
ing aortic PWV at baseline was an independent determinant of 44-h ambulatory 
systolic BP and PP. After adjustment for several confounding factors, each 1-m/s 
higher baseline aortic PWV was associated with 1.34-mmHg higher baseline sys-
tolic BP and 1.02-mmHg higher PP [87]. However, aortic PWV at baseline was 
unable to predict the treatment-induced reduction in 44-h ambulatory systolic and 
diastolic BP at 3, 6, and 12 months of follow-up [87]; the latter suggests that among 
dialysis patients, arterial stiffness does not make hypertension more resistant to the 
BP-lowering therapy. Studies evaluating acute changes in arterial stiffness indexes 
during the interdialytic periods showed that augmentation index (AIx) and central 
aortic PP are increased during both 3-day and 2-day interdialytic intervals; aortic 
and brachial PWV was unchanged in this short time frame [88]. This increase in 
wave reflection indices was by 30% higher during the 3-day as compared to the 
2-day interdialytic interval and was linearly associated with interdialytic weight 
gain [88]. This observation was confirmed in subsequent studies showing a gradual 
interdialytic increase in wave reflection indices and central aortic BP with the use of 
ambulatory BP monitoring [69, 70].
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24.4.5	 �Endothelial Dysfunction

An imbalance between endothelium-derived vasoconstrictors and vasodilators in 
favor of the former may be another mechanistic pathway of hypertension among 
patients on dialysis [89]. This is supported by animal studies showing downregula-
tion of the endothelial and inducible nitric oxide synthase activity in 5/6 nephrecto-
mized rats, an alteration that resulted in sustained BP elevation [90]. Endothelial 
dysfunction results from several mechanisms including high circulating levels of 
asymmetric dimethylarginine (ADMA) [91, 92]; an endogenous nitric oxide syn-
thase inhibitor and its accumulation result in reduced generation of nitric oxide [93]. 
The higher levels of ADMA in ESRD result from both a diminished intracellular 
degradation by desamino-d-argininehydrolase and diminished renal clearance of 
ADMA, since this molecule is mainly excreted by the kidney [93]. Among ESRD 
patients, ADMA is associated with increased LV relative wall thickness and reduced 
ejection fraction. Importantly, prospective cohort studies have associated increased 
ADMA levels with excessive risk of cardiovascular morbidity and mortality in 
hemodialysis patients [91, 93].

24.4.6	 �Sleep Apnea

Sleep apnea is highly prevalent among dialysis patients and volume expansion may 
be a major player in this alteration [94]. In the recumbent position, volume overload 
may promote sleep-disordered breathing and nocturnal hypoxemia through an over-
night fluid shift from the legs to the neck soft tissues that increases peripharyngeal 
and upper airway resistance [95]. Nocturnal hypoxemia in sleep apnea has been 
associated with a reversed circadian BP pattern, triggering in this way nocturnal 
hypertension. This notion is supported by a study of 32 hemodialysis patients show-
ing that those patients experiencing sleep apnea had higher nocturnal systolic BP 
and higher LV relative wall thickness than those without sleep apnea; an inverse 
relationship was noted between the average nocturnal arterial oxygen saturation and 
LV relative wall thickness [29]. In another study, Abdel-Kader et al. [96] showed that 
ESRD patients with sleep apnea had 7.1 times higher risk of developing resistant 
hypertension (defined as office BP >140/90 mmHg despite the use of >3 different 
antihypertensive agents); in contrast, no such association between sleep apnea and 
resistant hypertension was noted among patients with non-dialysis-requiring CKD 
[96]. Whether strict management of volume status improves sleep apnea symptoms 
and restores the blunted nocturnal BP fall in dialysis patients still remains elusive.

24.4.7	 �Erythropoietin-Stimulating Agents

Hypertension is a common but frequently overlooked complication of erythropoie-
tin therapy [97]. New-onset hypertension or worsening of pre-existing hypertension 
can be easily missed due to the high variability of BP in dialysis patients [10] 
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particularly in the absence of properly performed home or ambulatory BP measure-
ments. Studies that did not detect BP elevation in response to erythropoietin therapy 
may have managed hypertension more aggressively through intensification of anti-
hypertensive drug therapy and closer monitoring of volume status [97]. Existing 
studies have associated erythropoietin-induced hypertension with increased circu-
lating endothelin-1 concentration or enhanced vasoconstrictive response to endo-
thelin-1 [98, 99], increased sensitivity to the pressor effect of angiotensin II [100], 
and increased vascular reactivity to norepinephrine [101].

24.5	 �Treatment

24.5.1	 �Non-pharmacological Management of Hypertension

Once an accurate diagnosis of hypertension is made (see above), the management of 
hypertension in dialysis patients should start with non-pharmacological therapeutic 
measures aiming to control sodium and volume excess. This includes (1) dietary 
sodium restriction [102, 103], (2) individualized prescription of the sodium concen-
tration in the dialysate to avoid intradialytic sodium loading, (3) proper adjustment 
of dry weight, and (4) avoiding shorter dialysis. Outside the realm of hypertensive 
urgencies and emergencies [6], and the fact that common antihypertensive agents 
may be needed for other indications (i.e., β-blockers for angina symptoms, heart 
failure, or rate control, RAS blockers for heart failure, etc.), administration of anti-
hypertensive drug therapy in dialysis patients considered to be volume overloaded 
should follow the attainment of dry weight.

24.5.1.1	 �Restricting Dietary Sodium Intake
Among dialysis patients, restricting dietary sodium is proposed as a simple and 
effective maneuver to limit the sense of thirst, reduce interdialytic weight gain, and 
facilitate the achievement of dry weight [102]. Instead of dietary sodium restriction, 
patients on dialysis are often instructed to avoid excess fluid accumulation during 
the interdialytic interval. With the exception of treating hyponatremia, there is no 
specific indication to prescribe fluid-restrictive diets in chronic dialysis patients 
[104]. Currently available recommendations suggest that among dialysis patients, 
dietary sodium intake should not exceed 1.5 g (or approximately 65 mmol) sodium 
per day [103].

24.5.1.2	 �Individualizing the Dialysate Sodium Prescription
To ensure hemodynamic stability during dialysis and limit the risk of intradialytic 
symptoms (i.e., disequilibrium, nausea, vomiting, muscle cramps, etc.), prescription 
of a high dialysate sodium concentration was initially the most preferable therapeu-
tic choice for patients receiving long-term dialysis [105, 106]. Earlier studies sup-
ported the notion that high dialysate sodium minimizes the intradialytic hypotensive 
episodes without worsening interdialytic hypertension [107, 108]. However, more 
recent works challenged the conclusions of those studies and emphasized that a high 
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dialysate sodium concentration may increase thirst and, therefore, interdialytic 
weight gain leading to the need for higher ultrafiltration during the next dialysis 
session [105, 106]. Indeed, in a study in 1084 hemodialysis patients, Munoz 
Mendoza et al. [109] found that dialysate sodium prescriptions ranging from 136 to 
149 (median, 140) mEq/L, with most patients being dialyzed against a positive 
sodium gradient, resulted in over 90% of patients having a rise in serum sodium 
across dialysis and thus higher postdialysis thirst and interdialysis weight gain. A 
consensus document by the chief medical officers of US dialysis providers warns 
against the use of dialysate with a sodium concentration exceeding predialysis 
serum sodium [105, 106]. This increase in interdialytic weight gain leads to the 
need for higher ultrafiltration during the next dialysis session, which may act as a 
triggering factor for more frequent episodes of intradialytic hypotension and pre-
scription of even a higher dialysate sodium concentration, precipitating in this way 
a vicious cycle [105, 106].

A positive intradialytic sodium balance may also arise in patients receiving 
sodium-profiling dialysis. A randomized crossover study of 11 dialysis patients 
compared the effect of performing sodium-profiling dialysis with a time-averaged 
concentration (TAC) of dialysate sodium of 140 mmol/L [TAC(140)] vs. sodium-
profiling dialysis with a TAC of 147 mmol/L [TAC(147)] vs. conventional dialysis 
with a dialysate sodium of 138 mmol/L [110]. An increase in mean 24-h interdia-
lytic BP, in interdialytic weight gain, as well as in interdialytic discomfort symp-
toms was evident during the period of TAC(147) sodium-profiling dialysis as 
compared with the periods of TAC(140) and TAC(138). Increase in interdialytic 
weight gain and interdialytic systolic BP was directly proportional to the TAC of the 
dialysate sodium [110].

The vicious cycle of intradialytic sodium loading can be interrupted by individu-
alizing the prescription of the sodium concentration in the dialysate. A single-blind, 
randomized, crossover study compared the effect of individualized prescription of 
the dialysate sodium concentration (the dialysate sodium set to match predialy-
sis sodium during standard dialysis applying a 138 mEq/L sodium concentration 
multiplied by 0.95 to allow for the Gibbs-Donnan effect) with that of a standard 
dialysate sodium concentration set to 138 mEq/L in nondiabetic, non-hypotension-
prone dialysis patients. Compared with the period of standard dialysate sodium, 
a significant reduction in interdialytic weight gain (2.91±0.87 vs. 2.29±0.65  kg, 
P<0.001), interdialytic thirst score, and episodes of intradialytic hypotension was 
evident during the period of individualized dialysate sodium prescription [111]. A 
pilot study using a biofeedback software system to progressively reduce postdialy-
sis plasma conductivity from 14.0 to 13.5 mS/cm [112] showed that this maneu-
ver resulted in significant reduction of postdialysis plasma sodium from 137.8 to 
135.6 mmol/L. Diffusive sodium removal in addition to convective losses induced 
a nearly 100  mmol/L higher net intradialytic sodium loss resulting in reduction 
in the extracellular body water compartment, lower interdialytic weight gain, and 
drop in predialysis BP [112]. In a subsequent single-blind, crossover study of 15 
patients receiving thrice-weekly in-center, nocturnal dialysis, lowering the dialy-
sate sodium concentration from 140 to 136 or 134 mEq/L for a 12-week treatment 
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period decreased interdialytic weight gain by 0.6±0.6 kg and predialysis systolic BP 
by 8.3±14.9 mmHg without increasing intradialytic hypotensive episodes [113]. In 
a 3-week, two-arm, randomized, crossover trial of 16 dialysis patients with intra-
dialysis hypertension, Inrig et  al. [114] compared the effect of a high (5 mEq/L 
above serum sodium) vs. a low dialysate sodium concentration (5 mEq/L below 
serum sodium) on intradialytic BP and endothelium-derived vasoregulators. The 
weekly averaged predialysis systolic BP was lower during the period of low dialy-
sate sodium concentration compared with dialysis treatments with high dialysate 
sodium (parameter estimate, −9.9 mmHg; 95% CI, −13.3 to −6.4 mmHg; P<0.001) 
[114]. Overall these studies suggest that a single dialysate sodium prescription may 
not fit all patients. Individualizing the dialysate sodium prescription may facilitate 
the achievement of euvolemia without aggravating the risk of intradialytic hemody-
namic instability.

Similarly to the low dialysate sodium in hemodialysis patients, increasing the 
diffusive component of sodium removal with the use of low-sodium peritoneal dial-
ysis fluids is suggested to be an effective maneuver to improve BP control among 
patients receiving peritoneal dialysis. In a nonrandomized interventional study 
comparing a standard vs. a low-sodium peritoneal dialysis solution substituted for 
one 3- to 5-h exchange over a mean follow-up period of 2  months, low-sodium 
concentration in the dialysate resulted in a significant increase of 30–50 mmol/
dwell diffusive peritoneal sodium removal [115]. Associated benefits of this inter-
vention were significant reductions in the sense of thirst and total body water 
assessed by bioelectrical impendence analysis, together with a significant fall of 
8 mmHg in nighttime systolic BP [115]. Prescribing low-sodium dialysate solutions 
and achieving adequate volume control through icodextrin solutions may have addi-
tive benefits in patients being on a volume-expanded state. A small, open-label ran-
domized study lasting 12 months showed that compared with standard glucose 
peritoneal dialysis solutions, the use of icodextrin as an osmotic agent is associated 
with better extracellular volume control and greater reduction in systolic and dia-
stolic 24-h ambulatory BP [116].

24.5.1.3	 �Probing of Dry Weight
The adequate management of dry weight among dialysis patients is challenging 
[117]. The most important issue is the absence of a widely accepted definition of dry 
weight. Sinha and Agarwal [118] defined dry weight as the lowest tolerated postdi-
alysis weight achieved through gentle and gradual reduction in postdialysis weight 
at which patients experience minimal signs or symptoms of either hypovolemia or 
hypervolemia [118].

Another challenge in the management of volume status among dialysis patients 
is the absence of a single clinical test to reliably adjudicate whether a patient has 
reached the “ideal” dry weight or whether the patient remains volume overloaded. 
The presence of pedal edema is frequently used in daily clinical practice as a simple 
physical sign to assess dry-weight achievement. The reliability of pedal edema as a 
sign of volume excess was investigated in a cross-sectional analysis of 146 asymp-
tomatic dialysis patients, in which echocardiographic parameters, blood volume 
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monitoring, plasma volume markers, and inflammatory markers were measured as 
exposure variables, whereas pedal edema was assessed as an outcome variable 
[119]. This study showed that pedal edema exhibited significant associations with 
several cardiovascular risk factors such as age, body mass index, and LV mass 
index. However, indices reflecting intravascular volume, such as inferior vena cava 
diameter, blood volume monitoring, and plasma volume biomarkers, were not inde-
pendent determinants of the presence of pedal edema [119].

Achievement of dry weight is a long-term process, in which the interaction 
between the doctor and the patient plays a prominent role. Dry-weight reduction is 
often accompanied by uncomfortable intradialytic symptoms such as hypotension, 
dizziness, cramps, nausea, and vomiting. Physicians often respond falsely to these 
symptoms with therapeutic interventions such as cessation of ultrafiltration, intrave-
nous saline infusion, premature termination of dialysis, increasing the dialysate 
sodium concentration or finally raising the dry weight, and subsequently increasing 
the number of prescribed antihypertensive medications, which all finally act as bar-
riers to the dry-weight achievement [1, 106]. The strongest evidence that probing of 
dry weight is an effective intervention in order to improve BP control among patients 
on dialysis is provided by the DRIP trial [120]. In this trial, 100 long-term hyperten-
sive dialysis patients were randomly assigned to an intensive ultrafiltration group, in 
which the dry weight was probed without increasing the frequency or duration of 
dialysis; another 50 patients were randomly assigned to a control group, in which 
patients had only physician visits without any modification in their volume status 
[120]. The primary trial end point was the difference between the ultrafiltration and 
control groups in the change of 44-h interdialytic ambulatory BP during follow-up. 
Postdialysis weight was reduced by 0.9 kg at 4 weeks and resulted in a significant 
reduction of 6.9 mmHg (95% CI, −12.4 to −1.3 mmHg) in systolic BP; diastolic BP 
exhibited also a significant drop of 3.1 mmHg (95% CI, −6.2 to −0.02 mmHg). The 
overall dry-weight reduction achieved at study completion (8 weeks) was 1 kg; the 
associated BP-lowering benefit was a reduction of 6.6/3.3 mmHg in 44-h interdia-
lytic ambulatory BP at 8 weeks of dry-weight probing (Fig. 24.5) [120]. The DRIP 
trial provided the net BP-lowering efficacy of dry-weight reduction, since back-
ground antihypertensive treatment of study participants remained unchanged 
throughout the trial. Of importance, this benefit was seen without any deterioration 
in parameters of health-related quality of life [120] and with a reduction in LV 
chamber volume [121]. The findings of the DRIP trial are in general agreement with 
previous uncontrolled observations in small series of patients [122–124].

In contrast to the above, benefits on BP control of intensification of ultrafiltration 
without prolonging dialysis time may be counterbalanced by a higher risk of hospi-
talizations for cardiovascular complications and arteriovenous fistula clotting [125]. 
High ultrafiltration rates increase the risk of dialysis hypotension, and in one obser-
vational study, ultrafiltration rates greater than 12.4 mL/kg per hour were associated 
with increased mortality [126]. Overall, dry-weight reduction may be more easily 
and safely achieved in multiple sessions or by prolonging the dialysis time to 
achieve a slower ultrafiltration rate, as discussed below.
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24.5.1.4	 �Avoiding Shorter Delivered Dialysis
Current best practice guidelines recommend that patients with ESRD should receive 
renal replacement therapy with at least three dialysis sessions weekly, and the total 
duration of dialysis time should be at least 12 h per week [127]. Exception to this 
recommendation is proposed to be incident dialysis patients with substantial resid-
ual renal function or patients who started earlier dialysis; these specific subgroups 
of dialysis patients may be able to maintain the homeostasis of volume and meta-
bolic parameters over a longer dialysis-free interval [127–129]. In contrast to 
guidelines, real-world data derived from the ESRD Clinical Performance Measures 
Project in the USA suggest that one quarter of the 32,065 patients participating in 
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Fig. 24.5  The effect of dry-weight reduction on changes in interdialytic (44-h) ambulatory sys-
tolic and diastolic BP over 4 and 8 weeks in hypertensive hemodialysis patients (reprinted with 
permission from Agarwal et al. [120])
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this program were receiving less than 3 h and 15 min of dialysis/session and only 
one quarter of patients were receiving an extended-time (>4  h/session) dialysis 
regimen [130].

Among several other potential hazards, shorter delivered dialysis is reported to 
be an important barrier to the achievement of adequate BP control. This notion is 
supported by a post hoc analysis of the DRIP trial [131], in which median intradia-
lytic systolic BP at baseline and its change over time were modeled against the 
duration of delivered dialysis. At baseline, median intradialytic systolic BP was 
higher with fewer hours of delivered dialysis. Among patients who did not have 
their dry weight probed (control group), median intradialytic systolic BP followed 
an increasing trend over the course of the trial. Dry-weight reduction in the ultrafil-
tration group induced a significant drop in median intradialytic systolic BP regard-
less of the duration of delivered dialysis [131]. However, patients with longer 
delivered dialysis required fewer dialysis sessions in order to gain the BP-lowering 
benefit of dry-weight reduction. A similar relationship was evident between the 
duration of delivered dialysis and the magnitude of change in 44-h interdialytic 
ambulatory systolic BP over time [131].

Increasing the duration or the frequency of the delivered dialysis may represent 
an alternative approach to control BP among dialysis patients who either experience 
frequent episodes of intradialytic hemodynamic instability or remain hypertensive 
despite the intensification of volume withdrawal that can be achieved within the 
conventional thrice-weekly 12-h dialysis regimen [132]. For example, in a cross-
over study of 38 dialysis patients comparing the frequency of intradialytic symp-
toms during 5-h vs. 4-h duration dialysis sessions, the incidence of intradialytic 
hypotension and postdialysis orthostatic hypotension was shown to be less common 
during the period of extended-time dialysis [133]. This notion is also supported by 
several other randomized and nonrandomized observations showing that patients 
assigned to longer or more frequent dialysis regimens achieve adequate BP control 
with minimal requirements for antihypertensive medications, a benefit that is possi-
bly mediated through better achievement of postdialysis dry weight [132, 134–136].

24.5.2	 �Pharmacological Management of Hypertension

Two meta-analyses of randomized controlled trials have provided evidence that BP 
lowering with the use of antihypertensive drugs is associated with reduced cardio-
vascular morbidity and mortality in dialysis patients [137, 138]. The first meta-
analysis included eight randomized controlled trials incorporating data from 1697 
ESRD patients and 495 cardiovascular events [138]. The weighted mean difference 
in the change of BP between the active treatment and control groups was −4.5 mmHg 
for systolic and −2.3 mmHg for diastolic BP. This BP-lowering effect of antihyper-
tensive drug treatment was associated with 29% reduction in the risk of all-cause 
mortality (pooled RR, 0.71; 95% CIs, 0.55–0.92) and 29% reduction in the risk of 
cardiovascular mortality (pooled RR, 0.71; 95% CIs, 0.50–0.99) [138]. The second 
meta-analysis [137] included five	  randomized trials with 1202 study participants. 
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Compared with placebo or control therapy, the overall cardiovascular benefit of BP 
lowering with antihypertensive therapy was a 31% reduction in the risk of future 
cardiovascular events (pooled HR, 0.69; 95% CIs, 0.56–0.84) [137]. In a sub-
analysis according to the hypertension status of patients participating in the indi-
vidual studies, it was shown that cardiovascular protection provided by BP lowering 
was lesser when normotensive patients were included in the analysis (pooled HR, 
0.86; 95% CIs, 0.67–1.12) [137]. These meta-analyses indicate that the use of anti-
hypertensive drugs in dialysis patients may afford cardiovascular protection both in 
hypertensive patients and in normotensive patients with LV systolic dysfunction 
[137]; the cardiovascular benefit seems to be greater for hypertensives [137].

All major antihypertensive drug classes are useful for pharmacological treat-
ment of hypertension [1, 139, 140]. Exception may be diuretic compounds, which 
are generally ineffective for BP control in patients with ESRD [1, 139, 140]. 
Echocardiographic studies conducted in anuric hemodialysis patients showed that 
intravenous administration of loop diuretics, even at high doses, exerts only minimal 
alterations in central hemodynamic indices [141]. Given the high risk of ototoxicity, 
the use of loop diuretics in anuric dialysis patients should be avoided. It remains to 
be elucidated whether these compounds have a beneficial role in those patients with 
preserved residual diuresis as a therapeutic intervention targeting to enhance urine 
output and limit fluid accumulation between subsequent dialysis treatments [142].

24.5.2.1	 �Angiotensin-Converting Enzyme Inhibitors 
and Angiotensin Receptor Blockers

Inhibition of the RAAS is often recommended as first-line BP-lowering therapy for 
dialysis patients, by extrapolation of the cardiovascular benefits of RAAS-blockers 
in the general population. However, whether RAAS-blockade affords the same ben-
efits in hypertensive dialysis patients with hypertensive patients in the general popu-
lation still remains unclear. In the Fosinopril in Dialysis (FOSIDIAL) trial [143] 
(Table 24.1), 397 hemodialysis patients were randomized to receive the ACEI fos-
inopril (titrated up to 20 mg/day) or placebo for a mean follow-up period of 48 
months. Patients participating in the FOSIDIAL trial had by protocol LV hypertro-
phy, but were not necessarily hypertensives. Although therapy with fosinopril 
resulted in a significant reduction of predialysis BP vs. placebo in the subgroup of 
hypertensive participants, occurrence of fatal and nonfatal cardiovascular events 
during the follow-up did not significantly differ between the active treatment and 
placebo arms (RR, 0.93; 95% CIs, 0.68–1.26) [143].

Three trials (Table 24.1) [144–146] all performed in Japan compared angioten-
sin II receptor blockers (ARBs) to placebo or active therapy. The first enrolled 80 
hemodialysis patients without overt cardiovascular disease and showed candesar-
tan was superior to placebo in improving cardiovascular event-free survival [144]. 
In the second, 360 hypertensive hemodialysis patients were randomly assigned to 
receive ARB therapy (valsartan, candesartan, or losartan) or control therapy not 
including ACEIs or ARBs [145]. Over a mean follow-up period of 36  months, 
ARB therapy was associated with a 49% reduction in the risk of cardiovascular 
death, nonfatal myocardial infarction (MI), stroke, coronary revascularization, and 
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hospitalized congestive heart failure (CHF) as compared with control therapy not 
including RAAS inhibitors (HR, 0.51; 95% CI, 0.33–0.79) [145]. In the subsequent 
Olmesartan Clinical Trial in Okinawan Patients Under Okinawa Dialysis Study 
(OCTOPUS) trial [146], 469 hypertensive hemodialysis patients were randomized 
to the ARB olmesartan (10–40 mg/day) or control therapy not including ACEIs or 
ARBs. Over a mean follow-up of 3.5 years, incidence of all-cause death, nonfa-
tal stroke, MI, and coronary revascularization was similar in the olmesartan and 
control groups (HR, 1.00; 95% CI, 0.71–1.40); mortality was also not different 
(Fig. 24.6) [146]. A meta-analytical estimate of the risk reduction by ARBs in these 
trials (which included around 900 patients and 175 deaths) showed a nonsignificant 
(P = 0.10) 42% risk reduction [147]. Overall, a superiority of ACEIs and ARBs over 
other antihypertensive drugs seems unlikely in dialysis patients, and antihyperten-
sive treatment per se and not the use of a RAAS blocker is rather the factor reduc-
ing cardiovascular risk. It should be also noted that there are important differences 
between ACEIs and ARBs in renal clearance and removal during dialysis [5]; most 
ARBs are not dialyzed during conventional dialysis and may be therefore preferred 
in these patients for BP reduction.

24.5.2.2	 �β-Blockers
Sympathetic overactivity as measured by plasma norepinephrine is a powerful pre-
dictor of death and cardiovascular events in dialysis patients [148]. Susceptibility of 
dialysis patients to serious arrhythmias and sudden death along with the excessive 
activation of the sympathetic nervous system makes β-blockers an attractive thera-
peutic option toward cardiovascular protection in this population [139]. In the first 
clinical trial with hard cardiovascular outcomes using a β-blocker in hemodialysis, 
114 patients with dilated cardiomyopathy were randomly assigned to carvedilol 
(titrated up to 25 mg twice daily) or placebo. Over a follow-up of 2 years, carvedilol 
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treatment improved LV systolic function and lowered by 56% the risk of all-cause 
hospitalization (HR, 0.44; 95% CI, 0.25–0.77) and by 49% the risk of all-cause 
death (HR, 0.51; 95% CI, 0.32–0.82) compared to placebo [149].

Additional support to the cardioprotective properties of β-blockade is provided 
by the Hypertension in Hemodialysis Patients Treated with Atenolol or Lisinopril 
(HDPAL) trial [150], which performed a head-to-head comparison between the 
β-blocker atenolol and the ACEI lisinopril (both administered in a thrice-weekly 
regimen immediately postdialysis) in 200 hypertensive hemodialysis patients with 
echocardiographically documented LV hypertrophy (Table 24.1). This study was 
prematurely terminated for safety reasons due to significantly higher risk of cardio-
vascular events in the lisinopril group, although the number of events was generally 
not different from that recorded in registries of hemodialysis patients. The incidence 
of the combined outcome of MI, stroke, hospitalized CHF, and cardiovascular death 
was 2.29 times higher in lisinopril than in atenolol group [incidence rate ratio (IRR), 
2.29; 95% CI, 1.07–5.21] [129]. LV mass index (the primary outcome) improved to 
a similar extent in the atenolol and lisinopril groups [150]. However, atenolol was 
shown to be superior to lisinopril in terms of its BP-lowering efficacy; although no 
significant differences in BP were noted between groups, lisinopril-treated patients 
had always numerically higher BP levels and required more aggressive volume 
management during dialysis and administration of higher number of antihyperten-
sive drugs as add-on therapy to achieve the prespecified home BP target of 
140/90 mmHg. In a secondary analysis of the HDPAL trial, atenolol was shown to 
be superior to lisinopril in improving aortic pulse wave velocity [87], which is a 
strong and independent cardiovascular risk predictor among dialysis patients [85]. 
This beneficial effect of atenolol on aortic stiffness was predominantly mediated 
through its potent BP-lowering efficacy.

The Beta-blocker to LOwer CArdiovascular Dialysis Events (BLOCADE) trial 
failed to advance our understanding on the cardioprotective role of β-blockade due 
to the low recruitment rate in the feasibility study that resulted in a small sample 
size [151]. The study aimed to enroll 150 patients; among 1443 patients screened, 
including 176 who were already on treatment with beta-blockers, only 354 were 
eligible, 91 consented, and 72 entered the 6-week active treatment run-in period. Of 
these, only 49 participants (68%; 95% CI, 57–79%) tolerated carvedilol therapy 
(6.25  mg twice daily) during the run-in and progressed to randomization [151]. 
Narrow inclusion criteria led to exclusion of high-risk patients, who were more 
likely to benefit from the cardioprotective actions of carvedilol.

Although actual data are scarce, some suggest vasodilating β-blockers (i.e., 
carvedilol) to be particularly useful in the setting of intradialysis hypertension, as 
they may favorably affect endothelial dysfunction, which is suggested as a major 
mechanistic pathway of intradialysis hypertension [152–154]. In an uncontrolled 
interventional study of 25 patients with intradialysis hypertension, Inrig et  al. 
[155] showed that carvedilol treatment was associated with an improvement in 
endothelium-dependent flow-mediated vasodilatation; this effect was accompa-
nied by reduced occurrence of intradialytic hypertensive episodes during follow-up 
and with a significant drop of 7 mmHg in 44-h interdialytic ambulatory systolic 
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BP. Again, it must be noted that there are differences in renal clearance and dialyz-
ability between different β-blockers that need to be taken into account when pre-
scribing these agents in hemodialysis patients [5].

24.5.2.3	 �Calcium Channel Blockers
Calcium channel blockers (CCBs) can effectively lower BP, even in the volume-
expanded state [156], and are often used as combination therapy for management 
of hypertension in dialysis patients. Tepel et al. [157] randomized 251 hypertensive 
hemodialysis patients to receive amlodipine (5–10  mg/day) or placebo for 
30  months (Table  24.1). Amlodipine insignificantly improved survival as com-
pared with placebo, but reduced by 47% the composite secondary end point of 
all-cause death, nonfatal stroke, MI, coronary revascularization, and angioplasty 
for peripheral vascular disease (HR, 0.53; 95% CI, 0.31–0.93) [157]. Other small 
studies suggested that dihydropyridine CCBs are equally effective with ACEIs or 
ARBs in reducing oxidative stress and regressing LV hypertrophy and carotid 
intima-media thickness [158]. Data on non-dihydropyridine CCB use in hemodi-
alysis patients are scarce; using these agents should at least follow the recommen-
dations for the general population. An important benefit of all CCBs is that they are 
practically not removed during standard hemodialysis and, thus, can be dosed once 
daily in these patients [5].

24.5.2.4	 �Mineralocorticoid Receptor Antagonists
A cardioprotective action of mineralocorticoid receptor antagonist (MRA) therapy 
among dialysis patients is strongly supported by background evidence [159] and 
two recent trials (Table 24.1) [160, 161]. In the Dialysis Outcomes Heart Failure 
Aldactone Study (DOHAS), 309 oligoanuric hemodialysis patients were random-
ized to spironolactone (25 mg/day) or no add-on therapy for 3 years. Spironolactone 
reduced by 62% the risk of cardiovascular mortality or cardiovascular-related hos-
pitalization (HR, 0.38; 95% CI, 0.17–0.83), with incidence of drug discontinua-
tion due to serious hyperkalemia being 1.9% [160]. Another study randomized 
253 patients without heart failure receiving hemodialysis or peritoneal dialysis to 
2-year-long add-on therapy with spironolactone (25 mg/day) or placebo. Add-on 
MRA therapy reduced by 58% the occurrence of the composite primary end point 
of cardio-cerebrovascular mortality, aborted cardiac arrest, and sudden death (HR, 
0.42; 95% CI, 0.26–0.78) [161]. The reduction in the risk of adverse clinical out-
comes in these trials exceeded 50%, i.e., it was apparently superior to the effect of 
frequent in-center hemodialysis on the combined end point death and LVH progres-
sion [134] and largely unexpected in a population like the hemodialysis population 
that is notoriously less sensitive to interventions aimed at reducing death and car-
diovascular events than other patient populations [162]. The safety profile of MRAs 
in the dialysis population was investigated in a recent study, in which 146 hemodi-
alysis patients were randomly assigned to eplerenone (25–50 mg daily) or match-
ing placebo for 13 weeks [163]. Eplerenone treatment significantly increased the 
incidence of hyperkalemia (defined as predialysis serum potassium >6.5 mmol/L) 
as compared with placebo (RR, 4.50; 95% CI, 1.0–20.2) [163], but permanent drug 
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discontinuation due to hyperkalemia or hypotension, which was the primary study 
end point, was no different between eplerenone and placebo groups [163]. Large, 
properly designed studies, like the ongoing ALCHEMIST [164] (ALdosterone 
Antagonist Chronic HEModialysis Interventional Survival Trial; NCT01848639), 
are needed to assess the safety and the effectiveness of mineralocorticoid receptor 
blockade in ESRD.

�Conclusion
Hypertension in patients undergoing hemodialysis and peritoneal dialysis patients 
poses almost unique diagnostic, prognostic, and therapeutic problems. Evolution 
of studies using home or ambulatory BP monitoring is currently needed in order 
to better define the true burden of hypertension, to provide solid data on hyper-
tension prevalence and prognostic associations, and to enable international orga-
nizations to propose objective thresholds for diagnosis and targets for treatment 
for these patients. As sodium and volume excess is the most important contribu-
tor to BP increase in the dialysis population, non-pharmacologic interventions 
targeting these factors are fundamental in this population and should precede 
pharmacological treatment. In patients whose BP remains unresponsive to the 
volume management strategies, the use of antihypertensive drugs is necessary. 
Among dialysis patents, BP lowering with the use of antihypertensive agents is 
associated with improvement in cardiovascular outcomes; the use of β-blockers 
followed by ACEIs and ARBs should be strongly considered, on the basis of 
evidence suggesting that these agents likely offer cardioprotection. Additional 
research efforts, mainly properly designed clinical trials, are warranted to iden-
tify the optimal non-pharmacologic and pharmacologic measures to treat hyper-
tension and reduce cardiovascular disease in dialysis patients.
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25Renovascular Hypertension

Alexandre Persu and Patricia Van der Niepen

25.1	 �Pathophysiology of Renovascular Hypertension

Progressive atherosclerotic stenosis of the renal artery leads to hypoperfusion of the 
juxtaglomerular apparatus with release of renin and increased production of angio-
tensin II. The subsequent increases in sympathetic nerve activity and synthesis of 
intrarenal prostaglandin, aldosterone, and nitric oxide and the decrease in renal 
sodium excretion result in vasoconstriction and secondly in sodium and water reten-
tion, causing hypertension. Moreover, renal perfusion becomes volume and angio-
tensin II dependent, especially in bilateral RVD [1–3]. In the absence of renin 
increase or altered renin-angiotensin system modulation in patients with FMD com-
pared to essential hypertensive patients, the applicability of this model to FMD-
related renal artery stenosis has been recently questioned [4].

25.2	 �Atherosclerotic Renovascular Disease

25.2.1	 �Epidemiology

The prevalence of RVH is estimated at 5% of all hypertensive persons but varies 
depending on the screened cohort from <1% in mild to >50% in severe hypertension 
[5, 6]. In patients with extrarenal atherosclerosis, end-stage renal failure, and heart 
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failure, the prevalence of ARAD is high and varies from 4 to18.4% in patients with 
proven coronary artery disease and from 12 to 45.5% in patients with peripheral 
artery disease or aortic disease [7]. The exact prevalence of atherosclerotic (A) RAS 
is unknown because the disease is often asymptomatic and few patients are screened 
unless they have symptoms or significant risk factors. Yet, among potential living 
kidney donors with normal BP and kidney function, renal artery narrowing or ath-
erosclerosis, i.e., “incidental” RAS, can be identified in 5.3% by CT scan [8]. RVD, 
diagnosed with renal Doppler ultrasound (US) (>60% stenosis suggested by peak 
systolic velocity (PSV) >1.8 m/s in the main renal artery), was present in 6.8% of 
free-living, community-dwelling subjects above age 65 [9]. The prevalence of 
ARAD in autopsy series of patients died in hospital varies between 4.3 and 86% [6].

25.2.2	 �Clinical Presentation

Patients are often true treatment resistant, can present with recurrent (“flash”) pul-
monary edema, or suffer acute renal deterioration after BP lowering or administra-
tion of renin-angiotensin system blockers [5, 10].

The elevated BP due to RAD is responsible per se for an increased cardiovascular 
(CV) risk [11]. An increased rate of new CV events, including death, was observed 
in the 2 years after identification of new ARAS in patients aged >67 years in the 
United States. CV events were far more frequent than further loss of kidney func-
tion [12]. Progressive ARAS can indeed lead to ischemic nephropathy with progres-
sive renal failure and occlusion with renal atrophy. However, it has been shown that 
renal outcomes in patients with ARAS are influenced by underlying hypertension 
and diabetes [6, 13]. The underlying mechanisms explaining why ARAD is a strong 
independent predictor of long-term mortality are not well understood, but excess 
neurohumoral activation (i.e., increased sympathetic nervous tone and stimulation 
of the renin-angiotensin-aldosterone axis) may be a major contributor to mortality 
in ARAD [6].

25.2.3	 �Diagnostic Evaluation

Not every patient with hypertension should be submitted to an extensive work-up 
for atherosclerotic RVH.  The presence of an abdominal bruit, new onset hyper-
tension or recent loss of BP control, a unilateral small kidney or a difference of 
at least 1.5 cm, grade 3 or 4 retinopathy, accelerated or malignant hypertension, 
unprovoked hypokalemia, increased serum creatinine after RAAS blockade or 
BP decline, absence of family history of hypertension, significant atherosclerotic 
disease in another vascular bed, elevated plasma renin activity, former or current 
cigarette smoking, flash pulmonary edema, proteinuria, older age, and true resis-
tant hypertension are all clinical clues to RVH. Krijnen et al. proposed a “clinical 
prediction rule,” derived from three small cohorts of patients with drug-resistant 
hypertension, based on patient’s history (age, gender, presence of atherosclerotic 
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CV disease, onset of hypertension within 2 years, smoking), physical examination 
(BMI, abdominal bruit), and some laboratory values (serum creatinine and choles-
terol). A nomogram provides the probability of RVH in patients with drug-resistant 
hypertension [14].

25.2.4	 �Screening and Diagnostic Tests

Screening for atherosclerotic RVH should be restricted to those patients with at least 
an intermediate risk for RVH.

Several tests, based on physiologic or anatomic or both parameters, have been 
evaluated to screen for RVH.  Analyzing plasma renin activity, unstimulated or 
after stimulation by a captopril challenge test, is not very sensitive or specific. 
Determination of renin activity in the blood from renal veins compared to peripheral 
veins has been abandoned because of the invasive nature of the procedure.

Renal scintigraphy, using 99Tc-DTPA, 131I-hippurate, or 99Tc-MAG3, with and 
without captopril can be used but is no longer recommended by the American 
College of Cardiology/American Heart Association as a screening test for RVH. In 
2003, the Society of Nuclear Medicine published updated interpretation criteria 
[15]. The most specific diagnostic criterion for RVH is an ACEI-induced change in 
the renogram. In patients with normal or minimally reduced renal function (creati-
nine <1.7 mg/dL) and in azotemic patients, ACEI renography has a sensitivity and 
specificity of about 90% and 80%, respectively, for diagnosis of RVH. Moreover, 
ACEI-induced renographic findings of RVH may indicate a high probability of 
hypertension cure or improvement after revascularization [16]. However, the lat-
ter has not been shown in the DRASTIC trial [17]. Furthermore, sensitivity and 
specificity of ACEI renography are affected by several factors that contribute to 
confusion in the literature, e.g., use of different isotopes, different clinical charac-
teristics (azotemic and non-azotemic patients), as well as different antihypertensive 
treatment [16].

Duplex ultrasonography not only identifies renal arteries anatomically by using 
B-mode US but also provides hemodynamic information by using Doppler flow 
studies. The Doppler US criteria of RAS can be divided into two groups based 
on direct findings obtained at the level of the stenosis (proximal criteria: peak 
systolic velocity, PSV, and renal aortic ratio) or on flow changes observed in the 
renal vasculature distal to the site of stenosis (distal criteria: resistance index, RI, 
and acceleration time) (Table 25.1). The RI, determined from segmental arterial 
flow characteristics, reflects the status of the flow in the renal circulation beyond 
the main renal arteries. An elevated RI may reflect intrinsic parenchymal or small 
vessel disease. However, reliance upon RI as a predictive parameter for ARAS 
management remains controversial. Radermacher et al. reported that patients with 
RI >0.8 before angioplasty had less BP improvement and worse renal outcomes 
than those with RI <0.8 [19]. In contrast, Zeller et al. reported similar BP and renal 
outcomes for patients with RI >0.8 and those with RI <0.8 [20]. Finally, Bruno 
et al. reported that a RI within the contralateral kidney, and using a cut point of 
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0.73, was the best single predictor of functional outcome (recovery of estimated 
glomerular filtration rate (eGFR)). No US parameter predicted the response of BP 
[21]. In a hemodynamically significant stenosis, a “tardus parvus” wave can be 
observed, as the systolic acceleration of the waveform is slow and the systolic peak 
is of low height [18, 22].

A meta-analysis showed duplex US had 85% sensitivity and 92% specificity for 
detection of RAS. PSV had the highest performance characteristics, and additional 
measurements did not increase accuracy. Operator dependency and sometimes lim-
ited quality images because of patient characteristics are responsible for large varia-
tions in sensitivity (0–98%) and specificity (73–100%) [23].

Contrast-enhanced magnetic resonance angiography (MRA) provides good ana-
tomical information with diagnostic sensitivity of 90% and specificity of 94% [24]. 
Limitations of MRA include a tendency to overestimate moderate stenosis and a 
reduced accuracy in small and distal arteries. In patients with CKD stage 3b or 
more, gadolinium has to be avoided because of the risk of nephrogenic fibrosing 
dermopathy; Dotarem instead can be used. New techniques such as blood-oxygen 
level-dependent MRI (BOLD-MRI) can identify critically ischemic kidneys and 
can predict change in renal function post-revascularization [25].

Computed tomographic angiography (CTA) has also good sensitivity of 84% and 
specificity of 91% [24]. A major limitation is the volume of intravenous contrast 
and the potential nephrotoxic risk. In contrast with MRA, obfuscation of signal by 
indwelling stents is not a concern. CTA is cost-effective in patients for whom there 
is low suspicion of RAS [26].

A meta-analysis showed CTA and gadolinium-enhanced MRA gave more accu-
rate diagnosis than US or captopril scintigraphy [27].

The gold standard investigation remains catheter digital subtraction angiography 
(DSA). It can provide not only accurate anatomical and some functional informa-
tion but also permits to intervene during the same examination. However, this test is 
invasive and carries the potential risk of access site complications, embolic events, 
and contrast-induced nephropathy [28]. Initial diagnostic testing by DSA may nev-
ertheless be considered in those individuals with a high risk for RVH [29].

Figure 25.1 summarizes the diagnostic algorithm for renovascular hypertension.

Table 25.1  Doppler ultrasound criteria for the classification of RA stenosis by color Doppler US

Proximal criteria Peak systolic velocity (cm/s) Renal aortic ratio (renal PSV/aortic PSV)
 � Normal RA  � <180  � <3.5
 � RA diameter 

reduction <60%
 � <180  � <3.5

 � RA diameter 
reduction ≥60%

 � >180  � ≥3.5

 � Occlusion  � No signal  � Indeterminable
Distal criteria Resistance index Acceleration time (m/s)
 � RA diameter 

reduction ≥60%
 � Side-to-side differences in 

RI: >0.05
 � >70

Adapted from Granata et al. [18]
PSV peak systolic velocity, RA renal artery, RI resistance index
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25.2.5	 �Therapy

Despite decades of expertise in treating RAS, uncertainty still exists whether revas-
cularization is warranted. Table 25.2 lists the most widely used potential indica-
tions and contraindications that can help in decision-making [30]. See also fig. 25.2 
representing a clinical casus of an older patient with acute deterioration of kidney 
function due to ARAS who benefited from PTAS.

Suspicion of RVH/ RAS

High

Angiogram
RAS present:
consider significant if
-   Stenosis³70%
-   TSPG³20 mm Hg
-   MSPG³10 mm Hg
-   Pd/Pa ratio<0.9

Suggestive of
RAS

RAS absent

*Recurrent “flash” pulmonary edema
Refractory hypertension despite appropriate triple drug therapy
Progressive unexplained decline in renal function
Acute but reversible kidney injury after RAAS blockade or BP lowering
Renal resistive index <80 mmHg on Doppler US

Not suggestive
of RAS

Treat HT and other
CVRF

Consider
revascularization if*

LowIntermediate

Screening test
PSV>180 cm/s
RAR³3.5

- Doppler US PSV<180 cm/S; no RAS

- CTA or MRA

Fig. 25.1  Diagnostic algorithm for renovascular hypertension. BP blood pressure, CTA computed 
tomographic angiography, CVRF cardiovascular risk factors, MRA magnetic resonance angiogra-
phy, RAAS renin-angiotensin aldosterone system, RAS renal artery stenosis, RVH renovascular 
hypertension, US ultrasound

Table 25.2  Possible indications and contraindications for revascularization

Favorable response after revascularization
Recurrent “flash” pulmonary edema
Refractory hypertension despite appropriate triple drug therapy
Progressive unexplained decline in renal function
Acute but reversible kidney injury after renin-angiotensin system blockade or blood pressure 
lowering
Renal resistive index <80 mmHg on Doppler ultrasound
Unfavorable response after revascularization
Normalized blood pressure with less than three antihypertensive drugs
Unilateral or bilateral small kidneys (<8 cm length)
Renal resistive index ≥80 mmHg on Doppler ultrasound
Long-standing hypertension (>10 years)
Renal artery stenosis <70%

Adapted from Elliott [5]
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25.2.5.1	 �Medical Management
Optimal medical therapy is mandatory in these high-risk patients to reduce CV risk. 
Besides BP lowering, control of other atherosclerotic CV risk factors is required. 
Maximal medical therapy, including low-dose aspirin, statins, and glycemic control, 
together with smoking cessation, is recommended [30].

A major concern about intensive BP lowering with or without RAAS blockers 
is the risk of acute kidney injury. A maximal increase in serum creatinine of 30% 
is allowed; discontinuing RAAS blockade or returning to a higher BP will reverse 
serum creatinine to baseline values [31]. Acute renal function degradation following 
RAAS blockade can be an indication for revascularization [5].

In an observational study, the use of ACEIs was associated with improved sur-
vival and a reduced risk of increasing serum creatinine in both revascularized and 
medically treated patients [32]. This observation emphasizes the need for RAAS 
blockers in the treatment of high-risk patients. However, the prevalent use of RAAS 
blockade prior to randomization in the CORAL trial was only 49% [33].

A population-based cohort study in 4040 patients >65 years with RVD suggests 
that statins are associated with improved prognosis as well [34].

25.2.5.2	 �Angioplasty With or Without Stenting
Renal artery angioplasty alone was first performed by Gruntzig in 1978 [35].

Angioplasty without stenting is no longer preferred for atherosclerotic RAS due 
to high rate of technical failure, restenosis, and failure to lower BP, documented in 
observational studies and small RCTs. An even poorer outcome is observed in case 
of ostial stenosis, multiple and branch lesions. There is also little change in renal 
function after angioplasty [36]. However, large and randomized trials are lacking.

Angioplasty with stenting reduces the risk of restenosis as well as local dissec-
tion, prevents elastic recoil eventually responsible for acute restenosis and thrombo-
sis, and can reduce pressure gradients across lesions after angioplasty.

In a multicenter registry including 1058 patients, stent revascularization of RAS, 
performed for poorly controlled hypertension, preservation of renal function, and/
or congestive heart failure, was overall successful. At 4-year follow-up, BP had 
significantly decreased despite of a decrease in the number of antihypertensive 
medications, as well as serum creatinine. The cumulative probability of survival 
was 74% ± 3% at 4 years and was adversely affected by renal dysfunction despite 
adequate revascularization [37]. Similar results have been obtained in subsequent 
but smaller studies. In a retrospective analysis of patients treated for RVH, those 
who had a baseline eGFR of >40 mL/min/1.73 m2 demonstrated a better response 
to RA stenting at each follow-up interval, with a significant difference at 2–4 years, 
compared with patients with a lower eGFR [38]. Another retrospective study in 
patients with chronic kidney disease (CKD) (creatinine clearance <50 mL/min) and 
RVD suggested that the rate of renal dysfunction progression before angioplasty 
with or without stenting is an independent and strong predictor of improvement in 
renal function after revascularization [39].

Restenosis rates vary between 10 and 50%, depending on location and sever-
ity of stenosis and on length of follow-up. Studies have suggested that secondary 
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interventions for recurrent RAS have outcomes that are comparable with those for 
primary interventions, whereas others have reported worse outcomes. In a retro-
spective analysis of 57 patients undergoing 65 secondary interventions for recur-
rent RAS, it was shown that these patients had outcomes (BP and renal function) 
comparable with 180 patients for 216 primary interventions. These data suggest that 
repeated endovascular procedures for RAS can be undertaken with similar expec-
tations for clinical improvement [40]. Early renal artery PSV, within 1 week after 
renal artery percutaneous angioplasty and stenting (RA-PTAS), predicted renal 
artery restenosis and lower post-procedure renal function [41].

Statin use has been associated with decreased restenosis in 112 patients 
after primary RA-PTAS, whereby restenosis rates were 65% less likely with 
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in his sleep

Rx:
Perindopril
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Indapamide
0.625 mg

Rx:
Nebivolol
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Dytenzide
50/25 mg

Episode AKI
DSA performed
with RA-PTAS

Blood pressure (mm Hg)
154/70 155/58 135/62

94 95

a b c

Fig. 25.2  Serum creatinine, blood pressure, and medications over an 8-year period in an elderly 
patient with unilateral renovascular disease. This elderly atherosclerotic patient developed an acute 
rise in serum creatinine. Doppler US showed a smaller right kidney (10.1 cm) than the left kidney 
(11.2 cm) without hydronephrosis. Because of a high suspicion of renal artery stenosis, a DSA was 
performed, immediately followed by angioplasty and stenting. A marked decrease in serum creati-
nine was observed and remained stable till his death. An ACEI was started and BP was well con-
trolled. a shows the ostial stenosis; b and c show the renal artery during and after angioplasty with 
stenting. ACEI angiotensin-converting enzyme inhibitor, AKI acute kidney injury, BP blood pres-
sure, DSA digital subtraction angiography, RA-PTAS renal artery percutaneous transluminal angio-
plasty with stenting, Rx medical therapy, US ultrasound
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pre-angioplasty statin use, as well as after secondary renal interventions in 51 
patients [42, 43]. These findings support the routine use of statins in patients 
undergoing RA-PTAS.

One important concern of RA-PTAS is the risk of cholesterol embolization. 
According to the results of recent RCTs, acute atheroembolic renal disease, associ-
ated with clinical evident bad prognosis, is present in 0–2.2% of cases [44]. The 
majority of atheroembolic disease is subclinical and perhaps responsible for the 
frequently observed decline in kidney function, despite successful revasculariza-
tion. Therefore, embolic devices have been developed. The frequency of athero-
sclerotic debris recovered in protection devices is >50% [45]. However, in a RCT 
of 100 patients undergoing RA-PTAS, renal artery stenting alone; stenting with 
Angioguard, an embolic protection device; and stenting with abciximab, a glyco-
protein IIb/IIIa inhibitor, were associated with similar declines in GFR at a 1-month 
follow-up, whereas combination therapy with embolic protection and abciximab 
was better than no treatment or either treatment alone [46].

Several randomized clinical trials comparing angioplasty with and/or without 
stenting versus medical treatment have been performed. However, their interpreta-
tion is often complicated by various confounders, i.e., crossovers from medical to 
interventional arms, role of comorbid disease, hypertension vintage, proportion of 
patients with renal insufficiency or bilateral RAS, and different definitions of drug-
resistant hypertension. Other limitations of these studies are related to patient selec-
tion (exclusion of patients with severe hypertension and progressive renal function 
decline, nonstandardized therapy for hypertension and dyslipidemia, nonstandard-
ized BP measurement) or outcome (variable definitions of BP goals, variable mea-
surements of kidney function, short duration of follow-up) [47]. The main results 
from these trials are summarized in Table 25.3.

The EMMA (Essai Multicentrique Medicaments vs. Angioplastie) study, the 
SNRASCG (Scottish and Newcastle Renal Artery Stenosis Collaborative Group) 
trial, and the DRASTIC (Dutch Renal Artery Stenosis Intervention Cooperative) 
study have compared angioplasty without stenting with medical therapy [17, 51, 52].

In the EMMA study, 49 of 76 eligible hypertensive patients with unilateral ARAS 
of ≥75% (or ≥60% with positive screening test) were randomized (26 patients were 
medically treated; 23 patients had angioplasty, of whom two had stents). The pri-
mary endpoint was ambulatory BP at 6 months or at study termination. Angioplasty 
reduced the number of antihypertensive drugs but was associated with more com-
plications (one patient had renal artery dissection with segmental renal infarction, 
five had hematomas, and three developed restenosis, requiring re-intervention) than 
previously reported [51].

In the SNRASCG study, 55 of 135 eligible hypertensive patients treated with 
at least two antihypertensive drugs and with ≥50% RAS were randomized and 
stratified by unilateral (n, 27) or bilateral disease. The primary endpoints were the 
changes in BP and serum creatinine at baseline and at 6 months. A modest improve-
ment in BP was seen with angioplasty in those with bilateral disease, again at the 
expense of a higher complication rate. No significant differences in serum creatinine 
were observed [52].
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In the DRASTIC study, 106 of 169 eligible patients were randomized (50 
patients were medically treated, 56 patients had angioplasty, of whom two with 
stent). All patients were either taking at least two antihypertensive drugs, or had pre-
vious deterioration of renal function with an ACEI, and had ≥50% RAS and serum 
creatinine <2.3 mg/dL at baseline. The primary endpoint, mean office BP at 3 and 
at 12 months, was not different between groups, although the number of antihyper-
tensive drugs was lower in the angioplasty group. However, 20 of 50 patients ini-
tially assigned to the medical treatment group underwent angioplasty at 3 months, 
as diastolic BP was >95 mmHg despite ≥3 antihypertensive drugs. At 3 months, 
estimated creatinine clearance (Cockroft and Gault formula) was slightly but not 
significantly higher in the angioplasty group. Restenosis rate was high (52%) in the 
angioplasty group [17].

Several meta-analyses of these RCTs concluded that balloon angioplasty has a 
modest but significant effect on BP. However, no evidence of improving or preserv-
ing renal function was found, although none of the trials were designed to address 
this issue [36, 62, 63].

The ASTRAL (angioplasty and stenting for renal artery lesions), CORAL (car-
diovascular outcomes in renal atherosclerotic lesions), RADAR, NITER (nephropa-
thy ischemic therapy), and STAR (stent placement and blood pressure and lipid 
lowering for the prevention of progression of renal dysfunction caused by athero-
sclerotic ostial stenosis of the renal artery) randomized trials have compared initial 
angioplasty with stenting with medical therapy [54–56, 64, 65].

The STAR trial randomized 140 patients with ostial ARAS of >50% and esti-
mated (Cockroft and Gault) creatinine clearance <80 mL/min/1.73m2 (74 were 
assigned to medical therapy, 46 patients of the 64 assigned to balloon angioplasty 
with stent insertion underwent the allocated treatment). The primary endpoint 
was a 20% decline in estimated creatinine clearance. The intention-to-treat and 
the per protocol analysis revealed similar results in both arms after 2  years of 
follow-up [54].

The ASTRAL trial randomized 806 patients with uncontrolled or refractory 
hypertension or unexplained renal dysfunction with angiographically proven 
ARAS. Of the 403 patients assigned to RA-PTAS, only 301 were actually revas-
cularized with stent placement. Of the 403 patients assigned to medical therapy, 24 
(6%) crossed over to revascularization. The primary outcome was renal function, 
measured by the reciprocal of serum creatinine. No significant difference in the 
primary endpoint was observed. An important bias in this large study was the opin-
ion of the physician: patients were only enrolled if their physician was uncertain as 
to whether revascularization would be of clinical benefits, which may have led to 
exclusion of patients most likely to benefit from revascularization [55].

The CORAL trial included 947 patients with ARAS of >80% or 60–79% with 
a systolic pressure gradient of  >20  mmHg across the stenotic lesion on angiog-
raphy and a systolic BP >155 mmHg on at least two antihypertensive drugs and/
or eGFR (MDRD) <60  mL/min/1.73  m2. The CORAL investigators factually 
selected patients with less severe RA stenosis but only with evidence of a signifi-
cant translesional SP gradient. The latter is suggestive for a stenosis responsible 
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for an upregulation of renin production and, thus, for RVH and consequently may 
predict hypertension improvement after stenting of RAS [66]. Patients with renal 
FMD, nonischemic nephropathy, or a kidney length of <7 cm were excluded in the 
CORAL trial. 467 patients were assigned to RA-PTAS (embolic protection devices 
were used) and medical therapy (442 actually underwent revascularization) and 480 
to medical therapy alone (4% crossover). Medical treatment was standardized. The 
primary endpoint was a composite of death from CV or renal causes, myocardial 
infarction, stroke, hospitalization for congestive heart failure, progressive renal fail-
ure, or the need for renal replacement therapy. The authors concluded that renal 
artery stenting did not confer a significant benefit with respect to the prevention 
of clinical events when added to comprehensive, multifactorial medical therapy in 
patients with ARAS and hypertension or CKD [56].

The RADAR trial was designed to compare the best medical treatment versus the 
best medical treatment plus RA-PTAS in patients with hemodynamically significant 
ARAS (>70%). The primary endpoint is the change of eGFR over 12 months. The 
study was prematurely terminated, and the results of the trial, including 89 patients, 
have not been fully published [44, 47]. Also the results of the NITER trial have not 
been fully published [44, 53].

The Cochrane collaboration meta-analysis of Jenks et al. and other reviews all 
concluded that revascularization using balloon angioplasty, with or without stent-
ing, is not superior to medical therapy for the treatment of ARAS in patients with 
hypertension. However, balloon angioplasty results in a small improvement in dia-
stolic BP and a small reduction in antihypertensive drug requirements. Balloon 
angioplasty also appears to be safe and results in similar numbers of CV and renal 
adverse events as compared to medical therapy [44].

The primary objective of the ongoing METRAS trial is to determine whether 
RA-PTAS is superior or equivalent to optimal medical treatment for preserv-
ing GFR in the ischemic kidney as assessed by 99mTc-DTPA sequential renal 
scintigraphy [60].

The primary objective of the RAVE study is to determine the frequency of pro-
gression to the composite endpoint (death, dialysis, and doubling of serum creati-
nine) in patients with ARAD and indication for revascularization, randomized to 
medical therapy or renal revascularization over a minimum of 6 months. The study 
has been completed, but no results till now were published. [59].

The primary endpoint of the recently started ANDORRA study in resistant hyper-
tension (daytime SBP ≥135 or DBP ≥85 mmHg on ≥3 antihypertensive drugs) and 
UL or BL ARAS ≥60%; kidney length ≥7 cm; eGFR ≥20 mL/min is the mean 
change in diurnal systolic BP on 24 h ABPM after 12 months [61].

25.2.5.3	 �Surgical Revascularization
Surgical revascularization is no longer the first-choice treatment since angioplasty 
became widely available. Surgery is reserved for difficult and complex lesions or 
in case of a complication during angiography. To minimize atheroembolism, aor-
torenal bypass and renal endarterectomies have nowadays been superseded by non-
aortic site bypasses (splenic, celiac, mesenteric, hepatic, or ileac arterial).
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Few RCTs evaluated surgery versus medical therapy or angioplasty. A small 
randomized study including 52 patients with ARAS at risk for ischemic nephropa-
thy, comparing surgery with medical therapy, did not show any difference in mortal-
ity at 5 years. No data on BP control or kidney function were published [48].

Another small study randomized 58 hypertensive patients with ARAS to sur-
gery versus balloon angioplasty without stenting. The technical success rate was 
83% in the RA-PTAS and 97% in the surgical group and not significantly different. 
The primary patency rate at 2 years was significantly higher for surgical than for 
angioplasty-treated patients (96% vs. 75%, p <0.05). A significant decrease in BP 
in both groups was observed, but without intergroup differences. The number of 
patients receiving more than three antihypertensive drugs was reduced to a similar 
extent in both groups. There was also no difference between the two methods with 
regard to influence on renal function [49].

Balzer et al. randomized 50 patients with hypertension and renal artery ostial 
occlusive disease (RAOOD) to surgical revascularization or RA-PTAS. Four-year 
follow-up mortality was 18% in the stent group and 25% in the surgical group 
(NS). Both groups showed significant (p <0.01) improvement of hypertension and 
nonsignificant improvement (surgery) or stabilization of renal function. Freedom 
from recurrent RAOOD (>70%) was achieved in 90.1% of the surgical group and 
79.9% of the stent group (NS). Despite the nonsignificant differences in outcome, 
the authors concluded that surgical reconstruction remains the gold standard for 
patients with RAOOD [50]. Other advocates of surgery also question the pre-
dominance of endovascular intervention in ARAS and advance the need for more 
RCTs [67].

25.2.6	 �Future Perspectives

Despite the neutral results of the RCTs, it is obvious that patients with ARAD con-
stitute a heterogeneous group. To date, the available RCTs have been subject to 
selection bias, excluding high-risk patients. Therefore, their data may not apply 
for all patients. Revascularization should still be considered in patients with true 
resistant hypertension, recurrent flash pulmonary edema, or rapid decline in kidney 
function [10, 68–70]. However, no hard evidence is available.

Which technique (US or DSA) or which parameter (i.e., RI, PSV, translesional 
pressure gradient) can reliably identify patients likely to benefit from revascula
rization remains controversial. Perhaps BOLD-MRI could help to resolve this 
problem [25].

Technical improvement of endovascular revascularization is continuing, with the 
use of drug-eluting stents, resulting in less complications [23, 28, 56, 68, 71].

It is increasingly recognized that atherosclerosis is a systemic disorder, charac-
terized by inflammation. Poststenotic porcine and human kidneys release—even 
despite successful revascularization—several inflammatory cytokines and oxidative 
stress markers that may accelerate target organ injury. Recent research strategies 
try to ameliorate inflammation and oxidative stress by a single intrarenal infusion 
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of allogeneic adipose tissue-derived mesenchymal stem cells during PTRA. These 
experiments preserved stenotic kidney function, reduced systemic oxidative stress 
and inflammation, and thereby improved cardiac function, oxygenation, and myo-
cardial injury 4 weeks after revascularization [72]. Endothelin-1 receptor blockers, 
angiogenic factors like vascular endothelial growth factor or hepatocyte growth fac-
tor, and mitochondria-targeted peptides also confer renoprotective effects in the ste-
notic kidney [73–76]. Whether these interventions might improve clinical outcome 
awaits further research.

25.3	 �Renal Artery Stenosis Due to Fibromuscular Dysplasia

25.3.1	 �Definition, Prevalence, and Classification

FMD-related renal artery stenosis has been for long considered a rare entity, with an 
estimated prevalence of <1% in the general population [77]. However, recent data 
suggest that FMD is much more common. A meta-analysis based on kidney donor 
data indeed found silent renal FMD lesions in 4% of the potential kidney donor 
population [78]. Furthermore, in the CORAL trial, where FMD was an exclusion 
criterion, the prevalence of FMD was 5.8% [78].

Three main histopathological types of renal FMD have been described according 
to the arterial wall involved, i.e., intimal FMD (5%), medial FMD (>85%), and peri-
medial FMD (10%) [79]. However, nowadays, as few cases of FMD require surgery 
and pathological documentation is lacking, this classification has become largely 
obsolete. Based on pathological-angiographic correlations, Kincaid proposed three 
types of renal artery FMD: multifocal (“string-of-beads” appearance), unifocal (sol-
itary stenosis <1 cm in length), and tubular (stenosis at least 1 cm in length) FMD 
[80]. As the two last categories differ only by the length of the diseased segment, 
Savard et al. have proposed to group them under the generic term “unifocal” [81]. 
This pragmatic classification has been endorsed by the authors of the European 
consensus on FMD [82] and the American Heart Association [83].

Multifocal FMD accounts for over 80% of cases of renovascular FMD, and its 
histological substrate is medial FMD.  It affects mainly women between 30 and 
50 years old. The lesions commonly involve the middle or distal thirds of the main 
renal artery, and there is often extension into the proximal portion of the first-level 
branches. Lesions are bilateral in 60% of cases. Although the “string-of-beads” 
appearance is almost pathognomonic of multifocal (medial) FMD, the diagnosis 
requires exclusion of intoxication by sympathomimetic agents and ergotamine 
derivatives [77, 82].

Unifocal FMD can be found at the ostium, the trunk, or the bifurcation of the 
renal arteries. The diagnosis is suspected in young (usually <40 years old) patients 
with no atherosclerosis, after exclusion of other less frequent diseases. The differen-
tial diagnosis of unifocal FMD includes compression of the proximal renal artery by 
the median arcuate ligament; Takayasu or giant cell arteritis, usually associated with 
biological inflammation and vascular thickening; and rare monogenic or congenital 
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diseases (type 1 neurofibromatosis, tuberous sclerosis, pseudoxanthoma elasticum, 
vascular Ehlers-Danlos syndrome, Alagille syndrome, Williams syndrome, and 
Turner syndrome) [73, 78].

25.3.2	 �Clinical Presentation

Hypertension of variable severity is the most common clinical presentation of 
FMD. Occasionally, an epigastric or flank bruit at physical examination can also 
lead to the diagnosis. Flank pain may be a manifestation of renal artery dissection or 
aneurysm. FMD-associated arterial aneurysms at any location have been reported in 
17% (33% in renal artery) and dissections in 20% (22% in renal artery) of patients 
in the US registry [84]. Renal insufficiency is uncommon and often due to renal 
artery dissection and renal infarction. Progression to end-stage renal disease is very 
rare. Finally, occurrence of FMD in at least another relative has been reported in 
7–11% of cases [84, 85].

25.3.3	 �Diagnosis

The European consensus on fibromuscular dysplasia has recommended screening 
in patients <30 years old, especially in women and/or patients with severe, resistant, 
or malignant hypertension [82]. However, as the mean age at diagnosis of FMD 
in the US registry [84] and other recent cohorts is ~50 years, it appears reason-
able to consider screening up to the fifth decade of life, especially in hypertensive 
women. Additional indications for screening include patients with small kidney in 
the absence of history of uropathy and abdominal bruit without apparent athero-
sclerosis and patients with demonstrated FMD in at least another vascular territory 
[82]. However, the true prevalence of FMD in these different subgroups has not 
been documented.

The diagnosis of renal FMD can be made by using noninvasive imaging stud-
ies including duplex ultrasonography and angiography by computed tomography 
or magnetic resonance. While, in the European consensus on FMD, renal duplex 
was still recommended as the first-line screening test [82], CT angiography—or, if 
contraindicated, MR angiography—is increasingly considered as a reasonable first-
line imaging modality, in view of its higher resolution, especially for distal lesions, 
ability to detect FMD lesions without hemodynamic consequences, and decreas-
ing costs and radiation exposure. This is especially true in case of high diagnostic 
probability or expected low performance of renal duplex (obese or hypo-echogenic 
patients, lack of local expertise, etc.).

Digital subtraction angiography remains the gold standard, but, in view of its 
invasiveness, it is usually reserved for patients in whom performing a simultane-
ous percutaneous angioplasty (PTA) is justified. DSA is also advised in the case 
of a high clinical suspicion of FMD-related stenosis, when the diagnosis remains 
uncertain after performing noninvasive tests [82]. In equivocal cases, intravascular 
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ultrasound (IVUS) and pressure measurements can help to assess the hemodynamic 
significance of a stenosis and the anatomical success after percutaneous intervention 
[86, 87].

25.3.4	 �Screening for FMD Lesions of Other Vascular Beds

Analysis of various cohorts of FMD patients from Europe and the United States 
suggests that up to one third of patients with FMD may harbor lesions of two or 
more vascular beds [82]. As vascular investigations were neither systematic nor 
standardized, these figures are likely underestimated. Notably, in the US registry, 
65% of patients with renal FMD also have carotid FMD lesions [84]. Therefore, 
screening for cervico-cephalic FMD lesions in patients with renal FMD is recom-
mended, provided there are arguments that identification of lesions in the second 
vascular bed could modify management [82]. CT- or, if contraindicated, MR angi-
ography should be preferred to carotid duplex, first because cervical FMD lesions 
are often distal and thus may escape carotid duplex and secondly because CT angi-
ography also allows detecting associated cerebral aneurysms [82, 88]. Screening of 
other, less often involved vascular beds (mesenteric, lower, or upper limb arteries) 
should also be considered in the presence of suggestive symptoms (claudication, 
abdominal angina, etc.) or medical history.

25.3.5	 �Therapy

The treatment of patients with renal FMD may include medical therapy with sur-
veillance, endovascular therapy (angioplasty without stenting), or surgery. The deci-
sion depends on the nature and location of vascular lesions (stenosis/dissection/
aneurysm), the presence and severity of symptoms, prior vascular events related to 
FMD, and comorbid conditions.

25.3.5.1	 �Medical Management
Medical therapy includes antihypertensive drugs, preferably blockers of the renin-
angiotensin system, treatment of other cardiovascular risk factors, and antiplatelet 
or antithrombotic drugs after angioplasty or in case of renal artery dissection or 
thrombosis. Furthermore, it has been suggested that smoking is associated with a 
more aggressive course of the disease [89, 90]. Accordingly, smoking cessation is 
strongly encouraged in patients with FMD.

25.3.5.2	 �Angioplasty With or Without Stenting
There are no randomized controlled studies comparing revascularization to medical 
treatment only or revascularization by percutaneous angioplasty (PTA) to surgi-
cal revascularization in patients with FMD. In contrast with atherosclerotic RAS, 
hypertension cure is fairly common following revascularization of FMD-related 
RAS (30–50% according to the definition of normotension) [91]. As shown in a 
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meta-analysis, cure rates are higher in younger patients, those with more recent 
onset of hypertension, and in unifocal FMD compared with multifocal FMD [91]. 
It appears appropriate to propose revascularization in hypertensive patients with 
FMD-related RAS, especially if hypertension is of recent onset or in case of drug-
resistant hypertension [82].

The two options available for renal artery revascularization are PTA and renal 
artery surgery. In view of its less invasive character and of the large experience 
acquired, PTA is currently the first-line revascularization technique. There is no 
evidence of superiority of renal artery PTA followed by stenting vs. PTA alone in 
FMD patients. Furthermore, cases of stent kinking of fracture have been reported 
in patients with renal FMD [92]. Therefore, stenting is not indicated after primary 
PTA unless needed due to a significant per-procedural dissection [82]. Surgery 
remains the primary approach for patients with complex lesions of arterial bifurca-
tion or branches, stenoses associated with complex aneurysms, or following PTA 
failure. A second PTA may be attempted following PTA failure, but a third PTA is 
not recommended so as to prevent arterial trauma, which could jeopardize surgical 
results [82].

25.3.6	 �Future Perspectives

One of the major aims of current research is to identify the genetic and environ-
mental factors involved in the pathogenesis of FMD. Besides candidate gene stud-
ies, which have proven disappointing so far [77], non-hypothesis-driven strategies 
such as genome-wide association studies performed in large discovery and rep-
lication cohorts and whole exome sequencing in selected familial, severe, early-
onset cases [93] may contribute to unravel the genetic determinants of the disease. 
Environmental factors, including tobacco and hormones, and possible gene-environ-
ment interactions also need further evaluation. Additional research efforts should be 
devoted to identification of the disease subtypes more likely to progress, definition 
of an evidence-based screening and follow-up algorithm, and improvement in quan-
tification of FMD-related renal artery stenosis. A common prerequisite of most of 
these investigations is to collect systematically and prospectively in a standardized 
way all FMD cases into national and international registries such as US [84], French 
[94], and European registries.

�Conclusions
The prevalence of renovascular hypertension is highly variable according to the 
studied cohorts. Renal angiography remains the gold standard for the diagnosis 
of renal artery stenosis.

In atherosclerotic renal artery disease, medical therapy remains the corner-
stone of treatment, and cardiovascular risk factors should be aggressively tar-
geted. Revascularization with balloon angioplasty and stent placement should be 
considered for selected patients with atherosclerotic renal artery stenosis and 
poorly controlled hypertension and/or rapidly declining kidney function and/or 
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flash pulmonary edema. Recent research highlights the transition from a pure 
hemodynamic condition to a complex inflammatory process in the ischemic kid-
ney, creating new opportunities for innovative therapies [95].

For FMD-related renal artery stenosis, angioplasty without stenting should be 
considered in most cases, especially in young patients with recent onset of hyper-
tension and/or patients with resistant hypertension. FMD appears more and more 
as a systemic disease with a heritable component. Therefore, management should 
also include screening for lesions of other vascular beds, particularly cervico-
cephalic FMD, and careful family history taking [82].
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26.1	 �Introduction

Hypertension is a chronic disease that afflicts close to one-third of the adult 
population worldwide [1–3]. This disease increases the risk for strokes, heart 
attacks, atherosclerosis, and chronic kidney disease. There are numerous drugs that 
are used to decrease blood pressure and control hypertension. These antihyperten-
sive drugs fall into four major classes:β-blockers, vasodilators, renin-angiotensin 
system inhibitors, and diuretics. Antihypertensive drugs have been fairly effective in 
lowering blood pressure but have varying effects on progression of diseases associ-
ated with hypertension [3–6]. Patients with hypertension also become less respon-
sive to drugs and can be treated with up to three antihypertensive drugs to control 
blood pressure [7, 8]. Moreover, there are a number of patients that eventually 
become resistant to antihypertensive drugs [3, 9, 10]. This suboptimal control of 
blood pressure results in a higher incidence of strokes, heart attacks, atherosclerosis, 
and chronic kidney disease [1–3]. This chapter will focus on the molecular path-
ways responsible for hypertensive renal damage that results in the progression of 
chronic kidney disease to end-stage renal disease (ESRD).

Chronic kidney disease and ESRD prevalence have been steadily increasing with 
the incidence of ESRD rising at a rate of 5–8% per year in the USA and world-
wide [2]. Elevated blood pressure is clearly associated with chronic kidney disease, 
and decreasing blood pressure clearly slows but does not stop the progression of 
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chronic kidney disease [3, 7, 11]. To this end, the increase in ESRD is beginning to 
plateau and could be the result of improved rates of blood pressure control [3, 5]. 
In addition to elevated blood pressure, there are a number of molecular pathways 
that contribute to hypertensive renal damage. These factors include hormonal and 
paracrine factors, genetic and environmental factors, nephron number, renal hemo-
dynamic changes, tubulointerstitial changes, and inflammatory factors (Fig. 26.1). 
Pathological changes in these factors during hypertension ultimately cause glomer-
ulosclerosis and tubulointerstitial fibrosis in the kidney resulting in progression to 
chronic kidney disease.

Renal damage and chronic kidney disease in hypertension have become even 
more complex by the coexistence of these diseases and also the presence of other 
disease such as diabetes [12–16]. Patients in the category of uncomplicated hyper-
tension will develop minimal renal damage in the absence of a severe elevation in 
blood pressure [12, 13, 16]. Kidney injury in uncomplicated hypertension has been 
separated into distinct clinical and histopathological categories of benign or malig-
nant nephrosclerosis [12, 15, 16]. On the other hand, patients with diabetes and 
nondiabetic chronic kidney disease have increased susceptibility to even moderate 
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Fig. 26.1  Schematic representation of mechanisms contributing to the development of 
hypertension-induced chronic kidney disease. Renal and vascular function and structural aspects 
contribute to progression of kidney disease. These include low nephron number, endothelial dys-
function, and glomerular hypertension. Hormonal and paracrine factors, for example, an elevated 
renin-angiotensin-aldosterone system (RAAS), oxidative stress (ROS), and inflammation, also 
contribute to chronic kidney disease in hypertension. Interactions between renal vascular func-
tional and structural factors and hormonal and paracrine factors ultimately lead to glomeruloscle-
rosis and tubulointerstitial fibrosis resulting in progressive chronic kidney disease
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elevations in blood pressure [17–19]. The development of chronic kidney disease 
increases the risk for adverse cardiovascular events and death in patients with hyper-
tension [2]. Kidney histopathology demonstrating vascular lesions of hyaline arte-
riosclerosis is a hallmark of hypertensive injury [14, 16]. This vascular pathology is 
not always prominent in chronic kidney disease; however, there can be accelerated 
segmental or global glomerulosclerosis evident in hypertension [14, 16]. 
Experimental investigations are beginning to understand the pathology observed 
under these different clinical pathologies of renal disease in hypertension. Relevant 
major underlying pathological and molecular mechanisms underlying hypertensive 
renal damage will be addressed.

26.2	 �Blood Pressure, Glomerular Hypertension, 
and Nephron Number

Elevated blood pressure and nephron number are major contributing factors to 
hypertensive renal damage and progression to chronic kidney disease (Fig. 26.2) 
[14–16]. A systemic elevation in blood pressure has consequences on the renal vas-
cular bed and can eventually result in increased glomerular capillary pressure [15, 
16]. The renal vasculature has autoregulatory mechanisms to maintain constant 
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� Adaptive hyperfiltration - �SNGFR
� Pressure natriuretic rightward shift
� Increased glomerular capillary pressure
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� Impaired RBF autoregulation
� Increased glomerular capillary pressure
� Podocyte injury & proteinuria

Fig. 26.2  Elevated glomerular pressure and nephron deficiency contribute to hypertension-
induced chronic kidney disease. Elevated vascular and glomerular pressure causes afferent arterio-
lar hypertrophy, impaired renal blood flow (RBF) autoregulation, and podocyte injury and 
proteinuria. Low nephron number results in an increase in single nephron glomerular filtration rate 
(SNGFR), rightward shift of the pressure-natriuretic relationship, and glomerular hypertension to 
result in glomerulosclerosis
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renal blood flow and glomerular hydrostatic pressure [15]. Afferent arterioles 
respond to an increase in systemic blood pressure by contracting through the vascu-
lar smooth muscle cell myogenic response and the macula densa-mediated tubulo-
glomerular feedback response [15, 20]. A sustained elevation in blood pressure does 
not lead to glomerular lesions or damage as long as this afferent arteriolar autoregu-
latory response is properly maintained [15]. Glomerular nephron number, endothe-
lial dysfunction, elevated renin-angiotensin system, oxidative stress, and 
inflammation contribute to changes in afferent autoregulation in hypertension [15, 
20]. Renal blood flow autoregulation will ultimately be impaired and result in an 
elevated glomerular capillary pressure [20]. The increase in glomerular capillary 
pressure results in an increased filtration fraction and loss of glomerular filtration 
barrier. Glomerular barrier breakdown and an increased glomerular capillary hydro-
static pressure will lead to clinical proteinuria and glomerular destruction [14–16].

Glomerular hypertension is a critical component in progression of kidney dam-
age in hypertension [13, 15, 21]. Afferent arterioles and glomerular capillaries will 
have structural adaptations to the elevated systemic blood pressure [15, 22]. 
Adaptive structural changes of the afferent arterioles include narrowing of the 
lumen diameter to combat the increase in wall stress [22–24]. Decreases in afferent 
arteriolar diameter will result in amplifying the already elevated blood pressure [15, 
23]. Over time the afferent arteriole will develop hypertrophy in response to chronic 
blood pressure elevations [15, 23]. Afferent arteriolar hypertrophy leads to an isch-
emic injury in the glomeruli and tubulointerstitial structures [15, 22, 23]. At the 
level of the glomerulus, increased capillary pressure results in capillary stretching, 
endothelial damage, and breakdown of the capillary barrier [15, 23]. This leads to 
increased glomerular protein filtration that causes segmental necrosis and glomeru-
losclerosis [15, 22, 23]. Glomerular sclerosis and preglomerular vascular structural 
alterations can cause a further reduction in renal blood flow and enhancing the pro-
gression of chronic kidney disease [21–24].

Nephron number is another key component to the development of hypertension 
and the likelihood for the development of hypertension-induced chronic kidney dis-
ease [25–27]. The human kidney can have anywhere from 200,000 to 2.5million 
nephrons [25, 28, 29]. Brenner and colleagues proposed and provided convincing 
data that low nephron number increased the potential for a person to develop hyper-
tension in adulthood [27, 28]. Approximately 50% of the children born with one 
kidney will have a reduced glomerular filtration rate and develop hypertension by 
the age of 18 [29, 30]. Hypertension occurs because a low nephron number leads to 
a maladaptive glomerular hyperfiltration [25, 26]. Congenital or acquired nephron 
deficiency reduces filtration surface area, thus reducing filtered load and renal 
excretory capacity [27, 31]. Ultimately, this shifts the pressure-natriuretic curve to 
the right and requires a higher arterial pressure to maintain proper sodium balance 
over time [25, 26].

There is a strong association between low nephron number and hypertension in 
humans [25–27]. Patients with primary hypertension have been demonstrated to 
have significantly fewer nephrons when compared to match control subjects [28, 
32]. Australian Aboriginal population has a low nephron number and has been 
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extensively studied [33, 34]. This unique human population has a high prevalence 
of hypertension and chronic kidney disease [34]. There is still debate as to whether 
hypertension is the cause or the consequence of nephron deficiency. The contribu-
tion for nephron deficiency to a progressive decline in glomerular filtration rate and 
onset of hypertension is not clear. In line with decreased nephron number contrib-
uting to the hypertension, there are data from adult kidney donors. Normotensive 
adult kidney donors had a 5 mmHg greater increase in arterial pressure 5–10 years 
following donation compared to age-matched individuals with two intact kidneys 
[35, 36]. Although a small increase, this significantly increases the risk for cardio-
vascular diseases. Renal compensatory growth in congenital or acquired low neph-
ron number could be a factor that leads to hypertension-induced kidney damage 
[25, 26]. The kidney compensates for low nephron number by increasing the glo-
merular filtration carried out by each glomerulus or the single nephron glomerular 
filtration rate [25, 27, 31]. This compensation results in the rightward shift in the 
pressure-natriuretic relationship and eventually leads to extracellular fluid volume 
expansion. To overcome this increase in extracellular volume, there is an increase 
in arterial pressure. Increases in arterial pressure in a setting of low nephron num-
ber have a feed forward effect of increasing glomerular capillary pressure and pro-
moting hyperfiltration to the point where single nephron glomerular filtration rate 
can no longer be increased [25, 27]. The increase in glomerular capillary pressure 
results in glomerulosclerosis and further nephron loss and progression to chronic 
kidney disease [25, 27]. Human studies support this scenario because there is an 
inverse association between nephron number and glomerulosclerosis and intimal 
thickening of interlobular arteries [29, 37]. Therefore, renal adaptation in response 
to nephron deficiency increases the risk for developing hypertension and chronic 
kidney disease.

The podocyte and filtration barrier appears to be a critical component with glo-
merular hypertension and low nephron number in hypertension-induced chronic 
kidney disease [22, 38]. Podocyte density or insufficiency has been demonstrated to 
be a contributor to the rapid progression of diabetic nephropathy in Pima Indians 
[39]. Glomerular hyperfiltration associated with hypertension and low nephron 
number damages the glomerular filtration barrier [22]. Damage to the glomerular 
filtration barrier causes proteinuria and podocyte effacement [22, 38]. Podocytes 
respond to injurious stimuli in different ways including gradual simplification of the 
interdigitating process pattern until the cell flattens and lengthens [22, 38]. Podocyte 
injury progresses and the podocytes will detach from the basal membrane or undergo 
apoptosis [38]. Other factors such as an increased renin-angiotensin system and 
oxidative stress associated with hypertension can accelerate podocyte hypertrophy 
and apoptosis [22, 38]. This podocyte injury leads to passage of tubular-derived 
products into the interstitium and peritubular capillary spaces to accelerate tubu-
lointerstitial injury and renal fibrosis [22, 38].

Progression of renal injury in hypertension can vary widely across animal mod-
els and human populations [14, 25]. The increase in blood pressure can cause renal 
structural adaptations that contribute to chronic kidney disease [14, 22]. These 
include vascular structural adaptations and responses to increases in glomerular 
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capillary pressure [22–24]. Another factor is nephron number and if nephron 
deficiency is congenital or acquired [25–27]. Other mechanisms responsible for 
susceptibility to hypertension-induced renal injury include the complex interaction 
between an elevated blood pressure, altered hormonal and paracrine factors, inflam-
mation, and underlying endothelial function and renal diseases [14–16]. The contri-
butions for endothelial function, renin-angiotensin system, oxidative stress, and 
inflammation to hypertension-induced progression of chronic kidney disease will be 
discussed in subsequent sections.

26.3	 �Endothelial Dysfunction

Endothelial cells are at an interface between circulating factors and organs includ-
ing the kidney. The endothelial layer contributes importantly to vascular function 
and is critically involved in the control of vasomotor tone and permeability [40, 41]. 
It has become readily apparent that changes in the endothelial cells during diseases 
can be predictive of long-term health [14–16]. During the course of hypertension, 
there are changes in endothelial cells to a point where dysfunction occurs [14, 15]. 
Endothelial dysfunction is a precursor and predictor for chronic kidney disease as 
well as cardiovascular morbidity and mortality [15, 40].

Endothelial cells produce important autocrine and paracrine factors and respond 
to changes in circulating hormonal factors and cellular components such as inflam-
matory cells [40]. Major factors that vasodilate blood vessels and promote endothe-
lial cell health include nitric oxide, prostacyclin, and epoxyeicosatrienoic acids 
(EETs) [40]. Generation of these endothelial factors tends to be decreased in disease 
states that result in endothelial dysfunction [15, 40]. On the other hand, endothelial 
cells generate or regulate vasoconstrictor factors such as thromboxane, angiotensin 
II, and endothelin-1. Endothelial dysfunction in hypertension is associated with 
elevated levels of these vasoconstrictor endothelial factors [15, 40]. Lastly, reactive 
oxygen species and oxidative stress contribute significantly to endothelial dysfunc-
tion in hypertension [42]. Endothelial cell nitric oxide synthase (eNOS) uncoupling 
and NADPH oxidase activity result in increased reactive oxygen species generation 
and oxidative stress [42]. Hypertension causes endothelial dysfunction by tilting the 
balance of the various endothelial cell factors (Fig. 26.3) [14, 40, 42].

Endothelial dysfunction in hypertension leads to renal vasoconstriction and vas-
cular damage [14, 16, 43]. The capillary system in the renal medulla becomes dam-
aged in hypertension [43]. Renal medulla hypoxia occurs with hypertension and 
endothelial damage resulting in vascular rarefaction of the capillaries [15, 43, 44]. 
Reduced nitric oxide synthesis by endothelial cells is a key event underlying dam-
age to kidney arteries, arterioles, and capillaries [45, 46]. This reduced nitric oxide 
bioavailability can enhance the progression of chronic kidney disease in hyperten-
sion [43, 46].

Nitric oxide signaling is impaired in spontaneously hypertensive rats (SHR) and 
deoxycorticosterone (DOCA)-salt hypertensive rodents and is linked to renal injury 
[47, 48]. Factors that contribute to impaired nitric oxide signaling include decreased 
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L-arginine bioavailability, decrease in cofactors required for nitric oxide synthesis, 
and increased production of superoxide [42, 43]. Nitric oxide production could be 
decreased due to inappropriate phosphorylation of eNOS to decrease enzymatic activ-
ity [49]. Endothelial cell oxidative stress during hypertension has been connected with 
renal damage [43, 47]. An increase in reactive oxygen species production and 
decreased antioxidant defense capacity predispose tissues to damage [43, 47]. Overall, 
there is strong evidence for decreased nitric oxide and increased oxidative stress that 
contributes to endothelial dysfunction and the progression of chronic kidney disease.

Decreased cyclooxygenase (COX) generation of prostacyclin (PGI2) and epoxy-
genase generation of EETs by endothelial cells also contribute to renal vasocon-
striction and endothelial dysfunction in hypertension [50, 51]. Decreased EET 
levels are a key factor early in the progression of endothelial dysfunction in hyper-
tension [50, 52]. Angiotensin II hypertension is associated with an increased renal 
vascular expression of soluble epoxide hydrolase (sEH) enzyme that degrades EETs 
and results in decreased EET levels [52]. Likewise, sEH inhibition has been demon-
strated to increase renal vascular EET levels, decrease blood pressure, and prevent 
hypertensive kidney injury [52–54]. Inflammatory responses are another factor 
critically involved in endothelial dysfunction [55, 56]. Endothelial cell upregulation 
of adhesion molecules, chemokine generation, and production of plasminogen acti-
vator inhibitor-1 occur in hypertension [57]. Elevated circulating IL-6 and TNF-α 
levels are key inflammatory factors leading to endothelial dysfunction and chronic 
kidney disease progression in hypertension [58–60]. Recent efforts have focused on 
increasing EETs and decreasing inflammation as a means to improve endothelial 
function in hypertension and prevent renal injury [61].

Vasoconstrictor factors also influence endothelial function in hypertension and 
the progression of kidney disease. Endothelin-1 (ET-1) is generated by endothelial 
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Fig. 26.3  Endothelial dysfunction is an early event that precedes cardiovascular events and end-
organ damage in hypertension. Generation of endothelial nitric oxide and epoxyeicosatrienoic 
acids (EETs) are decreased in hypertension. Endothelin-1, angiotensin II, and thromboxane gen-
eration are increased and contribute to endothelial dysfunction. Chronic kidney disease progres-
sion is accelerated in the presence of endothelial dysfunction
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cells and is a potent renal vasoconstrictor [55, 62, 63]. Renal ET-1 levels are 
increased in hypertension and can contribute to arteriolar remodeling [62, 63]. 
Increased oxidative stress results from increased ET-1 levels [64–66]. ET-1 can also 
increase TGF-β that contributes to renal vascular inflammation and fibrosis in 
hypertension [62, 67]. Elevated angiotensin II levels contribute to endothelial dys-
function and renal damage in hypertension [14, 63, 68]. Angiotensin II causes renal 
vasoconstriction, increases oxidative stress and inflammation in endothelial cells, 
and results in vascular remodeling [42, 69]. An endothelial and vascular factor 
linked to angiotensin II is 20-hydroxyeicosatetraenoic acid (20-HETE). 20-HETE is 
a renal vasoconstrictor with pro-inflammatory actions. Endothelial cell angiotensin 
converting enzyme activity is increased by 20-HETE and contributes to angiotensin-
dependent hypertension [70]. 20-HETE has also been associated with chronic kid-
ney disease [50, 71, 72]. Taken together, there is strong evidence that increased 
endothelial cell 20-HETE, angiotensin II, and ET-1 in hypertension participate in 
endothelial dysfunction and chronic kidney disease.

26.4	 �Renin-Angiotensin-Aldosterone System

An inappropriate activation of the renin-angiotensin-aldosterone system (RAAS) 
contributes not only to hypertension but also to the progression of chronic kidney 
disease to ESRD (Fig. 26.4) [73, 74]. Angiotensin II has numerous hormonal actions 
that alter cardiovascular and renal function. Synthesis of angiotensin II depends on 
the release of renin by the juxtaglomerular cells in the kidney [73]. The hydrostatic 
pressure at the level of the afferent arterioles, angiotensin II levels, and salt delivery 
to the macula densa cells regulates renin release [20]. Angiotensinogen is converted 
to angiotensin I by renin. ACE then converts angiotensin I to angiotensin II at the 
level of endothelial cells and cell membranes in the heart, brain, and kidney [20, 
73]. Angiotensin II has biological actions on the renal arterioles and epithelial cells 
that are mediated via the angiotensin type 1 (AT1) or angiotensin type 2 (AT2) 
receptors [20, 72]. AT1 receptors are responsible for the majority of the actions 
attributed to angiotensin II. Angiotensin II AT1 receptor activation mediates renal 
hemodynamic actions, endocrine actions, and mitogenic effects in the kidney [73]. 
AT2 receptors in the kidney can oppose the AT1 receptor activities [73]. Hypertension 
is accompanied by an inappropriate AT1 receptor activation that results in deleteri-
ous events and renal damage [72, 73].

Renal hemodynamic actions of angiotensin II are due to actions on the afferent 
and efferent arterioles [20]. Angiotensin II causes vasoconstriction of afferent and 
efferent arterioles leading to a reduction in renal blood flow and an elevated glo-
merular capillary in hypertension [20]. Increased intrarenal angiotensin II levels in 
hypertension enhance preglomerular arteriolar and tubuloglomerular feedback sen-
sitivity [74, 75]. These angiotensin actions in hypertension increase renal vascular 
resistance, increase glomerular capillary pressure, and shift the pressure-natriuretic 
curve to the right [15, 76]. Angiotensin II also stimulates aldosterone secretion 
that causes a further shift in the pressure-natriuretic curve [15, 74, 76]. The renal 
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hemodynamic actions of angiotensin II are not the only actions contributing to 
hypertension-induced chronic kidney damage.

Angiotensin II has potent inflammatory actions that contribute to the pathogen-
esis of chronic kidney disease [72, 73]. Immune and inflammatory responses in 
renal endothelial and epithelial cells are intensified by angiotensin II [58, 59, 77, 
78]. Chemotaxis, proliferation, and differentiation of monocytes into macrophages 
are stimulated by angiotensin II [59, 78]. Angiotensin II stimulation of pro-fibrotic 
cytokines and growth factors have detrimental effects on the kidney [59, 74]. 
Activation of TGF-β causes hypertrophy and proliferation of mesangial cells [59, 
79]. TGF-β upregulates type 1 procollagen, plasminogen activator inhibitor-1, and 
fibronectin [59, 79]. Increases in growth factors such as TGF-β, VEGF, and IGF 
cause proliferation of fibroblasts and increase extracellular matrix protein synthesis 
as well as by decreasing apoptosis of resident interstitial cells leading to glomerulo-
sclerosis and renal interstitial fibrosis [14, 59, 79]. Likewise, aldosterone potentiates 
TGF-β mitogenic activity and exerts pro-inflammatory and pro-fibrotic actions [55, 
59]. Consequently, an elevated RAAS in hypertension makes a critical contribution 
to renal fibrosis and glomerulosclerosis.

Inflammation

ROSRAAS

ANG I

ANG I I

Hypertension

Chronic Kidney Disease

� �RBF and GFR
� Increased glomerular
       capillary pressure

� Inflammation
� Oxidative stress

� Macrophage infiltration
� T-cell activation
� Cytokines
� Growth factors

� �NOX activity
� Lipid peroxidation
� �NO bioavailability
� Inflammation
� Fibrosis

Fig. 26.4  Hormonal and paracrine factors contribute to hypertension-induced chronic kidney dis-
ease. Elevated renin-angiotensin-aldosterone system (RAAS) leads to decreased renal blood flow 
(RBF) and glomerular filtration rate (GFR), inflammation, and oxidative stress. Inflammation 
involves macrophage infiltration and T-cell activation with generation of cytokines and growth 
factors. Reactive oxygen species (ROS) increases NADPH oxidase (NOX) activity, decreases 
nitric oxide (NO) bioavailability, and causes lipid peroxidation and inflammation. There are exten-
sive interactions between RAAS, inflammation, and ROS that contribute to hypertension-induced 
chronic kidney disease
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In addition to and linked to the inflammatory actions, angiotensin II stimulates 
ET-1 generation and increases oxidative stress [67, 80]. Angiotensin II via AT1 
receptors is a potent stimulator of NADPH oxidase and increases ET-1 generation 
in renal arterioles [67, 68, 80]. ET-1 is a factor that in the kidney recruits T cells and 
macrophages and increases NF-kB in activated B cells [59, 67, 77, 78]. Increases in 
reactive oxygen species lead to additional renal injury that enhances inflammation 
and fibrosis [43, 47]. Angiotensin II actions in hypertension include inflammation, 
accumulation of cells and matrix, and exacerbation by increased cell adhesion to 
result in renal injury [73, 74]. Glomerulosclerosis and tubulointerstitial fibrosis in 
response to an elevated RAAS create a progressive course of chronic kidney dis-
ease, proteinuria, decline in glomerular filtration rate, and a vicious cycle of con-
tinuous RAAS activation [73, 74].

RAAS inhibition is a common and effective treatment for hypertension. Evidence 
in humans suggests that blockade of the RAAS provides renal protection beyond 
blood pressure lowering in hypertension [6, 81, 82]. RAAS blockade reduces urinary 
protein and overall renal risk to a greater degree than other blood pressure-lowering 
therapies [81, 82]. This additional renal protection could be in part due to the anti-
inflammatory actions demonstrated for RAAS inhibitors [73, 82, 83]. RAAS inhibi-
tion reduces renal cell proliferation, circulating T cells, and cytokine production [56, 
84, 85]. The renin inhibitor, aliskiren, markedly reduces TGF-β, albuminuria, and 
renal fibrosis in hypertensive mice independently of a change in blood pressure [14, 
16]. On the other hand, AT2 receptor activation could combat hypertension-induced 
chronic kidney disease [73]. AT2 receptor activation reduces renal inflammation in a 
mouse model of renal fibrosis [72, 73]. Taken together, RAAS inhibition appears to 
be a therapeutic approach that can combat progressive kidney disease in hyperten-
sion by mechanisms independent of blood pressure lowering.

26.5	 �Reactive Oxygen Species

Oxidative stress and the generation of reactive oxygen species are due to an imbal-
ance between oxidants and antioxidants that can result in kidney damage (Fig. 26.4) 
[42, 86, 87]. Patients with mild to moderate renal insufficiency or ESRD have oxi-
dative stress [14, 16, 88]. Elevated reactive oxygen species production has been 
shown in humans with renovascular, essential, and malignant hypertension [14, 16]. 
Increased plasma malondialdehyde levels, a marker of oxidative stress, are increased 
in patients with chronic renal failure when compared to those with essential hyper-
tension despite similar blood pressures suggesting that inflammation and an altered 
redox state could be the reason for the increase in oxidative stress [16, 88].

Hypertension and chronic kidney disease have increased levels of oxidant mole-
cules including hydrogen peroxide or hydroxyl radicals and decreased antioxidants 
like catalase, glutathione dismutase, or superoxide dismutase [42, 43, 87]. Asymmetric 
dimethylarginine, a nitric oxide synthase inhibitor, is increased in chronic kidney 
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disease [86, 87]. These changes result in reactive oxygen species generation by the 
arterioles, macula densa, podocytes, and epithelial cells [86, 87]. NADPH oxidase 
(NOX) has surfaced as the main source for reactive oxygen species in renal arterioles 
[87]. Vasoactive agents such as angiotensin II, shear stress, and inflammation can 
induce NOX or mitochondrial reactive oxygen species generation [87]. Reactive oxy-
gen species have renal vascular actions to cause afferent arteriolar constriction, 
reduce nitric oxide levels, and contribute to hypertension and kidney injury [87, 89].

Indeed, elevated reactive oxygen species production by NOX and hypertension 
is closely associated with kidney damage as shown in different models of hyperten-
sion Dahl salt-sensitive rats, deoxycorticosterone acetate (DOCA) salt rats, and 
angiotensin II hypertensive rats [90, 91]. In regard to a prominent role of oxidative 
stress in hypertensive kidney injury, it is important to note that NOX-mediated reac-
tive oxygen species production in hypertension is linked to endoplasmic reticulum 
(ER) stress. Accumulating evidence shows that during ER stress, reactive oxygen 
species production by NOX is increased [92, 93]. It is also demonstrated that in a 
setting of ER stress, reactive oxygen species are produced by NOX2 and NOX4 and 
play a critical role in hypertension [94]. Indeed, hypertension has been recently 
linked to ER stress, and there is accumulating evidence that ER stress is an impor-
tant factor in hypertensive kidney injury [95–97]. The role of NOX-mediating ER 
stress in the above models of hypertensive renal injury remains to be explored, but 
a role of NOX2 has been shown to be associated with ERstress-induced renal cell 
death [98]. These findings provide a link between oxidative stress and ER stress in 
hypertensive renal injury.

Interactions between oxidative stress, renal vascular function, and inflammation 
are contributing factors to kidney disease progression in hypertension. Excess reac-
tive oxygen species leads to oxidative stress and predisposes the kidney to tissue 
damage [14, 42, 43]. Reactive oxygen species enzyme activation in renal arterioles 
results in redox signaling to generate inflammation transcription factors [86, 87]. A 
subsequent decrease in nitric oxide bioavailability leads to lipid peroxidation and 
production of growth factors to induce renal fibrosis [42, 87]. Reactive oxygen spe-
cies also promote accumulation of myofibroblasts via epithelial‑mesenchymal tran-
sition of proximal tubular and mesangial cells [99]. This results in remodeling of the 
extracellular matrix of the tubulointerstitium leading to renal fibrosis, a common 
feature of hypertensive renal injury [99]. In addition to direct actions to constrict the 
afferent arteriole, reactive oxygen species can enhance tubuloglomerular feedback 
responses to further increase renal vascular resistance [87]. Endothelial cell genera-
tion of COX-derived thromboxane increases in response to elevations in oxidative 
stress [87]. Thromboxane causes afferent arteriolar vasoconstriction and increases 
platelet activity [86, 87]. At the level of kidney epithelial transport, reactive oxygen 
species diminishes oxygen utilization for sodium transport [87]. Overall, increases 
in reactive oxygen species cause endothelial dysfunction, afferent arteriolar con-
striction, and renal inflammation resulting in progression of chronic kidney disease 
to ESRD in hypertension.
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26.6	 �Inflammation

Inflammation is an important contributing aspect to endothelial dysfunction and 
renal injury in hypertension. In addition, there have been a number of rodent studies 
that have demonstrated that the adaptive immune response and renal inflammation 
participate in the development of hypertension [56, 59]. Multiple studies with 
immunosuppressive agents such as mycophenolate mofetil (MMF) and the TNF-α 
receptor blocker etanercept lower blood pressure and decrease renal damage [59, 
100–102]. A role for T cells and B cells in hypertension and progression of kidney 
disease has also been examined [56, 103, 104]. Mice deficient in T and B cells dem-
onstrate attenuated angiotensin-dependent hypertension [59, 104, 105]. Interestingly, 
adoptive transfer of T cells but not B cells restored the hypertensive response to 
angiotensin II [59, 78]. Mice lacking T and B cells also attenuated renal injury asso-
ciated with angiotensin hypertension [59, 78]. MMF inhibition of T and B cell pro-
liferation was demonstrated to lower blood pressure in Dahl salt-sensitive 
hypertension [106]. Other studies have determined a potential contribution for 
CCR5-positive cells and RANTES [59, 60, 106]. As a whole, experimental studies 
have supported the concept that activated T cells in the kidney and cytokine release 
contribute to the development of hypertension.

Cytokine activation has deleterious actions on renal vascular and tubular epithe-
lial cells that contribute to hypertension and progression of chronic kidney disease 
(Fig.  26.4). Elevations in Th1 cytokines such as TNF-α and IL-6 associate with 
increased blood pressure [58, 59, 107]. Likewise, hypertensive patients have an 
upregulation of the T-cell renin-angiotensin system [77]. Glomerular epithelial and 
endothelial cell has an increased production of TNF-α in angiotensin hypertension 
[108]. TNF-α receptor antagonism decreases blood pressure and reduces renal 
injury in DOCA-salt, angiotensin, and autoimmune-associated hypertension [102, 
107, 108]. Renal injury prevention by etanercept can be independent of blood pres-
sure lowering. IL-6 is another cytokine that can contribute to renal inflammation, 
hypertension, and progressive renal damage [56, 58]. Angiotensin-dependent hyper-
tension is attenuated in IL-6-deficient mice [58]. These findings have demonstrated 
that T-cell infiltration into the kidney and generation of TNF-α and IL-6 contribute 
to hypertension and kidney damage.

MCP-1 and activation of CCR2 receptor can contribute to hypertension and 
chronic kidney disease. The MCP-1 inhibitor bindarit decreases renal inflammation 
and fibrosis and improves renal endothelial function independent of blood pressure 
lowering [109]. CCR2 inhibition also decreases renal inflammation and delays the 
progression of angiotensin hypertension [107]. The inflammatory cytokine IL-17 
produced by Th17m CD8+ cells, neutrophils, and T cells also contributes to hyper-
tension [110]. Angiotensin-dependent hypertension and renal inflammation are 
decreased in IL-17-deficient mice (110). Finally, Tregs are another cell type that 
influences blood pressure control and progressive renal injury in hypertension [59, 
60]. Tregs reduce T-cell activation and are protective in hypertension. Dahl salt-
sensitive hypertensive rats that harbor Brown Norway chromosome 2 have increased 
Treg cells and increased generation of the cytokine IL-10 to reduce blood pressure 
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and decrease renal injury [60]. Taken together, T-cell activation of pro-inflammatory 
cytokines contributes to hypertension and kidney disease progression that can be 
opposed by Tregs that limit T-cell activation.

The actions of renal inflammatory cytokines on the renal vascular and epithelial 
cells contribute significantly to kidney disease associated with hypertension. Renal 
hemodynamic consequences for elevated kidney cytokines are a reduced renal 
blood flow and rightward shift of the pressure-natriuretic relationship [56, 111]. 
Although the contribution for specific cytokines has been difficult to determine, 
renal inflammation decreases renal blood flow and glomerular filtration rate and 
leads to a progressive decline that results in ESRD [56]. One cytokine that could 
contribute to impaired renal hemodynamics is MCP-1 and CCR2 receptors. CCR2 
receptor inhibition improves renal hemodynamics in hypertension [107]. TNF-α 
that is administered acutely can lower renal blood flow and glomerular filtration rate 
[112]. TGF-β is a growth factor that impairs afferent arteriolar autoregulatory 
responses [113]. The impaired afferent arteriolar autoregulatory responses have 
been attributed to TGF-β stimulation of reactive oxygen species [113]. IL cytokines 
also have renal vascular actions. IL-2 has been demonstrated to decrease glomerular 
filtration rate when given to patient [114]. Overall, these findings demonstrate that 
cytokines and inflammation can have detrimental actions on renal hemodynamics 
that contribute to the progression of chronic kidney disease in hypertension.

Glomerular and interstitial macrophage infiltrations are characteristic to progres-
sive chronic kidney disease in hypertension [14–16]. Glomerular hypertension and 
increased angiotensin II can stimulate renal inflammation [14–16]. Cytokines and 
chemokines including MCP-1 and VEGF have direct actions on renal tubular and 
glomerular cells [56]. Macrophage infiltration increases production of IL-1, TNF-α, 
and MCP-1 contributing to the progressive renal injury [115, 116]. All glomerular 
cell types such as podocytes, mesangial cells, and endothelial cells contribute to the 
progression of glomerular injury in hypertension [56]. VEGF has been demon-
strated to be increased in podocytes and contributes to the development of glomeru-
lar sclerosis [56, 117]. IL-1, RANTES, MCP-1, and TGF-β are activated at the level 
of mesangial cells to result in mesangial cell proliferation [117, 118]. Mesangial 
cells fibroblast phenotype then secretes extracellular matrix and further contributes 
to glomerular sclerosis in hypertension [117, 119, 120]. Endothelin-1, TGF-β, and 
PDGF increase in glomerular endothelial cells in response to increased shear stress 
in hypertension [117, 121]. Glomerular endothelial cell activation can also increase 
TNF-α and MCP-1 to increase inflammatory cell infiltration [122, 123]. Endothelial 
cell inflammation can result in microthrombi, hyaline deposition, and destruction of 
the glomerular basement membrane in hypertension [117, 124]. Renal inflamma-
tion also is involved in tubulointerstitial damage in hypertension. Interstitial infiltra-
tion of inflammatory cells occurs in the early phases of kidney disease associated 
with hypertension [117, 124, 125]. Macrophages and T and B cells and their migra-
tion to the interstitium in hypertension are driven by tubular expression of chemo-
kines and adhesion molecules [124, 125]. Thus, inflammation and cytokines 
contribute significantly to progressive glomerular and tubulointerstitial injury in 
hypertension.
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�Conclusion
Renal damage and progression to ESRD in hypertension is due to the interaction 
of complex mechanisms. Factors such as blood pressure, elevated glomerular 
pressure, and low nephron number can accelerate renal damage in hypertension. 
Although blood pressure is a contributing factor to hypertensive renal damage, 
other mechanisms act independent of blood pressure.Endothelial dysfunction 
and altered regulation of endothelial-derived factors contribute to chronic kidney 
disease progression. A central role for the RAAS in hypertensive renal damage 
has been demonstrated, and pharmacological RAAS blockade is an extremely 
valuable approach to decrease progressive kidney disease in hypertension. There 
is also a complex interaction between the RAAS, reactive oxygen species, and 
inflammation that accelerate renal damage in hypertension. A deeper under-
standing of the molecular mechanisms that contribute to chronic kidney disease 
in hypertension will identify novel therapeutic targets to prevent renal damage in 
hypertension.
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27Determinants of Hypertensive Renal 
Disease and Its Progression

Karen A. Griffin, Aaron J Polichnowski, and Anil K. Bidani

Hypertensive kidney disease, a consequence of exposure to increased macro- or 
microvascular pressures, is second only to diabetic nephropathy as a primary etiol-
ogy for end-stage renal disease (ESRD) accounting for ~30% of ESRD [1]. However, 
it needs to be emphasized that this large population risk is primarily attributable to 
the huge prevalence of hypertension (HTN) in the general population. The individ-
ual risk for ESRD is strikingly small in those with uncomplicated essential HTN 
(~0.5%) [2, 3]. And, even this risk is disproportionately distributed, with certain 
ethnic groups such as African-Americans, accounting for a substantial fraction of 
the ESRD that is ascribed to essential HTN [1–3]. The recent identification of cer-
tain genetic loci in the African-American population associated with chronic kidney 
disease and end-stage renal disease (ESRD) [4, 5] has led some to question whether 
essential HTN per se leads to ESRD in the absence of such genetic predispositions 
[5, 6] or the development of malignant HTN [7–9]. Fortunately, the wide availabil-
ity of effective antihypertensive agents has greatly reduced the incidence of malig-
nant HTN and its contribution to the ESRD population [8, 9]. However, such 
interpretations greatly underestimate the extent to which hypertension-induced 
renal damage (HIRD) contributes to the development of ESRD. Abundant evidence 
now indicates that coexistent HTN, even if moderate in severity, plays a predomi-
nant role in the progression of most other forms of chronic kidney disease (CKD) 
including diabetic nephropathy, indicating an enhanced renal sensitivity to the 
adverse effects of HTN in CKD states [8–14].
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27.1	 �Clinical Patterns of HIRD Susceptibility and Pathologic 
Correlates

Any increase in blood pressure (BP) within the intrarenal vasculature, if of suffi-
cient magnitude and regardless of cause, is expected to result in barotrauma and 
local vascular injury as happens in malignant HTN [7, 15]. Therefore, susceptibility 
to HIRD needs to be defined in terms of BP threshold for HIRD and the slope of the 
relationship between BP and HIRD (the increase in HIRD for a given increase in 
BP) [8, 14]. Figure 27.1 schematically illustrates the relative resistance to HIRD in 
individuals with essential hypertension in the absence of genetic predisposition or 
malignant HTN. This is in contrast to the markedly increased susceptibility in CKD 
states as manifested in a greatly reduced BP threshold at which HIRD starts to 
develop and a steeper slope of relationship between BP and HIRD [8, 12, 14]. Given 
this enhanced susceptibility to even moderate hypertension and the very high preva-
lence of hypertension in the CKD population, the dominant role played by hyper-
tension in CKD progression is not unexpected. Indeed, despite extensive efforts to 
identify additional therapeutic targets, optimal BP control and renin-angiotensin 
system (RAS) blockade remain the mainstays of CKD management [8, 10–14]. 
And, even the beneficial effects of RAS blockade are at least in large part mediated 
by its antihypertensive effects as discussed in a subsequent section.

