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Chapter 1

Introduction

The theory of operator algebras in general and C∗-algebras in particular has al-
ways benefited hugely and drawn a lot of inspiration from interactions with other
areas of mathematics such as geometry, topology, group theory, dynamical systems
or number theory, to mention just a few. The starting point for these connections
is usually given by constructions of C∗-algebras which produce new examples of
C∗-algebras on the one hand and lead to interesting invariants and applications on
the other hand. The most powerful tool to extract important information out of
C∗-algebras is given by K-theory. Actually, K-theory itself is already an excellent
example for a fruitful exchange of ideas between C∗-algebras and other mathemat-
ical disciplines, namely topology and index theory. K-theory for C∗-algebras was
initially defined as an extension of topological K-theory for spaces, in line with
the philosophy viewing C∗-algebra theory as noncommutative topology. Nowadays
K-theory plays an important role in the classification of C∗-algebras, a subject
which has seen tremendous advances recently. It turns out that for a huge class
of C∗-algebras, K-theoretic invariants provide a complete invariant. At the same
time, K-theory leads to interesting applications of C∗-algebra theory to topol-
ogy and geometry in the context of the Baum–Connes conjecture. Among many
other consequences, this has an important impact on the Novikov conjecture in
geometry.

This book focuses on C∗-algebras attached to groups, semigroups, dynamical sys-
tems in general and algebraic actions in particular. We describe the structure of
these C∗-algebras and explain methods that allow for explicit K-theory computa-
tions.

We start with group C∗-algebras and crossed products in Chapter 2. These are con-
structions of C∗-algebras out of groups and group actions, and have been studied
intensively. We discuss the basics of the theory and explain in detail the Mackey–
Rieffel–Green machine which allows us to study the ideal structure of crossed
products. The first six sections of Chapter 2 are needed for Chapter 3. To mention

© Springer International Publishing AG 2017 
J. Cuntz et al., K-Theory for Group C*-Algebras and Semigroup C*-Algebras, 
Oberwolfach Seminars 47, DOI 10.1007/978-3-319-59915-1_1 
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2 Chapter 1. Introduction

some examples of further references, we refer to [Bla06,Dav96,Dix77,Mur90] for
more information on general C∗-algebra theory and to [Ped79,Wil07] for more
about crossed products.

Chapter 3 gives an introduction to bivariant KK-theory and discusses the Baum–
Connes conjecture.KK-theory generalizes at the same timeK-theory and its com-
panion homology theory, K-homology. It has established itself as a very powerful
tool in the classification of C∗-algebras as well as in applications of C∗-algebras in
geometry. For instance, particularly relevant for the latter point, it provides the
technology to formulate and prove (at least particular cases of) the Baum–Connes
conjecture. Roughly speaking, this conjecture gives a way to compute K-theory for
group C∗-algebras and crossed products by using tools from algebraic topology. It
has far-reaching consequences; for instance, it implies the Novikov conjecture and
the Kadison–Kaplansky conjecture, to mention just a few. At the end of Chapter 3,
we explain how the Baum–Connes conjecture (or rather its underlying principle)
leads to a K-theory formula for certain crossed products. This will be important
for Chapters 5 and 6.

Chapter 4 discusses another, though closely related, approach to K-theory compu-
tations: quantitative K-theory. This has been initiated in [Yu98] and further devel-
oped in [OOY15]. New applications have been recently worked out in [GWY16b,
GWY16a]. The basic idea is to introduce a geometric structure on C∗-algebras,
in analogy to geometric group theory, which allows for quantitative versions of
K-theory, i.e., K-theory with scales. These quantitative versions have the advan-
tage of being computable in typical situations by means of cutting-and-pasting
techniques. In some sense, Chapter 4 provides a different angle on some of the
aspects discussed in Chapter 3.

Chapter 5 discusses semigroup C∗-algebras. These are C∗-algebras generated by
left regular representations of semigroups and provide a natural generalization of
group C∗-algebras, as they were discussed in Chapter 2. These semigroup C∗-
algebras provide interesting new examples of C∗-algebras which can have proper-
ties that are surprising and quite different from the group case. We introduce two
important conditions (called independence and Toeplitz) that allow us to analyse
the structure of these C∗-algebras. We also use the K-theory computations in
Chapter 3 to classify some of them. In addition, we discuss important classes of
examples coming from group theory and number theory. Parts of this chapter, for
instance §5.9, are new and have not appeared before in the literature.

Chapter 6 discusses important examples of crossed products for actions of semi-
groups by endomorphisms. This includes examples of a single endomorphism of a
compact abelian group, or of a semigroup of such endomorphisms. Such actions
are commonly studied in ergodic theory. But, closely related, we also consider
regular C∗-algebras of semigroups associated to rings of algebraic integers. These
examples have been instrumental for an important part of the recent development
on semigroup C∗-algebras described in Chapter 5, as well as for the design of new
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methods to compute their K-theory. The C∗-algebras arising that way have an
intriguing structure and exhibit interesting new phenomena. The problem of com-
puting their K-theory is challenging in each case and needs different, partly new,
methods (one of these methods is the one described in Section 3.5.3 of Chapter 3).

The C∗-algebras for semigroups associated with an algebraic number field, which
we consider, carry a natural one-parameter automorphism group. There is a strik-
ing parallel between the structure of the KMS-states for that automorphism group
and the formula for the K-theory of the algebra that we obtain. Both split nat-
urally over the ideal class group of the underlying number field. At the end of
Chapter 6 we sketch an argument for the description of the KMS-states which
uses an approach inspired by the method for the determination of the K-theory
and thus explains the connection between K-theory and the KMS-structure in
that case. This particular construction has not appeared in the literature before.

Finally, in Chapter 7 we consider semigroup C∗-algebras for finitely generated
subsemigroups of Zn. These are important in algebraic geometry because their
monoid rings define affine varieties with a torus action (so-called toric varieties).
They have the interesting feature that they do not satisfy the independence con-
dition which plays an important role in Chapters 3, 5 and 6. As explained in these
chapters, this condition is a basis for the computation of the K-theory of the
C∗-algebras for a large class of semigroups.

We study the case of subsemigroups of Z2 in detail. It turns out that a careful
analysis of the structure of such a toric semigroup and of the projections in the
canonical diagonal subalgebra of C∗

λS, together with a comparison with the known
K-theory of the Toeplitz algebra C∗

λN
2, leads to a simple formula that describes

the K-theory in complete generality. The failure of the independence condition
shows up in a torsion part of the K-theory.

The results in Chapter 7 are new and have not been published before.

Chapter 1. Introduction



Chapter 2

Crossed products and the
Mackey–Rieffel–Green machine
Siegfried Echterhoff

2.1 Introduction

If a locally compact group G acts continuously via ∗-automorphisms on a C∗-
algebra A, one can form the full and reduced crossed products A�G and A�r G
of A by G. The full crossed product should be thought of as a skew maximal tensor
product of A with the full group C∗-algebra C∗(G) of G and the reduced crossed
product should be regarded as a skew minimal (or spacial) tensor product of A
by the reduced group C∗-algebra C∗

r (G) of G.

The crossed product construction provides a major source of examples in C∗-
algebra theory, and it plays an important rôle in many applications of C∗-algebras
in other fields of mathematics, such as group representation theory and topology
– here in particular, in connection with the Baum–Connes conjecture, which we
shall treat in Chapter 3 of this book. It is the purpose of this chapter to present
in a concise way some of the most important constructions and features of crossed
products with an emphasis on the Mackey–Rieffel–Green machine as a basic tech-
nique to investigate the ideal structure of crossed products. The contents of the
first six sections of this chapter are also basic for the understanding of the contents
of Chapter 3. Detailed proofs of most of the results on crossed products presented
in this chapter (if not given here) can be found in the monograph [Wil07] by Dana
Williams. Note that the material covered in this chapter is almost perpendicular
to the material covered in Pedersen’s book [Ped79]. Hence we recommend the in-
terested reader to also have a look into [Ped79] to obtain a more complete and
balanced picture of the theory. Pedersen’s book also provides a good introduction

© Springer International Publishing AG 2017 
J. Cuntz et al., K-Theory for Group C*-Algebras and Semigroup C*-Algebras, 
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6 Chapter 2. Crossed products and the Mackey–Rieffel–Green machine

into the general theory of C∗-algebras. An incomplete list of other good references
on the general theory of C∗-algebas is [Bla06,Dav96,Dix77,Mur90]. The Morita
(or correspondence) category has been studied in more detail in [EKQR06].

Some general notation: ifX is a locally compact Hausdorff space and E is a normed
linear space, then we denote by Cb(X,E) the space of bounded continuous E-
valued functions on X and by Cc(X,E) and C0(X,E) those functions in Cb(X,E)
that have compact supports or that vanish at infinity. If E = C, then we simply
write Cb(X), Cc(X) and C0(X), respectively. If E and F are two linear spaces,
then E�F always denotes the algebraic tensor product of E and F and we reserve
the sign “⊗” for certain kinds of topological tensor products.

2.2 Some preliminaries

We shall assume throughout this discussion that the reader is familiar with the
basic concepts of C∗-algebras as can be found in any of the standard textbooks
mentioned above. However, in order to make this treatment more self-contained
we try to recall some basic facts and notation on C∗-algebras which will play an
important rôle in this article.

2.2.1 C∗-algebras

A (complex) C∗-algebra is a complex Banach-algebra A together with an invo-
lution a �→ a∗ such that ‖a∗a‖ = ‖a‖2 for all a ∈ A. Note that we usually do
not assume that A has a unit. Basic examples are given by the algebras C0(X)
and Cb(X) equipped with the supremum-norm and the involution f �→ f̄ . These
algebras are clearly commutative, and a classical theorem of Gelfand and Naimark
asserts that all commutative C∗-algebras are isomorphic to some C0(X) (see Sec-
tion 2.2.3 below). Other examples are given by the algebras B(H) of bounded
operators on a Hilbert space H with operator norm and involution given by tak-
ing the adjoint operators, and all closed ∗-subalgebras of B(H) (like the algebra
K(H) of compact operators on H). Indeed, another classical result by Gelfand
and Naimark shows that every C∗-algebra is isomorphic to a closed ∗-subalgebra
of some B(H). If S ⊆ A is any subset of a C∗-algebra A, we denote by C∗(S)
the smallest sub-C∗-algebra of A that contains S. A common way to construct
C∗-algebras is by describing a certain set S ⊆ B(H) and forming the algebra
C∗(S) ⊆ B(H). If S = {a1, . . . , al} is a finite set of elements of A, we shall also
write C∗(a1, . . . , al) for C∗(S). For example, if U, V ∈ B(H) are unitary operators
such that UV = e2πiθV U for some irrational θ ∈ [0, 1], then Aθ := C∗(U, V ) is
the well-known irrational rotation algebra corresponding to θ, a standard example
in C∗-algebra theory (in this example one can show that the isomorphism class of
C∗(U, V ) does not depend on the particular choice of U and V ).
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C∗-algebras are very rigid objects: If A is a C∗-algebra, then every closed (two-
sided) ideal of A is automatically self-adjoint and A/I, equipped with the obvi-
ous operations and the quotient norm is again a C∗-algebra. If B is any Banach
∗-algebra (i.e., a Banach algebra with isometric involution, which does not nec-
essarily satisfy the C∗-relation ‖b∗b‖ = ‖b‖2), and if A is a C∗-algebra, then any
∗-homomorphism Φ : B → A is automatically continuous with ‖Φ(b)‖ ≤ ‖b‖
for all b ∈ B. If B is also a C∗-algebra, then Φ factors through an isometric ∗-
homomorphism Φ̃ : B/(kerΦ)→ A. In particular, if A and B are C∗-algebras and
Φ : B → A is an injective (resp. bijective) ∗-homomorphism, then Φ is automati-
cally isometric (resp. an isometric isomorphism).

2.2.2 Multiplier algebras

The multiplier algebra M(A) of a C∗-algebra A is the largest C∗-algebra that
contains A as an essential ideal (an ideal J of a C∗-algebra B is called essential
if for all b ∈ B we have bJ = {0} ⇒ b = 0). If A is represented faithfully and
nondegenerately on a Hilbert space H (i.e., A ⊆ B(H) with AH = H), then M(A)
can be realized as the idealizer

M(A) = {T ∈ B(H) : TA ∪AT ⊆ A}
of A in B(H). In particular, we have M(K(H)) = B(H), where K(H) denotes the
algebra of compact operators on H.

The strict topology on M(A) is the locally convex topology generated by the semi-
norms m �→ ‖am‖, ‖ma‖ with a ∈ A. Note that M(A) is the strict completion of
A. M(A) is always unital and M(A) = A if (and only if) A is unital. If A = C0(X)
for some locally compact space X, then M(A) ∼= Cb(X) ∼= C(β(X)), where β(X)
denotes the Stone–Čech compactification of X. Hence M(A) should be viewed as
a noncommutative analogue of the Stone–Čech compactification. If A is any C∗-
algebra, then the algebra A1 := C∗(A ∪ {1}) ⊆ M(A) is called the unitization of
A (note that A1 = A if A is unital). If A = C0(X) for some noncompact X, then
A1
∼= C(X+), where X+ denotes the one-point compactification of X.

A ∗-homomorphism π : A → M(B) is called nondegenerate if π(A)B = B,
which by Cohen’s factorization theorem is equivalent to the weaker condition that
span{π(a)b : a ∈ A, b ∈ B} is dense in B (e.g., see [RW98, Proposition 2.33]). If
H is a Hilbert space, then π : A → M(K(H)) = B(H) is nondegenerate in the
above sense iff π(A)H = H. If π : A→M(B) is nondegenerate, then there exists a
unique ∗-homomorphism π̄ : M(A)→M(B) such that π̄|A = π. We shall usually
make no notational difference between π and its extension π̄.

2.2.3 Commutative C∗-algebras and functional calculus

If A is commutative, then we denote by Δ(A) the set of all nonzero algebra homo-
morphisms χ : A → C equipped with the weak-∗ topology. Then Δ(A) is locally
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compact and it is compact if A is unital. If a ∈ A, then â : Δ(A) → C; â(χ) :=
χ(a) is an element of C0(Δ(A)), and the Gelfand–Naimark theorem asserts that
A→ C0(Δ(A)) : a �→ â is an (isometric) ∗-isomorphism.

If A is any C∗-algebra, then an element a ∈ A is called normal if a∗a = aa∗.
If a ∈ A is normal, then C∗(a, 1) ⊆ A1 is a commutative sub-C∗-algebra of A1.
Let σ(a) = {λ ∈ C : a − λ1 is not invertible in A1} denote the spectrum of a,
a nonempty compact subset of C. If λ ∈ σ(a), then a − λ1 generates a unique
maximal ideal Mλ of C∗(a, 1) and the quotient map C∗(a, 1)→ C∗(a, 1)/Mλ

∼= C
determines an element χλ ∈ Δ(C∗(a, 1)). One then checks that λ �→ χλ is a home-
omorphism between σ(a) and Δ(C∗(a, 1)). Thus, the Gelfand–Naimark theorem
provides a ∗-isomorphism Φ : C(σ(a)) → C∗(a, 1). If p(z) =

∑n
i,j=0 αijz

iz̄j is
a polynomial in z and z̄ (which by the Stone–Weierstraß theorem form a dense
subalgebra of C(σ(a))), then Φ(p) =

∑n
i,j=0 αija

i(a∗)j . In particular, we have
Φ(1) = 1 and Φ(idσ(a)) = a. In what follows, we always write f(a) for Φ(f). Note

that σ(f(a)) = f(σ(a)) and if g ∈ C
(
σ(f(a))

)
, then g(f(a)) = (g ◦ f)(a), i.e.,

the functional calculus is compatible with composition of functions. If A is not
unital, then 0 ∈ σ(a) and it is clear that for any polynomial p in z and z̄ we
have p(a) ∈ A if and only if p(0) = 0. Approximating functions by polynomials,
it follows that f(a) ∈ A if and only if f(0) = 0 and we obtain an isomorphism
C0(σ(a) \ {0})→ C∗(a) ⊆ A; f �→ f(a).

Example 2.2.1. An element a ∈ A is called positive if a = b∗b for some b ∈ A. This is
equivalent to saying that a is self-adjoint (i.e., a = a∗) and σ(a) ⊆ [0,∞). If a ≥ 0,
then the functional calculus provides the element

√
a ∈ A, which is the unique

positive element of A such that (
√
a)2 = a. If a ∈ A is self-adjoint, then σ(a) ⊆ R

and the functional calculus allows a unique decomposition a = a+ − a− with
a+, a− ≥ 0 such that a+ · a− = 0. Simply take a+ = f(a) with f(t) = max{t, 0}.
Since we can write any b ∈ A as a linear combination of two self-adjoint elements
via b = 1

2 (a + a∗) + i 1
2i (a − a∗), we see that every element of A can be written

as a linear combination of four positive elements. Since every positive element is
a square, it follows that A = A2 := LH{ab : a, b ∈ A} (Cohen’s factorization
theorem even implies that A = {ab : a, b ∈ A}).
Every C∗-algebra has an approximate unit, i.e., a net (ai)i∈I in A such that ‖aia−
a‖, ‖aai − a‖ → 0 for all a ∈ A. In fact, (ai)i∈I can be chosen so that ai ≥ 0 and
‖ai‖ = 1 for all i ∈ I. If A is separable (i.e., A contains a countable dense set),
then one can find a sequence (an)n∈N with these properties.

If A is a unital C∗-algebra, then u ∈ A is called a unitary, if uu∗ = u∗u =
1. If u is unitary, then σ(u) ⊆ T = {z ∈ C : |z| = 1} and hence C∗(u) =
C∗(u, 1) is isomorphic to a quotient of C(T). Note that if u, v ∈ A are two unitaries
such that uv = e2πiθvu for some irrational θ ∈ [0, 1], then one can show that
σ(u) = σ(v) = T, so that C∗(u) ∼= C∗(v) ∼= C(T). It follows that the irrational
rotation algebra Aθ = C∗(u, v) should be regarded as (the algebra of functions
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on) a “noncommutative product” of two tori which results in the expression of a
noncommutative 2-torus.

2.2.4 Representation and ideal spaces of C∗-algebras

If A is a C∗-algebra, the spectrum Â is defined as the set of all unitary equivalence
classes of irreducible representations π : A → B(H) of A on Hilbert space.1 We
shall usually make no notational difference between an irreducible representation
π and its equivalence class [π] ∈ Â. The primitive ideals of A are the kernels of the

irreducible representations of A, and we write Prim(A) := {kerπ : π ∈ Â} for the
set of all primitive ideals of A. Every closed two-sided ideal I of A is an intersection
of primitive ideals. The spaces Â and Prim(A) are equipped with the Jacobson
topologies, where the closure operations are given by π ∈ R :⇔ kerπ ⊇ ∩{ker ρ :

ρ ∈ R} (resp. P ∈ R :⇔ P ⊇ ∩{Q : Q ∈ R}) for R ⊆ Â (resp. R ⊆ Prim(A)).
In general, the Jacobson topologies are far away from being Hausdorff. In fact,
while Prim(A) is at least always a T0-space (i.e., for any two different elements
in Prim(A) at least one of them has an open neighborhood that does not contain

the other), this very weak separation property often fails for the space Â. If A

is commutative, it follows from Schur’s lemma that Â = Δ(A) and the Jacobson
topology coincides in this case with the weak-∗ topology.

If I is a closed two-sided ideal of A, then Â can be identified with the disjoint

union of Î with Â/I, such that Î identifies with {π ∈ Â : π(I) �= {0}} ⊆ Â and

Â/I identifies with {π ∈ Â : π(I) = {0}} ⊆ Â. It follows from the definition of

the Jacobson topology that Â/I is closed and Î is open in Â. The correspondence

I ↔ Î (resp I ↔ Â/I) is a one-to-one correspondence between the closed two-

sided ideals of A and the open (resp. closed) subsets of Â. Similar statements hold
for the open or closed subsets of Prim(A).

A C∗-algebra is called simple if {0} is the only proper closed two-sided ideal of
A. Of course, this is equivalent to saying that Prim(A) has only one element (the
zero ideal). Simple C∗-algebras are thought of as the basic “building blocks” of
more general C∗-algebras. Examples of simple algebras are the algebras K(H)
of compact operators on a Hilbert space H and the irrational rotation algebras

Aθ. Note that while K̂(H) has also only one element (the equivalance class of its

embedding into B(H)), one can show that Âθ is an uncountable infinite set (this
can actually be deduced from Proposition 2.7.40 below).

A C∗-algebra A is called type I (or GCR, or postliminal) if for every irreducible rep-
resentation π : A→ B(H) we have π(A) ⊇ K(H). We refer to [Dix77, Chapter 12]

1A self-adjoint subset S ⊆ B(H) is called irreducible if there exists no proper nontrivial
closed subspace L ⊆ H with SL ⊆ L. By Schur’s lemma, this is equivalent to saying that the
commutator of S in B(H) is equal to C · 1. A representation π : A → B(H) is irreducible if π(A)
is irreducible. Two representations π, ρ of A on Hπ and Hρ, respectively, are called unitarily
equivalent, if there exists a unitary V : Hπ → Hρ such that V ◦ π(a) = ρ(a) ◦ V for all a ∈ A.
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for some important equivalent characterizations of type I algebras. A C∗-algebra
A is called CCR (or liminal), if π(A) = K(H) for every irreducible representation

π ∈ Â. If A is type I, then the mapping Â → Prim(A) : π �→ kerπ is a home-
omorphism, and the converse holds if A is separable (in the nonseparable case
the question whether this converse holds leads to quite interesting logical implica-
tions, e.g. see [AW04]). Furthermore, if A is type I, then A is CCR if and only if

Â ∼= Prim(A) is a T1-space, i.e., points are closed.

A C∗-algebra is said to have continuous trace if there exists a dense ideal m ⊆ A
such that for all positve elements a ∈ m the operator π(a) ∈ B(Hπ) is trace-class

and the resulting map Â → [0,∞);π �→ tr(π(a)) is continuous. Continuous-trace

algebras are all CCR with Hausdorff spectrum Â. Note that every type I C∗-
algebra A contains a nonzero closed two-sided ideal I such that I is a continuous-
trace algebra (see [Dix77, Chapter 4]).

2.2.5 Tensor products

The algebraic tensor product A�B of two C∗-algebras A and B has a canonical
structure as a ∗-algebra. To make it a C∗-algebra, we have to take completions
with respect to suitable cross-norms ‖ · ‖μ satisfying ‖a ⊗ b‖μ = ‖a‖‖b‖. Among
the possible choices of such norms there is a maximal cross-norm ‖ · ‖max and a
minimal cross-norm ‖ · ‖min giving rise to the maximal tensor product A ⊗max B
and the minimal tensor product A⊗minB (which we shall always denote by A⊗B).

The maximal tensor product is characterized by the universal property that any
commuting pair of ∗-homomorphisms π : A → D, ρ : B → D determines a ∗-
homomorphism π × ρ : A ⊗max B → D such that π × ρ(a ⊗ b) = π(a)ρ(b) for all
elementary tensors a⊗ b ∈ A�B. The minimal (or spatial) tensor product A⊗B
is the completion of A�B with respect to∥∥∥∥∥

n∑
i=1

ai ⊗ bi

∥∥∥∥∥
min

=

∥∥∥∥∥
n∑

i=1

ρ(ai)⊗ σ(bi)

∥∥∥∥∥ ,
where ρ : A → B(Hρ), σ : B → B(Hσ) are faithful representations of A and B
and the norm on the right is taken in B(Hρ ⊗Hσ). It is a nontrivial fact (due to
Takesaki) that ‖ · ‖min is the smallest cross-norm on A � B and that it does not
depend on the choice of ρ and σ (e.g., see [RW98, Theorem B.38]).

A C∗-algebra A is called nuclear, if A ⊗max B = A ⊗ B for all B. Every type I
C∗-algebra is nuclear (e.g. see [RW98, Corollary B.49]) as well as the irrational
rotation algebra Aθ (which will follow from Theorem 2.4.7 below). In particular,
all commutative C∗-algebras are nuclear and we have C0(X)⊗B ∼= C0(X,B) for
any locally compact space X. One can show that B(H) is not nuclear if H is an
infinite-dimensional Hilbert space.
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If H is an infinite-dimensional Hilbert space, then K(H)⊗K(H) is isomorphic to
K(H) (which can be deduced from a unitary isomorphism H ⊗ H ∼= H). A C∗-
algebra A is called stable if A is isomorphic to A⊗K, where we write K := K(l2(N)).
It follows from the associativity of taking tensor products that A ⊗ K is always
stable and we call A ⊗ K the stabilisation of A. Note that A ⊗ K and A have
isomorphic representation and ideal spaces. For example, the map π �→ π ⊗ idK
gives a homeomorphism between Â → (A ⊗ K)̂ . Moreover, A is type I (or CCR
or continuous-trace or nuclear) if and only if A⊗K is.

2.3 Actions and their crossed products

2.3.1 Haar measure and vector-valued integration on groups

If X is a locally compact space, we denote by Cc(X) the set of all continuous
functions with compact supports on X. A positive integral on Cc(X) is a linear
functional

∫
: Cc(X) → C such that

∫
X
f(x) dx :=

∫
(f) ≥ 0 if f ≥ 0. We

refer to [Rud87] for a good treatment of the Riesz representation theorem which
provides a one-to-one correspondence between integrals on Cc(X) and positive
Radon measures on X. If H is a Hilbert space and f : X → B(H) is a weakly
continuous function (i.e., x �→ 〈f(x)ξ, η〉 is continuous for all ξ, η ∈ H) with
compact support, then there exists a unique operator

∫
X
f(x) dx ∈ B(H) such

that 〈(∫
X

f(x) dx

)
ξ, η

〉
=

∫
X

〈f(x)ξ, η〉 dx for all ξ, η ∈ H.

If A is a C∗-algebra imbedded faithfully by a nondegenerate representation into
some B(H) and f ∈ Cc(X,A) is norm-continuous, then approximating f uniformly
with controlled supports by elements in the algebraic tensor product Cc(X) � A
shows that

∫
X
f(x) dx ∈ A. Moreover, if f : X → M(A) is a strictly continuous

function with compact support, then (via the canonical embeddingM(A) ⊆ B(H))
f is weakly continuous as a function into B(H), and since

(
x �→ af(x), f(x)a

) ∈
Cc(X,A) for all a ∈ A it follows that

∫
X
f(x) dx ∈M(A).

If G is a locally compact group, then there exists a nonzero positive integral
∫

:
Cc(G)→ C, called the Haar integral on Cc(G), such that

∫
G
f(gx) dx =

∫
G
f(x) dx

for all f ∈ Cc(G) and g ∈ G. The Haar integral is unique up to multiplication
with a positive number, which implies that for each g ∈ G there exists a positive
number Δ(g) such that

∫
G
f(x) dx = Δ(g)

∫
G
f(xg) dx for all f ∈ Cc(G) (since

the right-hand side of the equation defines a new Haar integral). One can show
that Δ : G → (0,∞) is a continuous group homomorphism. A group G is called
unimodular if Δ(g) = 1 for all g ∈ G. All discrete, all compact and all abelian
groups are unimodular, however, the ax+b-group, which is the semidirect product
R � R∗ via the action of the multiplicative group R∗ := R \ {0} on the additive
group R by dilation, is not unimodular. As a general reference for the Haar integral
we refer to [DE14].
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2.3.2 C∗-dynamical systems and their crossed products

An action of a locally compact group G on a C∗-algebra A is a homomorphism
α : G → Aut(A); s �→ αs of G into the group Aut(A) of ∗-automorphisms of A
such that s �→ αs(a) is continuous for all a ∈ A (we then say that α is strongly
continuous). The triple (A,G, α) is then called a C∗-dynamical system (or covari-
ant system). We also often say that A is a G-algebra, when A is equipped with a
given G-action α.

Example 2.3.1 (Transformation groups). If G×X → X; (s, x) �→ s · x is a contin-
uous action of G on a locally compact Hausdorff space X, then G acts on C0(X)
by

(
αs(f)

)
(x) := f(s−1 · x), and it is not difficult to see that every action on

C0(X) arises in this way. Thus, general G-algebras are noncommutative analogues
of locally compact G-spaces.

If A is a G-algebra, then Cc(G,A) becomes a ∗-algebra with respect to convolution
and involution defined by

f ∗ g(s) =
∫
G

f(t)αt(g(t
−1s)) dt and f∗(s) = Δ(s−1)αs(f(s

−1))∗. (2.3.1)

A covariant homomorphism of (A,G, α) into the multiplier algebra M(D) of some
C∗-algebra D is a pair (π, U), where π : A → M(D) is a ∗-homomorphism and
U : G → UM(D) is a strictly continuous homomorphism into the group UM(D)
of unitaries in M(D) satisfying

π(αs(a)) = Usπ(a)Us−1 for all s ∈ G.

We say that (π, U) is nondegenerate if π is nondegenerate. A covariant repre-
sentation of (A,G, α) on a Hilbert space H is a covariant homomorphism into
M(K(H)) = B(H). If (π, U) is a covariant homomorphism into M(D), its inte-
grated form π × U : Cc(G,A)→M(D) is defined by

(π × U)(f) :=

∫
G

π(f(s))Us ds ∈M(D). (2.3.2)

It is straightforward to check that π × U is a ∗-homomorphism.

Covariant homomorphisms do exist. Indeed, if ρ : A → M(D) is any ∗-
homomorphism, then we can construct the induced covariant homomor-
phism Ind ρ := (ρ̃, 1 ⊗ λ) of (A,G, α) into M

(
D ⊗ K(L2(G))

)
as follows:

Let λ : G → U(L2(G)) denote the left regular representation of G given by
(λsξ)(t) = ξ(s−1t), and define ρ̃ as the composition

A
α̃−−−−→ M

(
A⊗ C0(G)

) ρ⊗M−−−−→ M
(
D ⊗K(L2(G))

)
,

where the ∗-homomorphism α̃ : A → Cb(G,A) ⊆ M
(
A ⊗ C0(G)

)
2 is defined by

α̃(a)(s) = αs−1(a), and where M : C0(G) → B(L2(G)) = M(K(L2(G))) denotes

2Cb(G,A) is regarded as a subset of M
(
A ⊗ C0(G)

)
via the identification A ⊗ C0(G) ∼=

C0(G,A) and taking pointwise products of functions.
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the represention by multiplication operators. We call Ind ρ the covariant homo-
morphism induced from ρ, and we shall make no notational difference between
Ind ρ and its integrated form ρ̃× (1⊗ λ). Ind ρ is faithful on Cc(G,A) whenever ρ
is faithful on A. If ρ = idA, the identity on A, then we say that

ΛG
A := Ind(idA) : Cc(G,A)→M

(
A⊗K(L2(G))

)
is the regular representation of (A,G, α). Note that

Ind ρ = (ρ⊗ idK) ◦ ΛG
A (2.3.3)

for all ∗-homomorphisms ρ : A→M(D).3

Remark 2.3.2. If we start with a representation ρ : A → B(H) = M(K(H)) of A
on a Hilbert space H, then Ind ρ = (ρ̃, 1⊗λ) is the representation of (A,G, α) into
B(H ⊗ L2(G)) (which equals M(K(H)⊗K(L2(G)))) given by the formulas(

ρ̃(a)ξ
)
(t) = ρ(αt−1(a))(ξ(t)) and

(
(1⊗ λ)(s)ξ

)
(t) = ξ(s−1t),

for a ∈ A, s ∈ G and ξ ∈ L2(G,H) ∼= H ⊗ L2(G). Its integrated form is given by
the convolution formula

f ∗ ξ(t) := (
Ind ρ(f)ξ

)
(t) =

∫
G

ρ
(
αt−1(f(s))

)
ξ(s−1t) ds

for f ∈ Cc(G,A) and ξ ∈ L2(G,H).

Definition 2.3.3. Let (A,G, α) be a C∗-dynamical system.

(i) The full crossed product A �α G (or just A � G if α is understood) is the
completion of Cc(G,A) with respect to

‖f‖max := sup{‖(π×U)(f)‖ : (π, U) is a covariant representation of (A,G, α)}.

(ii) The reduced crossed product A�α,r G (or just A�r G) is defined as

ΛG
A

(
Cc(G,A)

) ⊆M
(
A⊗K(L2(G))

)
.

Remark 2.3.4. (1) It follows directly from the above definition that every inte-
grated form π × U : Cc(G,A) → M(D) of a covariant homomorphism (π, U)
extends to a ∗-homomorphism of A�αG into M(D). Conversely, every nondegen-
erate ∗-homomorphism Φ : A �α G → M(D) is of the form Φ = π × U for some

3This equation even makes sense if ρ is degenerate since ρ⊗ idK is well defined on the image
of Cb(G,A) in M(A⊗K(L2(G))).
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nondegenerate covariant homomorphism (π, U). To see this, consider the canon-
ical covariant homomorphism (iA, iG) of (A,G, α) into M(A �α G) given by the
formulas

(iA(a)f)(s) = af(s) (iG(t)f)(s) = αt(f(t
−1s))

(fiA(a))(s) = f(s)αs(a) (fiG(t))(s) = Δ(t−1)f(st−1),

f ∈ Cc(G,A) (the given formulas extend to left and right multiplications of iA(a)
and iG(s) with elements in A�G). It is then relatively easy to check that Φ = π×U
with

π = Φ ◦ iA and U = Φ ◦ iG.
Nondegeneracy of Φ is needed to have the compositions Φ ◦ iA and Φ ◦ iG well
defined. In the definition of ‖ · ‖max one could restrict to nondegenerate or even
(topologically) irreducible representations of (A,G, α) on the Hilbert space. How-
ever, it is extremely useful to consider more general covariant homomorphisms
into multiplier algebras.

(2) The above described correspondence between nondegenerate representations

of (A,G, α) and A � G induces a bijection between the set (A,G, α)̂ of uni-
tary equivalence classes of irreducible covariant Hilbert-space representations of
(A,G, α) and (A�G)̂ . We topologize (A,G, α)̂ such that this bijection becomes
a homeomorphism.

(3) The reduced crossed product A�r G does not enjoy the above-described uni-
versal properties, and therefore it is often more difficult to handle. However, it
follows from (2.3.3) that whenever ρ : A → M(D) is a ∗-homomorphism, then
Ind ρ factors through a representation of A �r G to M(D ⊗ K(L2(G))) which is
faithful iff ρ is faithful. In particular, if ρ : A→ B(H) is a faithful representation
of A, then Ind ρ is a faithful representation of A�r G into B(H ⊗ L2(G)).

(4) By construction, the regular representation ΛG
A : Cc(G,A)→ A�rG ⊆M(A⊗

K(L2(G))) is the integrated form of the covariant homomorphism (iA,r, iG,r) of
(A,G, α) into M(A⊗K(L2(G))) with

iA,r = (idA⊗M) ◦ α̃ and iG,r = 1A ⊗ λG.

Since both, α̃ : A→M(A⊗C0(G)) and idA⊗M : A⊗C0(G)→M(A⊗K(L2(G)))
are faithful, it follows that iA,r is faithful, too. Since iA,r = ΛG

A ◦ iA, where iA
denotes the embedding of A into M(A�G), we see that iA is injective, too.

(5) If G is discrete, then A embeds into A �(r) G via a �→ δe ⊗ a ∈ Cc(G,A) ⊆
A�(r)G. If, in addition, A is unital, thenG also embeds into A�(r)G via g �→ δg⊗1.
If we identify a ∈ A and g ∈ G with their images in A�(r)G, we obtain the relations
ga = αg(a)g for all a ∈ A and g ∈ G. The full crossed product is then the universal
C∗-algebra generated by A and G (viewed as a group of unitaries) subject to the
relation ga = αg(a)g.
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(6) In the case A = C, the maximal crossed product C∗(G) := C � G is called
the full group C∗-algebra of G (note that C has only the trivial ∗-automorphism).
The universal properties of C∗(G) translate into a one-to-one correspondence
between the unitary representations of G and the nondegenerate ∗-representations
of C∗(G) which induces a bijection between the set Ĝ of equivalence classes of

irreducible unitary Hilbert-space representations of G and Ĉ∗(G). Again, we

topologize Ĝ so that this bijection becomes a homeomorphism.
The reduced group C∗-algebra C∗

r (G) := C �r G is realized as the closure

λ
(
Cc(G)

) ⊆ B(L2(G)), where λ denotes the regular representation of G.

(7) If G is compact, then every irreducible representation of G is finite-dimensional

and the Jacobson topology on Ĝ = Ĉ∗(G) is the discrete topology. Moreover, it
follows from the Peter–Weyl theorem (e.g., see [DE14, Fol95]) that C∗(G) and
C∗

r (G) are isomorphic to the C∗-direct sum
⊕

U∈Ĝ MdimU (C). In particular, we
have C∗(G) = C∗

r (G) if G is compact.

(8) The convolution algebra Cc(G), and hence also its completion C∗(G), is com-

mutative if and only if G is abelian. In that case Ĝ coincides with the set of
continuous homomorphisms from G to the circle group T, called characters of
G, equipped with the compact-open topology. The Gelfand–Naimark theorem for
commutative C∗-algebras then implies that C∗(G) ∼= C0(Ĝ) (which also coincides

with C∗
r (G) in this case). Note that Ĝ, equipped with the pointwise multiplication

of characters, is again a locally compact abelian group and the Pontrjagin duality

theorem asserts that
̂̂
G is isomorphic to G via g �→ ĝ ∈ ̂̂

G defined by ĝ(χ) = χ(g).

Note that the Gelfand isomorphism C∗(G) ∼= C0(Ĝ) extends the Fourier transform

F : Cc(G)→ C0(Ĝ);F(f)(χ) = χ(f) =

∫
G

f(x)χ(x) dx.

For the circle group T we have Z ∼= T̂ via n �→ χn with χn(z) = zn, and one checks
that the above Fourier transform coincides with the classical Fourier transform on
C(T). Similarly, if G = R, then R ∼= R̂ via s �→ χs with χs(t) = e2πist and
we recover the classical Fourier transform on R. We refer to [DE14, Chapter 3]
for a detailed treatment of Pontrjagin duality and its connection to the Gelfand
isomorphism

Example 2.3.5 (Transformation group algebras). If (X,G) is a topological dynam-
ical system, then we can form the crossed products C0(X) � G and C0(X) �r G
with respect to the corresponding action of G on C0(X). These algebras are often
called the (full and reduced) transformation group algebras of the dynamical sys-
tem (X,G). Many important C∗-algebras are of this type. For instance if X = T is
the circle group and Z acts on T via n ·z = ei2πθnz, θ ∈ [0, 1], then Aθ = C(T)�Z
is the (rational or irrational) rotation algebra corresponding to θ (compare with
§2.2.1 above). Indeed, since Z is discrete and C(T) is unital, we have canonical em-
beddings of C(T) and Z into C(T)�Z. If we denote by v the image of idT ∈ C(T)
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and by u the image of 1 ∈ Z under these embeddings, then the relations given in
part (5) of the above remark show that u, v are unitaries that satisfy the basic
commutation relation uv = e2πiθvu. It is this realization as a crossed product of
Aθ that motivates the notion “rotation algebra”.

There is some quite interesting and deep work on crossed products by actions of
Z (or Zd) on compact spaces, which we cannot cover in this article. We refer the
interested reader to the article [GPS06] for a survey and for further references to
this work.

Example 2.3.6 (Decomposition action). Assume that G = N � H is the semi-
direct product ot two locally compact groups. If A is a G-algebra, then H acts
canonically on A � N (resp. A �r N) via the extension of the action γ of H on
Cc(N,A) given by (

γh(f)
)
(n) = δ(h)αh

(
f(h−1 · n)),

where δ : H → R+ is determined by the equation
∫
N
f(h ·n) dn = δ(h)

∫
N
f(n) dn

for all f ∈ Cc(N). The inclusion Cc(N,A) ⊆ A �(r) N determines an inclusion
Cc(N ×H,A) ⊆ Cc(H,A�(r) N) which extends to isomorphisms A� (N �H) ∼=
(A�N)�H and A�r (N�H) ∼= (A�rN)�rH. In particular, if A = C, we obtain
canonical isomorphisms C∗(N�H) ∼= C∗(N)�H and C∗

r (N�H) ∼= C∗
r (N)�rH.

We shall later extend the notion of crossed products to allow also the decomposi-
tion of crossed products by group extensions that are not topologically split.

Remark 2.3.7. When working with crossed products, it is often useful to use the
following concrete realization of an approximate unit in A�G (resp. A�r G) in
terms of a given approximate unit (ai)i∈I in A: Let U be any neighborhood basis
of the identity e in G, and for each U ∈ U let ϕU ∈ Cc(G)+ with suppϕU ⊆ U ,
ϕU (s) = ϕU (s

−1) for all s ∈ G, and such that
∫
G
ϕU (t) dt = 1. Let Λ = I×U with

(i1, U1) ≥ (i2, U2) if i1 ≥ i2 and U1 ⊆ U2. Then a straightforward computation
in the dense subalgebra Cc(G,A) shows that (ϕU ⊗ ai)(i,U)∈Λ is an approximate
unit of A�G (resp. A�r G), where we write ϕ⊗ a for the function (t �→ ϕ(t)a) ∈
Cc(G,A) if ϕ ∈ Cc(G) and a ∈ A.

2.4 Crossed products versus tensor products

The following lemma indicates the conceptual similarity of full crossed products
with maximal tensor products and of reduced crossed products with minimal ten-
sor products of C∗-algebras.

Lemma 2.4.1. Let (A,G, α) be a C∗-dynamical system and let B be a C∗-algebra.
Let id⊗maxα : G → Aut(B ⊗max A) be the diagonal action of G on B ⊗max A
(i.e., G acts trivially on B), and let id⊗α : G→ Aut(B ⊗A) denote the diagonal
action on B ⊗ A. Then the obvious map B � Cc(G,A) → Cc(G,B � A) induces
isomorphisms

B⊗max(A�αG) ∼= (B⊗maxA)�id⊗αG and B⊗(A�α,rG) ∼= (B⊗A)�id⊗α,rG.
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Sketch of proof. For the full crossed products, check that both sides have the
same nondegenerate representations and use the universal properties of the full
crossed products and the maximal tensor product. For the reduced crossed prod-
ucts, observe that the map B�Cc(G,A)→ Cc(G,B�A) identifies idB ⊗ΛG

A with
ΛG
B⊗A. �

Remark 2.4.2. As a special case of the above lemma (with A = C) we see in
particular that

B �id G ∼= B ⊗max C
∗(G) and B �id,r G ∼= B ⊗ C∗

r (G).

We now want to study an important condition on G which implies that full and
reduced crossed products by G always coincide.

Definition 2.4.3. Let 1G : G → {1} ⊆ C denote the trivial representation of G.
Then G is called amenable if ker 1G ⊇ kerλ in C∗(G), i.e., if the integrated form
of 1G factors through a homomomorphism 1rG : C∗

r (G)→ C.4

Remark 2.4.4. The above definition is not the standard definition of amenability of
groups, but it is one of the many equivalent formulations for amenability (e.g., see
[Dix77,Pat88]), and it is best suited for our purposes. It is not hard to check (even
using the above C∗-theoretic definition) that abelian groups and compact groups
are amenable. Moreover, extensions, quotients, and closed subgroups of amenable
groups are again amenable. In particular, all solvable groups are amenable.

On the other side, one can show that the nonabelian free group F2 on two genera-
tors, and hence any group that contains F2 as a closed subgroup, is not amenable.
This shows that noncompact semi-simple Lie groups are never amenable. For ex-
tensive studies of amenability of groups (and groupoids) we refer the reader to
[Pat88,ADR00].

If (π, U) is a covariant representation of (A,G, α) on some Hilbert space H, then
the covariant representation (π⊗ 1, U ⊗λ) of (A,G, α) on H ⊗L2(G) ∼= L2(G,H)
is unitarily equivalent to Indπ via the unitary W ∈ U(L2(G,H)) defined by
(Wξ)(s) = Usξ(s) (this simple fact is known as Fell’s trick). Thus, if π is faithful
on A, then (π ⊗ 1)× (U ⊗ λ) factors through a faithful representation of A�r G.
As an important application we get

Proposition 2.4.5. If G is amenable, then ΛG
A : A�α G→ A�α,r G is an isomor-

phism.

Proof. Choose any faithful representation π×U of A�α G on some Hilbert space
H. Regarding (π⊗1, U⊗λ) as a representation of (A,G, α) intoM(K(H)⊗C∗

r (G)),
we obtain the equation

(id⊗1rG) ◦
(
(π ⊗ 1)× (U ⊗ λ)

)
= π × U.

4In particular, it follows that 1rG(λs) = 1G(s) = 1 for all s ∈ G!



18 Chapter 2. Crossed products and the Mackey–Rieffel–Green machine

Since π is faithful, it follows that

kerΛG
A = ker(Indπ) = ker

(
(π ⊗ 1)× (U ⊗ λ)

) ⊆ ker(π × U) = {0}. �

The special case A = C gives

Corollary 2.4.6. G is amenable if and only if λ : C∗(G) → C∗
r (G) is an isomor-

phism.

A combination of Lemma 2.4.1 with Proposition 2.4.5 gives the following important
result:

Theorem 2.4.7. Let A be a nuclear G-algebra with G amenable. The A �α G is
nuclear.

Proof. Using Lemma 2.4.1 and Proposition 2.4.5 we get

B ⊗max (A�α G) ∼= (B ⊗max A)×id⊗α G ∼= (B ⊗A)×id⊗α G
∼= (B ⊗A)×id⊗α,r G ∼= B ⊗ (A�α,r G) ∼= B ⊗ (A�α G).�

If (A,G, α) and (B,G, β) are two systems, then a G-equivariant homomorphism
φ : A→M(B) 5 induces a ∗-homomorphism

φ�G := (iB ◦ φ)× iG : A�α G→M(B ×β G)

where (iB , iG) denote the canonical embeddings of (B,G) into M(B�β G), and a
similar ∗-homomorphism

φ�r G := Indφ : A�α,r G→M(B �β,r G) ⊆M
(
B ⊗K(L2(G))

)
.

Both maps are given on the level of functions by

φ�(r) G(f)(s) = φ(f(s)), f ∈ Cc(G,A).

If φ(A) ⊆ B, then φ�G(A�α G) ⊆ B�β G and similarly for the reduced crossed
products. Moreover, φ �r G = Indφ is faithful if and only if φ is – a result that
does not hold in general for φ�G!

On the other hand, the following proposition shows that taking full crossed prod-
ucts gives an exact functor between the category ofG-C∗-algebras and the category
of C∗-algebras, which is not always true for the reduced crossed product functor!

Proposition 2.4.8. Assume that α : G → Aut(A) is an action and I is a G-
invariant closed ideal in A. Let j : I → A denote the inclusion and let q : A→ A/I
denote the quotient map. Then the sequence

0→ I �α G
j�G−−−−→ A�α G

q�G−−−−→ (A/I)�α G→ 0

is exact.
5where we uniquely extend β to an action of M(B), which may fail to be strongly continuous.
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Proof. If (π, U) is a nondegenerate representation of (I,G, α) into M(D), then
(π, U) has a canonical extension to a covariant homomorphism of (A,G, α) by
defining π(a)(π(b)d) = π(ab)d for a ∈ A, b ∈ I and d ∈ D. By the definition of
‖ · ‖max, this implies that the inclusion I �α G→ A�α G is isometric.

Assume now that p : A �α G → (A �α G)/(I �α G) is the quotient map. Then
p = ρ × V for some covariant homomorphism (ρ, V ) of (A,G, α) into M

(
(A �

G)/(I � G)
)
. Let iA : A → M(A � G) denote the embedding. Then we have

iA(I)Cc(G,A) = Cc(G, I) ⊆ I �G from which it follows that

ρ(I)
(
ρ× V (Cc(G,A))

)
= ρ× V

(
iA(I)(A�G)

) ⊆ ρ× V (I �G) = {0}.

Since ρ × V (Cc(G,A)) is dense in A/I � G, it follows that ρ(I) = {0}. Thus ρ
factors through a representation of A/I and p = ρ×V factors through A/I �α G.
This shows that the crossed product sequence is exact in the middle term. Since
Cc(G,A) clearly maps onto a dense subset in A/I �α G, q � G is surjective and
the result follows. �
For quite some time it was an open question whether the analogue of Proposition
2.4.8 also holds for the reduced crossed products. This problem led to

Definition 2.4.9 (Kirchberg–S. Wassermann). A locally compact group G is called
C∗-exact (or simply exact) if for any system (A,G, α) and any G-invariant ideal
I ⊆ A the sequence

0→ I �α,r G
j�rG−−−−→ A�α,r G

q�rG−−−−→ A/I �α,r G→ 0

is exact.

Let us remark that the only problem is exactness in the middle term, since q�r G
is clearly surjective, and j�rG = Ind j is injective since j is. We shall later report
on Kirchberg’s and S. Wassermann’s permanence results on exact groups, which
imply that the class of exact groups is indeed very large. However, a construction
based on ideas of Gromov (see [Gro00,Ghy04,Osa14]) implies that there do exist
finitely generated discrete groups that are not exact!

2.5 The correspondence categories

In this section we want to give some theoretical background for the discussion of
imprimitivity theorems for crossed products and for the theory of induced rep-
resentations on the one hand, and for the construction of Kasparov’s bivariant
K-theory groups on the other hand. The basic notion for this is the notion of the
correspondence category in which the objects are C∗-algebras and the morphisms
are unitary equivalence classes of Hilbert bimodules. Having this at hand, the the-
ory of induced representations will reduce to taking compositions of morphisms in
the correspondence category. All this is based on the fundamental idea of Rieffel
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(see [Rie74]) who first made a systematic approach to the theory of induced rep-
resentations of C∗-algebras in terms of (pre-) Hilbert modules, and who showed
how the theory of induced group representations can be seen as part of this more
general theory. However, it seems that a systematic categorical treatment of this
theory was first given in [EKQR00] and, in parallel work, by Landsman in [Lan01].
The standard reference for Hilbert modules is [Lan95].

2.5.1 Hilbert modules

If B is a C∗-algebra, then a (right) Hilbert B-module is a complex Banach space E
equipped with a right B-module structure and a positive definite B-valued inner
product (with respect to positivity in B) 〈·, ·〉B : E × E → B, which is linear in
the second and antilinear in the first variable and satisfies

(〈ξ, η〉B)∗ = 〈η, ξ〉B , 〈ξ, η〉Bb = 〈ξ, η · b〉B , and ‖ξ‖2 = ‖〈ξ, ξ〉B‖

for all ξ, η ∈ E and b ∈ B. With the obvious modifications we can also define
left-Hilbert B-modules. The Hilbert C-modules are precisely the Hilbert spaces.
Moreover, every C∗-algebra B becomes a Hilbert B-module by defining 〈b, c〉B :=
b∗c. We say that E is a full Hilbert B-module, if

B = 〈E,E〉B := span{〈ξ, η〉B : ξ, η ∈ E}.

In general, 〈E,E〉B is a closed two-sided ideal of B.

If E and F are Hilbert B-modules, then a linear map T : E → F is called
adjointable if there exists a map T ∗ : F → E such that 〈Tξ, η〉B = 〈ξ, T ∗η〉B
for all ξ ∈ E, η ∈ F .6 Every adjointable operator from E to F is automatically
bounded and B-linear. We write LB(E,F ) for the set of adjointable operators
from E to F . Then

LB(E) := LB(E,E)

becomes a C∗-algebra with respect to the usual operator norm. Every pair ξ, η
with ξ ∈ F , η ∈ E determines an element Θξ,η ∈ LB(E,F ) given by

Θξ,η(ζ) = ξ〈η, ζ〉B (2.5.1)

with adjoint Θ∗
ξ,η = Θη,ξ. The closed linear span of all such operators forms the set

of compact operators KB(E,F ) in LB(E,F ). If E = F , then KB(E) := KB(E,E)
is a closed ideal in LB(E). Note that there is an obvious ∗-isomorphism between
the multiplier algebra M(KB(E)) and LB(E), which is given by extending the
action of KB(E) on E to all of M(KB(E)) in the canonical way.

6Note that, different from the operators on Hilbert space, a bounded B-linear operator T :
E → F is not automatically adjointable.
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Example 2.5.1. (1) If B = C and H is a Hilbert space, then LC(H) = B(H) and
KC(H) = K(H).

(2) If a C∗-algebra B is viewed as a Hilbert B-module with respect to the inner
product 〈b, c〉B = b∗c and the obvious right module operation then KB(B) = B,
where we let B act on itself via left multiplication, and we have LB(B) = M(B).

It is important to note that, in the case B �= C, the notion of compact operators
as given above does not coincide with the standard notion of compact operators
on a Banach space (i.e., that the image of the unit ball has compact closure). For
example, if B is unital, then LB(B) = KB(B) = B and we see that the identity
operator on B is a compact operator in the sense of the above definition. But if
B is not finite-dimensional, the identity operator is not a compact operator in the
usual sense of Banach-space operators.

There is a one-to-one correspondence between right and left Hibert B-modules
given by the operation E �→ E∗ := {ξ∗ : ξ ∈ E}, with left action of B on E∗

given by b · ξ∗ := (ξ · b∗)∗ and with inner product B〈ξ∗, η∗〉 := 〈ξ, η〉B (note that
the inner product of a left Hilbert B-module is linear in the first and antilinear in
the second variable). We call E∗ the adjoint module of E. Of course, if F is a left
Hilbert B-module, a similar construction yields an adjoint F ∗ – a right Hilbert B-
module. Clearly, the notions of adjointable and compact operators also have their
left analogues (thought of as acting on the right), and we have LB(E) = LB(E

∗)
(resp. KB(E) = KB(E

∗)) via ξ∗T := (T ∗ξ)∗.

There are several important operations on Hilbert modules (such as taking the
direct sum E1

⊕
E2 of two Hilbert B-modules E1 and E2 in the obvious way).

But for our considerations the construction of the interior tensor products is most
important. For this case assume that E is a (right) Hilbert A-module, F is a
(right) Hilbert B-module, and Ψ : A → LB(F ) is a ∗-homomorphism. Then the
interior tensor product E ⊗A F is defined as the Hausdorff completion of E � F
with respect to the B-valued inner product

〈ξ ⊗ η, ξ′ ⊗ η′〉B = 〈η,Ψ(〈ξ, ξ′〉A) · η′〉B ,

where ξ, ξ′ ∈ E and η, η′ ∈ F . With this inner product, E⊗AF becomes a Hilbert
B-module. Moreover, if C is a third C∗-algebra and if Φ : C → LA(E) is a ∗-
representation of C on LA(E), then Φ⊗1 : C → LB(E⊗AF ) with Φ⊗1(c)(ξ⊗η) =
Φ(c)ξ ⊗ η becomes a ∗-representation of C on E ⊗A F (we refer to [Lan95,RW98]
for more details). The construction of this representation is absolutely crucial in
what follows below.

2.5.2 Morita equivalences

The notion of Morita equivalent C∗-algebras, which goes back to Rieffel [Rie74] is
one of the most important tools in the study of crossed products.
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Definition 2.5.2 (Rieffel). Let A and B be C∗-algebras. An A-B imprimitivity
bimodule7 X is a Banach space X that carries the structure of both, a right
Hilbert B-module and a left Hilbert A-module with commuting actions of A and
B such that

(i) A〈X,X〉 = A and 〈X,X〉B = B (i.e., both inner products on X are full);

(ii) A〈ξ, η〉 · ζ = ξ · 〈η, ζ〉B for all ξ, η, ζ ∈ X.

A and B are called Morita equivalent if such an A-B bimodule X exists.

Remark 2.5.3. (1) It follows from the above definition together with (2.5.1) that,
if X is an A-B imprimitivity bimodule, then A canonically identifies with KB(X)
and B canonically identifies with KA(X). Conversely, if E is any Hilbert B-module,
then K(E)〈ξ, η〉 := Θξ,η (see (2.5.1)) defines a full KB(E)-valued inner product on
E, and E becomes a KB(E)-〈E,E〉B imprimitivity bimodule. In particular, if E
is a full Hilbert B-module (i.e., 〈E,E〉B = B), then B is Morita equivalent to
KB(E).

(2) As a very special case of (1) we see that C is Morita equivalent to K(H) for
every Hilbert space H.

(3) It is easily checked that Morita equivalence is an equivalence relation: If A is
any C∗-algebra, then A becomes an A-A imprimitivity bimodule with respect to

A〈a, b〉 = ab∗ and 〈a, b〉A = a∗b for a, b ∈ A. If X is an A-B imprimitivity bimodule
and Y is a B-C imprimitivity bimodule, then X ⊗B Y is an A-C imprimitivity
bimodule. Finally, if X is an A-B-imprimitivity bimodule, then the adjoint module
X∗ is a B-A imprimitivity bimodule.

(4) Recall that a C∗-algebra A is a full corner of the C∗-algebra C, if there ex-
ists a full projection p ∈ M(C) (i.e., CpC = C) such that A = pCp. Then pC
equipped with the canonical inner products and actions coming from multiplica-
tion and involution on C becomes an A-C imprimitivity bimodule. Thus, if A and
B can be represented as full corners of a C∗-algebra C, they are Morita equivalent.
Conversely, let X be an A-B imprimitivity bimodule. Let L(X) =

(
A X
X∗ B

)
with

multiplication and involution defined by(
a1 ξ1
η∗1 b1

)(
a2 ξ2
η∗2 b2

)
=

(
a1a2 + A〈ξ1, η2〉 a1 · ξ2 + ξ1 · b2
η∗1 · a2 + b1 · η∗2 〈η1, ξ2〉B + b1b2

)
and(

a ξ
η∗ b

)∗
=

(
a∗ η
ξ∗ b∗

)
.

Then L(X) has a canonical embedding as a closed subalgebra of the adjointable
operators on the Hilbert B-module X

⊕
B via(

a ξ
η∗ b

)(
ζ
d

)
=

(
aζ + ξd

〈η, ζ〉B + bd

)
7often called an A-B equivalence bimodule in the literature.



2.5. The correspondence categories 23

which makes L(X) a C∗-algebra. If p = ( 1 0
0 0 ) ∈ M(L(X)), then p and q := 1− p

are full projections such that A = pL(X)p, B = qL(X)q and X = pL(X)q. The
algebra L(X) is called the linking algebra of X. It often serves as a valuable tool
for the study of imprimitivity bimodules.

(5) It follows from (4) that A is Morita equivalent to A ⊗ K(H) for any Hilbert
space H (since A is a full corner of A⊗K(H)). Indeed, a deep theorem of Brown,
Green and Rieffel (see [BGR77]) shows that if A and B are σ-unital8, then A and
B are Morita equivalent if and only if they are stably isomorphic, i.e., there exists
an isomorphism between A ⊗ K(H) and B ⊗ K(H) with H = l2(N). A similar
result does not hold if the σ-unitality assumption is dropped (see [BGR77]).

(6) The above results indicate that many important properties of C∗-algebras
are preserved by Morita equivalences. Indeed, among these properties are: nuc-
learity, exactness, simplicity, the property of being a type I algebra (and many
more). Moreover, Morita-equivalent C∗-algebras have homeomorphic primitive
ideal spaces and isomorphic K-groups. Most of these properties will be discussed
later in more detail (e.g., see Propositions 2.5.4, 2.5.11 and 2.5.12 below). The
K-theoretic implications are discussed in Chapter 3 of this book.

A very important tool when working with imprimitivity bimodules is the Rieffel
correspondence. To explain this correspondence suppose that X is an A-B im-
primitivity bimodule and that I is a closed ideal of B. Then X · I is a closed A-B
submodule of X and IndX I := A〈X · I,X · I〉 (taking the closed span) is a closed
ideal of A. The following proposition implies that Morita-equivalent C∗-algebras
have equivalent ideal structures:

Proposition 2.5.4 (Rieffel correspondence). Assume notation as above. Then

(i) The assignments I �→ X · I, I �→ IndX I and I �→ JI :=
(
IndX I X·I
I·X∗ I

)
provide

inclusion-preserving bijective correspondences between the closed two-sided
ideals of B, the closed A-B-submodules of X, the closed two-sided ideals of
A, and the closed two-sided ideals of the linking algebra L(X), respectively.

(ii) X · I is an IndX I-I imprimitivity bimodule and X/(X · I), equipped with the
obvious inner products and bimodule actions, becomes an A/(IndX I)-B/I
imprimitivity bimodule. Moreover, we have JI = L(X · I) and L(X)/JI ∼=
L(X/X · I).

Remark 2.5.5. Assume that X is an A-B imprimitivity bimodule and Y is a C-
D imprimitivity bimodule. An imprimitivity bimodule homomorphism from X to
Y is then a triple (φA, φX , φB) such that φA : A → C and φB : B → D are ∗-
homomorphisms and φX : X → Y is a linear map such that the triple (φA, φX , φB)
satisfies the obvious compatibility conditions with respect to the inner products

8A C∗-algebra is called σ-unital, if it has a countable approximate unit. In particular, all
separable and all unital C∗-algebras are σ-unital.



24 Chapter 2. Crossed products and the Mackey–Rieffel–Green machine

and module actions on X and Y (e.g. 〈φX(ξ), φX(η)〉D = φB(〈ξ, η〉B), φX(ξb) =
φX(ξ)φB(b), etc.).

If (φA, φX , φB) is such an imprimitivity bimodule homomorphism, then one can
check that kerφA, kerφX and kerφB all correspond to one another under the
Rieffel correspondence for X (e.g., see [EKQR06, Chapter 1]).

As a simple application of the Rieffel correspondence and the above remark we
now show:

Proposition 2.5.6. Suppose that A and B are Morita-equivalent C∗-algebras. Then
A is nuclear if and only if B is nuclear.

Sketch of proof. Let X be an A-B imprimitivity bimodule. If C is any other C∗-
algebra, we can equip X � C with A� C- and B � C-valued inner products and
an A � C-B � C module structure in the obvious way. Then one can check that
X �C completes to an A⊗max C-B ⊗max C imprimitivity bimodule X ⊗max C as
well as to an A ⊗ C-B ⊗ C imprimitivity bimodule X ⊗ C. The identity map on
X � C then extends to a quotient map X ⊗max C → X ⊗ C which together with
the quotient maps A⊗maxC → A⊗C and B⊗maxC → B⊗C is an imprimitivity
bimodule homomorphism. But then it follows from the above remark and the
Rieffel correspondence that injectivity of any one of these quotient maps implies
injectivity of all three of them. �

2.5.3 The correspondence categories

We now come to the definition of the correspondence categories. Suppose that
A and B are C∗-algebras. A (right) Hilbert A-B bimodule is a pair (E,Φ) in
which E is a Hilbert B-module and Φ : A → LB(E) is a ∗-representation of A
on E. We say that (E,Φ) is nondegenerate, if Φ(A)E = E (this is equivalent
to Φ : A → M(KB(E)) = LB(E) being nondegenerate in the usual sense). Two
Hilbert A-B bimodules (Ei,Φi), i = 1, 2 are called unitarily equivalent if there
exists an isomorphism U : E1 → E2 preserving the B-valued inner products such
that UΦ1(a) = Φ2(a)U for all a ∈ A. Note that for any Hilbert A-B bimodule
(E,Φ) the module (Φ(A)E,Φ) is a nondegenerate A-B sub-bimodule of (E,Φ).
Note that Φ(A)E = {Φ(a)ξ : a ∈ A, ξ ∈ E} equals span(Φ(A)E) by Cohen’s
factorisation theorem.

Definition 2.5.7 (cf. [BEW14,EKQR00,EKQR06,Lan01]). The correspondence cat-
egory (also called the Morita category) Corr is the category whose objects are C∗-
algebras and where the morphisms from A to B are given by equivalence classes
[E,Φ] of Hilbert A-B bimodules (E,Φ) under the equivalence relation

(E1,Φi) ∼ (E2,Φ2)⇔ Φ1(A)E1
∼= Φ2(A)E2,

where ∼= denotes unitary equivalence. The identity morphism from A to A is
represented by the trivial A-A bimodule (A, id) and composition of two morphisms



2.5. The correspondence categories 25

[E,Φ] ∈ Mor(A,B) and [F,Ψ] ∈ Mor(B,C) is given by taking the interior tensor
product [E ⊗B F,Φ⊗ 1].

The compact correspondence category Corrc is the subcategory of Corr in which we
additionally require Φ(A) ⊆ KB(E) for a morphism [E,Φ] ∈ Morc(A,B).

Remark 2.5.8. (1) We should note that the correspondence category is not a
category in the strong sense, since the morphisms Mor(A,B) from A to B do not
form a set. This problem can be overcome by restricting the size of the objects and
the underlying modules for the morphisms by assuming that they contain dense
subsets of a certain maximal cardinality. But for most practical aspects this does
not cause any problems.

(2)We should also note that in most places of the literature (e.g., in [EKQR06]) the
correspondence category is defined as the category with objects the C∗-algebras
and with morphism sets Mor(A,B) given by unitary equivalence classes of nonde-
generate A-B bimodules. But the correspondence category Corr defined above is
equivalent to the one of [EKQR06] where the equivalence is given by the identity
map on objects and by assigning a morphism [E,Φ] ∈ Mor(A,B) to the unitary
equivalence class [Φ(A)E,Φ] in the morphism set as in [EKQR06].

(3) Note that every ∗-homomorphism Φ : A → M(B) determines a morphism
[E,Φ] ∈ Mor(A,B) in Corr with E = B, and [E,Φ] is a morphism in Corrc if and
only if Φ(A) ⊆ B.

(4) Taking direct sums of bimodules allows us to define sums of morphisms in the
correspondence categories (and hence a semi-group structure with neutral element
given by the zero-module). It is easy to check that this operation is commutative
and satisfies the distributive law with respect to composition.

If X is an A-B imprimitivity bimodule, then the adjoint module X∗ satisfies
X ⊗B X∗ ∼= A as A-A bimodule (the isomorphism given on elementary tensors by
x⊗ y∗ �→ A〈x, y〉) and X∗ ⊗A X ∼= B as B-B bimodule, so X∗ is an inverse of X
in the correspondence categories. Indeed we have

Proposition 2.5.9 (cf [Lan01,EKQR06]). The isomorphisms in the categories Corr
and Corrc are precisely the Morita equivalences.

2.5.4 The equivariant correspondence categories

If G is a locally compact group, then the G-equivariant correspondence category
Corr(G) is the category in which the objects are systems (A,G, α) and morphisms
from (A,G, α) to (B,G, β) are the equivalence classes (as in the nonequivariant
case) of equivariant A-B Hilbert bimodules (E,Φ, u), i.e., E is equipped with a
strongly continuous homomorphism u : G→ Aut(E) such that

〈us(ξ), us(η)〉B = βs(〈ξ, η〉B), us(ξ · b) = us(ξ)βs(b)

and us(Φ(a)ξ) = Φ(αs(a))us(ξ).
(2.5.2)
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Of course, we require that a unitary equivalence U : E1 → E2 between two G-
equivariant Hilbert bimodules also intertwines with the actions of G on E1, E2.
Again, composition of morphisms is given by taking interior tensor products
equipped with the diagonal actions, and the isomorphisms in this category are
just the equivariant Morita equivalences.

Note that the crossed product constructions A�G and A�r G extend to descent
functors

�(r) : Corr(G)→ Corr.

In particular, Morita-equivalent systems have Morita-equivalent full (resp. re-
duced) crossed products. If [E, φ, u] is a morphism from (A,G, α) to (B,G, β),
then the crossed product [E �(r) G,Φ�(r) G] ∈ Mor(A�(r) G,B �(r) G) is given
as the completion of Cc(G,E) with respect to the B �(r) G-valued inner product

〈ξ, η〉B�(r)G(t) =

∫
G

βs−1(〈ξ(s), η(st))〉B) ds

(taking values in Cc(G,B) ⊆ B�(r)G) and with left action of Cc(G,A) ⊆ A�(r)G
on E �(r) G given by

(
Φ�(r) G(f)ξ

)
(t) =

∫
G

Φ(f(s))us(ξ(s
−1t)) ds.

The crossed product constructions for equivariant bimodules first appeared (to
my knowledge) in Kasparov’s famous Conspectus [Kas95], which circulated as a
preprint from the early eighties. A more detailed study in the case of imprimitivity
bimodules has been given in [Com84]. A very extensive study of the equivariant
correspondence categories for actions and coactions of groups together with their
relations to duality theory are given in [EKQR06].

2.5.5 Induced representations and ideals

If B is a C∗-algebra we denote by Rep(B) the collection of all unitary equiva-
lence classes of nondegenerate ∗-representations of B on Hilbert space. In terms
of the correspondence category, Rep(B) coincides with the collection Mor(B,C)
of morphisms from B to C in Corr (every morphism can be represented by a non-
degenerate ∗-representation that is unique up to unitary equivalence). Thus, if A
is any other C∗-algebra and if [E,Φ] ∈ Mor(A,B), then composition with [E,Φ]
determines a map

Ind(E,Φ) : Rep(B)→ Rep(A); [H,π] �→ [H,π] ◦ [E,Φ] = [E ⊗B H,Φ⊗ 1].

If confusion seems unlikely, we will simply write π for the representation (H,π)
and for its class [H,π] ∈ Rep(A) and we write IndE π for the representation Φ⊗ 1
of A on IndE H := E ⊗B H. We call IndE π the representation of A induced from
π via E.
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Note that in the above, we did not require the action of A on E to be non-
degenerate. If it fails to be nondegenerate, the representation Φ ⊗ 1 of A on
E ⊗B H may also fail to be nondegenerate. We then pass to the restriction of
Φ⊗ 1 to Φ⊗ 1(A)(E ⊗B H) ⊆ E ⊗B H to obtain a nondegenerate representative
of [E ⊗B H,Φ⊗ 1] ∈ Mor(A,C) = Rep(A).

Remark 2.5.10. (1) A special case of the above procedure is given in case when
Φ : A → M(B) is a nondegenerate ∗-homomorphism and [B,Φ] ∈ Mor(A,B) is
the corresponding morphism in Corr. Then the induction map IndB : Rep(B) →
Rep(A) coincides with the obvious map

Φ∗ : Rep(B)→ Rep(A);π �→ Φ∗(π) := π ◦ Φ.
(2) Induction in steps. If [H,π] ∈ Rep(B), [E,Φ] ∈ Mor(A,B) and [F,Ψ] ∈
Mor(D,A) for some C∗-algebra D, then it follows directly from the associativity
of composition in Corr that (up to equivalence)

IndF (IndE π) = IndF⊗AE π.

(3) If X is an A-B imprimitivity bimodule, then IndX : Rep(B) → Rep(A) gets

inverted by IndX
∗
: Rep(A) → Rep(B), where X∗ denotes the adjoint of X (i.e.,

the inverse of [X] in Corr). Since composition of morphisms in Corr preserves direct
sums, it follows from this that induction via X maps irreducible representations of
B to irreducible representations of A and hence induces a bijection IndX : B̂ → Â
between the spectra.

It is useful to consider a similar induction map on the set I(B) of closed two-sided
ideals of the C∗-algebra B. If (E,Φ) is any Hilbert A-B bimodule, we define

IndE : I(B)→ I(A); IndE I := {a ∈ A : 〈Φ(a)ξ, η〉B ∈ I for all ξ, η ∈ E}.9
(2.5.3)

It is clear that induction preserves inclusion of ideals, and with a little more work
one can check that

IndE(kerπ) = ker(IndE π) for all π ∈ Rep(B). (2.5.4)

Hence it follows from part (3) of Remark 2.5.10 that, if X is an A-B imprimitiv-
ity bimodule, then induction of ideals via X restricts to give a bijection IndX :
Prim(B)→ Prim(A) between the primitive ideal spaces of B and A. Since induc-
tion preserves inclusion of ideals, the next proposition follows directly from the
description of the closure operations in Â and Prim(A) (see §2.2.4).
Proposition 2.5.11 (Rieffel). Let X be an A-B imprimitivity bimodule. Then the
bijections

IndX : B̂ → Â and IndX : Prim(B)→ Prim(A)

are homeomorphisms.

9If X is an A-B imprimitivity bimodule, the induced ideal IndX I defined here coincides with
the induced ideal IndX I = A〈X · I,X · I〉 of the Rieffel correspondence (see Proposition 2.5.4).
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Note that these homeomorphisms are compatible with the Rieffel-correspondence
(see Proposition 2.5.4): If I is any closed ideal of B and if we identify B̂ with the

disjoint union Î ∪ B̂/I in the canonical way (see §2.2.4), then induction via X

“decomposes” into induction via Y := X · I from Î to (IndX I)̂ and induction

via X/Y from B̂/I to (A/ IndX I)̂ . This helps to prove

Proposition 2.5.12. Suppose that A and B are Morita-equivalent C∗-algebras. Then

(i) A is type I if and only if B is type I.

(ii) A is CCR if and only if B is CCR.

(iii) A has continuous trace if and only if B has continuous trace.

Proof. Recall from §2.2.4 that a C∗-algebra B is type I if and only if for each
π ∈ B̂ the image π(B) ⊆ B(Hπ) contains K(Hπ). Furthermore, B is CCR if and

only if B is type I and points are closed in B̂.

If X is an A-B imprimitivity bimodule and π ∈ B̂, we may pass to B/ kerπ
and A/ ker(IndX π) via the Rieffel correspondence to assume that π and IndX π
are injective, and hence that B ⊆ B(Hπ) and A ⊆ B(X ⊗B Hπ). If B is type
I, it follows that K := K(Hπ) is an ideal of B. Let Z := X · K. Then Z is an
IndX K−K imprimitivity bimodule and Z ⊗K Hπ, the composition of Z with the
K − C imprimitivity bimodule Hπ, is an IndX K − C imprimitivity bimodule. It
follows that IndX K ∼= K(Z ⊗K Hπ). Since Z ⊗K Hπ

∼= X ⊗B Hπ via the identity
map on both factors, we conclude that IndX π(A) contains the compact operators

K(X ⊗B Hπ). This proves (i). Now (ii) follows from (i) since B̂ is homeomorphic

to Â. The proof of (iii) needs a bit more room and we refer the interested reader
to [Wil07]. �
Of course, similar induction procedures as described above can be defined in the
equivariant settings: If (A,G, α) is a system, then the morphisms from (A,G, α)
to (C, G, id) in Corr(G) are just the unitary equivalence classes of nondegenerate
covariant representations of (A,G, α) on Hilbert space, which we shall denote by
Rep(A,G) (surpressing the given action α in our notation). Composition with a
fixed equivariant morphism [E,Φ, u] between two systems (A,G, α) and (B,G, β)
gives an induction map

IndE : Rep(B,G)→ Rep(A,G); [H, (π, U)] �→ [E,Φ, u] ◦ [H,π, U ].

As above, we shall write

IndE H := E ⊗B H, IndE π := Φ⊗ 1, and IndE U := u⊗ U,

so that the composition [E,Φ, u] ◦ [H,π, U ] becomes the triple

[IndE H, IndE π, IndE U ].

Taking integrated forms allows to identify Rep(A,G) with Rep(A � G). A more
or less straightforward computation gives:
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Proposition 2.5.13. Assume that [E,Φ, u] is a morphism from (A,G, α) to
(B,G, β) in Corr(G) and let [E � G,Φ � G] ∈ Mor(A � G,B � G) denote its
crossed product. Then, for each [H, (π, U)] ∈ Rep(B,G) we have

[IndE H, IndE π × IndE U ] = [IndE�G H, IndE�G(π × U)] in Rep(A�G).

Hence induction from Rep(B,G) to Rep(A,G) via [E,Φ, u] is equivalent to in-
duction from Rep(B �G) to Rep(A�G) via [E �G,Φ�G] under the canonical
identifications Rep(A,G) ∼= Rep(A�G) and Rep(B,G) ∼= Rep(B �G).

Proof. Simply check that the map

W : Cc(G,E)�H → E ⊗B H; W (ξ ⊗ v) =

∫
G

ξ(s)⊗ Usv ds

extends to a unitary from (E � G) ⊗B�G H to E ⊗B H which intertwines both
representations (see [Ech94] or [EKQR06] for more details). �
We close this section with a brief discussion of corners: If A is a C*-algebra and
p ∈ M(A) is a projection, then Ap is a Hilbert pAp-module with inner product
given by 〈ap, bp〉pAp = pa∗bp, and multiplication from the left turns Ap into an A-
pAp correspondence [Ap, φ]. We then have K(Ap) ∼= ApA, the ideal of A generated
by p. In a similar way, we may regard pA as an pAp-A correspondence, with inner
product given by 〈pa, pb〉A = a∗pb. Note that pA is then isomorphic to the adjoint
module (Ap)∗ with isomorphism given by ap �→ pa∗.

Recall that p is called full, iff ApA = A. In this case Ap is an A-pAp imprimitivity
bimodule and induction from Rep(pAp) to Rep(A) via Ap gives a bijection between
Rep(pAp) and Rep(A) with inverse given by induction via the adjoint module
(Ap)∗ = pA.

In general, the induction map IndAp : Rep(pAp)→ Rep(A) is split injective with
converse given via compression by p: If π : A→ B(Hπ) is a nondegenerate repre-
sentation, we define Hcomp(π) := π(p)Hπ and

comp(π) : pAp→ B(Hcomp(π)) by comp(π)(pap) = π(pap).

Note that in general, comp(π) could be the zero representation, which happens
precisely if π(p) = 0. Since π is nondegenerate, this is equivalent to π(ApA) = 0.

Proposition 2.5.14. Let p ∈M(A) be as above. Then the following are true:

(i) The compression map comp : Rep(A)→ Rep(pAp) coincides with the induc-
tion map IndpA : Rep(A)→ Rep(pAp).

(ii) For all ρ ∈ Rep(pAp) we have comp(IndAp ρ) ∼= ρ.

(iii) p is full if and only if comp is an inverse for IndAp.

(iv) p is full if and only if π(p) �= 0 for all π ∈ Rep(A).
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Proof. For (i) just check that for every nondegenerate representation π : A →
B(Hπ) the map

pA⊗A Hπ → π(p)Hπ; pa⊗ ξ �→ π(pa)ξ

is an isomorphism that intertwines IndpA π with comp(π).

For the proof of (ii) observe that pA ⊗A Ap
∼= pAp as a pAp bimodule, hence by

(i) we get comp ◦ IndAp = IndpA ◦ IndAp = IndpAp = idRep(pAp).

For (iii) we first observe that if p is full, then Ap is an equivalence bimodule and
induction via (Ap)∗ ∼= pA is inverse to IndAp. Together with (i) this shows that
comp is an inverse to IndAp. Conversely, if ApA is a proper ideal of A, there exist
nonzero, nondegenerate representations π of A that vanish on ApA, and hence on p.
It is then clear that comp(π) is the zero representation, and then IndAp(comp(π))
is the zero representation as well. Hence π �∼= IndAp(comp(π)).

The proof of (iv) is left as an exercise for the reader. �

2.5.6 The Fell topologies and weak containment

For later use and for completeness it is necessary to discuss some more topological
notions on the spaces Rep(B) and I(B): For I ∈ I(B) let U(I) := {J ∈ I(B) :
J � I �= ∅}. Then {U(I) : I ∈ I(B)} is a sub-basis for the Fell topology on I(B).
The Fell topology on Rep(B) is then defined as the inverse image topology with
respect to the map ker : Rep(B)→ I(B);π �→ kerπ.10 The Fell topologies restrict

to the Jacobson topologies on Prim(B) and B̂, respectively. Convergence of nets in
Rep(B) (and hence also in I(B)) can conveniently be described in terms of weak
containment: If π ∈ Rep(B) and R is a subset of Rep(B), then π is said to be
weakly contained in R (denoted π ≺ R) if kerπ ⊇ ∩{ker ρ : ρ ∈ R}. Two subsets
S,R of Rep(A) are said to be weakly equivalent (S ∼ R) if σ ≺ R for all σ ∈ S
and ρ ≺ S for all ρ ∈ R.

Lemma 2.5.15 (Fell). Let (πj)j∈J be a net in Rep(B) and let π, ρ ∈ Rep(B). Then

(i) πj → π if and only if π is weakly contained in every subnet of (πj)j∈J .

(ii) If πj → π and if ρ ≺ π, then πj → ρ.

For the proof see [Fel62, Propositions 1.2 and 1.3]. As a direct consequence of this
and the fact that induction via bimodules preserves inclusion of ideals we get

Proposition 2.5.16. Let [E,Φ] ∈ Mor(A,B). Then induction via E preserves weak
containment and the maps

IndE : Rep(B)→ Rep(A) and IndE : I(B)→ I(A)

are continuous with respect to the Fell topologies. Both maps are homeomorphisms
if E is an imprimitivity bimodule.

10Recall that Rep(B) is a set only if we restrict the cardinality of the Hilbert spaces.
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Another important observation is the fact that tensoring representations and ideals
of C∗-algebras is continuous:

Proposition 2.5.17. Suppose that A and B are C∗-algebras. For π ∈ Rep(A) and
ρ ∈ Rep(B) let π ⊗ ρ ∈ Rep(A ⊗ B) denote the tensor product representation on
the minimal tensor product A ⊗ B. Moreover, if I ∈ I(A) and J ∈ I(B), define
I ◦ J as the closed two-sided ideal of A⊗B generated by I ⊗B +A⊗ J . Then the
maps

Rep(A)× Rep(B)→ Rep(A⊗B); (π, ρ) �→ π ⊗ ρ

and I(A)× I(B)→ I(A⊗B); (I, J) �→ I ◦ J

are continuous with respect to the Fell topologies.

Proof. Note first that if I = kerπ and J = ker ρ, then I ◦ J = ker(π ⊗ ρ). Since
tensoring ideals clearly preserves inclusion of ideals, the map (π, ρ) �→ π ⊗ ρ pre-
serves weak containment in both variables. Hence the result follows from Lemma
2.5.15. �

It follows from deep work of Fell (e.g., see [Fel60,Dix77]) that weak containment
(and hence the topologies on I(B) and Rep(B)) can be described completely
in terms of matrix coefficients of representations. In particular, if G is a locally
compact group and if we identify the collection Rep(G) of equivalence classes of
unitary representations of G with Rep(C∗(G)) via integration, then it is shown in
[Fel60,Dix77] that weak containment for representations of G can be described in
terms of convergence of positive definite functions on G associated to the given
representations.

2.6 Green’s imprimitivity theorem and applications

2.6.1 The imprimitivity theorem

We are now presenting (a slight extension of) Phil Green’s imprimitivity theorem
as presented in [Gre78]. For this we start with the construction of an induction
functor

IndGH : Corr(H)→ Corr(G); (A,H, α) �→ (
IndGH(A,α), G, Indα

)
,

if H is a closed subgroup of G and α : H → Aut(A) an action of H on the
C∗-algebra A. The induced C∗-algebra IndGH(A,α) (or just IndA if all data are
understood) is defined as

IndGH(A,α) :=

{
f ∈ Cb(G,A) :

f(sh) = αh−1(f(s)) for all s ∈ G, h ∈ H
and (sH �→ ‖f(s)‖) ∈ C0(G/H)

}
,
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equipped with the pointwise operations and the supremum norm. The induced
action Indα : G→ Aut(IndA) is given by(

Indαs(f)
)
(t) := f(s−1t) for all s, t ∈ G.

A similar construction works for morphisms in Corr(H), i.e., if [E,Φ, u] is a
morphism from (A,H, α) to (B,H, β), then a fairly obvious extension of the
above construction yields the induced morphism [IndGH(E, u), IndΦ, Indu] from
(IndGH(A,α), G, Indα) to (IndGH(B, β), G, Indβ). One then checks that induction
preserves composition of morphisms, and hence gives a functor from Corr(H) to
Corr(G) (see [EKQR00] for more details).

Remark 2.6.1. (1) If we start with an action α : G → Aut(A) and restrict this
action to the closed subgroupH of G, then IndGH(A,α) is canonically G-isomorphic
to C0(G/H,A) ∼= C0(G/H)⊗A equipped with the diagonal action l ⊗ α, where l
denotes the left-translation action of G on G/H. The isomorphism is given by

Φ : IndGH(A,α)→ C0(G/H,A); Φ(f)(sH) = αs(f(s)).

(2) The construction of the induced algebra IndGH(A,α) is the C∗-analogue of the
usual construction of the induced G-space G ×H Y of a topological H-space Y ,
which is defined as the quotient of G×Y by the H-action h(g, y) = (gh−1, hy) and
which is equipped with the obvious G-action given by the left-translation action on
the first factor. Indeed, if Y is locally compact, then IndGH C0(Y ) ∼= C0(G×H Y ).

A useful characterization of induced systems is given by the following result:

Theorem 2.6.2 (cf [Ech90, Theorem]). Let (B,G, β) be a system and let H be
a closed subgroup of G. Then (B,G, β) is isomorphic to an induced system
(IndGH(A,α), G, Indα) if and only if there exists a continuous G-equivariant map
ϕ : Prim(B)→ G/H, where G acts on Prim(B) via s · P := βs(P ).

Indeed, we can always define a continuous G-map ϕ : Prim(IndA) → G/H by
sending a primitive ideal P to sH iff P contains the ideal Is := {f ∈ IndA :
f(s) = 0}. Conversely, if ϕ : Prim(B)→ G/H is given, define A := B/Ie with

Ie := ∩{P ∈ Prim(B) : ϕ(P ) = eH}.
Since Ie isH-invariant, the action β|H induces an action α ofH on A and (B,G, β)
is isomorphic to (IndGH A,G, Indα) via b �→ fb ∈ IndGH A; fb(s) := βs−1(b)+ Ie. We
should remark at this point that a much more general result has been shown by Le
Gall in [LG99] in the setting of Morita-equivalent groupoids. Applying Theorem
2.6.2 to commutative G-algebras, one gets:

Corollary 2.6.3. Let X be a locally compact G-space and let H be a closed subgroup
of G. Then X is G-homeomorphic to G×HY for some locally compact H-space Y if
and only if there exists a continuous G-map ϕ : X → G/H. If such a map is given,
then Y can be chosen as Y = ϕ−1({eH}) and the homeomorphism G ×H Y ∼= X
is given by [g, y] �→ gy.
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In what follows, let B0 = Cc(H,A) and D0 = Cc(G, IndA), viewed as dense
subalgebras of the full (resp. reduced) crossed products A�(r)H and IndA�(r)G,
respectively. Let X0(A) = Cc(G,A). We define left and right module actions of
D0 and B0 on X0(A), and D0- and B0-valued inner products on X0(A) by the
formulas

e · x(s) =
∫
G

e(t, s)x(t−1s)ΔG(t)
1/2dt

x · b(s) =
∫
H

αh

(
x(sh)b(h−1)

)
ΔH(h)−1/2dh

D0〈x, y〉(s, t) = ΔG(s)
−1/2

∫
H

αh

(
x(th)y(s−1th)∗

)
dh

〈x, y〉B0
(h) = ΔH(h)−1/2

∫
G

x(t−1)∗αh(y(t
−1h)) dt,

(2.6.1)

for e ∈ D0, x, y ∈ X0(A), and b ∈ B0. The Cc(H,A)-valued inner product on
X0(A) provides X0(A) with two different norms: ‖ξ‖2max := ‖〈ξ, ξ〉B0

‖max and
‖ξ‖2r := ‖〈ξ, ξ〉B0

‖r, where ‖ · ‖max and ‖ · ‖r denote the maximal and reduced
norms on Cc(G,A), respectively. Then Green’s imprimitivity theorem reads as
follows:

Theorem 2.6.4 (Green). The actions and inner products on X0(A) extend to the
completion XG

H(A) of X0(A) with respect to ‖ · ‖max such that XG
H(A) becomes an

(IndGH A�G)-(A�H) imprimitivity bimodule.

Similarly, the completion XG
H(A)r of X0(A) with respect to ‖ · ‖r becomes an

(IndGH A�r G)-(A�r H) imprimitivity bimodule.

Remark 2.6.5. (1) Although the statement of Green’s theorem looks quite straight-
forward, the proof requires a fair amount of work. The main problem is to show
positivity of the inner products and continuiuty of the left and right actions of D0

and B0 onX0 with respect to the appropriate norms. In [Gre78] Green only consid-
ered full crossed products. The reduced versions were obtained later by Kasparov
([Kas88]), by Quigg and Spielberg ([QS92]) and by Kirchberg and Wassermann
([KW00]).

The reduced module XG
H(A)r can also be realized as the quotient of XG

H(A) by the
submodule Y := XG

H(A) ·I with I := ker
(
A�H → A�rH

)
. This follows from the

fact that the ideal I corresponds to the ideal J := ker
(
IndA�G→ IndA�r G

)
in IndA�G via the Rieffel correspondence (see Proposition 2.5.4). We shall give
an argument for this fact in Remark 2.7.14 below.

(2) In his original work [Gre78], Green first considered the special case where the
action of H on A restricts from an action of G on A. In this case one obtains
a Morita equivalence between A �(r) H and C0(G/H,A) �(r) G (compare with
Remark 2.6.1 above). Green then deduced from this a more general result (see
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[Gre78, Theorem 17]), which by Theorem 2.6.2 is equivalent to the above formu-
lation for full crossed products.

(3) In [EKQR00] it is shown that the construction of the equivalence bimodule
X(A), viewed as an isomorphism in the correspondence category Corr, provides a
natural equivalence between the descent functor � : Corr(H)→ Corr; (A,H, α) �→
A�H with the composition�◦IndGH : Corr(H)→ Corr; (A,H, α) �→ IndA�G (and
similarly for the reduced descent functors �r). This shows that the assignment
(A,H, α) �→ XG

H(A) is, in a very strong sense, natural in A.

Let us now present some basic examples:

Example 2.6.6. (1) Let H be a closed subgroup of G. Consider the trivial action
of H on C. Then IndGH C = C0(G/H) and Green’s theorem provides a Morita
equivalence between C∗(H) and C0(G/H)�G, and similarly between C∗

r (H) and
C0(G/H)�r G. It follows then from Proposition 2.5.16 that induction via XG

H(C)
identifies the representation spaces Rep(H) and Rep(C0(G/H), G). This is a very
strong version of Mackey’s original imprimitivity theorem for groups (e.g., see
[Mac51,Mac52,Bla61]).