These contrasting clinical patterns of HIRD susceptibility are associated with 
distinct histologic phenotypes and characteristic time courses. The histologic pat-
tern of renal injury in malignant HTN is characterized by acute disruptive vascular 
injury and fibrinoid necrosis of the small arteries, arterioles, and glomerular capil-
laries that has been collectively described as malignant nephrosclerosis [7–9, 16]. 
Ischemic glomeruli are frequent because of the upstream vascular injury. The syn-
drome evolves rapidly over days and weeks resulting in acute renal failure and, 
despite treatment, is frequently followed by residual CKD or even ESRD. By con-
trast, the renal pathology in individuals with nonmalignant essential HTN pro-
gresses slowly over decades and consists of thickening, hypertrophy, and hyaline 
arteriosclerosis of the renal resistance vessels with focal global ischemic glomerular 
obscelence, a pattern that has historically been termed benign nephrosclerosis [8, 9, 
16]. In contrast to these predominantly vascular sites of renal pathology in benign 
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and malignant nephrosclerosis, the site of HIRD in CKD states is predominantly 
glomerular, with a pattern of accelerated segmental or global glomerulosclerosis 
(GS) often superimposed on the intrinsic phenotype of the underlying disease [8, 9, 
12, 14]. Progression to ESRD usually occurs over months to years. As discussed in 
the following section, investigations in experimental models have indicated that 
these contrasting clinicopathologic patterns of HIRD stem from differences in 
underlying pathophysiology and pathogenesis. The use of BP radiotelemetry to 
define ambient 24 h BP phenotypes for the assessment of quantitative relationships 
between BP and HIRD combined with renal hemodynamic measurements has been 
critical to the achievement of these insights.

27.2	 �Pathophysiology of HIRD: Insights from Animal Models

Given that the pathogenesis of HIRD critically depends on local vascular expo-
sure to increased pressures, it is important to note that unlike cardiovascular end 
points, which reflect macrovascular events and their consequences (stroke, myo-
cardial infarction, heart failure), renal end points (ESRD, doubling of serum creati-
nine) primarily reflect microvascular pathology (loss of glomerular capillaries and/
or filtration capacity) [8, 9, 14]. Unlike macrovascular pressures which fluctuate in 
parallel with BP, increases in BP, episodic or sustained, within the renal autoregula-
tory range lead to proportionate preglomerular autoregulatory vasoconstriction such 
that renal blood flow (RBF), GFR, and glomerular capillary pressures (PGC) remain 
relatively stable (Fig. 27.2, pattern A) [8, 17–19]. The vast majority of patients with 
essential HTN have preserved renal autoregulation (AR). Therefore, as long as BP 
remains within the autoregulatory range and renal autoregulation is intact, glomeru-
lar HTN does not develop, and significant proteinuria and glomerular injury are not 
seen. But, the preglomerular vasculature exposed to HTN does develop the slowly 
progressive vascular pathology of benign nephrosclerosis [8, 9, 14, 16–18]. The 
glomerular capillary and nephron loss that occurs over time are usually not suf-
ficient to result in a major impairment of renal function. But, if the BP elevations 
become so severe as to exceed the autoregulatory range, acute disruptive vascular 
and glomerular injury (malignant nephrosclerosis) develops with proteinuria, hema-
turia, and renal failure [7–9, 14]. The spontaneously hypertensive rat (SHR) and its 
stroke-prone counterpart (SHRsp) provide the experimental illustrations for this phe-
nomenon. Both have intact autoregulation, but the salt-supplemented SHRsp devel-
ops more severe HTN that exceeds the BP threshold for disruptive vascular injury 
resulting in stroke and malignant nephrosclerosis [14, 17, 18, 20–22]. Moreover, 
even suboptimal antihypertensive therapy prevents malignant nephrosclerosis as 
long as BP is prevented from exceeding the critical threshold [21, 22]. Even after 
malignant nephrosclerosis has developed, relatively modest BP reductions result in 
substantial repair and recovery [22] emphasizing the barotrauma-mediated patho-
genesis of this syndrome. With chronic hypertension, the autoregulatory range is 
shifted to the right and serves to protect against malignant HTN [8, 17]. Thus, severe 
acute increases in BP have greater potential for such target organ injury than slower 
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increases. Conversely, when renal AR is impaired as it is inrenal mass reduction 
(RMR) models of CKD [23, 24] (Fig. 27.2, pattern C), even modest BP increases 
are expected to be transmitted to the glomerular capillaries with resultant baro-
trauma, proteinuria, progressive GS, and a greatly reduced BP threshold at which 
hypertensive GS starts to develop, similar to the pattern observed in CKD states [8, 
14, 17, 18, 25]. Thus, in CKD states, the severity of HIRD depends not on the extent 
of increase in systemic BP per se but rather on the degree to which such increases 
are transmitted to the renal microvasculature [8, 12, 14, 17].

In this context, it is important to note that the hypertensive 5/6 renal ablation 
model was initially employed to replicate the phenomenon of progressive injury to 
initially normal remnant nephrons believed to underlie the autonomous progression 
of human CKD [14, 23, 25–27]. Based on micropuncture studies, the concept was 
formulated by Brenner and colleagues that glomerular hyperfiltration, a compensa-
tory adaptation in response to a reduction in functional nephron number irrespective 
of cause, was in fact per se “maladaptive” [26–28]. It was postulated that “the ele-
vated single nephron glomerular filtration rate (SNGFR) common to these patho-
physiologic conditions is usually caused by increases in the glomerular capillary 
plasma flow rate (QA) and mean glomerular capillary hydraulic pressure (PGC), 
which in turn are due to adaptive reductions in pre-glomerular and post-glomerular 
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Fig. 27.2  Illustration of the spectrum of pressure/flow relationships in the renal vascular bed in 
hypertension. Pattern A represents the normal renal autoregulatory responses observed in uncom-
plicated hypertension and shows the constancy of renal blood flow (RBF) despite BP changes 
within the autoregulatory range. Pattern B indicates the ambient renal vasodilation but preserved 
autoregulation after uninephrectomy. Pattern C illustrates the impaired RBF autoregulatory 
responses observed in the 5/6 renal ablation model. Pattern D shows the complete loss of renal 
autoregulation in 5/6 renal-ablated rats treated with dihydropyridine CCBs. Although RBF is 
depicted as the dependent variable, the same relationships are expected for glomerular pressures, 
given that the autoregulatory resistance changes are confined to the preglomerular vasculature 
(Reproduced from Ref. [8] with permission)
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arteriolar resistances” and “that—systemic hypertension is not required for glomer-
ular capillary hyperfiltration and hypertension.” Similar hyperfiltration, increased 
PGC, and GS were described in experimental diabetes [28]. The increases in PGC 
were ascribed to the greater dilation of the afferent than efferent arteriole. This rela-
tive efferent vasoconstriction was attributed to the tonic vasoconstrictor effects of 
angiotensin II (Ang II), because angiotensin-converting enzyme (ACE) inhibitors 
were shown to dilate the efferent arteriole, reduce PGC, and ameliorate glomerulo-
sclerosis [27, 28]. Studies from our laboratory have questioned the concept that 
glomerular hyperfiltration per se is intrinsically injurious in the absence of glomeru-
lar HTN or that glomerular HTN is necessary for hyperfiltration [14, 29]. 
Hyperfiltration in normotensive models of RMR, pregnancy, and kidney donors is 
accomplished without significant PGC increases through coordinated increases in 
glomerular filtration surface area (hypertrophy) and increases in single-nephron 
plasma flow through proportionate afferent and efferent vasodilation [14, 29–33]. In 
fact, increases in PGC are not even very effective in increasing SNGFR due to the 
inverse relationship between PGC and the ultrafiltration coefficient Kf [14, 29]. We 
have therefore interpreted the glomerular HTN in hypertensive RMR models to be 
a superimposed consequence of an enhanced glomerular transmission of coexistent 
systemic HTN through a dilated and poorly autoregulating preglomerular vascula-
ture [8, 12, 14, 18, 23]. We have suggested that the contribution of angiotensin 
II-mediated efferent constriction to glomerular HTN in these models has likely been 
greatly overestimated during micropuncture studies due to renin release and efferent 
constriction triggered by anesthesia, surgery, and neurohormonal activation [8, 12, 
14, 29, 34].

The importance of renal autoregulatory capacity as a determinant of HIRD sus-
ceptibility is further demonstrated by the adverse effects of calcium channel blockers 
(CCB), particularly the dihydropyridine CCBs in the 5/6 ablation model of CKD 
[8, 14, 35]. Given that pressure-induced vascular wall stretch, depolarization, acti-
vation of voltage-gated Ca2+ channels, and Ca2+ entry are involved in activation of 
the myogenic mechanism, CCBs predictably impair renal autoregulation [17–19]. 
Although the mechanisms responsible for the impaired renal autoregulation in CKD 
models remain obscure [8, 14, 17–19], CCBs cause a further impairment of renal 
autoregulation (Fig. 27.2, pattern D), reduce the BP threshold for GS, and increase 
the slope of the relationship between BP and GS such that greater GS are observed 
in CCB-treated animals at any given level of HTN as compared to untreated controls 
(Fig. 27.3). Note that these qualitative relationships between BP and GS are unaltered 
in 5/6 ablated rats treated with RAS blockade indicating the BP dependence of the 
renoprotection provided by RAS blockade [12, 14, 34–36]. Conversely, substitution 
of a low (8%)-protein diet for the standard 24% protein diet preserves autoregulatory 
capacity after 5/6 renal ablation and substantially ameliorates GS despite continued 
HTN [23, 37]. However, if the low-protein-fed rats are also given CCBs, the protec-
tion against renal autoregulatory impairment and GS is both abolished [37]. Recent 
studies have further emphasized the protective importance of the myogenic compo-
nent of renal autoregulation [14, 17, 18]. The rapid activation kinetics of the afferent 
arteriolar myogenic response and its potential triggering by the systolic rather than 
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the mean BP are consistent with this protective function, given that systolic BP may 
have the greatest potential for target organ damage. It is also important to note that 
BP is fundamentally labile and exhibits spontaneous, rapid, and often large BP fluc-
tuations even in normotensive individuals [17, 38]. Such fluctuations are prevented 
from reaching the glomerular capillary by the normal preglomerular autoregulatory 
responses. Therefore, in states of impaired renal autoregulation, glomerular pressure 
exposure may not be normalized even if normotension is achieved and modest glo-
merular barotrauma may continue to occur [14, 39].

In this context, it needs to be emphasized that these adverse effects of impaired 
renal autoregulation on HIRD susceptibility only occur in a vasodilated vascular 
bed. Vasodilation alone, with preserved autoregulation such as observed after unine-
phrectomy [24], only modestly increases the susceptibility to hypertensive injury 
(Fig. 27.2, pattern B). However, when combined with impaired AR, it substantially 
amplifies the effects on HIRD susceptibility [8]. Conversely, preglomerular vaso-
constriction is expected to protect against glomerular BP transmission and reduce 
HIRD severity but may also reduce the capacity to maintain renal perfusion when 
BP falls [8]. Although somewhat counterintuitive, the Ang II infusion models of 
HTN provide a fairly dramatic illustration of this phenomenon. Despite severe HTN 
and a plethora of postulated Ang II-mediated BP-independent mechanisms of injury 
[11, 40], Ang II infusions produce surprisingly little renal damage [41]. Recent 
studies in conscious Ang II-infused rats have indicated that this limited renal injury 
is a consequence of Ang II-induced vasoconstriction, potentiation of myogenic 
responses, and attenuation of intrarenal BP transmission [41]. Figure  27.4 using 
data from the SHRsp model of malignant nephrosclerosis, the 5/6 ablation model of 
CKD, and the angiotensin II infusion model of severe HTN but limited HIRD pro-
vide an illustrative summary of these insights and emphasizes the critical impor-
tance of physical BP transmission in the pathogenesis of HIRD.
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27.3	 �Other Major Postulated Modulators of HIRD 
Progression

Over the years, a large number of factors/mechanisms have been proposed to 
modulate and promote HIRD through BP-independent pathways. A detailed discus-
sion of these is beyond the scope of this chapter, so only a few major ones are briefly 
addressed here.

	1.	 Renin-angiotensin system (RAS): It is widely believed that RAS plays a predomi-
nant role in CKD progression, and therefore, its blockade is recommended as a 
primary strategy to retard CKD progression [8–14]. Although RAS activation 
and/or its inadequate suppression despite volume expansion are critical to the 
pathogenesis of HTN in human and experimental CKD, it is the BP-independent 
mechanisms of CKD progression that have received the greater emphasis [8–12, 
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Fig. 27.4  Compilation of data obtained in our laboratory which depicts the qualitative relation-
ships between SBP and HIRD in three commonly employed rodent models: (1) the salt-
supplemented stroke-prone spontaneously hypertensive rat (SHRsp) model of malignant HTN, (2) 
the hypertensive 5/6 renal ablation model of CKD in Sprague-Dawley rats, and (3) the continuous 
exogenous angiotensin infusion model of HTN (300–500  ng/kg/min for 4  weeks). These data 
illustrate the differences in the BP threshold for HIRD and/or the slope of the relationship between 
average systolic BPs (final 4 weeks) and HIRD (increase in HIRD/mmHg increase in average 
systolic BP) between the three models. The SHRsp exhibits intact renal autoregulation, and a strong 
correlation between BP and HIRD is only observed after 4 weeks of salt supplementation when BP 
exceeds the critical renal autoregulatory threshold (r2 = 0.46, slope 1.13 ± 0.24; p < 0.0001). The 
rats with 5/6 renal ablation and impaired renal autoregulation display a similar strong correlation 
between average systolic BP and HIRD (r2 = 0.77, slope 1.03 ± 0.15; p < 0.0001) but exhibit a 
much lower BP threshold for HIRD consistent with the enhanced renal microvascular BP transmis-
sion [25]. By contrast, the rats with Ang II-induced HTN exhibit very limited HIRD despite aver-
age systolic BP that are high as the SHRsp with a much weaker correlation and a flatter slope 
(r2 = 0.27, slope 0.28 ± 0.11; p < 0.025). As discussed in the text, this paucity of HIRD is most 
plausibly due to the angiotensin II-induced renal vasoconstriction and potentiation of myogenic 
autoregulation that reduces BP transmission to the renal microvasculature [41] (Adapted with per-
mission from the cited references)
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14, 40–42]. However, the evidence for such pathways is much less definitive than 
claimed [13, 14, 42]. The fact that RAS activation by a low-salt diet in vivo does 
not activate the deleterious pathways initiated by angiotensin II in in vitro sys-
tems indicates a context-appropriate regulation of these signaling pathways 
in vivo [42]. And, given that many of the deleterious downstream pathways can 
also be activated by HTN, much of the in vivo evidence of BP independence is 
compromised by the limitations of the tail-cuff BP measurements that have been 
used to support such interpretations [42, 43]. When direct BP radiotelemetry has 
been employed, little evidence of BP-independent effects has been found 
(Fig. 27.3) [21, 34, 36]. The apparent discrepancy between such experimental 
data and clinical trial results is addressed in a subsequent section.

	2.	 Endothelial dysfunction and NO availability: Although less emphasized, sub-
stantial evidence indicates that endothelial dysfunction and reduced NO avail-
ability have important adverse effects on HIRD [44]. The two pathways that may 
be particularly relevant are (a) the increased severity of hypertension in states of 
impaired NO generation and (b) the local hemodynamic effects of NO on the 
renal microvasculature. There is topographic evidence of significant expression 
of nitric oxide synthases 1 and 3 in the efferent arteriolar endothelial cells [45]. 
It has been suggested that these cells may act as shear stress sensors with the 
released NO serving an important efferent arteriolar vasodilatory protective 
function in states of glomerular HTN [45, 46]. An impairment of efferent arterio-
lar NO production may thereby promote exaggerated PGC elevations in such 
states [46].

	3.	 Glomerular capillary hypertrophy and reduced podocyte density: The compen-
satory hypertrophy of glomerular capillaries results in a reduction of podocyte 
density due to the limited replication potential of this terminally differentiated 
cell [47]. It has been proposed that the resultant loss of structural support may 
limit the ability of glomerular capillaries to maintain physical integrity and 
mechanical stability during hypertensive stress [47, 48]. An increase in wall ten-
sion (Laplace law: tension = pressure x radius) may also add to the hypertensive 
stress [30].

27.4	 �Clinical Parallels and Correlates

The validity of these concepts/insights derived from animal models has generally 
been borne out by the clinical data [49]. To illustrate, an impairment of GFR auto-
regulation similar to that observed in renal mass reduction models of CKD has been 
observed in patients with diabetic and nondiabetic nephropathies [50, 51]. Similarly, 
as would be predicted from the experimental data, substantially greater success has 
been achieved clinically with antihypertensive therapy in preventing malignant 
nephrosclerosis than in slowing CKD progression [8, 9, 14, 22]. Moreover, the 
adverse impact of BP on proteinuria has been recently shown to increase with pro-
gressive reduction in GFR in humans as would be predicted by the data from RMR 
models [52]. The benefits from a lower BP target in patients with proteinuric renal 
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disease and the lesser effectiveness of CCBs in preventing CKD progression in such 
patients are also consistent with the experimental data [8, 12, 14, 53–58]. Given that 
an absence of proteinuria implies a pathogenesis that is less dependent on glomeru-
lar HTN, the lack of demonstrable benefits of lower BP targets in non-proteinuric 
CKD is in agreement with these insights [39, 53–57]. However, the recently released 
results of the SPRINT trial may render most such distinctions moot [59]. Although 
CKD patients with the greatest risk of progression (proteinuria >1gm) were unfor-
tunately excluded from the trial precluding a direct demonstration of the renal ben-
efits of lower BP targets (<120 mmHg systolic), the significant cardiovascular and 
mortality benefits observed support a general implementation of lower targets in all 
individuals at increased CV risk including CKD patients. However, these benefits 
need to be weighed against the significantly increased risks for hypotension, syn-
cope, electrolyte abnormalities, and acute renal failure that were observed in the 
more intensively treated group [59]. Even though the incidence of an adverse com-
posite renal outcome was low (1.1%) and not more frequent in the intensive treat-
ment group in participants with CKD at baseline, definitive judgements may need to 
await the release of additional detailed data from the SPRINT trial regarding kidney 
function and CKD progression. Meanwhile, it may be prudent to take into consider-
ation the risk/benefit ratios in individual patients when selecting BP targets. It is 
also worth noting that the BP measurement protocol used in SPRINT that included 
5 min of rest before BP measurements likely yielded systolic BP values that may be 
~5–10 mmHg lower than that obtained during routine office practice [59, 60].

A major apparent discrepancy does exist with respect to BP-independent benefits 
of RAS blockade seen in clinical trials but not in experimental models when BP 
radiotelemetry is used (Fig. 27.3). However, the discrepancy is more apparent than 
real as the clinical trial evidence is more ambiguous and the magnitude of 
BP-independent benefits is likely much smaller than claimed [8, 12, 14, 61]. To 
illustrate, the original interpretation of the landmark trial of captopril in diabetic 
nephropathy conducted by the Collaborative Study Group [62] might have been 
seriously compromised by the disproportionately greater randomization of the 
nephrotic patients at the highest risk of renal end points into the placebo group [8, 
12, 14, 61, 62]. This likely accounted for most of the excess of end points observed 
for the placebo group compared with the captopril group. Likewise, other such clin-
ical trials are confounded either by a 2–6  mmHg lower-systolic BP in the RAS 
blockade groups or the use of dihydropyridine CCBs with their adverse effects on 
glomerular BP transmission in the comparator groups [8, 12, 14, 61–67]. The post 
hoc statistical adjustments for BP differences between RAS blockade and compara-
tor arms are substantially limited by the potential for effect modifications given that 
the small BP differences are more likely to have larger impact in the more suscep-
tible individuals who are expected to be the primary contributors to the end points 
in these trials [55, 61]. Moreover, small differences in clinical BP, which are often 
not controlled for time of day and/or timing relative to drug dosing, may reflect 
larger differences in nocturnal BP [61, 68].

The claims of class-specific BP-independent protection by RAS blockade have 
been further weakened by the results of several clinical trials that have employed 
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dual RAS blockade so as to achieve more complete RAS blockade in at-risk popula-
tions. In addition to the once widely acclaimed results of cooperate study having 
been discredited and withdrawn [69], the other more recent clinical trials of dual 
RAS blockade (ONTARGET, ALTITUDE, and VA NEPHRON D) have also failed 
to show greater benefits than monoblockade. Moreover, a greater risk of serious 
adverse effects was noted (hyperkalemia, acute renal failure) [70–72], as is also true 
for the addition of a mineralocorticoid antagonist to RAS blockade [73]. Collectively, 
such data indicate that the guidelines for RAS blockade use should be similar to that 
for other antihypertensive agents with the titration of BP effects being balanced 
against the potential for adverse effects, rather than being targeted to surrogate 
markers of renoprotection.

Nevertheless, it needs to be emphasized that there are other compelling rationale 
for the use of RAS blockade in CKD patients. HTN in most CKD patients is primar-
ily volume dependent with relative RAS suppression. Therefore, adequate and sus-
tained BP reductions cannot be achieved without effective diuresis. Because 
effective diuresis activates RAS, combining diuretics with RAS blockade is very 
effective antihypertensive therapy in CKD. Additionally, RAS blockade counteracts 
the tendency to potassium and magnesium wasting that occurs with such diuretic 
use. Therefore, the antihypertensive synergy of diuretics and RAS blockade and 
their antagonism of each other’s adverse effects make this combination an effective 
and logical initial antihypertensive regimen for CKD patients [8, 12, 14].

Given that glomerular BP transmission is expected to be an around-the-clock 
phenomenon and that masked daytime and/or nocturnal HTN and BP lability are 
both widely prevalent and more difficult to control in CKD patients [74, 75], failure 
to achieve 24 h BP control has likely contributed to the suboptimal results in pre-
venting CKD progression [39]. The limitations of clinic BP measurements alone to 
ensure BP control are illustrated by the results of the ambulatory blood pressure 
monitoring (ABPM) that was performed at the end of the African American Study 
of Kidney Disease (AASK) trial before entry into the AASK cohort trial phase [75]. 
Masked HTN (elevated day or night time BP levels but controlled clinic BP) was 
present in 80% of the participants with CKD. Forty percent of the patients in fact 
demonstrated a reverse dipping pattern with a systolic BP at night that was on aver-
age ~14 mmHg higher than their clinic systolic BP. Wider use of home and ABPM 
is accordingly being advocated to improve renal outcomes [74, 76].
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28Cushing’s Syndrome and Glucocorticoid 
Excess

Christian A. Koch

28.1	 �Introduction

Cushing’s syndrome (CS) is considered a rare disease and results from exposure to 
excess glucocorticoids. This chapter represents an update from previous chapters 
on this topic [1–5]. The most frequent form of CS is related to exogenous glucocor-
ticoid excess triggered and caused by physicians prescribing and/or administering 
glucocorticoids (oral, intravenous, intranasal, transdermal, inhalation, rectal) in 
dosages exceeding the threshold generally accepted to be equivalent to 5–7.5 mg of 
prednisone. For instance, dexamethasone is a very potent glucocorticoid with a 
much higher affinity to the glucocorticoid receptor and a longer biological half-life 
than hydrocortisone (1 mg dexamethasone is equivalent to 25 mg of hydrocortisone 
with regard to anti-inflammatory potency). To facilitate calculating equipotent ste-
roid doses, one could use the corticosteroid conversion calculator (http://clincalc.
com/corticosteroids/). Therefore, one should consider inter- and intraindividual 
susceptibility to glucocorticoid receptor affinity and duration of action when pre-
scribing glucocorticoids and assessing individuals for the presence of CS.  The 
prevalence and incidence of endogenous CS depend on sociodemographic and eth-
nic factors with approximately 2–5 new cases per million of population per annum 
[6–8]. The annual incidence of endogenous CS can be further subdivided to 1.2–
2.4 cases per million coming from pituitary causes and 0.6 cases of CS from adre-
nal causes [8]. As reviewed in various large series including the one from the 
National Institutes of Health in Bethesda, MD, USA, signs and/or symptoms in 
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patients with CS are not pathognomonic, although clinical sensitivity has been 
reported high (>80%) for weight gain, impaired short-term memory, plethora, 
round face, thin, and fragile skin. Specificity (>80%) is thought to be high for 
osteopenia/fracture, ecchymoses, proximal muscle weakness, and hypertension 
(Table 28.1) [7, 9, 10].

A recent observational, prospective, multicenter study including 353 patients 
attending endocrinology units for outpatient visits reported developing a risk score 
to predict CS in an at risk population which potentially helps identifying at risk 
patients in non-endocrinological settings (primary care). This risk score included 
muscular atrophy, osteoporosis, dorsocervical fat pad, and late-night (11 PM) sali-
vary cortisol concentrations, all of which would provide an estimated area under 
the receiver operating characteristic curve of 0.93 with a sensitivity of 96% and 
specificity of 83% [11]. The authors underscore the importance of signs and symp-
toms of CS in the screening process rather than overly reliance on biochemical 
tests such as late-night salivary cortisol. This is also demonstrated by the occur-
rence of neuroendocrine alterations in obese patients (which can mimic CS) includ-
ing elevated concentrations of adrenocorticotropic hormone (ACTH), leptin, 
insulin, and aldosterone and reduction of other hormones including growth hor-
mone and testosterone [12]. Furthermore, cross-sectional analyses from a cohort of 
264 obese children showed that slightly increased urinary free cortisol concentra-
tions were measured in 31% [13]. In the pediatric age group up two 18 years of 
age, approximately 10% of new CS cases occur each year with 80% of cases being 
caused by Cushing’s disease [14, 15]. Weight gain and delayed growth/short stat-
ure are frequent findings in children and adolescents [16–18]. The prevalence of 
hypertension in children and adolescents with endogenous CS has been reported to 
be up to 60% and in adults up to 80% [10, 19]. Patients with exogenous CS develop 
hypertension depending on the duration and dose of glucocorticoids administered 
which may or may not be associated with steroid-induced diabetes mellitus, 
depending on individual body composition and insulin resistance risk factors. 
Generally, about 20% of such patients are found to be hypertensive depending on 
the population studied [20].

Table 28.1  Signs and symptoms of Cushing’s syndrome (reproduced with permission from 
ref. [7], Nieman 2015)

More common Less common
Decreased libido ECG abnormalities or atherosclerosis
Obesity or weight gain Dorsal fat pad
Plethora Edema
Round face Abnormal glucose tolerance
Menstrual changes Osteopenia or fracture
Hirsutism Headache
Hypertension Backache
Ecchymoses Recurrent infections
Lethargy, depression Abdominal pain
Striae Acne
Proximal muscle weakness Female balding
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28.2	 �Illustrative Case Studies

28.2.1	 �Case 1

An 18-year-old boy was referred for short stature and growth hormone deficiency. 
He had initially been evaluated at the age of 16 years for hypertension (treated with 
clonidine) and delayed growth after his mom had noticed that the patient’s younger 
sibling surpassed his height. His bone age assessed by the standards of Greulich and 
Pyle was more than 2 years behind his chronologic age. His thyroid function tests 
had been normal. He was started on growth hormone therapy but nonresponsive 
when receiving 0.26 mg/kg body weight per week. His weight was approximately 
53 kg and his blood pressure 140/98 mm Hg (134/89 mm Hg is approximately the 
95th BP percentile reading) when clonidine therapy was tapered and amlodipine 
(5–10 mg daily) started. His father’s height is 170 cm and his mother’s 155 cm, 
providing a calculated midparental height of approximately 170 cm. His family his-
tory was significant for short stature in maternal great aunts who were born triplets 
and are all 149 cm as adults. When we evaluated him in the clinic, his voice was 
deep, but his total testosterone was 64 ng/dL with a free testosterone of 2.9 ng/dL, 
both low. His height was measured at 137.5 cm and bone age was at 16 years with 
chronologic age being 18 years and 8 months. He presented with clinical features of 
CS and partial collapse of the L1–L3 vertebral bodies (Fig. 28.1a–c). He had gyne-
comastia, facial plethora, buffalo hump, acne, and purple stretch marks more than 
1 cm wide [21, 22].

Noon serum cortisol was elevated at 32 μg/dL, ACTH at 71 pg/mL, insulin-like 
growth factor-1 (IGF-1) at 215 ng/mL, 24-h urinary free cortisol at 280 μg (normal, 
less than 45 μg), and serum cortisol at 8 AM after 1-mg dexamethasone high at 
26 μg/dL. A pituitary magnetic resonance scan showed a 5 × 3 × 3 mm hypoenhanc-
ing oval structure in the right anterior lateral pituitary suggestive of a microadenoma 
(Fig. 28.2).

The young man underwent transsphenoidal surgery with removal of this micro-
adenoma and had a serum cortisol of 1.3 μg/dL with a concomitant ACTH of 1.9 pg/
mL on postoperative day 1. Pathology revealed an ACTHoma (ACTH-secreting 
pituitary adenoma) with a Ki-67 index of less than 3% and negative p53 immunos-
tain. Because of postoperative nausea and symptoms of adrenal insufficiency/gluco-
corticoid withdrawal, he received hydrocortisone 10 mg in the morning and 5 mg at 
5 PM for a few weeks and was unable to taper hydrocortisone off. He developed 
several kidney stones postoperatively and had an elevated uric acid level for several 
months. Kidney stones appear to be an underrecognized clinical sign in pediatric 
Cushing’s disease, as 19% of such patients either have radiographic evidence or a 
history of kidney stones [23]. Our patient’s breast tissue/bilateral gynecomastia 
regressed, he became more energetic with growing muscle mass, and he grew 
approximately 4 cm on follow-up 6 months postoperatively. His IGF-1 level then 
increased to 261  ng/mL (normal, 104–484  ng/mL) and his total testosterone to 
457 ng/dL with a free testosterone of 15 ng/dL. His weight declined to 45 kg, and 
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a

b

c

Fig. 28.1  Clinical features 
of CS (a–c)
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he no longer has stretch marks or a dorsocervical fat pad. He no longer takes anti-
hypertensives and now has a BP of 114/61 mm Hg. He continues taking hydrocor-
tisone for now, and it is known that full recovery of the hypothalamic-pituitary-adrenal 
axis in children and adolescents after surgical cure of Cushing’s disease can be 

a

b

Fig. 28.2  Pituitary MRI 
scan, sagittal (a) and 
coronal (b) view
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expected in 75% of patients by 12 months and in 95% of cases by 18 months. An 
ACTH stimulation test is pending [24].

28.2.2	 �Case 2

Another young man, a 19-year-old male was admitted because of inexplicable 
severe back pain for the last 3 months. On presentation, the young man had a ple-
thoric moon face, red striae, and hypertension (Fig. 28.3).

He reported increased appetite, mood irritability, latent agitation, erectile dys-
function, sleep impairment, recent proximal muscle weakness of the limbs, and a 
15 kg weight gain during the last 6 months. Furthermore, he experienced a reduc-
tion of his body height from 182 to 177  cm. A radiograph of the spine showed 
multiple osteoporotic vertebral fractures (Fig. 28.4).

Abdominal ultrasound demonstrated mild hepatomegaly and nephrocalcinosis. 
Laboratory evaluation showed impaired glucose tolerance, mild secondary hyper-
parathyroidism, and ACTH levels throughout the day and nighttime being elevated at 
above 26 pmol/L including peaks of 45 pmol/L (reference range, 1.98–11.4 pmol/L) 
with high basal serum cortisol levels up to 1367 nmol/L (reference, 187–724 nmol/L). 
A 24-h urinary free cortisol (UFC) (normal 22–212 nmol per day) was constantly 
above 1055 nmol/day. Several overnight dexamethasone suppression tests demon-
strated no suppression of serum cortisol. 100 μg of corticotropin-releasing hormone 
(CRH) stimulated plasma ACTH to less than 30% of the basal values suggesting 
ectopic ACTH-dependent CS.  Inferior petrosal sinus sampling (IPSS) showed no 
central-to-peripheral ACTH gradients, and magnetic resonance imaging (MRI) of 
the pituitary gland showed no abnormality. The serum level of chromogranin A 
(CgA) was slightly elevated, whereas neuron-specific enolase (NSE), calcitonin, and 
synaptophysin were within the normal reference range. Screening for other peptides 
showed normal levels of urinary-fractionated metanephrines and 5-hydroxyindole-
acetic acid.

Extensive imaging work-up was initiated in search for a neuroendocrine tumor 
ectopically secreting ACTH [25–29]. A computed tomography (CT) scan of the 
chest showed a small lesion in the dorsal lower lobe most likely according to 

Fig. 28.3  Purple striae at 
initial presentation
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segment 9 and a lesion in the ventrolateral lower lobe most likely localized in seg-
ment 8; both were interpreted as nonspecific rather than possible tumor. Furthermore, 
a 10-mm-sized lesion in the peripheral left lower lobe close to the costodiaphrag-
matic recessus was revealed. However, CT-guided biopsy of the left peripheral 
lesion could not detect any tumor tissue. The patient underwent a whole-body scin-
tigraphy (octreoscan). Images were obtained 4 and 24 h after injection of 170 MBq 
indium 111-labeled octreotide. The octreoscan yielded three spots of radiotracer 
enrichment in the right hilar region (Fig. 28.5a, b).

A whole-body positron emission tomography (PET) with 18F-fluorodeoxyglucose 
(FDG) and bronchoscopy did not show any suspicious lesions. Medical treatment 
was initiated in order to suppress the excessive hypercortisolism/glucocorticoid 
excess. A sufficient cortisol suppression was achieved through a combination of 
ketoconazole (600  mg/day) and metyrapone (2.5  g/day) with hydrocortisone 
replacement therapy (10 mg/day). Morning serum cortisol was temporarily reduced 
(80–300 nmol/L) and the patient improved clinically. According to Trainer and col-
leagues, the aim of drug therapy for CS should be to lower the mean serum cortisol 
through the day into the range of 150–300 nmol/L, recognizing that there is high 

Fig. 28.4  Radiograph of 
the vertebral column 
showing vertebral 
compression fractures
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cross-reactivity of 11-deoxycortisol in cortisol immunoassays leading potentially to 
erroneously high cortisol measurements in patients treated with metyrapone [30, 
31]. The latter issue can be avoided by utilizing liquid chromatography/tandem 
mass spectrometry in measuring cortisol. In the course of treatment of our patient, 

a

b

Fig. 28.5  Whole-body scintigraphy (octreoscan) showing three hilar spots at the right lung
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liver enzymes became mildly elevated but returned back to normal range after dose 
reduction of ketoconazole. Osteoporosis treatment was initiated with cholecalcif-
erol, calcium, and a bisphosphonate infusion. Another round of diagnostics 6 months 
after initial presentation included chest radiograph, thoracic and abdominal CT 
scans, bronchoscopy, and an octreoscan. The diagnostic findings remained largely 
unchanged. Thus, an exploratory thoracotomy was performed. The patient under-
went localized lymph node dissection along the bronchi of the middle and lower 
lobe and a wedge resection of a palpable node within the dorsal right lower lobe. 
Histopathologic examination demonstrated intrapulmonary lymph node metastases 
of a low-grade neuroendocrine tumor at the right hilar region, the central middle 
lobe, and the right lower lobe. Immunohistochemical analysis of the metastatic tis-
sue showed strong expression of ACTH. Postoperatively, there was no remission of 
hypercortisolism. Thus, medical treatment with steroidogenesis inhibitors (ketocon-
azole + metyrapone) was resumed. Since the primary tumor was not yet identified, 
further investigations were performed.

Three months after metastasis resection, a CT scan of the chest showed the same 
lesion in the ventrolateral right lower lobe already revealed by preoperative CT 
scan. Additionally, a new dorsal lesion in the lower lobe measuring 20 mm in maxi-
mal diameter could be identified (Fig. 28.6). An octreoscan confirmed the ventrolat-
eral lesion in the lower lobe (Figs.  28.7 and 28.8) and demonstrated again two 
right-sided hilar focuses (Figs. 28.9 and 28.10). An FDG-PET scan showed multiple 
lesions with high glucose accumulation in the dorsal right lower lobe, the right 
middle lobe, and a focal tracer uptake in the right hilar region (Fig. 28.11).

In accordance with these findings, a right lower bilobectomy was performed, 
supposing that the primary tumor would be located within the right lower or middle 
lobe. Radical lymph node dissection was undertaken. Histological examination 

Fig. 28.6  CT scan of the 
chest: intrapulmonary 
2-cm lesion in the dorsal 
lower lobe
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Fig. 28.7  Octreoscan 
showing ventrolateral 
pulmonary tracer 
enrichment

Fig. 28.8  Fusion of CT 
imaging and octreoscan 
showing a ventrolateral 
focus

Fig. 28.9  Octreoscan 
showing two hilar foci

demonstrated metastases of a highly differentiated neuroendocrine tumor in 9 of 18 
resected lymph nodes. Within the lung parenchyma submitted for histopathological 
evaluation, tumor cells could not be identified. However, postoperatively eightfold 
elevated ACTH dropped to the midnormal range, and tenfold elevated 24 h-UFC 
also decreased to the upper normal range. Since no primary tumor was identified by 
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histopathologic examination, we decided to perform adjuvant radiation of the medi-
astinum and the right hilus with a dose of 63.2 Gy over 3 months. Over the course 
of the following months, the patient experienced remission of cushingoid features. 
Dexamethasone suppression test showed a significant decline in serum cortisol 
from 470 to 63 nmol/L (reference aim, <80 nmol/L), and ACTH was suppressed 
from 7.55 to 1.73 pmol/L. One year after surgical resection, a radiograph of the 
spine demonstrated unchanged multiple vertebral fractures including end plate 
deformity and wedge-shaped malformation. Nevertheless, the patient reported hav-
ing complete relief of back pain. Eight years after the detection of the primary 
tumor, another follow-up screening was performed. The patient reported well-being 
and showed no cushingoid features. Bone mineral density measurement of the lum-
bar spine showed a normal bone density (T-score, 0.7), whereas density measure-
ment of the femur indicated increased fracture risk (T-score, −1.3). A 1-mg 
overnight dexamethasone suppression test showed an adequate cortisol suppression, 

Fig. 28.10  Fusion of CT 
imaging and octreoscan of 
the chest showing two hilar 
foci

Fig. 28.11  FDG-PET scan: tracer uptake in the dorsal lower and middle lobe and the right hilar 
region

28  Cushing’s Syndrome and Glucocorticoid Excess



492

24-h UFC was within the normal range, and chromogranin A, NSE, and calcitonin 
in serum were undetectable. Imaging work-up, including 68Ga-DOTA-D Phe1-Tyr3-
octreotide (DOTATOC)-PET/CT and MRI of the chest and abdomen, showed no 
evidence of tumor tissue. The now 28-year-old patient did not develop avascular 
necrosis of the hip which can occur in patients with glucocorticoid excess [32].

28.2.3	 �Case 3

The third illustrative patient, a 48-year-old black woman, had been referred to the 
clinic for severely elevated parathyroid hormone levels, tingling in her fingertips, 
and hypertension [33]. On exam, she had no cushingoid features and a body mass 
index of 35 kg/m2. She was diagnosed with pseudohypoparathyroidism/parathyroid 
hormone resistance and bilateral adrenal tumors. Bone density measurements 
showed positive T-scores at the femur and spine but a T-score of minus 0.6 at the left 
forearm. Serum cortisol at 8 AM after 1 mg of dexamethasone overnight was 5 μg/
dL. Her BP was controlled with amlodipine and spironolactone. At present, she did 
not have diabetes mellitus which can occur in patients with CS [34] but is at risk for 
that, considering that she is obese and recent studies on “nonfunctional” adrenal 
tumors with an estimated 10% of such tumors secreting excess cortisol without the 
classic signs or symptoms of CS [35]. Follow-up of this patient is undertaken 
according to the recent guidelines for adrenal incidentaloma, considering comor-
bidities (such as hypertension and diabetes mellitus) and their treatment [36].

In patients with CS caused by an adrenal tumor, ACTH independence exists, that 
is, cortisol secretion and excess occur without stimulation by ACTH [17, 37]. This 
usually leads to hypoactivity and atrophy of the contralateral adrenal gland 
(Fig. 28.12). Rarely, ACTH can be secreted ectopically by adrenal medullary lesions 
[38–40].

CRH

ACTH
ACTH

ACTH

Cortisol

CortisolCortisol

Patient with a cortisol-producing
adrenal adenoma

Apoptosis

Atrophy
Adenoma

Normal adrenal gland

CRH
Hypothalamus/Hippocampus

Fig. 28.12  Hypothalamic-pituitary-adrenal axis
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28.3	 �Causes and Diagnosis of Cushing’s Syndrome

CS can result from several possible causes:

	(a)	 Iatrogenic (exogenous) use of glucocorticoids
	(b)	 Pituitary tumor secreting ACTH (approx. 70% of endogenous CS cases in 

adults and 90% in children)
	(c)	 Any neuroendocrine tumor that secretes either ACTH or CRH (approx. 10%)
	(d)	 Adrenal nodule, adenoma, and carcinoma secreting cortisol (4%, 10%, and 5%, 

respectively)

The incidence of endogenous CS is ~2–3 cases per one million inhabitants per 
year (6). Approximately 75–90% of ACTH-independent causes of CS are due to 
unilateral and benign cortisol-producing adenomas, with the remaining majority 
due to bilateral adrenocortical hyperplasias (BAH) [41]. BAH are divided into 
micronodular (<1  cm in diameter), macronodular (>1  cm in diameter), or non-
nodular. Briefly, the micronodular subtypes are usually diagnosed in children and 
young adults and are either pigmented (primary pigmented nodular adrenocortical 
disease [c-PPNAD]) as seen in familial cases in the context of Carney complex, or 
isolated (i-PPNAD) when nonsyndromic, and not pigmented (iMAD, isolated mas-
sive adrenocortical disease). The macronodular subtypes, which are usually diag-
nosed in adults >50  years old, may be sporadic or familial. Primary bilateral 
macronodular adrenocortical hyperplasia (PBMAH) was first described in 1964 
[42] and was previously called massive macronodular adrenocortical disease 
(MMAD), bilateral macronodular adrenal hyperplasia (BMAH), or ACTH-
independent macronodular adrenocortical hyperplasia (AIMAH) [43]. PBMAH 
may be syndromic, as seen with mutations in ARMC5, APC, MEN1, FH, and the 
Carney triad, Carney-Stratakis syndrome, and hereditary nonpolyposis colorectal 
cancer [44–46]. Other subtypes of macronodular PBMAH include primary bimor-
phic adrenocortical disease (PBAD), as seen in McCune-Albright syndrome, and 
lesions with G-protein-coupled receptors that produce excess cortisol only in 
response to certain endogenous factors (e.g., gastrointestinal inhibitory polypeptide, 
GIP), as seen with food-dependent Cushing’s syndrome (FDCS).

If CS is clinically suspected, the following work-up (Fig. 28.13) should be pur-
sued [4, 8].

28.4	 �Diagnostic Considerations

In general, biochemical and other investigations should follow the clinical suspicion 
for CS based on signs and symptoms. Diagnostically even more challenging are 
scenarios as demonstrated in case 3 when biochemical evidence of glucocorticoid 
excess is present without any or very little clinical features of CS. In this regard, one 
should consider “pseudo-Cushing” states or physiologic hypercortisolism 
(Table 28.2 in ref. [7], Nieman 2015, with permission).
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ACTH-independent

Serum ACTH

ACTH-dependent

+

Screening tests:
1-mg ODST
24-hour UFC (x2)
LNSC (x2)
LDDST (2 mg/d for 48 h)

High-dose ODST/or
CRH/or
DDAVP (where appropriate)

Cushing disease or
Ectopic ACTH-tumor

*in patients with suppressed High-dose ODST or CRH tests
** in patients with non-suppressed High-dose ODST or CRH tests

Localization procedures for ACTH-
dependent

•  *Pituitary MRI and/or IPSS
•  **Neck/Chest/Abdominal CT or
   MRI ± Nuclear imaging

2 positive screening tests

Localization procedures for ACTH-independent patients
Adrenal imaging (CT/or MRI)±
Nuclear imaging

•   Cortisol-producing adenoma (CPA)
•   Aldosterone-producing
    adenoma (APA; co-secretor)
•   Adrenocortical carcinoma (ACC)
•   Non-nodular bilateral
    adrenocortical hyperplasia (BAH)
•   Primary pigmented nodular
    adrenal disease (PPNAD)
•   Primary bilateral macronodular
    adrenocortical hyperplasia
    (PBMAH)
•   Isolated micronodular
    adrenocortical disease (iMAD)
•   Food-dependent Cushing
    syndrome (FDCS)

Adrenocortical tumors or hyperplasia;

Fig. 28.13  Diagnostic work-up for patients with Cushing’s syndrome. Modified with permission 
from Hannah-Shmouni, Melcescu, & Koch. Testing for Endocrine Hypertension, Chap. 7, in 
Leslie De Groot (editor), online www.endotext.org, 2016 (ref. [4])

Table 28.2  Physiologic hypercortisolism, with permission from ref. [7], Nieman 2015

Some clinical features of CS may be present
Pregnancy
Depression and other psychiatric conditions
Alcohol dependence
Glucocorticoid resistance
Morbid obesity
Poorly controlled diabetes mellitus
Unlikely to have any clinical features of CS
Physical stress (hospitalization, surgery, pain)
Malnutrition, anorexia nervosa
Intense chronic exercise
Hypothalamic amenorrhea
Cortisol-binding globulin excess (increased serum cortisol but not urinary free cortisol)
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28.5	 �Diagnostic Considerations: Biochemical Evaluation

The initial screening test for CS should be based on the suitability for a given patient 
(see Table 28.1). The tests recommended by the Clinical Practice Guidelines of the 
Endocrine Society [8] are late-night salivary cortisol (LNSC, two measurements), 
1-mg overnight dexamethasone suppression test (ODST), urine free cortisol (UFC, at 
least two measurements), and the longer low-dose DST (LLDST, 2 mg/day for 48 h).

A random serum cortisol or plasma ACTH levels, 8-mg DST, urinary 
17-ketosteroids, or the insulin tolerance test should not be used to screen for CS. The 
clinician should be aware of any current or recent use of oral, skin creams, rectal, 
inhaled, topical, herbal, or injected glucocorticoids before biochemical testing to 
avoid false positives.

Assays differ widely in their accuracy and should be chosen on the basis of their 
performance. Thus, knowledge of assay variability, functional limit of detection, 
precision, and normal ranges should be carefully assessed to assist in the interpreta-
tion of the test results. Antibody-based immunoassays (RIA and ELISA) can cross-
react with cortisol metabolites and synthetic glucocorticoids, while structurally 
based assays (HPLC and LC-MS/MS) do not pose this problem and are the method 
of choice for detection of cortisol and/or other metabolites [4].

Late-night salivary cortisol (LNSC): Patients with CS have an impaired diurnal 
variation of cortisol. The loss of circadian rhythm with absence of a late-night cor-
tisol nadir is a consistent biochemical abnormality in patients with CS [8]. Since 
biologically active free cortisol in the blood is in equilibrium with cortisol in the 
saliva, then measurement of a late-night salivary cortisol (LNSC) level by liquid 
chromatography-tandem mass spectrometry (LC-MS/MS) can be employed as a 
screening test for CS. 0.5 mL (minimum 0.2 mL) of saliva is necessary for the test. 
Basic instructions for collection include no food, smoking (ideally avoided on the 
day of testing), chewing tobacco/licorice (contains the 11β-hydroxysteroid dehy-
drogenase type 2 inhibitor glycyrrhizic acid), or fluids for 30 min–1 h prior to col-
lection; avoid any activity that can cause gums to bleed, including brushing and 
flossing of teeth, or stress; the saliva should be collected 10 min after rinsing the 
mouth with water; the swab is placed under the tongue until well saturated approxi-
mately 1 min; the specimen can be placed in room air for up to 5 days and refriger-
ated for 7 days. Two saliva samples on two separate evenings between 2300 and 
2400 ho should be collected because the hypercortisolism of CS can be variable, and 
this strategy increases confidence in the test results. Levels at midnight ≤0.09 μg/dL 
(see questdiagnostics.com) are considered normal (cave: cutoff is assay dependent, 
for instance, the electrochemiluminescence immunoassay). The timing of the col-
lection should be adjusted to the time of sleeping for shift workers or those with 
variable bedtimes. One study found that in men ≥60 years, 20% of all participants 
and 40% of diabetic hypertensive subjects had at least one elevated LNSC [47], 
which questions its utility as a screening test in this age group. LNSC is useful in 
detection of early recurrence from CS in the postoperative period where urinary free 
cortisol and morning cortisol levels may be normal. If there is a normal diurnal 
rhythm (i.e., an appropriately low LNSC), then remission is likely [8]. LNSC yields 
a 92–100% sensitivity and a 93–100% specificity for the diagnosis of CS.
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1-mg overnight dexamethasone suppression test (ODST): Patients with CS fail to 
suppress ACTH secretion from the pituitary gland when low doses of the synthetic 
glucocorticoid dexamethasone are given. This test entails administration of 1 mg of 
dexamethasone at 2300 h the night before a morning (0800 h) blood sample for 
serum cortisol is drawn, simultaneously with a dexamethasone level (if feasible) to 
ensure adequate plasma concentrations [>5.6 nmol/L (0.22 μg/dL)] [48]. Variable 
absorption and metabolism of dexamethasone may influence the result of both the 
1-mg ODST and the longer low-dose DST (LDDST, 2 mg/day for 48 h). Patients 
should avoid eating or drinking for 12 h before the morning blood test. Drugs such 
as phenytoin, phenobarbital, carbamazepine, rifampicin, and alcohol induce hepatic 
enzymatic clearance of dexamethasone, mediated through CYP3A4, thereby reduc-
ing the plasma dexamethasone concentrations leading to false positives [8]. 
Dexamethasone clearance may be reduced in patients with liver and/or kidney fail-
ure. Interpretation of the serum cortisol has many caveats. The serum cortisol assay 
measures total cortisol, which is not an adequate representation of the biologically 
relevant free cortisol levels in conditions that cause cortisol-binding globulin (CBG) 
deficiency (e.g., nephrotic syndrome, cirrhosis, critical illness, postoperative period, 
CBG deficiency, or malnourished states) or excess (e.g., obesity, pregnancy, oral 
contraceptives, and estrogen therapy). False positives for ODST are seen in 50% of 
women taking oral contraceptives and should be withdrawn for 6 weeks before test-
ing or retesting. Certain conditions associated with abnormal cortisol levels need to 
be excluded: alcoholism, major depression, stress, thyrotoxicosis, poorly controlled 
diabetes mellitus, pregnancy, or kidney failure. Morning cortisol levels >1.8 μg/dL 
(50 nmol/L) are considered positive [8]. If an increased specificity (95–100%) is 
sought, the longer LDDST (2 mg/day for 48 h) could be employed or a higher serum 
cortisol threshold for the 1-mg ODST is used. This is particularly useful in the 
evaluation of adrenal incidentalomas where a cutoff of >5 μg/dL (137.95 nmol/L) 
increases specificity for the detection of autonomous cortisol secretion [36]. Fast 
acetylators of dexamethasone may have a false positive test with the 1-mg ODST, 
which can be overcome with the longer LDDST. DST is not the screening test of 
choice in pregnancy, epilepsy, and cyclic CS. DST is the test of choice in renal fail-
ure and in the evaluation of an adrenal incidentaloma for autonomous cortisol secre-
tion (so-called mild or subclinical CS).

Urine free cortisol (UFC): Unlike serum cortisol, UFC provides an integrated 
assessment of cortisol secretion that is not bound to CBG over a 24-h period. 
Therefore, UFC is not affected by conditions and medications that alter CBG. Two 
UFC samples should be collected, with the first morning void discarded so that the 
collection begins with an empty bladder, up to and including the first morning 
void on the second day [8]. Patients should not drink excessive amounts of fluid 
and to avoid the use of any glucocorticoid preparations. Because the hypercorti-
solism of CS can be variable, at least two collections should be performed, which 
increases confidence in the test results [8]. Values above the upper limit of normal 
for the particular assay are considered positive, provided the creatinine shows that 
the collection is complete and that the urine volume is not excessive (>5  L). 
Pseudo-Cushing’s syndrome is associated with false positive UFCs and should be 
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considered on the differential. UFC appears to be less sensitive than the 1-mg 
DST or LNSC for the identification of autonomous cortisol secretion in the setting 
of an adrenal incidentaloma. Upper limits of normal are much lower with HPLC 
or LC-MS/MS than in antibody-based assays (as low as 40% of the value mea-
sured by RIA).

Plasma ACTH: A serum ACTH level could help narrow the differential diagnosis 
of hypercortisolemia (ACTH-dependent vs. ACTH-independent) after the diagnosis 
has been established. Immunochemiluminometric assays detect intact ACTH; 1.5-
mL frozen EDTA plasma (0.3  mL minimum) is collected between 7:00 and 
10:00 AM, transferred on ice and centrifuged immediately after collection to sepa-
rate plasma from cells. The reference range for ages 3–17 years is 9–57 pg/mL and 
age ≥18 years is 6–50 pg/mL (see questdiagnostics.com). Elevated levels are seen 
in ectopic ACTH and Cushing’s disease, unless cyclicity is present, while sup-
pressed levels are seen in ACTH-independent causes, such as CS due to adrenocor-
tical tumors and hyperplasia. An ectopic ACTH-secreting pheochromocytoma from 
the adrenal glands is an exception to the rule. False positives are not uncommon and 
could be from errors in sample transfer and processing, assay interference (e.g., 
5 mg/day of biotin or presence of monoclonal mouse antibodies), and stress.

Corticotropin-releasing hormone (CRH) stimulation test: This test is useful for 
differentiating between ACTH-dependent and ACTH-independent CS. Human and 
ovine CRH are commercially available and are given intravenously (bolus) at a dose 
of 1 μg/kg body weight. ACTH and cortisol levels are measured before (−5, 0 min) 
and after (15, 30, 45, 60, 90, and 120 min) the administration of CRH. Some studies 
suggested that the measurements of ACTH and cortisol before and after 15 min, 
30 min and 45 min, 60 min, respectively, are sufficient to diagnose patients with 
ACTH-dependent CS [49]. A rise in cortisol >20% and ACTH >35% in comparison 
with baseline levels is diagnostic for Cushing’s disease, with a sensitivity of 93% 
and a specificity of 100% [49].

The diagnostic value of the (1 mg) dexamethasone suppression test in the diag-
nosis of CS has been questioned, especially in borderline cases [50]. There is tre-
mendous interpatient/interindividual variability in plasma levels of dexamethasone 
during dexamethasone suppression testing [48].

There is also a long list of medications and circumstances that might interfere 
with the interpretation of results of the dexamethasone suppression test. For instance, 
there are various drugs that impact CYP450 enzymes including CYP3A which can 
be induced or inhibited (http://medicine.iupui.edu/clinpharm/ddis/main-table/).

Among medications that accelerate dexamethasone metabolism by inducing 
CYP3A are phenobarbital, rifampin, mitotane, pioglitazone, and carbamazepine, 
and among those that impair dexamethasone metabolism by inhibiting CYP3A 
are diltiazem, fluoxetine, and ritonavir. Cortisol-binding globulin can be raised by 
estrogens and mitotane which may lead to “falsely” elevated cortisol concentra-
tions. Rather than measuring total serum cortisol, it may be more useful to reli-
ably (for instance, by equilibrium dialysis with liquid chromatography/tandem 
mass spectrometry) determine the amount of free cortisol analogous to measuring 
free thyroid hormone, given that the test is validated [51]. As saliva represents an 
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ultrafiltrate of plasma, more reflecting the serum free cortisol concentration, it is 
very useful in the diagnosis of CS. Midnight salivary cortisol has a very high sen-
sitivity and specificity (both greater than 97%) in this regard with specificity 
remaining high at 95% in women taking oral contraceptive pills [52]. Similarly, 
measuring urinary free cortisol by liquid chromatography tandem mass spectrom-
etry appears to have an excellent accuracy in diagnosing CS [53]. The Endocrine 
Society guideline and the adrenal incidentaloma guideline consider an 8  AM 
serum cortisol value of less than 1.8 μg/dL (50 nmol/L) after 1 mg of dexametha-
sone overnight as cutoff to exclude CS. For patients with adrenal incidentaloma, 
an 8 AM serum cortisol value of greater than 5 μg/dL is considered positive, while 
serum cortisol concentrations between 1.8 and 5 μg/dL are considered being sug-
gestive for possible CS [8, 36].

For late-night salivary cortisol, the cutoff to exclude CS is less than 145 ng/dL 
(4 nmol/L) [8]. In special populations, one should be more selective in utilizing 
the appropriate test to screen for and diagnose CS. In pregnant women who are 
suspected to have CS, measuring urinary free cortisol with trimester specific 
“cutoffs” is helpful [54, 55]. A systematic review of published cases of CS during 
pregnancy revealed that adrenal adenoma was the most frequent etiology (44% 
of cases) and women with active CS more often suffered from gestational diabe-
tes, gestational hypertension, and preeclampsia [54]. In patients with cyclic/
intermittent CS, urinary free cortisol and late-night salivary cortisol can assist in 
making the diagnosis besides watching for progressive clinical signs and symp-
toms of CS [37, 56].

Patients with chronic kidney impairment: Plasma-binding protein concentra-
tions and dexamethasone clearance can be significantly altered with decreased 
renal function, and normal suppression of cortisol after 1 mg of overnight dexa-
methasone is uncommon [3, 57–59]. Workman and colleagues [60] investigated 
seven uremic patients and concluded that normal suppression of plasma cortisol 
can be achieved in uremia if the duration of dexamethasone administration is pro-
longed sufficiently to compensate for the prolongation of cortisol half-life in 
patients with chronic renal failure. In patients with end-stage renal disease, the 
circadian cortisol rhythm is disrupted [58, 61]. Analyzing 100 urine samples, Chan 
and colleagues [62] found that patients with moderate or severe renal impairment 
(CrCl less than 60 mL/min) had lower urinary free cortisol excretion rates than 
those with no or mild renal impairment. A recent study including 80 outpatients 
with early stages of renal disease and 40 healthy subjects evaluated the diurnal 
variation of salivary cortisol and suppressibility of cortisol in saliva and serum 
after 1 mg of overnight dexamethasone with simultaneous measurement of circu-
lating dexamethasone and concluded that false-positive responses to 1 mg dexa-
methasone testing were associated with glomerular filtration rates lower than 
90 mL/min/1.73 m2 with higher dexamethasone doses being necessary to achieve 
adequate hypothalamic-pituitary-adrenal axis suppression, whereas salivary corti-
sol measurements were useful in assessing circadian cortisol profiles and feedback 
regulation in individuals with chronic kidney impairment [63]. Raff and Trivedi 
[64] measured late-night salivary cortisol concentrations as high as 15 nmol/L in 
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end-stage renal disease patients (reference range, less than 4 nmol/L or 145 ng/dL) 
and concluded that a normal late-night salivary cortisol value rules out CS in 
patients with end-stage renal disease. In patients on hemodialysis, the cortisol-to-
cortisone ratio is increased due to reduced activity of 11-beta-hydroxysteroid 
dehydrogenase [57].

Severe hypokalemia and obesity in an anuric hemodialysis patient can be related 
to CS from an adrenal adenoma [65].

Postoperative assessment: As recently assessed by the pituitary scientific com-
mittee of the American College of Endocrinology, recurrence of glucocorticoid 
excess after initial treatment of Cushing’s disease occurs in one third of patients 
over their lifetime. Therefore, long-term surveillance and monitoring should be con-
ducted [66]. Although the consensus is that a postoperative serum cortisol value of 
less than 2 μg/dL predicts a higher chance of long-term remission after transsphe-
noidal surgery in patients with CD, it is acknowledged that there is no single serum 
cortisol or ACTH cutoff value able to exclude all patients with recurrence. Table 28.1 
in that AACE paper reviews caveats of tests that are used to detect remission and/or 
recurrence in patients with CD, many of which have already been mentioned above 
in this chapter, including drugs that alter metabolism of dexamethasone, cyclical 
CS, salivary, and urinary free cortisol. One simple point to consider when evaluating 
any given individual for the presence of CS is their work schedule and sleep cycle 
(? shift work). Late-night salivary cortisol assessments appear to be more sensitive 
than urinary free cortisol or dexamethasone testing for detecting recurrence of CD 
[67]. Serum cortisol should be measured in the morning of postoperative day 1 after 
pituitary surgery with perioperative and postoperative glucocorticoids be held [68]. 
This may prove difficult as many intensive care doctors, neurosurgeons, and anes-
thesiologists prefer to administer hydrocortisone 50–100  mg intra- or periopera-
tively. To assess the integrity of the hypothalamic-pituitary-adrenal axis, some 
colleagues regard a postoperative day 3 serum cortisol value of 10 μg/dL or greater 
sufficient to decide against adrenal hormone replacement or for low-dose replace-
ment postoperatively [69].

Nelson syndrome: Typically, transsphenoidal surgery for removing an ACTHoma 
smaller than 10 mm has been reported to lead to remission rates between 65 and 
90%, whereas such rates are reported lower than 65% for macroadenomas [70]. Don 
Nelson in 1958 reported a woman who underwent bilateral adrenalectomy for 
refractory CD and then developed skin hyperpigmentation, visual field defects, ele-
vated plasma ACTH levels, and a large sellar mass. The diagnosis of Nelson syn-
drome can be established by documenting expansion of the pituitary tumor compared 
to tumor size before bilateral adrenalectomy and plasma concentrations of ACTH 
more than 200 ng/mL in addition to progressive elevation of ACTH (with an increase 
of more than 30%) on at least three consecutive occasions. Based on symptoms and 
tumor location, repeat surgery (transsphenoidal or transcranial) could be performed. 
Gamma knife radiosurgery can control tumor growth and lead to a reduction in 
plasma ACTH. Linear accelerator stereotactic radiosurgery and particle radiation 
therapy have also been utilized in such patients. Medical therapies include soma-
tostatin analogues including pasireotide, temozolomide, and cabergoline.
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In general, ectopic ACTH secretion usually causes higher glucocorticoid 
excess than ectopic ACTH oversecretion by an ACTHoma in the pituitary gland. 
This explains in part why patients with ectopic ACTH syndrome usually have a 
higher prevalence of hypertension and diabetes mellitus than those patients with 
Cushing’s disease [10, 19]. CS is well known to associate with significant morbid-
ity, as well as increase mortality rate. The last, assessed as standardized mortality 
ratio, ranges between 1.7 and 4.1 [6, 71–73], and is driven by associated morbidi-
ties which include hypertension, cardio- and cerebrovascular disease, hyperco-
agulability, diabetes mellitus, and depression. Of significant concern is the fact 
that mortality remains increased even after patients with CS have been treated. 
Although hypertension is seen more frequently in patients with Cushing’s disease 
than in those with adrenal CS, the survival rates are better for the first group of 
patients [71–74].

28.6	 �Diagnostic Considerations: Imaging

28.6.1	 �Pituitary MRI Pre- and Post-gadolinium Enhancement

As demonstrated in case study 1 (Cushing’s disease) of this chapter, MRI is the 
modality of choice in the evaluation of the pituitary gland and surrounding tissues. 
In young patients in whom the likelihood of an “incidentaloma” is low compared to 
older adults, inferior petrosal sinus sampling (IPSS) may not have to be performed. 
Sagittal and coronal planes are considered the most accurate in evaluating the anat-
omy of the pituitary gland and other CNS structures. When Cushing’s disease is 
suspected, contrast-enhanced magnetic resonance imaging (MRI) is recommended 
unless the patient is pregnant. T1-weighted (T1W) sequences and/or spoiled gradient 
recalled acquisition (SPGR) techniques provide the best images of the sella. 95% of 
microadenomas appear hypointense with no post-gadolinium enhancement in rela-
tion to normal surrounding tissues on T1W sequences [75]. Only ~60–80% of pitu-
itary adenomas are detected, and ~10% of healthy individuals have abnormal 
findings (incidentalomas) on MRI [76]. Diffuse hyperplasia of ACTH-producing 
cells and small microadenomas may not be seen on conventional or enhanced MRIs. 
Other techniques (IPSS or integrated 18F-FDG PET/CT) may be employed to 
increase the odds of disease detection. Dynamic MRI may further increase the 
detection rate of pituitary microadenomas at the expense of specificity.

If biochemical testing is suggestive of an ACTH-dependent source, the distinc-
tion should be made whether ACTH comes from the pituitary or ectopically from a 
neuroendocrine tumor. Inferior petrosal sinus sampling can assist in this regard and 
should be performed when the patient is hypercortisolemic. It usually takes 
4–6 weeks of hypercortisolism to suppress normal corticotropin function. Adrenal 
suppressive medications should be stopped approximately 4 weeks prior to inferior 
petrosal sinus sampling [9]. During inferior petrosal sinus sampling, ACTH is mea-
sured from samples drawn simultaneously from the right and left petrosal sinuses 
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and a peripheral vein, at 5 and 1 min before and 3, 5, and 10 min after administration 
of CRH (1 μg per kg body weight), intravenously. At each time point then, the fold 
increase of each petrosal value compared to the peripheral value is calculated with 
a central to peripheral step-up greater than 2 before CRH administration being sug-
gestive of CD and a central to peripheral step-up of greater than 3 also being sug-
gestive of CD, whereas lesser increases being more suggestive of an ectopic ACTH 
source. Caveats in this setting include abnormal venous drainage and anatomy and 
lack of expertise which may reduce petrosal ACTH values, thereby leading to a false 
negative test. Anatomical oddities causing difficulties in interpreting results of infe-
rior petrosal sinus sampling include cyclic CS caused by an ectopic pituitary ade-
noma in the midline sphenoid sinus and ACTH-secreting tumors originating in the 
maxillary sinus [77, 78]. In patients with CD who fail to demonstrate a peak inferior 
petrosal sinus to peripheral ACTH ratio greater than 3 after CRH administration, 
measuring prolactin as an index of pituitary venous effluent during IPSS can assist 
in accuracy [79, 80].

28.7	 �High-Resolution Chest, Neck, and/or Abdominal CT

This technique may detect tumors in ectopic or adrenocortical areas. Small lesions 
(<1 cm) could be missed (bronchial carcinoids, pancreatic neuroendocrine tumors). 
The sensitivity is lower than MRI (~50%) [81].

Ultrasonography: Although simple and economic, this imaging modality has a 
lower sensitivity in detecting adrenocortical masses than CT or MRI [82].

CT and MRI of the adrenal glands: CT of the adrenal glands analyzes contiguous 
2–5-mm-thick CT slices on multiple sections using multidetector row protocols 
[83]. CT and MRI can help determine whether an adrenocortical mass is an adreno-
cortical carcinoma and can also assess for local tumor invasion and metastatic dis-
ease [84–86]. A CT cutoff at 4.0 cm has a sensitivity of 93%, while an unenhanced 
CT density of ≤10 HU has a sensitivity of 96–100% and a specificity of 50–100% 
in differentiating benign from malignant tumors [87, 88]. Enhanced CT assists in 
distinguishing between lesions that are lipid-rich (aldosterone-producing adenoma, 
cortisol-producing adenoma) and lipid-poor (e.g., pheochromocytoma, adrenocorti-
cal carcinoma). Lipid-rich adenomas “wash out” contrast faster. They can be dif-
ferentiated by attenuation values or the percentage or relative percentage of washout 
as early as 5–15 min after enhancement if the unenhanced CT density is >10 HU 
[89]. Lipid-rich and lipid-poor lesions have a relative percentage washout on 
delayed scans of >50% and <50%, respectively [90]. One study demonstrated a 
washout value of 51% at 5 min and 70% at 15 min in benign lesions, with a sensitiv-
ity and specificity for the diagnosis of adrenocortical adenoma of ~96% at a thresh-
old attenuation value of 37 HU on the 15-min delayed enhanced scan [89]. MRI is 
as accurate in distinguishing lesions that are lipid-rich from lipid-poor. Chemical 
shift imaging MRI can sort out lipid-rich lesions with a sensitivity of 84–100% and 
a specificity of 92–100%.
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28.8	 �Nuclear Imaging

As shown in case study 2 of this chapter, these techniques include 111In-pentetreotide 
(OCT), 131I/123I-metaiodobenzylguanidine, 18F-fluoro-2-deoxyglucose-positron emis-
sion tomography (FDG-PET), 18F-fluorodopa-PET (F-DOPA-PET), 68Ga-DOTATATE-
PET/CT, or 68Ga-DOTATOC-PET/CT scan (68Gallium-SSTR-PET/CT), which may 
be used in select cases, primarily for the detection of ectopic ACTH tumors, which 
express surface receptors for somatostatin. These scans improve the sensitivity of con-
ventional radiology when tumor site identification is difficult [20]. 68Gallium-SSTR-
PET/CT likely offers the highest sensitivity [20]. A study conducted at the National 
Institutes of Health found that high sensitivity and positive predictive value suggest to 
perform thoracic CT/MRI plus octreoscan for initial imaging in searching for an ecto-
pic ACTH source, with lesion confirmation by two imaging modalities [25].

With respect to adrenal tumors, one study found that cortisol-producing adeno-
mas had a higher average FDG-PET SUVmax of 5.9 compared to nonfunctioning 
masses (average SUVmax 4.2) and aldosterone-producing adenoma (SUVmax 3.2), 
and an SUVmax cutoff of 5.33 had 50.0% sensitivity and 81.8% specificity in local-
izing a cortisol-producing adenoma [91]. Thus, FDG-PET may aid in the character-
ization and prioritization of adrenocortical nodules for surgery, particularly in the 
setting of bilateral adrenocortical masses.

18F-FDG PET: This modality has a sensitivity of 93–100% and specificity of 
80–100% in identifying malignant masses in the adrenal glands or elsewhere [92].

PET-CT: This modality has a sensitivity of 98.5–100% and specificity of 
92–93.8% in detecting and differentiating between the various types of adrenocorti-
cal masses. When enhanced CT is added, the specificity is reached to 100% [83].

28.9	 �Treatment

For all patients with endogenous glucocorticoid excess, the ideal therapy consists of 
tumor removal with establishment of eucortisolemia. Patients with CS should be 
treated according to the Endocrine Society guidelines [93]. For patients with CD, 
ideally transsphenoidal surgery (TSS) with resection of the ACTHoma should be 
performed. In some instances, preoperative inhibition of steroidogenesis is indi-
cated. If CS persists after TSS and incomplete tumor removal is suspected, a second 
neurosurgical operation should be done. If evidence for tumor invasion of the cav-
ernous sinus or other inoperable structures is evident, radiation therapy may have to 
be considered [94, 95]. Remission of CD occurred in 70% of patients treated with a 
mean tumor margin dose of 22 Gy and a median follow-up time of 48 months. New 
loss of pituitary function was evident in 36% of patients treated with gamma knife 
surgery in that study [94]. As the effect on hypercortisolism with declining gluco-
corticoid excess will take several months, patients treated with this approach may 
require overlapping medical therapy to help reduce glucocorticoid excess and its 
detrimental sequelae. Interestingly, in a study of 29 patients with CD and no histo-
logical confirmation of ACTHoma after removal of a “typically appearing adenoma” 
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by a very experienced neurosurgeon, 66% (19 pts) were cured within an average 
follow-up period of 38 months [96]. Furthermore, it is possible that multiple pitu-
itary adenomas are present in patients with CD, for instance, prolactin secreting, 
growth hormone secreting, or nonfunctional adenomas [97]. Crooke’s changes 
occur in approximately 80% of patients with CS (81% of cases with histologically 
confirmed ACTHoma; 74% of 213 patients diagnosed with CS who had undergone 
pituitary surgery) and depend on the degree of glucocorticoid excess and individual 
susceptibility [98].

For patients with ectopic ACTH syndrome, the ideal therapy also consists of 
tumor removal. However, it can take years to identify and localize the primary 
tumor causing ACTH and glucocorticoid excess [27, 28]. Goal here then also is to 
achieve eucortisolemia, as demonstrated in case study 2 of this chapter.

For patients with adrenal tumors secreting excessively cortisol, the goal is to 
remove the respective adrenal tumor. If this requires bilateral adrenalectomy, 
patients will have primary adrenal insufficiency in need for replacing gluco- and 
mineralocorticoids in dosages that will prevent exogenous glucocorticoid excess in 
the individual patient, depending on the individual tissue sensitivity to the type of 
glucocorticoid used and its affinity to the respective glucocorticoid receptor [99, 
100]. Typically, the amount of hydrocortisone 10–15  mg in the morning and 
5–10 mg in late afternoon is administered depending on body weight, plus fludro-
cortisone 50–150 μg daily, depending on blood pressure and plasma renin activity. 
In a systematic review on the outcome of bilateral adrenalectomy in CS, 82% had 
CD, 13% ectopic CS, and 5% primary adrenal hyperplasia [101–103]. The surgical 
mortality was less than 1% in patients with CD, and less than 2% had a relapse of 
CS (considering also accessory adrenal tissue or remnants). Hypertension, obesity, 
and depression improved in the majority of patients undergoing bilateral adrenalec-
tomy. Nelson syndrome occurred in 21% of patients and 46% of patients died in the 
first year after adrenalectomy. The risk of Nelson syndrome is higher in children 
than in adults after bilateral adrenalectomy, and the best predictor of developing this 
syndrome seems to be the baseline plasma ACTH value before glucocorticoid 
administration during the first year after bilateral adrenalectomy [101].

Medical therapy for patients with CD and CS has been systematically reviewed, 
concluding that pasireotide is the only treatment assessed in a randomized trial with 
a moderate level of evidence. The response rates with pasireotide in three prospec-
tive studies ranged from 17 to 29% [104]. Late-night salivary cortisol can be used to 
assess the early response to pasireotide in patients with CD [105]. All other medica-
tions including metyrapone, mitotane, cabergoline, ketoconazole, and mifepristone 
are supported by a low level of evidence in the treatment of CD or CS. The prospec-
tive cohort SEISMIC study of CS patients with diabetes mellitus, glucose intoler-
ance, or hypertension showed a response rate of 38–60% [106]. Insulin sensitivity 
can clearly be improved with mifepristone during treatment of CS [107]. 
Retrospective case series of CD patients treated with ketoconazole demonstrated a 
response rate of 45%, whereas the response rate in CS patients is 53–88% [104]. For 
metyrapone the CD response rate is 75% and the CS response rate 57%. For mito-
tane, the CD response rate is 72% and the CS response rate 39–70%. Retrospective 
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case series and a prospective cohort study demonstrated a CD response rate of 
25–50% for cabergoline. Ketoconazole has been used before transsphenoidal sur-
gery for several months and was able to control urinary free cortisol in 49% of 
patients with partial control in 36% and no control in 15% [108]. Aggressive corti-
cotroph pituitary tumors can be treated with capecitabine and temozolomide [109]. 
Some patients with neuroendocrine tumors which ectopically secrete ACTH 
respond to octreotide [110]. For patients requiring intravenous therapy, etomidate 
can be used [111].

Combining various medications with an additive or synergistic effect on treating 
patients with CD seems attractive and possible [112]. Ketoconazole can lead to 
elevation of liver enzymes in up to 10% of patients that is completely reversible and 
not dose-dependent. Metyrapone inhibits 11-beta-hydroxylase and aldosterone syn-
thase and has been used as monotherapy or in combination with ketoconazole with 
normalization of cortisol levels in approx. 80% of patients. Because of generating a 
potent mineralocorticoid byproduct, deoxycorticosterone (DOC), metyrapone may 
exacerbate hypertension in addition to increased adrenal androgen synthesis which 
might lead to virilism in women. Both steroidogenesis inhibitors demonstrate an 
escape phenomenon related to ACTH secretion which limits their use in long-term 
treatment. A brief sketchy overview of treating hypertension in patients with CS is 
provided in Fig. 28.14, with permission from ref. [2].

General principle for treatment of CS-related hypertension

Surgery – if possible

Specific for CS Non-specific for CS

Pituitary
ACTH

suppression

Adrenal
suppression

Receptor
antagonist

• GR (type II)
• Mifepristone

• MR
• Spironolactone
• Eplerenone

• Somatostatin analogue
• Octreotide
• Pasireotide

• Dopamine agonist
           • Carbergoline

• Ca channel blockers
• Beta blockers
• Other antihypertensives

In line with possible
pathogenic mechanism Others

• Angiotensin blocker
• Losartan

• ACE inhibitor
             • Ramipril

• Ketoconazole
• Metyrapone
• Etomidate (i.v.)
• Mitotane
• (Aminoglutethimide)

Fig. 28.14  General principles of treating hypertension in CS. GR glucocorticoid receptor. MR 
mineralocorticoid receptor
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28.10	 �Molecular Pathogenesis

For this chapter, a review on this topic with regard to corticotroph pituitary tumors, 
ectopic ACTH-secreting neuroendocrine tumors, and cortisol-secreting adrenal 
tumors would exceed the frame of this chapter. Therefore, suffice it to provide some 
references for further reading. Given the current pace of whole genomic sequencing 
and the collection of precise clinical and pathological data, the elucidation of 
molecular pathways for any of these tumor entities is closer than it has ever been for 
the last 20 years [113]. Although the knowledge of the genetic basis of McCune-
Albright syndrome, multiple endocrine neoplasia type 1, Carney complex, and other 
pituitary adenoma predisposition syndromes has increased, the pathogenesis of 
sporadic pituitary ACTHomas remains widely unknown [114, 115, 122]. With 
respect to cortisol-secreting adrenal tumors, recent studies have broadened our hori-
zon on their pathogenesis [116–121].

28.11	 �Hypertension in Patients with CS

Hypertension is a major cardiovascular risk factor, and recent study results of 
SPRINT and ACCORD started major discussions on BP targets and the “right” 
(safe) amount of sodium intake [5, 123, 124]. To identify patients at risk, screening 
and subsequent therapy are important and resources to do so in low-resource set-
tings [125]. As discussed in detail in ref. [2], hypertension also is a common clinical 
feature of CS (sensitivity 74–90%, specificity 83%) but is neither universal nor 
predictable to the degree of other clinical features of the disease [9]. Approximately 
80% of adults and up to 60% of children with CS have been reported to have high 
BP [10, 126]. After achieving eucortisolemia in such patients, hypertension still 
persists in adults in as many as 30% and in children and adolescents in around 3–4% 
[127, 128]. Hypertension will relate mostly to obesity and increased peripheral 
resistance. In patients with ectopic ACTH production by neuroendocrine tumors, 
marked hyperplasia of the adrenals and a severe increase in various steroids can 
occur with high risk for mineralocorticoid excess by overloading the functional 
capacity of 11-beta-hydroxysteroid dehydrogenase. In ectopic ACTH syndrome, 
hypertension is seen in up to 95% of cases, while with exogenous glucocorticoids, 
hypertension is of significantly lower frequency of 20% and correlates with the dose 
of steroid used [126]. Administration of exogenous glucocorticoids can increase 
both systolic and, to lesser degree, diastolic blood pressure for hydrocortisone, 
dexamethasone, or ACTH [129, 130]. Prolonged exposure to dexamethasone 1 mg 
daily (>1 week) reduced postganglionic muscle sympathetic nerve activity in obese 
subjects [131].

Causes of hypertension in CS are numerous (Fig. 28.15, with permission from 
ref. [2]) and relate to different pathogenesis pathways [132]:
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29Primary Aldosteronism and Its Various 
Scenarios

Nieves Martell-Claros, María Abad-Cardiel,  
Beatriz Alvarez-Alvarez, and José A. García-Donaire

Primary hyperaldosteronism (PA), caused by an excessive secretion of aldosterone, 
renin-independent and non-suppressible by sodium loading, is the most frequent 
endocrine aetiology of secondary hypertension, recurrently underdiagnosed [1]. The 
excess of aldosterone exerts a progressive damage on the cardiovascular (CV) sys-
tem and confers a high CV risk to the patient [1–4]. Since specific treatment offers 
an optimal blood pressure (BP) control and a decrease in CV risk, its early recogni-
tion might even resolve the clinical problem. Furthermore, identifying and appropri-
ately treating patients with PA can improve outcomes in a large number of patients 
who have resistant hypertension [5]. Nowadays, prevalence of PA is recognized as 
much higher (>10%) than previously reported (<1%) amongst hypertensive [6, 7].

The presence of primary mineralocorticoid excess (aldosterone and, to a much lesser 
degree, deoxycorticosterone) should be suspected in any patient with the triad of hyper-
tension, unexplained hypokalaemia and metabolic alkalosis [8]. However, there are 
patients with primary mineralocorticoid excess who are normokalaemic and, although 
uncommon, others who are hypokalaemic but normotensive. The PA is known to be 
expressed according to different anatomic alterations (adenoma, hyperplasia, etc.) [9].

29.1	 �Aldosterone Pathophysiology

Aldosterone is a steroid hormone mostly produced in the glomerulus zone of the 
adrenal gland. Mechanisms that regulate aldosterone secretion are complex. 
Synthesis and secretion depend on renin-angiotensin system and serum potassium 
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plasmatic concentration. Angiotensin II is one of the main stimulating factors, even 
though it can be supressed by hypervolaemia and hypokalaemia and, in a lesser 
degree, by sodium and ACTH [9]. Circulating atrial natriuretic peptide (ANP) and 
dopamine are inhibitors of aldosterone release in the zona glomerulosa [10]. In the 
case of imbalance of the inhibition/secretion balance, the deleterious effects on vas-
cular system are prevailing, leading to an organic dysfunction [11].

Aldosterone has genomic and non-genomic effects. Biosynthetic pathway is 
originated in the cholesterol molecule, and the enzyme that catalyses this process is 
the aldosterone synthetase, along with the 11β-hydroxylase, 18-hydroxylase and 
18-hydroxydehydrogenase; all of them are codified by the CYP11B2 gene. 
Aldosterone has been shown to display rapid non-genomic effects that do not 
require signalling through the classic pathways of gene activation, transcription and 
protein synthesis and non-inhibited by mineralocorticoid antagonists [9, 11, 12]. 
These actions substantially contribute to the pathophysiology of congestive heart 
failure and progressive renal dysfunction.

This hormone acts on its target organs via specific mineralocorticoid receptors, 
located at epithelial cells (distal tubular renal cells, sweat glands, salivary glands, 
colon, smooth muscle cells, cardiomyocytes and endothelial stem cells) [13, 14]. 
Aldosterone regulates sodium epithelial channel activity in the apical membrane by 
this mechanism. Likewise, activity of sodium/potassium pump in the basolateral 
membrane of the distal tubular cells also appears to be enhanced. Therefore, aldo-
sterone is the main regulator hormone responsible of renal electrolytic balance by 
regulating sodium retention and potassium excretion [9].

Aldosterone excess induces endothelial dysfunction via vascular inflammation 
and early tissue remodelling and oxidative stress depending on mineralocorticoid 
mechanisms [15]. Aldosteronism has also been implied in collagen synthesis, vas-
cular remodelling and myocardial fibrosis in an independent process of its effect on 
BP and mineralocorticoids [16]. In addition, aldosterone plays an outstanding role 
in general metabolism, with direct effects on the β-pancreatic cells [17] and insulin 
signalling [18]. An excess of aldosterone has unfavourable effects that contribute to 
the appearance of the metabolic syndrome that leads to the development of resistant 
hypertension [19].

29.2	 �Classification: Anatomical Types and Mutations

Initially, there is an anatomical classification that facilitates the identification of 
surgically curable patients. The cases of PA are due either to an aldosterone-
secreting adenoma (APA) (40%) or due to idiopathic hyperaldosteronism (IHA) 
(60%, almost all of which are bilateral). Aldosterone-secreting carcinomas are diag-
nosed in about 1% of patients, while both familial hyperaldosteronism (FH) and 
ectopic aldosterone-producing adenoma or carcinomas are reported in 1% [20, 21]. 
Some authors conclude that a pathological continuum is present between the true 
adrenal adenoma and the micronodular bilateral hyperplasia, including a number of 
intermediate clinical entities [22]. Unilateral adrenal hyperplasia accounts for 
14–17% of all cases of unilateral PA. The prevalence of cortical adenoma within 
cortical hyperplasia is estimated to be 6–24% [23].
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APAs are usually benign encapsulated adenomas with a size smaller than 2 cm. 
Most cases are solitary, although in as many as one third of cases, evidence exists of 
nodularity in the same adrenal gland, suggesting that the condition has arisen in a 
previously hyperplasic gland. The histology is likely to demonstrate cells from the 
zona fasciculata and mixed and compact cells. An irregular cellular architecture 
with pleomorphism, enhanced nuclei and chromatin must suggest an APA.

Bilateral hyperplasia is often described as an extension of the zona glomerulosa 
on the zona fasciculata as a subcapsular band [24]. Patients with IHA have bilateral 
thickening and variable nodularity of their adrenal cortex. A wide spectrum of 
severity exists for this disorder, which might be undetected for long periods with no 
hypokalaemia and only mild hypertension.

These dichotomic descriptions usually share descriptions with unilateral nodular 
hyperplasia. There are differences between benign and malignant lesions but rarely 
amongst adenomas, although adenoma has a higher percentage of monoclonality 
and cellular proliferation versus hyperplasia, in which polyclonality is usual. 
Otherwise, heterogeneity is likely present in both diagnoses [25].

Correlation in diagnosis between anatomopathological findings and image tests 
is poor. In a published study regarding sensitivity of adrenal biopsies, diagnostic 
accuracy was lower than 40% for hyperplasia and 76% for APA [26].

Inherited forms of PA account for only 1%. These forms include FH types I 
(glucocorticoid-remediable aldosteronism (GRA)), II and III. All forms are inher-
ited in an autosomal dominant manner [27, 28].

In FH-I, bilateral hyperplasia of the zona fasciculata is the most frequent finding, 
and a significant increase in incidence of cerebrovascular aneurysms is observed. 
FH-II exhibits a high rate of adenoma formation [29]. FH-III is rare and character-
ized by early-onset hypertension and hypokalaemia. Mutations of the KCNJ5 gene 
have been identified as a cause of FH-III [30].

Different studies report somatic KCNJ5 mutations in APAs, ranging from 30 to 
65% [31]. These mutations result in increased sodium conductance and membrane 
depolarization, triggering calcium entry into the zona glomerulosa cells, with acti-
vation of the calcium-signalling pathway, the major mediator of aldosterone pro-
duction. These mutations are more prevalent in females and in younger patients and 
are related with higher aldosterone levels and lower K+ concentrations [32].

Also, somatic mutations in ATP1A1 (encoding the alpha-1 subunit of the Na+/
K+ ATPase), in ATP2B3 (encoding the plasma membrane calcium transporting 
ATPase 3) and in CACNA1D (encoding a voltage-gated calcium channel) have been 
identified. These mutations showed male dominance, increased plasma aldosterone 
concentrations, lower potassium concentrations and smaller tumours [33–35].

29.3	 �Clinical Features as the Consequence 
of Hyperaldosteronism

Hypertension: the elevation of BP is dependent upon the mild volume expansion 
that occurs. Persistent hypervolaemia also leads to an increase in systemic vascular 
resistance that helps to perpetuate the hypertension [6]. PA may be associated with 
resistant hypertension [5].
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Hypokalaemia is an inconsistent finding. The plasma potassium levels tend to be 
relatively stable at least over the short term. Progressive hypokalaemia does not 
occur unless some other factor is added, such as very important increased aldoste-
rone production or the use of diuretic therapy. In the case of plasma potassium 
concentration below 2.5 mEq/L, muscle weakness can appear.

Metabolic alkalosis is largely due to increased urinary hydrogen excretion medi-
ated both by hypokalaemia and by the direct stimulatory effect of aldosterone on 
distal acidification.

Mild hypernatremia and hypomagnesaemia can also exist.
A long-lasting exposure to inadequately high plasmatic concentrations of aldo-

sterone is associated with a higher oxidative stress, endothelial dysfunction, CV 
remodelling, hypertrophy and fibrosis. These effects determine the higher CV mor-
tality (significantly higher rates of prior stroke, nonfatal myocardial infarction and 
atrial fibrillation) of PA patients with regard to essential hypertensive, matched for 
age and gender, with a similar BP level [2]. Dietary salt may affect the impact of PA 
on cardiac damage: 24 h urinary sodium excretion was an independent predictor for 
left ventricular wall thickness and mass in patients with PA [36].

PA is related to cardiac alterations, both in left ventricle filling and diastolic func-
tion and in PQ interval increase, although systolic function is preserved [6]. A 
higher prevalence of left ventricle concentric hypertrophy has been described in PA 
patients as compared to vascular-renal or essential hypertensive [37, 38].

Excess of aldosterone favours a higher vascular stiffness, especially in great arteries, 
generalized tissue fibrosis and remodelling of resistance arteries. This can be observed 
through a higher pulse wave velocity and augmentation index when compared to 
essential hypertensive patients, even after adjustment of confounding bias [39–41].

Regarding kidney damage, the excess of aldosterone may increase urinary albu-
min excretion higher than in patients with essential hypertension [42]. Also, it exerts 
a rise in the glomerular filtration rate (GFR) and renal perfusion pressure indepen-
dent of systemic hypertension and is reversible after specific treatment [43, 44].

Likewise, a higher frequency of metabolic syndrome [45] leading to resistant 
hypertension [19] has been observed. Adipose tissue in obese individuals can release 
molecules that stimulate adrenal aldosterone in an independent manner of the saline 
volume. This can explain the higher salt sensitivity that obese metabolic syndrome 
patients have [46].

Also, aldosteronism increases the risk of bone loss, possibly at least in part due 
to increased calciuria and magnesiuria [47].

Generalized anxiety disorders and other psychiatric illnesses occurred more 
often in patients with PA than in those with essential hypertension [48].

29.4	 �Difficulties on the PA Diagnosis

In spite of the previous description and classification, the most accurate detection, 
diagnosis and therapeutic approach to PA is still a big challenge. An active clinical 
search must be performed amongst individuals at risk [21]. Similarly, the 
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widespread diagnosis of PA is also a hard task itself due to the multiple faces that 
this pathology can express. However, the PA correct diagnosis has been shown to be 
cost-effective [49].

In a large percentage of patients, the clinical findings are not enough to correctly 
diagnose PA, even in the genetic forms. The phenotype might differ from a mild 
hypertension to a resistant form of severe high BP that eventually may require bilat-
eral adrenalectomy, since mild or moderate hypertension can be responsive to a 
pharmacological approach.

FH-I patients usually have a significant increase in incidence of cerebrovascular 
aneurysms. FH-II exhibits a high rate of adenoma formation [29]. FH-III is a rare 
condition characterized by early-onset hypertension and hypokalaemia. Different 
somatic KCNJ5 mutations in APA are more prevalent in females and in younger 
patients, and they are associated with higher aldosterone levels and lower K+ con-
centrations [32].

29.4.1	 �Significance of Hypokalaemia

Diverse clinical presentations of PA have been described [42], not considering low 
potassium levels as indispensable diagnostic criteria. Only a minority of patients 
with PA (9–37%) has hypokalaemia [50]. Normokalaemic hypertension constitutes 
the most common presentation of the disease. Our group in a single centre and in a 
state German cohort [52] has described two types of presentation for the disease, 
according to the presence/absence of hypokalaemia. The German Conn’s registry 
found a nearly equal distribution of hypokalaemia (45–65%) in all age decades with 
the exception of patients between the ages of 20 and 29 years, in whom normoka-
laemia was present more often. In the Martell-Claros et al. study [51], no differ-
ences were observed in the biochemical profile or in target organ damage, according 
to the type of presentation, whether normo- or hypokalaemia. Prevalence of meta-
bolic syndrome did not show differences either.

With respect to clinical characteristics, no statistical differences were observed 
between groups regarding age. Otherwise, time of evolution of hypertension is 
directly and significantly related to a higher prevalence of hypokalaemic presenta-
tion of PA [51].

29.4.2	 �Comorbidities

In the German Conn’s registry, there was no significant difference between hypoka-
laemic and normokalaemic patients in terms of body mass index (BMI). Similarly, 
no significant differences in the prevalence of cerebrovascular and peripheral vascu-
lar events, sleep apnoea and chronic renal failure were reported between normoka-
laemic and hypokalaemic PA.

The overall prevalence of comorbidities was significantly higher in hypokalae-
mic than normokalaemic PA.  The prevalence rate for cardiac events was 
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significantly higher in hypokalaemic PA (OR = 2.2; 95% CI 1.5–3.2). Further analy-
sis of cardiac events revealed significantly higher prevalence rates of angina pecto-
ris (OR = 4.7; 95% CI 1.8–12.4) and chronic cardiac insufficiency (OR = 2.8; 95% 
CI 1.0–7.6) in hypokalaemic compared with normokalaemic PA patients. Atrial 
arrhythmias showed a trend towards higher prevalence in hypokalaemic PA [52].

29.4.3	 �BP Levels/Hypertension

It must be highlighted that mean systolic and diastolic blood pressures are often 
higher in patients with hypokalaemic than normokalaemic aldosteronism. 
Hypokalaemic patients often have Grade 2 systolic hypertension at baseline [26, 
51–53].

A correlation between duration of hypertension and the probability of hypoka-
laemic presentation has been demonstrated [51]. The duration of hypertension has 
been reported as a negative predictor of outcome. Delays in diagnosis may result in 
a poorer response to specific treatment once PA is finally diagnosed. Patients treated 
for PA, during a median follow-up of 12 years, had a higher rate of events than 
essential hypertensives, and in particular, arrhythmias and stroke were more fre-
quent in patients with PA. Age, the duration of the hypertension and systolic BP 
were independently associated with the occurrence of all events [54].

29.4.4	 �Aldosterone Excess

Even serum aldosterone levels in the high-normal range may be associated with 
increased BP. In a report from the Framingham Offspring study [55], the highest 
quartile in serum aldosterone was associated with an increased risk of elevated BP 
and hypertension.

Also, independently of the anatomic variation in PA patients, aldosterone levels 
show a progressive increase throughout the follow-up period (years) until their sta-
bilization, at very high levels, while potassium levels fall to lowest values [51].

Mean aldosterone concentrations at diagnosis differed between normokalaemic 
and hypokalaemic PA, with significantly higher levels in the hypokalaemia variant 
[51, 52].

As shown in Fig. 29.1, both presentations have similar clinical manifestation and 
heterogeneity. Two rather different evolutions of data are observed in the mathe-
matic model between groups on their association with aldosterone levels and time 
of evolution of hypertension. In patients with hypokalaemia, baseline aldosterone 
levels are elevated and maintained for a long time. Conversely, aldosterone levels 
are lower on the normokalaemic group, but increase throughout the follow-up. 
Therefore, it seems that aldosterone level determines the form of presentation of PA, 
regardless of the adrenal morphology and its unilateral or bilateral location.
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29.4.5	 �Difficulties in the Analysis of Image Tests

Adrenal CT, a common image test used for the diagnosis of PA, has several limita-
tions. Radiologists might interpret small APAs incorrectly as “IAH” on the basis of 
CT findings according to bilateral modularity or normal-appearing adrenals. 
Moreover, apparent adrenal microadenomas may actually represent areas of hyper-
plasia or non-functioning nodularity. In addition, non-functioning unilateral adrenal 
macroadenomas are not uncommon, especially in older patients [56], and are indis-
tinguishable from APAs on CT.  Likewise, unilateral adrenal hyperplasia (UAH) 
may be visible on CT, or the UAH adrenal may appear normal on CT. All these 
potential errors should be taken into account in order for accuracy in diagnosis.

Half of the patients with an APA and 17% of those with idiopathic hyperaldoste-
ronism (IHA) may have serum potassium concentrations <3.5 mmol/L [42]. Thus, 
the presence of hypokalaemia has low sensitivity, and the absence of hypokalaemia 
has a low negative predictive value for the diagnosis of PA.
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Fig. 29.1  Evolution of serum aldosterone levels (ng/dl). Patients with primary aldosteronism and 
typical presentation were more likely to have a higher and stable (light grey line) plasmatic aldo-
sterone levels throughout the follow-up. Typical, serum K+ less than 3.5 mEq/L; atypical, serum 
K+ of at least 3.5 mEq/L
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In patients with hypokalaemia (K < 3.5), the circulating aldosterone levels are 
higher than in normokaliemic patients, irrespective of anatomical image: adenoma, 
nodular hyperplasia or simple hyperplasia (Fig. 29.2) [51].

Furthermore, CT scanning does not provide any functional characterization of 
the adrenal nodule(s). In a recent meta-analysis, 37.8% discrepancy was observed 
between adrenal venous sampling (AVS) and adrenal imaging [57].

We believe that lateralization of the source of the excessive aldosterone secretion 
is critical to guide the management of PA. The sensitivity and specificity of AVS (95 
and 100%, respectively) for detecting unilateral aldosterone excess are superior to 
that of adrenal CT (78 and 75%, respectively). AVS is the gold standard test to dis-
tinguish unilateral (APA or UAH) from bilateral disease (IHA) [58, 59].

Notwithstanding the consensus in medical management, interpretation of diag-
nostic procedures in patients with suspicion of PA, both normokalaemia and hypo-
kalaemia is a challenge nowadays [60]. The accurate distinction between unilateral 
and bilateral adrenal diseases in patients with PA guides surgical management. 
Hence, the AVS has been advocated as a required step to demonstrate the lateraliza-
tion of aldosterone excess [21].

The anatomy of adrenal venous drainage adds difficulty to the procedure to the 
interpretation of the interventional radiologist: the left adrenal vein (LAV) flows in 
the left renal vein, whereas the right adrenal vein (RAV) drains directly into the 
inferior vena cava (IVC); furthermore, LAV blood may be diluted by the inferior 
phrenic vein and RAV blood by hepatic accessory branches and renal accessory 
veins [61, 62]. In addition different branches of adrenal veins drain different regions 
within a gland: in this case super-selective sampling with micro-catheters can be 
useful in identifying the site of the secreting nodule(s), thereby allowing partial 
adrenalectomy or enucleation [63].
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Fig. 29.2  Aldosterone levels in the three morphological types (adenomas and simple or nodular 
hyperplasia) and both clinical presentations. In spite of overlapping aldosterone levels, patients with 
atypical presentation and primary aldosteronism always showed a lower plasmatic aldosterone con-
centration (light grey bar). Conversely, patients with typical presentation and primary aldosteronism 
exhibited higher aldosterone levels (black bar). Aldosterone, ng/dl; typical, serum potassium less 
than 3.5 mEq/L; atypical, serum potassium of at least 3.5 mEq/L. HBP, high blood pressure
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A solitary cortical adenoma, previously believed to account for the vast majority 
of histologic diagnoses of surgical primary hyperaldosteronism, was not as preva-
lent in our series [51]. This is likely due to the use of AVS, rather than image results, 
to prove a unilateral disease. In conclusion, as AVS is becoming widely used to 
select patients with primary hyperaldosteronism for adrenalectomy, there is a higher 
likelihood that these patients will have histologic findings showing higher rates of 
non-solitary cortical adenoma [23]. We observed that 16% of patients with primary 
hyperaldosteronism had unilateral adrenal cortical hyperplasia without cortical ade-
noma [51]. As such, subtotal adrenalectomy may not be appropriate in patients with 
primary hyperaldosteronism, since cortical hyperplasia may account for increased 
hormone production in patients with adenoma.

Adrenal anatomic findings have been questioned due to their poor ability to dif-
ferentiate both entities [22]. PA must be considered as a pathological continuum 
with a number of intermediate clinical forms [23].

Weisbrod et al. [23] demonstrated that in unilateral PA patients, with a diagnosis 
of solitary cortical adenoma, cortical hyperplasia or a multinodular hyperplasia 
(included cortical adenoma plus cortical hyperplasia), no significant difference in 
age, gender, body mass index, duration of hypertension, number of antihypertensive 
medications, serum aldosterone level, serum renin level or adrenal vein sampling 
ratios amongst the three histologic categories was obtained in the analysis. Our 
group did not find any significant difference amongst the three categories in postop-
erative cure rate. It can be also suggested that subtotal adrenalectomy might not be 
appropriate in patients with primary aldosteronism.

Monticone et al. indicate that the combination of genotyping and immunohisto-
chemistry improves the final histopathological diagnosis between single nodule and 
multinodular hyperplasia of the assessed adrenals [64].
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30Severe Paroxysmal Hypertension 
(Pseudopheochromocytoma)

Samuel J. Mann

Paroxysmal hypertension is a textbook symptom of a catecholamine-secreting 
pheochromocytoma (pheo) and always arouses suspicion of, and a search for, this 
tumor. However, fewer than 2% will turn out to have this tumor [1]. This is not sur-
prising given the rarity of pheo [2]. Unfortunately, in the 98 + % who do not have a 
pheo, the cause and management of the paroxysmal hypertension have remained a 
mystery and, remarkably, the subject of few papers. Typically, diagnostic evaluation 
of paroxysmal hypertension reaches a dead end, leaving patients with an unex-
plained, difficult-to-treat, and often disabling disorder that can be reasonably called 
pseudopheochromocytoma (pseudopheo). Doctors and researchers simply do not 
know what to do with these patients.

Recent papers discuss a proposed cause for the disorder and, more importantly, 
treatment that appears to be effective in most patients. In this chapter, the origin, 
mechanisms, diagnosis, differential diagnosis, and treatment of this disorder will be 
reviewed.

30.1	 �Clinical Description of Paroxysmal Hypertension 
(Pseudopheochromocytoma)

A description of pseudopheo from reported case series is summarized in Tables 30.1 
and 30.2 [3, 4]. In this series of 21 patients, 5 were male, 16, female. The mean age 
was 50 years (range 27-76). The frequency of paroxysms ranged from daily to less 
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than once a month. The duration of the paroxysms ranged from <10 min to as long 
as 2 days. Blood pressure elevation can be extreme, although cases with less severe 
blood pressure elevation than in the case series are also seen. Multiple emergency 
room visits are not uncommon, and some patients are hospitalized repeatedly. Many 
experience some degree of interference with work or day-to-day activity. Further, 
the fear of recurrent attacks, which typically occur without warning, leads many 
patients to restrict their activity and in some cases leave their job. Thus, the disorder 
can have a considerable clinical and financial impact.

Table 30.2  Symptoms during episodes: pseudopheo and pheo

Symptoms (all numbers 
represent % of patients) Pseudopheo Pseudopheo Pheo Pheo

Mann [3] 
(n = 21)

Stein [5] 
(n = 28)

Stein [5] 
(n = 30)

Literature 
review [5]

Chest pain 62 25 20 19–22
Headache 52 39 80 80–96
Dizziness/lightheadedness 52 46 20 5–8
Diaphoresis 48 21 63 67–74
Nausea 48 25 23 10–42
Palpitations 43 39 60 62–70
Flushing 33 54 7 8–18
Dyspnea 29 11 13 10–19
Weakness 29 25 23 26–40

Table 30.1  Clinical presentation of paroxysmal hypertension in a series of 21 patients [3]

N (%) N (%)
Reported duration of the disorder at time of first visit
<6 months 9 (43%) 18–36 months 5 (24%)
6–18 months 4 (19%) >3 years 3 (14%)
Frequency of episodes
Daily 5 (24%) 1–3/month 4 (19%)
1–3/week 10 (48%) <1/month 1 (5%)
Duration of episodes
<10 min 1 (5%) 1–3 h 6 (29%)
10–60 min 6 (29%) 3 h–2 days 6 (29%)

Variable 2 (10%)
Peak blood pressure during episodes
200/≥110 16 (76%) <200/≥110 2 (10%)
≥200/<110 2 (10%) <200/<110 1 (5%)
Prior hospitalizations because of attacks

None 8 (38%)
One 5 (24%)
>Two 8 (38%)
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30.2	 �Definition of the Syndrome 
of Pseudopheochromocytoma

Many think of pseudopheo as a diagnosis by default that is made after a pheo and 
other conditions have been excluded, and no specific cause has been identified. 
However, the following characteristic features allow a specific diagnosis of pseu-
dopheo to be made with more confidence (Table 30.3):

	1.	 Hypertensive paroxysms are characterized by sudden onset.
Patients typically describe paroxysms as having an abrupt onset, unassociated with 
any particular setting or trigger. Patients typically insist that paroxysms occur “out 
of the blue.”

	2.	 Blood pressure elevation is associated with physical symptoms such as head-
ache, flushing, fatigue, dizziness, and others.
Blood pressure elevation is not asymptomatic; it is almost always accompanied 
by distressful physical symptoms. Physical symptoms, such as chest pain, light-
headedness, headache, diaphoresis, nausea, palpitations, dyspnea, and weak-
ness, typically accompany the blood pressure surge. The physical symptoms 
resemble those described among patients with pheo; thus, the symptoms them-
selves do not distinguish between pheo and pseudopheo [5].

	3.	 Episodes are not triggered by emotional distress or by panic.
Unlike typical panic attacks, hypertensive paroxysms in patients with pseudopheo 
are not heralded by panic or emotional distress. However, once an episode has begun, 
the severe physical symptoms then provoke a consequent fear of dying or stroke.

	4.	 Biochemical tests have been performed and do not support the diagnosis of 
pheochromocytoma.
Because of the similarities between pheo and pseudopheo and because of the 
harm done if a pheo is missed, the possibility of a pheo must be considered in 
any patient with paroxysmal hypertension. This requires biochemical testing of 
blood or urine levels for levels of catecholamines or catecholamine metabolites, 
as discussed below.

	5.	 In most cases, psychosocial inquiry reveals either a past history of severe trauma 
or abuse or a defensive, very even-keeled personality style.

Table 30.3  Clinical feature characteristic of pseudopheochromocytoma

1. Hypertensive paroxysms that are characterized by sudden onset
2. Blood pressure elevation is associated with physical symptoms such as headache, flushing, 

fatigue, dizziness, and others
3. Episodes are not triggered by emotional distress or by panic
4. Biochemical tests have been performed and do not support the diagnosis of 

pheochromocytoma
5. In most cases, psychosocial inquiry reveals either a past history of severe trauma or abuse 

or a defensive, very even-keeled personality style
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A characteristic psychological background is evident in most patients with pseu-
dopheo, as discussed below. This distinct profile provides a highly important clue 
of the diagnosis and helps support a confident diagnosis of pseudopheo, rather 
than a diagnosis by default. Its presence in a patient with normal or near normal 
catecholamine studies strongly supports the diagnosis of pseudopheo and adds 
reassurance that a pheo is not being missed.

30.3	 �Pseudopheo and the Sympathetic Nervous  
System (SNS)

The mechanism underlying pseudopheo differs from that which underlies most 
cases of essential hypertension. Essential hypertension is usually mediated by either 
sodium/volume factors or the renin-angiotensin system, as evidenced by the wide-
spread effectiveness of the combination of an ACEI or ARB with a diuretic [6]. 
Further, essential hypertension, although subject to fluctuation, rarely presents with 
a pattern of severe, symptomatic, and sudden paroxysms.

The sudden surge of blood pressure in pseudopheo is instead linked to the SNS, 
which governs instantaneous changes in blood pressure. Evidence of increases in 
the levels of catecholamines and catecholamine metabolites supports this notion 
[4, 7–9]. Interestingly, catecholamine levels observed in patients during hyperten-
sive paroxysms suggest that two hemodynamic/hormonal patterns may occur. One 
is characterized by an increase in heart rate and cardiac output, and associated with 
elevation in plasma epinephrine level, and is characteristic of stimulation mainly of 
the adrenal limb of the SNS [4]. This resembles the syndrome of hyperdynamic 
circulatory state and hyperepinephrinemia described by Streeten and by Frohlich 
[7, 8]. The other pattern is characterized by an increase in peripheral resistance 
accompanied by a decrease in heart rate and is associated with elevation in norepi-
nephrine level, with no change in epinephrine level [4].

Different stressors can stimulate one limb of the SNS more than the other. For 
example, anxiety stimulates mainly the adrenal limb [10]. The observed hemody-
namic patterns of pseudopheo suggest that in different patients, for reasons that are 
not well understood, one limb or the other of the SNS can dominate.

30.4	 �The Psychological Roots of Pseudopheo

Even though the origin of pseudopheo and of the SNS activation underlying it has been a 
long-standing mystery, and even though it is well known that emotions stimulate the SNS, 
the possibility that pseudopheo has a psychosomatic etiology has been widely overlooked. 
This is understandable because paroxysms are dominated by hemodynamic changes and 
physical symptoms rather than by emotional distress or panic and because patients typi-
cally do not report or view stress or emotional distress as a contributory factor.
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In this context, a breakthrough in understanding the origin of pseudopheo 
occurred with the observation that most patients, when asked, acknowledged a past 
history of unusually severe trauma, such as prior abuse, the Holocaust, or other 
forms of trauma, often from as long ago as childhood [4]. Remarkably, in most 
cases, patients claimed they were free of any lingering emotional effects from the 
trauma, which strongly suggests that they had repressed trauma-related emotion. 
They had vivid memories of the trauma but did not feel or suffer from the powerful 
and painful emotions related to it. The clues lay in the story rather than in reported 
emotional distress.

Repression of painful emotion is a normal and valuable defense mechanism. It is 
not per se indicative of psychopathology but rather an effective defense protective 
against overwhelming emotional distress [11]. Such defenses are crucial to emo-
tional health and explain why many victims of severe trauma survive without appar-
ent psychological sequelae.

In this circumstance, patients do not report emotional distress, and usually the 
remote history of trauma does not arise during history-taking by a physician. Even 
psychosocially conscious physicians focus on the current and day-to-day stress and 
emotional distress that a patient reports. The relationship between old trauma and 
unexplained autonomic surges decades later does not occur to either patient or phy-
sician. It was the observation that patient after patient with pseudopheo, upon fur-
ther history-taking, acknowledged a history of severe trauma that suggested that 
despite the absence of overt or reported psychological symptoms a psychological 
basis for the disorder needed to be considered.

This mind/body paradigm in pseudopheo is thus the opposite of the usual mind/
body approach to understanding psychosomatic illnesses. It focuses on the absence 
rather than the presence of emotional distress related to previous major events. 
Patients might have experienced severe emotional distress immediately following 
the trauma but eventually repressed emotion related to it.

The concept of repressed emotion, and the possible role of repressed emotion in 
the hypertensive disorder pseudopheo, is not widely considered, even though no 
alternative understanding or treatment of pseudopheo has ever emerged. 
Unfortunately, although there are innumerable convenient tools to measure per-
ceived emotional distress, there are no reliable or validated tools to adequately 
assess the role of repressed emotion in psychosomatic illness.

30.5	 �Repressed Emotion in Patients with Pseudopheo: 
Two Patterns

The prominent use of repression can be surmised by examining a patient’s life story 
and personality style. Two patterns of unawareness of emotion appear to be associ-
ated with pseudopheo: a past history of severe abuse or trauma and a personality 
characterized by a repressive coping style [3].
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30.5.1	 �Past History of Severe Trauma or Abuse

Roughly two-thirds of patients with pseudopheo acknowledge a history of severe 
trauma; strikingly most insist that they suffer no lingering effects [3]. A few clinical 
examples serve to illustrate this pattern.

In trauma survivors, it is important to recognize repression as a successful psy-
chological defense rather than as psychopathology [11]. Many patients with pseu-
dopheo appear to have dealt with major trauma by repressing and have lived lives 
marked by considerable achievement. Their resilience can be attributed to success-
ful repression of overwhelming emotion related to severe traumatic events.

30.5.2	 �Personality Characterized by a Repressive Coping Style

A repressive coping style, reported in about a third of patients with pseudopheo, 
consists of the lifelong tendency to cope unemotionally with stress [3, 12]. 
Individuals with this coping style tend to be very even-keeled, without experiencing 

A patient with pseudopheo reported that her husband had died in a plane 
crash two decades earlier, leaving her with two young children and no money. 
She reported that she had moved on, too busy to grieve. She survived admira-
bly with no emotional breakdown whatsoever, and never grieved the loss, but 
now has paroxysmal hypertension.

A 33-year-old Hispanic male who suffered from hypertensive paroxysms with 
blood pressure elevation as high as 220/140 reported a childhood history of 
severe physical abuse by his father. He insisted that he loved his father and 
bore no anger toward him. Treatment with alprazolam and amitriptyline elim-
inated hypertensive attacks.

A 35-year-old foreign-born physician with debilitating hypertensive parox-
ysms reported no prior history of trauma, but further questioning revealed 
that as a college student in her home country, she had been detained as a 
political prisoner for 30 days. She had been blindfolded, her life had been 
repeatedly threatened, and she had witnessed the death of several friends. 
After she was freed she moved on with her life. She insisted there were no 
emotional aftereffects, had not sought psychotherapy, and had discussed her 
experiences with no one. Treatment with an antidepressant eliminated the 
paroxysms.
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ups and downs. Since they report little emotional distress, physicians rarely con-
sider their medical condition to be linked to psychological factors.

A repressive coping style is usually a pattern developed in childhood and could 
be a result of psychosocial experience or inherent personality from birth. Such indi-
viduals are not buffeted by emotions, and the experience of depression or anxiety 
may be foreign to them.

Two cases are illustrative:

30.6	 �Differential Diagnosis of Pseudopheo

Although there is a long list of conditions in which paroxysmal hypertension can 
occur, usually only a few conditions truly resemble pseudopheo and need to be dif-
ferentiated from it (Table 30.4). These include pheo, of course, as well as panic 
disorder and labile hypertension.

30.6.1	 �Pheochromocytoma

Excluding a pheo, which is potentially fatal and is eminently curable, is of course a 
priority. If catecholamine studies are very abnormal, strongly suggestive of a pheo, 
radiological studies are indicated.

Plasma metanephrine assay has a high sensitivity and specificity for identifying a 
pheo and is widely used to screen for pheo [13]. However, mild elevations are fre-
quently encountered and usually represent false positives, perhaps reflecting the 30% 

A 66-year-old man suffered from hour-long episodes of blood pressure eleva-
tion to 190/110, with diaphoresis and facial reddening. He did not have a 
history of past trauma but described himself as very independent, never need-
ing or seeking emotional support, and having a very even temperament (the 
classic description of a repressor). Typical of this, he reported having shed no 
tears 7 years earlier when his only son was left permanently paraplegic after 
a car accident. Treatment with atenolol, terazosin, lorazepam, and desipra-
mine eliminated attacks.

A 52-year-old well-to-do woman with a pampered lifestyle experienced daily 
hypertensive attacks for 4 months. She insisted she had no stress or distress 
and that she was very happy. However, after further discussion, she was able 
for the first time to acknowledge to herself that she was miserable and 
ashamed because she had no job or purpose and felt useless. Her attacks 
ceased quickly, as, ironically, she became depressed for the first time in her 
life. However, the awareness enabled her to begin to make changes in her life. 
No medications were necessary.
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false-positive rate associated with lack of adherence to fasting state, supine position, 
and rest before sampling [14]. It is also possible that the increased sympathetic tone 
documented in patients with pseudopheo contributes to a higher false-positive rate, 
although studies have not compared the false-positive rate of pseudopheo patients 
with controls [4, 7–9]. Thus, a mildly elevated normetanephrine level should not 
provoke an endless search for a pheo. Although radiologic imaging is sometimes 
obtained by physicians suspicious of a pheo in patients with normal or only mildly 
elevated metanephrines, an unending search for a pheo is unlikely to be of value.

Traditionally, a clonidine suppression test was performed in patients with mild 
elevation of plasma catecholamines, such as plasma norepinephrine levels in the 
1000–2000 pg/ml range [15]. A fall in norepinephrine level to the normal range 
after administration of 0.3 mg of clonidine would indicate that the origin of an ele-
vated catecholamine level is physiologic rather than tumor-related [15]. Currently 
however the clonidine suppression test is not widely employed.

Given the rarity of pheo, it is not likely to be the diagnosis in patients with nega-
tive or only mildly elevated catecholamine levels. The presence of the classic psy-
chological characteristics of pseudopheo further supports the alternative diagnosis 
of pseudopheo.

Table 30.4  Differential 
diagnosis of 
pheochromocytoma

Pheochromocytoma
Common conditions that resemble pseudopheo
•  Panic disorder
•  Labile hypertension
• � Other conditions in which paroxysmal blood pressure 

elevation can occur
•  Renovascular hypertension
•  Vasculitis
•  Hypertensive encephalopathy
•  Preeclampsia
•  Baroreflex failure
•  Hyperdynamic beta-adrenergic circulatory state
•  Paroxysmal tachycardia
•  Ingestion of sympathomimetics
•  MAO inhibitor + ingestion of tyramine
•  Clonidine withdrawal
•  Illicit drugs (e.g., cocaine)
•  Coronary insufficiency
•  Migraine
•  Intracranial mass lesion
•  Hypoglycemia
•  Porphyria
•  Carcinoid
•  Anxiety
•  PTSD
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30.7	 �Conditions that Commonly Mimic Pseudopheo

30.7.1	 �Panic Disorder

Both panic disorder and pseudopheo are characterized by sudden episodes of 
severely distressing physical symptoms such as headache, dyspnea, dizziness, 
weakness, and diaphoresis. Their presenting symptoms, to a large extent, overlap. 
Thus, physical symptomatology does not allow differentiation of the two 
disorders.

The two conditions differ, however, in that panic attacks are dominated by the 
emotional manifestation of panic, while blood pressure elevation is less prominent, 
averaging perhaps 20  mmHg [16]. In contrast, pseudopheo is dominated by the 
autonomic manifestation of the blood pressure surge (40–100  mmHg or more), 
without panic [3]. Panic does not trigger the paroxysm; it occurs as a result of the 
frightening physical symptoms.

To a fair extent, the prominence of autonomic versus emotional manifestations is 
reciprocally related to each other in these two disorders, with autonomic manifesta-
tions more prominent in pseudopheo and emotional manifestations in panic attacks. 
Clinical experience also suggests that some patients have a disorder that is interme-
diate between the two. It was the perspective of viewing hypertensive paroxysms in 
pseudopheo as the autonomic equivalent of panic attacks that led to consideration of 
using antidepressant agents to treat it, in the same way that they are employed in 
treating panic disorder.

30.7.1.1	 �Labile Hypertension
Many individuals with essential hypertension experience considerable fluctuation in 
their blood pressure, often occurring at times of stress or emotional distress. Blood 
pressure elevation can occur without physical symptoms or can be accompanied by 
symptoms such as headache or palpitation. The headaches might be tension head-
aches or might be related to the blood pressure elevation per se.

Labile hypertension differs strongly from pseudopheo in that most patients 
and their physicians readily attribute blood pressure fluctuation to stress and 
emotional distress. In many cases, the lability can be related to the patient’s 
obsession about the blood pressure, and frequent measurements, despite their 
claim that they are not anxious about their blood pressure. Blood pressure 
increases can be associated with symptoms resulting from anxiety or hyperven-
tilation [17]. Blood pressure lability is a more common phenomenon than pseu-
dopheo and should not be misconstrued as the latter in the absence of the 
characteristics defined above.
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30.7.2	 �Other Diagnoses

Many other conditions, some commonly encountered and others rare, can also cause 
paroxysmal hypertension (Table 30.3). However, in those conditions, other signs or 
symptoms more typical of those conditions are almost always present. These condi-
tions provide a differential diagnosis for paroxysmal hypertension and merit consid-
eration, but in the real world rarely provide a diagnosis, whereas pseudopheo is 
overwhelmingly likely.

The use of illicit drugs such as cocaine or amphetamines must of course be con-
sidered. However, patients with pseudopheo are very symptomatic and frightened 
and are highly unlikely to continue using, and denying their use of, such drugs. The 
use of drugs such as MAO inhibitors or withdrawal from clonidine should be readily 
evident from the history.

Baroreceptor failure causes considerable blood pressure lability but is unlikely 
without a predisposing condition, such as prior neck surgery or irradiation [18, 19]. 
In addition, the abnormal blood pressure lability is continually present. In patients 
with pseudopheo, blood pressure surges are seen only during paroxysms without 
abnormal lability or hypotension at other times. Patients with pseudopheo can 
become hypotensive following a paroxysm, either because of the acute administra-
tion of antihypertensive agents or possibly because of volume depletion due to pres-
sure natriuresis during the paroxysm. However, hypotension does not occur at other 
times except as an adverse effect of a prescribed antihypertensive regimen.

Post-traumatic stress disorder (PTSD), like pseudopheo, is associated with prior 
trauma and with elevated plasma norepinephrine levels [20]. However, in contrast to 
pseudopheo, severe blood pressure elevation is not characteristic. Also differentiat-
ing the two conditions, patients with PTSD are very aware of the trauma and its 
impact.

Are tests to exclude these entities truly needed in the patient who presents with 
paroxysmal hypertension? Usually not, although each case must be assessed based 
on the accompanying clinical signs and symptoms. Also, as mentioned above, the 
presence or absence of the characteristic psychological profile of pseudopheo sup-
ports the diagnosis and argues for treatment directed at pseudopheo rather than end-
less testing for very unlikely causes. A clear response to treatment directed at 
pseudopheo then provides more evidence that another diagnosis is not being missed.

30.8	 �Approach to Treatment (Table 30.5)

The treatment of paroxysmal hypertension has been a major dilemma. Diuretics, 
ACEIs, and ARBs would not be expected to prevent hypertensive surges driven by 
the SNS. Also, it is difficult to prescribe an aggressive antihypertensive regimen in 
patients whose blood pressure is normal in between paroxysms. A clear limiting 
factor in treatment recommendations is the paucity of controlled treatment trials, 
reflecting the widespread lack of understanding of the disorder. Nevertheless, 
patients need treatment, and successful approaches based on the understanding of 
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pseudopheo presented in this chapter have been reported [3, 21]. With these 
approaches, paroxysms can be reduced or eliminated in most patients, enabling 
patients to resume a normal life. The main concerns of treatment include acute man-
agement of paroxysms and preventive treatment (Table  30.4), using modalities 
including antihypertensive drug therapy, psychopharmacologic agents, and psycho-
logical interventions.

30.9	 �Acute Management of Hypertensive Paroxysms

Both patients and physicians are concerned about the danger of the sudden and 
severe elevation of blood pressure during paroxysms, particularly in patients who 
are normotensive at other times. Fortunately, acute cardiovascular complications 
seem rare, although outcomes in patients with a long-standing history of severe and/
or frequent blood pressure paroxysms are not known. There is a role for antihyper-
tensive agents, psychotropic agents, or both, in the acute management of hyperten-
sive paroxysms.

Selection of treatment depends on the severity of blood pressure elevation and 
symptoms. There is no specific blood pressure level to define “severe.” A value 
above 220/120 can be considered severe, although the cutoff could be lower or 
higher depending on factors such as age, symptoms, usual blood pressure, and 
underlying comorbidities. For paroxysms that are deemed severe, treatment with a 
rapid-acting intravenous agent such as labetalol or, rarely, nitroprusside may be 
needed. Concomitant treatment with a quickly effective anxiolytic agent such as 
alprazolam can be helpful in shortening the duration of the paroxysm and the sever-
ity of blood pressure elevation [3, 22].

For milder paroxysms, oral treatment is usually appropriate and effective, con-
sisting of either an oral sympatholytic agent such as clonidine, an anxiolytic agent 
such as alprazolam, or a combination of the two. In patients with a history of previ-
ous uncomplicated paroxysms, and who are known to have responded to these 
agents, self-treatment at home is a realistic option. Oral labetalol is another alterna-
tive, although it might not be effective in patients who are rapid metabolizers of 

Table 30.5  Treatment Acute management of paroxysms
Goal
–  To reduce blood pressure if severely elevated
–  To reduce symptoms
–  To avoid ER visits and hospitalizations
Pharmacologic agents
–  Mild paroxysm: alprazolam
–  Moderately severe paroxysm: alprazolam +/− clonidine
–  Severe paroxysm: IV labetalol and alprazolam
Preventive treatment
Antihypertensive agents are of limited value
Psychopharmacologic agents
–  Antidepressant drugs are highly effective in most patients
–  Choice of drug class is usually governed by side effects
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lipophilic beta-blockers in whom bioavailability of the drug is low [23]. Agents 
such as ACEIs, ARBs, and diuretics do not appear well suited for acute treatment of 
SNS-mediated blood pressure surges.

30.10	 �Preventive Management

It is not clear whether a regimen of antihypertensive medication can prevent parox-
ysms or reduce the magnitude of blood pressure elevation. Clinical experience sug-
gests that an antihypertensive regimen might reduce the magnitude of blood pressure 
elevation, but does not prevent paroxysms. Regardless, treatment with antihyperten-
sive agents is often limited by the normal blood pressure between paroxysms.

Drugs that antagonize the effects of sympathetically mediated blood pressure eleva-
tion would seem most likely to be helpful [24]. The combination of an α- and β-blocker 
would seem most physiologically appropriate. A central α-agonist, such as clonidine, 
is another alternative, but chronic use is usually hampered by prominent side effects.

The efficacy of the alternative of prescribing an antidepressant agent was origi-
nally suggested by the similarity of pseudopheo to panic disorder. This promise has 
been borne out in reports indicating that antidepressant drugs are highly effective in 
preventing paroxysms in most patients, at dosages similar to that given to treat panic 
disorder, and are the most effective treatment available for preventing paroxysms [3, 
4, 21]. The high response rate initially reported in two retrospective case series was 
recently confirmed in a prospective study in which the antidepressant sertraline, 
given at a 50 mg dose, was effective in reducing or eliminating paroxysms in 90% 
of patients and eliminating them in 61% [21]. These reports provide great encour-
agement in the management of a disorder that generally does not respond to treat-
ment with antihypertensive agents alone and also strongly support the suggested 
psychosomatic basis of the disorder.

Long-term treatment with an antidepressant agent is not needed in all patients. In 
patients who have mild or infrequent paroxysms, or who improve with psychologi-
cal intervention (see below), it is not unreasonable to initially limit treatment to 
acute management of paroxysms with alprazolam and/or clonidine. However, in 
patients who continue to experience severe symptoms, severe blood pressure eleva-
tion, or frequent paroxysms that interfere with functioning, an antidepressant agent 
is very likely to be effective and should be strongly considered. Clinical response is 
usually evident within 2 weeks of initiating an effective dose. There is no evidence 
that any class of antidepressant agents is more effective than any other.

30.11	 �Psychological Intervention

Finally, psychological intervention plays an important role in the management of 
patients with pseudopheo. A frequently helpful but underutilized intervention is 
reassurance. Less commonly, psychological intervention centered on a shift in 
awareness regarding the role of past events can result in a dramatic reduction or ces-
sation in paroxysms, albeit in a minority of patients, as discussed below.
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30.12	 �Reassurance

Three aspects of reassurance play an important role:

	1.	 Reassurance that a hypertensive paroxysm is highly unlikely to cause acute 
stroke or sudden death
Symptomatic hypertensive paroxysms are terrifying to patients, regularly pro-
voking fear of suffering a stroke or of dying during a paroxysm. This fear is 
further stoked by the marked concern of physicians during the patient’s hyper-
tensive paroxysm.

It is a common misconception that a sudden elevation in blood pressure 
exposes patients to a high risk of acute stroke or cerebral hemorrhage. Certainly 
there is a remote possibility, although there are no case reports of it happening. 
A relevant observation is the absence of acute cerebrovascular events during the 
acute severe blood pressure elevation that occurs during weightlifting, with peak 
mean arterial pressure averaging 160 mmHg (equivalent to a systolic/diastolic 
pressure of 220/130) in normotensive weightlifters [25]. Reassurance by a physi-
cian that it is very unlikely that the patient will experience such a complication 
during paroxysms can be extremely helpful in reducing the fear of the patient 
and the sympathetic stimulation that it aggravates.

	2.	 Reassurance that the patient will be able to resume a normal life
Many patients have come to view themselves as chronically ill with no hope of 
improvement or return to a normal life. The reassurance that the disorder can 
usually be successfully treated and that they will be able to resume a normal life 
appears to be helpful to patients.

	3.	 Reassurance that the disorder is not indicative of psychopathology
Many patients will resist an explanation of the psychological roots of the disor-
der partly because it implies psychological weakness or illness. This concern 
also pushes patients away from consideration of psychopharmacologic interven-
tions that offer the best chance of clinical improvement.

The fact that many patients with pseudopheo are successful survivors of 
severe psychological trauma actually offers testimony not of psychological 
weakness or psychopathology but of psychological resilience, rooted in success-
ful repression following severe trauma that could have been associated with 
severe and long-standing psychological sequelae [11]. Reassurance that the dis-
order is not indicative of psychopathology or psychological weakness increases 
the likelihood of acceptance of its psychodynamic origin. The effect of this reas-
surance on acceptance of the treatment with an antidepressant, on the severity 
and frequency of paroxysms, has not been evaluated.

30.13	 �Awareness

The usual paradigm of psychological intervention in treating physical symptoms 
caused by psychological distress consists of stress reduction techniques to relieve 
emotional distress. This paradigm does not fit pseudopheo which is characterized by 
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the absence of perceived emotional distress. Strikingly, in pseudopheo, it is a shift 
to conscious awareness of painful emotion that can be helpful in ameliorating the 
disorder [26].

When the origin of the disorder in repressed emotion, often related to prior, 
severe trauma, is explored with patients, some will grasp it at an emotional level and 
might quickly experience a reduction or elimination of paroxysms. Whether there is 
any role for formal psychotherapy is not known.

However, most patients who are repressing overwhelming emotion related to 
severe past trauma appear to need to continue repressing and will defend against 
awareness. In this context, most patients are not interested in, and probably would 
not benefit from, psychotherapy aimed at awareness of those emotions. And it is 
probably best that the underlying emotion remains repressed. This is analogous to 
the lack of benefit, and the risk of harm, documented in studies that have examined 
the effect of talking about the trauma in recent trauma survivors [11, 27]. The dic-
tum that it is always best to deal with the past is not inherently true. Such patients 
likely will be resistant to psychological intervention and unlikely to benefit from it.

In the absence of adequate study, the wisest course might be to reassure the 
patient that the disorder can be successfully managed, and a normal life resumed. If 
the patient wishes to pursue the psychological origin of the disorder, it can be 
encouraged. However, if the patient cannot see the connection of the disorder with 
trauma or repressed emotion or prefers not to pursue psychological intervention, 
psychological discussion and psychotherapy should not be urged.

30.14	 �Obstacles to Successful Treatment

Barriers to treatment with antihypertensive agents include the ineffectiveness of 
ACEIs, ARBs, and diuretics and the normal blood pressure between paroxysms that 
limits the aggressiveness of any prescribed antihypertensive regimen. In addition, 
even if an effective regimen reduces the magnitude of blood pressure spikes, it is 
unlikely to prevent future paroxysms.

Barriers to treatment with antidepressants include patients’ antipathy to the idea 
of taking an antidepressant and intolerance to agents that are tried. Some patients 
will refuse to try an antidepressant no matter how severely symptomatic they are 
because its use implies a psychological cause. Many such patients however will 
eventually agree to try one because they are severely symptomatic and no other 
treatment has helped. The newer SSRIs are well tolerated in most, but in some 
patients it is difficult to reach an effective dose of any drug.

Finally there are major barriers to acceptance of the psychological origin of the 
disorder. Because the manifestations of pseudopheo are physical rather than psy-
chological and are not triggered by obvious current stressors, its emotional basis is 
usually not suspected by either the patient or the physician. In addition, many 
patients cannot accept that unfelt emotions related to events from decades ago could 
be affecting them. Further, many trauma survivors need to avoid psychological dis-
cussion or awareness. That is why the psychological origin must be broached very 
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sensitively and not aggressively pursued in the face of patient resistance. 
Psychological awareness is not an option for most.

Clearly, the treatment of pseudopheo is a challenge and an art. However, fortu-
nately, in most cases, successful treatment is achievable, and a normal quality of life 
can be restored.

�Conclusion
Despite all the attention given to pheochromocytoma, >98% of patients with 
paroxysmal hypertension do not have this tumor. Most have pseudopheo, whose 
origin and treatment have received remarkably little attention. The obscurity of 
its origin is attributable to its link to repressed emotion, a phenomenon essen-
tially unrecognized by patients, physicians, and even psychologically oriented 
medical clinicians and researchers. Also, it is a disorder for which patients seek 
out physicians, not psychologists, and therefore has remained under the radar of 
psychologists.

The diagnosis of pseudopheo is not a diagnosis by default after exclusion of 
pheo and other rare entities. If catecholamine studies are normal, the characteris-
tic psychological background usually supports a confident diagnosis and greatly 
reduces concern that a pheo or other obscure cause is being missed. And, fortu-
nately, with this understanding, the suffering of many patients with this disorder 
can be addressed and overcome.

Several successful treatment options are available, including treatment at 
the time of paroxysms with an anxiolytic agent and/or antihypertensive agents 
directed at the SNS and preventive treatment with an antidepressant agent. 
Finally, in some patients, understanding of the cause of the disorder and reas-
surance that a catastrophic event is not likely to occur during a paroxysm 
appears helpful.
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31Paroxysmal Hypertension: 
Pheochromocytoma

Graeme Eisenhofer and Jacques W.M. Lenders

31.1	 �Clinical Presentation

Pheochromocytomas and paragangliomas (PPGLs) are catecholamine-producing 
neuroendocrine tumors that respectively arise from chromaffin or paraganglial tis-
sue at adrenal and extra-adrenal locations [1]. Paragangliomas usually form from 
chromaffin cells associated with paravertebral sympathetic ganglia, most usually in 
the abdomen (e.g., organ of Zuckerkandl), but also in the pelvic areas (e.g., bladder) 
and less frequently in the thorax (e.g., mediastinum). Paragangliomas may also 
form at the neck and skull base, but these derive from parasympathetic or carotid 
body-associated tissue and usually do not produce significant amounts of vasoactive 
catecholamines.

As a result of tumoral secretion of catecholamines, patients with high blood pres-
sure and symptoms of catecholamine excess are those in whom PPGLs are most fre-
quently suspected. The tumors are also frequently identified among patients who 
undergo imaging for unrelated purposes and in whom incidental abdominal or adre-
nal masses (i.e., incidentalomas) are found. Patients with germline mutations of an 
increasing number of PPGL susceptibility genes represent another group in whom the 
tumors are now often found in the setting of routine screening due to hereditary risk.
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PPGLs usually occur during middle age, but in 10–20% of cases present during 
childhood [2], the latter usually associated with a hereditary cause reflecting the 
younger age of presentation of hereditary than sporadic tumors. The clinical presen-
tation of PPGLs can vary enormously from severe cardiovascular emergencies asso-
ciated with sustained or paroxysmal hypertension and symptoms of catecholamine 
excess to a completely normotensive and asymptomatic presentation often found 
among patients screened due the presence of an incidentalomas or an underlying 
hereditary predisposition [3, 4].

31.1.1	 �Prevalence

Autopsy studies have indicated prevalences of PPGLs of 0.05–0.13%, mostly 
reflecting cases that remained undetected during life [5–7]. From reported annual 
incidences of PPGLs of between two and five cases detected per million per year [8, 
9], translating to lifelong prevalences of 0.013–0.033%, it seems clear from the 
autopsy series that most PPGLs remain undetected throughout life, contributing to 
premature death. Nevertheless, prevalences at autopsy have dropped from 0.13% in 
the 50-year period before 1982 [5] to 0.05% in the 20-year period up until the turn 
of the century [6, 7], suggesting improved diagnosis during life. Presumably there 
have been further improvements in diagnosis over the subsequent 15 years, so that 
annual detection rates at some centers might be expected to reach ten or more per 
million.

Among patients with hypertension, the prevalence of PPGLs has been estimated 
at 0.6% [10], at least fourfold higher than overall prevalence rates. It can therefore 
be expected that prevalences are higher, possibly reaching 2% among patients with 
sustained or paroxysmal hypertension and symptoms of catecholamine excess. This 
is in agreement with findings that among unselected patients screened for PPGLs, 
prevalences of PPGLs range from 0.8 to 1.6% [11–13]. Among patients with adre-
nal incidentalomas, prevalences of pheochromocytoma are higher, between 4 and 
9% [14, 15], with an overall prevalence of 7% indicated by review of 29 studies 
performed between 1982 and 2002 [16]. Depending on the mutation, prevalences 
can be even higher in patients with a hereditary predisposition to PPGLs, reaching 
40% in patients with multiple neoplasia type 2 (MEN 2) [17].

31.1.2	 �Signs and Symptoms

Most patients with PPGLs have classical symptoms due to the effects of excessive 
circulating concentrations of catecholamines (Table 31.1). Reported frequencies of 
symptoms depend however on the studied populations and are often biased by the 
retrospective nature of studies. Some patients have been reported as normotensive 
and completely asymptomatic, particularly those in whom tumors are diagnosed 
based on screening because of hereditary predisposition or of findings of an inci-
dentaloma [4]. In rare cases, tumors may synthesize no or little catecholamines or 
only produce dopamine [18, 19].
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Signs and symptoms of PPGLs usually present paroxysmally, consequent to the 
hemodynamic and metabolic actions of peak levels of catecholamines (Fig. 31.1). 
Such episodes usually last between a few to 60 min and can occur spontaneously or 
may be provoked by drugs (e.g., steroids, antiemetics), anesthesia, tyramine-
containing foods, or mechanical factors. Adverse reactions to medications can be 
particularly problematic (Table 31.2). The frequency of such episodes varies from 
once daily to only a few times per month.

The hallmark that usually triggers clinicians to consider the diagnosis of 
PPGL is hypertension. At least 50% of patients have chronic but usually labile 
hypertension with short-lasting episodes of high surges in blood pressure. 
Specific blood pressure patterns often feature prominent daytime variability, an 
absent or blunted diurnal blood pressure rhythm, orthostatic hypotension, and 
more rarely hypotension [20, 21]. A small percent of patients present with shock, 
which has been suggested to occur particularly in epinephrine- or dopamine-
secreting tumors [22].

Apart from hypertension, there is wide constellation of other established signs 
and symptoms, dominated by the classic triad of paroxysmal headache, palpitations, 
and diaphoresis (Table 31.1). In addition many other nonspecific symptoms may be 
encountered, including nausea, tremulousness, anxiety, panic attacks, weight loss, 
and gastrointestinal symptoms such as constipation and vomiting. Hyperglycemia 
and even overt diabetes mellitus in young lean hypertensive subjects should arouse 
suspicion of the tumor. Due to the nonspecific nature of most symptoms, there are 
many other clinical conditions, mostly associated with increased sympathetic activ-
ity, that mimic presence of a catecholamine-producing tumor [3].

In about 10% of patients with PPGLs, elevations in blood pressure may evolve 
into a hypertensive crisis with subsequent organ damage involving acute coronary 
syndrome, left ventricular heart failure, Takotsubo cardiomyopathy, arrhythmias, or 
stroke [21, 23–25]. Occasional patients may also present with multisystem crisis 
associated with an IL-6-mediated acute inflammatory syndrome, high-grade fever 
(>40  °C), and leukocytosis [21], evolving into renal failure, pulmonary edema, 
encephalopathy, and lactic acidosis. Delayed treatment is associated with a high 
fatality rate [23].

Table 31.1  Frequency (%) of signs and symptoms

Headache 70–90
Palpitations 50–70
Diaphoresis 55–75
Hypertension
    – Sustained
    – Paroxysmal

85–90
50–60
50

Orthostatic hypotension 10–60
Pallor 40–60
Hyperglycemia/diabetes 40–60
Nausea/vomiting 20–45
Anxiety/panic attacks 20–40
Fatigue 20–40
Gastrointestinal: constipation, ileus 10–15
Weight loss 15–40%
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Several factors account for the variable clinical picture of PPGLs, including 
tumor size, biochemical phenotype, co-secreted peptides, and underlying patho-
genic mutations. In general, larger tumors are associated with larger elevations in 
catecholamines and more prominent signs and symptoms, but this association 
may be lost when the tumors contain substantial hemorrhage or necrosis. Patients 
with epinephrine-producing tumors are more likely to display paroxysmal symp-
toms such as palpitations, tremulousness, and anxiety than tumors producing 
merely norepinephrine [26–28]. This may in part reflect the more prominent 
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beta2-adrenergic effects of epinephrine, but as detailed later may also reflect dif-
ferences in secretory characteristics. Tumors that produce predominantly dopa-
mine are rare, presenting mainly as paragangliomas, particularly in the head and 
neck. Patients with such tumors are usually normotensive and asymptomatic [18, 
29]. Presence of nausea or orthostatic hypotension has been reported in several 
patients with dopamine-producing PPGLs [18, 30]. Given the widely varying 
clinical spectrum of signs and symptoms, a meticulously taken detailed medical 
history and physical examination are essential for timely diagnosis of this treach-
erous tumor.

31.1.3	 �Incidentalomas

As many as or more than 25% of all pheochromocytomas are now being diag-
nosed after presentation as an adrenal incidentaloma [31–33]. Many cases of 
abdominal or thoracic paragangliomas are also being discovered after imaging for 
nonspecific reasons such as abdominal pain or due to other mass effects of tumors 
[18, 33]. Due to the high prevalence of PPGLs among such patients, combined 
with the substantial proportion of normotensive and asymptomatic cases, routine 
screening for PPGLs is widely recommended for all patients with incidentally 
discovered masses, regardless of the presence or absence of signs and symptoms 
[16, 33–35].

As indicated in one study, biochemical phenotypic features and other tumor 
characteristics differ between patients presenting with normotensive inciden-
tally discovered adrenal pheochromocytomas and those with similarly sized 
tumors associated with overt signs and symptoms [36]. Specifically tumors from 
patients who were normotensive showed lesser increases in both urinary meta-
nephrines and catecholamines than in patients who were hypertensive. This sug-
gested that differences in biochemical features might contribute to discovery of 
such tumors as incidentalomas rather than more classically secondary to hyper-
tension and symptoms of catecholamine excess.

Table 31.2  Classes of drugs potentially responsible for adverse reactions in patients with PPGLs

Drug class Examples
β-adrenergic receptor blockers Propranolol, metoprolol, atenolol, labetalol
Hormones (steroids, peptides) Prednisone, dexamethasone, methylprednisolone, 

glucagon
Dopamine D2 receptor antagonists Metoclopramide, sulpiride, chlorpromazine, droperidol
Antidepressants (tricyclics, SSRIs, 
MAO inhibitors)

Amitriptyline, imipramine, clomipramine, paroxetine, 
fluoxetine, phenelzine, moclobemide

Sympathomimetics Ephedrine, phenylpropanolamine, fenfluramine, 
phentermine (dex)amphetamine, methylphenidate, 
cocaine

Anesthetics (opioid analgesics, 
neuromuscular blocking agents)

Pethidine, morphine, tubocurarine, succinylcholine, 
atracurium besilate

SSRIs: selective serotonin uptake inhibitors
MAO: mono amine oxidase
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31.1.4	 �Hereditary Disease

At least a third of PPGLs are inherited due to germline mutations of more than 13 
tumor susceptibility genes identified to date [37, 38]. The most well-established 
hereditary causes of PPGLs are those associated with syndromic presentations 
including neurofibromatosis type 1 (NF 1) due to mutations of the NF1 gene, mul-
tiple endocrine neoplasia type 2 (MEN2) due to mutations of the rearranged during 
transfection (RET) gene, von Hippel-Lindau (VHL) syndrome due to mutations of 
the VHL gene, and familial paraganglioma syndromes caused by mutations of genes 
encoding succinate dehydrogenase subunits B and D (SDHB and SDHD). Other 
less frequent forms of hereditary PPGLs can result from mutations of succinate 
dehydrogenases A and C (SDHA and SDHC), succinate dehydrogenase complex 
assembly factor 2 (SDHAF2), transmembrane domain protein 127 (TMEM127), 
MYC-associated factor X (MAX), prolyl hydroxylase 2 (PHD2), fumarate hydratase 
(FH), and malate dehydrogenase 2 (MDH2).

Prevalence of PPGLs associated with the above mutations varies according to 
penetrance of disease and incidence of mutations. For NF1, although relatively com-
mon (1:3000), penetrance of pheochromocytoma is low with not more than 5% of 
patients developing the tumors [39]. In contrast, the penetrance of pheochromocy-
toma for RET mutation carriers reaches 40–50% [17], while for VHL syndrome it 
averages 20% with variability according to the particular mutation [40]. For some 
mutations of the SDHD gene penetrance has been reported to reach up to 100% [41]. 
Among patients with SDHD, SDHAF2, and MAX mutations, disease is transmitted to 
offspring paternally, skipping a generation with maternal transmission [42–44]. For 
most of the recently discovered tumor susceptibility genes, penetrance has not yet 
been precisely established, this requiring long-term follow-up of non-index cases.

Despite the variability and uncertainty of disease risk, it is widely recognized 
that all patients carrying mutations of PPGL susceptibility genes should undergo 
periodic screening for the tumors. For patients with VHL syndrome and MEN2, 
such screening at specialist centers is already well established and clearly results 
in diagnosis of tumors at an earlier stage when tumors are small and patients are 
normotensive and asymptomatic [28, 45]. For all there is an emerging need for 
personalized management according to risk. Patients with SDHB mutations, who 
carry a high risk for metastatic PPGLs [46], provide an example of those who 
might particularly benefit from earlier detection of disease before metastatic 
involvement.

Due to the rich hereditary background of PPGLs, it is recommended by 
Endocrine Society clinical practice guidelines that all patients with PPGLs receive 
counseling about possible genetic risk and that genetic testing should be particu-
larly encouraged for several groups of patients [47]: (1) those with a positive fam-
ily history of PPGLs or tumor susceptibility gene mutations, (2) those with 
syndromic features, (3) those with PPGLs occurring at a young age, (4) those with 
multifocal or bilateral adrenal tumors, (5) those with paragangliomas in whom 
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there is high risk of mutations for genes encoding succinate dehydrogenase sub-
units, and (6) those with metastatic disease in whom there is a high risk of SDHB 
mutations. The underlying rationale for such testing is that identification of a gene 
mutation provides a context for routine screening programs that can result in ear-
lier detection of PPGLs and other neoplasms, thereby reducing morbidity and mor-
tality. For patients with aggressive disease in whom surgical intervention is not an 
option, new developments on the horizon also make it likely that establishing the 
underlying mutation can provide a rationale for therapies that target downstream 
signaling pathways [48].

For PPGLs, the pathways leading to tumorigenesis are being rapidly elucidated 
consequent to their rich hereditary background [37, 49, 50]. As originally indicated by 
gene expression profiling, the various types of hereditary PPGLs fall into one of two 
main cluster groups according to the mutation and downstream affected signaling 
pathways [37]. Mutations of RET, NF1, TMEM127, and MAX, associated with cluster 
group 2, all involve activation of RAS and kinase signaling pathways and lead to well-
differentiated adrenal pheochromocytomas with low susceptibility to malignancy. In 
contrast, mutations of VHL, SDHB, SDHD, SDHC, SDHA, SDHAF2, PHD2, and FH, 
associated with the cluster group 1, all result in stabilization of hypoxia-inducible fac-
tors (HIFs) leading to activation of hypoxia-angiogenic pathways. Apart from 
increased expression of hypoxia pathway genes, these tumors are also characterized 
by increased expression of the HIF2α itself and occur at an earlier age at both adrenal 
and extra-adrenal locations compared to the more differentiated cluster 2 tumors [51, 
52]; this is suggested to reflect importance of transient expression of HIF2α during 
early differentiation of sympathoadrenal progenitors, with stabilization at the protein 
level leading to inhibition of both apoptosis and differentiation [53].

Support for involvement of HIF2α in development of cluster 1 PPGLs has come 
from identification of HIF2α itself as a tumor susceptibility gene, in almost all cases 
involving somatic mutations [54]. Importantly, HIF2α mutations show mosaicism, 
indicating occurrence during embryogenesis [55]. Nevertheless, even with the com-
monality of HIF2α in development of cluster 1 PPGLs, there are additional differ-
ences in signaling pathways among cluster 1 PPGLs. For HIF2α, VHL, and PHD2 
mutations, stabilization of HIFs reflects the direct central tumorigenic mechanism. In 
contrast, for mutations of genes encoding succinate dehydrogenase subunits and 
other Krebs cycle enzymes (e.g., fumarate hydratase), stabilization of HIFs occurs 
secondary to wider actions of the elevated cellular levels of oncometabolites, succi-
nate, or fumarate [48]. These oncometabolites inhibit not only the prolyl-hydroxylases 
that facilitate HIF degradation but also other alpha-ketoglutarate-dependent hydrox-
ylases, such as histone and DNA demethylases. As a result, PPGLs resulting from 
mutations of genes encoding Krebs cycle enzymes exhibit a hypermethylator pheno-
type, turning off expression of numerous genes involved in restricting growth and 
controlling differentiation [56]. The result is that among cluster 1 PPGLs, those due 
to mutations of genes encoding Krebs cycle enzymes, and SDHB in particular, are 
the most aggressive and poorly differentiated (Fig. 31.2).
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Fig. 31.2  Catecholamine phenotypic features in PPGLs according to mutation. Cluster 2 tumors 
due to RET, NF1, and TMEM1 mutations are well differentiated, metabolizing tyrosine (TYR) to 
L-dopa (DOPA) by tyrosine hydroxylase, then to dopamine (DA) by aromatic amino acid decar-
boxylase, then to norepinephrine (NE) by dopamine β-hydroxylase after uptake into noradrener-
gic vesicles, and then to epinephrine (EPI) by phenylethanolamine N-methyltransferase (PNMT) 
after leakage of NE into the cytoplasm. DA is metabolized to methoxytyramine (MTY), NE is 
metabolized to normetanephrine (NMN), and EPI is metabolized to metanephrine (MN), all con-
versions catalyzed in the cytoplasm by catechol-O-methyltransferase. Cluster 1 tumors due to 
VHL, HIF2α, and SDHx mutations do not express PNMT so that these tumors do not produce EPI 
or MN. Also, these tumors, although having lower catecholamine stores compared to cluster 2 
tumors, have poorer secretory controls than cluster 2 tumors and secrete catecholamines at higher 
rates. Tumors due to SDHx mutation are particularly poorly differentiated and often produce 
large amounts of MTY
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31.2	 �Biochemistry

31.2.1	 �Catecholamine Synthesis, Storage, Secretion, 
and Metabolism

Synthesis, storage, secretion, and metabolism of catecholamines in PPGLs vary 
substantially depending on expression of catecholamine biosynthetic and secretory 
machinery, this as outlined above determined by underlying gene mutations [57, 58] 
(Fig. 31.2). The well-differentiated cluster 2 type pheochromocytomas all express 
phenylethanolamine N-methyltransferase (PNMT), which converts norepinephrine 
to epinephrine. Norepinephrine and epinephrine are stored in electron microscopi-
cally distinct secretory vesicles, the presences of which differ in cluster 1 and 2 
mutated tumors [28].

Catecholamine secretion primarily involves exocytosis in which storage vesicles 
fuse with the plasma membrane and extrude their catecholamine contents into the 
extracellular space. This secretory process is a highly regulated calcium-dependent 
process responsive to neuronal input or secretogogues for evoked but controlled 
release of catecholamines. While PPGLs lack the former control, they can be influ-
enced by secretogogues, but vary considerably in expression of the cellular secre-
tory machinery responsive to regulatory control. Cluster 1 mutated tumors not only 
lack expression of PNMT, but in contrast to well-differentiated cluster 2 tumors also 
exhibit poorer expression of other key catecholamine biosynthetic enzymes and 
components responsible for storage and regulated secretion of catecholamines [57] 
(Fig. 31.2).

As a consequence of the above differences, cluster 1 tumors lack production of 
epinephrine and also contain lower overall stores of catecholamines [58] (Fig. 31.2). 
Furthermore, due to their relative lack of regulated secretory pathway machinery, 
cluster 1 tumors also secrete the limited amounts of catecholamines they produce in 
a more continuous or constitutive fashion compared to cluster 2 tumors. Thus, in 
contrast to cluster 1 PPGLs, cluster 2 epinephrine-producing pheochromocytomas, 
such as those in patients with MEN 2 or NF1, are characterized by highly concen-
trated stores of catecholamines and relatively low rates of catecholamine secretion. 
These tumors can, however, be easily provoked to secrete catecholamines in 
response to secretogogues and other stimuli, which may provide the basis for why 
epinephrine-producing tumors have been described as more often producing parox-
ysmal hypertension compared to norepinephrine-producing tumors.

The above differences along with differences in co-secretion of bioactive pep-
tides are likely responsible for some of the highly variable clinical manifestations of 
chromaffin cell tumors, but as yet there has been no fully prospective study to firmly 
establish such a link between underlying mutations to differences in presentation of 
disease. There are, however, forms of undifferentiated PPGLs for which a link 
seems clear. These in particular involve patients who have PPGLs due to mutations 
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of the SDHB gene which appears to be associated with further downregulated 
expression of catecholamine phenotypic features due to epigenetic silencing sec-
ondary to actions of elevated succinate to inhibit alpha-ketoglutarate-dependent 
enzymes involved in regulating DNA methylation [56]. As a consequence, tumors 
in patients with SDHB mutation contain the lowest amounts of catecholamines, 
among all PPGLs; catecholamine contents are also characterized by relative high 
proportions of dopamine [58, 59]. The tumors often reach large sizes before their 
discovery, which may reflect both relative paucity of signs and symptoms and diver-
sion of energy from maintaining chromaffin-like phenotypic features to enhanced 
growth. Consequently, these tumors carry a high risk of malignancy.

Most other PPGLs contain large amounts of catecholamines, particularly norepi-
nephrine, in about 50% of cases additional epinephrine and a variable amount of 
dopamine [58]. Tumor contents and secretion of dopamine are impacted by the 
efficiency of dopamine beta-hydroxylase in converting the dopamine to norepineph-
rine after the former amine is translocated into secretory vesicles [60]. Importantly, 
the catecholamines stored in secretory granules exist in a highly dynamic equilib-
rium with the surrounding cytoplasm, with passive outward leakage into the cyto-
plasm counterbalanced by inward active transport under the control of vesicular 
monoamine transporters [61]. For all catecholamines, whether stored in sympa-
thetic neurons, adrenal chromaffin cells, or tumors derived from adrenal or extra-
adrenal chromaffin cells, most initial metabolism takes place within the cells where 
the catecholamines are synthesized [62].

In sympathetic nerves, the presence of monoamine oxidase (MAO), but absence of 
catecholamine-O-methyltransferase (COMT), leads to deamination of norepinephrine 
to dihydroxyphenylglycol (DHPG). This primary norepinephrine metabolite is 
derived largely from norepinephrine leaking from storage vesicles, but is also derived 
from reuptake of the transmitter back into nerves [62]. Only a small amount of norepi-
nephrine escapes reuptake; some of this is metabolized extraneuronally to normeta-
nephrine or DHPG, while a remaining small proportion (<5%) reaches the circulation 
as norepinephrine. In adrenal chromaffin cells and tumors of chromaffin cells, the 
additional presence of COMT leads to production of metanephrine from epinephrine, 
normetanephrine from norepinephrine, and methoxytyramine from dopamine [63]. 
This production again depends on leakage of catecholamines from storage vesicles, a 
continuous process that is independent of exocytotic release of catecholamines, which 
makes a relatively minor contribution to production of metanephrine. Thus, over 90% 
of all circulating metanephrine is normally derived from metabolism of epinephrine 
within adrenal chromaffin cells [64]. These cells also make the single largest contribu-
tion to circulating normetanephrine (at least 24%), with the rest from norepinephrine 
metabolized to normetanephrine in non-neuronal and non-chromaffin extraneuronal 
cells. Continuous production of the O-methylated metabolites within chromaffin cells 
and their tumor derivatives explains why measurements of plasma-free and urine 
deconjugated metanephrines provide advantages over measurements of catechol-
amines, which can be released by some tumors intermittently or in low amounts. 
Other catecholamine metabolites are produced in various organs and tissues of the 
body and also are not as useful as the metanephrines for diagnosis of PPGLs. 
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Vanillylmandelic acid, for example, is almost exclusively formed in the liver as the 
end product of catecholamine metabolism and derived mainly from DHPG produced 
in sympathetic nerves [65].

31.2.2	 �Biochemical Diagnosis

The superior diagnostic accuracy of measurements of plasma-free metanephrines 
over other tests has been clearly outlined by several independent studies [66–71], with 
several others confirming the high diagnostic accuracy of either plasma or urinary 
fractionated metanephrines for identifying patients with PPGLs [72–74]. With this 
evidence at hand, it has been a simple matter for Endocrine Society clinical practice 
guidelines on PPGLs to stipulate that initial testing for PPGLs should always include 
measurements of plasma-free or urinary fractionated metanephrines [47]. All other 
available tests, including urinary or plasma catecholamines, urinary vanillylmandelic 
acid, urinary total metanephrines (measured by spectrophotometric methods), and 
chromogranin A, are unnecessary and generally inappropriate for initial screening of 
PPGLs, but may be employed for follow-up confirmation of positive results of plasma-
free or urinary fractionated metanephrines or in specific presentations of disease.

If used correctly with appropriate analytical methods and reference intervals, 
measurements of plasma-free metanephrines in particular provide diagnostic sensi-
tivity approaching 100% with diagnostic specificity of at least 95% [74]. Over 90% 
of PPGLs show elevations of normetanephrine, about 50% elevations of metaneph-
rine, and 45% elevations of methoxytyramine, with about 70% showing some com-
bination of increases of normetanephrine with metanephrine or methoxytyramine or 
both. Moreover, increases are usually well in excess of twofold above the upper 
cutoffs. Such magnitudes of increases and combinations of increases are rare in 
patients without PPGLs, providing high positive predictive value in over 80% of 
patients with PPGLs. For these patients it is simply a matter of locating the tumor. 
For the other minority of patients with PPGLs in whom false positives are difficult 
to distinguish from true positives, biochemical diagnosis can be made using the 
clonidine test when elevations involve normetanephrine or by follow-up to establish 
increasing concentrations over time.

With measurements of plasma metanephrines by mass spectrometry and employ-
ing appropriate preanalytical precautions and reference intervals, diagnosis of 
PPGLs is simple [75]. Common problems, however, occur with the use of inaccu-
rate analytical methods (e.g., immunoassays), incorrect reference intervals, and 
inappropriate preparation of patients for blood sampling. For the latter, patients 
should be sampled after 30 min supine rest and should not be under physiological 
or mental stress that might increase sympathoadrenal activity. Sampling in the 
seated position or under any form of stress carries a high likelihood of false positive 
results. When measurements involve plasma methoxytyramine, sampling should be 
carried out after an overnight fast.

At many centers, however, clinicians have problems following the above recom-
mendations, and there can also be problems with availability or adequacy of 
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laboratory measurements or reference intervals for plasma-free metanephrines [75]. 
For this reason, measurements of urinary fractionated metanephrines provide an 
alternative to plasma-free metanephrines.

31.2.3	 �Interpretation of Positive Biochemical Test Results

In addition to indicating the presence of PPGLs, usually with high positive predic-
tive value, patterns of increases in plasma free metanephrines can also be used to 
predict tumor size, location, underlying mutations, and metastatic involvement [75]. 
As outlined earlier, mutations of different genes are associated with differences in 
expression of catecholamine biosynthetic enzymes and thus differences in patterns 
of increases of normetanephrine, metanephrine, and methoxytyramine [76]. Patients 
with cluster 2 types mutations, such as those involving RET and NF1 genes, almost 
all show increases in plasma metanephrine, with or without increases in normeta-
nephrine. In contrast, PPGLs due to cluster 1 type mutations, such as those involv-
ing VHL, SDHD, and SDHB genes, do not express PNMT and do not produce 
epinephrine. Consequently, cluster 1 type tumors are associated with increases of 
normetanephrine, but not metanephrine. Furthermore, in patients with SDHB and 
SDHD mutations, there are often increases in methoxytyramine, which reflect the 
more immature nature of these tumors compared to other PPGLs.

Phenotypic immaturity, as indicated by increases in plasma methoxytyramine, is 
also associated with higher likelihood of metastatic involvement. In this context 
increases in plasma methoxytyramine provide the only currently available bio-
marker for metastatic involvement [59]. Although substantial increases of methoxy-
tyramine are present in only about 60–70% of all cases of metastatic PPGLs, when 
present they are important to consider as an indicator of malignancy.

Since the extent of increase in plasma metanephrines is dependent on size of 
vesicular stores of catecholamines, the magnitude of increases in the metabolites 
can be used to roughly indicate mean tumor diameter [77]. Additionally, increased 
plasma metanephrine almost always indicates an adrenal pheochromocytoma or 
recurrence of an adrenal pheochromocytoma, whereas large increases in methoxy-
tyramine relative to normetanephrine are indicative of extra-adrenal tumors. Such 
biochemical information indicating tumor size and location can be useful for subse-
quent imaging or interpretation of imaging results.

31.3	 �Tumor Localization

31.3.1	 �Anatomical Imaging

In general, imaging studies to locate a PPGL should be ordered once there is clear 
biochemical evidence for the presence of the tumor [47]. Exceptions to this rule are 
emergency situations where an immediate diagnosis and treatment are required [78]. 
Imaging studies without an established biochemical diagnosis are not cost-effective 
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and entail a risk for diagnostic confusion with incidentaloma, thus complicating the 
work-up further. The first choice imaging modality for PPGL is computed tomogra-
phy scanning (CT) before and after contrast administration of the abdominal and 
pelvic areas [47]. More than 95% of all PPGLs are located in these areas.

CT is in general preferred over magnetic resonance imaging (MRI) because of its 
superior spatial resolution. The sensitivity of CT for detecting pheochromocytomas 
is over 90%, but lower for paragangliomas and for recurrent or metastatic tumors 
[79, 80]. Since CT has no high reliability for elucidating the nature of a mass, the 
specificity for correct identification of the mass is moderate, even with consider-
ation of imaging features such as density, contrast enhancement, and washout [81].

Although MRI imaging with or without gadolinium enhancement has a superior 
sensitivity over CT for detecting paragangliomas [79], again as with CT, specificity 
of MRI falls short due to features that may impair signal intensity such tumor necro-
sis or hemorrhage [81]. Apart from extra-adrenal paragangliomas, MRI is also indi-
cated in specific patient groups, such as those with metastases, with intracardiac or 
head and neck PGLs, with postoperative surgical clips, and with iodine allergy. 
Patients in whom radiation exposure should be kept to a minimum are also candi-
dates for MRI, including children, pregnant women, and others with known germ-
line mutations who are likely to undergo repeated imaging studies [47].

31.3.2	 �Functional Imaging

Since anatomical imaging is insufficient for assessing multifocality or metastatic 
disease and is not specific for establishing the diagnosis, a complementary func-
tional imaging step is often required after anatomical imaging [82, 83]. The aim of 
functional imaging is thus to establish the nature of a mass and identify other focal 
or metastatic lesions. For this purpose several radiolabeled ligands targeting specific 
cell membrane and/or vesicular catecholamine transport systems are available. 
Some ligands are employed for single photon emission computed tomography 
(SPECT), such as 123I-MIBG, while others are used for positron emission tomogra-
phy (PET), such as 18F-fluorodeoxyglucose (18F-FDG) or 68Ga-DOTATATE.

The most widely available functional imaging ligand is 123I-MIBG. Sensitivity 
with 123I-MIBG SPECT for detection of pheochromocytoma approaches 100%, but 
is considerably less for extra-adrenal paragangliomas (56–75%) and metastases, par-
ticularly when associated with underlying SDHx mutations (<50%) [84–86]. A spe-
cific advantage of using 123I-MIBG is the potential to identify patients with metastatic 
PPGLs who may benefit from treatment with therapeutic doses of 131I-MIBG [83].

PET imaging agents used for functional imaging of PGGLs include 
18F-fluorodopamine (18F-FDA), 18F-fluorodeoxyglucose (18F-FDG), 111In-DTPA-
pentetreotide, 68Ga-DOTATATE, and 68Ga-DOTATOC [83, 86]. The diagnostic 
accuracies of these different compounds vary, depending on specific clinical fea-
tures, such as tumor location, genetic mutation, and metastatic involvement, requir-
ing personalized considerations for best choice of agent as available. Since many 
PPGLs overexpress subtype 2 somatostatin receptors, radiolabeled somatostatin 
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receptor ligands can be particularly useful for localization. Such ligands developed 
for PET imaging, including 68Ga-DOTATATE and 68Ga-DOTATOC, have shown 
particularly excellent diagnostic accuracy for head and neck paragangliomas and 
SDHB-related metastatic disease [87–89].

31.4	 �Management

31.4.1	 �Preoperative Management

Surgical outcomes of patients with  PPGLs have improved considerably over the 
last 50 years with a current perisurgical mortality rate of less than 1%. This can be 
attributed to improved presurgical medical preparation of patients as well as emer-
gence of multidisciplinary teams and sophisticated approaches to anesthesiological 
management. Although most patients are in the long term cured by tumor removal, 
postsurgical recurrence rates average 16.5% [90].

Elective surgical removal of a catecholamine-producing tumor should be preceded 
by preoperative medical preparation to prevent or minimize hazardous complications 
due to massive release of catecholamines from the tumor, particularly provoked by 
mechanical manipulation during surgery [47, 91]. Such precautions are indicated in 
all patients in whom elevations of plasma or urinary metanephrines indicate a cate-
cholamine-producing tumor, regardless of the presence or absence of symptoms or 
whether patients are hypertensive or normotensive. Although some retrospective 
small series of patients have questioned the need for medical preparation, there are no 
randomized trials documenting that refraining from medical pretreatment is safe. 
Since it is impossible to predict the course during surgery in individual patients, a 
patient-tailored strategy of preoperative blockade provides the safest approach.

The mainstay for successful medical pretreatment remains α-adrenoceptor 
antagonist therapy using the noncompetitive inhibitor, phenoxybenzamine, or the 
competitive inhibitor, doxazosin [91, 92]. Evidence from randomized trials showing 
benefits of one over the other are lacking [47]. Calcium channel blockers are gener-
ally not used as first-line blocking agent but do hold a place as an add-on drug to 
α-adrenoceptor blockade. Similarly, the catecholamine-synthesis inhibitor 
α-methylparatyrosine (metyrosine) can be employed as an add-on treatment to 
α-adrenoceptor blockade when required [91, 93]. A β-adrenoceptor antagonist, such 
as atenolol or metoprolol, can also be included several days before surgery to pre-
vent tachyarrhythmias, but only after α-adrenoceptor blockade [91].

The recommended duration of pharmacological pretreatment in elective patients is 
7–14 days, but this is based mainly on expert opinion. The target blood pressure level 
is less than 130/80 mm Hg in the sitting position with a systolic blood pressure in the 
upright position higher than 90 mm Hg [47, 91]. A presurgical high-sodium diet and 
high fluid intake during preparation are helpful to circumvent postsurgical hypoten-
sion [91]. Close postsurgical surveillance for at least 24 h is essential for detection and 
proper treatment of hypotension and hypoglycemia. In specific patients undergoing 
bilateral or major unique adrenal surgery, the possibility of adrenal insufficiency is the 
first and most important consideration in situations of postsurgical hypotension.
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31.4.2	 �Surgical Management

Surgical removal of pheochromocytomas by minimal invasive laparoscopic tumor 
resection is first choice treatment with the posterior retroperitoneal approach pre-
ferred in patients with pheochromocytoma [94]. Paragangliomas may also be 
resected by laparoscopic surgery depending on tumor size, relation to other organs, 
and on the experience of the surgeon [95]. Retrospective cohort studies have shown 
that patients operated by laparoscopy experience less blood loss and have a shorter 
stay in hospital as compared to conventional open surgery [96, 97]. In patients with 
underlying mutations such as those with MEN2 and VHL, adrenal-sparing surgery 
is indicated when technically feasible. Leaving some remnant adrenocortical tissue 
in situ avoids or postpones need for lifelong steroid replacement therapy for adrenal 
insufficiency, but this benefit should be balanced against the increased risk of tumor 
recurrence [98–100].

31.4.3	 �Follow-Up

Following surgical removal of PPGLs, all patients should undergo follow-up to 
ascertain whether the tumor has been removed completely [101]. For patients with 
presurgically elevated plasma or urine metanephrines, measurements can be 
repeated at 2–6 weeks after surgery. Persistently elevated test results suggest resid-
ual disease that should then be confirmed by additional imaging studies.

Since there is a persistent risk of recurrent disease after apparently complete 
resection of an initially discovered PPGL, it is important that follow-up is continued 
in the long term well after surgical resection [102]. Risk of recurrence is higher in 
young patients (<20 years), in those with syndromic presentations, paragangliomas, 
and patients with large tumors. However, there is no “safe” tumor size below which 
the risk is zero. Thus, follow-up is recommended in all operated patients annually 
for at least 10 years, but continuing thereon in high-risk patients, such as those who 
are young, carry an underlying germline mutation or who present with an extra-
adrenal or large tumor. Follow-up should include an annually taken medical history, 
physical examination including blood pressure, and measurements of plasma or uri-
nary fractionated metanephrines.
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Hypertension is an important cardiovascular risk factor since deaths, disability-
adjusted life years, and years of life lost are increased with high blood pressure [1]. 
Hypothyroidism has been linked to hypertension. The prevalence of hypertension 
was found higher in hypothyroid patients, while adequate thyroid hormone replace-
ment therapy normalized thyroid function and reduced blood pressure. Thyrotoxic 
patients who became hypothyroid after radioiodine therapy had significantly 
increased diastolic blood pressure [2, 3]. Thyroid abnormalities have been associ-
ated with increased cardiovascular risk profile. Even within the normal range, TSH 
was associated with lipid levels and blood pressure among both men and women. 
Despite that, subclinical thyroid abnormalities were not associated with increased 
risk of coronary heart disease or all-cause mortality [4]. Subclinical hypothyroidism 
was associated with hypertension in most but not in all cross-sectional studies [4–
6]. In a population-based study, included 30,728 individuals, a positive and linear 
association between TSH within the reference range and systolic and diastolic blood 
pressure was reported. The average increase in systolic blood pressure per multiunit 
per liter increase in TSH was 2.0 mm Hg in men and 1.8 mm Hg in women, and the 
average increase in diastolic blood pressure per multiunit per liter increase in TSH 
was 1.6 mmHg in men and 1.1 mmHg in women [7]. Higher TSH levels were asso-
ciated with current hypertension but not with a 5-year change in blood pressure and 
incident hypertension suggesting a short-term effect of thyroid hormone levels on 
arterial blood pressure that may be altered from thyroid hormone replacement treat-
ment in population studies [8]. The HUNT study showed that higher TSH levels at 
baseline were associated with higher future BP levels in euthyroid participants 
(baseline TSH level of 0.45–4.5 mU/L) after 11 years of follow-up, but the associa-
tion was modest and mainly in women [9].
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Thyroid hormone actions in the heart and the vessels are important and associ-
ated with the physiology of thyroid-induced heart disease and hypertension. The 
thyroid gland is responsible for the production of thyroid hormone and consists of 
follicles in which thyroid hormone is synthesized through iodination of tyrosine 
residues in the glycoprotein thyroglobulin [10]. Thyroid-stimulating hormone 
(TSH), secreted by the anterior pituitary in response to feedback from circulating 
thyroid hormone, acts directly on the TSH receptor (TSH-R) expressed on the thy-
roid follicular cell basolateral membrane [11]. Thyroid hormone holds an important 
role in normal development, growth, neural differentiation, and metabolic regula-
tion in mammals [12, 13]. Thyroxin (T4) and 3,5,3΄-triiodothyronine (T3) are syn-
thesized by the thyroid gland in response to TSH. The thyroid gland secretes T4 
which is converted to T3  in the liver, kidney, and skeletal muscle [14, 15]. 
Hyperthyroidism induces a hyperdynamic cardiovascular state, which is associated 
with increased heart rate and enhanced left ventricular systolic and diastolic func-
tion, whereas hypothyroidism is characterized by the opposite changes. T3 is taken 
up in neonatal rat cardiomyocytes by an energy-dependent carrier-mediated mecha-
nism. Such a transport mechanism for T4 is not present. The heart is mainly affected 
by serum T3 because intracellular deiodinase activity does not take place in myo-
cytes [16]. Atrial fibrillation (AF) occurs in 10–25% of patients with hyperthyroid-
ism, more commonly in men and elderly patients [17]. Treatment is directed toward 
restoring a euthyroid state, which is usually associated with a spontaneous reversion 
to sinus rhythm.

Thyroid hormones play an important role in BP control by a number of direct and 
indirect actions on the cardiovascular system [18]. BP changes are observed in both 
hypo- and hyperthyroid states in humans and animals. Thyroid hormone increases 
metabolism and oxygen consumption, indirectly increasing the cardiac workload. 
In addition, thyroid hormone exerts direct inotropic, chronotropic, and dromotropic 
effects that are similar to those seen with adrenergic stimulation. Hyperthyroidism 
is characterized by an overload circulation with increased heart rate, cardiac output, 
pulse pressure, and blood pressure with decreased peripheral vascular resistance, 
whereas overt hypothyroidism is associated with low heart rate, cardiac output, 
pulse pressure, and high blood pressure due to increased peripheral vascular resis-
tance [19].

Thyroid hormones act directly on the vascular smooth muscle cells, decreasing 
the resistance in peripheral arterioles. These changes sensed by the kidneys increase 
renin synthesis and secretion, activating the renin-angiotensin-aldosterone system 
(RAAS) to increase renal sodium absorption. T3 also stimulates the synthesis of 
renin substrate in the liver [20] and increases erythropoietin synthesis, which leads 
to an increase in red cell mass and blood volume [21]. Therefore, whereas thyroid 
hormone decreases systematic vascular resistance and afterload, it also activates 
RAAS, leading to an increase in blood volume and heart preload which contributes 
to the characteristic increase in cardiac output in hyperthyroidism [21, 22]. T3 also 
regulates the basal metabolic rate by increasing oxygen consumption in peripheral 
tissues and tissue thermogenesis. In hypothyroidism, tissue thermogenesis is 
decreased 5–8%, whereas in hyperthyroidism, tissue thermogenesis is increased 
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15–20%. The metabolic demands of the peripheral tissues increase heart rate and 
output [19, 21]. In hypothyroidism, arterial compliance is reduced, which leads to 
increased systematic vascular resistance (2100–2700 dyn/s/cm−5) [23]. In hyperthy-
roidism, systemic vascular resistance is decreased at 700–1200 dyn/s/cm−5, increas-
ing blood volume and perfusion in peripheral tissues [18]. Vascular resistance could 
be an explanation for increased diastolic blood pressure in hypothyroidism and 
decreased in hyperthyroidism.

The renin-angiotensin-aldosterone system (RAAS) plays an important role in 
blood pressure regulation [20]. Several in vivo and in vitro studies have reported 
that thyroid hormones may modulate the RAAS and have evidenced a relationship 
between thyroid state and RAAS components [24, 25]. Angiotensin (ANG) II type 
2 (AT2)-subtype density is increased both in hyper- and hypothyroidism, whereas 
ANG II type 1 (AT1)-subtype density is decreased in hyperthyroidism [26]. In thy-
roidectomized fetal sheep, AT1 RNA expression was decreased in the kidneys and 
lungs, whereas AT2 mRNA expression was increased in the kidney [27]. A decrease 
in AT1 receptors was also observed after T3 administration to cultures of vascular 
rat smooth muscle cells. T3 downregulates AT1R expression both at transcriptional 
and posttranscriptional levels and attenuates the biological function of Ang II [28].

Atrial natriuretic peptide (ANP) stimulates vasodilatation, fluid excess, and salt 
and water excretion and blocks the release or actions of several hormones, including 
angiotensin II, aldosterone, and vasopressin. ANP levels are commonly elevated in 
situations of excessive fluid volume or hypertension [29]. Furthermore, brain natri-
uretic peptide (BNP) shows a remarkable sequence homology with ANP and has 
peripheral and central actions similar to those of ANP. Secretion of BNP is acceler-
ated via hypertrophied ventricles in experimental hypertension [30], and it was found 
that BNP, which is synergistically increased with aging and left ventricular hypertro-
phy, may be an important risk marker for hypertensive cardiovascular events [31]. 
Stretch, glucocorticoids, thyroid hormone(s), mineralocorticoids, and calcium 
enhance proANP gene expression. Enhanced proANP gene expression is found in 
congestive heart failure, hypertension, and cirrhosis with ascites [32]. Plasma BNP 
concentration was increased in patients with hyperthyroidism compared with normal 
healthy subjects and positively correlated with serum T4 levels [33].

Obesity could also be another possible explanation for hypothyroid-induced 
increase in BP. Thyroid dysfunction is associated with changes in body weight and 
composition, body temperature, and total and resting energy expenditure indepen-
dent of physical activity. Both subclinical hypothyroidism and overt hypothyroid-
ism are frequently associated with weight gain, decreased thermogenesis, and 
metabolic rate [34].

32.1	 �Hypertension in Hyperthyroidism (Thyrotoxicosis)

Serum TSH measurement has the highest sensitivity and specificity of any single 
blood test used in the evaluation of suspected hyperthyroidism and should be used 
as an initial screening test. In overt hyperthyroidism, usually both serum-free T4 
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and T3 estimates are elevated, and serum TSH is undetectable; however, in mild 
hyperthyroidism, serum T4 and free T4 estimates can be normal, serum T3 may be 
elevated, and serum TSH is less than 0.01 mU/L. The term thyrotoxicosis refers to 
the clinical syndrome caused by thyroid hormone excess, while the term hyperthy-
roidism is limited to those disorders associated with increased thyroid hormone 
synthesis and secretion [35].

In 1985, Saito I et al. compared blood pressure values of hyperthyroid patients 
with those of euthyroid subjects according to their age; a higher SBP was found 
in hyperthyroidism for each age decade. The prevalence of hypertension was 
significantly higher in patients younger than 50 years of age compared to older 
patients [36]. In Table 32.1., studies with hyperthyroidism and hypertension are 
listed. Hyperthyroid patients were investigated before the initiation of treatment, 
2 weeks after the initiation of therapy, and after attainment of a euthyroid state. 
In untreated hyperthyroid patients, systolic BP was higher and diastolic BP was 
lower than in healthy controls. Short-term treatment was satisfactory for lower-
ing systolic BP, but diastolic BP returned to normal only after long-term treat-
ment. Pulse pressure was significantly increased in the hyperthyroid patients and 
decreased during therapy [37]. The 24h systolic blood pressure, evaluated by 
ambulatory blood pressure measurements, was found to be increased in hyper-
thyroid normotensive patients compared to the control group, and 24 h and day-
time SBP significantly decreased after normalizing thyroid function [38]. Patients 
with hypertension and hyperthyroidism had a significantly lower nocturnal fall in 
blood pressure (6/8 mmHg) compared to normotensive subjects (14/13 mmHg) 
[39]. Patients with thyroid cancer were evaluated for blood pressure during hyper-
thyroid, euthyroid, and hypothyroid states. A non-dipping pattern was found when 
treated cancer patients were at hyperthyroid and hypothyroid states compared to 
euthyroid state [40]. Finally, a recent meta-analysis revealed that subclinical 
hypothyroidism is associated with increased SBP and DBP, whereas subclinical 
hyperthyroidism is not [41].

Table 32.1  Studies for hypertension in hyperthyroidism

Saito  et al. [35] Α higher SBP was found in hyperthyroidism for each decade between 20 and 
59 years of age

Saito et al. [36] Τhe prevalence of hypertension was significantly higher in patients younger 
than 50 years of age

Marcisz et al. 
[37]

(1) In untreated hyperthyroid patients, systolic BP was higher and diastolic 
BP was lower than in healthy controls
(2) The pulse pressure was significantly increased in the hyperthyroid patients 
and decreased during therapy

Iglesias et al. 
[38]

The 24h systolic blood pressure was found to be statistically significant and 
increased in hyperthyroid patients compared to the control group

Middeke et al. 
[39]

Patients with hypertension and hyperthyroidism had significantly smaller 
reductions in nocturnal blood pressure

Cai et al. [41] A rather weak relationship of subclinical hyperthyroidism with increased 
systolic and diastolic blood pressure
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32.2	 �Hypertension in Hypothyroidism

Overt hypothyroidism is defined as the lack of T4 feedback that leads to elevated 
TSH levels, whereas subclinical hypothyroidism is defined as increased TSH levels 
with normal free T3 levels [42, 43].

Hypothyroidism has been recognized as a cause of secondary hypertension [2]. 
Previous studies on the prevalence of hypertension in subjects with hypothyroidism 
have demonstrated elevated systolic or diastolic BP values, whereas one study has 
reported no association between hypertension and hypothyroidism (Table 32.2.) [2, 
3, 5, 6, 44–48]. Saito et al. found that diastolic BP correlated significantly with T4 
and T3 in slightly hypothyroid females over 50 years of age [2]. Fommei et al. stud-
ied 12 normotensive subjects with previous total thyroidectomy after 6 weeks of 
treatment withdrawal and 2 months after resumption of treatment using 24 h ABPM 
[49]. Higher systolic and diastolic daytime BP levels were observed in the hypothy-
roid compared with the euthyroid state. Thyroid hormone replacement treatment 
resulted in a significant decrease in daytime systolic and diastolic BP values. More 
recently, 24 h BP differences between hypothyroid and euthyroid healthy control 
subjects matched for gender and age were studied [50]. A mean 24 h systolic BP, 
24 h pulse pressure, and 24 h systolic BP variability were significantly higher among 

Table 32.2  Hypertension in hypothyroidism

Saito I. et al. [2] Diastolic BP correlated significantly with T4 and T3 in slightly hypothyroid 
females over 50 years of age

Streeten et al. [3] Diastolic hypertension resulting from hypothyroidism is a relatively 
common disorder

Iqbal et al. [5] Significant positive association between serum TSH and blood pressure 
within the normal serum TSH range

Liu et al. [6] Τhe prevalence of hypertension in subclinical hypothyroidism group was 
significantly higher than in euthyroid group in females

Botella-Carretero 
et al. [40]

The proportion of non-dippers is significantly increased in overt 
hypothyroidism compared with the control group

Endo  et al. [44] The hypothyroid state does not accelerate the development of hypertension
Bergus et al. [45] In the population of postmenopausal women, we did not find hypertension 

to be associated with hypothyroidism
Bergus et al. [46] In the population of geriatric patients, we did not find hypertension to be 

associated with the presence of hypothyroidism
Saltiki et al. [47] The “freeT4TSH” product appears to be a strong predictor of DAP
Kanbay et al. [48] A graded independent relation between lower level of FT3 and the risk 

ofnon-dipping
Fommei et al. 
[49]

Ηigher systolic and diastolic daytime BP levels, measured by ABPM, were 
observed in the hypothyroid compared with the euthyroid state

Kotsis et al. [50] (1) Mean 24 h systolic BP, 24 h pulse pressure, and 24 h systolic BP 
variability were significantly higher among the hypothyroid population 
compared with subjects with normal thyroid function
(2) Lower 24h BP parameters were found in patients with severe 
hypothyroidism compared with those with mild thyroid dysfunction
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the hypothyroid population compared with subjects with normal thyroid function. 
The 24 h diastolic BP values did not differ significantly, whereas 24 h daytime and 
nighttime heart rate variabilities were significantly lower, despite the similar 24 h 
heart rate levels. A 24 h systolic BP, 24 h pulse pressure [[51], ] and BP variability 
[52, 53] have been reported to independently associate with end-organ damage and 
total cardiovascular morbidity and mortality. However, lower 24 h BP parameters 
were found in patients with severe hypothyroidism compared with those with mild 
thyroid dysfunction [50]. In severe hypothyroidism, mechanisms reducing BP, such 
as reduced cardiac output [54], lower sympathetic nervous system activity, decreased 
sodium reabsorption, or others like adrenal insufficiency, probably have a stronger 
effect than the mechanisms that increase BP, such as vasoconstriction and increased 
total peripheral resistance. ABPM studies also demonstrated that the proportion of 
non-dippers is significantly increased in overt hypothyroidism (50%) compared 
with 17% in the control group [40, 50].
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33Primary Hyperparathyroidism

Gian Paolo Rossi and Paul-Emmanuel Vanderriele

33.1	 �Introduction

Primary hyperparathyroidism (PHP) is a common endocrine disorder featuring 
excess secretion of parathyroid hormone (PTH) independent of serum calcium lev-
els [1–8]. Over the past decade, the understanding of this disease has substantially 
advanced, thus leading to improved biochemical, radiological and molecular testing 
[1, 9, 10]. Because uncontrolled PHP, besides affecting the kidneys and bones, 
causes arterial hypertension with excess target organ damage and increased cardio-
vascular morbidity and mortality and furthermore can lead to neurocognitive dys-
function, an early detection of PHP is key to prevent complications [1, 3, 5, 9–15].

PHP is the most common cause of hypercalcaemia with an annual incidence 
ranging from 0.3 to 1.2 cases per 1000 [3, 5, 11, 16–18]; 95% of the cases are spo-
radic; the rest occur in hereditary syndromes (Table 33.1) [5, 19–21]. It has, how-
ever, to be acknowledged that far more commonly than PHP, hyperparathyroidism 
results from chronic stimuli increasing PTH secretion, such as vitamin D deficiency 
and chronic kidney disease, or can be tertiary, as discussed below [1–8].
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The surgical resection of abnormal ‘hyperfunctioning’ parathyroid gland(s) 
remains the only curative treatment for PHP; medical treatment is undertaken 
when surgery is not indicated [1, 3, 5, 19, 22–32]. The pathology underlying PHP 
includes parathyroid adenoma (80–85%), hyperplasia (10–15%) and rarely (<1–
5%) carcinoma. Secondary hyperparathyroidism is due to diffuse parathyroid 
hyperplasia [1, 3, 5, 19, 22–32]. Tertiary hyperparathyroidism reflects the emer-
gence of an autonomous PTH-producing adenoma or, much more rarely, of PTH-
producing carcinoma from a background of hyperplasia due to long-standing 
secondary hyperparathyroidism [5, 8, 25, 26, 28, 33]. Subtyping requires a thor-
ough clinical, biochemical and radiological investigation with integration of path-
ological features. Intraoperative findings, including PTH measurement, are key 
for the treatment decision-making. This chapter is aimed at providing update 
information on the evolving knowledge of hyperparathyroidism with emphasis on 
its impact on the cardiovascular system.

Table 33.1  Hereditary syndromes

Name Cause Phenotype
Familial cancer 
predisposition 
syndromes

MEN-1 Germ line inactivating 
mutations in the MEN1 
gene (11q13)
Protein encoded: Menin

Multi-glandular parathyroid 
adenomas (90%)
Gastroenteropancreatic 
neuroendocrine tumours (60%) 
and pituitary adenomas (30%)
Adrenocortical tumours, facial 
angiofibromas, collagenomas
Lipomas and/or other 
neuroendocrine tumours of 
various sites as the thymus, lung 
or stomach

MEN-2A Germ line activating 
mutations in the RET 
proto-oncogene 
(10q11.2)
Protein encoded: RET
(receptor for GDNF – 
family ligands)

Development of HPT (20–30%)
Medullary thyroid carcinoma 
arising from a background of 
precursor C-cell hyperplasia 
(also known as primary or 
neoplastic C-cell hyperplasia)
Pheochromocytoma arising in 
adrenal medullary hyperplasia

MEN-4 Inactivating germ line 
mutation in the CDKN1B 
gene
Protein encoded:
Cyclin-dependent kinase
Inhibitor 1B

Indistinguishable from MEN-1 
phenotype

HPT-JT Germ line inactivating 
mutations of CDC73
Protein encoded: 
Parafibromin

Primary HPT
Fibro-osseous lesions in the 
mandible and maxilla
Uterine and renal cysts, 
hamartomas, carcinoma and 
Wilms’ tumours
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33.2	 �Physiology of PTH Secretion

The secretion of PTH is physiologically controlled by signalling through the 
calcium-sensing receptor (CaSR), a G-protein-coupled receptor located on the para-
thyroid chief cells [5, 21, 34–39]. Circulating ionised Ca2+ activates the CaSR with 
ensuing recruitment of phospholipase C-β (through Gq and G11), production of ino-
sitol triphosphate, release of Ca2+ from intracellular stores, elevation of diacylglyc-
erol concentration and activation of protein kinase C, followed by phosphorylation 
and internalisation of the CaSR.  Ultimately, this signalling pathway suppresses 
PTH secretion, first, by activating Gq-α and phospholipase A2 and generating ara-
chidonic acid metabolites that directly inhibit PTH secretion and, second, by 
increasing their sensitivity to the negative feedback exerted by 1,25(OH)2-vitamin D 
[5, 21, 34–39]. In hypocalcaemia, CaSR signalling is downregulated, with ensuing 
release of the PTH from the parathyroid chief cells, increased PTH gene transcrip-
tion and PTH synthesis.

Table 33.1  (continued)

Name Cause Phenotype
Familial 
hypercalcaemic 
syndromes

FHH-1 Germ line heterozygous 
inactivating mutation of 
CaSR
Protein encoded:
Calcium-sensing receptor

Neonatal 
severe PHP

Germ line homozygous 
inactivating mutations of 
the CaSR gene
Protein encoded:
Calcium-sensing receptor

Familial 
hypercalciuric 
hypercalcaemia 
or autosomal-
dominant 
moderate PHP

Germ line inactivating 
mutation in the 
intracytoplasmic tail 
domain of the CaSR gene
Protein encoded:
Calcium-sensing receptor

FHH-2 Germ line inactivating 
mutations of GNA11 
(19p13.3) gene
Protein encoded:
α-subunit of G11 (one of 
the principal G proteins 
activating CaSR 
signalling pathway)

FHH-3 Germ line inactivating 
mutations of AP2S1
(19q13.2) gene
Protein encoded:
Adaptor protein 2 
σ-subunit involved in 
CaSR endocytosis
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PTH binds to PTH/PTH-related peptide receptors stimulating osteoclast-
mediated bone resorption, renal Ca2+ reabsorption and 1,25(OH)2-D synthesis to 
increase intestinal Ca2+ absorption and Ca2+ levels. With the rise of circulating Ca2+ 
levels, the CaSRs and its signalling pathway are reactivated, leading to blunting of 
PTH secretion. Excess PTH secretion in PHP can derive from various alterations 
inactivating CaSR signalling pathway [5, 21, 34–39]; furthermore, long-standing 
downregulation of CaSR can lead to aberrant cell growth and proliferation via aber-
rant Wnt/β-catenin and cyclin D1 signalling [5, 8, 10, 21, 25, 35, 36, 40–45].

33.3	 �Clinical and Biochemical Features 
of Hyperparathyroidism

The advent of accurate methods for measuring pH-normalised ionised serum cal-
cium and intact PTH has led to incidental identification of most hyperparathyroid-
ism cases, e.g. in the asymptomatic form [3, 5, 9, 11]. At this stage, the cardiovascular 
complications are much less common than in older times. Nonetheless, since even 
‘asymptomatic’ PHP can lead to potential morbidities, including osteoporosis and 
clinically ‘silent’ nephrolithiasis/nephrocalcinosis [9, 11, 13–15, 46–50], even inci-
dentally detected hypercalcaemia with raised PTH deserves work-up to clarify its 
aetiology, e.g. to determine if it is PTH dependent or PTH independent [3, 5]. 
Nowadays, the classical hypercalcaemia-related symptoms (i.e. weakness, easy fati-
gability, anxiety and cognitive impairment) and gastrointestinal symptoms (i.e. pep-
tic ulcer and pancreatitis) are almost never seen [3, 5, 9, 11, 12, 46, 51–53]. Sporadic 
PHP can occur at any age, but most commonly in postmenopausal women [3, 5, 20, 
25, 54, 55]. In the rare symptomatic cases, the clinical manifestations depend on the 
duration and degree of PTH oversecretion and hypercalcaemia [3, 5, 9, 11, 56].

In sporadic PHP, the first finding is usually mild hypercalcaemia (usually within 
0.15 mmol/L of normal range, e.g. 1.19–1.29 mmol/L for ionised Ca) [3, 5]. The 
common presentation of symptomatic disease seen in the past, e.g. ‘stones’ (nephro-
lithiasis), ‘bones’ (osteitis fibrosis cystica) and constipation or ileus, is exceptional 
today [3, 9, 11, 12]. Typically, urinary calcium excretion is normal or increased, but 
hypocalciuria can also be found in individuals on thiazide or lithium or in long-
standing PHP when the total body calcium is severely shrank [57]. High-serum PTH 
and normal-serum ionised calcium (in the lack of causes of secondary hyperparathy-
roidism) identify a normocalcaemic variant of PHP, whose epidemiology, natural 
history and management remain, at present, unclear [1, 3, 5, 9, 11, 58–61].

Secondary hyperparathyroidism, an adaptive response to conditions causing 
hypocalcaemia (as vitamin D deficiency, chronic kidney disease, idiopathic hyper-
calciuria, calcium malabsorption), presents with high-serum PTH and normo- or 
hypocalcaemia [5, 7, 8, 62, 63]. However, in the long run, it causes osteoporosis and 
can evolve into tertiary hyperparathyroidism [5, 7, 8, 25, 62–64]. The latter is char-
acterised, like PHP, by a raise of both serum of PTH and ionised Ca2+ levels [8, 64] 
and can be identified by the concomitance, in most circumstances, of advanced 
chronic kidney disease (CKD) [8, 63]. In all cases, serum 25-hydroxyvitamin D 
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levels should be measured not only because vitamin D deficiency is the most com-
mon cause of secondary hyperparathyroidism but also because, when associated 
with PHP, its deficiency can factitiously mask the hypercalcaemia [3, 5, 10].

When familial disease is suspected, ionised serum calcium (Ca2+) should be mea-
sured in first-degree relatives [3, 5, 10, 20]. If multi-glandular PHP and concomitant 
MEN-1-associated tumours raise the suspicion of MEN-1, testing for a MEN1 
mutation is recommended. A definitive diagnosis of FHH may ultimately require 
demonstration of a germ line mutation in CaSR, GNA11 and AP2S1 genes [3, 5, 10, 
20, 25, 34, 64–76]. Parathyroid carcinoma is rare and occurs at an earlier age, with 
no gender preference. The clinical findings that suggest hereditary hyperparathy-
roidism and carcinoma are listed in Table 33.2.

33.4	 �Imaging of PHP

Imaging is necessary to guide the treatment decision-making, because skeletal 
and renal complications may justify surgery even in asymptomatic PHP patients 
[1, 3, 5, 9, 19, 25, 65–67]. Bone involvement can be assessed by dual-energy 
X-ray densitometry and CT imaging. Renal ultrasonography serves to investi-
gate renal structures and exclude clinically ‘silent’ nephrocalcinosis and neph-
rolithiasis [1, 3, 5, 9, 19].

Table 33.2  Clinical findings suggesting familial PHP or parathyroid carcinoma

Familial syndromes Parathyroid carcinoma
Clinical findings 
suggestive

1. Early onset (<30 years)
2. Familial history of hypercalcaemia
3. �Skin lesions (lipomas, facial 

angiofibromas, truncal collagenomas)
4. �Pituitary adenomas and neuroendocrine 

tumours (including 
phaeochromocytomas) associated with 
multiple endocrine neoplasia syndromes

5. �Jaw tumour with or without renal cysts 
(HPT-JT syndrome)

6. �Hypercalcaemia associated with 
hypocalciuria (FHH)

1. Severe hypercalcaemia
2. �Extremely high PTH levels 

(>3 times the upper limit of 
normal)

3. �Concomitant bone and 
kidney involvement, 
palpable neck mass, jaw 
tumour, family history of 
parathyroid or other 
endocrine disorders

Clinical 
investigations

1. �Ionised Ca2+ measurement in first-degree 
relatives along with other clinical 
investigations

2. �Testing for a MEN1 mutation is 
recommended if MEN-1 is suspected

3. �FHH diagnosis requires demonstration of 
a germ line mutation in CaSR, GNA11 
and AP2S1

4. �Severe neonatal HPT presenting with 
severe HPT and life-threatening 
hypercalcaemia in the first semester  
of life

1. �Earlier age of onset in both 
genders

2. �More prominent increases 
of PTH predict parathyroid 
malignancy
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Parathyroid imaging is a key to plan the appropriate treatment, e.g. to differenti-
ate single (adenoma or carcinoma) from multi-glandular disease (hyperplasia) [3, 5, 
66, 67, 77, 78]. The most commonly used radiological tools are neck ultrasound and 
99technetium-labelled sestamibi (99mTc-sestamibi) scintigraphy [3, 5, 66, 67, 77, 78]. 
The uptake of 99mTc-sestamibi is generally increased and prolonged in functioning 
neoplastic or hyperplastic parathyroid gland(s), but it occurs in both parathyroid and 
thyroid tissue. Hence, dual-tracer subtraction using 99mTc-sestamibi in combination 
with radioactive iodine (123I) is currently used to separate parathyroid uptake of 
sestamibi from thyroid uptake and achieve better visualisation of the functioning 
parathyroid tissue [3, 5, 66, 67, 77–79].

33.5	 �Diagnosis

An accurate diagnosis of PHP subtype is challenging and can even be impossible 
before surgery [24–26, 80–83]. Intraoperative pathological consultation is essential 
to confirm the presence of parathyroid tissue in the resected specimen and to exclude 
other tissues, such as lymph nodes or thymus mimicking an enlarged gland [24–26, 
80, 81, 84, 85].

The adoption of rapid (within 10 min) PTH assay has become a standard practice 
in that it allows distinguishing adenoma from hyperplasia: in patients with single-
glandular disease, removal of the culprit gland results in a brisk intraoperative 
reduction of PTH levels of >50% and often >75% [3, 19, 25, 26, 29, 86]. No further 
exploration is needed if PTH levels drop by >50%.

Pathologic examination of the surgical specimen can thereafter provide a definite 
diagnosis of the parathyroid pathology. Immediately after surgery, serum calcium 
levels should be monitored carefully as hypocalcaemia is common in patients with 
single-gland parathyroid disease [3, 19, 25, 26, 29, 87].

33.6	 �Histopathological Correlates of Hyperparathyroidism

Parathyroid tumours (adenomas 80–85% of PHP cases) are almost always uni-
glandular (solitary) lesions; hyperplasia usually denotes multi-glandular prolifera-
tion [22–26, 80, 81, 87–90]. Parathyroid adenomas are composed of varying 
proportions of chief cells and lower amounts of clear, transitional and oncocytic 
cells [22, 24, 25, 81, 88, 90, 91]. Their proliferative index (assessed by Ki-67, MIB-
1) is generally <5% although scattered mitotic figures can be seen [22, 24–26, 81, 
84, 88, 90–100].

Parathyroid hyperplasia (10–15% of cases of PHP) is a multi-glandular disorder 
[3, 22, 24–26, 88, 91–93], which can be diffused, localised with one or more nod-
ules (nodular hyperplasia) or comprised a mixture of nodular hyperplasia and dif-
fuse patterns [22, 25, 81]. The hyperplastic glands are grossly increased in size and 
weight, as chief cells prevail in most cases, hence the classical term ‘chief cell 
hyperplasia’ [22, 24, 25, 88, 90]. Secondary hyperparathyroidism is generally 
caused by diffuse parathyroid hyperplasia [5, 8, 25].
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Tertiary hyperparathyroidism is due to a progression from a secondary hyperpla-
sia to an autonomous PTH-producing neoplasm (an adenoma or, rarely, a carci-
noma) that involves clonal transformation from diffuse polyclonal hyperplasia due 
to decreased calcium-sensing receptor (CaSR) signalling from hypocalcaemia [5, 8, 
25, 63, 64, 88, 90, 91, 97, 101, 102].

Parathyroid carcinomas involve <1–5% of patients with PHP and tend to be 
larger (mean diameter of 3.4 cm and weight of 19.15 g) and can be densely adherent 
to thyroid or surrounding soft tissues intraoperatively [3, 5, 24–26, 43, 65, 77, 80, 
81, 92, 94, 103, 104].

The distinction between parathyroid carcinomas and adenomas is challenging on 
cytology and requires the use of ancillary biomarkers [22, 24–26, 80, 88, 92, 94], as 
loss of expression of retinoblastoma protein (Rb), Bcl-2a, p27, parafibromin, mdm2 
and APC, as well as increased (>5%) MIB-1 (Ki-67) proliferative index, overexpres-
sion of p53 and positivity for galectin-3 (in the absence of multi-glandular disease) [21, 
22, 25, 26, 28, 35, 43, 45, 70, 75, 80, 88, 92, 94, 95, 105–112]. The use of parafibromin 
immunostaining is particularly helpful to differentiate between parathyroid adenomas, 
which show intact nuclear and nucleolar parafibromin expression, and carcinomas, 
where these features are lost [21, 22, 25, 26, 28, 35, 43, 45, 70, 75, 80, 88, 92, 94, 95, 
97, 105–112]. Most patients with inherited parathyroid disease present with multi-
glandular parathyroid hyperplasia, although rare solitary tumours can also occur [20, 
22, 25, 26, 88, 90, 97]. Most commonly familial PHP is due to familial cancer-predis-
posing syndromes or to hereditary syndromes related to aberrant CaSR signalling.

33.7	 �Sporadic Parathyroid Adenomas and Carcinomas

Most parathyroid adenomas are sporadic neoplasms [24, 25, 35, 80, 95]; sometimes 
they occur in patients with a history of ionising radiation [3, 5, 22, 25]. Somatic 
alterations in MEN-1 and CCND1/PRAD1 genes are found in 25–40% of sporadic 
parathyroid adenomas [25, 26, 35, 41, 95, 106, 107, 113]. An inherited mutant copy 
of the MEN1 gene may be sufficient to cause multi-glandular hyperplasia and 
hyperparathyroidism (in MEN-1 syndrome or isolated familial hyperparathyroid-
ism); however, an additional somatic inactivating mutation in the wild-type allele of 
MEN1, found in over a quarter of the cases, is required for the development of spo-
radic parathyroid tumours [25, 35, 41].

Alternatively, pure somatic mutations can result in bi-allelic inactivation of 
MEN1 in some parathyroid adenomas [35, 108, 109]. Somatic activating alterations 
of CCND1/PRAD1 encoding cyclin D1 protein were found in 20–40% of sporadic 
adenomas [21, 35, 41, 111, 112, 114–117]. Moreover, somatic alterations of the 
CDKI-encoding genes (CDKN1B, CDKN1A, CDKN2B, CDKN2C), which cause 
familial hyperparathyroidism and were found in MEN-4 syndrome and isolated 
familial hyperparathyroidism, were also identified in sporadic parathyroid adeno-
mas [21, 22, 26, 35, 41, 105, 114, 118].

Whole-exome sequencing revealed somatic mutations in a relatively small propor-
tion of adenomas: they involve ZFX (in about 5%); CTNNB1 encoding β-catenin (in 
about 2–5%); EZH2, a putative oncogene involved in histone methyltransferase activity 
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causing aberrant β-catenin accumulation (in about 1%); and POT1, a regulator of telo-
mere integrity and genome stability (in less than 1%) [35, 69, 106, 107, 119–123].

DNA methylation and microRNA profiling studies have also uncovered mutations 
in Wnt/β-catenin signalling (APC, SFRP1, SFRP2, SFRP4), cyclin D1 signalling 
(CDKN2A, CDKN2B), as well as WT1, RIZ1, RASSF1A and HIC1, and in sporadic 
parathyroid tumours [35, 42, 124–126], thus suggesting a role for altered gene tran-
scription and microRNA deregulation in parathyroid tumourigenesis [126, 127].

These discoveries can be fundamental for understanding the biology of parathy-
roid carcinomas, as they can pave the way to identify novel diagnostic, prognostic 
biomarkers to improve patient care. For an in-depth description of recent advances in 
molecular pathology, genetic and epigenetic alterations and biomarkers of parathyroid 
cancer, the reader is referred elsewhere [5, 15, 25–27, 35, 77, 94–96, 103, 125, 128].

33.8	 �Cardiovascular Consequences of Hyperparathyroidism

PTH and PTH-related peptide increase aldosterone secretion [129, 130] and renin 
[131, 132], suggesting that hyperparathyroidism can contribute to raising blood 
pressure. Of note, even though a high prevalence of hypertension, excess cardiovas-
cular damage, arterial calcification and stiffening, isolated systolic hypertension and 
excess left ventricular hypertrophy have been reported in PHP patients [133–136], 
many investigators wonder if these changes still occur today, when the diagnosis is 
generally made much earlier in the course of the disease.

Secondary hyperparathyroidism has been detected in the most common cause of 
endocrine hypertension, e.g. primary aldosteronism, particularly in its subtype 
involving aldosterone-producing adrenocortical adenoma [137, 138]. The detection 
of elevated PTH levels was shown to help in the differential diagnosis between 
aldosterone-producing adenoma and bilateral adrenocortical hyperplasia [139]. 
After adrenalectomy, PTH levels fall and serum ionised Ca2+ levels increase, indi-
cating a cause-effect relationship between hyperaldosteronism and hyperparathy-
roidism and therefore a link between the adrenocortical zona glomerulosa and the 
parathyroid gland [140]. The finding of hypercalciuria in rats infused with aldoste-
rone supports the contention that a slight decrease of serum ionised Ca2+ levels 
deriving from hypercalciuria can be the trigger for the release of PTH through the 
series of event described above [141].

33.9	 �Treatment and Outcome

After excluding secondary hyperparathyroidism, which is reversible with treatment 
of the underlying condition, the management of PHP depends on its cause: first-line 
treatment of tertiary hyperparathyroidism mainly involves using low-phosphate diet, 
phosphate binders, 1,25-dihydroxyvitamin D3 (calcitriol or analogues to suppress 
PTH secretion) and/or calcimimetic agent (cinacalcet, an allosteric activator of 
CaSR) [1, 3, 5, 19, 29, 33, 142, 143]. Parathyroidectomy can be necessary to control 
hypercalcaemia and symptoms in severe cases refractory to medical treatment.
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Percutaneous ethanol ablation may be an alternative to parathyroidectomy in 
selected cases of PHP [144, 145]. Nonetheless, surgical excision of abnormal 
‘hyperfunctioning’ parathyroid gland(s) remains the optimal treatment. Surgery 
in asymptomatic hyperparathyroidism should be reserved to patients with (one or 
more) of the following conditions: drug-resistant arterial hypertension, age 
(<50 years), kidney disease (eGFR <60 mL/min, nephrolithiasis/nephrocalcino-
sis, hypercalciuria with increased stone risk), bone disease (osteoporosis), overt 
hypercalcaemia and in all cases in which routine surveillance is not feasible [1, 3, 
5, 19, 29, 33, 142, 143].

An underlying genetic syndrome should be considered when multi-glandular 
parathyroid disease is detected [5, 10, 19, 20, 25, 137]. MEN-1, MEN-2A or famil-
ial isolated hyperparathyroidism patients require closer monitoring because of their 
increased risk of recurrent/persistent disease due to multi-glandular parathyroid 
involvement. Sporadic PHP is usually caused by single-gland parathyroid disease, 
commonly from a solitary adenoma. Minimally invasive parathyroidectomy is an 
increasingly popular approach, but open surgery with bilateral cervical exploration 
can be necessary in multi-glandular disease and/or recurrent hyperparathyroidism. 
The complete removal of abnormal parathyroid tissue should be confirmed bio-
chemically with intraoperative PTH measurements. Following surgery, most 
patients with clinically and pathologically confirmed parathyroid adenoma are 
cured [5, 10, 19, 20, 25, 137].

In parathyroid carcinomas, an oncological surgical approach is paramount for 
controlling the disease. The finding that the 5-year and 10-year disease-specific sur-
vival rates can be as high as 100 and 80%, respectively, and the 5-year and 10-year 
disease-free survival rates can be 69 and 43% would imply a relatively indolent 
behaviour of parathyroid cancer [19, 27, 73, 77]. However, a risk of disease recur-
rence, even many years after initial treatment, is always there [27, 73, 77].

To decrease local recurrence rate, adjuvant radiotherapy can be an option [27, 
77]. In patients diagnosed with a parathyroid carcinoma, the tumour should be fur-
ther tested for loss of parafibromin expression, and those showing loss of parafibro-
min immunostaining should be offered genetic testing for germ line CDC73/HRPT2 
mutations [25, 27, 80, 96, 146].

�Conclusions

PHP is not uncommon and is usually due to parathyroid adenoma (80–85%), 
hyperplasia (10–15%) and carcinoma (<1–5%). The clinical and biochemical 
history, including intraoperative PTH measurements, number, size and weight 
of the affected gland(s), are key elements for diagnosis and treatment. In PHP 
after exclusion of a primary parathyroid cancer, diagnostic imaging and intra-
operative rapid PTH assays should aim at distinguishing between single-glan-
dular, usually a solitary parathyroid adenoma, and diffuse and/or nodular 
parathyroid hyperplasia. This distinction is key for choosing the optimal treat-
ment and follow-up testing.
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from Prehypertension to Established 
Hypertension
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34.1	 �Background

Historically, investigators interested in marginal blood pressure elevation used such 
diverse terms as prehypertension, transient, labile, latent, borderline, incipient, 
uneventful, and benign hypertension. In this review, I will use the current generally 
accepted term “prehypertension.”

The problem of interest in this chapter can best be illustrated by quotes from classi-
cal old literature about epidemiology [1] and hemodynamics [2] of prehypertension.

In 1939 Robinson and Brucer [1] investigated the blood pressure (BP) trends in 
11,383 health insurance policy holders in Chicago. In the introduction, the authors 
lamented about physician attitude that:

if a subjectively-well and objectively-robust individual has a slightly elevated BP, then slightly 
elevated blood pressure must be normal. However a study over a period years of many sub-
jectively well and robust persons with slightly elevated BP shows that they are not normal.

Below are selected conclusions from their thorough and well-documented paper:

•	 High blood pressure is a long-term disease having its genesis at an early age. 
Normal BP does not rise with age. Prehypertensive and hypertensive pressure do 
rise with age.

•	 A blood pressure history of 120 systolic and 80 diastolic over a 10-year span in 
man or woman is a sign of incipient hypertension. Once a pressure is established 
in this range, it seldom, if ever, will become normal.

•	 Slightly more than 40% of the adult population is either actually or incipiently 
hypertensive.
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In 1960 Ed Freis revived the voluminous work on hemodynamics of hyperten-
sion [1]. Below is the relevant conclusion from his review:

The calculated total peripheral resistance is increased in about two-thirds of chronic 
human hypertension. It is not certain whether the remainder represents a group in which an 
elevation of cardiac output is the primary hemodynamic fault or whether apprehension 
associated with the procedure disturbed the basal hemodynamic state.

In other words Dr. Freis did not accept Robinson’s and Brucer’s warning that 
transient blood pressure elevations should not be ignored. In fairness Freis may 
have had a point; at that time measurement of cardiac output required cardiac 
catheterization, injections of dyes, and cannulation of the brachial artery [2–6]. 
Such a complex procedure might have stressed some individuals beyond the bor-
ders of usual blood pressure variability. However, Freis’ concern was misplaced. 
The hyperkinetic state of a slight BP elevation, tachycardia, and increased cardiac 
output is a precursor of future established hypertension. This was known already 
in 1945 when Levy et al. [7] examined BP trends in 22,741 US Army officers. 
Transient tachycardia proved to be a strong predictor of future established hyper-
tension. When transient tachycardia was combined with transient hypertension, 
the risk of established hypertension increased exponentially. Thereafter it has 
been repeatedly shown [8–12] that tachycardia is an independent predictor of 
hypertension. Importantly the tachycardia in prehypertension is due to increased 
sympathetic drive and decreased parasympathetic inhibition of the cardiac pace-
maker [13]. Thus, the pathological signal emanates from the brain where in the 
medulla oblongata, the sympathetic and parasympathetic tones are integrated in a 
reciprocal fashion.

Instead of the expected bell-shaped curve, in population studies, BP distribution 
is invariably skewed at the high end of pressure values. Schork et al. [14] used a 
computerized statistical mixture analysis of the BP distribution to determine whether 
the skewed at the high distribution consisted of one or more subpopulations. In each 
of three Michigan populations, the curve consisted of two homogenous subpopula-
tions, a large normotensive and a smaller hypertensive group (p < 0.0000001). The 
hypertension group was associated with tachycardia and, when measured, also with 
high cardiac output. The mixture analysis method was also used in an American, 
Belgian, and Italian population [15]. In each population, there was a subpopulation 
with tachycardia and elevated BP levels. Thus the association of tachycardia with 
hypertension is a distinct pathophysiologic syndrome.

We used the mixture analysis in the Tecumseh population study [16, 17]. Of a 
total of 946 young untreated adults (average age 30.7 years), 13% were categorized 
as having prehypertension. Review of records from previous Tecumseh study health 
exams showed that the BP of the prehypertension group was significantly elevated 
already when they were children (6.4 years) or young adults (21.5 years). The pre-
hypertension group had signs of vascular restructuring, cardiac dysfunction, glu-
cose and insulin abnormalities, and dyslipidemia. We also had information about 
the parents of the Tecumseh BP study population. When they were on average 
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31 years of age, both mothers and fathers of the prehypertension group had signifi-
cantly higher BP than the parents of normotensive individuals.

We focused on 691 Tecumseh study participants with complete sets of hemody-
namic data. Cardiac output was measured by the stress-free noninvasive echo-Dop-
pler method. The mixture analysis detected two groups, the larger one (N = 594) 
with a lower BP and cardiac output and the smaller group (N = 97) with a higher BP 
and cardiac output. Thereafter we used the clinic BP of 140/90 mmHg as the cutting 
point for normotension versus prehypertension. A hyperkinetic circulation was 
present in 37% of the prehypertension group and in only 10% of the normotensive 
group. The hyperkinetic prehypertension group had significantly elevated plasma 
norepinephrine, and their BP was significantly elevated at 5.2, 8.2, 21.5, and 
23.2 years of age. A significantly higher heart rate was detected only at 21.5, 23.2, 
and 30.7 years of age.

That the hyperkinetic state is associated with increased sympathetic tone was 
also proved with newer methods such as norepinephrine spillover and microneurog-
raphy [18].

Overall these findings indicate that a large proportion of persons with prehyper-
tension have a hyperkinetic circulation. The hyperkinetic state is associated with 
markers of increased sympathetic drive. Hyperkinetic circulation is a predictor of 
future established hypertension. However the hemodynamic pictures of prehyper-
tension (high cardiac output) and established hypertension (increased vascular 
resistance) are profoundly dissimilar.

This difference in the  underlying hemodynamic profile in the course of hyper-
tension raises a number of questions.

34.2	 �Is the Hyperkinetic State Precursor of Hypertension or 
a Marker of Transient Stress?

The development of hypertension is rather slow. However even a transient elevation of 
BP can affect the function and structure of many organs. This has been shown in dogs 
exposed to 9 weeks of repeated episodes of increased BP. Transient increases of BP 
(3 h in the morning and in the afternoon) did not cause persistent hypertension but did 
elicit cardiac hypertrophy and dysfunction [19, 20]. The Ann Arbor group focused on 
prehypertension on the theory that pathophysiologic changes found in individuals free 
of secondary functional or structural organ changes are likely to be related to the ini-
tiation of hypertension. In the Tecumseh BP study [16, 17], we recognized two differ-
ent prehypertension phenotypes, the hyperkinetic state and the elevation of Li-Na 
counter-transport activity. In order to investigate “pure” hyperkinetic prehypertension 
[21], we removed from the analysis subjects with elevated Li-Na counter-transport. 
Figures 34.1 and 34.2 illustrate the age-related heart rate and BP trends in 787 normo-
tensive and 24 “pure” prehypertensive study participants.

The group deemed to have “pure” hyperkinetic prehypertension at 30 years of 
age had significantly elevated heart rate also at 7 and 22 years exams. Furthermore, 
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compared to the normotensive group, the age-related decrease of heart rate was 
lesser in the hyperkinetic group. Between age 22 and 30, the heart rate continued to 
decrease in the normotensive group, and no further decrease was seen in the hyper-
kinetic group.

In contrast to the heart rate (Fig. 34.2), the BP of the hyperkinetic group was not 
increased at 7 years. In the hyperkinetic group, there was a huge systolic pressure 
increase (+ 24 mmHg) between 7 and 22 compared to +8 mmHg in the normoten-
sive group. At 30 years the BP of the hyperkinetic group remained in the prehyper-
tensive range.

We conclude that in pure hyperkinetic prehypertension, the heart rate elevation 
precedes the increase of the BP. This finding should be considered as a “proof of the 
principle” that in some prehypertensives tachycardia can be the primary hemody-
namic component of the hyperkinetic syndrome. It is important to note that “pure” 
hyperkinetic state was not a small group; nearly one quarter (24.3%) of prehyper-
tensives examined at 30 years of age had “pure” hyperkinetic circulation.
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34.3	 �Is There Evidence for a Hemodynamic Transition 
from an Early Hyperkinetic to a Later High-Resistance 
State?

As stated earlier [8–11], resting tachycardia is a potent predictor of future hyperten-
sion. In addition high resting heart is an independent predictor of cardiovascular 
adverse events [22–28]. This strongly suggests that hyperkinetic state in prehyper-
tension induces established hypertension which, in turn, is associated with increased 
vascular resistance and cardiovascular risk.

Unfortunately only a few cohort studies investigated the hemodynamic picture in 
the course of hypertension. Lund-Johansen and Omvik investigated the topic in the 
classic Bergen Study [28, 29]. Of particular interest are studies in young (17–
29  years) subjects. After 10  years the cardiac output decreased and the vascular 
resistance increased, but the BP did not change. At 20 years of follow-up, the major-
ity of patients received antihypertensive treatment. At that time point, the vascular 
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resistance increased further, and there was a modest increase of the mean BP. A few 
other investigators [30–33] repeated the hemodynamic measurements in hyperki-
netic hypertension within a span of 2–5 years. All found a decrease of cardiac output 
and increase of vascular resistance at the second hemodynamic measurement. 
However, only one study [31] found a modest increase of the systolic blood 
pressure.

The fact that the Bergen Study [29, 34] found a steady increase of vascular resis-
tance but could not document an increase of BP in the course of hypertension 
reflects the advances in the treatment of hypertension. In the early 1960s, it was still 
possible to follow untreated midrange hypertension, but in the late 1970s and early 
1980s, seminal studies in the USA, Great Britain, and Australia proved that lower-
ing BP pressure in “mild” hypertension saves lives. At 20 years of follow-up in the 
Bergen studies, almost all patients were treated, and the prolonged BP lowering 
may have altered the natural history of hypertension.

34.4	 �What Is the Mechanism of Tachycardia 
in Prehypertension?