(2) If H = {e} is the trivial subgroup of G, we obtain a Morita equivalence
between A and C0(G,A) � G, where G acts on itself by left translation. Indeed,
in this case we obtain a unitary isomorphism between Green’s bimodule XG

{e}(A)

and the Hilbert A-module L2(G,A) ∼= A⊗ L2(G) via the transformation

U : XG
{e}(A)→ L2(G,A);

(
U(x)

)
(s) = Δ(s)−

1
2x(s).

It follows from this that C0(G,A) � G is isomorphic to K(A ⊗ L2(G)) ∼= A ⊗
K(L2(G)). In particular, it follows that C0(G) � G is isomorphic to K(L2(G)) if
G acts on itself by translation.

Since full and reduced crossed products by the trivial group coincide, it follows
from part (2) of Remark 2.6.5 that C0(G,A)�rG ∼= C0(G,A)�G, and hence that
C0(G,A)�r G ∼= A⊗K(L2(G)), too.

(3) Let H3 denote the three-dimensional real Heisenberg group, i.e., H3 = R2 �R
with action of R on R2 given by x · (y, z) = (y, z + xy). We want to use Green’s
theorem to analyse the structure of C∗(H3) ∼= C∗(R2) � R. We first identify
C∗(R2) with C0(R2) via Fourier transform. The transformed action of R on R2 is
then given by x · (η, ζ) = (η − xζ, ζ). The short exact sequence

0→ C0(R× R∗)→ C0(R2)→ C0(R× {0})→ 0

determines a short exact sequence

0→ C0

(
R× R∗)�R→ C∗(H3)→ C0(R× {0})�R→ 0.
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Since the action of R on the quotient C0(R) ∼= C0(R× {0}) is trivial, we see that
C0(R×{0})�R ∼= C0(R)⊗C∗(R) ∼= C0(R2). The homeomorphism h : R×R∗ → R×
R∗;h(η, ζ) = (−η

ζ , ζ) transforms the action of R on C0(R×R∗) ∼= C0(R)⊗C0(R∗)
to the diagonal action l⊗ id, where l denotes left translation. Thus, it follows from
(2) and Lemma 2.4.1 that C0(R × R∗) � R ∼= C0(R∗) ⊗ K(L2(R)) and we obtain
a short exact sequence

0→ C0(R∗)⊗K(L2(R))→ C∗(H3)→ C0(R2)→ 0

for C∗(H3).

(4) Let R act on the two-torus T2 by an irrational flow, i.e., there exists an ir-
rational number θ ∈ (0, 1) such that t · (z1, z2) = (e2πitz1, e

2πiθtz2). Then T2 is
R-homeomorphic to the induced space R ×Z T, where Z acts on T by irrational
rotation given by θ (compare with Example 2.3.5). Hence, it follows from Green’s
theorem that C(T2) �θ R is Morita equivalent to the irrational rotation algebra
Aθ = C(T)�θ Z.

In [Gre80] Phil Green shows that for second countable G we always have a decom-
position IndGH A�IndαG ∼= (A�αH)⊗K(L2(G/H)), where the L2-space is taken
with respect to some quasi invariant measure on G/H. In case where H = {e} is
the trivial group, this is part (2) of Example 2.6.6 above, but the general proof is
more difficult because of some measure-theoretic technicalities. But if H is open
in G, the proof of Green’s structure theorem becomes quite easy:

Proposition 2.6.7. Let H be an open subgroup of G and let α : H → Aut(A) be an
action. Let c : G/H → G be a cross-section for the quotient map q : G → G/H

such that c(eH) = e. Then there is an isomorphism Ψ : XG
H(A)

∼=→ (A �α H) ⊗
�2(G/H) of Hilbert A�αH modules given on the dense subspace X0(A) = Cc(G,A)
by

Ψ(x) =
∑
G/H

xsH ⊗ δsH ,

where xsH ∈ Cc(H,A) is defined by xsH(h) = Δ(c(s)h)−1/2αh(x(c(s)h)). A simi-
lar decomposition holds for the reduced module: XG

H(A)r ∼= (A�r H)⊗ �2(G/H).
As a consequence, we get isomorphisms

IndGH A�G ∼= (A�α H)⊗K(�2(G/H)) and

IndGH A�r G ∼= (A�α,r H)⊗K(�2(G/H)).

Proof. It is easy to check that the mapping x �→ Ψ(x) is a bijection between
Cc(G,A) and the algebraic tensor product Cc(H,A) � Cc(G/H), which is dense
in (A �α H) ⊗ �2(G/H). It therefore suffices to check that 〈Ψ(x),Ψ(y)〉A�H =
〈x, y〉A�H for all x, y ∈ Cc(G,A) and that Ψ intertwines the right action of A�α

H on both modules. We show the first and leave the second as an exercise for
the reader: Note that the inner products on both dense subspaces take values in
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Cc(H,A). Since H is open in G we have ΔG = ΔH and the formula
∫
G
f(t) dt =∑

tH∈G/H

∫
H
f(tl) dl for all f ∈ Cc(G,A). We then compute for x, y ∈ Cc(G,A)

and h ∈ H:

〈Ψ(x),Ψ(y)〉(h) =
∑
G/H

(x∗
sH ∗ ysH)(h) =

∑
G/H

∫
H

αl(xsH(l)∗ysH(lh)) dl

=
∑
G/H

Δ(h)−1/2

∫
H

Δ(c(s)l)−1x(c(s)l)∗αh(y(c(s)lh)) dl

l �→c(s)−1sl
=

∑
G/H

Δ(h)−1/2

∫
H

Δ(sl)−1x(sl)∗αh(y(slh)) dl

=

∫
G

Δ(h)−1/2Δ(s)−1x(s)∗αh(y(sh)) ds

= Δ(h)−1/2

∫
G

x(s−1)∗αh(y(s
−1h)) ds = 〈x, y〉(h).

The decomposition of IndGH A�G now follows from

IndGH A�G = K(XG
H(A)) ∼= K((A�H)⊗ �2(G/H)) = (A�H)⊗K(�2(G)),

and similarly for IndGH A�r G. �
We close this section with a proof of Green’s imprimitivity theorem in the case
where H is open in G. For this let α : H → Aut(A) be an action of H on a
C*-algebra A. We shall see that in this case there exists a canonical full projection
p ∈ M(IndGH A � G) such that the crossed product A �α H is isomorphic to the
corner p(IndGH A �Indα G)p. Of course, if we believe in the validity of Green’s
theorem, this follows basically from Proposition 2.6.7.

Consider the canonical embedding Ψ : C0(G/H) → M(IndGH A) given by the
(central) action

(Ψ(ϕ)F )(t) = ϕ(tH)F (t), ϕ ∈ C0(G/H), F ∈ IndGH A, t ∈ G.

In what follows we shall often write ϕ ·F for Ψ(ϕ)F . Let p̃ = ϕ(δeH) ∈M(IndGH A)
and let p be the image of p̃ under the extension to M(IndGH A) of the embedding
iIndG

H A : IndGH A→M(IndGH A�Indα G).

Proposition 2.6.8. Let p ∈ M(IndGH A �Indα G) be as above. Then p is a full
projection in M(IndGH A�Indα G) such that there is a canonical isomorphism

A�α H ∼= p(IndGH A�Indα G)p.

Moreover, the resulting IndGH A �Indα G-A �α H equivalence bimodule
(IndGH A �Indα G)p is isomorphic to Green’s equivalence bimodule XG

H(A) of
Theorem 2.7.6.

A similar result holds for the reduced crossed products.
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Proof. We first observe that A can be identified with the direct summand p̃ IndGH A
of IndGH A via the embedding ψ : A→ p̃ IndGH A; a �→ Fa with

Fa(s) =

{
αs−1(a) if s ∈ H

0 else

}
. (2.6.2)

If F ∈ Cc(G, IndGH A), then using the formulas in Remark 2.3.4 we compute

(pFp)(s) = p̃F (s) Indαs(p̃) = δeHF (s)δsH =

{
δeHF (s) if s ∈ H

0 else

}
. (2.6.3)

Using (2.6.2) and (2.6.3) one easily checks that there is a canonical ∗-isomorphism

Φ : Cc(H,A)
∼=→ pCc(G, IndGH A)p ⊆ p(IndGH A�Indα G)p

which maps a function f ∈ Cc(H,A) to the function F ∈ Cc(G, IndGH A) given by

F (s, t) =

{
αt−1(f(s)) if s, t ∈ H

0 else

}
. (2.6.4)

Indeed, by a straightforward but lengthy computation one checks that Φ coin-
cides with the integrated form of the covariant homomorphism (iIndA ◦ ψ, iG|H)
of (A,H, α) into M(IndGH A �Indα G), where ψ is as above and (iIndA, iG) is the
canonical covariant homomorphism of (IndGH A,G, Indα) into M(IndGH A�G). It
follows from this that Φ extends to a surjective ∗-homomorphism Φ : A �α H �
p(IndGH A�Indα G)p.

To see that Φ is injective let (ρ, V ) be any covariant representation of (A,H, α).
Then we construct an induced representation (Ind ρ, IndV ) of (IndGH A,G, Indα)
as follows: We define

HIndV =

{
ξ : G→ Hρ :

ξ(th) = Vh−1ξ(t) for all t ∈ G, h ∈ H
and

∑
tH∈G/H ‖ξ(t)‖2 <∞.

}
equipped with the inner product

〈〈ξ, η〉〉 =
∑

tH∈G/H

〈ξ(t), η(t)〉.

Note that this sum is well defined since ξ(th) = Vh−1ξ(t) for all t ∈ G, h ∈ H. We
then define (Ind ρ, IndV ) by

(Ind ρ(F )ξ)(t) = F (t)ξ(t) and (IndVsξ)(t) = ξ(s−1t),

for F ∈ IndGH A and s ∈ G. It is then straightforward to check the following items:

• (Ind ρ, IndV ) is a covariant representation of (IndGH A,G, Indα).
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• The composition of the compression comp(Ind ρ� IndV ) of Ind ρ� IndV to
the corner p(IndGH A�G)p with Φ : A�H → p(IndGH A�G)p is equivalent
to ρ� V .

Hence, if we choose ρ�V to be faithful on A�αH, we see that Φ must be faithful
as well.

To check that p is a full projection it suffices to show that no nonzero representation
π�U of IndGH A�G vanishes on p. By definition of p we have π�U(p) = π(p̃) =
π(δeH). So assume to the contrary that π(δeH) = 0, where we regard C0(G/H) as a
subalgebra of M(IndGH A) as described in the discussion preceding the proposition.
Then for all t ∈ G we have

π(δtH) = π(IndαtδeH) = Utπ(δeH)U∗
t = 0

as well, and since
∑

tH∈G/H δtH converges strictly to 1 in M(IndGH A), it follows
from this that π is the zero-representation. But then π � U is zero as well, which
contradicts our assumption.

We now have seen that A�α H is isomorphic to the full corner p(IndGH A�G)p.
We want to compare Green’s module XG

H(A) with the module (IndGH A�G)p. For

this we first compute for F ∈ Cc(G, IndGH A) that

(Fp)(s, t) =
(
F (s) · Indαs(δeH)

)
(t) =

(
F (s) · δsH

)
(t) =

{
F (s, t) if t ∈ sH

0 else

}
.

Therefore, because of the condition F (s, th) = αh−1(F (s, t)), it follows that Fp is
completely determined by the values of F on the diagonal ΔG = {(s, s) : s ∈ G}.
Recall that XG

H(A) is the completion of X0(A) = Cc(G,A) with respect to the
Cc(H,A) valued inner product

〈x, y〉(h) = ΔH(h)−1/2

∫
G

x(t−1)∗αh(y(t
−1h)) dt.

We then obtain a well-defined bijective map

Θ : Cc(G, IndGH A)p→ Cc(G,A);Fp �→ (s �→
√
ΔG(s)F (s, s)).

To show that Θ preserves the A�αH-valued inner products, it follows from (2.6.4)
that we need to check that for all F1, F2 ∈ Cc(G, IndGH A) and all (h, l) ∈ H we
have

αl−1(〈Θ(F1),Θ(F2)〉(h)) = F ∗
1 ∗ F2(h, l)

=

∫
G

ΔG(t
−1)F1(t

−1, t−1l)∗F2(t
−1h, t−1l) dt.

But this follows from a straightforward calculation using that ΔG|H = ΔH , since
H is open inG. One also easily checks that Θ intertwines the left action of IndGH A�
G on both modules.
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In order to prove the analogue for the reduced case one checks that compression
of a regular representation of IndGH A�G gives a regular representation of A�H.
We leave this as an exercise for the reader (or see Remark 2.7.14 below). �

Remark 2.6.9. (1) If A is a G-algebra and H is a closed subgroup of G, then
we saw in Remark 2.6.1 that IndGH A is isomorphic to C0(G/H,A). Thus, if H is
also open in G, it follows from Proposition 2.6.8 that A �α H is a full corner in
C0(G/H,A)�τ⊗α G, and similarly for the reduced crossed products.

(2) Later, in Section 3.5.3, we need to investigate the structure of crossed products
of the form C0(I, A) � G in which I is a discrete G-space, A is a G-algebra, and
G act diagonally on C0(I, A) ∼= C0(I) ⊗ A. In this case we can decompose I
as a disjoint union of G-orbits Gi = {si : s ∈ G} which induces a direct sum
decomposition

C0(I, A)�G ∼=
⊕
G\I

C0(Gi,A)�G.

If Gi = {s ∈ G : si = i} denotes the stabiliser of i ∈ I for the action of G (which is
open in G since I is discrete), we get G-equivariant bijections G/Gi

∼= Gi; sGi �→
si, and then the above decomposition becomes

C0(I, A)�G ∼=
⊕
G\I

C0(G/Gi, A)�G.

Now by Green’s imprimitivity theorem (or by Proposition 2.6.8) each summand
C0(G/Gi, A)�G is Morita equivalent to A�αGi, and hence we see that C0(I, A)�
G is Morita equivalent to

⊕
G\I A �α Gi. Indeed, if pi ∈ M(C0(G/Gi, A) � G)

is the full projection as in Proposition 2.6.8, we observe that the sum
∑

G\I pi
converges strictly in M(C0(I, A) � G) to a projection p and then

⊕
G\I A �α Gi

is isomorphic to the full corner p(C0(I, A) � G)p in C0(I, A) � G. All this goes
through without change for the reduced crossed products.

2.6.2 The Takesaki–Takai duality theorem

From part (2) of Example 2.6.6 it is fairly easy to obtain the Takesaki–Takai duality
theorem for crossed products by abelian groups. For this assume that (A,G, α) is

a system with G abelian. The dual action α̂ : Ĝ→ Aut(A�G) of the dual group

Ĝ on the crossed product A�G is defined by

α̂χ(f)(s) := χ(s)f(s) for χ ∈ Ĝ and f ∈ Cc(G,A) ⊆ A�G.

With a similar action of Ĝ on crossed products E�G for an equivariant bimodule
(E,Φ, u) we obtain from this a descent functor

� : Corr(G)→ Corr(Ĝ).
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The double dual crossed product A�G� Ĝ is isomorphic to C0(G,A)�G with
respect to the diagonal action l ⊗ α of G on C0(G,A) ∼= C0(G) ⊗ A. Indeed, we

have canonical (covariant) representations (kA, kG, kĜ) of the triple (A,G, Ĝ) into
M
(
C0(G,A)�G

)
given by the formulas(

kA(a) · f
)
(s, t) =a

(
f(s, t)

)
,

(
kG(r) · f

)
(s, t) = αr

(
f(r−1s, r−1t)

)
, and(

kĜ(χ) · f
)
(s, t) = χ(t)f(s, t),

for f in the dense subalgebra Cc(G,C0(G,A)) of C0(G,A)�G. Making extensive
use of the universal properties, one checks that the integrated form

(kA × kG)× kĜ : (A�G)� Ĝ→M(C0(G,A)�G)

gives the desired isomorphism A�G� Ĝ ∼= C0(G,A)�G. Using the isomorphism
C0(G,A) � G ∼= A ⊗ K(L2(G)) of Example 2.6.6 (2) and checking what this

isomorphism does on the double-dual action ̂̂α we arrive at

Theorem 2.6.10 (Takesaki–Takai). Suppose that (A,G, α) is a system with G

abelian. Then the double dual system (A�G�Ĝ,G, ̂̂α) is equivariantly isomorphic
to the system (A⊗K(L2(G)), G, α⊗ Ad ρ), where ρ : G→ U(L2(G)) denotes the
right regular representation of G on L2(G).

Recall that the right regular representation ρ : G → U(L2(G)) is defined by
(ρtξ)(s) =

√
Δ(t)ξ(st) for ξ ∈ L2(G) (but if G is abelian, the modular func-

tion Δ dissapears). Note that the system (A ⊗ K(L2(G)), G, α ⊗ Ad ρ) in the
Takesaki–Takai theorem is Morita equivalent to the original system (A,G, α) via
the equivariant imprimitivity bimodule (A⊗L2(G), α⊗ρ). In fact, the assignment
(A,G, α) �→ (A⊗L2(G), α⊗ρ) is easily seen to give a natural equivalence between
the identity functor on Corr(G) and the composition

Corr(G)
�−−−−→ Corr(Ĝ)

�−−−−→ Corr(G).

In general, if G is not abelian, one can obtain similar duality theorems by replacing
the dual action of Ĝ by a dual coaction of the group algebra C∗(G) on A�G. A
fairly complete account of that theory in the group case is given in the appendix of
[EKQR06]; however a much more general duality theory for Hopf-C∗-algebras was
developed by Baaj and Skandalis in [BS93] and Kustermans and Vaes in [KV00].

2.6.3 Permanence properties of exact groups

As a further application of Green’s imprimitivity theorem we now present some
of Kirchberg’s and Wassermann’s permanence results for C∗-exact groups. Recall
from Definition 2.4.9 that a group G is called C∗-exact (or just exact) if for every
system (A,G, α) and for each G-invariant ideal I ⊆ A the sequence

0→ I �r G→ A�r G→ (A/I)�r G→ 0
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is exact (which is equivalent to exactness of the sequence in the middle term). Re-
call from Proposition 2.4.8 that the corresponding sequence of full crossed products
is always exact. Using Proposition 2.4.5, this implies that all amenable groups are
exact.

In what follows we want to relate exactness of G with exactnesss of a closed
subgroup H of G. For this we start with a system (A,H, α) and a closed H-
invariant ideal I of A. Recall that Green’s IndA �r G − A �r H imprimitivity
bimodule XG

H(A)r is a completion of Cc(G,A). Using the formulas for the actions
and inner products as given in (2.6.1) one observes that XG

H(I)r can be identified
with the closure of Cc(G, I) ⊆ Cc(G,A) in XG

H(A)r. It follows that the ideals
Ind I �r G and I �r H are linked via the Rieffel correspondence with respect to
XG

H(A)r (see Proposition 2.5.4). Similarly, the imprimitivity bimodule XG
H(A/I)r

is isomorphic to the quotient XG
H(A)r/Y with Y := XG

H(A)r · ker
(
A �r H →

A/I �r H
)
, which implies that the ideals

ker
(
A�r H → A/I �r H

)
and ker

(
IndA�r G→ Ind(A/I)�r G

)
are also linked via the Rieffel correspondence. Since the Rieffel correspondence is
one-to-one, we obtain

I �r H = ker
(
A�r H → A/I �r H

)
⇐⇒ Ind I �r G = ker

(
IndA�r G→ Ind(A/I)�r G

)
.

(2.6.5)

Using this, we now give proofs of two of the main results of [KW00].

Theorem 2.6.11 (Kirchberg and Wassermann). Let G be a locally compact group.
Then the following are true:

(i) If G is exact and H is a closed subgroup of G, then H is exact.

(ii) Let H be a closed subgroup of G such that G/H is compact. Then H exact
implies G exact.

Proof. Suppose that I is an H-invariant ideal of the H-algebra A. If G is exact,
then Ind I �r G = ker

(
IndA �r G → Ind(A/I) �r G

)
and hence I �r H =

ker
(
A�r H → A/I �r H

)
by (2.6.5). This proves (i).

To see (ii) we start with an arbitrary G-algebra A and a G-invariant ideal I of

A. Since A, I, and A/I are G-algebras and G/H is compact, we have IndGH A ∼=
C(G/H,A) and similar statements hold for I and A/I. Since H is exact we see
that the lower row of the commutative diagram

0 −−−−−→ I �r G −−−−−→ A�r G −−−−−→ (A/I)�r G −−−−−→ 0
⏐⏐�

⏐⏐�
⏐⏐�

0 −−−−−→ C(G/H, I)�rG −−−−−→ C(G/H,A)�rG −−−−−→ C(G,A/I)�rG −−−−−→ 0,
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is exact, where the vertical maps are induced by the canonical inclusions of I,
A, and A/I into C(G/H, I), C(G/H,A) and C(G/H,A/I), respectively. Since
these inclusions are injective, all vertical maps are injective, too (see the remarks
preceeding Proposition 2.4.8). This and the exactness of the lower horizontal row
imply that

ker
(
A�r G→ (A/I)�r G

)
=: J =

(
A�r G

) ∩ (C(G/H, I)�r G
)
.

Let (xi)i be a bounded approximate unit of I and let (ϕj)j be an approximate
unit of Cc(G) (compare with Remark 2.3.7). Then zi,j := ϕj⊗xi ∈ Cc(G, I) serves
as an approximate unit of I�rG and of J :=

(
A�rG

)∩(C(G/H, I)�rG
)
. Thus,

if y ∈ J , then zi,j · y ∈ I �r G and zi,j · y converges to y. Hence J ⊆ I �r G. �

Corollary 2.6.12. Every closed subgroup of an almost connected group is exact (in
particular, every free group in countably many generators is exact). Also, every
closed subgroup of GL(n,Qp), where Qp denotes the field of p-adic rational numbers
equipped with the Hausdorff topology is exact.

Proof. Recall first that a locally compact group is called almost connected if the
component G0 of the identity in G is cocompact. By part (i) of Theorem 2.6.11 it is
enough to show that every almost connected group G is exact and that GL(n,Qp)
is exact for all n ∈ N. But structure theory for those groups implies that in both
cases one can find an amenable cocompact subgroup. Since amenable groups are
exact (by Propositions 2.4.5 and 2.4.8), the result then follows from part (ii) of
the theorem. �

Remark 2.6.13. We should mention that Kirchberg and Wassermann proved some
further permanence results: If H is a closed subgroup of G such that G/H carries a
finite invariant measure, then H exact implies G exact. Another important result
is the extension result: If N is a closed normal subgroup of G such that N and
G/N are exact, then G is exact. The proof of this result needs the notion of twisted
actions and twisted crossed products. We shall present that theory and the proof
of the extension result for exact groups in §2.8.2 below. We should also mention
that the proof of part (ii) of Theorem 2.6.11, and hence of Corollary 2.6.12 followed
some ideas of Skandalis (see also the discussion at the end of [KW99]).

From the work of Ozawa and others (e.g., see [Oza06] for a general discussion), the
class of discrete exact groups is known to be identical to the class of all discrete
groups which can act amenably on some compact Hausdorff space X (we refer to
[ADR00] for a quite complete exposition of amenable actions). An analogous result
for general second countable locally compact groups has been shown very recently
by Brodzki, Cave and Li in [BCL16]. This implies a new proof that exactness
passes to closed subgroups, since the restriction of an amenable action to a closed
subgroup is amenable. If we apply the exactness condition of a group G to trivial
actions, it follows from Remark 2.4.2 that C∗

r (G) is an exact C∗-algebra if G is
exact; the converse is known for discrete groups by [KW99] but is still open in the
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general case. As mentioned at the end of §2.4, it is now known that there exist
nonexact finitely generated discrete groups.

2.7 Induced representations and the ideal structure of
crossed products

In this section we use Green’s imprimitivity theorem as a basis for computing the
representation theory and/or the ideal structure of C∗-group algebras and crossed
products. The first ideas towards this theory appeared in the work of Frobenius and
Schur on representations of finite groups. In the 1940s George Mackey introduced
the theory of induced representations of second countable locally compact groups
together with a procedure (now known as the Mackey machine) to compute the
irreducible representations of a second countable locally compact group G in terms
of representations of a (nice!) normal subgroup N and projective representations

of the stabilisers for the action of G on N̂ (see [Mac51, Mac52, Mac53, Mac57,
Mac58].) For most of the theory, the separability assumption has been eliminated
by Blattner in [Bla61,Bla62]. An extension of this theory to crossed products was
first worked out by Takesaki in [Tak67]. In the 1970s Marc Rieffel first showed
that the theory of induced representations of groups could be embedded into his
more algebraic theory of induced representations of C∗-algebras as introduced in
Section 2.5.5 ([Rie74,Rie79]).

The full power of this theory became evident with the fundamental work of Phil
Green on twisted crossed products ([Gre78]). In what follows we will try to explain
the basics of Green’s theory by first restricting to ordinary crossed products. The
twisted crossed products will be studied later in Section 2.8. We will also report
on the important work of Sauvageot, Gootmann, and Rosenberg ([Sau77, Sau79,
GR79]) on the generalised Effros–Hahn conjecture, i.e., on the ideal structure of
(twisted) crossed products A�α G in which the action of G on Prim(A) does not
have very good properties.

Many of the results explained in this section also carry over to groupoids and
to crossed products by (twisted) actions of groupoids on C∗-algebras (e.g., see
[Ren80,Ren87, IW09]), but we shall stick to (twisted) crossed products by group
actions in these notes.

2.7.1 Induced representations of groups and crossed products

If (A,G, α) is a system andH is a closed subgroup of G, then Green’s imprimitivity
theorem provides an imprimitivity bimodule XG

H(A) between C0(G/H,A)�G ∼=
IndGH A�G and A�H. In particular, C0(G/H,A)�G identifies with the compact
operators K(XG

H(A)) on XG
H(A). There is a canonical covariant homomorphism

(kA, kG) : (A,G)→M(C0(G/H,A)�G) ∼= L(XG
H(A)),
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where kA = iC0(G/H,A) ◦ jA denotes the composition of the inclusion jA : A →
M
(
C0(G/H,A)

)
with the inclusion iC0(G/H,A) : C0(G/H,A)→M

(
C0(G/H,A)�

G
)
and kG denotes the canonical inclusion of G into M

(
C0(G/H,A) � G

)
. The

integrated form

kA × kG : A�G→M
(
C0(G/H,A)�G

) ∼= L(XG
H(A))

determines a left action of A � G on XG
H(A) and we obtain a canonical element

[XG
H(A), kA × kG] ∈ Mor(A � G,A �H) – a morphism from A � G to A �H in

the correspondence category. Using the techniques of §2.5.5, we can define induced
representations of A�G as follows:

Definition 2.7.1. For ρ × V ∈ Rep(A � H) we define the induced representa-
tion indGH(ρ × V ) ∈ Rep(A � G) as the representation induced from ρ × V via
[XG

H(A), kA × kG] ∈ Mor(A�G,A�H).

Similarly, for J ∈ I(A � H), we define the induced ideal indGH J ∈ I(A � G) as
the ideal induced from J via [XG

H(A), kA × kG].

On the other hand, if we restrict the canonical embedding iG : G→M(A�G) to
H, we obtain a nondegenerate homomorphism iA × iG|H : A � H → M(A � G)
which induces a morphism [A�G, iA× iG|H ] ∈ Mor(A�H,A�G). This leads to:

Definition 2.7.2. For π×U ∈ Rep(A�G) we define the restriction resGH(π×U) ∈
Rep(A � H) as the representation induced from π × U via [A � G, iA × iG|H ] ∈
Mor(A�H,A�G).

Similarly, for I ∈ I(A � G), we define the restricted ideal resGH I ∈ I(A �H) as
the ideal induced from I via [A�G, iA × iG|H ].

Remark 2.7.3. It is a good exercise to show that for any π × U ∈ Rep(A�G) we
have resGH(π × U) = π × U |H – the integrated form of the restriction of (π, U) to
(A,H, α).

As a consequence of Definitions 2.7.1 and 2.7.2 and Proposition 2.5.16 we get:

Proposition 2.7.4. The maps indGH : Rep(A � H) → Rep(A � G) and indGH :
I(A�H)→ I(A�G) as well as the maps resGH : Rep(A�G)→ Rep(A�H) and
resGH : I(A�G)→ I(A�H) are continuous with respect to the Fell topologies.

Remark 2.7.5. (1) Note that the left action of A�G on XG
H(A) can be described

conveniently on the level of Cc(G,A) via convolution: If f ∈ Cc(G,A) ⊆ A � G
and ξ ∈ Cc(G,A) ⊆ XG

H(A), then kA × kG(f)ξ = f ∗ ξ.
(2) For A = C we obtain, after identifying unitary representations of G (resp.
H) with ∗-representations of C∗(G) (resp. C∗(H)) an induction map indGH :
Rep(H)→ Rep(G). With a bit of work one can check that indGH U for U ∈ Rep(H)
coincides (up to equivalence) with the induced representation defined by Mackey
in [Mac51] or Blattner in [Bla61]. Similarly, the induced representations for C∗-
dynamical systems as defined above coincide up to equivalence with the induced
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representations as constructed by Takesaki in [Tak67]. We will present some more
details on these facts in Proposition 2.7.7 and Corollary 2.7.8 below.

(3) If ρ is a nondegenerate representation of A on a Hilbert space Hρ, then indG{e} ρ
is equivalent to the regular representation Ind ρ of A�G on L2(G,Hρ) (see Remark
2.3.2). The intertwining unitary V : XG

H(A)⊗A Hρ → L2(G,Hρ) is given by(
V (ξ ⊗ v)

)
(s) = ρ

(
αs−1(ξ(s))

)
v

for ξ ∈ Cc(G,A) ⊆ XG
H(A) and v ∈ Hρ.

The construction of [XG
H(A), kA × kG] shows that we have a decomposition

[XG
H(A), kA × kG] = [C0(G/H,A)�G, kA × kG] ◦ [XG

H(A)]

as morphisms in the correspondence category. Hence the induction map indGH :
Rep(A�H)→ Rep(A�G) factors as the composition

Rep(A�H)
IndXG

H (A)

−−−−−−→∼=
Rep

(
C0(G/H,A)�G

) (kA×kG)∗−−−−−−−→ Rep(A�G)

(see Remark 2.5.10 for the meaning of (kA × kG)
∗). The representations of

C0(G/H,A) � G are of the form (P ⊗ π) × U , where P and π are commut-
ing representations of C0(G/H) and A, respectively (we use the identification
C0(G/H,A) ∼= C0(G/H) ⊗ A). The covariance condition for (P ⊗ π, U) is
equivalent to (π, U) and (P,U) being covariant representations of (A,G, α) and
(C0(G/H), G, l), respectively (where l : G→ Aut(C0(G/H)) is the left translation
action). One then checks that(

(P ⊗ π)× U
) ◦ (kA × kG) = π × U.

Since induction from Rep(A�H) to Rep
(
C0(G/H,A)�G

)
via XG

H(A) is a bijec-
tion, we obtain the following general version of Mackey’s classical imprimitivity
theorem for group representations (see [Mac51] and [Tak67]):

Theorem 2.7.6 (Mackey–Takesaki–Rieffel–Green). Suppose that (A,G, α) is a sys-
tem and let H be a closed subgroup of G. Then:

(i) A representation π × U ∈ Rep(A � G) on a Hilbert space Hπ is induced
from a representation σ × V ∈ Rep(A � H) if and only if there exists a
nondegenerate representation P : C0(G/H) → B(Hπ) which commutes with
π such that (P,U) is a covariant representation of (C0(G/H), G, l).

(ii) If π×U ∈ Rep(A�G) is induced from the irreducible representation σ×V ∈
Rep(A�H), and if P : C0(G/H)→ B(Hπ) is the corresponding representa-

tion such that (P ⊗ π)× U ∼= IndX
G
H(A)(σ × V ), then π × U is irreducible if

and only if every W ∈ B(Hπ) that intertwines with π and U (and hence with
π × U) also intertwines with P .
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Proof. The first assertion follows directly from the above discussions. The second
statement follows from Schur’s irreducibilty criterion (a representation is irre-
ducible iff every intertwiner is a multiple of the identity) together with the fact
that induction via imprimitivity bimodules preserves irreducibility of representa-
tions in both directions (see Proposition 2.5.11). �

In many situations it is convenient to have a more concrete realization of the in-
duced representations. The following construction follows Blattner’s construction
of induced group representations of groups (see [Bla61,Fol95]). We start with the
situation of an induced system: Assume that H is a closed subgroup of G and that
α : H → Aut(A) is an H-action. If ρ×V ∈ Rep(A�H) is a representation on the
Hilbert space Hρ we put

Fρ×V :=

{
ξ : G→ Hρ :

ξ(sh) =
√
ΔH(h)/ΔG(h)Vh−1ξ(s) for all s ∈ G, h ∈ H

and ξ is continuous with compact support modulo H

}
.

Let c : G→ [0,∞) be a Bruhat section forH, i.e., c is continuous with supp c ∩C ·H
compact for all compact C ⊆ G and such that

∫
H
c(sh) dh = 1 for all s ∈ G (for

the existence of such c see [Bou71]). Then

〈ξ, η〉 :=
∫
G

c(s)〈ξ(s), η(s)〉 ds

determines a well-defined inner product on Fρ×V and we let Hind(ρ×V ) denote its

Hilbert space completion. We can now define representations σ and U of IndGH A
and G on Hind(ρ×V ), respectively, by

(σ(f)ξ)(s) := ρ(f(s))ξ(s) and (Utξ)(s) := ξ(t−1s). (2.7.1)

Then σ×U is a representation of IndGH A�G on Hind(ρ×V ) and a straightforward
but lengthy computation gives:

Proposition 2.7.7. Let X := XG
H(A) denote Green’s IndGH A�G−A�H imprimi-

tivity bimodule and let ρ×V be a representation of A�H on Hρ. Then there is a
unitary W : X⊗A�HHρ → Hind(ρ×V ), given on elementary tensors x⊗v ∈ X�Hρ

by

W (x⊗ v)(s) = ΔG(s)
− 1

2

∫
H

ΔH(h)−
1
2Vhρ(x(sh))v dh,

which implements a unitary equivalence between IndX(ρ× V ) and the representa-
tion σ × U defined above.

Observe that in the case where H is open in G, the representation (σ, U) con-
structed above coincides with the representation (Ind ρ, IndV ) as constructed in
the proof of Proposition 2.6.8.



2.7. Induced representations and the ideal structure of crossed products 47

In the special case where A is a G-algebra we identify IndGH A with C0(G/H,A) via
the isomorphism Φ of Remark 2.6.1 (1). It is then easy to check that the represen-
tation σ defined above corresponds to the representation P ⊗ π of C0(G/H,A) ∼=
C0(G/H)⊗A on Hind(ρ×V ) given by the formula

(P (ϕ)ξ)(s) := ϕ(sH)ξ(s) and (π(a)ξ)(s) = ρ(αs−1(a))ξ(s). (2.7.2)

Hence, as a direct corollary of the above proposition we get:

Corollary 2.7.8. Let (A,G, α) be a system and let ρ× V ∈ Rep(A�H) for some
closed subgroup H of G. Then indGH(ρ × V ), as defined in Definition 2.7.1, is
unitarily equivalent to the representation π×U of A�G on Hind(ρ×V ) with π and
U as in Equations (2.7.2) and (2.7.1) respectively.

Another corollary that we can easily obtain from Blattner’s realisation is the
following useful observation: Assume that H is a closed subgroup of G and that
A is an H-algebra. Let εe : IndGH A → A be the H-equivariant surjection defined
by evaluation of functions f ∈ IndGH A at the unit e ∈ G. If ρ× V ∈ Rep(A�H)
then (ρ ◦ εe)× V is a representation of IndGH A�H. We then get

Corollary 2.7.9. The induced representation indGH
(
(ρ◦εe)×V

)
(induction from H

to G for the system (IndGH A,G, Indα)) is unitarily equivalent to indX
G
H(A)(ρ× V )

(induction via Green’s IndGH A�G−A�H imprimitivity bimodule XG
H(A)).

Proof. By Proposition 2.7.7 and Corollary 2.7.8, both representations can be re-
alized on the Hilbert space Hind(ρ×V ) whose construction only depends on G and
the unitary representation V of H. Applying the formula for π in (2.7.2) to the
present situation, we see that the IndGH A-part of indGH

(
(ρ ◦ εe) × V

)
is given by

the formula

(π(f)ξ)(s) = ρ
(
indαs−1(f)(e)

)
ξ(s) = ρ(f(s))ξ(s) = (σ(f)ξ)(s)

with σ as in (2.7.1). �

We now turn to some further properties of induced representations. To obtain
those properties we shall pass from Green’s to Blattner’s realizations of the induced
representations and back whenever it seems convenient. We start the discussion
with the theorem of induction in steps. For this suppose that L ⊆ H are closed
subgroups of G. To avoid confusion, we write ΦG

H for the left action of A �G on
XG

H(A) (i.e., ΦG
H = kA× kG in the notation used above) and we write ΦG

L and ΦH
L

for the left actions of A�G and A�H on XG
L (A) and XH

L (A), respectively. Then
the theorem of induction in steps reads as

Theorem 2.7.10 (Green). Let (A,G, α) and L ⊆ H be as above. Then

[XG
H(A),ΦG

H ] ◦ [XH
L (A),ΦH

L ] = [XG
L (A),ΦG

L ]
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as morphisms from A � G to A � L in the correspondence category Corr. As a
consequence, we have

indGH
(
indHL (ρ× V )

)
= indGL (ρ× V )

for all ρ× V ∈ Rep(A� L).

Proof. For the proof one has to check that XG
H ⊗A�H XH

L
∼= XG

L (A) as Hilbert
A � G − A � L bimodule. Indeed, one can check that such isomorphism is given
on the level functions by the pairing Cc(G,A)⊗Cc(H,A)→ Cc(G,A) as given by
the second formula in (2.6.1). We refer to [Gre78] and [Wil07, Theorem 5.9] for
more details. �

By an automorphism γ of a system (A,G, α) we understand a pair γ = (γA, γG),
where γA is a ∗-automorphism of A and γG : G→ G is an automorphism of G such
that αγG(t) = γA ◦αt ◦γ−1

A for all t ∈ G. An inner automorphism of (A,G, α) is an
automorphism of the form (αs, Cs), s ∈ G, with Cs(t) = sts−1. If γ = (γA, γG) is
an automorphism of (A,G, α) and if H is a closed subgroup of G, then γ induces
an isomorphism γA�H : A�H → A�Hγ with Hγ := γG(H) via

γA�H(f)(h) := γA
(
f(γ−1

G (h))
)

for h ∈ Hγ and f ∈ Cc(H,A),

where we adjust Haar measures on H and Hγ such that
∫
H
f(γG(h)) dh =∫

Hγ
f(h′) dh′ for f ∈ Cc(Hγ). Note that if (ρ, V ) ∈ Rep(A,Hγ), then

(ρ ◦ γA, V ◦ γG) ∈ Rep(A,H) and we have

(ρ× V ) ◦ γA�H
∼= (ρ ◦ γA)× (V ◦ γG)

for their integrated forms.

Remark 2.7.11. If H = N is normal in G and if γs = (αs, Cs) is an inner automor-
phism of (A,G, α), then we will write αN

s for the corresponding automorphism of
A � N . Then s �→ αN

s is an action of G on A � N . This action will serve as a
starting point for the study of twisted actions in §2.8 below.

Proposition 2.7.12. Suppose that γ = (γA, γG) is an automorphism of (A,G, α)
and let H ⊆ L be two closed subgroups of G. Then

indLH
(
(ρ× V ) ◦ γA�H

) ∼= (
ind

Lγ

Hγ
(ρ× V )

) ◦ γA�L

for all ρ×V ∈ Rep(A�Hγ), where “∼=” denotes unitary equivalence. In particular,
if ρ× V ∈ Rep(A,H) and (αs, Cs) is an inner automorphism of (A,G, α) then

indGH(ρ× V ) ∼= indGsHs−1

(
s · (ρ× V )

)
,

where we put s · (ρ× V ) := (ρ ◦ αs−1)× (V ◦ Cs−1) ∈ Rep(A, sHs−1).
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Proof. Simply check that the map γA�L : Cc(L,A)→ Cc(Lγ , A) as defined above

also extends to a bijection ΦL : XL
H(A) → X

Lγ

Hγ
(A) which is compatible with the

isomorphisms γA�L : A�L→ A�Lγ and γA�H : A�H → A�Hγ on the left and

right. This implies that γ∗
A�L ◦ [XLγ

Hγ
(A), kA × kLγ

] = [XL
H(A), kA × kL] ◦ γ∗

A�H

in Corr and the first statement follows. The second statement follows from the
first applied to L = G and γ = (αs, Cs) together with the fact that for any
π × U ∈ Rep(A,G) the unitary Us ∈ U(Hπ) implements a unitary equivalence
between s · (π × U) = (π ◦ αs−1)× (U ◦ Cs−1) and π × U . �
As a direct consequence we get:

Corollary 2.7.13. Let (A,G, α) be a system. For J ∈ I(A) let

JG := ∩{αs(J) : s ∈ G}.
Then indG{e} J

G = indG{e} J in A � G. As a consequence, if ρ ∈ Rep(A) such that

∩{ker(ρ◦αs) : s ∈ G} = {0}, then indG{e} ρ factors through a faithful representation
of the reduced crossed product A�r G.

Proof. Let J = ker ρ for some ρ ∈ Rep(A) and let ρG :=
⊕

s∈G ρ ◦ αs. Then

JG = ker ρG. It follows from Proposition 2.7.12 that indG{e} ρ ◦ αs
∼= indG{e} ρ for

all s ∈ G. Since induction preserves direct sums, it follows that

indG{e} J = ker(indG{e} ρ) = ker(indG{e} ρ
G) = indG{e} J

G.

If ∩{ker(ρ ◦ αs) : s ∈ G} = {0}, then ρG is faithful and it follows from Remark
2.3.4 (3) and Remark 2.7.5 (3) that kerΛG

A = ker(indG{e} ρ
G) = ker(indG{e} ρ). �

Remark 2.7.14. From the previous results it is now possible to obtain a fairly
easy proof of the fact that Green’s IndGH A � G − A �H imprimitivity bimodule
XG

H(A) factors to give a IndGH A �r G − A �r H imprimitivity bimodule for the
reduced crossed products (compare with Remark 2.6.5). Indeed, if ρ is any faithful
representation of A, and if εe : IndA → A denotes evaluation at the unit e, it
follows from Corollary 2.7.13, that ker(ΛG

IndA) = ker
(
indG{e}(ρ ◦ εe)

)
. The latter

coincides with ker(indGH(indH{e}(ρ ◦ εe))) by Theorem 2.7.10. If σ × V denotes the

representation indH{e} ρ ∈ Rep(A�H), then ker(σ×V ) = kerΛH
A since ρ is faithful

on A and a short computation shows that indH{e}(ρ ◦ εe) = (σ ◦ εe) × V , where
on the left-hand side we use induction in the system (IndA,H, Indα). Putting all
this together we get

ker(ΛG
IndA) = ker

(
indG{e}(ρ ◦ εe)

)
= ker

(
indGH(indH{e}(ρ ◦ εe))

)
= ker

(
indGH

(
(σ ◦ εe)× V )

) ∗
= ker

(
indX

G
H(A)(σ × V )

)
= ker

(
indX

G
H(A) ΛH

A

) ∗∗
= indX

G
H(A)

(
kerΛH

A

)
,

where * follows from Corollary 2.7.9 and ** follows from Equation (2.5.4). The
desired result then follows from the Rieffel correspondence (Proposition 2.5.4).
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We now come to some important results concerning the relation between induction
and restriction of representations and ideals (see Definition 2.7.2 for the definition
of the restriction maps). We start with:

Proposition 2.7.15. Suppose that (A,G, α) is a system and let N ⊆ H be closed
subgroups of G such that N is normal in G. Let Fρ×V be the dense subspace of
Blattner’s induced Hilbert space Hind(ρ×V ) as constructed above. Then(

resGN (indGH(ρ× V ))(f)ξ
)
(s) = resHN (ρ× V )(αN

s−1(f))ξ(s) (2.7.3)

for all f ∈ A � N , ξ ∈ Fρ×V and s ∈ G, where αN : G → Aut(A � N) is the
canonical action of G on A�N (see Remark 2.7.11 above). As a consequence, if
J ∈ I(A�H), we get

resGN
(
indGH J

)
= ∩{αN

s (resHN (J)) : s ∈ G}. (2.7.4)

Proof. Define σ : A�N → B(Hind(ρ×V )) by (σ(f)ξ)(s) = ρ×V |N (αN
s−1(f))ξ(s) for

f ∈ A�N and ξ ∈ Fρ×V . Then σ is a nondegenerate ∗-representation and hence
it suffices to check that the left-hand side of (2.7.3) coincides with (σ(f)ξ)(s) for
f ∈ Cc(N,A). But using (2.7.2) together with the transformation n �→ sns−1 and
the equation ξ(sn−1) = Vnξ(s) for s ∈ G,n ∈ N , the left-hand side becomes

(
resGN

(
indGH(ρ× V ))(f)ξ

))
(s) =

∫
N

ρ(αs−1(f(n)))ξ(n−1s) dn

= δ(s−1)

∫
N

ρ(αs−1(f(sns−1)))ξ(sn−1) dn

=

∫
N

ρ(αN
s−1(f)(n))Vnξ(s) dn = (σ(f)ξ)(s). �

Remark 2.7.16. Suppose that (A,G, α) is a system, H is a closed subgroup of G,
and J ⊆ A is a G-invariant ideal of A. If ρ× V is a representation of A�H and
if we put π × U := indGH(ρ× V ), then it follows from the above proposition that

J ⊆ ker ρ ⇐⇒ J ⊆ kerπ.

Hence, we see that the induction map for the system (A,G, α) determines a map
from Rep(A/J �H) to Rep(A/J �G) if we identify representations of A/J �H
with the representations ρ × V of A � H that satisfy J ⊆ ker ρ (and similarly
for G). It is easy to check (e.g., by using Blattner’s construction of the induced
representations) that this map coincides with the induction map for the system
(A/J,G, α).

Also, if ρ×V is a representation of A�H such that ρ restricts to a nondegenerate
representation of J , then one can check that the restriction of indGH(ρ × V ) to
J � G conicides with the induced representation IndGH(ρ|J × V ) where the latter
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representation is induced from J �H to J � G via XG
H(J).11 We shall use these

facts quite frequently below.

We close this section with some useful results on tensor products of representations.
If (π, U) is a covariant representation of the system (A,G, α) on Hπ and if V
is a unitary representation of G on HV , then (π ⊗ 1HV

, U ⊗ V ) is a covariant
representation of (A,G, α) on Hπ ⊗HV and we obtain a pairing

⊗ : Rep(A�G)× Rep(G)→ Rep(A�G);(
(π × U), V

) �→ (π × U)⊗ V := (π ⊗ 1HV
)× (U ⊗ V ).

Identifying Rep(G) ∼= Rep(C∗(G)), this map can also be obtained via the compo-
sition

Rep(A�G)× Rep(C∗(G))→ Rep
(
(A�G)⊗ C∗(G)

) α̂∗
→ Rep(A�G),

where the first map sends a pair (π×U, V ) to the external tensor-product represen-
tation (π×U)⊗̂V of (A�G)⊗C∗(G) and α̂ : A�G→M

(
(A�G)⊗C∗(G)

)
denotes

the integrated form of the tensor product (iA ⊗ 1C∗(G), iG ⊗ iG) of the canonical
inclusions (iA, iG) : (A,G) → M(A � G) with the inclusion iG : G → M(C∗(G))
(α̂ is the dual coaction of G on A�G). Thus, from Propositions 2.5.16 and 2.5.17
we get

Proposition 2.7.17. The map ⊗ : Rep(A�G)×Rep(G)→ Rep(A�G) preserves
weak containment in both variables and is jointly continuous with respect to the
Fell topologies.

Proposition 2.7.18. Let (A,G, α) be a system and let H be a closed subgroup of G.
Then

(i) indGH
(
(ρ×V )⊗U |H

) ∼= (
indGH(ρ×V )

)⊗U for all ρ×V ∈ Rep(A�H) and
U ∈ Rep(G);

(ii) indGH
(
(π ×U |H)⊗ V

) ∼= (π ×U)⊗ indGH V for all V ∈ Rep(H) and π ×U ∈
Rep(A�G).

In particular, if π × U ∈ Rep(A�G) and N is a normal subgroup of G, then

indGN (π × U |N ) ∼= (π × U)⊗ λG/N ,

where λG/N denotes the regular representation of G/N , viewed as a representation
of G.

Proof. This result can be most easily shown using Blattner’s realization of the
induced representations: In the first case define

W : Fρ×V ⊗HU → F(ρ×V )⊗U |H ; W (ξ ⊗ v)(s) = ξ(s)⊗ Us−1v.

11Of course, these results are also consequences of the naturality of the assignment A �→ XG
H(A)

as stated in Remark 2.6.5 (3).
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Then a short computation shows that W is a unitary intertwiner of
(
indGH(ρ ×

V )
)⊗U and indGH

(
(ρ×V )⊗U |H)

)
. A similar map works for the second equivalence.

Since λG/N = indGN 1N , the last assertion follows from (ii) for the case V = 1N . �

Corollary 2.7.19. Suppose that (A,G, α) is a system and that N is a normal
subgroup of G such that G/N is amenable. Then π × U is weakly contained in
indGN (resGN (π×U)) for all π×U ∈ Rep(A�G). As a consequence, indGN (resGN I) ⊆ I
for all I ∈ I(A�G).

Proof. Since G/N is amenable if and only if 1G/N ≺ λG/N we obtain from Propo-
sition 2.7.18

π × U = (π × U)⊗ 1G/N ≺ (π × U)⊗ λG/N = indGN (π × U |N ),

which proves the first statement. The second statement follows from the first by
choosing π × U ∈ Rep(A�G) such that I = ker(π × U). �

2.7.2 The ideal structure of crossed products

In this section we come to the main results on the Mackey–Rieffel–Green machine,
namely, the description of the spectrum (A � G)̂ and the primitive ideal space
Prim(A�G) in terms of induced representations (resp. ideals) under some favorable
circumstances. We start with some topological notations:

Definition 2.7.20. Let Y be a topological space.

(i) We say that Y is almost Hausdorff if every nonempty closed subset F of Y
contains a nonempty relatively open Hausdorff subset U (which can then be
chosen to be dense in F ).

(ii) A subset C ⊆ Y is called locally closed if C is relatively open in its closure
C, i.e., C \ C is closed in Y .

It is important to note that if A is a type I algebra, then the spectrum Â (and

then also Prim(A) ∼= Â) is almost Hausdorff with respect to the Jacobson topology.
This follows from the fact that every quotient of a type I algebra is type I and
that every nonzero type I algebra contains a nonzero continuous-trace ideal, and
hence its spectrum contains a nonempty Hausdorff subset U (see [Dix77, Chapter
4] and §2.2.4). Note also that if Y is almost Hausdoff, then the one-point sets {y}
are locally closed for all y ∈ Y .

If A is a C∗-algebra and if J ⊆ I are two closed two-sided ideals of A, then we

may view Î/J (resp. Prim(I/J)) as a locally closed subset of Â (resp. Prim(A)).

Indeed, we first identify Â/J with the closed subset {π ∈ Â : J ⊆ kerπ} of Â and

then we identify Î/J with the open subset {π ∈ Â/J : π(I) �= {0}} (and similarly
for Prim(I/J); compare with §2.2.4).
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Conversely, if C is a locally closed subset of Â , then C is canonically homeomorphic

to ÎC/JC if we take JC := ker(C) and IC := ker
(
C � C

)
(we write ker(E) :=

∩{kerπ : π ∈ E} if E ⊆ Â and similarly ker(D) := ∩{P : P ∈ D} for D ⊆
Prim(A)). If we apply this observation to commutative C∗-algebras, we recover
the well-known fact that the locally closed subsets of a locally compact Hausdorff
space Y are precisely those subsets of Y that are locally compact in the relative
topology.

Definition 2.7.21. Let A be a C∗-algebra and let C be a locally closed subset of Â
(resp. Prim(A)). Then AC := IC/JC with IC , JC as above is called the restriction
of A to C. In the same way, we define the restriction AD of A to D for a locally
closed subset D of Prim(A).

In what follows, we shall use the following notations:

Notations 2.7.22. If (A,G, α) is a system, we consider Prim(A) as a G-space via
the continuous action G×Prim(A)→ Prim(A); (s, P ) �→ s ·P := αs(P ). We write

GP := {s ∈ G : s · P = P} and G(P ) := {s · P : s ∈ G}
for the stabiliser and the G-orbit of P ∈ Prim(A), respectively. Moreover, we put

PG := kerG(P ) = ∩{s · P : s ∈ G}.
Note that the stabilisers GP are closed subgroups of G for all P ∈ Prim(A).12

Remark 2.7.23. Similarly, we may consider the G-space Â with G-action (s, π) �→
s ·π := π ◦αs−1 (identifying representations with their equivalence classes) and we
then write Gπ and G(π) for the stabilisers and the G-orbits, respectively. However,
the stabilisers Gπ are not necessarily closed in G if A is not a type I algebra. If A
is type I, then π �→ kerπ is a G-equivariant homeomorphism from Â to Prim(A).

The following theorem is due to Glimm [Gli61]:

Theorem 2.7.24 (Glimm’s theorem). Suppose that (A,G, α) is a separable type I
system (i.e., A is a separable type I algebra and G is second countable). Then the
following are equivalent:

(i) The quotient space G\Prim(A) is almost Hausdorff.

(ii) G\Prim(A) is a T0-space.

(iii) All points in G\Prim(A) are locally closed.

(iv) For all P ∈ Prim(A) the quotient G/GP is homeomorphic to G(P ) via
s ·GP �→ s · P .

12The fact that GP is closed in G follows from the fact that Prim(A) is a T0-space. Indeed,
if {si} is a net in GP that converges to some s ∈ G, then P = si · P → s · P , so s · P is in the

closure of {P}. Conversely, we have s ·P = ss−1
i ·P → P , and hence {P} ∈ {sP}. Since Prim(A)

is a T0-space it follows that P = s · P .
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(v) There exists an ordinal number μ and an increasing sequence {Iν}ν≤μ of G-
invariant ideals of A such that I0 = {0}, Iμ = A and G\Prim(Iν+1/Iν) is
Hausdorff for all ν < μ.

Hence, if (A,G, α) is a separable type I system satisfying one of the equivalent
conditions above, then (A,G, α) is smooth in the sense of:

Definition 2.7.25. A system (A,G, α) is called smooth if the following two condi-
tions are satisfied:

(i) The map G/GP → G(P ); s · GP → s · P is a homeomorphism for all P ∈
Prim(A).

(ii) The quotient G\Prim(A) is almost Hausdorff, or A is separable and all orbits
G(P ) are locally closed in Prim(A).

If G(P ) is a locally closed orbit of Prim(A), then we may identify G(P ) with
Prim(AG(P )), where AG(P ) = IG(P )/JG(P ) denotes the restriction of A to G(P ) as
in Definition 2.7.21 (note that JG(P ) = PG = ∩{αs(P ) : s ∈ G}). Since the ideals
IG(P ) and JG(P ) are G-invariant, the action of G on A restricts to an action of G
on AG(P ). Using exactness of the full crossed-product functor, we get

AG(P ) �G = (IG(P )/JG(P ))�G ∼= (IG(P ) �G)/(JG(P ) �G). (2.7.5)

If G is exact, a similar statement holds for the reduced crossed products.

Proposition 2.7.26. Suppose that (A,G, α) is a system such that

(i) G\Prim(A) is almost Hausdorff, or

(ii) A is separable.

Then, for each π × U ∈ (A � G)̂ , there exists an orbit G(P ) ⊆ Prim(A) such
that kerπ = PG. If, in addition, all orbits in Prim(A) are locally closed (which is
automatic in the case of (i)), then G(P ) is uniquely determined by π × U .

Proof. (Following ideas from [Rie79]) Let J = kerπ. By passing from A to A/J
we may assume without loss of generality that π is faithful. We then have to show
that there exists a P ∈ Prim(A) such that G(P ) is dense in Prim(A).

We first show that under these assumptions every open subset W ⊆ G\Prim(A)
is dense. Indeed, since π is faithful, it follows that π × U restricts to a nonzero,
and hence irreducible representation of I�G, whenever I is a nonzero G-invariant
ideal of A. In particular, π(I)Hπ = Hπ for all such ideals I. Assume now that there
are two nonempty G-invariant open sets U1, U2 ⊆ Prim(A) with U1 ∩U2 = ∅. Put
Ii = ker(Prim(A)� Ui), i = 1, 2. Then I1, I2 would be nonzero G-invariant ideals
such that I1 · I2 = I1 ∩ I2 = {0}, and then

Hπ = π(I1)Hπ = π(I1)
(
π(I2)Hπ

)
= π(I1 · I2)Hπ = {0},

which is a contradiction.
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Assume that G\Prim(A) is almost Hausdorff. If there is no dense orbit G(P ) in
Prim(A), then G\Prim(A) contains an open dense Hausdorff subset that contains
at least two different points. But then there exist nonempty G-invariant open
subsets U1, U2 of Prim(A) with U1 ∩ U2 = ∅, which is impossible.

If A is separable, then G\Prim(A) is second countable (see [Dix77, Chapter 3]) and
we find a countable basis {Un : n ∈ N} for its topology with Un �= ∅ for all n ∈ N.
By the first part of this proof we know that all Un are dense in G\Prim(A). Since
G\Prim(A) is a Baire space by [Dix77, Chapter 3], it follows that D := ∩n∈NUn

is also dense in G\Prim(A). Note that every open subset of G\Prim(A) contains
D. Hence, if we pick any orbit G(P ) ∈ D then G(P ) is dense in Prim(A), since
otherwise D would be a subset of the nonempty open set G\(Prim(A) � G(P )

)
,

which is impossible.

If the dense orbit G(P ) is locally closed then G(P ) is open in its closure Prim(A),
which implies that G(P ) is the unique dense orbit in Prim(A). This gives the
uniqueness assertion of the proposition. �
Recall that if G(P ) is a locally closed orbit in Prim(A), we get AG(P ) � G ∼=
(IG(P ) �G)/(JG(P ) �G) and similarly AG(P ) �r G ∼= (IG(P ) �r G)/(JG(P ) �r G)
if G is exact. Using this we get

Corollary 2.7.27. Suppose that (A,G, α) is smooth. Then we obtain a decomposi-

tion of (A � G)̂ (resp. Prim(A � G)) as the disjoint union of the locally closed

subsets (AG(P ) �G)̂ (resp. Prim(AG(P ) �G)), where G(P ) runs through all G-
orbits in Prim(A). If G is exact, similar statements hold for the reduced crossed
products.

Proof. It follows from Proposition 2.7.26 that for each π × U ∈ (A � G)̂ , there
exists a unique orbit G(P ) such that kerπ = PG = JG(P ) and then π×U restricts
to an irreducible representation of AG(P ) �G. Hence

(A�G)̂ = ∪{(AG(P ) �G)̂ : G(P ) ∈ G\Prim(A)}.

To see that this union is disjoint, assume that there exists an element ρ × V ∈
(AG(P ) �G)̂ (viewed as a representation of A�G) such that ker ρ �= PG. Since
ρ is a representation of AG(P ) = IG(P )/P

G we have ker ρ ⊇ PG. By Proposition
2.7.26 there exists a Q ∈ Prim(A) such that ker ρ = QG. Then QG ⊇ PG, which
implies that G(Q) ⊆ (

G(P )�G(P )
)
. But then

ker ρ = QG = kerG(Q) ⊇ ker
(
G(P )�G(P )

)
= IG(P ),

which contradicts the assumption that ρ× V ∈ (AG(P ) �G)̂ . �
It is now easy to give a proof of the Mackey–Green–Rieffel theorem, which is
the main result of this section. If (A,G, α) is smooth, one can easily check that
points in Prim(A) are automatically locally closed (since they are closed in their
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orbits). Hence, for each P ∈ Prim(A) the restriction AP := IP /P of A to {P} is
a simple subquotient of A. Since IP and P are invariant under the action of the
stabiliser GP , the action of GP on A factors through an action of GP on AP . It is
then straightforward to check (using the same arguments as given in the proof of
Corollary 2.7.27) that there is a canonical one-to-one correspondence between the
irreducible representations of AP�GP and the set of all irreducible representations
ρ× V of A�GP satisfying ker ρ = P . In case where A = C0(X) is commutative,
we will study this problem in §2.7.3 below, and the case where A is type I will be
studied in §2.8.6.
Remark 2.7.28. If A is type I, then AP

∼= K(Hπ), the compact operators on
the Hilbert space Hπ, where π : A → B(Hπ) is the unique (up to equivalence)
irreducible representation of A with kerπ = P . To see this we first pass to A/P ∼=
π(A). Since A is type I we know that K(Hπ) ⊆ π(A). Hence, if we identify K(Hπ)
with an ideal of A/P , we see (since π does not vanish on this ideal) that this

ideal must correspond to the open set {π} (resp. {P}) in its closure Â/P (resp.
Prim(A/P )).

Theorem 2.7.29 (Mackey–Rieffel–Green). Suppose that (A,G, α) is smooth. Let
S ⊆ Prim(A) be a cross-section for the orbit space G\Prim(A), i.e., S intersects
each orbit G(P ) in exactly one point. Then induction of representations and ideals
induces bijections

Ind : ∪P∈S(AP �GP )̂ → (A�G)̂ ; ρ× V �→ indGGP
(ρ× V ) and

Ind : ∪P∈S Prim(AP �GP )→ Prim(A�G); Q �→ indGGP
Q.

If G is exact, these maps restrict to similar bijections

∪P∈S(AP �rGP )̂ Ind→ (A�rG)̂ and ∪P∈S Prim(AP �rGP )
Ind→ Prim(A�rG)

for the reduced crossed products.

Proof. We show that Ind : ∪P∈S(AP �GP )̂ → (A�G)̂ is a bijection. Bijectivity
of the other maps follows similarly.

By Corollary 2.7.27 it suffices to show that Ind : (AP �GP )̂ → (AG(P )�G)̂ is a
bijection for all P ∈ S. By definition of AG(P ) we have Prim(AG(P )) ∼= G(P ) and
by the smoothness of the action we have G(P ) ∼= G/GP as G-spaces. Hence, it
follows from Theorem 2.6.2 that AG(P )

∼= IndGGP
AP . Hence induction via Green’s

AG(P ) �G−AP �GP imprimitivity bimodule XP := XG
GP

(AP ) gives the desired

bijection indXP : (AP � GP )̂ → (AG(P ) � G)̂ . By Corollary 2.7.9, induction
via XP coincides with the usual induction for the system (AG(P ), G, α), which by
Remark 2.7.16 is compatible with inducing the corresponding representations for
(A,G, α). �
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The above result shows that for smooth systems, all representations are induced
from the stabilisers for the corresponding action of G on Prim(A). In fact the
above result is much stronger, since it shows that A � G has a “fibration” over
G\Prim(A) such that the fiber AG(P )�G over an orbit G(P ) is Morita equivalent
to AP �GP , hence, up to the global structure of the fibration, the study of A�G
reduces to the study of the fibers AP � GP . Note that under the assumptions of
Theorem 2.7.29 the algebra AP is always simple. We shall give a more detailed
study of the crossed products AP �GP in the important special case where A is
type I in §2.8.6 below. The easier situation where A = C0(X) is treated in §2.7.3
below.

Note that the study of the global structure of A�G, i.e., of the global structure of
the fibration over G\Prim(A) is in general quite complicated, even in the situation
where G\Prim(A) is Hausdorff. In general, it is also very difficult (if not impos-
sible) to describe the global topology of Prim(A�G) in terms of the bijection of
Theorem 2.7.29. Some progress has been made in the case where A is a continuous-
trace C∗-algebra and/or where the stabilisers are assumed to vary continuously,
and we refer to [CKRW97,Ech96,EE11,ER96,EN01,EW98,EW14,RW98] and the
references given in those papers and books for more information on this problem.
If A = C0(X) is commutative and G is abelian, a very satisfying description of
the topology of Prim(C0(X)�G) has been obtained by Dana Williams in [Wil81].
We shall discuss this situation in §2.7.3 below.

Even worse, the assumption of having a smooth action is a very strong one and
for arbitrary systems one cannot expect that one can compute all irreducible
representations via induction from stabilisers. Indeed, in general it is not possible
to classify all irreducible representations of a non–type I C∗-algebra, and a similar
problem occurs for crossed products A�G if the action of G on Prim(A) fails to
be smooth. However, at least if (A,G, α) is separable and G is amenable, there
is a positive result towards the description of Prim(A � G) which was obtained
by work of Sauvageot and Gootman–Rosenberg, thus giving a positive answer to
an earlier formulated conjecture by Effros and Hahn (see [EH67]). To give precise
statements, we need

Definition 2.7.30. A nondegenerate representation ρ of a C∗-algebra A is called
homogeneous if all nontrivial subrepresentations of ρ have the same kernel as ρ.

It is clear that every irreducible representation is homogeneous and one can show
that the kernel of any homogeneous representation is a prime ideal, and hence it
is primitive if A is second countable. We refer to [Wil07] for a discussion on this
and for very detailed proofs of Theorems 2.7.31 and 2.7.32 stated below:

Theorem 2.7.31 (Sauvageot ([Sau79])). Suppose that (A,G, α) is a separable sys-
tem (i.e., A is separable and G is second countable). Let P ∈ Prim(A) and let GP

denote the stabiliser of P in G. Suppose that ρ×V is a homogeneous representation
of A�GP such that ρ is a homogeneous representation of A with ker ρ = P . Then



58 Chapter 2. Crossed products and the Mackey–Rieffel–Green machine

indGGP
(ρ× V ) is a homogeneous representation of A�G and ker

(
indGGP

(ρ× V )
)

is a primitive ideal of A�G.

We say that a primitive ideal of A�G is induced if it is obtained as in the above
theorem. Note that Sauvageot already showed in [Sau79] that in the case where
G is amenable, every primitive ideal of A�G contains an induced primitive ideal
and in case where G is discrete every primitive ideal is contained in an induced
primitive ideal. Together, this shows that for actions of discrete amenable groups
all primitive ideals of A � G are induced from the stabilisers. Sauvageot’s result
was generalized by Gootman and Rosenberg in [GR79, Theorem 3.1]:

Theorem 2.7.32 (Gootman–Rosenberg). Suppose that (A,G, α) is a separable sys-
tem. Then every primitive ideal of A � G is contained in an induced ideal. As a
consequence, if G is amenable, then every primitive ideal of A�G is induced.

The condition in Theorem 2.7.31 that the representations ρ× V and ρ are homo-
geneous is a little bit unfortunate. In fact, a somehow more natural formulation of
Sauvageot’s theorem (using the notion of induced ideals) would be to state that
whenever Q ∈ Prim(A�GP ) such that resGP

{e}(Q) = P , then indGGP
(Q) is a primi-

tive ideal of A�G. Note that if ρ×V is as in Theorem 2.7.31, then Q = ker(ρ×V )
is an element of Prim(A � GP ), which satisfies the above conditions. At present
time, we do not know whether this more general statement is true, and we want to
take this opportunity to point out that the statement of [Ech96, Theorem 1.4.14]
is not correct (or at least not known) as it stands. We are very grateful to Dana
Williams for pointing out this error and we refer to the paper [EW08] for a more
elaborate discussion of this problem. But let us indicate here that the problem
vanishes if all points in Prim(A) are locally closed (which is particularly true if A
is type I).

Proposition 2.7.33. Suppose that (A,G, α) is a separable system such that one of
the following conditions is satisfied:

(i) All points in Prim(A) are locally closed (which is automatic if A is type I).

(ii) All stabilisers GP for P ∈ Prim(A) are normal subgroups of G (which is
automatic if G is abelian).

Then indGGP
Q ∈ Prim(A�G) for all P ∈ Prim(A) and Q ∈ Prim(A�GP ) such

that resGP

{e} Q = P . If, in addition, G is amenable, then all primitive ideals of A�G

are induced in this way.

Proof. Let us first assume condition (i). Choose ρ × V ∈ (A � GP )̂ such that
ker(ρ × V ) = Q and ker ρ = P . Then we may regard ρ as a representation of
AP , the simple subquotient of A corresponding to the locally closed subset {P}
of Prim(A). Since AP is simple, all nontrivial subrepresentations of ρ have kernel
{0} in AP (and hence they have kernel P in A). Hence ρ is homogeneous and the
result follows from Theorems 2.7.31 and 2.7.32.
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Let us now assume (ii). If N := GP is normal, we may use the theory of twisted
actions, which we shall present in §2.8 below, to pass to the system ((A � N) ⊗
K, G/N, β). If ρ × V ∈ (A � N)̂ with ker(ρ × V ) = P , then the corresponding
representation of (A � N) ⊗ K has trivial stabiliser in G/N , and therefore the
induced representation has primitive kernel in A�G ∼M

(
(A�N)⊗K)�G/N

by Theorem 2.7.31. �

Recall that if M is a topological G-space, then two elements m1,m2 ∈M are said
to be in the same quasi-orbit if m1 ∈ G(m2) and m2 ∈ G(m1). Being in the same
quasi-orbit is clearly an equivalence relation on M and we denote by Gq(m) the
quasi-orbit (i.e., the equivalence class) of m and by QG(M) the set of all quasi-
orbits in M equipped with the quotient topology. Note that QG(M) is always a
T0-space. If G\M is a T0-space, then QG(M) coincides with G\M .

If (A,G, α) is a system, it follows from the definition of the Jacobson topology that
two elements P,Q ∈ Prim(A) are in the same quasi-orbit if and only if PG = QG.
If the action of G on A is smooth, then all points in G\Prim(A) are locally closed,
which implies in particular that G\Prim(A) is a T0-space. Hence in this case we
have QG(Prim(A)) = G\Prim(A). In what follows, we let

PrimG(A) := {PG : P ∈ Prim(A)} ⊆ I(A)

equipped with the relative Fell topology. Then [Gre78, Lemma on p. 221] gives

Lemma 2.7.34. Let (A,G, α) be a system. Then the map

q : Prim(A)→ PrimG(A) : P �→ PG

is a continuous and open surjection and therefore factors through a homeomor-
phism between QG(Prim(A)) and PrimG(A).

As a consequence of the previous results we get

Corollary 2.7.35. Suppose that (A,G, α) is smooth or that (A,G, α) is separable
and G is amenable. Suppose further that the action of G on Prim(A) is free (i.e.,
all stabilisers are trivial). Then the map

Ind : PrimG(A) ∼= QG(Prim(A))→ Prim(A�G);P �→ indG{e} P
G

is a homeomorphism. In particular, A�G is simple if and only if every G-orbit is
dense in Prim(A), and A�G is primitive (i.e., {0} is a primitive ideal of A�G)
if and only if there exists a dense G-orbit in Prim(A).

Proof. It follows from Theorem 2.7.29 and Theorem 2.7.32 that the map indG{e} :

Prim(A) → Prim(A � G);P �→ indG{e} P is well defined and surjective. By Corol-

lary 2.7.13 we know that indG{e} P = indG{e} P
G, so the induction map Ind :

PrimG(A) → Prim(A � G) is also well defined and surjective. Equation (2.7.4)
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applied to H = {e} gives resG{e}(ind
G
{e} P ) = PG, which shows that resG{e} :

Prim(A � G) → PrimG(A) is the inverse of Ind. Since induction and restriction
are continuous by Proposition 2.7.4 the result follows. �
A quite recent result of Sierakowski (see [Sie10, Proposition 1.3 and Theorem
1.20] and [EL13, Corollary 2.7]) shows that for countable discrete groups G, the
assumptions for the action of G on Prim(A) and of amenability of G can be
weakened considerably. We need

Definition 2.7.36. An action of a group G on a topological space X is called
essentially free if every G-invariant closed subset C ⊆ X contains a dense G-
invariant subset D such that G acts freely on D.

Theorem 2.7.37 (Sierakowski). Suppose that (A,G, α) is a C∗-dynamical system
with A separable and G countable (hence discrete) and exact. Suppose further that

the action of G on Â is essentially free (which is true if the action of G on Prim(A)
is essentially free). Then the map

Ind : PrimG(A) ∼= QG(Prim(A))→ Prim(A�r G);P �→ IndGe P

is a well-defined homeomorphism.

Since the induced ideals in the above theorem clearly contain the kernel of the
regular representation of A � G, it is clear that a similar statement cannot hold
for the full crossed product A�G if it differs from A�r G.

We should note that Sierakowski’s original results [Sie10, Proposition 1.3 and
Theorem 1.20] show, that under the assumptions of the theorem the map res :
I(A�r G)→ IG(A); J �→ J ∩A is a bijection between the set of closed two-sided
ideals in A �r G and the set of G-invariant closed two-sided ideals in A, with
the inverse given by I �→ I �r G. The straightforward translation of this into the
statement of the above theorem has been given in [EL13]. We should also mention
that Sierakowski’s result still holds under some slightly weaker assumptions, which
he calls the residual Rokhlin* property. We refer the interested reader to [Sie10]
for more details on this property.

Remark 2.7.38. If (A,G, α) is a system with constant stabiliser N for the ac-
tion of G on Prim(A), then N is normal in G and one can pass to the iterated
twisted system (A�N,G,N, αN , τN ) (see §2.8 below), and then to an equiv-
ariantly Morita equivalent system (B,G/N, β) (see Proposition 2.8.8) to see that
induction of primitive ideals gives a homeomorphism between QG/N (Prim(A�N))
and Prim(A�G) if one of the following conditions are satisfied:

(i) (A,G, α) is smooth.

(ii) (A � N,G,N, αN , τN ) is smooth (i.e., the action of G/N on Prim(A � N)
via αN satisfies the conditions of Definition 2.7.25).

(iii) (A,G, α) is separable and G/N is amenable.
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A similar result can be obtained for systems with continuously varying stabilisers
(see [Ech92]). In the case of constant stabilisers, the problem of describing the
topology of Prim(A�G) now reduces to the description the topology of Prim(A�
N) and the action of G/N on Prim(A � N). In general, both parts can be quite
difficult to perform, but in some interesting special cases, e.g., if A has continuous
trace, some good progress has been made for the description of Prim(A�N) (e.g.
see [EW01,EW98,EN01] and the references given there). Of course, if A = C0(X)
is abelian, and N is the constant stabiliser of the elements of Prim(A) = X,
then N acts trivially on X and Prim(C0(X) � N) = Prim(C0(X) ⊗ C∗(N)) =
X × Prim(C∗(N)).

Example 2.7.39. As an easy application of Corollary 2.7.35 we get the simplicity
of the irrational rotation algebra Aθ, for θ an irrational number in (0, 1). Recall
that Aθ = C(T) �θ Z where n ∈ Z acts on z ∈ T via n · z := e2πiθnz. Since θ is
irrational, the action of Z on Prim(C(T)) = T is free and all Z-orbits are dense in
T. Hence, there exists only one quasi-orbit in T and the crossed product is simple.
Of course, there are other more elementary proofs for the simplicity of Aθ which
do not use such heavy machinery, but this example illustrates quite well how one
can use the above results.

2.7.3 The Mackey machine for transformation groups

Suppose that X is a locally compact G-space and consider the corresponding
action of G on A = C0(X) given by (s · ϕ)(x) = ϕ(s−1x) for s ∈ G, ϕ ∈ C0(X).
Then Prim(A) = X and Ax

∼= C for all x ∈ X, so that Ax � Gx
∼= C∗(Gx) for

all x ∈ X, where Gx denotes the stabiliser of x. Hence, if the action of G on X is
smooth in the sense of Definition 2.7.25, then it follows from Theorem 2.7.29 that
C0(X)�G is “fibred” over G\X with fibres C0(G(x))�G ∼M C∗(Gx) (compare
the discussion following Theorem 2.7.29).

If V ∈ Ĝx and if εx : C0(X) → C denotes evaluation at x, then εx × V is the

representation of C0(X) � Gx which corresponds to V by regarding Ĝx
∼= (Ax �

Gx)̂ as a subset of (A�Gx)̂ as described in the discussion preceeding Theorem
2.7.29. In this situation, the result of Theorem 2.7.31 can be improved by showing:

Proposition 2.7.40 (cf. [Wil81, Proposition 4.2]). Let εx × V ∈ (C0(X)�Gx)̂ be

as above. Then indGGx
(εx � V ) is irreducible. Moreover, if V,W ∈ Ĝx, then

indGGx
(εx × V ) ∼= indGGx

(εx ×W ) ⇐⇒ V ∼= W.

Combining this with Theorem 2.7.29 and Theorem 2.7.32 gives:

Theorem 2.7.41. Suppose that X is a locally compact G-space.

(i) If G acts smoothly on X, and if S ⊆ X is a section for G\X, then we get a
bijection

Ind : ∪x∈SĜx →
(
C0(X)�G

)̂ ;V �→ indGGx
(εx × V ).
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(ii) If X and G are second countable and if G is amenable, then every primitive
ideal of C0(X) � G is the kernel of some induced irreducible representation
indGGx

(εx × V ).

If G is abelian, then so are the stabilisers Gx for all x ∈ X. Then Ĝx is the
Pontrjagin dual group of Gx and we get a short exact sequence

0→ Ĝ/Gx → Ĝ
res→ Ĝx → 0

for all x ∈ X. Moreover, since Gx is normal in G, it follows that the stabilisers are
constant on quasi-orbits Gq(x) in X. We can then consider an equivalence relation

on X × Ĝ by

(x, χ) ∼ (y, μ)⇔ Gq(x) = Gq(y) and χ|Gx
= μ|Gy

.

Then the following result is [Wil81, Theorem 5.3]:

Theorem 2.7.42 (Williams). Suppose that G is abelian and the action of G on X
is smooth or G and X are second countable. Then the map

Ind : (X × Ĝ)/ ∼→ Prim(C0(X)�G); [(x, χ)] �→ ker(IndGGx
(εx � χ|Gx

))

is a homeomorphism.

Note that in the case where the action of G on X is smooth and G is abelian, the
crossed product C0(X) � G is type I, since C∗(Gx) is type I. Hence, in this case

we get a homeomorphism between (X × Ĝ)/ ∼ and (C0(X)�G)̂ . We now want
to present some applications to group representation theory:

Example 2.7.43. Suppose that G = N�H is the semi-direct product of the abelian
group N by the group H. Then, as seen in Example 2.3.6, we have

C∗(N �H) ∼= C∗(N)�H ∼= C0(N̂)�H,

where the last isomorphism is given via the Gelfand-transform C∗(N) ∼= C0(N̂).

The corresponding action of H on C0(N̂) is induced by the action of H on N̂ given

by
(
h·χ)(n) := χ(h−1·n) if h ∈ H, χ ∈ N̂ and n ∈ N . Thus, if the action ofH on N̂

is smooth, we obtain every irreducible representation of C∗(N �H) ∼= C0(N̂)�H

as an induced representation indHHχ
(εχ × V ) for some χ ∈ N̂ and V ∈ Ĥχ. The

isomorphism C0(N̂)�Hχ
∼= C∗(N �Hχ), transforms the representation εχ×V to

the representation χ× V of N �Hχ defined by χ× V (n, h) = χ(n)V (h), and one

can show that indN�H
N�Hχ

(χ× V ) corresponds to the representation indHHχ
(εχ × V )

under the isomorphism C∗(N �H) ∼= C0(N̂)�H. Thus, choosing a cross-section

S ⊆ N̂ for H\N̂ , it follows from Theorem 2.7.29 that

Ind : ∪{Ĥχ : χ ∈ S} → N̂ �H;V �→ indN�H
N�Hχ

(χ× V )
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is a bijection.

If the action of H on N̂ is not smooth, but N � H is second countable and
amenable, then we get at least all primitive ideals of C∗(N �H) as kernels of the
induced representations indN�H

N�Hχ
(χ× V ).

Let us now discuss some explicit examples:

(1) Let G = R�R∗ denote the ax+ b-group, i.e., G is the semi-direct product for

the action of the multiplicative group R∗ on R via dilation. Identifying R with R̂
via t �→ χt with χt(s) = e2πits, we see easily that the action of R∗ on R̂ is also

given by dilation. Hence there are precisely two orbits in R̂: {χ0} and R̂ � {χ0}.
Let S = {χ0, χ1} ⊆ R̂. Then S is a cross-section for R∗\R̂, the stabiliser of χ1 in
R∗ is {1} and the stabiliser of χ0 is all of R∗. Thus, we see that

Ĝ = {χ0 × μ : μ ∈ R̂∗} ∪ {indR�R
∗

R
χ1}.

It follows from Theorem 2.7.42 that the single representation π := indR�R
∗

R
χ1 is

dense in Ĝ and that the set {χ0 × μ : μ ∈ R̂∗} ⊆ Ĝ is homeomorphic to R̂∗ ∼= R∗.

Note that we could also consider the C∗-algebra C∗(G) as “fibred” over R∗\R̂:
The open orbit R̂�{χ0} ∼= R∗ corresponds to the ideal C0(R∗)�R∗ ∼= K(L2(R∗))
and the closed orbit {χ0} corresponds to the quotient C0(R̂∗) of C∗(G), so that
this picture yields the short exact sequence

0→ K(L2(R∗))→ C∗(G)→ C0(R̂∗)→ 0

(compare also with Example 2.6.6).

(2) A more complicated example is given by the Mautner group. This group is the
semi-direct product G = C2 �R with action given by

t · (z, w) = (e−2πitz, e−2πiθtw),

where θ ∈ (0, 1) is a fixed irrational number. Identifying C2 with the dual group

Ĉ2 via (u, v) �→ χ(u,v) such that

χ(u,v)(z, w) = exp(2πiRe(zū+ wv̄)),

we get t · χ(u,v) = χ(e2πitu,e2πiθtz). The quasi-orbit space for the action of R on

Ĉ2 can then be parametrized by the set [0,∞) × [0,∞): If (r, s) ∈ [0,∞)2, then
the corresponding quasi-orbit O(r,s) consists of all (u, v) ∈ C2 such that |u| = r
and |v| = s. Hence, if r, s > 0, then O(r,s) is homeomorphic to T2 and this
homeomorphism carries the action of R on O(r,s) to the irrational flow of R on T2

corresponding to θ as considered in part (4) of Example 2.6.6. In particular, R acts
freely but not smoothly on those quasi-orbits. If r �= 0 and s = 0, the quasi-orbit
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O(r,s) is homeomorphic to T with action t · u := e2πitu and constant stabiliser Z.
In particular, all those quasi-orbits are orbits. Similarly, if r = 0 and s �= 0, the
quasi-orbit O(r,s) is homeomorphic to T with action t · v = e2πiθtv and stabiliser
1
θZ. Finally, the quasi-orbit corresponding to (0, 0) is the point-set {(0, 0)} with
stabiliser R.

Since G is second countable and amenable, we can therefore parametrize
Prim(C∗(G)) by the set

{(r, s) : r, s > 0} ∪ ((0,∞)× Ẑ
) ∪ ((0,∞)× 1̂

θ
Z
) ∪ R̂.

In fact, we can also view C∗(G) as “fibred” over [0,∞)2 with fibers

C∗(G)(r,s) ∼= C(T2)�θ R ∼M Aθ for r, s > 0,

where Aθ denotes the irrational rotation algebra,

C∗(G)(r,0) ∼= C(T)�R ∼M C(Ẑ) ∼= C(T) for r > 0,

C∗(G)(0,s) ∼= C(T)�θ R ∼M C( 1̂
θ
Z) ∼= C(T) for s > 0,

and C∗(G)(0,0) ∼= C0(R). Using Theorem 2.7.42, it is also possible to describe the
topology of Prim(G), but we do not go into the details here. We should mention
that the Mautner group is the lowest-dimensional example of a connected Lie-
group G with a non–type I group algebra C∗(G).

Remark 2.7.44. It follows from Theorems 2.7.29 and 2.7.32 that for understanding
the ideal structure of A�G, it is necessary to understand the structure of AP �GP

for P ∈ Prim(A). We saw in this section that this is the same as understanding the
group algebras C∗(Gx) for the stabilisers Gx if A = C0(X) is abelian. In general,
the problem becomes much more difficult. However, at least in the important
special case where A is type I, one can still give a quite satisfactory description of
AP �GP in terms of the stabilisers. Since an elegant treatment of that case uses
the theory of twisted actions and crossed products, we postpone the discussion of
this case to §2.8.6 below.

2.8 The Mackey–Rieffel–Green machine for twisted
crossed products

2.8.1 Twisted actions and twisted crossed products

One drawback of the theory of crossed products by ordinary actions is the fact
that crossed products A�G (and their reduced analogues) cannot be written as
iterated crossed products (A�N)�G/N if N is a normal subgroup such that the
extension

1→ N → G→ G/N → 0



2.8. The Mackey–Rieffel–Green machine for twisted crossed products 65

is not topologically split (compare with Example 2.3.6). In order to close this
gap, we now introduce twisted actions and twisted crossed products following Phil
Green’s approach of [Gre78]. Note that there is an alternative approach due to
Leptin and Busby-Smith (see [Lep65,BS70,PR89] for the construction of twisted
crossed products within this theory), but Green’s theory seems to be better suited
for our purposes.

As a motivation, consider a closed normal subgroup N of the locally compact
group G, and assume that α : G→ Aut(A) is an action. Let A�N be the crossed
product of A by N . Let δ : G → R+ be the module for the conjugation action
of G on N , i.e., δ(s)

∫
N
f(s−1ns) dn =

∫
N
f(n) dn for all f ∈ Cc(N). A short

computation using the formula∫
G

g(s) ds =

∫
G/N

(∫
N

g(sn) dn

)
dsN (2.8.1)

(with respect to suitable choices of Haar measures) shows that δ(s) =
ΔG(s)ΔG/N (s−1) for all s ∈ G. Similar to Example 2.3.6 we define an ac-
tion αN : G→ Aut(A�N) by(

αN
s (f)

)
(n) = δ(s)αs

(
f(s−1ns)

)
(2.8.2)

for f in the dense subalgebra Cc(N,A) ⊆ A�N . If we denote by τN := iN : N →
UM(A�N) the canonical embedding as defined in part (1) of Remark 2.3.4, then
the pair (αN , τN ) satisfies the equations

τNn xτNn−1 = αN
n (x) and αN

s (τNn ) = τNsns−1 (2.8.3)

for all x ∈ A�N , n ∈ N and s ∈ G, where in the second formula we extended the
automorphism αN

s of A�N to M(A�N). Suppose now that (π, U) is a covariant
homomorphism of (A,G, α) into some M(D). Let (π, U |N ) denote its restriction
to (A,N, α) and let π × U |N : A � N → M(D) be its integrated form. Then
(π×U |N , U) is a nondegenerate covariant homomorphism of (A�N,G, αN ) that
satisfies

π × U |N (τNn ) = Un

for all n ∈ N (see Remark 2.3.4). The pair (αN , τN ) is the prototype for a twisted
action (which we denote the decomposition twisted action) and (π×U |N , U) is the
prototype of a twisted covariant homomorphism as in

Definition 2.8.1 (Green). Let N be a closed normal subgroup of G. A twisted
action of (G,N) on a C∗-algebra A is a pair (α, τ) such that α : G → Aut(A) is
an action and τ : N → UM(A) is a strictly continuous homomorphism such that

τnaτn−1 = αn(a) and αs(τn) = τsns−1

for all a ∈ A, n ∈ N and s ∈ G. We then say that (A,G,N, α, τ) is a twisted
system. A (twisted) covariant homomorphism of (A,G,N, α, τ) into some M(D)
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is a covariant homomorphism (ρ, V ) of (A,G, α) into M(D) which preserves τ in
the sense that ρ(τna) = Vnρ(a) for all n ∈ N, a ∈ A.13

Remark 2.8.2. Note that the kernel of the regular representation ΛN
A : A �N →

A �r N is easily seen to be invariant under the decomposition twisted action
(αN , τN ) (which just means that it is invariant under αN ), so that (αN , τN ) in-
duces a twisted action on the quotient A�r N . In what follows, we shall make no
notational difference between the decomposition twisted actions on the full or the
reduced crossed products.

Let Cc(G,A, τ) denote the set of all continuous A-valued functions on G with
compact support mod N and that satisfy

f(ns) = f(s)τn−1 for all n ∈ N , s ∈ G.

Then Cc(G,A, τ) becomes a ∗-algebra with convolution and involution defined by

f ∗ g(s) =
∫
G/N

f(t)αt(g(t
−1s)) dtN and f∗(s) = ΔG/N (s−1)αs

(
f(s−1)∗

)
.

If (ρ, V ) is a covariant representation of (A,G,N, α, τ), then the equation

ρ× V (f) =

∫
G/N

ρ(f(s))Vs dsN

defines a ∗-homomorphism ρ × V : Cc(G,A, τ) → M(D), and the full twisted
crossed product A�α,τ (G,N) (or just A�(G,N) if (α, τ) is understood) is defined
as the completion of Cc(G,A, τ) with respect to

‖f‖max :=sup{‖ρ×V (f)‖ : (ρ, V ) is a covariant homomorphism of (A,G,N, α, τ)}.

Note that the same formulas as given in Remark 2.3.4 define a twisted covariant
homomorphism (iA, iG) of (A,G,N, α, τ) into M(A� (G,N)) such that any non-
degenerate homomorphism Φ : A� (G,N)→M(D) is the integrated form ρ× V
with ρ = Φ ◦ iA and V = Φ ◦ iG.
Remark 2.8.3. It is important to note that for any twisted action (α, τ) of (G,N)
the map

Φ : Cc(G,A)→ Cc(G,A, τ); Φ(f)(s) =

∫
N

f(sn)τsns−1 dn

extends to a quotient map Φ : A � G → A � (G,N) of the full crossed products,
such that kerΦ = ∩{ker(π × U) : (π, U) preserves τ}. The ideal Iτ := kerΦ is
called the twisting ideal of A�G. Note that if G = N , then A� (N,N) ∼= A via
f �→ f(e);Cc(N,A, τ)→ A.