Conceptually diverse mechanisms may be responsible for the fast heart rate in pre-
hypertension. Frohlich et al. [35] described a group of predominantly hypertensive 
patients (12 out of 14) with hyperkinetic circulation. At baseline this group of 
middle-aged adults (average 39 years) had significantly higher heart rate and car-
diac output than the normotensive controls. A graded infusion of beta-adrenergic 
agonist isoproterenol induced a substantially higher increase of heart rate than in the 
control group. According to the authors, “in nine of the fourteen patients isoproter-
enol produced a hysterical outburst, almost uncontrollable, which was promptly 
reversed with propranolol but not with placebo.” Based on these findings, the 
authors correctly concluded that this particular group of patients had increased beta-
adrenergic receptor reactivity. However, such hyper-reactivity must be quite rare 
and cannot account for the tachycardia seen in the large population hyperkinetic 
hypertension. Over a period of 30 years, the Ann Arbor group investigated the heart 
rate response to beta-adrenergic agonist infusion in three different hypertensive 
populations [36–38]. In each study, hypertensive patients had a suppressed heart 
rate response to beta-adrenergic stimulation. This suppression is likely to reflect a 
downregulation of beta-receptors in response to a prevailing increase of the sympa-
thetic tone. In the last study [38], there was a negative correlation between the heart 
rate increase to isoproterenol and the plasma (p = 0.004) as well as the 24 h urinary 
noradrenalin (p = 0.02) levels.

In a previous study [13], we investigate another possible mechanism of tachycar-
dia: that patients with tachycardia may have a pacemaker which inherently fires at a 
faster rate. We intravenously injected large doses of propranolol and atropine to 
block both the cardiac sympathetic and parasympathetic receptors (Fig. 34.3).

At baseline, by selection, there was a highly significant elevation of the heart 
rate in the hyperkinetic group. The autonomic nervous receptor blockade 

S. Julius



593

abolished the heart rate difference between the two groups. We conclude that 
both groups had similar intrinsic pacemakers. Note that cardiac receptor block-
ade elicited an increase of the heart rate in both groups. It follows that in the 
resting state, the autonomic nervous system inhibits the intrinsic pacemaker. The 
figure also shows that the inhibition in the hyperkinetic group was lesser than in 
the normal controls. We conclude that tachycardia in prehypertension is 
neurogenic.

34.5	 �What Is the Mechanism of the Increased Cardiac Output 
in Hypertension?

Diverse mechanisms could also be responsible for the elevation of cardiac output in 
hypertension. Guyton and Coleman [39] proposed the concept of total body auto-
regulation. This theory postulates that all tissues tend to maintain a constant (and 
optimal in regard to their metabolic needs) blood flow. Over-perfusion will elicit 
vasoconstriction, and under-perfusion will cause vasodilation.

The next assumption is that in hypertension, there is a phase of expanded 
blood volume which elevates the cardiac output above the metabolic demands of 
the body. This in turn triggers an increase of both the vascular resistance and 
BP. Next the high BP increases the diuresis and in due time will result in a novel 
hemodynamic equilibrium. In this final phase, there is an increase of BP and 
vascular resistance, whereas the blood volume and cardiac output are normal. 
The crucial demonstration of autoregulation in the Guyton’s model required a 
removal of 70% of dog’s renal mass prior to the experimentation. Thereafter 
isotonic saline solution was infused at rate about five times above the dog’s 
habitual salt intake. This induced in the first 4 days increases of blood volume, 
cardiac output, and BP. After 10 days there was a new hemodynamic equilibrium 
consisting of normal blood volume, normal cardiac output, and hypertension. 
Note that complex nonphysiologic experimentation was required to demonstrate 
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autoregulation. Nevertheless it is possible that autoregulation plays a role in vol-
ume-induced hypertensions such as licorice intake, hyperaldosteronism, and 
renal dysfunction and possibly in salt-sensitive hypertension.

We are confident that the Guyton’s concept of increased blood volume as a trig-
ger of increased cardiac output is not applicable to human prehypertension. Here are 
the arguments:

	(a)	 There is no evidence of volume expansion in early phases of hypertension. To 
the contrary, the plasma volume is decreased in prehypertension and hyperten-
sion [40, 41]. One could argue that in hyperkinetic hypertension, there may 
have been a prior volume expansion which triggered an autoregulatory adjust-
ment of the circulation. If this were the case, one would have to conclude that 
instead of normalizing the intravascular volume, the autoregulation resulted in 
a hypertension with decreased intravascular volume. There is no plausible 
explanation for such an overshoot of the volume regulation in hypertension.

	(b)	 In animals, the autoregulation is triggered by luxurious perfusion, a condition in 
which the flow exceeds the metabolic needs of organs. However the increase of 
cardiac output in the hyperkinetic state is associated with increased oxygen 
consumption [34, 42, 43]. Therefore the high cardiac output in prehypertension 
is an appropriate circulatory adjustment to increased metabolic needs.

	(c)	 The strongest argument against volume-related increase of blood flow in hyper-
kinetic prehypertension is the fact that after a “chemical denervation” of the 
heart with injections of propranolol and atropine, the cardiac output decreased 
into the normal range [13]. Thus the increase of the cardiac output in hyperten-
sion was neurogenic.

34.6	 �What Is the Mechanism of the Transition from High 
to Normal Cardiac Output and from Lower to Increased 
Vascular Resistance in the Course of Hypertension?

	(a)	 Cardiac Output

In 1983, Per Lund-Johansen summarized his findings in young subjects (17–
29 years) who had mild to moderate untreated hypertension [29]. At the baseline 
this group had elevated average BP (160/99 mmHg), higher cardiac output index 
(+13%), increased heart rate (+16%), and a normal stroke volume index. Some of 
the originally young subjects were reexamined after 10 years. At that point there 
was a decrease of stroke volume and cardiac output, whereas the vascular resistance 
increased. Eight untreated subjects participated in the third hemodynamic study 
after a follow-up of 17 years. During this last 7 years, there was a further decrease 
of cardiac output and stroke volume as well as an increase of mean arterial pressure. 
It is likely that the time-related decrease of stroke volume reflects an increased stiff-
ening of the heart chambers.
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Based on the longitudinal observations by Lund-Johansen [29, 34], we assumed 
that the majority of normokinetic prehypertensives may have transited from the 
hyperkinetic to a normokinetic state. Consequently we investigated 105 prehyper-
tensives with normal cardiac output and compared them with 85 healthy volunteers 
[36]. The baseline stroke volume index in the normokinetic patients was 44.3 com-
pared to 47.4 mL/beat/min in normotensive control group p < 0.01. In the 105 nor-
mokinetic prehypertensives, the stroke volume was substantially lower (44.3, 
p < 0.01). The stroke volume difference between the two groups increased further 
after an “autonomic nervous denervation of the heart” by large doses of propranolol 
and atropine (35.4 versus 32.0, p < 0.001).

Prehypertension [40] and hypertension [41] are associated with a significant 
decrease of plasma volume which may decrease the venous return to the heart and 
elicit a smaller stroke volume. In our study [7] we estimated the venous return to the 
heart by calculating the cardiopulmonary blood volume from dye dilution curves. 
There was a highly significant correlation between the cardiopulmonary blood vol-
ume and the stroke volume in both groups. However the cardiopulmonary blood 
volumes of the two groups were not different suggesting that the venous return in 
both groups was similar. These findings indicate that prehypertensives with normal 
cardiac output have stiffer hearts which do not sufficiently distend in response to an 
adequate venous return.

	(b)	 Vascular Resistance

The normal cardiac output in prehypertension is associated with an increase of vas-
cular resistance. The vascular resistance is calculated by division of the mean arterial 
pressure with cardiac output. Thus, if the BP is the same or increases and the cardiac 
output decreases, the calculated vascular resistance will increase. It is tempting to view 
the ensuing increase of vascular resistance as a simple mathematical outcome. However 
elevated vascular resistance in untreated hypertension reflects an anatomic restructur-
ing of the small resistance vessels (arterioles). The Swedish physiologist Bjorn Folkow 
was the first to suggest and experimentally support the concept that the arteriolar wall-
to-lumen ratio may be an “amplifier” of the BP in hypertension. In his view the elevated 
BP induces a muscular hypertrophy in the arteriolar wall. The thickened wall intrudes 
into the vessel’s lumen and mechanically increases the vascular resistance. In response 
there is an increase of the BP and thereby starts the vicious circle of BP elevation. 
Folkow [44] postulated several criteria to verify the presence of wall-to-lumen aberra-
tions in hypertension. Compared to normotensive individuals, hypertensives should:

	(a)	 Show a nonspecific increased responsiveness to various vasoconstrictors.
	(b)	 It is expected that at the baseline, the hypertensive will have a smaller arteriolar 

lumen. A smaller lumen ought to be associated with a steeper response since the 
resistance rises with fourth power of the radius.

	(c)	 In hypertensives the structural reduction in the vascular cross-sectional area 
should be associated with greater resistance at maximum vasoconstriction.
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	(d)	 At maximal vasodilation the residual (minimal) resistance ought to be increased 
in hypertension.

	(e)	 The sensitivity of the alpha-adrenergic receptors should not be increased.

Egan et al. [45] investigated the forearm circulation in a group of patients with 
mild hypertension and an age- and weight-matched normotensive control group. 
Intra-brachial artery infusions of norepinephrine and angiotensin elicited substan-
tially steeper increase of forearm vascular resistance in the hypertension group. 
Similarly the vascular resistance at the highest dose of norepinephrine or angioten-
sin infusion was increased in the hypertension. The minimum forearm vascular 
resistance at maximal dilatation was increased in hypertension. The calculated sen-
sitivity of brachial artery alpha-adrenergic receptors was similar in both groups. 
These findings strongly supported a structural reduction in the luminal cross-
sectional area in hypertension, but the nature of vascular abnormality was not deter-
mined. We concluded that in addition to an increased wall thickness, our findings 
could also reflect “a reduction in the vessel size or a reduction in vessel number.” 
Current literature indicates that hypertension is associated with inward arteriolar 
remodeling in which there is no evidence of smooth muscle hypertrophy, but the 
wall-to-lumen ratio is increased [46, 47]. In the Tecumseh study [16], we found an 
increased minimum forearm vascular resistance at the maximal dilatation also in 
prehypertension. Thus vascular abnormalities are present in the earliest phases of 
hypertension.

In summary one third of patients with prehypertension have increased sympa-
thetic tone manifested as tachycardia and increased cardiac output. This hyperki-
netic hemodynamic state is a predictor of future established hypertension. However 
patients with established hypertension characteristically have increased vascular 
resistance and a normal cardiac output. In this chapter, we describe the mechanism 
of the phenotypic transition from prehypertension to established hypertension. The 
“normalized” cardiac output in established hypertension reflects a decrease of the 
stroke volume due to increased cardiac stiffness. In parallel, the increased vascular 
resistance in established hypertension mirrors the ensuing restructuring of resis-
tance arterioles. This restructuring enhances vascular contraction to all constricting 
agonists and, if untreated, predicts future increases of the blood pressure.

Despite of the notion that early tachycardia and minor blood pressure increases 
may be benign signs of transient nervousness, there is strong evidence that this con-
dition is predictor of established hypertension. In clinical terms this suggests that 
hypertension starts early and calls for early detection and management of all stages 
of hypertension.
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35White Coat and Masked Hypertension

Cesare Cuspidi, Carla Sala, Marijana Tadic, 
and Guido Grassi

35.1	 �Introduction

Combined office and out-of-office blood pressure (BP) measurement provides a 
comprehensive evaluation of cardiovascular risk related to hypertension and has 
gained increasing popularity in recent years. Both techniques allowed to identify 
four BP patterns: (1) true normotension (i.e. normal office and out-of-office BP), (2) 
sustained hypertension (elevated in-office and out-of-office BP), (3) white coat 
hypertension (elevated office and normal out-of-office BP) and (4) masked hyper-
tension (normal office and elevated out-of-office BP) [1].

These BP phenotypes substantially differ in terms of prevalence, demographic 
and clinical features and degree of subclinical cardiac and extra-cardiac damage, as 
well as cardiovascular risk [2].

In the last decades, growing attention has been paid to white coat or isolated 
clinical hypertension and to masked hypertension, both conditions characterized by 
the fact that classification of BP status by clinic measurements is not confirmed by 
home and/or ambulatory BP monitoring (ABPM).
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In this chapter white coat hypertension (WCH) and masked hypertension (MH) 
will be discussed in separate sections.

35.2	 �White Coat Hypertension

Since several decades, it has been increasingly recognized that office BP measured 
by the physician or nurse may not accurately reflect BP levels outside medical envi-
ronment [3, 4]. The alert reaction induced by BP measurement by the physician in 
his office may substantially reduce the value of this traditional procedure in estimat-
ing “true” BP levels of a subject.

WCH currently defines the subjects whose BP is high (i.e. ≥140 and/or 90 mmHg) 
in the medical setting, but normal when detected away from medical environment 
by 24-h ABPM and/or home BP measurement [5, 6]. Since the pioneering paper by 
Pickering et al. [5] in which the term WCH was used for the first time to define 
untreated hypertensive subjects, the large majority of studies have indicated that this 
condition accounts for a noticeable fraction of the hypertensive population. It has 
been reported, indeed, that WCH is not infrequent in the general population and is 
relatively common in the hypertensive one; the prevalence of this condition partly 
depending on the methods used (home or 24-h ABPM) and definition of normal 
out-of-office BP values.

WCH has been estimated to occur in approximately 20–25% of mild to moderate 
hypertensive population. According to normal cut-offs of clinic BP <140/90 mmHg 
and daytime ABP <135/85 mmHg, WCH prevalence may range from 15 to 45%.

Dolan et al. [7] documented that WCH prevalence was 15.4% in 5176 hyperten-
sive patients (mean age 54 years) referred at a single outpatient hypertension clinic 
over a 22-year period. A higher prevalence was observed among older patients, 
females and non-smokers. In 1564 nondiabetic stage 1 hypertensive subjects free 
from renal disease and previous cardiovascular events, Verdecchia et al. [8] reported 
that WCH prevalence (daytime BP <130/80  mmHg) was 10.4%. Subjects with 
WCH were more frequently women, non-smokers and those who had lower clinical 
BP and left ventricular (LV) mass.

Trenkwalder et  al. [9] using less tight diagnostic criteria for defining normal 
clinical BP (<160/95  mmHg) and ABPM (<146/87  mmHg) reported that WCH 
prevalence in 50 elderly and very elderly hypertensive patients was 19%. Authors 
failed to observe any difference related to gender, weight, comorbidities, pre-study 
treatment and systolic or diastolic LV function between WCH and sustained hyper-
tensives. Patients with WCH compared to their counterparts showed lower office 
BP, LV mass index and more pronounced alerting reactions.

In 611 never-treated grades 1 and 2 uncomplicated essential hypertensives (mean 
age 46 years), our own group found that WCH prevalence was 7.1%, when this 
condition was diagnosed according to mean daytime BP values <135/85 mmHg and 
5.4% according to mean 24-h BP values <125/80 mmHg [10].

Among 1637 untreated subjects from the Pressioni Monitorate e Loro Associazioni 
(PAMELA) population, WCH prevalence ranged from 9 to 12% depending on 
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whether the definition of normal out-of-office BP was based on ambulatory 
(24-h < 125/80 mmHg) or home (<135/85 mmHg) BP values [11]. More recently, de 
la Sierra et al. [12] investigated the prevalence and reproducibility of hypertension 
phenotypes defined by combined clinical and ABPM measurements in a group of 
869 untreated patients from the Spanish ABPM Registry. The proportion of true nor-
motensives and white coat hypertensives at first ABPM was 17% and 24%, respec-
tively (Fig. 35.1).

In most of the above-mentioned studies, unfortunately, WCH was defined accord-
ing to a single ABPM recording. Although more reproducible than clinical BP mea-
surement, ABPM has an intrinsic variability from one recording session to another 
depending on physical activity, environmental stimuli, duration and quality of sleep. 
This variability may affect WCH definition that for this reason should not be 
regarded as a stable phenotype.

In the Hypertension and Ambulatory Recording Venetia Study (HARVEST), this 
issue has been investigated by Palatini et al. [13] in 565 grade 1 hypertensive sub-
jects and in 95 normotensive individuals by repeated ABPM recordings within a 
3-month interval. According to the results provided by the first ABPM (mean day-
time <130/80 mmHg), 90 hypertensive subjects were classified as having WCH, 
whereas after the second ABPM, only 38 out of 90 subjects (42.2%) were confirmed 
to have the WCH pattern.

We also examined the reproducibility of WCH [10] by performing two 24-h 
ABPMs at a 1–4-week interval in untreated hypertensives with a broader range of 
age and BP values (40% with grade 2 hypertension) than in Palatini’s study [13]. In 
about 50% of the patients diagnosed as having WCH by the first ABPM, daytime 
ABPM values obtained at a second ABPM were >135 mmHg systolic or 85 mmHg 
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diastolic, shifting them into the category of sustained hypertensives. In the Spanish 
ABPM Registry [12], the prevalence of switch from WCH to sustained hyperten-
sion observed from the first to the second ABPM (median interval 3 months) was 
approximately 25%. Overall, these findings indicate that the diagnosis of WCH 
based on a single ABPM has a short-time limited reproducibility, due to the high 
proportion of patients moving into the sustained hypertension category at the sec-
ond ABPM.

Despite its remarkable prevalence, the association of WCH with subclinical 
organ damage and increased risk of cardiovascular events is not fully established 
and is still a matter of debate.

The presence of target organ damage has been proven useful in predicting car-
diovascular and all-cause mortality in the general as well as hypertensive population 
[14, 15]; searching for subclinical cardiac and extra-cardiac damage is recom-
mended by current guidelines for refining cardiovascular risk stratification [16].

Cross-sectional studies on the association between WCH and target organ dam-
age have provided conflicting results. Some studies have indicated an independent 
association between WCH and left ventricular hypertrophy (LVH), diastolic dys-
function, renal damage and micro- as well as macro-vascular alterations [17, 18]. In 
contrast, other studies have provided evidence that cardiac and vascular structures 
in individuals with WCH are not different from those of normotensive subjects, 
after adjusting for confounders, and only differ from those of age- and sex-matched 
sustained hypertensives [19, 20].

A recent meta-analysis of 25 studies published in the last two decades has pro-
vided a comprehensive information on echocardiographic markers of cardiac dam-
age (i.e. LV mass index, LV diastolic function and left atrium diameter) in a pooled 
population of 1705 WCH subjects from different clinical settings compared to true 
normotensive and hypertensive individuals [21].

The principal findings of this meta-analysis can be summarized as follows: (1) 
LV mass index showed a gradual increase from normotensive (88 g/m2) to WCH 
(96 g/m2) and to sustained hypertensive subjects (109 g/m2) (Fig. 35.2a); (2) mitral 
early to late flow velocity ratio (an established index of diastolic function) was sig-
nificantly reduced in WCH as compared to normotensive subjects; (3) left atrium 
diameter was larger in WCH (33 mm) than in normotensive counterparts (32 mm); 
(4) in WCH subjects, office, but not ambulatory, BP showed a direct, significant 
correlation with LV mass index.

Recently, new echocardiographic techniques such as multilayer and three-
dimensional (3DE) strain analyses have been applied to investigate LV mechanics 
in WCH. In a study by Tadic et al. [22], LV deformation, as assessed by these new 
techniques as well as by two-dimensional traditional strain, has been shown to be 
impaired in WCH as compared to normotensive controls. The reduced layer-specific 
strain documented for the first time by this study in the WCH setting reflects the 
impact of the earliest stages of LV remodelling on LV mechanics.

As for the association between WCH and vascular damage, the first study on this 
issue published in the early 1990s by Cavallini et al. compared carotid ultrasono-
graphic findings in age- and gender-matched true normotensive, WCH and sus-
tained hypertensive patients. The authors demonstrated that common intima-media 
thickness (IMT) was significantly greater in WCH (840 μm) than in normotensive 
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subjects (760 μm, p 0.001). After this pioneering report, numerous studies carried out 
in untreated and treated hypertensives have investigated the association between 
carotid damage and WCH. We also performed a meta-analysis on a pooled popula-
tion from ten studies including 3478 untreated subjects, namely, 940 normotensive, 
666 WCH and 1872 hypertensive individuals [23]. Our results documented that a 
progressive increase in common carotid IMT occurred from normotensive 
(718 ± 36 μm) to WCH (763 ± 47 μm) and hypertensive subjects (817 ± 47 μm) 
(Fig. 35.3a).

Taken together these findings convey the notion that WCH is a risk factor for 
development of subclinical cardiac and extra-cardiac organ damage.

Although numerous studies have addressed the prognostic significance of WCH, 
cardiovascular risk related to this condition is still debated [24].

In recent meta-analyses, the incidence of cardiovascular disease and mortality in 
WCH individuals has been reported to be either similar as in normotensive subjects 
or intermediate between normotensive and hypertensive patients.

In a pooled population of 7961 untreated subjects (16% WCH), Pierdomenico 
et al. [25] showed that cardiovascular risk was similar in WCH as in true normoten-
sive subjects. The International Database on Ambulatory Blood Pressure Monitoring 
in Relation to Cardiovascular Outcomes (IDACO) Study [26] evaluating the prog-
nostic significance of WCH in older persons with isolated systolic hypertension 
reported that untreated WCH and normotensive subjects were at similar risk.

On the contrary, a recent meta-analysis by Briasoulis et al. [27], including 29,100 
participants from 14 studies (13,538 normotensive, 4806 WCH and 10,756 sus-
tained hypertensive subjects), documented that WCH subjects had higher rates of 
cardiovascular morbidity and mortality, but not significantly different rates of all-
cause mortality and stroke compared to normotensive subjects. Of note, in this 
study, cardiovascular events, all-cause mortality, and stroke rates were significantly 
greater in sustained hypertensive than in WCH subjects.

35.3	 �Masked Hypertension

The term MH was first used in the early 2000s by Pickering et al. [28] to define the 
hypertensive condition not identified by routine office BP measurements. An 
increasing number of cross-sectional and longitudinal studies have subsequently 
reported that this BP phenotype is associated with prevalent organ damage and, 
more importantly, with an increased risk of cardiovascular events [29, 30]. Out-of-
office BP, indeed, either monitored at home or in ambulatory conditions over 24 h, 
has been shown to have a greater prognostic value than clinical BP readings. Several 
aspects concerning MH are still debated; in particular controversy exists about 
methods (i.e. home versus ambulatory BP) more reliably detecting subjects with 
elevated BP in out-of-the office environment and about MH actual prevalence in the 
general population, its clinical correlates and reproducibility over time [31–33].

MH has been estimated to occur in approximately 10–25% of individuals, this 
wide range depending on methods and diagnostic criteria used to detect this condi-
tion as well as on clinical characteristics of study samples (i.e. general population, 
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subjects with suspected hypertension, diabetes, chronic renal disease, obesity, sleep 
apnoea syndrome).

In their landmark study, Liu et al. [29] reported that 61 out of 295 clinically nor-
motensive subjects (20%) examined in a hypertension outpatient clinic had daytime 
ambulatory systolic or diastolic BP exceeding 134/90 mmHg. Body mass index, 
cholesterol levels and nicotine use tended to be higher in MH subjects compared to 
true normotensives. In a retrospective analysis of 1494 ABPMs performed in 
untreated and treated subjects of a community hospital for clinical indications, Ben-
Dov et al. [34] reported an 11% prevalence of MH defined according to office and 
daytime ABPM cut-offs of 140/90  mmHg and 135/85  mmHg, respectively. MH 
prevalence was related with male gender, younger age and higher daytime heart 
rate. In a study by de La Sierra et al. [12], based on a sub-analysis of the Spanish 
ABPM Registry, 76 out of 839 untreated subjects (9%) were found to have office BP 
<140/90 mmHg and 24-h ABPM >130/80 mmHg.

In a cross-sectional study including 1492 untreated and treated men and women 
affected by chronic kidney disease enrolled in the Chronic Renal Insufficiency 
Cohort Study, MH prevalence was 27.8% [35]. Compared with patients with sus-
tained normotension, those with MH had a more advanced renal damage in terms of 
lower glomerular filtration rate and higher proteinuria.

A number of studies evaluated the magnitude of MH phenomenon in general 
population cohorts. In the Ohasama population, 10% of subjects with normal 
screening BP values displayed mildly elevated average 24-h ABPM (i.e. ranging 
between 134/79 and 144/85 mmHg). A fraction of these subjects, approximately 
3%, showed 24-h ABPM levels equal or even higher than 145/86 mmHg [36]. In the 
PAMELA study, the only published study providing information on MH based on 
either home self-measured BP or ABPM, this condition involved from 9 to 12% of 
the population sample of untreated adult and elderly individuals, the variable preva-
lence depending on whether MH was defined by ambulatory or home BP, diastolic 
or systolic BP values [11]. Findings from the Jackson Heart Study, an African 
American population-based cohort including 909 participants, provided a new piece 
of information about the association of MH and prehypertension (office systolic BP 
from 120 to 139 mmHg and diastolic BP from 80 to 89 mmHg) [37]. Among partici-
pants with office systolic/diastolic BP <140/90  mm Hg, the prevalence of MH 
(average daytime BP > 135/85 mmHg) and prehypertension was 27.5% and 62.4%, 
respectively. Notably, MH prevalence among subjects with prehypertension was 
significantly higher than in those with normal BP (36.3% versus 12.9%, respec-
tively) (Fig. 35.4).

Clinical factors associated with MH have not been fully elucidated, so far. Some 
reports indicated that male sex, older age, high normal office BP, low physical activ-
ity, obesity, current smoking and habitual alcohol drinking were the main variables 
differentiating MH individuals from true normotensives [38–40]. The association 
between older age and MH has not been confirmed by a study aimed at assessing the 
age-specific prevalence of MH in 9550 individuals out of antihypertensive treat-
ment. The prevalence rate of such BP phenotype in men >70 years was twofold 
lower than in men aged 40 to 50 years [41].
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Viera et al. [42] examined the factors that, in addition to prehypertensive office 
BP levels, may improve MH detection among 340 individuals at otherwise low risk. 
The authors found that no demographic, clinical or psychosocial parameters, such 
as gender, physical activity or working out of home, ameliorated MH prediction in 
subjects with prehypertension. Although literature findings on demographic and 
clinical correlates of MH are inconclusive, it is conceivable that sympathetic activa-
tion triggered by stress, anxiety, job or physical activity, smoking, alcohol consump-
tion or sleep apnoea plays a central role in subjects with MH.

One major limitation of studies assessing demographic and clinical characteristics 
related to MH is the limited evidence about the persistence of this BP pattern over 
time. In the vast majority of studies, indeed, MH was diagnosed on the basis of a 
single ABPM or home monitoring. A report by Trudel et  al. [33] examining the 
reproducibility of MH among 1669 white-collar workers over a 5-year period of 
follow-up showed that prevalence of this BP pattern was 38% and 18.5% after 3 and 
5 years, respectively, and the progression from MH to sustained hypertension was 
26% and 37%, respectively [33]. Data from the Spanish ABPM showed that progres-
sion from MH to sustained hypertension involved approximately one third of patients 
during a median period of observation of 3 months [12]. Overall, these findings sup-
port the view that MH may be regarded as transient status in a large fraction of the 
population.

MH phenomenon has been consistently reported to be associated to subclinical 
damage in a variety of organs. More than two decades ago, Liu et al. [29] investi-
gated for the first time the impact of MH on target organ damage in 295 clinically 
normotensive adults and 64 sustained hypertensive patients. The authors showed 
that LV mass index in 61 MH subjects was higher than in 234 true normotensives 
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(86 ± 16 g/m2 versus 73 ± 14 g/m2, respectively) and similar as in sustained hyper-
tensives (90 ± 18 g/m2), despite an average difference in the office BP of 35/16 mmHg 
between these groups.

In the early 2000s, Mancia’s group [11] documented that in the PAMELA popu-
lation, LVH prevalence in MH subjects (14%) was similar as in WCH subjects 
(15%), lower than in sustained hypertensives (26%), but much greater than in sub-
jects with office and out-of-office normotension (4%).

After these pioneering observations, a number of studies have evaluated the asso-
ciation between MH and organ damage in different clinical settings. We investi-
gated the impact of MH on LV mass index and microalbuminuria long-term 
variations in 80 treated nondiabetic hypertensives [43]. Clinic BP and ABPM mea-
surements, echocardiography and 24-h urine collection for microalbuminuria were 
undertaken at baseline and after an average follow-up of 30 months. A significant 
decrease of LV mass index and microalbuminuria was observed in the 51 patients 
with office and ambulatory BP control, but not in the 29 patients with MH.

A subsequent cross-sectional study by Tomiyama et al. [44] conducted in 332 
treated hypertensive patients confirmed previous evidence by showing that LVMI 
was higher in MH than in counterparts with normal office and out-of-office BP 
(136 ± 31 vs. 115 ± 28 g/m2, respectively), and the same was true for LV relative 
wall thickness (0.49 ± 0.09 vs. 0.46 ± 0.07, respectively). As for LV geometric pat-
terns, the rate of concentric LVH was higher in MH compared to controlled group 
(48 vs. 28%). From multivariate analyses, MH turned out to be a predictor of LV 
concentric hypertrophy independent of age, sex, hypertension duration, antihyper-
tensive treatment and ABPM levels.

The study by Sharman et al. [32] was focused on the association between MH 
and left ventricular remodelling in a sample of 72 nondiabetic subjects free of car-
diovascular disease with an exaggerated BP response to maximal treadmill exercise 
(i.e. systolic BP ≥  210  mmHg in men, ≥190  mmHg in women or diastolic BP 
>105 mmHg in both genders). The authors found that ambulatory hypertension was 
present in the majority of these subjects (58%) and was associated with higher LV 
mass, LV relative wall thickness and prolonged mitral deceleration time.

Two recent meta-analyses of our own group provided a further contribution on 
MH and cardiovascular organ damage, as assessed by cardiac and carotid 
ultrasonography.

From the analysis of pooled data from 12 studies published since 1999, including 
a total of 2467 normotensive, 776 MH and 1641 sustained hypertensive subjects 
identified by ABPM, we found that LV mass index showed a progressive increase 
from normotensive (79.2 ± 0.35 g/m2), to MH (91.6 ± 4.0 g/m2), to hypertensive 
subjects (102.9 ± 3.3 g/m2) [45] (Fig. 35.2b). Prevalence rates of LVH in normoten-
sive controls, MH and sustained hypertensive subjects were 3.7%, 14.1% and 11.3%, 
respectively.

A further meta-analysis of 2752 untreated subjects (1039 normotensive, 497 MH 
and 766 hypertensive individuals) from five studies revealed that common carotid 
IMT progressively increased from normotensive (681  ±  24  μm), to MH 
(763 ± 57 μm), to sustained hypertensive subjects (787 ± 58 μm) [46] (Fig. 35.3b).
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A consisting body of evidence supports the notion that MH is a BP trait associ-
ated with increased risk of cardiovascular events as compared to sustained normo-
tension [2, 25, 30]. In a population-based cohort of 578 untreated 70-year-old men, 
Bjorklund et  al. [47] reported that individuals with MH exhibited a similar inci-
dence of fatal and non-fatal coronary events, stroke and peripheral vascular deaths 
as sustained hypertensives, the relative risk being approximately threefold in MH 
than in true normotensives.

In the PAMELA population, the incidence of cardiovascular deaths showed a 
gradual increase from true normotension to WCH, MH and sustained hypertension 
independently of major cardiovascular risk factors including age and sex [2]. The 
different trend in mortality across the four BP phenotypes was independent on 
whether these conditions were detected by office versus ambulatory or office versus 
home BP.

The adverse prognostic significance of MH reported by single studies was con-
firmed by the findings of meta-analyses performed in the last decade [25, 48–50] 
and is in keeping with the view that out-of-office BP, either monitored at home or in 
ambulatory conditions, is a powerful predictor of cardiovascular events.

Tailored interventions on lifestyle aimed at treating the modifiable risk factors 
associated with MH, including obesity, diabetes, stress and sleep apnoea, and avoid-
ance of smoking and alcohol abuse are strongly recommended by current hyperten-
sion guidelines.

A further emerging strategy in managing MH is the reduction of ambulatory BP 
(or home BP) using antihypertensive drugs, despite the presence of normal office 
BP, and then performing periodic ABPM to assess on-treatment ambulatory or 
home BP. So far, the effect of BP-lowering medications in the MH setting has been 
tested by few studies. In a randomized, placebo-controlled study of 115 patients 
with an exaggerated response to exercise (40% with MH), administration of 25 mg/
dL of spironolactone for 3 months reduced exercise BP, 24-h ambulatory BP and LV 
mass index [51]. Effectiveness and safety of olmesartan-based therapy in WCH and 
MH has been recently evaluated in a large-scale Japanese study [52]. The authors 
reported that olmesartan was safe and useful in both BP categories, by reducing 
office BP in WCH and home BP in MH, respectively. In a practical therapeutic 
approach, a sub-classification of MH in isolated daytime or nocturnal MH may be 
useful for guiding anti-antihypertensive treatment. Indeed, in isolated daytime MH 
morning, administration of relatively short-acting antihypertensive medications 
would be the preferred choice; conversely, in nocturnal MH, a chrono-therapeutic 
intervention with bedtime administration of BP-lowering drugs is recommended 
(see chapter on nocturnal hypertension).

�Conclusions
WCH and MH are frequent BP phenotypes in the general population that can be 
detected by combined office and out-of-office BP measurements. Both condi-
tions convey an increased risk of incident-sustained hypertension, target organ 
damage and cardiovascular morbidity and mortality. In particular, MH pheno-
type appears to have a worse cardiovascular prognosis than WCH [16, 50] and to 
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carry a similar risk as sustained hypertension, at variance from WCH. Accordingly, 
a different approach is recommended by guidelines for the management of these 
conditions [16]: both lifestyle measures and antihypertensive drug treatment 
should be considered in MH, whereas in WCH at low cardiovascular risk (i.e. 
without additional risk factors and or target organ damage), interventions should 
be limited to lifestyle changes accompanied by a close follow-up.

Disclosure  The authors report no conflicts of interest.
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ACCOMPLISH	 Avoiding Cardiovascular Events Through Combination Therapy 
in Patients Living with Systolic Hypertension

ACEI	 Angiotensin-converting enzyme inhibitors
ARB	 Angiotensin AT-1 receptor antagonists
BBL	 Beta blockers
BP	 Blood pressure
BPLTTC	 Blood Pressure Lowering Treatment Trialists’ Collaboration
CCB	 Calcium channel blockers
CHD	 Coronary heart disease
CHEP	 Canadian Hypertension Educational Programme
CHF	 Congestive heart failure
CKD	 Chronic kidney disease
cPP	 Central pulse pressure
cSBP	 Central SBP
CV	 Cardiovascular
CVD	 Cardiovascular disease
DALY	 Disability-adjusted life-years
DBP	 Diastolic blood pressure
DIU	 Diuretics
eGFR	 Estimated glomerular filtration rate
ESC	 European Society of Cardiology
ESH	 European Society of Hypertension
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EUROPA	 EURopean trial On reduction of cardiac events with Perindopril 
in stable coronary Artery disease

EWPHE	 European Working Party on High Blood Pressure in the Elderly
HOPE	 Heart Outcomes Prevention Evaluation
HR	 Hazard ratio
HTN	 Hypertension
HYVET	 Hypertension in the Very Elderly Trial
INSIGHT	 International Nifedipine GITS Study Intervention as a Goal in 

Hypertension Treatment
INVEST	 International Verapamil SR/Trandolapril Study
ISH	 Isolated systolic hypertension
JNC	 Joint National Committee
LIFE	 Losartan Intervention for Endpoint Reduction
MI	 Myocardial infarction
MRC	 Medical Research Council
NORDIL	 Nordic diltiazem
NSAID	 Nonsteroidal anti-inflammatory drug
NT	 Normotension
PP	 Pulse pressure
PROGRESS	 Perindopril Protection against Recurrent Stroke Study
PWV	 Pulse wave velocity
RAAS	 Renin-angiotensin-aldosterone system
RAS	 Renin-angiotensin system
RCT	 Randomised controlled trial
RR	 Relative risk
SAVE	 Survival and ventricular enlargement
SBP	 Systolic blood pressure
SCOPE	 Study on COgnition and Prognosis in the Elderly
SHEP	 Systolic Hypertension in the Elderly Program
SNS	 Sympathetic nervous system
SOLVD	 Studies of Left Ventricular Dysfunction
SPRINT	 Systolic Blood Pressure Intervention Trial
STONE	 Shanghai Trial of Nifedipine in the Elderly
Syst-China	 Systolic Hypertension in China
Syst-Eur	 Systolic Hypertension in Europe
WCH	 White coat hypertension
WHO-ISH	 World Heart Organisation-International Society of Hypertension

36.1	 �Definition and Classification

The definition of isolated systolic hypertension (ISH) is unchanged in 2003–2007–
2013 ESH/ESC guidelines [1]. It can be diagnosed when systolic blood pressure 
(SBP) ≥140 and diastolic blood pressure (DBP) <90 mmHg.
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The classification of ISH is similar to other forms of hypertension (HTN):

•	 Grade I: SBP ≥140, DBP <90 mmHg
•	 Grade II: SBP: 160–179 mmHg, DBP <90 mmHg
•	 Grade III: SBP: ≥180 mmHg, DBP <90 mmHg

The same classification is used in young, middle-aged and elderly subjects.

36.2	 �Prevalence

A study of 27,783 subjects, aged 15–60 years, untreated for HTN from a cohort of 
employees formed to study the incidence of HTN in the French working population 
showed that the prevalence of ISH in the young was 6.9% in men, 2.3% in women. 
This prevalence increased at 40–44 years to about 10%. The pulse pressure (PP) in 
subjects with ISH (46.9 mmHg) was significantly higher than in the normotensive 
group. Heart rate was higher in ISH than in normotensives (NT) [2]. ISH is more 
prevalent in elderly hypertensives, since SBP rises with advancing age, whereas 
DBP usually tends to decrease. As a consequence, PP increases. It appears that 
elevated PP is a better predictor of cerebro- and cardiovascular events in elderly 
hypertensives than a high SBP [3, 4].

Studies indicated that SBP is more predictive for the risk of cardio- cerebrovas-
cular events than DBP. Importance of the increased SBP is underlined by data from 
8.69 million participants in studies from 154 countries and used models for 41 other 
countries to estimate country-level rates of elevated SBP and lost disability-adjusted 
life-years (DALYs) and deaths from cardiovascular and chronic kidney disease. 
This study showed that from 1990 to 2015, the number of people with ISH rose by 
18%, and the number of death rose by 51%. The DALYs related to elevated SBP 
increased from 96 million to 143 million [5].

36.3	 �Hypertension in Children and in Adolescents

Many young healthy males have elevated values of brachial SBP (≥140 mmHg) 
with normal values of brachial DBP (<90 mmHg). These subjects usually have nor-
mal central BP. Up to now no evidence is available that they benefit from antihyper-
tensive treatment, as there are prospective data showing that this condition does not 
necessarily develop into systolo-diastolic hypertension [6]. Diagnostic criteria and 
treatment for elevated BP in children and adolescents are described in details in the 
recent ESH guidelines [1, 7]. It is based on the concept that BP in children increases 
with age and body size, making it impossible to utilise a single-BP level to define 
HTN, as done in adults. The decision of the 2009 ESH guidelines [8] to use the 
normative data on auscultatory clinic measurements, providing BP percentiles for 
each sex, ages from 1 to 17 years and for seven height percentile categories, was 
confirmed in the recent guidelines [7]. Accordingly, HTN in children, age <16 years, 
is defined as SBP and/or DBP persistently at least 95th percentile for sex, age and 
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height measured on at least three separate occasions. In addition, HTN is further 
classified as Grade I (95th percentile to the 99th percentile plus 5 mmHg) and Grade 
II (>99th percentile plus 5 mmHg). A consensus in these guidelines was also given 
that for boys and girls aged 16 or older, the definition of HTN should be based on 
the absolute cut-off value used for adults, which defines high-normal (130–139/85–
89 mmHg) and HTN (≥140/90 mmHg).

36.4	 �Isolated Systolic Hypertension in the Young

36.4.1	 �Prevalence

ISH of youth was first described in 2000 [9]. The pressure wave was recorded at the 
radial artery by applanation tonometry. In all subjects the mean arterial pressure was 
normal, and they had a sharper-than-usual systolic peak. The estimated central aortic 
pressure was considered also normal (<126 mmHg), implying that the abnormality 
in these young men was an exaggerated amplification of the arterial pressure wave as 
it progressed to the periphery. By applanation tonometry, an exaggerated amplifica-
tion of the PP was found in the peripheral circulation. The difference between the 
aortic and brachial SBP was 31 mmHg [10]. In another study the prevalence of ISH 
among 174 medical students, who were active in sports, was 12%. Their brachial BP 
was 147/70 mmHg; the estimated aortic pressure was 116/70 mmHg [11].

36.4.2	 �Pathophysiology

If the peaks of the two (incident and reflected) pressure waves coincide, there will be 
an exaggerated systolic pressure. The factors that determine where the reflected wave 
will impinge on the incident wave are those that influence the timing of the reflected 
wave. If it returns quickly, it amplifies the systolic peak of the next incident wave, but 
if it comes back later, it will arrive in the diastolic downslope of the wave. The prin-
cipal factors determining the amplification are the pulse wave velocity (PWV), the 
distance the wave has to go before it is reflected and the heart rate. In younger sub-
jects, because of more compliant arteries, the PWV is slower, so it takes more time 
to return, and therefore it is superimposed on the diastolic component of the pressure 
wave. The distance is related to the height of an individual: in a tall subject the 
reflected wave will return later than in a short person, so it may not affect the systolic 
peak. The high heart rate is associated with an increased amplification of the wave in 
the peripheral circulation, because the duration of systole is shortened, and the 
reflected wave will begin to impinge on the diastolic portion of the wave [12].

In young persons with high SBP, it takes longer for the reflected wave to return to 
the ascending aorta than in normotensives. Therefore, the low PWV, which indicates 
elastic vessels, can enhance the amplification of the pressure wave, while the slow 
heart rate tends to reduce it. The brachial artery pressure increases because these sub-
jects have a high stroke volume. This is because when the resting cardiac output is 
normal and the heart rate is slow, there is a compensatory increase in stroke volume.
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Elasticity of the great vessels is higher in children, whose SBP amplification is 
greater (about 20 mmHg), almost twice as in adults [13]. If the aorta is very compli-
ant, it may be able to accommodate the increased stroke volume without any 
increase of aortic SBP, but the enhanced amplification of the pressure wave in these 
subjects may lead to an increased systolic pressure in the periphery to above-normal 
values [9–12].

This condition in youth is defined as SBP at least 95th percentile specific for sex, 
age and height, with DBP less than 90th percentile [7]. PWV is used for characteris-
ing arterial stiffening. Reference values of PWV for children have been defined by 
recent studies [13–15]. In children the BP only variably predicts increased PWV 
[16]. Functional changes in large vessels may be the earliest detectable findings in 
children, for example, in those with familial hypercholesterolemia and chronic kid-
ney disease [17, 18].

The greater amplification of SBP increases SBP in upper limb arteries; conse-
quently this phenomenon increases the presence of ISH. The potential value of cen-
tral SBP and central pulse pressure (cPP), in the assessment of adolescents with 
ISH, is still a controversial issue, and the clinical significance of ISH in youth is still 
debated. The central BP may be especially relevant in asymptomatic children inci-
dentally found to have ISH without target organ damage [7].

It is known that white coat hypertension (WCH) also occurs in children. This 
phenomenon also contributes to the relative high prevalence of ISH, because the 
white coat effect predominantly affects SBP.  This condition may occur in about 
10% of healthy young men. In one study of children with SBP above the 95th per-
centile, 44% were classified as having WCH [19].

36.4.3	 �Treatment

The best advice is to follow these individuals carefully, but not to start them 
immediately on medication. On the basis of current evidence, they should be 
given recommendations on lifestyle. It could be rational to target BP to a BP 
below the 95th percentiles for age, sex and height, but it is probably wiser and 
safer to aim at a BP below the 90th percentile, provided this goal can be attained 
and well tolerated [7].

For pharmacological therapy, long-acting, once-daily drugs are preferred. Special 
attention should be paid to special conditions (e.g. sport activities) and concomitant 
diseases (e.g. metabolic abnormalities, diabetes mellitus, chronic kidney diseases, 
endocrine syndromes). If BP target is not achieved by monotherapy, or in children 
with higher metabolic or cardiovascular risk, the use of combination therapy (fix 
combinations are preferred) is recommended, as in adults. Evidence from large ran-
domised clinical trials is lacking for the selection of the best antihypertensive drug 
in the young with ISH. It seems to be logical that those drugs should be used which 
have a licence for use in children: angiotensin-converting enzyme inhibitors (ACEI), 
angiotensin AT-1 receptor antagonists (ARB), calcium channel blockers (CCB) beta 
blockers (BBL) and diuretics (DIU) and their combinations according to guidelines 
[1, 7, 8].
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36.5	 �Isolated Systolic Hypertension in the Young Adults

36.5.1	 �Importance

Although ISH is also the majority hypertensive subtype in adolescents and young 
adults, it is frequently unrecognised. An analysis of data from 15,868 men and 
11,213 women (mean age of 34, 85% were non-Hispanic white) of the observa-
tional study based on outcomes from 18- to 49-year-olds in the Chicago Heart 
Association Detection Project in Industry Study showed that men and women with 
ISH had a much higher risk of dying from coronary heart disease (CHD) or cardio-
vascular disease (CVD) during a 31-year follow-up compared with their peers with 
normal-optimal blood pressure. Women had an especially high risk. Subjects did 
not have CHD and were not taking antihypertensives when they were enrolled in 
1967–1973. About 25% of the men and 13% of the women had ISH. They were 
more likely to smoke and have higher body mass index and higher cholesterol level 
as compared with those having normal BP.  During a 31-year average follow-up 
period, both men and women with ISH were more likely to die from CVD than 
those with optimal-normal blood pressure (the hazard ratio (HR) of men, 1.23, and 
women, 1.55, after adjustment for several confounders). With ISH men (HR, 1.28) 
and women (HR, 2.12) had a higher risk of dying from CHD than those in the refer-
ence group. Interestingly, having ISH was not linked to an increased risk of dying 
from stroke [20]. One of the reasons why the prevalence of ISH is increasing in the 
USA (and probably in other countries) is the obesity epidemic.

36.5.2	 �Treatment

It is well established that the benefits of treatment for ISH among the elderly have 
been proven. Such evidence does not exist for younger and middle-aged adults. 
Further research including clinical trials and studies investigating other factors (e.g. 
central BP monitoring, biomarkers, etc.) to identify younger and middle-aged adults 
with ISH who are at especially greater risk for developing CV events is needed.

36.6	 �Isolated Systolic Hypertension in the Elderly

36.6.1	 �Importance

36.6.1.1	 �The Increased SBP
Importance of ISH is stressed because in people 50 years and older, ISH is by far the 
most common form of clinical hypertension. Because of increasing of elderly popu-
lation, ISH will soon be the most prevalent form of hypertension. At the age of 65 
or more, about 70% of patients have ISH, and in those older than 80 years, the 
prevalence is above 90% [21]. Until the ages of 50–60 years, both SBP and DBP 
increase with age. Thereafter, in the majority of cases, SBP increases with age but 
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DBP reaches a plateau or decreases. The most common cause for the disruption of 
the correlation between SBP and DBP is the progressive stiffening of the arterial 
wall indicated by increasing PP. The consequence is the low DBP.

36.6.1.2	 �The Decreased DBP
Importance of very low DBP is also dangerous [22]. If it is associated with high 
SBP and high PP, the consequence is the increased risk for CVD. In the analysis of 
data of >7500 elderly patients with ISH and placebo treatment during randomised 
controlled trials, a higher death rate was seen with progressively higher SBP, but 
increases also in mortality were showed with progressively lower DBP at entry [23]. 
The importance of the low DBP in patients with ISH was stressed also by the 
Framingham Heart Study showing that patients with untreated ISH and DBP 
<70 mmHg had equivalent CVD risk as those with approximately 20 mmHg higher 
SBP values and DBP in the range of 70–89 mmHg. In the analysis of the course of 
>7500 elderly patients with ISH who were left on placebo during multiple ran-
domised controlled trials (RCTs), a continually higher death rate was seen, as 
expected, with progressively higher SBP on entry, but, surprisingly, similar increases 
in mortality were seen with progressively lower DBP on entry. When DBP is low-
ered too much by antihypertensive therapy, similar increase in CV events has also 
been seen [24–28]. The increased CV risk was shown in a sub-study of STOP-2 trial 
including elderly patients with ISH [29]. The analysis of data from the Systolic 
Hypertension in the Elderly Program (SHEP) trial, those who had a cardiovascular 
event while on antihypertensive drug therapy, had lower DBP than those who did 
not have an event. The decrease of 5 mmHg in DBP during active treatment was 
associated with a significant 11% to 14% increases in stroke and cardiovascular 
events [30].

Low DBP in patients with ISH is frequently associated with diabetes and CVD. In 
the National Health and Nutrition Examination Surveys (NHANES) in the USA 
between 1999 and 2006, 1520 older (average age, 61.3 years) untreated persons 
with ISH (average BP, 153.3/73.8  mmHg) were identified. Among them greater 
prevalence of diabetes (12.6 vs. 6.2%) and also CVD (CHD, heart failure, stroke) 
and kidney disease, but a lower prevalence of the metabolic syndrome, was found 
than in those persons with ISH where DBP was higher, 70–89 mmHg [31].

36.6.1.3	 �The Increased PP
Important role of the increased PP in the National Health and Nutrition Examination 
Survey NHANES was also demonstrated: for each 10-mmHg increase in PP, an 11% 
increase in risk of stroke and a 16% increase in risk of all-cause mortality were 
found [32]. Increased PP is also associated with higher risk for developing dementia 
as shown in the Hypertension in the Very Elderly Trial (HYVET) [33]. The 2013 
ESH–ESC guidelines on the management of hypertension [1] have suggested that 
PP may represent an independent risk factor, and that therapeutic studies should 
henceforth be conducted to assess the benefits of reducing PP in terms of cardiovas-
cular morbidity and mortality, especially among those over 60  years of age. 
Unfortunately, most of patients with ISH have uncontrolled BP. In a study involving 
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a general elderly population (over 60 years of age), among uncontrolled patients, 
84% were uncontrolled only for SBP (>140 mmHg) [34].

36.6.2	 �Structural Changes

Ageing is associated with increased arterial stiffness due to endothelial dysfunction, 
vascular remodelling and a change in the extracellular matrix. The development of 
ISH is also associated with an age-related increase of sodium sensitivity and with the 
deterioration of endothelial function, mainly responsible for phenotypic changes of 
aortic smooth muscle cells of arterial compliance through structural and functional 
changes in large arteries, resulting in collagen accumulation and increased vascular 
stiffness. In the presence of a high sodium diet, an increased number of attachments 
between vascular smooth muscle cells and collagen fibres develop. This, with early 
wave reflections which stresses the arterial wall, also contributes to the increase in 
stiffness, mainly independent of the mean blood pressure [35]. The increasing arte-
rial stiffness is caused by structural and functional changes in the vascular wall, 
affecting collagen, extracellular protein matrix and elastin. Structural changes are 
accompanied with increased collagen with cross-linking and degradation of elastin 
fibres. These processes mainly involve the intima and media of vascular wall. 
Consequently the lumen-to-wall ratio and the cross-sectional area of lumen decrease. 
On the other hand, arterial stiffness of the aorta and other elastic arteries increase. 
SBP becomes elevated, whereas DBP stays normal or decreases. Aortic calcification 
is also associated with aortic stiffness in patients with ISH [36, 37].

36.6.3	 �Functional Changes

The development of ISH with increasing age is partly explained by a deterioration 
of arterial compliance mostly in the large conduit arteries. Endothelial dysfunction 
together with vascular remodelling and fibrosis will decrease arterial elasticity or 
increase arterial stiffness [38].

Because of a decrease in elastin fibres and an increase in collagen fibres in the 
arterial wall, the wave reflections increase leading to a higher second systolic peak. 
These processes enhance development of ISH. After the ejection of blood from the 
left ventricle of the heart, the peaks of the forward and backward pulse waves coin-
cide. The brachial artery and aortic waves show a late systolic peak that causes an 
amplification of the more central waveform; consequently there will be an exagger-
ated SBP.  As the arteries become stiffer with age, pulse wave velocity (PWV) 
increases, resulting in more rapid wave reflection, and the late systolic peak of the 
pressure wave causes augmentation in brachial BP. However, in older subjects there 
is little or no amplification of the wave as it travels to the periphery. The increased 
arterial load due to increased SBP and arterial wave reflections will promote left 
ventricular hypertrophy and consequently heart failure and atherosclerotic disease, 
resulting in CHD, CVD and aortic aneurysms [39]. The proliferation of connective 
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tissue results in intimal thickening and fibrosis. The increasing vascular stiffness 
itself also causes a reduction in arterial compliance and the decrease of the 
‘Windkessel function’ of the large arteries. Accordingly, PP and PWV increase, and 
this is associated with an earlier and enhanced reflection of pressure waves from the 
periphery, thus causing a disproportionate increase in SBP. However, DBP does not 
increase and may even be lower as a result of increased arterial stiffness. Ageing is 
associated with an increase in activity of sympathetic nervous system (SNS) and of 
renin-angiotensin system (RAS). The increased activity of SNS and the RAS con-
tributes to ventricular remodelling, fibrosis and impaired diastolic relaxation lead-
ing to diastolic heart failure in the elderly with ISH. Decreased sensitivity of beta 
adrenergic receptors can also be found, but the alpha adrenoceptors do not change. 
So, a shift towards arterial vasoconstriction can be observed [40, 41]. Increased 
secretion of thyroid hormones—hyperthyroidism—also increases SBP [42, 43]. In 
addition to the progression of arterial stiffness, a decline in renal function also 
accelerates the process of increased BP [44].

36.6.4	 �Complications

Although ISH was once thought to be benign, multiple studies over the past decades 
have shown increased cardiovascular morbidity and mortality in older persons with 
ISH [32, 44, 45]. Data from large-scale studies demonstrated several complications 
of ISH, because higher SBP was associated with an increase in several CV risk fac-
tors. In addition to office and home blood pressure measurements, ambulatory blood 
pressure monitoring (ABPM) is also a helpful tool to predict CV risk in patients 
with ISH [46]. The use of ABPM is stressed because elderly hypertensive patients 
are at higher risk not only for CVD but also for arrhythmias including atrial fibrilla-
tion. The SHEP study shed light also on the increased risk of atrial fibrillation in 
patients with ISH [30, 47, 48]. The Framingham Heart Study showed that ISH was 
associated not only with increased mortality but also CV morbidity as the risk of 
nonfatal stroke and myocardial infarction was increased three and two times, respec-
tively, in the presence of ISH [44]. In addition to these complications, increased risk 
of cognitive dysfunction, HF, heart attack, premature death and blindness should 
also be emphasised.

Ageing process is associated with decreased renal function, and this is also an 
important factor of patients with ISH [49–51]. The Kidney Disease: Improving 
Global Outcomes (KDIGO) clinical practice guideline for the management of BP in 
chronic kidney disease (CKD) recommends a BP target of <140/90  mmHg in 
patients with CKD who have no proteinuria and a stricter target of <130/80 mmHg 
in patients with albuminuria/proteinuria. In a study multiple SBP and DBP combi-
nations in a national cohort of US veterans with CKD were analysed and found that 
having a slightly elevated SBP (130–159  mmHg) and DBP 70–98  mmHg was 
linked with the lowest all-cause mortality. Combinations of lower SBP and DBP 
were associated with relatively lower mortality only if the lower DBP was above 
70 mmHg.
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Researchers in an observational study analysed data from more than 650,000 
veterans (mean age, 73.8 years) with ISH who were enrolled in Veterans Affairs 
healthcare facilities throughout the USA from 2004 to 2006 and had CKD but were 
not on dialysis. 62% of them had stage 3A CKD, and 43% had diabetes. Patients 
mean baseline BP was 135/72 mmHg. Authors examined 96 possible combinations 
of SBP and DBP from <80/<40 to >210/>120 mmHg, in 10-mmHg increments. 
Median follow-up was 5.8  years. During this period more than one third of the 
patients died. A J-shaped association was found between SBP or DBP and death. 
Those patients who had stage-1 hypertension had the highest mortality rates, inde-
pendent of confounders. Having a SBP less than 130 mmHg was associated with 
greater risk for death across all DBP categories. For the explanation authors opinion 
was that the patients with lower systolic or diastolic BP may have been sicker [52].

A secondary analysis was made of the data of International Verapamil SR/
Trandolapril Study (INVEST), involving 22,576 clinically stable hypertensive 
patients with CAD (age ≥50 years). Patients were grouped by age in 10-year incre-
ments (aged ≥80, n = 2180; 70–<80, n = 6126; 60–<70, n = 7602; <60, n = 6668). 
They were randomised to either verapamil SR- or atenolol-based treatment strate-
gies, and primary outcome was first occurrence of all-cause death, nonfatal MI, or 
nonfatal stroke. Increasing age was associated with higher SBP, lower DBP and 
wider PP (p < 0.001). The very old patients had the widest PP and the highest preva-
lence (23.6%) of primary outcome. The HR for primary outcomes showed a 
J-shaped relationship among each age group with on-treatment SBP and DBP. At 
the HR the nadir of SBP increased with increasing age, and then highest (140 mmHg) 
was in the very old patients. At the HR the nadir of DBP was lower for the very old 
(70  mmHg). Results were independent of treatment strategy. Authors concluded 
that the optimal SBP target in very old hypertensive patients with CAD should be 
somewhat higher and the DPB somewhat lower than in other groups of patients with 
lower age [53].

In another study data of a population-based prospective study with 9-year fol-
low-up (mean 3.5 years) of 601 people (mean BP was 149/82 mmHg) aged 85 years 
and above were analysed. During follow-up 479 participants (86.6%) died. 
Multivariate analysis showed that death was linked—among other medical condi-
tions—to SBP less than 140  mmHg (HR, 1.35). There was a tendency towards 
lower mortality among persons with a SBP of 160 mmHg or greater. Quite unex-
pectedly the DBP, the history of hypertension and the use of antihypertensive drugs 
were not related to mortality. Interestingly, the effect of lower SBP on mortality was 
particularly evident in patients without cancer, dementia or a history of stroke [54]. 
However, it is important to note that the low SBP may have been partially related to 
poor general health and poor vitality, but the very old age represents a special group 
of people which needs a special attention, particularly when antihypertensive treat-
ment is given to them. The use of BP-lowering medications needs to be further 
evaluated in this group.

The Sleep Heart Health Study showed that sleep disorders are also contributing 
to the increased BP in patients with ISH [55].
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It is interesting to note that in the very-very elderly persons (90+) development 
of hypertension in late-life—if its onset occurs after age 80  years—may protect 
against dementia. In The 90+ Study data of more than 500 participants of survivors 
from the Leisure World Cohort Study (mean age of 93 years) have been analysed. 
Those who developed hypertension between the ages of 80 and 90 years had a 42% 
lower risk for dementia than those without hypertension, and those who developed 
it after age 90 had a 63% lower risk [56].

36.6.5	 �Treatment

When DBP is decreased too much by antihypertensive therapy, increases in CV 
events have also been seen. Therefore, the high SBP should be lowered with 
caution not to lower the already low diastolic pressure much further [57]. The 
primary goal of antihypertensive treatment in the elderly with ISH is to delay 
and reduce the extent of damage to the heart, the cerebrovascular system and 
the kidneys and to reduce cardiovascular morbidity and mortality. The neces-
sity to carefully balance the benefits and risks of antihypertensive therapy in 
the elderly indicates that patients with suspected ISH should undergo careful 
BP measurements on at least three different occasions before the diagnosis is 
established and an orthostatic reaction should be evaluated mainly when 
α-blockers are used. α-Blockers are frequently given to elderly patients with 
benign prostatic hypertrophy. It is well known that the antihypertensive agents 
might be causing some harm with respect to falls. One needs to be cautious in 
the elderly because the majority of older hypertensive patients have other med-
ical conditions, which need to be treated medically, are at higher risk for ortho-
static hypotension and are at risk for drug interaction and decreased drug 
metabolism [58, 59].

The data of a subgroup analysis of the Felodipine Event Reduction (FEVER) 
study provided evidence that reducing BP to below 140  mmHg is beneficial in 
uncomplicated hypertensive patients with Grade I hypertension [60] and also in 
elderly hypertensives [61].

According to the recent European guidelines, the target BP is to lower BP below 
140/90 mmHg, but in patients with diabetes or CKD, the BP target is <130/85 or 
<130/80 mmHg, respectively [1].

36.6.5.1	 �Non-pharmacological Treatment
Lifestyle interventions are a crucial element of successful treatment, including a diet 
low in sodium (salt) and rich in whole grains, fruits and vegetables. Clinical trials 
have also documented the beneficial effects of weight loss, increased physical activ-
ity and limiting alcohol consumption. Losing excess weight, getting regular exercise 
(which can also help lose weight), stop smoking, reducing sodium (salt) intake to 
below 6 g/day and consuming fruits, vegetables and whole grains all together may 
decrease SBP by 8–14 mmHg [1].
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36.6.5.2	 �Pharmacotherapy
If non-pharmacological procedures fail, drug therapy should be considered, espe-
cially in elderly patients with a SBP ˃160 mmHg, since their risk of complications 
is markedly higher. The target for hypertensive elderly patients is based on some 
data from randomised controlled trials.

Several drug classes, with different mechanisms of action and different side 
effects, are available for the treatment of hypertension. Five classes of antihyperten-
sive drugs, including DIU, BBL, CCB, ACEI and ARB, are suitable for the initia-
tion and maintenance of antihypertensive therapy (1). In the guidelines, the 
α-blockers or the BBLs are less frequently suggested as first-line therapy. In addi-
tion, if needed for special reasons, other classes of drugs—α-2 adrenoceptor ago-
nists, imidazoline I-1 receptor agonists, direct vasodilators and drugs with combined 
pharmacodynamics actions—can also be used.

Early clinical trials involving elderly subjects proved that treatment of hyperten-
sion in this group of patients protects against the complications of hypertension. In 
these trials no analysis was made for the subgroup of patients with ISH, but accord-
ing to epidemiological data, a major percentage of the elderly hypertensive patients 
in these studies had ISH.

A meta-analysis of outcome trials in patients with ISH showed that active treat-
ment reduced total mortality by 13%, CV mortality by 18%, all CV complications 
by 26%, stroke by 30% and coronary events by 23%. With drug therapy a better 
protection against stroke than against acute coronary syndromes was shown. The 
absolute benefit was best in patients older than 70 years and in those with a history 
of CV complications or a high PP [23].

According to recent hypertension guidelines and recommendations for clinical 
practice, pharmacological treatment should be strongly considered in patients with 
a SBP between 140 and 160 mmHg with concomitant CV risk factors as diabetes, 
angina pectoris and left ventricular hypertrophy. The drug regimen should be sim-
ple, starting with a low dose of a single drug that is titrated slowly [1, 62, 63]. 
Furthermore, it is important to note that the pharmacokinetic and pharmacodynamic 
properties change in the elderly [64].

36.6.5.3	 �Hypertension in the Very Elderly (80+)
Several trials and meta-analyses investigated the effects of antihypertensive man-
agement of octogenarians.

The use of antihypertensive drugs (indapamide SR, with perindopril added when 
needed) to reduce high blood pressure in patients aged 80  years or more in the 
Hypertension in the Very Elderly Trial (HYVET) was associated with a significant 
and marked reduction in the incidence of stroke and heart failure. It also found that 
treatment reduces all-cause mortality, which means that CV protection translates 
into increased life expectancy [65]. The 1-year open-label active treatment exten-
sion of patients in HYVET compared data of octogenarian people previously treated 
with active drug and those previously on placebo, but continued on active treatment 
(indapamide SR + perindopril 2–4 mg when needed) with the same target BP of 
<150/80 mmHg. There were no significant differences for stroke or CV events, but 
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significant differences were found for total mortality (HR, 0.48; p = 0.02) and CV 
mortality (HR, 0.87; p = 0.03). Authors concluded that very elderly patients with 
hypertension may gain immediate benefit from treatment, and sustained differences 
in reductions of total mortality and CV mortality reinforce the benefits and support 
the need for early and long-term treatment [66]. Although the results should be 
interpreted with caution, the rate of CV events decreased during the additional years 
of treatment (despite the increased age); the benefits may start soon after the initia-
tion of treatment and increase as it continues. This also means that great attention 
should be given to maintain BP control in octogenarians [67].

Target BP has been discussed frequently since the publication of the Systolic 
Blood Pressure Intervention Trial (SPRINT) in which authors used unattended BP 
measurement. It was showing a significant (34%) decrease in the primary endpoint 
(MI, non-MI-acute coronary syndrome, stroke, acute decompensated HF and CV 
death) and all-cause mortality (33%) in the group of high CV risk patients with 
lower SBP in the more intensive arm (SBP ~ 120 mmHg) than in the group in the 
standard treatment arm (SBP ~ 137 mmHg) [68, 69].

Several data of the SPRINT have not been explained. Among them the lack of sig-
nificant effect in the more intensive arm on some secondary endpoints (stroke, MI, 
acute coronary syndrome, in patients with CKD, in those aged <75 years, in females, 
in blacks and in those with previous CVD) should be outlined. Furthermore, no sig-
nificant effect of the more intensive treatment was found in patients with baseline SBP 
˃ 132 mmHg. Most probably the lower incidence of HF drove the primary endpoint to 
significance range. In addition, more DIU or ACEI or ARB were used in the more 
intensive arm (all of these types of drugs are indicated also to treat HF), so it is ques-
tionable if the lower SBP or the specific pharmacodynamics actions of more antihy-
pertensive drugs can be responsible for the better results [70]. Data from the SPRINT 
also show that in patients without CKD at baseline, the renal outcome of ≥30% 
decline in eGFR to a value <60 mL/min per 1.73 m2 occurred more frequently in the 
intensive arm compared to the standard arm. Furthermore, serious adverse events or 
emergency department visits related to acute kidney injury or acute renal failure were 
more common in the intensive arm (4.4% vs. 2.6%; HR, 1.71). This is most important 
when treating patients with CKD [71].

A recent publication investigated the achieved BP levels in older treated hyper-
tensive patients and analysed the data of a representative sample (2551 respondents 
from a random and representative sample of the adult—20–79 years—population) 
from the Ontario Survey on the Prevalence and Control of Hypertension study. 
Results showed that intensive BP control (BP <130 or <120 mmHg) was achieved 
in many patients. Most of these patients (about 93% of them) have ISH [72]. In this 
study also unattended BP measurement was used, and this probably contributed to 
the lower SBP by excluding the white coat effect; therefore, it does not correspond 
to the usual office BP measurement in most clinical trials and surveys. To solve 
these problems, ambulatory BP monitoring may be helpful [73].

A meta-analysis, based on 6701 patients 80 years and older, of whom 3617 have 
been treated with at least one antihypertensive drug, showed that a reduction in 
mortality was achieved in trials with the least BP reductions and the lowest intensity 
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of therapy. Antihypertensive therapy significantly reduced (p < 0.001) the risk of 
stroke (by 35%), CV events (by 27%) and HF (by 50%) [74].

Meta-regression analysis using data of 123 studies with 613,815 participants 
showed relative risk reductions proportional to the magnitude of the BP reductions 
achieved. Every 10 mmHg reduction in SBP significantly reduced the risk of major 
CVD events (relative risk (RR), 0.80), CHD (RR, 0.83), stroke (RR, 0.73) and HF 
(RR, 0.72) with a significant, 13% reduction in all-cause mortality (RR, 087). The 
effect of decreasing SBP on renal failure was not significant (HR, 0.95) [75].

In a more recent meta-analysis, data of 55,163 patients included in 17 trials were 
analysed. Authors assessed the optimal SBP target to balance improved outcomes 
with potential adverse effects. The target SBP of <120 mmHg was associated with 
a significant decrease in the risk of stroke and MI compared with SBP <140 mmHg, 
or <150, and <160 mmHg. There were no significant differences in the risk of death, 
CVD or HF between the data from these four groups. However, the target of 
<120 mmHg was associated with a significantly increased risk of adverse effects 
compared with <140 or <150 mmHg. For the estimation of the optimal SBP, a target 
<130 mmHg was found balancing efficacy and safety [76].

36.6.5.4	 �Selection of Drugs
The selection of the antihypertensive agent should be based on a careful assessment 
of pathophysiological and clinical parameters in each individual geriatric patient 
[77]. When deciding on drug therapy, it is important to note that pathophysiological 
changes associated with ageing can affect both the pharmacokinetics and pharma-
codynamics of many cardiovascular drugs [64]. Decrease in renal function, reduc-
tion of hepatic blood flow, increased body fat and reduced muscle mass in elderly 
people can affect distribution, metabolism and elimination of cardiovascular drugs. 
In addition, changes in end-organ responsiveness (e.g. adrenergic and angiotensin-
ergic receptors) and change in baroreflex sensitivity can also have influence on 
effects of drugs. As a consequence, orthostatic hypotension may be exaggerated 
with the use of vasodilators, α-1 adrenoceptor blockers and thiazides (by causing 
hyponatremia). Slowing of sinus node activity and decreasing atrioventricular con-
duction can lead to increased sensitivity to the bradycardic effects of BBLs and 
non-dihydropyridine CCBs such as verapamil or diltiazem. In addition, comorbidi-
ties and the drugs against them may increase the risk of side effects of drugs.

It has been long known that non-adherence to prescription drugs among the 
elderly is a major concern [64, 78].

Numerous RCTs have shown that reducing elevated systolic BP ≥160 mmHg in 
older adults decreases CV events. Early BP trials compared active treatment—typi-
cally with a DIU alone or in combination with a BBL or other drugs—with placebo, 
whereas trials conducted in the past decade have compared two or more different 
antihypertensive regimens. In hypertensive adults of any age, however, the initial 
agent chosen appears less important than the extent of BP reduction achieved, as 
demonstrated by the Blood Pressure Lowering Treatment Trialists’ Collaboration 
(BPLTTC) [79]. The European guidelines [1] do not stress the importance of a spe-
cific drug class, but it puts more emphasis on the importance of BP reduction.

Several drugs were used in trials involving patients with ISH.
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Diuretics and Beta-Blockers
DIUs have been used for several decades and have been shown to be effective in 
lowering BP in the elderly population. However, one has to be cautious in using 
diuretics in the elderly hypertensives because they often do not take enough fluid 
during the day and get easily dehydrated and develop prerenal insufficiency. Because 
of a potential hypovolemic status, they are more prone for orthostatic hypotension. 
Long-term diuretic treatment may have also several metabolic disturbances. It is 
well known that thiazide DIUs increase serum level of uric acid and, consequently, 
older hypertensives can become at risk to develop gout. Elderly hypertensives are 
often prediabetic or have type 2 diabetes, and the intake of thiazide DIU can increase 
insulin resistance. Aldosterone antagonists are used in resistant hypertension and 
may cause hyperkalaemia. In the elderly patients, serum electrolyte (potassium, 
sodium) levels and renal function need to be monitored carefully because elderly 
hypertensive patients have often renal insufficiency [80, 81].

For decades several guidelines (WHO-ISH, JNC, ESH/ESC, CHEP, etc.) recom-
mended a thiazide or a thiazide-type DIU for treatment of hypertension in the 
elderly and also to enhance the efficiency of other antihypertensive drugs.

Thiazides have been shown to be more protective than β-blockers [82–84].
Hydrochlorothiazide, chlorthalidone and recently indapamide are suggested for 

antihypertensive drug therapy in the elderly. These agents are generally well toler-
ated, especially in the lower doses currently recommended. Several RCTs have 
demonstrated reductions in the incidence of CV events among elderly patients with 
ISH taking these drugs.

In European Working Party on High Blood Pressure in the Elderly (EWPHE) 
trial, 840 patients aged ≥60 years with BP 160/90–239/119 mmHg were randomly 
assigned to receive hydrochlorothiazide (25–50  mg) plus the potassium-sparing 
DIU triamterene (50–100 mg) or to placebo. An α-2 adrenoceptor agonist, methyl-
dopa 500 mg, was added if BP remained elevated. Active treatment lowered BP by 
19/5 mmHg when compared with placebo. Over 7 years of follow-up, active treat-
ment was associated with reduction in CV events of 29 per 1000 person-years and a 
38% reduction in the number of CV deaths [85].

In the Systolic Hypertension in the Elderly Program (SHEP) trial, 4736 patients 
aged ≥60 years with BP 160–219/<90 mmHg were randomly assigned to receive 
chlorthalidone 12.5 mg or placebo. The dose was doubled and atenolol (25–50 mg) 
was added sequentially if the BP goal was not attained. After 4.5 years the results 
showed that there was a significantly lower rate of CV events (stroke, MI and HF) 
in the chlorthalidone-based group than in the placebo group, but effects of drugs on 
mortality were not significant. After completion of the study, the patients were then 
given the active chlorthalidone therapy, and the follow-up was 22 years. Then the 
therapy was associated with a longer life expectancy [30, 83, 86].

In the HYVET study (see also above), octogenarian patients were randomised to 
either a DIU (indapamide 2.5 mg) or placebo. The target BP was <150/80 mmHg. 
If needed, either an ACEI (perindopril 2 or 4 mg) or placebo was added. At ~2 years 
follow-up, the BP in the active treatment group was 15.0/6.1 mmHg lower than in 
the placebo group. In an intention-to-treat analysis, active treatment was associated 
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with a 30% reduction in the rate of fatal or nonfatal stroke, a 39% reduction in the 
rate of death from stroke, a 21% reduction in the rate of death from any cause, a 
23% reduction in the rate of death from CV causes and a 64% reduction in the rate 
of CHF. Interestingly, fewer serious adverse events were reported in the active treat-
ment group (358 vs. 448) than in the placebo group (p = 0.001). An important find-
ing was also that this combination therapy of a DIU and ACEI did not reduce the 
risk of dementia and cognitive function [65, 87, 88]. There are some limitations of 
the HYVET study as patients with stage I hypertension were not included. Patients 
were in relatively good physical and mental condition and with a low rate of previ-
ous cardiovascular disease. It is not known whether the beneficial effects persist for 
a longer than 1.8 years period.

Mineralocorticoid receptor antagonist (MRA), spironolactone, can be used in 
resistant hypertension. In this case serum potassium and renal function need to be 
monitored, because elderly hypertensive patients have often renal insufficiency and 
the use of this drug can cause hyperkalaemia.

In the MRC elderly trial, 4396 hypertensive patients (age, 65–74  years) were 
randomly assigned to receive a DIU or the BBL atenolol for a follow-up period of 
5.8 years. Despite of similar BP reduction in the two active arms, only the DIU 
reduced significantly the incidence of stroke, coronary events and total CV events. 
Furthermore, tolerability of the BBL was poor, as dropout rate was of 63% [89].

Despite BBLs being used for the treatment of hypertension in the elderly for 
decades, the benefits have been less convincing than diuretics. A meta-analysis of ten 
studies involving 16,154 hypertensive patients (age ≥  60 years), comparing BBLs 
with DIUs in hypertensive patients, showed that DIUs were superior to BBLs in pre-
venting strokes, CHD, CV death and all-cause mortality. Thus, the use of BBLs for 
antihypertensive therapy in the elderly is not favoured [84, 89, 90]. Inferiority of 
BBLs compared to other antihypertensives may stem from the lesser reduction of 
central BP [91]. BBLs were inferior to other drugs also for the prevention of major 
CVD events, stroke and renal failure in a meta-regression analysis of data of 123 stud-
ies with 613,815 participants [75].

However, there are still several comorbid conditions in which BBLs need to be 
considered for the management of hypertensive elderly patients, such as CAD, post-
MI, HF, senile tremor and certain types of arrhythmias.

Calcium Channel Blockers
CCBs have been shown to be well tolerated and very effective in ISH. Several large 
RCTs have demonstrated the efficiency and safety of CCBs in older patients with 
hypertension, usually with increased arterial stiffness and reduced vascular compli-
ance, because of their beneficial effects on central BP [91]. Most frequently used ones 
are the dihydropyridines. Their adverse effects relate to vasodilation (e.g. ankle 
oedema, headache and, rarely, postural hypotension). There are several indications to 
choose a CCB in cases of hypertension with concomitant diseases: CAD, angina pec-
toris and chronic obstructive pulmonary diseases. Non-dihydropyridines (e.g. vera-
pamil and diltiazem) are used to a lesser extent as antihypertensive agents, but mainly 
in cases of supraventricular arrhythmias, or if dihydropyridines are not tolerated.
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In the Shanghai Trial of Nifedipine in the Elderly (STONE) study, major reduc-
tions in CV endpoints with nifedipine were shown [92].

In the Nordic diltiazem (NORDIL) prospective, randomised, open, blinded end-
point study, 10,881 patients (aged 50–74 years) were enrolled to show the effects of 
antihypertensive therapy by diltiazem or BBL and DIU on CV morbidity or mortal-
ity (the combined primary endpoint was fatal and nonfatal stroke, MI and other CV 
deaths). Both SBP and DBP were lowered effectively in the diltiazem-treated 
patients and also in the DIU and BBL groups by 20.3/18.7 vs. 23.3/18.7 mmHg, 
respectively (p < 0.001). No significant difference was found between the two arms 
of the study in the primary endpoint. However, in spite of the higher achieved BP in 
the diltiazem group, fatal and nonfatal stroke occurred only in 159 patients, but 
196 in the DIU and BBL (6.4 vs. 7.9 events per 1000 patient-years; p = 0.04) [93]. 
Systolic Hypertension in Europe (Syst-Eur) double-blind trial included 4695 patients 
(age ≥ 60 years) with ISH (BP, 160–219/<95 mmHg). Patients were randomly given 
the dihydropyridine CCB, nitrendipine (with optional add-on enalapril and/or 
hydrochlorothiazide) or placebo. Data from the active treatment arm were com-
pared with those in placebo. Nitrendipine caused a significant and striking reduction 
in the incidence of stroke by 42%, and there was also a clear tendency towards a 
reduction of MI [94, 95]. Nitrendipine therapy was also associated with reductions 
in the rates of cognitive disorders as well [96].

In the Systolic Hypertension in China (Syst-China) study, Chinese patients 
with ISH were treated with nitrendipine or placebo. Active treatment with nitren-
dipine significantly reduced total stroke by 38%, stroke mortality by 58%, all-
cause mortality by 39%, CV mortality by 39% and fatal and nonfatal CV events 
by 37% [97].

The International Nifedipine GITS Study: Intervention as a Goal in Hypertension 
Treatment (INSIGHT) study included more than 11,000 hypertensive patients with 
coronary artery disease older than 66 years were involved. Patients had additional 
risk factor, such as diabetes mellitus and hypercholesterolemia. Treatment consisted 
of nifedipine GITS or hydrochlorothiazide. Although INSIGHT was not a selective 
ISH trial, it contained a subgroup of patients with ISH which was analysed sepa-
rately. These patients were more responsive to treatment with nifedipine GITS than 
those with non-ISH hypertension. It is interesting to note that patients with ISH 
whose DBP significantly decreased under treatment were smokers with evidence of 
atherosclerosis [98].

As compared to other types of antihypertensive agents, the beneficial effects of 
amlodipine were emphasised in older patients [99].

In the International Verapamil SR/Trandolapril Study (INVEST), two manage-
ment strategies were compared. Patients were randomised either to the BBL ateno-
lol or to the CCB verapamil. Those randomised to the BBL strategy had lower 
on-treatment heart rates, but there was no difference in death, MI or stroke com-
pared with a verapamil strategy [100].

In a meta-regression analysis of data of 123 studies with 613,815 participants, 
CCBs were superior to other drugs for the prevention of stroke. For the prevention 
of HF, CCBs were inferior and DIUs were superior to other drug classes [75].
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Angiotensin-Converting Enzyme Inhibitors
ACEIs systemically and locally block the conversion of angiotensin I to angiotensin 
II. Angiotensin II levels are lower with ageing; therefore, theoretically, ACEI should 
not be as effective as other therapies, but multiple studies (involving mainly HF 
patients or those with high CV risk) have shown the contrary. There are extensive 
evidence-based medical data from large trials (SOLVD, SAVE, HOPE, EUROPA, 
PROGRESS) that ACEIs are beneficial in hypertensive patients frequently having 
complications (HF, MI, diabetic nephropathy and atherosclerotic disease) being 
more frequent with advanced age [101–104]. Therefore, ACEI should be considered 
as the antihypertensive therapy of choice in elderly patients with hypertension with 
complications (HF, post-MI, diabetes mellitus or CKD). The main adverse effects of 
ACEI include dry cough, hypotension and, rarely, angioedema or rash. Renal failure 
and hyperkalaemia can develop mostly if nonsteroidal anti-inflammatory drugs 
(NSAIDS) or mineralocorticoid receptor antagonists (spironolactone, eplerenone) 
are also used; therefore, regular monitoring of renal function and electrolytes is 
mandatory.

Although several randomised clinical trials have demonstrated the beneficial effects 
of ACEIs either alone or mostly in combinations in elderly hypertensive patients, no 
specific RCT was aimed at the effects of ACEIs in patients with ISH [63].

Angiotensin AT-1 Receptor Antagonists
In hypertensive elderly patients preferably in those with diabetes mellitus, ARBs are 
considered as one of the first-line drugs and also as an alternative to ACEIs in 
patients with hypertension and HF, who cannot tolerate ACEIs. Although many 
clinical trials have documented the benefit of ARBs in treating hypertension, experi-
ence specific to the elderly is more limited than with DIU or BBL or ACEIs, but 
there are specific studies aiming at the effects of ARBs in ISH.

Beneficial antihypertensive effect and less side effects of losartan were found in 
comparison with atenolol in patients with ISH [105].

In the Losartan Intervention For Endpoint Reduction (LIFE) trial, losartan was 
more effective than atenolol in reducing the incidence of CV events, particularly 
stroke, among 9193 patients aged 55–80 years who had hypertension and left ven-
tricular hypertrophy diagnosed by electrocardiography [106]. In a sub-study of the 
LIFE trial involving patients with ISH and older than 67 years, the effect of the 
losartan-based therapy was more effective for the prevention of the primary end-
point (CV death, nonfatal stroke and nonfatal MI) than in those patients who were 
younger than 67  years [107]. This difference was not explained by a more pro-
nounced effect of losartan-based treatment on any of the CV risk factors demon-
strated to have independent prognostic importance [108].

In a sub-study of the Study on Cognition and Prognosis in the Elderly (SCOPE), 
the stroke preventive effect of candesartan was also shown [109]. In another sub-
study of SCOPE involving patients with ISH, candesartan was able also to mitigate 
the deterioration of cognitive function [110, 111].

In the prospective, randomised, open-label, blinded endpoint study, Valsartan in 
Elderly Isolated Systolic Hypertension Study was investigating if strict BP control 
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(SBP <140  mmHg) is superior to moderate BP control (SBP between 140 and 
150 mmHg) in patients aged more than 70 years with ISH. There was no significant 
difference in the composite CV endpoint (sudden death, fatal or nonfatal stroke, fatal 
or nonfatal MI, death because of HF, other CV death, unplanned hospitalisation for 
CVD and renal dysfunction) between the two groups (intensive vs. moderate) treated 
by valsartan (40–160 mg daily) with addition of CCB or DIU if needed [112].

Alpha-1 Adrenoceptor Antagonists
α-Adrenergic blocking agents are used for relieving urinary symptoms related to 
prostate hypertrophy, a disease frequent in older persons. It is important to note that 
α-blockers can cause postural (orthostatic) hypotension, which is also frequent in 
older patients especially if those are treated by thiazide-type diuretics. RCTs inves-
tigating the effect of these drugs in patients with ISH are missing.

‘Centrally Acting’ Antihypertensives
The older drugs (e.g. clonidine, guanfacine) are rarely used in some countries, 
because many patients experience troublesome sedation or dry mouth or some psy-
chiatric complications (e.g. reserpine). The newer drugs, the imidazoline I-1 receptor 
agonists (rilmenidine, moxonidine), are more frequently used in some countries, 
mostly in combinations. No results of RCT are available involving patients with ISH.

Combinations
The most elderly patients with ISH require dual or even triple antihypertensive ther-
apy to control SBP.  The preferential double combinations are ACEI  +  DIU, 
ARB + DIU, ACEI + CCB, ACEI + CCB + DIU or ARB + CCB + DIU [1].

According to the Avoiding Cardiovascular Events Through Combination Therapy 
in Patients Living with Systolic Hypertension (ACCOMPLISH) trial, the combina-
tion of ACEI + CCB (benazepril + amlodipine) was superior to that of ACEI + DIU 
(benazepril + thiazide) in reducing CV events and death among 11,500 high-risk 
patients with hypertension (mean age was 68.4 years). 66% of patients were 65 years 
or older and 41% were 75 years or older. For the primary outcome (the composite 
of death from CV causes, nonfatal MI, nonfatal stroke, hospitalisation for angina, 
resuscitation after sudden cardiac arrest and coronary revascularization), there was 
a RR reduction of 19.6% (HR, 0.80; p < 0.001). For the secondary endpoint of death 
from CV causes plus nonfatal MI and nonfatal stroke, there was a RR reduction of 
21.2% (HR, 0.79; p = 0.002), while for CV events, a RR reduction of 17.4% (HR, 
0.83; p = 0.002) was found [113].

Physician inertia is still a major problem in treatment of elderly hypertensive 
patients including those with ISH, as they are reluctant to add more drugs or use of 
fix combinations (single-pill combination, SPC) if BP is not at target. The advan-
tage of using SPCs is that the number of pills can be reduced and as the components 
in the SPC have synergism in their antihypertensive and other beneficial effects; 
therefore, a lower dose can be used with fewer side effects. This leads to a better 
therapeutic adherence/persistence and consequently to greater patient satisfaction 
and better BP control.
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�Conclusions
For the drug treatment of patients with ISH, a dihydropyridine CCBs in combi-
nation with DIUs, or ACEIs or ARBs could be favoured. BBLs seem to be less 
effective for prevention of CV events and disease protection in comparison with 
other antihypertensive drug classes; therefore, they are indicated only for specific 
concomitant diseases (e.g. CAD, HF). It is important to reduce doctors’ thera-
peutic inertia and to increase patients’ adherence/persistence for achieving better 
blood pressure control in the elderly patients with ISH.
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37Treatment of Resistant Hypertension

Gino Seravalle, Guido Grassi, and Giuseppe Mancia

37.1	 �Introduction

Hypertension cannot always be controlled by the classical antihypertensive treat-
ment strategies whose therapeutic failure leads to a condition known as resistant 
hypertension [1]. This chapter will discuss the prevalence within a hypertensive 
state of individuals in whom blood pressure (BP) remains uncontrolled despite 
appropriate treatment. It will then briefly describe the fundamental diagnostic steps 
to detect resistant hypertension as well as its usual clinical characteristics and phe-
notypes. It will finally deal more extensively with the therapeutic options that 
might offer the best chance to effectively lower the elevated blood pressure (BP) 
values in a resistant hypertensive state, hopefully leading the patient’s status to BP 
control (<140/90 mmHg) [1, 2]. Although invasive procedures such as renal dener-
vation and carotid baroreflex stimulation can achieve this goal in a number of 
patients [3, 4], there is no question that the first treatment approach to consider is 
the (1) removal of lifestyle factors that may oppose the BP-lowering effect of the 
administered drugs, such as a high intake of salt, abuse of alcohol, obesity [5, 6], 
or co-treatments that have direct or indirect pressor effects [7] and (2) modification 
of the existing treatment regimen by an increase of the dose or the extension of the 
medicaments already prescribed.
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37.2	 �Resistant Hypertension: Definition and Prevalence

Resistant hypertension is defined as a BP controlled with four or more medications 
or as a BP above goal despite adherence to at least three different optimally dosed 
antihypertensives, one of which is a diuretic [8, 9]. According to data from the 
National Health and Nutrition Examination Survey, approximately 9% of US adult 
patients with hypertension meet criteria for resistant hypertension [10]. The per-
centage is similar to that observed in data obtained in European countries, while an 
increased prevalence is observed in the Eastern Europe [11]. The AHA definition of 
resistant hypertension does not make an attempt to distinguish between resistant 
and pseudo-resistant hypertension [12]. Individuals, with elevated office BPs due to 
white coat hypertension, improper BP measurement, or medication nonadherence, 
do not have true resistant hypertension but have the so-called pseudo-resistant 
hypertension. Pseudo-resistant hypertension would need to be excluded by an estab-
lished method of establishing adequate medication adherence, standardized BP 
measurement, and 24-h ambulatory BP monitoring.

Hypertension registries are attractive data sets for estimating prevalence, because 
they are a more representative sample of the larger hypertensive population. Two are 
the most important study cohorts to date to estimate the prevalence of resistant hyper-
tension. The first is a cross-sectional study on >29,000 hypertensive adults in a pri-
mary care research database from 2002 to 2005 [13]. Using a definition of 
BP > 140/90 mmHg (or >130/80 mmHg in kidney disease or diabetes), the preva-
lence of resistant hypertension was 9.1% of the total hypertensive population and 
12.4% of the treated hypertensive population. The second study attempted to distin-
guish between resistant and pseudo-resistant hypertension due to white coat hyper-
tension in the Spanish ambulatory BP monitoring registry in 2009 [14]. The 
prevalence of true resistant hypertension was estimated at 7.6% in this treated hyper-
tensive population. As regards the population studies [10], the prevalence of resistant 
hypertension is underestimated due to the high percentage of subjects uncontrolled 
but with less than two antihypertensive drugs. Optimizing the medical regimen 
(ensuring maximum drug dosing, different drug classes, and diuretic use) in patients 
on three medications may lead to more BP control, making suboptimal antihyperten-
sive therapy a potential overestimation of resistant hypertension prevalence. Egan 
et al. [15] subdivided the NHANES data set into time periods in order to estimate 
trends of resistant hypertension prevalence. They observed a rise in resistant hyper-
tension despite an improvement in overall BP control rates [16] due to the increased 
prescription of antihypertensive medications. With a more optimized medication 
regimen, the 2005–2008 prevalence of 11.8% of all hypertensive patients likely rep-
resents a truer estimate of the prevalence of AHA-defined resistant hypertension.

37.3	 �Pseudo-Resistance and Resistant Hypertension: How 
to Identify

“Pseudo-resistance” refers to lack of BP control with appropriate treatment in a 
patient who does not have resistant hypertension. In this case an accurate evaluation 
of treatment adherence and reliable BP measurement (see below) is essential to 
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reject pseudo-resistance. As regard BP measurement, several common mistakes 
often produce falsely elevated BP readings. Such mistakes include not allowing the 
patients to sit quietly for adequate time, taking single instead of triple readings, 
using cuffs not adequate to the arms (usually too small), recent smoking, and not 
supporting the arm at heart level [8, 9]. Taking into account subjects with advanced 
age and with an atherosclerotic process, they could be accompanied by a BP over-
estimation during measurements due to the difficulties of full compression of arter-
ies [8]. The white coat effect, defined as an elevation of BP during office 
measurements than at home or ambulatory BP readings [1, 12], is another cause of 
pseudo-resistance. Usually patients with apparent resistant hypertension due to the 
white coat effect have less target organ damage (TOD) compared with truly resistant 
hypertensive patients [14, 17]. A complete clinical history might look for length, 
severity, and development of the hypertension, as well as actual treatment and 
adherence degree and response to previous pharmacological drugs, including side 
effects. It has been reported that up to 40% of newly diagnosed hypertensive patients 
will discontinue their antihypertensive medications during the first year, with only 
40% of the remaining patients continuing their therapy over the next decade [18]. 
There was an inverse relationship between the likelihood of early treatment discon-
tinuation and the frequency of the daily dosing regimen [19]. Several factors are 
able to improve medical adherence: (1) selection of agents with low side effects, (2) 
avoid complicated dosing schedules, (3) use of fixed-dose agents, (4) use of pill 
boxes or electronic systems with alarm or persons dedicated to assistance (nurses or 
familiar ones) to help patients with memory deficit, and (5) improve communication 
between the patient and physician and education of the patient regarding the regi-
men schedule, the achieving BP goals, the side effects of drugs, and the cost of this 
pathophysiological condition. One of the causes of pseudo-resistance is suboptimal 
doses of antihypertensive agents or inappropriate combinations of drugs. It has been 
shown that either increasing the dose or initiating or switching to the proper diuretic 
was the most common change that allowed achieving BP goal among patient classi-
fied as resistant hypertensives [20]. Another cause is the clinical inertia, defined as 
the conscious decision by a clinician to not adequately treat a condition despite 
knowing that it is present [21]. Despite efforts to translate evidence-based guide-
lines into practical recommendations, many physicians are reluctant to adhere to 
these guidelines due to lack of training and experience in the proper use of antihy-
pertensive agents or an overestimation of care already provided [22].

Algorithms to identify pseudo-resistance have been proposed [8, 9] and consist 
in a two-step approach: (a) confirmation of true resistance and (b) identification of 
factors that contribute to treatment resistance (Table 37.1). The first step to rule out 
resistant hypertension is confirmation of the diagnosis not only with reliable office 
BP readings but also the determination of BP levels at home or with ambulatory 
measurements. Self-measured BP at home is much less affected by the so-called 
white coat effect and is more reproducible than clinic BP [23]. The use of ambula-
tory BP monitoring allows us to gain a large amount of important information on 
the behavior of the BP profile over the 24-h period, during the daytime, nighttime, 
or morning hours [24]. This technique allows us to gain also information on 24-h 
BP variability and its relationships with end-organ damage and cardiovascular 
events [25–27].

37  Treatment of Resistant Hypertension



642

37.4	 �Rationalization of the Three-Drug Treatment Regimen

Hypertension guidelines emphasize the need for combination treatment to be based 
on drugs with different and complementary mechanisms of the BP-lowering effect. 
They recommend a three-drug combination to make use of a diuretic, a blocker of 
the renin-angiotensin system (RAS), be it an ACE inhibitor or an angiotensin 
receptor antagonist, and a calcium channel blocker because this fulfills the above 
requirement and has been shown to markedly reduce BP (up to 30–40  mmHg 
reduction of systolic values) in hypertensive patients with a variety of clinical char-
acteristics [28–30]. In resistant hypertensive patients under treatment with three 
drugs, a therapeutic option is thus to ensure that a diuretic/RAS blocker/calcium 
channel blocker combination is used, provided that (1) no contra indication to one 
or another of these drugs exists or (2) the clinical condition of the patient requires 
other drugs to be part of the combination, such as a beta-blocker in patients with a 
history of coronary disease or heart failure. Of special importance is the inclusion 
of a diuretic in the three-drug treatment regimen because diuretics enhance the 
antihypertensive effect of most antihypertensive agents and difficult-to-treat hyper-
tensions may rarely not be associated with sodium and fluid retention as well as 
hypervolemia [31].

Table 37.1  Factors contributing to resistant hypertension

Drug induced Nonsteroidal anti-inflammatory drugs
Sympathomimetics
Illicit drugs (cocaine, amphetamines, and others)
Oral contraceptive hormones
Adrenal steroids
Erythropoietin
Cyclosporine, tacrolimus
Licorice
Dietary herbal (ginseng)

Excessive alcohol intake
Volume overload Excess sodium intake

Volume retention from kidney disease
Inadequate diuretic therapy

Associated conditions Obesity
Diabetes mellitus
Older age

Identifiable causes Renal parenchymal disease
Renovascular disease
Primary aldosteronism
Obstructive sleep apnea
Pheochromocytoma
Cushing
Thyroid diseases
Aortic coarctation
Intracranial tumors
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37.5	 �Increasing the Dose of the Prescribed Three Drugs

Drug underdosing is frequent in treated hypertensive patients, its high prevalence 
being one of the factors responsible for the low rate of BP control exhibited by the 
hypertensive population worldwide [32]. Careful checking of the drug doses pre-
scribed (or assumed) is thus mandatory when dealing with a BP that remains uncon-
trolled under a three-drug therapeutic regimen, an adequate dose of each of them 
being indeed a prerequisite for patients’ inclusion in the resistant hypertension cat-
egory. Once this is established, however, a further increase in the dose of the pre-
scribed drugs does not appear to be particularly helpful because (1) the shape of the 
dose/effect relationship can make the additional BP-lowering effect far from sub-
stantial and (2) there may be with a number of drug classes (e.g., calcium channel 
blockers) a more prominent increase in the drug-related side effects [33]. It should 
nevertheless be emphasized that this may not be entirely true for diuretics because, 
as shown in Fig. 37.1, increasing the dose of hydrochlorothiazide beyond the usual 
25 mg daily has been associated with a clear-cut further BP reduction, this being the 
case also for an increase of the thiazide-like diuretic chlorthalidone beyond the 
usual 12.5 mg, daily [34]. Along this line several studies have shown an increase in 

18

23
24

28

20

18

12

6.56.4

3.8

30

25

20

15

10R
ed

uc
tio

n 
in

 S
B

P
 (

m
m

 H
g)

5

0

3 6

Drug dose in mg

25 50 100 20012.5

Chlor HCTZ

Fig. 37.1  Effect of hydrochlorothiazide (HCTZ) and chlorthalidone (chlor) on systolic blood 
pressure (SBP) as a function of the daily dose (mg) (from [34], by permission)

37  Treatment of Resistant Hypertension



644

the usual dose of diuretics to be accompanied by an increase in the number of resis-
tant hypertensive patients reaching BP control. For example, in an American study 
on a cohort of about 150 resistant hypertensive patients, optimization of the existing 
treatment regimen that included an increase of the dose of diuretic was followed by 
BP control (<140/90 mmHg) in more than 50% of the cases [35].

37.6	 �Addition of a Fourth Drug

The drugs that are available as fourth step treatment of resistant hypertension have 
mechanisms of action that are only partly different from those of the drugs included 
in the background of three-drug treatment regimen. Beta-blockers, alpha-I blockers, 
and central agents, for example, share their sympatho-moderating influence with 
RAS blockers [36]. Beta-blockers and mineralocorticoid receptor antagonists share 
their opposition to the pressor and sodium-retaining effect of angiotensin II with 
RAS blockers. Direct vasodilators share their ability to reduce vasomotor tone with 
calcium channel blockers. Despite this potential mechanistic overlapping, however, 
addition of any fourth drug to the existing drug regimen stands a chance to lower BP 
and achieve control in a number of resistant hypertensive patients, which makes this 
approach the preferable one in this clinical condition.

Which drug to select among the available options is difficult to decide on an evi-
dence basis because very few studies have addressed this issue by a randomized 
double-blind design, making the present fourth drug choice largely empiric. In this 
context, however, mineralocorticoid receptor antagonists and alpha-I blockers should 
probably be regarded as the preferred choice for pathophysiological considerations 
as well as for the extent of therapeutic data. Pathophysiological evidence leaves no 
doubt that hypertension is accompanied by (1) a sympathetic activation that increases 
with the degree of BP elevation [37] and is particularly pronounced in patients whose 
BP is resistant to treatment (Fig. 37.2) [38] and (2) a plasma and tissue elevation of 
aldosterone whose secretion by the adrenal glands escapes, for a variety of reasons, 
the inhibitory effect of RAS blockers even when combined to oppose the production 
or influence of angiotensin II more effectively [39] (Fig. 37.3). Therapeutic evidence 
shows that these two drug classes lower BP in patients in whom multidrug treatment 
did not achieve control. This is exemplified by the Anglo Scandinavian Cardiac 
Outcomes Trial (ASCOT) in which the addition of the alpha-I blocker doxazosin in 
a large number of hypertensives uncontrolled by combination of various drugs low-
ered systolic BP by about 13–14 mmHg, this being the case in a variety of clinical or 
demographic conditions (Fig. 37.4) [40]. Interestingly, the BP-lowering effect was 
associated with no major side effect and no increased risk of heart failure, at variance 
from what has been reported in the doxazosin-treated hypertensive patients of the 
Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial 
(ALLHAT) [41]. It is further exemplified by the BP reduction observed in the same 
trial when a similarly large number of patients in whom multidrug treatment had 
failed to achieve BP control were given spironolactone (Fig. 37.5) [42].
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37.7	 �Mineralocorticoid Receptor Antagonists: Further 
Evidence

Support to the use of mineralocorticoid receptor antagonists as the fourth drug to be 
administered in resistant hypertension can be found in several other studies that 
have shown, in some instances via a randomized, placebo-controlled design, the 
BP-lowering ability of this class to include not only spironolactone but also eplere-
none at adequate doses [43–50]. The most important documentation of the effec-
tiveness of these drugs, however, comes from the recently published Prevention and 
Treatment of Hypertension with Algorithm-Based therapy (PATHWAY 2) study in 

Fig. 37.4  Systolic blood pressure (SBP) reduction induced by doxazosin administration in 
patients in whom SBP was not controlled by multiple drug treatment. Data for different patients 
subgroups. Ys years, M males, F females, Ate group initially treated with atenolol, Amlo group 
initially treated with amlodipine, DM diabetes mellitus, MS metabolic syndrome (from [40], by 
permission)
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which several hundred patients with a BP uncontrolled by the recommended three-
drug treatment regimen were randomized to the addition of spironolactone, bisopro-
lol, doxazosin, or placebo. Following a few months of treatment, patients taking 
spironolactone showed a significantly greater BP reduction than patients taking 
doxazosin or bisoprolol, whose effect was modestly, albeit significantly, more evi-
dent than placebo. This was the case not only for office but also for home BP whose 
treatment-induced modification was the primary end point of the study (Fig. 37.6) 
[51]. This will probably lead future guidelines to privilege mineralocorticoid recep-
tor antagonists over other drug options as the preferred fourth choice in resistant 
hypertension and perhaps also to define hypertension as resistant to treatment only 
after administration of a drug of this class has proven ineffective.

37.8	 �Unmet Needs

Although more effective than any other added drug currently available, mineralo-
corticoid receptor antagonists by no means take care of all the problems posed by 
treatment of resistant hypertension. First, these drugs are associated with a number 
of serious side effects, among which are hyperkalemia and reduction of renal func-
tion [42, 52]. Second, both hyperkalemia and reduction of renal function are more 
frequent and severe in patients with a seriously impaired glomerular filtration, a 
condition that was excluded in the patients enrolled for the PATHWAY 2 study, but 
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that is not at all uncommon in resistant hypertension [53]. Third, despite the greater 
BP-lowering effect, in the PATHWAY 2 study, spironolactone failed to effectively 
lower BP in about 40% of the study population, i.e., those with a high renin level 
and perhaps a concomitant sympathetic hyperactivity (Fig. 37.7) [51]. Thus, more 
than a single drug class appears to be needed as fourth choice in order to extend 
effective treatment to the vast majority of resistant hypertensive individuals.

Future studies will have to address this issue by comparing the addition of a 
fourth drug with the combination of two or more additional agents, hopefully clari-
fying which combinations have the greatest potential to extend BP control. They 
may also, however, elect to address alternative possibilities, namely, whether (1) BP 
can be reduced in a larger number of resistant hypertensive patients by the use of 
drugs belonging to the same class but having a different site of action [54], an 
approach that sequential administration of a thiazide diuretic, a loop diuretic, and 
amiloride has proven effective [55], or (2) a more precise assessment of the resistant 
hypertension phenotype. The latter approach will mean to (1) identify as precisely 
as possible the nature and extent of the alterations of the structure and function of 
the organs (heart, brain, kidney, and vessels) targeted by the uncontrolled BP status 
and (2) determine which, among the multiple neural and humoral mechanisms con-
trolling circulation, is more severely deranged, in order to try to individualize treat-
ment and increase its success rate.

Finally, drug treatment of resistant hypertension may depend in the future count 
on new effective BP-lowering agents. In the past, use of endothelin antagonists has 
been disappointing because their BP-lowering effect turned out to be questionable 
and accompanied by an unfavorable side effect profile [56]. Drugs targeting arterial 
stiffening (a structural alteration majorly responsible for the difficulty of lowering 
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systolic values) have also met with difficulties that have prevented their extensive test-
ing in humans. New dual acting molecules as well as new powerful and better toler-
ated vasodilators, however, are promising medicaments that may allow to more 
successfully face therapeutic control of a condition that may have a prevalence greater 
than 5% of the overall hypertensive population [1], thereby involving in Europe sev-
eral million individuals.

References

	 1.	G Mancia, R Fagard, K Narkiewicz et  al; The Task Force for the management of arterial 
hypertension of the European Society of Hypertension (ESH) and of the European Society of 
Cardiology (ESC) (2013) 2013 ESH/ESC guidelines for the management of arterial hyperten-
sion. J. Hypertens 31:1281–1357

	 2.	Burnier M, Pechere Bertschi A, Wuerzner G (2013) Treatment of resistant hypertension. 
Which additional antihypertensive drugs? In: Mancia G (ed) Resistant hypertension. Springer, 
Milan, pp 115–126

	 3.	Schmieder RE, Redon J, Grassi G et  al (2012) ESH position paper: renal denervation—an 
interventional therapy of resistant hypertension. J Hypertens 30:837–841

	 4.	Bakris GL, Nadim MK, Haller H et al (2012) Baroreflex activation therapy provides durable 
benefit in patients with resistant hypertension: results of long-term follow-up in the Rheos 
Pivotal Trial. J Am Soc Hypertens 6:152–158

Spironolactone

Renin (mU/L)

C
ha

ng
e 

in
 h

om
e 

S
B

P
 (

m
m

H
g)

0

-10

-20

-30

Frequency distribution for renin

1 10 100 1000

Fig. 37.7  Relationship between the home systolic blood pressure (SBP) change induced by spi-
ronolactone and plasma renin activity in the PATHWAY 2 study (from [51], by permission)

37  Treatment of Resistant Hypertension



650

	 5.	Florczak E, Prejbisz A, Szwench-Pietrasz E et al (2013) Clinical characteristics of patients 
with resistant hypertension: the RESIST-POL study. J Hum Hypertens 27:678–685

	 6.	Pimenta E, Gaddam KK, Oparil S et al (2009) Effects of dietary sodium reduction on blood 
pressure in subjects with resistant hypertension: results from a randomized trial. Hypertension 
54:475–481

	 7.	Forman JP, Rimm EB, Curhan GC (2007) Frequency of analgesic use and risk of hypertension 
among men. Arch Intern Med 16:394–399

	 8.	Moser M, Setaro JF (2006) Resistant or difficult-to-control hypertension. N Engl J Med 
355:385–392

	 9.	Calhoun DA, Jones D, Textor S et al (2008) Resistant hypertension: diagnosis, evaluation, and 
treatment: a scientific statement from the American Heart Association Professional Education 
Committee of the Council for High Blood Pressure Research. Hypertension 51:1403–1419

	10.	Persell SD (2011) Prevalence of resistant hypertension in the United States, 2003-2008. 
Hypertension 57:1076–1080

	11.	Brambilla G, Bombelli M, Seravalle G et  al (2013) Prevalence and clinical characteristics 
of patients with true resistant hypertension in central and Eastern Europe: data from the 
BP-CARE study. J Hypertens 31:2018–2024

	12.	Sarafidis PA, Georgianos P, Bakris GL (2013) Resistant hypertension—its identification and 
epidemiology. Nat Rev Nephrol 9:51–58

	13.	McAdam-Marx C, Ye X, Sung JC et al (2009) Results of a retrospective, observational pilot 
study using electronic medical records to assess the prevalence and characteristics of patients 
with resistant hypertension in an ambulatory care setting. Clin Ther 31:1116–1123

	14.	De la Sierra A, Segura J, Banegas JR et  al (2011) Clinical features of 8295 patients with 
resistant hypertension classified on the basis of ambulatory blood pressure monitoring. 
Hypertension 57:898–902

	15.	Egan BM, Zhao Y, Axon RN et al (2011) Uncontrolled and apparent treatment resistant hyper-
tension in the Unites States, 2003-2008. Circulation 124:1046–1058

	16.	Hajjar I, Kotchen TA (2003) Trends in prevalence, awareness, treatment and control of hyper-
tension in the United States, 1988-2000. JAMA 290:199–206

	17.	Pierdomenico SD, Lapenna D, Bucci A et al (2005) Cardiovascular outcome in treated hyper-
tensive patients with responder, masked, false resistant, and true resistant hypertension. Am J 
Hypertens 18:1422–1428

	18.	Mazzaglia G, Mantovani LG, Sturkenboom MC et al (2005) Patterns of persistence with anti-
hypertensive medications in newly diagnosed hypertensive patients in Italy: a retrospective 
cohort study in primary care. J Hypertens 23:2093–2100

	19.	Corrao G, Zambon A, Parodi A et al (2008) Discontinuation of and changes in drug therapy 
for hypertension among newly-treated patients: a population-based study in Italy. J Hypertens 
26:819–824

	20.	Singer GM, Izhar M, Black HR (2002) Goal-oriented hypertension management: translating 
clinical trials to practice. Hypertension 40:464–469

	21.	Phillips LS, Branch WT, Cook CB et al (2001) Clinical inertia. Ann Intern Med 135:825–834
	22.	Trewet CL, Ernst ME (2008) Resistant hypertension: identifying causes and optimizing treat-

ment regimens. South Med J101:166–173
	23.	Grassi G, Bombelli M, Seravalle G et al (2013) Role of ambulatory blood pressure monitoring 

in resistant hypertension. Curr Hypertens Rep 15:232–237
	24.	Mallion JM, Baguet JP, Mancia G (2006) European Society of Hypertension Scientific 

Newsletter: clinical value of ambulatory blood pressure monitoring. J Hypertens 24:2327–2330
	25.	Verdecchia P, Schillaci G, Guerrieri M et al (1990) Circadian blood pressure changes and left 

ventricular hypertrophy in essential hypertension. Circulation 81:528–536
	26.	Sega R, Corrao G, Bombelli M et al (2002) Blood pressure variability and organ damage in a 

general population: results from the PAMELA study (Pressioni Arteriose Monitorate E Loro 
Associazioni). Hypertension 39:710–714

	27.	Mancia G, Bombelli M, Facchetti R et al (2007) Long-term prognostic value of blood pres-
sure variability in the general population: results of the Pressioni Arteriose Monitorate E Loro 
Associazioni study. Hypertension 49:1265–1270

G. Seravalle et al.



651

	28.	Tóth K; PIANIST Investigators (2014) Antihypertensive efficacy of triple combination per-
indopril/indapamide plus amlodipine in high-risk hypertensives: results of the PIANIST 
study (Perindopril-Indapamide plus AmlodipiNe in high rISk hyperTensive patients). Am J 
Cardiovasc Drugs 14:137–145

	29.	Calhoun DA, Lacourcière Y, Chiang YT, Glazer RD (2009) Triple antihypertensive therapy 
with amlodipine, valsartan, and hydrochlorothiazide: a randomized clinical trial. Hypertension 
54:32–39

	30.	Kjeldsen SE, Messerli FH, Chiang CE et al (2012) Are fixed-dose combination antihyperten-
sives suitable as first-line therapy? Curr Med Res Opin 28:1685–1697

	31.	Rossi GP (2013) Resistant hypertension. Neurohumoral aspects. In: Mancia G (ed) Resistant 
hypertension. Springer, Milan, pp 11–21

	32.	Pereira M, Lunet N, Azevedo A, Barros H (2009) Differences in prevalence, awareness, treat-
ment and control of hypertension between developing and developed countries. J Hypertens 
27:963–975

	33.	Law MR, Wald NJ, Morris JK, Jordan RE (2003) Value of low dose combination treatment 
with blood pressure lowering drugs: analysis of 354 randomised trials. BMJ 326:1427

	34.	Carter BL, Ernst ME, Cohen JD (2004) Hydrochlorothiazide versus chlorthalidone: evidence 
supporting their interchangeability. Hypertension 43:4–9

	35.	Garg JP, Elliott WJ, Folker A, et al; RUSH University Hypertension Service (2005) Resistant 
hypertension revisited: a comparison of two university-based cohorts. Am J Hypertens 
18:619–626

	36.	Saino A, Pomidossi G, Perondi R et al (1997) Intracoronary angiotensin II potentiates coro-
nary sympathetic vasoconstriction in humans. Circulation 96:148–153

	37.	Mancia G, Grassi G (2014) The autonomic nervous system and hypertension. Circ Res 
114:1804–1814

	38.	Grassi G, Seravalle G, Brambilla G et al (2014) Marked sympathetic activation and baroreflex 
dysfunction in true resistant hypertension. Int J Cardiol 177:1020–1025

	39.	McKelvie RS, Yusuf S, Pericak D et al (1999) Comparison of candesartan, enalapril, and their 
combination in congestive heart failure: randomized evaluation of strategies for left ventricular 
dysfunction (RESOLVD) pilot study. The RESOLVD Pilot Study Investigators. Circulation 
100:1056–1064

	40.	Chapman N, Chang CL, Dahlöf B et al; ASCOT Investigators (2008) Effect of doxazosin gas-
trointestinal therapeutic system as third-line antihypertensive therapy on blood pressure and 
lipids in the Anglo-Scandinavian Cardiac Outcomes trial. Circulation 118:42–48

	41.	Davis BR, Kostis JB, Simpson LM et al; ALLHAT Collaborative Research Group (2008) Heart 
failure with preserved and reduced left ventricular ejection fraction in the antihypertensive and 
lipid-lowering treatment to prevent heart attack trial. Circulation 118:2259–2267

	42.	Chapman N, Dobson J, Wilson S et  al; Anglo-Scandinavian Cardiac Outcomes Trial 
Investigators. (2007) Effect of spironolactone on blood pressure in subjects with resistant 
hypertension. Hypertension 49:839–845

	43.	Azizi M, Sapoval M, Gosse P et  al; Renal Denervation for Hypertension (DENERHTN) 
Investigators (2015) Optimum and stepped care standardised antihypertensive treatment with 
or without renal denervation for resistant hypertension (DENERHTN): a multicentre, open-
label, randomised controlled trial. Lancet 385:1957–1965

	44.	Rosa J, Widimský P, Toušek P et al (2015) Randomized comparison of renal denervation ver-
sus intensified pharmacotherapy including spironolactone in true-resistant hypertension: six-
month results from the Prague-15 study. Hypertension 65:407–413

	45.	Václavík J, Sedlák R, Plachy M et al (2011) Addition of spironolactone in patients with resis-
tant arterial hypertension (ASPIRANT): a randomized, double-blind, placebo-controlled trial. 
Hypertension 57:1069–1075

	46.	Nishizaka MK, Zaman MA, Calhoun DA (2003) Efficacy of low-dose spironolactone in sub-
jects with resistant hypertension. Am J Hypertens 16:925–930

	47.	Pitt B, Reichek N, Willenbrock R et al (2003) Effects of eplerenone, enalapril, and eplerenone/
enalapril in patients with essential hypertension and left ventricular hypertrophy: the 4E-left 
ventricular hypertrophy study. Circulation 108:1831–1838

37  Treatment of Resistant Hypertension



652

	48.	de Souza F, Muxfeldt E, Fiszman R, Salles G (2010) Efficacy of spironolactone therapy in 
patients with true resistant hypertension. Hypertension 55:147–152

	49.	Rodilla E, Costa JA, Pérez-Lahiguera F et al (2009) Spironolactone and doxazosin treatment 
in patients with resistant hypertension. Rev Esp Cardiol 62:158–166

	50.	Ramsay LE, Silas JH, Freestone S (1980) Diuretic treatment of resistant hypertension. Br Med 
J 281:1101–1103

	51.	Williams B, MacDonald TM, Morant S et  al; British Hypertension Society’s PATHWAY 
Studies Group (2015) Spironolactone versus placebo, bisoprolol, and doxazosin to determine 
the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, double-
blind, crossover trial. Lancet 386:2059–2068

	52.	Bianchi S, Bigazzi R, Campese VM (2006) Long-term effects of spironolactone on proteinuria 
and kidney function in patients with chronic kidney disease. Kidney Int 70:2116–2123

	53.	Daugherty SL, Powers JD, Magid DJ et al (2012) Incidence and prognosis of resistant hyper-
tension in hypertensive patients. Circulation 125:1635–1642

	54.	Mancia G (2012) Additional drug treatment in resistant hypertension: need for randomized 
studies. J Hypertens 30:1514–1515

	55.	Bobrie G, Frank M, Azizi M et  al (2012) Sequential nephron blockade versus sequential 
renin-angiotensin system blockade in resistant hypertension: a prospective, randomized, open 
blinded endpoint study. J Hypertens 30:1656–1664

	56.	Weber MA, Black H, Bakris G et  al (2009) A selective endothelin-receptor antagonist to 
reduce blood pressure in patients with treatment-resistant hypertension: a randomised, double-
blind, placebo-controlled trialLancet 374:1423-1431

G. Seravalle et al.



653© Springer International Publishing AG 2018
A.E. Berbari, G. Mancia (eds.), Disorders of Blood Pressure Regulation,  
Updates in Hypertension and Cardiovascular Protection,  
https://doi.org/10.1007/978-3-319-59918-2_38

A. Shantsila, M.D. • G.Y. H. Lip, M.D. (*) 
Institute of Cardiovascular Sciences, University of Birmingham, City Hospital,  
Birmingham, UK
e-mail: G.Y.H.LIP@bham.ac.uk

38Accelerated/Malignant Hypertension

Alena Shantsila and Gregory Y.H. Lip

38.1	 �Introduction

Hypertension is a major cardiovascular risk factor. The most severe form of the 
hypertension is malignant or accelerated hypertension. Clinical diagnosis is usually 
based on the presence of very high blood pressure (BP) (office diastolic BP above 
130 mmHg at the time of the diagnosis) accompanied by Grade III or IV hyperten-
sive retinopathy according to the classification of Keith, Wagener and Barker [1, 2].

Recently it has been suggested to reclassify malignant hypertension to hyperten-
sion with multi-organ damage [3]. With this new definition, malignant hypertension 
described is one of the clinical presentations of hypertension with multi-organ dam-
age. The diagnostic criteria of hypertension with multi-organ damage are an acute 
elevation of BP and an impairment of at least three different target organs (kidney, 
heart, brain, microangiopathy). Early diagnosis of the condition is paramount for 
the immediate start or adjustment of the treatment, to avoid worsening of the out-
come. Indeed, while currently available antihypertensive agents provide adequate 
BP control in the majority of patients, malignant hypertension still represents an 
important clinical entity which would have significant consequences for the patient 
from stroke, myocardial infarction and renal failure, should the condition not be 
detected, investigated adequately, treated and managed.
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38.2	 �Clinical Features

Malignant hypertension phase is a hypertensive emergency characterised by severe 
elevation in systolic and out of range diastolic BP, usually appearing progressively 
over a period of several weeks to several months. In the West Birmingham Malignant 
Hypertension Registry, mean systolic and diastolic BP at presentation were 
229 ± 30 mmHg and 142 ± 19 mmHg, respectively [4]. Over the 24 years of the 
registry, the average level of systolic and diastolic BP at the time of diagnosis has 
remained surprisingly similar (average BP 228/142 mmHg), despite improvements 
in antihypertensive therapy [4]. It is appropriate to note that although diastolic BP 
greater than 130 mmHg is a commonly referred diagnostic criterion of malignant 
hypertension, it should not be used rigidly. In certain cases malignant hypertension 
could occur with diastolic BP below this level in the presence of very high systolic 
BP (e.g. more 200 mmHg) and typical eye changes.

The main histological feature of malignant hypertension is fibrinoid necrosis of 
arterioles in various tissues, including the kidney. This could be accompanied by 
mucoid intimal proliferation in renal interlobular arteries and an ischemic dysfunc-
tion of the glomerular tufts. These changes trigger activation of the renin-angiotensin 
system, vasoconstriction and progression of hypertension.

The diagnosis of malignant hypertension diagnosis is often delayed as the 
patients tend to develop clinical symptoms only at a later stage of their disease 
[5, 6]. Malignant hypertension is commonly underdiagnosed in primate care set-
tings, and up to 75% of patients with malignant hypertension would only by seen by 
a physician when they develop serious target organ damage and other complications 
[7, 8]. The usual first symptoms are visual disturbance (acute or subacute) that may 
be accompanied by a headache. The presence of these symptoms should always be 
treated with suspicion of possible malignant hypertension.

38.3	 �Retinopathy

Keith et al. classified hypertension-related retinal changes into four grades; clinical 
course and prognosis of such patients were characterised depending on the degree 
of retinopathy [1]. Accordingly, Grade 1 included only minimal constriction of the 
retinal arterioles with some tortuosity and typical of those with mild hypertension. 
In patients with more advanced hypertension, fundal changes usually included arte-
riovenous nipping (Grade 2). Patients with severe hypertension presented with 
Grade 3 (haemorrhages and exudates) and/or Grade 4 (papilloedema) fundal 
changes have worse prognosis. Ahmed et al. assessed survival in patient with accel-
erated and malignant hypertension in 200 consecutive patients with Grade 3–4 reti-
nal changes. They have concluded that these two forms of hypertension were 
essentially the same disease with similar clinical presentation and prognosis [2].

Ophthalmological changes in hypertension can also be divided into Grade A and 
Grade B. Grade A reflects non-malignant changes of arteriolar narrowing and focal 
constriction. Grade B changes correspond to malignant hypertension, with linear 
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flame-shaped haemorrhages, and/or exudates, and/or cotton wool sports with or 
without papilloedema [9]. This approach offers simplification of the interpretation 
of fundoscopy, and it has direct implication for patient management.

Following the stabilisation of BP level, the specific malignant hypertension reti-
nopathy gradually regresses, typically during 2–3 months [10]. The disappearance 
of retinal changes limits retrospective diagnosis of malignant hypertension [10]. 
That is why it is very important that evaluation of the retinal changes should be 
performed during the initial visit. There is an association between the development 
of irreversible ocular complications and very high BP at the time of diagnosis, 
prominent visual disturbance at presentation, and prolonged duration of the symp-
toms [11]. However, not all patients with extreme signs of malignant hypertension 
(i.e. hypertensive encephalopathy) would develop severe retinopathy and Grade 3–4 
changes may be absent in some patients during initial examination thus reflecting 
the dynamic state of retinal changes [12]. However, not all patients have full recov-
ery of vision and anterior ischemic optic neuropathy, or central retinal artery occlu-
sion is a common complication of malignant hypertension [11, 13]. Even could lead 
to the retinal detachment of macula in patients with malignant hypertension [14]. To 
provide a timely diagnosis of this dangerous complication, repeated fundus exami-
nations may be necessary, particularly if BP fluctuates substantially [15].

The signs of isolated bilateral papilloedema without haemorrhages could be 
present in patients with uncontrolled hypertension. Of note, patients with connec-
tive tissue disorders, infective endocarditis and severe anaemia also could have fun-
dal haemorrhages and papilloedema [15]. Also, if patients develop diabetic 
retinopathy, the differential diagnosis of diabetic retinopathy might be 
problematic.

Data from the experimental animal models of malignant hypertension showed 
that retinopathy typically develops long time before the choroidopathy or optic neu-
ropathy [16]. Additionally, focal intraretinal periarterial transudates have been 
described as the retinal changes specific to malignant hypertension [17].

The degree and dynamic of the retinal changes correspond to the changes of the 
renal system, thus emphasising the fact that patients with malignant hypertension 
develop microvascular dysfunction in a systemic pattern [13, 18, 19].

38.4	 �The Kidneys

The renal function is impaired in patients with malignant hypertension. Histological 
studies have shown that intrarenal fibrinoid necrosis of small arteries and arteriole 
is a characteristic lesion of malignant hypertension, although a myxoid intimal 
lesion is also not unusual [20–23]. Severe intrarenal vascular lesions are accom-
panied by signs of nephritis parallel with clinical manifestation of malignant  
hypertension [24].

Renin-angiotensin-aldosterone system is activated in patients with malignant 
hypertension. Indeed, marked elevation in plasma renin activity and aldosterone is 
evident in patients with malignant hypertension but not in patients with severe 
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hypertension despite small differences in BP [25]. Although the pathophysiological 
mechanisms leading to the elevation of renin in malignant hypertension are still a 
matter of debate, the activation of the renin-angiotensin-aldosterone system is usu-
ally attributed to juxtaglomerular ischaemia. In one case report of malignant hyper-
tension, a massive increase in plasma renin activity and aldosterone was due to the 
neoplasm from the juxtaglomerular area [26]. Following the nephrectomy, potas-
sium levels returned to normal range, and the concentrations of renin and aldoste-
rone decreased. High plasma renin activity, features of microangiopathy and renal 
dysfunction in patients with malignant hypertension parallel the renin-mediated 
arteriolar damage and kidney dysfunction [27].

Acute renal failure in some cases was the first sign of malignant hypertension [22, 
23, 28]. Renal damage evident by dipstick proteinuria marks raise in serum creatinine 
or urea. In the West Birmingham Malignant Hypertension Registry, at the time of diag-
nosis, dipstick proteinuria has been reported in 63%, and renal failure defined as serum 
creatinine 300 mmol/L or more was observed in 32% of patients [4]. The renal function 
often progressively deteriorates even in treated patients, with a significant rise in 
median serum urea and creatinine levels [29–31]. Elevated serum creatinine and urea 
independently predict occurrence of adverse outcomes on multivariable analyses [32]. 
Progressive renal function decline leading to end-stage renal disease remains a signifi-
cant threat to patients with malignant hypertension. The optimal BP control during the 
follow-up is an important factor for preserved renal function [31, 33].

38.5	 �The Heart

In patients with malignant hypertension, cardiac structure and function are affected 
as well. In the West Birmingham Malignant Hypertension Registry, left ventricular 
hypertrophy on ECG was detected in 77% of patients [4]. In the same cohort of 
malignant hypertensive patients, 47% had signs of cardiomegaly on chest X-ray. At 
the time of the diagnosis, some patients could have signs of impaired systolic func-
tion, measured by global longitudinal strain [34]. However, the degree of the LV 
hypertrophy was still present after almost a year of treatment. Even with good long-
term blood pressure control, malignant hypertension patients had an increased LV 
mass index and features of diastolic dysfunction, with preserved systolic function 
[35]. Although left ventricular hypertrophy may at least partly reflect an adaptive 
response to persistently raised BP, its presence is associated with unfavourable 
prognosis [32]. Of note, some patients do have normal radiographs, ECGs or echo-
cardiograms despite very high BP, suggesting that hypertension may have been of 
acute onset before target organ damage occurred [4, 30, 36].

Clinically manifesting cardiac complications such as heart failure, angina or 
myocardial infarction develop in about 20% of patients with malignant hyperten-
sion. Hypertension causes heart failure by a number of mechanisms, including pres-
sure overload on the heart due to the raised peripheral vascular resistance, reduced 
left ventricular compliance (e.g. in left ventricular hypertrophy), an increased risk 
for coronary artery disease and the precipitation of cardiac arrhythmias (such as 
atrial fibrillation). Severe hypertension results in a significant increase in afterload 
and may result in decompensation of the failing heart.
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38.6	 �Vascular System

The key element of the vascular biology is the endothelium. Endothelium dysfunc-
tion on the macro- and microvascular level is one of the abnormalities seen in 
patients with malignant hypertension [37]. Excessive endothelial injury in malig-
nant hypertension resulted in the development of thrombotic microangiopathies 
[38]. Small group study showed an association of thrombotic microangiopathies 
with elevation in plasma aldosterone level, but not with renin activity [38]. Thus, 
elevation of the aldosterone level could be a potential marker of the magnitude of 
organ damage, due to the thrombosis.

Extreme elevation of BP affects all cardiovascular beds, and multisystem com-
plications are not uncommon. Features of target organ damage are often seen in 
these patients at presentation and could indicate prolonged history of BP elevation.

38.7	 �Hypertensive Encephalopathy

Hypertensive encephalopathy is a rare hypertensive emergency, and it clinically 
presents with symptoms of cerebral oedema, due to the severe BP elevation. The 
dysregulation of cerebral circulation leads to the high volume overload and impair-
ment of blood-brain barrier function resulting in brain oedema. This all happens on 
the background of impaired macro- and microvascular function [37]. It is important 
to remember that encephalopathy in malignant hypertension is a genuine emer-
gency, and it always requires hospital admission.

The main symptoms of malignant hypertension encephalopathy are sudden onset 
of headache, nausea and vomiting. Later these symptoms are followed by different 
visual disturbances, which might be accompanied by neurological symptoms (rest-
lessness, confusion and, in extreme cases, seizures and coma) [39, 40]. The diagno-
sis of hypertensive encephalopathy can be facilitated by diagnostic tests such as 
increased pressure of the cerebrospinal fluid, evidence of white matter oedema on 
CT or MRI scans [40, 41]. In a recent retrospective analysis of the US data, the 
increasing trend for the hospital admission of patients with either hypertensive 
encephalopathy or malignant hypertension after 2007 has been observed, with no 
increase in morbidity [42]. These observations could reflect improved differential 
diagnoses of malignant hypertension with encephalopathy, as admissions for essen-
tial hypertension fell.

38.8	 �Epidemiological Insights

The prevalence of malignant hypertension is low in the general population and has 
an overall incidence of 5–6 patients per 100,000 of population per year in white and 
South Asian origin and 13–14 per 100,000 per year in the African-Caribbean [43, 
44]. A higher rate of malignant hypertension in the black population may be due to 
their resistance to some antihypertensive medication as well as insufficient compli-
ance with various treatments. The largest prospective of the West Birmingham 
Malignant Hypertension Registry maintained over the period of more than 40 years 
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has not demonstrated any noticeable reduction in the prevalence of malignant 
hypertension [45]. The condition appears to have similar prevalence in the devel-
oped and developing countries, where it constitutes a significant cause of end-stage 
renal failure [7, 8, 46].

Although most (about 95%) cases of the malignant hypertension can be consid-
ered an extreme form of essential hypertension, the secondary causes of malignant 
hypertension have also reported. Secondary forms of malignant hypertension are 
more common in young patients, especially in children. In fact, in children aged 
under 16 years, only 5% of malignant cases are due to essential hypertension with 
about two-thirds of occurrences being related to renal parenchymal disease and one-
third to aortoarteritis and fibromuscular dysplasia [47–49]. Adults cases of neo-
plasm in the juxtaglomerular area and Takayasu’s arteritis involving renal artery 
have been reported [26, 50, 51].

Interestingly, in women there is an association in the use of oral contraceptives 
and cigarette smoking and development of malignant hypertension [52]. It is hard to 
explain the pathophysiological mechanisms, and this association may exacerbate 
pre-existed hypertension than serves as isolated factor of malignant hypertension 
development per se.

Although the presence of distinct mechanisms of BP elevation in malignant 
hypertension has been suggested by experimental studies, there are common path-
ways shared with essential hypertension, such as endothelial dysfunction, platelet 
activation, elevated fibrinogen levels and lipid abnormalities [53–55]. Some data 
indicate that extreme elevation of BP predominantly occurs in poorly controlled 
essential hypertension patients with previous history of hypertension. The data from 
West Birmingham Malignant Hypertension Registry, based on the analysis of 350 
patients, showed that 55.7% of them presented with de novo malignant hyperten-
sion, without any prior history of hypertension, and 41.7% had previous hyperten-
sion diagnosis [30]. The clinical presentation, BP and renal function at the time of 
diagnosis were not different between the two groups. Over the median 3-year fol-
low-up, the survival time was not significantly different between two groups [30].

38.9	 �Prognosis

Characterisation of the hypertensive patient as ‘malignant’ reflects grim prognosis 
of the disorder in the past. Historically if malignant hypertension was left untreated, 
the mortality was around 80% within 2 years [1, 5]. Ethnicity is important, as it has 
been previously observed, black male patients with malignant hypertension had a 
worse prognosis, possibly reflecting more severe renal impairment and higher BP at 
presentation and follow-up [32, 56]. Following the development, the more efficient 
and tolerable antihypertensive drug therapy has meant that this prognosis is signifi-
cantly improved. The demography and incidence of the new malignant hypertension 
cases have not significantly changed over the last decades, based on the registry 
including 5725 person-years of observation [45].
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Also, the level of systolic BP at the time of diagnosis was not different between 
the patients seen before 1977 and between 1977 and 2006. Importantly the 5-year 
survival has increased dramatically from 32.0% before 1977 diagnosis to 91.0% for 
those patients with malignant hypertension diagnosed between 1997 and 2006. The 
independent predictors of survival on multivariable analyses were age, baseline cre-
atinine and follow-up systolic BP (all P < 0.0001). Indeed, the tight BP control at 
follow-up significantly impacts prognosis in patients with malignant hypertension 
[32]. Despite this dramatic improvement in survival, compared to the hypertensive, 
with no history of malignant hypertensive phase, all-cause mortality was signifi-
cantly higher (p < 0.01) with a higher prevalence of renal impairment [57]. The West 
Birmingham Malignant Hypertension Registry revealed that the kidney failure is the 
primary cause of death in patients with malignant hypertension.

�Conclusion
Despite the improvements in the management of hypertension in general, there 
is no strong evidence to prove a reduction in the incidence of malignant hyper-
tension. Moreover, this disorder may appear to become even more prevalent 
worldwide given the growing population in the developing countries with limited 
healthcare resources. Although the diagnostic criteria of malignant hypertension 
appear simple, the diagnosis is delayed in a substantial proportion of patients. As 
a result patients with malignant hypertension frequently present at the advanced 
stages of the disease. Furthermore, malignant hypertension and the accompany-
ing ocular changes may gradually resolve to make retrospective diagnosis prob-
lematic, while persistent target organ damage can drive the development of 
complications and has an adverse prognosis in these patients. Certainly, malig-
nant hypertension still presents a clinically relevant form of hypertension, and it 
should be kept in mind during the assessment of patients with poorly controlled 
hypertension.
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39Nocturnal Hypertension

Cesare Cuspidi, Carla Sala, Marijana Tadic, 
and Guido Grassi

39.1	 �Introduction

A growing body of evidence accumulated in the last decades underlines the clinical 
and prognostic values of circadian blood pressure (BP) variations and nocturnal BP 
levels [1]. In particular, two major lines of clinical research analyzed the impact and 
correlates of non-dipping status and nocturnal hypertension (NH) on cardiovascular 
disease [2]. At the end of 80′, O’Brien et al. were the first to show that an altered 
circadian BP pattern (i.e., reduced nighttime dipping) conveyed a higher risk of 
cerebrovascular events [3].

After this pioneering observation, the so-called non-dipping pattern (defined as 
nocturnal BP fall <10% of daytime value or nighttime/daytime BP ratio ≥ 0.90) has 
been reported to be associated with high-risk conditions such as diabetes [4], meta-
bolic syndrome, obesity [5], sleep apnea [6], renal insufficiency [7], target organ 
damage [8, 9], and, more importantly, with an increased risk of fatal and nonfatal 
cardiovascular events in different clinical settings [10–12].
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These findings are still debated as a number of clinical investigations failed to 
demonstrate substantial differences in either intermediate [13, 14] or hard end 
points [15, 16] between dipping and non-dipping phenotypes after appropriate 
adjustments for confounders. In particular, it should be pointed out that a preserved 
BP fall at night may not result in normal nighttime BP values as defined by current 
cutoffs (i.e., <120/70 mmHg) recommended by guidelines [17, 18].

Clinical studies in different population settings suggest that nighttime BP is a 
stronger predictor of organ damage and cardiovascular events compared to daytime 
BP. Consequently, diagnostic and treatment strategies targeting nighttime BP have 
come into focus. This clinical perspective is well reflected in the European Society 
of Hypertension position paper on ambulatory BP monitoring (ABPM) where NH 
is listed among the prominent clinical indications for ABPM, in addition to white 
coat and masked hypertension [19]. In this chapter, current literature on NH, iso-
lated NH, and chronotherapeutic management of hypertension will be discussed in 
separate sections.

39.2	 �Nocturnal Hypertension

ABPM offers the unique opportunity to assess day-night BP variability. This tech-
nique has consistently documented that nighttime BP values are 10–20% lower than 
daytime values in the vast majority of healthy subjects. The drop in nighttime BP is 
mostly related to reduced sympathetic and increased vagal tone during nocturnal 
bed rest period, leading to sustained decrease in heart rate, cardiac output, and 
peripheral resistances [20, 21].

The magnitude of 24-h BP variations in active subjects is related to a variety of 
factors such as age, level of physical activity, smoking habits, emotional state, and 
duration and quality of sleep. The mechanism(s) of impaired circadian BP pattern is 
multifactorial. A blunted BP fall at night in hypertensive patients has been shown to 
be highly prevalent in a wide array of conditions including secondary hypertension, 
chronic kidney diseases, types 1 and 2 diabetes mellitus, sleep apnea syndrome, 
autonomic nervous system dysfunction, and preeclampsia [22, 23].

Overall, a blunted decline in sympathetic tone and renin-angiotensin-aldosterone 
activity, endothelial dysfunction, impaired baroreflex sensitivity, and renal sodium 
excretion capacity have been associated to elevated nighttime BP [24] (Table 39.1). 

Table 39.1  Mechanisms and conditions involved in nocturnal hypertension

Increased sympathetic tone
Blunted vagal tone
Increased renin-angiotensin-aldosterone activity
Impaired baroreflex sensitivity
Impaired renal sodium excretion capacity
High dietary sodium intake
Endothelial dysfunction
Sleep apnea syndrome
Subclinical organ damage
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Clinical evidence pointing to the role of sodium in circadian BP rhythm is provided 
by the reversal of non-dipping status and NH after salt restriction or administration 
of thiazide diuretics [25]. It should be also pointed out that subclinical vascular 
damage itself has been hypothesized to attenuate the vasodepressor influence of 
sleep, thus contributing to maintenance of NH.

Prevalence rates of NH, as defined according to current guidelines (i.e., nighttime 
systolic BP > 120 mm Hg or diastolic BP > 70 mmHg), largely vary across studies, 
depending on demographic, clinical, and ethnical factors (Fig.  39.1). Among the 
2021 subjects enrolled in the Pressioni Monitorate E Loro Associazioni (PAMELA) 
study, representative for gender and age decades of the population of Monza (a town 
in the northeast outskirts of Milan, Italy), 607 (30%) participants were found to fulfill 
ABPM diagnostic criteria for NH (unpublished data). In the Jackson Heart Study, a 
population-based cardiovascular epidemiologic study in African-Americans with 
high prevalence of obesity and type 2 diabetes, NH was documented in 152 out of 
425 (39%) untreated participants [26]. In a study by Androulakis et al. [27] including 
319 newly diagnosed hypertensive patients, NH was detected in approximately 50% 
of cases; NH subjects showed similar demographic and clinical characteristics 
(including metabolic profile) as their counterparts with normal nocturnal BP.  In a 
Chinese cohort of 1322 patients with chronic kidney disease (56% with chronic glo-
merulonephritis), Wang et al. [28] found that systolic NH was present in 60% of the 
entire sample. Patients with NH were characterized by older age, prevalence of dia-
betes, higher levels of serum creatinine, cystatin C, calcium, uric acid, and homocys-
teine than nocturnal normotensive patients.

Although available information on NH prevalence across different clinical set-
tings remains scanty, this condition appears highly prevalent in the hypertensive 
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population; genetic, demographic, lifestyle, and socioeconomic factors are con-
ceivably responsible for the nighttime BP differences across studies. Of note, 
findings on NH in very elderly subjects are scarce, and no age-adjusted specific 
criteria for defining NH in this setting are provided by current hypertension 
guidelines.

The reproducibility of NH pattern has been investigated by a limited number of 
studies. Our group examined NH prevalence, correlates, and reproducibility in a 
cohort of 658 untreated hypertensives [29]: all subjects underwent two 24-h ABPMs 
at 1–4-week interval. A total of 477 subjects had NH in both ABPM sessions, and 
62 subjects showed normal nighttime BP in both ABPMs. Overall, 119 subjects had 
a variable nocturnal pattern, as they changed their profile from one ABPM session 
to the other. Thus, 72.5% of subjects had a reproducible NH pattern, 18% a variable 
pattern, and 9.5% reproducible nocturnal normotension. In line with our results, 
Abdalla et al. [30] recently showed a satisfactory short-term reproducibility of NH 
pattern (kappa 0.65) in a community-based sample of 282 subjects.

As for asymptomatic target organ damage, a limited number of cross-sectional 
observations performed in general population and hypertensive cohorts suggest that 
NH combined to daytime BP elevation is associated with more advanced structural 
and functional alterations of the heart, ascending aorta, and carotid artery. 
Furthermore, a link between isolated NH (a condition characterized by BP elevation 
restricted to the nighttime period) and target organ damage has been demonstrated 
in recent years.

These findings are in keeping with available evidence that average nighttime BP 
values are superior to daytime ones in predicting subclinical cardiac and extra-
cardiac organ damage and, more importantly, the risk of cardiovascular disease and 
mortality. We ourselves have shown that nighttime BP levels predicted the develop-
ment of left ventricular hypertrophy (LVH) during a 12-year follow-up in subjects 
with normal LV mass at baseline evaluation; the same was not true for daytime BP 
and for the extent of nocturnal BP decline [31]. Again, in the PAMELA population, 
a 10-mmHg increase of nighttime systolic BP was associated with a higher risk of 
cardiovascular death than a 10-mmHg increase of daytime systolic BP, also after 
adjusting for several confounders [32].

One of the first contribution focusing on the relationship between NH and car-
diac damage was provided by Perez-Lloret et al. [33]. In a group of 233 untreated 
and treated hypertensives, the authors were able to demonstrate that NH defined by 
fixed cutoff limits as recommended by the 2007 European Society of Hypertension/
European Society of Cardiology Guidelines [17] was a better predictor of LVH (OR 
11.1, CI 95%  =  3.0–40.1, p  <  0.001) than non-dipping pattern (OR 1.4, CI 
95% = 0.4–5.5 p = ns).

Considering the paucity of data linking NH to hypertensive organ damage, we 
performed a meta-analysis to investigate the relationship of NH with subclinical 
cardiac and carotid damage [34]. To this purpose, a pooled population including 
3657 subjects (NH = 2083, nocturnal normotension = 1574) from 7 studies was 
analyzed. LV mass index was significantly higher in NH individuals than in normo-
tensive ones (112 ± 4.7 g/m2 versus 98 ± 4.8 g/m2, p < 0.01). Similarly, common 
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carotid intima-media thickness was greater in NH subjects than in normotensive 
counterparts (751 ± 34 μm versus 653 ± 14 μm, p < 0.01).

As for the prognostic implications of NH, findings from a large meta-analysis 
including 25,856 hypertensive patients and 9641 individuals randomly recruited 
from population-based cohorts indicate that NH is a powerful risk factor for hard 
outcomes such as all-cause mortality and cardiovascular events [35]. In both groups 
nighttime BP was a stronger predictor of outcomes than daytime BP, day-night BP 
ratio, and non-dipping pattern.

In a retrospective study, Sun et al. [36] analyzed demographic/clinical character-
istics and nocturnal BP circadian variability in 371 patients with hypertension (189 
with spontaneous intracerebral hemorrhage and 182 controls). Multivariate logistic 
regression indicated that blood glucose, creatinine, and nocturnal mean arterial 
pressure were independent risk factors for intracerebral hemorrhage. More recently, 
the role of NH has been prospectively investigated in a large cohort of 859 diabetic 
subjects followed up for 5 years in the Dublin Outcome Study [12]. In this high-risk 
population, fully adjusted hazard ratio of cardiovascular mortality associated with 
nighttime BP was approximately 1.5-fold higher than daytime BP.

39.3	 �Isolated Nocturnal Hypertension (INH)

INH was defined in 2007 for the first time by Li et al. [37] to describe a novel clini-
cal entity characterized by elevated nighttime BP (>120 and/or 70 mmHg) in the 
presence of normal daytime BP (<135/85 mmHg) in a rural Chinese population-
based cohort. The authors investigated the prevalence and characteristics of this 
type of hypertension only detectable by 24-h ABPM and its association with arterial 
stiffness, a validated marker of target organ damage. Among 677 participants, 74 
(10.9%) had INH, 310 (45.8%) were normotensive during both daytime and night-
time periods, 33 (4.9%) had isolated daytime hypertension, and 260 (38.4%) had 
day-night hypertension. Compared to subjects with ambulatory normotension, those 
with INH were characterized by older age, faster nighttime heart rate, higher serum 
levels of total cholesterol, and fasting glucose. From a retrospective analysis of a 
multiethnic international database [38], the same authors also reported that INH 
prevalence rates were higher in South Africans of black ancestry (10.5%) and in 
Japanese (10.4%) and Chinese subjects (10.9%) than in Western (6.0%) and Eastern 
Europeans (7.9%).

After this report, only few studies have prospectively investigated INH preva-
lence and clinical correlates (Fig.  39.2). In a Swedish study conducted in 414 
patients with type 2 diabetes, Wijkman et al. [39] reported that INH was present in 
approximately 4.0% of patients. In the Jackson Heart Study, about one fifth of the 
entire cohort (19%) fulfilled clinic and ambulatory BP criteria for INH [26]. 
Participants with INH were characterized by older age, higher levels of total and 
LDL cholesterol, and higher prevalence of type 2 diabetes mellitus than normoten-
sive counterparts (19% versus 10%). In the PAMELA population, elevated night-
time BP (>120/70 mmHg) and normal awake BP (<135/85 mmHg) was found in 
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approximately 11% of the participants. Compared to normotensive subjects, those 
with INH were older, more obese, and exhibited an unhealthy metabolic profile.

Reproducibility data on INH are very scanty. Li et al. [37] evaluated the long-
term INH reproducibility over a 3.5-year follow-up in a group of 30 subjects. The 
persistence of INH pattern was documented only in ten subjects; two thirds of the 
sample, indeed, changed their ambulatory BP profile over time, as ten subjects 
developed day-night hypertension, two shifted to isolated daytime hypertension, 
and eight became sustained normotensives.

Pathophysiologic mechanism(s) of INH have been postulated to differ from 
those of isolated daytime and day-night hypertension [40]. Some line of evidence 
supports the hypothesis that INH is strongly related to altered sodium metabolism 
either due to increased dietary intake or impaired urinary sodium excretion. As pre-
viously underlined, INH is more common in Chinese and Japanese populations, 
characterized by higher sodium intake than European populations. In INH subjects 
studied by Li et al. [37], however, urinary sodium excretion was significantly lower 
than in other groups: this observation is more consistent with a disturbance of 
sodium excretion in the pathogenesis of increased nighttime BP.

Available evidence supports an association between sleep apnea syndrome with 
increased risk of hypertension and cardiovascular diseases; the relationship between 
INH and sleep apnea syndrome, however, remains unproven so far [41].

A recent narrative review by O’Flynn et  al. [42] addressed the relationship 
between INH and subclinical organ damage. Only four studies, fulfilling inclusion 
predefined criteria (INH defined by ABPM according guidelines, assessment of rec-
ognized markers of target organ, and presence of normotensive control group) were 
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considered, and, because of heterogeneity of assessed outcomes, meta-analysis of 
results was not carried out.

Three out of four studies were conducted in population-based samples of Chinese 
[37, 43] and African-American ethnicities [26] and one in a diabetic setting [39]. In 
their pioneering study, Li et al. [37] found that four indices of arterial stiffness (i.e., 
central augmentation index, peripheral augmentation index, ambulatory arterial 
stiffness index, and brachial-ankle pulse wave velocity) were significantly increased 
in INH group compared with normotensive one. In a subsequent study, Lu et al. [43] 
failed to observe any difference in LVH prevalence (as assessed by Sokolow-Lyon 
and Cornell product indices) between INH and controls. Participants with INH 
belonging to Jackson Heart Study [26] exhibited higher absolute LV mass and LVH 
prevalence in unadjusted as well as age- and gender-adjusted models in comparison 
to normotensive controls. This was not the case for renal damage as assessed by 
proteinuria. Finally, Wijkman et al. [39] investigating the association of INH with 
cardiovascular damage in a small subset of diabetic patients reported no differences 
in central pulse pressure, central augmentation index, aortic pulse wave velocity, 
and LV mass index between cases and controls.

Thus, from the abovementioned studies, including a pooled population of 242 
INH subjects, only inconclusive findings have been provided.

Available information on the prognostic value of INH is mostly derived from the 
International Database of Ambulatory blood pressure in relation to Cardiovascular 
Outcome (IDACO) [44]. This large prospective database included 8711 individuals 
from 11 populations enrolled in Europe, Asia, and South America; during a mean 
follow-up period of 10.4 years, 577 subjects with INH showed a higher risk of all-
cause mortality (HR 1.29, 95% CI 1.01–1.65, p = 0.045) and cardiovascular events 
(HR 1.38, 95% CI 1.02–1.87, p = 0.037), after adjusting for several confounders, 
including daytime BP.

39.4	 �Nocturnal Hypertension: Therapeutic Implications

Restoring normal circadian BP rhythm in hypertensive subjects is increasingly 
regarded as an effective therapeutic target to prevent/reduce organ damage and 
improve cardiovascular prognosis. Emerging evidence on treatment strategies tar-
geting nighttime BP, such as bedtime administration of antihypertensive drugs, sup-
ports this approach as more protective against cardiovascular risk related to NH.

At the end of the 1990s, Uzu et  al. [25] evaluated the effect of a short-term 
diuretic treatment (hydrochlorothiazide 25 mg daily for 4 weeks) in 21 hypertensive 
patients (10 dippers and 11 non-dippers). The extent of nocturnal BP fall was unaf-
fected by treatment in dipper individuals; on the contrary it was markedly enhanced 
in non-dippers, mostly reverted to normal circadian rhythm.

In the Hypertension and Lipid Trial (HALT), the effect of bedtime administration 
of doxazosin on nighttime BP was tested in 118 hypertensive patients with different 
nocturnal BP patterns (18 extreme dippers, 46 dippers, 48 non-dippers, and 6 risers) 
[45]. The effect of doxazosin on mean nocturnal systolic BP varied depending on 
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dipping status: a 4-mmHg increase was observed in extreme dippers, whereas a 
decrease was documented in the remaining groups, in particular a decrement of 
1 mmHg in dippers, 12 mmHg in non-dippers, and 18 mmHg in risers. Of note, 
approximately one third of non-dippers changed their status after therapy and 
became dippers.

In a prospective study aimed to compare the effect of valsartan (160 mg/day) 
administered either in the morning or at bedtime in 148 non-dipper hypertensive 
patients, similar reductions of office and 24-h BP were observed in both treatment 
arms after 3 months [46]. Diurnal/nocturnal BP ratio, however, was significantly 
increased only when valsartan was administered at bedtime (8% versus baseline, 
p < 0.01); as a result, 75% of patients in this group became dippers as compared to 
24% of their counterparts. Of note, urinary albumin excretion was reduced only 
when valsartan was administered at bedtime.

Kario et al. [47] examined the effect of cilnidipine, a unique L-/N-type calcium 
channel blocker, on nocturnal BP in 615 Japanese hypertensive patients, classified 
according to their nocturnal dipping status as extreme dippers, dippers, non-dippers, 
and risers.

Cilnidipine induced BP decrements that were more pronounced at nighttime than 
daytime in risers, similar at nighttime as daytime in non-dippers, and more pro-
nounced at daytime than nighttime in dippers. Restoration of circadian BP rhythm 
observed in this study may be ascribed to the dual antihypertensive effect of cilni-
dipine, a calcium blocker of both L- and N-type channels and the resulting inhibi-
tion of noradrenaline release and vasodilation.

The first therapeutic trial targeting NH was performed by Rossen et al. [48]: in 
an open-label crossover study including 41 patients with type 2 diabetes and NH, 
the authors investigated the effect of administration time of antihypertensive drugs. 
Patients were randomized to 8  weeks of either morning or bedtime once-daily 
administration of antihypertensive drugs, followed by 8 weeks of switched admin-
istration schedule. Bedtime administration of antihypertensive therapy resulted in a 
significant reduction in nighttime (7.5 mmHg; p < 0.001) and 24-h (3.1 mmHg; 
p  =  0.014) systolic BP and a nonsignificant reduction in daytime (1.3  mm Hg; 
P = 0.336) systolic BP.

The potential benefit of improving nighttime BP control has been recently inves-
tigated in hypertensive subjects and in type 2 diabetic patients. The MAPEC study 
[49] tested the hypothesis that bedtime chronotherapy with ≥1 hypertensive drug 
may control BP and reduce cardiovascular risk more effectively than conventional 
therapy (i.e., all medications ingested in the morning). After a median follow-up of 
5.6 years, subjects taking ≥1 BP-lowering medication at bedtime had a lower mean 
nighttime BP as well as reduced prevalence of non-dipping status (34% versus 62%; 
p < 0.001) than those taking all medications upon awakening; the difference in noc-
turnal BP was associated to a lower relative risk of total cardiovascular events 
(−60%).

Salles et al. [50] analyzed the prognostic impact of clinic and ambulatory BPs on 
cardiovascular morbidity and mortality in 565 type 2 diabetic subjects during a 
follow-up period of 5.7 years. They found that patients with persistent nighttime 
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systolic BP ≥120 mmHg experienced significantly more cardiovascular events as 
compared to those achieving nighttime systolic BP levels <110 mm Hg.

�Conclusions
Consistent evidence from clinical studies supports the view that nocturnal BP is 
a strong predictor of intermediate and hard outcomes and points to the role of this 
out-of-office BP component only detectable by ABPM in improving cardiovas-
cular risk stratification. In a practical perspective, targeting NH by correcting 
factors related to this condition and planning a chronotherapeutic approach may 
have important implications for public health.

Disclosure  The authors report no conflicts of interest.
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40Salt and Hypertension

Andrew Smyth and Martin O’Donnell

40.1	 �Introduction

Hypertension is a leading global cause of death, more than tobacco use or physical 
inactivity or overweight and obesity [1]. Excess dietary sodium intake is associated 
with increased blood pressure [2, 3], cardiovascular disease, stroke, and other 
chronic diseases [4], and most current cardiovascular prevention guidelines recom-
mend population-wide reductions in sodium intake [5]. As sodium intake is a 
population-wide exposure, it is an attractive target for the prevention and treatment 
of hypertension, as even small population-level reductions in blood pressure may 
result in large reductions in cardiovascular disease (CVD).

Sodium is an essential nutrient, is required for normal physiological function, 
and is tightly regulated (via multiple mechanisms) to maintain extracellular sodium 
concentrations [6], under the governance of numerous renal, endocrine, vascular, 
central, and immune systems. Excess dietary sodium intake is an important risk fac-
tor for hypertension, with marked interindividual variability in the pressor effect of 
increased dietary sodium attributed to both environmental (e.g., potassium intake) 
and genetic factors. Dietary sodium restriction for the management of hypertension 
dates back to 1948 when Kempner et al. introduced the rice diet [7]. Since then, 
epidemiologic studies have demonstrated a curvilinear increase in blood pressure 
with increasing sodium intake in populations, and clinical trials have shown that 
reducing sodium intake results in a reduction in blood pressure [8–10]. Findings 
from clinical trials of blood pressure have led to guidelines that recommend low 
sodium intake (e.g., <2.0  g/day of sodium, equivalent to <5  g/day of salt 
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recommended by WHO) [1] for the entire adult population. While modeling studies 
have projected large gains in the reduction of premature cardiovascular mortality, 
from reductions in sodium intake, based on an assumed linear relationship between 
sodium intake, blood pressure, and CVD, large prospective cohort studies have 
reported a J-shaped association between sodium intake and CVD/mortality, with a 
nadir of risk at moderate intake range (2.6–5.0 g/day) [11]. A recent pooled analysis 
of four studies (n = 133,118) suggests the association between sodium intake and 
cardiovascular disease, and mortality was only significant in those with baseline 
hypertension [12]. Therefore, while the evidence supporting the reduction of high 
sodium intake (>4–5 g/day) is aligned, the evidence supporting a reduction from 
moderate to low intake is inconsistent and has led to controversy about whether low 
sodium intake should be recommended to the entire population.

The Global Burden of Disease (GBD) estimates mean global sodium intake at 
3.95 g/day, based on meta-analyses of 24-h urine collection data from 187 coun-
tries [13], which means that achieving current low sodium intake targets will 
require a considerable reduction in mean intake of the population. The predomi-
nant dietary source of sodium is salt (sodium chloride), which accounts for 
approximately 95% of daily intake. Almost the entire (99.2%) adult population 
currently exceed recommendations [14, 15], and most consume between 3 and 
6 g/day of sodium [13, 16].

Despite a large body of research on the effects of sodium intake and health, there 
are no large randomized controlled trials comparing low to moderate sodium intake 
for prevention CV events/mortality. The absence of definitive clinical trials has 
resulted in different perspectives about whether low or moderate sodium intake 
should be recommended in the general population, based on current evidence.

In this chapter, we review the relationship of dietary sodium intake with blood 
pressure and cardiovascular disease.

40.2	 �Measurement of Dietary Sodium Intake

There is no simple, accurate, and reliable method of estimating sodium intake in 
individuals. The reference standard for individual-level measurement of sodium 
intake is repeated 24-h urine sodium collection [17, 18], as about 95% of ingested 
sodium is thought to be excreted in urine (although this is dependent on amount of 
loss from other sources, such as sweat). Single measurements of sodium intake are 
problematic for individual-level estimation of sodium intake, because of day-to-
day variability in intake and data suggesting infradian rhythmicity of interstitial 
sodium storage (especially the skin), independent of daily intake [19, 20]. A recent 
study suggested that at least seven 24-h urinary estimates would be required to 
achieve classification accuracy (within 3 g/day) of 92% for individual estimation 
of usual sodium intake [21]. A key limitation of 24-h urine collections is the high 
frequency of incomplete sample collection [22], which is also a particular chal-
lenge in estimating sodium intake in large populations. For population-level 
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estimates, single urine samples (e.g., fasting morning or spot urine samples) may 
also be used to estimate intake using various formulae (including the Kawasaki 
formula [23], Tanaka formula [24], INTERSALT formula [25], and Mage formula 
[26]). While these formula-based approaches are inaccurate for individual-level 
measurement, some have been validated (using standardized protocols) for popu-
lation-level estimation of sodium intake, but the validity of using some approaches 
(e.g., Kawasaki formula) is dependent on timing and fasting status of urine capture 
[26, 27]. Dietary sodium intake may also be estimated using food frequency ques-
tionnaires or 24-h dietary recall; the main advantages of these techniques include 
convenience, the ability to carry out repeated measurements more conveniently, 
and the advantage of also being able to identify key dietary sources of excess 
sodium. However, these methods are limited by imprecision in estimating portion 
size, recall bias, variations in the sodium content of foods, and requirement for 
validation in different settings and countries. These issues are particularly impor-
tant where the majority of sodium in the food chain is nondiscretionary [14, 28]. 
Taken together, the absence of feasible methods to accurately and reliably measure 
sodium intake in individuals contributes to difficulties in both the interpretation of 
studies and implementation of sodium reduction interventions in clinical practice.

40.3	 �Global Sodium Intake

A 2013 meta-analysis of cross-sectional studies including 187 countries reported 
mean global intake at 3.95 g/day, with significant regional variations [13]. Intakes 
were highest in East Asia, Central Asia, and Eastern Europe (mean >4.2 g/day) and in 
Central Europe and Middle East/North Africa (3.9–4.2 g/day). Mean intakes in North 
America, Western Europe, and Australia/New Zealand ranged from 3.4 to 3.8 g/day. 
Between 1990 and 2010, there was a suggestion of slight increases in overall sodium 
intakes. Among individual studies, the INTERSALT study was the first international 
studies that reported estimates of sodium intake, based on 24-h urine collections from 
52 populations in 32 countries (n = 10,079), and found wide variations in 24-h sodium 
excretion from 0.46 g/day (Yanomami Indians in Brazil) up to 6.0 g/day (Tianjin, 
Northern China) [29]. The INTERMAP study, based in Japan, China, the UK, and the 
USA, that used two consecutive 24-h dietary recalls and one 24-h urine collection to 
estimate sodium intake confirmed that highest mean sodium excretion was in Northern 
China [30, 31]. The largest study to report global variations in sodium intake is the 
Prospective Urban Rural Epidemiological Study (PURE Study), which included 628 
communities in 18 countries and reported a mean intake of 4.9 g/day [16].

Dietary sources of sodium intake may be discretionary (added during cooking or 
at the table) or nondiscretionary (processed or preprepared foods) [32]. The ratio of 
discretionary to nondiscretionary use varies significantly between regions [33]. For 
example, in the USA, mean sodium intake per day is 3660 mg with 29% from added 
salt, compared to Japan with a mean sodium intake per day of 4651 mg with 9.5% 
from added salt [33].
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40.4	 �Sodium Intake and Blood Pressure (Physiology)

Sodium is essential to mammalian physiology [34], and our appetite for sodium, in 
low sodium intake settings, is controlled by neural mechanisms in response to periph-
eral hormonal signals (principally angiotensin II and aldosterone). Sodium is required 
to maintain osmotic pressure and retain water in the extracellular space [6], achieved 
by balancing dietary sodium intake, storage, and excretion. The relationship of sodium 
intake with blood pressure spans a continuum from physiologic role in maintenance 
of blood pressure to pathologic determinants of hypertension and cardiovascular dis-
ease. Our understanding of how excess sodium intake causes increases blood pressure 
and risk of cardiovascular disease continues to evolve, as does our understanding of 
the effects of low sodium intake on physiologic and clinical outcomes.

Sodium Intake and Blood Pressure: A change in blood pressure with high sodium 
intake is observed in a proportion of the population and is termed ‘salt sensitivity’. 
Although arbitrarily defined in a binary manner (10% increase in blood pressure 
with high sodium load compared to low sodium intake), salt sensitivity is more 
accurately considered a continuous characteristic [35]. Salt sensitivity is more com-
mon in blacks than whites and with increasing age, but not significantly associated 
with obesity or gender [36]. Sodium intake may also modify the circadian pattern, 
and individuals may be more or less salt sensitive depending on the time of day that 
sodium was consumed [37].

Traditional theories propose that the key mechanism underlying the pressor effect 
in salt-sensitive individuals is impaired renal sodium excretion leading to expanded 
extracellular fluid volume and resultant hypertension [35], and salt-resistant individu-
als rapidly excrete sodium in response to a sodium load [38]. In the setting of higher 
sodium intake, sodium retention is proposed to arise due to increases in the activity of 
sodium transporters and Na/K/ATPase activity [39], sympathetic activity (through 
effects on the Na/H exchanger) [40], and angiotensin II, which increases the activity 
of epithelial sodium channels (ENaC) [41]. ENaC activity is also increased by aldo-
sterone, which physiologically leads to vasodilatation through nitric oxide generation 
in the endothelium. However, hypertension may lead to endothelial dysfunction and 
denudation, promoting sodium entry into vascular smooth muscle causing vasocon-
striction [42]. Animal studies also suggest that higher sodium intake leads to upregu-
lated expression of serum- and glucocorticoid-inducible kinase 1 (SGK1) which 
further mediates mineralocorticoid receptors and its effect on ENaC [43].

The central role of the kidney in blood pressure regulation is supported by animal 
experiments which report increased blood pressure in a normotensive rat after trans-
plantation of a kidney from a salt sensitive hypertensive rat [44, 45] and increased 
activity of the Na/H exchanger [46]. Genome-wide association studies (GWAS) 
have also identified variants in the promoter of the UMOD gene, which encodes 
uromodulin (a protein commonly secreted in normal urine), which increase suscep-
tibility to salt sensitivity, hypertension, and kidney disease [47]. High sodium intake 
prompts the release of a “digitalis-like factor,” a stereoisomer of ouabain, from the 
adrenal glands and brain, increasing expression of activity of the renal sodium pump 
leading to increases in blood pressure [48, 49].
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Sodium retention may also increase intracellular fluid sodium concentration [48, 
50], stimulating the sodium-calcium exchanger type 1 driving calcium into vascular 
smooth muscle cells, membrane depolarization, and further intracellular calcium 
entry [51], leading to vasoconstriction, compounded by reduced nitric oxide synthe-
sis and increased asymmetric dimethyl L-arginine (an inhibitor of nitric oxide pro-
duction) [52].

Modifications in dietary sodium intake may result in parallel changes in plasma 
sodium in both normotensive and hypertensive individuals [53]. This may contribute 
to hypertension by promoting intracellular to extracellular fluid transfer, stimulating 
thirst, inducing pressor effects on the hypothalamus and RAAS [54], altered smooth 
muscle tension [55, 56], cellular hypertrophy of both arterial smooth muscle and 
cardiac myocytes [57], stiffened endothelium, and reducing nitric oxide release [58]. 
Although a UK study reported a 1 mmol/L increase in plasma sodium is associated 
with a 1 mmHg increase in systolic blood pressure, this was not confirmed in an 
analysis of normotensive participants from the Framingham Heart Study [59].

The effects of sodium are also dependent on the associated counter anion, as only 
sodium chloride ingestion is associated with hypertension [60]. In addition, the 
hypertensive effect of increased sodium intake may be attenuated by increased 
potassium intake, due to increased serum potassium which stimulates the sodium 
pump and opens potassium channels, leading to hyperpolarization of the endothelial 
cell and vasodilatation [61, 62]. This subsequently leads to decreased cytosolic cal-
cium in vascular smooth muscle, further promoting vasodilatation. In the kidney, 
higher potassium intake inhibits sympathetic activity and angiotensin II activity, 
reducing the reabsorption of sodium [39]. The importance of the sodium/potassium 
balance is also highlighted by a study which reported reduced muscle potassium in 
participants with hypertension compared to healthy normotensive controls [63].

Although most research focuses on daily sodium intake, based on the assumption 
that the majority of consumed sodium is excreted, total body sodium and sodium 
storage may play a significant role in hypertension, calling traditional theories of the 
association between sodium and hypertension into question [64]. Blood pressure 
and blood volume remained essentially unchanged in salt-resistant normotensive 
individuals in response to significant sodium loading, despite significant sodium 
retention [65, 66]. A study of 32 healthy male test subjects in a metabolic ward with 
varied sodium intake (50–550 mmol/day) reported large amounts of sodium reten-
tion but minimal change in blood pressure [67]. Subsequent studies report that total 
body sodium fluctuates independently of intake, body weight, or extracellular water 
[19], as even at fixed dietary sodium intake, an infradian or circaseptan rhythmicity 
is observed in 24-h urine collections for sodium [20, 21].

Animal and human studies demonstrate a capacity to retain large amounts of 
sodium, without the associated amount of water, due to an ability to store sodium in 
an osmotically inactive form in the interstitium [67, 68]. A major site of sodium 
storage is the skin, where sodium binds to negatively charged glycosaminoglycans 
[69]. The skin acts as a buffering compartment for sodium, which may be accessed 
by monocyte phagocytic system cells that sense sodium via tonicity-responsive 
enhancer binding protein (TonBEP), which signals vascular endothelial growth 
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factor-C (VEGF-C) to increase the lymph capillary network to clear sodium from 
skin storage [70]. Importantly, others propose that the storage of osmotically inac-
tive sodium may also occur in the glycocalyx of endothelial linings, limiting the 
ability of plasma sodium ions to enter the endothelium, triggering other mecha-
nisms of hypertension [71, 72], which may be exaggerated by endothelial dysfunc-
tion seen with arterial hypertension.

Acute sodium loading in normotensive salt-resistant individuals is associated 
with increased stroke volume, cardiac output, and blood volume, with minimal 
change in blood pressure [64]. Similar findings were observed with chronic sodium 
loading in salt-resistant subjects, but not in salt-sensitive subjects. Importantly, 
sodium loading in normal subjects has been associated with increases in stroke vol-
ume, cardiac output, and blood volume, without increases in blood pressure in salt-
sensitive and salt-resistant normotensives [64]. This suggests that an important 
determinant is peripheral vascular resistance, not dependent on renal or extrarenal 
sodium handling, where sodium loading results in a reduction in peripheral resis-
tance in those who do not have an increase in blood pressure (salt resistant), whereas 
those experiencing a rise in blood pressure (i.e., salt sensitive) have a muted response 
[73]. A study of 21 normotensive human volunteers reported that those with salt 
sensitivity had higher blood pressure in response to sodium loading, due to increased 
total peripheral resistance [74]. Importantly, those with salt sensitivity were found 
to be unable to modulate total peripheral resistance in response to salt depletion and 
an inability to vasodilate during salt loading, proposed to be due to differences in 
sodium storage in the interstitium.

Other Physiologic Effects of Low Sodium Intake: While low sodium intake is 
associated with lower blood pressure, it may also result in RAAS activation 
(increases renin 3.6-fold and stimulates aldosterone secretion 3.2-fold [75, 76]) and 
may have adverse effects on the lipid profile [77] or other biomarkers (including 
C-reactive protein (CRP), interleukin (IL-6), troponin, B-natriuretic peptide (BNP), 
and uromodulin [47, 78–80]).

Reductions in the dietary intake of sodium have also been associated with sym-
pathetic activation—specifically increases in urinary norepinephrine levels and 
plasma norepinephrine concentrations—as well as norepinephrine spillover and 
increased efferent postganglionic sympathetic nerve activity [81]. This may also 
lead to impaired baroreceptor modulation of vagal and sympathetic cardiovascular 
outflow (i.e., lack of restrained sympathetic tone) [82]. A study of 11 patients with 
untreated mild to moderate essential hypertension reported that a reduction in uri-
nary sodium excretion (from a mean of 221 mmol/day to 75 mmol/day) was accom-
panied by increases in plasma renin activity, aldosterone, and muscle sympathetic 
nerve traffic activity (MSNA), as well as a reduction in baroreflex modulation of 
MSNA [81], which persisted beyond the initial period of sodium reduction. Indeed, 
increased sodium intake is recommended in patients with symptomatic orthostatic 
hypotension. An animal study, where apolipoprotein E mice were given a low-salt 
diet for 6 weeks, results in a fourfold increase in plaque accumulation, in addition 
to activation of RAAS and increased vascular expression of inflammatory cytokines 
and adhesion molecules, which was attenuated with a high-salt diet [83].
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40.5	 �Sodium Intake and Blood Pressure (Epidemiology)

INTERSALT [2] included randomly sampled participants aged 20–50 years from 
52 centers in 39 countries (n = 10,079) who provided a 24-h urine collection for 
sodium. Sodium excretion was positively associated with systolic blood pressure 
(recorded as the mean of two readings) in 39 of the 52 centers, but a negative asso-
ciation was observed in 2 centers. There was a significant linear association between 
median 24-h urinary sodium excretion for all 52 centers and the slope of systolic 
blood pressure; however, four isolated populations with both low sodium excretion 
and low median blood pressure (Yanomami Indians in Brazil and Xingu in Brazil, 
Papua New Guinea, and Kenya) strongly influenced the observed associations. 
When these four populations were excluded, there was loss of statistical signifi-
cance between sodium excretion and blood pressure.

INTERMAP [30] was an international cooperative multi-sample cross-sectional 
population study of men and women aged 40–50 years from China, Japan, the UK, 
and the USA (n = 4680) where each participant provided four 24-h dietary recalls 
and two timed 24-h urine samples. Estimated dietary sodium intake was positively 
associated with blood pressure [84]. INTERMAP also reported that other dietary 
components may have important blood pressure effects, specifically sugar sweet-
ened beverages, whose effects were further exaggerated in those with the highest 
estimated sodium intake [85].

The European Prospective Investigation into Cancer in Norfolk (EPIC-Norfolk) 
study included community-dwelling adults aged 45–79 years that were unselectively 
recruited from general practice age-sex registers in the UK. Participants completed 
health and lifestyle questionnaires and provided casual urine specimens, 7-day diet 
diaries, and 24-h urine collections (in a subset). Increases in urinary sodium to creati-
nine ratio were positively associated with blood systolic and diastolic blood pressure 
in men and women, independent of hypertension, age, and sex [86].

The Prospective Urban Rural Epidemiology (PURE) study included 102,216 
adults from 18 countries where the Kawasaki formula [23] was applied to results from 
fasting morning urine samples to estimate 24-h sodium excretion. These analyses 
reported a positive association between sodium excretion and systolic and diastolic 
blood pressure in all regions [16]. The slope of the association was less steep in the 
Middle East than other regions, and the observed association was nonlinear with a 
steeper slope seen at sodium excretion >5  g/day. The magnitude of association 
between sodium intake and blood pressure was largest in older individuals, those with 
high sodium intake, those with hypertension, and those with low potassium intake.

40.6	 �Sodium Intake and Blood Pressure (Clinical Trials)

Dietary sodium restriction for the management of hypertension was first reported in 
1948 when Kempner et al. introduced the rice diet [7]. Since then, multiple clinical 
trials have been performed with the objective of providing robust data about the role 
of dietary modification in the treatment of blood pressure, with TONE and TOHP 
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trials being the longest in duration and the DASH-Sodium trial exerting most influ-
ence on target sodium intake recommended by guidelines.

Short-Term Trial: The Dietary Approaches to Stop Hypertension (DASH) trial 
was a crossover trial that included adults (≥22  years old) with blood pres-
sure >120/80 mmHg up to stage 1 hypertension (defined as systolic blood pressure 
up to 159 mmHg or diastolic blood pressure up to 95 mmHg). Participants were 
randomized to three levels of dietary salt intake (low, intermediate, or high) on two 
different diets (the normal American diet or the DASH diet which is rich in fruits, 
vegetables, and low-fat dairy products). Participants completed a 2-week run-in 
period where all consumed a high-sodium control diet and were then randomized to 
one of the diets and one of the salt targets for 30 consecutive days. A 24-h urine col-
lection was completed during the screening period and during the last week of each 
intervention period, and dietary adherence was determined by reviewing food dia-
ries or eating meals on site. For those randomized to the high salt intake, achieved 
dietary sodium intake was 144 mmol/day (DASH diet) and 141 mmol/day (control 
diet); for the intermediate salt intake, achieved dietary sodium intake was 107 mmol/
day (DASH diet) and 106  mmol/day (control diet); and for the low salt intake, 
achieved dietary sodium intake was 67 mmol/day (DASH diet) and 64 mmol/day 
(control diet). Reduction in dietary sodium intake was associated with a reduction 
in blood pressure, but the effects were greater in those on the DASH diet and in 
those of African origin and older participants [87]. A reduction in dietary sodium 
intake and the DASH diet resulted in a decrease in systolic blood pressure of 
7.1 mmHg in participants who were normotensive at baseline and a reduction of 
11.5 mmHg in participants with hypertension at baseline [88].

Longer-Term Clinical Trials: The Trials of Hypertension Prevention (TOHP) tri-
als included participants aged 30–54 years who had high-normal diastolic blood 
pressure (80–89 mmHg) and not taking antihypertensive medications for the pre-
ceding 2 months and tested multiple interventions (n = 2142). Lifestyle interven-
tions were provided by nutritionists, psychologists, or other counselors who focused 
on shopping, cooking, and food selection behaviors to reduce caloric intake (weight 
reduction) or sodium intake (sodium reduction) or provided education on stress 
management. The sodium reduction intervention reduced urinary sodium excretion 
by 50 mmol/day at 6 months and by 40 mmol/day at 36 months; at 6 months, blood 
pressure had reduced by 2.9/1.6 mmHg but only 1.3/0.9 mmHg at 36 months [89]. 
Therefore, trials with longer term follow-up are needed to determine if sodium 
reduction results in clinically meaningful reductions in blood pressure.

The Trial of Non-Pharmacological Interventions in the Elderly (TONE) included 
participants aged 60–80 years with an average of nine blood pressure measurements 
with average systolic blood pressure  <145  mmHg and diastolic blood pres-
sure <85 mmHg, on a single antihypertensive agent or a single combination regimen 
(consisting of a diuretic and a non-diuretic agent). Participants were excluded if 
they had a history of recent cardiovascular disease (heart attack, stroke, angina, 
heart failure) or diabetes. Interventions included sodium reduction (target sodium 
intake of 80 mmol/day measured by 24-h urine collection) and weight reduction 
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(goal of >4.5 kg [10 lb] sustained weight loss) delivered by nutritionists and exer-
cise counselors through a combination of small group and individual meetings. The 
primary endpoint of the trial was the occurrence of high blood pressure at one or 
more TONE study visits following attempted withdrawal of antihypertensive medi-
cations. Sodium reduction intervention resulted in a decrease in urinary sodium 
excretion of 45.2  mmol/day at 9 months, 44.6  mmol/day at 18  months, and 
39.8 mmol/day at 30 months. Sodium reduction led to a reduction in blood pressure 
of 3.4/1.9 mmHg [4].

A cluster randomized trial of 29 primary schools (n = 279 children and n = 832 
family members) in urban China tested an educational intervention highlighting the 
harmful effects of sodium intake and included strategies to reduce sodium intake 
over three and a half months. Sodium intake was reduced by a mean of 0.8 g/day 
(from a baseline of 4.7 g/day) with an overall increase in blood pressure, although 
significantly less of an increase was observed in the intervention group [90].

Multiple meta-analyses of clinical trials testing the ability of dietary sodium 
reduction to reduce blood pressure have been completed, reporting variable magni-
tudes of blood pressure reduction with reduction in dietary sodium intake (Tables 
40.1 and 40.2). Clinical trials have also tested if salt substitutes (i.e., replacing a 
proportion sodium chloride with potassium chloride or magnesium sulfate) can 
reduce blood pressure. Meta-analyses of five trials (n = 1974) reports a mean blood 
pressure reduction of 4.9/1.5 mmHg [91]. Subsequently, the China Rural Health 
Initiative Sodium Reduction Study randomized 120 Chinese villages to community 
health education and salt substitution (with a subsidy in some villages) vs. controls 
[92]. Those randomized to intervention had a 0.3 g reduction in daily sodium intake, 
but there was no significant difference in blood pressure.

Clinical trials of dietary sodium reduction have also been completed in other 
populations. A pilot study of 38 patients with heart failure randomized participants 
to low (1500 mg/day) or moderate (2300 mg/day) sodium intake and after 6 months 
showed sodium reduction to be feasible and accompanied by a reduction B-type 
natriuretic peptide in the low sodium group [93]. A crossover trial of 20 participants 
with hypertensive chronic kidney disease (CKD) showed that low sodium intake 
(mean 75  mmol/day) resulted in lower blood pressure and proteinuria than high 
sodium intake (mean 168 mmol/day); however low sodium intake also resulted in 
increases in plasma renin and aldosterone [94].

40.7	 �Ongoing Clinical Trials

The China Salt Substitute and Stroke Study (SSaSS) is a large cluster randomized 
trial of >21,000 participants in 600 villages that has completed recruitment and tests 
the effect of salt substitution on stroke risk over 5  years of follow-up [95]. The 
Prevent Adverse Outcomes in Heart Failure by Limiting Sodium (PROHIBIT) 
Study is currently recruiting participants with heart failure and will test the effect of 
a 12-week dietary intervention where participants receive food with either 1500 or 
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3000 mg/day of sodium [96]. The SODIUM-HF trial is also currently recruiting 
participants with heart failure to test the effect of a low sodium diet (1500 mg/day) 
vs. usual care on a composite outcome of all-cause mortality, cardiovascular hospi-
talization, and cardiovascular emergency department visits over 12-month follow-
up [97]. The Sodium Intake in Chronic Kidney Disease Study (STICK) is also 
currently recruiting participants with chronic kidney disease (eGFR 30–60  mL/
min/1.73m2) to test if sodium reduction (<2300 mg/day) vs. general healthy eating 
guidelines reduces progression of kidney disease over 2 years [98].

Table 40.1  Meta-analyses of sodium trials

Author Included trials Outcome
Law et al., 
1991  [115]

68 crossover trials
10 randomized trials

SBP reduction of 5 mmHg overall, but reduction 
of 7 mmHg in hypertensives

Midgley 
et al., 1996 
[116]

56 trials monitored by timed 
sodium excretion

Mean reduction in 24-h urinary sodium excretion 
of 95 mmol in hypertensives (n = 1131) and 
125 mmol in normotensives (n = 2374). Per 
100 mmol reduction in urinary sodium excretion 
per day, a reduction in BP of 3.7/0.9 mmHg in 
hypertensives and by 1.0/0.1 mmHg in 
normotensives

Cutler 
et al., 1997  
[117]

32 trials with outcome data 
for 2365 subjects

Reducing sodium resulted in blood pressure 
reduction of 4.8/2.5 mmHg in hypertensives and 
1.9/1.1 mmHg in normotensives. Per 100 mmol 
reduction, BP reduction of 5.8/2.5 mmHg in 
hypertensives and 2.3/1.4 mmHg in normotensives

Graudal 
et al., 1998 
[75]

59 trials of hypertensives and 
56 trials of normotensives

In hypertensives, mean reduction of sodium intake 
of 118 mmol/day reduced BP by 3.9/1.9 mmHg. 
In normotensives, mean reduction of sodium 
intake of 160 mmol/day reduced blood pressure  
by 1.2/0.3 mmHg

Alam et al., 
1999  [118]

11 trials of ≥ 9-week 
duration of high/low sodium 
diets

A chronic high sodium diet increased BP by 
5.6/3.5 mmHg, with increase in BP of 
5.5/2.6 mmHg in trials of participants ≥60 years 
and 3.3/2.7 mmHg in participants with mean age 
close to 60 years

Hooper 
et al., 2002 
[119]

11 trials of interventions of 
≥6-month duration

With sodium reduction of 35.5 mmol/day blood 
pressure was reduced by 1.1/0.6 mmHg at 
13–60 months

He et al., 
2002  [120]

28 trials (17 in hypertensives 
and 11 in normotensives) 
with modest reduction in salt 
intake and a duration of 
≥4 weeks

In hypertensives, the mean reduction in sodium 
was 78 mmol/day with a BP reduction of 
5.0/2.7 mmHg. In normotensives, the mean 
reduction in sodium was 74 mmol/day with a BP 
reduction of 2.0/1.0 mmHg. For a 100 mmol 
reduction in sodium, BP was predicted to fall by 
7.1/3.9 mmHg in hypertensives and by 
3.6/1.7 mmHg in normotensives

He et al., 
2013 [10]

34 trials of duration of 
≥4 weeks

Reduction in urinary sodium of 75 mmol/day was 
associated with a BP reduction of 
4.28/2.06 mmHg. BP reduced by 5.39/2.82 mmHg 
in hypertensives and by 2.42/1.00 mmHg in 
normotensives
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40.8	 �Generalizability of Sodium Reduction

Reducing dietary sodium intake in the population to levels achieved in longer-term 
clinical trials (TOHP and TONE trials) may be difficult in the general population, as 
the nature of dietary counseling interventions are resource intensive. Participants in 

Table 40.2  Estimates of effect of reduced sodium on systolic and diastolic blood pressure in 
adults overall and by subgroup (Adapted [28])

Subgroup
No. of 
studies

No. of 
participantsa

Systolic blood 
pressure

Diastolic blood 
pressure

I2

Effect estimate: 
mean 
difference 
(95% CI)b,c I2

Effect 
estimate: mean 
difference 
(95% CI)

Overall 36 6736 65 −3.39 (−4.31 
to −2.46)

60 −1.54 (−2.11 
to −0.98)

Blood pressure status at 
baseline:
 � No hypertension 7 3067 61 −1.38 (−2.74 

to −0.02)
38 −0.58 (−1.29 

to 0.14)
 � Hypertension 24 2273 13 −4.06 (−5.15 

to −2.96)
29 −2.26 (−3.02 

to −1.50)
Relative sodium 
reduction in 
intervention group:
 � <1/3 of control 8 3995 (4001) 46 −1.45 (−2.29 

to −0.60)
38 −0.74 (−1.28 

to −0.19)
 � ≥1/3 of control 30 3521 55 −3.79 (−4.82 

to −2.75)
55 −1.68 (−2.34 

to −1.02)
Trial duration (months):
 � <3 31 3351 51 −4.07 (−5.12 

to −3.02)
49 −1.67 (−2.33 

to −1.02)
 � 3–6 5 2817 67 −1.91 (−3.60 

to −0.23)
67 −1.33 (−2.50 

to −0.15)
 � >6 3 2862 59 −0.88 (−2.00 

to 0.23)
56 −0.45 (−1.25 

to 0.34)
Sex:
 � Maled 2 53 0 −9.10 (−16.63 

to −1.57)
0 −4.83 (−8.98 

to −0.68)
 � Mixed 34 6749 65 −3.34 (−4.25 

to −2.42)
60 −1.50 (−2.07 

to −0.94)
Study design:
 � Parallel 16 4147 44 −2.47 (−3.51 

to −1.43)
52 −1.33 (−2.04 

to −0.62)
 � Crossover 22 2849 63 −4.04 (−5.27 

to −2.81)
54 −1.70 (−2.43 

to −0.97)
aValues in brackets relate to diastolic blood pressure. I2 is a measure of heterogeneity with higher 
values suggesting higher heterogeneity
bInverse variance, random effects model
cNegative means differences represent greater decreases in intervention versus control
dNo studies reported results for women only
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nutrition clinical trials are likely to be those most receptive to dietary counseling 
and as such represent the ideal population to test a dietary intervention. Efforts to 
reduce sodium content of manufactured and preprepared foods may be challenging 
for some participants as they cannot directly control the sodium added to foods and 
will require the involvement of the food industry, which will vary significantly 
around the world. A recent systematic review reported an increasing number of 
countries with national sodium reduction strategies, which includes industry 
engagement, sodium content targets for foods, education of consumers, labeling, 
taxation on high-sodium-containing foods, and interventions targeting public insti-
tutions [99]. In addition, there is a paucity of data on sodium reduction in low- or 
middle-income countries and limited activity of sodium reduction strategies.

40.9	 �Effects of Reduced Sodium Intake on Mortality 
and Cardiovascular Events

Current guidelines advocating low sodium diets assume that reductions in blood 
pressure will lead to reductions in cardiovascular morbidity and mortality, as hyper-
tension is a significant modifiable risk factor for cardiovascular disease. However, 
no large long-term clinical trial has definitively shown that long-term sodium reduc-
tion results in reductions in cardiovascular disease. Meta-analyses of clinical trials, 
mostly designed to determine the effects of reduced sodium intake on blood pres-
sure, have been completed. A recent Cochrane review concluded that there was 
insufficient power to determine a treatment effect of reducing sodium intake, 
although one analysis did report a 14% relative risk reduction in cardiovascular 
events in participant randomized to reduced sodium intake. However, one trial 
exerted a large effect on the estimate; a cluster randomized controlled trial of kitch-
ens in Taiwanese veteran retirement homes, where potassium-enriched salt was 
used to replace sodium, reported a reduction in cardiovascular mortality (HR 0.59, 
95% CI 0.37–0.95) in those receiving potassium-enriched salt [100]. In that trial, 
sodium intake was reduced from high to moderate range, rather than achieving low 
sodium intake, and potassium intake was increased, which meant that determining 
the independent effects of sodium reduction was not possible. Also included in that 
meta-analysis was an extended observational follow-up analysis of the TOHP trials, 
which independently reported a nonsignificant trend toward a reduction in cardio-
vascular morbidity and mortality with low sodium (<2.3 g/day excreted sodium), 
compared to excretion of 3.6–4.8 g/day [18]. However, there was a high rate of loss 
to follow-up (23%), and data was unavailable for a further one third of participants, 
meaning that half of the participants of the trials were excluded from these analyses 
which were based on 193 cardiovascular events or deaths.

Prospective cohort studies are the largest studies to evaluate the association 
between sodium intake and health outcomes, such as mortality and major cardiovas-
cular events. Analyses of the ONTARGET and TRANSCEND trial cohorts (n = 28,880 
at high cardiovascular risk) revealed a J-shaped association between sodium intake 
and cardiovascular mortality, with an increased risk in those consuming <3 or >6 g/
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day [101]. The PURE study, a prospective cohort (n  =  101,945), reported similar 
results, where an increased risk of death or major cardiovascular event was seen with 
sodium excretion of <3  or >7  g/day [102]. A European prospective cohort study 
(n = 3681) reported that lower sodium excretion was associated with reductions in 
systolic (but not diastolic) blood pressure, but lower sodium excretion was associated 
with increased cardiovascular mortality [103]. Similarly, a prospective cohort study of 
patients with type 1 diabetes mellitus (n  =  2807) reported a nonlinear association 
between urinary sodium excretion and mortality, with an increased risk of mortality in 
those with either the lowest or highest sodium excretion [104]. A French, prospective 
cohort study (n = 1439) of participants with type 2 diabetes reported a J-shaped asso-
ciation between sodium excretion and cardiovascular mortality [105], and EPIC-
Norfolk (n = 19,857) reported a J-shaped association between estimated 24-h urinary 
sodium excretion and heart failure [106]. The Health, Aging, and Body Composition 
(Health ABC) study (n = 2642) also reported that sodium intake was not associated 
with mortality, cardiovascular disease, or heart failure [107]. High sodium intake has 
also been associated with adverse renal outcomes, but there were inconsistent findings 
from studies comparing low to moderate sodium intake [108].

The association between dietary sodium intake and cardiovascular disease is not 
uniform in all populations. Analysis of the Prevention of Renal and Vascular End-
stage Disease (PREVEND) study of adults without cardiovascular or kidney disease 
(n = 7453) reported that high sodium intake was associated with an increased risk of 
cardiovascular events only in those with hypertension [109]. Similarly, an increased 
cardiovascular risk with higher sodium intake was seen only in those with hyperten-
sion from the PURE study, but the increased risk in those with low sodium intake 
was independent of hypertension [102]. Adjusted for hypertension and/or baseline 
blood pressure have been included in multiple studies, without materially changing 
observations, suggesting that the association is only partly mediated by blood pres-
sure. Although diabetes mellitus does not appear to act as an effect modifier for the 
association with clinical outcomes, obesity may further increase the risk [110]. In 
addition, other dietary factors, including fruit and vegetable intake and overall diet 
quality, are important effect modifiers, likely mediated by dietary potassium intake 
[111–113]. Taken together, the body of observational studies indicate a J-shaped 
association between sodium intake and cardiovascular disease [9, 114], despite 
reducing blood pressure.

�Conclusion

High sodium intake is an important determinant of hypertension, mediated by 
numerous mechanisms. A reduction in high sodium intake (>5  g/day) lowers 
blood pressure and is consistently associated with a reduced risk of mortality and 
cardiovascular events. While reducing sodium intake from moderate intake range 
(3–5 g/day) to low intake levels (<2 g/day) also lowers blood pressure, there is 
no convincing evidence that it translates into lower rates of cardiovascular events, 
although definitive clinical trials are lacking. Therefore, reducing high sodium 
intake is an important public health target, and definitive clinical trials are 
required to determine whether moderate or low sodium intake is optimal for 
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cardiovascular health. Future research is required to identify simple and valid 
methods of estimating sodium intake in individuals and further evolution of our 
understanding of the mechanism through which differing levels of sodium intake 
affect cardiovascular health.
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41.1	 �Introduction

Primary hypertension is a complex polygenic condition that is highly modifiable via 
environmental influences such as salt intake and obesity. Greater than 60% of the 
US population above the age of 60 has hypertension and 19% of the population 
between 18 and 59 years of age [1]. However, only half have their hypertension 
controlled [2, 3]. Hypertension is exceedingly common among patients with type 1 
and type 2 diabetes mellitus. When diagnosed with type 2 diabetes mellitus (DM2), 
39% of individuals already have hypertension [4]. Among patients with type 1 dia-
betes mellitus (DM1), the incidence of hypertension increases significantly every 
decade after diagnosis, with a third of patients being hypertensive 20 years after a 
diagnosis of DM1 [5].

Diabetes mellitus, hypertension, and metabolic syndrome are a constellation of 
environmental and hormonal interactions that result in increased risk for macrovas-
cular and microvascular complications. Early treatment of hypertension in the dia-
betic population leads to improvement in both sets of complications. Modification 
of risk factors in diabetic patients is crucial given they are at elevated risk of stroke, 
myocardial infarction, and heart failure. This is even more essential when acknowl-
edging the fact that no substantial randomized clinical trial of glucose-lowering 
therapy demonstrates a significant decrease in major adverse cardiovascular events 
(although glucose-lowering therapy clearly decreases microvascular events such as 
nephropathy and retinopathy) [6].

The following chapter will address the pathogenesis of hypertension and diabe-
tes mellitus. The controversial question of what level of blood pressure (BP) control 
should be targeted in patients with diabetes will then be discussed, with a focus on 
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the clinical trial data that supports these targets. In addition, the authors will offer 
data to support certain pharmacotherapy choices in patients with coexisting hyper-
tension and diabetes mellitus.

41.2	 �Pathophysiology

Contributing factors in the pathogenesis of hypertension in diabetes mellitus are mul-
tifactorial. For many years, it is been recognized that hypertension is common to both 
obese and non-insulin-dependent diabetic subjects [7–9]. There are likely four sig-
nificant pathogenic contributors to the high coincidence of diabetes and hyperten-
sion. The development of diabetic nephropathy is clearly a factor. In patients with 
DM1, the development of hypertension strongly correlates with the degree of albu-
minuria and progression of diabetic kidney disease [10]. This differs from DM2 
where moderate albuminuria does not necessarily serve as a prelude to the develop-
ment of hypertension [4].

Other principal factors include volume expansion, hyperinsulinemia, and increased 
arterial stiffness. The contribution of volume expansion is likely due to sodium reten-
tion induced via insulin and an increase in filtered glucose load due to hyperglycemia 
[10, 11]. In the setting of moderate hyperglycemia, excess glucose is reabsorbed in the 
proximal tubule of the kidney by a sodium-glucose cotransporter and contributes to a 
rise in sodium reabsorption [11]. Lowering dietary sodium intake can attenuate this 
reabsorption. Elevated serum levels of insulin, due to exogenous insulin or insulin 
resistance in DM2, can also cause a significant hypertensive response although this 
has not been noted in all studies [12]. It may in fact be caused by concurrent weight 
gain with insulin treatment.

Finally, in patients with diabetes, evidence suggests they have increased vascular 
stiffness that produces a reduction in arterial distensibility, which likely contributes 
to a rise in systolic BP and ultimately an increased risk of death [13].

41.3	 �Goal Blood Pressure in Diabetic Patients

The benefits of treating hypertension within a diabetic population are clear; macrovas-
cular complications are prevented and progression of nephropathy and retinopathy are 
slowed with early treatment [14]. Before recent guideline updates, the prevailing the-
ory when treating hypertensive patients with diabetes mellitus was to treat to a BP goal 
of 130 mmHg systolic over 80 mmHg diastolic. This was noted in widely distributed 
guidelines such as the Seventh Report of the Joint National Committee on Prevention, 
Detection, Evaluation and Treatment of High Blood Pressure (JNC 7) [2] and subse-
quently in numerous sets of guidelines, such as those set forth by the American Diabetes 
Association [15]. These recommendations originated from retrospective data analyses 
that suggested an association of lower blood pressure with slower decline in chronic 
kidney disease and more significant cardiovascular risk reduction among diabetic 
patients. More recent clinical trials, and continued analytical appraisal of higher quality 
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evidence, have shifted this paradigm. It is not well established that lower blood pres-
sure goals in patients with DM, when compared to the nondiabetic population goals 
of <140/90 mmHg, improve outcomes. Given this shift, major society and guideline 
statements, such as the Eighth Joint National Committee (JNC 8) [3] and the American 
and International Societies of Hypertension (ASH/ISH) (16), have updated their posi-
tion and now recommend a BP goal of <140/90 mmHg in patients with diabetes (see 
Table 41.1).

There are numerous randomized clinical trials that demonstrate the benefits of 
treating hypertension within a diabetic population to a goal of less than 140/90 mmHg. 
Further a recent meta-analysis also demonstrated the substantial benefits of blood 
pressure lowering in patients with diabetes [17]. The most relevant of these trials 
include the United Kingdom Prospective Diabetes Study (UKPDS) trial [18], the 
Hypertension Optimal Treatment (HOT) trial [19], and the ADVANCE trial [20] 
(see Table 41.2).

Published in 1998, UKPDS was a trial studying 1148 subjects with DM2 and ran-
domized them (2:1) to a “tight” BP goal of <150/85 mmHg or a BP of <180/105 mmHg. 
BP control was attained using captopril and atenolol primarily. Subjects entered the 
study at a mean age of 56 years and BP of 160/94 mmHg. During a median follow-up 
of 8.4 years, the “tight” BP control group was able to achieve a BP of 144/82 mmHg, 
whereas the other achieved a BP of 154/87 mmHg. The <150/85 mmHg BP group 
demonstrated a 24% reduction in all DM-related endpoints, 32% reduction in deaths 
related to DM, and 44% reduction in strokes.

Also published in 1998 was data from the HOT trial. Studying almost 19,000 
patients, with approximately 3000 having diabetes, subjects were randomized to one 
of three target diastolic BPs, <80, <85, or <90 mmHg. The separation between the 
actual attained BPs of the three groups was minimal (144/85 mmHg, 141/83 mmHg, 
and 140/81 mmHg, respectively) and the overall trial outcome was negative. However, 
in a post hoc analysis of a small subset of patients that was not prespecified, the rela-
tive risk of a cardiovascular event among patients with diabetes in the lowest BP target 
group was significantly reduced compared to the highest target group.

The ADVANCE trial, published in 2007, is the only major placebo-controlled 
randomized trial that explicitly examined treatment with antihypertensive agents in 
DM2. Enrolled subjects were long-standing diabetics deemed at high risk for 

Table 41.1   Recent guidelines for treatment of hypertension in diabetes mellitus

Guideline
BP goal 
(mmHg)

Initial antihypertensive 
agent

BP for initial combo 
therapy

Beta-blockers—
first-line drug

JNC 8 <140/90 RAS blockers, CCB, or 
diuretic

≥160/100 No

ADA 2014 <140/80 RAS blockers Not addressed Not addressed
ESH/ESC 
2013

<140/85 RAS blockers, CCB, or 
diuretic

Patients with 
marked BP elevation

Yes

ASH/ISH 
2014

<140/90 RAS blockers, CCB, or 
diuretic

≥160/100 No (step 4)

RAS renin-angiotensin system blockers, i.e., ACE inhibitor or angiotensin receptor blockers; CCB, 
calcium channel blockers, BP, blood pressure
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cardiovascular disease. The trial compared a fixed combination of perindopril/
indapamide to placebo in more than 11,000 subjects. The mean baseline BP was 
145/81 mmHg, and subjects were followed for a mean of 4.3 years. There was no 
targeted BP to guide protocol therapy. The primary endpoints were macrovascular 
or microvascular events. The intervention group (i.e., those that received perindo-
pril and indapamide) demonstrated a significantly lower rate of events, a signifi-
cant decrease in mean BP (5.6/2.2 mmHg), and a lower rate of cardiovascular, as 
well as all-cause mortality. The mean BP achieved in the intervention arm was 
135/74  mmHg versus 140/76  mmHg in the control arm. Lower BPs in the 
ADVANCE trial were clearly associated with improved cardiovascular outcomes. 
Of note, this trial was not considered in the JNC 8 recommendations given that it 
was not based on targeted BP goals, and there was not a prespecified minimum 
baseline blood pressure [3].

In addition to the above studies demonstrating benefit of BP lowering to less than 
140 mmHg, randomized trials specifically address the issue of whether even lower 
BPs should be targeted in patients with diabetes (see Table  41.2). The most 

Table 41.2  Key randomized trials of blood pressure control in diabetes mellitus

Trial
Follow-up 
(years) No. of subjects

BP goal 
(mmHg)

BP achieved 
(mmHg) Main results

UKPDS 
(1998)

8.4 1148
758 “tight”
390 control

<150/85 
(tight) vs. 
<180/105 
(control)

144/82 (tight) 
and 154/87 
(control)

Tight control 
resulted in risk 
reduction in 
diabetes related 
endpoints and 
strokes

ACCORD 
(2010)

1 4733
2362 “intensive”
2371 control

<120 sys 
(intensive) 
vs. <140 sys 
(control)

119 sys 
(intensive) and 
134 sys 
(control)

No reduction in 
fatal and 
nonfatal 
cardiovascular 
events

ADVANCE 
(2007)

4.3 11,140
5569 
“intervention”
5571 placebo

None 135/74 
(intervention) 
and 40/76 
(control)

Intervention 
reduced risk of 
major vascular 
events, 
including death

SANDS 
(2008)

3 499
252 “aggressive”
247 “standard”

<115 sys 
(aggressive) 
vs. <130 sys 
(standard)a

117 sys 
(aggressive) 
and 129 sys 
(standard)

No difference in 
clinical 
cardiovascular 
events

Normotensive 
ABCD (2002)

5.3 480
237 “intensive”
243 placebo

10 mmHg 
below 
baseline dia 
(intensive) 
vs. 80–89 
dia 
(moderate)

128/75 
(intensive) and  
137/81 
(moderate)

No significant 
improvement in 
composite 
cardiovascular 
events

BP blood pressure, sys systolic, dia diastolic
aAlso included low-density lipoprotein cholesterol goals
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noteworthy of these trials (and the trial that drove the recommendation to relax BP 
control guidelines in diabetics) is the Action to Control Cardiovascular Risk in 
Diabetes blood pressure trial (ACCORD BP) [21], discussed below.

Previous BP treatment guidelines advocating treatment to a systolic BP of 
<130 mmHg were common; however there are no randomized control trials that 
support this level of control in preference to a systolic BP of <140 mmHg. With 
respect to diastolic BP, recommendations were to treat to a diastolic BP <80 mmHg; 
however again there are no good- or fair-quality randomized control trials that dem-
onstrate this greater need for more aggressive control [3, 16]. As such, BP goals of 
<140/90 mmHg, consistent with goals in the treatment of the general population of 
60 years of age or less, can be applied to diabetic patients as well.

Trials specifically addressing whether lower BPs should be targeted in patients 
with DM demonstrate no difference in primary outcomes with more intensive blood 
pressure lowering. This includes the smaller normotensive Appropriate Blood pres-
sure Control in Diabetes (ABCD) trial of 480 patients with DM2 that were ran-
domly assigned to moderate diastolic BP control (80–89 mmHg) via placebo or 
intensive control (10 mmHg below the patient’s baseline diastolic BP) via either 
enalapril or nisoldipine [22]. The intervention group achieved a BP of 128/75 mmHg 
and the control achieved a BP of 137/81. No difference in the primary endpoint of 
renal function as measured by creatinine clearance was seen, but certain secondary 
microvascular endpoints were significantly reduced. The intervention group did not 
demonstrate a reduction in the composite cardiovascular events with the lower dia-
stolic BP goal; however there was a significant reduction in stroke.

Another smaller randomized trial was the SANDS trial published in 2008. It 
studied approximately 500 American Indian subjects with DM2 and no prior cardio-
vascular disease, targeting a systolic BP and LDL cholesterol (<130  mmHg for 
systolic BP) and more intensive control (<115  mmHg) [23]. BPs attained after 
3 years of follow-up were 117 and 129 mmHg, respectively. No significant differ-
ence in clinical cardiovascular events was demonstrated, and aggressive therapy had 
significantly more adverse events related to antihypertensive medications.

As noted above, likely the major evidence driving the recent change in BP goals 
in patients with diabetes is the ACCORD BP trial [21]. Published in 2010, this ran-
domized study of 4733 subjects with DM2 and a baseline BP of 139/76 mmHg 
targeted systolic BP of <120 mmHg in the intensive control group and <140 mmHg 
in the standard therapy group. The primary composite outcome was nonfatal myo-
cardial infarction, nonfatal stroke, or death from cardiovascular causes, with mean 
follow-up of 4.7 years. Both groups achieved the desired BP (119 and 133 mmHg). 
There was no significant difference in the annual rate of the primary endpoint and 
no difference in all-cause mortality. The lower BP goal was associated with signifi-
cant reductions in total and nonfatal strokes; however significantly more serious 
adverse events occurred in the intensive therapy group.

Aside from randomized trials, post hoc analyses of trials that had large sub-
groups of patients with DM2 such as the International Verapamil SR-Trandolapril 
(INVEST) [24] and the Avoiding Cardiovascular Events in Combination Therapy in 
Patients Living with Systolic Hypertension (ACCOMPLISH) [25] also failed to 
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demonstrate a cardiovascular outcome benefit at a blood pressure below 
130/80 mmHg.

The finding that stroke risk is attenuated at lower BPs in the ACCORD trial is 
consistent with other studies such as ADVANCE [20], INVEST [24], and the 
Ongoing Telmisartan Alone and in Combination with Ramipril Global Endpoint 
Trial (ONTARGET) [26]. INVEST and ONTARGET were both large international 
clinical trials of blood pressure-lowering therapies of greater than 20,000 subjects, 
with diabetics comprising 37% and 28% of the study, respectively. Both demon-
strated a systolic below 130 mmHg that is associated with stroke reduction but no 
other CV risk reduction below that level of BP. In ACCORD, the most definitive 
study in the diabetic population to date, it is important to take note that the risk of 
serious adverse events (hypotension, syncope, arrhythmia, hyperkalemia, angio-
edema, and renal failure) associated with more aggressive BP control (3.3% inten-
sive vs. 1.3% in the standard arm). When coupled with the small absolute benefit in 
stroke reduction (1 in 89 patients at 5 years), the finding does not compel the authors 
of this article or recent guidelines to recommend a lower BP goal [3, 16, 21].

41.4	 �Diabetes, Hypertension, and Chronic Kidney Disease

The progression of diabetic nephropathy is clearly accelerated by uncontrolled 
BP. Patients with diabetic nephropathy and overt proteinuria (at least 500 mg/day) 
is the one subset of diabetic patients where evidence, although still not of high qual-
ity, reasonably suggests a lower systolic BP goal of <130/80 mmHg. This is due to 
data from a post hoc analysis of the Irbesartan Diabetic Nephropathy Trial (IDNT) 
[27]. This was published in 2005 and examined the cardiovascular outcomes in 
patients with DM, hypertension, and overt proteinuria when treated with irbesartan, 
amlodipine, or placebo (among other BP medications) to achieve a BP of 
<135/85 mmHg. Progressively lower systolic BP to 120 mmHg predicted a decrease 
in cardiovascular mortality and heart failure, but not myocardial infarction. A sys-
tolic BP <120 mmHg was associated with increased risk for CV deaths and heart 
failure events. Patients with diabetes and moderate albuminuria/no proteinuria 
should be treated to the same guidelines as those patients without renal dysfunction 
as there is no adequate data to support lower targets.

41.5	 �What About SPRINT-BP Results?

The landscape of hypertension management changed in late 2015 with the release 
of data from the National Institutes of Health funded Systolic Blood Pressure 
Intervention Trial (SPRINT) [28]. Performed after the similar NIH-funded afore-
mentioned ACCORD trial, this trial was performed in nondiabetic patients at high 
risk for cardiovascular events.

It demonstrated a clear cardiovascular and mortality benefit in nondiabetics with 
tighter blood pressure control (goal of <120 mmHg).
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The question then becomes, why were similar results not seen in an unquestion-
ably higher cardiovascular risk group of subjects in ACCORD? Multiple factors 
may account for this discrepancy, yet no one answer is applicable. SPRINT enrolled 
almost double the number of subjects than ACCORD, suggesting that ACCORD 
may have been underpowered to detect any differences. SPRINT included the clini-
cal endpoint of heart failure that was not used in ACCORD.  Interestingly, heart 
failure was the main driver of positive results with respect to the primary composite 
endpoint in SPRINT. SPRINT subjects were prescribed chlorthalidone as a diuretic 
when applicable, rather than hydrochlorothiazide, which was used more frequently 
in ACCORD. It is well established that hydrochlorothiazide is not as effective at 
lowering BP over 24 h as chlorthalidone [29].

Thus, with currently available evidence, patients should be treated to a goal BP 
of <140/90 mmHg if they have DM.

41.6	 �Choice of Pharmacotherapy

Similar to patients without DM, nonpharmacological treatments should be the first 
consideration for all clinicians when managing hypertension in patients with diabe-
tes mellitus. Weight loss, exercise, healthy dietary choices, smoking cessation, salt 
restriction, and alcohol moderation among other lifestyle modifications are critical. 
However, if goal BP is not reached within 3 months of implementing lifestyle modi-
fications, treatment with antihypertensive pharmacotherapy should commence.

Choosing an antihypertensive agent(s) in patients with diabetes mellitus is 
nuanced. It is well established that the amount of blood pressure reduction is the 
major determinant of cardiovascular risk reduction in all patients with hypertension, 
including those with diabetes [30]. The class or choice of blood pressure-lowering 
medication is considerably less important. This was the conclusion of multiple 
meta-analyses and the 2013 European Societies of Hypertension and Cardiology 
guideline [30]. However, if the clinician is given the opportunity to select antihyper-
tensive therapy, one should choose the most effective medications to reduce the 
patient’s risk of mortality, adverse cardiovascular events, and prevent progression of 
renal disease if present. Interestingly, choice of BP medication likely does not affect 
the progression of retinopathy given that comparative studies have not demonstrated 
superiority of one agent over another.

The recent Expert Panel Report (JNC 8) report does not clearly address the ideal 
choice of antihypertensive therapy in diabetic patients [3]. It suggests that in all 
nonblack patients, without chronic kidney disease, treatment can consist of a 
thiazide-type diuretic, angiotensin converting enzyme (ACE) inhibitor, angiotensin 
receptor blocker (ARB), or calcium channel blocker (CCB). Alternatively, in black 
patients without chronic kidney disease, a thiazide-type diuretic or CCB is recom-
mended. Naturally, patients with severely increased albuminuria (i.e., renal disease) 
should be treated with an ACE inhibitor or an ARB. Further, a strong argument can 
be made that in those patients with microalbuminuria, diabetes, and hypertension, 
an ACE or ARB should be first-line therapy as well.
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The results from the Antihypertensive and Lipid-Lowering Treatment to Prevent 
Heart Attack Trial (ALLHAT) [31] help inform our choice of antihypertensive ther-
apy in patients with and without DM. Results from the subgroup of DM patients 
were no different from the trial population as a whole. Amlodipine, lisinopril, and 
chlorthalidone all produced equivalent rates of the primary cardiovascular endpoint 
of nonfatal myocardial infarction and coronary heart disease death. However, 
chlorthalidone did result in significantly higher blood glucose levels in study sub-
jects, which is consistent with findings of thiazide diuretics, and should be a consid-
eration when trying to meet BP goals.

Beta-blockers and alpha-blockers are not appropriate first-line drug therapy in 
hypertensive diabetic patients (unless other significant factors such as recent myo-
cardial infarction or systolic dysfunction are present). Alpha-blockers, although as 
effective as CCBs and ACE inhibitors in lowering BP, should not be prescribed as 
initial or primary therapy for hypertension given their side effects and results of the 
ALLHAT trial that demonstrated an increased rate of heart failure with doxazosin 
compared to chlorthalidone [31]. The use of beta-blockers in hypertensive diabetics 
is slightly more nuanced. UKPDS demonstrates that atenolol is as effective as cap-
topril with respect to BP lowering and protection against microvascular disease 
[18]. However, multiple studies have demonstrated that beta-blockers such as meto-
prolol may result in worsening of glycemic control or increased incidence of new-
onset diabetes [32]. Carvedilol is a well-studied beta-blocker that is advantageous to 
use, if needed for heart rate and BP control, in diabetic patients. The GEMINI trial 
randomized 1235 diabetic hypertensive patients (already taking an ACE inhibitor or 
ARB) to carvedilol or metoprolol [33]. Carvedilol did not increase hemoglobin 
A1C, whereas metoprolol did, and resulted in an increase in a patient’s insulin sen-
sitivity, whereas metoprolol did not. Thus, if beta-blocker therapy is needed in a 
diabetic patient, carvedilol is likely the best pharmacological therapy.

One of the newest classes of glucose-lowering agents are sodium-glucose 
cotransporter 2 (SGLT2) inhibitors. They act by suppressing the cotransport of glu-
cose and sodium from the tubular lumen of renal proximal tubules to the blood and 
enhance the glucose excretion into urine. They ultimately result in actions similar to 
a loop diuretic and lower blood pressure. Larger-scale studies are needed to demon-
strate their effectiveness in reducing cardiovascular events and mortality; however 
recent data demonstrates a clear decrease in 24-h ambulatory BP with use of an 
SGLT2 inhibitor [34]. This class of medication may ultimately serve a dual purpose 
of controlling BP and blood glucose.

�Conclusion

Diabetes mellitus and hypertension will continue to contribute to cardiovascular 
morbidity and mortality if not treated appropriately. With the currently available 
evidence, aside from patients with overt proteinuria, patients with diabetes mel-
litus and hypertension should be treated to a goal BP of less than 140/90 mmHg. 
Based on the results of the SPRINT trial in late 2015  in nondiabetic patients, 
further thoughtful study and discourse about BP treatment goals and agents in 
patients with diabetes mellitus is warranted.
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42.1	 �Introduction

The worldwide prevalence of obesity has more than doubled since 1980. In the United 
States, more than one-third of adults and almost 20% of children are obese [1]. Obesity 
is a major cause of cardiovascular and renal diseases through several mechanisms 
including hypertension, dyslipidemia, impaired glucose homeostasis, and inflammation 
which together have been referred to as the “metabolic syndrome.” However, it is clear 
that visceral adiposity, not just increased body mass index (BMI), is the driving force 
for all of these disorders. Data from the Framingham Heart Study indicate that obesity 
accounts for approximately three-fourths of the risk for primary hypertension [2].
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The importance of obesity as a cause of hypertension is supported by (1) ani-
mal studies showing that excess weight gain raises blood pressure (BP), (2) clini-
cal studies showing that weight loss is effective in reducing BP in most 
hypertensive patients [3, 4], and (3) epidemiological studies showing that excess 
weight gain is one of the best predictors for development of hypertension. While 
not every obese person is “hypertensive” by current classifications 
(BP ≥ 140/90 mmHg), there is a linear relationship with body weight and BP, and 
weight loss reduces BP in most obese individuals. Excess weight gain shifts the 
BP frequency distribution to higher levels of BP so that obese individuals with 
“normotensive” BP have a higher BP than they would if they weighed less 
(Fig. 42.1.). Therefore, weight loss generally lowers BP in normotensive as well 
as in hypertensive obese subjects [5, 6].

Although some obese individuals have been classified as “metabolically healthy,” 
this may be a misnomer; compared to normal weight individuals, obese subjects 
who are metabolically healthy have higher prevalence of cardiometabolic risk fac-
tors including hypertension. Data from the Atherosclerosis Risk in Communities 
(ARIC) study showed that weight gain over a 3-year period was associated with 
larger increases in systolic and diastolic BP in metabolically healthy obese com-
pared to normal weight participants [7]. In the Look AHEAD trial of intensive life-
style interventions in diabetics [mean body mass index (BMI) = 36 kg/m2], even 
small reductions in body weight (~6%) led to significant reductions in systolic BP 
(~5 mmHg) [8]. Over a 10-year follow-up period in the Swedish Obese Subjects 
(SOS) study [9] (mean BMI 40.9 kg/m2 at baseline), weight loss (>10 kg, either 
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Fig. 42.1  Effect of excess weight gain to shift the frequency (y-axis) distribution of blood pres-
sure (x-axis) to higher levels so that obese individuals with “normotensive” BP have a higher BP 
than they would if they weighed less
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surgically or with lifestyle interventions) was required to significantly attenuate 
aging-associated increases in BP.

Emerging evidence suggests that low birth weight followed by excess weight 
gain in early childhood may increase risk for higher future throughout life. A recent 
prospective study examining linear growth in early life of almost 1000 children 
showed that rapid gains in BMI during the first 6 months of life and in preschool 
years may lead to higher systolic BP in mid-childhood, regardless of birth size [10]. 
These findings suggest that excess weight gain in early childhood may cause patho-
physiological changes that later lead to chronic hypertension.

Obesity is also a major risk factor for development of chronic kidney disease (CKD) 
through hypertension and diabetes. However, obesity may also cause renal dysfunction 
independent of diabetes and hypertension. Activation of neurohormonal systems and 
increased renal sodium reabsorption after excessive weight gain rapidly elevate BP and 
may initiate a vicious cycle that, in turn, leads to renal injury and increasingly severe, 
treatment resistant hypertension [11]. Here we discuss some of the mechanisms by 
which obesity may lead to hypertension and impaired renal function.

42.2	 �High BMI Versus Visceral Adiposity as a Risk Factor 
for Hypertension

While increases in body weight are associated with increased BP, differences in 
body composition, particularly visceral adiposity, appear to play a more important 
role. BMI is often used to describe a patient’s overweight/obesity status due to ease 
of measurement. However, it is clear that BMI has its limitations. For example, a 
220 pound muscular, well-trained athlete who is 6 ft tall would have a BMI in the 
“obese” range although the percentage of body fat might be lower than normal. 
While linear relationships between BMI and BP [12] exist on a population basis, 
other measures such as waist circumference or waist-to-hip ratio are better markers 
of visceral adiposity and cardiovascular risk [13]. Direct measures of visceral adi-
posity with magnetic resonance imaging (MRI) or computed tomography (CT) 
imaging provide even better assessment of hypertension risk.

Clinical and experimental animal studies suggest that specific fat depots such as 
renal sinus fat or perinephric fat are associated with increased BP and renal dys-
function, independent of BMI, or overall adiposity. The specific mechanisms by 
which fat depots in and around the kidneys contribute to the pathogenesis of hyper-
tension may include activation of the renin-angiotensin-aldosterone system (RAAS), 
lipotoxicity, or increased renal sodium reabsorption due to physical compression of 
the kidneys [11, 14].

42.3	 �Hemodynamic and Vascular Changes in Obesity

Experimental studies have provided mechanistic insights into the hemodynamic and 
renal structural and functional changes that occur in obesity. In dogs and rabbits, obe-
sity induced by a high-fat diet raises BP in less than 5  weeks [15, 16] and the 
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metabolic, cardiovascular, and renal changes that occur are similar to those observed 
in obese humans. Obesity is associated with increased extracellular volume expansion 
and increased tissue blood flow which increases venous return to the heart and cardiac 
output [15, 17]. Some of the increased tissue blood flow is due to secondary growth of 
these tissues as body weight and metabolic demands of these tissues increase. 
However, blood flow to some organs, namely, the kidneys, is increased even when 
expressed per gram of tissue weight, suggesting functional vasodilation [16, 17]. This 
may be related to increased metabolic rates in tissues such as the heart, skeletal mus-
cle, and kidneys, resulting in increased tissue oxygen consumption.

Even though resting tissue blood flow may be increased in obese individuals, 
blood flow “reserve” and exercise-induced increases in blood flow are reduced. This 
may be due partly to obesity-induced endothelial dysfunction and arterial stiffness 
[18]. Aortic stiffness, a characteristic of aging, is an independent risk factor for 
incident hypertension and cardiovascular disease and has been independently cor-
related with measures of adiposity. A longitudinal study of over 5000 older indi-
viduals demonstrated that multiple measures of adiposity (BMI, waist circumference, 
waist-to-hip ratio, and fat mass by impedance) were independently associated with 
increased aortic stiffening after adjustment for age, sex, ethnicity, and BP [19]. 
Arterial thickening and stiffness have also been observed in adolescents and young 
adults with severe obesity independent of changes in BP. Some of these early vas-
cular changes may be related to increased inflammation, oxidative stress, and endo-
thelial dysfunction. Markers such as C-reactive protein or IL-6 are commonly 
elevated in obese individuals with early vascular dysfunction [20].

42.4	 �Renal Structural and Functional Changes in Obesity

Obesity causes structural and functional changes in the kidneys that lead to increased 
sodium reabsorption and ultimately elevated BP and renal injury (Table 42.1). In 
experimental animals or humans, excess weight gain increases renal sodium reab-
sorption which, in turn, leads to compensatory renal vasodilation and increased glo-
merular filtration rate (GFR) [15]. With prolonged obesity and hypertension, the 
glomerular hyperfiltration eventually lessens, and there is a gradual decline in GFR 
associated with renal injury and nephron loss.

Structural changes in the kidneys occur rapidly after excess weight gain. In dogs 
placed on a high-fat diet for only 7–9 weeks, there was increased glomerular cell 
proliferation and enlargement of Bowman’s space, increased mesangial matrix, and 
thicker glomerular basement membranes [21]. These changes occurred despite 
modest increases in BP and no evidence of diabetes. Early in obesity, structural 
changes such as mesangial matrix deposition may protect against glomerular capil-
lary overstretching in the setting of increased glomerular hydrostatic pressure due to 
renal vasodilation and mildly elevated BP. Over time, however, these changes could 
ultimately reduce renal filtration leading to further increases in BP and renal injury.