13The latter condition becomes ρ(τn) = Vn if (ρ, V ) is nondegenerate.
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For the definition of the reduced twisted crossed products A�α,τ,r (G,N) (or just
A�r (G,N)) we define a Hilbert A-module L2(G,A, τ) by taking the completion
of Cc(G,A, τ) with respect to the A-valued inner product

〈ξ, η〉A := ξ∗ ∗ η(e) =
∫
G/N

αs−1

(
ξ(s)∗η(s)

)
dsN.

The regular representation

ΛG,N
A : Cc(G,A, τ)→ LA(L

2(G,A, τ)); ΛG,N
A (f)ξ = f ∗ ξ

embeds Cc(G,A, τ) into the algebra of adjointable operators on L2(G,A, τ) and

then A�r (G,N) := ΛG,N
A

(
Cc(G,A, τ)

) ⊆ LA(L
2(G,A, τ)). If N = {e} is trivial,

then LA(L
2(G,A)) identifies naturally with M(A⊗K(L2(G))), and we recover the

original definition of the regular representation ΛG
A of (A,G, α) and of the reduced

crossed product A�r G of A by G.

Remark 2.8.4. The analogue of Remark 2.8.3 does not hold in general for the
reduced crossed products, i.e., A�r (G,N) is in general not a quotient of A�r G.
For example, if N is not amenable, the algebra C∗

r (G/N) = C�id,1,r (G,N) is not
a quotient of C∗

r (G) = C�id,r G – at least not in a canonical way.

We are now coming back to the decomposition problem

Proposition 2.8.5 (Green). Let α : G → Aut(A) be an action, let N be a closed
normal subgroup of G, and let (αN , τN ) be the decomposition twisted action of
(G,N) on A�N . Then the map

Ψ : Cc(G,A)→ Cc(G,Cc(N,A), τN ); Ψ(f)(s)(n) = δ(s)f(ns) (2.8.4)

extends to isomorphisms A�G ∼= (A�N)� (G,N) and A�r G ∼= (A�r N)�r

(G,N). In particular, if A = C we obtain isomorphisms C∗(G) ∼= C∗(N)� (G,N)
and C∗

r (G) ∼= C∗
r (N)�r(G,N). Under the isomorphism of the full crossed products,

a representation π×U of A�G corresponds to the representation (π×U |N )×U
of (A�N)� (G,N).

A similar result holds if we start with a twisted action of (G,M) on A with
M ⊆ N (see [Gre78, Proposition 1] and [CE01b]). We should note that Green only
considered full crossed products in [Gre78]. The above decomposition of reduced
crossed products was first shown by Kirchberg and Wassermann in [KW00]. Note
that all results stated in §2.3 for ordinary crossed products have their complete
analogues in the twisted case, where G/N plays the rôle of G. In particular, the
full and reduced crossed products coincide if G/N is amenable. Indeed, we shall
see in §2.8.2 below that there is a convenient way to extend results known for
ordinary actions to the twisted case via Morita equivalence (see Theorem 2.8.9
below).
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2.8.2 The twisted equivariant correspondence category and the
stabilisation trick

As done for ordinary actions in §2.5 we may consider the twisted equivariant
correspondence category Corr(G,N) (resp. the compact twisted equivariant cor-
respondence category Corrc(G,N)) in which the objects are twisted systems
(A,G,N, α, τ) and in which the morphism from (A,G,N, α, τ) and (B,G,N, β, σ)
are given by morphisms [E,Φ, u] from (A,G, α) to (B,G, β) in Corr(G) (resp.
Corrc(G)) which preserve the twists in the sense that

Φ(τn)ξ = un(ξ)σn for all n ∈ N . (2.8.5)

As for ordinary actions, the crossed product construction (A,G,N, α, τ) �→ A�(r)

(G,N) extend to (full and reduced) descent functors

�(r) : Corr(G,N)→ Corr.

If [E,Φ, u] ∈ Mor(G,N) is a morphism from (A,G,N, α, τ) to (B,G,N, β, σ), then
the descent [E�(r)(G,N),Φ�(r)(G,N)] can be defined by setting E�(r)(G,N) :=

(E �G)/
(
(E �G) · I(r)

)
with I(r) := ker

(
B �G→ B �(r) (G,N)

)
. Alternatively,

one can construct E�(r)G as the closure of Cc(G,E, σ), the continuous E-valued
functions ξ on G with compact support modulo N satisfying ξ(ns) = ξ(s)σn−1 for
s ∈ G, n ∈ N , with respect to the B �(r) (G,N)-valued inner product given by

〈ξ, η〉B�(r)(G,N)(t) =

∫
G/N

βs−1(〈ξ(s), η(ts)〉B) dsN

(compare with the formulas given in §2.5.4).
There is a natural inclusion functor inf : Corr(G/N)→ Corr(G,N) given as follows:
If (A,G/N,α) is an action of G/N , we let inf α : G→ Aut(A) denote the inflation
of α from G/N to G and we let 1N : N → U(A) denote the trivial homomorphism
1N (s) = 1. Then (inf α, 1N ) is a twisted action of (G,N) on A and we set

inf
(
(A,G/N,α)

)
:= (A,G,N, inf α, 1N ).

Similarly, on morphisms we set inf
(
[E,Φ, u]

)
:= [E,Φ, inf u], where inf u denotes

the inflation of u from G/N toG. The dense subalgebra Cc(G,A, 1N ) of the crossed
product A�(r) (G,N) for (inf α, 1N ) consists of functions that are constant on N -
cosets and that have compact supports inG/N , hence it coincides with Cc(G/N,A)
(even as a ∗-algebra). The identification Cc(G,A, 1N ) ∼= Cc(G/N,A) extends to
the crossed products, and we obtain canonical isomorphisms A�(r)G/N ∼= A�(r)

(G,N). A similar observation can be made for the crossed products of morphism
and we see that the inclusion inf : Corr(G/N) → Corr(G,N) is compatible with
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the crossed product functor in the sense that the diagram

Corr(G/N)
inf−−−−→ Corr(G,N)

�

⏐⏐� ⏐⏐��

Corr Corr

commutes.

In what follows next we want to see that every twisted action is Morita equivalent
(and hence isomorphic in Corr(G,N)) to some inflated twisted action as above.
This will allow us to pass to an untwisted system whenever a theory (such as
the theory of induced representations, or K-theory of crossed products, etc.) only
depends on the Morita equivalence class of a given twisted action.

To do this, we first note that Green’s imprimitivity theorem (see Theorem 2.6.4)
extends easily to crossed products by twisted actions: If N is a closed normal
subgroup of G such that N ⊆ H for some closed subgroup H of G, and if (α, τ) is
a twisted action of (H,N) on A, then we obtain a twisted action (Indα, Ind τ) of
(G,N) on IndGH(A,α) by defining

(Ind τnf)(s) = τs−1nsf(s) for f ∈ IndA, s ∈ G and n ∈ N.

One can check that the twisting ideals Iτ ⊆ A � H and IInd τ ⊆ IndA � G (see
Remark 2.8.3) are linked via the Rieffel correspondence of the IndA�G−A�H
imprimitivity bimodule XG

H(A). Similarly, the kernels Iτ,r := ker
(
A�H → A�r

(H,N)
)
and IInd τ,r := ker

(
IndA � G → IndA �r (G,N)

)
are linked via the

Rieffel correspondence (we refer to [Gre78] and [KW00] for the details). Thus,
from Proposition 2.5.4 it follows:

Theorem 2.8.6. The quotient Y G
H (A) := XG

H(A)/(XG
H(A) · Iτ ) (resp. Y G

H (A)r :=

XG
H(A)/(XG

H(A) · Iτ,r)) becomes an IndGH(A,α) � (G,N) - A � (H,N) (resp.

IndGH(A,α)�r (G,N) - A�r (H,N)) imprimitivity bimodule.

Remark 2.8.7. (1) Alternatively, one can construct the modules Y G
H (A) and

Y G
H (A)r by taking completions of Y0(A) := Cc(G,A, τ) with respect to suitable

Cc(G, IndA, Ind τ)- and Cc(N,A, τ)-valued inner products. The formulas are pre-
cisely those of (2.6.1) if we integrate over G/N and H/N , respectively (compare
with the formula for convolution in Cc(G,A, τ) as given in §2.8).
(2) If we start with a twisted action (α, τ) of (G,N) on A and restrict this to
(H,N), then the induced algebra IndGH(A,α) is isomorphic to C0(G/H,A) ∼=
C0(G/H) ⊗ A as in Remark 2.6.1. The isomorphism transforms the action Indα
to the action l ⊗ α : G → Aut(C0(G/H,A)), with l : G → Aut(C0(G/H)) be-
ing left-translation action, and the twist Ind τ is transformed to the twist 1⊗ τ :
N → U(C0(G/H)⊗A). Hence, in this setting, the above theorem provides Morita
equivalences

A�(r) (H,N) ∼M C0(G/H,A)�(r) (G,N)
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for the above described twisted action (l ⊗ α, 1⊗ τ) of (G,N).

We want to use Theorem 2.8.6 to construct a functor

F : Corr(G,N)→ Corr(G/N)

which, up to a natural equivalence, inverts the inflation functor inf : Corr(G/N)→
Corr(G,N). We start with the special case of the decomposition twisted actions
(αN , τN ) of (G,N) on A�N with respect to a given system (A,G, α) and a normal
subgroup N of G (see §2.8 for the construction). Since A is a G-algebra, it follows
from Remark 2.6.1 that IndGN (A,α) is isomorphic to C0(G/N,A) as a G-algebra.
Let XG

N (A) be Green’s C0(G/N,A) � G − A � N imprimitivity bimodule. Since
right translation of G/N on C0(G/N,A) commutes with Indα, it induces an action

βN : G/N → Aut
(
C0(G/N,A)�G

)
on the crossed product. For s ∈ G and ξ ∈ Cc(G,A) ⊆ XG

N (A) let

uN
s (ξ)(t) :=

√
δ(s)αs(ξ(ts)), ξ ∈ Cc(G,A)

where δ(s) = ΔG(s)ΔG/N (s−1). This formula determines an action uN : G →
Aut(XG

N (A)) such that (XG
N (A), uN ) becomes a (G,N)-equivariant C0(G/N,A)�

G-A�N Morita equivalence with respect to the twisted actions (inf βN , 1N ) and
(αN , τN ), respectively. All these twisted actions pass to the quotients to give also
a (G,N)-equivariant equivalence (XG

N (A)r, u
N ) for the reduced crossed products.

Thus we get

Proposition 2.8.8 (cf. [Ech94, Theorem 1]). The decomposition action (αN , τN ) of
(G,N) on A�(r) N is canonically Morita equivalent to the (untwisted) action βN

of G/N on C0(G/N,A)�(r) G as described above.

If one starts with an arbitrary twisted action (α, τ) of (G,N) on A, one checks that
the twisting ideals Iτ ⊆ A�N and IInd τ ⊆ C0(G/N,A)�G are (G,N)-invariant
and that the twisted action on A ∼= (A�N)/Iτ (cf. Remark 2.8.3) induced from
(αN , τN ) is equal to (α, τ). Hence, if β denotes the action of G/N on C0(G/N,A)�
(G,N) ∼= (

C0(G/N,A)�G
)
/IInd τ induced from βN , then uN factors through an

action u of G on Y G
N (A) = XG

N (A)/(XG
N (A) · Iτ ) such that (Y G

N (A), u) becomes a
(G,N)-equivariant C0(G/N,A)�(G,N)-A Morita equivalence with respect to the
twisted actions (inf β, 1N ) and (α, τ), respectively. Following the arguments given
in [EKQR00] one can show that there is a functor F : Corr(G,N) → Corr(G/N)
given on objects by the assignment

(A,G,N, α, τ)
F�→ (C0(G/N,A)� (G,N), G/N, β)

(and a similar crossed product construction on the morphisms) such that
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Theorem 2.8.9 (cf. [Ech94, Theorem 1] and [EKQR00, Theorem 4.1]). The assign-
ment

(A,G,N, α, τ) �→ (Y G
N (A), u)

is a natural equivalence between the identity functor on Corr(G,N) and the functor
inf ◦F : Corr(G,N) → Corr(G,N), where inf : Corr(G/N) → Corr(G,N) denotes
the inflation functor. In particular, every twisted action of (G,N) is Morita equiv-
alent to an ordinary action of G/N (viewed as a twisted action via inflation).

Note that a first version of the above theorem was obtained by Packer and Raeburn
in the setting of Busby–Smith twisted actions ([PR89]). We therefore call it the
Packer–Raeburn stabilisation trick. As mentioned before, it allows us to extend
results known for ordinary actions to the twisted case as soon as they are invariant
under Morita equivalence. If A is separable and G is second countable, the algebra
B = C0(G/N,A) � (G,N) is separable, too. Thus, it follows from a theorem of
Brown, Green, and Rieffel (see [BGR77]) that A and B are stably isomorphic
(a direct isomorphism B ∼= A ⊗ K(L2(G/N)) is obtained in [Gre80] but see also
Proposition 2.6.7). Hence, as a consequence of Theorem 2.8.9 we get

Corollary 2.8.10. If G is second countable and A is separable, then every twisted
action of (G,N) on A is Morita equivalent to some action β of G/N on A⊗K.
We want to discuss some further consequences of Theorem 2.8.9:

2.8.3 Twisted Takesaki–Takai duality

If (A,G,N, α, τ) is a twisted system with G/N abelian, then we define the dual
action

(̂α, τ) : Ĝ/N → Aut
(
A� (G,N)

)
as in the previous section by pointwise multiplying characters of G/N with func-

tions in the dense subalgebra Cc(G,A, τ). Similarly, we can define actions of Ĝ/N
on (twisted) crossed products of Hilbert bimodules, so that taking dual actions

gives a descent functor � : Corr(G,N)→ Corr(Ĝ/N). The Takesaki–Takai duality
theorem shows that on Corr(G/N) ⊆ Corr(G,N) this functor is inverted, up to a

natural equivalence, by the functor � : Corr(Ĝ/N)→ Corr(G/N). Using Theorem
2.8.9, this directly extends to the twisted case.

2.8.4 Stability of exactness under group extensions

Recall from §2.6.3 that a group is called exact if for every short exact sequence
0→ I → A→ A/I → 0 of G-algebras the resulting sequence

0→ I �r G→ A�r G→ (A/I)�r G→ 0

of reduced crossed products is exact. We want to use Theorem 2.8.9 to give a proof
of the following result of Kirchberg and Wassermann:
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Theorem 2.8.11 (Kirchberg and Wassermann [KW00]). Suppose that N is a closed
normal subgroup of the locally compact group G such that N and G/N are exact.
Then G is exact.

The result will follow from:

Lemma 2.8.12. Suppose that N is a closed normal subgroup of G and that (X,u)
is a (G,N)-equivariant Morita equivalence for the twisted actions (β, σ) and (α, τ)
of G on B and A, respectively. Let I ⊆ A be a (G,N)-invariant ideal of A, and
let J := IndX I ⊆ B denote the ideal of B induced from I via X (which is a
(G,N)-equivariant ideal of B).

Then J �(r) (G,N) (resp. (B/J)�(r) (G,N)) corresponds to I �(r) (G,N) (resp.
(A/I)�(r) (G,N)) under the Rieffel correspondence for X �(r) (G,N).

Proof. Let Y := X · I ⊆ X. Then the closure Cc(G, Y, τ) ⊆ Cc(G,X, τ)
is a B �(r) (G,N)−A�(r) (G,N) submodule of X �(r) (G,N) which cor-
responds to the ideals J �(r) (G,N) and I �(r) (G,N) under the Rieffel
correspondence. For the quotients observe that the obvious quotient map
Cc(G,X, τ) → Cc(G,X/X · I, τ) extends to an imprimitivity bimodule
quotient map X �(r) (G,N)→ (X/X · I)�(r) (G,N), whose kernel corre-

sponds to the ideals KB := ker
(
B �(r) (G,N) → (B/J) �(r) (G,N)

)
and

KA := ker
(
A�(r) (G,N)→ (A/I)�(r) (G,N)

)
under the Rieffel correspondence

(see Remark 2.5.5). �
As a consequence we get:

Lemma 2.8.13. Suppose that N is a closed normal subgroup of G such that G/N
is exact. Suppose further that 0→ I → A→ A/I → 0 is a short exact sequence of
(G,N)-algebras. Then the sequence

0→ I �r (G,N)→ A�r (G,N)→ (A/I)�r (G,N)→ 0

is exact.

Proof. By Theorem 2.8.9 there exists a system (B,G/N, β) such that
(B,G,N, inf β, 1N ) is Morita equivalent to the given twisted system (A,G,N, α, τ)
via some equivalence (X,u). If I is a (G,N)-invariant ideal of A, let
J := IndX I ⊆ B. It follows then from Lemma 2.8.12 and the Rieffel corre-
spondence, that

0→ I �r (G,N)→ A�r (G,N)→ (A/I)�r (G,N)→ 0

is exact if and only if

0→ J �r (G,N)→ B �r (G,N)→ (B/J)�r (G,N)→ 0

is exact. But the latter sequence is equal to the sequence

0→ J �r G/N → B �r G/N → (B/J)�r G/N → 0,

which is exact since G/N is exact. �
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Proof of Theorem 2.8.11. Suppose that 0 → I → A → A/I → 0 is an exact
sequence of G-algebras and consider the decomposition twisted action (αN , τN )
of (G,N) on A�r N . Since N is exact, the sequence

0→ I �r N → A�r N → (A/I)�r N → 0

is a short exact sequence of (G,N)-algebras. SinceG/N is exact, it follows therefore
from Lemma 2.8.13 that

0→ (I �r N)�r (G,N)→ (A�r N)�r (G,N)→ (
(A/I)�r N

)
�r (G,N)→ 0

is exact. But it follows from Proposition 2.8.5 that this sequence equals

0→ I �r G→ A�r G→ (A/I)�r G→ 0. �

2.8.5 Induced representations of twisted crossed products

Using Green’s imprimitivity theorem for twisted systems, we can define induced
representations and ideals for twisted crossed products A � (G,N) as in the un-
twisted case, using the spaces Cc(G,A, τ) and Cc(G, IndA, Ind τ), etc. (e.g., see
[Ech96, Chapter 1] for this approach). An alternative but equivalent way, as fol-
lowed in Green’s original paper [Gre78], is to define induced representations via the
untwisted crossed products: Suppose that (α, τ) is a twisted action of (G,N) on
A and let H ⊆ G be a closed subgroup of G such that N ⊆ H. Since A� (H,N)
is a quotient of A � H we can regard every representation of A � (H,N) as a
representation of A � H. We can use the untwisted theory to induce the repre-
sentation to A � G. But then we have to check that this representation factors
through the quotient A�(G,N) to have a satisfying theory. This has been done in
[Gre78, Corollary 5], but one can also obtain it as an easy consequence of Propo-
sition 2.7.15: Let INτ ⊂ A � N denote the twisting ideal for (α|N , τ). It is then
clear from the definition of representations π × U of A �H (resp. A � G) which
preserve τ , that π × U preserves τ iff π × U |N preserves τ as a representation
of A � N . Hence, π × U is a representation of A � (H,N) (resp. A � (G,N)) iff
INτ ⊆ ker(π × U |N ). Since INτ is easily seen to be a G-invariant ideal of A � N ,
this property is preserved under induction by Proposition 2.7.15.

The procedure of inducing representations is compatible with passing to Morita-
equivalent systems. To be more precise: Suppose that (X,u) is a Morita equivalence
for the systems (A,G, α) and (B,G, β). If H is a closed subgroup of G and π×U
is a representation of B �H, then we get an equivalence

IndGH
(
IndX�H(π × U)

) ∼= IndX�G
(
IndGH(π × U)

)
.

This result follows from an isomorphism of A�G-B �H bimodules

XG
H(A)⊗A×H (X �H) ∼= (X �G)⊗B�G XG

H(B),
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which just means that the respective compositions in the correspondence categories
coincide. A similar result can be shown for the reduction of representations to
subgroups. Both results will follow from a linking algebra trick as introduced in
[ER96, §4]. Similar statements holds for twisted systems.

2.8.6 Twisted group algebras, actions on K and Mackey’s little
group method

In this section we want to study crossed products of the form K �(r) G, where
K = K(H) is the algebra of compact operators on some Hilbert space H. As we
shall see below, such actions are strongly related to twisted actions on the algebra
C of complex numbers. While there are only trivial actions of groups on C, there
are usually many nontrivial twisted actions of pairs (G,N) on C. However, in a
certain sense they are all equivalent to twisted actions of the following type:

Example 2.8.14. Assume that 1 → T → G̃ → G → 1 is a central extension of
the locally compact group G by the circle group T. Let ι : T → T; ι(z) = z
denote the identity character on T. Then (id, ι) is a twisted action of (G̃,T) on
C. A (covariant) representation of the twisted system (C, G̃,T, id, ι) on a Hilbert
space H consists of the representation λ �→ λ1H of C together with a unitary
representation U : G̃→ U(H) satisfying Uz = z ·1H for all z ∈ T ⊆ G̃, i.e., of those
representations of G̃ which restrict to a multiple of ι on the central subgroup T of
G̃. Hence, the twisted crossed product C� (G̃,T) is the quotient of C∗(G̃) by the
ideal Iι = ∩{kerU : U ∈ Rep(G̃) and U |T = ι · 1H}. Note that the isomorphism
class of C � (G̃,T) only depends on the isomorphism class of the extension 1 →
T→ G̃→ G→ 1.

If G is second countable14, we can choose a Borel section c : G→ G̃ in the above
extension, and we then obtain a Borel map ω : G×G→ T by

ω(s, t) := c(s)c(t)c(st)−1 ∈ T.

A short computation then shows that ω satisfies the cocycle conditions ω(s, e) =
ω(e, s) = 1 and ω(s, t)ω(st, r) = ω(s, tr)ω(t, r) for all s, t, r ∈ G. Hence it is
a 2-cocycle in Z2(G,T) of Moore’s group cohomology with Borel cochains (see
[Moo64a,Moo64b,Moo76a,Moo76b]). The cohomology class [ω] ∈ H2(G,T) then
only depends on the isomorphism class of the given extension 1→ T→ G̃→ G→
1.15 Conversely, if ω : G×G→ T is any Borel 2-cocycle on G, let Gω denote the
cartesian product G× T with multiplication given by

(s, z) · (t, w) = (st, ω(s, t)zw).

14This assumptions is made to avoid measurability problems. With some extra care, much of
the following discussion also works in the nonseparable case (e.g. see [Kle65])

15Two cocycles ω and ω′ are in the same class in H2(G,T) iff they differ by a boundary

∂f(s, t) := f(s)f(t)f(st) of some Borel function f : G → T.
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By [Mac57] there exists a unique locally compact topology on Gω whose Borel
structure coincides with the product Borel structure. Then Gω is a central exten-
sion of G by T corresponding to ω (just consider the section c : G → Gω; c(s) =
(s, 1)) and we obtain a complete classification of the (isomorphism classes of)
central extensions of G by T in terms of H2(G,T). We then write C∗

(r)(G,ω) :=

C�(r) (Gω,T) for the corresponding full (resp. reduced) twisted crossed products,
which we now call the (full or reduced) twisted group algebra of G corresponding
to ω.

There is a canonical one-to-one correspondence between the (nondegenerate) co-
variant representations of the twisted system (C, Gω,T, id, ι) on a Hilbert space H
and the projective ω-representations of G on H, which are defined as Borel maps

V : G→ U(H) satisfying VsVt = ω(s, t)Vst s, t ∈ G.

Indeed, if Ṽ : Gω → U(H) is a unitary representation of Gω which restricts to a
multiple of ι on T, then Vs := Ṽ (s, 1) is the corresponding ω-representation of G.

A convenient alternative realization of the twisted group algebra C∗(G,ω) is ob-
tained by taking a completion of the convolution algebra L1(G,ω), where L1(G,ω)
denotes the algebra of all L1-functions on G with convolution and involution given
by

f ∗ g(s) =
∫
G

f(t)g(t−1s)ω(t, t−1s) dt and f∗(s) = ΔG(s
−1)ω(s, s−1)f(s−1).

One checks that the ∗-representations of L1(G,ω) are given by integrating pro-
jective ω-representations and hence the corresponding C∗-norm for completing
L1(G,ω) to C∗(G,ω) is given by

‖f‖max = sup{‖V (f)‖ : V is an ω-representation of G}.

The map
Φ : Cc(Gω,C, ι)→ L1(G,ω); Φ(f)(s) := f(s, 1)

then extends to an isomorphism between the two pictures of C∗(G,ω).16 Similarly,
we can define a left ω-regular representation Lω of G on L2(G) by setting(

Lω(s)ξ
)
(t) = ω(s, s−1t)ξ(s−1t), ξ ∈ L2(G),

and then realize C∗
r (G,ω) as Lω

(
L1(G,ω)

) ⊆ B(L2(G)).

Example 2.8.15. Twisted group algebras appear quite often in C∗-algebra the-
ory. For instance the rational and irrational rotation algebras Aθ for θ ∈ [0, 1)

16Use the identity ω(t, t−1)ω(t−1, s)ω(t, t−1s) = 1 in order to check that Φ preserves multipli-
cation.
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are isomorphic to the twisted group algebras C∗(Z2, ωθ) with ωθ

(
(n,m), (k, l)

)
=

ei2πθmk. Note that every cocycle on Z2 is equivalent to ωθ for some θ ∈ [0, 1). If
θ = 0 we simply get C∗(Z2) ∼= C(T2), the classical commutative 2-torus. For this
reason the Aθ are often denoted as noncommutative 2-tori.

More generally, a noncommutative n-torus is a twisted group algebra C∗(Zn, ω)
for some cohomology class [ω] ∈ H2(Zn,T).

An extensive study of 2-cocycles on abelian groups is given by Kleppner in [Kle65].
In particular, for G = Rn, every cocycle is similar to a cocycle of the form ω(x, y) =
eπi〈Ax,y〉, where A is a skew-symmetric real n×n-matrix, and every cocycle of Zn

is similar to a restiction to Zn of some cocycle on Rn. The general structure of
the twisted group algebras C∗(G,ω) for abelian G is studied extensively in [ER95]
in the type I case and in [Pog97] in the general case. If G is abelian, then the
symmetry group Sω of ω is defined by

Sω := {s ∈ G : ω(s, t) = ω(t, s) for all t ∈ G}.
Poguntke shows in [Pog97] (in case G satisfies some mild extra conditions, which
are always satisfied if G is compactly generated) that C∗(G,ω) is stably isomorphic

to an algebra of the form C0(Ŝω) ⊗ C∗(Zn, μ), where C∗(Zn, μ) is some simple
noncommutative n-torus (here we allow n = 0 in which case we put C∗(Zn, μ) :=
C).17

It follows from Theorems 2.7.29 and 2.7.32 that for understanding the ideal struc-
ture of A � G, it is necessary to understand the structure of AP � GP for P ∈
Prim(A). In the special case A = C0(X), we saw in the previous section that this
is the same as understanding the group algebras C∗(Gx) for the stabilisers Gx,
x ∈ X. In general, the problem becomes much more difficult. However, at least
in the important special case where A is type I, one can still give a quite satis-
factory description of AP �GP in terms of the stabilisers. If A is type I, we have
Â ∼= Prim(A) via σ �→ kerσ and if P = kerσ for some σ ∈ Â, then the simple sub-
quotient AP of A corresponding to P is isomorphic to K(Hσ) (see Remark 2.7.28).
Thus, we have to understand the structure of the crossed products K(Hσ) �Gσ,

where Gσ denotes the stabiliser of σ ∈ Â.

Hence, in what follows we shall always assume that G is a locally compact group
acting on the algeba K(H) of compact operators on some Hilbert space H. In
order to avoid measerability problems, we shall always assume that G is second
countable and that H is separable (see Remark 2.8.18 for a brief discussion of
the general case). Since every automorphism of K(H) is given by conjugation
with some unitary U ∈ B(H), it follows that the automorphism group of K(H) is
isomorphic (as topological groups) to the group PU := U/T · 1, where U = U(H)
denotes the group of unitary operators on H equipped with the strong operator
topology.

17Two C∗-algebras A and B are called stably isomorphic if A⊗K ∼= B⊗K, where K = K(l2(N)).
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Choose a Borel section c : PU → U . If α : G → PU is a continuous homomor-
phism, let Vα := c ◦ α : G→ U . Since Vα(s)Vα(t) and Vα(st) both implement the
automorphism αst, there exists a number ωα(s, t) ∈ T with

ωα(s, t) · 1 = Vα(st)Vα(t)
∗Vα(s)

∗.

A short computation using the identity Ad(Vα(s)Vα(tr))=Ad(Vα(s)Vα(t)Vα(r))=
Ad(Vα(st)Vα(r)) for s, t, r ∈ G shows that ωα is a Borel 2-cocycle on G as in
Example 2.8.14 and that Vα is a projective ω̄α-representation of G on H.

The class [ωα] ∈ H2(G,T) only depends on α and it vanishes if and only if α is
unitary in the sense that α is implemented by a strongly continuous homomor-
phism V : G → U .18 Therefore, the class [ωα] ∈ H2(G,T) is called the Mackey
obstruction for α being unitary. An easy computation gives:

Lemma 2.8.16. Let α : G→ Aut(K(H)), Vα : G→ U(H) and ωα be as above. Let
Gωα

denote the central extension of G by T corresponding to ωα as described in
Example 2.8.14 and let ι : T→ C denote the inclusion. Let

Ṽα : Gωα
→ U(H); Ṽα(s, z) = z̄Vα(s).

Then (H, Ṽα) is a (Gωα
,T)-equivariant Morita equivalence between the action α

of G ∼= Gωα
/T on K(H) and the twisted action (id, ι) of (Gωα

,T) on C.

We refer to §2.8.2 for the definition of twisted equivariant Morita equivalences.
Since Morita-equivalent twisted systems have Morita-equivalent full and reduced
crossed products, it follows that K(H) �α G is Morita equivalent to the twisted
group algebra C∗(G,ωα) (and similarly for K(H) �r G and C∗

r (G,ωα)). Recall
from Example 2.8.14 that there is a one-to-one correspondence between the repre-
sentations of C∗(G,ωα) (or the covariant representations of (C, Gωα

,T, id, ι)) and
the projective ωα-representations of G. Using the above lemma and induction of
covariant representations via the bimodule (H, Ṽα) then gives:

Theorem 2.8.17. Let α : G → Aut(K(H)) be an action and let ωα and Vα : G →
U(H) be as above. Then the assignment

L �→ (id⊗1, Vα ⊗ L)

gives a homeomorphic bijection between the (irreducible) ωα-projective represen-
tations of G and the (irreducible) nondegenerate covariant representations of
(K(H), G, α).

Remark 2.8.18. (1) It is actually quite easy to give a direct isomorphism between
C∗(G,ωα) ⊗ K and the crossed product K �α G, where we write K = K(H). If
Vα : G→ U(H) is as above, then one easily checks that

Φ : L1(G,ωα)�K → L1(G,K); Φ(f ⊗ k)(s) = f(s)kV ∗
s .

18To see this, one should use the fact that any measurable homomorphism between polish
groups is automatically continuous by [Moo76a, Proposition 5].
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is a ∗-homomorphism with dense range such that

(id⊗1)× (Vα ⊗ L)
(
Φ(f ⊗ k)

)
= L(f)⊗ k

for all f ∈ L1(G,ω) and k ∈ K, and hence the above theorem implies that Φ
is isometric with respect to the C∗-norms. A similar argument also shows that
K �r G ∼= C∗

r (G,ωα)⊗K.
(2) The separability assumptions made above are not really necessary: Indeed, if
α : G → Aut(K(H)) ∼= PU(H) is an action of any locally compact group on the
algebra of compact operators on any Hilbert space H, then

G̃ := {(s, U) ∈ G× U(H) : αs = Ad(U)}
fits into the central extension

1 −−−−→ T
z �→(e,z·1)−−−−−−→ G̃

(s,U) �→s−−−−−→ G −−−−→ 1.

If we define u : G̃→ U(H);u(s, U) = U , then it is easy to check (H,u) implements
a Morita equivalence between (K(H), G, α) and the twisted system (C, G̃,T, id, ι).
Thus we obtain a one-to-one correspondence between the representations of
K(H)�αG and the representations of C�id,ι (G̃,T). We refer to [Gre78, Theorem
18] for more details.

Combining the previous results (and using the identification Â ∼= Prim(A) if A is
type I) with Theorem 2.7.29 now gives:

Theorem 2.8.19 (Mackey’s little group method). Suppose that (A,G, α) is a smooth

separable system such that A is type I. Let S ⊆ Â be a section for the quotient
space G\Â and for each π ∈ S let Vπ : Gπ → U(Hπ) be a measurable map such
that π(αs(a)) = Vπ(s)π(a)Vπ(s)

∗ for all a ∈ A and s ∈ Gπ (such map always
exists). Let ωπ ∈ Z2(Gπ,T) be the 2-cocycle satisfying

ωπ(s, t) · 1Hπ := Vπ(st)Vπ(t)
∗Vπ(s)

∗.

Then

IND : ∪π∈SC
∗(Gπ, ωπ)̂ → (A�G)̂ ; IND(L) = indGGπ

(π ⊗ 1)× (Vπ ⊗ L).

is a bijection, which restricts to homeomorphisms between C∗(Gπ, ωπ)̂ and its

image (AGπ
�G)̂ for each π ∈ S.

Remark 2.8.20. (1) If G is exact, then a similar result holds for the reduced crossed
product A�r G, if we also use the reduced twisted group algebras C∗

r (Gπ, ωπ) of
the stabilisers.

(2) If (A,G, α) is a type I smooth system that is not separable, then a similar result
can be formulated using the approach described in part (2) of Remark 2.8.18.
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Note that the above result in particular applies to all systems (A,G, α) with A
type I and G compact, since actions of compact groups on type I algebras are
always smooth in the sense of Definition 2.7.25. Since the central extensions Gω of
a compact group G by T are compact, and since C∗(G,ω) is a quotient of C∗(Gω)
(see Example 2.8.14), it follows that the twisted group algebras C∗(G,ω) are direct
sums of matrix algebras if G is compact. Using this, we easily get from Theorem
2.8.19:

Corollary 2.8.21. Suppose that (A,G, α) is a system with A type I and G compact.
Then A�G is type I. If, moreover, A is CCR, then A�G is CCR, too.

Proof. Since the locally closed subset (AGπ � G)̂ corresponding to some or-

bit G(π) ⊆ Â is homeomorphic (via Morita equivalence) to (K(Hπ) � G)̂ ∼=
C∗(Gπ, ωπ)̂ , it follows that (AG(π) � G)̂ is a discrete set in the induced topol-

ogy. This implies that all points in (A�G)̂ are locally closed. Moreover, if A is

CCR, then the points in Â are closed. Since G is compact, it follows then that the
G-orbits in Â are closed, too. But then the discrete set (AGπ

� G)̂ is closed in

(A�G)̂ , which implies that the points in (A�G)̂ are closed. �



Chapter 3

Bivariant KK-Theory and the
Baum–Connes conjecure
Siegfried Echterhoff

3.1 Introduction

The extension of K-theory from topological spaces to operator algebras provides
the most powerful tool for the study of C∗-algebras. On one side there now exist
far reaching classification results in which certain classes of C∗-algebras can be
classified by their K-theoretic data. This started with the early work of Elliott
[Ell76] on the classification of AF -algebras – inductive limits of finite-dimensional
C∗-algebras. It went on with the classification of simple, separable, nuclear, purely
infinite C∗-algebras by Kirchberg and Phillips [KP00,Phi00]. Presently, due to the
work of many authors (e.g., see [Win16] for a survey on the most recent develop-
ments) the classification program covers a very large class of nuclear algebras.

On the other hand, the K-theory groups of group algebras C∗(G) and C∗
r (G) serve

as recipients of indices of G-invariant elliptic operators, and the study of such in-
dices has an important impact in modern topology and geometry. To get a rough
idea, the Baum–Connes conjecture implies that every element in the K-theory
groups of the reduced C∗-group algebra C∗

r (G) of a locally compact group G ap-
pears as an index of some generalised G-invariant elliptic operator. To be more
precise, these generalised elliptic operators form the cycles of the G-equivariant
K-homology (with G-compact supports) KG

∗ (EG), in which EG is a certain clas-
sifying space for proper actions of G (often realised as a G-manifold) and the index
map

μG : KG
∗ (EG)→ K∗(C∗

r (G))

is then a well-defined group homomorphism. It is called the assembly map for G.
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J. Cuntz et al., K-Theory for Group C*-Algebras and Semigroup C*-Algebras, 
Oberwolfach Seminars 47, DOI 10.1007/978-3-319-59915-1_  

81

3



82 Chapter 3. Bivariant KK-Theory and the Baum–Connes conjecure

The Baum–Connes conjecture (with trivial coefficients) asserts that the assembly
map is an isomorphism for all G.

The construction of the assembly map naturally extends to crossed products and
provides a map

μ(G,A) : K
G
∗ (EG,A)→ K∗(A�r G).

The Baum–Connes conjecture with coefficients asserts that this more general as-
sembly map should be an isomorphism as well. Although this general version of
the conjecture is now known to be false in general (e.g., see [HLS02]), it is known
to be true for a large class of groups, including the class of all amenable groups,
and it appears to be an extremely useful tool for the computation of K-theory
groups in several important applications.

In this chapter we give a concise introduction to the Baum–Connes conjecture and
to some of the applications that allow the explicit computation of K-theory groups
with the help of the conjecture. We start with a very short reminder of the basic
properties of C∗-algebra K-theory before we give an introduction of Kasparov’s
bivariant K-theory functor which assigns to each pair of G-C∗-algebras A,B a pair
of abelian groups KKG

∗ (A,B), ∗ = 0, 1. Kasparov’s theory is not only fundamental
for the definition of the groups KG

∗ (EG) and KG
∗ (EG,A) and the construction of

the assembly map, but it also provides the most powerful tools for proving the
Baum–Connes conjecture for certain classes of groups. In this chapter we will
restrict ourselves to Kasparov’s picture of KK-theory and we will not touch on
other descriptions or variants such as the Cuntz picture of KK-theory or E-theory
as introduced by Connes and Higson. We refer to [Bla86] for a treatment of these
and their connections to Kasparov’s theory.

As part of our introduction to KK-theory we will give a detailed and a fairly
elementary proof of Kasparov’s Bott-periodicity theorem in one dimension by
constructing Dirac and dual Dirac elements that implement a KK-equivalence
between C0(R) and the first complex Clifford algebra Cl1. We shall later use these
computations to give a complete proof of the Baum–Connes conjecture for R and
Z with the help of Kasparov’s Dirac-dual Dirac method. This method is the most
powerful tool for proving the conjecture and has been successfully applied to a very
large class of groups including all amenable groups. As corollaries of our proof of
the conjecture for R and Z, we shall also present proofs of Connes’s Thom iso-
morphism for crossed products by R and the Pimsner–Voiculescu six-term exact
sequence for crossed products by Z.

In the last part of this chapter we shall present the “going-down” principle, which
roughly says the following: Suppose G satisfies the Baum–Connes conjecture with
coefficients. Then any G-equivariant ∗-homomorphism (or KK-class) between two
G-algebras A and B that induces isomorphisms between the K-theory groups of
A�K and B�K for all compact subgroups K of G also induces an isomorphism
between the K-groups of A �r G and B �r G. We shall give a complete proof
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of this principle if G is discrete and we present a number of applications of this
result. In particular, as one application we shall present a theorem about possible
explicit computations of the K-theory of crossed products C0(Ω) �r G in which
a discrete group G acts on a totally disconnected space Ω with some additional
“good” properties which we shall explain in detail. This result is basic for the
K-theory computations of the reduced semi-group C∗-algebras as presented in
Chapters 5 and 6 of this book.

There are many other surveys on the Baum–Connes conjecture that look at the
conjecture from quite different angles. The reader should definitely have a look
at the paper [BCH94] of Baum, Connes, and Higson, where a broad discussion of
various applications of the conjecture is given. The survey [Val03] by Alain Valette
restricts itself to a discussion of the Baum–Connes conjecture for discrete groups,
but also provides a good discussion of applications to other important conjectures.
The survey [MV03] by Mislin discusses the conjecture from the topologist’s point
of view, where the left-hand side (the topological K-theory of G) is defined in
terms of the Bredon cohomology – a picture of the Baum–Connes conjecture first
given by Davis and Lück [DL98]. We also want to mention the paper [HG04] of
Higson and Guentner, which gives an introduction to the Baum–Connes conjecture
based on E-theory. Last, but not least, we suggest to the interested reader to study
the book [HR00] by Higson and Roe, where many of the relevant techniques for
producing important KK-classes by elliptic operators (such as the Dirac-class in
K-homology) are treated in a very nice way.

Throughout this chapter we assume that the reader is familiar with the basics
on C∗-algebras, the basic constructions and properties of full and reduced crossed
products and the notion of Morita equivalence and Hilbert C∗-modules. A detailed
introduction to these topics is given in the first six sections of Chapter 2.

The author of this chapter would like to thank Heath Emerson and Michael
Joachim for helpful discussions on some of the topics in this chapter.

3.2 Operator K-Theory

In this section we give a very brief overview of the definition and some basic
properties of theK-theory groups of C∗-algebras. We urge the reader to have a look
at one of the standard books on operator K-theory (e.g., [Bla86,RLL00,WO93])
for more detailed expositions of this theory.

Let us fix some notation: If A is a C∗-algebra, we denote by Mn(A) the C
∗-algebra

of all n×n-matrices over A and by A[0, 1] the C∗-algebra of continuous functions
f : [0, 1] → A. Moreover, we denote by A1 = A ⊕ C1 the unique C∗-algebra with
underlying vector space A⊕ C1 and with multiplication and involution given by

(a+ λ1)(b+ μ1) = ab+ λb+ μa+ λμ1 and (a+ λ1)∗ = a∗ + λ̄1,
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for a + λ1, b + μ1 ∈ A + C1. Let ε : A1 → C; ε(a + λ1) = λ. We call A1 the
unitisation of A (even if A already has a unit). We write

M∞(A) := ∪n∈NMn(A)

where we regard Mn(A) as a subalgebra of Mn+1(A) via T �→
(
T 0
0 0

)
. We denote

by P(A) the set of projections p ∈M∞(A), i.e., p = p∗ = p2.

Definition 3.2.1. Let A be a unital C∗-algebra and let p, q ∈ P(A). Then p, q are
called

• Murray–von Neumann equivalent (denoted p ∼ q) if there exist x, y ∈M∞(A)
such that p = xy and q = yx;

• unitarily equivalent (denoted p ∼u q) if there exists some n ∈ N and a unitary
u ∈ U(Mn(A)) such that p, q ∈Mn(A) and q = upu∗ in Mn(A);

• homotopic (denoted p ∼h q), if there exists a projection r ∈ P(A[0, 1]) such
that p = r(0) and q = r(1).

All three equivalence relations coincide on P(A) (but not on the level of Mn(A)

for fixed n ∈ N). If A is unital and if p, q ∈Mn(A), then

(
p 0
0 q

)
and

(
q 0
0 p

)
are

Murray–von Neumann equivalent in M2n(A) with x =

(
0 p
q 0

)
and y =

(
0 q
p 0

)
.

This allows us to define an abelian semigroup structure on P(A)/∼ with addition

given by [p] + [q] =

[(
p 0
0 q

)]
. For each unital C∗-algebra A, we define K0(A) as

the Grothendieck group of the semigroup P/∼, i.e.,
K0(A) =

{[
[p]− [q]

]
: [p], [q] ∈ P(A)/∼}

where we write
[
[p] − [q]

]
=
[
[p′] − [q′]

]
if and only if there exists h ∈ P(A) such

that
[p] + [q′] + [h] = [p′] + [q] + [h] in P(A)/∼ .

Example 3.2.2. If A = C, then two projections p, q ∈ P(C) are homotopic, if and
only if they have the same rank. It follows from this that P(C)/∼∼= N as semigroup
and hence we get K0(C) ∼= Z.

If Φ : A→ B is a unital ∗-homomorphism between the unital C∗-algebras A and
B, then there exists a unique group homomorphism Φ0 : K0(A) → K0(B) such
that Φ0([p]) = [Φ(p)].

We then define
K0(A) := ker

(
K0(A

1)
ε0→ K0(C) ∼= Z

)
for any C∗-algebra A. If A is unital, then A1 ∼= A ⊕ C as a direct sum of the
C∗-algebras A and C (the isomorphism is given by a+ λ1 �→ (a− λ1A, λ)) and it



3.2. Operator K-Theory 85

is not difficult to check that in this case both definitions of K0(A) coincide. Any
∗-homomorphism Φ : A → B extends to a unital ∗-homomorphism Φ1 : A1 →
B1; Φ1(a+λ1) = Φ(a)+λ1 and the resulting map Φ1

0 : K0(A
1)→ K0(B

1) factors
through a well-defined homomorphism Φ0 : K0(A)→ K0(B).

For the construction of K1(A) let Un(A
1) denote the group of unitary elements

of Mn(A
1). We embed Un(A

1) into Un+1(A
1) via U �→

(
U 0
0 1

)
, and we define

U∞(A1) = ∪n∈NUn(A). Let U∞(A1)0 denote the path-connected component of
U∞(A1), where we say that two unitaries can be joined by a path in U∞(A1) if
and only if they can be joined by a continuous path in Un(A

1) for some n ∈ N.
For u, v ∈ Un(A

1), one can check that(
uv 0
0 1

)
∼h

(
u 0
0 v

)
∼h

(
v 0
0 u

)
(3.2.1)

in U2n(A
1) ⊆ U∞(A1). Therefore, if we define

K1(A) := U∞(A1)/U∞(A1)0

with addition given by

[u] + [v] =

[(
u 0
0 v

)]
,

(which by (3.2.1) is equal to [uv]) we see that K1(A) is an abelian group. As
for K0, for unital A we can alternatively construct K1(A) without passing to the
unitization A1 as K1(A) = U∞(A)/U∞(A)0.

Example 3.2.3. Since Un(C) is path connected for all n ∈ N, we have K1(C) = {0}.
If Φ : A→ B is a ∗-homomorphism, there is a well-defined group homomorphism

Φ1 : K1(A)→ K1(B); Φ1([u]) =
[
Φ1(u)

]
,

where, as before, Φ1 : A1 → B1 denotes the unique unital extension of Φ to A1.

Proposition 3.2.4. The assignments A �→ K0(A),K1(A) are homotopy invariant
covariant functors from the category of C∗-algebras to the category of abelian
groups.

Homotopy invariance means that if Φ,Ψ : A → B are two homotopic ∗-
homomorphisms, then Φ∗ = Ψ∗ : K∗(A) → K∗(B), ∗ = 0, 1. Here a homotopy
between Φ and Ψ is a ∗-homomorphism Θ : A → B[0, 1] such that Φ = ε0 ◦ Θ
and Ψ = ε1 ◦ Θ, where for all t ∈ [0, 1], εt : B[0, 1] → B denotes evaluation at t.
Of course, the homotopy invariance is a direct consequence of the fact that “∼”
coincides with “∼h” on P(B1).

Recall that a C∗-algebra is called contractible, if the identity id : A → A is
homotopic to the zero map 0 : A → A. As an example, let A be any C∗-algebra,
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then A(0, 1] := {a ∈ A[0, 1] : a(0) = 0} is contractible. A homotopy between
id : A(0, 1]→ A(0, 1] and 0 is given by the path of ∗-homomorphism Φt : A(0, 1]→
A(0, 1];

(
Φt(a)

)
(s) = a(ts).

Corollary 3.2.5. Suppose that A is a contractible C∗-algebra. Then K0(A) = {0} =
K1(A).

If 0 → I
ι→ A

q→ B → 0 is a short exact sequence of C∗-algebras, then the
functoriality of K0 and K1 gives two sequences

K0(I)
ι0→ K0(A)

q0→ K0(B) and K1(I)
ι1→ K1(A)

q1→ K1(B) (3.2.2)

which both can be shown to be exact in the middle. If there exists a splitting
homomorphism s : B → A for the quotient map q, it induces a splitting homo-
morphism s∗ : K∗(B) → K∗(A), ∗ = 0, 1, and in this case the groups K0(A) and
K1(A) decompose as direct sums

K0(A) = K0(I)⊕K0(B) and K1(A) = K1(I)⊕K1(B).

In particular, in this special case the sequences in (3.2.2) become short exact
sequences of abelian groups.

Six-term exact sequence. In general, the sequences in (3.2.2) can be joined into a
six-term exact sequence

K0(I)
ι0−−−−→ K0(A)

q0−−−−→ K0(B)

∂

�⏐⏐ ⏐⏐�exp

K1(B) ←−−−−
q1

K1(A) ←−−−−
ι1

K1(I)

which serves as a very important tool for explicit computations as well as for
proving theorems on K-theory. We refer to [Bla86,RLL00] for a precise description
of the boundary maps exp and ∂. Note that the six-term sequence is natural in
the sense that if we have a morphism between two short exact sequences, i.e., we
have a commutative diagram

0 −−−−→ I −−−−→ A −−−−→ B −−−−→ 0

ϕ

⏐⏐� ψ

⏐⏐� ⏐⏐�θ

0 −−−−→ J −−−−→ C −−−−→ D −−−−→ 0

in which the horizontal lines are exact sequences of C∗-algebras, then we have
corresponding commutative diagrams

−−−−→ Ki(A) −−−−→ Ki(B) −−−−→ Ki+1(I) −−−−→ Ki+1(A) −−−−→
ψi

⏐⏐� θi

⏐⏐� ⏐⏐�ϕi+1

⏐⏐�ψi+1

−−−−→ Ki(C) −−−−→ Ki(D) −−−−→ Ki+1(J) −−−−→ Ki+1(C) −−−−→
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Aside from theoretical importance, this fact can often be used quite effectively for
explicit computations of the boundary maps in the six-term sequence.

If we apply the six-term sequence to the short exact sequence

0→ C0(0, 1)⊗A
ι→ A(0, 1]

q→ A→ 0

in which the quotient map q : A(0, 1]→ A is given by evaluation at 1, we get the
six-term sequence

K0(C0(0, 1)⊗A)
ι0−−−−→ 0

q0−−−−→ K0(A)

∂

�⏐⏐ ⏐⏐�exp

K1(A) ←−−−−
q1

0 ←−−−−
ι1

K1(C0(0, 1)⊗A)

which shows that the connecting maps exp : K0(A) → K1(C0(0, 1) ⊗ A) and
∂ : K1(A) → K0(C0(0, 1) ⊗ A) are isomorphisms which are natural in A. Hence,
by identifying (0, 1) with R and C0(R) ⊗ C0(R) with C0(R2), we can deduce the
following important results from the above six-term sequence

Theorem 3.2.6 (Bott periodicity). For each C∗-algebra A there are natural iso-
morphisms

K1(A) ∼= K0(C0(R)⊗A) and K1(C0(R)⊗A) ∼= K0(A).

Moreover, if we apply the first isomorphism to B = C0(R)⊗A, we obtain isomor-
phisms

K0(A) ∼= K1(C0(R)⊗A) ∼= K0(C0(R2)⊗A).

We should note that the proof of the six-term sequence usually uses the Bott
periodicity theorem, so we do present the results in the wrong order. In any case,
the proofs of the six-term sequence and of the Bott periodicity theorem are quite
deep and we refer to the standard literature on K-theory (e.g., [Bla86]) for the
details. We shall later provide a proof of Bott periodicity in KK-theory, which
does imply Theorem 3.2.6. We close this short section with two more important
features of K-theory:

Continuity. If A = limi Ai is the inductive limit of an inductive system {Ai,Φij}
of C∗-algebras, then

K∗(A) = lim
i

K∗(Ai), ∗ = 0, 1.

Morita invariance. If e ∈ M(n,C) is any rank-one projection, then Φe : A →
Mn(A); Φe(a) = e ⊗ a induces an isomorphism between K∗(A) and K∗(Mn(A)),
∗ = 0, 1. More generally, if e is any rank-one projection in K = K(�2(N)), then the
homomorphism a �→ e ⊗ a induces isomorphisms K∗(A) ∼= K∗(K ⊗ A), ∗ = 0, 1.
Since, by [BGR77] two σ-unital C*-algebras A and B are stably isomorphic if
and only if they are Morita equivalent, it follows that Morita equivalent σ-unital
C*-algebras have isomorphic K-theory groups.
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3.3 Kasparov’s equivariant KK-theory

We now come to Kasparov’s construction of the G-equivariant bivariant K-theory,
which in some sense is built on the correspondence category as described in Sec-
tion 2.5. Readers who are not familiar with the notion of Hilbert modules and
correspondences are advised to read that section before going on here. Since some
of the constructions require that the C∗-algebras are separable and that Hilbert
B-modules E are countably generated (which means that there is a countable sub-
set C ⊆ E such that C · B is dense in E), we shall from now on assume that these
conditions will hold throughout, except for the multiplier algebras of separable
C∗-algebras and the algebras of adjointable operators on a countably generated
Hilbert module. We refer to [Bla86] or Kasparov’s original paper [Kas88] for a
more detailed account on where these conditions can be relaxed.

3.3.1 Graded C∗-algebras and Hilbert modules

We write Z2 for the group with two elements. A Z2 grading of a G-C∗-algebra
(A,α) is given by an action εA : Z2 → Aut(A) which commutes with α. We then
might consider A as a G × Z2-C

∗-algebra with action α × εA and a graded G-
equivariant correspondence between the graded G-C∗-algebras (A,α × εA) and
(B, β × εB) is just a G × Z2-equivariant correspondence (E , u × εE ,Φ) between
these algebras.

Moreover, if εA is a grading of A, we write A0 := {a ∈ A : εA(a) = a} and
A1 = {a ∈ A : εA(a) = −a}, for the eigenspaces of the eigenvalues 1 and −1 for εA,
and similar for gradings on Hilbert modules. The elements in A0 and A1 are called
the homogeneous elements of A. We write deg(a) = 0 if a ∈ A0 and deg(a) = 1
if a ∈ A1. The expression deg(a) is called the degree of the homogeneous element
a. Note that A0 is a C∗-subalgebra of A and every element a ∈ A has a unique
decomposition a = a0 + a1 with a0 ∈ A0, a1 ∈ A1. If A is a Z2 graded C∗-algebra,
the graded commutator [a, b] is defined as

[a, b] = ab− (−1)deg(a) deg(b)ba
for homogeneous elements a, b ∈ A and it is defined on all of A by bilinear contin-
uation.

If A and B are two graded C∗-algebras, we define the graded algebraic tensor
product A�gr B as the usual algebraic tensor product with graded multiplication
and involution given on elementary tensors of homogeneous elements by

(a1 ⊗ b1) · (a2 ⊗ b2) = (−1)deg(b1) deg(a2)(a1a2 ⊗ b1b2)

(a⊗ b)∗ = (−1)deg(a) deg(b)(a∗ ⊗ b∗).

In what follows we write A⊗̂B for the minimal (or spatial) completion of A�grB.
We refer to [Bla86, 14.4] for more details of this construction.
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Example 3.3.1. (a) For any C∗-algebra A there is a grading on M2(A) given by

conjugation with the symmetry J =

(
1 0
0 −1

)
. This grading is called the standard

even grading on M2(A). We then have

M2(A)0 =

(
A 0
0 A

)
and M2(A)1 =

(
0 A
A 0

)
.

(b) If A is a C∗-algebra, then the direct sum A ⊕ A carries a grading given by
(a, b) �→ (b, a), which is called the standard odd grading. We then have

(A⊕A)0 = {(a, a) : a ∈ A} and (A⊕A)1 = {(a,−a) : a ∈ A}.

(c) Examples of nontrivially graded C∗-algebras, which play an important rôle in
the theory, are the Clifford algebras Cl(V, q) where q : V × V → R is a (possibly
degenerate) symmetric bilinear form on a finite-dimensional real vector space V .
Cl(V, q) is defined as the universal C∗-algebra generated by the elements v ∈ V
subject to the relations

v2 = q(v, v)1 ∀v ∈ V

and such that the embedding ι : V ↪→ Cl(V, q) is R-linear. Using the equation
(v + v′)2 − (v − v′)2 = 2(vv′ + v′v) we obtain the relations

vv′ + v′v = 2q(v, v′)1 ∀v, v′ ∈ V.

If dim(V ) = n, then dim(Cl(V, q)) = 2n. The grading on Cl(V, q) is given as
follows: the linear span of all products of the form v1v2 · · · vm with m = 2k even
is the set of homogeneous elements of degree 0 and the linear span of all such
products with m = 2k − 1 odd is the set of homogeneous elements of degree 1.

For all n ∈ N0 we write Cln for Cl(Rn, 〈·, ·〉) where 〈·, ·〉 denotes the standard inner
product on Rn. Then Cl0 ∼= C and Cl1 = C1+Ce1 ∼= C⊕C with the standard odd
grading (sending λ1 + μe1 to (λ + μ, λ − μ) ∈ C2). If n = 2 and if {e1, e2} is the
standard orthonormal basis of R2, then there is an isomorphism of Cl2 ∼= M2(C),
equipped with the standard even grading, given by sending the generator e1 to(
0 1
1 0

)
and e2 to i

(
0 −1
1 0

)
.

In general, we have the formula Cln ⊗̂Clm ∼= Cln+m as graded C∗-algebras, where
we use the graded tensor product and the diagonal grading on the left-hand side of
this equation. Note that the isomorphism is given on the generators {v : v ∈ Rn}
and {w : w ∈ Rm} by sending v ⊗ w to (v, 0) · (0, w) ∈ Cln+m. In particular, Cln
can be constructed as the nth graded tensor product of Cl1 with itself.

Note that for any C∗-algebra A, it is an easy exercise to show that the graded
tensor product (A⊕A) ⊗̂Cl1, where A ⊕ A is equipped with the standard odd
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grading, is isomorphic to M2(A) equipped with the standard even grading. As a
consequence, it follows that

Cl2n ∼= M2n(C) and Cl2n+1
∼= M2n(C)⊕M2n(C)

where the grading in the even case is given by conjugation with a symmetry
J ∈ M2n(C) (i.e., an isometry with J2 = 1) and the standard odd grading in the
odd case (e.g., see [Bla86, §14.4] for more details).

Note that the grading εE of a Hilbert B-module induces a grading Ad εE on LB(E)
and K(E) in a canonical way and the morphism Φ : A → LB(E) in a Z2-graded
correspondence has to be equivariant for the given grading on A and this grading
on LB(E). In what follows we want to suppress the grading in our notation and
just keep in mind that everything in sight will be Z2 graded. In most cases (except
for Clifford algebras), we shall consider the trivial grading εA = idA for our C∗-
algebras A, but we shall usually have nontrivial gradings on our Hilbert modules.

3.3.2 Kasparov’s bivariant K-groups

In this section we give the definition of Kasparovs’s G-equivariant bivariant K-
groups. We refer to [Kas88] for the details (but see also [Bla86,Ska84]). We start
with the definition of the underlying KK-cycles:

Definition 3.3.2. Suppose that (A,α) and (B, β) are Z2-graded G-C∗-algebras. A
G-equivariant A-B Kasparov cycle is a quadruple (E , u,Φ, T ) in which (E , u,Φ)
is a Z2-graded (A,α)-(B, β) correspondence and T ∈ LB(E) is a homogeneous
element with deg(T ) = 1 such that

(i) g �→ Adug(Φ(a)T );G→ LB(E) is continuous for all a ∈ A;

(ii) for all a ∈ A and g ∈ G we have

(T − T ∗)Φ(a), (T 2 − 1)Φ(a), (Adug(T )− T )Φ(a), [T,Φ(a)] ∈ K(E)

(where [·, ·] denotes the graded commutator). Two Kasparov cycles (E , u,Φ, T ) and
(E ′, u′,Φ′, T ′) are called isomorphic, if there exists an isomorphism W : E → E ′
of the correspondences (E , u,Φ) and (E ′, u′,Φ′) such that T ′ = W ◦ T ◦W−1. A
Kasparov cycle is called degenerate if

(T − T ∗)Φ(a), (T 2 − 1)Φ(a), (Adug(T )− T )Φ(a), [T,Φ(a)] = 0

for all a ∈ A and g ∈ G. We write EG(A,B) for the set of isomorphism classes of
all G-equivariant A-B Kasparov cycles and we write DG(A,B) for the equivalence
classes of degenerate Kasparov cycles.

Example 3.3.3. Every G-equivariant ∗-homomorphism Φ : A → B determines a
G-equivariant A-B Kasparov cycle (B, β,Φ, 0), where B is considered as a Hilbert
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B-module in the obvious way. More generally, if (E , u,Φ) is any Z2 graded (A,α)-
(B, β) correspondence such that Φ(A) ⊆ K(E) (i.e., (E , u,Φ) is a morphism in the
compact correspondence category in the sense of Definition 2.5.7), then it is an
easy exercise to check that (E , u,Φ, 0) is a G-equivariant A-B Kasparov cycle as
well. Note that the condition (T 2 − 1)Φ(a) ∈ K(E) for a Kasparov cycle implies
that conversely, if (E , u,Φ, 0) is a Kasparov cycle, then Φ(A) ⊆ K(E). A special
situation of the above is the case in which A = B and Φ = idB which gives us
the Kasparov cycle (B, β, idB , 0). It will play an important role when looking at
Kasparov products below.

In what follows, if (B, β) is a Z2-graded G-C∗-algebra, then we denote by B[0, 1]
the algebra C([0, 1], B) with pointwise G-action and grading. Suppose now that
(E , u,Φ, T ) is a G-equivariant A-B[0, 1] Kasparov cycle. For each t ∈ [0, 1] let
δt : B[0, 1] → B; δt(f) = f(t) be evaluation at t. Then we obtain a G-equivariant
A-B Kasparov cycle (Et, ut,Φt, Tt) by putting

Et = E ⊗B[0,1],δt B, ut = u⊗ β, Φt = Φ⊗ 1, and Tt = T ⊗ 1.

Alternatively, we could define a B-valued inner product on E by

〈e, f〉B := 〈e, f〉B[0,1](t)

which factors through Et := E/(E · ker δt). Then u,Φ, T factor uniquely through
some action ut of G, a ∗-homomorphism Φt : A → LB(Et) and an operator
Tt ∈ LB(Et) such that (Et, ut,Φt, Tt) is a G-equivariant A-B Kasparov cycle. It is
isomorphic to the one constructed above. We call (Et, ut,Φt, Tt) the evaluation of
(E , u,Φ, T ) at t ∈ [0, 1].

Definition 3.3.4 (Homotopy). Two Kasparov cycles (E0, u0,Φ0, T0) and
(E1, u1,Φ1, T1) in EG(A,B) are said to be homotopic if there exists a G-equivariant
A-B[0, 1] Kasparov cycle (E , u,Φ, T ) such that (E0, u0,Φ0, T0) is isomorphic to the
evaluation of (E , u,Φ, T ) at 0 and (E1, u1,Φ1, T1) is isomorphic to the evaluation
of (E , u,Φ, T ) at 1. We then write (E0, u0,Φ0, T0) ∼h (E1, u1,Φ1, T1). We define

KKG(A,B) := EG(A,B)/ ∼h .

Remark 3.3.5. Every degenerate Kasparov cycle (E , u,Φ, T ) is homotopic to the
zero-cycle (0, 0, 0, 0). To see this, consider the quadruple (E ⊗C0([0, 1)), u⊗ id,Φ⊗
1, T ⊗1) where we view E ⊗C0([0, 1)) ∼= C0([0, 1), E) as a B[0, 1]-Hilbert module in
the obvious way. It follows from degeneracy of (E , u,Φ, T ) that (E ⊗C0([0, 1)), u⊗
id,Φ⊗ 1, T ⊗ 1) is an A-B[0, 1] Kasparov cycle and it is straightforward to check
that its evaluation at 0 coincides with (E , u,Φ, T ) while its evaluation at 1 is the
zero-cycle.

Remark 3.3.6. A special kind of homotopy is the operator homotopy which is de-
fined as follows: Assume that (E , u,Φ, T0) and (E , u,Φ, T1) are two A-B Kasparov
cycles such that the underlying correspondence (E , u,Φ) coincides for both cycles.



92 Chapter 3. Bivariant KK-Theory and the Baum–Connes conjecure

An operator homotopy between (E , u,Φ, T0) and (E , u,Φ, T1) is a family of A-B
Kasparov cycles (E , u,Φ, Tt), t ∈ [0, 1], such that the path of operators (Tt)t∈[0,1]

is norm continuous and connects T0 with T1. Such operator homotopy determines
a homotopy between (E , u,Φ, T0) and (E , u,Φ, T1) in which the A-B[0, 1] Kas-
parov cycle is given by (E ⊗ C[0, 1], u ⊗ id,Φ ⊗ 1, T̃ ) with

(
T̃ (e)

)
(t) = Tte(t) for

e ∈ E ⊗ C[0, 1] = C([0, 1], E).
Example 3.3.7. Assume that (E , u,Φ, T0) and (E , u,Φ, T1) are two A-B Kasparov
cycles. We then say that T1 is a compact perturbation of T0 if (T1−T0)Φ(a) ∈ K(E)
for all a ∈ A. In this case, the path Tt = (1−t)T0+tT1 gives an operator homotopy
between T0 and T1, so both Kasparov cycles are homotopic.

The following observation is due to Skandalis (see [Ska84]):

Proposition 3.3.8. The equivalence relation ∼h on EG(A,B) coincides with the
equivalence relation generated by operator homotopy together with adding degen-
erate Kasparov cycles.

Theorem 3.3.9 (Kasparov). KKG(A,B) is an abelian group with addition defined
by direct sum of Kasparov cycles:

[E1, u1,Φ1, T1] + [E2, u2,Φ2, T2] = [E1 ⊕ E2, u1 ⊕ u2,Φ1 ⊕ Φ2, T1 ⊕ T2],

where [E , u,Φ, T ] denotes the homotopy class of the Kasparov cycle (E , u,Φ, T ).
The inverse of a class [E , u,Φ, T ] is given by the class [Eop, u,Φ◦ εA,−T ] in which
Eop denotes the module E with the opposite grading εEop = −εE .
Functoriality. Every G-equivariant ∗-homomorphism Ψ : A1 → A2 induces a group
homomorphism

Ψ∗ : KKG(A2, B)→ KKG(A1, B) ; [E , u,Φ, T ] �→ [E , u,Φ ◦Ψ, T ]

and every G-equivariant ∗-homomorphism Ψ : B1 → B2 induces a group homo-
morphism

Ψ∗ : KKG(A,B1)→ KKG(A,B2) ; [E , u,Φ, T ] �→ [E ⊗B1
B2, u⊗β2,Φ⊗ 1, T ⊗ 1].

Hence, KKG is contravariant in the first variable and covariant in the second
variable.

Direct sums. If A =
⊕l

i=1 Ai is a finite direct sum, then KKG(B,A) ∼=⊕l
i=1 KKG(B,Ai). The formula does not hold in general for (countable) infinite

direct sums (see [Bla86, 19.7.2]). On the other side, if A =
⊕

i∈I Ai is a countable
direct sum of G-C∗-algebras, then KKG(A,B) ∼= ∏

i∈I KKG(Ai, B) for every
G-C∗-algebra B. We leave it to the reader to construct these isomorphisms.

The ordinary K-theory groups. Recall that for a trivially graded unital C∗-algebra
B the ordinary K0-group can be defined as the Grothendieck group generated by
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the semigroup of all homotopy classes [p] of projections p ∈M∞(B) = ∪n∈NMn(B)
with direct sum [p] + [q] = [p ⊕ q] as addition. If p ∈ Mn(B), then p deter-
mines a ∗-homomorphism Φp : C → Mn(B) ∼= K(Bn);λ �→ λp, and hence a class
[Bn,Φp, 0] ∈ KK0(C, B). Note that all elements of the module Bn are homo-
geneous of degree 0. This construction preserves homotopy and direct sums and
therefore induces a homomorphism of K0(B) into KK(C, B), which, as shown by
Kasparov, is actually an isomorphism of abelian groups. Thus we get

KK(C, B) ∼= K0(B).

If B is not unital, we may first apply the above to the unitisation B1 and for C and
then use split-exactness to get the general case. If Φ : A→ B is a ∗-homomorphism,
then the isomorphisms KK(C, A) ∼= K0(A) and KK(C, B) ∼= K0(B) intertwines
the induced homomorphism Φ∗ : KK(C, A)→ KK(C, B) in KK-theory with the
morphism of K-theory groups sending [p] to [Φ(p)].

If we put the complex numbers C into the second variable, we obtain Kasparov’s
operator theoretic K-homology functor K0(A) := KK(A,C).

The group KK(C,C). Each element in KK(C,C) can be represented by a Kas-
parov cycle of the form (H,1, T ) in which H = H0⊕H1 is a graded Hilbert space,
1 : C → L(H) is the action 1(λ)ξ = λξ and T is a self-adjoint operator satisfy-
ing T 2 − 1 ∈ K(H). This follows from the standard simplifications as described

in detail in [Bla86, §17.4]. If T =

(
0 P ∗

P 0

)
, then T 2 =

(
P ∗P 0
0 PP ∗

)
and the

condition T 2 − 1 ∈ K(H) then implies that P is a Fredholm operator. We then
obtain a well-defined map

index : KK(C,C)→ Z; [H,1, T ] �→ index(H,1, T ) := index(P ),

where index(P ) = dim(ker(P )) − dim(ker(P ∗)) denotes the Fredholmindex of P .
The index map induces the isomorphism KK(C,C) ∼= Z = K0(C). (Compare this
with the above isomorphism KK(C, B) ∼= K0(B) in the case B = C.)

3.3.3 The Kasparov product

We are now coming to the main feature of Kasparov’s KK-theory, namely, the
Kasparov product, which is a pairing

KKG(A,B)×KKG(B,C)→ KKG(A,C),

where A,B,C are G-C∗-algebras. Starting with an A-B Kasparov cycle (E , u,Φ, T )
and a B-C Kasparov cycle (F , v,Ψ, S), the Kasparov product will be represented
by a Kasparov cycle of the form (E ⊗BF , u⊗v,Φ⊗1, R), where all the ingredients
with the exception of the operator R are well-known objects by now: E ⊗B F
denotes the internal tensor product of E with F over B (with diagonal grading),
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u⊗v : G→ Aut(E ⊗BF) denotes the diagonal action, and Φ⊗1 : A→ L(E ⊗BF)
sends a ∈ A to the operator Φ(a) ⊗ 1 of E ⊗B F . But the construction of the
operator R is, unfortunately, quite complicated and reflects the high complexity
of Kasparov’s theory.

As a first attempt one would look at the operator

R = T ⊗ 1 + 1⊗ S.

But there are several problems with this choice. First of all, the operator 1 ⊗ S
on the internal tensor product is not well defined in general (it only makes sense,
if S commutes with Ψ(B) ⊆ L(F)). To resolve this, we need to replace 1 ⊗ S
with a so-called S-connection, which we shall explain below. But even if 1⊗ S is
well-defined, the triple (E ⊗B F , u ⊗ v,Φ ⊗ 1, T ⊗ 1 + 1 ⊗ S) will usually fail to
be a Kasparov triple unless S = 0, and one needs to replace T ⊗ 1 + 1 ⊗ S by a
combination

M1/2(T ⊗ 1) +N1/2(1⊗ S)

where M,N ≥ 1 are suitable operators with M + N = 1 which can be obtained
by an application of Kasparov’s technical theorem [Kas88, Theorem 1.4].

S-connection. For any ξ ∈ E define

θξ : F → E ⊗B F ; θξ(η) = ξ ⊗ η.

Then θξ ∈ K(F ,F ⊗B E) with adjoint given by

θ∗ξ (ζ ⊗ η) = Ψ(〈ξ, ζ〉B)η.

An operator S12 ∈ L(E⊗BF) is then called an S-connection, if for all homogeneous
elements ξ ∈ E we have

θξS − (−1)deg(ξ) deg SS12θξ, θξS
∗ − (−1)deg(ξ) deg SS∗

12θξ ∈ K(F , E ⊗B F) (3.3.1)

It is a good exercise to check that if S commutes with Ψ(B) ⊆ L(F), then S12 =
1⊗ S makes sense and is an S-connection in the above sense.

Definition 3.3.10 (Kasparov product). Suppose that A,B,C are G-C∗-algebras,
and that (E , u,Φ, T ) is an A-B Kasparov cycle and (F , v,Ψ, S) is a B-C Kasparov
cycle. Let S12 ∈ L(E ⊗B F) be an S-connection as explained above. Then the
quadruple (E ⊗B F , u ⊗ v,Φ ⊗ 1, S12) will be a Kasparov product for (E , u,Φ, T )
and (F , v,Ψ, S) if the following two conditions hold:

(i) (E ⊗B F , u⊗ v,Φ⊗ 1, S12) is an A-C Kasparov cycle.

(ii) For all a ∈ A we have (Φ(a)⊗1) [T ⊗ 1, S12] (Φ(a
∗)⊗1) ≥ 0 mod. K(E⊗BF).

In this case the class [E ⊗BF , u⊗v,Φ⊗1, S12] ∈ KKG(A,C) is called a Kasparov
product of [E , u,Φ, T ] ∈ KKG(A,B) with [F , v,Ψ, S] ∈ KKG(B,C).
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We should note that the existence of an S-connection S12 which satisfies the con-
ditions of the above definition follows from an application of Kasparov’s technical
theorem [Kas88, Theorem 14]. The proof is quite technical and we refer to the
literature (see one of the references [Ska84,Kas88,Bla86]).

Remark 3.3.11. (a) One can show that the operator S12 in a Kasparov product is
unique up to operator homotopy.

(b) The following easy case is often very useful: Suppose that B acts on F by
compact operators, i.e., Ψ : B → L(F) takes its values in K(F). Then (F , v,Ψ, 0) is
a B-C Kasparov cycle and the 0-operator on E⊗BF is then clearly a 0-connection.
Now if Φ : A → L(E) also takes values in K(E) and if T = 0, it follows that
[E ⊗B F , u⊗ v,Φ⊗ 1, 0] is a Kasparov product for [E , u,Φ, 0] and [F , v,Ψ, 0]. We
therefore obtain a functor from the compact correspondence category Corrc(G)
(see Section 2.5.3; here we use countably generated Z2-graded Hilbert modules)
into KKG given by (E , u,Φ) �→ [E , u,Φ, 0] which preserves multiplication.

The details of the following theorem can be found in [Bla86] or [Kas88].

Theorem 3.3.12 (Kasparov). Suppose that A,B,C are separable G-C∗-algebras
and let x = [E , u,Φ, T ] ∈ KKG(A,B) and y = [F , v,Ψ, S] ∈ KKG(B,C). Then
the Kasparov product

x⊗B y := [E ⊗B F , u⊗ v,Φ⊗ 1, S12]

exists and induces a well-defined bilinear pairing

⊗B : KKG(A,B)×KKG(B,C)→ KKG(A,C).

Moreover, the Kasparov product is associative: If D is another G-C∗-algebra and
z ∈ KKG(C,D), then we have

(x⊗B y)⊗C z = x⊗B (y ⊗C z) ∈ KKG(A,D).

The elements 1A = [A,α, idA, 0] ∈ KKG(A,A) and 1B = [B, β, idB , 0] ∈
KKG(B,B) act as identities from the left and right on KKG(A,B), i.e., we have

1A ⊗A x = x = x⊗B 1B ∈ KKG(A,B)

for all x ∈ KKG(A,B). In particular, KKG(A,A) equipped with the Kasparov
product is a unital ring.

The following result is helpful for the computation of Kasparov products in some
important special cases. For the proof we refer to [Bla86, 8.10.1].

Proposition 3.3.13. Suppose that A,B,C are G-C∗-algebras, (E , u,Φ, T ) is an A-
B Kasparov cycle and (F , v,Ψ, S) is a B-C Kasparov cycle. Suppose further that
T = T ∗ and ‖T‖ ≤ 1. Let S12 ∈ L(E ⊗B F) be a G-invariant S-connection of
degree one and let

R := T ⊗ 1 + (
√

1− T 2 ⊗ 1)S12.
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If [R,Φ(A) ⊗ 1] ∈ K(E ⊗B F), then (E ⊗B F , u ⊗ v,Φ ⊗ 1, R) ∈ EG(A,C) and
represents the Kasparov product of [E , u,Φ, T ] with [F , v,Ψ, S]

We should note that the conditions T = T ∗ and ‖T‖ ≤ 1 can always be ful-
filled by choosing an appropriate Kasparov cycle representing the given class
x ∈ KKG(A,B).

Associativity and the existence of neutral elements for the Kasparov product gives
rise to an easy notion ofKKG-equivalence for twoG-C∗-algebras A and B: Assume
that there are elements x ∈ KKG(A,B) and y ∈ KKG(B,A) such that

x⊗B y = 1A ∈ KKG(A,A) and y ⊗A x = 1B ∈ KKG(B,B).

Then taking products with x from the left induces an isomorphism

x⊗B · : KKG(B,C)→ KKG(A,C); z �→ x⊗B z

with inverse given by

y ⊗A · : KKG(A,C)→ KKG(B,C);w �→ y ⊗A w.

This follows from the simple identities

y ⊗A (x⊗B z) = (y ⊗A x)⊗B z = 1B ⊗B z = z

for all z ∈ KKG(B,C) and similarly we have x ⊗B (y ⊗A w) = w for all w ∈
KKG(A,C). Of course, taking products from the right by x and y will give
us an isomorphism · ⊗A x : KKG(C,A) → KKG(C,B) with inverse · ⊗B y :
KKG(C,B)→ KKG(C,A).

Definition 3.3.14. Suppose that x ∈ KKG(A,B) and y ∈ KKG(B,A) are as
above. Then we say that x is a KKG-equivalence from A to B with inverse y.
Two G-C∗-algebras A and B are called KKG-equivalent, if such elements x and
y exist.

Lemma 3.3.15. Suppose that (E , u,Φ) is a G-equivariant A-B Morita equivalence
for the G-C∗-algebras (A,α) and (B, β) and let (E∗, u∗,Φ∗) denote its inverse.
Then x = [E , u,Φ, 0] ∈ KKG(A,B) is a KKG-equivalence with inverse y =
[E∗, u∗,Φ∗, 0].

Proof. It follows from Remark 3.3.11 that the Kasparov product x⊗B y is repre-
sented by the Kasparov cycle [E⊗BE∗, u⊗u∗,Φ⊗1, 0]. But since the correspondence
(E ⊗B E∗, u⊗ u∗,Φ⊗ 1) is isomorphic to (A,α, idA), it follows that x⊗B y = 1A.
Similarly, we have y ⊗B x = 1B . �
Remark 3.3.16. If p ∈ M(A) is a full projection in a C∗-algebra A, then pA is
a pAp-A Morita equivalence and hence, if ϕ : pAp → L(pA) denotes the canoni-
cal morphism, the element [pA, ϕ, 0] ∈ KK(pAp,A) is a KK-equivalence (it is a
KKG-equivalence if A is a G-C∗-algebra and p ∈ M(A) is G-invariant). On the
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other hand, if ψ : pAp → A denotes the canonical inclusion, then [A,ψ, 0] deter-
mines the class of the ∗-homomorphism ψ. Both classes actually coincide, which
follows from the simple fact that we can decompose the KK-cycle (A,ψ, 0) as the
direct sum (pA, ϕ, 0)⊕ ((1− p)A, 0, 0) where the second summand is degenerate.
In particular, it follows from this that ψ∗ : K∗(pAp)→ K∗(A) is an isomorphism.

We now describe a more general version of the Kasparov product. For this we first
need to introduce a homomorphism

·⊗̂1D : KKG(A,B)→ KKG(A⊗̂D,B⊗̂D)

which is defined for any G-C∗-algebra (D, δ) by

[E , u,Φ, T ]⊗̂1D := [E⊗̂D,u⊗̂δ,Φ⊗̂1, T ⊗̂1].
One can check that ·⊗̂1D is compatible with Kasparov products in the sense that

(x⊗B y)⊗̂1D = (x⊗̂1D)⊗B⊗̂D (y⊗̂1D)

and it follows directly from the definition that 1A⊗̂1D = 1A⊗̂D. In particular, it

follows that ·⊗̂1D sends KKG-equivalences to KKG-equivalences. Of course, in a
similar way we can define a homomorphism

1D ⊗ · : KKG(A,B)→ KKG(D⊗̂A,D⊗̂B).

Remark 3.3.17. By our conventions “⊗̂” denotes the minimal graded tensor prod-
uct of the C∗-algebras A and B. But a similar map ·⊗̂maxD : KKG(A,B) →
KKG(A⊗̂maxD,B⊗̂maxD) exists for the maximal graded tensor product.

Theorem 3.3.18 (Generalized Kasparov product). Suppose that (A1, α1), (A2, α2),
(B1, β1), (B2, β2) and (D, δ) are G-C∗-algebras. Then there is a pairing

⊗D : KKG(A1, B1⊗̂D)×KKG(D⊗̂A2, B2)→ KKG(A1⊗̂A2, B1⊗̂B2)

given by
(x, y) �→ x⊗D y := (x⊗̂1A2

)⊗B1⊗̂D⊗̂A2
(1B1

⊗̂y).
This pairing is associative (in a suitable sense) and coincides with the ordinary
Kasparov product if B1 = C = A2. Moreover, in the case D = C, the product

⊗C : KKG(A1, B1)×KKG(A2, B2)→ KKG(A1⊗̂A2, B1⊗̂B2)

is commutative.

Note that there are several other important properties of the generalized Kasparov
product, which we do not state here. We refer to [Kas88, Theorem 2.14] for the
complete list and their proofs. We close this section with a useful description
of Kasparov cycles in terms of unbounded operators due to Baaj and Julg (see
[BJ83]). For our purposes it suffices to restrict to the case where B = C, in
which case we may rely on the classical theory of unbounded operators on Hilbert
spaces. But the picture extends to the general case using a suitable theory of
regular unbounded operators on Hilbert modules.
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Lemma 3.3.19 (Baaj-Julg). Suppose that A is a graded C∗-algebra and Φ : A →
B(H) is a graded ∗-representation of A on the graded separable Hilbert space H.

Suppose further that D =

(
0 d∗

d 0

)
is an unbounded self-adjoint operator on H of

degree one such that

(i) (1 +D2)−1Φ(a) ∈ K(H) for all a ∈ A, and

(ii) the set of all a ∈ A such that Φ(a) maps the domain Dom(D) of D into itself
and such that [D,Φ(a)] is bounded on Dom(D) is dense in A.

Then (H,Φ, T = D√
1+D2

) is an A-C Kasparov cycle.

For the proof of this lemma, even in the more general context of A-B Kasparov
cycles, we refer to [BJ83, Proposition 2.2]1. Note that the operator T = D√

1+D2
is

constructed via functional calculus for unbounded self-adjoint operators.

3.3.4 Higher KK-groups and Bott-periodicity

Definition 3.3.20. Suppose that (A,α) and (B, β) are G-C∗-algebras. For each
n ∈ N0 we define the (higher) KKG-group as

KKG
n (A,B) := KKG(A,B⊗̂Cln) and KKG

−n(A,B) := KKG(A⊗̂Cln, B),

where Cln denotes the nth complex Clifford algebra with trivial G-action and
grading as defined in Section 3.3.

With this definition of higher KK-groups it is easy to prove a (formal) version of
Bott-periodicity. We need the following easy lemma:

Lemma 3.3.21. If n ∈ N is even, then Cln is Morita equivalent to C as graded C∗-
algebras. If n is odd, then Cln is Morita equivalent to Cl1 as graded C∗-algebras.

Proof. Let n ∈ N0. We know from Section 3.3 that Cl2n ∼= M2n(C) with grading
given by cunjugation with a symmetry J ∈M2n(C). It is then easy to check that
the Hilbert space C2n equipped with the grading operator J and the canonical
left action of Cln on C2n gives the desired Morita equivalence. Similarly, we have
Cl2n+1

∼= M2n(C)⊕M2n(C) ∼= M2n⊗̂Cl1 as graded C∗-algebras, which is Morita
equivalent to C⊗̂Cl1 = Cl1. �

Notations 3.3.22. In what follows we shall denote by x2n ∈ KK(Cl2n,C) the
(invertible) class of the Morita equivalence between Cl2n and C as in the above
lemma and by x2n+1 ∈ KK(Cl2n+1,Cl1) the class of the Morita equivalence be-
tween Cl2n+1 and Cl1.

1We are grateful to Adam Rennie for pointing out to us that the weaker formulation of the
above result as stated in [Bla86, Proposition 17.11.3] is not correct. We refer to [FMR14] for a
discussion and for counterexamples.
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Proposition 3.3.23 (Formal Bott-periodicity). For each n ∈ N0 there are canonical
isomorphisms

KKG(A⊗̂Cl2n, B) ∼= KKG
0 (A,B) ∼= KKG(A,B⊗̂Cl2n)

and

KKG(A⊗̂Cl2n+1, B) ∼= KKG(A⊗̂Cl1, B)

∼= KKG(A,B⊗̂Cl1) ∼= KKG(A,B⊗̂Cl2n+1).

As a consequence, we have KKG
l (A,B) ∼= KKG

l+2(A,B) for all l ∈ Z.

Proof. In the even case, the isomorphisms follow by taking Kasparov products
with the KK-equivalences 1A ⊗ x−1

2n ∈ KKG(A,A⊗̂Cl2n) and 1B ⊗ x−1
2n ∈

KKG(B,B⊗̂Cl2n) from the left and right, respectively (where we con-
sider the trivial action of G on the Clifford algebras). The same argument
will provide isomorphisms KKG(A⊗̂Cl2n+1, B) ∼= KKG(A⊗̂Cl1, B) and
KKG(A,B⊗̂Cl1) ∼= KKG(A,B⊗̂Cl2n+1), respectively.

To finish off, one checks that the composition

KKG(A⊗̂Cl1, B)
y �→y⊗1Cl1−→ KKG(A⊗̂Cl1 ⊗̂Cl1, B⊗̂Cl1)

(1A⊗x−1
2 )⊗·∼= KKG(A,B⊗̂Cl1)

is an isomorphism with the inverse given by the composition

KKG(A,B⊗̂Cl1)
y �→y⊗1Cl1−→ KKG(A⊗̂Cl1, B⊗̂Cl1 ⊗̂Cl1)

·⊗(1B⊗x2)∼= KKG(A⊗̂Cl1, B),

where we use that Cl1 ⊗̂Cl1 ∼= Cl2 ∼M C. �
Of course, we would like to have a version of Bott-periodicity showing that, alter-
natively, we could define the higher KK-groups via suspension. For this we are
going to construct a KK-equivalence between Cl1 and C0(R). Indeed, we shall
do this by first constructing a KK-equivalence between C0(R)⊗̂Cl1 ∼= C0(R,Cl1)
with C. Since we consider the trivial G-action on C0(R) and Cl1 it suffices to do
this for the trivial group G = {e}. In what follows next we write D := C0(R)⊗̂Cl1
and D0 := C∞

c (R)⊗̂Cl1 ⊆ D, where C∞
c (R) denotes the dense subalgebra of C0(R)

consisting of smooth functions with compact supports. A typical element of D can
be written as f1 + f2e with f1, f2 ∈ C0(R), where we identify f1 with f11Cl1 and
where e = e1 denotes the generator of Cl1 with e2 = 1.

The Dirac element. We define an element

α = [H,Φ, T ] ∈ KK(D,C)

as follows: We let H = L2(R) ⊕ L2(R) be equipped with the grading induced by

the operator J =

(
1 0
0 −1

)
. We define T = D√

1+D2
with D =

(
0 −d
d 0

)
, where
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d : L2(R) → L2(R) denotes the densely defined operator d = d
dt . Then D is

an essentially self-adjoint operator on the dense subspace C∞
c (R) ⊕ C∞

c (R) of H
and therefore extends to a densely defined self-adjoint operator on H (we refer to
[HK01, Chapter 10] for details). Let Φ : D → L(H) be given by

Φ(f1 + f2e) ·
(
ξ1
ξ2

)
=

(
f1 f2
f2 f1

)
·
(
ξ1
ξ2

)
=

(
f1 · ξ1 + f2 · ξ2
f2 · ξ1 + f1 · ξ2

)
. (3.3.2)

In order to check that (H,Φ, T ) is a D-C Kasparov cycle we need to check the
conditions of Lemma 3.3.19 for the triple (H,Φ, D). Note that D2 = diag(Δ,Δ),

where Δ = − d2

dt2 denotes the (positive) Laplace operator on R. By [RS78, XIII.4
Example 6] (or [HK01, 10.5.1]) the operator (1+Δ)−1M(f) is a compact operator
for all f ∈ C∞

c (R) (where M : Cb(R) → B(L2(R)) denotes the representation as
multiplication operators). Hence

(1 +D2)−1 ◦ Φ(f1 + f2e) =

(
(1 + Δ)−1M(f1) (1 + Δ)−1M(f2)
(1 + Δ)−1M(f2) (1 + Δ)−1M(f1)

)
∈ K(H)

for all f1 + f2e ∈ D0 = C∞
c (R) ⊕ C∞

c (R). Since D0 is dense in D and since
(1 +D2)−1Φ(f1 + f2e) depends continuously on (f1, f2), this proves condition (i)
of Lemma 3.3.19. To see condition (ii) we first observe that for all f ∈ C∞

c (R) the
operator [d,M(f)] is defined for all ξ ∈ C∞

c (R) ⊆ L2(R) and we have

[d,M(f)]ξ =
d

dt
(fξ)− f ·

( d

dt
ξ
)
=
( d

dt
f
)
· ξ,

Hence [d,M(f)] extends to a bounded operator on L2(R) and

[D,Φ(f1 + f2e)] =

(−[d,M(f2)] −[d,M(f1)]
[d,M(f1)] [d,M(f2)]

)
is densely defined and bounded for all f1 + f2e ∈ D0.