Metabolic and neurohumoral derangements, including hyperglycemia, oxida-
tive stress, and activation of the SNS and RAAS, may exacerbate renal 
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dysfunction and injury in obesity. Common markers of renal injury such as GFR 
or serum creatinine may be misleading since GFR is likely to be increased in the 
early stages of obesity [22]. Other markers such as proteinuria may detect earlier 
stages of obesity-induced renal dysfunction in obesity even in the absence of 
hypertension or diabetes.

42.5	 �Physical Compression of the Kidneys

Abdominal obesity is associated with hypertension and CKD independently of 
overall adiposity or increased BMI, although there is generally a good association 
between BMI and visceral obesity. In a longitudinal study of normotensive partici-
pants enrolled in the Dallas Heart Study and followed for 7 years, BMI was associ-
ated with incident hypertension, but after adjusting for multiple covariates including 
visceral and subcutaneous adiposity measured by MRI, only visceral adiposity 
remained independently associated with incident hypertension [23]. Furthermore, 
other clinical studies quantitating specific visceral fat depots have demonstrated 
detrimental effects of fat in and around the kidneys. For example, in middle-aged 
and elderly individuals, renal sinus fat was independently associated with increased 
risk of Stage II hypertension (systolic BP ≥ 160 or diastolic BP ≥ 100 mmHg) and 
use of more antihypertensive medications [24]. In the Framingham Heart Study, 
individuals characterized as having “fatty kidneys” (increased perinephric fat) had 
a higher risk of hypertension (odds ratio 2.12) even after adjusting for BMI and total 
visceral fat [25]. Participants with “fatty kidneys” also had a 2.3-fold increased risk 
for incident CKD after adjustment for BMI and visceral fat.

The mechanisms by which visceral, perinephric, and renal sinus fat may lead to 
hypertension and renal injury are not completely understood. Physical compression 
of the kidneys by fat in and around the kidneys is one hypothesized mechanism 
(Fig.  42.2.). Intra-abdominal pressures correlate directly with sagittal abdominal 
diameter and are increased to as high as 40 mmHg in morbidly obese individuals 

Table 42.1  Renal structural and 
functional changes in obesity

Structural changes
Increased renal sinus and perinephric fat
Increased mesangial matrix deposition
Glomerular cell proliferation
Enlargement of Bowman’s space
Basement membrane thickening
Glomerulosclerosis
Increased renal medullary matrix
Functional changes
Increased renal interstitial hydrostatic pressure
Renal vasodilation
Impaired renal-pressure natriuresis
Increased renal tubular sodium reabsorption
Increased renin secretion
Early—Glomerular hyperfiltration
Late—Reduced glomerular filtration rate
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[26]. High intrarenal pressures may tend to reduce renal tubular flow in general, but 
the most compressible tubule segment is the thin loop of Henle in the renal medulla. 
Reduced renal tubular flow would cause more complete sodium reabsorption in the 
thick ascending loop (via the sodium-potassium-2chloride co-transporter), leading 
to reduced macula densa sodium chloride delivery. This, in turn, would increase 
GFR and renin secretion (via tubuloglomerular feedback) and angiotensin II forma-
tion which would further increase renal sodium reabsorption and BP [11]. Small 
increases (3–4 mmHg) in renal interstitial hydrostatic pressure may inhibit renal 
sodium reabsorption, but large increases of the magnitude observed in obese dogs 
(to around 19 mmHg) would increase sodium reabsorption [27].

42.6	 �Renin-Angiotensin-Aldosterone System

42.6.1	 �Role of Angiotensin II

Evidence from experimental and clinical studies suggests that the RAAS is activated 
in obesity and contributes to increased BP [28]. In humans, obesity is associated with 
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Fig. 42.2  Renal compression as a mechanism of obesity hypertension. Compression of the thin 
loop of Henle by renal sinus fat may lead to increased sodium reabsorption in the thick ascending 
loop of Henle. This would lead to reduced sodium chloride delivery to the macula densa cells 
which (through a tubuloglomerular feedback mechanism) would increase secretion of renin and 
glomerular filtration, both of which are observed in obese individuals prior to nephron injury
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increases in plasma renin activity (PRA), angiotensinogen, angiotensin II (Ang II), 
and aldosterone. Activation of the RAAS in obesity occurs despite sodium retention 
and elevated BP which would normally suppress renin secretion and decrease Ang II 
production.

Angiotensin converting enzyme inhibitors (ACEIs) and angiotensin receptor 
blockers (ARBs) attenuate sodium reabsorption, volume expansion, and increased 
BP in obese dogs fed a high-fat diet [29, 30]. RAAS blockade in obese Zucker rats 
lowers BP more than in lean rats despite lower than normal PRA, suggesting 
increased sensitivity to the BP effects of Ang II [31].

Ang II stimulates renal sodium reabsorption by three major mechanisms [28]: 
(1) activating multiple nephron epithelial sodium chloride transporters in proximal, 
loop of Henle, distal, and collecting tubules, (2) stimulating secretion of aldosterone 
which increases sodium chloride reabsorption in the late distal and collecting 
tubules, and (3) efferent arteriolar constriction which increases peritubular capillary 
reabsorption, renal tubular sodium reabsorption, and glomerular hydrostatic pres-
sure. Each of these mechanisms contributes to the chronic BP effects of Ang II.

Ang II-mediated efferent arteriolar constriction, when combined with afferent 
arteriolar dilation and increased BP, also increases glomerular hydrostatic pressure 
in obesity. Although it is likely that increased glomerular capillary pressure is an 
important contributor to glomerular injury, the relative importance and interactions 
of hemodynamic and metabolic abnormalities in obesity-induced kidney injury are 
still unclear.

In clinical trials, ACEIs or ARBs reduce proteinuria in obese diabetic patients 
with kidney disease and decrease the incidence of kidney failure. In the TROPHY 
study, the ACEI lisinopril was more effective than hydrochlorothiazide at achieving 
a diastolic BP goal of less than 90  mmHg in obese hypertensives. Additionally, 
lisinopril treatment had more favorable metabolic profiles, including lower plasma 
glucose [32]. Unfortunately, large clinical trials comparing the effectiveness of 
RAAS antagonists in lean versus obese hypertensive patients are still lacking.

42.6.2	 �Mineralocorticoid Receptor Activation

Obesity is sometimes associated with inappropriately increased aldosterone 
which is synthesized in the zona glomerulosa of the adrenal glands in response 
to Ang II or increased plasma potassium levels as well as other stimuli. Adipose 
tissue may also produce components of the RAAS such as angiotensinogen, Ang 
II, and aldosterone which have autocrine or paracrine functions [33]. However, it 
remains unclear whether adipocyte-derived components of the RAAS play a 
major role in chronic control of BP. There is evidence from experimental animals 
that RAAS antagonism plays a role in adipocyte differentiation and growth; how-
ever, there is little evidence in humans that RAAS antagonists have major effects 
on adiposity.

In a small clinical study of hypertensive patients with visceral adiposity, treat-
ment with the mineralocorticoid receptor (MR) antagonist spironolactone signifi-
cantly reduced BP and creatinine clearance (attenuated glomerular hyperfiltration) 
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and improved endothelial function [34] independent of lipid or glucose effects. In 
obese dogs, MR antagonism significantly reduced renal sodium retention, glomeru-
lar hyperfiltration, and BP [35]. Importantly, amelioration of glomerular hyperfiltra-
tion may have implications for obesity-induced renal injury.

Plasma aldosterone levels are often mildly elevated in obese hypertensives and 
may be partially responsible for resistant hypertension that is often encountered in 
these individuals. In treated essential hypertensive patients, a BMI > 35 kg/m2 was 
associated with increased plasma aldosterone levels even in those treated with 
ACEIs or ARBs [36]. MR antagonism has a significant antihypertensive effect in 
obese-resistant hypertensive patients even though there are no significant correla-
tions between plasma aldosterone concentrations and BP responses. In obese 
patients with resistant hypertension, reduced BP with MR antagonists occurred 
despite concomitant therapy with ACEIs or ARBs, suggesting that MR activation in 
obesity may occur independently of Ang II-mediated stimulation of aldosterone 
release.

It is not clear why MR blockade is so effective in lowering BP and improving 
renal function in obese subjects. Obesity may increase sensitivity to aldosterone-
mediated MR activation, or the MR may be activated by non-aldosterone mecha-
nisms. For example, Rac1, a small guanosine triphosphate (GTP)-binding protein 
member of the Rho family of GTPases, may activate MR in obese subjects [37]. 
Another potential mechanism is glucocorticoid activation of MR in obesity. The glu-
cocorticoid cortisol binds to the MR with high affinity; however, the kidneys are 
normally protected by the enzyme 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) 
which converts cortisol to cortisone which does not readily bind to the MR. If renal 
tubular 11β-HSD2 is downregulated in obesity, this may provide an additional mech-
anism for increased MR activation.

42.7	 �Sympathetic Nervous System

Visceral obesity is generally associated with decreased parasympathetic tone in the 
heart and increased SNS activity in many tissues, including the kidneys [17, 38]. 
These changes in autonomic activity are associated with increases in HR, decreased 
HR variability, reduced baroreflex sensitivity, and hypertension [39]. The impor-
tance of increased SNS activity in the pathogenesis of obesity hypertension has 
been demonstrated in experimental animals and in humans [17, 38]. Administration 
of α/β-adrenergic blockers greatly attenuates BP increases in obese animals and 
obese hypertensive patients [17, 40]. Renal denervation also markedly reduces BP 
and sodium retention in obese animals and obese patients with resistant hyperten-
sion [38, 41, 42].

The mechanisms that link obesity, especially excess visceral adiposity, to hyper-
tension are still uncertain although several mediators have been suggested including 
(1) impaired baroreceptor reflexes, (2) activation of chemoreceptor-mediated 
reflexes associated with sleep apnea and intermittent hypoxia, (3) Ang II, (4) hyper-
insulinemia, (5) cytokines such as leptin released from adipocytes, and (6) the CNS 
proopiomelanocortin (POMC) pathway [38, 39].
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42.7.1	 �Baroreceptor Dysfunction

Studies in experimental animals and in humans have shown that baroreflex control 
of SNS activity is impaired in obesity hypertension, in parallel with elevated BP and 
metabolic abnormalities such as hyperglycemia, dyslipidemia, hyperleptinemia, 
and hyperinsulinemia [43–45]. However, the importance of these mechanisms and 
of baroreceptor dysfunction in contributing to elevated BP in obesity is unclear.

The arterial baroreceptors provide powerful moment-to-moment control of BP, but 
their roles in long-term BP regulation and obesity hypertension are not as well appre-
ciated. Impaired baroreflex function in hypertension may be secondary to resetting of 
arterial baroreceptors to higher BPs. However, some studies suggest that barorecep-
tors may not completely reset in hypertension and therefore may buffer increases in 
BP [46]. To the extent that baroreceptor dysfunction occurs in obesity hypertension, 
the buffering effect to attenuate increases in BP would be lost. Currently, it is still 
unclear whether baroreflex dysfunction merely alters the time course for onset of 
hypertension or plays an important role in long-term BP regulation.

Consistent with the concept that arterial baroreceptor activation can cause long-
term reductions in BP is the finding that strong electrical stimulation of the carotid 
sinus nerves causes sustained reductions in SNS activity and BP in obese dogs and in 
treatment resistant obese humans [47, 48]. In contrast, chronic carotid sinus nerve 
stimulation does not cause sustained decreases in BP in dogs infused chronically with 
aldosterone, a form of hypertension that is not associated with increased SNS activity 
[49]. Although these observations support the concept that strong activation of carotid 
sinus nerves can lower BP when SNS activity is increased, they do not necessarily 
indicate that baroreceptor dysfunction actually causes obesity hypertension.

Even if baroreceptor dysfunction does not play a major role in initiating obesity 
hypertension, increased BP variability caused by impaired baroreflexes may eventu-
ally contribute to target organ injury and exacerbate hypertension. Large swings in 
BP, even in the absence of changes in average daily BP, have been shown to cause 
cardiac hypertrophy and renal injury. Therefore, baroreceptor dysfunction may play 
a significant role in promoting injury to the kidneys, heart, and blood vessels.

42.7.2	 �Chemoreceptors, Intermittent Hypoxia, and Sleep Apnea

Obstructive sleep apnea (OSA) is common in obese individuals and has been associ-
ated with resistant hypertension in cross-sectional and longitudinal studies [50]. 
Intermittent hypoxia triggers release of catecholamines and endothelin that cause 
vasoconstriction. Furthermore, alternating hypoxia and reoxygenation may lead to 
increased reactive oxygen species.

One of the primary mechanisms by which OSA may contribute to obesity hyper-
tension is through SNS activation. Activation of carotid body chemoreceptors by 
hypoxia, even when intermittent, leads to SNS activation and increased respiratory 
drive. Leptin and other circulating factors associated with obesity may also cause 
hypersensitivity of these receptors as well as CNS chemoreceptors to hypoxic and 
hypercapnic stimuli [51, 52].

42  Obesity and Metabolic Syndrome Hypertension



714

In an experimental model of obesity hypertension where dogs were fed a high-fat 
diet for 5 weeks, significant increases in BP were abolished by carotid baroreflex 
activation (electrical stimulation of the carotid sinus) [53]. Surgical denervation of 
the carotid sinus, including afferent nerves of the carotid body, caused sustained 
reductions in arterial partial pressure of oxygen and hypercapnia as well as a 50% 
reduction in the obesity-induced increase in BP. These findings suggest that in obe-
sity, chronic intermittent hypoxia may cause stimulation of peripheral chemorecep-
tors which contributes to SNS activation and hypertension. Clinical studies in obese 
patients with metabolic syndrome have shown that modest reductions in body 
weight (~5 kg), induced by diet and exercise, improve chemoreflex sensitivity and 
reduce apnea-hypopnea episodes [54] as well as muscle SNS activity and BP.

42.7.3	 �Leptin-Melanocortin System-Induced SNS Activation 
in Obesity

Leptin is an adipokine that has powerful effects on the central nervous system (CNS) 
to regulate energy balance by reducing appetite and increasing energy expenditure. 
Rodent models (ob/ob or db/db mice or obese Zucker rats) and humans that have 
impaired leptin signaling pathways develop severe obesity yet are not usually hyper-
tensive despite morbid obesity and associated metabolic derangements such as insu-
lin resistance and hyperglycemia [39]. Chronic intravenous infusions of leptin 
increased BP and renal sympathetic nerve activity. Similar findings are observed 
when leptin was administered directly into the brain. This rise in BP occurs despite 
significant reductions in body weight which would normally reduce BP.

The chronic effects of leptin to increase BP are mediated via activation of the 
SNS as combined α- and β-adrenergic blockade completely blocked hypertension 
during leptin infusion. A role for endogenous leptin in mediating obesity hyperten-
sion is supported by the finding that administration of a leptin receptor antagonist in 
obese rabbits on a high-fat diet reduced BP and renal SNS activity [55].

Leptin’s effects to activate the SNS and raise BP appear to be mediated through 
stimulation of the proopiomelanocortin (POMC) pathway. POMC neurons located 
in the arcuate nucleus and brain stem send projections to second-order neurons in 
the hypothalamus and hindbrain where they release α-melanocyte-stimulating hor-
mone which activates melanocortin 3 (MC3R) and melanocortin 4 receptors 
(MC4R). Chronic activation of MC4R in rats increases BP while reducing appetite 
and body weight [56]. Alpha- and β-adrenergic blockade abolishes this rise in BP 
due to activation of MC4R demonstrating the role of the SNS [57]. Conversely, 
MC4R antagonism lowers BP especially when the SNS is activated, such as in spon-
taneously hypertensive rats (SHR) [58].

The POMC/melanocortin pathway appears to be an important link between obe-
sity, SNS activation, and hypertension. Genetic deletion of leptin receptors specifi-
cally on POMC neurons or blockade of MC4R completely abolished the BP effect 
of leptin [59, 60]. Humans and rodents with POMC or MC4R mutations have early-
onset morbid obesity and many characteristics of the metabolic syndrome, includ-
ing insulin resistance and dyslipidemia, but do not have increased SNS activity or 
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hypertension [61, 62]. Also, chronic administration of an MC4R agonist caused 
significant increases in BP in humans as well as in rodents. Thus, in humans and 
rodents, chronic activation of the POMC-MC4R pathway raises BP, and the pres-
ence of a functional MC4R system appears to be necessary for obesity and hyper-
leptinemia to increase SNS activity and BP.

42.7.4	 �Role of the Renal Nerves

There is substantial evidence that the chronic hypertensive effects of SNS activation 
in obesity are mediated by renal sympathetic nerves. Renal SNS activation stimu-
lates renin secretion and renal sodium reabsorption which contribute to the develop-
ment and maintenance of obesity hypertension. In obese dogs, renal denervation 
(RDN) markedly attenuated sodium retention and hypertension in response to a 
high-fat diet and in established obesity hypertension [41, 42] (Fig. 42.3.). This BP 
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reduction was observed even when less than 50% of the renal nerves were ablated. 
In obese, resistant hypertensive patients, percutaneous radiofrequency RDN low-
ered office-based systolic BP by up to 30 mmHg [63]. However, follow-up studies 
evaluating the effects of RDN procedures on 24-hour ambulatory BP did not dem-
onstrate a significant reduction in BP compared to a sham procedure [64]. Of note, 
control patients were on three or more antihypertensive medications (including 
RAAS antagonists) which may mitigate the antihypertensive effects of ablating the 
renal nerves.

The specific roles of the renal afferent versus efferent nerves in obesity hyperten-
sion are unclear. Both (to some degree) are ablated during RDN procedures. The 
afferent nerves carry information from renal mechano- and chemoreceptors to the 
brain. Their role in pathogenesis of hypertension has been controversial. We 
assessed the role of renal afferent nerves in obesity hypertension by surgical dener-
vation via dorsal root ganglionectomies from T10 to L2. This did not attenuate 
development of hypertension in obese dogs fed a high-fat diet suggesting that the 
BP-lowering effect of RDN was due to removal of renal efferent, rather than affer-
ent, nerves [65]. However, further studies are needed, particularly in obese humans.

42.8	 �Treatment of Obesity Hypertension with Lifestyle 
Modification, Medications, and Bariatric Surgery

Therapeutic strategies for treating obesity have focused mainly on treatment of the 
associated metabolic derangements although strategies targeting obesity prevention 
have been widely disseminated. Lifestyle modification with diet and exercise are 
obvious first-line recommendations for obese individuals, particularly those with 
hypertension. There is abundant evidence that weight loss achieved through diet and 
exercise improves many of the cardiovascular, renal, and metabolic abnormalities 
associated with obesity. Mean 4-year follow-up data from the Look AHEAD (Action 
for Health in Diabetes) trial demonstrated that intensive lifestyle interventions sig-
nificantly lowered BP (−5.3 mmHg systolic and −2.9 mmHg diastolic) in diabetic 
participants with a mean reduction of only 5.3% in body weight [8].

Unfortunately, weight losses with lifestyle changes are difficult to maintain and 
obese individuals who lose large amounts of weight are at high risk for regaining 
weight. A systematic review of 18 studies of diet-only versus diet-plus-exercise 
interventions for a minimum of 6 months showed that exercise in addition to diet 
resulted in a small reduction in body weight (1.64 kg) [66]. Although significant, 
these relatively small reductions in body weight may not normalize BP, and there is 
a lack of long-term studies examining these effects on chronic BP control.

Other strategies for long-term weight loss have been developed including weight 
loss pharmacotherapies. Orlistat inhibits pancreatic and gastric lipases and blocks 
gastrointestinal uptake of approximately 30% of ingested fats. In a 2-year random-
ized controlled trial of orlistat plus diet versus diet and placebo, participants receiv-
ing orlistat lost more weight (8.76 kg vs 5.81 kg, p < 0.001) [67] and had a small but 
significant systolic BP reduction. However, orlistat’s use is often limited by its side 
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effects (fatty stool, bloating and diarrhea). Other anorexic drugs such as phenter-
mine and sibutramine have amphetamine-like properties which increase BP and 
were taken off the market. Recently, a large randomized placebo-controlled trial 
treated overweight and obese patients without diabetes with 3.0 mg of liraglutide (a 
glucagon-like peptide-1 analogue) as an adjunct to diet and exercise, which resulted 
in a mean weight loss of 8.4 kg as well as small reductions in systolic BP (4.2 mmHg) 
[68]. The effects of these agents as well as other novel therapies on body weight and 
BP warrant more investigation.

Other interventions such as bariatric surgery have been evaluated as a long-term 
strategy for weight reduction as well as prevention and treatment of obesity-related 
metabolic disorders. Table 42.2 lists several clinical studies evaluating the chronic 
effects of bariatric surgery on BP and renal function. The mechanisms by which 
bariatric surgery lowers BP and improves kidney function are not completely under-
stood. Attenuated SNS activity and reduction in renal sodium reabsorption are two 
potential beneficial effects since bariatric surgery decreases markers of renal sym-
pathetic activity. Overall, bariatric surgery has beneficial chronic effects to reduce 
BP, improve renal function, as well to improve hyperglycemia and diabetes which 
may have additional effects to prevent kidney injury and subsequent BP increases.

Table 42.2  Clinical studies on the effects of bariatric surgery on blood pressure and renal 
function

Type of bariatric 
surgery

Weight 
loss 
amount

Participants 
(n)

Follow-up 
(years) Outcome Source

Majority RYGB; 
some LAGB  
or SG

61% 
EBW

323 1 GFR decreased 
from 133 to 
122 mL/min in 
hyperfilterers and 
increased in those 
with renal 
dysfunction 
(GFR <90 mL/
min)

Coupaye M et al. 
Obese Surg. 
(2016)

RYGB or SG 68% 
EBW

42 1 24-h SBP 
decreased by 
13 mmHg

Careago M et al. 
Surg Obese Relat 
Dis. (2015)

LAGB 2.2 kg 87 13 LAGB 
maintained 
weight without 
intensification of 
antihypertensive 
medications 
(31% in LAGB 
vs 60% of 
controls)

Zakaria AS et al. 
Surg Obes Relat 
Dis. (2016)

RYGB > 9 unit 
drop in 
BMI

19 1 Reduced SBP by 
12 mmHg

Halperin F et al. 
JAMA Surg. 
(2014)

(continued)
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42.9	 �Summary and Perspectives

Accumulating evidence from experimental, clinical, and population research dem-
onstrates that obesity is a major cause of primary hypertension and renal injury. The 
exact mechanisms of obesity hypertension are still under investigation; however, 
activation of the RAAS and SNS and physical compression of the kidneys may 
contribute to impaired renal-pressure natriuresis and increased renal sodium reab-
sorption leading to increased BP (Fig. 42.4.). This cascade of events driven by vis-
ceral adiposity, along with other metabolic complications of obesity (dyslipidemia, 
hyperglycemia, and inflammation), may synergistically initiate renal injury which 
causes further increases in BP and renal injury, making the hypertension more dif-
ficult to control. Maintenance of a healthy weight is important for primary preven-
tion of hypertension while even modest weight loss can reduce BP in many 
overweight and obese individuals. Although most available drugs for long-term 
treatment of obesity have limited effectiveness and cause significant adverse effects, 
novel pharmacologic and surgical strategies for weight loss are currently being 

Type of bariatric 
surgery

Weight 
loss 
amount

Participants 
(n)

Follow-up 
(years) Outcome Source

Majority RYGB 
or LAGB

31% body 
weight

2458 3 Remission of 
HTN in 38% of 
patients with 
RYGB and 17% 
of LAGB

Courcoulas AP 
et al. JAMA. 
(2013)

RYGB 26% body 
weight

28 1 ~12 mmHg drop 
in systolic blood 
pressure

Ikramuddin S 
et al. JAMA. 
(2013)

LAGB 65% 
EBW

149 2 8 mmHg 
reduction in SBP

Michaelson R 
et al. Obesity. 
(2013)

Biliopancreatic 
diversion

50 kg 25 4 eGFR improved 
by 10.6 mL/min

Jose B et al. Obes 
Surg. (2013)

Variable 
banding,  
VPG or GB

16.1% 
body 
weight

1073 10 19% of surgical 
patients 
recovered from 
HTN (odds ratio 
1.68, compared to 
conventional 
therapy)

Sjorstrom L et al. 
N Engl J Med. 
(2004)

GB (a) 59% 
EBW
(b) 37% 
EBW

(a) 342
(b) 135

(a) 5–7
(b) 10–12

(a) �HTN resolved 
in 66%

(b) �HTN resolved 
in 51%

Sugerman H et al. 
Ann Surg. (2003)

RYGB Roux-en-Y gastric bypass, LAGB laparoscopic gastric banding, SG sleeve gastrectomy, 
EBW excess body weight, GFR glomerular filtration rate, SBP systolic blood pressure, BMI body 
mass index, HTN hypertension, VBG vertical banded gastroplasty, GB gastric bypass

Table 42.2  (continued)
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Visceral Adiposity

Metabolic
abnormalities

SNS

Physical
Compression

of Kidneys

RAAS Lipotoxicity?

Renal Sodium
Reabsorption

Blood Pressure

?

Renal Injury

Dyslipidemia
Hyperglycemia
Insulin resistance
Inflammation

Fig. 42.4  Integrated mechanisms by which visceral adiposity increases blood pressure and initi-
ates renal injury which ultimately lead to a slowly developing vicious cycle, progressive renal 
injury and resistant hypertension. SNS sympathetic nervous system, RAAS renin-angiotensin-
aldosterone system

evaluated as therapeutic options for obesity hypertension. Further investigation of 
the mechanisms of obesity hypertension and clinical trials of these novel treatment 
strategies are necessary for this prevalent and growing problem.
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43Secondary Hypertension: Infrequently 
Considered Aspects—Illicit/Recreational 
Substances, Herbal Remedies,  
and Drug-Associated Hypertension

Adel E. Berbari, Najla A. Daouk, and Abdo R. Jurjus

43.1	 �Introduction

Secondary hypertension, which includes renal, endocrine, and vascular syndromes, 
is reported to account for about 5–10% of blood pressure elevation in the general 
population [1]. However the changing dietary patterns, easy access to over the coun-
ter drugs, the development of large number of pharmacologic and medicinal agents 
for the management of various disorders, and increasing use by the public of herbal 
preparations have contributed to an ever increasing incidence of identifiable forms 
of hypertension [2].

The aim of this chapter is to describe other forms of identifiable hypertension 
which, often may be unsuspected or missed, or may even lead to further blood pres-
sure elevation.

43.2	 �Dietary Patterns

Among many of the known modifiable risk factors, dietary manipulations play a 
critical role in the prevention and management of hypertension [3, 4]. Several obser-
vational and epidemiologic studies have shown that vegetarians have lower blood 
pressure (BP) than the general population, while omnivorous have higher BP and a 
higher incidence of hypertension [5].
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Several short- and long-term studies have evaluated the role of diet items on BP 
and incident hypertension [6, 7].

Human diet consists of meat, plant food, and dairy products.

43.2.1  �Meat and Meat Products

Numerous epidemiologic, observational, and clinical studies have indicated that 
consumption of meat is associated with an increase in BP.

There are three sources of meat [8, 9]:

•	 Red meat: beef, veal, sheep, lamb, and pork
•	 White meat: chicken, turkey, poultry, rabbit, and fish
•	 Processed meat: bacon, bologna, sausage (red meat and poultry), salami, ham, 

processed fish, and organ meats

Processed and unprocessed meats differ in their sodium and nitrate contents and 
other food compounds, commonly used as preservatives in the former food item, and 
may have deleterious effects on BP, cardiovascular system, and target organs [10].

The relation between consumption of meat and BP changes was first reported in 
1926 by Donaldson [5, 11]. In that study, administration of meat diets to vegetarian 
college students was associated with an elevation of BP within 2 weeks [5, 11]. 
Similar observations were reported by Sacks [12]. In a controlled trial involving 21 
strict vegetarians, addition of 250 grams of beef isocalorically for 4  weeks was 
associated with a significant 3% rise in systolic BP and 19% increase in serum cho-
lesterol. There was no effect on diastolic BP [12].

Several long-term cross-sectional epidemiologic and observational studies 
revealed an association between protein intake and BP changes, incident hyperten-
sion, and cardiovascular outcome [13–16]. In the Western Chicago Electric cohort 
study involving 1710 male participants aged 45–57 years with no cardiovascular 
disease or hypertension at baseline, men who consumed 8–20 or more weekly serv-
ings of 120 portions of red meat had a 5.4–6.0 mmHg greater rise in systolic BP 
over 7 years compared to those whose meat intake was less than 8 weekly servings 
[6]. In the Coronary Artery Risk Development in Young Adults (CARDIA) study of 
4304 white and black participants aged 18–30 years at baseline, after 15 years of 
follow-up, a 39% risk of elevated BP (BP ≥ 130/85 mmHg) was reported in partici-
pants whose red and processed meat was in the highest bracket [10]. A similar 
association of red meat with incident hypertension was described in a large cohort 
of 44,616 disease-free French women [13]. Women who consumed ≥5 servings per 
week (1 meat serving = 50 g) of processed red meat exhibited a 17% higher risk of 
hypertension compared to women whose intake was ≤1 serving/week [13]. In this 
study, however, no relationship was observed for unprocessed red meat [13]. In the 
Women’s Health Study (WHS), a prospective trial of 28,766 female middle-aged 
and elderly (aged >45 years) US professionals, red meat intake was associated with 
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an increased risk of hypertension, while poultry intake was not [15]. However other 
studies which evaluated the relation of poultry intake to the development of hyper-
tension were inconsistent [15–18]. In the INTERMAP study which included 
Western and East Asian population, the increase in BP was associated with intake of 
both processed and unprocessed red meat and poultry [16].

The mechanisms by which red meat consumption is associated with BP changes 
and risk of hypertension are poorly understood but appear to be multifactorial, 
resulting from the interaction of multiple dietary factors [15]. Red meat is a major 
source of saturated fat, cholesterol, and animal proteins and has iron [15]. Several 
large cohort studies have demonstrated a direct relation between saturated fat and 
cholesterol with an increased risk of hypertension [19]. Increases in body iron may 
promote insulin resistance and predisposition to the development of hypertension 
and vascular disease [15, 20, 21]. In addition, red meat, especially the processed 
categories, contains a significant amount of sodium [16]. Further, during prepara-
tion of processed meat (red meat/poultry), various additives, and preservatives and 
other chemicals are used [15]. These toxic compounds impair vascular structure and 
function, leading to atherosclerosis and hypertension [15].

Carnitine content in red meat has also been implicated in the pathogenesis of 
angiopathy and hypertension [22].

In human subjects, carnitine in red meat is processed by gut microorganisms into 
trimethylamine which is then converted into trimethylamine-N-oxide [22]. The lat-
ter metabolite has been reported to induce metabolic disturbances, inflammatory 
reactions, endothelial dysfunction, and vascular smooth muscle cell proliferation 
[22, 23]. These events may provoke an elevation in BP and development of hyper-
tension [22, 23].

According to an NIH report, the redder the meat, the more is its carnitine content 
[22, 24]. Beef has the highest, while chicken has the lowest carnitine amount [24] 
(Table 43.1).

On the other hand, several other clinical trials and epidemiologic observational 
surveys have reported an inverse relation between protein, BP changes, and incident 
hypertension [25–27]. In most of these studies, however, it is unclear whether the 
protein evaluated is of plant or animal source [26]. Plant and animal proteins differ 
in several respects, namely, in macronutrients, amino acids, minerals, and fiber con-
tent [10, 28]. These elements, rich in plant proteins, have been shown to modulate 
BP and may account for lower BP levels and incidence of hypertension reported in 
vegetarians and in DASH and similar dietary programs [6].

Table 43.1  Relation between carnitine content of meat items and blood pressure (BP) alterations 
modified from reference [24]

Meat item
Carnitine content
(mg/g meat) Yearly systolic BP increase (mmHg)

Beef 81 mg/85 g 0.70–0.78
Pork 24 mg/85 g 0.24
Chicken 3–5 mg/113 g None
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43.3	 �Substance Abuse

43.3.1	 �Tobacco/Nicotine Smoking

43.3.1.1	 �Cigarettes
Cigarette smoking is associated with acute and chronic cardiovascular effects. 
Studies in which intra-arterial and indirect blood pressure measurements were made 
revealed that smoking one cigarette causes an increase in both blood pressure and 
heart rate, effects which may persist up to 1 h [29–31]. The height in both parame-
ters is roughly proportionate to the nicotine content of the cigarette [30]. Ambulatory 
blood pressure recording studies revealed that in smokers, the daytime blood pres-
sure levels are significantly higher (presumably when they are smoking) than night 
blood pressure levels (when they abstain from smoking) [32]. Further, heart rates 
tend to be persistently higher in smokers [32].

The significant immediate and repetitive hemodynamic effects of acute smoking 
which usually persist for 45–60 min may be missed in the usually smoke-free medi-
cal environment of the clinic/office [31].

43.3.1.2	 �Nargileh (Water Pipe/Shisha) Smoking
Nargileh (water pipe/shisha smoking) is increasing at an alarming popularity espe-
cially in youth [33]. Contrary to popular belief, nargileh smoking is not safe but is 
associated with significant acute cardiovascular hemodynamic alterations which 
may predispose in the long term to cardiovascular disease [33, 34]. Compared to 
cigarette smoking, the rise in systolic, diastolic, and mean arterial pressures, heart 
rate, and carbon monoxide (CO) levels are significantly greater with water pipe 
smoking [34]. The acute elevation in carbon monoxide levels may result in carbon 
monoxide (CO) intoxication which may be associated with syncope, dizziness, 
headache, and shortness of breath [34].

43.3.2  �Caffeine

Caffeine is the most widely consumed stimulant beverage in the world [35, 36]. It is 
a component of coffee, tea, cola soft drinks, caffeinated bottled water, high-caffeine 
energy drinks, and chocolate (Table 43.2) [35, 36]. In addition, caffeine is used as 
an adjuvant in many prescription and over-the-counter medications [36]. However, 

Table 43.2  Caffeine content 
of some beverages [35, 36]

Source Caffeine content
Coffee 60–120 mg/100 ml
Cola soft drink 15–24 mg/150 ml
Decaffeinated coffee 3–4 mg/150 ml
Tea 20–40 mg/150 ml
Instant coffee 80 mg/200 ml
Brewed tea 40 mg/200 ml
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caffeine is consumed mostly in the form of coffee in most countries and tea in the 
Nordic and Middle Eastern States [37].

Caffeine is a xanthene derivative alkaloid which resembles closely uric acid and 
is found naturally in coffee beans, tea leaves, kola nuts, and cocoa beans [38, 39].

After ingestion, caffeine is almost completely absorbed in the gastrointestinal 
tract within 5 min and, being lipid soluble, penetrates all biologic membranes and is 
distributed in all body tissues [38, 40]. Peak levels are reached within 15–45 min [38, 
41]. Absorption is reduced by food intake and is slower in colas than in coffee and 
tea [38, 41]. In practice, coffee typically contains twice as much caffeine as tea [42].

Caffeine is extensively metabolized by the liver with an average half-life of 4–6 h 
[38, 40]. Its metabolism is prolonged by chronic liver disease, pregnancy, and use of 
contraceptive pills [38, 40]. In contrast, smoking accelerates its metabolism and its 
clearance [38, 40]. Smoking cessation can double caffeine concentration in the 
blood, which may enhance smoking withdrawal symptoms [38, 40].

About 60–70% of caffeine is excreted unchanged in the urine [38]. Elimination 
half-life is about 5 h [38]. Since caffeine is consumed throughout the day, its plasma 
concentration is highest in the late afternoon and lowest on waking up in the morn-
ing due to overnight abstinence [38].

In the USA and Canada, the daily caffeine intake is 2–4 mg/kg in adults and 
1.1 mg/kg in children and adolescents, aged 5–18 years [37, 38]. A dose of 15 mg/
kg represents heavy caffeine ingestion [37, 38].

Caffeine is linked to several health outcomes. It exerts a wide range of biologic 
actions, namely, hemodynamic responses, activation of the autonomic nervous sys-
tem and changes in cerebral cortical activity, and stimulation of several neuroendo-
crine hormones [42].

Several studies have evaluated the hemodynamic responses to caffeine. Acute 
caffeine intake is associated with transient elevation in both systolic and diastolic 
BP at rest and is enhanced by mental and physical stress [42–44]. A single dose of 
caffeine of 200–250 mg equivalent to 2–3 cups of coffee increases systolic BP by 
3–14 mmHg and diastolic BP by 4–13 mmHg, respectively, in normotensive sub-
jects [45]. The acute pressor response occurs within 30  min coinciding with an 
increase in plasma caffeine concentration [46, 47]. Moreover this pressor response 
appears to be greater in older subjects and in those who do not usually consume 
caffeine and is more prominent in hypertension and hypertension-prone individuals 
[35]. Acutely ingested caffeine elevates BP even in hypertensive patients receiving 
beta-blockers or diuretics [48, 49].

The pressor actions of acute caffeine consumption are characterized by vasocon-
striction of the precapillary resistance vessels and increased systemic vascular resis-
tance and increased arterial stiffness rather than enhanced cardiac contractility and 
cardiac output and are attributed to inhibition of adenosine receptors and reduced 
endogenous adenosine synthesis [50, 51].

Although it is well established that acute exposure to caffeine intake is associated 
with significant pressor actions, the data on the effects of chronic caffeine consump-
tion are conflicting [42–45]. Development of tolerance to the pressor actions has 
been reported in only half of regular consumers [52]. However, habitual coffee 
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intake was not associated with an increased incidence of hypertension in both men 
and women [53, 54]. In the light of these conflicting observations, it would be advis-
able to have patients record their home BP before and within an hour after drinking 
coffee or tea [55]. Those who experience a significant pressor response should be 
advised to reduce or abstain from caffeine intake [55].

Addiction to caffeine appears to be infrequent [38]. However, caffeine with-
drawal syndrome, characterized by headache, fatigue, anxiety, impaired psychomo-
tor performance, nausea, and vomiting, may occur in some individuals, although 
intense desire for caffeine is infrequent [38, 56].

43.3.2.1	 �Coffee/Tea
Coffee and tea, caffeine-containing drinks, are widely consumed on a daily basis. 
Both beverages have been reported to induce acute cardiovascular responses which 
appear to be linked to their caffeine content and to the presence bioactive sub-
classes [42].

Coffee
Acute intake of coffee is associated with an elevation in BP [57, 58]. Caffeine 
appears to be the active component responsible for this hemodynamic effect as reg-
ular coffee increases BP, whereas decaffeinated coffee has no effect [57, 58]. 
Further, a meta-analysis of 16 randomized controlled trials which included 1010 
subjects assessed the cardiovascular actions of caffeine tablets and coffee consump-
tion [57]. Although the caffeine doses were similar in both acute treatment groups 
(225–798 mg/d versus 295–750 mg/d in coffee and caffeine trials, respectively), BP 
elevations were larger for caffeine tablets (SBP/DBP = 4.16/2.41 mmHg) than for 
coffee intake (SBP/DBP = 1.22/0.49 mmHg) [57]. The lower pressor effect of cof-
fee was attributed to the presence of increases of bioactive compounds [57–59].

Brewed coffee (filter, espresso, instant), when consumed in moderate amounts 
(5–6 cups/day), is a rich source of minerals and trace elements (potassium, magne-
sium, manganese, niacin), soluble fibers, and antioxidants polyphenols [60, 61]. It 
has been postulated that the presence of these minerals and bioactive compounds in 
coffee may outweigh the adverse cardiovascular actions and pressor effects in caf-
feine tablets. This hypothesis was confirmed by the prospective study in US Nurses 
in which caffeinated cola which is poor in polyphenols increases the risk of hyper-
tension, while coffee had no effect [54].

Interaction of coffee with smoking and alcohol consumption may be affected. In 
hypertensive subjects, the combination of coffee intake and smoking induce a higher 
and more sustained pressor response than either agent alone [49]. In a cross-sectional 
study using ambulatory BP monitoring in patients with mild essential hypertension, 
moderate smoking and coffee intake was associated with a significant elevation in 
daytime systolic BP compared to non-smoking and non-coffee hypertensive con-
sumers [62]. In contrast to the pressor coffee-smoking relationship, intake of coffee 
significantly lowers both systolic and diastolic blood pressures in prehypertensive 
and hypertensive subjects with a regular alcohol drinking pattern [63].
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Tea
Tea, a drink brewed from the dried leaves of Camellia sinensis, is the most fre-
quently consumed beverage in the world apart from water [64]. Tea contains caf-
feine at 3% of dry weight and polyphenolic compounds at about 40% of dry weight 
and providing more than half of the total flavonoid intake [65, 66].

A regular cup of brewed tea generally contains about 50% less caffeine than a 
similar cup of brewed coffee [36].

Consumption of a cup of brewed tea containing 180 mg caffeine is associated with a 
transient pressor response of equal or even higher magnitude than caffeine alone which 
peaks at 30 min and persists up to 60 min post ingestion [67]. This transient acute pres-
sor effect of tea has been attributed to its caffeine content [67]. In contrast, long-term 
intake of tea has no pressor effect but may even cause a mild reduction in BP [67, 68].

In contrast, the attenuated pressor response and more prolonged depressor 
actions of tea have been attributed to its content of flavonoid-like polyphenols and 
flavonols substances [69]. The prominent health benefits of tea have been attributed 
to green tea which appears to be due to its high content of catechins, a class of com-
pounds which belong to the family of flavonoid-like polyphenols [69].

43.3.3  �Alcohol/Ethanol

Unlike many substances of abuse, alcohol is associated with both beneficial and 
adverse effects. Light to moderate alcohol intake is associated with a favorable car-
diovascular outcome, while heavy to excessive consumption is linked to hemody-
namic disturbances and increased risk of cardiovascular events [38].

Ethanol or ethyl alcohol represents the active component of consumable alco-
holic beverages [70].

Regular heavy to excessive consumption of ethanol is associated with increased 
BP levels and prevalence of hypertension [70–72]. An association between heavier 
ethanol (alcohol) intakes was first reported in 1915 by Lian in French military per-
sonnel who consumed more than 2.5 l/day of wine [73].

The ethanol-BP relationship was confirmed subsequently by several epidemio-
logic observational and interventional studies [74–76]. In the pioneering Kaiser 
Permanente cross-sectional studies which include 8700 ambulatory adult subscrib-
ers, Klatsky [77, 78] reported that:

•	 Among drinkers in both genders, consumption of more than two daily alcoholic 
beverages was associated with progressive elevation in both systolic and dia-
stolic blood pressures.

•	 Although occurring at all ages, the ethanol-BP elevation was stronger in elderly 
subjects.

•	 Ethanol-related hypertension appears to regress with abstinence as past drinkers 
had similar BP levels as lifelong abstainers.

•	 The usual beverage choice (wine, liquor, beer) was not a major factor.
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Several studies have reported that at a threshold of 210 g of alcohol per week 
(30 g/day), there was a positive correlation between daily consumed amount and 
levels of both systolic and diastolic BP, predisposing to an increased incidence of 
hypertension, whereas an intake of lower quantities of alcohol (10 g/d of ethanol) 
was associated with lower BP [79]. The highest BP levels were recorded in indi-
viduals consuming six to eight daily drinks, whereas chronic intake of drinks more 
than nine per day was associated with lower BP values [80, 81]. This observation 
has been attributed to the increased occurrence of liver disease [80, 81].

A standard drink is defined as an alcoholic beverage which contains 10 g of etha-
nol and which is equivalent to one glass of wine (100 ml), one glass of beer (250 ml), 
or one glass of liquor or whisky (20 ml). The type of alcohol beverage does not play 
a major role as drinks containing higher percentages of alcohol are consumed in 
lower quantities [81].

In a meta-analysis evaluating ethanol problems in the general population, alco-
hol abuse and dependence were noted in 70% of current, 16–24% of lifelong alco-
holics and 30% among the depressed [82].

Although the pressor effect of alcohol is well established, acute drinking is char-
acterized by a biphasic BP response. The influence on BP is dependent on the dose 
of alcoholic beverage and timing of BP recording [83, 84]. BP is reported to decrease 
3–5 h post ingestion and rise again 12–18 h post ingestion [70]. Several interven-
tional studies have confirmed these observations. In a cross-sectional Brazilian 
study, BP was lower in men who had ingested alcohol less than 3  h before BP 
recording but higher in those who consumed the beverage 13–24 h before measure-
ment [85]. In another interventional study using ambulatory BP monitoring in 
patients with type 2 diabetes, consumption of 250–300 ml of red wine with every 
evening meal was associated with a reduction in overnight and an increase in awak-
ing BP the following day, with a trend toward an extreme dipping pattern, a param-
eter predisposing to cerebrovascular accidents [86]. Indeed, heavy alcohol intake 
(>46 g/d) has been linked to an increased risk of early morning BP surge which may 
be relevant to the reported increased risk of stroke in heavy alcohol imbibers [87].

Food intake appears to be more protective against the detrimental effects of etha-
nol. The incidence of hypertension is greater in individuals who consume alcohol 
without food consumption than in those who drink with food [88].

In contrast to its immediate vasodepressor actions, chronic ethanol consumption, 
even of only moderate amounts, may raise BP, whereas larger doses may be respon-
sible for a significant increase in incidence of hypertension [89]. Compared to 
abstainers, the prevalence of hypertension (BP  >  140/90  mmHg) is threefold to 
fourfold higher in those who ingest three to five drinks per day [90]. Similarly, the 
intake of six or more drinks per day may result in 100% increase in the incidence of 
more severe hypertension (BP  >  160/95  mmHg) [77]. In fact, as much 10% of 
hypertension in men can be attributed directly to alcohol excess [91]. When heavy 
imbibers quit or reduce their intake, their BP usually falls [92].

The mechanism(s) of alcohol related to BP elevation and hypertension have not 
been completely elucidated. Several factors have been implicated [93]:
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•	 Activation of the renin-angiotensin-aldosterone system
•	 Stimulation of the sympathetic nervous system
•	 Increased cortisol secretion
•	 Impaired glucose/insulin metabolism
•	 Impaired peripheral vascular tone caused by impaired calcium and sodium trans-

port into vascular smooth muscle cells
•	 Heart rate variability
•	 Endothelial dysfunction
•	 Genetic predisposition
•	 Abnormal anthropometric and metabolic parameters such as obesity, dyslipid-

emia, hyperuricemia, smoking, and hypomagnesemia

Several approaches have been recommended for the management of the hyper-
tensive alcoholic patients [38, 70, 81, 92, 93]:

•	 Alcohol consumption should be carefully assessed to determine whether it 
exceeds the safe threshold of 210 g per week.

•	 Reduction of excessive consumption to two portions (30 g/day) in men and one 
portion (15 g/day) in women will result in a fall of 3–4 mmHg in systolic BP, even 
reaching normotensive levels in prehypertensive/mild hypertensive subjects. If 
elevated BP levels persist, antihypertensive medications should be initiated, pref-
erably with inhibitors of the renin-angiotensin system and/or beta-blockers as 
chronic alcoholics are at increased risk of alcoholic cardiomyopathy. Excessive 
alcohol consumption may be a cause of resistant hypertension.

•	 Binge drinking should be strongly avoided.
•	 Alcoholic beverages should preferably be consumed with meals.
•	 Alcohol consumption in moderate daily amounts does not require any change 

[75].

43.3.4  �Illicit and Recreational Drugs

Illicit and recreational drug use poses a significant health problem worldwide [94]. 
Although the majority of illicit drug use is marijuana, especially with the recent 
increased legalization for recreational and medical purposes, other illicit drugs 
including cocaine, heroin, hallucinogens, and prescription drugs remain frequently 
used and associated with significant cardiorenal events [94, 95]. However, only 
cocaine and marijuana are discussed in this section. Heroin and hallucinogens 
appear to have minimal, if any, pressor actions [94, 95].

43.3.4.1	 �Cocaine
Cocaine intoxication and abuse increase BP and produce a spectrum of cerebrocar-
diovascular events due to adrenergic overactivity [96]. Cocaine acts on vascular 
smooth muscles both indirectly by blocking norepinephrine uptake at the 
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sympathetic nerve terminals and directly by altering cellular calcium flux [97]. 
Cocaine use is associated with acute BP elevation and hypertensive crisis but not 
chronic hypertension. However from the data of the National Health and Nutrition 
Examination Survey 2005–2008, which represents a large sample of the US popula-
tion, chronic cocaine use was independently associated with BP ≥ 135/80, espe-
cially when used frequently during a lifetime [94]. When ingested with beta-blockers, 
cocaine may cause transient severe hypertension [96].

In Afro-Americans, chronic cocaine use may exacerbate the chronic hyperten-
sive state which becomes refractory to treatment, leading to renal vascular disease, 
nephrosclerosis, and renal failure requiring dialysis [98].

Cocaine ingestion, in pregnant women, increases the risk of hypertension and 
early placental abruption [96]. Furthermore, prenatal cocaine exposure may cause 
hypertension in the newborn by interfering with the development of sympathetic 
nervous system and increasing circulating catecholamines [99].

Although chronic cocaine abuse does not appear to cause hypertension, it may be 
associated with chronic kidney disease [100].

43.3.4.2	 �Marijuana (Cannabis)
Marijuana (cannabis) which belongs to the carbaminoids remains the most com-
monly used illicit drug in the USA especially after legalization of its use for recre-
ational and medicinal purposes [38]. There are three common preparations 
depending on their ingredient content, delta-9-tetrahydrocannabinol [38].

Marijuana (cannabis) has been reported to induce hemodynamic and electro-
physiologic actions on the cardiovascular system characterized by enhanced sinus 
automaticity and facilitation of A-V nodal conduction and, in some cases, sinus 
tachycardia [38, 101, 102].

However, acute marijuana use has been associated with opposite effects on 
BP. While preclinical studies reported a dose-dependent increase in heart rate and 
BP in others, a fall in BP and postural hypotension occurred [103]. In contrast, in 
recent population studies, a positive association between recent cannabis use and 
heart rate, BP mainly systolic and pulse pressure [95, 104].

43.3.5  �Drug-Related Hypertension

43.3.5.1	 �Sympathomimetic Amines
Sympathomimetic agents represent a class of vasoactive amines that activate the sym-
pathetic nervous system [105]. All sympathomimetics have pressor actions by stimu-
lation of α-adrenergic receptors directly or indirectly causing vasoconstriction [106].

It is well established that sympathomimetic amines cause dose-related increases 
in BP [107]. Although sympathomimetic-induced hypertension does not appear to be 
clinically significant in healthy individuals, it could lead to marked BP elevation and 
therefore sympathomimetics should be avoided in hypertensive subjects [107, 108].

Sympathomimetic amines are used in a wide array of conditions such as nasal 
decongestants, anorexics, and central stimulants [105–107].
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Sympathomimetic amines include amphetamines and similar compounds such 
as pseudoephedrine, phenylpropanolamine, and ephedrine [106].

Pseudoephedrine is a bronchodilator and nasal vasoconstrictor. It is commonly 
used to treat symptoms of rhinitis and rhinorrhea [107]. It may moderately increase 
BP and heart rate [107]. These effects are enhanced by immediate release formula-
tions, higher doses, and short-term medication administration [107]. Patients with 
stable well-controlled hypertension do not seem to be at increased risk for BP eleva-
tion when pseudoephedrine is used in modest doses [109]. However patients with 
cardiovascular disease should be advised to monitor their BP carefully after starting 
pseudoephedrine-containing medications [107]. Sustained release preparations 
should be generally preferred to avoid elevations in BP [107].

When applied topically, as phenylephrine containing ophthalmic solution, cases 
of hypertension have been reported [2]. Dipivalyl adrenaline, an adrenaline prodrug, 
used topically in the treatment of chronic simple glaucoma, may also raise BP [2].

Most nonprescription anorexic agents contain combinations of an antihistamine 
and an adrenergic agonist (phenylpropanolamine, ephedrine, pseudoephedrine, or 
caffeine) [96]. They have been reported to cause a small but significant elevation in 
systolic BP [96]. Excessive doses may result in severe hypertension and, rarely, in 
cerebrovascular events and even death [2].

Central stimulants such as amphetamine and methylphenidate are increasingly 
used in several disorders including narcolepsy, depression-associated fatigue, 
stroke, and attention-deficit hyperactivity disorder (ADHD) [105]. They can cause 
a mild elevation in both systolic and diastolic BP in both normotensive and hyper-
tensive individuals [105].

Addition of sympathomimetic agents to beta-blockers may increase BP, because 
of unopposed α adrenergic vasoconstriction [2]. This pressor action can be counter-
acted by the use of α blockers or a combined α β blockers [2].

43.3.5.2	 �Analgesics
Nonsteroidal anti-inflammatory drugs (NSAIDs) and acetaminophen are widely 
prescribed therapeutic agents worldwide [110].

Nonsteroidal Anti-Inflammatory Drugs
Elderly subjects frequently have hypertension and arthritis. Both conditions require 
pharmacologic treatment both for BP reduction and pain relief. Most of the agents 
used for pain relief belong to the class of NSAIDs [111]. The use of these agents is 
associated with both beneficial effects and adverse reactions [111].

NSAIDs inhibit the two isoforms of cyclooxygenase (COX) enzymes, namely, 
COX1 and COX2 [112]. Both COX1 and COX2 are expressed within the normal adult 
kidney, with COX1 found in the glomerulus and afferent arterioles, while COX2 is 
present in the macula densa and renal medullary interstitium [107, 112]. Prostaglandins 
produced by COX1 promote vasodilatation of the renal vascular bed leading to reduc-
tion in renal vascular resistance and increasing renal perfusion, while prostaglandins 
produced by COX2 have diuretic and natriuretic actions [107, 112]. By blocking both 
isoenzymes, NSAIDs may alter renal function and BP homeostasis [107, 112, 113].
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The impact of NSAIDs on BP has been assessed in several observational studies 
and clinical trials [107, 110–113].

In normotensive subjects, the use of traditional and nonselective NSAIDs was 
associated with an increased risk of BP elevation and hypertension [114]. The risk 
of hypertension was determined by the frequency of use and dose of NSAIDs 
[114–116]. In the Nurses’ Health Study, women using NSAID at least 5 or more 
days per month were at a significantly higher risk of developing hypertension 
[114, 116, 117]. Similar results were observed in a cohort of apparently healthy 
male physicians in the Physicians’ Health Study [114, 118]. In both studies, 
increasing daily doses of NSAIDs led to an increasing risk of developing high BP 
[114, 118].

In hypertensive subjects, traditional nonselective NSAIDs may destabilize BP 
control [112, 114, 119]. Two meta-analyses suggested that in subjects with well-
controlled hypertension, there was a statistically significant elevation in MAP of 
5.4 mmHg [114, 119]. However the destabilizing effect was dependent upon both 
NSAIDs and antihypertensive agents administered [114, 119]. Among the various 
traditional nonselective NSAIDs, indomethacin, naproxen, and piroxicam were 
associated with the greatest elevation in BP [96, 119]. Furthermore, the nullifying 
effect on well-controlled BP is more pronounced in hypertensive subjects receiving 
angiotensin converting enzyme inhibitors, angiotensin receptor blockers, or beta-
blockers [96, 112]. In contrast, NSAIDs have no significant effect on BP in patients 
well controlled with calcium channel blockers [96, 112].

Data on the impact of COX2 inhibitors on BP are limited. In a study on 40 nor-
motensive subjects on low-salt diet, administration of naproxen, celecoxib, or pla-
cebo had no significant change on BP [112, 120]. However as in traditional 
nonselective NSAIDs, the pressor effect of COX2 inhibitors appears to be dose 
dependent. In studies comparing the efficacy and safety of celecoxib with placebo 
on reducing rate of colorectal carcinoma, celecoxib 400 mg twice daily was associ-
ated with 5.2 mmHg increase in systolic BP [112, 120]. However, no increase in BP 
was observed with celecoxib administered 400 mg once daily or in the usual doses 
of 100–200 mg daily [96].

The impact of COX2 inhibitors in hypertensive patients is controversial. While 
some studies reported that celecoxib, the most frequently clinically prescribed 
COX2 inhibitor, induced an elevation in BP in well-controlled hypertensive patients, 
in others, this agent appears to have no effects on BP [96, 111, 121–123]. However, 
the pressor action of celecoxib appears to be determined by dose and frequency of 
administration [96]. As is the case with traditional nonselective NSAIDs, the nulli-
fying effect on controlled hypertension is observed in patients receiving angiotensin 
converting enzyme inhibitors and angiotensin receptor blockers, but not on those on 
calcium channel blockers [112].

Although it is well established that NSAIDs cause an elevation in BP, certain 
groups of patients appear to be more susceptible to their pressor actions including 
the elderly, diabetes, renal functional impairment, and salt sensitivity [124].

The mechanism of action of NSAIDs on BP has not been completely elucidated. 
However, sodium retention due to changes in renal blood flow and glomerular 
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filtration rate and increased systemic vascular resistance associated with prostaglan-
din inhibition have been implicated in their BP changes [111, 112].

It is important for the clinician to keep in mind that NSAIDs of all classes are not 
safe drugs and their use may be associated with serious adverse reactions [125]. In 
addition to their BP destabilization, NSAIDs may cause acute renal failure in hyper-
tensive patients who often are receiving drugs which may alter body fluid volumes 
[125, 126].

Acetaminophen
Acetaminophen, also known as paracetamol, is the commonly used nonprescrip-
tion analgesic worldwide [112]. The mechanism of its analgesic action remains 
elusive [112].

Data on the effects of acetaminophen on BP are scarce. Although considered a 
safe analgesic, several studies have indicated that acetaminophen intake is associ-
ated with an increased risk of incident hypertension [110, 112]. In the Nurse Study 
I and II, women who took acetaminophen >500 mg per day, the risk of incident 
hypertension was twice as high as women who did not use the analgesic [110, 116]. 
Similar observations were reported in the Health Professionals Follow-up study 
[110, 127]. Men who consumed acetaminophen 6–7 days per week had an increased 
risk of incident hypertension [127]. Further, in a randomized double-blind placebo-
controlled crossover study in patients with coronary artery disease, acetaminophen 
1 gram three times per day over 2 weeks induced a significant increase in BP [110, 
112, 128].

Aspirin
Aspirin which inhibits prostaglandin synthesis is considered to be special nonselec-
tive NSAIDs [110].

Two meta-analyses which evaluated the effect of large doses of aspirin, 1.5–2 
grams daily on BP, in hypertensive subjects, did not demonstrate any significant 
pressor action [110, 129]. However, at higher doses, aspirin has been shown to 
reduce the antihypertensive efficacy of angiotensin converting enzyme inhibitors 
which also interfere with prostaglandin synthesis [110, 130]. Therefore patients 
receiving larger doses of aspirin may not profit from angiotensin converting enzyme 
inhibitors [130].

Similarly, low-dose aspirin of 75 mg/day does not interfere with BP reduction 
efficacy of antihypertensive agents, including those containing angiotensin convert-
ing enzyme inhibitors [131]. Moreover, taken at bedtime, low-dose aspirin may 
even lower BP [132, 133].

43.3.6  �Herbal Products/Remedies

Herbal remedies, alternative therapies and supplements widely used by large seg-
ment of the population, can cause significant elevation in BP and interactions with 
cardiovascular drugs [134]. Hence, the importance of obtaining a detailed medical 
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history to inquire about the use of herbal therapies and supplements to unmask 
identifiable medically related causes of hypertension [134].

A large number of herbal products have been reported to cause BP elevation and 
hypertension [105]. However this section is devoted to the discussion of better 
known or more frequently used herbal products and medicinal items which appear 
to be causally related to incident hypertension.

43.3.6.1	 �Liquorice
Liquorice toxicity is a syndrome of pseudoaldosteronism characterized by hyper-
tension, hypokalemia, hypernatremia, alkalosis, low renin activity, and hypoaldo-
steronism [135]. In addition to hypertension and hypokalemia, excessive liquorice 
intake is associated with rhabdomyolysis, muscle paralysis, respiratory impairment, 
hypertensive emergencies, hypertensive encephalopathy, hyperparathyroidism, and 
acute renal failure [136–138].

Liquorice has been well known by mankind for thousands of years and has been 
reportedly discovered in the stores of ancient tombs of Egyptian pharaohs [139]. 
Liquorice is an extract of the root of the plant Glycyrrhiza glabra, a common herb 
in chronic traditional medicine. Liquorice contains glycyrrhizin which is hydro-
lyzed by intestinal microflora to the pharmacologically active forms glycyrrhetinic 
acid and glycyrrhizic acid [134]. The liquorice-related active components have no 
direct effect on renal function but inhibit the enzyme 11β-hydroxysteroid dehydro-
genase preventing the metabolism of cortisol to inactive cortisone [140, 141]. The 
increased concentrations of cortisol which are 100–1000 times higher than those of 
aldosterone activate the mineralocorticoid receptors leading to a syndrome of min-
eralocorticoid excess characterized by hypokalemia, metabolic alkalosis, and 
hypertension [138, 141]. Although urinary cortisol is elevated, the serum cortisol 
tends to be normal [141]. In addition, intake of glycyrrhetinic acid is associated with 
prolongation of the half-life of plasma cortisol levels, leading to an increase in the 
serum cortisol to cortisone ratio [142].

The rise in BP induced by liquorice consumption depends upon the dose, and the 
maximal effect is reached after the first 2 weeks [139]. Usually, the clinically mani-
fest effects become evident when the intake of glycyrrhetinic acid exceeds 400 mg 
daily [138]. Although the World Health Organization suggested that consumption of 
100 mg/day of glycyrrhetinic acid would be unlikely to cause adverse reactions, 
even doses as low as 75 mg/day have been reported to cause a significant BP eleva-
tion [138, 143].

There is no interindividual variance in BP response to liquorice, but women 
appear to experience more adverse reactions than men [139, 144].

Essential hypertension, diuretics, salt sensitivity, old age, and chronic inflammatory 
conditions appear to enhance the mineralocorticoid effects of liquorice [138, 144, 145].

Liquorice is increasingly used in several herbal products, teas, laxatives, tobacco 
products, food items, as a flavoring agent in candies, chewing gums, and breath 
fresheners [139]. However the amount of glycyrrhetinic acid, the metabolically 

A.E. Berbari et al.



737

active agent, is different in these items [139]. Several of these liquorice products 
which contain glycyrrhetinic acid can cause BP elevation [105]. In these products, 
the liquorice is considered true unmodified liquorice extracted from the liquorice 
plant [105]. In contrast, many items labeled as liquorice either contain no true 
liquorice or glycyrrhetinic acid has been removed [105]. Hence these latter products 
have no hemodynamic actions.

The diagnosis of liquorice-induced hypertension should be suspected if renin 
concentration or plasma renin activity is suppressed [139]. The diagnosis is con-
firmed by the measurement of metabolites of cortisol and cortisone in the urine as 
the ratio of the metabolites of cortisol and cortisone in urine is increased with 
liquorice consumption [139]. However in clinical practice, in cases the patient 
admits the consumption of liquorice product, the most appropriate diagnostic 
approach would be to discontinue liquorice and follow the patient for several weeks 
up to 4 months when renin suppression would have subsided [139].

Management of liquorice-induced pseudoaldosteronism requires withdrawal of 
the offending agent and potassium supplementation for the hypokalemia [141]. 
Normalization of the clinical and laboratory findings occurs within 2–4  months 
[146]. If hypertension persists, antihypertensive therapy is indicated.

43.3.6.2	 �Ginseng
Ginseng, which is of two types, Asian (Panax ginseng) and North American (Panax 
quinquefolius ginseng), has been widely used for a large number of conditions and 
illnesses, including vitality, immune function, improvement of cognitive and physi-
cal performance and sexual function, cancer, and cardiovascular disorders [134]. 
Although small doses can cause small reduction in BP, large doses and prolonged 
use of ginseng have been reported to cause hypertension and behavioral changes 
[134, 147]. A ginseng abuse syndrome, characterized by diarrhea, hypertension, 
nervousness, dermatologic eruptions, and insomnia, has been described after the 
intake of single large doses or prolonged periods of use [148].

Ginseng may reduce the effectiveness of warfarin and lead to subtherapeutic 
anticoagulation [134, 149].

43.3.6.3	 �Yohimbine
Yohimbine is a prescription drug found in the bark of the tree Pausinystalia yohimbe 
[134]. Although it is not available as an over-the-counter product, it may be found 
in some herbal preparations [150].

Yohimbine, a presynaptic alpha-2 adrenergic antagonist and possible monoamine 
oxidase inhibitor, has been used for the treatment of erectile dysfunction, reportedly 
with effects better than placebo [134, 151]. However, especially at higher doses, 
yohimbine can increase BP [134, 150]. Other adverse reactions include mania, 
agranulocytosis, bronchospasm, Raynaud’s phenomenon, and a systemic lupus-like 
syndrome [134].

Yohimbine should not be used in patients taking tricyclic antidepressants [134].
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43.4	 �Therapeutic Drugs

43.4.1	 �Recombinant Human Erythropoietin

Recombinant human erythropoietin (r-HuEPO) is widely used for the treatment of ane-
mia of patients with chronic renal failure and in patients with malignancy [96, 152]. 
Although it improves the quality of life, administration of r-HuEPO is associated with 
the development of hypertension in 20–30% of patients occurring within 2 weeks to 
4 months [96, 153, 154]. However, no change in BP or a low incidence of hypertension 
has been reported in patients not yet on dialysis and in non-uremic patients [155–157]. 
Likewise, r-HuEPO administration does not cause an acute elevation in BP [96].

Several risk factors appear to predispose to the development or worsening of 
hypertension in dialysis patients:

	1.	 Presence of preexisting hypertension [96].
	2.	 Rapid increase in hematocrit or a low baseline hematocrit prior to r-HuEPO 

administration [96].
	3.	 High doses or intravenous administration of the drug [96].
	4.	 Presence of the native kidney [96].
	5.	 Genetic predisposition to hypertension [96, 158].
	6.	 Age: younger individuals appear to be more predisposed to BP elevation [96].

Several factors have been postulated to account for erythropoietin-induced 
hypertension [96, 155–162]:

	1.	 Increase in hematocrit and blood viscosity [96, 155].
	2.	 Hemodynamic alterations characterized by mild decrease in cardiac index and an 

increase in systemic vascular resistance [96, 159]. These hemodynamic changes 
have been attributed to the reversal of hypoxic vasodilatation with the correction of 
the anemia [96].

	3.	 Activation of neurohumoral system: in some hemodialysis patients, r-HuEPO 
stimulates the synthesis of catecholamines which contribute to BP elevation 
[96].

	4.	 Direct vasopressor action on vascular smooth muscles related to an increase in 
intracellular calcium concentration [160–162]. This observation favors the pos-
sibility of genetic predisposition.

The erythropoietin-related hypertension is generally not a serious problem and is 
easily amenable to therapy, although a hypertensive crisis and encephalopathy may 
occur [96, 163]. Recommended therapeutic measures include:

	1.	 A combination of fluid removal by dialysis and conventional antihypertensive 
medications (angiotensin converting enzyme inhibitors and/or calcium channel 
blockers) [96]

	2.	 Reduction of the dose or even cessation of r-HuEPO therapy for several weeks [96]
	3.	 Phlebotomy in cases of refractory hypertension [2, 96]
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43.4.2  �Immunosuppressive Agents

Calcineurin inhibitors, which include cyclosporine and tacrolimus, are potent immu-
nosuppressive drugs [164]. They are considered as the cornerstone of immunother-
apy to prevent rejection after organ transplantation and occasionally to treat 
autoimmune diseases [164]. In spite of their proven effectiveness in preventing rejec-
tion after organ transplantation, they are associated with prominent adverse reactions 
[164]. Of these effects, hypertension is the most common and prominent [164].

The incidence of hypertension varies with the patient population evaluated [96]. 
Although both cyclosporine and tacrolimus cause hypertension, tacrolimus, which 
was introduced later and is less well studied, appears to cause less increase in BP 
[123, 164].

The prevalence rates of hypertension in patients receiving cyclosporine for non-
transplant disorders, such as uveitis, rheumatoid arthritis, and psoriasis, vary 
between 25 and 54% and in transplant recipients (heart, kidney, liver, or bone mar-
row) range between 65 and 100% [165].

In cyclosporine-induced hypertension, BP starts to increase within few days after 
initiation of immunotherapy before any changes in renal function or sodium balance 
occur [165]. Hypertension is generally mild to moderate, but in few patients it may 
become severe, associated with encephalopathy [96]. The hypertension is dose 
dependent and may be reversed with early withdrawal of the drug. However, pro-
longed cyclosporine administration will result in persistent BP elevation despite 
drug withdrawal [165, 166].

Cyclosporine-induced hypertension is characterized by loss of nocturnal fall in 
BP, nocturnal headache, salt sensitivity, and renal dysfunction [165, 166]. Serum 
uric acid is often elevated, while serum magnesium is reduced [165, 166].

Hypokalemic metabolic acidosis may occur, resulting from inhibition of renal 
potassium and hydrogen excretion [165].

Mechanisms of cyclosporine-induced hypertension remain elusive. Several systems 
appear to participate in the BP elevation [164–166]. Characteristically, the systemic and 
renal resistances are increased, renal blood flow is reduced, and the sympathetic nervous 
system is enhanced, while the renin-angiotensin system is inhibited [164–166].

In the management of cyclosporine-related hypertension, the following approaches 
have been recommended. In case of persistent hypertension, it is advisable to with-
draw and substitute cyclosporine immunosuppression by other agents [96, 165, 166]. 
This approach may lead to partial fall in BP [96]. Diuretics and angiotensin II antago-
nists should be preferably avoided [165, 166]. Potassium-sparing diuretics, if required, 
can be used but with caution [165, 166]. Dihydropyridine calcium channel blockers, 
the antihypertensive agent of choice, are very effective in lowering BP [96, 123, 165, 
166]. Beta-blockers and labetalol are also effective in reducing BP [165, 166].

43.4.3  �Steroids

There are four major types of steroids that may cause an increase in BP [167]: 
corticosteroids, mineralocorticoids, estrogenic steroids, and anabolic steroids [167].
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43.4.3.1	 �Corticosteroids
Hypertension occurs in about 20% of patients receiving synthetic corticosteroids 
[96]. The BP elevation is however dependent upon the dose and type of corticoste-
roids [96, 168]. Cortisol, at a dose of 80–120  mg/day, increases BP by about 
15 mmHg within 24 h [96]. In contrast, at a lower dosage, cortisol has no significant 
effect on BP [123].

The hypertension-induced corticosteroid is characterized by loss of nocturnal 
fall in BP and, hemodynamically by increased total blood volume, cardiac output 
and systemic vascular resistance [169]. It occurs mostly in elderly and in patients 
with a positive family history of primary hypertension [169].

The mechanism of corticosteroid-related hypertension remains unclear but 
appears to be multifactorial [169].

Hypertension is relatively rare in patients who receive exogenous glucocorti-
coids because those steroid derivatives have less mineralocorticoid activity [168].

Although there are no effective preventive approaches, diuretics, angiotensin 
converting enzyme inhibitors, and angiotensin II receptor blockers have been rec-
ommended for the management of corticosteroid-related hypertension [123].

43.4.3.2	 �Mineralocorticoids
Certain exogenous compounds such as 9α fluoroprednisolone and 9α fluorocortisol 
increase BP by activating mineralocorticoid receptors (MR) [96]. Skin ointments, 
antihemorrhoidal preparations, ophthalmic drops, and nasal sprays which contain 
9α fluoroprednisolone and sympathomimetic amines may cause significant BP ele-
vation when used in excessive amount [96, 169].

Prolonged use of high-dose ketoconazole, an antimycotic agent, may alter enzy-
matic degradation of steroids leading to severe hypertension [2, 96].

Management of the hypertension requires the withdrawal of these substances [2].

43.4.3.3	 �Sex Hormones

Oral Contraceptive Hormones
Oral contraceptive hormones are of two types, the combined or estrogen-containing 
compounds and progesterone-only pills, also known as “minipill” [170].

The oral combined contraceptive pills, which contain estrogen and progester-
one, are widely used as a method of contraception [96, 171]. Although they are 
generally safe, the oral combined contraceptive pills cause a minimal elevation 
in BP and, in 5% of patients, hypertension [96, 172]. In women taking the higher 
formulation, the risk of hypertension is 50% higher than in nonusers and 10% in 
past users [173].

Hypertension is generally mild but episodes of severe and malignant hyperten-
sion may occur [96, 169, 172].

History of hypertension in pregnancy, family history of history, cigarette smok-
ing, diabetes, obesity, renal disease, and black race increase the risk of development 
of hypertension [54, 172].
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The mechanism of hypertension induced by estrogen-containing contraceptive 
compounds is unclear. Disturbances in endothelial function, the renin-angiotensin-
aldosterone system, and insulin sensitivity have been postulated to play a role in 
hypertension development [174–176].

Cessation of estrogen-containing contraceptive is associated with reversal of 
hypertension [172]. However, if elevated BP persists, appropriate hypertension 
workup should be performed [177].

If oral estrogens containing contraceptive pills are administered, caution is rec-
ommended with regular BP recordings especially during the first 3 months [167].

There is no association between hypertension and use of progesterone-only pills 
[96, 170]. The progesterone-only pill (minipill) is indicated in women who have high 
BP caused by combined oral contraceptive compounds or other etiologies [170]. 
Similarly, postmenopausal hormone replacement therapy has minimal effect on BP in 
normotensive women. It may even reduce BP in postmenopausal hypertensive women 
[96, 178].

Administration of estrogen to men for the treatment of prostate cancer has been 
associated with BP elevation and hypertension [96].

43.4.3.4	 �Anabolic Androgenic Steroids
Administration of anabolic androgenic steroids has been reported to cause hyper-
tension which may persist for some time after cessation of the drug [105].

Danazol, a semisynthetic androgen used for the treatment of endometriosis and 
hereditary angioedema, may cause hypertension [96, 172].

43.4.4  �Antidepressants, Anxiolytics, and Antipsychotics

Psychopathologic or mood disorders frequently coexist with chronic somatic diseases 
such as diabetes, hypertension, chronic kidney disease, and cardio-cerebrovascular 
disease and tend to increase the morbidity of these physical conditions [179, 180]. 
Identification and medical management of mood disorders improve the quality of life 
and health-related comorbidities of those chronic physical ailments [181].

Pharmacotherapy of mood disorders comprises a wide array of agents which 
include antidepressants, anxiolytics, tranquilizers, and neuroleptics (antipsychotics) 
[2, 96]. However, only drug classes that may cause BP elevation and hypertension 
will be discussed in this section.

43.4.4.1	 �Monoamine Oxidase Inhibitors
Monoamine oxidase inhibitors are used to treat patients with depression [2, 96]. 
They exert their action by delaying the metabolism of sympathomimetic amines and 
5-hydroxytryptophan and by enhancing the norepinephrine stores in postganglionic 
sympathetic neurons [2, 96].

Monoamine oxidase inhibitors can induce severe hypertension and even a hyper-
tensive crisis, particularly with concomitant administration of exogenous 
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sympathomimetic amines or tyramine-containing food items such as Parmigiano 
cheese, chianti wine, snails, beer, chicken liver, yeast, coffee, citrus fruits, canned 
figs, broad beans, avocados, chocolate, and bananas [2, 96, 182]. Among the mono-
amine oxidase inhibitors, tranylcypromine is the most dangerous compound, while 
moclobemide and brofaromine are least likely to cause an elevation in BP [2, 96]. 
Selegiline, a type B monoamine oxidase inhibitor which is used in Parkinson’s dis-
ease, may also increase BP [171].

Because of their significant adverse reaction profile, it has been recommended to 
restrict the use of monoamine oxidase inhibitors to patients with depressive disor-
ders resistant to other antidepressants [183].

43.4.4.2	 �Tricyclic Antidepressants
Tricyclic antidepressants, which block the uptake of the neurotransmitter in the syn-
apse in the central nervous system, have been reported to cause an elevation in BP 
and hypertension, mainly in patients with panic disorders [2, 96, 171, 184]. These 
agents may also trigger a hypertensive crisis in unrecognized pheochromocytoma 
[185].

43.4.4.3	 �Anxiolytics
Unlike the older benzodiazepines, buspirone, a nonbenzodiazepine anxiolytic agent, 
is a serotonin receptor type 1α agonist [186]. Compared to benzodiazepines, it is as 
effective in the treatment of anxiety disorders and has a milder adverse reaction pro-
file [186]. However buspirone has been reported to increase BP by its metabolite 1-2 
pyrimidinyl piperazine which is an α2 adrenoceptor antagonist and therefore should 
not be administered concomitantly with monoamine oxidase inhibitors [2, 96].

Other serotonin agonists produce a sustained and dose-dependent BP elevation 
[2, 96]. Venlafaxine, a nontricyclic serotonin/norepinephrine reuptake inhibitor, is 
used in the treatment of depression and anxiety [123]. It causes an increase in BP by 
an increase in norepinephrine levels and subsequent potentiation of noradrenergic 
neurotransmitter [107]. The extended release formulation of venlafaxine causes 
hypertension in 3% of patients on regular doses of 75–150 mg and in 13% of those 
receiving larger doses of ≥300 mg [107]. However dosing of ≥300 mg is not com-
mon, and therefore the risk of venlafaxine-induced hypertension does not require 
discontinuation of the drug in most patients [107, 187]. The hypertensive effect of 
venlafaxine is more pronounced in older subjects and in men [107].

Attacks of severe hypertension have been also reported with other serotonin ago-
nists such as fluoxetine, combination of fluoxetine and selegiline, and thioridazine 
[2, 96].

Lithium intoxication may occasionally be associated with an elevation in BP [2, 
96]. The mechanism of this adverse reaction remains elusive [2, 96].

Carbamazepine is widely used in several medical conditions, including adult and 
pediatric epilepsy, trigeminal neuralgia, neuropathic pain, and bipolar affective dis-
orders [107, 187, 188]. Cardiovascular toxicity from carbamazepine occurs most 
frequently in overdosing and is characterized by sinoatrial and atrioventricular 
block, arrhythmias, congestive heart failure, hypertension, hypotension, syncope, 
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edema, aggravation of coronary artery disease, sick sinus syndrome, and occasion-
ally death [96, 107, 188].

Carbamazepine-associated hypertension, an infrequent complication, results 
from aggravation of well-controlled treated hypertension, or rarely, de novo BP 
elevation in previously normotensive subjects [107, 189, 190]. Although the 
mechanism of hypertension remains unclear, it has been attributed to increased 
clearance of various antihypertensive agents with subsequent loss of BP control 
[107, 189, 190].

43.4.4.4	 �Antipsychotics
Clozapine, a newer atypical antipsychotic agent, is used in the management of 
schizophrenic symptoms in patients’ refractory to classical antipsychotics [2, 96, 
191]. This drug has been reported to increase BP and hypertension in about 12% of 
patients and to cause pseudo-pheochromocytoma syndrome [2, 96]. The clozapine-
induced hypertension appears to be related to sympathetic overactivity as the BP 
elevation appears to be blocked by co-administration of propranolol, a nonselective 
beta-blocker [192].

Other newer atypical antipsychotics are associated with hypertension such as 
olanzapine and ziprasidone [192].

In addition to hypertension, hypotension, including orthostatic hypotension, is a 
frequent side effect of newer atypical antipsychotics [193], contributing to risk of 
injury and falls in the elderly [193]. Combination of cardiovascular and antihyper-
tensive medications may aggravate the hypotensive effects of newer atypical anti-
psychotics [193].

43.4.5  �Antineoplastic Therapy

Hypertension is a well-known risk of cancer chemotherapy [194]. Further poorly 
controlled hypertension can markedly impact the management of cancer and even 
lead to the withdrawal of certain therapies [194].

Hypertension is the most frequent associated cardiovascular comorbidity in 
patients with malignancy [194]. Its prevalence increased from 29% prior to chemo-
therapy to 39–40% after the introduction of newer antineoplastic modalities [96, 194].

BP elevation and hypertension are frequent complications of several classes of 
antineoplastic agents, including angiogenesis inhibitors, alkylating agents, calci-
neurin, corticosteroids, immunosuppressants after stem cell transplantation, and 
head and neck radiation therapy [96, 195, 196].

43.4.5.1	 �Antiangiogenesis Therapies
Recently, several antiangiogenesis drugs (also known as antivascular endothelial 
growth factor (VEGF) agents) have been introduced for the management of various 
malignancies [123]. This class of medications includes monoclonal antibodies such 
as bevacizumab or orally available small molecules that inhibit VEGF-stimulated 
tyrosine kinases such as lapatinib, sunitinib, axitinib, and pazopanib [123].
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Although this group of agents has resulted in significant remissions in several 
cancers and prolongation of disease-free periods, they are associated with signifi-
cant cardiovascular toxicity [123, 196].

Hypertension occurs frequently with VEGF therapy, and the risk of BP elevation 
is similar with all this class of compounds [123, 197]. Hypertension is usually mild 
and resolves with withdrawal of the drug [123, 197]. However hypertension may be 
severe and associated with posterior leukoencephalopathy syndrome and even may 
be life threatening in 1% [123, 198]. It has been suggested that the development of 
hypertension is a predictor of a beneficial response to antiangiogenesis therapy 
[123, 199].

The mechanism of VEGF-induced hypertension has not been fully elucidated but 
appears to be multifactorial [123]. Reduction in nitric oxide synthesis, microvascu-
lar rarefaction, loss of antioxidative function, and activation of the endothelin sys-
tem play a role in the BP elevation [123, 200–203].

Cancer chemotherapy, in particular novel therapeutic agents, is associated with 
vascular complications and metabolic disturbances [204, 205]. Aggressive BP con-
trol is advised in order to minimize the risk of target-organ damage.

Inhibitors of the renin-angiotensin system, diuretics, beta-blockers, and calcium 
channel blockers can be used to lower BP [206, 207]. However the non-
dihydropyridine calcium antagonists which are CYP3A4 inhibitors and nifedipine, 
a dihydropyridine calcium channel antagonist which induce VEGF secretion, should 
be avoided in the treatment of antiangiogenesis-associated hypertension [123, 206, 
207].

43.4.5.2	 �Head and Neck Radiation Therapy and Surgery
Head and neck radiation therapy and surgery can damage systemic baroreceptors 
and their connections [196].

Radiation therapy for head and neck cancer may cause injury to cranial nerves, 
and this injury tends to occur after an interval of months, or, in some cases, years 
after irradiation [208, 209]. Similarly, damage of systemic baroreceptors can result 
from unilateral or bilateral endarterectomy or surgical excision of tumor masses in 
relevant regions [210–212].

These procedures may lead to failure of systemic baroreceptor function which is 
characterized by a wide range of clinical manifestations [196]. Hypertensive syn-
dromes are the most frequent clinical presentations [196].

Hypertension can occur in two forms either as a chronic labile state of BP eleva-
tion also known as volatile hypertension or as an acute hypertensive crisis [196]. 
Labile chronic or volatile hypertension is the most frequently encountered presenta-
tion of baroreflex failure. It frequently develops insidiously with progressive grad-
ual decline in baroreceptor function [196]. It is precipitated by mental or physical 
stress and is characterized by bouts of BP elevation, lasting for minutes to hours, 
associated with palpitation/tachycardia, light-headedness or dizziness, and severe 
headache [196, 213, 214]. With time, the pressor peaks become attenuated and are 
replaced by depressor episodes [196].
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The hypertensive crisis, which occurs following a surgical intervention in the 
neck, causes injury to glossopharyngeal or vagus nerves [196]. The clinical presen-
tation is characterized by severe unremitting hypertension, with SBP exceeding 
250 mmHg, tachycardia, headache, and diaphoresis [196, 212].

The differential diagnosis of baroreceptor failure includes an extensive list of 
clinical entities [196]. Although exclusion of the various clinical conditions requires 
use of a large number of laboratory tests, the key feature suggestive of baroreceptor 
failure is a history of injury to the systemic baroreceptor region by prior radiation 
therapy or surgery [196].

The primary goal of therapy of patients with baroreflex failure is the reduction in 
frequency and magnitude of life-threatening bouts of severe BP elevation and heart 
rate [154]. Clonidine, an α2 adrenoceptor agonist, is the pharmacologic agent of 
choice for the control of BP bouts [196, 215]. Large doses of clonidine are fre-
quently required [215]. The use of transdermal patches may reduce the inconve-
nience of frequent oral dosing [196, 215]. In patients with well-controlled BP over 
months or years, treatment can be shifted from clonidine to benzodiazepines [196]. 
High doses may be required [196].

Guanidine and guanethidine which inhibit the release of norepinephrine from 
peripheral sympathetic nerve endings are very effective in controlling the pressor 
surges in baroreceptor failure [216].

Agents that enhance sympathetic nervous system stimulation and exacerbate 
baroreceptor failure are contraindicated [196]. These drugs include tricyclic antide-
pressants, amphetamines, monoamine oxidase inhibitors, and tyramine-containing 
food items [196].

43.4.6  �Human Immunodeficiency Virus Status and Antiretroviral 
Therapy

The introduction of highly active antiretroviral therapy (HAART) in the mid-1990s 
has resulted in significant reduction in human immunodeficiency virus (HIV)-
related morbidity and mortality [217, 218]. However, it also leads to the appearance 
of short- and long-term events [219]. Cardiovascular disease and metabolic altera-
tions have been increasingly reported [220]. The data on hypertension, a major risk 
factor, in the HIV population are still controversial [220–222].

HIV infection does not appear to confer an increased risk of hypertension [220, 
223]. No correlation has been reported between HIV infection, HIV RNA level, or 
CD4-cell count [220]. In contrast, HAART therapy in HIV-positive patients has 
been associated with an increase in BP and increased prevalence of hypertension 
[217, 220]. In a cohort study that included 5578 patients who were receiving 
HAART therapy, the risk of developing systolic hypertension was related to the 
duration of treatment [217]. In other studies, the increase in systolic BP levels was 
attributed to increased arterial stiffness, and the pressor action was more marked in 
elderly subjects and in those with higher systolic BP [217].
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The pressor actions of HAART therapy appear to be dependent on the drug 
classes. Standard HAART consists of a backbone of two nucleoside reverse tran-
scriptase inhibitors (NRTIs) to which either a non-nucleoside reverse transcriptase 
inhibitor (NNRTI) or a boosted protease inhibitor (PI) is added: NNTI- and non-
NNRTI [224]. In a cross-sectional study involving 612 adults attending the Sexual 
Health Outpatient Department, HAART regimen which includes NNRTI was asso-
ciated with an increase in BP [224].

It has been recommended to measure BP on all HIV patients and to initiate anti-
hypertensive treatment when appropriate [224].

43.4.7  �Amphotericin B

Amphotericin B remains the mainstay for the management of invasive fungal infec-
tions [2, 225]. Although it is an extremely effective medication, amphotericin B is 
associated with serious and severe adverse reactions [226]. Hypertension has been 
described in some patients during amphotericin B infusions, both in normotensives 
and well-controlled hypertensives [227, 228]. BP may increase soon after initiation 
of amphotericin B infusion and may reach markedly elevated levels, leading even to 
a hypertensive crisis [228, 229].

Hypertension usually subsides following the interruption of antifungal therapy 
but may require administration of antihypertensive drugs [228].

The mechanism of amphotericin-induced hypertension remains unclear, although 
a direct vasoconstrictive effect has been reported in animals [230].

43.4.8  �Bromocriptine

Bromocriptine mesylate is commonly used for the suppression of lactation in post-
partum women and prolactin inhibition in patients with prolactinoma [96]. 
Hypertension has been reported in postpartum women receiving bromocriptine [2, 
96, 231]. The hypertensive syndrome may be severe, often associated with cerebro-
vascular complications [232]. Likewise, prepartum administration of bromocriptine 
increases the risk of postpartum hypertension [231].

Paradoxically, bromocriptine induces hypotension in healthy subjects [2].
The mechanism of bromocriptine induced-rise in BP has been attributed to alter-

ations in intravascular blood viscosity [233].

43.4.9  �Antiemetic Agents

Metoclopramide, a dopaminergic antagonist structurally related to procainamide, is 
effective in treating and preventing vomiting [234]. It has been reported to cause 
transient BP elevation when administered intravenously in high doses in the course 
of cisplatin therapy [96].

Although it is useful in the management of several gastrointestinal disorders, meto-
clopramide is associated with serious cardiovascular effects when administered 
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intravenously in large doses over long periods of time [234]. Due to the cardiovascular 
risk associated with metoclopramide, patient monitoring is indicated [234].

Other antiemetics, such as alizapride and prochlorperazine, have been also 
reported to cause transient BP elevation when administered intravenously during 
the course of cisplatin therapy [96, 235].

43.4.10  �Dipeptidyl Peptidase-IV Inhibitors

Selective dipeptidyl peptidase-IV (DPP-4) inhibitors, a novel class of antidiabetic 
drugs, improve glycemic control in patients with type 2 diabetes mellitus by reducing 
degradation of incretin hormones [236]. By altering the breakdown of several vaso-
active hormones, DPP-4 inhibitors may affect BP control [237]. In two clinical trials, 
vildagliptin, a DPP-4 inhibitor, caused a BP reduction [238, 239]. In spontaneously 
hypertensive rats, sitagliptin, a DPP-4 inhibitor, administered with placebo or a low-
dose angiotensin converting enzyme inhibitor (ACE) lowered BP, while this effect 
was counteracted with high-dose ACE inhibitors [240]. This effect was blocked by a 
ganglionic blocker [240]. Similar observations were reported with sitagliptin in 
patients with the metabolic syndrome [237]. Sitagliptin with placebo or low-dose 
enalapril, an ACE inhibitor, lowered BP, while high-dose enalapril reversed the sita-
gliptin-induced BP reduction [237]. During high-dose ACE inhibition, sitagliptin 
administration was associated with increased norepinephrine concentrations [237]. 
These findings suggest that activation of the sympathetic nervous may oppose the 
antihypertensive actions of high-dose ACE inhibition during sitagliptin [237].

43.5	 �Antihypertensive Therapy and Drug-Drug Interactions

Most hypertensive patients require a combination of antihypertensive agents for 
the control of their elevated BP [241]. In addition, due to the presence of an abnor-
mal metabolic profile and or comorbid conditions, these patients receive other 
therapeutic medications, which predisposes them to the risk of drug-drug reac-
tions [242].

Drug-drug interactions occur more frequently in elderly subjects due to age-
related reduction in renal function and administration of a large number of therapeu-
tic agents [243].

Some of the drug-drug interactions involve BP control [244]. BP levels may 
increase or antihypertensive efficacy may be reduced [244, 245].

43.5.1  �Pressor-Associated Actions/Antidepressor Actions

Several classes of therapeutic agents or procedures may cause an increase in BP and 
or reduce the efficacy of antihypertensive medications (Table 43.3). All these agents/
procedures have been discussed in other sections of the present chapter.
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43.5.2  �Rebound and Withdrawal Syndromes

Sudden discontinuation of any hypertensive therapy may be associated with a with-
drawal syndrome characterized by [246, 247]: (i) rapid return of BP to pretreatment 
levels, (ii) overshoot of BP above pretreatment levels, and (iii) rebound of the BP 
associated with evidence of sympathetic overactivity.

A withdrawal syndrome has been reported more frequently with clonidine or any 
centrally acting antihypertensive drug (alpha-methyldopa, guanabenz, guanfacine) 
[2, 246, 247]. Patients receiving a combination of central adrenergic blocker, espe-
cially clonidine and a beta-blocker are more susceptible when the centrally acting 
drug is withdrawn while the beta-blocker is continued [246]. This has been attrib-
uted to the unopposed stimulation of peripheral α1 receptors by a surge of catechol-
amine secretion [246, 248].

�Conclusion
Changing dietary patterns, increasing use of herbal remedies, illicit/recreational 
products, nicotine, coffee/tea, and alcohol are contributing to an increased risk of 
hypertension. Further, the introduction of novel therapeutic regimens, although 

Table 43.3  Pressor/antidepressor-associated actions

Name of agent
Refer to section 
number

Nicotine/smoking 3.1
Caffeine 3.2
Alcohol/ethanol 3.3
Cocaine 3.4.1
Marijuana 3.4.2
Sympathomimetic amines 3.5.1
Nonsteroidal anti-inflammatory drugs 3.5.2
Acetaminophen 3.5.2
Aspirin 3.5.2
Liquorice 3.6.1
Ginseng 3.6.2
Yohimbine 3.6.3
Erythropoietin 4.1
Immunosuppressive agents 4.2
Corticosteroids 4.3.1
Mineralocorticoids 4.3.2
Oral contraceptive pills 4.3.3
Anabolic steroids 4.3.4
Monoamine oxidase inhibitors 4.4.1
Tricyclic antidepressants 4.4.2
Anxiolytics 4.4.3
Antipsychotics 4.4.4
Antineoplastic agents/procedures 4.5
Human immunodeficiency virus status and retroviral therapy 4.6
Amphotericin B 4.7
Bromocriptine 4.8
Antiemetic agents 4.9
Dipeptidyl peptidase-4 inhibitor (sitagliptin) 4.10
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promising for the underlying primary pathology, can be associated with an 
increased risk of BP elevation and cardiovascular disease. These factors and con-
ditions which may interfere with BP control are frequently unrecognized as 
causes of secondary hypertension.

References

	 1.	Rossi GP, Seccia TM, Pessina AC (2010) Secondary hypertension: the ways of management. 
Curr Vasc Pharmacol 8:753–768

	 2.	Grossman E, Messerli FH (1995) High blood pressure. A side effect of drugs, poisons, and 
food. Arch Intern Med 155:450–460

	 3.	Appel LJ, Moore TJ, Obarzanek E et al (1997) A clinical trial of the effects of dietary patterns 
on blood pressure. New Engl J Med 336:1117–1124

	 4.	The Trials of Hypertension prevention Collaborative Research Group (1997) Effects of 
weight loss and sodium reduction intervention on blood pressure and hypertension incidence 
in overweight people with high-normal blood pressure. Arch Intern Med 157:657–667

	 5.	Beilin LJ, Rouse IL, Armstrong BK et al (1988) Vegetarian diet and blood pressure levels: 
incidental or causal association. J Clin Nutr 48:806–810

	 6.	Miura K, Greenland P, Stamler J et al (2004) Relation of vegetable, fruit and meat intake 
to 7-year blood pressure change in middle-aged men—The Chicago Electric Study. Am J 
Epidemiol 159:572–580

	 7.	Rebholz CM, Friedman EE, Powers LJ et al (2012) Dietary protein intake and blood pressure: 
a meta-analysis of randomized controlled trials. Am J Epidemiol 176:527–543

	 8.	Sinha R, Cross AJ, Graubard BI et al (2009) Meat intake and mortality a prospective study of 
over half a million people. Arch Intern Med 169:562–571

	 9.	Binnie MA, Barlow K, Johnson V, Harrison C (2014) Red meats: time for a paradigm shift in 
dietary advice. Meat Sci 98:445–451

	 10.	Steffen LM, Kroenke CH, Yu X et al (2005) Associations of plant food, dairy product, and meat 
intakes with 15-y incidence of elevated blood pressure in young black and white adults: the Coronary 
Artery Risk Development in Young Adults (CARDIA) study. Am J Clin Nutr 82:1169–1177

	 11.	Donaldson AN (1926) The relation of protein foods to hypertension. Cal West Med 
24:328–331

	 12.	Sacks FM, Donner A, Castelli WP et al (1981) Effect of ingestion of meat on plasma choles-
terol of vegetarians. JAMA 246:640–644

	 13.	Lajous M, Bijon A, Fagherazzi G et al (2014) Processed and unprocessed red meat consump-
tion and hypertension in women. Am J Clin Nutr 100:948–952

	 14.	Elliott P, Stamler J, Dyer AR et al (2006) Association between protein intake and blood pres-
sure: the INTERMAP study. Arch Intern Med 166:79–87

	 15.	Wang L, Manson JE, Buking JE, Sesso HD (2008) Meat intake and the risk of hypertension 
in middle-aged and older women. J Hypertens 26:215–222

	 16.	Oude Griep LM, Seferidi P, Stamler J et  al (2016) Relation of unprocessed, processed 
red meat and poultry consumption to blood pressure in East Asian and Western adults. J 
Hypertens 34:1721–1729

	 17.	Ascherio A, Hennekens C, Willet WC et al (1996) Prospective study of nutritional factors, 
blood pressure, and hypertension among US women. Hypertension 27:1065–1072

	 18.	Masala G, Bendinelli B, Versari D et al (2008) Anthropometric and dietary determinants of 
blood pressure in over 7000 Mediterranean women: the European Prospective Investigation 
into Cancer and Nutrition-Florence Cohort. J Hypertens 26:2112–2120

	 19.	Stamler J, Liu K, Ruth KJ et al (2002) Eight-year blood pressure change in middle-aged men: 
relationship to multiple nutrients. Hypertension 39:1000–1006

	 20.	Tuomainen TP, NyyssÖnen K, Salonen R et al (1997) Body iron stores are associated with 
serum insulin and blood glucose concentrations. Population study in 1013 Eastern Finnish 
men. Diabetes Care 20:426–428

43  Secondary Hypertension: Infrequently Considered Aspects—Illicit/Recreational



750

	 21.	Fernandez-Real JM, Ricart-Engel W, Arroyo E et al (1998) Serum ferritin as a component of 
the insulin resistance syndrome. Diabetes Care 21:62–68

	 22.	Gonzalez F, Liu B, Machado RF, Chen J (2015) Does red meat metabolism induce hyperten-
sion? Austin J Pulm Respir Med 2:1019

	 23.	Wilsontang WH, Wang Z, Bruce S et al (2013) Intestinal microbial metabolism of phosphati-
dylcholine and cardiovascular risk. N Engl J Med 368:1575–1584

	 24.	National Institutes of Health. Carnitine—Fact sheet for health professionals
	 25.	Altorf-van der Kull W, Engberink MF, Brink EJ et al (2010) Dietary protein and blood pres-

sure: a systematic review. PLoS One 5(8):e12102
	 26.	Teunissen-Beekman KFM, Baak V (2013) The role of dietary protein in blood pressure regu-

lation. Curr Opin Lipidol 24:65–70
	 27.	Stamler J, Elliott P, Keeteloot H et al (1996) Prevention of cardiovascular disease: inverse 

relation of dietary protein markers with blood pressure: findings for 10020 men and women 
in the INTERSALT study. Circulation 94:1629–1634

	 28.	Rouse IL, Armstrong BK, Beilin LJ, Vandongen R (1983) Blood pressure lowering effect of 
a vegetarian diet: controlled trial in normotensive subjects. Lancet 1:5–10

	 29.	Omvik P (1996) How smoking affects blood pressure. Blood Press 5:71–77
	 30.	Pickering TG (2001) The effects of smoking and nicotine replacement therapy on blood pres-

sure. J Clin Hypertens 3:319–321
	 31.	Groppelli A, Giorgi DM, Omboni S et al (1992) Persistent blood pressure increase induced 

by heavy smoking. J Hypertens 10:495–499
	 32.	Mikkelsen KL, Wiinberg N, Høegholm A et al (1997) Smoking related to 24-h ambulatory 

blood pressure and heart rate: a study in 352 normotensive Danish subjects. Am J Hypertens 
10:483–491

	 33.	El-Zaatari ZM, Chami HA, Zaatari GS (2015) Health effects associated with waterpipe 
smoking. Tob Control :i31–i43

	 34.	Kadhum M, Jaffery A, Haq A et  al (2014) Measuring the acute cardiovascular effects of 
Shisha smoking: a cross-sectional study. JRSM Open 5(6):1–7

	 35.	Hartley TR, Sung BH, Pincomb GA et al (2000) Hypertension risk status and effect of caf-
feine on blood pressure. Hypertension 36:137–141

	 36.	Bunker ML, McWilliams M (1979) Caffeine content of common beverages. J Am Diet Assoc 
74:28–32

	 37.	Chou T (1992) Wake up and smell the coffee. Caffeine, coffee and medical consequences. 
West J Med 197:544–553

	 38.	Frishman WH, Del Vecchio A, Sanal S, Ismail A (2003) Cardiovascular manifestations of 
substance abuse-Part 2: alcohol, amphetamines, heroin, cannabis and caffeine. Heart Dis 
5:253–271

	 39.	Graham DM (1978) Caffeine: its identity, dietary sources, intake and biological effects. Nutr 
Rev 36:97–102

	 40.	Curatolo PW, Robertson D (1983) The health consequences of caffeine. Ann Intern Med 
98:641–653

	 41.	Schneider JR (1987) Effects of caffeine ingestion on heart rate, blood pressure, myocardial 
oxygen consumption, and cardiac rhythm in acute myocardial infarction patients. Heart Lung 
16:167–174

	 42.	Quinlan P, Lane J, Aspinall L (1997) Effect of hot tea, coffee, and water ingestion on physiolog-
ical responses and mood: the role of caffeine, water and beverage type. Psychopharmacology 
134:164–173

	 43.	Smits P, Thien T, Vanit Laar A (1985) The cardiovascular effects of regular and decaffeinated 
coffee. Br J Clin Pharmacol 19:852–854

	 44.	Greenberg W, Shapiro D (1987) The effects of caffeine and stress on blood pressure in indi-
viduals with and without a family history of hypertension. Psychophysiology 24:151–156

	 45.	Nurminen ML, Niittynen L, Korpela R, Vapaatalo H (1999) Coffee, caffeine and blood pres-
sure: a critical review. Eur J Clin Nutr 53:831–839

	 46.	Smith A, Maben A, Brockman PIP (1994) Effects of evening meals and caffeine on cognitive 
performance, mood and cardiovascular function. Appetite 22:57–65

A.E. Berbari et al.



751

	 47.	Passmore AP, Kondowe GB, Johnston GD (1987) Renal and cardiovascular effects of caf-
feine: a dose response study. Clin Sci 72:749–756

	 48.	Freestone S, Ramsay LE (1982) Effect of coffee and cigarette smoking on the blood pressure 
of untreated and diuretic treated hypertensive patients. Am J Med 73:348–353

	 49.	Smits P, Hoffmann H, Thien T et al (1983) Hemodynamic and humoral effects of coffee after 
B1-selective and nonselective B-Blockade. Clin Pharmacol Ther 34:153–158

	 50.	Pincomb GA, Lovallo WR, Passey RB et al (1985) Effects of caffeine on vascular resistance, 
cardiac output and myocardial contractility in young men. Am J Cardiol 56:119–122

	 51.	Mahmud Z, Feely J (2001) Acute effect of caffeine on arterial stiffness and aortic pressure 
waveform. Hypertension 38:227–231

	 52.	Lovallo WR, Wilson MF, Vincent AS et al (2004) Blood pressure response to caffeine shows 
incomplete tolerance after short-term regular consumption. Hypertension 43:760–765

	 53.	Klag MJ, Wang NY, Meoni LA et al (2002) Coffee intake and risk of hypertension: the Johns 
Hopkins precursors study. Arch Intern Med 162:657–662

	 54.	Winkelmayer WC, Stampfer MJ, Willet WC, Curhan GC (2005) Habitual caffeine and the 
risk of hypertension in women. JAMA 294:2330–2335

	 55.	Kaplan NM (2010) Other forms of identifiable hypertension. In: Kaplan NM, Victor RG (eds) 
Kaplan’s clinical hypertension, 10th edn. Wolters Kluwer Health/Lippincott Williams and 
Wilkins, Philadelphia, pp 392–409

	 56.	Griffiths RR, Woodson PP (1988) Reinforcing properties of caffeine studies in humans and 
laboratory animals. Pharmacol Biochem Behav 29:419–427

	 57.	Noordzij M, Uiterwaal CSPM, Arends LR et al (2005) Blood pressure response to chronic 
intake of coffee and caffeine: a meta-analysis of randomized controlled trials. J Hypertens 
23:921–928

	 58.	Mesas AE, Leon-Munoz LM, Rodriguez-Artalejo F, Lopez-Garcia E (2011) The effect of 
coffees on blood pressure and cardiovascular disease in hypertensive individuals: a system-
atic review and meta-analysis. Am J Clin Nutr 94:1113–1126

	 59.	Viani R (1993) The composition of coffee. In: Garatini S (ed) Caffeine, coffee and health. 
Raven Press, New York, pp 17–41

	 60.	Diaz-Rubio ME, Saura-Calixto F (2007) Dietary fiber in brewed coffee. J Agric Food Chem 
55:1999–2003

	 61.	Geleijnse JM (2008) Habitual coffee consumption and blood pressure: an epidemiological 
perspective. Vasc Health Risk Manag 4:963–970

	 62.	Narkiewicz K, Maraglino G, Biasion T et al (1995) Interactive effect of cigarettes and coffee 
on daytime systolic blood pressure in patients with mild essential hypertension. J Hypertens 
13:965–970

	 63.	Funatsu K, Yamashita T, Nakamura H (2005) Effect of coffee intake on blood pressure in 
male habitual alcohol drinkers. Hypertens Res 28:521–527

	 64.	Graham HN (1992) Green tea consumption and polyphenol chemistry. Prev Med 21:334–350
	 65.	Harbowy ME, Ballantinc DA (1997) Tea chemistry. Crit Rev Plant Sci 16:415–480
	 66.	Song WO, Chonk OK (2008) Tea is the major source of flavan-3-ol and flavanol in the US 

diet. J Nutr 138:S1543–S1547
	 67.	Hodgson JH, Puddey IB, Burke V et al (1999) Effects on blood pressure of drinking green 

and black tea. J Hypertens 17:457–463
	 68.	Peng X, Zhou R, Wang B et al (2014) Effect of green tea consumption in blood pressure: a 

meta-analysis of 13 randomized controlled trials. Sci Rep 4:6251
	 69.	Khan N, Mukhtar H (2007) Tea polyphenols for health promotion. Life Sci 81:519–533
	 70.	Kodavali L, Townsend RR (2006) Alcohol and its relationship to blood pressure. Curr 

Hypertens Rep 8:338–344
	 71.	Beilin LJ, Puddy IB (1993) Alcohol, hypertension and cardiovascular disease implications 

for management. Clin Exp Hypertens 15:1157–1170
	 72.	Klatsky AL (2002) Alcohol and cardiovascular diseases. Ann N Y Acad Sci 957:7–15
	 73.	Lian C (1915) L’alcolisme cause d’hypertension arterielle. Bull Acad Natl Med 74:525–528
	 74.	Marmot MG, Elliott P, Shipley MJ et al (1994) Alcohol and blood pressure: the INTERSALT 

Study. BMJ 308:1263–1267

43  Secondary Hypertension: Infrequently Considered Aspects—Illicit/Recreational



752

	 75.	Witteman JCM, Willett WC, Stampfer MJ et al (1990) Relation of moderate alcohol con-
sumption and risk of systemic hypertension in women. Am J Cardiol 65:633–637

	 76.	Estruch R, Coca A, Rodicio JL (2005) High blood pressure, alcohol and cardiovascular risk. 
J Hypertens 23:226–229

	 77.	Klatsky AL, Friedman GD, Siegelaub AB, Gérard MJ (1977) Alcohol consumption and 
blood pressure-Kaiser-Permanente Multiphasic Heath Examination data. New Engl J Med 
296:1194–1200

	 78.	Klatsky AL (2000) Alcohol and hypertension. In: Oparil S, Weber MA (eds) Hypertension: 
a companion to Brenner and Rector’s the Kidney. WB Saunders Company, Philadelphia, 
pp 211–219

	 79.	Fuchs FD, Chambless LE, Whelton PK et al (2001) Alcohol consumption and the incidence 
of hypertension. The Atherosclerosis Risk in Communities (ARIC) study. Hypertension 
37:1242–1250

	 80.	Klatsky AL, Friedman GD, Armstrong MA (1986) The relationships of alcohol beverage use 
and other traits to blood pressure: a new Kaiser Permanente study. Circulation 73:628–636

	 81.	Huntgeburth M, Freyhaus H, Rosenkranz S et al (2005) Alcohol consumption and hyperten-
sion. Curr Hypertens Rep 7:180–185

	 82.	Sullivan LE, Fiellin DA, O’Connor PG et al (2005) The prevalence and impact of alcohol 
problems in major depression: a systematic review. Am J Med 11:330–341

	 83.	Abe H, Kawano Y, Kojima S et al (1994) Biphasic effects of repeated alcohol intake on 24 
hour blood pressure in hypertensive patients. Circulation 89:2626–2633

	 84.	Rosito GA, Fuchs FD, Duncan BB (1999) Dose dependent biphasic effect of ethanol on 
24hour blood pressure in normotensive subjects. Am J Hypertens 12:236–240

	 85.	Moreira LB, Fuchs FD, Moraes RS et al (1998) Alcohol intake and blood pressure: the impor-
tance of time elapsed since last drink. J Hypertens 16:175–180

	 86.	Mori TA, Burke V, Zilkens RR et al (2016) The effects of alcohol on ambulatory blood pres-
sure and other cardiovascular risk factors in type 2 diabetes: a randomized intervention. J 
Hypertens 34:421–428

	 87.	Ohira T, Tanigawa T, Tabata M et al (2009) Effects of habitual alcohol intake on ambulatory 
blood pressure, heart rate and its variability among Japanese men. Hypertension 53:13–19

	 88.	Stranges S, Wu T, Dorn JM et al (2004) Relationship of alcohol drinking patterns to risk of 
hypertension: a population-based study. Hypertension 44:813–819

	 89.	Thadani R, Camargo CA Jr, Stampfer MJ et al (2002) Prospective study of moderate alcohol 
consumption and risk of hypertension in young women. Arch Intern Med 162:569–574

	 90.	Arkwright PD, Beilin LJ, Rouse I et al (1982) Effects of alcohol use and other aspects of 
life-style on blood pressure levels and prevalence of hypertension in a working population. 
Circulation 66:60–66

	 91.	MacMahon S (1987) Alcohol consumption and hypertension. Hypertension 9:111–121
	 92.	Xin X, He J, Frontini MG et  al (2001) Effects of alcohol reduction on blood pressure. 

Hypertension 38:1112–1117
	 93.	Estruch R, Coca A, Rodicio JL (2011) High blood pressure, alcohol, and cardiovascular risk. 