The dual-Dirac element. Choose any odd continuous function ϕ : R→ [−1, 1] such
that ϕ(x) > 0 for x > 0 and limx→∞ ϕ(x) = 1. For instance, we could take

ϕ(x) =
x√

1 + x2
or ϕ(x) =

{
sin(x/2) |x| ≤ π

x
|x| |x| ≥ π

}
.

We then define an element β = [D, 1, S] ∈ KK(C,D) as follows: We consider D
as a graded Hilbert D-module in the canonical way, and we put 1(λ)a = λa for all
λ ∈ C and a ∈ D. The operator S ∈ M(D) is defined via multiplication with the
element ϕe ∈ Cb(R)⊗̂Cl1 ⊆ M(D). To check that (D,Φ, S) is a Kasparov cycle
it suffices to check that S2 − 1 ∈ K(D) = D. But this follows from the fact that
S2 − 1 is given by pointwise multiplication with the function ϕ2 − 1 which lies in
D since lim±x→∞ ϕ2(x) = 1 by conditions (i) and (ii) for ϕ. Since S = S∗ all other
conditions of Definition 3.3.2 are trivial.
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Note that the class β does not depend on the particular choice of the function
ϕ : R→ R. Indeed, if two functions ϕ0, ϕ1 are given that satisfy conditions (i) and
(ii), we can define for each t ∈ [0, 1] a function ϕt : R→ R by

ϕt(x) = tϕ1(x) + (1− t)ϕ0(x).

Then each ϕt satisfies the requirements (i) and (ii) and if St denotes the corre-
sponding operators it follows that t �→ St is an operator homotopy joining S0 with
S1.

Notations 3.3.24. The element β ∈ KK(C, C0(R)⊗̂Cl1) = KK1(C, C0(R)) con-
structed above is called the Bott class.

The Kasparov product β ⊗D α ∈ KK(C,C). We are now going to show that
β ⊗D α = 1C ∈ KK(C,C). For this we first claim that β ⊗D α is represented by
the triple (H,1, T ′) with

T ′ =
(

0 M(ϕ)
M(ϕ) 0

)
−M(

√
1− ϕ2)

(
0 − d√

1+Δ
d√
1+Δ

0

)
, (3.3.3)

withH = L2(R)⊕L2(R) as above. Indeed, since Φ : D → L(H) is a non-degenerate
representation we obtain an isomorphism

D ⊗D H ∼= H; a⊗ ξ �→ Φ(a)ξ. (3.3.4)

Let T12 denote the operator on D⊗DH corresponding to T =

(
0 − d√

1+Δ
d√
1+Δ

0

)
under this isomorphism. We claim that T12 is a T -connection. Recall that for any
a ∈ D the operator θa : H → D ⊗D H is given by ξ �→ a ⊗ ξ. Composed with
the above isomorphism we get the operator ξ �→ Φ(a)ξ on H. Condition (3.3.1)
follows then for T12 from the fact that [T,Φ(a)] ∈ K(H) for all a ∈ D. We now use
Proposition 3.3.13 to see that the Kasparov product β ⊗D α is represented by the
triple

(D ⊗D H, 1⊗ 1, S ⊗ 1 + (
√

1− S2 ⊗ 1)T12).

We leave it as an exercise to check that this operator corresponds to the operator
R of (3.3.3) under the isomorphism (3.3.4).

Hence to see that β ⊗D α = 1C ∈ KK(C,C) we only need to show that the
Fredholm index of the operator

F := M(ϕ) +M
(√

1− ϕ2
) d√

1 + Δ
: L2(R)→ L2(R)

is one (see the discussion at the end of Section 3.3.2).
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Recall that ϕ : R→ R can be any function satisfying the conditions (i) and (ii) as
stated in the construction of β. Thus we may choose

ϕ(x) =

{
sin(x/2) if x ∈ [−π, π]

x
|x| if |x| > π

}
.

To do the computation we want to restrict the operator to the interval [−π, π]. For
this consider the orthogonal projection Q : L2(R)→ L2[−π, π]. Since Q commutes
with M(1 − ϕ2) and since [ d√

1+Δ
,M(ψ)] ∈ K(L2(R)) for all ψ ∈ C0(R) (which

follows from [T,Φ(a)] ∈ K(H) for all a ∈ D), we have

M(1− ϕ2)
d√

1 + Δ
∼M(

√
1− ϕ2)

d√
1 + Δ

M(
√
1− ϕ2)

= M(
√
1− ϕ2)Q

d√
1 + Δ

M(
√
1− ϕ2)Q ∼M(1− ϕ2)

d√
1 + Δ

Q,

where ∼ denotes equality up to compact operators. Thus we may replace F by
the operator

F1 := M(ϕ) +M
(√

1− ϕ2
) d√

1 + Δ
Q : L2(R)→ L2(R)

Decomposing L2(R) as the direct sum L2[−π, π]⊕L2((−∞,−π)∪ (π,∞)), we see
that the operator F1 fixes both summands and acts as the identity on the second
summand. Hence for computing the index we may restrict our operator to the
summand L2[−π, π] on which it acts by

F2 := M(sin(x/2)) +M(cos(x/2))
d√

1 + Δ
.

Now there comes a slightly tricky point and we need to appeal to some com-
putations given in [HR00, Chapter 10]. We want to replace the operator d√

1+Δ

with the operator d̃√
1−ΔT

: L2(T) → L2(T) (identifying L2[−π, π] with L2(T)),

where d̃ : L2(T) → L2(T) denotes the operator given by the differential d
dt

on the smooth 2π-periodic functions on R and where ΔT = −d̃2 denotes the
corresponding Laplace operator. Although the operators d and d̃ clearly coin-
cide on C∞

c (−π, π) the functional calculus that has been applied for producing

the operators d√
1+Δ

and d̃√
1−ΔT

depends on the full domains of the self-adjoint

extensions of these operators, which clearly differ. The solution of this prob-
lem is implicitly given in [HR00, Lemma 10.8.4]: Recall that d√

1+Δ
is equal to

−iχ(id) where we apply the functional calculus for unbounded self-adjoint oper-
ators for the function χ(x) = x√

1+x2
to the (unique) self-adjoint extension of id.

Let ψ ∈ C∞
c (−π, π) be any fixed function. Choose a positive function μ ∈ C∞

c (R)
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with suppμ ∈ (−π, π) such that μ ≡ 1 on U := suppψ + (−δ, δ) for some suit-
able δ > 0. Let dμ = M(μ) ◦ d ◦M(μ). It follows then from [HR00, Corollary
10.2.6] that idμ is an essentially self-adjoint operator that coincides with id on
U . It then follows from [HR00, Lemma 10.8.4] that M(ψ)χ(id) ∼M(ψ)χ(idμ) on
L2[−π, π], where, as above, ∼ denotes equality up to compact operators. Applying
the same argument to the canonical inclusion of the interval (−π, π) into T shows
that M(ψ)χ(idμ) ∼ M(ψ)χ(id̃). Together we see that M(ψ)χ(id) ∼ M(ψ)χ(id̃)
on L2[−π, π] for all ψ ∈ C∞

c (−π, π) and then also for all ψ ∈ C0(−π, π). Applying
this to ψ(x) = cos(x/2) gives the desired result.

Thus we may replace the operator F2 by the operator

F3 := M(sin(x/2)) +M(cos(x/2))
d̃√

1 + ΔT
.

Multiplying F3 from the left with the invertible operatorM(2iei
x
2 ) does not change

the Fredholm index, so we compute the index of the operator

F4 = M(2iei
x
2 sin(x/2)) +M(2iei

x
2 cos(x/2))

d̃√
1 + ΔT

= M(eix − 1) + iM(eix + 1)
d̃√

1 + ΔT
.

In what follows let {en : n ∈ Z} denote the standard othonormal basis of �2(Z)
and let U : �2(Z)→ �2(Z) denote the bilateral shift operator U(en) = en+1. Using
Fourier transform and the Plancherel isomorphism L2[−π, π] ∼= �2(Z) the operator
F4 transforms to the operator F̂4 : �2(Z)→ �2(Z) given by

F̂4 = (U − id) + i(U + id)R

where R : �2(Z)→ �2(Z) is given by R(en) =
in√
1+n2

en. Let

sign(n) =

{ n
|n| if n �= 0

0 if n = 0

}
and let R′(en) = i sign(n)en for n ∈ Z and let us write F̂5 := (U− id)+i(U+id)R′.
Since

∣∣∣ in√
1+n2

− i sign(n)
∣∣∣ → 0 for |n| → ∞ we have R − R′ ∈ K(�2(Z)), which

implies that F̂5 − F̂4 ∈ K(�2(Z)) and hence index(F̂5) = index(F̂4). Applying F̂5

to some basis element en gives

F̂5(en) = (U − id) + i(U + id)R′(en)

= (en+1 − en)− sign(n)(en+1 + en) =

⎧⎨⎩ 2en+1 if n < 0
e1 − e0 if n = 0
−2en if n > 0

⎫⎬⎭ .
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It follows from this that F̂5 is surjective and ker(F̂5) = C(e1 + 2e0 + e−1). Hence

index(β ⊗D α) = index(F̂5) = 1.

Let us state as a lemma what we have proved so far:

Lemma 3.3.25. Let D = C0(R)⊗̂Cl1 = C0(R) ⊕ C0(R) with the standard odd
grading and let α ∈ KK(D,C) and β ∈ KK(C,D) as above. Then

β ⊗D α = 1C ∈ KK(C,C).

In order to show that α and β are KK-equivalences, we also need to check that
the product α⊗C β = 1D ∈ KK(D,D). For this we shall use a rotation trick that
originally goes back to Atiyah, and which has been adapted very successfully to
this situation by Kasparov. Recall that by Theorem 3.3.18 the Kasparov product
over C is commutative, i.e., we have

α⊗C β = β ⊗C α = (β ⊗ 1D)⊗D⊗̂D (1D ⊗ α)

= (β ⊗ 1D)⊗D⊗̂D
(
ΣD,D ⊗D⊗̂D (α⊗ 1D)

)
,

where ΣD,D : D⊗̂D → D⊗̂D denotes (the KK-class of) the flip homomorphism
x ⊗ y �→ (−1)deg(x) deg(y)y ⊗ x. If we can show that there is an invertible class
η ∈ KK(D,D) such that ΣD,D = 1D⊗̂η ∈ KK(D⊗̂D,D⊗̂D) the result will follow
from the following reasoning:

α⊗Cβ = (β ⊗ 1D)⊗D⊗̂D
(
ΣD,D ⊗D⊗̂D (α⊗ 1D)

)
= (β ⊗ 1D)⊗D⊗̂D

(
(1D ⊗ η)⊗D⊗̂D (α⊗ 1D)

)
= (β ⊗ 1D)⊗D⊗̂D

(
ΣD,D ◦(η ⊗ 1D)◦ Σ−1

D,D
)⊗D⊗̂D

(
ΣD,D ⊗D⊗̂D (1D ⊗ α)

)
= (β ⊗ 1D)⊗D⊗̂D

(
ΣD,D ◦ (η ⊗ 1D)

)⊗D⊗̂D (1D ⊗ α)

= (β ⊗ 1D)⊗D⊗̂D ΣD,D ⊗D⊗̂D (η ⊗C α)

= (β ⊗ 1D)⊗D⊗̂D (α⊗C η)

=
(
(β ⊗ 1D)⊗D⊗̂D (α⊗ 1D)

)⊗
C⊗̂D (1C ⊗ η)

= η.

Since η is invertible in KK(D,D) this implies that α has a right KK-inverse γ,
say. But then γ = β, since

β = β ⊗D (α⊗C γ) = (β ⊗D α)⊗C γ = γ.

To see that ΣD,D = 1D⊗̂η ∈ KK(D⊗̂D,D⊗̂D) for a suitable invertible KK-class
η we consider the isomorphism

D⊗̂D =
(
C0(R)⊗̂Cl1

)⊗̂(C0(R)⊗̂Cl1
) ∼= C0(R2)⊗̂Cl2 .
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If τ : Rn → Rn is any orthogonal transformation, it induces an automorphism
τ∗ : C0(Rn) → C0(Rn) by τ∗(f)(x) = f(τ−1(x)) and an automorphism τ̃ of Cln
by extending, via the universal property of Cln, the map τ̃ : Rn → Cln; v �→ ι◦τ(v)
to all of Cln, where ι : Rn → Cln denotes the canonical inclusion. We then get an
automorphism

Φτ := τ∗⊗̂τ̃ : C0(Rn)⊗̂Cln → C0(Rn)⊗̂Cln .

Moreover, a homotopy of orthogonal transformations of Rn between τ0 and τ1
clearly induces a homotopy between the automorphisms Φτ0 and Φτ1 . In particular,
for any orthogonal transformation that is homotopic to idRn we get

[Φτ ] = 1C0(Rn,Cln) ∈ KK(C0(Rn,Cln), C0(Rn,Cln)).

It is not difficult to check that under the isomorphism D⊗̂D ∼= C0(R2)⊗̂Cl2 the
flip automorphism ΣD,D corresponds to Φσ : C0(R2)⊗̂Cl2 → C0(R2)⊗̂Cl2 with

σ : R2 → R2;σ(x, y) = (y, x).

Since det(σ) = −1, it is, unfortunately, not homotopic to idR2 . But the orthogonal
transformation ρ : R2 → R2; ρ(x, y) = (−y, x) is homotopic to idR2 via the path
of transformations ρt, t ∈ [0, π/2] with

ρt(x, y) = (cos(t)x− sin(t)y, sin(t)x+ cos(t)y).

One checks that Φρ corresponds to ΣD,D ◦ (idD ⊗Φ− id), where − id : R→ R, x �→
−x is the flip on R. Hence, if η = [Φ− id] ∈ KK(D,D), we have

ΣD,D ⊗D⊗̂D (1D ⊗ η) = [ΣD,D ◦ (idD ⊗Φ− id)] = [Φρ] = 1D⊗̂D,

where, by abuse of notation, we identify Φρ with the corresponding automorphism
of D⊗̂D. Since ΣD,D = Σ−1

D,D it follows that 1D ⊗ η = ΣD,D ∈ KK(D⊗̂D,D⊗̂D)
and we are done.

Corollary 3.3.26. Let α1 ∈ KK(C0(R),Cl1) and β1 ∈ KK(Cl1, C0(R)) be the im-
ages of α and β under the isomorphisms KK(C0(R)⊗Cl1,C) ∼= KK(C0(R),Cl1)
and KK(C, C0(R)⊗ Cl1) ∼= KK(Cl1, C0(R)) of Proposition 3.3.23. Then α1 is a
KK-equivalence with inverse β1. As a consequence, for all G-algebras A and B,
there are canonical Bott-isomorphisms

KKG(A⊗̂C0(R), B) ∼= KKG
1 (A,B) ∼= KKG(A,B⊗̂C0(R)).

More generally, for all n,m ∈ N0 we get Bott-isomorphisms

KKG(A⊗̂C0(Rn), B⊗̂C0(Rm)) ∼= KKG
n+m(A,B).

Proof. The proof is a straightforward consequence of the results and techniques
explained above and is left to the reader.2 �

2The above proof of Bott-periodicity follows in part some unpublished notes of Walter Par-
avicini. See http://wwwmath.uni-muenster.de/u/echters/Focused-Semester/downloads.html.

http://wwwmath.uni-muenster.de/u/echters/Focused-Semester/downloads.html
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Kasparov actually proved a more general version of the above KK-theoretic Bott-
periodicity theorem, which provides a KKG-equivalence between C0(V ) and the
Clifford algebra Cl(V, 〈·, ·〉), in which G is a (locally) compact group that acts by
a continuous orthogonal representation ρ : G → O(V ) on the finite-dimensional
euclidean vector space V , and 〈·, ·〉 is any G-invariant inner product on V . The
action of G on Cl(V ) is the unique action that extends the given action of G on
V ⊆ Cl(V ). Identifying V with Rn equipped with the standard inner product,
this KK-equivalence is constructed as in the above special case where n = 1 via
a KKG-equivalence between C0(Rn)⊗̂Cln and C. In the case of trivial actions,
this result follows from the case n = 1, using the fact that the n-fold graded
tensor product of C0(R)⊗̂Cl1 with itself is isomorphic to C0(Rn)⊗̂Cln. We refer
to Kasparov’s original papers [Kas75,Kas81] for the proof of the general case.

3.3.5 Excision in KK-theory

Recall that every short exact sequence 0 → I
ι→ A

q→ A/I → 0 of C∗-algebras
induces a six-term exact sequence in K-theory

K0(I)
ι0−−−−→ K0(A)

q0−−−−→ K0(A/I)

δ

�⏐⏐ ⏐⏐�exp

K1(A/I) ←−−−−
ι1

K1(A) ←−−−−
q1

K1(I)

which happens to be extremely helpful for the computation of K-theory groups.
To some extend we get similar six-term sequences in KK-theory, but one has to
impose some extra conditions on the short exact sequence:

Definition 3.3.27. Let G be a locally compact group. A short exact sequence of
graded G-C∗-algebras

0→ I
ι→ A

q→ A/I → 0

is called G-equivariantly semisplit if there exists a G-equivariant completely posi-
tive, normdecreasing, grading preserving cross setion φ : A/I → A for the quotient
map q : A→ A/I. We then also say that A is a G-semisplit extension of A/I by I.

By an important result of Choi–Effros [CE76] a short exact sequence 0 → I
ι→

A
q→ A/I → 0 (with trivial G-action) is always semisplit if A is nuclear. But there

are many other important cases of semisplit extensions.

Every G-semisplit extension determines a unique class in KKG
1 (A/I, I) which

plays an important rôle in the construction of the six-term exact sequences in KK-
theory. The nonequivariant version is well documented (e.g., see [Kas81, Ska85,
CS86] and [Bla86, Section 19.5]). But the details of the equivariant version, which
we shall need below, are somewhat scattered in the literature. The main ingredients
are explained in [BS89, Remarques 7.5] (see also the proof of [CE01a, Lemma
5.17]). We summarise the important steps as follows:
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(i) If 0 → I
ι→ A

q→ A/I → 0 is a G-equivariant semisplit extension, then the
canonical embedding e : I → Cq := C0([0, 1), A)/C0((0, 1), I), which sends
a ∈ I to the equivalence class of (1−t)a in Cq, determines aKKG-equivalence
[e] ∈ KKG(I, Cq).

(ii) View the Bott-class β ∈ KK1(C, C0(0, 1)) as an element inKKG
1 (C, C0(0, 1))

with trivial G-actions everywhere and let i : C0((0, 1), A/I)→ Cq denote the
canonical map. Let c ∈ KKG

1 (A/I, I) be the class defined via the Kasparov
product

c = (β ⊗ 1A/I)⊗C0((0,1),A/I) [i]⊗Cq
[e]−1,

where [e]−1 ∈ KKG(Cq, I) denotes the inverse of [e]. We call c ∈
KKG

1 (A/I, I) the class attached to the equivariant semisplit extension

0→ I
ι→ A

q→ A/I → 0.

We then have the following theorem, which can be proved basically along the lines
of the nonequivariant case using G-equivariant versions of Stinespring’s theorem
and of Kasparov’s stabilisation theorem ([MP84]).

Theorem 3.3.28. Suppose that 0→ I
ι→ A

q→ A/I → 0 is a G-equivariant semisplit
short exact sequence of C∗-algebras. Then for every G-C∗-algebra B, we have the
following two six-term exact sequences:

KKG
0 (B, I)

ι∗−−−−→ KKG
0 (B,A)

q∗−−−−→ KKG
0 (B,A/I)

∂

�⏐⏐ ⏐⏐�∂

KKG
1 (B,A/I) ←−−−−

q∗
KKG

1 (B,A) ←−−−−
ι∗

KKG
1 (B, I)

and

KKG
0 (A/I,B)

q∗−−−−→ KKG
0 (A,B)

ι∗−−−−→ KKG
0 (I,B)

∂

�⏐⏐ ⏐⏐�∂

KKG
1 (I, B) ←−−−−

ι∗
KKG

1 (A,B) ←−−−−
q∗

KKG
1 (A/I,B),

where the boundary maps are all given by taking the Kasparov product with the
class c ∈ KKG

1 (A/I, I) of the given extension.

3.4 The Baum–Connes conjecture

3.4.1 The universal proper G-space

In what follows, for a locally compact group G, a G-space will mean a locally
compact space X together with a homomorphism h : G → Homeo(X) such that
the map

G×X → X; (s, x) �→ s · x := h(s)(x)
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is continuous. A G-space X is called proper, if the map

ϕ : G×X → X ×X; (s, x) �→ (s · x, x)
is proper in the sense that inverse images of compact sets are compact. Equiva-
lently, X is a proper G-space, if every net (si, xi) in G×X such that (si ·xi, xi)→
(y, x) for some (y, x) ∈ X ×X has a convergent subnet. We also say that G acts
properly on X. Proper G-spaces have an extremely nice behaviour and they are
very closely connected to actions by compact groups.

Let us state some important properties:

Lemma 3.4.1. Suppose that X is a proper G-space. Then the following hold:

(i) For every x ∈ X the stabiliser Gx = {s ∈ G : s · x = x} is compact.

(ii) The orbit space G\X equipped with the quotient topology is a locally compact
Hausdorff space.

(iii) If X is a G-space, Y is a proper G-space and φ : X → Y is a G-equivariant
continuous map, then X is a proper G-space as well.

Proof. The first assertion follows from Gx × {x} = ϕ−1({(x, x)}), if ϕ : G×X →
X ×X is the structure map.

For the second assertion, we first observe that the quotient map q : X → G\X
is open since for any open subset U ⊆ X we have q−1(q(U)) = G · U is open in
X. This then easily implies that G\X is locally quasi-compact. We need to show
that G\X is Hausdorff. For this, assume that there is net (xi) such that the net of
orbits (G(xi)) converges to two orbits G(x), G(y). We need to show that y = s · x
for some s ∈ G. Since the quotient map q : X → G\X is open, we may assume,
after passing to a subnet if necessary, that xi → x and si ·xi → y for some suitable
net (si) in G. Hence (si ·xi, xi)→ (y, x), and by properness we may assume, after
passing to a subnet if necessary, that (si, xi) → (s, x) in G ×X for some s ∈ G.
But then si · xi → s · x, which implies y = s · x.
For the third assertion let K ⊆ X be compact. If (s · x, x) ∈ K × K it follows
that φ×φ(s · x, x) ∈ φ(K)×φ(K); hence, by properness of Y , (s, φ(x)) lies in the
compact set ϕ−1

Y (φ(K)×φ(K)) of G×Y . If C ⊆ G denotes the compact projection
of this set in G, we see that ϕ−1

X (K ×K) ⊆ C ×K is compact as well. �
Example 3.4.2. (a) If G is compact, then every G-space X is proper, since for all
C ⊆ X compact, we have that ϕ−1(C × C) ⊆ G× C is compact.

(b) Suppose that H ⊆ G is a closed subgroup of G and assume that Y is a proper
H-space. The induced G-space G×H Y is defined as the quotient H\(G×Y ) with
respect to the H-action h · (s, y) = (sh−1, h · y). This action is proper by part (iii)
of the above lemma, hence G ×H Y is a locally compact Hausdorff space. We let
G act on G×H Y by s · [t, y] = [st, y]. We leave it as an exercise to check that this
action is proper as well.
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(c) It follows as a special case of (b) that whenever K ⊆ G is a compact subgroup
of G and Y is a K-space, then the induced G-space G×K Y is a proper G-space.
Indeed, by a theorem of Abels (see [Abe78, Theorem 3.3]) every proper G-space is
locally induced from compact subgroups. More precise, if X is a proper G-space
and x ∈ X, then there exists a G-invariant open neighbourhood U of x such that
U ∼= G ×K Y as G-space for some compact subgroup K of G (depending on U)
and some K-space Y . In particular, if G does not have any compact subgroup,
then every proper G-space is a principal G-bundle.

(d) If M is a finite-dimensional manifold, then the action of the fundamental group

G = π1(M) on the universal covering M̃ by deck transformations is a (free and)
proper action.

Definition 3.4.3. A proper G-space Z is called a universal proper G-space if for
every proper G-space X there exists a continuous G-map φ : X → Z that is
unique up to G-homotopy. We then write Z =: EG. Note that EG is unique up
to G-homotopy equivalence.

The following result is due to Kasparov and Skandalis (see [KS91, Lemma 4.1]):

Proposition 3.4.4. Let X be a proper G-space and let M(X) denote the set of finite
Radon measures on X with total mass in ( 12 , 1] equipped with the weak-* topology
as a subset of the dual C0(X)′ of C0(X) and equipped with the action induced by
the action of G on C0(X). Then M(X) is a universal proper G-space.

Since the restriction of a proper G-action to a closed subgroup H is again proper,
it follows that the restriction of the G-space M(X) of the above proposition to
any closed subgroup H is a universal proper H-space as well. By uniqueness of
EG up to G-homotopy we get

Corollary 3.4.5. Suppose that H is a closed subgroup of G and let Z be a universal
proper G-space. Then Z is also a universal proper H-space if we restrict the given
G-action to H.

Example 3.4.6. (a) If G is compact, then the one-point space {pt} with the trivial
G-action is a universal proper G-space. Similarly, every contractible space Z with
trivial G-action is universal. Hence EG = {pt} and EG = Z.

(b) We have ERn = Rn: Since Rn has no compact subgroups it follows that
every proper G-space is a principal Rn-bundle. On the other hand, since Rn is
contractible, it follows that every principal Rn-bundle is trivial. It follows that
every proper Rn-space X is isomorphic to Rn × Y with trivial action on Y and
translation action on Rn. Hence the projection p : X ∼= Rn × Y → Rn maps X
equivariantly into Rn. If φ0, φ1 : X → Rn are two such maps, then

φt : X → Rn : φt(x) = tφ1(x) + (1− t)φ0(x)

is a G-homotopy of equivariant maps between them. Thus Rn is universal.



110 Chapter 3. Bivariant KK-Theory and the Baum–Connes conjecure

(c) It follows from (b) together with Corollary 3.4.5 that EZn = Rn.

(d) If G is a torsion-free discrete group, then, as explained above, every proper
G-space is a principal G-bundle. It follows that EG = EG, the universal principal
G-bundle.

(e) If G is an almost connected group (i.e., the quotient G/G0 of G by the con-
nected component G0 of the identity in G is compact), then G has a maximal
compact subgroup K ⊆ G. It is then shown by Abels in [Abe74] that G/K is a
universal proper G-space.

(f ) It follows from (e) and Corollary 3.4.5 that for every closed subgroup H of
an almost connected group G, we have EH = G/K, with K a maximal compact
subgroup of G. In particular, we have E SL(n,Z) = SL(n,R)/ SO(n).

3.4.2 The Baum–Connes assembly map

The Baum–Connes conjecture with coefficients in a C∗-algebra A (denoted BCC
for short) states, that for every G-C∗-algebra A a certain assembly map

μ(G,A) : K
G
∗ (EG;A)→ K∗(A�α G)

is an isomorphism of abelian groups. Here KG
∗ (EG;A), often called the topo-

logical K-theory of G with coefficients in A, can be regarded as the equivariant
K-homology of EG with coefficients in A. We give a precise definition of this
group and of the assembly map below. In case A = C we get the Baum–Connes
conjecture with trivial coefficients (BC for short), which relates the equivariant K-
homology KG

∗ (EG) := KG
∗ (EG;C) with K∗(C∗

r (G)), the K-theory of the reduced
group algebra of G.

It is well known from the work of Higson, Lafforgue and Skandalis ([HLS02]) that
the now often-calledGromov Monster groupG fails the conjecture with coefficients.
But there is still no counterexample for the conjecture with trivial coefficients. On
the other hand, we know from the work of Higson and Kasparov [HK01] that (even
a very strong version of) BCC holds for all a-T -menable groups – a large class of
groups that contains all amenable groups. We give a more detailed discussion of
this in Section 3.4.3 below. The relevance of the Baum–Connes conjecture comes
from a number of facts:

(i) It implies many other important conjectures, such as the Novikov conjecture
in topology, the Kaplansky conjecture on idempotents in group algebras, and
the Gromov–Lawson conjecture on positive scalar curvatures in differential
geometry. So the validity of the conjecture for a given group G has many pos-
itive consequences. We refer to [BCH94,Val02] for more detailed discussions
on these applications.

(ii) At least in the case of trivial coefficients the left-hand side KG
∗ (EG) is com-

putable (at least in principle) by classical techniques from algebraic topology
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such as excision, taking direct limits, and such. These methods are usually
not available for the computation of K∗(C∗

r (G)) (or K∗(A�r G)).

(iii) As we shall see further down the line, the conjecture allows a certain flexibility
for the coefficients in a number of interesting cases, which makes it possible
to perform explicit K-theory computations for certain crossed products and
(twisted) group algebras.

Before we go on with this general discussion, we now want to explain the ingre-
dients of the conjecture. For this we let G be a locally compact group and X a
proper G-space. Let us further assume that X is G-compact, which means that
G\X is compact. Then there exists a continuous function c : X → [0,∞) with
compact support such that for all x ∈ X we have∫

G

c(s−1 · x)2 ds = 1.

For the construction, just choose any compactly supported positive function c̃ on
X such that for each x ∈ X there exists s ∈ G with c̃(s·x) �= 0, divide this function

by the strictly positive function d(x) :=
∫
G
c̃(s−1 ·x) ds and then put c =

√
c̃
d . We

shall call such function c : X → [0,∞) a cut-off function for (X,G). For such c
consider the function

pc : G×X → [0,∞); pc(s, x) = ΔG(s)
−1/2c(x)c(s−1 · x), ∀(s, x) ∈ G×X.

It follows from the properness of the action and the fact that c has compact support
that pc ∈ Cc(G×X) ⊆ Cc(G,C0(X)). Thus pc can be regarded as an element of
the reduced (or full) crossed product C0(X)�r G = Cc(G,C0(X)). In fact, pc is a
projection in C0(X)�r G: For every (s, x) ∈ G×X we have

pc ∗ pc(s, x) =
∫
G

pc(t, x)pc(t
−1s, t−1 · x) dt

=

∫
G

ΔG(s)
−1/2c(x)c(t−1 · x)2c(s−1 · x) dt

= pc(s, x) ·
∫
G

c(t−1 · x)2 dt = pc(s, x)

and it is trivial to check that p∗c = pc. Thus pc determines a class [pc] ∈
K0(C0(X)�rG) = KK0(C, C0(X)�rG). Note that this class does not depend on
the particular choice of the cut-off function c, for if c̃ is another cut-off function,
then

ct =
√
tc2 + (1− t)c̃2, t ∈ [0, 1]

is a path of cut-off functions joining c with c̃, and then pct is a path of projections
joining pc with pc̃. We call [pc] the fundamental K-theory class of C0(X)�r G.
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Recall that Kasparov’s descent homomorphism

JG : KKG
∗ (A,B)→ KK∗(A�r G,B �r G)

is defined by sending a class x = [E ,Φ, γ, T ] ∈ KKG(A,B) to the class JG(x) =
[E �r G,Φ �r G, T̃ ] ∈ KK(A �r G,B �r G), where [E ,Φ, γ] �→ [E �r G,Φ �r G]
is the descent in the correspondence categories as described in Section 2.5.4, and
the operator T̃ on E �r G is given on the dense subspace Cc(G, E) by

(T̃ ξ)(s) = T (ξ(s)) ∀ξ ∈ Cc(G, E), s ∈ G.

A similar descent also exists if we replace the reduced crossed products by full
crossed products.

Now, if A is a G-C∗-algebra, we can consider the following chain of maps

μX : KKG
∗ (C0(X), A)

JG−→KK∗(C0(X)�r G,A�r G)

[pc]⊗·−→ KK∗(C, A�r G) ∼= K∗(A�r G),

where JG denotes Kasparov’s descent homomorphism. If X and Y are two G-
compact proper G-spaces and if ϕ : X → Y is a continuous G-equivariant map,
then one can check that ϕ : X → Y is automatically proper, i.e., inverse im-
ages of compact sets are compact, and therefore it induces a G-equivariant ∗-
homomorphism

ϕ∗ : C0(Y )→ C0(X); f �→ f ◦ ϕ.
Moreover, if c : Y → [0,∞) is a cut-off function for (G, Y ), then ϕ∗(c) : X → [0,∞)
is a cut-off function for (G,X) such that pϕ∗(c) = (ϕ∗ �r G)(pc). Using this fact,
it is easy to check that the diagram

KKG
∗ (C0(X), A) −−−−→

JG

KK∗(C0(X)�r G,A�r G) −−−−−→
[pϕ∗c]⊗·

KK∗(C, A�r G)

[ϕ∗]⊗·
⏐⏐� [ϕ∗

�rG]⊗·
⏐⏐� ⏐⏐�=

KKG
∗ (C0(Y ), A) −−−−→

JG

KK∗(C0(Y )�r G,A�r G) −−−−→
[pc]⊗·

KK∗(C, A�r G)

commutes. Hence if we define the topological K-theory of G with coefficients in A
as

KG
∗ (EG;A) := lim

X⊆EG
X is G-compact

KKG
∗ (C0(X), A)

where the G-compact subsets of EG are ordered by inclusion, we get a well-defined
homomorphism

μ(G,A) : K
G
∗ (EG;A) = lim

X
KKG

∗ (C0(X), A)
limX μX−→ K∗(A�r G).

This is the Baum–Connes assembly map for the system (A,G, α). We say that G
satisfies BC for A, if this map is bijective.
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Remark 3.4.7. We should remark that almost the same construction yields an
assembly map

μfull
(G,A) : K

G
∗ (EG;A)→ K∗(A�α G)

for the full crossed product A�α G such that

Λ∗ ◦ μfull
(G,A) = μ(G,A),

where Λ : A �α G → A �α,r G denotes the regular representation. The only
difference is that we then use Kasparov’s descent J full

G : KKG(C0(X), A) →
KK(C0(X) � G,A � G) for the full crossed products. Note that, since G acts
properly (and hence amenably) on X, we have C0(X)�G ∼= C0(X)�r G (see Re-
mark 3.4.16 below), so that we can use the same product of the fundamental class
[pc] ∈ K∗(C0(X)�G) as for the reduced assembly map. But it is well known that
the full analogue of the conjecture must fail for all lattices Γ in any almost con-
nected Lie groupG that has Kazhdan’s property (T). But for a large class of groups
(including the K-amenable groups of Cuntz and Julg–Valette [Cun83,JV84]), the
regular representation induces an isomorphism in K-theory for the full and the
reduced crossed products, and then the full assembly map coincides up to this
isomorphism with the reduced one.

Example 3.4.8 (The Green–Julg Theorem). If G is a compact group with normed
Haar measure we have EG = {pt} and hence KG

∗ (EG;A) = KKG
∗ (C, A) is the

G-equivariant K-theory KG
∗ (A) of A. The isomorphism KG

∗ (A) ∼= K∗(A � G) is
the content of the Green–Julg theorem (see [Jul81]). Let us briefly look at the
special form of the assembly map in this situation: First of all, if G is compact,
we may realise KKG(C, A) as the set of homotopy classes of triples (E , γ, T ) in
which E is a graded Hilbert A-module, γ : G→ Aut(E) is a compatible action and
T ∈ L(E) is a G-invariant operator such that

T ∗ − T, T 2 − 1 ∈ K(E).
(If T is not G-invariant, it may be replaced by the G-invariant operator T̃ =∫
G
Ad γs(T ) ds.) The cut-off function of the one-point space is simply the function

which sends this point to 1, and the projection p ∈ C(G) ⊆ C∗(G) is the constant
function 1G. It acts on ξ ∈ C(G, E) ⊆ E �G via (pξ)(s) =

∫
G
γt(ξ(t

−1s)) dt.

Now, given (E , γ, T ) ∈ KKG(C, A) the assembly map sends this class to the class
of the Kasparov cycle (E �G, p, T̃ ), with (T̃ ξ)(s) = T (ξ(s)) for all s ∈ G. Since T
is G-invariant, a short computation shows that T̃ commutes with p, and hence we
can decompose (E �r G, p, T̃ ) = (p(E �G), 1, T̃ )⊕ ((1− p)(E �G), 0, T̃ ) in which
the second summand is degenerate. Thus we get

μ([E , γ, T ]) = [p(E �G), T̃ ] ∈ KK(C, A�G).

Note that a function ξ ∈ C(G, E) lies in p(E �G) if and only if ξ(s) = γs(ξ(e)) for
all s ∈ G, and it is clear that such functions are dense in p(E �G). Using this, the
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module p(E � G) can be described alternatively as follows: We equip E with the
A�G valued inner product and left action of A�G given by

〈e1, e2〉A�G(s) = 〈e1, γs(ee)〉A and e · f =

∫
G

γs(e · f(s−1)) ds

for f ∈ C(G,A) ⊆ A � G. We denote by EA�G the completion of E as a Hilbert
A � G-module with this action and inner product. It is then easy to check that
every G-invariant operator S ∈ L(E) extends to an operator SG ∈ L(EA�G). A
short computation shows that the map Φ : p(E�G)→ EA�G given by Φ(ξ) = ξ(e)
for ξ ∈ C(G, E) ∩ p(E � G) is an isomorphism of Hilbert A � G-modules that
intertwines T̃ with TG ∈ L(EA�G). Using this, we get the following description of
the assembly map

μ : KKG(C, A)→ KK(C, A�G); μ([E , γ, T ]) = [EA�G, T
G].

This map has a direct inverse given as follows: Let L2(G,A) be the Hilbert A-
module with A-valued inner product given by 〈f, g〉A =

∫
G
αt−1(f(t)∗g(t)) dt and

right A-action given by (f · a)(s) = f(s)αs(a). Then A �G acts on L2(G,A) via
the regular representation given by convolution. There is a canonical α-compatible
action σ : G → Aut(L2(G,A)) given by right translation σs(f)(t) = f(ts). It is
then not difficult to check that

ν : KK(C, A�G)→ KKG(C, A); [F , S] �→ [F ⊗A�G L2(G,A), id⊗σ, S ⊗ 1]

is an inverse of μ. For a few more details on these computations see [Ech08].

Example 3.4.9. If G is a discrete torsion free group, then EG = EG, the universal
principal G-bundle of G. Since G acts freely and properly on EG it follows from a
theorem of Green [Gre77] that C0(EG)�G is Morita equivalent to C0(G\EG) =
C0(BG), where BG = G\EG is the classifying space of G. Now, for any discrete
group and any G-C∗-algebra A we have a canonical isomorphism

KKG(A,C) ∼= KK(A�G,C)

which sends the class of an equivariant A − C KK-cycle (H,Φ, γ, T ) to the class
of the A � G − C KK-cycle (H,Φ � γ, T ). Note that in this situation (Φ, γ) is
a covariant representation of (A,G, α) on the Hilbert space H, and hence sums
up to a representation of A � G by the universal property of the full crossed
product. Since G is discrete, one checks that condition (ii) in Definition 3.3.2 for
(H,Φ � γ, T ) is equivalent to the corresponding condition for (H,Φ, γ, T ). Thus,
if in addition EG is G-compact, we get

KG
∗ (EG,C) ∼= KKG

∗ (C0(EG),C) ∼= KK∗(C0(EG)�G,C)
Morita-eq.∼= KK∗(C(BG),C) = K∗(BG).
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Hence in this situation the left-hand side of the Baum–Connes conjecture is the
topological K-homology of the classifying space of G. If EG is not G-compact, a
similar argument gives

KG
∗ (EG,C) = lim

C⊆BG
K∗(C),

where C runs through the compact subsets of BG, which is the K-homology of
BG with compact supports. Hence the Baum–Connes conjecture relates the K-
theory of the (often quite complicated) C∗-algebra C∗

r (G) to the K-homology
of the classifying space BG of G, which can be handled by methods of classical
algebraic topology (but can still be difficult to compute).

We close this section with an exercise:

Exercise 3.4.10. Suppose that A and B areG-C∗-algebras and let x ∈ KKG(A,B).
Then x induces a map

· ⊗A x : KG
∗ (EG;A)→ KG

∗ (EG;A)

given on the level of KKG(C0(X), A) for some G-compact subset X ⊆ EG via
the map

KKG(C0(X), A)→ KKG(C0(X), B); y �→ y ⊗A x.

On the other hand, we have a map

· ⊗A�rG jG(x) : KK(C, A�r G)→ KK(C, B �r G)

between the K-theory groups of the crossed products.
Show that the map · ⊗A x : KG

∗ (EG;A) → KG
∗ (EG;A) is well-defined and that

the diagram

KG
∗ (EG;A)

μ(G,A)−−−−→ K∗(A�r G)

·⊗Ax

⏐⏐� ⏐⏐�·⊗A�rGJG(x)

KG
∗ (EG;B)

μ(G,B)−−−−→ K∗(B �r G)

commutes. Show that it follows from this that if A and B are KKG-equivalent,
then μ(G,A) is an isomorphism if and only if μ(G,B) is an isomorphism. Check that

a similar result holds for the full assembly maps μfull
(G,A) and μfull

(G,B) of Remark
3.4.7.

3.4.3 Proper G-algebras and the Dirac dual-Dirac method

As an extension of the Green–Julg theorem one can prove that the Baum–Connes
assembly map is always an isomorphism if the coefficient algebra A is a proper
G-C∗-algebra in the sense of Kasparov, which we are now going to explain. Recall
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that ifX is a locally compact space, then a C∗-algebra A is called a C0(X)-algebra,
if there exists a nondegenerate ∗-homomorphism

Φ : C0(X)→ ZM(A),

the center of the multiplier algebra of A. If A is a C0(X)-algebra, then A can
be realized as an algebra of C0-sections of a (upper semicontinuous) bundle of
C∗-algebras {Ax : x ∈ X}, where each fibre Ax is given by Ax = A/Ix with
Ix = (C0(X � {x}) ·A), where we write f · a := Φ(f)a for f ∈ C0(X), a ∈ A. We
refer to [Wil07, Appendix C] for a detailed discussion of C0(X)-algebras.

Definition 3.4.11. Suppose that G is a locally compact group and A is a G-C∗-
algebra. Suppose further that A is a C0(X)-algebra such that the structure map
Φ : C0(X) → ZM(A) is G-equivariant. We then say that A is an X � G-C∗-
algebra. If A is an X �G-C∗-algebra for some proper G-space X, then A is called
a proper G-C∗-algebra.

Note that in the definition of a proper G-C∗-algebra we may always assume X to
be a realisation of EG: Since if ϕ : X → EG is a G-equivariant continuous map,
we get a nondegenerate G-equivariant ∗-homomorphism

ϕ∗ : C0(EG)→ Cb(X) =M(C0(X));ϕ∗(f) = f ◦ ϕ

and then the composition Φ ◦ ϕ∗ : C0(EG)→ ZM(A) makes A into an EG�G-
algebra. Recall from our discussion of proper G-spaces that proper actions behave
very much like actions of compact groups since they are locally induced from actions
of compact subgroups. It is therefore not very surprising that an analogue of the
Green–Julg theorem should hold also for proper G-C∗-algebras.

Theorem 3.4.12. Suppose that A is a proper G-C∗-algebra. Then the Baum–Connes
assembly map

μ : KG
∗ (EG,A)→ K∗(A�r G)

is an isomorphism.

However, the proof of this result is much harder than the proof of the Green–Julg
theorem shown in the previous section. In what follows we want to indicate at
least some ideas towards this result. On the way we discuss some useful results
about induced dynamical systems and their applications to the Baum–Connes
conjecture.

In what follows suppose that H is a closed subgroup of the locally compact group
G and that β : H → Aut(B) is an action of H on the C∗-algebra B. Recall from
Chapter 2.6 that the induced C∗-algebra IndGH B is defined as the algebra

IndGH B :=

{
f ∈ Cb(G,B) :

f(sh) = βh−1(f(s)) for all s ∈ G and h ∈ H
and (sH �→ ‖f(s)‖) ∈ C0(G/H)

}
.
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This is a C∗-subalgebra of Cb(G,B) which carries an action Ind β : G →
Aut(IndGH B) given by (

Indβs(f)
)
(t) = f(s−1t).

If Y is a locally compact H-space, then IndGH C0(Y ) ∼= C0(G×H Y ) as G-algebras.
Hence the above procedure extends the procedure of inducing G-spaces as dis-
cussed in Example 3.4.2 above. The following result is quite useful when working
with induced algebras. For the formulation recall that for any G-C∗-algebra A
we have a continuous action of G on the primitive ideal space Prim(A) given by
(s, P ) �→ αs(P ).

Theorem 3.4.13. Suppose that A is a G-C∗-algebra and let H be a closed subgroup
of G. Then the following are equivalent:

(i) There exists an H-algebra B such that A ∼= IndGH B as G-algebras.

(ii) A carries the structure of a G/H �G-C∗-algebra.

(iii) There exists a continuous G-equivariant map φ : Prim(A)→ G/H.

Proof. (i)⇔ (iii) is Theorem 2.6.2. The proof of (iii)⇔ (ii) follows from the general
correspondence between continuous maps φ : Prim(A) → X and nondegenerate
∗-homomorphisms Φ : C0(X) → ZM(A) given by the Dauns–Hofmann theorem.
We refer to [Wil07, Appendix C] for a discussion of this correspondence. �

Let us briefly indicate how the objects in (i) and (ii) of the above theorem are
related to each other. If A = IndGH B, then the G-equivariant ∗-homomorphism
Φ : C0(G/H)→ ZM(IndGH B) is simply given by(

Φ(g)f
)
(s) = g(sH)f(s), g ∈ C0(G/H), f ∈ IndGH B.

Conversely, if Φ : C0(G/H)→ ZM(A) is given, let

B := AeH = A/(C0(G/H � {eH}) ·A)

be the fibre of A over the coset eH. Since Φ : C0(G/H) → ZM(A) is G-
equivariant, it follows that the ideal C0(G/H � {eH}) · A is H-invariant for the
restriction of α to H. Thus α|H induces an action β : H → Aut(AeH) = Aut(B).
The G-isomorphism Ψ : A→ IndGH B is then given by

Ψ(a)(s) = q(αs−1(a)),

where q : A→ AeH denotes the quotient map.

The induction of H-algebras to G-algebras extends to an induction map

IndGH : KKH(B,C)→ KKG(IndGH B, IndGH C)
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given as follows: If [E ,Φ, γ, T ] ∈ KKH(B,C), then we define the induced Hilbert
IndGH C-module IndGH E as

IndGH E =

{
ξ ∈ Cb(G, E) : ξ(sh) = γh−1(ξ(s)) for all s ∈ G and h ∈ H

and (sH �→ ‖f(s)‖) ∈ C0(G/H)

}
with IndGH C-valued inner product and left IndGH C-action given as follows:

〈ξ, η〉IndG
H C(s) = 〈ξ(s), η(s)〉C and (ξ · f)(s) = ξ(s) · f(s).

Similarly, if Φ : B → L(E) is a left action of B on E , then we get an action
IndΦ : IndGH B → L(IndGH E) by

(IndΦ(g)ξ)(s) = Φ(g(s))ξ(s).

Finally, we define the operator T̃ ∈ L(IndGH E) via (T̃ ξ)(s) = T (ξ(s)). It is not
difficult to check that (indGH E , IndΦ, Indβ, T̃ ) is a G-equivariant IndGH B−IndGH C
Kasparov cycle and Kasparov’s induction map in KK-theory is then defined as

IndGH([E ,Φ, γ, T ]) = [indGH E , IndΦ, Indβ, T̃ ] ∈ KKG(IndGH B, IndGH C).

We want to use this map to define an induction map

IndGH : KH
∗ (EH;B)→ KG

∗ (EG; IndGH B)

for every H-algebra B. For this suppose that Y ⊆ EH is an H-compact subset.
Then the induced G-space G×H Y is proper and G-compact and therefore maps
equivariantly into EG via some continuous map j : G ×H Y → EG whose image
is a G-compact subset X(Y ) ⊆ EG. One can check that the composition of maps

KKG(C0(Y ), B)
IndG

H−→ KKG(C0(G×H Y ), IndGH B)
j∗−→ KKG(C0(X(Y )), IndGH B)

is compatible with taking limits and therefore induces a well-defined induction
map

IGH : KH
0 (EH;B)→ KG

0 (EG; IndGH B).

Replacing B by B⊗Cl1 (or B⊗C0(R)) gives an analogous map from KH
1 (EH;B)

to KG
1 (EG; IndGH B). We then have the following theorem, which has been shown

in [CE01a, Theorem 2.2] (for G discrete and H finite the result has first been
obtained earlier in [GHT00]):

Theorem 3.4.14. Suppose that H is a closed subgroup of G. Then the induction
map

IGH : KH
∗ (EH;B)→ KG

∗ (EG; IndGH B)

is an isomorphism of abelian groups for every H-C∗-algebra B.
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Now Green’s imprimitivity theorem (see Theorem 2.6.4) says that the full (resp.
reduced) crossed products B�β,(r)G and IndGH B�Ind β,(r)G are Morita equivalent

via a canonical B �(r) H − IndGH B �(r) G equivalence bimodule XG
H(B)(r). Since

Morita equivalences provide KK-equivalences, we obtain the following diagram of
maps

KH
∗ (EH;B)

μH−−−−→ K∗(B �r H)

IG
H

⏐⏐� ⏐⏐�⊗[XG
H(B)r]

KG
∗ (EG, IndGH B) −−−−→

μG

K∗(IndGH B �r G)

in which both vertical arrows are isomorphisms. It is shown in [CE01a, Proposition
2.3] that this diagram commutes. As a corollary we get

Corollary 3.4.15. Suppose that H is a closed subgroup of G and B is an H-algebra.
Then the assembly map

μH : KH
∗ (EH;B)→ K∗(B �r H)

is an isomorphism if and only if

μG : KG
∗ (EG, IndGH B)→ K∗(IndGH B �r G)

is an isomorphism. In particular, if G satisfies BCC, then so does H. A similar
result holds for the assembly maps into the K-theories of the full crossed products
B �H and IndGH B �G, respectively (see Remark 3.4.7).

We now come back to general proper G-algebras A. So suppose that X is a proper
G-space and that A is an X�G-C∗-algebra. Since every proper G-space is locally
induced from a compact subgroup, we find for every x ∈ X an open G-invariant
neighbourhood U ⊆ X such that U ∼= G ×K Y for some compact subgroup K of
G and some K-space Y . Then C0(G×K Y ) ∼= IndGH C0(Y ) is a G/K �G-algebra
by Theorem 3.4.13. Let A(U) := Φ(C0(U))A ⊆ A. Then A(U) is a G-invariant
ideal of A and carries the structure of a U �G-algebra in the canonical way. The
composition

C0(G/H)→ Cb(G×K Y ) ∼= Cb(U)
Φ−→ ZM(A(U))

then gives A(U) the structure of a G/K�G-algebra. Thus it follows from Theorem
3.4.13 that A(U) ∼= IndGK B for some K-algebra B. By the Green–Julg theorem
we know that K satisfies BCC and hence it follows from Corollary 3.4.15 that the
assembly map

μU : KG
∗ (EG,A(U))→ K∗(A(U)�r G)

is an isomorphism. Thus we see that for proper G-algebras the Baum–Connes
conjecture holds locally. Now every G-invariant open subset W ⊆ X with G-
compact closure W can be covered by a finite union of open sets U1, . . . , Ul such
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that each Ui is isomorphic to some induced space G ×Ki Yi for some compact
subgroup Ki ⊆ G. Using six-term sequences and induction on the number l of
open sets in this covering, we then conclude that

μW : KG
∗ (EG,A(W ))→ K∗(A(W )�r G)

for all such W . Now, taking inductive limits indexed by W , one can show that the
assembly map

μ : KG
∗ (EG,A)→ K∗(A�r G)

is an isomorphism as well. This then finishes the proof of Theorem 3.4.12. (We
refer to [CEM01] for the original proof and further details.)

Remark 3.4.16. An application of Green’s imprimitivity theorem also implies that
for any proper G-C∗-algebra A the full and reduced crossed products coincide. To
see this, let A be an X �G-algebra for some proper G-space X. Let {Ui : i ∈ I}
be an open cover of X consisting of G-invariant open sets such that each of these
sets is induced by some compact subgroup K of G. Suppose now that π � U :
A � G → B(H) is any irreducible representation of A � G. We claim that there
exists at least one i ∈ I such that π does not vanish on the ideal A(Ui) of A, and
hence π�U does not vanish on the ideal A(Ui)�G of the crossed product. Indeed,
since {Ui : i ∈ I} is a covering of X it is an easy exercise, using a partition of
unity argument, to show that

∑
i∈I A(Ui) is a dense ideal in A. The claim then

follows since π �= 0.

It now suffices to show that A(Ui)�G = A(Ui)�r G ⊆ A�r G, since this implies
that every irreducible representation of the ideal A(Ui) � G corresponds to an
irreducible representation of A �r G. To see this, recall that A(Ui) ∼= IndGK B for
some compact subgroup K of G and some K-algebra B. Since K is compact, hence
amenable, we have B�K = B�rK. Since the B�rK− IndGK B�rG-equivalence
bimodule XG

H(B)r is the quotient of the B�K−IndGK B�G-equivalence bimodule
XG

K(B) by the submodule (kerΛ(B,K)) ·XG
K(B) = {0}, it follows from the Rieffel-

correspondence (Proposition 2.5.4) that A(Ui)�G ∼= IndGK B�G = IndGK B�rG ∼=
A(Ui)�r G, which finishes the proof.

We are now coming to Kasparov’s Dirac-dual Dirac method for proving the Baum–
Connes conjecture. As we shall discuss below, this has been the most successful
method so far for proving that the conjecture holds for certain classes of groups.
Since, as we saw above, the Baum–Connes conjecture always holds for proper G-
C∗-algebras as coefficients, the basic idea is to show that for a given group G every
G-C∗-algebra B is KKG-equivalent to a proper G-C∗-algebra. Since by Exercise
3.4.10 the validity of the Baum–Connes conjecture is invariant under passing to
KKG-equivalent coefficient algebras, this would result in a proof that the group
G satisfies BCC, i.e., Baum–Connes for all coefficients. Indeed, we need less:
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Definition 3.4.17. Suppose that G is a second countable locally compact group
and assume that there is a proper G-C∗-algebra D together with elements

α ∈ KKG
0 (D,C) and β ∈ KKG(C,D)

such that
γ := β ⊗D α = 1C ∈ KKG(C,C).

We then say that G has a γ-element equal to one. If, in addition α ⊗C β = 1D,
then we say that G satisfies the strong Baum–Connes conjecture.

Note that in almost all cases where G has a γ-element equal to one there is also a
proof of strong BC.

If G has a γ-element equal to one and B is any other G-C∗-algebra, it follows that

(β⊗̂1B)⊗D⊗̂B (α⊗̂1B) = γ⊗̂1B = 1B ∈ KKG(B,B)

and similarly, since the descent KKG(A,B)→ KK(A�rG,B�rG) is compatible
with Kasparov products, we get

JG(β⊗̂1B)⊗(D⊗̂B)�rG
JG(α⊗̂1B) = JG(1B) = 1B�rG ∈ KK(B �r G,B �r G).

Moreover, it follows from Exercise 3.4.10 that the following diagram commutes

KG
∗ (EG,B)

μ(G,B)−−−−→ K∗(B �r G)

·⊗(β⊗1B)

⏐⏐� ⏐⏐�·⊗JG(β⊗1B)

KG
∗ (EG,D⊗̂B)

μ(G,D⊗̂B)−−−−−−→∼=
K∗((D⊗̂B)�r G)

·⊗(α⊗1B)

⏐⏐� ⏐⏐�·⊗JG(α⊗1B)

KG
∗ (EG,B)

μ(G,B)−−−−→ K∗(B �r G).

(3.4.1)

Since D⊗̂B is a proper G-algebra (via the composition of Φ : C0(X) → ZM(D)
with the canonical map of M(D) to M(D⊗̂B)), the middle horizontal map is an
isomorphism of abelian groups, and by the above discussion it follows that the
compositions of the vertical maps on either side are isomorphisms as well. It then
follows by an easy diagram chase that the upper horizontal map is injective and
the lower horizontal map is surjective, hence μ(G,B) is an isomorphism as well.
Thus we get

Corollary 3.4.18. If G has a γ-element equal to one, then G satisfies the Baum–
Connes conjecture with coefficients (BCC).

Remark 3.4.19. In diagram (3.4.1) we can replace all reduced crossed products by
the full ones and the (reduced) assembly map by the full assembly map to see that
whenever G has a γ-element equal to one, then the full assembly map

μfull
(G,B) : K

G
∗ (EG;B)→ K∗(B �β G)
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is an isomorphism as well. Moreover, if Λ : B �β G → B �β,r G is the regular
representation, then the diagram

KG
∗ (EG;B)

μ(G,B)
��

μfull
(G,B)

�� K∗(B �G)

Λ∗
��

K∗(B �r G)

commutes. Since both assembly maps are isomorphisms, it follows that the regular
representation induces an isomorphism in K-theory between the maximal and the
reduced crossed products by G. Indeed, it is shown by Tu in [Tu99b] that G is K-
amenable in the sense of Cuntz [Cun83] and Julg–Valette [JV84] (which actually
implies that Λ is a KK-equivalence) whenever G has a γ-element equal to one.

Remark 3.4.20. If G has a γ-element equal to one, then so does every closed
subgroup of G. Indeed, if α ∈ KKG(D,C) and β ∈ KKG(C,D) are as in the
definition of strong BC, then the action of G on D restricts to a proper action
of H on D. Moreover, for every pair of G-C∗-algebras A,B we have a natural
homomorphism

resGH : KKG(A,B)→ KKH(A,B)

which is given by simply restricting all actions on algebras and Hilbert modules
from G to H. It is easy to see that this restriction map is compatible with the
Kasparov product, so that we get

resGH(β)⊗D resGH(α) = resGH(β ⊗D α) = resGH(1C) = 1C ∈ KKH(C,C).

Example 3.4.21. As a sample, we want to show that R and Z satisfy strong BC
(and, in particular, have γ = 1C). For this recall the construction of the Dirac
and dual Dirac elements in the proof of the Bott periodicity theorem in Section
3.3.4: Let D = C0(R)⊗̂Cl1. We constructed elements α ∈ KK(D,C) and β ∈
KK(C,D) that are inverse to each other in KK. Let τ : R→ Aut(C0(R)) denote
the translation action (τs(f))(x) = f(x− s). Then D becomes a proper R-algebra
via the action τ⊗̂ idCl1 . Now recall that the classes α and β have been given by

α =

[
H = L2(R)⊕ L2(R),Φ, T =

D√
1 +D2

]
and β = [D, 1, S],

in which D =

(
0 − d

dt
d
dt 0

)
, Φ : D → L(H) is given as in (3.3.2), and S = Sϕ is

given by pointwise multiplication with a function ϕ : R → [−1, 1], which can be
any odd continuous function with ϕ(x) = 0 ⇔ x = 0 and limt→∞ ϕ(t) = 1. With
the given R-action on D we may view β as a class

β = [D, τ⊗̂ idCl1 , 1, S] ∈ KKR(C,D).
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The only extra condition to check is the condition that Adτ⊗id(s)(S)−S ∈ K(D) =
D, which follows from the fact that for any function ϕ as above, we have τs(ϕ)−
ϕ ∈ C0(R) for all s ∈ R. Similarly, if we equip H = L2(R) ⊕ L2(R) with the
representation λ⊕λ, where (λs(ξ)

)
(x) = ξ(x−s) denotes the regular representation

of R, we obtain a class

α = [H, λ,Φ, T ] ∈ KKR(D,C).

As above, the only extra condition to check is that (Adλs(T ) − T )Φ(d) ∈ K(H)
for all s ∈ R and d ∈ D, which we leave as an exercise for the reader. We claim
that

β ⊗D α = 1C ∈ KKR(C,C). (3.4.2)

Note that this would be true if we equipped everything with the trivial R-action
instead of the translation action, since then it would be a direct consequence of
the product β ⊗D α = 1C ∈ KK(C,C), which we proved in Section 3.3.4. We
show equation (3.4.2) by a simple trick, showing that the translation action of R
is homotopic to the trivial action in the following sense: We consider the algebra
D[0, 1] = D⊗̂C[0, 1] equipped with the R-action τ̃⊗̂ idCl1 where

τ̃ : R→ Aut(C0(R× [0, 1]));
(
τ̃s(f)

)
(x, t) = f(x− ts, t).

We then consider the class α̃ ∈ KKR(D[0, 1], C[0, 1]), where C[0, 1] carries the
trivial R-action, given by

α̃ =
[H⊗̂C[0, 1], λ̃⊕ λ̃,Φ⊗̂1, T ⊗̂1],

where the R-action λ̃ ⊕ λ̃ on H⊗̂C[0, 1] is given by a formula similar to the one
for τ̃ . On the other hand, we consider the class

β̃ =
[D[0, 1], τ̃⊗̂1, 1, S⊗̂1] ∈ KKR(C,D[0, 1]).

If we evaluate the class β̃ ⊗D[0,1] α̃ ∈ KKR(C, C[0, 1]) in 0, we obtain the product

of β with α equipped with trivial R-actions, which is 1C ∈ KKR(C,C) by the
proof of Bott periodicity. If we evaluate at 1, we obtain the product β ⊗ α with
respect to the proper translation action on D. Hence both classes are homotopic,
which proves (3.4.2).

Hence we see that the Dirac dual-Dirac method applies to R, and by Remark
3.4.20 it then also applies to Z ⊆ R and both have γ-element equal to one. Using
an easy product argument, this proof also implies that Rn and Zn have γ-element
equal to one. We leave it as an exercise to check that α⊗C β = 1D ∈ KKR(D,D),
i.e., that Rn and Zn do satisfy the strong Baum-Connes conjecture.

Extending Example 3.4.21 to higher dimensions, one can use Kasparov’s equivari-
ant Bott periodicity theorem as discussed in the last paragraph of Section 3.3.4
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to show that the Dirac dual-Dirac method works for all groups which act prop-
erly and isometrically by affine transformations on a finite-dimensional euclidean
space. This has already been pointed out by Kasparov in his conspectus [Kas95].
Later, in [Kas88], he extended this to show that the method works for all amenable
Lie groups (and their closed subgroups) and, together with Pierre Julg in [JK95],
they showed that the method works for the Lie groups SO(n, 1) and SU(n, 1) and
their closed subgroups. But the most far-reaching positive result, which includes
all cases mentioned above, has been obtained by Higson and Kasparov in [HK01]:

Theorem 3.4.22 (Higson–Kasparov). Suppose that the second countable locally
compact group acts continuously and metrically properly by isometric affine trans-
formations on a separable real Hilbert space H. Then G satisfies the strong Baum–
Connes conjecture.

Note that the action of G on H is called metrically proper if for any ξ ∈ H and
R > 0 there exists a compact subset C ⊆ G such that ‖s · ξ‖ > R for all s ∈ G\C.
The basic idea of the proof is to construct the proper G-algebra as an inductive
limit of algebras C0(V )⊗̂Cl(V ), where V ⊆ H runs through the finite-dimensional
subspaces of the Hilbert space H. But the precise construction of the algebra D
and the classes α and β is very complex and we refer to the original work [HK01]
of Higson and Kasparov for more details. A detailed exposition of certain aspects
of the proof can be found in the recent paper [Nis16]. We should also note that
the original proof of Higson and Kasparov uses E-theory, a variant of KK-theory
introduced by Connes and Higson in [CH90] (see also [Bla86, Chapter 25]). A
groupoid version of the above theorem has been shown by Tu in [Tu99a].

The class of groups that satisfies the conditions of the Higon–Kasparov theorem
was studied first by Gromov who called them a-T -menable groups. A second count-
able group G is a-T -menable if and only if it satisfies the Haagerup approximation
property which says that the trivial representation 1G can be approximated uni-
formly on compact sets by a net of positive definite functions (ϕi) on G such that
each ϕi vanishes at ∞ on G. We refer to [CCJ+01] for a detailed exposition on
the class of a-T -menable groups. As a consequence of the theorem we get

Corollary 3.4.23. Every amenable second countable locally compact group satisfies
strong BC. Also, the free groups Fn in n generators, n ∈ N ∪ {∞} and all closed
subgroups of the Lie groups SU(n, 1) and SO(n, 1) satisfy strong BC.

All groups in the above corollary satisfy the Haagerup property.

The Dirac dual-Dirac method can also be used in cases in which the element

γ = β ⊗D α ∈ KKG(C,C)

is not necessarily equal to 1C, but where it satisfies the following weaker condition:

Definition 3.4.24 (Kasparov’s γ-element). Suppose that D is a proper G-algebra,
α ∈ KKG(D,C) and β ∈ KKG(C,D). Then γ = β ⊗D α ∈ KKG(C,C) is called
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a γ-element for G iff

γ ⊗ 1C0(X) = 1C0(X) ∈ KKG(C0(X), C0(X))

for every proper G-space X.

The class of groups that admit a γ-element is huge. It has been shown by Kasparov
in [Kas95,Kas88] that it contains almost all connected groups (i.e., groups with
co-compact connected component of the identity) and it is clear that the existence
of a γ-element passes to closed subgroups. In [KS91,KS03] Kasparov and Skandalis
proved the existence of γ-elements for many other groups. Note that the above
definition of a γ-element is slightly weaker than Kasparov’s original definition,
in which he required that γ ⊗ 1C0(X) = 1C0(X) in the X � G-equivariant group
KKX�G(C0(X), C0(X)), where X � G denotes the transformation groupoid for
the G-space X. Since the above definition suffices for our purposes and since we
want to avoid talking about equivariant KK-theory for groupoids, we use it here.
We have:

Theorem 3.4.25 (Kasparov). Suppose that G is a second countable group that ad-
mits a γ-element. Then for every G-C∗-algebra B the Baum–Connes assembly
map

μ(G,B) : K
G
∗ (EG;B)→ K∗(B �r G)

is split injective (the same holds true for the full assembly map μfull
(G,B)).

Proof. Going back to diagram (3.4.1), we see that for proving split injectivity it
suffices to show that the composition of the left vertical arrows of the diagram is the
identity map. So we need to check that the map ·⊗γ : KG

∗ (EG;B)→ KG
∗ (EG;B),

which is given on the level of any G-compact subset X ⊆ EG by the map

KKG
∗ (C0(X), B)→ KKG

∗ (C0(X), B);x �→ x⊗B (1B ⊗ γ),

is the identity onKKG
∗ (C0(X), B). But by commutativity of the Kasparov product

over C we get

x⊗ (1B ⊗ γ) = x⊗C γ = γ ⊗C x = (γ ⊗ 1C0(X))⊗C0(X) x = 1C0(X) ⊗C0(X) x = x.

�

The above proof relies heavily on Theorem 3.4.12, which in turn relies on Theorem
3.4.14. In the course of proving that theorem in [CE01a] the authors made heavy
use of Kasparov’s result that all almost connected groups have a γ-element and
that this implies (without using BC for proper coefficients) that the Baum–Connes
assembly map is injective whenever G has a γ-element in the stronger sense of
Kasparov.
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Remark 3.4.26. It is shown by Kasparov in [Kas95,Kas88] that for a discrete group
G the rational injectivity (i.e., injectivity after tensoring both sides with Q) of the
assembly map

μG : KG
∗ (EG;C)→ K∗(C∗

r (G))

implies the famous Novikov conjecture from topology. We do not want to discuss
this conjecture here (e.g., see [Kas88] for the formulation), but we want to mention
that Theorem 3.4.25 shows that every group that admits a γ-element also satisfies
the Novikov conjecture. This fact leads to the following notation: A group G is
said to satisfy the strong Novikov conjecture with coefficients, if the assembly map
μ(G,B) is injective for every G-C∗-algebras B.

Remark 3.4.27. IfG has a γ-element in the sense of Definition 3.4.24 and if B is any
given G-C∗-algebra, then the assembly map μ(G,B) : K

G
∗ (EG;B) → K∗(B �r G)

is surjective if and only if the map

Fγ : K∗(B �r G)→ K∗(B �r G);x �→ x⊗B�rG JG(1B ⊗ γ)

coincides with the identity map. This follows easily from the proof of Theorem
3.4.25 together with diagram (3.4.1). Indeed, more generally, we may conclude
from the lower square of diagram (3.4.1) that every element in the image of Fγ

lies in the image of the assembly map, and then the outer rectangle of (3.4.1)
implies that we actually have

μ(G,B)(K
G
∗ (EG;B)) = Fγ(K∗(B �r G)).

Moreover, it follows also from (3.4.1) that Fγ is idempotent, so it is surjective if and
only if it is the identity. Kasparov calls Fγ(K∗(B�rG)) the γ-part of K∗(B�rG).

So one strategy for proving the Baum–Connes conjecture for given coefficients is
to show that Fγ is the identity on K∗(B �r G). This method has been used quite
effectively by Lafforgue in [Laf02] for proving the Baum–Connes conjecture with
trivial coefficients for a large class of groups (including all real or p-adic reductive
linear groups). For doing this he first introduced a Banach version of KK-theory
in oder to show that the γ-element induces an isomorphism in K-theory of certain
Banach algebras S(G), which can be viewed as algebras of Schwartz functions,
which admit an embedding as dense subalgebras of C∗

r (G) such that the inclusion
S(G) ↪→ C∗

r (G) induces an isomorphism in K-theory. As a result, the map Fγ is
the identity on K∗(C∗

r (G)) which proves BC.

Extending his methods, Lafforgue later showed that all Gromov hyperbolic groups
satisfy the Baum–Connes conjecture with coefficients (see [Laf12,Pus14]).

We close this section with a short argument of how Connes’s Thom isomorphism
for the K-theory of crossed products by R and the Pimsner–Voiculescu sequence
for the K-theory of crossed products by Z can be deduced quite easily from the
Dirac-dual Dirac method for actions of R as worked out in Example 3.4.21.
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Corollary 3.4.28 (Connes’s Thom isomorphism). Let α : R→ Aut(A) be an action
of R on the C∗-algebra A. Then the crossed product A�α R is KK-equivalent to
A⊗̂Cl1. In particular, there is a canonical isomorphism

K∗(A�α R) ∼= K∗(A⊗̂Cl1) = K∗+1(A).

Proof. To construct the KK-equivalence, let β ∈ KKR(C, C0(R) ⊗ Cl1) be as
in Example 3.4.21. Then 1A ⊗ β ∈ KKR(A,A⊗̂C0(R)⊗̂Cl1) is an R-equivariant
KK-equivalence between A and A⊗̂C0(R)⊗̂Cl1 and its descent JR(1A ⊗ β) ∈
KK(A �α R, (A⊗̂C0(R)⊗̂Cl1) �α⊗τ⊗idCl1

R) is a KK-equivalence as well. But

(A⊗̂C0(R)⊗̂Cl1)�α⊗τ⊗idCl1
R is isomorphic to A⊗̂K(L2(R))⊗̂Cl1 by an applica-

tion of Lemma 2.4.1 and Example 2.6.6 (2). This finishes the proof. �
Theorem 3.4.29 (Pimsner–Voiculescu). Let α be a fixed automorphism of the C∗-
algebra A and let n �→ αn be the corresponding action of Z on A. Then there is a
six-term exact sequence

K0(A)
id−α∗−−−−→ K0(A)

ι∗−−−−→ K0(A�α Z)

∂

�⏐⏐ ⏐⏐�∂

K1(A�α Z) ←−−−−
ι∗

K1(A) ←−−−−
id−α∗

K1(A)

where ι : A→ A�α Z denotes the canonical inclusion.

Scetch of proof. By Green’s Theorem 2.6.4 the crossed product A�α Z is Morita
equivalent to the crossed product IndRZ A�IndαR where the induced algebra IndRZ A
is isomorphic to the mapping cone Cα(A) = {f : [0, 1] → A : f(0) = α(f(1))}.
Thus, by Connes’s Thom isomophism, we get

K∗(A�α Z) ∼= K∗(Cα(A)�R) ∼= K∗+1(Cα(A)).

The mapping cone Cα(A) fits into a canonical short exact sequence

0→ C0(0, 1)⊗A→ Cα(A)→ A→ 0,

where the quotient map is given by evaluation at 1, say. This gives the six-term
exact sequence

K0(C0(0, 1)⊗A) −−−−→ K0(Cα(A)) −−−−→ K0(A)�⏐⏐ ⏐⏐�
K1(A) ←−−−− K1(Cα(A)) ←−−−− K1(C0(0, 1)⊗A).

UsingK∗(C0(0, 1)⊗A) ∼= K∗+1(A) andK∗+1(Cα(A)) ∼= K∗(A�αZ) this turns into
the six-term sequence of the theorem. (However, it is not completely trivial to check
that the maps in the sequence coincide with the ones given in the theorem). �
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The above method of proof of the Pimsner–Voiculescu theorem is taken from
Blackadar’s book [Bla86]. The original proof of Pimsner and Voiculescu in [PV80]
was independent of Connes’s Thom isomorphism and used a certain Toeplitz ex-
tension of A�α Z.

3.4.4 The Baum–Connes conjecture for group extensions

Suppose that N is a closed normal subgroup of the second countable locally com-
pact group G. Then, if A is a G-C∗-algebra, we would like to relate the Baum–
Connes conjecture for G to the Baum–Connes conjecture for N and G/N . In order
to do so, we first need to write the crossed product A�r G as an iterated crossed
product (A�r N)�r G/N for a suitable action of G/N on A�r N . Unfortunately,
this is not possible in general if we restrict ourselves to ordinary actions, but it can
be done by using twisted actions as discussed in Section 2.8 above. In what follows
we shall simply write A�rG/N for the reduced crossed product of a twisted action
of the pair (G,N) in the sense of Green. We then get the desired isomorphism

A�r G ∼= (A�r N)�r G/N

(and similarly for the full crossed products). Recall that by Theorem 2.8.9 ev-
ery Green-twisted (G,N)-action is equivariantly Morita equivalent to an ordinary
action of G/N , which allows us to cheaply extend many results known for ordi-
nary crossed products to the twisted case. In [CE01b] the authors extended the
Baum–Connes assembly map to the category of twisted (G,N)-actions, and they
constructed a partial assembly map

μ
(G,N)
(N,B) : K

G
∗ (EG;B)→ K

G/N
∗ (E(G/N), B �r N) (3.4.3)

such that the following diagram commutes

KG
∗ (EG;B)

μ(G,B)−−−−→ K∗(B �r G)

μ
(G,N)

(N,B)

⏐⏐� ⏐⏐�∼=

K
G/N
∗ (E(G/N), B �r N) −−−−−−−−−→

μ(G/N,B�rN)

K∗((B �r N)�r G/N)

As a consequence, if the partial assembly map (3.4.3) is an isomorphism, then G
satisfies BC for B if and only if G/N satisfies BC for B �r N . Using these ideas,
the following result has been shown in [CEOO04, Theorem 2.1] extending some
earlier results of [CE01b,CE01a,Oyo01]:

Theorem 3.4.30. Suppose that N is a closed normal subgroup of the second count-
able locally compact group G and let B be a G-C∗-algebra. Assume further, that
the following condition (A) holds:

(A) Every closed subgroup L ⊆ G such that N ⊆ L and L/N is compact satisfies
the Baum–Connes conjecture for B.
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Then G satisfies BC for G if and only if G/N satisfies BC for B �r N .

Of course, the idea is that one should show that condition (A) implies that the
partial assembly map (3.4.3) is an isomorphism. This has been the approach in
[CE01b, CE01a], but in [CEOO04] a slightly different version of the partial as-
sembly map has been used instead. Since every compact extension N ⊆ L of an
a-T -menable groupN is a-T -menable (see [CCJ+01]), and since every a-T -menable
group satisfies the Baum–Connes conjecture with coefficients, we get the following
corollary:

Corollary 3.4.31. Suppose that N is a closed normal subgroup of the second count-
able locally compact group G such that N is a-T -menable. Suppose further that G
is any G-C∗-algebra. Then G satisfies BC for B if and only if G/N satisfies BC
for B �r N . In particular, if

1→ N → G→ G/N → 1

is a short exact sequence of second countable groups such that G and G/N are
both a-T -menable, then G satisfies the Baum–Connes conjecture with coefficients.

Note that it is not true in general that G is a-T -menable if N and G/N are
a-T -menable. For counterexamples see [CCJ+01].

Theorem 3.4.30 has been used extensively in [CEN03] to give the proof of the
original Connes–Kasparov conjecture, which is equivalent to the Baum–Connes
conjecture with trivial coefficients for the class of all (second countable) almost
connected groups. The basic idea goes as follows: If G is any almost connected
group, then one can use structure theory for such groups to see that there exists
an amenable normal subgroup of N of G such that G/N is a reductive Lie-group.
Since amenable groups are also a-T -menable, we can apply Corollary 3.4.31 to
see that G satisfies BC with trivial coefficients if and only G/N satisfies BC with
coefficient C∗

r (N). Now by Lafforgue’s results we know that the reductive group
G/N satisfies BC with trivial coefficients and we somehow need to find good
arguments that give us BC for the coefficient algebra C∗

r (N) instead. It is this
point where the arguments become quite complicated, and we refer to [CEN03]
for the details of the proof.

3.5 The going-down (or restriction) principle and
applications

3.5.1 The going-down principle

In this section we discuss an application of the Baum–Connes conjecture that
helps, among other things, to give explicit K-theory computations in some inter-
esting cases. Assume we have two G-C∗-algebras A and B and a G-equivariant
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∗-homomorphism φ : A→ B. This map descends to a map

φ�r G : A�r G→ B �r G.

Suppose we want to prove that this map induces an isomorphism in K-theory. If G
satisfies the Baum–Connes conjecture for A and B, then this problem is equivalent
to the problem that the map

φ∗ : KG
∗ (EG;A)→ KG

∗ (EG;B)

is an isomorphism (use Exercise 3.4.10). The restriction (or Going-Down) principle
allows us to deduce the isomorphism on the level of topological K-theory from the
behaviour on compact subgroups of G. Let us state the theorem:

Theorem 3.5.1 (Going-down principle). Suppose that G is a second countable lo-
cally compact group, A and B are G-C∗-algebras, and x ∈ KKG(A,B) such that
for all compact subgroups K ⊆ G the class resGK(x) ∈ KKK(A,B) induces an
isomorphism

· ⊗A resGK(x) : KKK
∗ (C, A)

∼=→ KKK
∗ (C, B).

Then the map
· ⊗A x : KG

∗ (EG;A)→ KG
∗ (EG;B),

which is given on the level of KKG
∗ (C0(X), A) for a G-compact X ⊆ EG by

Kasparov product with x, is an isomorphism. As a consequence, if G satisfies the
Baum–Connes conjecture for A and B, then the class x induces an isomorphism

· ⊗A�rG JG(x) : K∗(A�r G)
∼=−→ K∗(B �r G).

Remark 3.5.2. There are many interesting groups G for which the trivial subgroup
is the only compact subgroup (e.g., G = Rn,Zn or the free group Fn in n gen-
erators). For those groups, the condition on compact subgroups in the theorem
reduces to the single condition that

· ⊗A x : K∗(A)→ K∗(B)

is an isomorphism. In many applications, this condition comes for free.

Remark 3.5.3. Instead of asking that ·⊗A resGK(x) : KKK
∗ (C, A)

∼=→ KKK
∗ (C, B) is

an isomorphism for all compact subgroups K of G, we could alternatively require
that

· ⊗A�K JK(resGK(x)) : K∗(A�K)→ K∗(B �K)

is an isomorphism for all such K. This follows from the commutativity of the
diagram

KKK
∗ (C, A)

·⊗AresGK(x)−−−−−−−→ KKK
∗ (C, B)

μ(K,A)

⏐⏐� ⏐⏐�μ(K,B)

K∗(A�K) −−−−−−−−−−−−−→
·⊗A�KJK(resGK(x))

K∗(B �K),



3.5. The going-down (or restriction) principle and applications 131

in which the vertical arrows are the isomorphisms of the Green–Julg theorem (see
Example 3.4.8).

The proof of Theorem 3.5.1 in the above version is given in [ELPW10, Proposition
1.6.], but it relies very heavily on a more general going-down principle obtained by
Chabert, Echterhoff and Oyono-Oyono in [CEOO04, Theorem 1.5]. In that paper
we also show how Theorem 3.4.30 on the Baum–Connes conjecture for group
extensions can be obtained as a consequence of the (more general) going-down
principle. In what follows below we shall present the proof in the case where G
is discrete. In this case the proof becomes much easier, but still reveals the basic
ideas. Note that most of the relevant details for the discrete case first appeared
(in the language of E-theory) in [GHT00, Chapter 12].

If G is discrete, then the first observation is that each G-compact proper G-space
maps continuously and G-equivariantly into the geometric realisation of a G-finite
G-simplicial complex. For this let F ⊆ G be any finite subset of G that contains
the identity of G. We then define

MF =
{
f ∈ C+

c (G) :
∑
g∈G

f(g) = 1 and ∀g, h ∈ supp(f) : g−1h ∈ F
}
.

Then MF is the geometric realisation of a locally finite simplicial complex with
vertices {g : g ∈ G} and {g1, . . . , gn} is an n-simplex if and only if gi �= gj for i �= j
and g−1

i gj ∈ F for all 1 ≤ i, j ≤ n. It follows directly from the definition that for
any simplex {g1, . . . , gn} we have g−1

1 {g1, . . . , gn} ⊆ F , hence MF is G-finite in
the sense that there exists a finite set S of simplices such that every other simplex
is a translate of one in S. Note that this implies that for all f ∈MF the formula

1 =
∑
g∈G

f(g) =
∑
g∈G

g · f(e) (3.5.1)

holds. Note also that if F ⊆ F ′ for some finite set F ′ ⊆ G, then there is a canonical
inclusion MF ⊆MF ′ . With this we get:

Lemma 3.5.4. Suppose that G is a discrete group and let X be a G-compact proper
G-space. Suppose further that c : X → [0, 1] is a cut-off function for X as in
Section 3.4.2. Then there exists a finite subset F ⊆ G such that g(supp(c)) ∩
supp(c) = ∅ for all g /∈ F and a continuous G-map

ϕc : X →MF ;ϕc(x) = [g �→ c2(g−1x)].

Moreover, for any other continuous G-map ψ : X → MF there is a finite set
F ′ ⊆ G containing F such that ψ is G-homotopic to ϕ in MF ′ .

Proof. Existence of the finite set F as in the lemma follows from compactness of
the set {(g, x) : (gx, x) ∈ supp(c) × supp(c)} ⊆ G × X. It is compact since G
acts properly on X. It is then straightforward to check that ϕc is a continuous
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G-map. Suppose now that ψ : X → MF is any other continuous G-map. We
define c̃ : X → [0, 1] as c̃(x) :=

√
ψ(x)(e). It follows then from (3.5.1) that c̃ is a

cut-off function as well and that ψ = ϕc̃. Now let d : X× [0, 1]→ [0, 1] be given by
d(x, t) :=

√
(1− t)c2(x) + tc̃2(x). Then there exists a finite set F ′ ⊇ F such that

g(supp(d)) ∩ supp(d) = ∅ for all g /∈ F ′. The continuous G-map ϕd : X × [0, 1]→
MF ′ then evaluates to ϕc at t = 0 (usingMF ⊆MF ′) and to ϕc̃ = ψ at t = 1. �
Lemma 3.5.5. Let G be a discrete group. Then for every G-C∗-algebra A we have

KG
∗ (EG;A) = lim

F
KKG

∗ (C0(MF ), A),

where F runs through all finite subsets of G and the limit is taken with respect to
the canonical inclusion MF ⊆MF ′ if F ⊆ F ′.

Proof. This follows from the definition

KG
∗ (EG;A) = lim

X
KKG

∗ (C0(X), A),

whereX runs through the G-compact subsets of EG and Lemma 3.5.4: By the uni-
versal property of EG there are G-compact subsets XF ⊆ EG and G-continuous
maps MF → XF ⊆ EG, which, up to a possible enlargement of XF , are unique
up to G-homotopy. On the other hand, Lemma 3.5.4 provides maps XF →MF ′

for some F ′ ⊇ F which, up to passing to a bigger set F ′′ if necessary, is also unique
up to G-homotopy. Thus we get a zigzag diagram

KKG∗ (C0(MF ), A)

��

�� KKG∗ (C0(M
F ′ ), A)

��

�� KKG∗ (C0(M
F ′′ ), A).....

KKG∗ (C0(X), A)

��

�� KKG∗ (C0(XF ), A)

��

�� KKG∗ (C0(X
F ′ ), A)

��

�� .....

which commutes sufficiently well to induce an isomorphism of the inductive limits.
�

The next lemma gives the crucial point in the proof Theorem 3.5.1 in the case of
discrete G. It has first been shown in the setting of E-theory in [GHT00, Lemma
12.11]. A more general version for arbitrary open subgroups H of a second count-
able locally compact group G has been shown in [CE01a, Proposition 5.14].

Lemma 3.5.6. Suppose that K ⊆ G is a finite subgroup of the discrete group G.
Then, for every G-C∗-algebra B, there is a well defined compression isomorphism

compK : KKG
∗ (C0(G/K), B)→ KKK

∗ (C, B)

given as the composition of the maps

KKG
∗ (C0(G/K), B)

resGK−→ KKK
∗ (C0(G/K), B)

ι∗−→ KKK
∗ (C, B),

where ι : C ↪→ C0(G/K) denotes the inclusion λ �→ λδeK with δeK the character-
istic function of the open one-point set {eK} ⊆ G/K.
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Proof. We construct an inverse

indGK : KKK
∗ (C, B)→ KKG

∗ (C0(G/K), B)

for the compression map. We may restrict ourselves to the case of the K0-groups,
the K1-case then follows from passing from B to B ⊗ C0(R). Let (E , 1, γ, T ) be
a representative for a class x ∈ KKK(C, B) where T ∈ L(E) is a K-invariant
operator such that T ∗ − T, T 2 − 1 ∈ K(E). We then define a Hilbert B-module
indGK E as

IndGK E =

{
ξ : G→ E :

s.t. ξ(gk) = γk−1(ξ(g)) for all g ∈ G, k ∈ K
and

∑
g∈G βg(〈ξ(g), ξ(g)〉B) <∞

}
where

∑
g∈G βg(〈ξ(g), ξ(g)〉) <∞ just means that the sum converges in the norm-

topology ofB. The grading on IndGK E is given by the grading of E applied pointwise
to the elements of IndGK E . We define the B-valued inner product and the right
B-action on IndGK E by

〈ξ, η〉B =
1

|K|
∑
g∈G

βg(〈ξ(g), η(g)〉B) and (ξ · b)(g) = ξ(g)βg−1(b)

for all ξ, η ∈ IndGK E , b ∈ B and g ∈ G. Moreover, we define a ∗-homomorphism

M : C0(G/K)→ L(IndGK E); (M(f)ξ)(g) := f(gK)ξ(g)

and an operator T̃ ∈ L(IndGK E) by (T̃ ξ)(g) = Tξ(g). Finally, the G-action Ind γ :
G→ Aut(IndGK E) is given by (Ind γgξ)(h) = ξ(g−1h) for g, h ∈ G.

It is then an easy exercise to check that (IndGK E ,M, Ind γ, T̃ ) is a G-equivariant
C0(G/K)−B Kasparov cycle such that

compK
(
[IndGK E ,M, Ind γ, T̃ ]

)
= [E , 1, γ, T ].

For the converse, averaging over K, we may first assume that for a given class
x = [F ,Φ, ν, S] ∈ KKG(C0(G/K), B) the operator S is K-invariant and that
Φ : C0(G/K)→ L(F) is non-degenerate. Let S̃ =

∑
gK∈G/K Φ(δgK)SΦ(δgK). We

claim that S̃ is a compact perturbation of S, i.e.,

(S − S̃)Φ(f) =
∑

gK∈G/K

(S − Φ(δgK)S)Φ(δgK)f(gK) ∈ K(F)

for all f ∈ C0(G/K). For this we first observe that, since [S,Φ(δgK)] ∈ K(F)
for all gK ∈ G/K, each summand lies in K(F). Moreover, since f ∈ C0(G/K),
the sum converges in norm, which proves the claim. Thus, replacing S by S̃ if
necessary, we may assume that [S,Φ(f)] = 0 for all f ∈ C0(G/K). In particular,
if p := Φ(δeK), it follows that S = pSp+ (1− p)S(1− p).
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The class compK(x) is represented by the KK-cycle [F ,Φ|CδeK , ν|K , S]. For p =
Φ(δeK), let E := pF , T = pSp and γ : K → Aut(E) be the restriction of ν|K
to the summand E of F . Since S = pSp + (1 − p)S(1 − p) and since [(1 −
p)F ,Φ|CδeK , ν|K , (1−p)S(1−p)] is degenerate, we see that compK(x) = [E , 1, γ, T ].
It is then straightforward to check that

U : IndGK E → F ;Uξ =
1

|K|
∑
g∈G

νg(ξ(g))

is a an isomorphism of Hilbert-B-modules that induces an isomorphism between
the KK-cycles (IndGK E ,M, Ind γ, T̃ ) and (F ,Φ, ν, S). This finishes the proof. �

Suppose now that X is a proper G-space, U ⊆ X is an open G-invariant subset
of X, and Y := X � U . Since C0(X) is nuclear, there exists a completely positive
contractive section Φ : C0(Y ) → C0(X) for the restriction homomorphism resY :
C0(X) �→ C0(Y ) : f �→ f |Y . By properness of the action, we may average Φ with
the help of a cut-off function c : X → [0,∞) to get the G-equivariant completely
positive and contractive section

ΦG(ϕ)(x) :=

∫
G

c2(g−1x)Φ(ϕ)(x) dg

for ϕ ∈ C0(Y ). It follows then from Theorem 3.3.28 that for every G-algebra B
there exists a six-term exact sequence

KKG
0 (C0(Y ), B)

res∗Y−−−−→ KKG
0 (C0(X), B)

ι∗−−−−→ KKG
0 (C0(U), B)

∂

�⏐⏐ ⏐⏐�∂

KKG
1 (C0(U), B) ←−−−−

ι∗
KKG

1 (C0(X), B) ←−−−−
res∗K

KKG
0 (C0(Y ), B).

We are now ready for

Proof of Theorem 3.5.1 for G discrete. By Lemma 3.5.5 it suffices to show that
for every (geometric realisation) of a G-finite G-simplicial complex X, the map

· ⊗A x : KKG
∗ (C0(X), A)→ KKG

∗ (C0(X), B)

given by taking Kasparov product with the class x ∈ KKG(A,B) is an isomor-
phism. We do the proof by induction on the dimension of X. Suppose first that
dim(X) = 0. In that case X is discrete and therefore decomposes into a finite
union of G-orbits

X = G(x1) ∪̇G(x2) ∪̇ · · · ∪̇G(xl)

for suitable elements x1, . . . , xl in X. Then we have C0(X) ∼= ⊕l
i=1 C0(G(xi)) and

KKG
∗ (C0(X), A)=

∏l
i=1KKG

∗ (C0(G(xi)), A) (and similarly forKKG
∗ (C0(X), B)).
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Thus, it suffices to show that ·⊗A x : KKG
∗ (C0(G(xi)), A)

∼=→ KK∗
G(C0(G(xi)), B)

for all 1 ≤ i ≤ l. But G(xi) ∼= G/Gxi
as a G-space, where Gxi

= {g ∈ G : gxi = xi}
denotes the stabiliser of xi. By properness, we have Gxi

finite for all i. We then
get a commutative diagram

KKG
∗ (C0(G/Gxi), A)

·⊗Ax−−−−→ KKG
∗ (C0(G/Gxi), B)

compGxi

⏐⏐� ⏐⏐�compGxi

KK
Gxi∗ (C, A)

·⊗AresGGxi
(x)

−−−−−−−−−→ KK
Gxi∗ (C, B)

in which all vertical arrows are isomorphisms by Lemma 3.5.6 and the lower hor-
izontal arrow is an isomorphism by the assumption of the theorem. Hence the
upper horzontal arrow is an isomorphism as well.
Suppose now that dim(X) = n. After performing a baricentric subdivision of X,
if necessary, we may assume that the action of G on X satisfies the following
condition: If Δ is a simplex in X, then an element g ∈ G either fixes all of Δ or

g·int(Δ)∩int(Δ) = ∅, where int(Δ) denotes the interior of Δ. Now let X̃ denote the

union of the interiors of all n-dimensional simplices in X. Then Xn−1 := X � X̃
is an n − 1-dimensional G-simplicial complex and by the induction assumption
we have KKG

∗ (C0(Xn−1), A) ∼= KKG
∗ (C0(Xn−1), B) via taking Kasparov product

with x. We now show that KKG
∗ (C0(X̃), A) ∼= KKG

∗ (C0(X̃), B) as well. If this is
done, then the five-lemma applied to the diagram

KKG
∗−1(C0(X̃), A)

∂−−−−−→ KKG
∗ (C0(Xn−1), A)

res∗−−−−−→ KKG
∗ (C0(X), A)

·⊗Ax

⏐⏐� ·⊗Ax

⏐⏐� ·⊗Ax

⏐⏐�

KKG
∗−1(C0(X̃), B)

∂−−−−−→ KKG
∗ (C0(Xn−1), B)

res∗−−−−−→ KKG
∗ (C0(X), B)

ι∗−−−−−→ KKG
∗ (C0(X̃), A)

∂−−−−−→ KKG
∗+1(C0(Xn−1), A)

⏐⏐�·⊗Ax

⏐⏐�·⊗Ax

ι∗−−−−−→ KKG
∗ (C0(X̃), B)

∂−−−−−→ KKG
∗+1(C0(Xn−1), B)

shows that KKG
∗ (C0(X), A) ∼= KK∗

G(C0(X), B).

To see that KKG
∗ (C0(X̃), A) ∼= KKG

∗ (C0(X̃), B) we first observe that X̃ is a
finite union of orbits of open simplices int(Δ1), . . . , int(Δk) for some k ∈ N. Via
the corresponding product decomposition of the KK-groups, we may then assume
that X̃ = G·int(Δ) for a single open n-simplex Δ. By our assumption on the action
of G on X, we have

G · int(Δ) ∼= G/GΔ × int(Δ)

where GΔ = {g ∈ G : g ·Δ = Δ} denotes the (finite!) stabiliser of Δ and where
the G-action on G/GΔ× int(Δ) is given by left translation on the first factor. We
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then get a diagram

KKG
∗ (C0(G/GΔ × int(Δ)), A)

Bott−−−−−→∼=
KKG

∗+n(C0(G/GΔ), A)
compGΔ−−−−−−→∼=

KKGΔ
∗+n(C, A)

·⊗Ax

⏐⏐� ·⊗Ax

⏐⏐� ·⊗AresGGΔ
(x)

⏐⏐�

KKG
∗ (C0(G/GΔ × int(Δ)), B)

Bott−−−−−→∼=
KKG

∗+n(C0(G/GΔ), B)
compGΔ−−−−−−→∼=

KKGΔ
∗+n(C, B).

Since, by assumption, the last vertical arrow is an isomorphism, the result follows.
�

We should note that for groups that satisfy the strong Baum–Connes conjecture
in the sense of Definition 3.4.17, a stronger version of Theorem 3.5.1 has been
shown by Meyer and Nest in [MN06, Theorem 9.3]:

Theorem 3.5.7 (Meyer-Nest). Suppose that the second countable group G satisfies
the strong Baum–Connes conjecture (e.g., this is satisfied if G is a-T -menable or,
in particular, if G is amenable) and assume that x ∈ KKG(A,B) such that for
every compact subgroup K of G the class JK(resGK(x)) ∈ KK(A�K,B �K) is a
KK-equivalence. Then JG(x) ∈ KK(A�r G,B �r G) is KK-equivalence as well.

3.5.2 Applications of the going-down principle

We now give a number of applications. The first one is the proof that every exact
locally compact group satisfies the strong Novikov conjecture. Recall that a locally
compact group is called exact (in the sense of Kirchberg and Wassermann) if for
every short exact sequence of G-C∗-algebras

0→ I
ι→ A

q→ A/I → 0

the corresponding sequence of reduced crossed products

0→ I �r G
ι�rG→ A�r G

q�rG→ A/I �r G→ 0

is also exact. It has been known for a long time by work of Ozawa and others (see
[Oza00]) that a discrete group is exact if and only if it admits an amenable action
on a compact space X. This means that the transformation groupoid X � G is
topologically amenable in the sense of [ADR00]. Very recently the result of Ozawa
has been generalised by Brodzki, Cave and Li ([BCL16]) to second countable
locally compact groups. The following result has been shown first for discrete G
by Higson in [Hig00]. The result has been extended in [CEOO04] to the case of
second countable locally compact groups acting amenably on a compact space.

Theorem 3.5.8. Let G be an exact second countable locally compact group. Then G
satisfies the strong Novikov conjecture with coefficients, i.e., for each G-C∗-algebra
B the assembly map

μ(G,B) : K
G
∗ (EG;B)→ K∗(B �r G)
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is split injective. A similar statement holds true for the full assembly map μfull
(G,B).

Proof. By [BCL16], being exact is equivalent to the condition that there exists a
compact amenable G-space X. Following the arguments given by Higson in [Hig00,
Lemma 3.5 and Lemma 3.6] we may as well assume that X is a metrisable convex
space and G acts by affine transformations. In particular, X is K-equivariantly
contractible for every compact subgroup K of X. It then follows that the inclusion
map ι : C → C(X) is a KKK-equivalence for every compact subgroup K of G
– it’s inverse is given by the map C(X) → C; f �→ f(x0) for any K-fixed point
x0 ∈ X. It then follows, that for every G-C∗-algebra B, the ∗-homomorphism
B → B ⊗ C(X); b �→ b ⊗ 1X is a KKK-equivalence as well. Thus it follows from
Theorem 3.5.1 that

Φ∗ : KG
∗ (EG;B)→ KG

∗ (EG;B ⊗ C(X))

is an isomorphism. Moreover, by Tu’s extension of the Higson–Kasparov theorem
to groupoids (see [Tu99a]), the assembly map

μ(X�G,B⊗C(X)) : K
X�G
∗ (E(X �G), B ⊗ C(X))→ K∗((B ⊗ C(X))�r G)

is an isomorphism, since X�G is an amenable, and hence a-T -menable groupoid.
Moreover, it has been shown in [CEOO03] that the forgetful map

F : KX�G
∗ (E(X �G), B ⊗ C(X))→ KG

∗ (EG,B ⊗ C(X))

is an isomorphism and that the diagram

KX�G
∗ (E(X �G), B ⊗ C(X))

μ(X�G,B⊗C(X))−−−−−−−−−−→ K∗((B ⊗ C(X))�r G)

F

⏐⏐� ⏐⏐�=

KG
∗ (EG,B ⊗ C(X))

μ(G,B⊗C(X))−−−−−−−−→ K∗((B ⊗ C(X))�r G)

commutes. The result then follows from the commutative diagram

KG
∗ (EG,B)

μ(G,B⊗C(X))−−−−−−−−→ K∗(B �r G)

Φ∗

⏐⏐� ⏐⏐�Φ�rG∗

KG
∗ (EG,B ⊗ C(X))

μ(G,B⊗C(X))−−−−−−−−→ K∗((B ⊗ C(X))�r G)

in which the left vertical arrow and the bottom horizontal arrow are isomorphisms.
�

The main application of the going-down principle in [CEOO04] was the proof
of a version of the Künneth formula for KG

∗ (EG,B) with applications for the
Baum–Connes conjecture with trivial coefficients. We don’t want to go into the
details here. But we would like to mention some other useful applications. By a
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homotopy between two actions α0, α1 : G → Aut(A) we understand a path of
actions αt : G→ Aut(A), t ∈ [0, 1], such that(

αg(f)
)
(t) := αt

g(f(t)) ∀f ∈ A[0, 1], g ∈ G, t ∈ [0, 1]

defines an action on A[0, 1] = C([0, 1], A). The following is, of course, a direct
consequence of Theorem 3.5.1:

Corollary 3.5.9. Suppose that α : G → Aut(A[0, 1]) is a homotopy between the
actions α0, α1 : G → Aut(A) and assume that G satisfies BC for (A[0, 1], α)
and (A,αt) for t = 0, 1. Suppose further that for t = 0, 1 and for every com-
pact subgroup K of G the evaluation map εt : A[0, 1] → A; f �→ f(t) induces an

isomorphism εt �K∗ : K∗(A[0, 1]�α K)
∼=→ K∗(A�αt K). Then

εt �r G∗ : K∗(C([0, 1], A)�α,r G)→ K∗(A�αt,r G)

is an isomorphism as well. In particular, we have K∗(A�α0,rG) ∼= K∗(A�α1,rG).

Of course, the condition on the compact subgroups in the above corollary is quite
annoying. However, for those groups that have no compact subgroups other than
the trivial group, the corollary becomes very nice, since the evaluation maps εt :
A[0, 1]→ A; f �→ f(t) are always KK-equivalences.

Corollary 3.5.10. Suppose that α : G → Aut(A[0, 1]) is a homotopy between the
actions α0, α1 : G → Aut(A) and assume that G satisfies BC for (A[0, 1], α) and
(A,α0), (A,α1). If {e} is the only compact subgroup of G, then K∗(A�α0,r G) ∼=
K∗(A�α1,r G).

In [ELPW10] Corollary 3.5.9 has been used to show that for groups G that sat-
isfy BC for suitable coefficients, the K-theory of reduced twisted group algebras
C∗

r (G,ω), where ω : G×G→ T is a Borel 2-cocycle on G, only depends on the ho-
motopy class of the 2-cocycle ω (with a suitable definition of homotopy). We don’t
want to go into the details here, but we do want to mention that if (ωt)t∈[0,1] is such
a homotopy of 2-cocycles, it induces a homotopy α : G→ Aut(K[0, 1]) of actions of
G on the compact operators K = K(�2(N)) such that K�αt,rG ∼= K⊗C∗

r (G,ωt) for
all t ∈ [0, 1]. We refer to Section 2.8.6 for a discussion of twisted group algebras. It
follows from the results in [EW01] that a homotopy of actions of a compact group
K on K must be exterior equivalent to a constant path of actions, hence

K[0, 1]�K ∼= (K �K)[0, 1]

for all compact subgroups of G, from which it follows that the evaluation maps

εt �K : K[0, 1]�K → K �K

are KK-equivalences for all K. Thus, if G satisfies BC for K and K[0, 1] (for the
relevant actions), it follows from Corollary 3.5.9 that

K∗(C∗
r (G,ω0)) ∼= K∗(K �α0,r G) ∼= K∗(K �α1,r G) ∼= K∗(C∗

r (G,ω1)).
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Note that this result extends earlier results of Elliott ([Ell81]) for the case of
finitely generated abelian groups G and of Packer and Raeburn [PR92] for a class
of solvable groups G. The main application in [ELPW10] was given for the com-
putation of the K-theory of the crossed products Aθ � F of the noncommutative
2-tori Aθ, θ ∈ [0, 1] with finite subgroups F ⊆ SL(2,Z) acting canonically on Aθ.
It turned out that Aθ � F ∼= C∗

r (Z
2 � F, ωθ) for some cocycles ωθ which depend

continuously on the parameter θ. Since Z2 �F is amenable it satisfies strong BC,
and then it follows from the above results that

K∗(Aθ � F ) ∼= K∗(C∗
r (Z

2 � F, ωθ)) ∼= K∗(C∗
r (Z

2 � F, ω0)) = K∗(C(T2)� F ).

The last group can be computed by methods from classical topology. We refer
to [ELPW10] for further details on this. Note that in this situation we can also
use Theorem 3.5.7 to deduce that all algebras Aθ � F , θ ∈ [0, 1], are pairwise
KK-equivalent.

3.5.3 Crossed products by actions on totally disconnected spaces

We now want to apply our techniques to certain crossed products of groups G
acting “nicely” on totally disconnected spaces Ω. The main application of this
will be given for reduced semigroup algebras and crossed products by certain
semigroups, which will be presented elsewhere in this book, in Chapters 5 and 6.

If Ω is a totally disconnected locally compact space we denote by Uc(Ω) the collec-
tion of all compact open subsets of Ω. This set is countable if and only if Ω has a
countable basis of its topology, i.e., Ω is second countable. For any set V ⊆ Uc(Ω)
we say that V generates Uc(Ω), if every subset U ⊆ Uc(Ω) that contains V and is
closed under finite intersections, finite unions, and taking differences U �W with
U,W ∈ U , must coincide with Uc(Ω).
Let C∞

c (Ω) denotes the dense subalgebra of C0(Ω) consisting of locally constant
functions with compact supports on Ω. Then

C∞
c (Ω) = span{1U : U ∈ Uc(Ω)},

where 1U denotes the indicator function of U ⊆ Ω. The straightforward proof of
the following lemma is given in [CEL13, Lemma 2.2]:

Lemma 3.5.11. Suppose that V is a family of compact open subsets of the totally
disconnected locally compact space Ω. Then the following are equivalent:

(i) The set {1V : V ∈ V} of characteristic functions of the elements in V gener-
ates C0(Ω) as a C∗-algebra.

(ii) The set V generates Uc(Ω) in the sense explained above.

If, in addition, V is closed under finite intersections, then (i) and (ii) are equivalent
to
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(iii) span{1V : V ∈ V} = C∞
c (Ω).

We see in particular that the commutative C∗-algebra C0(Ω) is generated as a
C∗-algebra by a (countable) set of projections. The converse is also true: If D is
any commutative C∗-algebra generated by a set of projections {ei : i ∈ I} ⊆ D
and if Ω = Spec(D) is the Gelfand spectrum of D, then Ω is totally disconnected
and the sets

V = {supp(êi) : i ∈ I},
where, for any d ∈ D, d̂ ∈ C0(Ω) denotes the Gelfand transform of d, is a family of
compact open subsets of Ω which generates Uc(Ω). For a proof see [CEL13, Lemma
2.3]. Thus, there is an equivalence between studying sets of projections which
generate D or sets of compact open subsets of Ω that generate Uc(Ω).
Lemma 3.5.12. Suppose that {ei : i ∈ I} is a set of projections in the commutative
C∗-algebra D. Then for each finite subset F ⊆ I there exists a smallest projection
e ∈ D such that ei ≤ e for every i ∈ F . We then write e := ∨i∈F ei.

Proof. By the above discussion we may assume that D = C0(Ω) for some totally
disconnected space Ω. For each i ∈ F let Vi := supp(ei). Then e = 1V with
V = ∪l

i=1Vi. �
The independence condition given in the following definition is central for the
results of this section:

Definition 3.5.13. Suppose that {Xi : i ∈ I} is a family of subsets of a set X. We
then say that {Xi : i ∈ I} is independent if for any finite subset F ⊆ I and for
any index i0 ∈ I we have

Xi0 = ∪i∈FXi ⇒ i0 ∈ F.

Similarly, a family {ei : i ∈ I} of projections in the commutative C∗-algebra D is
called independent if for any finite subset F ⊆ I and every i0 ∈ I we have

ei0 = ∨i∈F ei ⇒ i0 ∈ F.

Of course, if D = C0(Ω) then {ei : i ∈ I} is an independent family of projections
in D if and only if {supp(ei) : i ∈ I} is an independent family of compact open
subsets of Ω. The following lemma is [CEL13, Lemma 2.8]. The proof follows from
[Li13, Proposition 2.4]:

Lemma 3.5.14. Suppose that {ei : i ∈ I} is an independent set of projections in
the commutative C∗-algebra D which is closed under finite multiplication up to 0.
Then {ei : i ∈ I} is independent if and only if it is linearly independent.

Definition 3.5.15. Suppose that Ω is a totally disconnected locally compact Haus-
dorff space. An independent family V of nonempty compact open subsets of Ω is
called a regular basis (for the compact open subsets of Ω) if it generates Uc(Ω) and
if V ∪ {∅} is closed under finite intersections.
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A family of projections {ei : i ∈ I} in the commutative C∗-algebra D is called a
regular basis for D if it is (linearly) independent, closed under finite multiplication
up to 0 and generates D as a C∗-algebra.

The following lemma is a consequence of the above discussions. We leave the details
to the reader.

Lemma 3.5.16. A family of projections {ei : i ∈ I} in the commutative C∗-algebra
D is a regular basis for D if and only if the set V = {supp êi : i ∈ I} is a regular
basis for the compact open subsets of Ω = Spec(D). Conversely, V is a regular
basis for the compact open subsets of the locally compact space Ω if and only if
{1V : V ∈ V} is a regular basis for C0(Ω).

It is not difficult to see that every totally disconnected locally compact space Ω
has a regular basis for its compact open sets. A formal proof is given in [CEL13,
Proposition 2.12]. The following example shows the existence for the Cantor set:

Example 3.5.17. Let Ω = {0, 1}Z denote the direct product of copies of {0, 1} over
Z equipped with the product topology. For each finite subset F ⊆ Z let

VF = {(εn)n ∈ Ω : εn = 0∀n ∈ F}
be the corresponding cylinder set in Ω. It is then an easy exercise to check that
the collection V = {VF : F ⊆ Z finite} is a regular basis for the compact open
subsets of Ω.

Assume now that G is a second countable locally compact group and Ω is a second
countable totally disconnected G-space such that there exists a G-invariant regular
basis V = {Vi : i ∈ I} for the compact open subsets of Ω. For all i ∈ I let
ei = 1Vi

be the characteristic function of Vi. Then, since V is G-invariant, the
action of G on Ω induces an action of G on I. Consider the unitary representation
U : G → U(�2(I)); (Ugξ)(i) = ξ(g−1i) and let AdU : G → Aut(K(�2(I))) denote
the corresponding adjoint action. For each i ∈ I let δi denote the Dirac function
at i and let di : �

2(I) → Cδi denote the orthogonal projection. Then there exists
a unique G-equivariant ∗-homomorphism

Φ : C0(I)→ C0(Ω)⊗K(�2(I)) such that Φ(δi) = ei ⊗ di,

for all i ∈ I, where the action of G on C0(I) is induced by the action on I and
the action on C0(Ω) ⊗ K(�2(I)) is given by the diagonal action τ ⊗ AdU , where
τ : G → Aut(C0(Ω)) denotes the given action of G on C0(Ω). More generally
if α : G → Aut(A) is an action of G on a C∗-algebra A, then there exists a
G-equivariant ∗-homomorphism

ΦA : C0(I)⊗A→ C0(Ω)⊗A⊗K(�2(I)) s.t. ΦA(δi ⊗ a) = ei ⊗ a⊗ di.

Note that the action τ⊗α⊗AdU of G on C0(Ω)⊗A⊗K(�2(I)) is Morita equivalent
to the action τ ⊗α of G on C0(Ω)⊗A via the G-equivariant equivalence bimodule
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E := (C0(Ω)⊗A⊗ �2(I), τ ⊗ α⊗ U). Thus, we obtain a KKG-class

x = [ΦA]⊗C0(Ω)⊗A⊗K E ∈ KKG(C0(I, A), C0(Ω, A)).

The following is the main result of this section:

Theorem 3.5.18 (cf. [CEL13]). Suppose that {ei : i ∈ I} is a G-equivariant reg-
ular basis for C0(Ω), A is any G-C∗-algebra, and G satisfies the Baum–Connes
conjecture for C0(I, A) and C0(Ω, A). Then the descent

JG(x) ∈ KK(C0(I, A)�r G,C0(Ω, A)�r G)

of the class x ∈ KKG(C0(I, A), C0(Ω, A)) constructed above induces an isomor-
phism K∗(C0(I, A)�r G) ∼= K∗(C0(Ω, A)�r G).

If, moreover, G satsfies the strong Baum–Connes conjecture and if A is type I,
then JG(x) ∈ KK(C0(I, A)�r G,C0(Ω, A)�r G) is a KK-equivalence.

The above theorem was originally shown in [CEL13, §3], extending an earlier
result given in [CEL15]. Before we present some of the crucial ideas of the proof,
we would like to discuss a bit why this result might be useful for explicit K-
theory calculations. The main reason is due to the relatively easy structure of
crossed products by groups acting on discrete spaces I. If such action is given (as
in the situation of our theorem) and if A is any other G-C∗-algebra, we obtain a
G-equivariant direct sum decomposition

C0(I, A) ∼=
⊕

[i]∈G\I
C0(G · i)⊗A,

in which G · i = {g · i : g ∈ G} denotes the G-orbit of the representative i of the
class [i] ∈ G\I. Let Gi := {g ∈ G : g · i = i} denote the stabiliser of i in G. Then
Gi is open in G and we have a G-equivariant bijection

G/Gi

∼=→ G · i; gGi �→ g · i.
Moreover, by Green’s imprimitivity theorem (Theorem 2.6.4; see also Remark
2.6.9), there are natural Morita equivalences

C0(G/Gi, A)�r G ∼= A�r Gi.

Putting things together, we therefore get

C0(I, A)�r G ∼=
⊕

[i]∈G\I
C0(G/Gi, A)�r G ∼M

⊕
[i]∈G\I

A�r Gi.

Since Morita equivalences are KK-equivalences, we get

K∗(C0(I, A)�r G) ∼=
⊕

[i]∈G\I
K∗(A�r Gi).

Thus,
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Corollary 3.5.19. Suppose that G,Ω, A and {ei : i ∈ I} are as in Theorem 3.5.18.
Then there is an isomorphism

K∗(C0(Ω, A)�r G) ∼=
⊕

[i]∈G\I
K∗(A�r Gi).

In particular, if A = C, there is an isomorphism

K∗(C0(Ω)�r G) ∼=
⊕

[i]∈G\I
K∗(C∗

r (Gi)).

If G satisfies strong BC and A is type I, the isomorphism is induced by a KK-
equivalence between C0(Ω, A)�r G and

⊕
[i]∈G\I A�r Gi.

In many interesting examples coming from the theory of C∗-semigroup algebras
and crossed products of semigroups by automorphic actions of semigroups P ⊆ G,
the stabilisers for the action of G on I have very easy structure, so that the K-
theory groups of the crossed products A�rG are computable. This is in particular
true in the case A = C. The applications of Theorem 3.5.18 to C∗-semigroup
algebras will be discussed in more detail in Chapter 5 (Section 5.10) and Chapter
6 (Section 6.5).

Example 3.5.20. To illustrate the usefulness of our approach we consider the
group algebra of the lamplighter group Z/2 " Z which is the semi-direct product(⊕

Z
Z/2

)
�Z, where the action is given via translation of the summation index.

Since the dual group of
⊕

Z
Z/2 is equal to the direct product Ω :=

∏
Z
{1,−1} =

{1,−1}Z the group algebra C∗(Z/2"Z) is isomorphic to C(Ω)�Z. Moreover, by Ex-
ample 3.5.17 there exists a regular basis V = {VF : F ⊆ Z finite} for the compact
open subsets of Ω consisting of the cylinder sets VF = {(εn)n ∈ Ω : εn = 1 ∀n ∈ F}
attached to the finite subsets F ⊆ Z. This basis is clearly Z-invariant, hence our
theorem applies to the corresponding regular basis {eF = 1VF

: F ⊆ Z finite}
of C(Ω). Let F = {F ⊆ Z : F finite} denote the index set of this basis and let
F∗ = F � {∅}. The action of Z on F fixes ∅ and acts freely on F∗. Hence, our
theorem gives

K∗(C∗(Z/2 " Z)) = K∗(C(Ω)� Z) ∼= K∗(C0(F)� Z)

∼= K∗(C∗(Z))⊕
( ⊕

[F ]∈Z\F∗
K∗(C)

)
.

Since C∗(Z) ∼= C(T) and K0(C(T)) = Z = K1(C(T)) we get

K0(C
∗(Z/2 " Z) ∼=

⊕
[F ]∈G\F

Z and K1(C
∗(Z/2 " Z)) = Z.

Of course, the result can easily be extended to more general wreath products
Z/2 " G =

⊕
G Z/2 � G, where G is a countable discrete group which satisfies

appropriate versions of the Baum–Connes conjecture.
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Proof of Theorem 3.5.18. For the sake of presentation, let us assume that G is
countable discrete (which is the case in most applications). Since the (strong)
Baum–Connes conjecture is invariant with respect to KKG-equivalent actions,
and since G-equivariant Morita equivalences are KKG-equivalences, it suffices to
prove that the descent

ΦA �r G : C0(I, A)�r G→
(
C0(Ω, A)⊗K(�2(I))

)
�r G

of the homomorphism ΦA induces an isomorphism in K-theory (resp. a KK-
equivalence in the case where G satisfies strong BC and A is type I). To see that
this is the case we want to exploit the going-down principle of the previous section,
i.e., we need to show that for every finite subgroup F ⊆ G, the map

ΦA � F : C0(I, A)� F → (
C0(Ω, A)⊗K(�2(I))

)
� F (3.5.2)

induces an isomorphism in K-theory. Note that if A is type I, the same is true
for

(
C0(Ω, A) ⊗ K(�2(I))

)
� F by Corollary 2.8.21 and therefore it follows from

the universal coefficient theorem of KK-theory (e.g., see [Bla86, Chapter 23]) that
ΦA �F being an isomorphism already implies that it is a KK-equivalence. Thus,
in this situation, the stronger result that ΦA �r G is a KK-equivalence will then
follow from the Meyer–Nest theorem 3.5.7.

Using the Green–Julg theorem, the map ΦA � F of (3.5.2) being an isomorphism
is equivalent to

(ΦA)∗ : KF
∗ (C0(I, A))→ KF

∗
(
C0(Ω, A)⊗K(�2(I))

)
being an isomorphism.

So in what follows let us fix a finite subgroup F of G. Let J ⊆ I be any finite
F -invariant subset such that {ei : i ∈ J} is closed under multiplication (up to 0).
Then DJ := span{ei : i ∈ J} is a finite-dimensional commutative C∗-subalgeba of
C0(Ω) of dimension dim(DJ) = |J |. Consider the map

ΦJ : C0(J)→ DJ ⊗K(�2(J)); ΦJ(δi) = ei ⊗ di. (3.5.3)

We want to show that ΦJ is invertible in KKF
(
C0(J), DJ ⊗ K(�2(J))) ∼=

KKF (C0(J), DJ). If this happens to be true, then ΦA,J := ΦJ ⊗ idA : C0(J,A)→
DJ ⊗ A ⊗ K(�2(J)) will be KKF -invertible as well, and the desired result then
follows from the following commutative diagram

KF
∗ (C0(J,A))

(ΦA,J )∗−−−−−→∼=
KF

∗
(
DJ ⊗A⊗K(�2(J)))

ι∗

⏐⏐� ⏐⏐�ι∗

limJ KF
∗ (C0(J,A))

limJ (ΦA,J )∗−−−−−−−−→∼=
limJ KF

∗
(
DJ ⊗A⊗K(�2(J)))

∼=
⏐⏐� ⏐⏐�∼=

KF
∗ (C0(I, A))

(ΦA)∗−−−−→∼=
KF

∗
(
C0(Ω)⊗A⊗K(�2(I)))
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The KKF -invertibility of ΦJ in (3.5.3) will be a consequence of a UCT-type result
for finite-dimensional F -algebras, which we now explain: Suppose that C and D
are commutative finite-dimensional F -algebras with dim(C) = n, dim(D) = m (in
our application, C will be C0(J), D = DJ , and n = m = |J |). Let {c1, . . . , cn}
and {d1, . . . , dm} be choices of pairwise orthogonal projections, which then form
a basis of C and D, respectively. Then we have isomorphisms Zn ∼= K0(C) and
Zm ∼= K0(D) sending the jth unit vector ej to [cj ] (resp. [dj ]). If we ignore the
F -action, the UCT-theorem for KK implies that

KK0(C,D) ∼= Hom(K0(C),K0(D)) ∼= M(m× n,Z), (3.5.4)

where the first isomorphism is given by sending x ∈ KK(C,D) to the map
· ⊗C x : K0(C) → K0(D) and the second map is given via the above identi-
fications of K0(C) ∼= Zn and K0(D) ∼= Zm. Suppose now that C and D are
F -algebras such that F acts via permutations of the basis elements in {c1, . . . , cn}
and {d1, . . . , dm}, respectively. Note that the actions of F on C and D are deter-
mined by two homomorphisms τ : F → Sn and σ : F → Sm such that g ·ci = cτg(i)
and g · dj = dσg(j) for all i, j. Then the equivariant version of (3.5.4) does not give
an isomorphism in general, but we get a homomorphism

ΨC,D : KKF
0 (C,D)→ HomF (K0(C),K0(D)) ∼= MF (m× n,Z) : x �→ Γx (3.5.5)

where HomF (K0(C),K0(D)) denotes the F -equivariant homomorphisms (with F
acting on the basis elements [ci] and [di] of K0(C) and K0(D), repectively) and
MF (m× n,Z) denotes the set of all m× n-matrices Γ = (γij) over Z that satisfy

γij = γτg(i),σg(j) ∀g ∈ F. (3.5.6)

We need to construct a section MF (m × n,Z) → KKF (C,D); Γ �→ xΓ for ΨC,D

that is compatible with taking Kasparov products. For this let Γ = (γij) ∈MF (m×
n,Z) be given. Let Eij = C|γij |⊗Cdi viewed as a HilbertD-module in the canonical
way. Let ϕij : C → K(Eij) be the ∗-homomorphism such that ϕij(cj) = 1Eij

and
ϕij(ck) = 0 for all k �= i. Let

E+Γ =
⊕
γij>0

Eij and ϕ+ =
⊕
γij>0

ϕij : C → K(E+),

and, similarly,

E−Γ =
⊕
γij<0

Eij and ϕ− =
⊕
γij<0

ϕij : C → K(E−).

Because of (3.5.6) there are canonical actions of F on E+, E− such that g · Eij =
Eτg(i)σg(j) for all i, j and such that (E+Γ , ϕ+) and (E−Γ , ϕ−) become F -equivariant

C −D correspondences. Finally, let EΓ = E+Γ ⊕ E−Γ with Z/2-grading given by the
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matrix

(
1 0
0 −1

)
and let ϕ =

(
ϕ+ 0
0 ϕ−

)
. Since ϕ takes value in K(E), we get a

class
xΓ := [EΓ, ϕ, 0] ∈ KKF (C,D).

The proof of the following lemma is left as an exercise for the reader (or see
[CEL13, Lemma A.2]):

Lemma 3.5.21. Suppose that B,C,D are finite-dimensional commutative F -
algebras such that {b1, . . . , bk}, {c1, . . . , cn}, and {d1, . . . , dm} are F -invariant
bases consisting of orthogonal projections in B,C,D, respectively. Then, for all
matrices Λ ∈MF (n× k,Z) and Γ ∈MF (m× n,Z) we get

xΛ ⊗C xΓ = xΓ·Λ ∈ KKF (B,D).

In particular, if n = dim(C) = dim(D) and Γ ∈ MF (n × n,Z) is invertible over
Z, then xΓ ∈ KKF (C,D) is invertible as well.

Let us come back to the class ΦJ : C0(J) → DJ ⊗ K(�2(J)) which sends δi to
ei⊗di, where di denotes the orthogonal projection onto Cδi. The following lemma
gives the crucial point of how independence of the family {ei : i ∈ I} of the basis
elements of C0(Ω) enters the picture:

Lemma 3.5.22 (cf [CEL13, Lemma 3.8]). Let D be a commutative C∗-algebra gen-
erated by a multplicatively closed (up to 0) and independent finite set of projections
{ei : i ∈ J}. For each i ∈ J let e′i := ei − ∨ej<eiej. Then {e′i : i ∈ J} is a family
of nonzero pairwise orthogonal projections spanning D. Moreover, the transition
matrix Γ = (γij) determined by the equation

ej =
∑
i∈J

γije
′
i

is unipotent and therefore invertible over Z. Its entries are either 0 or 1.

Proof. Independence implies that e′i �= 0 for all i ∈ J . If i �= j, then we have either
ei < ej , in which case e′jei = ejei − ∨ek<ejekei = 0 or eiej < ei, in which case
e′iej = eiej − ∨ek<eiekej = 0. Either case implies e′ie

′
j = 0. Since dim(D) = |J |, it

follows that D = span{e′i : i ∈ I}.
If e′i ≤ ej , then e′i ≤ eiej ≤ ei by definition of e′i. This shows that γij = 1 if ei ≤ ej
and γij = 0 otherwise. Thus, if we choose an ordering {i1, . . . , in} of J such that
ei ≤ ej ⇒ i ≤ j, the matrix Γ is upper triangular with 1’s on the diagonal, hence
unipotent. Thus, 1−Γ is nilpotent of order n = |J | and Γ is invertible with inverse
Γ−1 =

∑n
k=0(1− Γ)k. �

To finish the proof of Theorem 3.5.18 we observe that the class [ΦJ ] ∈
KKF (C0(J), DJ ⊗ K(�2(J))) ∼= KKF (C0(J), DJ) coincides with the class
xΓ = [EΓ, ϕ, 0] as constructed in the above lemma with respect to the basis
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{δi : i ∈ J} of C0(J) and the basis {e′i : i ∈ J} of DJ . A combination of Lemma
3.5.22 with Lemma 3.5.21 then implies that [ΦJ ] is invertible. Indeed, since
γij = 0 or 1, it follows that EΓ = E+Γ =

⊕
i∈J

(⊕
j∈J,γij=1 Ce

′
i

)
embeds as a direct

summand into DJ⊗�2(J) such that ΦJ : C0(J)→ DJ⊗K(�2(J)) ∼= K(DJ⊗�2(J))
decomposes as ϕ⊕ 0. �
As remarked before, the main applications for Theorem 3.5.18 are given in case of
computing theK-theory of reduced semigroup algebras C∗

λ(P ), where e ∈ P ⊆ G is
a sub-semigroup of the countable group G. In case where P ⊆ G satisfies a certain
Toeplitz condition (which is discussed in detail in Chapter 5), there exists a totally
disconnected G-space ΩP⊆G such that C∗

λ(P ) can be realised as a full corner in the
crossed product C0(ΩP⊆G)�r G, hence K∗(C∗

λ(P )) ∼= K∗(C0(ΩP⊆G)�r G). Now,
the existence of a G-invariant regular basis for C0(ΩP⊆G) will follow from a certain
independence condition for the inclusion P ⊆ G, which, somewhat surprisingly, is
satisfied in a large number of interesting cases. Again, we refer to the Chapters 5
and 6 for more details on this.

Unfortunately, aG-invariant regular basis {ei : i ∈ I} for C0(Ω), as required for the
proof of Theorem 3.5.18, does not exist in general. In fact, we have the following
result, which excludes a large number of interesting cases from our theory:

Proposition 3.5.23 ([CEL13, Proposition 3.18]). Let G be a countable discrete group
that acts minimally on the totally disconnected locally compact space Ω, i.e., for
every nonempty open subset U of Ω, we have

Ω = ∪g∈GgU.

Suppose further that there exists a nonzero G-invariant Borel measure μ on Ω
(which holds if G is amenable and Ω is compact). Then Ω has a G-invariant
regular basis for the compact open sets if and only if Ω is discrete.



Chapter 4

Quantitative K-theory for
geometric operator algebras
Guoliang Yu

4.1 Introduction

The purpose of this chapter is to give a friendly introduction to quantitative K-
theory of operator algebras and its applications. Quantitative operator K-theory
was first introduced in my work on the Novikov conjecture for groups with finite
asymptotic dimension [Yu98]. Hervé Oyono-Oyono and I developed a more gen-
eral quantitative K-theory for C∗-algebras [OOY15]. Quantitative operator theory
provides a constructive way to compute K-theory of C∗-algebras under certain
finiteness conditions. The crucial idea is that quantitative operator K-theory is
often computable by using a cutting-and-pasting technique in each scale under
certain finite-dimensionality conditions and the usual K-theory is an inductive
limit when the scale goes to infinity. The data necessary for defining quantitative
K-theory of a C∗-algebra is a length function for the C∗-algebra. Such a length
function gives a geometric structure on the C∗-algebra. For this reason, a C∗-
algebra with a length function will be called a geometric C∗-algebra. A general
quantitative K-theory was developed for geometric C∗-algebras in my joint work
with Hervé Oyono-Oyono in [OOY15].

The concept of geometric C∗-algebras fits beautifully with geometric group theory.
Any length function on a group G would give rise to a natural length function on
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the group C∗-algebra C∗(G) and the crossed product C∗-algebra A � G for any
C∗-algebra A with a G action. In my joint work with Erik Guentner and Rufus
Willett [GWY16b,GWY16a], we applied quantitative operator K-theory to give a
constructive algorithm for computing theK-theory of crossed product C∗-algebras
C(X)�G when G acts on the compact space X with a finite dynamic asymptotic
dimension.

Finiteness of the dynamic asymptotic dimension for the G action on the compact
space X also implies finiteness of the nuclear dimension of the reduced crossed
product C∗-algebra C(X)�G [GWY16b]. The nuclear dimension is an important
concept introduced by Winter and Zacharias [WZ10]. Finiteness of nuclear dimen-
sion plays an crucial role in recent spectacular work on classification by Gong–
Lin–Niu, Elliott–Gong–Lin–Niu, and Tikuisis–White–Winter [GLN15, EGLN15,
TWW15].

Hervé Oyono-Oyono and I generalized the concept of asymptotic dimension to geo-
metric C∗-algebras and prove the Künneth formula for any geometric C∗-algebras
with finite asymptotic dimension [OOY16]. It is our hope that the quantitative
method will extend to the K-homology setting and will provide a way to attack
the universal coefficient theorem for K-theory of operator algebras. The universal
coefficient theorem is a key ingredient in the classification program for nuclear
C∗-algebras.

More recently, Yeong Chyuan Chung developed a quantitative K-theory for Ba-
nach algebras and applied this theory to compute K-theory of Banach crossed
product algebras [Chu16a, Chu16b]. Chung showed that the Lp-version of the
Baum–Connes conjecture holds for a group G with coefficients in C(X) if G acts
on X with a finite dynamic asymptotic dimension. As a consequence, Chung was
able to show that the K-theory of the Lp-crossed product algebra Bp(X,G) is
independent of p when the group G acts on the compact space X with a finite
asymptotic dynamic dimension. Whether the K-theory of Bp(X,G) depends on
p remains an important open question in general. We emphasize that there is
substantial difficulty to extend the standard Dirac-dual Dirac method to the Lp

settings. The use of quantitative K-theory is crucial here.

I should mention that topologists have introduced similar ideas to compute al-
gebraic K-theory and L-theory [Bar03, BLR08a, FJ86, FJ87, FJ89]. The analytic
quantitative K-theory and algebraic quantitative K-theory were initially devel-
oped independently, but have had a productive exchange of ideas recently.

This chapter is composed essentially of the notes I prepared for the lectures I
gave at the Oberwolfach seminar. I would like to thank my co-organizers Joachim
Cuntz, Siegfried Echterhoff, and Xin Li for this wonderful opportunity.
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4.2 Geometric C∗-algebras

In this section, we introduce the concept of geometric C∗-algebras. For simplicity,
we assume that all C∗-algebras are complex in this chapter.

We need the following geometric structure on a C∗-algebra in order to define
quantitative K-theory.

Definition 4.2.1. Let A be a C∗-algebra. A function l : A → [0,∞], is called a
length function if it satisfies the following conditions:

(0) l(0) = 0;

(1) l(a+ b) ≤ max{l(a), l(b)} and l(ab) ≤ l(a) + l(b) for any a, b ∈ A;

(2) l(ca) ≤ l(a) for any a ∈ A and c ∈ C, the set of all complex numbers;

(3) l(a∗) = l(a) for all a ∈ A;

(4) the set {a ∈ A : l(a) < ∞} is dense in A and, for each r ≥ 0, {a : l(a) ≤ r}
is a closed subset of A.

A C∗-algebra with a length function is called a geometric C∗-algebra. A geometric
C∗-algebra has a natural filtration given by: An = {a ∈ A : l(a) ≤ n} for each
nonnegative integer. Then {An} satisfies the following filtration condition:

(1) An is a closed linear subspace of A and is closed under the ∗-operation for
each nonnegative integer n;

(2) AnAm ⊆ An+m for all pairs of nonnegative integers n and m;

(3) ∪∞
n=0An is dense in A.

Next we give a few examples of geometric C∗-algebras.

The first example comes from geometric group theory. Let G be a countable group.
In this chapter, all our groups are discrete. There exists a proper length function
l on G, i.e., l satisfies the following conditions:

(1) l(g) = 0 iff g = e, the identity of G;

(2) l(gh) ≤ l(g) + l(h) for all g and h in G;

(3) l(g−1) = l(g) for all g ∈ G;

(4) l is proper, i.e., for each r ≥ 0, {g ∈ G : l(g) ≤ r} is finite.

Proper length functions on G are all coarsely equivalent to one another. Properness
is not essential or our purpose.

Let B be a C∗-algebra with a G action. Let B�G be the reduced crossed product
C∗-algebra defined as follows. The algebraic crossed product algebra B �alg G is
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defined to be the vector space of all formal finite sums
∑

g∈G agg with the following
product and ∗-operation:(∑

g∈G

agg

)
(
∑
h∈G

bhh) =
∑

g,h∈G

agαg(bh)gh,

(∑
g∈G

agg

)∗
=
∑
g∈G

αg−1(a∗g)g
−1,

where ag, bh ∈ B, and α is the G action on B. We take a faithful ∗-representation
of B on a Hilbert space H. There is a natural faithful ∗-representation of B�algG
on the Hilbert space l2(G,H) defined by:

(aξ)(h) = αg−1(a)ξ(h),

(gξ)(h) = ξ(g−1h)

for all ξ ∈ l2(G,H), a ∈ B, and g, h ∈ G. We define the reduced crossed product
C∗-algebra B � G to be the operator norm closure of B �alg G in B(l2(G,H)),
the algebra of all bounded linear operators acting on the Hilbert space l2(G,H).

We can extend the length function l on G to a length function on B�G as follows:

l(a) = sup
g∈G:ag �=0

l(g),

where a =
∑

g∈G agg and ag ∈ B. One can easily verify that l is a length function
on the crossed product C∗-algebra B �G.

The second example comes from John Roe’s index theory on noncompact mani-
folds [Roe93]. Let X be a discrete metric space with bounded geometry, i.e., for
each r ≥ 0, there exists a positive integer N(r) such that each ball with radius r
in X has at most N(r) number of elements. The propagation of a bounded linear
operator T acting on l2(X) is defined to be

sup{d(x, y) :< Tδx, δy > �= 0},

where δx and δy are, respectively, Dirac functions at x and y in X. Let C∗(X) be
the operator norm closure of all finite propagation operators acting on l2(X). For
every operator T ∈ C∗(X), we define its length l(T ) to be its propagation. It is
straightforward to verify that l is a length function on the C∗-algebra C∗(X).

In the above example, if we choose X = G with a G-invariant metric induced from
a proper length function l on G, i.e., d(g, h) = l(g−1h), then there is a natural
action of G on X by translations. Let C∗(X)G be the operator norm closure of
all G-invariant finite propagation operators on l2(X). The C∗-algebra C∗(X)G is
isomorphic to the reduced group C∗-algebra of G.
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Finally, we give the third example of a geometric C∗-algebra. Let A be a finitely
generated C∗-algebra. Choose a finite generating set S such that S is closed under
the ∗-operation. For each a ∈ A, we define the length l(a) to be the smallest
nonnegative integer n such that a can be approximated by linear combinations of
the products of n number of elements in S. It is not hard to check that l is a length
function on A. This length function depends on the choice of the finite generating
set. This example is generic in the sense that most C∗-algebras we are interested
in are finitely generated.

4.3 Quantitative K-theory for C∗-algebras

In this section, we introduce the basic concepts of quantitative K-theory for ge-
ometric C∗-algebras. Let A be a geometric C∗-algebra with a length function l.
Without loss of generality, we can assume that A is unital. Otherwise we can
extend the length function l to A+, the unital C∗-algebra obtained from A by
adjoining a unit, as follows: l(a+ cI) = l(a) for any a ∈ A and c ∈ C.

Let M∞(A) = ∪∞
n=1Mn(A), where Mn(A) is embedded in Mn+1(A) in a standard

way. We can extend the length function l to M∞(A) by taking the maximum of
the length of the matrix entries.

Let r > 0 and 0 < ε < 1/4. An operator q in M∞(A) is called an (ε, r)-quasi-
projection if

‖q2 − q‖ < ε, q∗ = q, l(q) ≤ r.

Let P ε,r
∞ (A) be the set of all (ε, r)-quasi-projections in M∞(A). Two (ε, r)-quasi-

projections are said to be (ε, r)-equivalent if they are homotopic through a path
of (ε, r)-quasi-projections.

Lemma 4.3.1. P ε,r
∞ (A)/ ∼ is an abelian semi-group with respect to the direct sum

operation.

Grothendick introduced a process of constructing an abelian group out of an
abelian semi-group. Let S be an abelian semi-group. The Grothendick group G(S)
is an abelian group:

{(s, t) : s, t ∈ S}/ ∼
with the following addition operation:

[(s1, t1)] + [(s2, t2)] = [(s1 + s2, t1 + t2)],

where the equivalence relation is defined as follows: (s, t) ∼ (s′, t′) if there exists
r ∈ S such that

s+ t′ + r = s′ + t+ r.

Definition 4.3.2. Let r > 0 and 0 < ε < 1/4. We define Kε,r
0 (A) to be the Grothen-

dick group of P ε,r
∞ (A)/ ∼.
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Our definition is slightly different from but equivalent to the definition in [OOY15].

There exists a δ > 0 dependent on ε such that the spectrum of every (ε, r)-quasi-
projection is contained in (−∞, 1

2 − δ]∪ [ 12 + δ,∞). Let f be a continuous function
on the real line such that f(x) = 0 on (−∞, 1

2 − δ] and f(x) = 1 on [ 12 + δ,∞).
We define a homomorphism φ from Kε,r

0 (A) to the K0 group of A by mapping a
(ε, r)-quasi-projection q in M∞(A) to a projection p = f(q) in M∞(A).

Proposition 4.3.3. The homomorphism φ induces an isomorphism from
limr→∞ Kε,r

0 (A) to K0(A).

Let GL∞(A) = ∪∞
n=1GLn(A). Let r > 0 and 0 < ε < 1/4. An operator v in

GL∞(A) is called an (ε, r)-quasi-unitary if

‖vv∗ − I‖ < ε, ‖vv∗ − I‖ < ε, l(v) ≤ r.

Let U ε,r
∞ (A) be the set of all (ε, r)-unitaries in GL∞(A). Two (ε, r)-quasi-unitaries

are said to be (ε, r)-equivalent if they are homotopic through a path of (ε, r)-quasi-
unitaries.

Lemma 4.3.4. For any 0 < ε < 1/4, U ε,r
∞ (A)/ ∼ is an abelian semi-group with

respect to the direct sum operation.

The following definition is slightly different from but equivalent to the definition
in [OOY15].

Definition 4.3.5. Let r > 0 and 0 < ε < 1/4. We define Kε,r
1 (A) to be the Grothen-

dick group of U ε,r
∞ (A)/ ∼.

There is a natural homomorphism ψ from Kε,r
1 (A) to the K1 group of A by map-

ping a (ε, r)-quasi-unitary v in GL∞(A) to the invertible element v in GL∞(A).

Proposition 4.3.6. The homomorphism ψ induces an isomorphism from
limr→∞ Kε,r

1 (A) to K1(A).

There exists a six-term asymptotically exact sequence for quantitative K-theory
of geometric C∗-algebras [OOY15].

4.4 A quantitative Mayer–Vietoris sequence

In this section, we formulate an asymptotically exact Mayer–Vietoris sequence
for quantitative K-theory for geometric C∗-algebras. This quantitative Mayer–
Vietoris sequence plays an essential role in the computation of quantitative K-
theory for geometric C∗-algebras. The usual Mayer–Vietoris sequence for the K-
theory of C∗-algebras requires a decomposition of the C∗-algebra into the sum of
two ideals [HRY93]. The need to use ideals for the usual operatorK-theory Mayer–
Vietoris sequence makes it a limited tool in the computation of the K-theory of
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C∗-algebras since generically C∗-algebras don’t have nontrivial ideals. The advan-
tage of the quantitative Mayer–Vietoris sequence is that it is unnecessary to use
nontrivial ideals.

Let A be a geometric C∗-algebra with a length function l. For each r ≥ 0, let
Ar = {a ∈ A : l(a) ≤ r}.
The following concept is the analogue of ideals in the quantitative sense [OOY15].

Definition 4.4.1. Let Δ be a closed linear subspace of A. Let r ≥ 0.

(1) We define the r-neighborhood of Δ, Nr(Δ) to be

Δ +Ar ·Δ+Δ ·Ar +Ar ·Δ ·Ar.

(2) We define the r-neighborhood C∗-algebra, C∗(Nr(Δ)), to be the C∗-algebra
generated by Nr(Δ).

The following concept is essential in the formulation of the excisive condition for
the quantitative Mayer–Vietoris sequence [OOY15].

Definition 4.4.2. Let S1 and S2 be two subsets of a C∗-algebra A. The pair (S1, S2)
is said to have a complete intersection approximation property (CIA) if there exists
c > 0 such that for any positive number ε, any x ∈ Mn(S1) and y ∈ Mn(S2) for
some positive integer n and ‖x − y‖ < ε, then there exists z ∈ Mn(S1 ∩ S2)
satisfying

‖z − x‖ < cε, ‖z − y‖ < cε.

The above condition is often automatically satisfied in natural examples [OOY15,
GWY16b,GWY16a].

Definition 4.4.3. Let Δ be a closed linear subspace of A. Let Δ1 and Δ2 be closed
subspaces of Δ satisfying

Δ = Δ1 +Δ2.

The decomposition Δ = Δ1 + Δ2 is called completely contractive if for any x ∈
Mn(Δ) for some n, there exist x1 ∈Mn(Δ1) and x2 ∈Mn(Δ2) satisfying

x = x1 + x2, ‖xi‖ ≤ ‖x‖

for i = 1, 2.

Definition 4.4.4. Let r ≥ 0. Let Δ1 and Δ2 be two closed linear subspaces of Ar.
The pair (Δ1,Δ2) is said to be r-excisive if

(1) As = Δ1,s+Δ2,s is a completely contractive decomposition for all 0 ≤ s ≤ r,
where Δi,s = {a ∈ Δi : l(a) ≤ s};

(2) The pair (C∗(Nr(Δ1))s, C
∗(Nr(Δ2))s) satisfies the CIA property for all 0 ≤

s ≤ r, where C∗(Nr(Δi))s = {a ∈ C∗(Nr(Δi)) : l(a) ≤ s}.
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The following asymptotically exact Mayer–Vietoris sequence is a main tool in
the computation of quantitative K-theory [OOY15]. Note that the usual Mayer–
Vietoris sequence for operator K-theory requires the crucial use of ideals [HRY93].
However, C∗-algebras don’t always have nontrivial ideals. The great advantage of
quantitative K-theory is that we only need to use the neighborhood algebras to
establish a Mayer–Vietoris sequence. These neighborhood algebras play the role
of ideals at a certain scale.

Theorem 4.4.5. Let A be a geometric C∗-algebra. Let (Δ1,Δ2) be a r-excisive pair
for A. There exists a universal constant λ > 10 (dependent only on the constant
c in the definition of the CIA property) such that for each positive ε < 1

10 and
0 ≤ s ≤ r

λ2 , the following sequence is asymptotically exact:

Kε,s
1 (C∗(Ns(Δ1)) ∩ C∗(Ns(Δ2)))

i→ Kε,s
1 (C∗(Ns(Δ1)))⊕Kε,s

1 (C∗(Ns(Δ2)))

j→ Kε,s
1 (A)

∂→ Kε,λs
0 (C∗(Nλs(Δ1)) ∩ C∗(Nλs(Δ2)))

i→ Kε,λs
0 (C∗(Nλs(Δ1)))⊕Kε,λs

0 (C∗(Nλs(Δ2)))

j→ Kε,λs
0 (A)

in the following sense:

(1) j ◦ i = 0;

(2) the kernel of j : Kε,s
1 (C∗(Ns(Δ1))) ⊕ Kε,s

1 (C∗(Ns(Δ2))) → Kε,s
1 (A) in

Kε,λs
1 (C∗(Nλs(Δ1)))⊕Kε,λs

1 (C∗(Nλs(Δ2))) is contained in the image of

i : Kε,λs
1 (C∗(Nλs(Δ1)) ∩ C∗(Nλs(Δ2)))

→ Kε,λs
1 (C∗(Nλs(Δ1)))⊕Kε,λs

1 (C∗(Nλs(Δ2)));

(3) ∂ ◦ j = 0;

(4) the kernel of ∂ : Kε,s
1 (A)→ Kε,λs

0 (C∗(Nλs(Δ1))∩C∗(Nλs(Δ2))) is contained
in
the image of j : Kε,λ2s

1 (C∗(Nλ2s(Δ1)))⊕Kε,λ2s
1 (C∗(Nλ2s(Δ2)))→ Kε,λ2s

1 (A);

(5) i ◦ ∂ = 0;

(6) the kernel of

i : Kε,λs
0 (C∗(Nλs(Δ1)) ∩ C∗(Nλs(Δ2)))

→ Kε,λs
0 (C∗(Nλs(Δ1)))⊕Kε,λs

0 (C∗(Nλs(Δ2)))

in Kε,λ2s
0 (C∗(Nλ2s(Δ1)) ∩ C∗(Nλ2s(Δ2))) is contained in the image of

∂ : Kε,λs
1 (A)→ Kε,λ2s

0 (C∗(Nλ2s(Δ1)) ∩ C∗(Nλ2s(Δ2))).

We remark that there exists also a quantitative Bott periodicity [OOY15].
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4.5 Dynamic asymptotic dimension and K-theory of
crossed product C∗-algebras

In this section, we introduce the concept of dynamic asymptotic dimension and
apply quantitative K-theory to compute K-theory of crossed product C∗-algebras
when the dynamic asymptotic dimension is finite.

We first recall the definition of crossed product C∗-algebra. We focus on the fol-
lowing case of our special interest: group actions on compact spaces. Let G be a
countable group and X be a compact space with a G action. Let C(X) be the
algebra of complex-valued continuous functions on X. The G action on X induces
an action of G on C(X) (denoted by α). The algebraic crossed product algebra
C(X)�alg G is defined to be the vector space of all formal finite sums

∑
g∈G agg

with the following product and ∗-operation:(∑
g∈G

agg

)(∑
h∈G

bhh

)
=

∑
g,h∈G

agαg(bh)gh,

(∑
g∈G

agg

)∗
=
∑
g∈G

αg−1(āg)g
−1,

where ag, bh ∈ C(X). There is a natural faithful ∗-representation of C(X)�alg G
on the Hilbert space l2(G,L2(X)). With the help of this ∗-representation, we can
define the (reduced) crossed product C∗-algebra C(X) � G to be the operator
norm completion of the algebraic crossed product algebra C(X)�alg G.

In order to describe the notion of dynamic asymptotic dimension, it is convenient
to recall the transformation groupoid X �G defined by

{(x, g) : x ∈ X, g ∈ G}

with partially defined product operation

(x, g)(y, h) = (x, gh)

when x = gy. The groupoid X �G is given the natural product topology.

The following concept is introduced in my joint work with Erik Guentner and
Rufus Willett [GWY16b,GWY16a].

Definition 4.5.1. A G action on X is said to have finite dynamic asymptotic di-
mension if there exists d ∈ N such that for all finite subsets F ⊆ G, there exist a
finite subset E ⊆ G and an open cover {U0, . . . , Ud} of {(x, g) ∈ X ×G : g ∈ F}
satisfying:

(1) for each x∈X, the set {(x, g)∈X×G : g ∈ F} is contained in Ui for some i;
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(2) the subgroupoid of X �G generated by Ui is contained in the set

{(x, gh) : (x, g) ∈ Ui, h ∈ E}.

The above concept of dynamic asymptotic dimension was inspired by Gromov’s
concept of asymptotic dimension [Gon15]. Let Z be a proper metric space, i.e.,
every closed ball is compact. The asymptotic dimension of Z is the smallest non-
negative integer d for which, given any r ≥ 0, there exists a uniformly bounded
cover {Zi}i for A such that each ball with radius r in Z intersects at most d + 1
members of the cover {Zi}i. Any countable group has a proper length metric. Two
choices of such metrics are coarsely equivalent. Asymptotic dimension is invariant
under coarse equivalence and is therefore an intrinsic concept for any countable
group. If G is a countable group with finite asymptotic dimension, then G acts
on a compact space X with finite dynamic asymptotic dimension. In fact, we can
take X to be the Stone–Čech compactification of G. The asymptotic dimension of
G is equal to the smallest non-nonnegative integer d for which, given any r ≥ 0,
there exists a finite cover {Gk}dk=0 such that each Gk = ∪iGk,i, {Gk,i}i is uni-
formly bounded and d(Gk,i, Gk,i′) > r for any pair i �= i′. For each k, let Uk be the
closure of Gk in X, the Stone–Čech compactification of G. Note that Uk is also an
open subset of X. It is not difficult to verify that {Uk}k satisfies the conditions in
the above definition of finite dynamic asymptotic dimension. One can prove that
a countable group G acts on a compact space with finite dynamic asymptotic di-
mension if and only if G has finite asymptotic dimension. Examples of groups with
finite asymptotic dimension include all hyperbolic groups, discrete subgroups of
almost connected Lie groups. We also remark that the Bartels–Lück–Reich condi-
tion [BLR08a,BLR08b] in their work on the Farrell-Jones conjecture implies finite
dynamic asymptotic dimension.

The importance of the concept of finite dynamic asymptotic dimension lies in the
following result [GWY16a].

Theorem 4.5.2. If a group G acts on a compact space X with a finite dynamic
asymptotic dimension, then there exists an algorithm for computing the K-theory
of the reduced crossed product C∗-algebra C(X)�G.

As an application, one obtains a constructive proof of the Baum–Connes con-
jecture for G with coefficients in C(X) when G acts on X with finite dynamic
asymptotic dimension. The key tool in the proof of the above theorem is quantita-
tive operator K-theory and the quantitative Mayer–Vietoris sequence. The main
idea is that the condition of finite dynamic asymptotic dimension allows one to
compute quantitative operator K-theory using an asymptotically exact Mayer–
Vietoris sequence. The usual K-theory can then be computed by taking limits of
the quantitative operator K-theory.

If a group G acts on a compact space X with a finite dynamic asymptotic di-
mension, then the nuclear dimension of the reduced crossed product C∗-algebra
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C(X)�G is finite [GWY16b]. The nuclear dimension is an important concept intro-
duced by Winter and Zacharias [WZ10]. Finiteness of nuclear dimension plays an
crucial role in recent spectacular work on classification by Gong–Lin–Niu, Elliott–
Gong–Lin–Niu, and Tikuisis–White–Winter [GLN15,EGLN15,TWW15].

The concept of finite dynamic asymptotic dimension can be generalized to a more
flexible notion of finite dynamic complexity just as the concept of a finite asymp-
totic dimension can be generalized to the notion of finite geometric complexity
[GTY12,GTY13]. If a group G has finite geometric complexity, then G acts on
a compact space X with finite dynamic complexity (again X can be taken as
the Stone–Čech compactification of G). Examples of groups with finite geometric
complexity include all linear groups [GTY13].

Erik Guentner, Rufus Willett and I are in the process of writing down the proof
of the following result.

Theorem 4.5.3. If a group G acts on a compact space X with finite dynamic
complexity, then there exists an algorithm for computing K-theory of the crossed
product C∗-algebra C(X)�G.

It is an interesting project to introduce a notion of “nuclear complexity” for a
nuclear C∗-algebra that is compatible with the concept of dynamic complexity in
the case of crossed product C∗-algebras and then apply such a concept to classify
nuclear C∗-algebras.

4.6 Asymptotic dimension for geometric C∗-algebras
and the Künneth formula

In this section, we introduce a concept of asymptotic dimension for geometric C∗-
algebras and then formulate a Künneth formula for geometric C∗-algebras with a
finite asymptotic dimension. This is joint work with Hervé Oyono-Oyono [OOY16].

We first recall the bootstrap category introduced by Jonathan Rosenberg and
Claude Schochet [RS87].

Definition 4.6.1. The bootstrap category N is the smallest class of nuclear sepa-
rable C∗-algebras such that

(1) N contains C;

(2) N is closed under countable inductive limits;

(3) N is stable under extension, i.e., for any extension of C∗-algebras

0→ J → A→ A/J → 0,

if any two of the C∗-algebras are in N , then so is the third;

(4) N is closed under KK-equivalence.
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Next we introduce the concept of locally bootstrap C∗-algebras.

Definition 4.6.2. A geometric C∗-algebra A is called locally bootstrap if for all
positive number s there exists a positive number r with r > s and a C∗-subalgebra
A(s) of A such that

(1) A(s) belongs to the bootstrap class;

(2) As ⊆ A(s) ⊆ Ar, where {Ar}r>0 is the filtration given by Ar = {a ∈ A :
l(a) ≤ r}.

The following is a uniform version of the locally bootstrap C∗-algebras.

Definition 4.6.3. A family of geometric C∗-algebras {Ai}i∈I is uniformly locally
bootstrap if for all k ∈ I and for all positive number s, there exists a positive
number r with r > s and a C∗-algebra Ak(s) of Ak such that for all integer k,

(1) Ak(s) belongs to the bootstrap class;

(2) Ak,s ⊆ Ak(s) ⊆ Ak,r, where {Ak,r}r is the filtration given by the geometric
structure on Ak.

Definition 4.6.4. We first define C0 to be the class of uniformly locally bootstrap
families of C∗-algebras. Then we define by induction Cn to be the class of family
A such that for every positive number r, the following is satisfied:

there exists a family B in Cn−1 and, for any C∗-algebra A in A, there is an
r-excisive pair (Δ1,Δ2) of A with C∗(Nr(Δ1)), C

∗(Nr(Δ2)) and C∗(Nr(Δ1)) ∩
C∗(Nr(Δ2)) in B.
Finally, we can define the concept of asymptotic dimension for geometric C∗-
algebras.

Definition 4.6.5. Let A be a geometric C∗-algebra. The asymptotic dimension of
A is defined to be the smallest integer d such that {A} ∈ Cd. If there is no such
integer d, we say that the asymptotic dimension of A is infinite.

In [OOY16], we prove the following result.

Theorem 4.6.6. If A is a geometric C∗-algebra with a finite asymptotic dimension,
then A satisfies the Künneth formula in K-theory, i.e., there exists a natural short
exact sequence

0→ K∗(A)⊗K∗(B)→ K∗(A⊗B)→ Tor(K∗(A),K∗(B))→ 0

for any C∗-algebra B.

In my joint work with Rufus Willett, we are developing a quantitativeK-homology
theory with the goal of studying the universal coefficients theorem for geometric
C∗-algebras with finite asymptotic dimension.
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Definition 4.6.7. A geometric C∗-algebra A is said to have (polynomial) subexpo-
nential growth if the dimension of An has (polynomial) subexponential growth in
n, where An = {a ∈ A : l(a) ≤ n}.
In [KV92], Kirchberg and G. Vaillant proved that any geometric C∗-algebras with
subexponential growth is nuclear.

We raise the following open question:

Problem 4.6.8. Does every geometric C∗-algebra with (polynomial) subexponen-
tial growth have finite asymptotic dimension?

A positive answer to this question would help us understand the structure of this
class of nuclear C∗-algebras.

4.7 Quantitative K-theory for Banach algebras

In this section, we give a brief overview for quantitative K-theory for Banach alge-
bras and its applications. QuantitativeK-theory for Banach algebra was developed
by Yeong Chyuan Chung in his thesis [Chu16a,Chu16b]. As an application, Chung
obtained an algorithm for computing K-theory for Banach crossed product alge-
bras when the action has finite dynamic asymptotic dimension. There is a great
deal of technical difficulty in extending the standard Dirac-dual Dirac method to
the Banach algebra context. However, Chung showed that the quantitative K-
theory method works perfectly well in this Banach setting.

For simplicity, we shall assume that our Banach algebra A is a subalgebra of
B(Lp(Z, μ)) for some 1 ≤ p < ∞ and some space Z with a measure μ. In this
case, for each positive integer n, we have a natural norm on M∞(A) inherited
from B(Lp(N × Z,m × μ), where N is the set of all positive integers with the
counting measure m. For general Banach algebra, it is necessary to choose a norm
on M∞(A) in order to define quantitative K-theory [Chu16a,Chu16b].

Definition 4.7.1. Let A be a Banach algebra. A function l : A → [0,∞], is called
a length function if it satisfies the following conditions:

(0) l(0) = 0;

(1) l(a+ b) ≤ max{l(a), l(b)} and l(ab) ≤ l(a) + l(b) for any a, b ∈ A;

(2) l(ca) ≤ l(a) for any a ∈ A and c ∈ C, the set of all complex numbers;

(3) the set {a ∈ A : l(a) < ∞} is dense in A and, for each r ≥ 0, {a : l(a) ≤ r}
is a closed subset of A.

A Banach algebra with a length function is called a geometric Banach algebra. A
geometric Banach algebra has a natural filtration given by: An = {a ∈ A : l(a) ≤
n} for every nonnegative integer. {An} satisfies the usual filtration condition:

(1) An is a closed linear subspace of A for every nonnegative integer n;
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(2) AnAm ⊆ An+m for all pairs of nonnegative integers n and m;

(3) ∪∞
n=0An is dense in A.

A crucial change in quantitative K-theory for geometric Banach algebra is to
replace the almost projection condition with a norm control.

Let r > 0, 0 < ε < 1/4, and N ≥ 1. An operator q in M∞(A) is called an
(ε, r,N)-quasi-idempotent if

‖q2 − q‖ < ε, ‖q‖ ≤ N, l(q) ≤ r.

Let Idemε,r,N
∞ (A) be the set of all (ε, r,N)-quasi-idempotents in M∞(A). Two

(ε, r,N)-quasi-idempotents are said to be (ε, r,N)-equivalent if they are homotopic
through a path of (ε, r,N)-quasi-idempotents.

Lemma 4.7.2. Idemε,r,N
∞ (A)/ ∼ is an abelian semi-group with respect to the direct

sum operation.

Definition 4.7.3. Let r > 0, 0 < ε < 1/4, and N ≥ 1. We define Kε,r,N
0 (A) to be

the Grothendick group of Idemε,r,N
∞ (A)/ ∼.

Similar to the C∗-algebra case, there is a natural homomorphism φ from Kε,r,N
0 (A)

to the K0 group of A.

Proposition 4.7.4. The homomorphism φ induces an isomorphism from
limr,N→∞ Kε,r,N

0 (A) to K0(A).

Let GL∞(A) = ∪∞
n=1GLn(A). Let r > 0, 0 < ε < 1/4, and N ≥ 1. An operator

v in GL∞(A) is called an (ε, r,N)-invertible if there exists another element w ∈
GL∞(A) such that

‖vw − I‖ < ε, ‖wv − I‖ < ε,

‖v‖ ≤ N, ‖w‖ ≤ N,

l(v) ≤ r, l(w) ≤ r.

Let GLε,r,N
∞ (A) be the set of all (ε, r,N)-invertibles in GL∞(A). Two (ε, r,N)-

invertibles are said to be (ε, r,N)-equivalent if they are homotopic through a path
of (ε, r,N)-invertibles.

Lemma 4.7.5. For any 0 < ε < 1/4, GLε,r,N
∞ (A)/ ∼ is an abelian semi-group with

respect to the direct sum operation.

The following definition is slightly different from but equivalent to the definition
in [Chu16a,Chu16b].

Definition 4.7.6. Let r > 0 and 0 < ε < 1/4. We define Kε,r,N
1 (A) to be the

Grothendick group of GLε,r,N
∞ (A)/ ∼.

There is a natural homomorphism ψ from Kε,r,N
1 (A) to the K1 group of A by

mapping a (ε, r,N)-invertible v in GL∞(A) to the invertible element v in GL∞(A).
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Proposition 4.7.7. The homomorphism ψ induces an isomorphism from
limr,N→∞ Kε,r,N

1 (A) to K1(A).

Let B be a Banach subalgebra of B(Lp(Z, μ)), where Z is a space with measure
μ. For simplicity, we will denote Lp(Z, μ) by Lp(Z). Let G be a countable group
acting on B by norm preserving automorphisms. Let B�G be the reduced crossed
product Banach algebra defined as follows. The algebraic crossed product algebra
B�alg G is defined to be the vector space of all formal finite sums

∑
g∈G agg with

the following product:(∑
g∈G

agg

)(∑
h∈G

bhh

)
=

∑
g,h∈G

agαg(bh)gh,

where ag, bh ∈ B, and α is the G action on B. There is a natural faithful repre-
sentation of B �alg G on the Banach space lp(G,Lp(Z)) defined by:

(aξ)(h) = αh−1(a)ξ(h),

(gξ)(h) = ξ(g−1h)

for all ξ ∈ lp(G,Lp(Z)), a ∈ B, and g, h ∈ G. We define the reduced Banach
crossed product algebra B � G to be the operator norm closure of B �alg G in
B(lp(G,Lp(Z))), the algebra of all bounded linear operators acting on the Banach
space lp(G,Lp(Z)).

Let l be a proper length function on G. We can extend the length function l on G
to a length function on the Banach crossed product algebra B �G just as in the
C∗-algebra case.

Let X be a compact space and let G be a countable group acting on X. For
each 1 ≤ p < ∞, C(X) is a Banach subalgebra of B(Lp(X)), the algebra of
all bounded linear operators acting on the Banach space Lp(X). We denote the
crossed product Banach algebra of C(X) with G by Bp(X,G). When X is a point
with a trivial action of G, Bp(X,G) is the Banach group algebra Bp(G), where
Bp(G) is the operator norm completion of the group algebra CG in B(lp(G)), the
Banach algebra of all bounded linear operators on the Banach space lp(G).

The crossed product Banach algebra Bp(X,G) can be viewed a deformation of the
reduced crossed C∗-algebra C(X)�G.

An important open question is the following:

Problem 4.7.8. Is the K-theory of the crossed product Banach algebra Bp(X,G)
independent of p?

In [LY16], Liao and I proved a semi-continuity for the K-group of Bp(X,G) in p.

There is also a duality between Bp(X,G) and Bq(X,G) for 1 < p <∞ and 1
q+

1
p =

1 [KY16,LY16]. To be more precise, Bp(X,G) is anti-isomorphic to Bq(X,G) in
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the sense that there exists a bijective linear map ψ : Bp(X,G) → Bq(X,G) such
that ψ preserves the norm and ψ(ab) = ψ(b)ψ(a) for all a, b ∈ Bp(X,G). This
implies that the K-groups of Bp(X,G) and Bq(X,G) are isomorphic.

In his thesis [Chu16a, Chu16b], Chung developed a quantitative Mayer–Vietoris
sequence for geometric Banach algebras. As an application, he obtained the fol-
lowing result:

Theorem 4.7.9. If a group G acts on a compact space X with finite dynamic
asymptotic dimension, then there exists an algorithm for computing the K-theory
of the crossed product Banach algebra Bp(X,G).

As a consequence, Chung answers the above question positively when the group
acts on the compact space with finite dynamic asymptotic dimension. Chung also
verifies an Lp-version of the Baum–Connes conjecture for G with coefficients in
C(X) when the group G acts on a compact space X with finite dynamic asymp-
totic dimension. Chung’s result is currently not accessible to the Dirac-dual Dirac
method.

Corollary 4.7.10. If a group G acts on a compact space X with finite dynamic
asymptotic dimension, then the K-theory of the crossed product Banach algebra
Bp(X,G) is independent of p.

When the space X is a point with a trivial action of the group G, the crossed
product Banach algebra Bp(X,G) is the Banach group algebra Bp(G). The ques-
tion of independence of K-theory of Bp(G) on p remains open in general. This
question was answered positively when G is hyperbolic or amenable in my joint
work with Gennadi Kasparov [KY16] and Benben Liao [LY16]. The importance of
this question is that sometimes it is easier to compute the K-groups of Bp(G) for
large p [KY16]. If the K-group of Bp(G) is independent of p, then such a compu-
tation would give a computation of the K-groups of Bp(G) for all p including the
special case p = 2. On the other hand, if the K-groups of Bp(G) depends on p,
this would be an even more exciting phenomenon—indicating a breakdown of the
Baum–Connes conjecture at some level.

A very interesting Banach algebra associated to a group G is the Banach group
∗-algebra Bp,∗(G) defined to be the norm completion of the group algebra CG
under the norm:∥∥∥∥∑ cgg

∥∥∥∥ = max

{∥∥∥∥∑ cgg

∥∥∥∥
B(lp(G))

,

∥∥∥∥∑ c̄gg
−1

∥∥∥∥
B(lp(G))

}
with the ∗-operation: (∑

cgg

)∗
= c̄gg

−1.
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We can similarly define a Banach crossed product ∗-algebra Bp,∗(X,G) to be the
norm completion of the algebrac crossed product C(X)�alg G under the norm:∥∥∥∥∑ agg

∥∥∥∥ = max

{∥∥∥∥∑ agg

∥∥∥∥
B(lp(G))

,

∥∥∥∥∑αg−1(āg)g
−1

∥∥∥∥
B(lp(G))

}
with the ∗-operation: (∑

g∈G

agg

)∗
=
∑
g∈G

αg−1(āg)g
−1,

where ag ∈ C(X) and α is the G-action on C(X).

The following question is open.

Problem 4.7.11. Is theK-theory of the crossed product Banach algebra Bp,∗(X,G)
independent of p?

By interpolation theory, for every p > 1, there is a natural bounded homomor-
phism:

φp : Bp,∗(X,G)→ C(X)�G,

where C(X)�G is the reduced C∗-algebra crossed product algebra.

We have the following open question:

Problem 4.7.12. Is (φp)∗ : K∗(Bp,∗(X,G))→ K∗(C(X)�G) an isomorphism.

Chung’s work can be used to prove that the answer is yes when the group G acts
on the compact space X with finite dynamic asymptotic dimension.

Finally we raise the following open question:

Problem 4.7.13. Is j∗ : K∗(Bp,∗(X,G)) → K∗(Bp(X,G)) an isomorphism, where
j is the natural homomorphism from Bp,∗(X,G) to Bp(X,G).

When X is a point, the answer to the above question is yes if G satisfies the
Banach property RD [LY16].



Chapter 5

Semigroup C∗-algebras
Xin Li

5.1 Introduction

A semigroup C∗-algebra is the C∗-algebra generated by the left regular represen-
tation of a left cancellative semigroup. In the case of groups, this is the classical
construction of reduced group C∗-algebras, which received great interest and serves
as a motivating class of examples in operator algebras.

For semigroups that are far from being groups, we encounter completely new
phenomena which are not visible in the group case. It is therefore a natural and
interesting task to try to understand and explain these new phenomena. This
challenge has been taken up by several authors in many works, and our present
goal is to give a unified treatment of this endeavour.

We point out that particular classes of semigroups have played a predominant role
in the development of our work, as they have served as our motivation and have
guided us towards important properties of semigroups that allow for a systematic
study of their C∗-algebras. The examples include positive cones in totally ordered
groups, semigroups given by particular presentations and semigroups coming from
rings of number-theoretic origin. Important properties that isolate from the gen-
eral and wild class of all left cancellative semigroups a manageable subclass were
first given by Nica’s quasi-lattice order [Nic92] and later on by the independence
condition [Li12] and the Toeplitz condition [Li13].

Aspects of semigroup C∗-algebras that we discuss in the following include de-
scriptions as crossed products and groupoid C∗-algebras, the connection between
amenability and nuclearity, boundary quotients, and the classification problem for
semigroup C∗-algebras. The first three topics are discussed in detail, and we give
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a more or less self-contained presentation. The last topic puts together many re-
sults. In particular, it builds on the K-theory computations that are explained
in detail by S. Echterhoff in Chapter 3 of this book. Since a detailed account of
classification results would take too much space, we briefly summarize the main
results, and refer the interested reader to the relevant papers for more details and
complete proofs.

Our discussion of semigroup C∗-algebras builds on previous work of J. Renault on
groupoids and their C∗-algebras [Ren80], and the work of R. Exel on C∗-algebras
of inverse semigroups, their quotients corresponding to tight representations of
inverse semigroups, and on partial actions [Exe08, Exe09, Exe15].

Inevitably, certain interesting aspects of semigroup C∗-algebras are not covered in
this book. This includes a discussion of C∗-algebras of semigroups which do not
embed into groups such as general right LCM semigroups (see [Sta15b]) or Zappa–
Szép products (see [BRRW14]), or C∗-algebras of certain topological semigroups
(see [RS15, Sun14]). Moreover, we do not discuss KMS-states in detail, but we
refer the reader to [LR10, BaHLR11, CDL13, CaHR16] for more information.
We also mention that in §6.6 of this book, J. Cuntz describes KMS-states for
particular examples. We apologize for these omissions and try to make up for
them by pointing the interested reader to the relevant literature. To this end, we
have included a long (but not complete) list of references.

5.2 C∗-algebras generated by left regular
representations

Let P be a semigroup. We assume that P is left cancellative, i.e., for all p, x, y ∈ P ,
px = py implies x = y. In other words, the map

P → P, x �→ px

given by left multiplication with p ∈ P is injective for all p ∈ P .

The left regular representation of P is given as follows: The Hilbert space �2P
comes with a canonical orthonormal basis {δx : x ∈ P}. Here δx is the delta-
function in x ∈ P , defined by

δx(y) = 1 if y = x and δx(y) = 0 if y �= x.

For every p ∈ P , the map

P → P, x �→ px

is injective by left cancellation, so that the mapping

δx �→ δpx (x ∈ P )
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extends (uniquely) to an isometry

Vp : �2P → �2P.

The assignment
p �→ Vp (p ∈ P )

represents our semigroup P as isometries on �2P . This is called the left regular
representation of P . It generates the following C∗-algebra:

Definition 5.2.1.
C∗

λ(P ) := C∗({Vp : p ∈ P}) ⊆ L(�2P ).

By definition, C∗
λ(P ) is the smallest subalgebra of L(�2P ) containing {Vp : p ∈ P}

which is invariant under forming adjoints and closed in the operator norm topology.
We call C∗

λ(P ) the semigroup C∗-algebra of P , or more precisely, the left reduced
semigroup C∗-algebra of P .

Note that left cancellation is a crucial assumption for our construction. In general,
without left cancellation, the mapping δx �→ δpx does not even extend to a bounded
linear operator on �2P . Moreover, we point out that we view our semigroups as
discrete objects. Our construction, and some of the analysis, carries over to certain
topological semigroups (see [RS15, Sun14]). Finally, C∗

λ(P ) will be separable if P
is countable. This helps to exclude pathological cases. Therefore, for convenience,
we assume from now on that all our semigroups are countable, although this is
not always necessary in our discussion.

5.3 Examples

We have already pointed out the importance of examples. Therefore, it is ap-
propriate to start with a list of examples of semigroups where we can apply our
construction. All our examples are actually semigroups with an identity, so that
they are all monoids.

5.3.1 The natural numbers

Our first example is given by P = N = {0, 1, 2, . . .}, the set of natural numbers
including zero, viewed as an additive monoid. By construction, V1 is the unilateral
shift. Since N is generated by 1 as a monoid, it is clear that C∗

λ(N) is generated as
a C∗-algebra by the unilateral shift. This C∗-algebra has been studied by Coburn
(see [Cob67, Cob69]). It turns out that it is the universal C∗-algebra generated by
one isometry, i.e.,

C∗
λ(N) ∼= C∗(v | v∗v = 1), V1 �→ v.

C∗
λ(N) is also called the Toeplitz algebra. This name comes from the observation

that C∗
λ(N) can also be described as the C∗-algebra of Toeplitz operators on the

Hardy space, defined on the circle. This interpretation connects our semigroup
C∗-algebra C∗

λ(N) with index theory and K-theory.
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5.3.2 Positive cones in totally ordered groups

Motivated by connections to index theory and K-theory, several authors including
Coburn and Douglas studied the following examples in [CD71, CDSS71, Dou72,
DH71]:

Let G be a subgroup of (R,+), and consider the additive monoid P = [0,∞)∩G.
The case G = Z gives our previous example P = N. The case where G = Z[λ, λ−1]
for some positive real number λ is discussed in [CPPR11, Li15].

These examples belong to the bigger class of positive cones in totally ordered
groups. A left invariant total order on a group G is a relation ≤ on G such that

• For all x, y ∈ G, we have x = y if and only if x ≤ y and y ≤ x.

• For all x, y ∈ G, we always have x ≤ y or y ≤ x.

• For all x, y, z ∈ G, x ≤ y and y ≤ z imply x ≤ z.

• For all x, y, z ∈ G, x ≤ y implies zx ≤ zy.

Given a left invariant total order ≤ on G, define P := {x ∈ G : e ≤ x}. Here e is
the identity in G. P is called the positive cone in G. It is a monoid satisfying

G = P ∪ P−1 and P ∩ P−1 = {e} . (5.1)

Conversely, every submonoid P ⊆ G of a group G satisfying (5.1) gives rise to
a left invariant total order ≤ by setting, for x, y ∈ G, x ≤ y if y ∈ xP . Here
xP = {xp : p ∈ P} ⊆ G.

In the examples mentioned above of subgroups of (R,+), we have canonical left
invariant total orders given by restricting the canonical order on (R,+).

The study of left invariant total orders on group is of great interest in group theory.
For instance, the existence of a left invariant total order on a group G implies the
Kaplansky conjecture for G. This conjecture says that for a torsion-free group G
and a ring R, the group ring RG does not have zero-divisors if R does not have
zero-divisors. We refer to [MR77, DNR14] for more details.

While it is known that every torsion-free nilpotent group admits a left invariant
total order, it is an open conjecture that lattices in simple Lie groups of rank at
least two have no left invariant total order. It is also an open question whether an
infinite property (T) group can admit a left invariant total order (see [DNR14] for
more details).

5.3.3 Monoids given by presentations

Another source for examples of monoids comes from group presentations. One
way to define a group is to give a presentation, i.e., generators and relations. For
instance, the additive group of integers is the group generated by one element with
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no relation, Z = 〈a〉. The nonabelian free group on two generators is the group
generated by two elements with no relations, F2 = Z∗Z = 〈a, b〉. And Z×Z is the
group generated by two elements that commute, Z2 = Z× Z = 〈a, b | ab = ba〉. If
we look at the semigroups (or rather monoids) defined by the same presentations,
we get N = 〈a〉+, N∗2 = N ∗ N = 〈a, b〉+, N2 = N × N = 〈a, b | ab = ba〉+. Here,
we write 〈· | ·〉+ for the universal monid given by a particular presentation, while
we write 〈· | ·〉 for the universal group given by a particular representation. This
is to distinguish between group presentations and monoid presentations.

Of course, in general, it is not clear whether this procedure of taking generators
and relations from group presentations to define monoids leads to interesting semi-
groups, or whether we can apply our C∗-algebraic construction to the resulting
semigroups. For instance, it could be that the monoid given by a presentation
actually coincides with the group given by the same presentation. Another prob-
lem that might arise is that the canonical homomorphism from the monoid to
the group given by the same presentation, sending generator to generator, is not
injective. In that case, our monoid might not even be left cancellative. However,
there are conditions on our presentations that ensure that these problems do not
appear. There is, for instance, the notion of completeness (see [Deh03]), explained
in §5.6.5. Now let us give a list of examples.

The presentations for Z, F2 and Z2 all have in common that two generators either
commute or satisfy no relation (i.e., they are free), and these are the only relations
we impose. This can be generalized. Let Γ = (V,E) be an undirected graph, where
we connect two vertices by at most one edge and no vertex to itself. This means
that we can think of E as a subset of V × V .

We then define

AΓ := 〈{σv : v ∈ V } | σvσw = σwσv for all (v, w) ∈ E〉 ,
A+

Γ := 〈{σv : v ∈ V } | σvσw = σwσv for all (v, w) ∈ E〉+ .

For instance, the graph for Z only consists of one vertex and no edge, the graph
for F2 consists of two vertices and no edges, and the graph for Z2 consists of two
vertices and one edge joining them.

The groups AΓ are called right-angled Artin groups and the monoids A+
Γ are

called right-angled Artin monoids. Their C∗-algebras are discussed in [CL02, CL07,
Iva10, ELR16].

Right-angled Artin monoids and the corresponding groups are special cases of
graph products. Let Γ = (V,E) be a graph as above, with E ⊆ V × V . Assume
that for every v ∈ V , Gv is a group containing a submonoid Pv. Then let Γv∈V Gv

be the group obtained from the free product ∗v∈V Gv by introducing the relations
xy = yx for all x ∈ Gv and y ∈ Gw with (v, w) ∈ E. Similarly, define Γv∈V Pv as
the monoid obtained from the free product ∗v∈V Pv by introducing the relations
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xy = yx for all x ∈ Pv and y ∈ Pw with (v, w) ∈ E. It is explained in [CL02] (see
also [Gre90, HM95]) that the embeddings Pv ↪→ Gv induce an embedding

Γv∈V Pv ↪→ Γv∈V Gv.

In the case that Pv ⊆ Gv is given by N ⊆ Z for all v ∈ V , we obtain right-angled
Artin monoids and the corresponding groups.

We will have more to say about general graph products in §5.4.2 and §5.9.
As the name suggests, there is a more general class of Artin groups that contains
right-angled Artin groups. Let I be a countable index set,

{mij ∈ {2, 3, 4, . . .} ∪ {∞} : i, j ∈ I, i �= j}
be such that mij = mji for all i and j. Then define

G :=

〈
{σi : i ∈ I} | σiσjσiσj · · ·︸ ︷︷ ︸

mij

= σjσiσjσi · · ·︸ ︷︷ ︸
mji

for all i, j ∈ I, i �= j

〉
.

For mij =∞, there is no relation involving σi and σj , i.e., σi and σj are free. And
define

P :=

〈
{σi : i ∈ I} | σiσjσiσj · · ·︸ ︷︷ ︸

mij

= σjσiσjσi · · ·︸ ︷︷ ︸
mji

for all i, j ∈ I, i �= j

〉+

.

If mij ∈ {2,∞} for all i and j, then we get right-angled Artin groups and monoids.
To see some other groups, take, for instance, I = {1, 2} and m1,2 = m2,1 = 3. We
get the (third) Braid group and the corresponding Braid monoid

B3 := 〈σ1, σ2 | σ1σ2σ1 = σ2σ1σ2〉 ,
B+

3 := 〈σ1, σ2 | σ1σ2σ1 = σ2σ1σ2〉+ .

In general, for n ≥ 1, the braid group Bn and the corresponding braid monoid B+
n

are given by

Bn :=

〈
σ1, . . . , σn−1

σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2,
σiσj = σjσi for |i− j| ≥ 2

〉
,

B+
n :=

〈
σ1, . . . , σn−1

σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2,
σiσj = σjσi for |i− j| ≥ 2

〉+

.

This corresponds to the case where I = {1, . . . , n− 1} and mi,i+1 = mi+1,i = 3
for all 1 ≤ i ≤ n− 2 and mi,j = mj,i = 2 for all |i− j| ≥ 2.

These Artin groups form an interesting class of examples that is of interest for
group theorists.
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Another family of examples is given by Baumslag–Solitar groups and their pre-
sentations: For k, l ≥ 1, define the group

Bk,l :=
〈
a, b | abk = bla

〉
and the monoid

B+
k,l :=

〈
a, b | abk = bla

〉+
.

Also, again for k, l ≥ 1, define the group

B−k,l :=
〈
a, b | a = blabk

〉
and the monoid

B+
−k,l :=

〈
a, b | a = blabk

〉+
.

These are the Baumslag–Solitar groups and the Baumslag–Solitar monoids. The
reader may find more about the semigroup C∗-algebras attached to Baumslag–
Solitar monoids in [Spi12, Spi14].

Finally, let us mention the Thompson group and the Thompson monoid. The
Thompson group is given by

F := 〈x0, x1, . . . | xnxk = xkxn+1 for k < n〉 .

This is just one possible presentation defining the Thompson group. There are
others, for instance,

F =
〈
A,B | [AB−1, A−1BA] = [AB−1, A−2BA2] = e

〉
.

The first presentation, however, has the advantage that it leads naturally to the
definition of the Thompson monoid as

F+ := 〈x0, x1, . . . | xnxk = xkxn+1 for k < n〉+ .