J Hypertens 12:43–44
	 94.	Akkina SK et al (2012) Illicit drug use, hypertension and chronic kidney disease in the US 

adult population. Transgenic Res 160:391–398
	 95.	Alshaarawy O, Elbaz HA (2016) Cannabis use and blood pressure levels. United States 

National Health and Nutrition Examination Survey 2005–2012. J Hypertens 34:1507–1512
	 96.	Grossman E, Messerli FH (2008) Secondary hypertension interfering substances. J Clin 

Hypertens 10:556–566
	 97.	Saruta T (2002) Hypertension from exogenous substances. In: Mancia G, Chalmers J, Julius 

S, Saruta T, Weber M, Ferrari A, Wilkinson I (eds) Manual of hypertension, Chapter 45. 
Churchill Livingston, Churchill, pp 248–256

	 98.	Bakir AA, Dunea G (1996) Drugs of abuse and renal disease. Curr Opin Nephrol Hypertens 
5:122–126

A.E. Berbari et al.



753

	 99.	Horn PT (1992) Persistent hypertension after prenatal cocaine exposure. J Pediatr 
121:288–291

	100.	Norris KC, Thornhill-Joynes M, Robinson C et al (2001) Cocaine use, hypertension and end-
stage renal disease. Am J Kidney Dis 38:523–528

	101.	Miller RH, Dhingra RC, Kanakis C et al (1977) The electrophysiological effects of Delta 
9- Tetrahydrocannabinol (cannabis) on cardiac conduction in man. Am Heart J 94:740–747

	102.	Johnson S, Domino EF (1971) Some cardiovascular effects of Marijuana smoking in normal 
volunteers. Cin Pharmacol Ther 12:762–768

	103.	Sidney S (2002) Cardiovascular consequences of Marijuana use. J Clin Pharmacol 42(11 
Suppl):648–708

	104.	Rodondi N, Pletcher MJ, Liu K et al (2006) Marijuana use, diet, body mass index and cardio-
vascular risk factors (from the CARDIA study). Am J Cardiol 98:478–484

	105.	Sander GE (2014) Secondary hypertension. Drugs and herbal preparations that increase pres-
sure. J Am Soc Hypertens 8:946–948

	106.	Wing LMH, Tonkin AL (1994) Drug-induced hypertension. In: Swales JD (ed) Textbook of 
hypertension. Blackwell Scientific Publications, Oxford, pp 923–940

	107.	Hulisz D, Lagzdins M (2008) Drug-induced hypertension. US Pharm 33:HS11–HS20
	108.	Cantu C, Arauz A, Murillo-Bonilla LM et al (2003) Stroke associated with sympathomimet-

ics contained in over-the-counter cough and cold drugs. Stroke 34:1667–1672
	109.	Coates ML, Rembold CM, Far BM (1995) Does pseudoephedrine increase blood pressure in 

patients with controlled hypertension. J Fam Pract 40:22–26
	110.	Sudano I, Flammer AJ, Roas S et al (2012) Nonsteroidal anti-inflammatory drugs, acetamino-

phen and hypertension. Curr Hypertens Rep 14:304–309
	111.	Morgan T, Anderson A (2003) The effect of nonsteroidal drugs on blood pressure in patients 

treated with different antihypertensive drugs. J Clin Hypertens 5:53–57
	112.	White NB, Marfatia R, Baker WL (2012) Treating pain and inflammation in hypertension. In: 

Berbari AE, Mancia G (eds) Special issues in hypertension. Springer-Verlag Italia, Milan
	113.	Hao CM, Breyer MD (2004) Hypertension and cyclooxygenase inhibitors: target the renal 

medulla. Hypertension 44:396–397
	114.	Wilson SL, Poultier NR (2006) The effects of non-steroidal anti-inflammatory drugs and 

other commonly used non-narcotic analgesics on blood pressure level in adults. J Hypertens 
24:1457–1469

	115.	Curham GC, Willet WC, Rosner B, Stampfer MJ (2002) Frequency of analgesic use and risk 
of hypertension in younger women. Arch Intern Med 162:2204–2208

	116.	Forman JP, Stampfer MJ, Curham GC (2005) Non-narcotic analgesic dose and risk of inci-
dent hypertension in US women. Hypertension 46:500–507

	117.	Dedier J, Stampfer MJ, Hankinson SE et al (2002) Non-narcotic analgesic use and the risk of 
hypertension in US women. Hypertension 40:604–608

	118.	Kurth J, Hennenkens CH, Sturmer T et al (2005) Analgesic use and the risk of subsequent 
hypertension in apparently healthy men. Arch Intern Med 165:1903–1909

	119.	Armstrong EP, Malone DC (2003) The impact of nonsteroidal anti-inflammatory drugs on 
blood pressure, with an emphasis on newer agents. Clin Ther 25:1–18

	120.	Rossat J, Maillard M, Nussberger J et al (1999) Renal effects of selective cyclooxygenase-2 
inhibition in normotensive salt depleted subjects. Clin Pharmacol Ther 66:76–84

	121.	Solomon SD, Pfeffer MA, Mc Murray JJ et al (2006) Effect of celecoxib on cardiovascular 
events and blood pressure in two trials for the prevention of colorectal adenomas. Circulation 
114:1028–1035

	122.	Johnson AG, Nguyen TV, Day RO (1994) Do nonsteroidal anti-inflammatory drugs affect 
blood pressure? A metaanalysis. Ann Intern Med 121:289–300

	123.	Grossman E, Messerli FH (2012) Drug-induced hypertension: an unappreciated cause of 
secondary hypertension. Am J Med 125:14–22

	124.	De Leeuw PW (1996) Non-steroidal anti-inflammatory drugs and hypertension. The risks in 
perspective. Drugs 51:179–187

43  Secondary Hypertension: Infrequently Considered Aspects—Illicit/Recreational



754

	125.	Beilin LJ (2002) Non-steroidal anti-inflammatory drugs and antihypertensive drug therapy. J 
Hypertens 20:849–850

	126.	Whelton A (2000) Renal and related cardiovascular effects of conventional and COX2 spe-
cific NSAIDs and non-NSAIDs analgesics. Am J Ther 7:63–74

	127.	Forman JP, Rimm EB, Curhan GC (2007) Frequency of analgesic use and risk of hyperten-
sion among men. Arch Intern Med 167:394–399

	128.	Sudano I, Flammer AJ, Périat D et  al (2010) Acetaminophen increases blood pressure in 
patients with coronary artery disease. Circulation 122:1789–1796

	129.	Pope JE, Anderson JJ, Felson DT et al (1993) A meta-analysis of the effects of nonsteroidal 
anti-inflammatory drugs on blood pressure. Arch Intern Med 153:477–484

	130.	Guazzi MD, Campodonico J, Celeste F et al (1998) Antihypertensive efficacy of angiotensin 
converting enzyme inhibition and aspirin concentration. Clin Pharmacol Ther 63:79–86

	131.	Zanchetti A, Hanson L, Leonetti G et al (2002) Low-dose aspirin does not interfere with the 
blood pressure lowering effects of antihypertensive therapy. J Hypertens 20:1015–1022

	132.	Hermida RC, Ayala DE, Calvo C et al (2003) Administration time-dependent effects of aspi-
rin on blood pressure in untreated hypertensive patients. Hypertension 41:1259–1267

	133.	Messerli FH (2005) Aspirin: a novel antihypertensive drug? Or two birds with one stone. J 
Am Coll Cardiol 46:984–985

	134.	Vora CK, Mansoor GA (2005) Herbs and alternative therapies: relevance to hypertension and 
cardiovascular diseases. Curr Hypertens Rep 7:275–280

	135.	Farese RV Jr, Biglieri EG, Shackleton CH et al (1991) Licorice-induced hypermineralocorti-
coidism. N Engl J Med 325:1223–1227

	136.	Yasue H, Iroh T, Mizuno Y et al (2007) Severe hypokalemia, rhabdomyolysis, and respiratory 
impairment in a hypertensive patient taking herbal medicines containing licorice. Intern Med 
46:575–578

	137.	Russo S, Mastropasqua M, Mosetti MA et al (2000) Low doses of liquorice can induce hyper-
tension encephalopathy. Am J Nephrol 20:145–148

	138.	Sontia B, Mooney J, Gaudet L, Touyz RM (2008) Pseudohyperaldosteronism, liquorice, and 
hypertension. J Clin Hypertens (Greenwich) 10:153–157

	139.	Sigurjóndóttir HA, Franzson L, Manhem K et al (2001) Liquorice-induced rise in blood pres-
sure: a linear dose-response relationship. J Hum Hypertens 15:549–552

	140.	Stewart PM, Wallace AM, Valentino R et al (1987) Mineralocorticoid activity of liquorice: 
11-beta-hydroxysteroid dehydrogenase activity comes of age. Lancet 2:821–824

	141.	Dai DW, Singh I, Hershman JM (2016) Lozenge-induced hypermineralocorticoid state: a 
unique case of licorice lozenges resulting in hypertension and hypokalemia. J Clin Hypertens 
18:159–160

	142.	MacKenzie MA, Hoefnagels W, Jansen RW et  al (1990) The influence of glycyrrhetinic 
acid on plasma cortisol and cortisone in healthy young volunteers. J Clin Endocrinol Metab 
70:1637–1643

	143.	World Health Organization (2005) Evaluation of certain food additives. World Health Organ 
Tech Rep Ser 928:1–156

	144.	Sigurjóndóttir HA, Manhem K, Axelson M, Wallerstedt S (2003) Subjects with essen-
tial hypertension are more sensitive to the inhibition of 11 beta-HSD by liquorice. J Hum 
Hypertens 17:125–131

	145.	Ferrari P, Sansonnens A, Dick B, Frey FJ (2001) In vivo 11 beta-HSD-2 activity: variability, 
salt-sensitivity, and effect of licorice. Hypertension 38:1330–1336

	146.	Epstein MT, Espiner EA, Donald RA, Hughes H (1977) Liquorice toxicity and the renin-
angiotensin-aldosterone axis in man. Br Med J 1:209–210

	147.	Siegel RK (1979) Ginseng abuse syndrome. Problems with the Panacea. JAMA 
241:1614–1615

	148.	Chen KJ (1981) The effect and abuse syndrome of guinseng. J Tradit Chin Med 1:69–72
	149.	Yuan CS, Wei G, Dey L et al (2004) American guinseng reduces warfarin’s effect in healthy 

patients: a randomized, controlled trial. Ann Intern Med 141:23–27
	150.	Jalili J, Askeroglu U, Alleyne B, Guyuron B (2013) Herbal products that may contribute to 

hypertension. Plast Reconstr Surg 131:168–173

A.E. Berbari et al.



755

	151.	Ruck B, Shih RD, Marcus SM (1999) Hypertensive crisis from herbal treatment of impo-
tence. Am J Emerg Med 17:317–318

	152.	Bokemeyer C, Aapro MS, Courdi A et al (2004) EORTC guidelines for the use of erythropoi-
etic proteins in anemic patients with cancer. Eur J Cancer 40:2201–2216

	153.	Luft FC (2000) Erythropoietin and arterial hypertension. Clin Nephrol 53(Suppl 1):561–564
	154.	Mashio G (1995) Erythropoietin and systemic hypertension. Nephrol Dial Transplant 

10(Suppl 2):74–79
	155.	Brown CD, Friedman EA (1990) Clinical and blood rheologic stability in erythropoietin-

treated predialysis patients. Am J Nephrol 10(Suppl 2):29–33
	156.	Kulzer P, Schaefer RM, Krahn R et al (1994) Effectiveness and safety of recombinant human 

erythropoietin (r-HuEPO) in the treatment of anemia of chronic renal failure in non dialysis 
patients. European Multicentre Study Group. Int J Artif Organs 17:195–202

	157.	Ludwig H, Fritz E, Kotzmann H et al (1990) Erythropoietin treatment of anemia associated 
with multiple myeloma. N Engl J Med 322:1693–1699

	158.	 Ishimitsu T, Tsukada H, Ogawa Y et al (1993) Genetic predisposition to hypertension facili-
tates blood pressure elevation in hemodialysis patients treated with erythropoietin. Am J Med 
94:401–406

	159.	Verbeelen D, Bossuyt A, Smitz A et al (1989) Hemodynamics of patients with renal failure 
treated with recombinant human erythropoietin. Clin Nephrol 31:6–11

	160.	Vogel V, Kramer HJ, Backer A et al (1997) Effects of erythropoietin on Endothelin-1 syn-
thesis and the cellular calcium messenger system in vascular endothelial cells. Am J Med 
10:289–296

	161.	Miller BA, Scaduto RC, Tillotson DL et al (1988) Erythropoietin stimulates a rise in intra-
cellular free calcium concentration in single early human erythroid precursor. J Clin Invest 
82:309–315

	162.	Morikawa K, Kuroda M, Hasegawa T (1993) Is the intracellular calcium-mediated pathway 
involved in erythropoietin-induced hypertension? Nephron 65:503–504

	163.	Novak BL, Force RW, Mumford BT et  al (2003) Erythropoietin-induced hypertensive 
urgency in a patient with chronic renal insufficiency: case report and review of the literature. 
Pharmacotherapy 23:265–269

	164.	Hoorn EJ, Walsh SB, McCormick JA et al (2012) Pathogenesis of calcineurin-induced hyper-
tension. J Nephrol 25:269–275

	165.	Cifkova R, Haller H (2011) Cyclosporine-induced hypertension. Eur Soc Hypertens Scientific 
Newsletter 12:15–16

	166.	Cifkova R, Haller H (2001) Cyclosporine-induced hypertension. J Clin Hypertens 
19:2283–2285

	167.	Elliott WJ (2006) Drug interactions and drugs that affect blood pressure. J Clin Hypertens 
8:731–737

	168.	Kaplan N (2010) Hypertension induced by cortisol or deoxycorticosterone. In: Kaplan 
NM, Victor RG (eds) Kaplan’s clinical hypertension, 10th edn. Wolters Kluwer/Lippincott 
William and Wilkins, Philadelphia, pp 378–391

	169.	Grossman E, Messerli FH (2004) Iatrogenic and drug-induced hypertension. In: Mansoor GA 
(ed) Secondary hypertension: clinical presentation diagnosis and treatment. Humana Press 
Inc, Totowa NJ, pp 21–35

	170.	Hussain SF (2004) Progestogen-only pills and high blood pressure: is there an association? A 
literature review. Contraception 69:89–97

	171.	Shufelt CL, Merz NB (2009) Contraceptive hormone use and cardiovascular disease. Am 
Coll Cardiol 53:221–231

	172.	Grossman E, Messerli FH (2003) Management of drug-induced and iatrogenic hyperten-
sion. In: Izzo JL Jr, Black HR (eds) Hypertension primer, 3rd edn. Lippincott Williams and 
Wilkins, Dallas TX, pp 516–519

	173.	Chasan-Taber L, Willett WC, Manson JE et al (1996) Prospective study of oral contraceptives 
and hypertension among women in the United States. Circulation 94:483–489

	174.	Virdis A, Pinto S, Versari D et al (2003) Effect of contraceptives on endothelial function in 
the peripheral microcirculation of healthy women. J Hypertens 21:2275–2280

43  Secondary Hypertension: Infrequently Considered Aspects—Illicit/Recreational



756

	175.	Ribstein J, Halimi JM, du Cailar G, Mimran A (1999) Renal characteristics and effect of 
angiotensin suppression in oral contraceptive use. Hypertension 33:90–95

	176.	Godsland IF, Walton C, Felton C et al (1992) Insulin resistance, secretion and metabolism in 
users of oral contraceptives. J Clin Endocrinol Metab 74:64–70

	177.	Committee Practice Bulletins-Gynecology ACOG (2001) ACOG practice bulletin. The use 
of hormonal contraception in women with coexisting medical conditions. Number 18, July 
2000. Int J Gynaecol Obstet 75:93–106

	178.	Affinito P, Palomba S, Bonifacio M et al (2001) Effects of hormonal replacement therapy in 
postmenopausal hypertensive patients. Maturitas 40:75–83

	179.	Wang L, Zhong Z, Huj J et  al (2015) Sertraline plus deanxit to treat patients with 
depression and anxiety in chronic somatic disease: a randomized controlled trial. BMC 
Psychiatry 15:84

	180.	Bhattacharya R, Shen C, Sambamoothi U (2014) Excess risk of chronic physical conditions 
associated with depression and anxiety. BMC Psychiatry 14:10

	181.	Ganasegeran K, Renganathan P, Manaf RA, Al-Dubai SA (2014) Factors associated with 
anxiety and depression among type 2 diabetes outpatients in Malaysia: a descriptive cross-
sectional single center study. BMJ Open 4:e004794

	182.	Fallon B, Foote B, Walsh BT, Roose SP (1988) Spontaneous hypertensive episodes with 
monoamine oxidase inhibitors. J Clin Psychiatry 49:163–165

	183.	Rossi GP, Seccia TM, Maniero C, Pessina AC (2011) Drug-related hypertension and resis-
tance to antihypertensive treatment: a call for action. J Hypertens 29:2295–2309

	184.	Louie AK, Louie EK, Lannon RA (1992) Systemic hypertension associated with tricyclic 
antidepressant treatment in patients with panic disorder. Am J Cardiol 70:1306–1309

	185.	Korzets A, Floro S, Ori Y et al (1997) Clomipramine-induced pheochromocytoma crisis a 
near fatal complication of a tricyclic antidepressant. J Clin Psychopharmacol 17:428–430

	186.	Peroutka SJ (1985) Selective interaction of novel anxiolytics with 5-hydroxytryptamine 1A 
receptors. Biol Psychiatry 20:971–979

	187.	 [No authors listed] (1993) Venlafaxine: a new dimension in antidepressant pharmacotherapy. 
J Clin Psychiatr 54:119–126

	188.	Jette N, Veregin T, Guberman A (2002) Carbamazepine-induced hypertension. Neurology 
59:275–276

	189.	Elenbass JK, Evans B (2001) Carbamazepine-induced cardiovascular toxicity (drug con-
sult). In: Hutchison TA, Shahan DR, Anderson ML (eds) Drugdex system. Micromedex, 
Greenwood Village, CO. expires 12/2001

	190.	 Iaria P, Blacher J, Asplanato M et  al (1999) A new cause of resistant arterial hyperten-
sion: coprescription with anticonvulsant treatments (in French). Arch Mal Coeur Vaiss 
92:1005–1009

	191.	Henderson DC, Daley TB, Kunkel L et al (2004) Clozapine and hypertension: a chart review 
of 82 patients. J Clin Psychiatry 65:686–689

	192.	Woo YS, Kim W, Chae JH et al (2009) Blood pressure changes during clozapine or olanzap-
ine treatment in Korean schizophrenic patients. World J Biol Psychiatry 10:420–425

	193.	Khasawneh FT, Shankar GS (2014) Minimizing cardiovascular adverse effects of atypical 
antipsychotic drugs in patients with schizophrenia. Cardiol Res Pract 2014:273060

	194.	Mouhayar E, Salahudeen A (2011) Hypertension in cancer patients. Tex Heart Inst J 
38:263–265

	195.	Moslehi JJ (2016) Cardiovascular toxic effects of targeted cancer therapies. N Engl J Med 
375:1457–1467

	196.	Ketch T, Biaggioni I, Robertson RM, Robertson D (2002) Four faces of baroreflex failure: 
hypertensive crisis, volatile hypertension, orthostatic tachycardia and malignant vagotonia. 
Circulation 105:2518–2523

	197.	Wu S, Chen JJ, Kudelka A et al (2008) Incidence and risk of hypertension with Sorafenib in 
patients with cancer: a systematic review and meta-analysis. Lancet Oncol 9:117–123

	198.	Levy CF, Oo KZ, Fireman F et al (2009) Reversible posterior leukoencephalopathy syndrome 
in a child treated with bevacizumab. Pediatr Blood Cancer 52:669–671

A.E. Berbari et al.



757

	199.	Bono P, Elfuing H, Utrianen T et al (2009) Hypertension and clinical benefit of bevacizumab 
in the treatment of advanced renal cell carcinoma. Ann Oncol 20:393–394

	200.	Kappers MH, Van Esch JH, Sluiter W et  al (2010) Hypertension induced by the tyrosine 
kinase inhibitor sunitinib is associated with increased circulating endothelin-1 levels. 
Hypertension 56:675–681

	201.	Hood JD, Meininger CJ, Ziche M, Granger HJ (1998) VEGF upregulates ec NOS message, 
protein and NO production in human endothelial cells. Am J Phys 274(Part II):H1054–H1058

	202.	Aparicio-Gallego G, Afonso-Afonso FJ, Leon-Mateos L et  al (2011) Molecular basis of 
hypertension side effects induced by sunitinib. Anti-Cancer Drugs 22:1–8

	203.	Lankhorst S, Saleh L, Danser AA, van den Meiracker AH (2015) Etiology of angiogenesis 
inhibition-related hypertension. Curr Opin Pharmacol 21:7–13

	204.	Bair SM, Choueri TK, Moslehi J (2013) Cardiovascular complications associated with novel 
angiogenesis inhibitors: emerging evidence and evolving perspectives. Trends Cardiovasc 
Med 23:104–113

	205.	Li W, Croce K, Steensma DP et al (2015) Vascular and metabolic implications of novel tar-
geted cancer therapies- Focus on kinase inhibitors. J Am Coll Cardiol 66:1160–1178

	206.	Dirix LY, Maes H, Sweldens C (2007) Treatment of arterial hypertension (AHT) associated 
with angiogenesis inhibitors. Ann Oncol 18:1121–1122

	207.	Mir O, Coriat R, Ropert S et al (2012) Treatment of bevacizumab induced- hypertension by 
amlodipine. Investig New Drugs 30:702–707

	208.	Robertson RM (1996) Baroreflex failure. In: Robertson D, Polinski RJ (eds) Primer on the 
autonomic nervous system. Academic Press, New York, pp 197–201

	209.	Shapiro I, Ruiz-Ramon P, Fainman C et al (1996) Light-headedness and defective cardiovas-
cular reflexes after neck radiotherapy. Blood Press Monit 1:81–85

	210.	Towne JB, Bernhard VM (1980) The relationship of postoperative hypertension to complica-
tions following carotid endarterectomy. Surgery 88:575–580

	211.	Sigaudo-Roussel D, Evans DH, Naylor AR et al (2002) Determination in carotid baroreflex 
during carotid endarterectomy. J Vasc Surg 36:793–798

	212.	De Toma G, Nikolanti V, Plocco M et al (2000) Baroreflex failure syndrome after bilateral 
excision of carotid body tumors: an underestimated problem. J Vasc Surg 81:806–810

	213.	Kuchel O, Cusson JR, Larochelle P et  al (1987) Posture- and emotion—induced severe 
hypertensive paroxysms with baroreceptor dysfunction. J Hypertens 5:277–283

	214.	Aksamit TR, Floras JS, Victor RG et al (1987) Paroxysmal hypertension due to sinoaortic 
baroreceptor denervation in humans. Hypertension 9:309–314

	215.	Robertson D, Hollister AS, Biaggioni I et al (1993) The diagnosis and treatment of baroreflex 
failure. N Engl J Med 329:1449–1455

	216.	Hoffman BB, Carruthers SG (2002) Cardiovascular disorders: hypertension. In: Carruthers 
SG, Hoffman BB, Melmon KL et al (eds) Clinical pharmacology. McGraw-Hill, New York, 
pp 65–234

	217.	Seaberg EC, Munoz A, Lu M et  al (2005) Association between highly active antiretrovi-
ral therapy and hypertension in a large cohort of men followed from 1984 to 2003. AIDS 
19:953–960

	218.	Palella FJ Jr, Delaney KM, Moorman AC et  al (1998) Declining morbidity and mortality 
among patients with advanced human immunodeficiency virus infection. HIV Outpatient 
Study Investigators. N Engl J Med 338:853–860

	219.	Bonnet F, Morlat P, Chene G et al (2002) Causes of death among HIV-infected patient in the 
era of highly active antiretroviral therapy Bordeaux, France 1998–1999. HIV Med 3:195–199

	220.	Palacios R, Santos J, Garcia A et al (2006) Impact of highly active antiretroviral therapy on 
blood pressure in HIV-infected patients. A prospective study in a cohort of naïve patients. 
HIV Med 7:10–15

	221.	Galindo Puerto MJ (2002) AHT and HIV- a new problem? Nutr Metab Disord HIV Infect 
1:33–37

	222.	Gazzaruso C, Bruno R, Garzaniti A et al (2003) Hypertension among HIV patients: prevalence 
and relationships to insulin resistance and metabolic syndrome. J Hypertens 21:1377–1382

43  Secondary Hypertension: Infrequently Considered Aspects—Illicit/Recreational



758

	223.	Mattana J, Siegal FP, Sankaran RK, Singhal PC (1999) Absence of age-related increase in 
systolic blood pressure in ambulatory patients with HIV infection. Am J Med Sci 317:232–237

	224.	Wilson SL, Scullard G, Fidler SJ et al (2009) Effects of HIV status and antiretroviral therapy 
on blood pressure. HIV Med 10:388–394

	225.	Gallis HA, Drew RH, Pickard WW (1990) Amphotericin B: 30 years of clinical experience. 
Rev Infect Dis 12:308–329

	226.	Walsh TJ, Hiermenz JW, Seibel NL et al (1998) Amphotericin B lipid complex for invasive 
fungal infections: analysis of safety and efficacy in 556 cases. Clin Infect Dis 26:1383–1396

	227.	Rodrigues CA, Yamamoto M, Arantes Ade M et al (2006) Amphotericin B-induced hyperten-
sion, severe hypertension in a young patient: case report and review of the literature. Ren Fail 
28:185–187

	228.	Le Y, Rana KZ, Dudley MN (1996) Amphotericin B-associated hypertension. Ann 
Pharmacother 30:765–767

	229.	Omizo MK, Bryant RE, Loveless MO (1993) Amphotericin B-induced malignant hyperten-
sion. Clin Infect Dis 17:817–818

	230.	Sawaya BP, Weihprecht H, Campbell WR et al (1991) Direct vasoconstriction as possible 
cause for amphotericin B-induced nephrotoxicity in rats. J Clin Invest 87:2097–2107

	231.	Watson DL, Bhatia RK, Norman GS et al (1989) Bromocriptine mesylate for lactation sup-
pression: a risk for postpartum hypertension? Obstet Gynecol 74:573–576

	232.	Comabella M, Alvarez-Sabin J, Rovira A, Codina A (1996) Bromocriptine and postpartum 
cerebral angiopathy: a causal relationship? Neurology 46:1754–1756

	233.	Katz M, Kroll D, Pak I et al (1985) Puerperal hypertension, stroke, and seizures after suppres-
sion of lactation with bromocriptine. Obstet Gynecol 66:822–824

	234.	Rumore MM (2012) Cardiovascular adverse effects of metoclopramide: review of literature. 
Int J Case Reports Images 3:1–10

	235.	Roche H, Hyman G, Nahas H (1985) Hypertension and intravenous antidopaminergic drugs. 
N Engl J Med 312:1125–1126

	236.	Aschner P, Kipnes MS, Lunceford JK et al (2006) Effect of the dipeptidyl peptidase-4 inhibi-
tor sitagliptin as monotherapy on glycemic control in patients with type 2 diabetes. Diabetes 
Care 29:2632–2637

	237.	Marney A, Kunchakarra S, Byrne L, Brown NJ (2010) Interactive hemodynamic effects of 
dipeptidyl peptidase-IV inhibition and Angiotensin converting enzyme inhibition in humans. 
Hypertension 56:728–733

	238.	Bosi E, Camisasca RP, Collober C et al (2007) Effects of vildagliptin on glucose control over 
24 weeks in patients with type 2 diabetes inadequately controlled with metformin. Diabetes 
Care 30:890–895

	239.	Nathwani A, Lebeaut A, Byier SS et  al (2006) Reduction in blood pressure treated with 
vildagliptin as monotherapy or in combination with metformin for type 2 diabetes. Diabetes 
55:A113

	240.	Jackson EK, Dubinion JH, Mi Z (2008) Effects of dipeptidyl peptidase iv inhibition on arte-
rial blood pressure. Clin Exp Pharmacol Physiol 35:29–34

	241.	Mancia G, De Backer G, Dominiczak A et al (2007) 2007 Guidelines for the management 
of arterial hypertension: the Task Force for the Management of Arterial Hypertension of the 
European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). 
J Hypertens 25:1105–1187

	242.	Kelly WN (2001) Potential risks and prevention, part 4: reports of significant adverse drug 
events. Am J Health Syst Pharm 58:1406–1412

	243.	Williamson J, Chopin JM (1980) Adverse reactions to prescribed drugs in the elderly: a mul-
ticenter investigation. Age Ageing 9:73–80

	244.	Opie LH (1996) Cardiovascular drug interactions. In: Messerli FH (ed) Cardiovascular drug 
therapy, 2nd edn. WB Saunders Company, Philadelphia, pp 347–353

A.E. Berbari et al.



759

	245.	van Zwieten PA, Alfoldi S, Farsang C (2011) Interactions between antihypertensive agents 
and other drugs. ESH Clinical Practice Newsletters 12:31–32

	246.	Neusy AJ, Lowenstein J (1989) Blood pressure and blood pressure variability following with-
drawal of propranolol and clonidine. J Clin Pharmacol 29:18–24

	247.	Kaplan NM (2010) Treatment of hypertension: drug therapy. In: Kaplan NM, Victor RG (eds) 
Kaplan’s clinical hypertension, 10th edn. Wolters Kluwer/Lippincott William and Wilkins, 
Philadelphia, pp 192–273

	248.	Lilja M, Jounela AJ, Juustila HJ, Paalzow L (1982) Abrupt and gradual change from cloni-
dine to beta blockers in hypertension. Acta Med Scand 211:375–380

43  Secondary Hypertension: Infrequently Considered Aspects—Illicit/Recreational



Part IX

Hypertensive Phenotypes: Blood Pressure 
Disorders of Pregnancy and Pediatric 

Hypertension



763© Springer International Publishing AG 2018
A.E. Berbari, G. Mancia (eds.), Disorders of Blood Pressure Regulation,  
Updates in Hypertension and Cardiovascular Protection,  
https://doi.org/10.1007/978-3-319-59918-2_44

G. Bellomo 
Department of Nephrology, MVT Hospital, Str.Buda 1, 06059 Todi(Pg), Italy
e-mail: gianni.bellomo@uslumbria1.it

44Hypertensive Disorders of Pregnancy

Gianni Bellomo

44.1	 �Blood Pressure and Cardiovascular Adaptations 
in Normal Pregnancy

Normal pregnancy is associated with significant vascular and hemodynamic changes 
that are not limited to the fetoplacental system (Table 44.1). We will provide in this 
chapter a brief overview of such changes: a more detailed discussion can be found 
in other excellent reviews [1–5].

Heart rate, due to a rise in vasomotor sympathetic activity which occurs in the 
first weeks of gestation [6–8], tends to increase progressively during normal preg-
nancy, reaching its peak near term, overall about 20–25% over preconception.

Both systolic and diastolic (the latter more so) blood pressures tend to decrease 
early in pregnancy, to reach a nadir by the middle of second trimester (on average 
5–10  mmHg lower than prepregnancy values). Blood pressure progressively 
increases thereafter, returning to preconception values near term or a few weeks 
after delivery. It is important to note that, as these changes occur very early in preg-
nancy, blood pressure measured even during the first weeks of gestation may not be 
representative of preconception pressure. Vasodilation, a reduction of peripheral 
vascular resistance, accompanied by an increased arterial compliance, is probably at 
the origin of the blood pressure reduction [6].

Plasma volume tends to rise within the first few weeks of gestation, and volume 
expansions rises progressively throughout pregnancy, by an average 50% (20–
100%) [7–11] over preconception values. Plasma volume changes are mediated by 
activation of the renin-angiotensin-aldosterone system (RAAS) which persists 
through the 30th week of gestation, leading to sodium retention with a net gain of 
approximately 950–1000 mg [5, 9–11] even though, due to hemodilution, plasma 
osmolality and serum sodium levels are reduced. In addition, relaxin may induce an 
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increase in vasopressin secretion [13], which in turn leads to increased thirst and 
drinking; during pregnancy, total body water increases by 6–8 L, with both blood 
and interstitial volume expansion. Although an increase in red blood cell mass [14] 
occurs in pregnancy, the out of proportion volume expansion is responsible for a 
mild, physiologic anemia. Volume expansion causes an increased secretion of atrial 
natriuretic peptide [15] which is detectable by the 12th week of gestation and per-
sists 1–2 weeks after delivery and is responsible for postpartum polyuria.

Systemic vasodilation and decreased peripheral vascular resistance occur early 
in pregnancy [2, 7], well before the low-resistance uterine circulation is fully estab-
lished, reaching a nadir (approximately 35–40% over baseline) by the middle sec-
ond trimester and then plateaus and declines progressively to reach preconception 
levels within the first 2 weeks postpartum. The mechanisms at the basis of such a 
decrease in peripheral vascular resistance are not fully clarified yet but likely reflect 
the effects of several hormones and signaling pathways, including estrogens, pro-
gesterone, prostaglandins, and relaxin [12–19]; furthermore, reduced vascular 
responsiveness to pressor substances such as norepinephrine, angiotensin II, and 
vasopressin is well documented in pregnancy [3, 4, 20, 21].

Renal vascular resistance is also decreased, leading to an approximately 80% 
increase in renal plasma flow and 50% in glomerular filtration rate, with consequent 
reduced serum levels of urea, creatinine, and uric acid, peaking in the middle second 
trimester and returning to preconception levels near term or soon postpartum [5, 22].

Cardiac output increases early in pregnancy and rises quickly into the second 
trimester; it is estimated [23–25] that at 24  weeks of gestation, cardiac output 
reaches levels equal to 40–50% over baseline [23–25] in a singleton pregnancy, 
whereas it may rise up to 60% in twin pregnancies.

Finally, myocardial contractility, as well as right and left ventricular ejection 
fraction, do not seem to be affected by pregnancy [1].

Table 44.1  Cardiovascular adaptation in normal pregnancy

Hemodynamic 
parameter Pregnancy-induced change

Return to preconception 
levels

Heart rate Increases progressively throughout pregnancy 1–2 weeks postpartum
Blood pressure Decreases, starting 6–8 weeks of gestation 

through the end of 2nd trimester, then begins 
to rise again

End of 3rd trimester, 
few weeks postpartum

Plasma volume Increases starting 6–8 weeks of gestation and 
progressively throughout pregnancy

Few weeks postpartum

Peripheral vascular 
resistance

Decreases, starting 5 weeks of gestation, 
reaching nadir by middle of 2nd trimester, then 
remains stable throughout pregnancy

Within 2 weeks 
postpartum

Cardiac output Increases starting 5–6 weeks of gestation, 
through middle of 2nd trimester, then plateaus

Within 2 weeks 
postpartum

Cardiac contractility No change
Renal plasma flow Increases starting 5–6 weeks of gestation, 

reaching a peak at middle 2nd trimester, then 
decreases progressively toward term

Within 2–3 weeks 
postpartum
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44.2	 �Classification of Hypertension in Pregnancy 
and Diagnostic Criteria

Although the hypertensive disorders of pregnancy (HDP) remain a leading cause 
of maternal and perinatal morbidity and mortality worldwide [26, 27], a definite, 
widespread, universal consensus on the classification and diagnostic criteria for 
HDP has never been achieved [28]. This lack of consensus may have led to 
between-center differences in rates of adverse maternal and fetal outcomes for the 
various HDP, particularly preeclampsia, as well as to the difficulty in designing 
and conducting clinical trials. So far, the classification [29] proposed by the 
ACOG (American College of Obstetricians and Gynecologists) Task Force on 
Hypertension in Pregnancy (Table  44.2) has been widely used; more recently 
[28], a revised classification (Table  44.3) was proposed by the International 
Society for the Study of Hypertension in Pregnancy (ISSHP). Other classifica-
tions have been developed by the World Health Organization (WHO) and other 
institutions/scientific societies [28].

Although not specifically mentioned in the above-cited classification, a general 
tendency is arising to distinguish between early-placental (<34 weeks of gestation) 
and late-maternal (>34 weeks of gestation) preeclampsia [30, 31]. Early- and late-
onset preeclampsias share some etiological features, differ with regard to several 
risk factors, and may lead to different outcomes. The two types of preeclampsia 
should probably be treated as distinct entities from an etiological and prognostic 
[30, 31] standpoint.

Table 44.2  Classification of HDP according to ACOG Task Force on Hypertension in Pregnancy 
2013 [29]

Preeclampsia-eclampsia (blood pressure elevation [≥140 mmHg systolic or ≥90 mmHg 
diastolic], after 20 weeks of gestation with proteinuria ≥300 mg/24 h or any of the severe 
features of preeclampsia)
Chronic hypertension (of any cause that predates pregnancy)
Chronic hypertension with superimposed preeclampsia (chronic hypertension in association 
with preeclampsia)
Gestational hypertension (blood pressure elevation [≥140 mmHg systolic or ≥90 mmHg 
diastolic], after 20 weeks of gestation in the absence of proteinuria or any of the severe features 
of preeclampsia)

Table 44.3  Classification of HDP according to ISSHP 2014 [28]

Chronic hypertension
Gestational hypertension
Preeclampsia – De novo or superimposed on chronic hypertension [≥140 mmHg systolic or 
≥90 mmHg diastolic] proteinuria (spot urine protein/creatinine >30 mg/mmol [0.3 mg/mg] or 
>300 mg/day or at least
White coat hypertension
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According to ACOG classification, features of severe preeclampsia include any 
of the following:

Severe hypertension: systolic >160 or diastolic >110 mmHg on two occasions at 
least 4 h apart while the patient is on bed rest (unless antihypertensive therapy is 
initiated before this time); thrombocytopenia (platelet count <100,000/mm3); 
impaired liver function (elevated blood levels of liver transaminases to at least 
twice the normal concentration); severe persistent right upper quadrant or epigas-
tric pain unresponsive to medication and not accounted for by alternative diagno-
ses, or both; new development of renal insufficiency (elevated serum creatinine 
greater than 1.1 mg/dL, or doubling of serum creatinine in the absence of other 
renal disease); pulmonary edema; new-onset cerebral or visual disturbances.

According to ISSHP, definition of severe preeclampsia includes any of the fol-
lowing: proteinuria (spot urine protein/creatinine >30  mg/mmol [0.3  mg/mg] or 
>300 mg/day or at least 1 g/L. [‘2 +’] on dipstick testing) and other maternal organ 
dysfunction: renal insufficiency (creatinine >90  μmol/L [1.02  mg/dL]), liver 
involvement (elevated transaminases – at least twice upper limit of normal ± right 
upper quadrant or epigastric abdominal pain), neurological complications (exam-
ples include eclampsia [seizures], altered mental status, blindness-visual distur-
bances, stroke, or more commonly hyperreflexia when accompanied by clonus, 
severe headaches when accompanied by hyperreflexia, persistent visual scotomata), 
hematological complications (thrombocytopenia  – platelet count below 150,000/
dL, DIC [disseminated intravascular coagulation], hemolysis), and uteroplacental 
dysfunction(fetal growth restriction).

The ACOG and ISSHP differ mainly for the diagnostic role attributed to protein-
uria, which the former considers a condition sine qua non for establishing a diagno-
sis of preeclampsia, whereas ISSHP, in the presence of any of the abovementioned 
clinical features, does not deem proteinuria as a strict diagnostic criterion, although 
ACOG acknowledges that a diagnosis of severe preeclampsia is not necessarily 
dependent on the presence of proteinuria. Finally, fetal growth restriction is no lon-
ger considered a feature of severe preeclampsia by ACOG.

44.3	 �Proteinuria and Blood Pressure Measurement

From the above consideration, it appears evident that correct diagnosis and classifica-
tion of HDP depend heavily on the quality and accuracy of proteinuria and blood 
pressure measurement, which are important as the levels of blood pressure and the 
presence of proteinuria may influence clinical management [32–34]. A 24 h urine col-
lection is still considered by many [34] as the optimal method for the detection of 
proteinuria in pregnancy. Alternatively, either a timed excretion that is extrapolated to 
24 h urine value or a protein/creatinine ratio of at least 0.3 (each measured as mg/dL) 
is acceptable. The dipstick method is not considered appropriate by ACOG for diag-
nostic use unless other approaches are not readily available. 1+ is considered as the 
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cutoff for the diagnosis of proteinuria; however, a 24 hour collection may be unpracti-
cal at times, particularly when quick clinical decisions are to be made: in such 
instances a spot urine protein/creatinine ratio may be adequate, allowing to speed up 
decision-making, although the evidence supporting such a practice is insufficient [29].

Regarding blood pressure (BP) measurement in pregnancy, the following recom-
mendations, with varying strength of evidence, have been issued [35]: BP should be 
recorded with the woman seated comfortably and her arm resting at the level of her 
heart and her legs resting on a flat surface. Supine posture is not recommended 
because of the possible occurrence of the supine hypotension syndrome. The inter-
arm variation is usually less than 10 mmHg, with 8% and 2% of pregnant women 
having an inter-arm difference of at least 10 mmHg for systolic and diastolic BP, 
respectively [36]. Anyway, the arm with higher values should be used for subse-
quent measurements.

The systolic BP is identified at Korotkoff phase 1 (K1) and the diastolic BP at 
Korotkoff phase 5 (complete disappearance of sounds, K5) [37]. In the (not so rare) 
instances when Korotkoff sounds are audible down to zero mmHg, phase 4 (K4, 
muffling) should be accepted.

The use of correct cuff size is fundamental for accurate BP measurement. Cuff 
should be adapted to the woman’s arm circumference, with an inflatable bladder 
covering 80% used if the upper arm circumference is greater than 33 cm but lower 
than 44 cm and a thigh cuff used if the upper arm circumference is over 44 cm [33]. 
The rate of cuff deflation should be ≤2 mm per second to avoid underestimating 
systolic BP [38].

44.3.1	 �Measurement Devices

Mercury sphygmomanometers remain the gold standard for BP measurement in 
pregnancy, although their availability is becoming more and more limited, because 
of concerns about occupational health. Suitable alternatives may be calibrated aner-
oid sphygmomanometers or automated devices validated for use in preeclampsia; 
automated devices may provide mean BP values similar to those obtained with mer-
cury sphygmomanometers; however, they tend to show wide intraindividual varia-
tion, and their accuracy may be further compromised in preeclampsia [39, 40]. 
Automated BP devices not validated for use in preeclampsia may under- or overes-
timate BP, and comparison of recordings using mercury sphygmomanometry or a 
calibrated aneroid device is recommended [39].

In the office setting, when BP elevation is mild and preeclampsia is not sus-
pected, either ambulatory BP monitoring (ABPM) or home BP monitoring (HBPM) 
may be of use to confirm or exclude persistently elevated BP. When HBPM is used, 
maternity care providers should ensure that patients have adequate training in mea-
suring their BP and interpreting the readings.

Non-mercury auscultatory sphygmomanometers present an option with appro-
priately trained observers [41]. Information regarding device validation is provided 
by the British Hypertension Society.
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It is advisable that each unit should maintain a mercury sphygmomanometer for 
calibration and validation of automated and aneroid devices [42]. Healthcare pro-
viders must ensure that devices for measuring blood pressure are properly vali-
dated, maintained, and regularly recalibrated according to manufacturers’ 
instructions as recommended by the British Hypertension Society (BHS) [42]. A 
comprehensive list of approved devices for HBPM can be found at http://www.
dableducational.org, http://www.bhsoc.org/default.stm and http://www.hyperten-
sion.ca/devices-endorsed-by-hypertension-canada-dp1.

Twenty-four hour ambulatory blood pressure monitoring (ABPM) is generally 
reserved to identify women with white coat hypertension (WCH) [43, 44] and to 
avoid unnecessary treatment. It may also be useful in assessing pregnant women 
with raised BP before 20 weeks of gestation, 30–40% of which will be shown to 
have WCH [45], with approximately half of them requiring no treatment throughout 
pregnancy and the other half developing true hypertension [46].

The prognostic value of ABPM is limited in later pregnancy and for predicting 
adverse outcomes in women with HDP [47], with ambulatory diastolic BP display-
ing greater sensitivity and specificity than systolic BP [44].

44.4	 �Gestational (Transient) Hypertension

Gestational hypertension can be defined as the de novo development of hyperten-
sion after 20 weeks of gestation, without any of the abnormalities that define pre-
eclampsia; blood pressure generally returns to normal within 3 months postpartum; 
otherwise, the woman is considered as having chronic hypertension. This condi-
tion is usually believed to be benign; however, it can progress to preeclampsia in 
approximately 25% of cases, particularly when the hypertension presents before 
32–34 weeks [35].

It is estimated that approximately 35% of women with gestational hypertension 
at <34 weeks develop preeclampsia over an average of 5 weeks [29]. Women with 
prior gestational hypertension are likely to have recurrent gestational hypertension 
(median 21%) rather than preeclampsia (median 4%) [48]. Conversely, women with 
prior preeclampsia may develop gestational hypertension (median 22%) in subse-
quent pregnancies.

44.4.1	 �White Coat Hypertension and Masked Hypertension

WCH is defined as a persistently elevated office BP with normal BP outside the 
medical setting [49]; it is estimated that in the general population, up to one in four 
patients with elevated clinic or office BP does actually have WCH [50]. WCH in 
early pregnancy (approximately 30%) is common [51]. Forty percent of women 
with WCH will progress to persistent hypertension and 8% to preeclampsia. WCH 
carries a risk of adverse maternal-fetal outcomes, such as severe hypertension, pre-
term delivery, and NICU admission intermediate between normotension and either 
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pre-existing or gestational hypertension [52, 53]. WCH can be diagnosed by having 
clinic or office BP recorded by a nurse, rather than a doctor, preferably using 
repeated BP readings [43].

Ideally, the diagnosis is confirmed by demonstrating normal BP using 24  h 
ABPM in the first half of pregnancy, but the ISSHP guidelines acknowledge that 
this may be, at times, unpractical [44, 54, 55].

According to the ISSHP guidelines, the following take-home messages regard-
ing WCH must be considered: it is reasonable to withhold antihypertensive therapy 
in this group; BP should continue to be monitored regularly at home; increased 
surveillance is required throughout pregnancy to identify the onset of preeclampsia; 
and in areas where home BP measurements are not available, maternal BP should 
be checked regularly, preferably weekly, by a healthcare worker.

Masked hypertension (MH) is defined as a clinical condition in which a patient’s 
office BP level is <140/90 mmHg, but ambulatory or home BP readings are in the 
hypertensive range [56]. MH in early pregnancy is as common as WCH [56], but 
associated perinatal risks are unknown. Outcomes with masked hypertension equate 
to those of gestational hypertension [57].

MH could be considered (and ABPM/HBPM performed) when unexplained 
maternal or perinatal complications arise, which are generally associated with 
hypertensive disorders of pregnancy.

44.4.2	 �Chronic Hypertension

Chronic hypertension in pregnancy is defined as documented BP of at least 
140 mmHg systolic or 90 mmHg diastolic pressure before pregnancy or, for women 
who first present for care during pregnancy, before 20 weeks of gestation [29, 39, 
58]. Its prevalence ranges between 0.2 and 5% worldwide [29, 59, 60] and is esti-
mated around 3% in the USA, consistently increasing in the industrialized countries 
[61–63]; such an increase is most likely related to older age of the prospective moth-
ers in Western countries and to increased prevalence of obesity, a known risk factor 
for hypertension. The diagnosis of chronic hypertension may not be easy in preg-
nant women whose preconception or early first trimester BP is not known, as the 
physiological second trimester fall in BP can obscure pre-existing hypertension and 
although very rarely, preeclampsia can present before 20 weeks’ gestation [29, 35].

Although most women with chronic hypertension have favorable maternal and 
fetal outcomes, these women are at increased risk for pregnancy complications, as 
compared with the general population. The risk of an adverse outcome increases 
with the severity of hypertension and end-organ damage. In particular, the overall 
risk of developing preeclampsia has been estimated around 17% and 25% compared 
to 3–5% in normotensive women and of early preeclampsia (before gestation week 
34) around 10% [64–66]. Pregnant women with chronic hypertension are more 
likely to undergo cesarean section (50%) and to give birth to a small for gestational 
age (SGA) baby (27%–50%) [64, 67].The risk of placental abruption is increased 
more than twice in women with chronic hypertension, the more so in those who 
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develop preeclampsia [68]. Furthermore, a recent study [69] has shown an increased 
frequency of congenital malformations (in particular cardiac malformations) in the 
offspring of women with chronic hypertension, compared to offspring of normoten-
sive women, independent of pharmacologic treatment. Finally (Table 44.4), some 
antihypertensive agents carry risks in pregnancy and should be discontinued before 

Table 44.4  Pharmacologic treatments of chronic hypertension in pregnancy

Drugs by class Dose range

Effect of 
pregnancy on 
disposition

Common side 
effects Comments

Central α-agonists
Methyldopa 250–1500 mg, 

given in 2 daily 
doses

Unknown Sedation, 
weakness, 
orthostatic 
hypotension

Long-term data on 
safety. Probably 
first choice drug

Clonidine 0.15–0.3 mg, 
given in 2–3 
daily doses

Unknown Somnolence, 
bradycardia, 
xerostomia

First trimester 
exposure 
associated with 
birth defects, 
concerns about 
safety

Combined α- and β-blocker
Labetalol 100–1200 mg 

orally twice 
daily

+++(β 
isomer), +(α 
isomer

Asthma 
exacerbation, 
weakness, 
orthostatic 
hypotension(iv 
use)

Safe, can be used 
as first choice, iv 
formulation 
available for use in 
emergencies

Β-blockers
Metoprolol 25–200 mg 

orally twice 
daily

+++ Asthma 
exacerbation, 
weakness, 
depression, 
bradycardia

Possible 
association with 
IUGR

Atenolol 25–200 mg, 
orally, once 
daily

+ Asthma 
exacerbation, 
weakness, 
depression, 
bradycardia

Possible 
association with 
IUGR. Other 
β-blockers such as 
propranolol and 
pindolol have been 
used safely, but 
data are 
insufficient

Non-dihydropyridine calcium channel blockers
Verapamil 40–120 mg, 

orally, three 
times daily

+ Constipation, 
hypotension, 
weakness, 
bradycardia

May be used to 
prevent preterm 
labor; caution 
when 
uteroplacental 
perfusion is 
compromised
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conception [70–72]. As approximately 50% of pregnancies in the USA are 
unplanned, it is of the uttermost importance to provide counseling to hypertensive 
women of reproductive age regarding such risks as part of routine care [73].

The great majority of women with chronic hypertension experience a decrease in 
BP during pregnancy, equivalent to that observed in normotensive women, with BP 
falling toward the end of the first trimester and rising again to preconception values 
during the third trimester. Consequently, antihypertensive medications can often be 
tapered during pregnancy. However, besides the subset of women with chronic 
hypertension who develop preeclampsia, an additional 7–20% will experience 
worsening of hypertension with the progression of pregnancy without the develop-
ment of preeclampsia [64].

Table 44.4  (continued)

Drugs by class Dose range

Effect of 
pregnancy on 
disposition

Common side 
effects Comments

Dihydropyridine calcium channel blockers
Nifedipine (long-
acting preparation)

20–120 mg, 
once 
daily(twice 
daily may be 
necessary in 
some instances

++ Edema, 
hypotension, 
headache, 
weakness, 
flushing

Probably safe, 
widely used. Use 
of short-acting 
nifedipine
is typically not 
recommended,
given the risk of 
hypotension. 
Possible 
interaction with 
magnesium 
sulfate, avoid 
concomitant use

Amlodipine 2.5–10 mg, 
orally, once 
daily

++ Edema, 
hypotension, 
headache, 
weakness, 
flushing

Few data 
available, probably 
safe

Other vasodilators
Hydralazine 50–300 mg 

daily in 2–4 
divided doses

Unknown Headache, 
tachycardia, 
nausea

Intravenous 
formulation is 
available to treat 
hypertensive 
emergencies

Diuretics
Hydrochlorothiazide 12.5–50 mg 

orally, once 
daily

Unknown Hypokalemia, 
hypotension, 
dizziness, muscle 
cramps

Previous concerns 
about increased 
risk of an adverse
outcome are not 
supported by 
recent data

Angiotensin converting enzyme inhibitors or angiotensin receptor blockers are contraindicated 
in pregnancy due to the risk of birth defects and fetal or neonatal renal failure

aIUGR intrauterine growth restriction
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Notably, a lack of consensus exists about the benefits of treating mild to moder-
ate hypertension in pregnancy, as well as the BP goals to be pursued: a recent study 
[74] comparing tight BP control (diastolic BP ≤ 85 mmHg) to less tight control 
(diastolic BP ≤ 100 mmHg) on a composite primary outcome of pregnancy loss or 
high-level neonatal care for more than 48 h during the first 28 postnatal days and a 
secondary outcome of serious maternal complications occurring up to 6 weeks post-
partum or until hospital discharge, whichever was later, showed no significant dif-
ferences in the primary or secondary outcomes among the two groups; however, 
women assigned to the less tight control group had a higher frequency of severe 
hypertension (40.6% vs. 27.5%, p < 0.001). A recent statement from the Society of 
Maternal-Fetal Medicine (SMFM) endorsed the strategy of not treating with antihy-
pertensive agents pregnant women with mild to moderate hypertension without evi-
dence of end-organ damage [75]. Table  44.4 shows the available pharmacologic 
treatments for chronic hypertension in pregnancy [29, 35, 39, 64, 70–82]. Table 44.5 
summarizes the most recent guidelines for the management of chronic hypertension 
in pregnancy [29, 35, 39].

44.5	 �Preeclampsia

Preeclampsia, formerly known as toxemia of pregnancy, can be defined as new-
onset hypertension, after the 20th week of gestation, associated with proteinuria 
and/or other signs of end-organ damage (see classification of HDP). The term 
eclampsia refers to the occurrence of seizures that cannot be attributed to other 
causes in a woman with preeclampsia.

44.5.1	 �Epidemiology and Risk Factors

The incidence of preeclampsia is estimated to range between 2.5 and 5%. An accu-
rate estimate, as well as its global burden, is difficult to obtain, due to lack of data 
from several countries and standardization of diagnostic criteria [83–85]. 
Preeclampsia complicates about 3% of pregnancies in the USA, and similar inci-
dence data are reported in Scandinavian countries, where specific registries are 
available (3.0%, 4.5%, and 3.0% in Sweden, Denmark, and Norway, respectively). 
A study performed in New Zealand found an incidence of 3.3% [83–85, 87]. Higher 
incidence rates have been observed, such as 8.7% in a study from Canada [83–85] 
and 8.4% in one from Washington State [83, 84]. Such wide variations are probably 
related to intrinsic characteristics of the populations studied and to the diagnostic 
criteria adopted.

Researchers from the WHO have conducted a systematic review [86] of studies 
on hypertensive disorders of pregnancy, representing approximately 39 million 
women from 40 countries; from this data set, they have derived a logistic regression 
model to estimate the global incidence of preeclampsia (4.6%, 95% uncertainty 
range 2.7–8.2%) and eclampsia (1.4%, 95% uncertainty range 1.0–2.0%).
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Regarding temporal trends, preeclampsia incidence rates appear to be increasing 
along the years, according to data from Norway (from 3.7% between 1988 and 1992 
to 4.4% between 1998 and 2002). A similar pattern has been reported in the USA 
[83–85] with age-adjusted rates rising from 2.4% between 1987 and 1988 to 2.9% 
of deliveries between 2003 and 2004. This temporal trend is not easily explained; 
however, the increased prevalence of risk factors such as obesity and older maternal 
age may play a role.

Conversely, the incidence of eclampsia appears to be decreasing; a recent study 
[85] conducted in California showed a decreased incidence of eclampsia from 8.0 
cases per 10,000 deliveries in 2001 to 5.6 cases per 10,000 deliveries in 2007 
(p < 0.001). A bimodal distribution in age-related risk, with the highest risks at the 
extremes of age, was observed. A possible explanation for this pattern may be found 
in improved maternal care.

Preeclampsia seems to follow a seasonal pattern: Hlimi [88] has recently 
reviewed studies on this subject, showing that seasonal trends may influence mater-
nal health globally, the more so in developing countries: a statistically significant 
link between preeclampsia and seasonality has been shown in

sub-Saharan Africa, as well as in South and Central Asia, with a lower incidence 
recorded in the hot and dry season, increasing in the rainy and cooler season. A sim-
ilar pattern has been reported in a study from Recife, in Brazil [89].

Finally, the risk of recurrence of preeclampsia in a second pregnancy is estimated 
around 7–15% [83, 87, 90], rising to 30% if the first two pregnancies were compli-
cated by preeclampsia. A recent individual participant meta-analysis [87] showed a 
recurrence rate of 13.8% for preeclampsia, with a milder course for recurrent 
disease.

Several risk factors have been identified for preeclampsia (Table 44.6). A family 
history of preeclampsia increases the risk substantially, and preeclampsia tends to 

Table 44.6  Risk factors for preeclampsia

Familial factors Obesity
Family history of preeclampsia in first-degree 
relatives

Primipaternity and sperm exposure

Strong family history of cardiovascular disease  
(heart disease or stroke in two or more first-degree 
relatives)

Nulliparity, use of barrier contraception

Obstetric factors Change of partner
Nulliparity ICSI (intracytoplasmic sperm injection)
Multiple pregnancy Miscellaneous
Previous pregnancy complicated by preeclampsia Residence at high altitudes
Advanced maternal age Seasonality
Pre-existing medical conditions Exposure to air pollutant(ozone)
Antiphospholipid antibody syndrome and other 
thrombophilic states

Non-Hispanic black race

Renal disease Gestational weight gain >16 kg
Diabetes mellitus
Systemic lupus erythematosus
Chronic hypertension
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occur in daughters of mothers who, in turn, had preeclampsia [83, 91]. A paternal 
effect has also been documented [26], as men who fathered a pregnancy compli-
cated by preeclampsia are more likely to father another pregnancy complicated by 
preeclampsia [92, 93]. A significant family history of cardiovascular disease leads 
to a threefold increased risk of preeclampsia [91]. Nulliparity, a previous pregnancy 
complicated by preeclampsia, multiple gestations, and maternal age 40  years or 
older increase the risk of preeclampsia by a factor of approximately 5.7, 3.5, and 1.7 
[94], respectively. A number of comorbid conditions, such as the antiphospholipid 
syndrome and chronic kidney disease, are associated with a greater than sevenfold 
risk of developing preeclampsia [83, 94, 95], whereas such risk is increased 3.6–3.8 
times in women with diabetes mellitus (99) or chronic hypertension [83]. Finally 
obesity and excess gestational weight gain are also risk factors for preeclampsia 
(100). Regarding primipaternity and sperm exposure, the observation that nullipa-
rous women have a three-fold higher risk of preeclampsia compared with multipa-
rous women and that women who use barrier contraception or who change partner, 
or conceive following intracytoplasmic sperm injection (ICSI) [93, 96], also carry 
an increased risk of developing preeclampsia may also have pathogenetic implica-
tions, indicating that exposure to partner’s sperm may be protective, thus implicat-
ing some form of immune tolerance [92, 93, 96]. Table 44.6 summarizes risk factors 
for preeclampsia [88–110].

44.5.2	 �Pathogenesis

Preeclampsia is an endothelial disorder unique to human pregnancy, with multiple 
organ involvement; its hallmark the renal histological lesion, defined as “glomerular 
endotheliosis,” represents a specific variant of thrombotic microangiopathy charac-
terized by glomerular endothelial swelling with loss of endothelial fenestrae and 
occlusion of the capillary lumens; the lesion, however, is not specific of preeclamp-
sia, as it was found in women with normal pregnancy as well as in both non-
proteinuric and proteinuric hypertension [111] and is consequently not, as earlier 
believed, pathognomonic of preeclampsia [111]. Its cause remains elusive, and sev-
eral theories have been proposed, hence the definition “disease of theories.” Given 
the fact that important aspects of physiologic pregnancy, such as immune tolerance 
of the hemiallogeneic fetus and mechanisms of labor initiation, remain largely 
unexplained [29, 112], it comes as a consequence that the pathogenesis of pre-
eclampsia is also difficult to elucidate. A wide consensus exists on the cardinal 
importance of the placenta for its development, as delivery of the placenta leads to 
resolution of the syndrome, and molar pregnancy is often complicated by pre-
eclampsia. A common feature of preeclampsia (in particular in its early form, occur-
ring before the 34th week of gestation) involves poor placentation, with defective 
and shallow cytotrophoblast invasion of the interstitial uterine compartment, 
although not in all cases. In many locations, spiral artery invasion is incomplete. 
Fewer endovascular cytotrophoblasts are visible, and some vessels retain portions 
of their endothelial lining with relatively intact muscular coats, although others 
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remain unchanged [113]. In physiologic pregnancy, cytotrophoblast invasion is 
accompanied by changes in gene expression profiles, with downregulation of 
epithelial-like molecules (such as cadherin) and upregulation of endothelial-like 
molecules, with a switch from an epithelial to an endothelial phenotype [113, 114]; 
abnormalities of such a finely tuned process might be at the basis of the abnormal 
placentation of preeclampsia [113, 114].

Currently, the most accredited pathogenetic theory of preeclampsia is based on 
unbalanced angiogenic and anti-angiogenic factors [115, 116]: in preeclampsia, 
there is increased expression of soluble fms-like tyrosine kinase-1 (sFlt1), also 
called VEGFR1, the soluble form of the receptor for vascular endothelial growth 
factor (VEGF), which is a pro-angiogenic cytokine produced by macrophages, T 
cells, tumor cells, and cytotrophoblast, and it is involved in angiogenesis and vascu-
logenesis; concurrently a decreased production of placental growth factor (PlGF) 
occurs; PlGF is also an angiogenic factor belonging to the VEGF family and which 
exists in four isoforms PlGF-1, PlGF-2, PlGF-3, and PlGF-4 [115–118]. These iso-
forms are central for the whole period of embryo development, taking part in vascu-
logenesis [115–118]. PlGF expression occurs in trophoblast, and during the first 
30 weeks of a physiologic pregnancy, there is an increase of PlGF levels followed 
by a decrease. The expression of soluble Flt1 by the placenta is greatly increased in 
preeclampsia, and sFlt1 levels are markedly increased in the maternal circulation 
[119], where it antagonizes both VEGF and PlGF by binding them in the blood-
stream, thus preventing interaction with their endogenous receptors [118, 119]. 
Several studies have shown these changes to occur early in the course of preeclamp-
tic pregnancies [120], long before the onset of clinical disease, being also correlated 
with disease severity [121]. These early changes in angiogenic and anti-angiogenic 
levels may render them potentially useful as predictors/biomarkers of preeclampsia 
(see next section).

Preeclampsia is a heterogeneous disease, and other factors have been implicated 
or associated with the development of preeclampsia; for instance, endothelium-
dependent relaxation is impaired in women with preeclampsia [122, 123] with 
reduced bioavailability of nitric oxide and prostacyclin (PGI2). Furthermore, endo-
thelin (ET-1) signaling has been shown to contribute to the enhanced vasopressor 
response typical of preeclampsia [116]. In preeclampsia an enhanced pressor 
response to angiotensin II (ANG II) is observed, antedating the onset of the clinical 
syndrome [124]; in addition, agonist angiotensin receptor autoantibodies have been 
detected in the circulation of women with preeclampsia, and these autoantibodies 
may be responsible for enhanced Ang II signaling [124, 125].

Oxidative stress, reflecting unbalanced prooxidant/antioxidant mechanisms, is 
probably the convergence point of several pathways leading to the development of 
preeclampsia; in fact, signs of increased production of oxidants, lipid peroxides, and 
isoprostanes with concurrently reduced levels of antioxidants are found in the pre-
eclamptic placenta. Recent studies have suggested a relation between abnormal 
maternal inflammation, altered uteroplacental perfusion, and adverse pregnancy 
outcomes [126], mediated by altered maternal hemostasis and increased oxidative/
nitrosative stress and vasoconstriction [126, 127].
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The role of complement and its relation to hypertensive disorders of pregnancy 
have recently been reviewed [128]. An intact complement system is required for a 
successful pregnancy. Complement regulation in the placenta is finely tuned to pre-
vent the maternal innate immune system from harming the fetus. Recent studies 
have shown that too little or too much complement at the wrong time in gestation 
can adversely affect the mother and the fetus. Excess activation leading to placental 
damage or fetal demise may be the result of inherited or acquired complement 
anomalies [128].

An additional intriguing hypothesis has been proposed, which exposes the role 
of fetal DNA, placental DNA, and trophoblast microparticles released into the 
maternal circulation as key factors in the development of the systemic inflammatory 
response of preeclampsia [129].

Finally, as already mentioned, the role of paternal factors has recently received 
attention: paternal age and thrombophilia, as well as single nucleotide polymor-
phisms in the genes encoding for PlGF and VEGF, have been associated with an 
increased risk of preeclampsia [92, 93].

44.5.3	 �Predictors/Biomarkers

A variety of biochemical, clinical, and demographic, or combinations thereof, 
markers have been proposed along the years (Table 44.7). A detailed coverage of the 
topic is beyond the scope of this chapter, and the interested reader may refer to sev-
eral detailed reviews [116, 121, 135, 145]. Notably, few, if any, of the identified 
markers have withstood the test of time. Currently, PlGF levels and/or sFlt-1/PlGF 
ratio have been the object of clinical studies and seem to meet expectations. In a 
recent prospective, multicenter, observational study performed to derive and vali-
date a ratio of serum sFlt-1 to PlGF that would be predictive of the absence or pres-
ence of preeclampsia in the short term in women with singleton pregnancies [131], 
it was shown that an sFlt-1:PlGF ratio of 38 or lower had a negative predictive value 
in the short term (i.e., no preeclampsia in the subsequent week) of 99.3% (95% 
confidence interval [CI], 97.9–99.9), with 80.0% sensitivity (95% CI, 51.9–95.7) 
and 78.3% specificity (95% CI, 74.6–81.7). The positive predictive value of a sFlt-
1:PlGF ratio above 38 for a diagnosis of preeclampsia within 4 weeks was 36.7% 
(95% CI, 28.4–45.7), with 66.2% sensitivity (95% CI, 54.0–77.0) and 83.1% speci-
ficity (95% CI, 79.4–86.3). Another recent study of women with chronic kidney 
disease (CKD) or with established hypertension [132] has demonstrated that lower 
maternal levels of PlGF have greater accuracy (area under ROC curve 0.85) in the 
prediction of superimposed preeclampsia, compared to other biomarkers such as 
B-type natriuretic peptide (BNP), neutrophil gelatinase-associated lipocalin 
(NGAL), and serum relaxin concentrations.

Uric acid stands as a lone survivor among old markers for preeclampsia; it is 
inexpensive and easily measured, but its predictive power, when measured in the 
first trimester of pregnancy is low, with unsatisfactory sensitivity and specificity 
[133]; however, it has been shown in a prospective study of pregnant women referred 
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for recent onset of hypertension that uric acid levels can predict development of 
preeclampsia, with receiver operating characteristic (ROC) analysis indicating that 
a 309 μmol/L cutoff predicted the development of preeclampsia (area under the 
curve, 0.955), with 87.7% sensitivity and 93.3% specificity [134].

Table 44.7  Predictors/biomarkers for preeclampsia

Predictor/biomarker Comment
PlGF, sFlt-1/PlGF ratio Marker of angiogenic imbalance, acceptable sensitivity/

specificity [130–132] potentially useful in women with 
chronic hypertension

Uric acid Marker of purine metabolism and renal injury: 
Inexpensive, easy to measure, poor sensitivity/specificity 
early in pregnancy may be useful in prediction of 
preeclampsia in women who develop gestational 
hypertension [133, 134]

Podocyturia Marker of renal involvement [135, 136]
Von Willebrand factor/ADAMTS13 
ratio

Marker of coagulation imbalance [135]

Factor VII Marker of hypercoagulability [135]
Pregnancy-associated plasma 
protein A (PAPP-A), PP13, 
ADAM-12, and matrix-
metalloproteinases (MMPs)

Markers of compromised trophoblastic invasion/uterine 
artery remodeling [137]

Thrombomodulin Marker of endothelial injury [135]
Asymmetric dimethylarginine 
(ADMA)

Endogenous inhibitor of the arginine–NO(nitric oxide) 
pathway [138]

Homocysteine and TIMP3 Markers of epigenetic dysregulations [139]
Placental microRNAs expression Markers of placental DNA methylation and histone 

modification [140, 141]
Angiotensin receptor1 
autoantibodies

Induce vasoconstriction via stimulation of AT1 receptors 
on vascular smooth muscle cells [124, 125]

Marinobufagin (MBG) Steroid compound that inhibits sodium transport and 
causes vasoconstriction, which can lead to hypertension 
[142]

Activin A Member of the transforming growth factor (TGF)-β 
superfamily, pro-inflammatory. Increased concentration 
associated with preeclampsia [143]

Corin Corin is a 1042-amino acid transmembrane protein which 
activates pro-ANP to active ANP (atrial natriuretic 
peptide); reduced levels predict preeclampsia [135]

Microparticles Heterogeneous population of fragments (0.1–1.0 μm), 
released from the cell membranes of a variety of cells 
such as platelets, granulocytes, erythrocytes, endothelial 
cells during apoptosis or activation, which exert a variety 
of biological functions, may help predict early 
preeclampsia [129]

Uterine artery pulsatility index It evaluates uteroplacental circulation [137, 144]
Multivariable model including lab, 
clinical, and demographic 
parameters

Potentially useful to predict early preeclampsia [145]

FMF (Fetal Medicine Foundation) 
algorithm

Potentially useful to predict early preeclampsia [145]
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A great number of prognostic models, with differing combinations of clinical, 
biochemical, and demographic parameters, have been developed over time. A recent 
review [145] identified 177 papers that reported the development of 263 prognostic 
models for 40 different outcomes. The most frequently predicted were preeclampsia 
(n = 69), preterm delivery (n = 63), mode of delivery (n = 22), gestational hyperten-
sion (n = 11), and small for gestational age infants (n = 10). The authors concluded 
that there is relatively little evidence about the models’ performance, impact, and 
usefulness in clinical practice so that, at this point, clinical implementation cannot 
be recommended.

44.6	 �Clinical Features

Preeclampsia is a heterogeneous disease, at times difficult to diagnose, due to the 
wide range of clinical presentation and the lack of diagnostic tests with adequate 
sensitivity and specificity. As previously mentioned, cardinal features of this syn-
drome are new-onset hypertension (beyond the 20th gestation week) and protein-
uria greater than 300 mg/24 h. Recent classifications (see specific subsection) may 
consider a diagnosis of preeclampsia in the absence of proteinuria, when signs of 
maternal organ or fetoplacental dysfunction are present [35, 39]. With the classical 
presentation, women typically develop preeclampsia after 20 weeks gestation and 
prior to 48 h postpartum [146]. However, in a significant proportion of women, the 
presentation may be atypical, lacking one of these cardinal signs, thus rendering the 
diagnosis difficult to confirm or exclude. It is estimated that approximately 20% of 
women with atypical preeclampsia present with minimal or no proteinuria [146]. 
On the other side, establishing a diagnosis of preeclampsia may be challenging in 
women with proteinuria antedating the pregnancy. The degree of proteinuria in pre-
eclampsia may range from minimal to nephrotic; however, the amount of protein-
uria does not seem to affect maternal or fetal outcomes [35, 147]. From a historical 
point of view, edema was considered as a component of the diagnostic triad of the 
syndrome; however, it is a too non-specific finding for diagnostic purposes, as a 
large proportion of pregnant women without preeclampsia present with edema by 
the end of their pregnancies.

44.7	 �Complications-Emergencies

44.7.1	 �Severe Preeclampsia

Preeclampsia encompasses a wide spectrum regarding clinical presentation, time of 
onset (ranging from the 20th week of gestation to 4–6  weeks postpartum), and 
severity. Current clinical guidelines support the differentiation between mild and 
severe forms, as the implication for medical and obstetrical management differs, 
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particularly at preterm gestations [29, 35, 39]. According to ACOG guidelines (with 
similar recommendations from other guidelines), features of severe preeclampsia 
include any of the following:

	1.	 Hypertension: systolic >160 mmHg or diastolic >110 mmHg on two occasions 
at least 4 h apart while the patient is on bed rest (unless antihypertensive therapy 
is initiated before this time)

	2.	 Thrombocytopenia (platelet count <100,000)
	3.	 Impaired liver function (elevated blood levels of liver transaminases to twice the 

normal concentration), severe persistent right upper quadrant (RUQ), or epigas-
tric pain unresponsive to medication and not accounted for by alternative diag-
noses or both

	4.	 New development of renal insufficiency (elevated serum creatinine greater 
than 1.1 mg/dL or doubling of serum creatinine in the absence of other renal 
disease)

	5.	 Pulmonary edema
	6.	 New-onset cerebral or visual disturbances

The degree of proteinuria, conversely, is no longer considered among the diag-
nostic criteria for severe preeclampsia.

44.7.2	 �Eclampsia

In eclampsia, patients have the same findings as in preeclampsia, with the addition 
of generalized tonic-clonic seizures, not otherwise explained. It is a rare complica-
tion in developed countries. It is estimated to complicate approximately 0.1% of all 
pregnancies [148, 149], but in developing countries these figures may be higher (see 
epidemiology section).

Classically, headache, visual disturbance, or an altered level of consciousness are 
considered the symptoms of imminent eclampsia. However, there are no reliable 
clinical markers that predict eclampsia, and the presence of neurological symptoms 
and/or signs are seldom associated with seizures [148]. Seizures may occur antena-
tally, intrapartum, or postnatally, usually within 24 h of delivery but occasionally 
later. Hypertension and proteinuria may be absent prior to the seizure and not all 
women will have warning symptoms such as headache, visual disturbances, or epi-
gastric pain [129].

The further from delivery that the seizure occurs, the more carefully should other 
diagnoses be pursued. In fact, cerebral venous thrombosis, in particular, may occur 
in the first few days of the puerperium. It must be borne in mind that eclampsia is 
not the commonest cause of seizures in pregnancy and that other conditions such as 
epilepsy and other medical problems must be considered carefully, particularly in 
the absence of typical features of severe preeclampsia.
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44.7.3	 �HELLP Syndrome

The acronym HELLP stands for “Hemolysis Elevated Liver Enzymes Low Platelets” 
and summarizes the cardinal features of the syndrome [29, 35, 39]. It is a multi-
organ disease characterized by thrombocytopenia, hemolytic anemia, and liver dys-
function believed to result from microvascular endothelial activation and cell injury; 
at times, one of the three may be lacking and elevation of blood pressure may not be 
universal. It is estimated to occur in 0.1–0.6% of all pregnancies and in 4–12% of 
patients with preeclampsia. HELLP syndrome, typically, presents between week 27 
of gestation and delivery and immediately postpartum in 15–30% of cases. HELLP 
is a life-threatening complication of preeclampsia with maternal mortality rate rang-
ing from 1 to 3% and a perinatal mortality rate approaching 35%, with most deaths 
occurring in class 1 HELLP (Table 44.8).

44.7.4	 �Cerebrovascular Emergencies

These will be treated briefly; the interested reader may find a detailed description in 
some excellent reviews [151].

Reversible Cerebral Vasoconstriction Syndrome (RCVS)
RCVS, sometimes referred to as postpartum angiopathy when presenting post-

partum, carries significant morbidity and mortality [152–154]. It is an uncommon 
complication, and thus its exact incidence is unknown; however, the syndrome 
occurs more frequently in patients with preeclampsia associated with autoimmune 
disorders [153].

Characteristic features of RCVS are sudden onset of a severe thunderclap head-
ache (often multiple thunderclap headaches) and segmental vasoconstriction of 
cerebral arteries documented on brain imaging. Approximately two-thirds of peri-
partum cases occur after delivery. RCVS can mimic eclampsia, as seizures are 
found in up to 28% of patients [153, 155–157].

Although the exact pathophysiological process resulting in RCVS is unknown, 
vasoactive agents, postpartum state, and physical and sexual activity have been 
implicated as inciting factors [156, 158]. The mainstay in diagnosis is MRI or CT 
angiography, which can appear normal in the first days of the process [159]. 
Transcranial Doppler can be used to follow the course of the disease [158]. RCVS 
is a rare disorder, with many symptoms overlapping with other disease processes. At 
present, there is no clear consensus on the treatment. The goal of therapy is to 

Table 44.8  Mississippi classification of HELLP syndrome [150]

Class 1 (severe) Class 2 (moderate) Class 3 (mild)
Platelets ≤50,000/μL 50,000–100,000/μL 100,000–150,000/μL
AST or ALT ≥70 IU/L ≥70 IU/L ≥40 IU/L
LDH ≥600 IU/L ≥600 IU/L ≥600 IU/L
Incidence of bleeding 13% 8% No increased risk
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relieve cerebral vasoconstriction in order to prevent potential neurological sequelae, 
and this should be accomplished in a tertiary, multidisciplinary care setting.

Posterior Reversible Encephalopathy Syndrome (PRES)
Preeclampsia, eclampsia, severe hypertension, and RCVS can all be complicated 

by PRES. Clinical features of PRES include the occurrence of headache, seizures, 
encephalopathy, and visual disturbances; neuroimaging may show signs of focal 
reversible vasogenic edema most commonly involving the parietal and occipital 
lobes, followed by the frontal and temporal lobes, which is best seen on MRI of the 
brain [160]. Symptoms develop suddenly and progress over 12–48  h [161]. 
Recommendations regarding the treatment of PRES are limited.

Potential inciting factors such as electrolyte disturbances, fluid overload, uremia, 
and sepsis may contribute to the development of PRES and should be recognized 
and treated. If medications, such as cytotoxic or immunosuppressive agents are 
thought to be causative, they should be decreased or stopped. As hypertension does 
occur in most patients with PRES, BP should be lowered (Table 44.9), often result-
ing in clinical improvement. Seizures are usually treated with phenytoin and other 
antiepileptic medications, unless the patient has eclampsia in which case, magne-
sium sulfate is recommended.

Stroke  Stroke is uncommon in pregnancy, with reported incidence ranging from 4 
to 34 per 100,000 deliveries, but accounts for more than 12% of all maternal deaths. 
The majority of strokes occur within 3 days of delivery in the postpartum period 
[162]. Risk factors include preeclampsia, eclampsia, chronic hypertension, 
migraines, cesarean delivery, sickle cell disease, systemic lupus erythematosus, 
thrombocytopenia, drug use (especially cocaine), African-American race, older age, 
greater parity, and multiple gestations [163]. It is of the utmost importance when a 
stroke occurs to establish as quickly as possible whether it is ischemic or hemor-
rhagic. Brain imaging with MRI or CT should be performed quickly. MRI is the 
preferred imaging modality in pregnancy, with potentially better sensitivity at iden-
tifying small infarcts, but CT is generally more readily available and performed 
first. Gadolinium-enhanced MRI contrast should be avoided unless absolutely nec-
essary due to the lack of data regarding safety to the fetus.

44.7.5	 �Acute Kidney Injury (AKI)

AKI in pregnancy remains a cause of significant maternal-fetal mortality and mor-
bidity. Its definition, and, hence, its incidence, varies widely in the literature, rang-
ing from mild increase in serum creatinine (0.8 mg/dl) to dialysis requirement [164]. 
The incidence of AKI remains unacceptably high in developing countries. In a 
recent study from India [165], AKI occurred in approximately 1 in 50 pregnancies 
accounting for up to 20% of all cases of AKI, and it was associated with a high 
incidence of fetal/neonatal (39%) and maternal (20%) mortality. The specific fac-
tors responsible for the persistent high incidence of AKI in pregnancy in developing 
countries include septic abortions, usually performed in the absence of adequate 
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medical assistance, generally poor follow-up of pregnancy with limited or no 
screening of hypertensive complications of pregnancy, and relatively late referral of 
patients with these disorders [164, 165]. Conversely, the incidence of AKI in preg-
nancy has been steadily declining in developed countries, estimated to approxi-
mately 1:20,000 pregnancies [166], mainly explained by the near disappearance of 
postabortum sepsis after the legalization of abortion in most developed countries 
and the improved management of hypertensive complication.

AKI occurs more frequently in the late third trimester of pregnancy, and hyper-
tensive complications (including HELLP) are currently its leading cause [164, 167]. 
Other causes include postabortum (first trimester) or puerperal sepsis, ante- or post-
partum hemorrhage, intrauterine death, acute fatty liver of pregnancy, and throm-
botic microangiopathy [164, 168, 169].

One of the most dreaded complications of AKI in pregnancy is represented by 
renal cortical necrosis (RCN), which consists of a patchy or diffuse ischemic 
destruction of the renal cortex. It occurs in 1.5–2% of all cases of AKI in developed 
countries and more frequently (3–7%) in developing countries [169, 170]. Obstetric 
complications such as septic abortions, placental abruption, and intravascular dis-
seminated coagulation are the principal cause of RCN (50–70%) in developing 
countries [164, 170, 171]. The peculiar association of RCN and pregnancy remains 
to be explained.

44.8	 �Management of Preeclampsia/Eclampsia

Management of hypertension: a widespread consensus exists on the necessity of 
treating severe hypertension (≥160 mmHg systolic or 100–110 mmHg diastolic) 
[29, 35, 39, 64]. Treatment is directed at achieving a BP around 140 mmHg systolic 
and 85–90 mmHg. Overcorrection of BP is discouraged as it may lead to maternal-
fetal hypoperfusion. Caution is advised when using short-acting nifedipine, as it 
may cause profound hypotension and may potentiate side effects of MgSO4 given 
for the prophylaxis or treatment of preeclampsia [29, 35, 39, 64]. Table 44.9 sum-
marizes available drugs for the management of severe hypertension in pregnancy 
[29, 35, 39, 64, 97, 172–174].

Timing of Delivery  Timing of delivery depends upon the severity of the maternal 
disease and the time of onset of the preeclampsia or gestational hypertension 
(Table 44.10). Immediate management refers to delivery planned within 48 h, usu-
ally after blood pressure stabilization and corticosteroid administration to accelerate 
fetal pulmonary maturity [29, 35, 39]. Expectant management refers to prolongation 
of the pregnancy beyond these 48 h with maternal and fetal monitoring; it is esti-
mated that only 40% of women are eligible for expectant care [175]. There is general 
agreement that expectant care should be offered only in experienced centers equipped 
with neonatal intensive care units where neonates can be cared for at the woman’s 
current gestational age [29, 35, 39]. Indications for urgent delivery are summarized 
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in Table 44.11 [29, 35, 39]. Labor induction is indicated at 37 weeks of gestation or 
beyond, in order to reduce poor maternal outcome [175–177]. Regarding route of 
delivery, vaginal delivery can often be accomplished; however, the rate of cesarean 
sections increases inversely with gestational age [175–177].

Eclampsia: Eclampsia is defined as the occurrence of new-onset grand mal sei-
zures in a woman with preeclampsia. Clinical symptoms predictive of eclampsia 
include persistent frontal or occipital headache, altered mental status, photophobia, 
blurred vision, and epigastric or right upper quadrant abdominal pain. The mainstay 
of treatment of eclampsia is magnesium sulfate, which has proved superior to other 
anticonvulsant agents such as diazepam or phenytoin [29, 35, 39]. For the treatment or 
prophylaxis of preeclamptic seizures it is given as a 4–6 g loading dose (15–20 min), 
followed by a 1–2 g/h maintenance dose for at least 24–48 h. Monitoring of blood 
magnesium levels is advised, as well as caution in concurrent use of calcium channel 
blockers. Magnesium sulfate may be administered in women with preeclampsia for 
prophylaxis; however, its widespread use for this indication remains controversial.

Finally, a recent small study of women with early preeclampsia has shown a 
beneficial effect of dextran-sulfate based apheresis, which can selectively remove 
sFlt-1 from the circulation [178].

Table 44.10  Timing of delivery and onset of preeclampsia [39]

Gestation 
at onset Previable < 23 weeks 24–31 weeks 32–36 weeks

37 + 0 
onward

Delivery 
plan

Consult with tertiary 
institution, likely to need 
termination of pregnancy or 
extreme preterm delivery. 
High-risk patient

Consult and 
transfer to tertiary 
institution, likely 
to need preterm 
delivery. Aim to 
prolong 
pregnancy where 
possible

Aim to prolong 
pregnancy where 
possible, deliver 
in institution with 
appropriate 
neonatal care

Plan 
delivery on 
best day in 
best way

Table 44.11  Indications for delivery in women with preeclampsia or gestational hypertension

Maternal Fetal
Gestational age ≥37 weeks Severe fetal growth restriction
Deteriorating liver function Non-reassuring fetal status
Persistent epigastric pain, nausea or vomiting 
with abnormal liver function tests

Placental abruption

Deteriorating renal function Persistent oligohydramnios
Inability to control hypertension Reversed end-diastolic flow on umbilical 

artery Doppler studies
Decreasing platelet count Recurrent variable or late deceleration 

during stress test
Intravascular hemolysis Fetal death
Persistent neurologic symptoms
Pulmonary edema
Eclampsia
Progressive labor or rupture of membranes

G. Bellomo
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44.9	 �Prevention of Preeclampsia

Strategies aimed at preventing preeclampsia have been studied extensively in the last 
two decades; however, no single intervention has proved unequivocally effective.

Antiplatelet agents, such as low-dose aspirin (100 mg or less, daily), have been 
studied extensively [29, 179–181] and a benefit for the prevention of preeclampsia 
clearly established, especially when aspirin is started before 16 weeks of gestation 
[29, 35, 39], although dependent on the baseline population risk: in fact, according to 
estimates of the PARIS group [182], the number needed to treat (NNT) to prevent a 
single event ranges from an average of 56 for a baseline event rate of 18% to 500 for 
a baseline event rate of 2%. Hence, treatment is best reserved for high-risk women 
such as diabetics, women with chronic hypertension, pre-existing renal disease, or 
with a previous history of preeclampsia. Calcium supplementation is recommended in 
women with low dietary intake (less than 600 mg/day), which is generally not the case 
in developed countries; a study from the NIH [35, 183], the Calcium for Preeclampsia 
Prevention (CPEP), concluded that calcium supplementation did not provide any ben-
efit in terms of incidence of preeclampsia, blood pressure, or perinatal outcome.

A recent systematic review [184] has shown vitamin D supplementation to be 
safe during pregnancy and to be associated with increased 25 (OH) vitamin D levels 
and increased birth weight and length.

Statins (3-hydroxy-3 methylglutaryl coenzyme-A reductase inhibitors) are the 
most commonly prescribed cholesterol-lowering medications. Owing to pathophys-
iologic similarities between cardiovascular disease and preeclampsia, an increasing 
interest has arisen in studying this class of medications during pregnancy to prevent 
and/or treat preeclampsia. Animal studies have shown this class of agents to be able 
to inhibit cytokine-induced release of sFlt-1 [185, 186]. However most statins are 
lipophilic and cross the fetal membranes with potential adverse effects to the fetus 
[186]. Pravastatin is the only agent of this class that does not enter the embryonic 
compartment. In humans a small, pilot, randomized controlled trial investigating 
pravastatin use for the prevention of preeclampsia has been conducted [187]. 
According to the authors, the study provides preliminary safety and pharmacoki-
netic data regarding the use of pravastatin for preventing preeclampsia in high-risk 
pregnant women thus establishing the basis for a possible, larger clinical trial.

Finally, based on current evidence the following interventions are not recom-
mended for the prevention of preeclampsia: dietary salt restriction during preg-
nancy, calorie restriction for overweight women, vitamins C and E, zinc, or thiazides 
[35]. Periconceptional and ongoing use of folate may be useful, but evidence is 
insufficient for recommendation [35].

44.10	 �Long-Term Sequelae of Preeclampsia

In most women affected by preeclampsia, even those with severe early-onset dis-
ease, clinical features are resolved within a few days after delivery of the baby and 
placenta. Despite the short-term clinical recovery, recent evidence consistently 
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shows that long-term cardiovascular health in women with a history of preeclamp-
sia may be compromised [188–190]. Preeclampsia is a disease of the endothelium, 
and one is tempted to speculate that endothelial dysfunction may persist after reso-
lution of clinical manifestations. A recent study [191], however, with a 10-year 
follow-up, has shown that flow-mediated vasodilatation (FMD) of the brachial 
artery and carotid intima-media thickness (IMT) was not altered in women with a 
previous pregnancy complicated by preeclampsia compared to a control group with 
normotensive pregnancies. Nonetheless, a subclinical endothelial dysfunction was 
hypothesized, as circulating levels of markers of early endothelial dysfunction, such 
as homoarginine and sFlt1, were slightly altered in the preeclampsia group.

Limited studies have shown that the hazard rate of developing a metabolic disor-
der such as type 2 diabetes mellitus was 3.12, 3.53, and 3.68 after gestational hyper-
tension, preeclampsia, and eclampsia, respectively. Five years after a pregnancy 
complicated by the (HELLP) syndrome, a 4% increase in new-onset diabetes [192] 
was observed. Thus, the risk of future type 2 diabetes appears to be related to the 
severity of the hypertensive disorder in pregnancy. With regard to hypertension, a 
recent meta-analysis showed that women with history of preeclampsia were three 
times more likely to develop chronic hypertension compared to women who had 
normotensive pregnancies (pooled relative risk 3.1(95% C.I.) 2.5–3.9)] [188, 189]. 
Recurrent preeclampsia entails a sixfold higher risk of developing hypertension 
[190]. Such an increased risk is more evident within the first 5 years after preg-
nancy, although the absolute excess risk persists and may grow along the years, as 
shown by the US Nurses’ Health Study II, in which, four decades after first preg-
nancy, 146 excess cases of hypertension were recorded every 1000 women who had 
preeclampsia in their first pregnancy.

It has been shown that women who will later develop preeclampsia tend to have 
higher baseline BP with respect to women who will have normotensive pregnancies 
[188], thus leading to speculate that preeclampsia may be a marker of a pre-existing 
predisposition to cardiovascular disease, rather than a causal factor in itself, an issue 
not fully resolved yet [188]. It must be borne in mind that most studies rely on diag-
nostic criteria based on the older classifications, and it would be interesting to ascer-
tain whether the recently proposed classifications by ACOG and ISSHP will carry the 
same association with cardiovascular risk as the older definitions [29, 35, 39, 188].
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45.1	 �Introduction

Hypertension beginning in childhood may accelerate adverse cardiovascular 
outcomes shifting clinical events in early adulthood [1, 2]. Cohort studies have dem-
onstrated a positive association between BP levels at childhood and subclinical tar-
get organ damage in adulthood [3, 4], while observational studies provide evidence 
that target organ damage is already present in hypertensive children [5, 6]. Moreover, 
BP tracks from childhood and adolescence into adulthood [7]. For these reasons, 
identification and management of hypertension in childhood are gaining increasing 
interest for the prevention of future cardiovascular disease.

Analysis of secular BP trends in childhood and recognition of predictors for 
early incidence or sustained BP elevation at population level could provide critical 
information for the future of cardiovascular disease in adulthood [8, 9]. Trends and 
patterns of environmental risk factors may not be static over time and induce 
changes in BP tracks at population level. Understanding temporal interactions 
between risk factors in a time frame may well provide a window to the future and 
define optimal time frame for population-based approaches to reduce burden of 
future hypertension.

Although hypertension is increasing in US adults, BP levels in population level 
are lower, maybe because of increasing awareness and therapeutic innervations 
[10]. Antihypertensive medication or other therapeutic interventions are unlikely to 
affect secular BP trends in childhood and adolescence. Environmental factors, 
mainly diet and physical activity, are the most targeted modifiable risk factors in 
public health policies. Monitoring changing patterns of these factors in parallel to 
BP could be a tool to guide interventions to reduce the prevalence of hypertension.
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45.2	 �Secular BP Trends in Children and Adolescents  
Around the World

The US National Health and Nutrition Examination Surveys (NHANES) have pro-
vided significant information on secular BP trends in children and adolescents. A 
series of publications, during the last decades, have systematically assessed changes 
in BP and have attempted to identify possible covariates to explain them (Table 45.1). 
Significant assets of these publications are the use of nationally representative sam-
ples of noninstitutionalized children and adolescents, in successively conducted 
cross-sectional studies, and the standardized BP measurement protocol. Ford et al. 
[11], using data from the third NHANES (1988–1994) and the NHANES 1999–
2000, found that mean systolic BP increased by 2.2  mmHg among children and 
adolescents, 8–17  years of age. Similarly, Muntner et  al. [12] found greater by 
1.4 mmHg mean systolic BP and by 3.3 mmHg mean diastolic BP after adjustment 
for differences in age, race, and sex in the NHANES 1999–2000 compared with the 
NHANES 1988–1994. Further adjustment for body mass index (BMI) accounted for 
29 and 12 percentage decreases in systolic and diastolic BP, respectively. Din-
Dzietham et al. [13] analyzed NHANES data from 1962 to 2002 with the main aim 
to determine secular BP trends in 8–17-year-old children in association with the rise 
in obesity. They found that age-adjusted high BP prevalence (>95th percentile) pre-
sented decreasing trends from 1962 up to 1988–1994, significantly greater for dia-
stolic BP (8.4  mmHg) than for systolic BP (1.3  mmHg). Beyond 1994 high BP 
prevalence presented increasing trends. The increase in high BP occurred one decade 
after a sharp increase in obesity during 1980–2002. However, BP levels decrease 
during the first 32 years could be attributed to the fact that there were differences in 
BP measurement protocol mainly between NHANES I and II and those beyond 
NHANES III [14]. Ostchega et al. [15] estimated trends in elevated and pre-elevated 
BP based on data from NHANES 1988–1994, 1999–2002, and 2003–2006. They 
reported an increased likelihood of having elevated BP in girls in NHANES 2003–
2006 compared to NHANES 1989–1994. For the same time period, the likelihood of 
having elevated BP was decreased in adolescent boys. The prevalence of elevated or 
pre-elevated BP did not change for the total sample among the three surveys. Obese 
boys and girls were more likely to have elevated or pre-elevated BP. Rosner et al. [16] 
found an 1.27 times increased likelihood of elevated BP (>90th percentile) in chil-
dren 8–17 years old in NHANES 2007–2008 compared to NHANES III (1988–1994) 
after adjustment for age, sex, race/ethnicity, body mass index, waist circumference, 
and sodium intake. It should be pointed out that in this study, elevated BP was 
assessed using normative values based on normal-weight children resulting in higher 
rates of high BP. Kit et al. [17] found a decrease in pre-high and high BP prevalence 
between 1999–2000 and 2010–2012, analyzing seven periods (NHANES 1999–
2000, 2001–2002, 2003–2004, 2005–2006, 2007–2008, 2009–2010, and 2011–
2012). However, when combining the prevalence of high and pre-high BP, the trends 
were stable for the total period. Further period-to-period analysis showed that high 
BP prevalence increased until 2006 and gradually decreased thereafter, resulting in 
similar prevalence at 1999–2000 and 2011–2012. Yang et al. [18] examine trends in 
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pre-high BP and high BP among adolescents, aged 12–19 years, by body weight 
category during 1988–2012 using NHANES data from 1988–1994, 1999–2002, 
2003–2006, and 2007–2012. Adjusted for age, sex and ethnicity mean systolic and 
diastolic BP levels did not change significantly from 1988 to 2012. They reported 
that the prevalence of high BP decreased and pre-high BP did not change in both lean 
and overweight adolescents. The trend for high BP increased from 1988–1994 to 
1999–2006 and then declined during 2007–2012 for lean adolescents, while the trend 
was continuously decreasing for obese adolescents. In contrast to previous studies 
based on NHANES, Okosun et al. [19] found consecutive decreases in mean BP for 
both genders in 12–17-year-old adolescents for the period between 1999–2000 and 
2007–2008.

Regional studies from the USA and Canada showed relatively different results. 
In the Bogalusa area, comparison of two cohorts of children, each one examined at 
two time points, 7–9 years and again at 15–17 years (first cohort 1979–1981 and 
second cohort 1984–1992), demonstrated lower systolic BP after adjustment for 
age, both at baseline and follow-up surveys, despite higher weight in the second 
cohort [20]. In a most recent publication from the Bogalusa Heart Study, including 
seven cross-sectional examinations of schoolchildren 5–17 years old between 1974 
and 1993, it was shown that mean systolic BP levels did not change, while mean 
diastolic BP levels decreased by 2 mmHg, despite large increases in obesity preva-
lence during this period [21]. BP was measured in two cross-sectional surveys in 
Minneapolis, Minnesota, in school-aged children, aged 10–14 years, at 1986 and 
1996. During the 10-year period, systolic BP decreased at all ethnic and sex groups. 
However, adjustment for age, height, and weight resulted in decrease or elimination 
of differences in systolic BP among surveys [22]. In Canada, 20,719 adolescents, 
14–15 years old, were screened between 2002 and 2008 during the Healthy Heart 
Schools’ Program in the Niagara Peninsula [23]. Minimal changes were reported 
upward for systolic and downward for diastolic BP. The prevalence of prehyperten-
sion significantly decreased from 11 to 8 percentage, while the prevalence of hyper-
tension remained stable over time.

In Europe most of the studies were performed in the UK (Table 45.1). The older 
study comes from the Glasgow University Students’ screening during the years 
1948–1968 [24]. Although methodology issues may have influenced the results as 
measurement protocols were not the same during the studied period, significant 
strengths of the study are the large number of participants, the assessment of pos-
sible confounders, and the investigation of BP trends in those born in the first half 
of the twentieth century. During the 50 studied years, substantial declines in BP 
were documented for both sexes in young adults 16–25 years. Watkins et al. [25] 
examined secular trends of BP over a 10-year period in two cohorts of adolescents, 
12–15 years old, in Northern Ireland. The 1999–2001 cohort presented significant 
lower systolic and diastolic BP compared to the 1989–1990 cohort. Results were 
adjusted for height and other possible confounders, but were not unambiguously 
comparable. Korotkoff IV was used to identify diastolic BP in 12-year-old partici-
pants and V for those aged 15 years. Moreover, the mean of two measurements was 
used in the first study compared to one reading in each participant in the second 
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cohort. In addition, sample size despite lower respond rate was double in the second 
cohort. Using data from seven population-based studies conducted in the UK during 
1980–2008, an upward trend in systolic BP (1980–2008) was documented signifi-
cantly greater in girls than in boys [26]. The estimated annual increase in systolic 
BP was 0.51 mmHg and 0.45 mmHg per year among girls and boys, respectively. 
Similar but less steep trends were found for diastolic BP. The aforementioned study 
differs from previous standardized BP surveys as it combines data from separate 
observational studies. There were differences in methodology among studies with 
regard to participant ages, ethnicity, cities, and country regions included, BP mea-
surement device (mercury sphygmomanometer vs. three different oscillometric 
devices), cuff size, number of readings, and period of rest. To account for the above 
differences, the investigators focused only on White European children aged 
9–11 years and performed several statistical adjustments. Trends for systolic BP 
were found similar and marginally lower, when data from annual national studies 
(Health Survey for England) for 9–11 years old children were examined separately 
[26]. The study assessed secular trends on BMI during the same period, which also 
went upward, but the increase was steeper and could explain only 15 percentage of 
the BP trend, while association between BMI and BP weakened overtime.

Scarce are the data available from the rest of Europe. Haas et al. [27] examined 
the prevalence of metabolic syndrome components in first graders, aged 6 years, 
from 1994 to 2003, and found significant decreases in SBP (−3.8 and −4.1 percent-
age, in boys and girls, respectively) and DBP (−10.2 and −9.7 percentage, in boys 
and girls, respectively). In the small city of Karlovasi in Samos island, Greece, a 
large increment in BP levels was reported in a considerably small sample of adoles-
cents, aged 12–17 years, during a 3-year period [28]. A standardized BP measure-
ment protocol was used in both 2004 and 2007 surveys. However, BP was not 
adjusted for height, despite statistically significantly higher height of participants in 
the 2007 survey, which may have resulted in the overestimation of the trends. In 
another study from Greece, a significant decline in BP has been reported among 
children, aged 5.7–7.8 years, living in the island of Crete, over a 15-year period, 
despite the significant concurrent increase in obesity [29]. Blood pressure levels of 
a cohort in Finland followed up for 21 years with serial cross-sectional studies from 
childhood to adulthood presented significant decreases in all subjects [30]. The 
authors justified part of this decrease in the lower participation of subjects in the 
follow-up studies, supposing that the least healthy subjects were more prone to drop 
out earlier.

In Asia secular BP trends in childhood have been systematically examined in 
Japan, China, and Korea (Table 45.1). The National Health and Nutrition Surveys 
conducted by the Japanese Ministry of Health, Labor, and Welfare in 1996 and 2009 
showed a reduction in systolic BP by 2 mmHg in 15–19-year-old adolescent boys 
and by 4 mmHg in girls from 1996 to 2009 [31]. Kouda et al. [31] analyzed data 
from annual population screenings in 10-year-old children from all public schools 
in the city of Iwata, Japan, during 1993–2008. There was a negative correlation 
between 95th, 50th, and 5th BP percentiles (calculated for each year) in the popula-
tion for both sexes and calendar year from 1998 to 2003. This trend was diverging 
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the BMI trend, as both overweight and underweight in the population were increased 
during the same period. A significant limitation of the study was the unequal num-
ber of BP measurements among subjects, since BP assessment was repeated, if it 
exceeded the cutoff value. Data from the annual population screenings during 
1994–2010 in Ina, another Japanese city, showed similar decreasing trends for both 
systolic and diastolic BP in 9–10-year-old and 12–13-year-old boys and girls [32]. 
A standardized BP measurement protocol was used, but, as discussed in the afore-
mentioned study, the number of measurements was not equal in all subjects. 
Moreover, a significant proportion of subjects were reexamined, and this may have 
affected the results because of regression to mean. The BP trends were independent 
of obesity in 9–10-year-old children, but not in 11–12-year-old ones. Intriguingly, a 
decreasing trend for BMI has been reported in this study opposite to other Japanese 
studies.

The Korean National Health and Nutrition Examination Surveys (KNHNES) 
were first conducted in 1998 and then at 2001, 2005, and 2007–2008 [33]. Data 
available for 5909 participants, aged 10–19 years, showed decreasing secular age- 
and height-adjusted systolic BP trends, by 8.7 mmHg in boys and 10 mmHg in girls, 
for the 10-year period. Decreasing diastolic BP trends were also noticed in both 
sexes, when analysis was limited to those with DBP z score ≥0 to account for dis-
crepancies among surveys, as in earlier ones fourth Korotkoff instead of fifth was 
used to define diastolic BP. These declines resulted in 52 and 86 percentage reduc-
tion of prehypertension and hypertension in the population. The significant strength 
of this study was the assessment of potential risk factors that could explain the 
observed trends. Obesity and self-reported health behaviors, including physical 
activity and smoking, nutritional factors, psychological factors, and sociodemo-
graphic factors, had minimal influence on the BP trends. The BP trends opposed 
those of obesity, which during the same decade presented an increase in boys.

In China decreasing BP trends were documented between 1985 and 2005, which 
shifted upward from 2005 to 2010 [34]. Data are based on standardized successive 
Chinese National Surveys on Students’ Constitution and Health (CNSSCH). The 
main strengths of the report are the huge representative nationwide sample size and 
the standardized protocol among surveys. There was a positive, relative steady asso-
ciation between BP and BMI among surveys. Focusing on the 2005 and 2010 sur-
veys, mean systolic BP increased by 1.5 mmHg for boys and 1.1 mmHg for girls. 
Similarly diastolic BP increased by 1.2 mmHg and 1.0 mmHg for boys and girls, 
respectively. These increments decreased by 40.5 percentage for systolic BP and by 
26.9 percentage for diastolic BP after adjustment for BMI [35]. In the province of 
Shandong, comparison of BP levels during the 2000, 2005, and 2010 Students’ 
Constitution and Health Surveys showed steady increases in high BP prevalence 
[36]. Similar findings were reported from Students’ Constitution and Health Survey 
data for seven provinces during the period 1991–2004 [37]. It should be noted that 
the last two studies provide regional trends compared to the nationwide trends in 
children of Han nationality by Dong et al. [34]. Moreover, results are not compara-
ble as they were not adjusted for height, and Chinese reference BP values by age 
and sex were used compared to the US National High Blood Pressure Education 
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Program (NHBPEP) Working Group in Children and Adolescents used in the Dong 
et al. studies [34, 35]. One study from Taiwan examined BP trends from 1996 to 
2006  in adolescents from high schools living in the city of Taipei and showed 
upward trends of both pre-high and high BP [38]. The prevalence of high BP 
increased in all genders and weight groups (normal weight and overweight), despite 
stable trends of overweight in girls.

In Turkey decreasing trends of BP levels have been reported in adolescent boys 
and girls, aged 15–17 years, despite increasing overweight and obesity, based on 
two cross-sectional studies from 1989–1990 to 2004–2005 [39]. The study however 
presented significant limitations as the two studies were conducted in different cities 
and schools and by different investigators. The same investigators reported conflict-
ing results examining a more recent time period finding that the prevalence of ele-
vated BP has been increased in 2008 compared to 1989 in Turkish adolescents [40].

Only one study examined secular BP trends in the African region. Data from 
annual school-based surveys in Seychelles, including a wide range of ages, 
4–18 years, showed discordant trends between BP levels and obesity [41]. In this 
rapidly developing country, obesity was steadily increasing from the 1998 to 2000 
surveys presenting 50 percentage relative increase between the 2004 and 2006 sur-
veys. During the same period, prevalence of elevated BP presented 19 percentage 
decrease. Mean age- and height-adjusted systolic BP presented a 3.0 mmHg in boys 
and a 2.8 mmHg decrease in girls, while no substantial changes were observed for 
diastolic BP. In a recent update on BP trends in Seychelles, it is reported that the 
prevalence of elevated BP increased from 2005 to 2012, reaching to 14.5 percent-
age, accompanying the continuing increase in overweight and central obesity [42].

45.3	 �Differences in Secular BP Trends in Childhood

Comparisons of secular trends around the world may offer a better understanding of 
the development of hypertension in childhood and guidance for future studies [9]. 
Secular BP trends among studies from the different regions, and in some cases from 
the same country, do not show homogeneity (Table 45.1). A systematic review of 
BP trends in childhood has shown that BP increased in the 94 percentage of the 
studies, based on reports form 13 countries [43]. Notably studies on BP trends are 
not available from all regions, and pool data or comparisons could not provide a 
global estimate. Moreover, significant discrepancies in trends may not be real, but 
could be artifacts, due to differences in methodological issues, including BP mea-
surement methodology, sample size, population, age, ethnicity, and other character-
istics or statistical adjustments performed during the analysis. Furthermore, studies 
comparing two or three time points or short period of time may not be adequate to 
assess secular trends and might account for the inconsistency of reporting among 
studies. Therefore, safe conclusions could not be reached, unless there are standard-
ized protocols over time and across the countries.

Studies in the USA seem to report conflicting results (Table  45.1). However, 
careful observation of the NHANES data taking into account the time period of 
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reported trends may crudely suggest upward trends since the late 1980s until the 
middle 2000s, [11–13, 15], while afterward BP levels are slightly decreasing [17] 
resulting in rather stable trends between 1999 and 2012 [17, 18, 42] (Fig. 45.1). 
Observed differences in high BP prevalence or in the magnitude of BP changes over 
time could be attributed to differences in sample size or ethnic sampling. These 
national trends are diverging to those in the Bogalusa area where trends went down-
ward since the 1970s, but significant methodological differences do not allow safe 
comparisons [21].

In Europe during the 1990s, BP trends were decreasing in Ireland, Germany, and 
Greece [25, 27, 29], while BP increased in the UK [26] (Fig. 45.1). The upward BP 
trends persisted in the UK during the next decade, when similar trends were reported 
from Greece [28]. In Asia different trends were reported from national surveys 
among countries. In Korea trends were continuously decreasing during the 2000s, 
while in China trends increased until the middle 2000s and went downward thereaf-
ter, resulting in stable trends for the decade [33, 34, 42]. Reported regional trends 
for the same period were downward in Japan, similar to Korean ones [31, 32], and 
upward in Taiwan, similar to China ones [38].

One published study has attempted an international comparison of BP trends 
among four countries from American, Asian, and African region [42]. Studies were 
comparable with regard to age ranges, calendar years, cutoffs used to define ele-
vated BP, and general and central obesity. Standardized BP measurement protocols 
were used in all studies, but they were not identical. A mercury sphygmomanometer 
was used in three of them, while an oscillometric device was used in the fourth one. 
In addition the number of BP readings per subject differed among studies. The inter-
esting finding of the study was that BP trends for the same time period differed 

Fig. 45.1  BP trends in children and adolescents during the last two decades. Reported trends are 
based on national surveys, where available, or regional studies
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among countries, while obesity trends went on the same direction, upward, suggest-
ing that covariates that determine BP trends in different populations, having either 
protective or deleterious effect, may modify the effect of risk factors. Finally, 
genetic differences among populations and environmental interactions need to be 
investigated [44].

45.4	 �Predictors of BP Elevation

Many studies assessing BP trends in childhood also studied association with well-
known risk factors for adverse cardiovascular outcomes. However, direct, solid evi-
dence has not been established by the available studies for obesity, salt, or other 
environmental factors. Most of the earlier studies did not concurrently study changes 
in risk factors for elevated BP. Potential explanations for the BP trends were dis-
cussed on the basis of epidemiological data available for possible risk factors from 
national demographic records [26, 31, 33, 41, 45]. Few studies have assessed simul-
taneous secular trends in risk factors for elevated BP, mainly overweight and obe-
sity. Contrary to BP prevalence studies, which show strong associations of BP 
elevation with increasing BMI, low physical activity, smoking, or low birth weight 
at a particular time point, reports on the effect of these factors on secular BP trends 
are inconsistent.