The Thompson group is of great interest in group theory; in particular the question
whether it is amenable or not is currently attracting a lot of attention. Therefore,
it would be very interesting to study the Thompson monoid and its semigroup
C∗-algebra.

5.3.4 Examples from rings in general, and number theory in
particular

Let us present another source for examples. This time, our semigroups come from
rings. Let R be a ring without zero-divisors (x �= 0 is a zero-divisor if there exists
0 �= y ∈ R with xy = 0). Then R× = R \ {0} is a cancellative semigroup with
respect to multiplication.
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We can also construct the ax+b-semigroup R�R×. The underlying set is R×R×,
and multiplication is given by (d, c)(b, a) = (d+ cb, ca). It is a semidirect product
for the canonical multiplicative action of R× on R.

Another possibility would be to take an integral domain R, i.e., a commutative
ring with unit not containing zero-divisors, and form the semigroup Mn(R)× of
n × n-matrices over R with nonvanishing determinant. We could also form the
semidirect product Mn(R) � Mn(R)× for the canonical multiplicative action of
Mn(R)× on Mn(R).

In particular, rings from number theory are interesting. Let K be a number field,
i.e., a finite extension of Q. Then the ring of algebraic integers R in K is given by{
x∈K : There are n ≥ 1, an−1, . . . , a0 ∈Z with xn + an−1x

n−1 + . . .+ a0 = 0
}
.

For instance, for the classical case K = Q, the ring of algebraic integers is given by
the usual integers, R = Z. For the number field of Gaussian numbers, K = Q[i],
the ring of algebraic integers are given by the Gaussian integers, R = Z[i]. More
generally, for the number field K = Q[ζ] generated by a root of unity ζ, the
ring of algebraic integers is given by R = Z[ζ]. For the real quadratic number
field K = Q[

√
2], the ring of algebraic integers is given by Z[

√
2], while for the

real quadratic number field K = Q[
√
5], the ring of algebraic integers is given by

R = Z[ 1+
√
5

2 ].

Let us briefly mention an interesting invariant of number fields. LetK be a number
field with ring of algebraic integers R. We introduce an equivalence relation for
nonzero ideals I of R by saying that a ∼ b if there exist a, b ∈ R× with ba = ab.
It turns out that with respect to multiplication of ideals, I/∼ becomes a finite
abelian group. This is the class group ClK of K. An outstanding open question in
number theory is how to compute ClK , or even just the class number hK = #ClK ,
in a systematic and efficient way. It is not even known whether there are infinitely
many (nonisomorphic) number fields with trivial class group (i.e., class number
one). We refer the interested reader to [Neu99] for more details.

It is possible to consider more general semidirect products, in the more flexible
setting of semigroups acting by endomorphisms on a group. Particular cases are
discussed in Chapter 6. We also refer to [CV13, BLS17, BS16, Sta15a] and the ref-
erences therein for more examples and for results on the corresponding semigroup
C∗-algebras.

5.3.5 Finitely generated abelian cancellative semigroups

Finally, one more class of examples that illustrates quite well that the world of
semigroups can be much more complicated than the world of groups: Consider
finitely generated abelian cancellative semigroups, or monoids. For groups, we have
a well-understood structure theorem for finitely generated abelian groups. But for
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semigroups, this class of examples is interesting and challenging to understand. For
instance, particular examples are given by numerical semigroups, i.e., semigroups
of the type P = N\F , where F is a finite subset of N such that N\F is additively
closed. For instance, we could take F = {1} or F = {1, 3}. We refer the interested
reader to [RGS09] and the references therein for more about numerical semigroups,
and also to Chapter 7.

5.4 Preliminaries

5.4.1 Embedding semigroups into groups

As we mentioned earlier, we need left cancellation for semigroups in our construc-
tion of semigroup C∗-algebras. One way to ensure cancellation is to embed our
semigroups into groups, i.e., to find an injective semigroup homomorphism from
our semigroup into a group. In general, the question of which semigroups em-
bed into groups is quite complicated. Cancellation is necessary but not sufficient.
Malcev gave the complete answer. He found an infinite list of conditions that are
necessary and sufficient for group embeddability, and showed that any finite subset
of his list is no longer sufficient. His list includes cancellation, which means both
left cancellation and right cancellation. The latter means that for every p, x, y ∈ P ,
xp = yp implies x = y. But Malcev’s list also consists of conditions such as the
following:

For every a, b, c, d, u, v, x, y ∈ P ,

xa = yb, xc = yd, ua = vb implies uc = vd.

We refer to [CP67, §12] for more details.

As explained in [CP67, §12], if a semigroup P embeds into a group, then there is
a universal group embedding P ↪→ Guniv, meaning that for every homomorphism
P → G of the semigroup P to a group G, there is a unique homomorphism
Guniv → G that makes the diagram

P � � ��

��

Guniv

��
G

commutative.

Group embeddability is in general a complicated issue. Therefore, whenever it
is convenient, we will simply assume that our semigroups can be embedded into
groups. Verifying this assumption might be a challenge, for instance, in the case
of Artin monoids (compare [Par02]).
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However, we would like to mention one sufficient condition for group embeddabil-
ity. Let P be a cancellative semigroup, i.e., P is left and right cancellative. Fur-
thermore, assume that P is right reversible, i.e., for every p, q ∈ P , we have
Pp ∩ Pq �= ∅. Here Pp = {xp : x ∈ P}. Then P embeds into a group. Actually,
the universal group in the universal group embedding of P is given by an explicit
construction as the group G of left quotients. This means that G consists of formal
quotients of the form q−1p, for all q ∈ P and p ∈ P . We say that two such formal
expressions q̃−1p̃ and q−1p represent the same element in G if there is r ∈ P with
q̃ = rq and p̃ = rp. To multiply elements in G, we make use of right reversibility:
Given p, q, r, s ∈ P , suppose we want to multiply s−1r with q−1p. As Pq∩Pr �= ∅,
there exist x and y in P with q = yr. Thus, q−1p = (xq)−1(xp) = (yr)−1(xp). Let
us now make the following formal computation:

(s−1r)(q−1p) = (s−1r)(yr)−1(xp) = s−1rr−1y−1(xp) = s−1y−1(xp) = (ys)−1(xp).

Motivated by this computation, we set

(s−1r)(q−1p) := (ys)−1(xp).

It is now straightforward to check that this indeed defines a group G = P−1P ,
and that P → G, p �→ e−1p is an embedding of our semigroup P into our group
G. Here e is the identity of P . We can always arrange that P has an identity by
simply adjoining one if necessary. It is easy to see that this group embedding that
we just constructed is actually the universal group embedding for P . We refer the
reader to [CP61, §1.10] for more details.

Obviously, by symmetry, we also obtain that a cancellative semigroup P embeds
into a group, if P is left reversible, i.e., if for every p, q ∈ P , we have pP ∩ qP �= ∅.
In that case, P embeds into its group G of right quotients, G = PP−1, and this
is the universal group embedding for P .

For instance, both of these necessary conditions for group embeddability are sat-
isfied for cancellative abelian semigroups. They are also satisfied for the Braid
monoids B+

n introduced above.

The ax + b-semigroup R � R× over an integral domain R is right reversible, but
if R is not a field, then R�R× is not left reversible.

The Thompson monoid is left reversible but not right reversible.

Finally, the nonabelian free monoid N∗n is neither left nor right reversible.

5.4.2 Graph products

We collect some basic facts about graph products that we will use later on in §5.9.
Basically, we follow [CL02, §2]. Let Γ = (V,E) be a graph with vertices V and
edges E. Two vertices in V are connected by at most one edge, and no vertex
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is connected to itself. Hence we view E as a subset of V × V . For every v ∈ V ,
assume that we are given a submonoid Pv of a group Gv. We can then form the
graph products P := Γv∈V Pv and G := Γv∈V Gv. As we explained, the group G
is obtained from the free product ∗v∈V Gv by introducing the relations xy = yx
for all x ∈ Gv and y ∈ Gw with (v, w) ∈ E. Similarly, P is defined as the monoid
obtained from the free product ∗v∈V Pv by introducing the relations xy = yx for
all x ∈ Pv and y ∈ Pw with (v, w) ∈ E. As explained in [CL02], it turns out
that for every v, the monoid Pv sits in a canonical way as a submonoid inside the
monoid Γv∈V Pv. Similarly, for each v ∈ V , the group Gv sits in a canonical way
as a subgroup inside the group Γv∈V Gv. Moreover, the monoid P = Γv∈V Pv can
be canonically embedded as a submonoid of the group G = Γv∈V Gv.

A typical element g of G = Γv∈V Gv is a product of the form x1x2 · · ·xl, where
xi ∈ Gvi are all nontrivial. (To obtain the identity, we would have to allow the
empty word, i.e., the case l = 0.) We distinguish between words like x1x2 · · ·xl

and the element g they represent in the graph product G by saying that x1x2 · · ·xl

is an expression for g. Let us now explain when two words are expressions for the
same group element.

First of all, for a word like x1x2 · · ·xl, we call the xis the syllables and l the length
of the word. We write v(xi) for the vertex vi ∈ V with the property that xi lies
in Gvi . Given a word

x1 · · ·xixi+1 · · ·xl

with the property that (v(xi), v(xi+1)) ∈ E, we can replace the subword xixi+1

by xi+1xi. In this way, we transform the original word

x1 · · ·xixi+1 · · ·xl

to the new word

x1 · · ·xi+1xi · · ·xl.

This procedure is called a shuffle. Two words are called shuffle equivalent if one
can be obtained from the other by performing finitely many shuffles.

Moreover, given a word

x1 · · ·xixi+1 · · ·xl

with the property that v(xi) = v(xi+1), then we say that our word admits an
amalgamation. In that case, we can replace the subword xixi+1 by the product
xi · xi+1 ∈ Gvi , where vi = v(xi) = v(xi+1). Furthermore, if xi · xi+1 = e in Gvi ,
then we delete this part of our word. In this way, we transform the original word

x1 · · ·xixi+1 · · ·xl

to the new word

x1 · · · (xi · xi+1) · · ·xl
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if xi · xi+1 �= e in Gvi and

x1 · · ·xi−1xi+2 · · ·xl

if xi · xi+1 = e in Gvi . This procedure is called an amalgamation.

Finally, we say that a word is reduced if it is not shuffle equivalent to a word that
admits an amalgamation.

We have the following:

Lemma 5.4.1 (Lemma 1 in [CL02]). A word

x1 · · ·xl

is reduced if and only if for all 1 ≤ i < j ≤ l with v(xi) = v(xj), there exists
1 ≤ k ≤ l with i < k < j such that (v(xi), v(xk)) /∈ E.

Suppose that we are given two words, and we can transform one word into the
other by finitely many shuffles and amalgamations. Then it is clear that these two
words are expressions for the same element in our group G. The converse is also
true, this is the following result due to Green (see [Gre90]):

Theorem 5.4.2 (Theorem 2 in [CL02]). Any two reduced words that are expressions
for the same group element in G are shuffle equivalent.

In other words, two words that are expressions for the same group element in G
can be transformed into one another by finitely many shuffles and amalgamations.
This is because, with the help of Lemma 5.4.1, it is easy to see that every word can
be transformed into a reduced one by finitely many shuffles and amalgamations.

Because of Theorem 5.4.2, we may introduce the notion of length:

Definition 5.4.3. The length of an element g in our graph product G is the length
of a reduced word that is an expression for g.

We also introduce the following:

Definition 5.4.4. Suppose we are given a reduced word

x = x1 · · ·xl.

Then we call xi an initial syllable and v(xi) an initial vertex of our word, if for
every 1 ≤ h < i, (v(xh), v(xi)) ∈ E. The set of all initial vertices of x is denoted
by V i(x) (in [CL02], the notation Δ(x) is used).

Similarly, we call xj a final syllable and v(xj) a final vertex of our word, if for
every j < k ≤ l, (v(xj), v(xk)) ∈ E. The set of all final vertices of x is denoted by
V f (x) (it is denoted by Δr(x) in [CL02]).

The following is an easy observation:
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Lemma 5.4.5 (Lemma 3 in [CL02]). Let

x = x1 · · ·xl

be a reduced word. Then:

(1) If xi is an initial syllable of x, then x is shuffle equivalent to
xix1 · · ·xi−1xi+1 · · ·xl.

(2) For all v, w ∈ V i(x), we have (v, w) ∈ E.

(3) For every v ∈ V i(x), there is a unique initial syllable xi of x with v(xi) = v.
Let us denote this syllable by Si

v(x).

(4) If x′ is shuffle equivalent to x, then V i(x) = V i(x′) and for every v ∈ V i(x) =
V i(x′),

Si
v(x) = Si

v(x
′).

The last three statements are also true for final vertices and final syllables. So we
denote for a reduced word x with final syllable v the unique final syllable xj of x
with v(xj) = v by Sf

v (x).

Definition 5.4.6. Let g be an element in our graph product G, and let x be a
reduced word that is an expression for g. Then we set

V i(g) := V i(x),

and for v ∈ V ,

Si
v(g) :=

{
Si
v(x) if v ∈ V i(g)

e if v /∈ V i(g).

Similarly, we define
V f (g) := V f (x),

and for v ∈ V ,

Sf
v (g) :=

{
Sf
v (x) if v ∈ V f (g)

e if v /∈ V f (g).

We need the following:

Lemma 5.4.7 ([CL02], Lemma 5). Given g and h in our graph product G, let

W := V f (g) ∩ V i(h),

and suppose that
zw := Sf

w(g)S
i
w(h) �= e

for all w ∈W . Define

z :=
∏

w∈W

zw,

in any order. Then, if x·∏w∈WSf
w(g) is a reduced expression for g and

∏
w∈WSi

w(h)·
y is a reduced expression for h, then x · z · y is a reduced expression for g · h.
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5.4.3 Krull rings

Since we want to study ax + b-semigroups over integral domains and their semi-
group C∗-algebras later on, we collect a few basic facts in this context.

Let R be an integral domain.

Definition 5.4.8. The constructible (ring-theoretic) ideals of R are given by

I(R) :=

{
c−1

(
n⋂

i=1

aiR

)
: a1, . . . , an, c ∈ R×

}
.

Here, for c ∈ R× and an ideal I of R, we set

c−1I := {r ∈ R : cr ∈ I} .

Now let Q be the quotient field of R.

I(R ⊆ Q) :=
{
(x1 ·R) ∩ . . . ∩ (xn ·R) : xi ∈ Q×} . (5.2)

Note that for c ∈ R× and X ⊆ R, we set

c−1X = {r ∈ R : cr ∈ X} , but c−1 ·X =
{
c−1x : x ∈ X

}
.

Moreover, note that I(R) = {J ∩R : J ∈ I(R ⊆ Q)}.
By construction, the family I(R) consists of integral divisorial ideals of R, and
I(R ⊆ Q) consists of divisorial ideals of R. By definition, a divisorial ideal of
an integral domain R is a fractional ideal I that satisfies I = (R : (R : I)),
where (R : J) = {q ∈ Q : qJ ⊆ R}. Equivalently, divisorial ideals are nonzero
intersections of some nonempty family of principal fractional ideals (ideals of the
form qR, q ∈ Q). Let D(R) be the set of divisorial ideals of R. In our situation,
we only consider finite intersections of principal fractional ideals (see (5.2)). So in
general, our family I(R ⊆ Q) will only be a proper subset of D(R).

However, for certain rings, the set I(R ⊆ Q) coincides with D(R). For instance,
this happens for noetherian rings. It also happens for Krull rings. The latter have a
number of additional favourable properties which are very helpful for our purposes.
Let us start with the following

Definition 5.4.9. An integral domain R is called a Krull ring if there exists a family
of discrete valuations (vi)i∈I of the quotient field Q of R such that

(K1) R = {x ∈ Q : vi(x) ≥ 0 for all i ∈ I},
(K2) for every 0 �= x ∈ Q, there are only finitely many valuations in (vi)i such

that vi(x) �= 0.

The following result gives us many examples of Krull rings.
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Theorem 5.4.10 ([Bou06b, Chapitre VII, §1.3, Corollaire]). A noetherian integral
domain is a Krull ring if and only if it is integrally closed.

Let us collect some basic properties of Krull rings:
[Bou06b, Chapitre VII, §1.5, Corollaire 2] yields

Lemma 5.4.11. For a Krull ring R, I(R ⊆ Q) = D(R) and I(R) is the set of
integral divisorial ideals.

Moreover, the prime ideals of height 1 play a distinguished role in a Krull ring.

Theorem 5.4.12. [Bou06b, Chapitre VII, §1.6, Théorème 3 and Chapitre VII, §1.7,
Théorème 4] Let R be a Krull ring. Every prime ideal of height 1 of R is a divisorial
ideal. Let

P(R) = {p � R prime : ht(p) = 1} .
For every p ∈ P(R), the localization Rp = (R\p)−1R is a principal valuation ring.
Let vp be the corresponding (discrete) valuations of the quotient field Q of R. Then
the family (vp)p∈P(R) satisfies the conditions (K1) and (K2) from Definition 5.4.9.

Proposition 5.4.13. [Bou06b, Chapitre VII, §1.5, Proposition 9] Let R be a Krull
ring and (vp)p∈P(R) be the valuations from the previous theorem. Given finitely
many integers n1, . . . , nr and finitely many prime ideals p1, . . . , pr in P(R), there
exists x in the quotient field Q of R with

vpi
(x) = ni for all 1 ≤ i ≤ r and vp(x) ≥ 0 for all p ∈ P(R) \ {p1, . . . , pr} .

Moreover, given a fractional ideal I of R, we let I∼ := (R : (R : I)) be the
divisorial closure of I. I∼ is the smallest divisorial ideal of R that contains I. We
can now define the product of two divisorial ideals I1 and I2 to be the divisorial
closure of the (usual ideal-theoretic) product of I1 and I2, i.e., I1 • I2 := (I1 · I2)∼.
D(R) becomes a commutative monoid with this multiplication.

Theorem 5.4.14 ([Bou06b, Chapitre VII, §1.2, Théorème 1; Chapitre VII, §1.3,
Théorème 2 and Chapitre VII, §1.6, Théorème 3]). For a Krull ring R, (D(R), •)
is a group. It is the free abelian group with free generators given by P(R), the set
of prime ideals of R that have height 1.

This means that every I ∈ I(R ⊆ Q) (Q is the quotient field of the Krull ring R)

is of the form I = p
(n1)
1 • · · · • p(nr)

r , with ni ∈ Z. Here for p ∈ P(R) and n ∈ N,
we write

p(n) for p • · · · • p︸ ︷︷ ︸
n times

, and p(−n) for p−1 • · · · • p−1︸ ︷︷ ︸
n times

,

where p−1 = (R : p). We set for p ∈ P(R):

vp(I) :=

{
ni if p = pi,

0 if p /∈ {p1, . . . , pr} .
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With this notation, we have I =
∏

p∈P(R) p
(vp(I)), where the product is taken in

D(R). In addition, we have for I ∈ I(R ⊆ Q) that I ∈ I(R) if and only if vp(I) ≥ 0
for all p ∈ P(R). And combining the last statement in [Bou06b, Chapitre VII, §1.3,
Théorème 2] with [Bou06b, Chapitre VII, §1.4, Proposition 5], we obtain for every
I ∈ I(R ⊆ Q):

I = {x ∈ Q : vp(x) ≥ vp(I) for all p ∈ P(R)} . (5.3)

Finally, the principal fractional ideals F (R) form a subgroup of (D(R), •) which
is isomorphic to Q×. Suppose that R is a Krull ring. Then the quotient group
C(R) := D(R)/F (R) is called the divisor class group of R.

These are basic properties of Krull rings. We refer the interested reader to [Bou06b,
Chapitre VII] or [Fos73] for more information.

5.5 C∗-algebras attached to inverse semigroups, partial
dynamical systems and groupoids

We refer the interested reader to [Ren80, Exe08, Exe15, Pat99] for more references
for this section.

5.5.1 Inverse semigroups

Inverse semigroups play an important role in the study of semigroup C∗-algebras.

Definition 5.5.1. An inverse semigroup is a semigroup S with the property that
for every x ∈ S, there is a unique y ∈ S with x = xyx and y = yxy.

We write y = x−1 and call y the inverse of x.

Definition 5.5.2. An inverse semigroup S is called an inverse semigroup with zero
if there is a distinguished element 0 ∈ S satisfying 0 · s = 0 = s · 0 for all s ∈ S.

Usually, if we write “inverse semigroup”, we mean an inverse semigroup with or
without zero. Sometimes we write “inverse semigroups without zero” for ordinary
inverse semigroups that do not have a distinguished zero element.

Every inverse semigroup can be realized as partial bijections on a fixed set. Multi-
plication is given by composition. However, a partial bijection is only defined on its
domain. Therefore, if we want to compose the partial bijection s : dom(s)→ im (s)
with another partial bijection t : dom(t)→ im (t), we have to restrict t to

dom(t) ∩ t−1(dom(s))

to make sure that the image of the restriction of t lies in the domain of s. Only
then we can form s ◦ t. The inverse of a partial bijection is the usual inverse, in
the category of sets.
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Inverse semigroups can also be realized as partial isometries on a Hilbert space. To
make sure that the product of two partial isometries is again a partial isometry,
we have to require that the source and range projections of our partial isometries
commute. Then multiplication in the inverse semigroup is just the usual multipli-
cation of operators on a fixed Hilbert space, i.e., composition of operators. The
inverse in our inverse semigroup is given by the adjoint operation for operators in
general or partial isometries in our particular situation.

Let us explain how to attach an inverse semigroup to a left cancellative semigroup.
Assume that P is a left cancellative semigroup. Its left inverse hull Il(P ) is the
inverse semigroup generated by the partial bijections

P → pP, x �→ px,

whose domain is P and whose image is pP = {px : x ∈ P}. Its inverse is given by

pP → P, px �→ x.

So Il(P ) is the smallest semigroup of partial bijections on P that is closed under
inverses and contains

{P → P, x �→ px : p ∈ P} .
Given p ∈ P , we denote the partial bijection

P → pP, x �→ px

by p. In this way, we obtain an embedding of P into Il(P ) by sending p ∈ P to the
partial bijection p ∈ Il(P ). This allows us to view P as a subsemigroup of Il(P ).
We say that Il(P ) is an inverse semigroup with zero if the partial bijection that is
nowhere defined, ∅ → ∅, is in Il(P ). In that case, ∅ → ∅ is the distinguished zero
element 0.

Alternatively, we can also describe Il(P ) as the smallest inverse semigroup of
partial isometries on �2P generated by the isometries {Vp : p ∈ P}. This means
that Il(P ) can be identified with the smallest semigroup of partial isometries on
�2P containing the isometries {Vp : p ∈ P} and their adjoints

{
V ∗
p : p ∈ P

}
and

that is closed under multiplication. In this picture, Il(P ) is an inverse semigroup
with zero if and only if the zero operator is in Il(P ).

An important subsemigroup of an inverse semigroup S is its semilattice of idem-
potents.

Definition 5.5.3. The semilattice E of idempotents in an inverse semigroup S is
given by

E :=
{
x−1x : x ∈ S

}
=
{
xx−1 : x ∈ S

}
=
{
e ∈ S : e = e2

}
.

Define an order on E by setting, for e, f ∈ E, e ≤ f if e = ef .

If S is an inverse semigroup with zero, E becomes a semilattice with zero, and the
distinguished zero element of S becomes the distinguished zero element of E.
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In the case of partial bijections, the semilattice of idempotents is given by all
domains and images. Multiplication in this semilattice is intersection of sets, and
≤ is ⊆ for sets, i.e., containment.

Definition 5.5.4. For the left inverse hull Il(P ) attached to a left cancellative
semigroup P , the semilattice of idempotents is denoted by JP .

It is easy to see that JP is given by

JP =
{
pn · · · q−1

1 p1(P ) : qi, pi ∈ P
} ∪ {q−1

n pn · · · q−1
1 p1(P ) : qi, pi ∈ P

}
.

Here, for X ⊆ P and p, q ∈ P , we write

p(X) = {px : x ∈ X}
and

q−1(X) = {y ∈ P : qy ∈ X} .
Subsets of the form pn · · · q−1

1 p1(P ) or q−1
n pn · · · q−1

1 p1(P ) are right ideals of P .
Here, we call X ⊆ P a right ideal if for every x ∈ X and r ∈ P , we always have
xr ∈ X.

Definition 5.5.5. The elements in JP are called constructible right ideals of P .

We will work out the set of constructible right ideals explicitly for classes of ex-
amples in §5.6.5.
There is a duality between semilattices, i.e., abelian semigroups of idempotents,
and totally disconnected locally compact Hausdorff spaces. Given a semilattice E,
we construct its space of characters Ê as follows:

Ê = {χ : E → {0, 1} nonzero semigroup homomorphism} .

In other words, elements in Ê are multiplicative maps from E to {0, 1}, where the
latter set is equipped with the usual multiplication when we view it as a subspace
of R (or C). In addition, we require that these multiplicative maps must take the
value 1 for some element e ∈ E. If our semilattice E is a semilattice with zero, and
0 is its distinguished zero element, then we require that χ(0) = 0 for all χ ∈ Ê.

The topology on Ê is given by pointwise convergence. Every χ ∈ Ê is uniquely
determined by

χ−1(1) = {e ∈ E : χ(e) = 1} .
χ−1(1) is an E-valued filter (which we simply call a filter from now on), i.e., a
subset of E satisfying:

• χ−1(1) �= ∅.
• For all e, f ∈ E with e ≤ f , e ∈ χ−1(1) implies f ∈ χ−1(1).

• For all e, f ∈ E with e, f ∈ χ−1(1), ef lies in χ−1(1).
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Conversely, every filter, i.e., every subset F ∈ E satisfying these three conditions
determines a unique χ ∈ Ê with χ−1(1) = F . Therefore, we have a one-to-one

correspondence between characters χ ∈ Ê and filters.

If E is a semilattice with zero, and 0 is the distinguished zero element, then we
have χ(0) = 0 for all χ ∈ Ê. In terms of filters, this amounts to saying that 0 is
never an element of a filter.

As an illustrative example, the reader is encouraged to work out the set of con-
structible right ideals JP and the space of characters ĴP for the nonabelian free
semigroup on two generators P = N∗N, or in other words, the semilattice of idem-
potents E and the space of its characters Ê for the inverse semigroup S = Il(N∗N).
Now assume that we are given a subsemigroup P of a group G. We define

Il(P )× := Il(P ) \ {0}

if Il(P ) is an inverse semigroup with zero, and 0 is its distinguished zero element,
and

Il(P )× := Il(P )

otherwise.

Now it is easy to see that for every partial bijection s in Il(P )×, there exists a
unique σ(s) ∈ G such that s is of the form

s(x) = σ(s) · x for x ∈ dom(s).

Here we view P as a subset of the group G and make use of multiplication in G.

In the alternative picture of Il(P ) as the inverse semigroup of partial isometries
on �2P generated by the isometries {Vp : p ∈ P}, Il(P )× is given by all nonzero
partial isometries in Il(P ). Every element in Il(P )× is of the form

Vq1 · · ·V ∗
pn
, V ∗

p1
Vq1 · · ·V ∗

pn
, Vq1 · · ·V ∗

pn
Vqn , or V

∗
p1
Vq1 · · ·V ∗

pn
Vqn .

The map σ which we introduced above is then given by

σ(Vq1 · · ·V ∗
pn
) = q1 · · · p−1

n ∈ G,

σ(V ∗
p1
Vq1 · · ·V ∗

pn
) = p−1

1 q1 · · · p−1
n ∈ G,

σ(Vq1 · · ·V ∗
pn
Vqn) = q1 · · · p−1

n qn ∈ G,

or σ(V ∗
p1
Vq1 · · ·V ∗

pn
Vqn) = p−1

1 q1 · · · p−1
n qn ∈ G.

To see that σ is well-defined, note that, similarly as above, every partial isometry
V ∈ Il(P )× has the property that there exists a unique g ∈ G such that for
every x ∈ P , either V δx = 0 or V δx = δg·x. And σ is defined in such a way that
σ(V ) = g.
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It is easy to see that the map σ : Il(P )× → G satisfies

σ(st) = σ(s)σ(t)

for all s, t ∈ Il(P )×, as long as the product st lies in Il(P )×, i.e., is nonzero.
Moreover, setting

J×
P := JP \ {0}

if JP is a semilattice with zero, and 0 is the distinguished zero element, and

J×
P := JP

otherwise, it is also easy to see that

σ−1(e) = J×
P .

Here e is the identity in our group G.

We formalize this in the next definition: Let S be an inverse semigroup and E the
semilattice of idempotents of S. We set S× := S \ {0} if S is an inverse semigroup
with zero, and 0 is the distinguished zero element, and S× := S otherwise. Simi-
larly, let E× := E \ {0} if E is a semilattice with zero, and 0 is the distinguished
zero element, and E× := E otherwise. Moreover, let G be a group.

Definition 5.5.6. A map σ : S× → G is called a partial homomorphism if σ(st) =
σ(s)σ(t) for all s, t ∈ S× with st ∈ S×.

A map σ : S× → G is called idempotent pure if σ−1(e) = E×.

The existence of an idempotent pure partial homomorphism will allow us to de-
scribe C∗-algebras attached to inverse semigroups as crossed products of partial
dynamical systems later on.

The following is a useful observation which we need later on.

Lemma 5.5.7. Assume that S is an inverse semigroup and σ : S× → G is an
idempotent pure partial homomorphism to a group G. Whenever two elements s
and t in S× satisfy s−1s = t−1t and σ(s) = σ(t), then we must have s = t.

Proof. It is clear that st−1 lies in S×. Since σ(st−1) = e, we must have st−1 ∈ E.
Hence

st−1 = ts−1st−1 = tt−1,

and therefore
s = ss−1s = st−1t = tt−1t = t. �

Let us now explain the construction of reduced and full C∗-algebras for inverse
semigroups.

Let S be an inverse semigroup, and define S× as above. For s ∈ S, define

λs : �2S× → �2S×
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by setting

λs(δx) := δsx if s−1s ≥ xx−1, and λs(δx) := 0 otherwise.

Note that we require s−1s ≥ xx−1 because on{
x ∈ S : s−1s ≥ xx−1

}
,

the map x �→ sx given by left multiplication with s is injective. This is because
we can reconstruct x from sx due to the computation

x = xx−1x = s−1sxx−1x = s−1(sx).

Therefore, for each s, we obtain a partial isometry λs by our construction. The
assignment s �→ λs is a ∗-representation of S by partial isometries on �2S×. It is
called the left regular representation of S. The star in ∗-representation indicates
that we have λs−1 = λ∗

s.

Definition 5.5.8. We define

C∗
λ(S) := C∗({λs : s ∈ S}) ⊆ L(�2S×).

C∗
λ(S) is called the reduced inverse semigroup C∗-algebra of S.

The full C∗-algebra of an inverse semigroup S is given by a universal property.

Definition 5.5.9. We define

C∗(S) := C∗ ({vs}s∈S vsvt = vst, v∗s = vs−1 , v0 = 0 if 0 ∈ S
)
.

C∗(S) is the full inverse semigroup C∗-algebra of S.

Here, 0 ∈ S is short for

“S is an inverse semigroup with zero, and 0 is the distinguished zero element.”

This means that C∗(S) is uniquely determined by the property that given any
C∗-algebra B with elements {ws : s ∈ S} satisfying the above relations, i.e.,

wswt = wst, w∗
s = ws−1 , w0 = 0 if 0 ∈ S,

then there exists a unique ∗-homomorphism from C∗(S) to B sending vs to ws.

In other words, C∗(S) is the C∗-algebra universal for ∗-representation of S by
partial isometries (in a C∗-algebra, or on a Hilbert space). Note that we require
that if 0 ∈ S, then the zero element of S should be represented by the partial
isometry 0. That is why v0 = 0 in case 0 ∈ S. This is different from the definition
in [Pat99, §2.1], where the partial isometry representing 0 in the full C∗-algebra
of S is a nonzero, minimal and central projection. We will come back to this
difference in the definitions later on.

By construction, there is a canonical ∗-homomorphism λ : C∗(S)→ C∗
λ(S), vs �→

λs. It is called the left regular representation (of C∗(S)).

We refer the reader to [Pat99] for more about inverse semigroups and their C∗-
algebras.
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5.5.2 Partial dynamical systems

Whenever we have a semigroup embedded into a group, or an inverse semigroup
with an idempotent pure partial homomorphism to a group, we can construct a
partial dynamical system. Let us first present the general framework.

In the following, our convention will be that all our groups are discrete and count-
able, and all our topological spaces are locally compact, Hausdorff and second
countable.

Definition 5.5.10. Let G be a group with identity e, and let X be a topological
space. A partial action α of G on X consists of

• a collection {Ug}g∈G of open subspaces Ug ⊆ X,

• a collection {αg}g∈G of homeomorphisms αg : Ug−1 → Ug, x �→ g.x such
that

– Ue = X, αe = idX ;

– for all g1, g2 ∈ G, we have

g2.(U(g1g2)−1 ∩ Ug−1
2

) = Ug2 ∩ Ug−1
1

,

and (g1g2).x = g1.(g2.x) for all x ∈ U(g1g2)−1 ∩ Ug−1
2

.

We call such a triple (X,G, α) a partial dynamical system, and denote it by α :
G � X or simply G � X.

Let α : G � X be a partial dynamical system. The dual action α∗ of α is the
partial action (in the sense of [McC95]) of G on C0(X) given by

α∗
g : C0(Ug−1)→ C0(Ug), f �→ f(g−1.#).

We set out to describe a canonical partial action attached to a semigroup P em-
bedded into a group G. Let C∗

λ(P ) be the reduced semigroup C∗-algebra of P . It
contains a canonical commutative subalgebra Dλ(P ), which is given by

Dλ(P ) := C∗({1X : X ∈ JP }) ⊆ C∗
λ(P ).

It is clear that Dλ(P ) coincides with span(σ−1(e)). Recall that the map σ :
Il(P )× → G is given as follows: Every partial isometry V ∈ Il(P )× has the prop-
erty that there exists a unique g ∈ G such that for every x ∈ P , either V δx = 0
or V δx = δg·x. And σ is defined in such a way that σ(V ) = g.

Let us now describe the canonical partial action G � Dλ(P ). We will think of it
as a dual action α∗. For g ∈ G, let

Dg−1 := span(
{
V ∗V : V ∈ Il(P )×, σ(V ) = g

}
).
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By construction, we have that De = Dλ(P ). Moreover, it is easy to see that Dg−1

is an ideal of Dλ(P ). Here is the argument: Suppose we are given V ∈ Il(P )× with
σ(V ) = g, and W ∈ Il(P )× with σ(W ) = e. Then W must be a projection since
for every x ∈ P , either Wδx = 0 or Wδx = δe·x = δx. Moreover, W and V ∗V
commute as both of these are elements in the commutative C∗-algebra �∞(P ).
Hence WV ∗V is nonzero if and only if V ∗VW is nonzero, and if that is the case,
we obtain

WV ∗V = V ∗VW = WV ∗VW = (VW )∗(VW ).

As σ(VW ) = g, this implies that both WV ∗V and V ∗VW lie in Dg−1 . Therefore,
as we claim, Dg−1 is an ideal of Dλ(P ).

We then define α∗
g as α∗

g : Dg−1 → Dg, V
∗V → V V ∗ for V ∈ I×V with σ(V ) = g.

This is well-defined: If we view �2P as a subspace �2G and let λ be the left regular
representation of G, then every V ∈ I×V with σ(V ) = g satisfies V = λgV

∗V .
Therefore, V V ∗ = λgV

∗V λ∗
g. This shows that α∗

g is just conjugation with the
unitary λg. This also explains why α∗

g is an isomorphism.

Of course, we can also describe the dual action α. Set

ΩP := Spec (Dλ(P ))

and for every g ∈ G, let

Ug−1 := D̂g−1 .

It is easy to see that

Ug−1 =
{
χ ∈ ΩP : χ(V ∗V ) = 1 for some V ∈ I×V with σ(V ) = g

}
.

We then define αg by setting αg(χ) := χ ◦ α∗
g−1 . These αg, g ∈ G, give rise to the

canonical partial dynamical system G � ΩP attached to a semigroup P embedded
into a group G.

Our next goal is to describe a canonical partial dynamical system attached to
inverse semigroups equipped with a idempotent pure partial homomorphism to a
group. Let S be an inverse semigroup and E be the semilattice of idempotents of
S. Let G be a group. Assume that σ is a partial homomorphism S× → G that is
idempotent pure.

In this situation, we describe a partial dynamical system G � Ê, and we will show
later (see Corollary 5.5.23) that the reduced C∗-algebra C∗

λ(S) of S is canonically

isomorphic to C0(Ê)�r G.

Consider the sub-C∗-algebra

C∗(E) := C∗({λe : e ∈ E}) ⊆ C∗
λ(S).

As we will see, we have a canonical isomorphism Spec (C∗(E)) ∼= Ê, so that

C0(Ê) ∼= C∗(E).
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Now let us describe the partial action G � C∗(E). For g ∈ G, define a sub-C∗-
algebra of C∗(E) by

C∗(E)g−1 := span(
{
λs−1s : s ∈ S×, σ(s) = g

}
).

As σ is idempotent pure, we have C∗(E)e = C∗(E). For every g ∈ G, we have a
C∗-isomorphism

α∗
g : C∗(E)g−1 → C∗(E)g, λs−1s �→ λss−1 .

The corresponding dual action is given as follows: We identify Spec (C∗(E)) with

Ê. Then, for every g ∈ G, we set

Ug = Spec (C∗(E)g) ⊆ Ê.

It is easy to see that

Ug−1 =
{
χ ∈ Ê : χ(s−1s) = 1 for some s ∈ S× with σ(s) = g

}
.

For every g ∈ G, the homeomorphism αg : Ug−1 → Ug defining the partial

dynamical system G � Ê is given by αg(χ) = χ ◦ α∗
g−1 . More concretely, given

χ ∈ Ug−1 and s ∈ S× with σ(s) = g and χ(s−1s) = 1, we have αg(χ)(e) =
χ(s−1es). These αg, g ∈ G, give rise to the canonical partial dynamical system

G � Ê attached to an inverse semigroup S equipped with an idempotent pure
partial homomorphism to a group G.

At this point, a natural question arises. Assume we are given a semigroup P
embedded into a group G. We have seen above that this leads to an idempotent
pure partial homomorphism on the left inverse hull Il(P ) to our group G. How
is the partial dynamical system G � ΩP related to the partial dynamical system
G � ĴP ? We will see the answer in §5.6.7.
Let us now recall the construction, originally defined in [McC95], of the reduced
and full crossed products C0(X)�α∗,r G and C0(X)�α∗ G attached to our partial
dynamical system α : G � X. We usually omit α∗ in our notation for the crossed
products for the sake of brevity.

First of all,

C0(X)��1 G :=

{∑
g

fgδg ∈ �1(G,C0(X)) : fg ∈ C0(Ug)

}

becomes a ∗-algebra under component-wise addition, multiplication given by(∑
g

fgδg

)
·
(∑

h

f̃hδh

)
:=

∑
g,h

α∗
g(α

∗
g−1(fg)f̃h)δgh
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and involution (∑
g

fgδg

)∗
:=

∑
g

α∗
g(f

∗
g−1)δg.

As in [McC95], we construct a representation of C0(X) ��1 G. Viewing X as a
discrete set, we define �2X and the representation

M : C0(X)→ L(�2X), f �→M(f),

where M(f) is the multiplication operator M(f)(ξ) := f · ξ for ξ ∈ �2X. M is
obviously a faithful representation of C0(X). Every g ∈ G leads to a twist of M ,
namely,

Mg : C0(X)→ L(�2X) given by Mg(f)ξ := f |Ug
(g.#) · ξ|Ug−1 .

Here we view f |Ug
(g.#) as an element in Cb(Ug−1), and Cb(Ug−1) acts on �2Ug−1

just by multiplication operators. Given ξ ∈ �2X, we set

ξ|Ug−1 (x) := ξ(x) if x ∈ Ug−1 and ξ|Ug−1 (x) := 0 if x /∈ Ug−1 .

In other words, ξ|Ug−1 is the component of ξ in �2Ug−1 with respect to the decom-
position

�2X = �2Ug−1 ⊕ �2U c
g−1 .

So we have

Mg(f)ξ(x) = f(g.x)ξ(x) if x ∈ Ug−1 and Mg(f)ξ(x) = 0 if x /∈ Ug−1 .

Consider now the Hilbert space

H := �2(G, �2X) ∼= �2G⊗ �2X,

and define the representation

μ : C0(X)→ L(H) given by μ(f)(δg ⊗ ξ) := δg ⊗Mg(f)ξ.

For g ∈ G, let Eg be the orthogonal projection onto μ(C0(Ug−1))H. Moreover, let
λ denote the left regular representation of G on �2G, and set Vg := (λg ⊗ I) · Eg.
Here I is the identity operator on H.

We can now define the representation

μ× λ : C0(X)��1 G→ L(H),
∑
g

fgδg �→
∑
g

μ(fg)Vg.

Following the original definition in [McC95], we set
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Definition 5.5.11.

C0(X)�r G := C0(X)��1 G
‖·‖μ×λ

.

To define the full crossed product C0(X) � G attached to our partial dynamical

system G � X, recall that we have already introduced the ∗-algebra C0(X)��1 G.

Definition 5.5.12. Let C0(X) � G be the universal enveloping C∗-algebra of the

∗-algebra C0(X)��1 G.

This means that C0(X) � G is universal for ∗-representations of C0(X) ��1 G as
bounded operators on Hilbert spaces or to C∗-algebras. To construct this univer-
sal C∗-algebra, we follow the usual procedure of completing C0(X) ��1 G with

respect to the maximal C∗-norm on C0(X) ��1 G. Usually, we only obtain a C∗-
seminorm and have to divide out vectors with trivial seminorm, but because the
∗-representation μ×λ constructed above is faithful, we get a C∗-norm. So there is
an embedding C0(X)��1G ↪→ C0(X)�G, and the universal property of C0(X)�G

means that whenever we have a ∗-homomorphism C0(X)��1 G→ B to some C∗-
algebra B, there is a unique ∗-homomorphism C0(X) � G → B that makes the
diagram

C0(X)��1 G � � ��

��

C0(X)�G

��
B

commutative.

By construction, there is a canonical ∗-homomorphism C0(X)�G→ C0(X)�r G

extending the identity on C0(X)��1 G.

The reader may consult [McC95, Exe15] for more information about partial dy-
namical systems and their C∗-algebras.

5.5.3 Étale groupoids

Groupoids play an important role in operator algebras in general and for our topic
of semigroup C∗-algebras in particular. This is because many C∗-algebras can be
written as groupoid C∗-algebras. This also applies to many semigroup C∗-algebras.

Let us first introduce groupoids. In the language of categories, a groupoid is sim-
ply a small category with inverses. Very roughly speaking, this means that a
groupoid is a group where multiplication is not globally defined. Roughly speak-
ing, a groupoid G is a set, whose elements γ are arrows r(γ) ←− s(γ). Here r(γ)
and s(γ) are elements in G(0), the set of units. r stands for range and s stands for

source. For every u ∈ G(0), there is a distinguished arrow u
idu←− u in our groupoid

G. This allows us to define an embedding

G(0) ↪→ G, u �→ idu,
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which in turn allows us to view G(0) as a subset of G.
G comes with a multiplication

{(γ, η) ∈ G × G : s(γ) = r(η)} −→ G, (γ, η) �→ γη.

We think of this multiplication as a concatenation of arrows. With this picture in
mind, the condition s(γ) = r(η) makes sense. Also, G comes with an inversion

G → G, γ → γ−1.

We think of this inversion as reversing arrows. The picture of arrows, with con-
catenation as multiplication and reversing as inversion, leads to obvious axioms,
which, once imposed, give rise to the formal definition of a groupoid. Let us present
the details.

Definition 5.5.13. A groupoid is a set G, together with a bijective map G → G, γ �→
γ−1, a subset G ∗ G ⊆ G × G, and a map G ∗ G → G, (γ, η) �→ γη, such that

(γ−1)−1 = γ for all γ ∈ G,
(γη)ζ = γ(ηζ) for all (γ, η), (η, ζ) ∈ G ∗ G,
γ−1γη = η, γηη−1 = γ for all (γ, η) ∈ G ∗ G.

Note that we implicitly impose conditions on G ∗ G so that these equations make
sense. For instance, the second equation implicitly requires that for all (γ, η) and
(η, ζ) in G ∗ G, ((γη), ζ) and (γ, (ηζ)) must lie in G ∗ G as well.

Elements in G ∗ G are called composable pairs.

The set of units is now defined by

G(0) :=
{
γ−1γ : γ ∈ G} ,

it is also given by

G(0) =
{
γγ−1 : γ ∈ G} .

Moreover, we define the source map by setting

s : G → G(0), γ �→ γ−1γ

and the range map by setting

r : G → G(0), γ �→ γγ−1.

It is now an immediate consequence of the axioms that

G ∗ G = {(γ, η) ∈ G × G : s(γ) = r(η)} .
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A groupoid G is called a topological groupoid if the set G comes with a topol-
ogy such that multiplication and inversion become continuous maps. A topolog-
ical groupoid is called étale if r and s are local homeomorphisms. A topological
groupoid is called locally compact if it is locally compact (and Hausdorff) as a
topological space.

As an example, let us describe the partial transformation groupoid attached to
the partial dynamical system α : G � X. It is denoted by G α�X and is given
by

G α�X :=
{
(g, x) ∈ G×X : g ∈ G, x ∈ Ug−1

}
,

with source map s(g, x) = x, range map r(g, x) = g.x, composition

(g1, g2.x)(g2, x) = (g1g2, x)

and inverse
(g, x)−1 = (g−1, g.x).

We equip Gα�X with the subspace topology from G×X. Usually, we write G�X
for G α�X if the action α is understood. The unit space of G�X coincides with
X. Since G is discrete, G�X is an étale groupoid. Actually, if we set

Gx :=
{
g ∈ G : x ∈ Ug−1

}
and Gx := {g ∈ G : x ∈ Ug}

for x ∈ X, then we have canonical identifications

s−1(x) ∼= Gx, (g, x) �→ g and r−1(x) ∼= Gx, (g, g−1.x) �→ g.

Let G be an étale locally compact groupoid. For x ∈ G(0), let Gx = s−1(x) and
Gx = r−1(x). Cc(G) is a ∗-algebra with respect to the multiplication

(f ∗ g)(γ) =
∑

β∈Gs(γ)

f(γβ−1)g(β)

and the involution
f∗(γ) = f(γ−1).

For every x ∈ G(0), define a ∗-representation πx of Cc(G) on �2Gx by setting

πx(f)(ξ)(γ) = (f ∗ ξ)(γ) =
∑
β∈Gx

f(γβ−1)ξ(β).

Alternatively, if we want to highlight why these representations play the role of
the left regular representation, attached to left multiplication, we could define πx

by setting

πx(f)δγ =
∑

α∈Gr(γ)

f(α)δαγ .

Here {δγ : γ ∈ Gx} is the canonical orthonormal basis of �2Gx.
With these definitions, we are ready to define groupoid C∗-algebras.
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Definition 5.5.14. Let
‖f‖C∗

r (G) := sup
x∈G(0)

‖πx(f)‖

for f ∈ Cc(G). We define C∗
r (G) := Cc(G)‖·‖C∗

r (G) .

C∗
r (G) is called the reduced groupoid C∗-algebra of G.

Alternatively, we could set

π =
⊕

x∈G(0)

πx

and
C∗

r (G) = π(Cc(G)) ⊆ L(
⊕
x

�2Gx).

Let us now define the full groupoid C∗-algebra. Let G be an étale locally compact
groupoid. Then G(0) is a clopen subspace of G. Therefore, we can think of Cc(G(0))
as a subspace of Cc(G) simply by extending functions on G(0) by 0 to functions on
G. This allows us to define the full groupoid C∗-algebra.

Definition 5.5.15. For f ∈ Cc(G), let
‖f‖C∗(G) = sup

π
‖π(f)‖ ,

where the supremum is taken over all ∗-representations of Cc(G) that are bounded
on Cc(G(0)) (with respect to the supremum norm ‖·‖∞). We then set

C∗(G) := Cc(G)‖·‖C∗(G) .

C∗(G) is called the full groupoid C∗-algebra of G.
Remark 5.5.16. We will only deal with second countable locally compact étale
groupoids. In that case, [Ren80, Chapter II, Theorem 1.21] tells us that every
∗-representation of Cc(G) on a separable Hilbert space is automatically bounded.
In other words, the full groupoid C∗-algebra of G is the universal enveloping C∗-
algebra of Cc(G). This notion has been explained after Definition 5.5.12.

By construction, there is a canonical ∗-homomorphism C∗(G)→ C∗
r (G) extending

the identity on Cc(G). It is called the left regular representation.

5.5.4 The universal groupoid of an inverse semigroup

We attach groupoids to inverse semigroups so that full and reduced C∗-algebras
coincide. The groupoids we construct are basically Paterson’s universal groupoid,
as in [Pat99, §4.3] or [MS14]. There is, however, a small difference. In the case of
inverse semigroups with zero, our construction differs from Paterson’s because we
want the distinguished zero element to be represented by zero in the reduced and
full C∗-algebras.
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Let us first explain our construction. We start with an inverse semigroup S with
a semilattice of idempotents denoted by E. Set

Σ :=
{
(s, χ) ∈ S × Ê : χ(s−1s) = 1

}
.

Note that in the case 0 ∈ S, we must have s �= 0 since χ(0) = 0 by our convention.

We introduce an equivalence relation on Σ. Given (s, χ) and (t, ψ) in Σ, we define

(s, χ) ∼ (t, ψ) if there exists e ∈ E with se = te and χ(e) = 1.

The equivalence class of (s, χ) ∈ Σ with respect to ∼ is denoted by [s, χ]. We set

G(S) := Σ/∼, i.e., G(S) = {[s, χ] : (s, χ) ∈ Σ} .

To define a multiplication on G(S), we need to introduce the following notation:

Let s ∈ S and χ ∈ Ê be such that χ(s−1s) = 1. Then we define a new element s.χ

of Ê by setting

(s.χ)(e) := χ(s−1es).

Then we say that [t, ψ] and [s, χ] are composable if ψ = s.χ. In that case, we define
their product as

[t, ψ][s, χ] := [ts, χ].

The inverse map is given by

[s, χ]−1 := [s−1, s.χ].

It is easy to see that multiplication and inverse are well-defined, and they give rise
to a groupoid structure on G(S).
Moreover, we introduce a topology on G(S) by choosing a basis of open subsets.
Given s ∈ S and an open subspace

U ⊆
{
χ ∈ Ê : χ(s−1s) = 1

}
,

we define

D(s, U) := {[s, χ] : χ ∈ U} .
We equip G(S) with the topology that has as a basis of open subsets

D(s, U), for s ∈ S and U ⊆
{
χ ∈ Ê : χ(s−1s) = 1

}
open.

It is easy to check that with this topology, G(S) becomes a locally compact étale
groupoid. In all our examples, S will be countable, in which case G(S) will be
second countable.
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Let us explain the difference between our groupoid G(S) and the universal groupoid
attached to S in [Pat99, §4.3]. Assume that S is an inverse semigroup with zero,

and 0 is the distinguished zero element. The starting point is that our space Ê
and the space of semi-characters X introduced in [Pat99, §2.1] and [Pat99, §4.3]
do not coincide. They are related by

X = Ê # {χ0} .
Here χ0 is the semi-character on E that sends every element of E to 1, even 0.
The disjoint union above is not only a disjoint union of sets, but also of topological
spaces, i.e., χ0 is an isolated point in X (it is open and closed).

Now it is easy to see that our G(S) is the restriction of the universal groupoid Gu

attached to S in [Pat99, §4.3] to Ê. This means that

G(S) =
{
γ ∈ Gu : r(γ) ∈ Ê, s(γ) ∈ Ê

}
.

Actually, the only element in Gu that does not have range and source in Ê is χ0

itself. It follows that
Gu = G(S) # {χ0} . (5.4)

5.5.5 Inverse semigroup C∗-algebras as groupoid C∗-algebras

We begin by identifying the full C∗-algebras. Given an inverse semigroup S with
a semilattice of idempotents E, let us introduce the notation that for e ∈ E, we
write

Ue :=
{
χ ∈ Ê : χ(e) = 1

}
.

Theorem 5.5.17. For every inverse semigroup S, there is a canonical isomorphism

C∗(S)
∼=−→ C∗(G(S))

sending the generator vs ∈ C∗(S) to the characteristic function on D(s, Us−1s),
viewed as an element in Cc(G) ⊆ C∗(G).
Recall that

D(s, Us−1s) = {[s, χ] : χ ∈ Us−1s} .
Proof. In the case of inverse semigroups without zero, our theorem is just [Pat99,
Chapter 4, Theorem 4.4.1].

Now let us assume that 0 ∈ S. Then the full C∗-algebra attached to S in [Pat99,
§2.1] is canonically isomorphic to

C∗(S)⊕ Cv0,

where C∗(S) is our full inverse semigroup C∗-algebra in the sense of Defini-
tion 5.5.9, and v0 is a (nonzero) projection.
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For the full groupoid C∗-algebra of the universal groupoid Gu attached to S in
[Pat99, §4.3], we get because of (5.4):

C∗(Gu) ∼= C∗(G(S))⊕ C1χ0
.

Here 1χ0
is the characteristic function of the one-point set {χ0}, and it is easy to

see that 1χ0
is a (nonzero) projection.

With these observations in mind, it is easy to see that the identification in [Pat99,
Chapter 4, Theorem 4.4.1] of the full C∗-algebra attached to S in [Pat99, §2.1] with
the full groupoid C∗-algebra C∗(Gu) respects these direct sum decompositions,
i.e., it sends C∗(S) in the sense of Definition 5.5.9 to C∗(G(S)). Finally, it is also
easy to see that the identification we get in this way really sends vs ∈ C∗(S) to
the characteristic function on D(s, Us−1s). �
Next, we identify the reduced C∗-algebras.

Theorem 5.5.18. For every inverse semigroup S, there is a canonical isomorphism

C∗
λ(S)

∼=−→ C∗
r (G(S))

sending the generator λs ∈ C∗
λ(S) to the characteristic function on D(s, Us−1s),

viewed as an element in Cc(G) ⊆ C∗
r (G).

We could give a proof of this result in complete analogy to the case of the full C∗-
algebras, using [Pat99, Chapter 4, Theorem 4.4.2] instead of [Pat99, Chapter 4,
Theorem 4.4.1]. Instead, since all these C∗-algebras are defined using concrete
representations, we give a concrete proof identifying certain representations.

Proof. For e ∈ E×, define

S×
e :=

{
x ∈ S× : x−1x = e

}
.

It is then easy to see that

S× =
⊔

e∈E×
S×
e .

This yields the direct sum decomposition

�2S× =
⊕
e∈E×

�2S×
e .

The left regular representation of S respects this direct sum decomposition. This
is because given s ∈ S and x ∈ S×

e with s−1s ≥ xx−1, we have that sx ∈ S×
e since

(sx)−1(sx) = x−1(s−1s)x = x−1(s−1sxx−1)x = x−1(xx−1)x = x−1x = e.

Therefore, for every s ∈ S, we have

λs =
⊕
e∈E×

λs

∣∣
�2S×

e
.
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Now define for every e ∈ E× the character χe ∈ Ê by setting

χe(f) = 1 if e ≤ f,

χe(f) = 0 if e � f.

The map
S×
e −→ G(S)χe

, x �→ [x, χe]

is surjective as every (x, χe) ∈ Σ is equivalent to (xe, χe), and xe lies in S×
e as

χe(x
−1x) = 1 implies e ≤ x−1x. It is also injective as [x, χe] = [y, χe] for x, y ∈ S×

e

implies that xf = yf for some f ∈ E× with e ≤ f , and thus x = y. Therefore, the
map above is a bijection. It induces a unitary

U : �2S×
e

∼=−→ �2G(S)χe
, δx �→ δ[x,χe].

Now let 1D(s,Us−1s)
be the characteristic function on D(s, Us−1s), viewed as an

element in Cc(G). Then we have

U ◦ λs

∣∣
�2S×

e
= πχe

(1D(s,Us−1s)
) ◦ U. (5.5)

This is because
(U ◦ λs

∣∣
�2S×

e
)(δx) = U(δsx) = [sx, χe]

and
(πχe

◦ 1D(s,Us−1s)
◦ U)(δx) = πχe

(1D(s,Us−1s)
)([x, χe]) = [sx, χe]

if s−1s ≥ xx−1, and both sides of (5.5) are zero if s−1s 	 xx−1.

Hence it follows that the left regular representation of C∗(S) is unitarily equivalent
to ⊕

e∈E×
πχe

under the isomorphism from Theorem 5.5.17.

Thus, all we have to show in order to conclude our proof is that

sup
χ∈Ê

‖πχ(f)‖ = sup
e∈E×

‖πχe
(f)‖ , (5.6)

for all f ∈ Cc(G(S)). To show this, we first need to observe that{
χe : e ∈ E×}

is dense in Ê. This is because a basis of open subsets for the topology of Ê are
given by

U(e; e1, . . . , en) :=
{
χ ∈ Ê : χ(e) = 1; χ(e1) = . . . = χ(en) = 0

}
,

for e, e1, . . . , en ∈ E× with ei � e. It is then clear that χe lies in U(e; e1, . . . , en).
Because of density, (5.6) follows from [Pat99, Chapter 3, Proposition 3.1.2]. �
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Remark 5.5.19. It is clear that the explicit isomorphisms provided by Theorem
5.5.17 and Theorem 5.5.18 give rise to a commutative diagram

C∗(S) ��

∼=
��

C∗
λ(S)

∼=
��

C∗(G(S)) �� C∗
r (G(S))

where the horizontal arrows are the left regular representations and the vertical
arrows are the identifications provided by Theorem 5.5.17 and Theorem 5.5.18.

5.5.6 C∗-algebras of partial dynamical systems as C∗-algebras of
partial transformation groupoids

Our goal is to identify the full and reduced crossed products attached to partial dy-
namical systems with full and reduced groupoid C∗-algebras for the corresponding
partial transformation groupoids.

Given a partial dynamical system G � X, we have constructed its partial trans-
formation groupoid G�X in §5.5.3.
The following result is [Aba04, Theorem 3.3]:

Theorem 5.5.20. The canonical homomorphism

Cc(G�X)→ C0(X)��1 G, θ �→
∑
g

θ(g, g−1.#)δg,

where θ(g, g−1.#) is the function Ug−1 → C, x �→ θ(g, g−1.x), extends to an iso-
morphism

C∗(G�X)
∼=−→ C0(X)�G.

Here we use the same notation for partial dynamical systems and their crossed
products as in §5.5.2.
Let us now identify reduced crossed products.

Theorem 5.5.21. The canonical homomorphism

Cc(G�X)→ C0(X)��1 G, θ �→
∑
g

θ(g, g−1.#)δg, (5.7)

where θ(g, g−1.#) is the function

Ug−1 → C, x �→ θ(g, g−1.x),

extends to an isomorphism

C∗
r (G�X)

∼=−→ C0(X)�r G.
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We include a proof of this result. It is taken from [Li16b].

Proof. We use the same notation as in the construction of the reduced crossed
product in §5.5.2. As above, let μ×λ be the representation C0(X)��1 G→ L(H)
which we used to define C0(X)�r G. Our first observation is

im (μ× λ)(H) =
⊕
h∈G

δh ⊗ �2Uh−1 . (5.8)

To see this, observe that for all g ∈ G,

im (Eg) ⊆
⊕
h

δh ⊗ �2(Uh−1 ∩ U(gh)−1).

This holds since for

x /∈ h−1.(Uh ∩ Ug−1) = U(gh)−1 ∩ Uh−1 ,

f |Uh
(h.x) = 0 for f ∈ C0(Ug−1). Therefore,

π(C0(Ug−1))(δh ⊗ �2X) ⊆ δh ⊗ �2(Uh−1 ∩ U(gh)−1).

Hence
im (Eg) ⊆

⊕
h

δh ⊗ �2(Uh−1 ∩ U(gh)−1),

and thus,

im (Vg) ⊆
⊕
h

δgh ⊗ �2(Uh−1 ∩ U(gh)−1) ⊆
⊕
h

δh ⊗ �2Uh−1 .

This shows “⊆” in (5.8). For “⊇”, note that for f ∈ C0(X),

(μ× λ)(fδe) = μ(f)Ee,

and for ξ ∈ �2Uh−1 ,

μ(f)Ee(δh ⊗ ξ) = δh ⊗ f |Uh
(h.#)ξ.

So (μ× λ)(fδe)(H) contains δh⊗ f · ξ for all f ∈ C0(Uh−1) and ξ ∈ �2Uh−1 , hence
also δh ⊗ �2Uh−1 . This proves “⊇”.
For x ∈ X, let Gx =

{
g ∈ G : x ∈ Ug−1

}
as before. Our second observation is that

for every x ∈ X, the subspace Hx := �2Gx⊗ δx is (μ×λ)-invariant. It is clear that
μ(f) leaves Hx invariant for all f ∈ C0(X). For g, h ∈ G,

Eg(δh ⊗ δx) = δh ⊗ δx

if x ∈ Uh−1 ∩ U(gh)−1 , and if that is the case, then

Vg(δh ⊗ δx) = δgh ⊗ δx ∈ Hx.
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Therefore,

H =

(⊕
x∈X

Hx

)
⊕ (μ× λ)(C0(X)��1 G)(H)⊥

is a decomposition of H into μ× λ-invariant subspaces. For x ∈ X, set

ρx := (μ× λ)|Hx
.

Then

C0(X)�r G = C0(X)��1 G
‖·‖⊕

x ρx .

Moreover, we have for x ∈ Uh−1 ,

ρx

(∑
g

fgδg

)
(δh ⊗ δx) =

∑
g

μ(fg)Vg(δh ⊗ δx)

=
∑

g: x∈U(gh)−1

μ(fg)(δgh ⊗ δx) =
∑

g: x∈U(gh)−1

δgh ⊗ fg(gh.x)δx

=
∑
k∈Gx

δk ⊗ fkh−1(k.x)δx. (5.9)

Let us compare this construction with the construction of the reduced groupoid
C∗-algebra ofG�X. Obviously, (5.7) is an embedding of Cc(G�X) as a subalgebra

which is ‖·‖�1 -dense in C0(X)��1 G. Therefore,

C0(X)�r G = Cc(G�X)
‖·‖⊕

x ρx .

Now, to construct the reduced groupoid C∗-algebra C∗
r (G � X), we follow our

explanations in §5.5.3 and construct for every x ∈ X the representation

πx : Cc(G�X)→ L(�2(s−1(x)))

by setting

πx(θ)(ξ)(ζ) :=
∑

η ∈ s−1(x)

θ(ζη−1)ξ(η).

In our case, using s−1(x) = Gx × {x}, we obtain for ξ = δh ⊗ δx with h ∈ Gx:

πx(θ)(δh ⊗ δx)(k, x) = θ((k.x)(h, x)−1) = θ(kh−1, h.x).

Thus,

πx(θ)(δh ⊗ δx)(k, x) =
∑
k∈Gx

θ(kh−1, h.x)δk ⊗ δx. (5.10)

By definition,

C∗
r (G�X) = Cc(G�X)

‖·‖⊕
x πx .
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Therefore, in order to show that ‖·‖⊕
x ρx

and ‖·‖⊕
x ρx

coincide on Cc(G�X), it

suffices to show that for every x ∈ X, πx and the restriction of ρx to Cc(G �X)
are unitarily equivalent. Given x ∈ X, using s−1(x) = Gx × {x}, we obtain the
canonical unitary

�2(s−1(x)) ∼= Hx = �2(Gx)⊗ δx,

so that we may think of both ρx and πx as representations on �2(Gx) ⊗ δx. We
then have for x ∈ X, θ ∈ Cc(G�X) and h ∈ Gx:

ρx(θ)(δh ⊗ δx)
(5.7)
= ρx

(∑
g

θ(g, g−1.#)δg
)
(δh ⊗ δx)

(5.9)
=

∑
k∈Gx

δk ⊗ θ(kh−1, h.x)δx
(5.10)
= πx(θ)(δh ⊗ δx).

This yields the canonical identification

C0(X)�r G ∼= C∗
r (G�X),

as desired. �

5.5.7 The case of inverse semigroups admitting an idempotent pure
partial homomorphism to a group

We now show that in the case of inverse semigroups that admit an idempotent
pure partial homomorphism to a group, all our constructions above coincide.

Let S be an inverse semigroup and E the semilattice of idempotents of S. Let G
be a group. Assume that σ is a partial homomorphism S× → G that is idempotent
pure.

In this situation, we constructed a partial dynamical system G � Ê in §5.5.2.
Our first observation is that the partial transformation groupoid of G � Ê can
be canonically identified with the groupoid G(S) we attached to S in §5.5.4.
Lemma 5.5.22. In the situation described above, we have a canonical identification

G(S) ∼=−→ G� Ê, [s, χ] �→ (σ(s), χ).

of topological groupoids.

Proof. We use the notations from §5.5.2 and §5.5.4.
To see that the mapping [s, χ] �→ (σ(s), χ) is well defined, suppose that (s, χ) and
(t, χ) in Σ are equivalent. Then there exists e ∈ E× such that se = te, and se (or
te) cannot be zero in the case 0 ∈ S. Therefore,

σ(s) = σ(se) = σ(te) = σ(t).
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To see that [s, χ] �→ (σ(s), χ) is a morphism of groupoids, note that [s, χ]−1 =
[s−1, s.χ] is sent to (σ(s−1), s.χ) = (σ(s), χ)−1. Hence our mapping respects in-
verses. For multiplication, observe that

s([s, χ]) = χ = s(σ(s), χ)

and
r([s, χ]) = s.χ = σ(s).χ = r(σ(s), χ).

Moreover, [t, s.χ] · [s, χ] = [ts, χ] is mapped to [σ(ts), χ] = [σ(t), s.χ] · [σ(s), χ].
Hence it follows that our mapping is a groupoid morphism.

We now set out to construct an inverse. Define the map

G� Ê −→ G(S), (g, χ) �→ [s, χ]

where for every g in G, we choose s ∈ S with σ(s) = g and χ(s−1s) = 1. This is
well-defined: Given t ∈ S with σ(t) = g and χ(t−1t) = 1, set e := s−1st−1t. Then
χ(e) = 1. Moreover, se = st−1t and te = ts−1s. As σ(se) = σ(s) = g = σ(t) =
σ(te) and (se)−1(se) = e = (te)−1(te), we deduce by Lemma 5.5.7 that se = te.
Hence (s, χ) ∼ (t, χ).

It is easy to see that we have just constructed the inverse of

G(S) −→ G� Ê, [s, χ] �→ (σ(s), χ).

Moreover, it is also easy to see that both our mappings are open, so that they give
rise to the desired identification of topological groupoids. �
Combining Theorem 5.5.17 with Theorem 5.5.20 and Theorem 5.5.18 with Theo-
rem 5.5.21, we obtain the following

Corollary 5.5.23. Let S be an inverse semigroup and E be the semilattice of idem-
potents of S. Let G be a group. Assume that σ is a partial homomorphism S× → G
that is idempotent pure. In this situation, we have canonical isomorphisms

C∗(S)→ C∗(E)�G, vs �→ λss−1δσ(s)

and
C∗

λ(S)→ C∗(E)�r G, λs �→ λss−1Vσ(s).

5.6 Amenability and nuclearity

Amenability is an important structural property for groups and groupoids, while
nuclearity plays a crucial role in the structure theory for C∗-algebras, in particular
in the classification program. In the case of groups and groupoids, it is known that
amenability and nuclearity of C∗-algebras are closely related. Moreover, there are
further alternative ways to characterize amenability in terms of C∗-algebras. Our
goal now is to explain to what extent analogous results hold true in the semigroup
context.
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5.6.1 Groups and groupoids

Let us start by reviewing the case of groups and groupoids.

Let G be a discrete group. We recall three conditions.

Definition 5.6.1. Our group G is said to be amenable if there exists a left invariant
state on �∞(G).

This means that we require the existence of a state μ : �∞(G) → C with the
property that μ(f(s#)) = μ(f) for every f ∈ �∞(G) and s ∈ G. Here f(s#) is the
function G→ C, x �→ f(sx).

Definition 5.6.2. Our group G is said to satisfy Reiter’s condition if there exists a
net (θi)i of probability measures on G such that

lim
i→∞

‖θi − gθi‖ = 0

for all g ∈ G.

Here gθ is the pushforward of θ under

G ∼= G, x �→ gx.

Definition 5.6.3. Our group G is said to satisfy Følner’s condition if for every
finite subset E ⊆ G and every ε > 0, there exists a nonempty finite subset F ⊆ G
with

|(sF )$F | / |F | < ε

for all s ∈ E.

Here sF = {sx : x ∈ F}, and $ stands for symmetric difference.

It turns out that a group is amenable if and only if it satisfies Reiter’s condition if
and only if it satisfies Følner’s condition. We refer the reader to [BO08, Chapter 2,
§6] for more details.

All abelian, nilpotent and solvable groups are amenable, to mention some exam-
ples. Nonabelian free groups are not amenable.

We now turn to groupoids.

Definition 5.6.4. An étale locally compact groupoid G is amenable if there is a net
(θi)i of continuous systems of probability measures θi = (θxi )x∈G(0) with

lim
i→∞

∥∥∥θr(γ)i − γθ
s(γ)
i

∥∥∥ = 0 for all γ ∈ G.

Here θx is a probability measure on G with support contained in Gx. “Continuous”
means that for every f ∈ Cc(G), the function

G(0) → C, x �→
∫

fdθx
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is continuous. As above, γθ is the pushforward of θ under

Gs(γ) → Gr(γ), η �→ γη.

Note that what we call amenability of groupoids is really Reiter’s condition for
groupoids. Moreover, we may require that the convergence in our definition hap-
pens uniform on compact subsets of G. This is because of [Ren15].

For instance, if G is an amenable group, and G � Ω is a partial dynamical system
on a locally compact Hausdorff space Ω, then the partial transformation groupoid
G�Ω is amenable by [Exe15, Theorem 20.7 and Theorem 25.10]. But we can get
amenable partial transformation groupoids even if G is not amenable.

Let us now introduce nuclearity for C∗-algebras.

Definition 5.6.5. A C∗-algebra A is nuclear if there exists a net of contractive
completely positive maps ϕi : A → Fi and ψi : Fi → A, where Fi are finite-
dimensional C∗-algebras, such that

lim
i→∞

‖ψi ◦ ϕi(a)− a‖ = 0

for all a ∈ A.

For instance, all commutative C∗-algebras are nuclear, and all finite dimensional
C∗-algebras are nuclear.

The reader may find more about nuclearity for C∗-algebras, for example, in [BO08,
Chapter 2].

Let us now relate amenability and nuclearity. Let us start with the case of groups.

Recall that the full group C∗-algebra C∗(G) of a discrete group G is the C∗-algebra
universal for unitary representations of G. This means that C∗(G) is generated by
unitaries ug, g ∈ G, satisfying

ugh = uguh for all g, h ∈ G,

and whenever we find unitaries vg, g ∈ G, in another C∗-algebra B satisfying

vgh = vgvh for all g, h ∈ G,

then there exists a (unique) ∗-homomorphism C∗(G)→ B sending ug to vg.

The reduced group C∗-algebra C∗
λ(G) of a discrete group G is the C∗-algebra

generated by the left regular representations of G. The left regular representation
is exactly what we get when we apply the construction at the beginning of §5.2 to
G. Therefore, C∗

λ(G) is the C∗-algebra we get when we apply Definition 5.2.1 to
G in place of P .
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By construction, we have a canonical ∗-homomorphism

λ : C∗(G)→ C∗
λ(G), ug → λg.

It is called the left regular representation (of C∗(G)).

Here are a couple of C∗-algebraic characterizations of amenability for groups. We
refer the reader to [BO08, Chapter 2, §6] for details and proofs.

Theorem 5.6.6. Let G be a discrete group. The following are equivalent:

• G is amenable.

• C∗(G) is nuclear.

• C∗
λ(G) is nuclear.

• The left regular representation λ : C∗(G)→ C∗
λ(G) is an isomorphism.

• There exists a character on C∗
λ(G).

Here, by a character on a unital C∗-algebra A, we simply mean a unital ∗-
homomorphism from A to C.

We now turn to groupoids and C∗-algebraic characterizations of amenability for
them. We already introduced full and reduced groupoid C∗-algebras in §5.5.3. We
also introduced the left regular representation (of the full groupoid C∗-algebra)

λ : C∗(G)→ C∗
r (G).

Theorem 5.6.7. Let G be an étale locally compact groupoid. Consider the statements

(i) G is amenable.

(ii) C∗(G) is nuclear.

(iii) C∗
λ(G) is nuclear.

(iv) λ : C∗(G)→ C∗
λ(G) is an isomorphism.

Then (i) ⇔ (ii) ⇔ (iii) ⇒ (iv).

We refer to [BO08, Chapter 5, §6] and [ADR00] for more details.

It was an open question whether statement (iv) implies the other statements.
But Rufus Willett gave a counterexample in [Wil15]. There are, however, results
saying that statement (iv) does imply the other statements for particular classes
of groupoids. For instance, we mention [Mat14].
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5.6.2 Amenability for semigroups

Let us now turn to amenability for semigroups. As in the group case, we have the
following definitions:

Definition 5.6.8. A discrete semigroup P is called left amenable if there exists a
left invariant mean on �∞(P ), i.e., a state μ on �∞(P ) such that for every p ∈ P
and f ∈ �∞(P ), μ(f(p#)) = μ(f).

Here f(p#) is the function P → C, x �→ f(px).

For instance, every abelian semigroup is left amenable.

Definition 5.6.9. A discrete semigroup P is said to satisfy Reiter’s condition if
there is a net (θi)i of probability measures on P with the property that

lim
i
‖θi − pθi‖ = 0 for all p ∈ P.

Here pθ is the pushforward of θ under P → P, x �→ px.

Definition 5.6.10. A discrete semigroup P satisfies the strong Følner condition if
for every finite subset E ⊆ P and every ε > 0, there exists a nonempty finite
subset F ⊆ P such that

|(pF )$F | / |F | < ε

for all p ∈ C.

Here pF = {px : x ∈ F} and $ stands for symmetric difference.

As in the group case, a discrete left cancellative semigroup is left amenable if and
only if it satisfies Reiter’s condition if and only if it satisfies the strong Følner
condition. The reader may consult [Li12] for a proof, and we also refer to [Pat88]
for more details.

Our goal now is to find the analogues of Theorem 5.6.6 and Theorem 5.6.7 in the
context of semigroups and their C∗-algebras. The motivation is to understand and
explain – in a conceptual way – the following two observations:

Let P = N×N, the universal monoid generated by two commuting elements. This
is an abelian semigroup, so it is left amenable. So far, we have not discussed the
question of how to construct full semigroup C∗-algebras. But a natural candidate
for the full semigroup C∗-algebra of N× N would be

C∗ (va, vb v∗ava = 1, v∗bvb = 1, vavb = vbva) .

In other words, this is the universal C∗-algebra generated by two commmuting
isometries. It is the C∗-algebra universal for isometric representations of our semi-
group. This is a very natural candidate for the full semigroup C∗-algebra. But
Murphy showed that this C∗-algebra is not nuclear in [Mur96, Theorem 6.2].
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Next, consider P = N ∗ N, the nonabelian free monoid on two generators. As in
the group case, nonabelian free semigroups are examples of semigroups that are
not left amenable. But it is easy to see that C∗

λ(N∗N) is generated as a C∗-algebra
by two isometries Va and Vb with orthogonal range projections, i.e.,

(VaV
∗
a ) · (VbV

∗
b ) = 0.

Therefore, C∗
λ(N∗N) is isomorphic to the canonical extension of the Cuntz algebra

O2, as introduced in [Cun77, §3]. It fits into an exact sequence

0→ K → C∗
λ(N ∗ N)→ O2 → 0,

where K is the C∗-algebra of compact operators on a infinite-dimensional and
separable Hilbert space. Hence it follows that C∗

λ(N ∗ N) is nuclear. Moreover,
C∗

λ(N ∗ N) can be described as a universal C∗-algebra, because

C∗
λ(N ∗ N) ∼= C∗ (va, vb v∗ava = 1, v∗bvb = 1, vav

∗
avbv

∗
b = 0) .

So this is a hint that for the semigroup N ∗N, the full and reduced semigroup C∗-
algebras are isomorphic. But, as we remarked above, N ∗ N is not left amenable.

Our goal now is to explain these phenomena, to clarify the relation between
amenability and nuclearity, and to obtain analogues of Theorem 5.6.6 and The-
orem 5.6.7 in the context of semigroups. The first step for us will be to find a
systematic and reasonable way to define full semigroup C∗-algebras. It turns out
that left inverse hulls attached to left cancellative semigroups, as introduced in
§5.5.1, give rise to an approach to this problem. However, before we come to the
construction of full semigroup C∗-algebras, we first need to compare the reduced
C∗-algebras of left cancellative semigroups and their left inverse hulls.

5.6.3 Comparing reduced C∗-algebras for left cancellative
semigroups and their left inverse hulls

Let P be a left cancellative semigroup and Il(P ) the left inverse hull attached to
P , as in §5.5.1. As we explained in §5.5.1, we have a canonical embedding of P
into Il(P ), denoted by

P ↪→ Il(P ), p �→ p.

It gives rise to the isometry

I : �2P → �2S×, δp �→ δp.

Thus, we may think of �2P as a subspace of �2S×.

The following observation appears in [Nor14, §3.2].
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Lemma 5.6.11. Assume that P is a left cancellative semigroup with left inverse hull
Il(P ). Then the subspace �2P of �2Il(P )× is invariant under C∗

λ(Il(P )). Moreover,
we obtain a well-defined surjective ∗-homomorphism

C∗
λ(Il(P ))→ C∗

λ(P ), T �→ I∗T I

sending λp to Vp for every p ∈ P .

Proof. We first claim that every s ∈ Il(P ) has the following property:

For every x ∈ dom(s) and every r ∈ P, xr lies in dom(s), and s(xr) = s(x)r.
(5.11)

To prove our claim, first observe that for every p ∈ P , the partial bijection p ∈
Il(P ) certainly has this property, as it is just given by left multiplication with p.
Moreover, p−1 is the partial bijection

pP → P, px �→ x.

Certainly, for every px ∈ pP and every r ∈ P , pxr lies in pP , and

p−1(pxr) = xr = p−1(px)r.

Hence p−1 has the desired property as well. To conclude the proof of our claim,
suppose that s, t ∈ Il(P ) both have the desired property. Choose x ∈ dom(st).
Then for every r ∈ P , xr lies in dom(t), and t(xr) = t(x)r. Since t(x) lies in
dom(s), t(x)r lies in dom(s) as well. The conclusion is that xr lies in dom(st), and
we have

(st)(xr) = s(t(x)r) = s(t(x))r = (st)(x)r.

As every element in Il(P ) is a finite product of partial bijections in

{p : p ∈ P} ∪ {p−1 : p ∈ P
}
,

this proves our claim.

The second step is to show that for every s ∈ Il(P ) and x ∈ P with s−1s ≥ pp−1,
we must have sx = s(x) ∈ P . This is because we have, for every y ∈ P :

(sx)(y) = s(x(y)) = s(xy) = s(x)y = (s(x))(y).

Here we used our first claim from above.

Now let s ∈ Il(P ) be arbitrary. We want to show that λs(�
2P ) ⊆ �2P . Given

x ∈ P , we have λs(δx) = 0 if s−1s 	 pp−1. If s−1s ≥ pp−1, then what we showed
in the second step implies that λs(δx) = δs(x) lies in �2P . As s was arbitrary, this
shows that

C∗
λ(Il(P ))(�2P ) ⊆ �2P.
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Therefore, every T ∈ C∗
λ(Il(P )) satisfies T II∗ = II∗T II∗, and since C∗

λ(Il(P )) is
∗-invariant, we even obtain that every T ∈ C∗

λ(Il(P )) satisfies T II∗ = II∗T . This
shows that the map

C∗
λ(Il(P ))→ L(�2P ), T �→ I∗T I

is a ∗-homomorphism. Its image is C∗
λ(P ) because we have, for p ∈ P and x ∈ P :

λp(δx) = δpx = Vp(δx),

so that I∗λpI = Vp for all p ∈ P . �

Recall that we denote the semilattice of idempotents in Il(P ) by JP , and we
identified this semilattice with the constructible right ideals of P (see §5.5.1).
Moreover, we also introduced in §5.5.2 the sub-C∗-algebra of C∗

λ(Il(P )) generated
by JP :

C∗(JP ) = C∗({λX : X ∈ JP }).
It is easy to see that for every X ∈ JP , we get

I∗λXI = 1X ,

where 1X is the characteristic function of X, viewed as an element in �∞(P ).

Hence, restricting the ∗-homomorphism

C∗
λ(Il(P ))→ C∗

λ(P )

from Lemma 5.6.11 to C∗(JP ), we obtain a ∗-homomorphism from C∗(JP ) onto
the sub-C∗-algebra Dλ(P ) = C∗({1X : X ∈ JP }) of C∗

λ(P ), which is generated
by {1X : X ∈ JP },

C∗(JP ) � Dλ(P ), T �→ I∗T I.

Obviously, if the ∗-homomorphism from Lemma 5.6.11 is an isomorphism, then
its restriction to C∗(JP ) must be an isomorphism (onto its image) as well. Let us
now discuss a situation when the converse holds.

We need the following:

Lemma 5.6.12. Let X be a set. There exists a faithful conditional expectation

ΘX : L(�2X) � �∞(X)

such that, for every T ∈ L(�2X), we have

〈ΘX(T )δx, δy〉 = δx,y 〈Tδx, δy〉 (5.12)

for all x, y ∈ X.
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Proof. Let ex,x be the rank one projection onto Cδx ⊆ �2X, given by

ex,x(ξ) = 〈ξ, δx〉 δx for all ξ ∈ �2X.

Consider the linear map

span({δx : x ∈ X})→ span({δx : x ∈ X}),
∑
x

αxδx �→
∑
x

αx(ex,x ◦ T )(δx).
(5.13)

We have∥∥∥∥∥∑
x

αx(ex,x ◦ T )(δx)
∥∥∥∥∥
2

=

〈∑
x

αx(ex,x ◦ T )(δx),
∑
x

αx(ex,x ◦ T )(δx)
〉

=
∑
x

|αx|2 〈(ex,x ◦ T )(δx), (ex,x ◦ T )(δx)〉

≤ ‖T‖2
∑
x

|αx|2 = ‖T‖2
∥∥∥∥∥∑

x

αxδx

∥∥∥∥∥
2

So the linear map in (5.13) extends to a bounded linear operator �2X → �2X,
which we denote by ΘX(T ). Our computation shows that

‖ΘX(T )‖ ≤ ‖T‖ .
By definition,

ΘX(T )(δx) = 〈Tδx, δx〉 δx.
This shows that ΘX(T ) lies in �∞(X). It also shows that ΘX(T ) satisfies (5.12).

Moreover, by construction, ΘX(T ) = T for all T ∈ �∞(X). Therefore, the map

ΘX : L(�2X)→ �∞(X), T �→ ΘX(T )

is a projection of norm 1. Hence it follows by [Bla06, Theorem II.6.10.2] that ΘX

is a conditional expectation.

Finally, ΘX is faithful because given T ∈ L(�2X), ΘX(T ∗T ) = 0 implies that

0 = 〈T ∗Tδx, δx〉 = ‖Tδx‖2 ,
so that Tδx = 0 for all x ∈ X, and hence T = 0. �
Applying Lemma 5.6.12 to X = Il(P )× and X = P , we obtain faithful conditional
expectations

ΘIl(P ) : L(�2Il(P )×) � �∞(Il(P )×)

and
ΘP : L(�2P ) � �∞(P ).
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They fit into the following commutative diagram:

L(�2Il(P )×) I∗ � I ��

ΘIl(P )

��

L(�2P )

ΘP

��
L(�2Il(P )×) I∗ � I �� �∞(P )

(5.14)

Here I∗ # I is our notation for the map sending T to I∗T I. Commutativity of the
diagram above follows from the following computation:

ΘP (I
∗T I) δx = 〈I∗T Iδx, δx〉 δx = 〈Tδx, δx〉 δx = (I∗ΘIl(P )(T )I) δx.

This leads us to:

Corollary 5.6.13. Assume that

ΘIl(P )(C
∗
λ(Il(P ))) = C∗(JP ). (5.15)

Then the ∗-homomorphism

C∗
λ(Il(P ))→ C∗

λ(P ), T �→ I∗T I

from Lemma 5.6.11 is an isomorphism if and only if its restriction to C∗(JP ),

C∗(JP ) � Dλ(P ), T �→ I∗T I,

is an isomorphism.

Proof. Take the commutative diagram (5.14) and restrict the upper left corner to

C∗
λ(Il(P )) ⊆ L(�2Il(P )×).

As I∗C∗
λ(Il(P ))I = C∗

λ(P ) by Lemma 5.6.11, and because of (5.15), we obtain the
commutative diagram

C∗
λ(Il(P ))

I∗ � I ��

ΘIl(P )

��

C∗
λ(P )

ΘP

��
C∗(JP )

I∗ � I �� Dλ(P )

(5.16)

As the vertical arrows are faithful, it is now easy to see that if the lower horizontal
arrow is faithful, the upper horizontal arrow has to be faithful as well. This proves
our corollary. �
Remark 5.6.14. The condition (5.15), i.e.,

ΘIl(P )(C
∗
λ(Il(P ))) = C∗(JP ),
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implies that

C∗(JP ) = C∗
λ(Il(P )) ∩ �∞(Il(P )×),

and

Dλ(P ) = C∗
λ(P ) ∩ �∞(P ).

This is because we always have

C∗(JP ) ⊆ C∗
λ(Il(P )) ∩ �∞(Il(P )×) ⊆ ΘIl(P )(C

∗
λ(Il(P ))), (5.17)

and

Dλ(P ) ⊆ C∗
λ(P ) ∩ �∞(P ) ⊆ ΘP (C

∗
λ(P )), (5.18)

and (5.15) implies that all these inclusions are equalities in (5.17), and also in
(5.18) because

Dλ(P )

= I∗ C∗(JP ) I
(5.15)
= I∗ ΘIl(P )(C

∗
λ(Il(P ))) I = ΘP (I

∗ C∗
λ(Il(P )) I)

= ΘP (C
∗
λ(P )).

Here we used commutativity of the diagram in (5.16) and Lemma 5.6.11.

It remains to find out when condition (5.15) holds. We follow [Nor14, §3.2]. Let
us introduce the following

Definition 5.6.15. An inverse semigroup S is called E∗-unitary if for every s ∈ S,
we must have s ∈ E if there exists x ∈ S× with sx = x.

Remark 5.6.16. If there exists an idempotent pure partial homomorphism σ : S× →
G to some group G, then S is E∗-unitary. This is because if we are given s ∈ S,
and there exists x ∈ S× with sx = x, then σ(x) = σ(s)σ(x), so that σ(s) = e,
where e is the identity element in G. Since σ is idempotent pure, s must lie in E.

Now we apply Lemma 5.6.12 to X = S×. Then we get a faithful conditional
expectation

ΘS× : L(�2S×) � �∞(S×),

and we may apply it to elements in C∗
λ(S).

Lemma 5.6.17. In the situation above, our inverse semigroup S is E∗-unitary if
and only if for every s ∈ S, we always have

ΘS×(λs) = 0

or

s ∈ E and ΘS×(λs) = λs.
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Proof. For “⇒”, assume that ΘS×(λs) �= 0. This is equivalent to saying that there
exists x ∈ S× with sx = x. But since S is E∗-unitary, this implies s ∈ E. And
since λs lies in �∞(S) for all s ∈ E, we must have ΘS×(λs) = λs.

Conversely, for “⇐”, take s ∈ S and suppose that there is x ∈ S× with sx = x.
Then sxx−1 = xx−1, so that sxx−1 is idempotent, and we conclude that

s−1sxx−1 = (xx−1s−1)(sxx−1) = sxx−1 = xx−1,

i.e., s−1s ≥ xx−1. Hence
λs(δx) = δsx = δx.

Hence it follows that ΘS×(λs) �= 0, and this implies, by assumption, that s lies in
E. �
In particular, we can draw the following conclusion.

Corollary 5.6.18. If S is an E∗-unitary inverse semigroup, then ΘS×(C∗
λ(S)) =

C∗(E).

Combining Corollary 5.6.13, Remark 5.6.14, Corollary 5.6.18, Remark 5.6.16 and
the observation that Il(P ) admits an idempotent pure partial homomorphism to
a group if P embeds into a group (see §5.5.1), we obtain

Corollary 5.6.19. Assume that P is a semigroup that embeds into a group G. Then
condition (5.15) holds, i.e.,

ΘIl(P )(C
∗
λ(Il(P ))) = C∗(JP ),

and the ∗-homomorphism

C∗
λ(Il(P ))→ C∗

λ(P ), T �→ I∗T I

from Lemma 5.6.11 is an isomorphism if and only if its restriction to C∗(JP ),

C∗(JP ) � Dλ(P ), T �→ I∗T I,

is an isomorphism.
Moreover,

C∗(JP ) = C∗
λ(Il(P )) ∩ �∞(Il(P )×),

and
Dλ(P ) = C∗

λ(P ) ∩ �∞(P ). (5.19)

Corollary 5.6.19 prompts the question when the ∗-homomorphism

C∗(JP ) � Dλ(P ), T �→ I∗T I,

is an isomorphism. Note that both C∗(JP ) and Dλ(P ) are generated by a family
of commuting projections, closed under multiplication, and our ∗-homomorphism
sends generator to generator, i.e., λX to 1X for all X ∈ JP . Let us now investigate
when such a ∗-homomorphism is an isomorphism.
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5.6.4 C∗-algebras generated by semigroups of projections

We basically follow [Li12, §2.6] in this subsection.

If we think of elements of an inverse semigroup as partial isometries on a Hilbert
space, then the semilattice of idempotents is a family of commuting projections,
closed under multiplication, or in other words, a semigroup of projections.

Let us consider the general setting of a semilattice E of idempotents, i.e., E is
an abelian semigroup consisting of idempotents. Suppose that D is a C∗-algebra
generated by a multiplicatively closed family {de : e ∈ E} of projections such that

E → D, e �→ de

is a semigroup homomorphism.

We make the following easy observation:

Lemma 5.6.20. For every finite subset F of E, there exists a projection in D,
denoted by

∨
f∈F df , which is the smallest projection dominating all the projections

df , f ∈ F .

Moreover, with E(F ) denoting the subsemigroup of E generated by F ,
∨

f∈F df
lies in

span({de : e ∈ E(F )}).
Just to be clear, the projection

∨
f∈F df is uniquely characterized by

df ≤
∨
f∈F

df for all f ∈ F,

and whenever a projection d ∈ D satisfies

df ≤ d for all f ∈ F,

then we must have ∨
f∈F

df ≤ d.

Proof. We proceed inductively on the cardinality of F . The case |F | = 1 is trivial.
Now assume that our claim holds for a finite subset F , and take an arbitrary

element f̃ ∈ E. We want to check our claim for F ∪
{
f̃
}
. Consider the element

∨
f∈F

df + df̃ −
⎛⎝∨

f∈F

df

⎞⎠ · df̃ . (5.20)

It is easy to see that this is a projection in D, which dominates all the df , f ∈ F ,
as well as df̃ . Moreover, if d is a projection in D that dominates all the df , f ∈ F ,
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and also df̃ , then d obviously also dominates the projection in (5.20). Furthermore,
since

∨
f∈F df lies in

span({de : e ∈ E(F )})
by induction hypothesis, the projection in (5.20) lies in

span(
{
de : e ∈ E(F ∪

{
f̃
}
)
}
). �

As above, let E be a semilattice of idempotents. Suppose that D is a C∗-algebra
generated by projections {de : e ∈ E} such that d0 = 0 if 0 ∈ E and def = dedf
for all e, f ∈ E. We prove the following result about ∗-homomorphisms out of D.

Proposition 5.6.21. Let B be a C∗-algebra containing a semigroup of projections
{be : e ∈ E} such that b0 = 0 if 0 ∈ E and bef = bebf for all e, f ∈ E.

There exists a ∗-homomorphism D → B sending de to be for all e ∈ E if and only
of for every e ∈ E and every finite subset F ⊆ E such that f 
 e for all f ∈ F ,
the equation

de =
∨
f∈F

df in D

implies that

be =
∨
f∈F

bf in B.

In that case, the kernel of the ∗-homomorphism

D → B, de → be

is generated by⎧⎨⎩de −
∨
f∈F

df ∈ D : e ∈ E, F ⊆ {f ∈ E : f 
 e} finite, be =
∨
f∈F

bf in B

⎫⎬⎭ .

Proof. Let us start with the first part. Our condition is certainly a necessary
condition for the existence of a ∗-homomorphism D → B, de → be. To prove that
it is also sufficient, write E as an increasing union of finite subsemigroups Ei, i.e.,

E =
⋃
i

Ei.

Let Di := C∗({de : e ∈ Ei}). Obviously,

D =
⋃
i

Di.
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For every e ∈ Ei, let Fe := {f ∈ Ei : f 
 e}. Then, by Lemma 5.6.20,

de −
∨

f∈Fe

df

is a projection in Di. It is easy to see that⎧⎨⎩de −
∨

f∈Fe

df : e ∈ Ei

⎫⎬⎭
is a family of pairwise orthogonal projections which generates Di. Moreover, it is
also easy to see that ⎧⎨⎩be −

∨
f∈Fe

bf : e ∈ Ei

⎫⎬⎭
is a family of pairwise orthogonal projections in B. Hence it follows that there
exists a ∗-homomorphism Di → B sending

de −
∨

f∈Fe

df

to

be −
∨

f∈Fe

bf

for all e ∈ Ei if and only if

de −
∨

f∈Fe

df = 0 in Di

implies

be −
∨

f∈Fe

bf = 0 in B,

for all e ∈ Ei. But this is precisely the condition in the first part of our proposition.
Moreover, it is easy to see that the ∗-homomorphism Di → B we just constructed
sends de to be for all e ∈ Ei. Hence these ∗-homomorphisms, taken together for all
i, are compatible and give rise to the desired ∗-homomorphism from D =

⋃
i Di

to B.

For the second part of the proposition, let I be the ideal of D generated by⎧⎨⎩de −
∨
f∈F

df ∈ D : F ⊆ E finite, be =
∨
f∈F

bf in B

⎫⎬⎭ .
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Obviously, I is contained in the kernel of D → B, de �→ be. It remains to show
that the induced ∗-homomorphism D/I → B is injective. With the Dis as above,
set Ii := I ∩Di. Obviously, we have

I =
⋃
i

Ii and D/I =
⋃
i

Di/Ii.

Hence it suffices to prove that the restriction Di/Ii → B is injective, or in other
words, that the ∗-homomorphism Di → B we constructed above has kernel equal
to Ii. But we have seen that⎧⎨⎩de −

∨
f∈Fe

df : e ∈ Ei

⎫⎬⎭
is a family of pairwise orthogonal projections that generates Di. So the kernel is
generated by those projections

de −
∨

f∈Fe

df

for which we have

be −
∨

f∈Fe

bf = 0 in B.

Therefore, the kernel is Ii, as required. �

As before, let D be a C∗-algebra generated by a semigroup {de : e ∈ E} of projec-
tions such that d0 = 0 if 0 ∈ E and def = dedf for all e, f ∈ E. We set E× := E
if E is a semilattice without zero, and E× := E \ {0} if 0 ∈ E.

Proposition 5.6.22. The following are equivalent:

(i) Our C∗-algebra D is universal for representations of E by projections, i.e.,
we have an isomorphism

D
∼=−→ C∗({ve : e ∈ E} | v∗e = ve = v2e , v0 = 0 if 0 ∈ E, vef = vevf )

sending de to ve.

(ii) For every e ∈ E and every finite subset F ⊆ E with f 
 e for all f ∈ F , we
have ∨

f∈F

df 
 de.

(iii) The projections {de : e ∈ E×} are linearly independent in D.
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Proof. Obviously, (iii) implies (ii).

Moreover, (ii) implies (i) by Proposition 5.6.21, because if (ii) holds, we can never
have

de =
∨
f∈F

df in D

for any finite subset F ⊆ E with f 
 e for all f ∈ F .

It remains to prove that (i) implies (iii). First of all, consider the left regular
representation λ on �2E× as in §5.5.1. It is given by λeδx = δx if e ≥ x and
λeδx = 0 if e 	 x. By the universal property of D, there is a ∗-homomorphism
D → L(�2E×) sending de to λe. But it is easy to see that λe = λf if and only if
e = f . Hence it follows that de = df if and only if e = f .

Furthermore, again by the universal property ofD, there exists a ∗-homomorphism

D → D ⊗D, de �→ de ⊗ de.

Let

D = span({de : e ∈ E}) ⊆ D.

Restricting the ∗-homomorphism D → D ⊗ D from above to D, we obtain a
homomorphism Δ : D → D � D that is determined by de �→ de ⊗ de for every
e ∈ E.

We now deduce from the existence of such a homomorphism Δ that {de : e ∈ E×}
is a C-basis of D. As {de : e ∈ E×} generates D as a C-vector space, we can always
find a subset S of E× such that {de : e ∈ S} is a C-basis for D. It then follows
that {de ⊗ df : e, f ∈ S} is a C-basis of D �D.
Now take e ∈ E×. We can find finitely many ei ∈ S and αi ∈ C with de =

∑
i αidei .

Applying Δ yields∑
i,j

αiαjdei ⊗ dej = de ⊗ de = Δ(de) =
∑
i

αiΔ(dei) =
∑
i

αidei ⊗ dei .

Hence it follows that among the αi, there can only be one nonzero coefficient which
must be 1. The corresponding vector dei must then coincide with de. This implies
e = ei ∈ S, i.e., {de : e ∈ E×} is a C-basis of D. This proves (iii). �

Now let S be an inverse semigroup with a semilattice of idempotents E, and let
C∗

λ(S) be its reduced C∗-algebra. Recall that we defined

C∗(E) := {λe : e ∈ E} .

Lemma 5.6.23. The C∗-algebra C∗(E) is universal for representations of E by
projections.
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Proof. By Proposition 5.6.22, all we have to show is that for every e ∈ E and
every finite subset F ⊆ E with f 
 e for all f ∈ F , we have∨

f∈F

λf 
 λe.

But this follows from λf (δe) = 0 for all f ∈ E with f 
 e, while λe(δe) = δe for
all e ∈ E×. �
It turns out that C∗(E) can be identified with the corresponding sub-C∗-algebra
of the full C∗-algebra of S.

Corollary 5.6.24. We have an isomorphism

C∗(E)
∼=−→ C∗({ve : e ∈ E}) ⊆ C∗(S)

sending λe to ve for all e ∈ E.

Proof. By Lemma 5.6.23, there is a ∗-homomorphism

C∗(E)
∼=−→ C∗({ve : e ∈ E}) ⊆ C∗(S)

sending λe to ve for all e ∈ E. It is an isomorphism because the inverse is given by
restricting the left regular representation C∗(S) → C∗

λ(S) to C∗({ve : e ∈ E}) ⊆
C∗(S). �
This justifies why we denote the sub-C∗-algebra C∗({λe : e ∈ E}) of C∗

λ(S) by
C∗(E).

Corollary 5.6.25. We have a canonical identification Ê ∼= Spec (C∗(E)).

Proof. This is because by the universal property of C∗(E) (see Lemma 5.6.23),
there is a one-to-one correspondence between nonzero ∗-homomorphisms C∗(E)→
C and nonzero semigroup homomorphisms E → {0, 1} (sending 0 to 0 if 0 ∈
E). �
Now suppose that we have an inverse semigroup S with a semilattice of idem-
potents E, and that we have a surjective ∗-homomorphism C∗(E) → D sending
λe → de. Then D is a commutative C∗-algebra, and we can describe its spectrum
as follows:

Corollary 5.6.26. Viewing Spec (D) as a closed subspace of Ê, Spec (D) is given

by the subspace of all χ ∈ Ê with the property that whenever we have e ∈ E
with χ(e) = 1 and a finite subset F ⊆ E with f 
 e for every f ∈ F satisfying
de =

∨
f∈F df in D, then we must have χ(f) = 1 for some f ∈ F .

Proof. This is an immediate consequence of Proposition 5.6.21. �
Now let us suppose that we have a left cancellative semigroup P . We now apply
Corollary 5.6.26 and Proposition 5.6.22 to the situation where S = Il(P ), E = JP

and D = Dλ(P ) ⊆ C∗
λ(P ). First, we make the following easy observation:



222 Chapter 5. Semigroup C∗-algebras

Lemma 5.6.27. Suppose that we are given finitely many Xi ∈ JP . Then we have∨
i

1Xi = 1⋃
i Xi

in Dλ(P ) ⊆ �∞(P ).

The following follows immediately from Corollary 5.6.26:

Corollary 5.6.28. The spectrum ΩP = Spec (Dλ(P )) is given by the closed subspace

of ĴP consisting of all χ ∈ ĴP with the property that for all X ∈ JP with χ(X) = 1
and all X1, . . . , Xn ∈ JP with X =

⋃n
i=1 Xi in P , we must have χ(Xi) = 1 for

some 1 ≤ i ≤ n.

Proposition 5.6.22 yields in our situation:

Corollary 5.6.29. The following are equivalent:

• We have an isomorphism

Dλ(P )
∼=−→ C∗

⎛⎝{vX : X ∈ JP }
v∗X = vX = v2X ,
v0 = 0 if 0 ∈ JP ,
vX∩Y = vXvY )

⎞⎠ , 1X �→ vX .

• We have an isomorphism

C∗(E)
∼=−→ Dλ(P ), λX �→ 1X .

• For every X ∈ JP and all X1, . . . , Xn ∈ JP ,

X =
n⋃

i=1

Xi

implies that X = Xi for some 1 ≤ i ≤ n.

• The projections
{
1X : X ∈ J×

P

}
are linearly independent in Dλ(P ).

5.6.5 The independence condition

Corollary 5.6.29 justifies the following:

Definition 5.6.30. We say that our left cancellative semigroup P satisfies the
independence condition (or simply independence) if for every X ∈ JP and all
X1, . . . , Xn ∈ JP ,

X =

n⋃
i=1

Xi

implies that X = Xi for some 1 ≤ i ≤ n.

Let us now discuss examples of left cancellative semigroups that satisfy indepen-
dence, and also some examples that do not. We start with the following
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Lemma 5.6.31. Suppose that P is a left cancellative semigroup with identity e. If
every nonempty constructible right ideal of P is principal, i.e.,

J×
P = {pP : p ∈ P} ,

then P satisfies independence.

Proof. Suppose that

pP =

n⋃
i=1

piP

for some p, p1, . . . , pn ∈ P . Then, since P has an identity, the element p lies in
pP , hence we must have p ∈ piP for some 1 ≤ i ≤ n. But then, since piP is a
right ideal, we conclude that pP ⊆ piP . Hence it follows that pP = piP , since we
always have pP ⊇ piP . �
When are all nonempty constructible right ideals principal? Here is a necessary
and sufficient condition:

Lemma 5.6.32. For a left cancellative semigroup P (with or without identity), we
have

J×
P = {pP : p ∈ P}

if and only if the following criterion holds:

For all p, q ∈ P with pP ∩ qP �= ∅, there exists r ∈ P with pP ∩ qP = rP .

Proof. Our criterion is certainly necessary, since JP is a semilattice, hence closed
under intersections. To show that our condition is also sufficient, we first observe
that JP can be characterized as the smallest family of subsets of P containing P
itself and closed under left multiplication, i.e.,

X ∈ JP , p ∈ P ⇒ p(X) ∈ cJP ,

as well as pre-images under left multiplication, i.e.,

X ∈ JP , q ∈ P ⇒ q−1(X) ∈ cJP .

Now {pP : p ∈ P} is obviously closed under left multiplication. Hence it suffices
to prove that principal right ideals are also closed under pre-images under left
multiplication, up to ∅. Take p, q ∈ P . We always have

q−1(pP ) = q−1(pP ∩ qP ).

Therefore, if pP ∩qP = ∅, then q−1(pP ) = ∅. If pP ∩qP �= ∅, then by our criterion,
there exists r ∈ P with pP ∩ qP = rP . As rP ⊆ qP , we must have r ∈ qP , so that
we can write r = qx for some x ∈ P . Therefore, we conclude that

q−1(pP ) = q−1(pP ∩ qP ) = q−1(rP ) = q−1(qxP ) = xP. �
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For instance, positive cones in totally ordered groups (as in §5.3.2) always satisfy
independence. This is because if P is such a positive cone, then for p, q ∈ P , we
have pP ∩ qP = pP if p ≥ q and pP ∩ qP = qP if p ≤ q. Hence, all constructible
right ideals are principal by Lemma 5.6.32.

Moreover, right-angled Artin monoids (see §5.3.3) satisfy independence. Actu-
ally, all nonempty constructible right ideals are principal, because the criterion
of Lemma 5.6.32 is true. This will come out of our general discussion of graph
products in §5.9.
To discuss more examples, let us explain a general method for verifying the crite-
rion in Lemma 5.6.32. This is based on [Deh03].

Suppose that we are given a monoid P defined by a presentation, i.e., generators
Σ and relations R, so that P = 〈Σ |R〉+. Assume that all the relations in R are
of the form w1 = w2, where w1 and w2 are formal words in Σ. Now we introduce
formal symbols {

σ−1 : σ ∈ Σ
}
=: Σ−1,

and look at formal words in Σ and Σ−1. For two such words w and w′, we write
w �R w′ if w can be transformed into w′ be finitely many of the following two
possible steps:

• Delete σ−1σ.

• Replace σ−1
i σj by uv−1 if σiu = σjv is a relation in R.

We then say that our presentation (Σ, R) is complete for �R if for two formal
words u and v in Σ, we have

u−1v �R ε (where ε is the empty word)

if and only if u and v define the same element in our monoid P = 〈Σ |R〉+.
There are criteria on (Σ, R) which ensure completeness for �R (see [Deh03]).

If completeness for �R is given, then we can read of properties of our monoid
P = 〈Σ |R〉+ from the presentation (Σ, R). We refer the reader to [Deh03] for a
general and more complete discussion. For our purposes, the following observation
is important: If (Σ, R) is complete for �R, then P = 〈Σ |R〉+ has the property
that

for all p, q ∈ P with pP ∩ qP �= ∅, there exists r ∈ P with pP ∩ qP = rP

if and only if

for all σi, σj ∈ Σ, there is at most one relation of the form σiu = σjv in R.

Coming back to examples, it turns out that the presentations for Artin monoids,
discussed in §5.3.3, are complete for �R. Also, the presentations for Baumslag–
Solitar monoids B+

k,l, for k, l ≥ 1, are complete for �R. Furthermore, the presen-

tation for the Thompson monoid F+ is complete for �R.
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Following our discussion above, it is now easy to see that for Artin monoids, the
Baumslag–Solitar monoids B+

k,l, for k, l ≥ 1, and the Thompson monoid F+, all
nonempty constructible right ideals are principal. In particular, all these examples
satisfy independence.

For semigroups coming from rings, we have the following result:

Lemma 5.6.33. Let R be a principal ideal domain. For both semigroups M×
n (R)

and Mn(R)�M×
n (R), every nonempty constructible right ideal is principal.

For the proof, we need the following

Lemma 5.6.34. For every a, c in M×
n (R), there exists x ∈M×

n (R) such that

aMn(R) ∩ cMn(R) = xMn(R) and aM×
n (R) ∩ cM×

n (R) = xM×
n (R).

Proof. For brevity, we write M for Mn(R) and M× for M×
n (R).

We will use the observation that for every z ∈M×, there exist u and v in GLn(R)
such that uzv is a diagonal matrix (see, for instance, [Kap49]).

To prove our lemma, let us first of all define x. Let c̃ ∈ M× satisfy cc̃ = c̃c =
det(c) · 1n (1n is the identity matrix). Choose u and v in GLn(R) with

c̃a = u · diag(α1, . . . , αn) · v,
where diag(α1, . . . , αn) is the diagonal matrix with α1, . . . , αn on the diagonal.
For all 1 ≤ i ≤ n, set βi := lcm(αi, det(c)) and γi := det(c)−1βi. Then our claim
is that we can choose x as x = c · u · diag(γ1, . . . , γn). In the following, we verify
our claim:

aM ∩ cM = c̃−1(c̃aM ∩ (det(c) · 1n)M)

= c̃−1((u · diag(α1, . . . , αn) · v)M ∩ (det(c) · 1n)M)

= c̃−1u(diag(α1, . . . , αn)M ∩ (det(c) · 1n)M)

= c̃−1 · u · diag(β1, . . . , βn)M

= c̃−1(det(c) · 1n) · u · diag(γ1, . . . , γn)M
= c · u · diag(γ1, . . . , γn)M.

Thus, we have shown aM ∩ cM = xM . Exactly the same computation shows that
aM× ∩ cM× = xM×. �
Proof of Lemma 5.6.33. For M×

n (R), our claim is certainly a consequence of the
Lemma 5.6.34. For Mn(R) � M×

n (R), first note that given (b, a) and (d, c) in
Mn(R)�M×

n (R), we have

(b, a)(Mn(R)�M×
n (R)) = (b+ aMn(R))× (aM×

n (R)),

(d, c)(Mn(R)�M×
n (R)) = (d+ cMn(R))× (cM×

n (R)).
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Moreover, the intersection

(b+ aMn(R)) ∩ (d+ cMn(R))

is either empty or of the form

y + (aMn(R) ∩ cMn(R))

for some y ∈Mn(R). Now Lemma 5.6.34 provides an element x ∈M×
n (R) with

aMn(R) ∩ cMn(R) = xMn(R) and aM×
n (R) ∩ cM×

n (R) = xM×
n (R).

Thus either

(b, a)(Mn(R)�M×
n (R)) ∩ (d, c)(Mn(R)�M×

n (R))

is empty or we obtain

(b, a)(Mn(R)�M×
n (R))∩(d, c)(Mn(R)�M×

n (R)) = (y, x)(Mn(R)�M×
n (R)). �

In general, however, given an integral domain R, the semigroups R× and R�R×

do not have the property that all nonempty constructible right ideals are principal.
For example, just take a number field with nontrivial class number, and let R be
its ring of algebraic integers. The property that all nonempty constructible right
ideals are principal, for R× or R � R×, translates to the property of the ring R
of being a principal ideal domain. But this is not the case if the class number is
bigger than 1. However, for all rings of algebraic integers, and more generally, for
all Krull rings R, the semigroups R× and R�R× do satisfy independence.

Let R be an integral domain. Recall that we introduced the set I(R) of con-
structible ideals in §5.4.3. It is now easy to see that

JR× =
{
I× : I ∈ I(R)

}
and

JR�R× =
{
(r + I)× I× : r ∈ R, a, I ∈ I(R)

}
,

where I× = I \ {0}.
Let us make the following observation about the relationship between the inde-
pendence condition for multiplicative semigroups and ax+ b-semigroups:

Lemma 5.6.35. Let R be an integral domain. Then R× satisfies independence if
and only if R�R× satisfies independence.

Proof. If JR�R× is not independent, then we have a nontrivial equation of the
form

(r + I)� I× =

n⋃
i=1

(ri + Ii)× I×i with (ri + Ii)× I×i � (r + I)� I×.
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It is clear that
(ri + Ii)× I×i � (r + I)� I×

implies that Ii � I, for all 1 ≤ i ≤ n. Projecting onto the second coordinate of
R×R×, we obtain

I× =

n⋃
i=1

I×i .

This means that R× does not satisfy independence.

Conversely, assume that R× does not satisfy independence, so that we have a
nontrivial equation of the form

I× =

n⋃
i=1

I×i

with I×i � I×. Hence it follows that

I =
n⋃

i=1

Ii,

and Ii � I for all 1 ≤ i ≤ n. By [Got94, Theorem 18], we may assume without
loss of generality that

[I : Ii] <∞ for all 1 ≤ i ≤ n.

But then we have

I × I× =

n⋃
i=1

⋃
r+Ii∈I/Ii

(r + Ii)× I×i .

This shows that JR�R× does not satisfy independence. �
Lemma 5.6.36. For a Krull ring R, both semigroups R× and R�R× satisfy inde-
pendence.

Proof. We use the same notations as in §5.4.3.
Let Q be the quotient field of R, and let I, I1, . . . , In be ideals in I(R) with Ii � I
for all 1 ≤ i ≤ n. Then for every 1 ≤ i ≤ n, there exists pi ∈ P(R) with

vpi(Ii) > vpi(I).

By Proposition 5.4.13, there exists x ∈ Q× with

vpi
(x) = vpi

(I) for all 1 ≤ i ≤ n

and
vp(x) ≥ vp(I) for all p ∈ P(R) \ {p1, . . . , pr} .
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Thus x lies in I, but does not lie in Ii for any 1 ≤ i ≤ n. Therefore,

n⋃
i=1

Ii � I,

and thus
n⋃

i=1

I×i � I×.

This shows that R× satisfies independence. By Lemma 5.6.35, R�R× must satisfy
independence as well. �

Let us present an example of a semigroup coming from a ring that does not
satisfy independence. Consider the ring R := Z[i

√
3]. Its quotient field is given by

Q = Q[i
√
3]. R is not integrally closed in Q. Let α := 1

2 (1+ i
√
3). α is a primitive

sixth root of unity. It is clear that α /∈ R. But 2α = 1 + i
√
3 lies in R.

The integral closure of R is given by R̄ := Z[α]. We claim that

2R̄ = 2−1(2αR) = 2−1(1 + i
√
3)R.

To prove “⊆”, observe that R̄ = Z · 1 + Z · α. Now

2 · (2 · 1) = 4 = (1 + i
√
3) · (1− i

√
3) ∈ (1 + i

√
3)R,

and

2 · (2α) = 2 · (1 + i
√
3) ∈ (1 + i

√
3)R.

For “⊇”, let x = m+ n · i√3 be in R such that 2x ∈ 2αR. As

2αR = (1+i
√
3)R = Z·(1+i

√
3)+Z·((1+i

√
3)i
√
3) = Z·(1+i

√
3)+Z·(−3+i

√
3),

there exist k, l ∈ Z with

2x = 2m+ 2n · i
√
3 = k(1 + i

√
3) + l(−3 + i

√
3) = (k − 3l) + (k + l)(i

√
3),

so that 2m = k − 3l and 2n = k + l. It follows that 2n = 2m + 4l, and thus
n = m+ 2l or m = n− 2l. We conclude that

x = −2l + n · (1 + i
√
3) ∈ 2R̄.

This shows that 2R̄ = 2−1(1 + i
√
3)R. Hence it follows that 2R̄ is a constructible

(ring-theoretic) ideal of R.

We have R̄ = R ∪ αR ∪ α2R in Q. This is because

R = Z+ Z(2α), αR = Zα+ Z(2α2) = Zα+ Z(2α− 2) and α2R = Z(α− 1) + Z2.
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Now take x = m+ nα ∈ R̄ with m,n ∈ Z. If n is even, then x is contained in R.
If n is odd and m is even, then write l = m

2 . We have

x = (n+m) · α+ (−l) · (2α− 2) ∈ αR.

Finally, if n is odd and m is odd, we write k = m+n
2 . Then

x = n · (α− 1) + k · 2 ∈ α2R.

This shows R̄ = R ∪ αR ∪ α2R. Therefore,

2R̄ = 2R ∪ 2αR ∪ 2α2R = 2R ∪ (1 + i
√
3)R ∪ (−1 + i

√
3)R.

But 2R � 2R̄, (1+ i
√
3)R � 2R̄ and (−1+ i

√
3)R � 2R̄. This means that R× does

not satisfy independence. By Lemma 5.6.35, R�R× does not satisfy independence,
either.

Let us present another example of a left cancellative semigroup not satisfying
independence. Consider P = N \ {1}. Clearly, P is a semigroup under addition.
We have the following constructible right ideals

2 + P = {2, 4, 5, 6, . . .} and 3 + P = {3, 5, 6, 7, . . .} .

Hence
5 + N = {5, 6, 7, . . .} = (2 + P ) ∩ (3 + P )

is also a constructible right ideal of P . Moreover, it is clear that

5 + N = (5 + P ) ∪ (6 + P ).

But since 5 + P � 5 + N and 6 + P � 5 + N, it follows that P does not satisfy
independence.

A similar argument shows that for every numerical semigroup of the form N \ F ,
where F is a nonempty finite subset of N such that N \ F is still closed under
addition, the independence condition does not hold. The reader may also com-
pare Chapter 7 for more examples of a similar kind (which are two-dimensional
versions), where the independence condition typically fails.

Now let us come back to the comparison of reduced C∗-algebras for left can-
cellative semigroups and their left inverse hulls. Combining Corollary 5.6.19 and
Proposition 5.6.29, we get:

Proposition 5.6.37. Let P be a subsemigroup of a group. The ∗-homomorphism

C∗
λ(Il(P ))→ C∗

λ(P ), λp �→ Vp

is an isomorphism if and only if P satisfies independence.
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5.6.6 Construction of full semigroup C∗-algebras

Proposition 5.6.37 explains when we can identify C∗
λ(Il(P )) and C∗

λ(P ) in a canon-
ical way, in case P embeds into a group. Motivated by this result, we construct
full semigroup C∗-algebras.

Definition 5.6.38. Let P be a left cancellative semigroup, and Il(P ) its left inverse
hull. We define the full semigroup C∗-algebra of P as the full inverse semigroup
C∗-algebra of Il(P ), i.e.,

C∗(P ) := C∗(Il(P )).

Recall that C∗(Il(P )) is the C∗-algebra universal for ∗-representations of the in-
verse semigroup Il(P ) by partial isometries (see §5.5.1).
As we saw in §5.5.1, there is a canonical ∗-homomorphism

C∗(Il(P ))→ C∗
λ(Il(P )), vp �→ λp.

Composing with the ∗-homomorphism

C∗
λ(Il(P ))→ C∗

λ(P ), λp �→ Vp,

we obtain a canonical ∗-homomorphism

C∗(P )→ C∗
λ(P ), vp �→ Vp.

We call it the left regular representation of C∗(P ).

Remark 5.6.39. It is clear that if the left regular representation of C∗(P ) is an
isomorphism, then P must satisfy independence. This is because the restriction of
C∗(P )→ C∗

λ(P ) to C∗({vX : X ∈ JP }) is the composition

C∗({vX : X ∈ JP })→ C∗(E)→ Dλ(P ),

and we know that the first ∗-homomorphism is always an isomorphism (see Corol-
lary 5.6.24), while the second one is an isomorphism if and only if P satisfies
independence (see Corollary 5.6.29).

Given a concrete left cancellative semigroup P , it is usually possible to find a
natural and simple presentation for C∗(P ) as a universal C∗-algebra generated by
isometries and projections, subject to relations. Let us discuss some examples.

For the example P = N, the full semigroup C∗-algebra C∗(N) is the universal
unital C∗-algebra generated by one isometry,

C∗(N) ∼= C∗(v | v∗v = 1).

For P = N × N, C∗(N × N) is the universal unital C∗-algebra generated by two
isometries that ∗-commute, i.e.,

C∗(N× N) ∼= C∗(va, vb | v∗ava = 1 = v∗bvb, vavb = vbva, v
∗
avb = vbv

∗
a).
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Note that this C∗-algebra is a quotient of

C∗(va, vb | v∗ava = 1 = v∗bvb, vavb = vbva).

As we remarked in §5.6.2, the latter C∗-algebra is not nuclear by [Mur96, Theo-
rem 6.2]. However, as we will see in §5.6.8, this quotient, and hence C∗(N×N), is
nuclear.

For the nonabelian free monoid on two generators P = N ∗ N, C∗(N ∗ N) is the
universal unital C∗-algebra generated by two isometries with orthogonal range
projections, i.e.,

C∗(N ∗ N) ∼= C∗(va, vb | v∗ava = 1 = v∗bvb, vav
∗
avbv

∗
b = 0).

More generally, for a right-angled Artin monoid P , a natural and simple presen-
tation for C∗(P ) has been established in [CL02] (see also [ELR16]).

Let us also mention that for a class of left cancellative semigroups, full semigroup
C∗-algebras can be identified in a canonical way with semigroup crossed products
by endomorphisms. Let P be a left cancellative semigroup with constructible right
ideals JP . We then have a natural action α of P by endomorphisms on

D(P ) := C∗({vX : X ∈ JP }) ⊆ C∗(P ),

where p ∈ P acts by the endomorphism

αp : D(P )→ D(P ), vX �→ vpX .

If P is right reversible, i.e., Pp ∩ Pq �= ∅ for all p, q ∈ P , or if every nonempty
constructible right ideal of P is principal, i.e., J×

P = {pP : p ∈ P}, then we have
a canonical isomorphism

C∗(P ) ∼= D(P )�α P.

We refer to [Li12, §3] for more details. Writing out the definition of the crossed
product, we get the following presentation:

C∗(P ) ∼= C∗

⎛⎜⎜⎜⎜⎝{eX : X ∈ JP } ∪ {vp : p ∈ P}

e∗X = eX = e2X ; v∗pvp = 1;
e∅ = 0 if ∅ ∈ JP , eP = 1,

eX∩Y = eX · eY ;
vpq = vpvq;

vpeXv∗p = epX

⎞⎟⎟⎟⎟⎠
In particular, for an integral domain R, we obtain the following presentation for
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the full semigroup C∗-algebra of R�R×:

C∗(R�R×)

∼= C∗

⎛⎜⎜⎜⎜⎜⎜⎝
{eI : I ∈ I(R)}
∪{ub : b ∈ R

}
∪{sa : a ∈ R×}

e∗I = eI = e2I ;
ub(ub)∗ = 1 = (ub)∗ub; v∗ava = 1

eR = 1, eI∩J = eI · eJ ;
sac = sasc, u

b+d = ubud, sau
b = uabsa;

saeIs
∗
a = eaI ;

ubeI = eIu
b if b ∈ I, eIu

beI = 0 if b /∈ I

⎞⎟⎟⎟⎟⎟⎟⎠
We refer to [CDL13, §2] as well as [Li12, §2.4].
In order to explain how this definition of full semigroup C∗-algebras is related to
previous constructions in the literature, we mention first of all that our definition
generalizes Nica’s construction in the quasi-lattice ordered case [Nic92]. Moreover,
in the case of ax+ b-semigroups over rings of algebraic integers (or more generally
Dedekind domains), our definition includes the construction in [CDL13]. In the
case of subsemigroups of groups, our definition coincides with the construction,
denoted by C∗

s (P ), in [Li12, Definition 3.2]. Last but not least, we point out that
in comparison with another construction in [Li12, Definition 2.2], our definition
is always a quotient of the construction in [Li12, Definition 2.2], and in certain
cases (see [Li12, §3.1] for details), our definition is actually isomorphic to the
construction in [Li12, Definition 2.2].

5.6.7 Crossed product and groupoid C∗-algebra descriptions of re-
duced semigroup C∗-algebras

We now specialize to the case where our semigroup P embeds into a group G.
To explain the connection between amenability and nuclearity, we would like to
write the reduced C∗-algebra C∗

λ(P ) of P as a reduced crossed product attached
to a partial dynamical system, and hence as a reduced groupoid C∗-algebra. Let
us start with the underlying partial dynamical system.

We already saw that ΩP = Spec (Dλ(P )) may be identified with the subspace of

ĴP given by the characters χ with the property that for all X,X1, . . . , Xn in JP

with X =
⋃n

i=1 Xi, χ(X) = 1 implies that χ(Xi) = 1 for some 1 ≤ i ≤ n (see
Corollary 5.6.28).

Moreover, we introduced the partial dynamical system G � ĴP in §5.5.1. It is
given as follows: Every g ∈ G acts on

Ug−1 =
{
χ ∈ ĴP : χ(s−1s) = 1 for some s ∈ Il(P )× with σ(s) = g

}
,

and for χ ∈ Ug−1 , g.χ = χ(s−1 # s) where s ∈ Il(P )× is an element satisfying
χ(s−1s) = 1 and σ(s) = g.

We now claim:
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Lemma 5.6.40. ΩP is an G-invariant subspace of ĴP .

Proof. Take g ∈ G and χ ∈ Ug−1 ∩ ΩP , and suppose that s ∈ Il(P )× satisfies
χ(s−1s) = 1 and σ(s) = g. We have to show that g.χ = χ(s−1 # s) lies in ΩP .

Suppose that X,X1, . . . , Xn in JP satisfy X =
⋃n

i=1 Xi. Then, identifying s−1s
with dom(s), we have

s−1Xs = (g−1X) ∩ dom(s) =

n⋃
i=1

(g−1Xi) ∩ dom(s) =

n⋃
i=1

s−1Xis.

Hence, if g.χ(X) = 1, then χ(s−1Xs) = 1, and hence g.χ(Xi) = χ(s−1Xis) = 1
for some 1 ≤ i ≤ n. This shows that g.χ lies in ΩP . �
Hence we obtain a partial dynamical system G � ΩP by restricting G � ĴP to
ΩP . A moment’s thought shows that this partial dynamical system coincides with
the one introduced in §5.5.2.
If our group G were exact, then this observation, together with Corollary 5.5.23,
would immediately imply that C∗

λ(P ) ∼= C(ΩP )�r G with respect to the G-action
G � ΩP . However, it turns out that we do not need exactness here.

Theorem 5.6.41. There is a canonical isomorphism C∗
λ(P ) ∼= C(ΩP ) �r G deter-

mined by Vp �→Wp. Here Wg denote the canonical partial isometries in C(ΩP )�r

G.

Proof. We work with the dual action G � Dλ(P ) as described in §5.5.2. Our
strategy is to describe both C∗

λ(P ) and Dλ(P ) �r G as reduced (cross-sectional)
algebras of Fell bundles, and then to identify the underlying Fell bundles.

Let us start with C∗
λ(P ). As in §5.5.1, we think of Il(P ) as partial isometries.

Recall that we defined the partial homomorphism σ : Il(P )× → G in §5.5.1. Now
we set

Bg := span(σ−1(g))

for every g ∈ G. We want to see that (Bg)g∈G is a grading for C∗
λ(P ), in the sense

of [Exe97, Definition 3.1]. Conditions (i) and (ii) are obviously satisfied. For (iii),
we use the faithful conditional expectation ΘP : C∗

λ(P ) � Dλ(P ) = Be from
§5.6.3. Given a finite sum

x =
∑
g

xg ∈ C∗
λ(P )

of elements xg ∈ Bg such that x = 0, we conclude that

0 = x∗x =
∑
g,h

x∗
gxh,

and hence
0 = ΘP (x

∗x) =
∑
g

x∗
gxg.
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Here we used that ΘP |Bg = 0 if g �= e. This implies that xg = 0 for all g. Therefore,
the subspaces Bg are independent. It is clear that the linear span of all the Bg is
dense in C∗

λ(P ). This proves (iii). If we let B be the Fell bundle given by (Bg)g∈G,
then [Exe97, Proposition 3.7] implies C∗

λ(P ) ∼= C∗
r (B) because ΘP : C∗

λ(P ) �
Dλ(P ) = Be is a faithful conditional expectation satisfying ΘP |Be = idBe and
ΘP |Bg = 0 if g �= e.

Let us also describe Dλ(P )�r G as a reduced algebra of a Fell bundle. We denote
by Wg the partial isometry in Dλ(P ) �r G corresponding to g ∈ G, and we set
B′

g := DgWg. Recall that we defined

Dg−1 = span(
{
V ∗V : V ∈ Il(P )×, σ(V ) = g

}
)

in §5.5.2. It is easy to check that (B′
g)g∈G satisfy (i), (ii) and (iii) in [Exe97,

Definition 3.1]. Moreover, B′
e = De = Dλ(P ), and it follows immediately from

the construction of the reduced partial crossed product that there is a faithful
conditional expectation Dλ(P )�r G � Dλ(P ) = B′

e which is identity on B′
e and

0 on B′
g for g �= e. Hence if we let B′ be the Fell bundle given by (B′

g)g∈G, then
[Exe97, Proposition 3.7] implies Dλ(P )�r G ∼= C∗

r (B′).

To identify C∗
λ(P ) and Dλ(P ) �r G, it now remains to identify B with B′. We

claim that the map

span({V : σ(V ) = g})→ span({V V ∗Wg : σ(V ) = g}),
∑
i

αiVi �→
∑
i

αiViV
∗
i Wg

is well defined and extends to an isometric isomorphism Bg → B′
g, for all g ∈ G.

All we have to show is that our map is isometric. We have∥∥∥∥∥∑
i

αiVi

∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑
i,j

αiαjViV
∗
j

∥∥∥∥∥∥
Dλ(P )

and ∥∥∥∥∥∑
i

αiViV
∗
i Wg

∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑
i,j

αiαjViV
∗
i VjV

∗
j

∥∥∥∥∥∥
Dλ(P )

.

Since Vi = ViV
∗
i λg and V ∗

j = λg−1VjV
∗
j , we have

ViV
∗
j = ViV

∗
i λgλg−1VjV

∗
j = ViV

∗
i VjV

∗
j .

Hence, indeed, ∥∥∥∥∥∑
i

αiVi

∥∥∥∥∥
2

=

∥∥∥∥∥∑
i

αiViV
∗
i Wg

∥∥∥∥∥
2

,

and we are done.
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All in all, we have proven that

C∗
λ(P ) ∼= C∗

r (B) ∼= C∗
r (B′) ∼= Dλ(P )�r G.

Our isomorphism sends Vp to VpV
∗
p Wp, but a straightforward computation shows

that actually, VpV
∗
p Wp = Wp for all p ∈ P . Thus the isomorphism we constructed

is given by Vp �→Wp for all p ∈ P . �
In particular, in combination with Theorem 5.5.21, we get an isomorphism

C∗
λ(P )

∼=−→ C∗
r (G� ΩP ), Vp �→ 1{p}×ΩP

. (5.21)

Together with Remark 5.5.19 and Lemma 5.5.22, we see that we obtain a commu-
tative diagram

C∗(P ) = C∗(Il(P ))
∼= ��

��

C∗(G� ĴP )

��
C∗

λ(Il(P ))
∼= ��

��

C∗
r (G� ĴP )

��
C∗

λ(P )
∼= �� C∗

r (G� ΩP )

(5.22)

Here the upper left vertical arrow is the left regular representation of C∗(Il(P )).
The lower left vertical arrow is the ∗-homomorphism provided by Lemma 5.6.11.
The upper right vertical arrow is the left regular representation of C∗(G � ĴP ).
The lower right vertical arrow is the canonical projection map; it corresponds to
the canonical map C(ĴP )�r G � C(Ω)�r G under the identification from Theo-
rem 5.5.21. The first horizontal arrow is the identifications from Theorem 5.5.20.
The second horizontal arrow is the isomorphism from Theorem 5.5.21. For both of
these horizontal arrows, we also need Lemma 5.5.22. The third horizontal arrow
is provided by the isomorphism (5.21).

Now we are ready to discuss the relationship between amenability and nuclearity
and thereby explain the strange phenomena mentioned at the beginning of §5.6.2.

5.6.8 Amenability of semigroups in terms of C∗-algebras

Let us start by explaining how to characterize amenability of semigroups in terms
of their C∗-algebras.

Theorem 5.6.42. Let P be a cancellative semigroup, i.e., P is both left and right
cancellative. Assume that P satisfies the independence condition. Then the follow-
ing are equivalent:

1) P is left amenable.
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2) C∗(P ) is nuclear and there is a character on C∗(P ).

3) C∗
λ(P ) is nuclear and there is a character on C∗(P ).

4) The left regular representation C∗(P )→ C∗
λ(P ) is an isomorphism and there

is a character on C∗(P ).

5) There is a character on C∗
λ(P ).

By a character, we mean a unital ∗-homomorphism to C.
For the proof, we need the following

Lemma 5.6.43. Let P be a left cancellative semigroup. The following are equivalent:

1. There is a character on C∗(P ).

2. P is left reversible, i.e., pP ∩ qP �= ∅ for all p, q ∈ P .

3. Il(P ) does not contain ∅ → ∅, the partial bijection that is nowhere defined.

Recall that in the convention we introduced in §5.5.1, if ∅ → ∅ lies in Il(P ), then we
say that Il(P ) is an inverse semigroup with zero, and let ∅ → ∅ be its distinguished
zero element, which we denote by 0.

Proof. 1. ⇒ 2.: If χ is a character on C∗(P ), then for every p, q ∈ P , we have

χ(1pP∩qP ) = χ(1pP )χ(1qP ) = χ(VpV
∗
p )χ(VqV

∗
q ) = |χ(Vp)|2 |χ(Vq)|2 = 1.

Hence pP ∩ qP �= ∅.
2. ⇒ 3.: Every partial bijection in Il(P ) is a finite product of elements in

{p : p ∈ P} ∪ {q−1 : q ∈ P
}
.

Hence, by an inductive argument, it suffices to show that if s ∈ Il(P ) is not ∅ → ∅,
then for all p, q ∈ P , ps and q−1s are not ∅ → ∅. For ps, this is clear. For q−1s,
choose x ∈ dom(s). Then xP ⊆ dom(s) and s(xr) = s(x)r for all r ∈ P by
property (5.11). As P is left reversible, there exists y ∈ P with y ∈ qP ∩ s(x)P .
Hence y = s(x)r = qz for some r, z ∈ P . Therefore,

(q−1s)(xz) = q−1(s(xr)) = q−1(s(x)r) = q−1(qz) = z.

Hence q−1s is not ∅ → ∅, as desired.
3. ⇒ 1.: Since Il(P ) does not contain ∅ → ∅, we have by definition that

C∗(P ) = C∗(Il(P )) = C∗({vs : s ∈ Il(P )} |vst = vsvt, vs−1 = v∗s ).

Obviously, by universal property, we obtain a character C∗(P )→ C, vs → 1. �
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Proof of Theorem 5.6.42. 1) ⇒ 2): If P is left amenable, then there exists a left
invariant state μ on �∞(P ) by definition. Hence, for every p ∈ P , we have

μ(1pP ) = μ(1pP (p#)) = μ(1P ) = 1.

Now, if there were p, q ∈ P with pP ∩qP = ∅, then 1pP +1qP would be a projection
in �∞(P ) with 1pP + 1qP ≤ 1P , so that

1 = μ(1P ) ≥ μ(1pP + 1qP ) = μ(1pP ) + μ(1qP ) = 1 + 1 = 2.

This is a contradiction. Therefore, P must be left reversible. By Lemma 5.6.43, it
follows that C∗(P ) has a character.

In addition, by our discussion of group embeddability in §5.4.1, we see that P
embeds into its group G of right quotients. Moreover, as P is left amenable, G
must be amenable by [Pat88, Proposition (1.27)]. Hence, statement 2) follows from
Theorem 5.6.44 (see also Corollary 5.6.45).

2) ⇒ 3) is obvious.

3) ⇒ 4) follows again from Theorem 5.6.44.

4) ⇒ 5) is obvious.

5) ⇒ 1): We follow [Li12, §4.2]. Let χ : C∗
λ(P ) → C be a nonzero character.

Viewing χ as a state, we can extend it by the theorem of Hahn–Banach to a state
on L(�2(P )). We then restrict the extension to �∞(P ) ⊆ L(�2(P )) and call this
restriction μ. The point is that by construction, μ|C∗

λ(P ) = χ is multiplicative,
hence C∗

λ(P ) is in the multiplicative domain of μ. Thus we obtain for every f ∈
�∞(P ) and p ∈ P

μ(f(p#)) = μ(V ∗
p fVp) = μ(V ∗

p )μ(f)μ(Vp) = μ(Vp)
∗μ(Vp)μ(f) = μ(f).

Thus μ is a left invariant mean on �∞(P ). This shows “5) ⇒ 1)”. �

Theorem 5.6.42 tells us that for the example P = N × N discussed in §5.6.2, our
definition of full semigroup C∗-algebras leads to a full C∗-algebra C∗(N×N) which
is nuclear and whose left regular representation is an isomorphism. This explains
and resolves the strange phenomenon described in §5.6.2.
At the same time, we see why it is not a contradiction that N ∗N is not amenable
while its C∗-algebra behaves like those of amenable semigroups. The point is that
there is no character on C∗(N ∗ N) because N ∗ N is not left reversible.

However, we still need an explanation why the semigroup C∗-algebra of N ∗ N
behaves like those of amenable semigroups. This leads us to our next result.
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5.6.9 Nuclearity of semigroup C∗-algebras and the connection to
amenability

Theorem 5.6.44. Let P be a semigroup that embeds into a group G. Consider

(i) C∗(P ) is nuclear.

(ii) C∗
λ(P ) is nuclear.

(iii) G� ΩP is amenable.

(iv) The left regular representation C∗(P )→ C∗
λ(P ) is an isomorphism.

We always have (i) ⇒ (ii) ⇔ (iii), and (iv) implies that P satisfies independence.

If P satisfies independence, then we also have (iii) ⇒ (i) and (iii) ⇒ (iv).

Note that the étale locally compact groupoid G � ΩP really only depends on P ,
not on the embedding P ↪→ G. This follows from Lemma 5.5.22.

Proof. The first claim follows from the description of C∗(P ) = C∗(Il(P )) as a full
groupoid C∗-algebra (see Theorem 5.5.17), the description of C∗

λ(P ) as a reduced
groupoid C∗-algebra (see §5.6.7 and the isomorphism (5.21)), the commutative
diagram (5.22), and Theorem 5.6.7. That (iv) implies that P satisfies independence
was explained in Remark 5.6.39.

The second claim follows from the observation that if P satisfies independence,
then ΩP = ĴP (see Corollary 5.6.28 and equation (5.19)), so that the partial

dynamical systems G � ΩP and G � ĴP , and hence their partial transformation
groupoids coincide, and Theorem 5.6.7. �

Corollary 5.6.45. If P is a subsemigroup of an amenable group G, then statements
(i), (ii) and (iii) from Theorem 5.6.44 hold, and (iv) holds if and only if P satisfies
independence.

Proof. This is because if G is amenable, then the partial transformation groupoid
G� ΩP is amenable by [Exe15, Theorem 20.7 and Theorem 25.10]. �

This explains the second strange phenomenon mentioned at the beginning of
§5.6.2, that the semigroup C∗-algebra of N ∗ N behaves like those of amenable
semigroups. The underlying reason is that N ∗N embeds into an amenable group:
Let F2 be the free group on two generators. By [Hoc69], we have an embedding
N ∗ N ↪→ F2/F′′

2 , where F′′
2 is the second commutator subgroup of F2. But F2/F′′

2

is solvable, in particular amenable. Moreover, N ∗ N satisfies independence (see
§5.6.5). This is why statements (i) to (iv) from Theorem 5.6.44 are all true for the
semigroup P = N ∗ N.
Remark 5.6.46. If we modify the definition of full semigroup C∗-algebras, then we
can get the same results as in Theorem 5.6.42, Theorem 5.6.44 and Corollary 5.6.45
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without having to mention the independence condition. Simply define C∗(P ) as the
full groupoid C∗-algebra of the restriction

G(Il(P ))|ΩP = {γ ∈ G(Il(P )) : r(γ), s(γ) ∈ ΩP }
of the universal groupoid G(Il(P )) of Il(P ) to ΩP . This means that we would set

C∗(P ) := C∗(G(Il(P ))|ΩP ).

Then, in Theorem 5.6.44, we would have (i) ⇔ (ii) ⇔ (iii), and all these state-
ments imply (iv). Corollary 5.6.45 would say that statements (i) to (iv) from Theo-
rem 5.6.44 hold whenever G is amenable. Moreover, Theorem 5.6.42 would be true
without the assumption that P satisfies independence.

We have chosen not to follow this route and keep the definition of full semi-
group C∗-algebras as full C∗-algebras of left inverse hulls because the C∗-algebras
C∗(Il(P )) usually have a nicer presentation, i.e., a nicer and simpler description
as universal C∗-algebras given by generators and relations. Moreover, in the case
of semigroups embeddable into groups, we know that these two definitions of full
semigroup C∗-algebras differ precisely by the (failure of the) independence condi-
tion.

5.7 Topological freeness, boundary quotients, and
C∗-simplicity

Given a semigroup P that embeds into a group G, we have constructed a par-
tial dynamical system G � ΩP and identified the reduced semigroup C∗-algebra
C∗

λ(P ) with the reduced crossed product C(ΩP ) �r G. Let us now present a cri-
terion for topological freeness of G � ΩP . First recall (compare [ELQ02] and
[Li16b]) that a partial dynamical system G � X is called topologically free if for
every e �= g ∈ G, {

x ∈ Ug−1 : g.x �= x
}

is dense in Ug−1 . Here, we use the same notation as in §5.5.2.
We first need the following observation: Let P be a monoid. For p ∈ P , let χpP ∈
ĴP be defined by χpP (X) = 1 if and only if pP ⊆ X, for X ∈ JP . Since P is a
monoid, χpP lies in ΩP for all p ∈ P .

Lemma 5.7.1. The subset {χpP : p ∈ P} is dense in ΩP .

Proof. Basic open sets in ΩP are of the form

U(X;X1, . . . , Xn) = {χ ∈ ΩP : χ(X) = 1, χ(Xi) = 0 for all 1 ≤ i ≤ n} .
Here X,X1, . . . , Xn are constructible ideals of P . Clearly, U(X;X1, . . . , Xn) is
empty if X =

⋃n
i=1 Xi. Thus, for a nonempty basic open set U(X;X1, . . . , Xn), we

may choose p ∈ X such that p /∈ ⋃n
i=1 Xi, and then χpP ∈ U(X;X1, . . . , Xn). �
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Theorem 5.7.2. Let P be a monoid with identity e which embeds into a group G.
If P has trivial units P ∗ = {e}, then G � ΩP is topologically free.

Proof. For p ∈ P , let χpP ∈ ĴP be defined as in Lemma 5.7.1, i.e., χpP (X) = 1
if and only if pP ⊆ X, for X ∈ JP . Assume that g ∈ G satisfies g.χpP = χpP

for some p ∈ P . This equality only makes sense if χp ∈ Ug−1 , i.e., there exists
s ∈ Il(P ) with σ(s) = g and χp(s

−1s) = 1. The latter condition is equivalent to
pP ⊆ dom(s). Then

g.χpP (X) = χpP (s
−1Xs) = χpP (s

−1(X ∩ im (s))) = χpP (g
−1(X ∩ im (s))).

So for X ∈ JP ,
g.χpP (X) = 1

if and only if
pP ⊆ g−1(X ∩ im (s)) = g−1X ∩ dom(s).

But since pP ⊆ dom(s) holds, we have that g.χpP (X) = 1 if and only if pP ⊆ g−1X
if and only if gpP ⊆ X. Therefore, χpP = g.χpP means that for X ∈ JP , we have
pP ⊆ X if and only if gpP ⊆ X. Note that gpP = s(pP ) lies in JP . Hence, for
X = pP , we obtain gpP ⊆ pP , and for X = gpP , we get pP ⊆ gpP . Hence there
exist x, y ∈ P with

gp = px and p = gpy.

So p = gpy = pxy and gp = px = gpyx. Thus, xy = yx = e. Hence x, y ∈ P ∗.
Since P ∗ = {e} by assumption, we must have x = y = e, and hence gp = p. This
implies g = e. In other words, for every e �= g ∈ G, we have g.χpP �= χpP for all
p ∈ P such that χpP ∈ Ug−1 . Hence it follows that{

χ ∈ Ug−1 : g.χ �= χ
}

contains
{
χpP ∈ Ug−1 : p ∈ P

}
,

and the latter set is dense in Ug−1 as {χpP : p ∈ P} is dense in ΩP . �
Note that G � ΩP can be topologically free if P ∗ �= {e}. For instance, partial
dynamical systems attached to ax+ b-semigroups over rings of algebraic integers
in number fields are shown to be topologically free in [EL13]. A generalization of
this result is obtained in [Li16c, Proposition 5.8].

By [ELQ02, Theorem 2.6] and because of Theorem 5.6.41, we obtain the following:

Corollary 5.7.3. Suppose that P is a monoid with trivial units which embeds into
a group. Let I be an ideal of C∗

λ(P ). If I ∩Dλ(P ) = (0), then I = (0).

In other words, a representation of C∗
λ(P ) is faithful if and only if it is faithful on

Dλ(P ).

Let us now discuss boundary quotients. We start with general inverse semigroups
(with or without zero). In many situations, we are not only interested in the
reduced C∗-algebra of an inverse semigroup, but also in its boundary quotient.
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This is a notion going back to Exel (see [Exe08, Exe09, Exe15, EGS12]). Let

us recall the construction. Given a semilattice E, let Êmax be the subset of Ê
consisting of those χ ∈ Ê such that {e ∈ E : χ(e) = 1} is maximal among all

characters χ ∈ Ê. Note that if E is a semilattice without zero, then Êmax consists
of only one element, namely, the character χ satisfying χ(e) = 1 for all e ∈ E. For
later purposes, we make the following observation:

Lemma 5.7.4. Let E be a semilattice with zero, and let 0 be its distinguished zero
element. Suppose that χ ∈ Êmax satisfies χ(e) = 0 for some e ∈ E×. Then there
exists f ∈ E× with χ(f) = 1 and ef = 0.

Proof. If every f ∈ E× with χ(f) = 1 satisfies ef �= 0, then we can define a filter
F by defining, for every f̃ ∈ E×,

f̃ ∈ F if there exists f ∈ E× with χ(f) = 1 and ef ≤ f̃ .

It is obvious that F is a filter, so that there exists a character χF ∈ Ê with
χ−1
F = F . By construction,{

f ∈ E× : χ(f) = 1
} ⊆ {

f ∈ E× : χF (f) = 1
}
,

but χF (e) = 1 while χ(e) = 0. This contradicts maximality of

{f ∈ E : χ(f) = 1} . �

We define
∂Ê := Êmax ⊆ Ê.

Now let E be the semilattice of idempotents in an inverse semigroup S. As ∂Ê ⊆ Ê
is closed, we obtain a short exact sequence

0→ I → C0(Ê)→ C0(∂Ê)→ 0.

Now there are two options. We could view I as a subset of C∗
λ(S) and form the

ideal 〈I〉 of C∗
λ(S) generated by I. The boundary quotient in Exel’s sense (see

[Exe08, Exe09, Exe15, EGS12]) is given by

∂C∗
λ(S) := C∗

λ(S)/ 〈I〉 .

Alternatively, we could take the universal groupoid G(S) of our inverse semigroup,

form its restriction to ∂Ê,

G(S) | ∂Ê :=
{
γ ∈ G(S) : r(γ), s(γ) ∈ ∂Ê

}
,

and form the reduced groupoid C∗-algebra

C∗
r (G(S) | ∂Ê).



242 Chapter 5. Semigroup C∗-algebras

As the canonical homomorphism

C∗
λ(S)

∼= C∗
r (G(S)) � C∗

r (G(S) | ∂Ê)

contains 〈I〉 in its kernel, we obtain canonical projections

C∗
λ(S) � C∗

λ(S)/ 〈I〉� C∗
r (G(S) | ∂Ê).

Under an exactness assumption, the second ∗-homomorphism actually becomes
an isomorphism, so that our two alternatives for the boundary quotient coincide.
For our purposes, it is more convenient to work with C∗

r (G(S) | ∂Ê) because it is,
by its very definition, a reduced groupoid C∗-algebra, so that groupoid techniques
apply.

Now let us assume that our inverse semigroup S admits an idempotent pure partial
homomorphism σ : S× → G to a group G. In that situation, we can define the
partial dynamical system G � Ê (see §5.5.2) and identify G(S) with the partial

transformation groupoid G� Ê (see Lemma 5.5.22). We have the following:

Lemma 5.7.5. Let S be an inverse semigroup with an idempotent pure partial
homomorphism to a group G. Let G � Ê be its partial dynamical system. Then
∂Ê is G-invariant.

Proof. Let us first show that for every g ∈ G,

g.(Ug−1 ∩ Êmax) ⊆ Ug ∩ Êmax.

Take χ ∈ Êmax with χ(s−1s) = 1 for some s ∈ S with σ(s) = g. Then g.χ(e) =

χ(s−1es). Assume that g.χ /∈ Êmax. This means that there is ψ ∈ Êmax such
that ψ(e) = 1 for all e ∈ E with g.χ(e) = 1, and there exists f ∈ E with
ψ(f) = 1 but χ(s−1fs) = 0. Then ψ ∈ Ug since g.χ(ss−1) = 1, which implies
ψ(ss−1) = 1. Consider g−1.ψ given by g−1.ψ(e) = ψ(ses−1). Then for every e ∈ E,
χ(e) = 1 implies χ(s−1ses−1s) = 1, hence χ(s−1(ses−1)s) = 1, so that g−1.ψ(e) =
ψ(ses−1) = 1. But χ(s−1fs) = 0 and g−1.ψ(s−1fs) = ψ(ss−1fss−1) = ψ(f) = 1.

This contradicts χ ∈ Êmax. Hence g.(Ug−1 ∩ Êmax) ⊆ Ug ∩ Êmax.

To see that
g.(Ug−1 ∩ ∂Ê) ⊆ Ug ∩ ∂Ê,

let χ ∈ Ug−1∩∂Ê and choose a net (χi)i in Êmax with limi χi = χ. As Ug−1 is open,

we may assume that all the χi lie in Ug−1 . Then g.χi ∈ Êmax, and limi g.χi = g.χ.

This implies g.χ ∈ ∂Ê. �
Corollary 5.7.6. In the situation of Lemma 5.7.5, we have canonical isomorphisms

G(S) | ∂Ê ∼= G� ∂Ê

and
C∗

r (G(S) | ∂Ê) ∼= C0(∂Ê)�r G.
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Proof. The first identification follows immediately from Lemma 5.7.5, while the
second one is a consequence of the first one and Theorem 5.5.21. �

Let us now specialize to the case where S is the left inverse hull of a left cancellative
semigroup P . First, we observe the following:

Lemma 5.7.7. We have ∂ĴP ⊆ ΩP .

Proof. Let X,X1, . . . , Xn ∈ JP satisfy X =
⋃n

i=1 Xi. Then for χ ∈ (ĴP )max,
χ(Xi) = 0 implies that there exists X ′

i ∈ J with χ(X ′
i) = 1 and Xi ∩X ′

i = ∅ (see
Lemma 5.7.4). Thus, if χ(Xi) = 0 for all 1 ≤ i ≤ n, then let X ′

i, 1 ≤ i ≤ n be as
above. Then for X ′ =

⋂n
i=1 X

′
i, χ(X

′) = 1 and X ∩X ′ = ∅. Thus, χ(X) = 0. This

shows (ĴP )max ⊆ ΩP . As ΩP is closed, we conclude that ∂ĴP ⊆ ΩP . �

Definition 5.7.8. We write ∂ΩP := ∂ĴP .

For simplicity, let us now restrict to semigroups that embed into groups.

Definition 5.7.9. We call C∗
r (G(Il(P )) | ∂ΩP ) the boundary quotient of C∗

λ(P ), and
denote it by ∂C∗

λ(P ).

Note that by Corollary 5.7.6, given a semigroup P embedded into a group G, we
have a canonical isomorphism

∂C∗
λ(P ) ∼= C(∂ΩP )�r G.

Let us discuss some examples. Assume that our semigroup P is cancellative, and
that it is left reversible, i.e., pP ∩ qP �= ∅ for all p, q ∈ P . This is, for instance, the
case for positive cones in totally ordered groups. Given such a semigroup, we know
because of Lemma 5.6.43 that JP is a semilattice without zero, so that (ĴP )max

degenerates to a point. Therefore, ∂ΩP degenerates to a point. Hence it follows
that the boundary quotient ∂C∗

λ(P ) coincides with the reduced group C∗-algebra
of the group of right quotients of P .

For the nonabelian free monoid N ∗ N on two generators, the boundary quotient
∂C∗

λ(N ∗ N) is canonically isomorphic to the Cuntz algebra O2. More generally,
boundary quotients for right-angled Artin monoids are worked out and studied in
[CL07].

Given an integral domain R, the boundary quotient ∂C∗
λ(R � R×) of the ax+ b-

semigroup over R is canonically isomorphic to the ring C∗-algebra Ar[R] of R (see
[CL10, CL11a, Li10]). It is given as follows:

Consider the Hilbert space �2R with canonical orthonormal basis {δx : x ∈ R}. For
every a ∈ R×, define Sa(δx) := δax, and for every b ∈ R, define U b(δx) := δb+x.
Then the ring C∗-algebra of R is the C∗-algebra generated by these two families
of operators, i.e,

Ar[R] := C∗(
{
Sa : a ∈ R×} ∪ {U b : b ∈ R

}
) ⊆ L(�2R).
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We refer to [CL10, CL11a, Li10] and also [Li13, §8.3] for details.
Let us now establish structural properties for boundary quotients. From now on,
let us suppose that our semigroup P embeds into a group G.

Lemma 5.7.10. ∂ΩP is the minimal nonempty closed G-invariant subspace of ĴP .

Proof. Let C ⊆ ĴP be nonempty, closed and G-invariant. Let χ ∈ (ĴP )max be
arbitrary, and choose X ∈ JP with χ(X) = 1. Choose p ∈ X and χ ∈ C. As

Up−1 = ĴP , we can form p.χ, and we know that p.χ ∈ C. We have p.χ(pP ) =
χ(P ) = 1, so that p.χ(X) = 1 as p ∈ X implies pP ⊆ X (X is a right ideal).
Set χX := p.χ. Consider the net (χX)X indexed by X ∈ J with χ(X) = 1,
ordered by inclusion. Passing to a convergent subnet if necessary, we may assume
that limX χX exists. But it is clear because of χ ∈ (ĴP )max that limX χX = χ.

As χX ∈ C for all X, we deduce that χ ∈ C. Thus, (ĴP )max ⊆ C, and hence
∂ΩP ⊆ C. �

In particular, ∂ΩP is the minimal nonempty closed G-invariant subspace of ΩP .
Another immediate consequence is:

Corollary 5.7.11. The transformation groupoid G� ∂ΩP is minimal.

To discuss topological freeness of G � ∂ΩP , let

G0 =
{
g ∈ G : X ∩ gP �= ∅ �= X ∩ g−1P for all ∅ �= X ∈ JP

}
,

as in [Li13, §7.3]. Clearly,

G0 =
{
g ∈ G : pP ∩ gP �= ∅ �= pP ∩ g−1P for all p ∈ P

}
.

Furthermore, we have the following:

Lemma 5.7.12. G0 is a subgroup of G.

Proof. Take g1, g2 in G0. Then for all ∅ �= X ∈ J , we have

((g1g2)P ) ∩X = g1((g2P ) ∩ (g−1
1 X))

⊇ g1((g2P ) ∩ (g−1
1 X)) ∩ (g1P ) = g1((g2P ) ∩ ((g−1

1 X) ∩ P )).

Now

(g−1
1 X) ∩ P = g−1

1 (X ∩ (g1P )) �= ∅.
Thus there exists x ∈ P such that x ∈ (g−1

1 X)∩P . Hence xP ⊆ (g−1
1 X)∩P . Thus

∅ �= g1((g2P ) ∩ (xP )) ⊆ ((g1g2)P ) ∩X. �

Proposition 5.7.13. G � ∂ΩP is topologically free if and only if G0 � ∂ΩP is
topologically free.
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Proof. “⇒” is clear. For “⇐”, assume that G0 � ∂ΩP is topologically free, and
suppose that G � ∂ΩP is not topologically free, i.e., there exists g ∈ G and

U ⊆ Ug−1 ∩ ∂ΩP such that g.χ = χ for all χ ∈ U . As (ĴP )max = ∂ΩP , we can find

χ ∈ Ug−1 ∩ (ĴP )max with g.χ = χ.

For every X ∈ JP with χ(X) = 1, choose x ∈ X and ψX ∈ (ĴP )max with
ψX(xP ) = 1, so that ψX(X) = 1. Consider the net (ψX)X indexed by X ∈ JP

with χ(X) = 1, ordered by inclusion. Passing to a convergent subnet if necessary,
we may assume that limX ψX = χ. As U is open, we may assume that ψX ∈ U
for all X. Then ψX(xP ) = 1 implies that ψX ∈ Ux ∩ U .

Hence for sufficiently small X ∈ JP with χ(X) = 1, there exists x ∈ X such that
x−1.(Ux ∩ U) is a nonempty open subset of ∂ΩP . We conclude that (x−1gx).ψ =
ψ for all ψ ∈ x−1.(Ux ∩ U). This implies that x−1gx /∈ G0 as G0 � ∂ΩP is
topologically free. So there exists p ∈ P with

pP ∩ x−1gxP = ∅ or pP ∩ x−1g−1xP = ∅.
Let χX ∈ (ĴP )max satisfy χX(xpP ) = 1. If pP ∩ x−1gxP = ∅, then

xpP ∩ gxP = ∅, so that xpP ∩ g−1xpP = ∅.
Hence g.χX �= χX if χX ∈ Ug−1 . If pP ∩ x−1g−1xP = ∅, then

xpP ∩ g−1xP = ∅, so that xpP ∩ g−1xpP = ∅.
Again, g.χX �= χX if χX ∈ Ug−1 .

For every sufficiently small X ∈ JP with χ(X) = 1, we can find x ∈ X and χX as
above. Hence we can consider the net (χX)X as above, and assume after passing
to a convergent subnet that limX χX = χ. As χ ∈ U ⊆ Ug−1 ∩ ∂ΩP , it follows
that χX ∈ U ⊆ Ug−1 ∩ ∂ΩP for sufficiently small X. So we obtain g.χX �= χX ,
although g acts trivially on U . This is a contradiction. �
Corollary 5.7.14. If G0 � ∂ΩP is topologically free, then ∂C∗

λ(P ) is simple.

Proof. This follows from Lemma 5.7.10, Proposition 5.7.13 and [Ren80, Chapter II,
Proposition 4.6]. �
We present a situation where Corollary 5.7.14 applies. Recall that we introduced
the notion of “completeness for �R” for presentations after Lemma 5.6.32. More-
over, a pair P ⊆ G consisting of a monoid P embedded into a group G is called
quasi-lattice ordered (see [Nic92]) if P has trivial units P ∗ = {e} and for every
g ∈ G with gP ∩ P �= ∅, we can find an element p ∈ P such that gP ∩ P = pP .

Theorem 5.7.15. Let P = 〈Σ, R〉+ be a monoid given by a presentation (Σ, R)
which is complete for �R, in the sense of [Deh03]. Assume that for all u ∈ Σ,
there is v ∈ Σ such that there is no relation of the form u · · · = v · · · in R. Also,
suppose that P embeds into a group G such that P ⊆ G is quasi-lattice ordered in
the sense of [Nic92]. Then G0 = {e} and ∂C∗

λ(P ) is simple.
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Proof. In view of Corollary 5.7.14, it suffices to prove G0 = {e}. Let g ∈ G0.
Assume that gP ∩P �= P . Then g ∈ G0 implies that this intersection is not empty.
Hence, we must have gP ∩P = pP for some p ∈ P because P ⊆ G is quasi-lattice
ordered. If p �= e, then there exists u ∈ Σ with pP ⊆ uP . By assumption, there
exists v ∈ Σ such that no relation in R is of the form u · · · = v · · · . Because (Σ, R)
is complete for �R, we know that uP ∩ vP = ∅ (see [Deh03, Proposition 3.3]), so
that gP ∩ vP = ∅. This contradicts g ∈ G0. Hence, we must have gP ∩ P = P ,
and similarly, g−1P ∩ P = P . These two equalities imply g ∈ P ∗. But P ∗ = {e}
because P ⊆ G is quasi-lattice ordered. Thus, g = e. �

Theorem 5.7.15 implies that for every right-angled Artin monoid A+
Γ (see §5.3.3)

with the property that (AΓ, A
+
Γ ) is graph-irreducible in the sense of [CL07], the

boundary quotient ∂C∗
λ(A

+
Γ ) is simple.

Moreover, assume that we have a cancellative semigroup. By going over to the
opposite semigroup, the left regular representation becomes the right regular rep-
resentation. In this way, our discussion about C∗-algebra generated by left regular
representations applies to C∗-algebras of right regular representations. In partic-
ular, we can define boundary quotients for C∗-algebras generated by right regular
representations of semigroups. For instance, for the Thompson monoid

F+ = 〈x0, x1, . . . | xnxk = xkxn+1 for k < n〉+ ,

it is easy to see that Theorem 5.7.15 applies to the opposite monoid, so that the
boundary quotient of the C∗-algebra generated by the right regular representation
of F+ is simple.

We now turn to the property of pure infiniteness. As we mentioned, the boundary
quotient ∂C∗

λ(N∗N) is isomorphic to O2, a purely infinite C∗-algebra. We will now
see that this is not a coincidence.

First of all, it is easy to see that for a partial dynamical system G � X, the
transformation groupoid G � X is purely infinite in the sense of [Mat15] if and
only if every compact open subset of X is (G, CO)-paradoxical in the sense of
[GS14, Definition 4.3], where CO is the set of compact open subsets of X. We
recall that a nonempty subset V ⊆ X is called (G, CO)-paradoxical in [GS14,
Definition 4.3] if there exist

V1, . . . , Vn+m ∈ O and t1, . . . , tn+m ∈ G

such that
n⋃

i=1

Vi = V =

m⋃
i=n+1

Vi,

and

Vi ∈ Ut−1
i
, ti.Vi ⊆ V, and ti.Vi ∩ tj .Vj = ∅ for all i �= j.
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Theorem 5.7.16. The groupoid G�∂ΩP is purely infinite if and only if there exist
p, q ∈ P with pP ∩ qP = ∅.
Proof. Obviously, if pP ∩qP �= ∅ for all p, q ∈ P , then ∂ΩP degenerates to a point.

Let us prove the converse. Every compact open subset of ĴP can be written as a
disjoint union of basic open sets

U = {ψ ∈ ∂ΩP : ψ(X) = 1, ψ(X1) = · · · = ψ(Xn) = 0} ,
for some X,X1, . . . , Xn ∈ JP . Hence it suffices to show that U is (G, CO)-

paradoxical. Since (ĴP )max is dense in ∂ΩP , there exists χ ∈ (ĴP )max with χ ∈ U .

As χ lies in (ĴP )max, χ(Xi) = 0 implies that there exists Yi ∈ J with Xi ∩ Yi = ∅
and χ(Yi) = 1 (see Lemma 5.7.4). Let

Y := X ∩
n⋂

i=1

Yi.

Certainly, Y �= ∅ as χ(Y ) = 1. Moreover, for every ψ ∈ ∂ΩP , ψ(Y ) = 1 implies
ψ ∈ U . Now choose x ∈ Y . By assumption, we can find p, q ∈ P with pP ∩qP = ∅.
For ψ ∈ ∂ΩP , xp.ψ(xpP ) = ψ(P ) = 1. Similarly, for all ψ ∈ ∂ΩP , we have
xq.ψ(xqP ) = 1. Thus

xp.U ⊆ xp.∂ΩP ⊆ U, xq.U ⊆ xq.∂ΩP ⊆ U

and (xp.U) ∩ (xq.U) ⊆ (xp.∂ΩP ) ∩ (xq.∂ΩP ) = ∅
since xpP ∩ xqP = ∅. �
Corollary 5.7.17. If P is not the trivial monoid, P �= {e}, and if G0 � ∂ΩP is
topologically free, then the boundary quotient ∂C∗

λ(P ) is a purely infinite simple
C∗-algebra.

Proof. First of all, by Corollary 5.7.14, the boundary quotient is simple.

Furthermore, we observe that our assumptions that P �= {e} and that G0 acts
topologically freely on ∂ΩP imply that P is not left reversible: If P were left
reversible, then ∂ΩP would consist of only one point. Also, if P were left reversible,
then we would have P ⊆ G0. Since every element in P obviously leaves ∂ΩP fixed,
and by our assumption that P �= {e}, we conclude that G0 cannot act topologically
freely on ∂ΩP if P were left reversible. Hence Theorem 5.7.16 implies that the
groupoid G� ∂ΩP is purely infinite.

This, together with [GS14, Theorem 4.4], implies that the boundary quotient
∂C∗

λ(P ) is purely infinite. This completes our proof. �
Corollary 5.7.18. If P is not the trivial monoid, P �= {e}, if G�∂ΩP is amenable,
and if G0 � ∂ΩP is topologically free, then the boundary quotient ∂C∗

λ(P ) is a
unital UCT Kirchberg algebra.
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Proof. By assumption, our semigroups are countable, so that all the C∗-algebras
we construct are separable. Clearly, the boundary quotient ∂C∗

λ(P ) is unital.

Since G�∂ΩP is amenable, the boundary quotient ∂C∗
λ(P ) is nuclear and satisfies

the UCT.

Now our claim follows from Corollary 5.7.17 �

Note that this shows that [Li13, Corollary 7.23] holds without the independence
and the Toeplitz condition.

Let us now study simplicity of reduced semigroup C∗-algebras. Let P be a semi-
group that embeds into a group. If C∗

λ(P ) is simple, then the groupoid G � ΩP

must be minimal, as C∗
λ(P ) ∼= C∗

r (G� ΩP ) (see the isomorphism (5.21)). In par-
ticular, we must have ΩP = ∂ΩP . This equality can be characterized in terms of
the semigroup as follows:

Lemma 5.7.19. Let P be a monoid. We have ΩP = ∂ΩP if and only if for every
X1, . . . , Xn ∈ JP with Xi � P for all 1 ≤ i ≤ n, there exists p ∈ P with pP ∩Xi =
∅ for all 1 ≤ i ≤ n.

Proof. Let χP be the character in ΩP determined by χP (X) = 1 if and only if

X = P , for all X ∈ JP . Such a character exists in ĴP , and our assumption that
P has an identity element ensures that χP lies in ΩP . This is because an equation
of the form

P =

n⋃
i=1

Xi

for some Xi ∈ JP implies that Xi = P for some 1 ≤ i ≤ n, as one of the Xi must
contain the identity element.

First, we claim that ΩP = ∂ΩP holds if and only if χP lies in ∂ΩP . This is certainly
necessary. It is also sufficient as ∂ΩP is G-invariant, and

{p.χP = χpP : p ∈ P}

is dense in ΩP (see Lemma 5.7.1).

Now basic open subsets containing χP are of the form

U(P ;X1, . . . , Xn) = {χ ∈ ΩP : χ(X1) = . . . = χ(Xn) = 0} ,

for X1, . . . , Xn ∈ JP with Xi � P for all 1 ≤ i ≤ n.

Then χP ∈ ∂ΩP if and only if χP ∈ (ĴP )max if and only if for all X1, . . . , Xn ∈ JP

with Xi � P for all 1 ≤ i ≤ n, there is χ ∈ (ĴP )max with χ ∈ U(P ;X1, . . . , Xn).
Hence it follows that our proof is complete once we show that there exists χ ∈
(ĴP )max with χ ∈ U(P ;X1, . . . , Xn) if and only if there exists p ∈ P with pP∩Xi =
∅ for all 1 ≤ i ≤ n.
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For “⇒”, assume that χ ∈ (ĴP )max lies in χ ∈ U(P ;X1, . . . , Xn). Then χ(Xi) = 0
for all 1 ≤ i ≤ n. But this means that there must exist Yi ∈ JP , for 1 ≤ i ≤ n,
such that χ(Yi) = 1 and Xi ∩ Yi = ∅ (see Lemma 5.7.4). Take the intersection

Y :=

n⋂
i=1

Yi.

As χ(Y ) = 1, Y is not empty. Therefore, we may choose some p ∈ Y . Obviously,
pP ⊆ Y as Y is a right ideal. Moreover, for every 1 ≤ i ≤ n, we have

Xi ∩ pP ⊆ Xi ∩ Y ⊆ Xi ∩ Yi = ∅.

For “⇐”, suppose that there exists p ∈ P with pP ∩ Xi = ∅ for all 1 ≤ i ≤
n. An easy application of Zorn’s Lemma yields a character χ ∈ (ĴP )max with
χ(pP ) = 1. Hence χ(Xi) = ∅ for all 1 ≤ i ≤ n, and it follows that χ lies in
U(P ;X1, . . . , Xn). �

Let us derive some immediate consequences.

Corollary 5.7.20. If G � ΩP is topologically free, then C∗
λ(P ) is simple if and only

if for every X1, . . . , Xn ∈ JP with Xi � P for all 1 ≤ i ≤ n, there exists p ∈ P
with pP ∩Xi = ∅ for all 1 ≤ i ≤ n.

Proof. This follows immediately from Corollary 5.7.11 and Lemma 5.7.19 (see also
Corollary 5.7.14). �

Corollary 5.7.21. Let P be a monoid with identity e, and suppose that P embeds
into a group. Suppose that P has trivial units P ∗ = {e}. Then C∗

λ(P ) is simple if
and only if for every X1, . . . , Xn ∈ JP with Xi � P for all 1 ≤ i ≤ n, there exists
p ∈ P with pP ∩Xi = ∅ for all 1 ≤ i ≤ n.

Proof. This follows from Corollary 5.7.20 and Lemma 5.7.2. �

As an example, the countable free product P = ∗∞i=1N satisfies the criterion in
Lemma 5.7.19. Moreover, we obviously have P ∗ = {e}. Hence Corollary 5.7.21 ap-
plies, and we deduce that C∗

λ(∗∞i=1N) is simple. Actually, C∗
λ(∗∞i=1N) is canonically

isomorphic to the Cuntz algebra O∞.

5.8 The Toeplitz condition

So far, we were able to derive all our results about semigroup C∗-algebras just
using descriptions as partial crossed products. However, it turns out that when we
want to compute K-theory or the primitive ideal space, we need descriptions (at
least up to Morita equivalence) as ordinary crossed products, attached to globally
defined dynamical systems. Let us now introduce a criterion that guarantees such
descriptions as ordinary crossed products.
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Definition 5.8.1. Let P ⊆ G be a semigroup embedded into a group G. We say
that P ⊆ G satisfies the Toeplitz condition (or simply that P ⊆ G is Toeplitz) if
for every g ∈ G with g−1P ∩ P �= ∅, the partial bijection

g−1P ∩ P → P ∩ gP, x �→ gx

lies in the inverse semigroup Il(P ).

We can also think of Il(P ) as partial isometries on �2P . In this picture, we can give
an equivalent characterization of the Toeplitz condition. First, using the embed-
ding P ⊆ G, we pass to the bigger Hilbert space �2G. Let 1P be the characteristic
function of P , viewed as an element in �∞(G). Moreover, let λ be the left regular
representation of G on �2G. Then P ⊆ G is Toeplitz if and only if for every g ∈ G
with 1Pλg1P �= 0, we can write 1Pλg1P as a finite product of isometries and their
adjoints from the set

{Vp : p ∈ P} ∪ {V ∗
q : q ∈ P

}
.

Let us now explain why the reduced semigroup C∗-algebra C∗
λ(P ) is a full corner in

an ordinary crossed product if P ⊆ G is Toeplitz. In terms of the partial dynamical
system G � ΩP , this amounts to showing that if P ⊆ G is Toeplitz, then G � ΩP

has an enveloping action, in the sense of [Aba03], on a locally compact Hausdorff
space. This is because if P ⊆ G is Toeplitz, then g−1P ∩ P lies in the semilattice
JP . Hence, for every g ∈ G,

Ug−1 =
{
χ ∈ ΩP : χ(g−1P ∩ P ) = 1

}
,

since among all s ∈ Il(P )× with σ(s) = g, g−1P ∩ P is the maximal domain.
This means that for every g ∈ G, the subspace Ug−1 is clopen. Whenever this is
the case, our partial dynamical system will have an enveloping action on a locally
compact Hausdorff space. This follows easily from [Aba03].

In the following, we give a direct argument describing C∗
λ(P ) as a full corner in an

ordinary crossed product in a very explicit way. First, we introduce some notation.

Fix an embedding P ⊆ G of a semigroup P into a group G.

Definition 5.8.2. We let JP⊆G be the smallest G-invariant semilattice of subsets
of G containing JP .

Lemma 5.8.3. We have

JP⊆G =

{
n⋂

i=1

giP : gi ∈ G

}
. (5.23)

If P ⊆ G is Toeplitz, then

J×
P =

{
∅ �= Y ∩ P : Y ∈ J×

P⊆G

}
.
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Proof. Clearly, {
n⋂

i=1

giP : gi ∈ G

}
is a G-invariant semilattice of subsets of G. It remains to show that it contains
JP . It certainly includes the subset P of G. Moreover, for every subset X ∈ P and
all p, q ∈ P , we have p(X) = pX and q−1(X) = q−1X ∩ P . Here, pX and q−1X
are products taken in G. Therefore, we see that JP⊆G is closed under left multi-
plication and pre-images under left multiplication. But JP may be characterized
as the smallest semilattice of subsets of P containing P and closed under left mul-
tiplication and pre-images under left multiplication. Therefore, JP is contained in
JP⊆G.

Our argument above also shows that we always have

J×
P ⊆

{
∅ �= Y ∩ P : Y ∈ J×

P⊆G

}
.

Now let us assume that P ⊆ G is Toeplitz, and let us prove “⊇”. By assumption,
the partial bijection

g−1P ∩ P → P ∩ gP, x �→ gx

lies in Il(P ) as long as g−1P ∩ P �= ∅. Therefore, as long as g−1P ∩ P �= ∅, the
image of this partial bijection, P ∩ gP , lies in JP . Hence it follows, because of
(5.23), that {

∅ �= Y ∩ P : Y ∈ J×
P⊆G

}
is contained in J×

P . �
Definition 5.8.4. We define

DP⊆G := C∗({1Y : Y ∈ JP⊆G}) ⊆ �∞(G).

Obviously,DP⊆G isG-invariant with respect to the canonical action ofG on �∞(G)
by left multiplication. Therefore, we can form the crossed product DP⊆G �r G. It
is easy to see, and explained in [CEL15, §2.5], that we can identify this crossed
product DP⊆G �r G with the C∗-algebra

C∗({1Y λg : Y ∈ JP⊆G, g ∈ G}) ⊆ L(�2G)

concretely represented on �2G.

Proposition 5.8.5. In the situation above, 1P is a full projection in DP⊆G �r G.
If P ⊆ G is Toeplitz, then

C∗
λ(P ) = 1P (DP⊆G �r G)1P . (5.24)

In particular, C∗
λ(P ) is a full corner in DP⊆G �r G.
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Equation (5.24) is meant as an identity of sub-C∗-algebras of L(�2G).

Proof. As the linear span of elements of the form

1Y λg, Y ∈ JP⊆G, g ∈ G

is dense in DP⊆G �r G, it suffices to show that, for all Y ∈ JP⊆G and g ∈ G,

1Y λg ∈ (DP⊆G �r G) 1P (DP⊆G �r G)

in order to show that 1P is a full projection. Let

Y =

n⋂
i=1

giP.

Then
1Y λg = (λg11P ) 1P

(
λ∗
g11

⋂n
i=2 giPλg

)
lies in

(DP⊆G �r G) 1P (DP⊆G �r G) .

Let us prove that
C∗

λ(P ) = 1P (DP⊆G �r G)1P

if P ⊆ G is Toeplitz. First, observe that “⊆” always holds as for all p ∈ P , we
have Vp = 1Pλp1P . Conversely, it suffices to show that for every Y ∈ JP⊆G and
g ∈ G, 1P 1Y λg1P lies in C∗

λ(P ). But

1P 1Y λg1P = (1P 1Y 1P ) (1Pλg1P ) ,

and 1P 1Y 1P lies in C∗
λ(P ) as P ∩ Y lies in JP as long as it is not empty by

Lemma 5.8.3, and 1Pλg1P lies in C∗
λ(P ) because P ⊆ G is Toeplitz. �

Let us discuss some examples. First, assume that P is cancellative, and right
reversible, i.e., Pp ∩ Pq �= ∅ for all p, q ∈ P . Then P embeds into its group G of
left quotients. We have G = P−1P . We claim that P ⊆ G is Toeplitz in this case:
Take g ∈ G, and write g = q−1p for some p, q ∈ P . Then the partial bijection

g−1P ∩ P → P ∩ gP, x �→ gx

is the composition of

q−1 : qP → P, qx �→ x and p : P → pP, x �→ px.

This is because

g−1P ∩ P = p−1qP ∩ P = p−1(qP ) ∩ P = p−1(dom(q−1)) = dom(q−1p),

and for x ∈ g−1P ∩ P = dom(q−1p), we have gx = q−1px = (q−1p)(x).
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In particular, if P is the positive cone in a totally ordered group G, then P ⊆ G is
Toeplitz. Also, the inclusion B+

n ⊆ Bn of the Braid monoid into the corresponding
Braid group is Toeplitz. Furthermore, if R is an integral domain with quotient
field Q, then for the ax + b-semigroup R � R×, we have that R � R× ⊆ Q �Q×

is Toeplitz.

Let us discuss a second class of examples. Suppose that we have a monoid P with
identity e, and that P ⊆ G is an embedding of P into a group G. Furthermore,
we assume that

J×
P⊆G = {gP : g ∈ G} .

In this situation, we claim that P ⊆ G is Toeplitz.
To see this, take g ∈ G. If g−1P ∩ P �= ∅, then we can find p ∈ P such that
g−1P ∩ P = pP . This is because we have J×

P⊆G = {gP : g ∈ G} by assumption.
Here, we used the hypothesis that P has an identity element. Therefore, we can
find q ∈ P with g−1q = p. We now claim that the partial bijection

g−1P ∩ P → P ∩ gP, x �→ gx

is the composition of

p : P → pP, x �→ px and q−1 : qP → P, qx �→ x.

This is because
g−1P ∩ P = qP = dom(pq−1),

and for x ∈ g−1P ∩ P = dom(pq−1), we have gx = pq−1x = (pq−1)(x).

In particular, for every graph Γ as in §5.3.3, the inclusion A+
Γ ⊆ AΓ of the right-

angled Artin monoid in the corresponding right-angled Artin group is Toeplitz.
For instance, the canonical embedding N ∗N ↪→ F2 is Toeplitz. Also, the inclusion
B+

k,l ⊆ Bk,l of the Baumslag–Solitar monoid into the corresponding Baumslag–

Solitar group is Toeplitz, for k, l ≥ 1. Moreover, the inclusion F+ ⊆ F of the
Thompson monoid into the Thompson group is Toeplitz.

We make the following observation, which is an immediate consequence of our
preceding discussion and Lemma 5.8.3:

Remark 5.8.6. Suppose that P is a monoid that is embedded into a group G. If

J×
P = {pP : p ∈ P} ,

then P ⊆ G is Toeplitz if and only if

J×
P⊆G = {gP : g ∈ G} .

Let us present two examples of semigroup embeddings into groups that are not
Toeplitz. In both of our examples, the semigroup will be given by the nonabelian
free monoid N ∗ N on two generators.
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First, consider the canonical homomorphism N ∗ N → F2/F′′
2 . Here, F′′

2 is the
second commutator subgroup of the nonabelian free group F2 on two generators.
By [Hoc69], this canonical homomorphism N ∗ N → F2/F′′

2 is injective. We want
to see that N ∗ N ↪→ F2/F′′

2 is not Toeplitz.

Let us denote both the canonical generators of N ∗ N and F2 by a and b. We use
the notation [g, h] = ghg−1h−1 for commutators. Obviously,

[(ab)−1, (ba)−1][ba, bab][(ab)−1, (ba)−1]−1[ba, bab]−1

lies in F′′
2 . Thus,

(ba)(ab)[(ab)−1, (ba)−1][ba, bab][(ab)−1, (ba)−1]−1[ba, bab]−1(ab)−1(ba)−1

lies in F′′
2 . Now set

p = (ab)(ba)(ba)(bab)

q = (ab)(ba)(bab)(ba)

x = (ba)(ab)(bab)(ba)

y = (ba)(ab)(ba)(bab).