45.4.1	 �Overweight and Obesity

Obesity has been the most commonly environmental risk factor associated with the 
development of hypertension. However, population-based studies assessing simul-
taneously changes in BP and obesity over time did not consistently show parallel 
changes in both trends as it may be expected [45]. On the contrary, in many occa-
sions it has been shown that BP trends are decreasing, while obesity is rising 
[21, 33]. Even in those studies that obesity and BP are both increasing, only part of 
the BP levels increase could be attributed to obesity [12, 13, 16, 26]. In some studies 
there was a weakening association between obesity and BP over time [26, 43]. 
Moreover, upward trends were more pronounced in children without overweight or 
obesity [26]. Both in developed and developing countries, obesity could not explain 
all the BP changes [43, 45]. BP trends seem to be affected by secular changes in 
other factors, which remain to be determined.
A comparison of secular trends in BP from 1997–2000 to 2011–2012 in four coun-
tries, the USA, Korea, China, and Seychelles, is confirming the heterogeneity of the 
effect of rising prevalence of obesity on BP trends [42]. Elevated BP in all countries 
was significantly more frequent among adolescents with overweight or central obe-
sity than in adolescents with normal weight or no central obesity. Nevertheless, the 
prevalence of elevated BP decreased in Korea, remained stable in the USA and 
China, and increased in Seychelles. It is interesting that in Seychelles elevated BP 
prevalence was decreasing until 2005, but increment in BP levels beyond 2005 
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overlapped this decrease and finally resulted in significant increase at 2011–2012 
compared to 1997–2000. Whether persisting high rates of obesity could affect BP 
trends in the future as suggested by high BP prevalence rise in the USA during the 
late 1980s and 1990s, which lagged about 10 years behind the increase in obesity 
rates, remains a significant concern [13].

45.4.2	 �Salt

Dietary sodium has been shown to be a causal factor for high BP. A meta-analysis 
of controlled trials in children showed that a modest reduction in salt intake causes 
immediate reductions in BP [46]. The BP reductions were higher if interventions on 
salt intake were performed in infancy. The importance of very early intervention is 
supported by the results of follow-up data on Dutch children, who took part in a 
double-blind salt reduction study during the first 6 months of life, in whom BP 
remained lower at 15 years of age [47]. The strongest indirect evidence in support 
of the role in salt intake on BP trends in children and adolescents comes from Japan. 
The nationwide campaign to reduce population salt intake starting in the 1950s may 
be associated with continuous BP decreases in children in the 2000s compared to 
1990s, consistently found in all studies assessing BP trends in Japan [31, 32]. These 
BP downward trends occurred in parallel with decreases on national daily salt intake 
of Japanese children from 11.4 g in 1996 to 9.7 g in 2006 [31]. Rosner et al. [16] 
found that children with sodium intake >3.450 mg (≥1.5 of reference daily intake 
(RDI) per 2000 calories) vs. <2.300 mg (<RDI) presented an increased likelihood 
by 36 percentage of elevated BP in NHANES 1999–2008 compared to NHANES 
III, even after controlling for age, sex, race, BMI, and waist circumference. Notably, 
the percentage of children with sodium intake ≥1.5 RDI significantly decreased 
among both boys and girls, while the prevalence of moderate increased sodium 
intake (≥RDI but <1.5 RDI) increased during the same period, and consequently 
sodium intake could explain only part of differences between the surveys.

45.4.3	 �Other Dietary Factors, Physical Activity, and Smoking

Studies assessing the effect of dietary factors on BP trends are based on 24-h recall. 
Total calorie, protein, and fat intakes did not explain BP changes in Korean children 
[33]. Moreover, in the same study, there was no effect of potassium (a possible marker 
of fruit and vegetable consumption) on secular changes in BP. Rosner et al. [16] com-
pared nutrient intake between NHANES 1999–2008 and NHANES III in relation 
with the RDI in the group of children who were above the RDI for potassium, cal-
cium, magnesium, fiber, total fat, saturated fat, protein, carbohydrate, and total caloric 
intake by survey and sex. They found no association between the prevalence of ele-
vated BP and the above nutrient intake. Similarly, Yang et al. [18] found no effect of 
healthy index eating on temporal BP trends using data from NHANES from 1988 to 
2012. Other dietary habits or duration of breastfeeding also did not show significant 
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associations with the BP trends [25, 28, 48]. Physical activity along with smoking has 
been assessed by questionnaires in the US, Korean, and Irish studies and were consis-
tently found to have minimal or no effect on BP trends [18, 25, 33]. Finally, in a small 
study, cardiorespiratory fitness was assessed as a covariate for changes in BP during a 
15-year period without presenting any significant association [29].

45.4.4	 �Sociodemographic Factors

In the Glasgow University study during the 1950s and 1960s, social class did not 
show any association with BP changes over time [24]. Similar results were reported 
from Ireland during the 1990s [25]. Total annual family income, a socioeconomic 
status proxy, was used to calculate the poverty-income ratio among US adolescents 
from 1988 to 2012 [18]. The trends in pre-high and high BP prevalence remained 
unchanged after adjustments for the poverty-income ratio. In the Korean NHANES, 
annual household income and family size were studied as sociodemographic factors. 
BP trends were found similar in both low- and high-income groups [33].
Limited data are available from developing countries [34, 41]. Rapid urbanization 
may be accompanied by changes in lifestyle, diet, and physical activity. Reported 
BP secular trends are similar to those in developed countries [49]. Dong et al. [50] 
studied BP trends in children based on data from 1985 to 2010 Chinese National 
Surveys on Students’ Constitution and Health in an attempt to explore urban-rural 
disparities. Urban children presented higher prevalence of obesity but lower BP 
levels over the 25-year period. This urban-rural disparity in BP decreased over time, 
reflecting the rapid westernization and improvement of parental education and 
knowledge on health behaviors in the rural areas.

45.4.5	 �Birth Weight

Since the Barker’s hypothesis of fetal origin of adult disease, increased notion has 
been focused on low birth weight as a marker of intrauterine growth retardation 
[51]. Mzayek et al. [52] assessed retrospectively birth data from 2275 participants 
from the Bogalusa study conducted between 1973 and 2001, including seven cross-
sectional surveys of children aged 5–17 years and seven cross-sectional surveys of 
young adults aged 18–44 years. They reported that for every 1-kg increase in birth 
weight, systolic BP decreased by 1.9 mmHg and diastolic BP by 0.7 mmHg in mid-
adulthood. The association was independent of ethnicity and socioeconomic fac-
tors. Chen et  al. [53] reported that the association between birth weight and 
longitudinal changes is modulated by genetic variations in â-AR genes in White and 
Black adults enrolled in the Bogalusa study.
Most studies on secular BP trends in children and adolescents have not investigated 
the effect of birth weight on the trends, and comparisons with national birth data 
failed to institute a strong hypothesis. Birth weight tended to increase in the UK 
[54] and, therefore, is an improbable explanation of the increasing trends in 
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childhood BP during the same time period. In Korea, a country with decreasing 
trends in childhood BP, average birth weight has been decreased based on national 
birth certificate data from 1993 [33]. Lower birth weight could not be the explana-
tion for the decreasing trends. Finally, Chiolero et  al. [41] found no changes in 
birth weight for the period 1998–2006, in which BP trends were assessed in 
Seychelles.

45.5	 �Perspectives

Secular BP trends among studies globally do not show homogeneity as significant 
discrepancies exist among different countries and ethnic populations. Beyond dif-
ficulties in international comparisons, identifying different patterns in BP tracks 
over time among countries could be instructive about the effect of environmental 
risk factors on different genetic backgrounds. It should be pointed out that BP trend 
reports do not actually report trends on hypertension as BP measurements are 
obtained in a single visit. Current definition of hypertension in children and adoles-
cents requires repeated BP measurements on at least three separate occasions to 
avoid overdiagnosis of hypertension [1, 2]. Moreover, measurement of risk factors 
may not be precise as in most of the studies are based on questionnaires. Despite the 
limitations, childhood BP secular trend studies may well offer an epidemiological 
perspective to guide public health approaches for BP control.
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46Hypertension in Children 
and Adolescents

Empar Lurbe

46.1	 �Introduction

During the last few decades, hypertension (HTN) in children and adolescents has 
gained ground in cardiovascular medicine, thanks to the progress made in several 
areas of pathophysiological and clinical research. The available data concerning 
childhood blood pressure (BP) has increased, and clinicians can use pediatric refer-
ence BP data to determine whether BP is in the normal range or is at a level that 
warrants evaluation or preventive intervention. It has also become possible to refine 
BP-derived parameters and to identify subclinical end-organ damage through mea-
sures and markers now far more sensitive than those available years ago.

46.2	 �Definition of Hypertension

In childhood and adolescents, BP increases during growth and maturation, and ado-
lescence is a fast growth period during which body mass and BP change rapidly. 
These are the main reasons for why reference BP values over the last few decades 
have been referred to as ones specific to sex, age, and/or height in children and ado-
lescents up to 18 years of age. Because of the persisting lack of European reference 
values that incorporate age, sex, and height throughout the entire pediatric age range, 
the normative data on auscultatory clinical measurements provided by the US Task 
Force [1] are recommended to be used as reference values [2, 3] although they should 
be considered the potential differences among countries and ethnicities.
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In 2009 the European Society of Hypertension (ESH) Guidelines in children and 
adolescents were released [2]. The criteria to define BP categories were normal BP 
defined as systolic BP (SBP) and diastolic BP (DBP) less than 90th percentile for 
age, sex, and height; HTN is defined as SBP and/or DBP persistently 95th percentile 
or more, measured on at least three separate occasions with the auscultatory method. 
Children with average SBP or DBP 90th percentile or more but less than 95th per-
centile are classified as having high-normal BP.

Recently, the 2016 Guidelines [3] introduce a new criteria for boys and girls 16 
or older since considering the 95th percentile for age, sex, and height as the defini-
tion of HTN; a 16-year-old boy in the 95th percentile for height would be defined as 
hypertensive by an office SBP of 137–140 mmHg, while a 16-year-old girl in the 
same height percentile by an office SBP of only 132 mmHg. One–two years later, 
no longer seen by a pediatrician, the girl will now be diagnosed as normotensive or 
high normal by the family physician on the basis of adult guidelines. Even greater 
differences in diagnosis will occur in adolescents shorter than the 95th height per-
centile. Due to these differences in diagnosis, a consensus in the 2016 Guidelines is 
given that for boys and girls aged 16 or older, the definition of HTN should no lon-
ger be based on the 95th percentile but on the absolute cutoff used for adults, which 
defines high normal (130–139/85–89 mmHg) and HTN (≥140/90 mmHg) [3].

The classification of hypertension in children and adolescents following the cri-
teria of ESH Guidelines 2016 [3] is shown in Table 46.1.

46.3	 �Prevalence and Incidence

The prevalence in school-aged children appears to be increasing, perhaps as a result 
of the increased prevalence of obesity in the last years. The majority of these chil-
dren have mild HTN, most often primary. A small group of children have much 
higher BPs, usually due to a secondary cause.

The prevalence of HTN in children and adolescents in Europe is reported to be 
ranging from 2.2 to 22% [4–9], depending on the demographic characteristics of 
the subjects analyzed, age, sex, body weight, as well as ethnicity. More specifi-
cally, it increases with age and in boys rather than in girls. Body weight has the 
greatest impact on the rate of HTN, and the body mass index is the strongest 

Table 46.1  Classification of hypertension in children and adolescents [3]

Category
0–15-year 16-year and older
SBP and/or DBP percentile SBP and/or DBP values

Normal <90th <130/85 mmHg
High normal ≥90th to <95th percentile 130–139/85–89 mmHg
Hypertension ≥95th percentile ≥140/90 mmHg
Stage 1 hypertension 95th percentile to the 99th percentile 

plus 5 mmHg
140–159/90–99 mmHg

Stage 2 hypertension >99th percentile plus 5 mmHg 160–179/100–109 mmHg
Isolated systolic 
hypertension

SBP ≥95th percentile and 
DBP<90th percentile

≥140/<90 mmHg
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determining factor of adolescent BP [5]. One study has reported a 27 and 47% in 
overweight or obese 6–18-year-old subjects [9]. A higher BP in Hispanic and 
African-Americans and a lower one in Asians, when either is compared to 
Caucasians, were observed [10].

Besides the characteristics of the subjects, the number of BP measurements is 
crucial in the prevalence of HTN. Statistically, 5% of children had a BP measure-
ment above the 95th percentile during a single office visit; however, BP tended to 
normalize on subsequent measurements due to the accommodation of the child to 
the measurement procedure and to the statistical phenomenon of regression toward 
the mean [11]. Consequently, the prevalence of HTN decreased after repeated 
examination.

Clinically relevant are the studies in incidence that addressed the concern with 
progression from high-normal BP to HTN.  In some groups of children, masked 
HTN, type 2 diabetes mellitus, obesity, or repaired aortic coarctation have an 
increased risk to progress. In contrast, in general population of adolescents, 
10–19 years, the rate of progression from normotension to HTN was 0.4/100 sub-
jects/year, and among those who had high normal, it was 1.1/100 subjects/year [12]. 
In normotensive children the risk is higher in boys than in girls [13].

46.4	 �Office and Out-of-Office Blood Pressure

Blood pressure variability and observer bias limit the reliability of office measure-
ments that have the potential for inaccuracies [14]. Automated techniques of BP 
out-of-office measurement may overcome these limitations; therefore ambulatory 
BP monitoring, and also home BP measurements, became an established instrument 
for the diagnosis and follow-up of HTN in children and adolescents [15].

Ambulatory BP monitoring has the potential to obtain more accurate and repro-
ducible BP values than does office BP, provides an estimation of circadian variabil-
ity, and has become a recognized tool in evaluation and prognosis [16–18], 
overcoming many of the limitations associated with office BP measurements. 
Recommendations for the use of ambulatory BP and home BP measurements are 
presented in the recent 2016 Guidelines [3] (Table 46.2).

Office and ambulatory BP do not necessarily agree. The so-called white-coat HTN 
and masked HTN are conditions in which BP is discrepant from the majority of a 
person’s BPs, depending on the setting. White-coat HTN is defined as elevated BP in 
an office setting, yet normal BP elsewhere. The reported frequency of white-coat 
HTN varies, perhaps as a result of the criteria used to establish the diagnosis, with 
values ranging from very low (1%) to as high as 44% [19]. Children with white-coat 
HTN tend to have an intermediate left ventricular mass (LVM) index between that of 
normotensive patients and patients with sustained hypertension, suggesting that 
white-coat HTN may be associated with hypertensive end-organ damage [20].

The inverse phenomenon, masked HTN, defined as normal BP in the office set-
ting but elevated BP outside the office occurs in approximately 10% of children and 
adolescents [21–23]. The persistence and clinical significance of the phenomenon 
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was analyzed in a prospective study involving 234 adolescents [23]. In 40%, the 
abnormal elevation of the daytime ambulatory BP persisted over a minimum of 
6 months. Adolescents with persistent masked HTN were more than twice as likely 
as those without it to have a parental history of HTN, higher ambulatory pulse rate, 
higher body mass index, and more frequently had left ventricular hypertrophy than 
did normotensive subjects. Alone or in combination, these findings were associated 
with a predisposition to the development of persistent hypertension and were linked 
to increased cardiovascular risk in later life [23].

Apart from the ability of ambulatory BP monitoring to obtain more accurate and 
reproducible BP values, another advantage of this method is the assessment of BP 
during sleep and, therefore, the estimation of circadian variability [24]. There is a 
physiological nocturnal fall of BP during sleep in response to the reduction of sym-
pathetic tone. Patients with sympathetic overdrive renal disease and/or volume 
expansion are consistently found to have abnormalities in circadian BP variability 
with a high prevalence of the so-called non-dipping pattern, i.e., a blunted nocturnal 
fall. Although this may be related to the severity of hypertension, as in subjects with 
renovascular hypertension, in the majority of the other underlying causes, the degree 
of hypertension does not predict the amount of circadian variation.

46.5	 �Central Blood Pressure and the Case of Isolated Systolic 
Hypertension

Central BP values in the aortic root may be estimated by calculations from the pulse 
wave recorded in peripheral arteries, either radial or carotid. Central BP values are 
usually lower than those obtained from the brachial artery. The differences between 
central and peripheral values, the so-called amplification phenomenon, depend on 

Table 46.2  Recommendations for 24-h ambulatory BP monitoring [3]

During the process of diagnosis
Confirm hypertension before starting antihypertensive drug treatment in order to avoid 
treatment of white-coat hypertension
Target-organ damage (LVH, microalbuminuria) and office BP normal (masked hypertension)
Type 1 and type 2 diabetes
Chronic kidney disease
Renal, liver, or heart transplant
Severe obesity with or without sleep-disordered breathing
Hypertensive response during the treadmill test
Discrepancy between office BP and home BP
During antihypertensive drug treatment
Evaluate for apparent drug-resistant hypertension
Assessment of BP control in children with target-organ damage
Symptoms of hypotension
Clinical trials
Other clinical conditions
Autonomic dysfunction
Suspicion of catecholamine-secreting tumors

LVH left ventricular hypertrophy
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the elastic properties of the aorta and the large vessels, as well as the distance 
between the peripheral point of recording and the aortic root—the larger the dis-
tance, the greater the difference.

Elasticity of the great vessels is particularly relevant in adolescence and causes 
systolic BP to be considerably higher in upper limb arteries than in the ascending 
aorta and left ventricle. This phenomenon results in isolated systolic HTN, the main 
HTN subtype in youth. The presence of elevated brachial and radial systolic BP 
with normal central BP was first described by O’Rourke in six young male patients 
aged 14–23 years; the conclusions in that report were based on noninvasive methods 
for estimating central BP [25]. This phenomenon was described as “spurious sys-
tolic HTN” and has been attributed to exaggerated pulse pressure amplification 
from central to peripheral arteries as a result of increased vascular elasticity and has 
been considered most likely to be a benign condition. However, there is some lack 
of consensus among researchers. Recent data from the Anglo-Cardiff Collaborative 
Trial demonstrate that although pulse pressure amplification is moderately higher in 
young individuals with isolated systolic HTN compared with normotensive indi-
viduals, stroke volume is markedly higher [26]. This has potential clinical signifi-
cance because elevated stroke volume associated with isolated systolic HTN in 
youth is highly likely to transform to sustained HTN. The clinical significance and 
prognostic value of isolated systolic HTN in youth are controversial, as longitudinal 
studies are lacking [27, 28].

In youth with isolated systolic HTN, the assessment of central BP may be crucial 
for identifying those individuals in whom antihypertensive treatment can be post-
poned for long periods of time, because their hemodynamic characteristics, arterial 
distensibility, and risk of developing sustained HTN may not differ from those of 
normotensive individuals. One longitudinal study demonstrated that isolated sys-
tolic HTN in young to middle-age persons implies a relatively low risk of develop-
ing HTN needing treatment when central BP is low [29]. Nevertheless, as it is not 
clear what the outcome will be, youth with isolated systolic HTN, even without 
elevated central BP, should be followed over time. The future need for antihyperten-
sive treatment remains an open question [28].

46.6	 �Etiology

Pediatric HTN is associated with a broad spectrum of diseases that changes from 
childhood through adolescence. Definable causes of HTN are the rule in the early 
years of life, whereas essential hypertension is more common in adolescence. 
Consequently, techniques for the evaluation and diagnosis of hypertension differ, at 
least in part, among the different age groups.

Usually, sustained HTN in children and adolescents is classified as secondary 
with a specific cause that may be correctable or as essential and without an identifi-
able cause [2]. The most common causes of HTN can change during childhood. 
Essential HTN is rarely seen in infants and young children, but its prevalence 
increases significantly in adolescence [30]. A good general rule to follow is that the 
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likelihood of identifying a secondary cause of HTN is inversely related to the age of 
the child and directly related to the degree of BP elevation. Consequently, the evalu-
ation of children with HTN, especially young children and those with severe HTN, 
should be comprehensive and aimed at identifying known causes of the disease.

The distribution of definable causes of HTN is associated with a broad spectrum 
of diseases and clearly varies with age. Renal parenchymal disorders predominate, 
accounting for a majority of secondary causes [31]. Renal parenchymal disorders 
with renovascular disease and coarctation of the aorta account for 70% [32] to 90% 
[33] of all cases. These figures vary depending not only on the age group but also on 
referral center and referral bias. Additionally, HTN is often related to prescribe 
drugs with hypertensive potential. Other infrequent causes of sustained HTN, 
tumors and central nervous and endocrine disorders, must be considered once more 
common causes of secondary HTN have been eliminated. An emerging cause of 
secondary HTN is a single-gene mutation that produces large changes in BP [3].

Hypertension in term or preterm neonates may be seen in up to 2% of all infants 
in modern neonatal intensive care units. Although the definition of HTN in this age 
group has not been completely standardized, useful data to this regard has been 
published [34] and may be used to facilitate the identification of such infants. As in 
older children, the causes of HTN in neonates are numerous, with the two largest 
categories being renovascular and parenchymal diseases. More specifically, umbili-
cal artery catheter-associated thromboembolism affecting either the aorta or the 
renal arteries probably accounts for the majority of cases of HTN seen in the typical 
neonatal intensive care unit [35]. A careful history and physical examination will 
usually identify the cause in most cases, without the need for extensive laboratory 
or radiological testing.

In very young children (<6 years), HTN is most often the result of such renal 
parenchymal disease as glomerulonephritis, renal scarring, polycystic kidney dis-
eases, and renal dysplasia. Renal artery stenosis and cardiovascular disorders like 
coarctation of the aorta, less frequent causes of HTN in this age group, are usually 
detected within the first decade of life. Late in the first decade and throughout the 
second, essential HTN is the most common cause of sustained HTN, particularly in 
those children with mild asymptomatic disease [36].

When confronted with an infant, child, or adolescent with HTN, the first ques-
tion to be asked concerns the chronicity of the problem. Clearly, the most helpful 
information to have when one is attempting to establish the HTN chronicity are past 
BP readings. Unfortunately, these are by no means always available since routine 
BP measurements in children over 3 years of age are not yet uniformly obtained. In 
the absence of previous readings, one needs to look for the evidence of target-organ 
damage: left ventricular hypertrophy or an increase in urinary albumin excretion.

A diagnostic evaluation is based to some degree on the level of BP, age, sex, 
clinical findings, and family history. A significant number of children with second-
ary forms of hypertension, often renal ones, can be identified using a selective 
approach. Afterward, a careful selection of the necessary test often shortens the 
diagnostic process. The most common causes of HTN, according to age group, are 
shown in Table 46.3.

E. Lurbe



827

46.7	 �Target-Organ Damage and Consequences

Blood pressure level and the duration of arterial HTN result in target-organ damage. 
Heart failure, renal insufficiency, cerebral seizures, hemorrhagic stroke, visual 
impairment, encephalopathy, and posterior reversible leukoencephalopathy are 
complications associated with severe HTN in children and even in infants. 
Nowadays, these complications seldom occur in infants and children due to early 
diagnosis and efficient antihypertensive treatment.

Because overt morbid cardiovascular events are rare in the majority of hyperten-
sive children, attention has focused on other markers of HTN injury, such as early 
renal damage, increased left ventricular mass index, and functional or organic vas-
cular abnormalities. Cardiovascular damage develops in parallel to renal damage, 
although the cardiovascular sequelae of childhood onset HTN, such as left ventricu-
lar hypertrophy and dysfunction and atherosclerosis, may not become clinically 
relevant before adulthood. More recently, the study of early alterations of central 
nervous system functions has become a focus of interest.

46.7.1	 �Heart

The abnormal increase of left ventricular mass and/or geometry has been recognized 
as one of the most important markers of risk for HTN-induced cardiovascular mor-
bidity and mortality in adults. In children and adolescents, left ventricular mass is 
normalized for height in meters raised to the allometric power of 2.7, in order to 
linearize the relation between LVM and height. The resulting LVM index (LVMI) is 
expressed in g/m2.7. More recently reported definitions of left ventricular hypertrophy 

Table 46.3  Age distribution 
of hypertension etiologies

<1 month
Renal arterial thrombosis
Congenital renal disease
Umbilical canalization
Bronchopulmonary dysplasia
>1 month to <6 years
Renal parenchymal disease
Coarctation of the aorta
Renovascular disease
>6 years to 10 years
Renal parenchymal disease
Renovascular disease
Essential hypertension
>10 years
Essential hypertension
Renal parenchymal disease
Exogenous hypertension (drugs)
Endocrine disorders
Coarctation of the aorta
Mendelian genetic disorders
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(LVH) are suggested to improve the ability to identify abnormalities in LV geometry; 
these account for the inverse dependence of the LVMI with body size in infants and 
young children by using age- and sex-specific partition values for LVH [37].

Cross-sectional studies have indeed shown that the major determinants of left 
ventricular growth are body size and sex, with a smaller contribution made by BP 
[38–40]. The potential role of adiposity in the increment of left ventricular mass has 
been highlighted. Adiposity and left ventricular mass are related in childhood, and 
this association tracks and becomes stronger in young adulthood.

Studies of normal and hypertensive children have found that systolic BP and left 
ventricular mass index are positively associated across a wide range of BP values, 
with no clear threshold to predict a pathologically increased left ventricular mass 
index. The relationship between left ventricular mass index and systolic BP is more 
evident when BP is measured using 24-h ambulatory BP monitoring.

Operational thresholds for left ventricular mass have been established. Both the 
allometric definition of excessive mass (>51 g/m2) and the percentile distribution of 
mass and geometry have been recommended [37]. Using these operational thresh-
olds, a few studies have analyzed the prevalence of left ventricular hypertrophy in 
not only healthy but also hypertensive children and adolescents. In hypertensive 
children, the prevalence of left ventricular hypertrophy ranges from 24 to 40% in 
different pediatric studies [41–44]. In children with chronic kidney disease, left 
ventricular hypertrophy develops relatively early and becomes more prevalent as 
kidney function decreases [45].

Cardiac end-organ damage from HTN exists in children and left ventricular mass 
assessment seems to be important in the management of childhood HTN, since it is 
the most prominent evidence of target-organ damage in childhood HTN. The ESH 
Guidelines for BP in children has recommended performing echocardiography in 
all hypertensive children [2, 3]. The presence of left ventricular hypertrophy is an 
indication to initiate or intensify antihypertensive therapy. Studies assessing the 
effect of medical therapy of pediatric HTN on left ventricular mass need to be per-
formed in the future to further reinforce the necessity of monitoring left ventricular 
mass.

46.7.2	 �Kidney

Evidence of the importance of BP values in the evolution of renal disease has come 
from several clinical studies in children with or without established renal insuffi-
ciency. In the post hoc analysis of a randomized multicenter study in children with 
chronic renal failure, renal survival was inversely associated with systolic BP [46], 
with a steeper decline of GFR in patients with office systolic BP above 120 mmHg. 
Further findings suggest that BP in the low-normal range should probably be tar-
geted for patients with renal disease [47, 48]. Evidence for this concept was subse-
quently established in the prospective randomized ESCAPE Trial, which showed 
better 5-year renal survival in children with chronic kidney disease when strict BP 
control below the 50th percentile of mean arterial pressure was aimed for [17].
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Increased urinary albumin excretion is considered a sensitive marker of 
hypertension-induced renal damage. Proteinuria indicates glomerular damage in 
primary and secondary glomerulopathies, and since proteinuria tends to increase 
with the duration and severity of hypertension, it should be targeted by lowering 
BP. Even small amounts of urinary albumin excretion (UAE), microalbuminuria, 
are correlated with the progression of nephropathy and linked to a higher cardiovas-
cular risk. Initial information came from cross-sectional studies which demonstrated 
a clustering of cardiovascular risk factors and organ damage associated with even a 
subtle increase in UAE.  The role of microalbuminuria in pediatrics, however, is 
limited to diabetic children and adolescents. The prevalence of elevated urinary 
albumin excretion is not prominent in obese children (2.4%), and when it is 
increased, it depends mainly on metabolic factors [49]. While the significance of 
microalbuminuria in pediatric essential hypertension has yet to be established, rou-
tine urinary albumin assessment is recommended by the ESH Guidelines [2, 3].

46.7.3	 �Vessels

Hypertension-induced abnormalities in arterial structure and function are important 
because they underlie many adverse effects. Assessment of vascular damage, how-
ever, received little attention prior to the advent of the advanced ultrasound technol-
ogy which permits noninvasive study of vascular walls and lumen. Intima-media 
thickness measurement at the carotid artery is the most common of the methods to 
assess structural abnormalities. Since intima-media thickness is influenced by age 
and sex during childhood and adolescence [50], measured values should be related 
to percentiles or expressed as standard deviation scores.

Ultrasound examination of the carotid arteries with measurement of intima-
media thickness and/or the presence of plaques has been shown to predict the occur-
rence of both stroke and myocardial infarction, independently of traditional CV risk 
factors [51]. In the few pediatric studies available, intima-media thickness tends to 
be increased in hypertensive children and adolescents compared to normotensive 
controls [52, 53], although one study did not observe differences among normoten-
sives, white-coat, masked, or sustained hypertensives [22]. Moreover, a relationship 
between intima-media thickness and endothelial function has been established in 
the Cardiovascular Risk in Young Finns Study [54]. The impact of other cardiovas-
cular risk factors besides HTN, such as cholesterol levels or smoking, needs to be 
considered in the interpretation of intima-media thickness levels, since these have 
been associated with intima-media thickness as well [55]. The International 
Childhood Cardiovascular Cohort Consortium demonstrated that individuals with 
persistently elevated BP from childhood to adulthood had increased risk of carotid 
atherosclerosis. This risk was reduced if elevated BP during childhood resolved by 
adult age [56]. Moreover, measurement is not trivial and subject to some observer 
bias. Hence, despite the increasing evidence for its predictive value in cardiovascu-
lar disease, carotid intima-media thickness assessments have not yet been recom-
mended universally for routine clinical use [2, 3].
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Finally, carotid-femoral pulse wave velocity is the “gold standard” for measuring 
aortic stiffness. In adults aortic stiffness has independent predictive value for fatal 
and nonfatal CV events in hypertensive patients [57]. Pulse wave velocity, a well-
accepted surrogate marker and intermediate endpoint of cardiovascular morbidity, 
is increased in children and adolescents with elevated and even high-normal BP 
[58]. Notably obesity, the factor most frequently related to essential HTN in adoles-
cents, blunts the expected increment in pulse wave velocity of hypertensive and 
high-normal subjects [58].

46.7.4	 �Central Nervous System

Traditional diagnostic procedures to assess early organ damage in the central ner-
vous system included neurologic and ophthalmologic clinical evaluation, electroen-
cephalography, and, in emergency cases, cranial magnetic resonance image to 
exclude intracranial hemorrhage or cerebral edema. Magnetic resonance imaging 
has largely replaced the computerized tomography scan, due to its better detection 
of small silent brain infarcts, micro-bleeds, and white matter lesions [2, 3].

As pediatric HTN is on the rise, there has been increased interest in evaluating its 
impact on neurocognitive function. There is now emerging evidence that children 
with HTN manifest neurocognitive differences when compared with normotensive 
controls, potentially representing early signs of hypertensive target-organ damage 
to the brain. Preliminary evidence suggests that children with hypertension may 
manifest deficits on measures of neurocognition. They have an increased prevalence 
of learning difficulties and have altered cerebrovascular reactivity. Children with 
HTN associated with obesity may be at increased risk for depression and anxiety in 
comparison to their normotensive and/or non-overweight peers [59]. Neurocognitive 
studies of children have focused principally on cognitive domains of attention and 
working memory, executive functions, and recall of newly learned information. 
However, pediatric reports to date have been limited to database and single-center 
studies [60]. The practical implications of the potential neurocognitive deficits asso-
ciated with HTN in childhood are not clear. It is even less clear whether there would 
be any implications for longer-term cognitive reserve and ultimate cognitive decline 
in later life [61, 62]. Meanwhile, clinicians should be aware of these emerging con-
cerns. Arterial hypertension should be ruled out routinely in children with deterio-
rating cognitive function, and referral for neurocognitive testing should be 
considered in children with HTN who are struggling academically.

46.8	 �Treatment Approach

The goal of treatment for hypertension is to decrease the short- and long-term risks 
of cardiovascular, neurological, and renal disease. Reducing BP alone is insufficient 
to obtain this objective; the issues of obesity, hyperlipidemia, smoking, and glucose 
intolerance must also be addressed if present.
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Currently the initial treatment for children and adolescents with less severe 
hypertension and those with primary hypertension and no hypertensive target-organ 
damage involves lifestyle modifications: weight reduction, exercise, and dietary 
intervention [3]. Weight reduction has been shown to be an effective therapy for 
obese children with hypertension. Weight reduction in children, as in adults, how-
ever, is a goal that is difficult to achieve in the long run. Exercise helps to reduce 
systolic and diastolic BP levels as well as it does weight. Diets with a high intake of 
fruits, vegetables, low-fat dairy, and whole grains while reducing the intake of foods 
high in saturated fat and refined sugar are recommended. Dietary salt restriction has 
a very important place in the control of BP.  The current recommendation for 
adequate daily sodium intake is only 1.2 g/day for 4–8-year-olds and 1.5 g/day for 
children older than that.

Although conservative measures clearly can reduce BP, these options are often 
insufficient for achieving the treatment goal, in part because of patient and of fam-
ily compliance problems. The decision to initiate pharmacologic treatment in the 
first or the second decade in the absence of symptoms and in otherwise healthy 
individuals is not easy since the long-term consequences of untreated hypertension 
and the benefits of therapy remain unknown. For these reasons, a definitive indica-
tion for initiating pharmacologic treatment should be ascertained before medica-
tion is prescribed in a child or adolescent. The indications for antihypertensive 
therapy are symptomatic hypertension, secondary hypertension, hypertensive tar-
get-organ damage, diabetes, and persistent hypertension despite non-pharmaco-
logic measures [3].

In making pharmacological treatment decisions for children, clinicians previ-
ously had to adapt the results of adult trials in selecting antihypertensive agents 
[51]. This approach, although possibly effective in lowering BP, is fraught with 
problems, especially the unknown differences in both the metabolism and adverse 
effect profiles of these drugs in children versus adults, as well as the unknown long-
term effects of antihypertensive medications on the growth and development of 
children. Off-label use, with all of its implied risks, was often the only option avail-
able to physicians who treated children with hypertension.

Since 1998, many antihypertensive drugs have been successfully studied in chil-
dren, and more studies are currently underway or planned. An ideal clinical trial 
would yield useful information and at the same time minimize the risks to the chil-
dren participating in the study. Traditional methods of determining the safety and 
effectiveness of antihypertensive agents in adults may be modified to meet the chal-
lenges presented by pediatric patients. The advantages of ambulatory BP or home 
BP monitoring make it attractive for use in pediatric antihypertensive trials. This 
type of monitoring may avoid some of the practical difficulties normally encoun-
tered in trials in this age group, mainly those involving the eligibility of the subjects 
or the assessment of the endpoint trial. Ambulatory BP monitoring may play an 
even more important role than it does in adults because of the smaller number of 
children who have hypertension [63].

No particular class of antihypertensive drugs has been shown to be superior to 
another in terms of its effect in children. In some cases, the choice of 
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antihypertensive agent depends on the underlying cause. When choosing among the 
available therapies, the clinician must also consider efficacy, dosing availability and 
frequency, adverse effects, and cost. Taking into account that compliance is a very 
important issue if BP control can be achieved with a single drug that is taken once a 
day, it will improve the compliance and should be taken into consideration when the 
initial agent is chosen. If monotherapy is introduced, and after titration BP control 
is not achieved, the next step is to add a second drug. The choice of the drug to be 
added needs to look for additive antihypertensive activity and to buffer potential 
secondary effects.

Therapy must be monitored closely both for efficacy and for potential adverse 
effects. Efficacy in reducing BP values should be monitored by using both office 
and out-of-office BP measurements. The target BP goal in children with uncompli-
cated primary hypertension and no hypertensive target-organ damage should be 
<95th percentile for gender, age, and height, but it is probably wiser and safer to aim 
at a BP below the 90th percentile, provided this goal can be attained by well-
tolerated treatment. For children with chronic renal disease, diabetes, or hyperten-
sive target-organ damage, the goal BP should be <75th percentile [3]. After starting 
treatment, the frequency of office BP readings depends on the severity of hyperten-
sion and on the given BP goal. Stage 2 HTN or stage 1 in the presence of cardiac or 
renal failure needs to be monitored weekly until the goal is achieved. In subjects 
with diabetes or organ damage, a monthly check may be appropriate. At-home BP 
monitoring can help in long-term control and even improve compliance. Twenty-
four hour ambulatory BP monitoring is recommended in cases of resistant hyperten-
sion, progression of organ damage despite an apparent good BP control and in those 
with frequent circadian variability abnormalities, chronic renal failure, and diabetes 
mellitus. Female patients of childbearing potential should be counseled about the 
need to use an effective method of contraception when treatment with an angiotensin-
converting enzyme inhibitor or angiotensin receptor blocker is indicated, because 
exposure to these drugs, even in the first trimester, may have adverse effects on the 
developing fetus [64].

The success of a given antihypertensive treatment, however, is difficult to esti-
mate solely by the extent of BP reduction in part due to the impact of BP values on 
risk which depends on the existence of underlying organ damage and the coincident 
influence of other cardiovascular risk factors. Then, above and beyond BP values in 
an individual subject, it is necessary to monitor the impact of antihypertensive treat-
ment in the development or regression of hypertension-induced early end-organ 
damage (left ventricular hypertrophy, urinary albumin excretion, intima-media wall 
thickness) or in a potential carbohydrate metabolism derangement [3]. Among the 
potential intermediate endpoints, left ventricular hypertrophy seems to be the most 
useful in this age group. Assessment and monitoring of these intermediate objec-
tives may play an important role in providing scientific evidence for delineating the 
best antihypertensive treatment to apply. Although improvement in the intermediate 
endpoints may be followed by a substantial reduction of risk, the potential differ-
ences in success among the different classes of drugs are still a matter of debate.
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The appropriate duration of treatment for a child or adolescent is unknown. 
Some patients require lifelong therapy, and others may experience an improvement 
or even a resolution to their hypertension. For these reasons, if BP is under excellent 
control and no organ system damage is present, medications can be tapered and 
even discontinued under careful observation if the underlying cause is corrected. BP 
should be monitored carefully upon follow-up, since a significant proportion of 
patients become hypertensive again in the future.
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47.1	 �Approach to Guidelines

Guidelines on arterial hypertension management have an almost 40-year-long his-
tory, the first documents providing guides in the area being the Joint National 
Committee report on Detection, Evaluation and Treatment of High Blood Pressure 
published in 1977 [1] and the World Health Organization Technical Report on 
Arterial Hypertension published in 1978 [2]. Both the US Joint National Committee 
and the World Health Organization, the latter in conjunction with the International 
Society of Hypertension, have continued to issue guidelines at intervals of approxi-
mately 3–4 years, while the European Society of Hypertension (ESH) in collabora-
tion with the European Society of Cardiology (ESC) published their first guidelines 
in 2003 [3]. This was a huge success as this European document received 3165 
citations. In the 2 years after its publication (2004–2005), it was the top medical 
article for citations received, but an even greater success was met by the second edi-
tion of the ESH-ESC hypertension guidelines in 2007 [4, 5], which in the following 
years received as many as 5494 citations.

The second half of 2013 and the beginning of 2014 have seen a flowering of 
new hypertension guidelines, with the appearance of the third edition of the 
European Society of Hypertension—European Society of Cardiology guidelines 
in July [6, 7], the Practice Guidelines of the two European societies in October [8], 
the Evidence Based Guidelines of Members of the US Eighth Joint National 
Committee (JNC-8) [9] and the Clinical Practice Guidelines for the Management 
of Hypertension in the Community jointly issued by the American Society of 
Hypertension (ASH) and the International Society of Hypertension (ISH) [10, 
11], which both appeared in January 2014.
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In an editorial I wrote to accompany publication of the last document in the 
Journal of Hypertension, I commented: “When multiple guidelines are produced, 
the easiest temptation is to contrast them in order to provide ground for learned 
debates among experts” [12]. As a matter of fact, different guidelines being all pre-
pared by groups of experts cannot substantially differ in those areas in which a clear 
body of evidence has been produced by adequate investigation. Fortunately, hyper-
tension is an area of cardiovascular medicine in which evidence in favour of thera-
peutic intervention was searched for by randomized controlled trials long before the 
same methodology was applied to the treatment of other cardiovascular illnesses, 
such as myocardial infarction and heart failure [13]. When we have recently com-
pleted a meta-analysis of all blood pressure-lowering randomized controlled trials 
(versus placebo or less active therapy) from 1996 to 2014, we have compared our 
results to those of previous meta-analyses on a less extensive number of trials and 
noticed a substantially consistent reduction of all major cardiovascular outcomes 
[14]. When restricting analyses to those trials investigating all types of outcomes, 
we have calculated that a standardized systolic/diastolic blood pressure (SBP/DBP) 
reduction of 10/5 mmHg significantly decreases risk of stroke and heart failure to 
the greatest extent (by about 40%) but also significantly reduces risk of coronary 
heart disease events by about 20%, that of cardiovascular mortality by 22% and that 
of all cause death by 24% [15]. It is no surprise, therefore, that all guidelines strongly 
recommend blood pressure lowering in hypertension.

However, once the benefit of lowering blood pressure had been established by 
placebo-controlled (or more versus less intense treatment) trials, “most of the prac-
tical questions worth being investigated have remained substantially unexplored or 
insufficiently explored” [13]. Not that there have been few trials of antihypertensive 
treatment in the last 20 years or so, but most of them have focused on comparing the 
benefits of different antihypertensive regimens, with the intent to show specific ben-
efits of new agents or, vice versa, the superiority of the older ones” [13]. These trials 
have certainly led to useful information, but recently, when we have surveyed trials 
head to head comparing different antihypertensive agents, we have identified as 
many as 50 trials for 58 two-drug comparisons in a total of 247,006 patients fol-
lowed for an average of 4.17  years (1,029,768 patient-years) [16], probably too 
much effort to end up with the conclusion that what really matters is lowering blood 
pressure whatever the agents administered.

As a consequence, some of the questions the physician is confronted with daily 
have not received a definite answer by suitable intervention trials. Some of these 
questions are:

	1.	 When should antihypertensive treatment be initiated, and, in particular, should 
grade 1 hypertensive individuals at low-to-moderate cardiovascular risk be 
treated?

	2.	 What should the systolic/diastolic blood pressure targets of treatment be? Lower 
than 140 mmHg or lower than 130 mmHg for SBP? Lower than 90 mmHg or 
lower than 80 mmHg for DBP?

	3.	 Should antihypertensive treatment differ in the elderly?
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More than in the answers given to these questions, the various guidelines pub-
lished in 2013–2014 differ in their approach to these questions, namely in the 
approach explicitly or tacitly followed in considering the fundamental problem: 
should guideline recommendations be based on evidence or wisdom [13]? The 
authors of the Joint National Committee eighth report [9] chose a very rigid 
approach, based on a very strict interpretation of evidence: for the US authors evi-
dence exclusively consists not only of data provided by randomized controlled 
intervention trials, but only data derived from a limited number of trials the 
Committee judged of sufficiently high quality. Although strict criteria based on data 
quality may appear to confer high quality to the recommendations, nonetheless any 
selection is easily susceptible to bias. In the recent past, severe criteria of trial selec-
tion have often led to base guidelines predominantly on trials run by the guidelines 
authors themselves: something of this kind happened to the Joint National 
Committee Report 7 [17], predominantly based on results of the ALLHAT trial [18], 
and to the 2011 National Institute for Clinical Excellence (NICE) guidelines in the 
UK [19], largely based on the results of ASCOT [20].

The Joint National Committee Report 8 [9] proudly defines itself as evidence-
based, but the decision of concentrating only in areas in which evidence was available 
necessarily limits the recommendations to the area of drug treatment, and to only nine 
major questions, of which one only receive Grade A (strong) recommendation, and as 
many as six receive the lowest Grade E recommendation (expert opinion). Admittedly, 
the Joint National Committee Report 8 has the merit of being short, only 14 pages, but 
even 14 pages may be too many for a single grade A recommendation.

The approach followed by the American Society of Hypertension and the 
International Society of Hypertension in preparing their Clinical Practice Guidelines 
[10, 11] has been, so to say, the opposite of that of the Joint National Committee 
Report 8 [9]. It is a concise document (13 pages) in which recommendations cover-
ing various aspects of hypertension management are given deliberately without 
mentioning whether these recommendations are supported by the weight of evi-
dence or only based on expert opinion. This points to an unresolved issue about the 
format of guidelines.

“Should any recommendation be supported by a detailed discussion of the weight of evi-
dence upon which it is based, and practicing physicians instructed about the strength of 
each recommendation, and informed about which statement is supported by trial evidence 
and which by experts’ wisdom only?... Or, vice versa, should guideline documents be short 
and agile, easy to read and, in particular, to follow in medical practice, mixing trial evidence 
with experts’ wisdom, without exposing practicing physicians to the dilemma whether their 
decisions are evidence based or wisdom based only?”

“The problem has been recurrent through the history of hypertension guidelines, as it 
results from two opposite, difficult to reconciliate requirements: to provide straightforward, 
simple recommendations and, on the same time, to inform the physicians not only about 
what they should do, but also about why they should follow any specific recommendations 
for the management of hypertension” [12].

Probably, the best realistic solution is that taken by the European Society of 
Hypertension and the European Society of Cardiology, whose 2013 guidelines for 
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the management of hypertension have been published in two formats, an extensive 
version with detailed explanations and citation of data supporting each recommen-
dation [6, 7], and a concise one (defined Practice guidelines) focused on major 
recommendations [8], both versions, however, being accompanied by colour tables 
indicating the class of recommendations and the level of evidence upon which these 
were based.

47.2	 �Initiation of Antihypertensive Treatment

Recent hypertension guidelines, confronted with the question when to initiate anti-
hypertensive treatment have acknowledged that trial-based evidence about the sys-
tolic blood pressure threshold deserving treatment is weak. The Eighth Report 
members of the Joint National Committee [9] recommend to “initiate pharmaco-
logic treatment to lower blood pressure at systolic blood pressure ≥140 mmHg” 
only as expert opinion. The 2013 ESH-ESC guidelines [6] give a strong recommen-
dation (Class I, Level A) to promptly initiate antihypertensive drug treatment “in 
individuals with grade 2 and 3 hypertension with any level of cardiovascular risk”, 
but advise to consider “initiation of antihypertensive drug therapy in grade 1 hyper-
tensive patients at low to moderate risk only when blood pressure is within this 
range at several repeated visits or elevated by ambulatory blood pressure criteria, 
and remain within this range despite a reasonable period with lifestyle measures” 
[6]. Despite all these precautions, this recommendation is classified only as class IIa 
(Conflicting evidence and or divergence of opinion) and level of evidence B 
(Fig. 47.1). The ASH/ISH clinical practice guidelines point out that in patients with 
stage (=grade) 1 hypertension, drug treatment can be delayed for some months if 
patients do not have evidence for abnormal cardiovascular findings or other risk 
factors, and suggest that, in settings in which healthcare resources are highly lim-
ited, “clinicians can consider extending the non-drug observation period in uncom-
plicated stage 1 hypertensive patients” [10]. Likewise, according to the 2011 NICE 
hypertension guidelines in the UK, antihypertensive drug treatment should be 
offered to people with stage 1 hypertension only when 10-year cardiovascular risk 
is equivalent to 20% or greater [19].

The issue about the poor level of evidence favouring active blood pressure lower-
ing in individuals with SBP/DBP values within what is usually defined grade 1 (or 
stage 1) hypertension (SBP 140–159 mmHg and/or DBP 90–99 mmHg) was first 
raised in 2009 [21], when we called attention on the fact that the few trials con-
ducted in the 1970–1980s on what was then defined as “mild” hypertension could 
not be taken as reliable evidence supporting treatment of grade 1 hypertension, as 
patients included in the “mild” hypertension trials had been recruited on the basis of 
DBP values only (often in a range much wider than the 90–99 mmHg range now 
used for grade 1 hypertension). Furthermore, in most of the “mild” hypertension 
trials SBP was not considered among recruitment criteria, and in some of them SBP 
could be as high as up to 200 mmHg.
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In 2012, a Cochrane collaboration tried to overcome this difficulty by making an 
individual patient meta-analysis of the “mild” hypertension trials including only 
data from those patients whose blood pressure values were in the grade 1 range [22]. 
This meta-analysis was unable to show a significant reduction in the risk of any 
cardiovascular outcome alone or in combination (Fig. 47.2a). Although based on a 
small number of patients and events (e.g. only 30 strokes) these negative results 
were widely publicized as warning against overtreating grade 1 hypertension, and 
obviously influenced the cautious attitude all guidelines had when discussing man-
agement of grade 1 hypertension.

Since 2013 new analyses of available data have been conducted [23]. The Blood 
Pressure Lowering Treatment Trialists’ Collaboration (BPLTTC) has made an 
attempt to increase the number of patients and events by including other individuals 
from other trials with baseline SBP/DBP in the grade 1 range [24]. As illustrated in 
Fig.  47.2b this extended meta-analysis showed significant reductions in stroke, 
major cardiovascular events, cardiovascular and all-cause mortality. The BPLTTC 
conclusions, however, were limited by the fact that about 50% of the added indi-
viduals were already under some blood pressure-lowering treatment at baseline and, 
therefore, could not be correctly defined as grade 1 hypertensive patients. 
Furthermore, most of the individuals added had diabetes with the consequence that 
the total cardiovascular risk in the placebo group of the BPLTTC meta-analysis 
(6.2% cardiovascular death in 10 years) was beyond the limits of low-to-moderate 
risk (which normally is <5%).

Recommendations Class Level

Prompt initiation of drug treatment is recommended in individuals with grade 2 and 3 
hypertension with any level of CV risk, a few weeks after or simultaneously with 
initiation of lifestyle changes.

I A

Lowering BP with drugs is also recommended when total CV risk is high because of 
OD, diabetes, CVD or CKD, even when hypertension is in the grade 1 range.

I B

Initiation of antihypertensive drug treatment should also be considered in grade 1 
hypertensive patients at low to moderate risk, when BP is within this range at several 
repeated visits or elevated by ambulatory BP criteria, and remains within this range 
despite a reasonable period of time with lifestyle measures.

IIa B

In elderly hypertensive patients drug treatment is recommended when SBP is ≥160 
mmHg.

I A

Antihypertensive drug treatment may also be considered in the elderly (at least when 
younger than 80 years) when SBP is in the 140–159 mmHg range, provided that 
antihypertensive treatment is well tolerated.

IIb C

Unless the necessary evidence is obtained it is not recommended to initiate 
antihypertensive drug therapy at high normal BP.

III A

Lack of evidence does also not allow recommending to initiate antihypertensive drug 
therapy in young individuals with isolated elevation of brachial SBP, but these 
individuals should be followed closely with lifestyle recommendations.

III A

Fig. 47.1  Initiation of antihypertensive drug treatment according to the 2013 European Society of 
Hypertension/European Society of Cardiology hypertension guidelines (from Mancia et al. [6], by 
courtesy of Journal of Hypertension). BP blood pressure, CKD chronic kidney disease, CV cardio-
vascular, CVD cardiovascular disease, OD organ damage, SBP systolic blood pressure
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Another, more powerful meta-analytical approach has recently been followed 
by our group. Among all blood pressure-lowering trials, we have chosen those in 
which patients had been randomized in the absence of current treatment, in order 
to avoid incorrectly labelling hypertension grade. We identified 32 trials (including 
104,359 patients) that could be classified as investigating grade 1, 2 or 3 hyperten-
sion on the basis of the average baseline blood pressure in each trial [25]. Significant 
reductions of the risk of all major cardiovascular outcomes were found to be 
induced by blood pressure lowering at all grades of hypertension with no trend 
towards different relative risk reductions at different hypertension grades. In 

Outcome

Stroke

CHF

Total CV events

All deaths

Treated

10/3523

71/3523

81/3523

77/4481

Control

20/3557

64/3557

84/3557

90/4431

Events  (n/patients) RR (95% CI)

0.51 (0.24, 1.08)

1.12 (0.80, 1.57)

0.97 (0.72, 1.32)

0.85 (0.63, 1.15)

0.1 0.5 1 2 5

RR (95% CI)

Control betterTreatment better

a

Outcome

Stroke

CHD

HF

Major CV events

CV death

Total death

Treated

99/6376

185/6574

62/2872

311/6572

96/3043

307/7833

Control

129/6035

178/6251

76/2757

351/6398

124/2838

358/7406

Events (n/patients) RR (95% CI)

0.72 (0.55, 0.94)

0.91 (0.74, 1.12)

0.80 (0.57, 1.12)

0.86 (0.69, 1.00)

0.75 (0.57, 0.98)

0.78 (0.67, 0.92)

0.3 0.5 1 2

RR (95% CI)

Control betterTreatment better

b

Fig. 47.2  Effects of blood pressure lowering in grade 1 hypertension. Results from two meta-
analyses of individual data. (a) Data from the Cochrane Collaboration Meta-analysis. (b) Data 
from the Blood Pressure Lowering Treatment Trialists’ Collaboration meta-analysis. CHD coro-
nary heart disease, CI confidence interval, CV cardiovascular, HF heart failure, RR risk ratio 
(redrawn from data in Diao et al. [22] and Sundström et al. [24]
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particular, 6 trials in 16,036 individuals were classified as grade 1 hypertension, 
and their meta-analysis showed significant reductions in the risk of stroke, coro-
nary events, the composite of stroke and coronary events, cardiovascular and all-
cause deaths (Fig.  47.3a). As some of these trials included patients at high 
cardiovascular risk, another meta-analysis was done only including trials on trial 
subgroups with mean baseline SBP/DBP values in the grade 1 range and a low-to-
moderate cardiovascular risk (<5% cardiovascular death in 10 years in the control 
groups). Also in the 8975 patients of this meta-analysis, blood pressure-lowering 
treatment significantly decreased the risk of stroke, coronary events, the composite 
of stroke and coronary events and all-cause death (Fig. 47.3b) absolute risk reduc-
tion was large, amounting to 21 strokes, 34 major cardiovascular events and 19 
deaths prevented every 1000 patients treated for 5 years [25].

The results of this meta-analysis [25] have been further supported by the recently 
published results of the Heart Outcomes Prevention Evaluation (HOPE)-3 trial [26], 
which has shown a significant 27% reduction of major cardiovascular outcomes in 
patients at an intermediate level of cardiovascular risk with baseline SBP values 
higher than 143.5 mmHg (mean 154 mmHg), though no benefit of blood pressure-
lowering treatment was seen in individuals with lower baseline blood pressure val-
ues (high-normal blood pressure).

Outcome

Stroke

CHD

Stroke + CHD

CV Death

All-cause Death

Trials
(n)

4

5

4

4

4

Baseline
SBP/DBP
(mmHg)

146/91

145/91

146/91

146/91

146/91

Difference
SBP/DBP
(mmHg)

-7.1/-4.5

-6.5/-4.2

-7.1/-4.5

-7.1/-4.5

-7.1/-4.5

71/4061

114/4729

159/4061

53/4061

90/4061

110/4012

129/4246

227/4012

74/4012

133/4012

Absolute
Risk Reduction
1000 pts/5 years

(95% CI)

-21 (-26, -1)

-12 (-18, -2)

-34 (-43, -19)

-9 (-14, +1)

-19 (-25, -8)

NNT
5 years
(95% CI)

47 (39, 1301)

86 (55, 531)

29 (23, 54)

110 (72, -2223)

54 (40, 119)

0.58 (0.34-0.99)

0.75 (0.58-0.96)

0.69 (0.57-0.85)

0.71 (0.50-1.01)

0.67 (0.51-0.87)

0.33 (0.11-0.98)

0.68 (0.48-0.95)

0.51 (0.36-0.75)

0.57 (0.32-1.02)

0.53 (0.35-0.80)

0.1 0.2 0.5 1 2 5

Active better Control better

b

a
Outcome

Stroke

CHD

HF

Stroke + CHD

Stroke + CHD + HF

CV Death

All-cause Death

Trials
(n)

4

6

2

4

2

4

5

Difference
SBP/DBP
(mmHg)

-8.7/-5.3

-8.6/-5.3

-16.4/-9.9

-8.7/-5.3

-16.4/-9.9

-8.7/-5.3

-8.6/-5.4

218/7343

368/8248

0/  599

544/7343

15/  599

218/7343

402/7580

Treated Controls

312/7321

403/7788

3/  575

689/7321

24/  575

274/7321

487/7554

Events
(n/patients)

RR
(95% CI)

0.71 (0.60-0.83)

0.87 (0.76-0.99)

0.25 (0.03-2.24)

0.79 (0.71-0.88)

0.61 (0.32-1.15)

0.79 (0.67-0.95)

0.83 (0.73-0.94)

Standardized RR
(95% CI)

RR
(95% CI)

Standardized RR
(95% CI)

0.64 (0.51-0.78)

0.88 (0.77-0.99)

0.46 (0.14-1.57)

0.80 (0.72-0.88)

0.76 (0.53-1.08)

0.78 (0.65-0.95)

0.82 (0.72-0.94)

Standardized RR
(95% CI)

Standardized RR
(95% CI)Treated Controls

Events
(n/patients)

Active better Control better
0.3 1.0 1.5

Baseline
SBP/DBP
(mmHg)

153/95

152/95

153/98

153/95

153/98

153/95

153/95

0.6

Fig. 47.3  Effects of blood pressure lowering in trials of grade 1 hypertension. Meta-analyses of 
trials in which average baseline SBP/DBP were in the range 140–159/90–99  mmHg (all trials 
without or minimal baseline antihypertensive drugs at randomization). (a) All grade 1 trials inde-
pendent of total cardiovascular risk. (b) Only grade 1 trials or trial subgroups at low-to-moderate 
risk. CHD coronary heart disease, CI confidence interval, CV cardiovascular, HF heart failure, RR 
risk ratios. Standardized RR is to a SBP/DBP difference of 10/5 mmHg (from Thomopoulos et al. 
[25], by courtesy of Journal of Hypertension)
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On the whole, despite the absence of a large randomized placebo-controlled trial 
specifically investigating blood pressure-lowering treatment in patients with grade 
1 hypertension at low-to-moderate cardiovascular risk, the data of our meta-analysis 
[25] and the results of the HOPE-3 subgroup analysis [26] provide a much stronger 
evidence-based support in favour of initiating active drug treatment in grade 1 low-
to-moderate risk hypertensives [27] than the arguments that could be used in the 
2013 ESH-ESC guidelines [6].

47.3	 �Blood Pressure Treatment Targets

Although the target values to which blood pressure should be brought by drug treat-
ment to optimize treatment benefits is of prominent interest for the patients and the 
treating physicians, it is surprising that, among the large number of antihypertensive 
treatment trials (as many as 70), so few (only 14) have compared the effects of more 
versus less intense blood pressure-lowering treatment, and even less have investi-
gated precise SBP or DBP targets [13].

When we first reviewed the subject in 2009 [21], we showed that the recom-
mendation frequent in guidelines current at the time [4, 5, 17], namely, to lower 
SBP to less than 130 mmHg, particularly in patients with high cardiovascular risk 
(e.g. post-stroke or post-myocardial infarction) and in hypertensives with diabetes, 
was unsupported by trial evidence or supported by controversial evidence. As a 
consequence, the 2013 ESH-ESC guidelines [6] recommended a SBP target of less 
than 140 mmHg in most groups of hypertensive patients (those at low-to-moderate 
cardiovascular risk, those with diabetes, those with previous stroke or transient 
ischemic attack, those with coronary heart disease, those with diabetic or nondia-
betic chronic renal disease), though with a different class of recommendation and 
a different level of available evidence (Fig. 47.4) [6]. Likewise, the JNC-8 report 
[9] expresses the “expert opinion” that hypertensive individuals younger than 
60 years should be treated to a goal SBP <140 mmHg, and a similar recommenda-
tion is  given in the American Society of Hypertension/International Society of 
Hypertension guidelines [10].

Since 2013 new data and new analyses have become available. In 2014 we pub-
lished a meta-analysis of 32 blood pressure-lowering trials (including 128,232 indi-
viduals), showing that risk of all outcomes could be significantly reduced when SBP 
in the treated group was lowered to values less than 150 mmHg and compared to 
SBP values above 150 mmHg in the control group and when it was lowered to val-
ues less than 140  mmHg in the treated group and compared to values above 
140 mmHg in the control group. However, when SBP values below were compared 
to SBP above the cut-off of 130 mmHg, only stroke and all-cause death were signifi-
cantly reduced [25].

In November 2015, the results of a large National Institutes of Health (NIH)-
sponsored trial comparing a SBP goal of less than 120 mmHg with the usual goal of 
less than 140 mmHg were published [28]. The Systolic Blood Pressure Intervention 
Trial (SPRINT) was stopped early because of a significant reduction of the primary 
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endpoint in the group with more intense blood pressure-lowering treatment. The 
results of SPRINT have been received with obvious interest, but have also raised 
some perplexities. Among the latter, it has been found surprising that stroke, the 
cardiovascular outcome known to be most sensitive to blood pressure decrease, was 
not significantly reduced in SPRINT. The most important benefit of the lower blood 
pressure goal in SPRINT was a marked reduction in heart failure risk, which may 
have resulted from a larger use of diuretics and renin-angiotensin system blockers 
in the group with lower blood pressure [29]. The point has also been raised that the 
blood pressure measurements in SPRINT may be hardly comparable with those 
used in other trials (as well as in current medical practice), as in SPRINT blood 
pressure was measured by an automatic device in absence of a doctor or nurse and 
the reported values were likely lower than those to be expected by the use of con-
ventional office blood pressure [30].

After the publication of SPRINT, we have updated our meta-analysis of blood 
pressure-lowering trials stratified according to the three different cut-offs of achieved 
SBP (below and above 150, 140 and 130 mmHg). The meta-analysis now includes 
35 trials on 138,452 individuals and shows (Fig. 47.5) that lowering SBP below 
130  mmHg can significantly reduce most types of outcomes (stroke, coronary 
events, cardiovascular and all-cause death); however, absolute outcome reduction 
was definitely smaller than at higher SBP cut-offs [31], and permanent treatment 
discontinuations for adverse events were significantly greater [32]. It should be 
underlined, however, that even for SBP values less than 130  mmHg, mean risk 

Recommendations Class Level

A SBP goal <140 mmHg:

a) is recommended in patients at low–moderate CV risk; I B

b) is recommended in patients with diabetes; I A

c) should be considered in patients with previous stroke or TIA; IIa B

d) should be considered in patients with CHD; IIa B

e) should be considered in patients with diabetic or non-diabetic CKD. IIa B

In elderly hypertensives less than 80 years old with SBP ≥160 mmHg there is solid 
evidence to recommend reducing SBP to between 150 and 140 mmHg.

I A

In fit elderly patients less than 80 years old SBP values <140 mmHg may be 
considered, whereas in the fragile elderly population SBP goals should be adapted to 
individual tolerability.

IIb C

In individuals older than 80 years and with initial SBP ≥160 mmHg, it is recommended 
to reduce SBP to between 150 and 140 mmHg provided they are in good physical and 
mental conditions.

I B

A DBP target of <90 mmHg is always recommended, except in patients with diabetes, 
in whom values <85 mmHg are recommended. It should nevertheless be considered 
that DBP values between 80 and 85 mmHg are safe and well tolerated.

I A

Fig. 47.4  Blood pressure targets in hypertensive patients according to the 2013 European Society 
of Hypertension/European Society of Cardiology hypertension guidelines (from Mancia et al. [6], 
by courtesy of Journal of Hypertension). CHD coronary heart disease, CKD chronic kidney dis-
ease, CV cardiovascular, DBP diastolic blood pressure, SBP systolic blood pressure, TIA transient 
ischemic attack
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estimates of all outcomes were lower than one; hence there was no indication of a 
J-shaped relationship of the risk of any major outcome with achieved SBP, at least 
down to values several mmHg below 130.

In the various 2013 hypertension guidelines, recommendations are also given on 
DBP targets. All three major guidelines [6, 9, 10] suggest to achieve values below 
90 mmHg in all hypertensive patients, with the ESH-ESC guidelines additionally 
recommending a target of below 85 mmHg in hypertensives with diabetes on the 
basis of evidence provided by the Hypertension Optimal Treatment (HOT) [33] and 
the United Kingdom Prospective Diabetes Study (UKPDS) [34] trials.

Since the publication of the 2013 guidelines, our meta-analyses have provided 
further evidence on the DBP target: both meta-analyses of trials in which achieved 
DBP were below 90 mmHg in the actively treated group and above 90 mmHg in the 
control group and below and above 80 mmHg showed significant reductions of all 
major outcomes [25, 31]. Admittedly, in trials in which achieved DBP values were 
below (versus above) 80 mmHg, also achieved SBP values were significantly lower 
values in the active versus the placebo treatment groups, and it is therefore difficult 
to ascribe the benefit of morbidity and mortality risk reduction to the lower DBP 
rather than to the lower SBP. In any case, our meta-analyses [25, 31] show that DBP 
values several mmHg lower than 80 mmHg are at least safe, being associated with 
a reduction rather than an increase in cardiovascular risk.

In conclusion, the recommendations given in 2013 by all major guidelines [6, 9, 
10] to achieve SBP and DBP targets lower than 140 and, respectively, 90 mmHg 
can be placed now, thanks to new meta-analyses, on a much firmer ground and, 
therefore, with a greater strength. The additional recommendation can now be 
given that achieving SBP values lower than 130 mmHg and DBP values lower than 
80 mmHg appear safe and can be associated with some further benefit provided 
that addition of drugs or dose increase are not incrementing adverse events and, 
consequently, the risk of permanent treatment discontinuation [32]. Whether these 
recommendations are valid for all phenotypes of hypertension, and particularly in 
the elderly or in secondary prevention, remains to be ascertained by further studies, 
such as the ongoing Stroke in Hypertension Optimal Treatment (SHOT) trial [35], 
and further analyses.
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BP	 Blood pressure
dRHTN	 Drug-resistant hypertension
HTN	 Hypertension
RDN	 Renal denervation
SBP	 Systolic blood pressure
eGFR	 Estimated glomerular filtration rate

48.1	 �Introduction

The burden of uncontrolled hypertension (HTN) remains high worldwide, while a small 
proportion of patients presents with HTN resistant to multiple drug treatment even after 
undergoing a careful reevaluation and optimization of their regimen [1]. The knowledge 
of the central role of sympathetic activation in the pathophysiology of HTN and espe-
cially drug-resistant hypertension (dRHTN) coupled with advances in technology has led 
to the development and release of mechanical invasive treatments. Renal denervation 
(RDN) stands out of these new modalities as the most promising and with the most clini-
cal efficacy and safety data and therefore will be the main issue of this chapter [2]. It is a 
minimally invasive procedure performed in order to cause ablation of the renal nerves 
with the use of a dedicated catheter reaching the renal arteries through a femoral approach.
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48.2	 �Pathophysiologic Background and Indications

Renal innervation consists of renal efferent sympathetic and afferent sensory nerves 
that travel through the adventitia of the renal arteries (Fig.48.1) [3]. Efferent sympa-
thetic stimulation leads to increased renal tubular sodium reabsorption, increased 
renin secretion, water retention, and a reduction in blood flow as a consequence of 
renal vasoconstriction. The afferent sensory fibers regulate central sympathetic out-
flow and respond to various stimuli such as intrarenal pressure (renal mechanore-
ceptors), ischemia, and hypoxia (renal chemoreceptors). The concept of RDN is the 
disruption of the renal nerves that serve as the link between a heightened central 
sympathetic outflow and an impaired renal excretory function.

A number of expert documents have been published that have extensively dis-
cussed the population indicated for the procedure, the clinical steps before deciding 
RDN, and the various technical issues [1, 4]. Patients that have been considered as 
candidates for RDN based on clinical trial data are those with severe dRHTN 
defined by an office SBP ≥160 mmHg (≥150 mmHg in type 2 diabetes) despite 
treatment with at least three different types of antihypertensive drugs including a 
diuretic. Treatment resistance should be confirmed with out-of-office BP measure-
ments and after management of contributing lifestyle factors, screening for second-
ary causes of HTN, and treatment optimization (Fig.  48.2). However, after the 

Kidney
Renal injury/ischemia

Renal afferent nerves

Central nervous system
≠ Sympathetic outflow

Vasoconstriction

Vascular hypertrophy/remodelling

Cardiac hypertrophy

Cardiac O2 consumption

pCO2 sensitivity

Insulin resistance

Central nervous system

Renal efferent nerves

Renal cortex
Glomerular arterioles

≠Renin release

≠Sodium/water absorption

ØRenal blood flow

ØGlomerular filtration rate

Fig. 48.1  Effects of afferent and efferent renal nerves
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recent conflicting data from randomized trials and the subsequent reevaluation of 
the method, inclusion criteria in the context of clinical trials are changing, princi-
pally with respect to inclusion of milder forms of HTN.

48.3	 �The Experimental Data on the BP Effects of RDN

There has been a series of experimental forms of HTN including models of rats, 
dogs, and pigs, in which it was shown that complete RDN by a combined surgical-
pharmacological disruption of both afferent and efferent nerves delays the devel-
opment of HTN or limits the increase in BP [3]. In spontaneously hypertensive 
rats, complete RDN was also associated with an increase in the fraction of the 
ingested sodium excreted in the urine, thus resulting in a “denervation natriure-
sis,” while a subsequent development of HTN was accompanied by a return of 
renal tissue norepinephrine content toward normal (evidence of renal reinnerva-
tion) and a decrease in the fraction of the ingested sodium excreted in the urine. 
However, RDN does not affect the development of HTN in the Dahl NaCl-
sensitive rat or in the canine HTN induced by nitric oxide synthase (NOS) inhibi-
tion. Thoracolumbar dorsal rhizotomy performed in order to produce selective 
afferent RDN attenuated the severity of HTN in rats with one-kidney, one-clip, 
and two-kidney one-clip Goldblatt HTN and in dogs with chronic aortic coarcta-
tion HTN but not in spontaneously hypertensive rats.

Pseudoresistance
(ABPM, home BP)
Drug non-adherence

Patient with apparent office-based
resistant hypertension 

Exclude

Optimize

Consider RDN

Identify
Secondary hypertension
Contributing factors
(Sleep apnea, salt intake) 

Agents, doses, intervals
Add fourth drug
(Preferably spironolactone)

Manage at hypertension
centre
Check renal anatomy
Discuss other invasive
options

Fig. 48.2  Management 
algorithm of a patient with 
resistant hypertension
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48.4	 �Effects of RDN on BP: Data from Clinical Trials

The first RDN proof-of-concept and safety study (Symplicity HTN-1), published in 
2009 in The Lancet, included 45 patients with severe dRHTN (i.e., systolic office 
BP > 160 mmHg on three antihypertensive drugs including one diuretic) who under-
went bilateral RDN with the use of a single-electrode radiofrequency ablation cath-
eter inserted through the femoral artery, while five patients with inappropriate renal 
artery anatomy for RDN served as controls [5]. There was a gradual reduction in BP 
during follow-up, reaching a 27/17 mmHg drop at 1-year post-procedure, with no 
serious safety issues. At 36 months post-RDN, office BP fell further, and the rate of 
controlled (<140 mmHg) patients (140–159 mmHg) reached 50% [6].

EnligHTN I was the first-in-human, prospective, multicenter study designed to 
assess the safety and efficacy of a multielectrode radiofrequency ablation system 
(EnligHTN™) that can deliver lesions with a predetermined pattern [7]. Renal sym-
pathetic denervation in 46 patients with dRHTN provided a rapid and significant 
office, ambulatory, and home BP reduction that was sustained through a follow-up 
period of up to 24 months [8]. Other studies were able to confirm the BP-lowering 
effect of RDN in patients with dRHTN using various energy modalities and cathe-
ters [9].

Randomized controlled RDN trials have provided conflicting results regarding 
the efficacy of RDN on BP reduction (Table 48.1) [10–13]. In the Symplicity HTN-
2, 106 patients with dRHTN were randomly assigned either to RDN or to continua-
tion of previous administered antihypertensive medication [10]. At 6  months 
post-RDN, office BP was significantly reduced by 32/12 mmHg, while there was 
interestingly no significant difference in the BP of the control group (change of only 
1/0 mmHg).

PRAGUE-15 study, a prospective, randomized, open-label multicenter trial, 
evaluated the efficacy of catheter-based RDN (Symplicity, Medtronic) (n = 52) vs. 
intensified pharmacological treatment including spironolactone (if tolerated) 
(n = 54) in patients with dRHTN [11]. Chief assets of the study were 24-h ambula-
tory BP monitoring and confirmation of adherence to therapy by measurement of 
plasma antihypertensive drug levels. After 6  months, a comparable significant 
reduction in 24-h average systolic BP (−8.6 mmHg in RDN vs. −8.1 mmHg in the 
drug group) and systolic office BP (−12.4 mmHg in RDN vs. −14.3 mmHg in the 
drug group) was observed in both groups. PRAGUE-15 showed that RDN is not 
superior to intensified pharmacotherapy in dRHTN in reducing BP, but it is impor-
tant to note that the average number of antihypertensive drugs used was signifi-
cantly higher (+0.3 drugs, P  <  0.001) and serum creatinine was significantly 
increased in the pharmacological group at 6 months post-RDN.

The small randomized Oslo study investigated the BP-lowering effect of RDN 
(n = 9, performed with the Symplicity catheter) vs. clinically adjusted drug treat-
ment (n = 10) with the use of noninvasive integrated hemodynamic measurements 
of impedance cardiography with the HOTMAN System, in true dRHTN, after 
excluding patients with poor drug adherence [12]. The study was ceased earlier 
because at 6 months, the drug-adjusted group presented with significantly lower 
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systolic and diastolic BP as well as larger absolute changes in SBP. Despite being 
small and underpowered, this study suggested that adjusted drug treatment has 
superior BP-lowering effects compared with RDN in patients with true dRHTN.

The Renal Denervation for Hypertension (DENERHTN) trial was a prospective, 
open-label randomized controlled trial with blinded endpoint evaluation in 106 
patients with dRHTN from 15 French tertiary care centers specialized in HTN man-
agement [13]. Eligible patients received a standardized stepped-care antihypertensive 
treatment of indapamide 1.5 mg, ramipril 10 mg (or irbesartan 300 mg), and amlodip-
ine 10 mg daily for 4 weeks to confirm treatment resistance by ambulatory BP moni-
toring before randomization. Patients were then randomly assigned (1:1) to receive 
either RDN plus the above mentioned standardized regimen (RDN group) or the same 
regimen alone (control group). The primary endpoint was met, with an observed mean 
change in daytime systolic BP at 6 months of −15.8 mmHg in the RDN group and 
−9.9 mmHg in the control group with a baseline-adjusted difference of −5.9 mmHg.

The Symplicity HTN-3 study was a prospective, randomized (2:1), masked 
(sham) procedure, single-blind study, which investigated the safety and efficacy of 
RDN in 535 resistant hypertensive patients in the USA [14]. Patients included were 

Table 48.1  Published randomized controlled studies of RDN

ΗΤΝ-2 OSLO RDN PRAGUE-15 DENERHTN
First author/
publication year

Esler [10]/2010 Elmula 
[12]/2014

Rosa [11]/2015 Azizi [13]/2015

Control group Antihypertensive 
treatment

Clinically 
adjusted 
drug therapy 
with the 
HOTMAN 
system

Intensified 
pharmacological 
treatment 
including 
spironolactone if 
possible

Standardized 
stepped-care 
antihypertensive 
regimen

Total population (n) 106 (52 vs. 54) 19 (9 vs. 10) 106 (52 vs. 54) 106 (53 vs. 53)
Age (years) 58 60 58 55
24-h BP monitoring No Yes Yes Yes
RDN device Symplicity Symplicity Symplicity Symplicity
Assessment of drug 
adherence

Diary Witnessed 
intake

Plasma drug 
concentrations

Morisky score 
plus drug 
concentrations

Baseline office BP 
(mmHg) (RDN vs. 
control)

178/97 vs. 
178/98

156/91 vs. 
160/89

159/92 vs. 155/89 159/93 vs. 155/91

Change in office 
SBP (mmHg) (RDN 
vs. control)

−32 vs. +1 −8 vs. −28 −12.4 vs. −14.3 −15.1 vs. −9.5

Baseline 24-h BP 
(mmHg) (RDN vs. 
control)

NA 151/89 vs. 
149/85

149/86 vs. 147/84 151/90 vs. 146/88

Changes in 24-h 
SBP (mmHg) (RDN 
vs. control)

−11/−3 −10/−21 −8.6 vs. −8.1 −15.4 vs. −9.5

RDN renal denervation, BP blood pressure, SBP systolic blood pressure, HTN-2 simplicity HTN-2, 
DENERHTN the renal denervation for hypertension 
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similar to those of Symplicity HTN-1 and Symplicity HTN-2; drug-RHTN was 
further confirmed with ambulatory BP ≥135  mmHg, and before randomization, 
patients were under a stable antihypertensive regimen for at least 2 weeks of maxi-
mum tolerated doses of at least three antihypertensive drugs, including a diuretic. 
Office systolic BP at 6  months dropped by −14.1  mmHg in the RDN and 
−11.7 mmHg in the control (sham) group, respectively (difference of 2.39 mmHg, 
p  =  0.26, with a 5 mmHg superiority margin). The change in ambulatory BP at 
6 months was −6.7 mmHg in the RDN and −4.7 mmHg in the sham ablation arm 
(difference of −1.96 mmHg, p = 0.98, with a 2 mmHg superiority margin). The 
results of Symplicity HTN-3 trial limited the enthusiasm of the scientific commu-
nity and industry toward RDN and have led to a thorough reappraisal of the 
procedure.

Another small, randomized, sham-controlled study from Germany by S. Desch 
examined the effectiveness of RDN with the Symplicity Flex catheter in patients 
(n  =  71) with mild dRHTN (daytime systolic BP 135–149 and diastolic BP 
90–94 mmHg on 24-h ambulatory measurement) [15]. In the intention to treat anal-
ysis, no significant difference between groups was observed in the reduction in the 
primary endpoint of 24-h systolic BP at 6 months, but in the per-protocol cohort, 
24-h systolic BP was significantly reduced.

48.5	 �Safety of RDN

Safety data for RDN come from a few experimental studies, the clinical trials of the 
various RDN systems, and the RDN registries. Most evidence comes from studies 
using the Symplicity catheter, yet safety results seem comparable among different 
RDN systems. The Symplicity HTN-1 and Symplicity HTN-2 studies have reported 
the longest follow-up period of up to 3 years but unfortunately not on the respective 
entire initial cohorts.

Preclinical studies have shown that RDN acutely causes circumscribed transmu-
ral injury, thrombus formation, and cellular swelling [16, 17]. Longer-term findings 
are fibrosis of up to 25% of the total media and underlying adventitia and nerve 
fascicle replacement with fibrous connective tissue. Overall, a partial return to nor-
mal anatomy may be expected at least 6 months post-RDN. An optical coherence 
tomography study in 16 patients with dRHTN undergoing RDN showed that 
endothelial-intimal edema was found in 96% of cases after RDN and thrombus 
formation was a frequent finding, signifying the need for the use of antiplatelet 
therapy in patients undergoing the procedure [18].

Data from clinical trials have consistently shown that the procedure is safe. Rare 
periprocedural events include access site complications such as pseudoaneurysms 
and hematomas, renal artery dissections, hypotension, and vasovagal episodes. In 
Symplicity HTN-1, angiography showed focal renal artery irregularities right after 
radiofrequency energy delivery that were attributed to minor spasm or edema and 
were not flow-limiting. Short-term angiograms and 6-month magnetic resonance 
angiograms did not show any irregularities at the sites of treatment [5]. In the 
Symplicity HTN-3 trial, the overall number of adverse events was very low, and no 
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significant differences were noted between groups [14]. Rates of major adverse 
events did not significantly differ between the RDN group (1.4%) and the control 
group (0.6%). In the Global SYMPLICITY Registry, even though underreporting of 
adverse events may have been possible, there were only six periprocedural adverse 
events related to the procedure, including four vascular access site complications 
(0.34%) and two renal artery dissections that were stented [19].

Intraprocedural bradycardia may be considered only a self-limiting acute effect 
of the RDN procedure, since regulation of BP and chronotropic competence are 
well preserved at follow-up. Orthostatic hypotension has been a rather rare adverse 
event of RDN as documented in various patient series. In a study in 36 patients that 
underwent tilt-table testing before and 3 months after RDN, change in systolic BP 
and heart rate after tilting were not influenced by the procedure [20].

There have been concerns that application of radiofrequency thermal energy may 
cause structural damage and subsequently renal artery stenosis, even though in the 
various cohorts, stenosis has been a rare complication (<5%). Still, a series of case 
reports have documented the development of unilateral or bilateral significant ste-
nosis as early as 2 months and as late as 2 years after RDN, usually associated with 
a relapse of high BP or deterioration of renal function [21–23]. Current contraindi-
cations for RDN include previous renal artery interventions and renal artery stenosis 
>50%, while energy delivery on atherosclerotic lesions should be avoided [4]. The 
few reports of development of renal artery stenosis highlight the importance of care-
ful documentation of such events in RDN studies. A careful selection of the correct 
RDN catheter size (at least in the case of balloon-based devices) and the use of 
antiplatelet therapy to limit the risk of dissection and thrombus formation, respec-
tively, are advised.

Development of acute or chronic renal damage has been one of the initial con-
cerns regarding RDN, as a potential result of loss of autoregulatory mechanisms 
[24]. However, RDN has not been associated with significant deterioration of kid-
ney function at least well beyond what is expected in patients of high cardiovascular 
risk by definition and with the progression of age. Overall, a relatively stable renal 
function during follow-up has been documented in RDN studies. On the other hand, 
in the 36-month report of the Symplicity HTN-1 registry, eGFR was shown to have 
decreased by 9.3 mL/min/1.73 m2 [6]. A small decrease in eGFR was also shown in 
the 24-month report of the EnligHTN I trial [8]. Chronically uncontrolled HTN and 
the use of drugs such as diuretics, renin-angiotensin inhibitors, and aldosterone 
antagonists may have contributed to these findings. Careful long-term observation 
of patients undergoing RDN in large registries will provide a clearer picture of renal 
behavior.

48.6	 �Current and Future Perspectives of RDN

In the years following the first studies on RDN, our view on the technique has 
changed. RDN is a complex, specialized therapy with a number of unanswered 
questions with respect to renal nerve anatomy as well as the depth of ablation and 
time and amount of energy needed to provide the best results [2, 25]. Recent data 
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show that the highest average number of nerves is found in the proximal and middle 
segments of the renal artery and the mean distance from the lumen to the nerve is 
the longest in the proximal and the lowest in the distal segments [26]. Such findings 
indicate that asymmetric and most probably distal renal artery targeting is required 
to achieve effective ablation. Furthermore, a “dose-response” dependency between 
the number of ablation attempts and the efficacy of RDN has been proposed. Data 
from the Symplicity HTN-3 trial show that the BP response increased with an 
increasing number of ablations delivered and the successful delivery of circumfer-
ential (four quadrant) ablations. Nevertheless, there are still no reliable markers of 
procedural success recognized that could establish on time whether denervation has 
been completely achieved [27, 28]. Acute changes in renal hemodynamics and 
changes in BP after high-frequency stimulation in the renal artery have been studied 
as possible markers, but there is no consensus on their implementation [29].

The issue of regeneration of mainly renal efferent sympathetic fibers post-RDN 
was raised from experimental findings. Yet, whether reinnervation, functional or 
only anatomic, takes place in humans is uncertain [30]. However, data from clinical 
trials and registries indicate that changes in BP persist long term (at least up to 
3  years) in patients with dRHTN after RDN.  A sustained decrease in BP was 
observed after 36 months of follow-up in HTN-1 and after 24 months of follow-up 
in EnligHTN I.

With respect to study design, there have been some exploratory and hypothesis-
generating findings that should be considered in future appropriately designed pro-
spective studies. Medication stability and patient adherence are critical issues. 
Frequent drug changes and variable medication adherence in Symplicity HTN-3 
may have affected the observed BP reduction after RDN [14]. Notably, in Symplicity 
HTN-3, 38% of patients had changes in their medications, while in the positive 
DENERHTN study, a standardized treatment protocol was followed. Accordingly, 
regarding ethnicity, in Symplicity HTN-3, among African-Americans there was a 
large drop in BP in the sham group (−17.8  mmHg), while in the non-African-
American subgroup, a significant difference in office systolic BP was observed 
(−15.2  mmHg in the denervation and −8.6  mmHg in the control (sham) group, 
p = 0.012). Adherence rates among such groups may partially explain these unex-
pected effects in Symplicity HTN-3. European experts on RDN thus suggest that in 
future RDN trials, it is crucial to standardize antihypertensive therapy (preferen-
tially all treated with the combination of a renin-angiotensin blocker, calcium chan-
nel blocker, and diuretic) with a stable run-in period of at least 4–8 weeks and to 
record drug adherence as a potential confounder of BP response with one of the 
available methods such as pill counting, use of electronic pill dispensers, or toxico-
logical drug analysis.

There is a wide heterogeneity of BP response to RDN ranging from a clinically 
significant BP reduction to even an increase; that is however not surprising and 
should be considered in the general context of antihypertensive therapy. For com-
parison, the earlier procedures of sympathetic splanchnicectomy were accompanied 
by a significant BP reduction in 45% of the surgically treated patients [31]. After all, 
HTN is a multifactorial disease, and the wide experience from pharmaceutical trials 
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shows that inhibition of any pathway implicated in BP elevation is effective only in 
a certain percentage of patients (30–50%). It is therefore clear that predictors of BP 
response to RDN are much needed to identify the “right patient” for this interven-
tional approach. Significantly, elevated BP (systolic >180 mmHg) has been associ-
ated with greater reductions of BP, but not all patients with largely elevated BP 
respond to RDN [19, 32]. Even though patients with evident sympathetic overactiv-
ity would intuitively be considered principal candidates for the procedure, clinically 
applicable measures of increased sympathetic activity are lacking. Interestingly, 
there is no clear established link between SNS activity and response to RDN, and 
more research is needed [33]. In any case, it is questionable whether older patients 
or patients with long-standing HTN may respond to RDN, compared to younger 
patients, given their commonly lower degree of SNS activation and their increased 
aortic stiffness [34].

Data from earlier RDN clinical trials showed that there was a disproportionally 
greater decrease in systolic office BP than in ambulatory BP [32]. The white-coat 
effect, which is very frequently encountered in dRHTN, might have contributed to 
this disparity. In an extended Symplicity protocol, at 6 months post-RDN, systolic 
ambulatory BP decreased by 10.2 mmHg in patients with true dRHTN, which is 
similar to the 24-h BP decline observed in Symplicity HTN-2; there was no effect 
on ambulatory BP monitoring in pseudoresistant patients, whereas office BP was 
reduced to a similar extent [35]. Ambulatory BP is less susceptible to bias, placebo 
effect, and day-to-day variability than office BP. In addition, it can easily be anal-
ysed blind to treatment allocation in controlled trials and allows correct selection of 
patients for RDN.

After the publication of the Symplicity HTN-3 trial, the earlier RDN trials 
underwent extensive scrutiny. An issue was raised that the observed BP reductions 
were due to the placebo and Hawthorne effects, the regression to the mean phe-
nomenon, drug changes and adherence, the study population, or other biases. On 
the other hand, current evidence would not justify regarding the technology as a 
proven failure. There is a general agreement that a second chance is really needed 
to test the effectiveness of this modality. In this setting, a clinical consensus confer-
ence provided some considerations on future RDN clinical trials [36]. Patients with 
moderate HTN and HTN in earlier stages, rather than dRHTN, should be included 
in future trials, while patients with stiff large arteries (e.g., isolated systolic HTN) 
should be excluded. A washout period should be performed but only in highly 
experienced centers, and standardized concomitant antihypertensive therapy with 
monitored adherence should be pursued. Ambulatory BP should be the primary 
efficacy endpoint, while clinically easy accessible predictors for BP efficacy would 
ideally be discovered. The two initial trials of the ongoing SPYRAL HTN Global 
Clinical Trial Program (using the Symplicity Spyral multielectrode renal denerva-
tion catheter) focus on the effect of RDN in hypertensive patients in the absence 
(SPYRAL HTN-OFF MED) and presence (SPYRAL HTN-ON MED) of antihy-
pertensive medications [37]. Hopefully, these two as well as other future appropri-
ately designed trials will resolve all the uncertainties regarding the BP effects of 
RDN and help define its place in clinical practice. Until more evidence is available 
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concerning the long-term BP efficacy and safety of RDN, it is recommended that 
candidate cases are managed in HTN centers and procedures are performed by 
experienced operators.

48.7	 �Other Invasive Treatments for HTN

The baroreceptors of the carotid sinus are located at the bifurcation of the common 
carotid artery and are mechanosensitive nerve endings that respond to vascular dis-
tension as a result of elevated BP or increased intravascular volume [38]. Stimulation 
of these receptors activates the carotid baroreflex which eventually results in 
increased parasympathetic activity that decreases BP and lowers heart rate. 
Baroreceptor activation therapy has been represented by the first-generation bilater-
ally placed Rheos® carotid pacemaker system and the second-generation unilateral 
BAROSTIM NEO™ system (CVRx Inc., USA). Implantation of the system involves 
an operation under general anesthesia, where electrode wires are positioned around 
the carotid artery wall and a pacemaker generator is fitted in a subcutaneous pocket 
in the pectoral region [39]. Encouraging efficacy data have been gathered from the 
three trials on the device: the initial Rheos Feasibility Trial, the Device-Based 
Therapy of Hypertension Trial (DEBUT-HT), and the latest Rheos Pivotal Trial. 
The latter was a double-blind, randomized, prospective, multicenter, phase III clini-
cal trial in 265 patients with dRHTN that received either carotid stimulation directly 
for 6 months (Group I) or delayed treatment after the 6-month visit (Group II) [40]. 
A decrease in systolic BP of 26 mmHg for Group I and 17 mmHg for Group II at 
6  months was observed. However, safety issues are of principal concern as the 
Rheos Pivotal Trial failed the short-term safety endpoint. The newer BAROSTIM 
NEO™ system has been associated with significantly less adverse events. The ongo-
ing Barostim Hypertension Pivotal Trial as well as trials using the more recently 
introduced MobiusHD™ device should provide further important data on the 
procedure.

The arteriovenous (AV) coupler is manufactured by ROX Medical and is used to 
create a central iliac AV anastomosis (initially with the scope of increasing venous 
oxygenation in chronic obstructive pulmonary disease patients) in order to reduce 
systemic vascular resistance and modulate autonomic activity among other effects 
[41]. The procedure involves catheterization of the common femoral artery and ipsi-
lateral common femoral vein, placement of the coupler between the distal external 
iliac vein and artery, and dilation of the anastomotic passage to 4 mm. Promising 
data came from the ROX CONTROL HTN trial that was a multicenter, randomized 
controlled trial in 83 severely hypertensive patients; a 27/20  mmHg decrease in 
office BP and a 13.5/13.5  mmHg decrease in 24-h BP were documented in the 
active group while no change was observed in the control group [42]. Safety issues 
under investigation are high-output cardiac failure, venous stenosis, and ipsilateral 
lower limb swelling. Again, pending trials and registries will help clarify the effects 
and safety of the procedure.
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49Is Hypertension-Related Target Organ 
Damage Reversible/Preventable?

Enrico Agabiti Rosei and Maria Lorenza Muiesan

49.1	 �Introduction

Hypertension-induced mortality and morbidity is produced through the impact on 
the heart, the central nervous system, the arterial vessels, and the kidney. Evaluation 
of early target organ damage (TOD) in these organs is an important step in a risk 
stratification strategy to reduce cardiovascular and renal damage. The 2013 ESH-
ESC Guidelines [1] encouraged the convenience of assessing target organ damage 
for global risk stratification and of repeating TOD assessment during the 
follow-up.

A panel of TOD is included in the 2013 ESH-ESC Guidelines, although some 
of them, such as the ankle-brachial index or estimated glomerular filtration rate 
(eGFR) < 60 mL/min/1.73 m2, indicate advanced organ damage. Others are not 
available for routine use. Based on availability, cost, and clinical significance, the 
evaluation of left ventricular hypertrophy (LVH) by electrocardiography and, 
possibly, the assessment of left ventricular mass (LVM) by echocardiography, 
urinary albumin excretion, and glomerular filtration rate are minimally 
recommended.

Several studies have shown that the regression of asymptomatic TOD occurring 
during treatment reflects the treatment-induced reduction of morbid and fatal CV 
events, thereby offering valuable information on whether patients are more or less 
effectively protected by the treatment strategies adopted (Fig. 49.1).
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49.2	 �Heart

Electrocardiographic LVH is a powerful marker of cardiovascular (CV) morbidity/
mortality in the general population as well as in different clinical settings [2]. In 
hypertensive patients LVH may predict the occurrence of cardiovascular events, 
including myocardial infarction, stroke, sudden death, and heart failure [3, 4]. The 
incidence of atrial fibrillation and of renal events, such as creatinine doubling, esti-
mated glomerular filtration rate  <30  mL/min/1.73  m2, or the need for end-stage 
renal disease, is also higher in the presence of LVH [5].

Marker of OD
Prognostic
value 

Sensitivity for
change
detection  

Time 

LVH (Electrocardiogram)
++++ + > 6 months

LVH (Echocardiography) ++++
++ > 6 months

Albuminuria ++
+++ Weeks-months

Estimated Glomerular Filtration Rate
(eGFR) (+)

++ Years

Pulse wave Velocity (PWV) (+)
+++ Weeks-months

Ankle Brachial Index (ABI)
– + –

Carotid wall thickness –
–/+ > 1 year

Fig. 49.1  Prognostic value of changes during treatment of markers of asymptomatic organ dam-
age. LVH left ventricular hypertrophy, OD organ damage
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BP control, mainly measured during 24  h monitoring, and body mass index 
(BMI) are strictly associated to LVH development [6]. In addition metabolic syn-
drome, diabetes mellitus [7], hyperuricemia, and chronic neurohormonal activation 
may further influence LVH development; the risk of incident LVH is particularly 
relevant among women.

Antihypertensive treatment is associated with a significant reduction in ECG LVH 
and in LVM. The magnitude of the decrease is related to the baseline LVM. According 
to variability in LVM measurements by echocardiography, only changes >10–15% can 
be considered of biological relevance. The correlation between changes of LVM and 
changes in clinic BP is modest and increases when average of 24 h BP is considered [8].

Among all classes of antihypertensive drugs, ACE inhibitors (ACEi), angiotensin 
receptor blockers, and calcium antagonists seem to be more effective as compared 
with beta-blockers [9]. In most studies, however, patients were receiving a combina-
tion of drugs (usually with a diuretic) and not monotherapy, and therefore the effi-
cacy of antihypertensive treatment in inducing adequate and long-term blood 
pressure control seems more important than the choice of a specific class.

A normalization of LVM is more difficult and cannot be always reached in women 
[5], obese or diabetic patients [10], elderly subjects with isolated systolic hypertension 
[11], or patients with coronary artery disease, despite adequate treatment. A normaliza-
tion of LV geometry is also possible during antihypertensive treatment [12].

The improvement of systolic and/or diastolic function parameters in response to 
antihypertensive therapy is still controversial.

Regression of ECG LVH assessed by voltage and strain criteria may be induced 
by treatment [13–20]. Large changes in ECG voltage and strain result in improved 
prognosis [21, 22]. Changes in echocardiographic LVM and in renal function may 
also independently predict the occurrence of cardiovascular events [23].

During antihypertensive treatment, the modifications of LV geometry, of left 
atrial size, of midwall fractional shortening, and of diastolic dysfunction parameters 
have been also shown to be associated with the incidence of cardiovascular events, 
independently of LVM change [12, 24, 25].

Regression of LVH may have a prognostic significance independently of blood 
pressure values, even when measured by 24 h BP. The changes in electrocardio-
graphically or echocardiographically LVH induced by treatment reflect the effects 
on cardiovascular events; however, a residual risk may be observed in patients with 
LVH regression, in whom LVM remains higher, although in the normal range, than 
in patients with persistently normal LVM [26].

49.3	 �Vascular Damage

49.3.1	 �Aortic Stiffness

In more recent years, it has become possible to evaluate the vascular aging process, i.e. 
the increase in arterial stiffness [27]. Arterial stiffness may be measured at systemic and 
local levels with non invasive technique. Regional and local arterial stiffness can be 
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measured directly and noninvasively, at various sites along the arterial tree, and they are 
based on direct measurements of parameters strongly linked to wall stiffness.

The 2013 ESH/ESC Guidelines have confirmed the importance of carotid-
femoral pulse wave velocity (cfPWV) as a subclinical organ damage for a more 
accurate and precise cardiovascular (CV) risk stratification and have indicated a 
threshold greater than 10 m/s as an index of increased large artery stiffening [1]. 
Nuclear magnetic resonance may be the most appropriate method for the evaluation 
of less superficial vessels [1, 28, 29]. Several studies have documented a correlation 
between arterial stiffness measures (in particular aortic PWV) and CV risk factors, 
such as aging, arterial hypertension, diabetes mellitus, metabolic syndrome, hyper-
cholesterolemia, as well as markers of chronic inflammation processes [28]. More 
importantly, an increase of aortic stiffness has been shown to predict the occurrence 
of CV events above and independently of traditional risk factors [30].

Arterial stiffness is associated with damage in other target organs (LVH [31], 
microalbuminuria, carotid intima-media thickening, endothelial dysfunction, and 
microvascular alterations [32]) and with clinical events.

Aging and BP are the main determinants of vascular stiffness, inducing a reduced 
synthesis and an increased degradation of elastin, in association with an increased 
synthesis and reduced degradation of type 1 and type 3 collagen [33]; calcification 
of the vessel wall may also occur, as frequently observed in elderly subjects and in 
hypertensive patients.

A large number of publications and several reviews have reported the various 
pathophysiological conditions associated with increased arterial stiffness and wave 
reflections, including arterial hypertension and in particular isolated systolic hyper-
tension [34, 35].

In recent years numerous studies have reported an association between altera-
tions of arterial stiffness or of pulsatile hemodynamic parameters and the occur-
rence of CV events [30]. The increase in cfPWV has been shown to predict all-cause 
mortality, CV mortality, fatal and nonfatal coronary artery events, and fatal stroke in 
different groups of patients, including those with arterial hypertension [36–38], 
with diabetes mellitus [39], with end-stage renal disease [40, 41], the elderly patients 
[42, 43], and in the general population [44–46]. Most importantly the prognostic 
significance of PWV is independent of brachial BP values, of major CV risk factors, 
and of the Framingham risk score [36], indicating that aortic stiffness has a better 
predictive value than each or the combination of the classical risk factors [47].

Data about prognostic significance of arterial stiffness measured at other arterial 
sites are less consistent. Carotid stiffness was predictive of CV events in a small 
number of patients with endstage renal disease (ESRD) [48] or following renal 
transplantation [49] and in a large prospective cohort with a high prevalence of 
insulin resistance [50], while no predictive value was demonstrated in a larger num-
ber of patients with manifest arterial disease [51].

Data on changes in PWV and occurrence of CV events are still limited. Guerin 
et al. [52] have demonstrated that in end-stage renal disease patients the persistence 
of elevated cfPWV was associated with a worse survival as compared to patients 
with a decrease of cfPWV, independently of brachial BP changes.
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It remains to be demonstrated in hypertensive patients at lower CV risk that a 
reduction or a normalization of arterial stiffness is effective in reducing CV events 
beyond brachial BP reduction.

Exercise training, weight loss, low to moderate sodium diet, and moderate alco-
hol consumption but also dietary supplements may have a beneficial effect on 
changes in arterial stiffness.

The reduction of BP per se may induce a decrease of cfPWV [53]. Among anti-
hypertensive classes of drugs, diuretics, beta-blockers, ACE inhibitors, angiotensin 
II type 1 receptor blocker (AT1 blockers), and calcium channel antagonists are able 
to reduce arterial stiffness [28, 54].

Some studies have also shown that a non-dihydropyridinic calcium antagonist 
(acute administration) or an ACE inhibitor [55, 56] or an angiotensin II receptor 
blocker [57] is able to reduce arterial stiffness and/or wave reflections indepen-
dently of the reduction in brachial BP.

In addition a decrease in arterial stiffness has been determined in congestive 
heart failure patients by ACE inhibitors, nitrates, and aldosterone antagonists, as 
well as statins and antidiabetic drugs. The additional BP-independent effect of dif-
ferent pharmacological interventions remains to be further evaluated.

49.3.2	 �Carotid Arteries

High-resolution ultrasound assessment of the carotid arteries allows the measure-
ment of intima-media (IMT) complex in the arterial wall, according to a validated 
method, and carotid IMT (C-IMT) is the most widely accepted noninvasive marker 
of subclinical atherosclerosis [58, 59].

Available data indicate that IMT >0.9 mm represents a risk of myocardial infarc-
tion and/or cerebrovascular disease [60–66]. A high heterogeneity in the assessment 
of C-IMT in the different studies may explain the different results related to risk 
prediction. The use of radiofrequency C-IMT measurements has been recently 
shown to have an additional stratification power for coronary artery disease, in addi-
tion to the Framingham risk score [67].

Ultrasound may also identify the presence of plaques, and ultrasonic plaque mor-
phology may add useful information on plaque stability and may correlate with 
symptoms. More recently plaque volume assessment by three-dimensional recon-
struction of ultrasound or nuclear magnetic resonance images has been proposed to 
better evaluate atherosclerotic lesion changes and to stratify patients’ risk [68, 69].

Traditional risk factors, including aging, male sex, being overweight or obese, 
elevated blood pressure, diabetes, and smoking, are all positively associated with an 
increase in carotid IMT in observational and epidemiological studies. Hypertension, 
and particularly high systolic BP values, seems to have the greatest effect on IMT 
[70]. Patients with metabolic syndrome have higher IMT than patients with indi-
vidual metabolic risk factors. Carotid IMT has also been found to be associated with 
preclinical cardiovascular alterations, in the heart, in the brain, in the kidney, and in 
the lower limb arteries.
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Therapeutic double-blind trials have shown that antihypertensive drugs may 
have a more or less marked effect on carotid IMT progression. Compared with no 
treatment, diuretics/+ beta-blockers, or ACE inhibitors, calcium-channel blockers 
attenuate the rate of progression of carotid intima-media thickening [71]. The odds 
ratio for all fatal and nonfatal cardiovascular events in trials comparing active treat-
ment with placebo reached statistical significance (P = 0.007).

Few studies have shown a lower thickness of intima-media during treatment with 
angiotensin II antagonists in respect to patients treated with beta-blockers [72].

Comparative studies assessing the effect of statin treatment on IMT progression 
have demonstrated a beneficial effect on common carotid mean IMT; the effect was 
greater in the setting of secondary prevention versus primary prevention, in younger 
patients versus older patients, and in studies with a greater proportion of male 
patients [73, 74].

A greater reduction of plaque volume with the long-term treatment with angioten-
sin II blocker in respect to the beta-blocker was demonstrated in a study (Multicenter 
Olmesartan Atherosclerosis Regression Evaluation (MORE)), with the use of the 
noninvasive 3D plaque measurement [75]. A significant change in 3D plaque volume 
was also observed during short-term treatment with a high dose of statin in a small 
group of 20 patients [75]. No significant changes in plaque composition were 
observed after 4 years of treatment with either lacidipine or atenolol [76].

It has not been demonstrated whether a decrease of IMT progression may be 
associated with a reduction of cardiovascular events and an improvement in progno-
sis [77, 78]. Changes in plaque composition characteristics seem to have additional 
prognostic significance [69].

49.3.3	 �Microvascular Structure

Essential hypertension is associated with the presence of structural alterations in the 
microcirculation [79, 80] that may be also the result of adaptive mechanisms to the 
increased blood pressure load. Since structural alterations might have hemodynamic 
consequences, their evaluation represents an important target, also in terms of car-
diovascular risk stratification [81, 82].

The mechanisms underlying the development of microvascular structural altera-
tions are only partially elucidated. The extent of structural alterations in subcutane-
ous small resistance arteries is particularly pronounced in hypertensive patients 
with type 2 diabetes mellitus [83, 84] or obesity [85, 86], suggesting that the asso-
ciation of several cardiovascular risk factors may have a synergistic, deleterious 
effect on the microcirculation.

The presence of an increased media-to-lumen ratio on the incidence of cardiovas-
cular events was evaluated in three different studies [87–89] including patients at high 
or moderate global CV risk. It was shown that the media-to-lumen ratio was signifi-
cantly associated to the occurrence of cardiovascular events, independently of other 
CV risk factors. These results strongly indicate a relevant prognostic significance of 
small resistance artery structural alterations in a high-risk population. More recently, 

E.A. Rosei and M.L. Muiesan



873

Buus NH et al. [90] have demonstrated a prognostic role of changes of small resis-
tance artery structure during antihypertensive treatment. Antihypertensive treatment 
may induce the reversal of increased media-to-lumen ratio, and inhibitors of the renin-
angiotensin system (RAS) (including ACE inhibitors, angiotensin II receptor antago-
nists, aliskiren) and calcium antagonist are more effective in this regard [91].

Other new techniques for evaluation of microvascular morphology in the retinal 
vasculature are presently used or under clinical investigation, representing a promis-
ing and interesting future perspective [92, 93].

49.4	 �Renal TOD

The 2013 ESH/ESC Guidelines recommend the assessment of serum creatinine and 
the calculation of estimated glomerular filtration rate (eGFR) to assess renal excre-
tory function [1, 94]. In addition the measurement of urinary albumin excretion is 
considered a biomarker of early renal damage. Both measurements are low cost and 
easy to use. In hypertensive patients both GFR and urinary albumin excretion should 
be measured, in order to assess the presence of chronic kidney disease (CKD) and 
to better stratify cardiovascular risk [1, 66].

49.4.1	 �Albuminuria

Microalbuminuria has been related to the presence of increased blood pressure but 
also to insulin resistance, blood pressure, salt sensitivity, central obesity, and smoke; 
to an atherogenic lipid profile; and to early signs of extrarenal organ damage such as 
left ventricular hypertrophy, carotid atherosclerosis, and biomarkers of vascular 
endothelium damage [95]. Therefore, microalbuminuria has been referred as an inte-
grated marker of cardiovascular risk, confirmed by the relationship between even 
modest increase in albuminuria and cardiovascular morbidity and mortality [96].

Redon et  al. have shown that during antihypertensive treatment, albuminuria 
reaches normal values in about 50% of patients, while in about 10% of them, a pro-
gression toward more severe proteinuria occurs [97, 98]. The new development of 
microalbuminuria during treatment is independently related to poor blood pressure 
control and to a progressive increase in glucose plasma levels. Some caution should 
be taken when evaluating albuminuria changes during treatment; it has been sug-
gested that a reliable change in albuminuria requires a regression or an increment of 
more than 50% of the initial value. The calculation of the average value of two dif-
ferent measurements performed in different days may reduce variability.

A recent meta-analysis of trials evaluating blood pressure targets with respect to 
proteinuria progression has shown that a more aggressive target (<130 mmHg vs. 
<140 mmHg) is associated with a lower prevalence of albuminuria [97].

Some randomized clinical trials have suggested that drugs acting on the renin-
angiotensin-aldosterone system are more effective in reducing albuminuria in 
respect to placebo in individuals with diabetic or nondiabetic nephropathy and with 
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cardiovascular disease [98]. If a combination treatment is needed, then the associa-
tion of two RAS blockers is not recommended.

In patients with resistant hypertension, the addition of a mineral corticoid recep-
tor antagonist was associated with a further reduction of albuminuria in patients 
treated with ACE inhibitor or angiotensin receptor blocker monotherapy, possibly 
because of the greater efficacy in home blood pressure reduction.

The reduction of albuminuria during treatment may favorably affect cardiovas-
cular and renal prognosis [99].

49.4.2	 �Glomerular Filtration Rate

Renal function, as assessed by glomerular filtration, declines with increasing age. In 
addition to age and excluding all diseases producing a direct renal damage, high 
blood pressure values, diabetes, and dyslipidemia represent the main factors accel-
erating the glomerular filtration rate over time [94].

According to the evaluation of eGFR, it is possible to define five different stages 
of renal dysfunction, and values below 60 mL/min/1.73 m2 indicate the presence of 
chronic kidney diseases. CKD is observed in a significant proportion of hyperten-
sive patients, mainly in older individuals, in women, and in diabetics. Few data have 
demonstrated that changes in eGFR may influence cardiovascular prognosis in 
hypertensive patients, despite the evidence that lower eGFR is associated with a 
higher risk for CV events [95].

The long-term control of BP values during antihypertensive treatment favors pres-
ervation of renal function and delays progression to end-stage renal disease in hyper-
tensive patients with or without chronic nephropathy; however, it has been observed 
that a slight increase in serum creatinine, due to the transient renal hypoperfusion, 
may occur after initiation of treatment. Blood pressure targets with respect to CKD 
progression have shown that a more aggressive target (<130 mmHg vs. <140 mmHg) 
is not associated with a reduction in eGFR [100, 101]. However, recent data from the 
SPRINT study (Systolic Blood Pressure Intervention Trial) suggest that in patients 
with CKD who achieved during treatment a value of unattended blood pressure 
lower than 120 mmHg, the risk of cardiovascular events was lower [102].

In patients with even mild degree of CKD, a combination treatment is needed in 
order to reach adequate BP control. A RAS blocker may be associated to other 
classes of antihypertensive drugs. In the ACCOMPLISH study, the association of an 
ACE inhibitor and a calcium antagonist was more effective in preventing the pro-
gression to creatinine doubling and/or to the development of end-stage renal dis-
ease, as compared with the combination of an ACE inhibitor and a diuretic [103].

�Conclusions

The 2013 ESH/ESC Guidelines recommend the measurement of serum creatinine, 
urine albumin excretion, and electrocardiographic LVH in all patients with hyper-
tension both at baseline and during treatment. In addition echocardiographic left 
ventricular mass, ultrasonic carotid wall thickness, aortic PWV, and ankle-brachial 
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index measurements should be considered to better stratify the cardiovascular risk. 
In the future, more effort should be made to identify which combination of markers 
to measure, at what time points, in which patients, and with which consequence for 
a better clinical use of TOD during antihypertensive treatment.
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