Then

pq−1yx−1

= (ba)(ab)[(ab)−1, (ba)−1][ba, bab][(ab)−1, (ba)−1]−1[ba, bab]−1(ab)−1(ba)−1

lies in F′′
2 . Therefore, we have pq−1 = xy−1 in F2/F′′

2 . Now we consider g = pq−1.
Obviously, P ∩ gP �= ∅ as p ∈ gP . Moreover, we know that for P = N ∗ N, the
nonempty constructible right ideals are given by J×

P = {pP : p ∈ P}. Hence by
Remark 5.8.6, if N ∗ N ↪→ F2/F′′

2 were Toeplitz, we would have P ∩ gP = zP for
some z ∈ P , as P ∩ gP must lie in J×

P .

We already know that p lies in P ∩ gP . Moreover, x lies in P ∩ gP as x = gy
in F2/F′′

2 . But the only element z ∈ P with p ∈ zP and x ∈ zP is the identity
element z = e. This is because p starts with a while x starts with b.

Hence, if N ∗ N ↪→ F2/F′′
2 were Toeplitz, we would have P ∩ gP = P , or in other

words, P ⊆ gP . In particular, the identity element e ∈ P must be of the form
e = pq−1r for some r ∈ P . Hence it would follow that q = rp in F2/F′′

2 , and
therefore in N ∗ N. But this is absurd as p �= q while p and q have the same word
length with respect to the generators a and b.

All in all, this shows that N ∗ N ↪→ F2/F′′
2 is not Toeplitz.

Our second example is given as follows: Again, we take P = N ∗N. But this time,
we let our group be the Thompson group

F := 〈x0, x1, . . . | xnxk = xkxn+1 for k < n〉 .
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Let a and b be the canonical free generators of N∗N. Consider the homomorphism

N ∗ N→ F, a �→ x0, b �→ x1.

This is an embedding. For instance, this follows from uniqueness of the normal
form in [BG84, (1.3) in §1]. We claim that this embedding N ∗ N ↪→ F is not
Toeplitz.

To simplify notations, let us identify N ∗ N with the monoid 〈x0, x1〉+ generated
by x0 and x1 in F . Consider

q = x4
0x1 and p = x3

0.

Set g := pq−1. Then we have p ∈ P ∩ gP . But we also have that x0x1x
2
0 lies in

P ∩ gP because
x3
0x1x0x1 = x4

0x2x1 = x4
0x1x3 in F,

so that

pq−1x3
0x1x0x1 = pq−1x4

0x1x3 = px3 = x3
0x3 = x0x1x

2
0 in F.

If N∗N ↪→ F were Toeplitz, we would have that P ∩gP is of the form zP for some
z ∈ P . The argument is the same as in the previous example. But as we saw that
x3
0 and x0x1x

2
0 both lie in P ∩ gP , our element z can only be either the identity

element e or the generator x0.

If z = e, then we would have P ∩ gP = P , hence the identity e must lie in gP .
This means that there exists r ∈ P with e = gr = pq−1r and therefore q = rp.
But this is absurd.

If z = x0, then we would have P ∩ gP = x0P , hence x0 ∈ gP . Thus there must
exist an element r ∈ P with x0 = gr = pq−1r, and thus qp−1x0 = r. We conclude
that

r = qp−1x0 = x4
0x1x

−3
0 x0 = x4

0x1x
−2
0

so that
x4
0x1 = rx2

0.

But this is again absurd.
All in all, this shows that N ∗ N ↪→ F is not Toeplitz.

Looking at the preceding two examples, and comparing with our observation above
that the canonical embedding N ∗ N ↪→ F2 is Toeplitz, we get the feeling that it
is easier for the universal group embedding of a semigroup to satisfy the Toeplitz
condition than for any other group embedding. Indeed, this is true. Let us explain
the reason. We need the following equivalent formulation of the Toeplitz condition:

Lemma 5.8.7. Let P be a semigroup, and suppose that P ⊆ G is an embedding of
P into a group G. The inclusion P ⊆ G satisfies the Toeplitz condition if and only
if for all p, q ∈ P , there exists a partial bijection s ∈ Il(P ) with s(q) = p and the
intersection P ∩ qp−1P , taken in G, is contained in the domain dom(s).
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Proof. If g ∈ G satisfies g−1P ∩ P �= ∅, then there exists p, q in P with g−1p = q,
i.e., g = pq−1. This shows that P ⊆ G is Toeplitz if and only if for all p, q ∈ P ,
the partial bijection

qp−1P ∩ P → P ∩ pq−1P, x �→ pq−1x

lies in Il(P ). But this is precisely what our condition says. �
Corollary 5.8.8. Suppose that we have a semigroup P with two group embeddings
P ↪→ G and P ↪→ G̃. Furthermore, assume that there is a group homomorphism
G̃→ G such that the diagram

P � � ��

��

G̃

��
G

(5.25)

commutes. Then if P ↪→ G is Toeplitz, then the inclusion P ↪→ G̃ must be Toeplitz
as well.

Proof. In our equivalent formulation of the Toeplitz condition (see Lemma 5.8.7),
the only part that depends on the group embedding of our semigroup is the inter-
section P ∩ qp−1P . In our particular situation, the intersection P ∩ qp−1P taken
in G̃ is given by {

x ∈ P : pq−1x ∈ P in G̃
}
,

while the intersection P ∩ qp−1P taken in G is given by{
x ∈ P : pq−1x ∈ P in G

}
.

Because of the commutative diagram (5.25), the condition pq−1x ∈ P in G̃ im-
plies the condition pq−1x ∈ P in G. Hence the intersection P ∩ qp−1P , taken in
G̃, is contained in the intersection P ∩ qp−1P , taken in G, where we view both
intersections as subsets of P . Our claim follows. �
As an immediate consequence, we obtain:

Corollary 5.8.9. Let P be a semigroup that embeds into a group, and assume that
P ↪→ Guniv is its universal group embedding. If P ↪→ Guniv does not satisfy the
Toeplitz condition, then for any other embedding P ↪→ G of our semigroup into a
group G, we must have that P ↪→ G does not satisfy the Toeplitz condition either.

5.9 Graph products

We discuss the independence condition and the Toeplitz condition for graph prod-
ucts.
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Let Γ = (V,E) be a graph with vertices V and edges E. Assume that two vertices
in V are connected by at most one edge, and no vertex is connected to itself. Hence
we view E as a subset of V × V . For every v ∈ V , let Pv be a submonoid of a
group Gv. We then form the graph products

P := Γv∈V Pv

and
G := Γv∈V Gv,

as in §5.4.2. As explained in §5.4.2, we can think of P as a submonoid of G in a
canonical way.

Our goal is to prove that if each of the individual semigroups Pv, for all v ∈ V ,
satisfy the independence condition, then the graph product P also satisfies the
independence condition. Similarly, if each of the pairs Pv ⊆ Gv, for all v ∈ V , are
Toeplitz, then the pair P ⊆ G satisfies the Toeplitz condition as well. Along the
way, we give an explicit description for the constructible right ideals of P .

We use the same notation as in §5.4.2.

5.9.1 Constructible right ideals

Let us start with some easy observations.

Lemma 5.9.1. Let x1 · · ·xs be a reduced expression for x ∈ G, with xi ∈ Gvi .
Assume that v1, . . . , vj ∈ V i(x). Then for all 1 ≤ i ≤ j, x1 · · ·xi−1xi+1 · · ·xs is
a reduced expression (for x−1

i x). Similarly, if vs−j , . . . , vs ∈ V f (x), then for all
1 ≤ i ≤ j, x1 · · ·xs−i−1xs−i+1 · · ·xs is a reduced expression (for xx−1

s−i).

Proof. By assumption, the expressions x1 · · ·xs and xix1 · · ·xi−1xi+1 · · ·xs are
shuffle equivalent. In particular, the latter expression is reduced. Our first claim
follows. The second assertion is proven analogously. �
Lemma 5.9.2. For w ∈ V , let g be an element in Gw. Then for every x ∈ G, we
have gSi

w(x) = Si
w(gx).

Proof. Let x1 · · ·xs be a reduced expression for x. If w /∈ V i(x), then Lemma 5.4.7
implies that gx1 · · ·xs is a reduced expression for gx, and our claim follows. If w ∈
V i(x), we may assume that x1 = Si

w(x). If gx1 �= e, then obviously (gx1)x2 · · ·xs

is a reduced expression for gx, and we are done. If gx1 = e, then x2 · · ·xs is a
reduced expression for gx by Lemma 5.9.1. Clearly, w /∈ V i(gx), and our claim
follows. �
Definition 5.9.3. Let W ⊆ V be a subset with W ×W ⊆ E, i.e., for every w1, w2

in W , we have (w1, w2) ∈ E. Given constructible right ideals Xw ∈ JPw
for every

w ∈W , we set( ∏
w∈W

Xw

)
· P :=

{
x ∈ P : Si

w(x) ∈ Xw for all w ∈W
}
.
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If for some w ∈ W , we have Xw = ∅, then we set
(∏

w∈W Xw

) · P = ∅. If W = ∅,
we set

(∏
w∈W Xw

) · P = P .

By construction, we clearly have( ∏
w∈W

Xw

)
· P =

⋂
w∈W

(Xw · P ).

Lemma 5.9.4. Assume that Xw = p−1
1 q1 · · · p−1

n qn(Pw) for some pi, qi ∈ Pw. Then
we have Xw · P = p−1

1 q1 · · · p−1
n qn(P ). Here we view pi, qi as elements of P (via

the canonical embedding Pw ⊆ P ).

Proof. We proceed inductively on n. The case n = 0 is trivial. Let pi, qi be elements
of Pw, for 1 ≤ i ≤ n+ 1. Set Yw := p−1

2 q2 · · · p−1
n+1qn+1(Pw). We compute

(q1(Yw)) · P =
{
x ∈ P : Si

w(x) ∈ q1(Yw)
}

=
{
x ∈ q1P : q−1

1 (x) ∈ Yw · P
}

= {x ∈ q1P : x ∈ q1(Yw · P )}
=
{
x ∈ P : x ∈ q1p

−1
2 q2 · · · p−1

n+1qn+1(P )
}
.

Finally,

(p−1
1 q1(Yw)) · P =

{
x ∈ P : Si

w(x) ∈ p−1
1 q1(Yw)

}
=
{
x ∈ P : p1S

i
w(x) ∈ q1(Yw)

}
=
{
x ∈ P : Si

w(p1x) ∈ q1(Yw)
}

by Lemma 5.9.2

= {x ∈ P : p1x ∈ (q1(Yw)) · P}
= p−1

1 (q1(Yw)) · P = p−1
1 q1 · · · p−1

n+1qn+1(P ). �

Lemma 5.9.5. Assume that we are given p ∈ P and W , {Xw : w ∈W} as in
Definition 5.9.3. Assume that ∅ �= p

(∏
w∈W Xw

) · P �= P . Then there exist p̃ in

P , W̃ ⊆ V with W̃ × W̃ ⊆ E, X̃w ∈ JPw for w ∈ W̃ with

• W̃ �= ∅ and ∅ �= X̃w �= Pw for every w ∈ W̃ ,

• either p̃ = e or for all v ∈ V f (p̃), there exists w ∈ W̃ with (v, w) /∈ E,

such that

p

( ∏
w∈W

Xw

)
· P = p̃

⎛⎝ ∏
w∈W̃

X̃w

⎞⎠ · P.
Proof. We proceed inductively on the length l(p) of p. If l(p) = 0, i.e., p = e, then
for all w ∈W , we must have Xw �= ∅, and there must exist w ∈W with Xw �= Pw.
Thus, we can set

W̃ := {w ∈W : Xw �= Pw} and X̃w := Xw for w ∈ W̃ .
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Now assume that l(p) > 0. Without changing p
(∏

w∈W Xw

) ·P , we can replace W
by {w ∈W : Xw �= Pw}. So we may just as well assume that for every w ∈W , we
have ∅ �= Xw �= Pw. If for every v ∈ V f (p), there exists w ∈ W with (v, w) /∈ E,
then we can just set W̃ = W and X̃w = Xw for all w ∈ W̃ . If not, then we choose
v ∈ V f (p) with (v, w) ∈ E for every w ∈W . Let p1 · · · pr be a reduced expression
for p, with pr ∈ Pv. Set Xv := Pv if v /∈W . Using Lemma 5.9.1 and Lemma 5.9.2,
we deduce

pr

( ∏
w∈W

Xw

)
· P =

{
y ∈ P : y = prx for some x ∈

( ∏
w∈W

Xw

)
· P

}
=
{
y ∈ P : Si

w(y) ∈ Xw for all v �= w ∈W and Si
v(y) ∈ prXv

}
= (prXv) ·

⎛⎝ ∏
v �=w∈W

Xw

⎞⎠ · P.
Thus

p

( ∏
w∈W

Xw

)
· P = (p1 · · · pr−1)

⎡⎣(prXv) ·
⎛⎝ ∏

v �=w∈W

Xw

⎞⎠⎤⎦ · P.
Now our claim follows once we apply the induction hypothesis with p1 · · · pr−1 in
place of p. �

Definition 5.9.6. Assume that we are in the situation of Lemma 5.9.5, i.e., we are
given p ∈ P and W , {Xw : w ∈W} as in Definition 5.9.3. Assume that

∅ �= p

( ∏
w∈W

Xw

)
· P �= P.

Then

p

( ∏
w∈W

Xw

)
· P

is said to be in standard form if both conditions from the Lemma 5.9.5 are satisfied,
i.e.,

• W �= ∅ and ∅ �= Xw �= Pw for every w ∈W ,

• either p = e or for all v ∈ V f (p), there exists w ∈W with (v, w) /∈ E.

Lemma 5.9.7. Assume that p
(∏

w∈W Xw

) · P is in standard form. Given reduced

expressions p1 · · · pr for p and x1 · · ·xs for x ∈ (∏
w∈W Xw

) · P , p1 · · · prx1 · · ·xs

is a reduced expression for px. In particular, if in addition p �= e, then for every
v ∈ V i(p), we have Si

v(px) = Si
v(p).
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Proof. For our first claim, the case p = e is trivial. So let us assume p �= e. AsXw �=
Pw for all w ∈ W , we know that W ⊆ V i(x), so that V f (p) ∩ V i(x) = ∅ because
p
(∏

w∈W Xw

) · P is in standard form. Then our assertion that p1 · · · prx1 · · ·xs is
reduced follows from Lemma 5.4.7. �

Proposition 5.9.8. The nonempty constructible right ideals of P are precisely given
by all the nonempty subsets of P of the form p

(∏
w∈W Xw

) · P , with p ∈ P and
W , {Xw : w ∈W} as in Definition 5.9.3.

Proof. First, we prove that p
(∏

w∈W Xw

) ·P is constructible. It certainly suffices

to check that
(∏

w∈W Xw

)·P is constructible. But Lemma 5.9.4 tells us that Xw ·P
is constructible for every w ∈W . Therefore,

(∏
w∈W Xw

) · P =
⋂

w∈W (Xw · P ) is
constructible itself.

Secondly, we show that every nonempty constructible right ideal is of the form
p
(∏

w∈W Xw

) ·P . For this purpose, let J ′ be the set of all nonempty constructible

right ideals which are of the form p
(∏

w∈W Xw

) · P . Clearly, P lies in J ′. Also,
if ∅ �= X ∈ J ′ and p ∈ P , then obviously pX lies in J ′. It remains to prove that
for ∅ �= X ∈ J ′ and q ∈ P , we have q−1(X) ∈ J ′ if q−1(X) �= ∅. Since the set
J×
P of nonempty constructible right ideals of P is minimal with respect to these

properties, this would then show that J×
P ⊆ J ′, as desired. By induction on l(q),

we may assume that q ∈ Pv, and it even suffices to consider the case q ∈ Pv \ P ∗
v .

For X = p
(∏

w∈W Xw

) · P , we want to show that q−1(X) = ∅ or q−1(X) ∈ J ′.
We distinguish between the following cases:

1. p = e:

1.a) There exists w ∈ W with (v, w) /∈ E. Without loss of generality we may
assume that Xw �= Pw for all w ∈ W . Then for every x ∈ P , w /∈ V i(qx) since
v ∈ V i(qx). Thus, Si

w(qx) = e /∈ Xw. Therefore,

q−1

( ∏
w∈W

Xw

)
· P = ∅.

1.b) We have (v, w) ∈ E for all w ∈W and v /∈W . Then

q−1

( ∏
w∈W

Xw

)
· P =

{
x ∈ P : Si

w(qx) ∈ Xw for all w ∈W
}

=
{
x ∈ P : Si

w(x) ∈ Xw for all w ∈W
}

=

( ∏
w∈W

Xw

)
· P ∈ J ′.
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1.c) We have (v, w) ∈ E for all w ∈W and v ∈W . Then

q−1

( ∏
w∈W

Xw

)
· P =

{
x ∈ P : Si

w(qx) ∈ Xw for all w ∈W
}

=

⎡⎣(q−1(Xv)) ·
⎛⎝ ∏

v �=w∈W

Xw

⎞⎠⎤⎦ · P ∈ J ′.

2. p �= e: We can clearly assume that

∅ �= p

( ∏
w∈W

Xw

)
· P �= P.

By Lemma 5.9.5, we may assume that p
(∏

w∈W Xw

) ·P is in standard form. And
because we have already finished the case p = e, we can in addition assume that
p �= e. Without loss of generality, we may assume v ∈ V i(p), as we would otherwise
have q−1[p(

∏
w∈W Xw) · P ] = ∅ or q−1[p(

∏
w∈W Xw] · P ] = p(

∏
w∈W Xw) · P .

Lemma 5.9.7 gives Si
v(px) = Si

v(p) for every x ∈ (∏
w∈W Xw

) · P . Now y lies in

q−1
[
p
(∏

w∈W Xw

) · P ] if and only if there exists x ∈ (∏
w∈W Xw

) · P such that

qy = px. Hence if there exists y ∈ q−1
[
p
(∏

w∈W Xw

) · P ], we must have

qSi
v(y) = Si

v(qy) = Si
v(px) = Si

v(p)

by Lemma 5.9.2. Thus p ∈ Si
v(p)P ⊆ qP . This implies that

q−1

[
p

( ∏
w∈W

Xw

)
· P

]
= (q−1p)

( ∏
w∈W

Xw

)
· P ∈ J ′. �

5.9.2 The independence condition

Lemma 5.9.9. Assume that

∅ �= p

( ∏
w∈W

Xw

)
· P �= P and ∅ �= p̃

⎛⎝ ∏
w∈W̃

X̃w

⎞⎠ · P �= P

are in standard form, with p �= e. If

p̃

⎛⎝ ∏
w∈W̃

X̃w

⎞⎠ · P ⊆ p

( ∏
w∈W

Xw

)
· P,

then p̃ ∈ pP .
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Proof. First of all, let us show that p̃ �= e. Namely, assume the contrary, i.e.,

p̃ = e. Take x̃ ∈
(∏

w∈W̃ X̃w

)
·P . By assumption, we can find x ∈ (∏

w∈W Xw

) ·P
so that x̃ = px. Moreover, choose v ∈ V i(p). By Lemma 5.9.7, it follows that

Si
v(x̃) = Si

v(px) = Si
v(p). Thus, we have proven that every x̃ ∈

(∏
w∈W̃ X̃w

)
· P

must satisfy Si
v(x̃) = Si

v(p). But this is obviously a wrong statement. Thus, we
must have p̃ �= e.

Now we proceed inductively on l(p). We start with the case l(p) = 1, i.e., p ∈
Pv. For x̃ ∈

(∏
w∈W̃ X̃w

)
· P with Si

v(p̃x̃) = Si
v(p̃), we can always find x ∈(∏

w∈W Xw

) · P so that p̃x̃ = px. By Lemma 5.9.7, we deduce that p = Si
v(px) =

Si
v(p̃x̃) = Si

v(p̃). Therefore, p̃ ∈ Si
v(p̃)P = pP .

For the induction step, take v ∈ V i(p). For x̃ ∈
(∏

w∈W̃ X̃w

)
· P with Si

v(p̃x̃) =

Si
v(p̃), again choose x ∈ (∏

w∈W Xw

) ·P so that p̃x̃ = px. Then Si
v(p) = Si

v(px) =
Si
v(p̃x̃) = Si

v(p̃). This shows that both p̃ and p lie in Si
v(p)P . We deduce that

(Si
v(p)

−1p̃)

⎛⎝ ∏
w∈W̃

X̃w

⎞⎠ · P ⊆ (Si
v(p)

−1p)

( ∏
w∈W

Xw

)
· P.

Since l(Si
v(p)

−1p) < l(p), we can now apply the induction hypothesis, and we are
done. �

Lemma 5.9.10. As above, let

∅ �=
( ∏

w∈W

Xw

)
· P �= P and ∅ �= p̃

⎛⎝ ∏
w∈W̃

X̃w

⎞⎠ · P �= P

be in standard form, this time with p̃ �= e (and p = e). If

p̃

⎛⎝ ∏
w∈W̃

X̃w

⎞⎠ · P ⊆ ( ∏
w∈W

Xw

)
· P,

then

p̃ ∈
( ∏

w∈W

Xw

)
· P.

Proof. For x̃ ∈
(∏

w∈W̃ X̃w

)
· P with Si

v(p̃x̃) = Si
v(p̃), p̃x̃ lies in

(∏
w∈W Xw

) · P
by assumption. Hence, Lemma 5.9.7 tells us that for all w ∈ W , Si

w(p̃) = Si
w(p̃x̃)

lies in Xw. Thus, p̃ lies in
(∏

w∈W Xw

) · P . �
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Lemma 5.9.11. Let

∅ �=
( ∏

w∈W

Xw

)
· P �= P and ∅ �=

⎛⎝ ∏
w∈W̃

X̃w

⎞⎠ · P �= P

be in standard form. Then⎛⎝ ∏
w∈W̃

X̃w

⎞⎠ · P ⊆ ( ∏
w∈W

Xw

)
· P

if and only if W ⊆ W̃ and X̃w ⊆ Xw for every w ∈W .

Proof. The direction “⇐” is obvious. To prove the reverse direction, first assume
that W � W̃ . Choose for every w̃ ∈ W̃ an element xw̃ ∈ X̃w̃. Then the prod-

uct
∏

w̃∈W̃ xw̃ obviously lies in
(∏

w∈W̃ X̃w

)
· P . But for w ∈ W \ W̃ , we have

Si
w(
∏

w̃∈W̃ xw̃) = e /∈ Xw as Xw �= Pw. This contradicts
(∏

w∈W̃ X̃w

)
· P ⊆(∏

w∈W Xw

) ·P . So we must have W ⊆ W̃ . If for some w ∈W , we have X̃w � Xw,

then choose xw ∈ X̃w \Xw. For all remaining w̃ ∈ W̃ \{w}, choose xw̃ ∈ X̃w̃. Then

the product
∏

w̃∈W̃ xw̃ lies in
(∏

w∈W̃ X̃w

)
· P . But Si

w(
∏

w̃∈W̃ xw̃) = xw /∈ Xw.

This again contradicts
(∏

w∈W̃ X̃w

)
· P ⊆ (∏

w∈W Xw

) · P . �

Proposition 5.9.12. If for every v ∈ V , the semigroup Pv satisfies independence,
then the graph product P satisfies independence.

Proof. Let

∅ �= p

( ∏
w∈W

Xw

)
· P �= P

be in standard form, and let

∅ �= pi

( ∏
w∈Wi

X(i)
w

)
· P �= P

be finitely many constructible right ideals of P in standard form. If

p

( ∏
w∈W

Xw

)
· P =

⋃
i

pi

( ∏
w∈Wi

X(i)
w

)
· P,

then either p = e or pi ∈ pP for all i by Lemma 5.9.9. Hence( ∏
w∈W

Xw

)
· P =

⋃
i

(p−1pi)

( ∏
w∈Wi

X(i)
w

)
· P
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Therefore, we may without loss of generality assume that p = e, i.e.,( ∏
w∈W

Xw

)
· P =

⋃
i

pi

( ∏
w∈Wi

X(i)
w

)
· P. (5.26)

Let I = {i : pi �= e} and J = {i : pi = e}. By Lemma 5.9.10, we have for all i ∈ I
and w ∈W that Si

w(pi) ∈ Xw. We define for every i ∈ I:

p′i =
∏

w∈W

Si
w(pi).

For each i ∈ I, we obviously have

pi

( ∏
w∈Wi

X(i)
w

)
· P ⊆ piP ⊆ p′iP ⊆

( ∏
w∈W

Xw

)
· P.

Therefore, ( ∏
w∈W

Xw

)
· P =

⋃
i∈I

(p′iP ) ∪
⋃
i∈J

( ∏
w∈Wi

X(i)
w

)
· P.

Set W̃i := W if i ∈ I, W̃i := Wi for i ∈ J and

X̃(i)
w :=

{
Si
w(pi)Pw if i ∈ I, w ∈ W̃i,

X
(i)
w if i ∈ J, w ∈ W̃i.

Since
(∏

w∈W̃i
X̃

(i)
w

)
· P = p′iP for all i ∈ I, we obviously again have

( ∏
w∈W

Xw

)
· P =

⋃
i

⎛⎝ ∏
w∈W̃i

X̃(i)
w

⎞⎠ · P. (5.27)

Moreover, X̃
(i)
w �= Pw for all i and w ∈ W̃i.

By Lemma 5.9.11, we must have X̃
(i)
w ⊆ Xw for all i and w ∈ W̃i. Assume that for

all i with W̃i = W , there exists w(i) ∈ W with X̃
(i)
w(i) � Xw(i). Choose for every

w ∈ {w(i)}i an element

xw ∈ Xw \
⋃

{i:w(i)=w}
X̃

(i)
w(i).

This is possible since JPv
is independent for every v ∈ V , so that

Xw \
⋃

{i:w(i)=w}
X̃

(i)
w(i) �= ∅.
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For all remaining w ∈ W , just choose some xw ∈ Xw. Then x :=
∏

w∈W xw lies

in
(∏

w∈W Xw

) · P , but for all i with W̃i = W , Si
w(i)(x) does not lie in X̃

(i)
w(i).

Therefore, x does not lie in
(∏

w∈W̃i
X̃

(i)
w

)
· P whenever i satisfies W̃i = W . For

i with W̃i �= W , take w̃ ∈ W̃i \W . Then Si
w̃(x) = e /∈ X̃

(i)
w̃ . Thus also for i with

W̃i �= W , we have x /∈
(∏

w∈W̃i
X̃

(i)
w

)
·P . Since this contradicts (5.27), there must

exist an index i with Wi = W and X̃
(i)
w = Xw for all w ∈ W . In particular, for

that index i, we must have( ∏
w∈W

Xw

)
· P =

⎛⎝ ∏
w∈W̃i

X̃(i)
w

⎞⎠ · P.
If this index i lies in I, then we have shown that

(∏
w∈W Xw

) · P is a principal
right ideal, and we are done. If this index i lies in J , then we have proven that(∏

w∈W Xw

) ·P coincides with one of the (constructible right) ideals on the right-
hand side of (5.26) (since pi = e for i ∈ J), and we are also done. �

5.9.3 The Toeplitz condition

Definition 5.9.13. Let x ∈ G, and assume that x1 · · ·xs is a reduced expression for
x. We set S(x) := {x1, . . . , xs}.
Note that this is well defined by Theorem 5.4.2.

Lemma 5.9.14. Let g, x ∈ G, v ∈ V f (g), and assume Sf
v (g)S

i
v(x) �= e. Then

Sf
v (g)S

i
v(x) lies in S(gx).

Proof. Let g1 · · · gr be a reduced expression for g, with gr = Sf
v (g).

First of all, if V f (g)∩V i(x) = ∅, then Lemma 5.4.7 tells us that for every reduced
expression x1 · · ·xs for x, g1 · · · grx1 · · ·xs is a reduced expression for gx. Hence
gr = Sf

v (g)S
i
v(x) lies in S(gx).

Secondly, assume that V f (g) ∩ V i(x) = {v}. If x1 · · ·xs is a reduced expres-
sion for x with x1 = Si

v(x), then since grx1 �= e, Lemma 5.4.7 tells us that
g1 · · · gr−1(grx1)x2 · · ·xs is a reduced expression for gx. Again, our claim follows.

Finally, it remains to treat the case

∅ �= V f (g) ∩ V i(x) �= {v} .

We proceed inductively on l(g). The cases l(g) = 0 and l(g) = 1 are taken care of
by the previous cases. As

∅ �= V f (g) ∩ V i(x) �= {v} ,
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we can choose w ∈ V f (g) ∩ V i(x) with w �= v. If v lies in V f (g) ∩ V i(x), then
choose a reduced expression g1 · · · gr for g with gr−1 ∈ Gw and gr ∈ Gv, and let
x1 · · ·xs be a reduced expression for x with x1 ∈ Gv and x2 ∈ Gw. Then

gx = g1 · · · gr−2(grx1)(gr−1x2)x3 · · ·xs.

Set
g′ := g1 · · · gr−2gr and x′ := x1(gr−1x2)x3 · · ·xs.

By Lemma 5.9.1, we know that g1 · · · gr−2gr is a reduced expression, so that gr =
Sf
v (g

′). Also, x1(gr−1x2)x3 · · ·xs is a reduced expression. This is clear if gr−2x2 �=
e, and it follows from Lemma 5.9.1 in case gr−2x2 = e. Thus, x1 = Si

v(x
′). So we

again have
Sf
v (g

′)Si
v(x

′) = Sf
v (g)S

i
v(x) �= e.

Since l(g′) < l(g), induction hypothesis tells us that Sf
v (g)S

i
v(x) = Sf

v (g
′)Si

v(x
′)

lies in S(g′x′) = S(gx). The case v /∈ V f (g) ∩ V i(x) is treated similarly. Just set
x1 = e. �
For g ∈ G, let us denote the partial bijection

g−1P ∩ P → P ∩ gP, x �→ gx

by gP .

Lemma 5.9.15. Let g1 · · · gr be a reduced expression for g ∈ G. Then

gP = (g1)P · · · (gr)P .
Proof. We proceed inductively on l(g). The case l(g) = 1 is trivial. First, we show
that for x ∈ P , gx ∈ P implies grx ∈ P . Let gr ∈ Gv. Then by Lemma 5.9.14,
grS

i
v(x) lies in S(gx) or grS

i
v(x) = e. Since gx ∈ P , we conclude that in any

case, we have grS
i
v(x) ∈ Pv. Obviously, S(grx) ⊆

{
grS

i
v(x)

} ∪ S(x). So we obtain
grx ∈ P . Therefore, we compute

dom(gP ) = {x ∈ P : gx ∈ P} = {x ∈ P : gx ∈ P and grx ∈ P}
= {x ∈ P : grx ∈ P and (g1 . . . gr−1)(grx) ∈ P}
= dom((g1 · · · gr−1)P gP ).

Hence it follows that gP = (g1 · · · gr−1)P gP .

By induction hypothesis, (g1 · · · gr−1)P = (g1)P . . . (gr−1)P , and we are done. �
Lemma 5.9.16. For g ∈ Gv, we have g−1Pv ∩Pv �= ∅ if and only if g−1P ∩ P �= ∅.
Assume that this is the case, and that there are pi, qi in Gv with

gPv
= p−1

1 q1 · · · p−1
n qn

in Il(Pv). Then
gP = p−1

1 q1 · · · p−1
n qn

in Il(P ).
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Proof. Let us start proving the first claim. Since Pv ⊆ P , the implication “⇒” is
obvious. For the reverse direction, assume that g−1P ∩ P �= ∅, i.e., there exists
x ∈ P with gx ∈ P . Then obviously, Si

v(x) ∈ Pv, and gSi
v(x) = Si

v(gx) lies in Pv

(here we used Lemma 5.9.2), so g−1Pv ∩ Pv �= ∅.
Secondly, we show g−1P ∩ P = q−1

n pn · · · q−1
1 p1(P ):

g−1P ∩ P = {x ∈ P : gx ∈ P} = {
x ∈ P : Si

v(gx) ∈ Pv

}
=
{
x ∈ P : gSi

v(x) ∈ Pv

}
by Lemma 5.9.2

=
{
x ∈ P : Si

v(x) ∈ g−1Pv ∩ Pv

}
=
{
x ∈ P : Si

v(x) ∈ q−1
n pn · · · q−1

1 p1(Pv)
}

=
(
q−1
n pn · · · q−1

1 p1(Pv)
) · P

= q−1
n pn · · · q−1

1 p1(P ) by Lemma 5.9.4.

Therefore, we have

dom(gP ) = dom(p−1
1 q1 · · · p−1

n qn)

as subsets of P . Hence it follows that

gP = p−1
1 q1 · · · p−1

n qn

in Il(P ) because we have p−1
1 q1 · · · p−1

n qn = g in Gv ⊆ G. Here we are taking
products of p−1

i and qi as group elements in Gv and G. �

Proposition 5.9.17. If for all v ∈ V , Pv ⊆ Gv is Toeplitz, then P ⊆ G is Toeplitz.

Proof. Let g1 · · · gr be a reduced expression for g ∈ G, with gi ∈ Gvi . Assume that
g−1P ∩ P �= ∅. By Lemma 5.9.15, we know that

gP = (g1)P · · · (gr)P .

In particular, g−1
i P ∩ P �= ∅ for all 1 ≤ i ≤ r. By Lemma 5.9.16, we conclude

that g−1
i Pvi ∩ Pvi �= ∅ for all 1 ≤ i ≤ r. Since for all 1 ≤ i ≤ r, the embedding

Pvi ⊆ Gvi
is Toeplitz, we can find pi,j , qi,j in Pvi (for 1 ≤ j ≤ ni) with

(gi)Pvi
= p−1

i,1 qi,1 · · · p−1
i,ni

qi,ni in Il(Pvi).

Lemma 5.9.16 implies that

(gi)P = p−1
i,1 qi,1 · · · p−1

i,ni
qi,ni

in Il(P )

for all 1 ≤ i ≤ r. Thus we have, in Il(P ):

gP = (g1)P · · · (gr)P =
(
p−1
1,1q1,1 · · · p−1

1,n1
q1,n1

) · · · (p−1
r,1qr,1 · · · p−1

r,nr
qr,nr

)
. �
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5.10 K-theory

Let us apply the K-theory results from Chapter 3 to semigroups and their reduced
semigroup C∗-algebras.

Let P be a semigroup that embeds into a group. Assume that P satisfies indepen-
dence, and that we have an embedding P ⊆ G into a group G such that P ⊆ G
is Toeplitz. Furthermore, suppose that G satisfies the Baum–Connes conjecture
with coefficients.

As J×
P⊆G = G.J×

P by Lemma 5.8.3, we can choose a set of representatives X ⊆ JP

for the G-orbits G\J×
P⊆G. For every X ∈ X, let

GX := {g ∈ G : gX = X} ,
and let

ιX : C∗
λ(GX)→ C∗

λ(P ), λg �→ λg1X .

Here we identify C∗
λ(P ) with the crossed product DP⊆G �r G as in Proposi-

tion 5.8.5. This is possible because of our assumption that P ⊆ G is Toeplitz.

Theorem 5.10.1. In the situation above, we have that⊕
X∈X

(ιX)∗ :
⊕
X∈X

K∗(C∗
λ(GX))

∼=−→ K∗(C∗
λ(P ))

is an isomorphism.

To see how Theorem 5.10.1 follows from Corollary 3.5.19, we explain how to choose
Ω, I and ei, i ∈ I (in the notation of Corollary 3.5.19). Let Ω be the spectrum
of DP⊆G (DP⊆G was introduced in Definition 5.8.4), so that our semigroup C∗-
algebra is a full corner in C0(Ω) �r G by Proposition 5.8.5. Moreover, let I be
J×
P⊆G, and let eX be given by 1X for all X ∈ J×

P⊆G. Applying Corollary 3.5.19,
with coefficient algebra A = C, to this situation yields Theorem 5.10.1.

If, in addition, P is a monoid and we have J×
P = {pP : p ∈ P}, then we must

have J×
P⊆G = {gP : g ∈ P}, so that we may choose X = {P}. Then the stabilizer

group GP = P ∗ becomes the group of units in P . The theorem above then says
that the ∗-homomorphism

ι : C∗
λ(P

∗)
∼=−→ C∗

λ(P ), λg �→ Vg

induces an isomorphism

ι∗ : K∗(C∗
λ(P

∗))
∼=−→ K∗(C∗

λ(P )).

In particular, if we further have that P has trivial unit group, then we obtain that
the unique unital ∗-homomorphism C→ C∗

λ(P ) induces an isomorphism

K∗(C)
∼=−→ K∗(C∗

λ(P )).
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This applies to positive cones in total ordered groups, as long as the group satisfies
the Baum–Connes conjecture with coefficients. It also applies to right-angled Artin
monoids, to Braid monoids, to Baumslag–Solitar monoids of the type B+

k,l for
k, l ≥ 1, and to the Thompson monoid.

Let us also discuss the case of ax + b-semigroups over rings of algebraic integers
in number fields. This case is also discussed in detail in Section 6.5. Let K be
a number field with ring of algebraic integers R. We apply our K-theory result
to the semigroup P = R � R×. This semigroup embeds into the ax + b-group
K �K×. All our conditions are satisfied, so that we only need to compute orbits
and stabilizers. We have a canonical identification

G\JR�R×⊆K�K×
∼=−→ ClK , [a× a×] �→ [a].

Moreover, for the stabilizer group Ga×a× , we obtain

Ga×a× = a�R∗.

Here, R∗ is the group of multiplicative units in R.

Hence, our K-theory formula reads in this case⊕
[a]∈ClK

K∗(C∗
λ(a�R∗))

∼=−→ K∗(C∗
λ(R�R×)).

There is a generalization of this formula to ax+ b-semigroups over Krull rings (see
[Li16c]). Let us explain this, using the notation from §5.4.3.
Let R be a countable Krull ring with group of multiplicative units R∗ and divisor
class group C(R). Then our K-theory formula gives⊕

[a]∈C(R)

K∗(C∗
λ(a�R∗))

∼=−→ K∗(C∗
λ(R�R×)).

The reader may also consult Corollary 6.5.4 in Chapter 6.

Building on our discussion of graph products in §5.4.2 and §5.9, we can also present
a K-theory formula for graph products.

As in §5.4.2 and §5.9, let Γ = (V,E) be a graph with vertices V and edges E,
such that two vertices in V are connected by at most one edge, and no vertex is
connected to itself. So we view E as a subset of V × V . For every v ∈ V , let Pv

be a submonoid of a group Gv. We then form the graph products

P := Γv∈V Pv

and
G := Γv∈V Gv.
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We have a canonical embedding P ⊆ G.

For every v ∈ V , choose a system Xv of representatives for the orbits Gv\J×
Pv⊆Gv

which do not contain Pv. Moreover, for every nonempty subset W ⊆ V , define
XW :=

∏
w∈W Xw. Combining Proposition 5.9.8, Proposition 5.9.12, Proposi-

tion 5.9.17 and Theorem 5.10.1, we obtain:

Theorem 5.10.2. Assume that for every vertex v in V , our semigroup Pv satisfies
independence, and that Pv ⊆ Gv is Toeplitz. Moreover, assume that G satisfies
the Baum–Connes conjecture with coefficients. Then the K-theory of the reduced
C∗-algebra of P is given by

K∗(C∗
λ(P

∗))⊕
⊕

∅�=W⊆V
W×W∈E

⊕
(Xw)w∈XW

K∗

(
C∗

λ

( ∏
w∈W

GXw

))
∼=−→ K∗(C∗

λ(P )).

Proof. We know that P satisfies independence by Proposition 5.9.12, and we know
that P ⊆ G is Toeplitz by Proposition 5.9.17. Moreover, it is an immediate con-
sequence of Proposition 5.9.8 that

G \J×
P⊆G

= {P} #
{[( ∏

w∈W

Xw

)
· P

]
: ∅ �= W ⊆ V, W ×W ⊆ E, (Xw)w ∈ XW

}
.

As we get for the stabilizer groups

G(
∏

w∈W Xw)·P =
∏

w∈W

GXw ,

our theorem follows from Theorem 5.10.1. �
Note that the graph product G satisfies the Baum–Connes conjecture with coeffi-
cients if for every vertex v ∈ V , the group Gv has the Haagerup property. This is
because, by [AD13], the graph product G has the Haagerup property in this case.

5.11 Further developments, outlook,
and open questions

Based on the result we presented, in particular descriptions as partial or ordinary
crossed products as well as our K-theory formula, we obtain classification results
for semigroup C∗-algebras.

For instance, the case of positive cones in countable subgroups of the real line,
where these groups are equipped with the canonical total order coming from R,
have been studied in [Dou72, JX88, CPPR11, Li15]. It turns out that the semi-
group C∗-algebra of such positive cones remembers the semigroup completely.
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Actually, we can replace the semigroup C∗-algebra by the ideal corresponding to
the boundary quotient. It turns out that also these ideals determine the positive
cones completely.

For right-angled Artin monoids, a complete classification result was obtained in
[ELR16], building on previous work in [CL02, CL07, Iva10, LR96]. The final clas-
sification result allows us to decide which right-angled Artin monoids have iso-
morphic semigroup C∗-algebras by looking at the underlying graphs defining our
right-angled Artin monoids. The invariants of the graphs deciding the isomorphism
class of the semigroup C∗-algebras are explicitly given, and easy to compute in
concrete examples.

For Baumslag–Solitar monoids, important structural results about their semigroup
C∗-algebras were obtained in [Spi12, Spi14].

In the case of ax+ b-semigroups over rings of algebraic integers in number fields,
partial classification results have been obtained in [Li14], building on previous work
in [CDL13, EL13]. It turns out that for two number fields with the same number
of roots of unity, if the ax + b-semigroups over their rings of algebraic integers
have isomorphic semigroup C∗-algebras, then our number fields must have the
same zeta function. In other words, they must be arithmetically equivalent (see
[Per77, SP95]).

In addition to these classification results, another observation is that the canoni-
cal commutative sub-C∗-algebra (denoted by Dλ(P )) of our semigroup C∗-algebra
often provides interesting extra information. In many situations, the partial dy-
namical system attached to our semigroup (embedded into a group) is topologically
free, and then this canonical commutative sub-C∗-algebra is a Cartan subalgebra
in the sense of [Ren08]. For instance, for rings of algebraic integers in number fields,
it is shown in [Li16a] that Cartan-isomorphism for two semigroup C∗-algebras of
the ax+ b-semigroups implies that the number fields are arithmetically equivalent
and have isomorphic class groups. This is a strictly stronger statement then just
being arithmetically equivalent, as there are examples of number fields that are
arithmetically equivalent but have difference class numbers (see [dSP94]).

It would be interesting to obtain structural results for semigroup C∗-algebras of
the remaining examples mentioned in §5.3.
For instance, for more general totally ordered groups, the semigroup C∗-algebras
of their positive cones have not been studied and would be interesting to investi-
gate. Their boundary quotients are given by the reduced group C∗-algebras of our
totally ordered groups. It would be interesting to study the structure of the ideals
corresponding to these boundary quotients.

For Artin monoids that are not right-angled, it would be interesting to find out
more about their semigroup C∗-algebras. For example, the case of Braid monoids
would already be interesting. Here the boundary quotients are given by the re-
duced group C∗-algebras of Braid groups. Therefore, the semigroup C∗-algebras
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of Braid monoids cannot be nuclear. But what about the ideals corresponding to
the boundary quotients?

It would also be very interesting to study the semigroup C∗-algebra of the Thomp-
son monoid. While the boundary quotient of the semigroup C∗-algebra attached
to the left regular representation is isomorphic to the reduced group C∗-algebra of
the Thompson group, the boundary quotient of the semigroup C∗-algebra gener-
ated by the right regular representation is a purely infinite simple C∗-algebra (see
our discussion after Theorem 5.7.15, and also Corollary 5.7.17). Is it nuclear?

In the case of ax+b-semigroups over rings of algebraic integers in number fields, is
it possible to find a complete classification result for their semigroup C∗-algebras?
This means that we want to know when precisely two such ax+b-semigroups have
isomorphic semigroup C∗-algebras. It would be interesting to find a characteriza-
tion in terms of the underlying number fields and their invariants.

Finally, it seems that not much is known about semigroup C∗-algebras of finitely
generated abelian cancellative semigroups. However, we remark that it is not diffi-
cult to see that all numerical semigroups have isomorphic semigroup C∗-algebras.
Moreover, subsemigroups of Z2 are discussed in Chapter 7.

Moreover, apart from the issue of classification, we would like to mention a couple
of interesting further questions.

Given a semigroup P that is cancellative, i.e., both left and right cancellative, we
can form the semigroup C∗-algebra C∗

λ(P ) generated by the left regular represen-
tation, and also the semigroup C∗-algebra C∗

ρ (P ) generated by the right regular
representation. It was observed in [CEL13, Li16c] that these two types of semi-
group C∗-algebras are completely different. However, strangely enough, they seem
to share some properties. For instance, in all the examples we know, our semigroup
C∗-algebras C∗

λ(P ) and C∗
ρ (P ) have isomorphic K-theory (see [CEL13, Li16c]).

There is even an example when this is the case, where our semigroup does not
satisfy independence (see [LN16]). Is this a general phenomenon? Do C∗

λ(P ) and
C∗

ρ (P ) always have isomorphic K-theory? What other properties do C∗
λ(P ) and

C∗
ρ (P ) have in common? For instance, what about nuclearity?

Looking at Theorem 5.6.44, and in particular Corollary 5.6.45, the following task
seems interesting: Find a semigroup P that embeds into a group, whose semigroup
C∗-algebra is nuclear, such that P does not embed into an amenable group.

With our discussion of the Toeplitz condition in mind (see §5.8), it would be
interesting to find a semigroup that embeds into a group, for which the universal
group embedding is not Toeplitz.

Finally, we remark that it would be an interesting project to try to generalize our
K-theory computations to subsemigroups of groups without using the Toeplitz
condition.



Chapter 6

Algebraic actions and their
C∗-algebras
Joachim Cuntz

6.1 Introduction

In this chapter we study examples of semigroup C∗-algebras and semigroup ac-
tions that have been instrumental for an important part of the recent development
on semigroup C∗-algebras described in Chapter 5, as well as for the design of new
methods to compute K-theory such as the method described in Section 3.5.3.
Some of these are standard examples in ergodic theory, while others arise from
semigroups and semigroup actions of number-theoretic origin. All this can be sub-
sumed under the heading “algebraic actions”.

By an algebraic action we mean here an action of a semigroup by algebraic endo-
morphisms on a compact abelian group or, dually, by endomorphisms on a discrete
abelian group. Such actions are much studied in ergodic theory, but they also give
rise to interesting C∗-algebras. In fact, quite a few of the standard examples of
simple C∗-algebras such as On-algebras, Bunce–Deddens algebras, UHF-algebras
etc. arise from canonical representations of such endomorphisms. But the class of
C∗-algebras obtained from general algebraic actions is much vaster and exhibits
new interesting phenomena.

We start our survey with the discussion, following [CV13], of the C∗-algebra A[α]
generated by the so-called Koopman representation on L2H of a single endomor-
phism α of a compact abelian group H, together with the natural representation
of the algebra C(H) of continuous functions on H. Under natural conditions on
α, this C∗-algebra is always simple purely infinite and can be described by a nat-
ural set of generators and relations. It contains a canonical maximal commutative

© Springer International Publishing AG 2017 
J. Cuntz et al., K-Theory for Group C*-Algebras and Semigroup C*-Algebras, 
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C∗-algebra D with spectrum a Cantor space. This subalgebra is generated by the
range projections snsn∗, where s is the isometry implementing the given endo-
morphism, and by their conjugates uγs

nsn∗u∗
γ , under the unitaries uγ given by

the characters γ of H. Then, the subalgebra B generated by D together with the
uγ is of Bunce–Deddens type and simple with unique trace. Moreover, A[α] can
be considered as a crossed product of B by a single endomorphism. This leads to
a natural exact sequence determining the K-theory of A[α]. We briefly discuss a
number of important examples.

The next case we consider is the C∗-algebra generated analogously by the Koop-
man representation of a family of commuting endomorphisms. We consider the
important special case of endomorphisms arising from the ring of integers R in a
number field K. The multiplicative semigroup R× acts by commuting endomor-
phisms on the additive group R ∼= Zn or equivalently on the dual group R̂ ∼= Tn

(n being the degree of the field extension K over Q). The commutative semigroup
R× has a nontrivial structure and acts by interesting endomorphisms on Tn. The
study of the C∗-algebra A[R] generated by the Koopman representation in this
situation goes back to [Cun08] and was originally motivated by connections to
Bost–Connes systems [BC95].

Again, A[R] is simple purely infinite and is described by natural generators and
relations. It has analogous subalgebras D and B, and A[R] can be viewed as a
semigroup crossed product B�R×. The new and challenging problem is the com-
putation of the K-theory of A[R]. The key to this computation is a duality result
for adele-groups and corresponding crossed products, [CL11a].

Since A[R] is generated by the Koopman representation, on �2R, of the semidirect
product semigroup R � R×, the next very natural step in our program is the
consideration of the C∗-algebra generated by the natural representation of this
semigroup on �2(R � R×) rather than on �2R, i.e., of the left regular C∗-algebra
C∗

λ(R � R×). This algebra is still purely infinite but no longer simple. It can be
described by natural generators and relations. The algebra A[R] is a quotient of
C∗

λ(R � R×) and the latter algebra is defined by relaxing the relations defining
A[R] in a systematic way. The best way to do so is to add a family of projections,
indexed by the ideals of the ring R, as additional generators and to incorporate
those into the relations. This way of defining the relations also guided Xin Li in
his description of the left regular C∗-algebras for more general semigroups [Li12];
see also Chapter 5 in this book.

The (nontrivial) problem of computing the K-theory of C∗
λ(R � R×) turned out

to be particularly fruitful [CEL15], [CEL13]. It led to a powerful new method for
computing the K-groups, for regular C∗-algebras of more general semigroups and
of crossed products by automorphic actions of such more general semigroups, as
well as for crossed products of certain actions of groups on totally disconnected
spaces, [CEL15], [CEL13]. In the special case of C∗

λ(R�R×) we get the interesting
result that the K-theory is described by a formula that involves the basic number-
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theoretic structure of the number field K, namely, the ideal class group and the
action of the group of units (invertible elements in R) on the additive group of an
ideal.

Finally, we include a brief discussion of the rich KMS-structure on C∗
λ(R � R×)

for the natural one-parameter action on this C∗-algebra. Just as the K-theory
for C∗

λ(R�R×), this structure is related to the number-theoretic invariants of R,
resp. K and there is a strong resemblance of the formula for KMS-states for large
inverse temperature and the one for the K-theory of C∗

λ(R � R×). We sketch a
proof for this formula that is somewhat different from the one in [CDL13] and
which explains this similarity.

Our goal in this survey, which is an extended version of [Cun15], is limited. We
try to describe a leitmotif in this line of research and to explain the connections
and similarities between the various results. The original articles contain more in-
formation and many additional finer, more sophisticated and more general results,
which we omit. We also do not describe the results in the order they were obtained
originally, but rather in the order that seems more systematic in hindsight. Some
of the results described below are part of more general structures discussed in
Chapter 3 and Chapter 5 of this book.

6.2 Single algebraic endomorphisms

Let H be a compact abelian group and G = Ĥ its dual discrete group. We assume
that G is countable. Let α be a surjective endomorphism of H with finite kernel.
We denote by ϕ the dual endomorphism χ �→ χ ◦ α of G (i.e., ϕ = α̂). By duality,
ϕ is injective and has finite cokernel, i.e., the quotient G/ϕG will be finite. Both
α and ϕ induce isometric endomorphisms sα and sϕ of the Hilbert spaces L2H
and �2G, respectively. This isometric representation of α on L2H is called the
Koopman representation in ergodic theory.

We will also assume that ⋂
n∈N

ϕnG = {0}

which, by duality, means that ⋃
n∈N

Kerαn

is dense in H (this implies in particular that H and G cannot be finite). These
conditions on α are quite natural and apply, for instance, to the usual examples
considered in ergodic theory. We list a few important examples of compact groups
and endomorphisms satisfying our conditions at the end of this section.

We want to describe the C∗-algebra C∗(sα, C(H)) generated in L(L2H) by C(H),
acting by multiplication operators, and by the isometry sα. Via Fourier transform
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it is isomorphic to the C∗-algebra C∗(sϕ, C∗G) generated in L(�2G) by C∗G,
acting via the left regular representation, and by the isometry sϕ. These two
unitarily equivalent representations are useful for different purposes.

Now, C∗(sϕ, C∗G) is generated by the isometry s = sϕ together with the unitary
operators ug, g ∈ G and these operators satisfy the relations

uguh = ug+h, sug = uϕ(g)s,
∑

g(ϕG)∈G/ϕG

ugss
∗u∗

g = 1. (6.1)

Definition 6.2.1. Let H,G and α,ϕ be as above. We denote by A[ϕ] the universal
C∗-algebra generated by an isometry s and unitary operators ug, g ∈ G satisfying
the relations (6.1).

It is shown in [CV13] that A[ϕ] ∼= C∗(sα, C(H)) ∼= C∗(sϕ, C∗G), i.e., that the
natural map from the universal C∗-algebra to the C∗-algebra generated by the
concrete Koopman representation is an isomorphism. Particular situations of in-
terest arise when H = (Z/n)∞ with α the left shift (this gives rise to A[ϕ] ∼= On)
or when H = Tn.

Lemma 6.2.2. The C∗-subalgebra D of A[ϕ] generated by all projections of the form
ugs

ns∗nu∗
g, g ∈ G, n ∈ N is commutative. Its spectrum is the “ϕ-adic completion”

Gϕ = lim←−n

G/ϕnG.

It is an inverse limit of the finite spaces G/ϕnG and becomes a Cantor space with
the natural topology.

G acts on D via d �→ ugdu
∗
g, g ∈ G, d ∈ D. This action corresponds to the natural

action of the dense subgroup G on its completion Gϕ via translation. The map
D → D given by x �→ sxs∗ corresponds to the map induced by ϕ on Gϕ.

From now on we will denote the compact abelian group Gϕ byM . By construction,
G is a dense subgroup of M . The dual group of M is the discrete abelian group

L = lim−→n

Ker (αn : H → H).

Because of the condition that we impose on α, L can be considered as a dense
subgroup of H.

The groups M and L play an important role in the analysis of A[ϕ]. They are
in a sense complementary to H and G. By Lemma 6.2.2, the C∗-algebra D is
isomorphic to C(M) and to C∗(L).

Theorem 6.2.3. The C∗-subalgebra Bϕ of A[ϕ] generated by C(H) together with
C(M) (or equivalently by C∗G together with C∗L) is isomorphic to the crossed
product C(M)�G. It is simple and has a unique trace.
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Proof. The action of the dense subgroup G by translation on M is obviously min-
imal (every orbit is dense). Therefore the crossed product C(M) � G is simple.
It also has a unique trace, the Haar measure on M being the only invariant mea-
sure. The fact that an invariant measure on M extends uniquely to a trace on
the crossed product, if all the stabilizer groups are trivial, is well known, but not
easy to pin down in the literature. Here is a very simple argument in the present
case: Let E : C(M) � G → C(M) be the canonical conditional expectation and

let e
(n)
1 , e

(n)
2 , . . . , e

(n)
N(ϕn), with N(ϕn) = |G/ϕn(G)|, be the minimal projections in

C(G/ϕn(G)) ⊂ C(M). Then, for any x in the crossed product,
∑N(ϕn)

i=1 e
(n)
i xe

(n)
i

converges to E(x) for n→∞. For any trace τ on the crossed product, we have

τ(x) = τ

(N(ϕn)∑
i=1

e
(n)
i x

)
= τ

(N(ϕn)∑
i=1

e
(n)
i xe

(n)
i

)
and therefore τ(x) = τ(E(x)).

Finally, by Lemma 6.2.2, Bϕ is generated by a covariant representation of the sys-
tem (C(M), G). The induced surjective map C(M)�G→ Bϕ has to be injective,
thus an isomorphism. �
The map x �→ sxs∗ defines a natural endomorphism γϕ of Bϕ.

Theorem 6.2.4. The algebra A[ϕ] is simple, nuclear and purely infinite. Moreover,
it is isomorphic to the semigroup crossed product Bϕ �γϕ N (i.e., to the universal
unital C∗-algebra generated by Bϕ together with an isometry t such that txt∗ =
γϕ(x), x ∈ Bϕ).

Proof. A[ϕ] contains Bϕ as a unital subalgebra. The condition αλ(s) = λs, αλ(b) =
b, b ∈ Bϕ defines for each λ ∈ T an automorphism of A[ϕ] and integration of αλ(x)
over T determines a faithful conditional expectation A[ϕ]→ Bϕ. The proof now is
very similar to the corresponding proof in [CL10]. The representation as a crossed
product C(M) � G of Bϕ gives a natural faithful conditional expectation Bϕ →
D ∼= C(M). The composition of these expectations gives a faithful conditional
expectation E : A[ϕ]→ D.
Now, this expectation can be represented in a different way using only the internal
structure of A[ϕ]. The relations (6.1) immediately show that the linear combina-
tions of elements of the form z = s∗ndugs

m, n,m ∈ N, g ∈ G, d ∈ D are dense in
A[ϕ]. For such an element z we have E(z) = s∗ndsn if n = m, g = 0, and E(z) = 0
otherwise.

The subalgebra D of A[ϕ] is the inductive limit of the finite-dimensional subal-
gebras Dn

∼= C(G/ϕnG). Note that the minimal projections in Dn are all of the
form ugs

ns∗nu∗
g. Let

z = d+

m∑
i=1

s∗kidiugis
li



278 Chapter 6. Algebraic actions and their C∗-algebras

be an element of A[ϕ] such that for each i, ki �= li or gi �= e and such that d, di ∈ Dn

for some large n (such elements are dense in A[ϕ]).

Let also n be large enough so that the projections ugieu
∗
gi , i = 1, . . . ,m, are

pairwise orthogonal for each minimal projection e in Dn (this means that the gi
are pairwise distinct mod ϕnG).

We have E(z) = d and there is a minimal projection e in Dn such that E(z)e = λe
with |λ| = ‖E(z)‖. Since E is faithful, λ > 0 if z is positive �= 0.

Let h ∈ G such that e = uhs
ns∗nu∗

h. Then the product es∗kidiugis
lie is nonzero

only if giϕ
li(h) = ϕki(h) or gi = ϕki(h)ϕli(h)−1 mod ϕn(G). Let f ∈ ϕnG such

that ϕki(f) �= ϕli(f) for all i for which ki �= li (such an f obviously exists) and
let k ≥ 0 such that ϕki(f) �= ϕli(f) mod ϕn+kG for those i.

Then, setting h′ = hf , we obtain

giϕ
li(h′) �= ϕki(h′) mod ϕn+k(G), i = 1, . . . ,m.

If we now set e′ = uh′sn+ks∗(n+k)u∗
h′ , then e′ is a minimal projection in Dn+k,

e′ ≤ e and e′s∗kidiugis
lie′ = 0 for i = 1, . . . ,m.

Every positive element x �= 0 of A[ϕ] can be approximated up to an arbitrary
ε by a positive element z as above. Thus, if ε is small enough, e′xe′ is close to
λe′ and therefore invertible in e′A[ϕ]e′. Thus, the product s∗n+ku∗

h′xuh′sn+k is
invertible in A[ϕ]. This shows, at the same time, that A[ϕ] is purely infinite and
simple. Moreover, it follows that the natural map from A[ϕ] to the semigroup
crossed product Bϕ �γϕ

N, is an isomorphism. The fact that this crossed product
is nuclear (Bϕ is nuclear and, using a standard dilation, Bϕ �γϕ

N is Morita
equivalent to a crossed product B∞

ϕ �γ∞
ϕ
Z, where B∞

ϕ is nuclear) then shows that
A[ϕ] is nuclear. �

6.2.1 The K-theory of A[ϕ]

The fact that A[ϕ] is a crossed product Bϕ � N can be used to compute the
K-theory of A[ϕ].

By Theorem 6.2.3, Bϕ = C(M)�G. Since, by definition,

M = lim←−n

G/ϕnG

is the ϕ-adic completion of G, we can represent Bϕ as an inductive limit B =
lim−→n

Bn with Bn = C(G/ϕnG)�G.

It is well known (as an easy case of the “imprimitivity” theorem, see Example
2.6.6) that, for this crossed product,

C(G/ϕnG)�G ∼= MN(ϕ)(C
∗(ϕnG))
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where N(ϕ) = |G/ϕnG| and MN(ϕ) denotes N(ϕ)×N(ϕ) matrices. Consider the
natural inclusion

C∗G ∼= C∗(ϕnG) −→MN(ϕ)(C
∗(ϕnG)) ∼= Bn

into the upper left corner of MN(ϕ), considered as a map C∗G → Bn. This map
induces an isomorphism κn : K∗(C∗G)→ K∗(Bn) in K-theory.

Moreover, we let ιn denote the map K∗(Bn)→ K∗(Bn+1) induced by the inclusion
Bn ↪→ Bn+1 and define

b(ϕ)n : K∗(C∗(G)) −→ K∗(C∗(G))

by b(ϕ)n = κ−1
n+1ιnκn. Now, the commutative diagram

C∗(G)
κ0 ��

κn

��

B0

∼=
��

� � � B1

∼=
��

C∗(G)
κ1��

κn+1

��

C∗(ϕnG)� �

�

� � � C(Xn)� ϕnG
��

�
Bn

� � � Bn+1

with Xn = ϕnG/ϕn+1G, shows that b(ϕ)n = b(ϕ)0 for all n. We write b(ϕ) for
this common map.

We obtain the following commutative diagram:

K∗(C∗(G))
b(ϕ) �� K∗(C∗(G))

b(ϕ) ��

κ1

��

K∗(C∗(G)) ��

κ2

��
K∗(B0)

ι0 �� K∗(B1)
ι1 �� K∗(B2) ��

One immediate consequence is the following formula for the K-theory of Bϕ:

K∗(Bϕ) = lim−→
b(ϕ)

K∗(C∗(G)). (6.2)

We note, however, that the problem remains to determine a suitable formula for
the map b(ϕ), given a specific endomorphism ϕ.

Since, by Theorem 6.2.4, A[ϕ] can be represented as a crossed product Bϕ �γϕ N,
we are now in a position to derive a formula for the K-theory of A[ϕ]. Recall that
C∗(G) = C(H).
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Theorem 6.2.5. (cf. [CV13]) The K-groups of A[ϕ] fit into an exact sequence as
follows:

K∗C(H)
1−b(ϕ)�� K∗C(H) �� K∗A[ϕ]		 (6.3)

where the map b(ϕ) : K∗C(H) → K∗C(H) satisfies b(ϕ)α∗ = N(α)id with
N(α) := |Kerα| = |G/ϕG|.
Remark 6.2.6. In examples it is usually easy to determine b(ϕ) using the formula
b(ϕ)α∗ = N(α)id.

Proof. From Theorem 6.2.4 we know that A[ϕ] is isomorphic to the semigroup
crossed product Bϕ�γϕ

N. Using the Pimsner–Voiculescu sequence [PV80] in com-
bination with a simple dilation argument as in [Cun81] (or directly appealing to
the results in [Pim97] or in [KS97]) we see that there is an exact sequence, with
γϕ defined as before 6.2.4,

K∗Bϕ

1−γϕ∗ �� K∗Bϕ
�� K∗A[ϕ]

 (6.4)

In order to determine the kernel and cokernel of the map K∗Bϕ
1−γϕ∗−→ K∗Bϕ, con-

sider the commutative diagram

K∗C∗(G)
b(ϕ) ��

κ0=

��

K∗C∗(G)
b(ϕ) ��

κ1

��

K∗C∗(G)
b(ϕ) ��

κ2

��
K∗B0

ι0 ��

��

K∗B1
ι1 ��

��

K∗B2
ι2 ��

��
K∗Bϕ

= �� K∗Bϕ
= �� K∗Bϕ

= ��

By construction, it is clear that γϕ∗κn = κn+1 (where we still denote the compo-

sition K∗C∗(G)
κn−→K∗Bn → K∗Bϕ by κn). Let κ denote the map (isomorphism)

κ : lim−→b(ϕ)

K∗C∗(G) −→ K∗(Bϕ)

induced by the commutative diagram. For an element of the form [x0, x1, . . .] in
the inductive limit we then obtain

γϕ∗ ◦ κ([x0, x1, x2, . . .]) = κ([a, x0, x1, . . .])

(where a is arbitrary). Therefore, the exact sequence (6.4) becomes isomorphic to

lim−→b(ϕ)

K∗C∗(G)
1−σ �� lim−→b(ϕ)

K∗C∗(G) �� K∗A[ϕ]��
(6.5)
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where σ is the shift defined by

σ([x0, x1, x2, . . .]) = [a, x0, x1, . . .]

Consider the natural map j : K∗C∗(G)→ lim−→b(ϕ)

K∗C∗(G) defined by

j(x) = [x, b(ϕ)(x), b(ϕ)2(x), . . .]

If (1 − σ)[x0, x1, . . .] = 0, then there is n such that xn = xn+1 = b(ϕ)(xn) and
thus [x0, x1, . . .] = [xn, xn, . . .]. This shows that Ker (1− σ) = j(Ker (1− b(ϕ))) ∼=
Ker (1− b(ϕ)).

If we divide lim−→b(ϕ)

K∗C∗(G) by Im (1 − σ), then [x0, x1, . . .] becomes identified

with [x1, x2, . . .] and thus to an element of the form [x, b(ϕ)(x), . . .] which is in
the image of j. Also j maps Ker (1 − b(ϕ)) to Ker (1 − σ) and thus induces an
isomorphism from the cokernel of 1 − b(ϕ) to the cokernel of 1 − σ. This shows
that j induces a transformation from the sequence

K∗C∗(G)
1−b(ϕ)�� K∗C∗(G) �� K∗A[ϕ]��

into the exact sequence (6.5), which is an isomorphism on kernels and cokernels
(in fact, j transforms 1− b(ϕ) not into 1− σ but into 1− σ−1; this, however, does
not affect exactness).

Let us finally prove the formula b(ϕ)α∗ = N(α)id. Under the identification B1
∼=

MN(ϕ)(C
∗(G)), the map ι0κ0ϕ∗ is induced by the embedding of C∗(G) ∼= C∗(ϕG)

along the diagonal of MN(ϕ)(C
∗(G)). Therefore ι0κ0ϕ∗ = N(ϕ)κ1 (κ1 is induced

by the embedding in the upper left corner). The assertion now follows from the
definition of b(ϕ) as κ−1

1 ι0κ0. �

6.2.2 Examples

Here are some examples of endomorphisms in the class we consider.

1. Let H =
∏

k∈N
Z/n, G =

⊕
k∈N

Z/n and α the one-sided shift on H defined
by α((ak)) = (ak+1).

We obtain M =
∏

k∈N
Z/n ∼= H and L =

⊕
k∈N

Z/n ∼= G. The algebra
Bϕ is a UHF-algebra of type n∞ and A[ϕ] is isomorphic to On. It is interest-
ing to note that the UHF-algebra Bϕ is generated by two maximal abelian
subalgebras both isomorphic to C(M).

2. Let H = T, G = Z and α the endomorphism of H defined by α(z) = zn. The
algebra Bϕ is a Bunce–Deddens algebra of type n∞ and A[ϕ] is isomorphic
to a natural subalgebra of the algebra QN considered in [Cun08]. In this case,
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we also get for Bϕ the interesting isomorphism C(Zn)�Z ∼= C(T)�L where
Z acts on the n-adic completion Zn by the odometer action (addition of 1)
and L denotes the subgroup of T given by all nk-th roots of unity, acting on
T by translation.

3. LetH = Tn, G = Zn and α an endomorphism ofH determined by an integral
matrix T with nonzero determinant. We assume that the condition⋂

n∈N

ϕnG = {0}

is satisfied (this is in fact not very restrictive).

The algebra Bϕ is a higher-dimensional analogue of a Bunce–Deddens
algebra. In the case where H is the additive group of the ring R of algebraic
integers in a number field of degree n and the matrix T corresponds to an
element of R, the algebra A[ϕ] is isomorphic to a natural subalgebra of the
algebra A[R] considered in the following section. It is also isomorphic to the
algebra studied in [EaHR11].

4. As another natural example related to number theory consider the additive
group of the polynomial ring Fp[t] over a finite field. An endomorphism satis-
fying our conditions is given by multiplication by a nonzero element in Fp[t].
In this case A[ϕ] is related to certain graph C∗-algebras, see [CL11b].

5. Let p and q be natural numbers that are relatively prime and γ the endo-
morphism of T defined by z �→ zp. We take

H = lim←−
γ

T, G = Z
[
1

p

]
,

αq the endomorphism of H induced by z �→ zq and ϕq the endomorphism of
G defined by ϕq(x) = qx. These endomorphisms satisfy our hypotheses. We
find that M = Zq (the q-adic completion of Z).

In all these examples one can work out the K-theory of A[ϕ] using formula (6.3);
see [CV13].

In [CV13], the analysis of A[ϕ] and the formula (6.3) for its K-theory was also
extended to the case where α is replaced by a so-called rational polymorphism.

There are quite a few papers in the literature containing special cases or parts of the
results described in this section. We mention only [Hir02] where it was shown that
A[ϕ] is simple and characterized by generators and relations and [EaHR11] where
in particular a formula similar to (6.3) was derived for an expansive endomorphism
of Tn – both papers using methods different from [CV13].
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6.3 Actions by a family of endomorphisms, ring
C∗-algebras

It is a natural problem to extend the results of Section 6.2 to actions of a family
(semigroup) of several commuting endomorphisms of a compact abelian group,
satisfying the conditions of Section 6.2. It turns out that the structural results such
as simplicity, pure infiniteness, canonical subalgebras carry over without problem.
However, the computation of the K-groups needs completely new ideas.

The most prominent example for us arises as follows. Let K be a number field, i.e.,
a finite algebraic extension of Q. The ring of algebraic integers R ⊂ K is defined
as the integral closure of Z in K, i.e., as the set of elements a ∈ K that annihilate
some monic polynomial with coefficients in Z. This ring is always a Dedekind
domain (a Dedekind domain is by definition an integral domain in which every
nonzero proper ideal factors into a product of prime ideals). It has many properties
similar to the ordinary ring of integers Z ⊂ Q, but it is not a principal ideal domain
in general. Its additive group is always isomorphic to Zn where n is the degree of
the field extension.

Consider the multiplicative semigroup R× = R\{0} ofR. It acts as endomorphisms

on the additive group R and thus also on the compact abelian dual group R̂ ∼= Tn.
Such endomorphisms of Tn are a frequent object of study in ergodic theory. If R
is not a principal ideal domain, the semigroup R× has an interesting structure.

As in Section 6.2 we consider the Koopman representation of R× on L2R̂ ∼= �2R.

Definition 6.3.1. We define the ring C∗-algebra A[R] as the C∗-algebra generated

by C(R̂) and R× on L2(R̂) (or equivalently as the C∗-algebra generated by the
action of C∗(R) and of R× on �2R).

A[R] is generated by the isometries sn, n ∈ R× and the unitaries uj , j ∈ R. The sn
define a representation of the abelian semigroup R× by isometries, the uj define
a representation of the abelian group R by unitaries and together they satisfy the
relations

snuk = uknsn, k ∈ R, n,m ∈ R×,
∑

j∈R/nR

ujsns
∗
nu−j = 1. (6.6)

The basic analysis of the structure of A[R] is completely parallel to the discussion in
Section 6.2 (in fact, historically the article [CL10] preceded [CV13]). One obtains:

Theorem 6.3.2. (cf. [CL10]) The C∗-algebra A[R] is simple, purely infinite and
nuclear. It is the universal C∗-algebra generated by a unitary representation u of
R together with an isometric representation s of R× satisfying the relations (6.6).

As for A[ϕ] in Section 6.2 there are canonical subalgebras D and B of A[R]. The
spectrum of the commutative C∗-algebra D is a Cantor space canonically home-
omorphic to the maximal compact subring of the space of finite adeles for the
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number field K. The subalgebra B is generated by D together with the uj , j ∈ R.
It is simple and has a unique trace (a higher-dimensional Bunce–Deddens-type
algebra). The general structure of C∗-algebras associated like this with a ring has
been developed further by Xin Li in [Li10].

In order to compute theK-groups for A[R] the natural strategy would appear to be
an iteration of the formula (6.3) of Theorem 6.2.5. Since the proof of formula (6.3)
is based on the usual Pimsner–Voiculescu sequence this would amount to iterating
this sequence in order to compute the K-groups for the crossed product by Zn by
a commuting family of n automorphisms. However, this strategy immediately runs
into problems since, assuming the K-groups for the crossed product by the first
automorphism are determined, it is not at all clear how the second automorphism
will act on these groups. In other words, there is a spectral sequence abutting to the
K-theory for the crossed product by Zn, but it is useless for actual computations
without further knowledge of the higher boundary maps in the spectral sequence.
An analysis of relevant properties of the spectral sequence for actions as here is
contained in [Bar15].

The key to the computation of the K-groups for A[R] in [CL11a] is the following
duality result.

Theorem 6.3.3. Let Af and A∞ denote the locally compact spaces of finite, resp.
infinite adeles of K both with the natural action of the additive group K. Then the
crossed product C∗-algebras C0(Af )�K and C0(A∞)�K are Morita equivalent,
equivariantly for the action of K× on both algebras (with the inverted natural
action on the second algebra, i.e., K× acts on A∞ not by multiplication but by
division).

Note that the space A∞ is simply Rn where n is the degree of the field extension.
From this theorem the K-groups of A[R] can be computed, at least in the case
where the only roots of unit in K are ±1.
We explain this here only for the case where K = Q, R = Z. In this case ev-
erything becomes rather concrete. The spectrum of the canonical commutative
subalgebra D is the profinite completion Z of Z (we use here Z rather than the

more standard notation Ẑ in order not to create confusion with the dual group of
Z). It is homeomorphic to the infinite product of the p-adic completions Zp for all
primes p in Z. Moreover Af is the restricted infinite product of the Qp and A∞
simply is R.

Thus, Theorem 6.3.3 gives a Morita equivalence between C0(Af )�Q and C0(R)�
Q. Moreover, the first crossed product is Morita equivalent to the full corner
B ∼= C(Z)� Z.

Denote by B′ the C∗-algebra generated by B together with the symmetry s−1, i.e.,
B′ ∼= B�Z/2 for the action of s−1. Since B′ ∼= (C(Z)�Z)�Z/2 is an inductive limit
of C((Z/nZ)�Z)�Z/2 and this latter algebra is isomorphic to Mn(C

∗(Z�Z/2))
it is not difficult to compute the K-theory of B as K0(B′) = Z⊕Q and K1(B′) = 0.
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Now, we can use the Pimsner–Voiculescu sequence to compute the K-theory of
the crossed product A1 = B′ �N = C∗(B′, s2) as

K0(A1) = Z, K1(A1) = Z.

By a slight refinement of the statement in Theorem 6.3.3, A1 is Morita equivalent
to (C0(R)�Q)� (Z/2×Z) where Z/2×Z acts by multiplication by −1 and by 2.

Denote now by An the C∗-algebra generated by B′ together with sp1
, . . . , spn

,
where p1, . . . , pn denote the first n prime numbers (with p1 = 2). Then again, An

is Morita equivalent to (C0(R)�Q)�(Z/2×Zn), where Z/2 acts by multiplication
by −1 and Zn by multiplication by p1, . . . , pn. Moreover A[R] is the inductive limit
of the An.

We can now consider the canonical inclusions

ιn : C0(R)� (Z/2× Zn)→ (C0(R)�Q)� (Z/2× Zn) ∼Morita An (6.7)

into the crossed product where we leave out the action of the additive Q by trans-
lation on the left-hand side.

By the discussion above, ι1 induces an isomorphism in K-theory. Now we obtain
ιn+1 from ιn by taking the crossed product by Z (acting by multiplication by pn+1)
on both sides in (6.7). Therefore, applying the Pimsner–Voiculescu sequence on
both sides, we deduce, using the five-lemma, from the fact that ιn induces an
isomorphism on K-theory that the same holds for ιn+1. The important point is
that the action of Zn on the left-hand side is homotopic to the trivial action,
simply because multiplication by p1, . . . , pn is homotopic to multiplication by 1 on
R. Therefore, K∗(An) ∼= K∗((C0(R)� Z/2)⊗ C∗Zn).

As a consequence we obtain:

Theorem 6.3.4. ([CL11a]) The map ιn induces an isomorphism on K-theory for
all n. The K-theory of A[R] is isomorphic to the K-theory of (C0(R)�Z/2)�Q×.

Note that the K-theory of C0(R) � Z/2 is the same as the one of C and that
therefore the K-theory of A[R] is the same as the one of an infinite-dimensional
torus.

The argument that we sketched for K = Q works in a very similar, though some-
what more involved way for a number field with ±1 as only roots of unit. In
this case one has to determine the K-theory of C0(Rn)�Z/2 rather than that of
C0(R)�Z/2; see [CL12]. The case of an arbitrary number field K can be treated
in the same fashion. The important difference comes from the more general group
μ(K) of roots of unit. For the computation one needs nontrivial information on
the K-theory of the crossed product C0(Rn)� μ(K) and thus on the equivariant
K-theory of Rn with respect to the action of μ(K). This nontrivial computation
has been carried through by Li and Lück in [LL12b] using previous work by Langer
and Lück [LL12a].
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The analysis of the structure and of the K-theory of A[R] can also be carried out
in the case where R is a polynomial ring over a finite field (i.e., ring of integers
in a certain function field). The structure of the C∗-algebra in this case is more
closely related to the example of the shift endomorphism of (Z/pZ)∞ mentioned
above and to certain Cuntz–Krieger algebras. Nevertheless for the computation of
the K-theory one can again use the duality result in Theorem 6.3.3 and the result
for the K-theory is again similar, [CL11b].

6.4 Regular C∗-algebras for ax+ b -semigroups

By definition, the ring C∗-algebra A[R] discussed in Section 6.3 is obtained from

the natural representations of C∗(R) ∼= C(R̂) and of the semigroup R× on the

Hilbert space �2R ∼= L2(R̂). Another way to view this is to say that it is defined
by the natural representation of the semidirect product semigroup R�R× on �2R.

Now, this semidirect product semigroup has another natural representation, given
by the left regular representation on the Hilbert space �2(R � R×). The study of
the left regular C∗-algebra C∗

λ(R � R×) was begun in [CDL13]. This C∗-algebra
is no longer simple but still purely infinite and has an intriguing structure. In
particular, it has a very interesting KMS-structure and the determination of its
K-theory leads to new challenging problems.

The first obvious observation concerning C∗
λ(R � R×) is that, just as A[R], it

is generated by a unitary representation ux, x ∈ R of the additive group R
and a representation by isometries sa, a ∈ R× of the multiplicative semigroup
R× satisfying the additional relation saux = uaxsa. However, the last relation∑

x∈R/aR uxsas
∗
au−x = 1 in (6.6) becomes∑

x∈R/aR

uxsas
∗
au−x ≤ 1. (6.8)

In fact, it turns out that this weakened relation (6.8) (of course, together with
the relations on the ux, sa in the previous paragraph) determines C∗

λ(R � R×)
in the case where R is a principal ideal domain. The general case, however, is
more intricate. In general, it is still possible to describe C∗

λ(R � R×) by natural
defining relations. However, the most natural way to do so uses an incorporation
of the natural idempotents obtained as range projections of the partial isometries
given by products of the ux, sa and their adjoints. It turns out that these range
projections correspond exactly to translates I + x, x ∈ R of the ideals I in R.
Denote by I the set of such translates I + x. Note that I + x = I + y if x ≡ y
mod I.

The C∗-algebra C∗
λ(R � R×) contains the elements ux, x ∈ R, sa, a ∈ R× coming

from the left regular representation of R and R×, respectively. It contains, more-
over, for J = I + x in I the orthogonal projection eJ from �2(R � R×) onto the
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subspace �2((I + x) × I×) (note that I× is uniquely determined by I + x). The
eJ are elements of C∗

λ(R�R×), because for every ideal I in R there are a, b in R
such that bI = aI ∩ bR and therefore s∗bsas

∗
asb = eI and uxs

∗
bsas

∗
asbu

∗
x = eI+x (see

[CDL13] Lemma 4.15). These elements satisfy the following relations.

1. The ux are unitary and satisfy uxuy = ux+y, the sa are isometries and satisfy
sasb = sab. Moreover saux = uaxsa for all x ∈ R, a ∈ R×.

2. The eJ , J ∈ I are projections and satisfy

eR = 1, e∅ = 0, eJ∩J ′ = eJeJ ′ .

3. We have saeI+xs
∗
a = ea(I+x) and uyeI+xu

∗
y = eI+x+y.

This choice of generators and relations is slightly different from the one in [CDL13],
but easily seen to be equivalent.

The universal C∗-algebra with generators ux, sa, e(I+x) and relations as above is
no longer simple, but to some extent its structure remains similar to the one
of the ring C∗-algebra A[R]. There are canonical subalgebras D and B that are
analogous to the subalgebras D and B of A[R] considered in Sections 6.2 and
6.3. The subalgebra D generated by the projections eI+x is maximal commutative
and has totally disconnected spectrum, and there is a is a Bunce–Deddens-type
subalgebra B generated by D together with the ux, x ∈ R. Using this structure
one shows:

Theorem 6.4.1. (cf. [CDL13]) The universal C∗-algebra with generators ux, sa, eI
satisfying the relations 1, 2, 3 above is canonically isomorphic to C∗

λ(R�R×). As
a consequence C∗

λ(R � R×) is also isomorphic to the semigroup crossed product
D � (R � R×) (i.e., to the universal C∗-algebra generated by D together with
a representation of the semigroup R � R× by isometries implementing the given
endomorphisms of D).

The relations 1, 2, 3 above turned out to also give the right framework for describ-
ing the left regular C∗-algebra of more general semigroups. The theory of these
regular C∗-algebras and also of the correct notion of a full C∗-algebra has been
developed by Xin Li in great generality [Li12], [Li13]; see his contribution to this
book.

The proof of Theorem 6.4.1 in [CDL13], giving at the same time insight into the
structure of C∗

λ(R � R×), proceeds as follows: Consider the universal C∗-algebra
A with generators eJ , ux, sa as above satisfying the relations 1, 2, 3 and its C∗-
subalgebra D generated by all projections eJ , J ∈ I. First, it is shown that D is
the universal C∗-algebra generated by projections eJ , J ∈ I, satisfying relation 2
above. At this point one already has to use the fact that the projections eJ form
a regular basis for D in the sense of Definition 6.5.1 below. This fact follows from
elementary properties of the Dedekind domain R.
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Consider next the C∗-subalgebra B generated in A by D together with all the
ux, x ∈ R. In the second step, it is shown that B is isomorphic to the crossed
product D �R for the action of the additive group R on D, where y ∈ R acts by
the automorphism e(I+x) �→ e(I+x+y). This is achieved by showing that there is
a natural *-homomorphism from D � R onto B and that the crossed product is
simple – using the fact that the action of the additive group R on the spectrum
of D is minimal and topologically free.

Thirdly, it is shown that A is the crossed product B�R× of B by the action of the
multiplicative semigroup R× where an element a ∈ R× acts by the endomorphism
βa : e(I+x) �→ ea(I+x), ux �→ uax. Here, by the crossed product of the unital C∗-
algebra B by the semigroup R× we mean by definition the universal C∗-algebra
generated by B together with isometries sa, a ∈ R× satisfying sabs

∗
a = βa(b).

Finally then, it is argued that the action of R�R× on the spectrum ofD is minimal
and topologically free. Using the faithful conditional expectation from the crossed
product D�(R�R×) to D, obtained by composing the natural expectations A→
B → D, it is deduced from this that the crossed product is simple. Since the crossed
product maps surjectively onto A, and A maps surjectively onto C∗

λ(R � R×), it
follows that these maps are both isomorphisms.

Since the ring C∗-algebra A[R] is also generated by elements ux, sa, eI+x sat-
isfying relations 1, 2, 3, it follows that A[R] is a quotient of C∗

λ(R � R×). As
mentioned above, in the simple case of a principal ideal domain, A[R] is ob-
tained from the left regular algebra C∗

λ(R � R×) by “tightening” the relation∑
j∈R/nR ujsns

∗
nu−j ≤ 1, which is a consequence of relation 2 together with rela-

tion, to
∑

j∈R/nR ujsns
∗
nu−j = 1 which was used in (6.6) in Section 6.3. This kind

of tightening was introduced by Exel [Exe08] and has occurred in many places in
the literature under the name tight representation or boundary quotient etc.; see
also Section 5.7in this book.

Remark 6.4.2. The Exel boundary of Spec D has a very natural description in
number-theoretic terms. The spectrum of D can be described as a completion of
the disjoint union

⊔
R/I over all ideals I in R, [CDL13]. This completion contains

the profinite completion

R = lim←−
I

R/I

where the limit is taken over the directed set of all ideals I in R. This is the
minimal closed invariant subset of Spec D and thus the boundary in the sense of
Exel. By the discussion in Section 6.3, the profinite completion R is the spectrum
of the canonical commutative subalgebra D of A[R]. Recall that R is the maximal
compact subring of the ring of finite adeles in K. The restriction map C(

⊔
R/I)�

(R�R×)→ C(R)� (R�R×) is exactly the quotient map C∗
λ(R�R×)→ A[R].
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6.5 The K-theory for C∗λ(R�R×)

As in Section 6.3 the key to the computation of K∗(C∗
λ(R �R×)), for the ring R

of integers in a number field K, lies in a KK-equivalence between the given action
by endomorphisms of our semigroup with a much simpler situation.

The semigroup S = R�R× admits G = K�K× as a canonical enveloping group.
The action of S on the commutative subalgebra D of C∗

λ(R � R×) has a natural
dilation to an action of G. This means that D can be embedded into a larger
commutative C∗-algebra D̄ ⊃ D with an action of G that extends the action of S
on D (this uses the fact that S is a directed set ordered by right divisibility). The
crossed product D̄ � G is then Morita equivalent to D � S ∼= C∗

λ(R � R×) (the
last isomorphism follows from Theorem 6.4.1).

A fractional ideal in K is a subset of K of the form aI where I is an ideal in R
and a ∈ K×. We will also consider translates of fractional ideals and denote by F
the set of all “translated fractional ideals”, i.e., the set of all subsets of K of the
form a(I + x) with I an ideal in R, x ∈ R and a ∈ K×.

It is easy to see that, in the dilated system, there is a bijection J �→ fJ between F
and the translates under G of the projections eJ , J ∈ I. Moreover the fJ , J ∈ F
generate D̄ ⊃ D. Using the fact that R is a Dedekind domain it is not difficult to
show that the family {fJ} forms a regular basis of D̄ in the sense of the following
definition. The importance of the regularity condition (or, in another guise, of the
“independence” of the family of constructible left ideals of the semigroup) has
been noted by Xin Li.

Definition 6.5.1. If {fJ : J ∈ F} is a countable set of nonzero projections in
a commutative C∗-algebra C, we say that {fJ} is a regular basis for C if it is
linearly independent, closed under multiplication (up to 0) and generates C as a
C∗-algebra (this means that span {fJ : J ∈ F} is a dense subalgebra of C).

Now the group G acts on D̄, on F and on the algebra K = K(�2(F)) of compact
operators. We can trivially define an equivariant *-homomorphism κ : C0(F) →
K ⊗ D̄ by mapping δJ to εJ ⊗ fJ . Here, δJ denotes the indicator function of the
one-point set {J} and εJ denotes the matrix in K that is 1 in the diagonal place
(J, J) and 0 otherwise (matrix unit).

As we will explain in a moment, one can then show the following Theorem (see
also Theorem 3.5.18 and Corollary 3.5.19).

Theorem 6.5.2. ([CEL15, CEL13]) The equivariant map κ induces an isomorphism

K∗(C0(F)�G) −→ K∗(D̄ �G) ∼= K∗(C∗
λ(R�R×)).

But now, by Green’s imprimitivity theorem, the crossed product C0(F)�G figuring
on the left-hand side is simply Morita equivalent to the direct sum, over the G-
orbits in F , of the C∗-algebras of the stabilizer groups of each orbit, cf. Remark
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2.6.9 (2) in Chapter 2. Thus, Theorem 6.5.2 reduces the problem of computing
K∗(C∗

λ(R � R×)) to the much easier problem of computing the K-theory of this
direct sum.

In the case at hand, the orbit space, as well as the stabilizer groups, correspond
to well-known objects in number theory.

Definition 6.5.3. The ideal class group ClK is the quotient of the group of fractional
ideals in K under the equivalence relation where J is equivalent to J ′ iff there is
a ∈ K× such that J ′ = aJ .

If R is the ring of algebraic integers in the number field K, then the class group
is a finite abelian group; see, e.g., [Neu99].

Two translated fractional ideals I+x and I ′+y are certainly in the same orbit for
K ⊂ G = K �K× if I = I ′. Thus, they are in the same orbit under G = K �K×

iff there is a ∈ K× such that I ′ = aI. Therefore, by Definition 6.5.3 the orbits are
labeled exactly by the elements of the class group ClK . Moreover, for g = (z, a) in
G and x+I ∈ F , we have g(x+I) = (z+ax)+aI; and therefore g(x+I) = x+I iff
a ∈ R∗ and z ∈ I, where R∗ denotes the group of units (i.e., of invertible elements
in R×). Thus, the stabilizer group of the class of a translated fractional ideal x+I
is given by the semidirect product I�R∗ of the additive group I by R∗. Obviously,
for a ∈ K×, the semidirect product group I � R∗ is isomorphic to aI � R∗. As a
corollary to Theorem 6.5.2 we thus obtain:

Corollary 6.5.4. For each element γ of the class group ClK choose any ideal Iγ
representing the class γ. Then, up to isomorphism, the group Iγ � R∗ does not
depend on the choice of Iγ and

K∗(C∗
λ(R�R×)) ∼=

⊕
γ∈ClK

K∗
(
C∗(Iγ)�R∗).

In the situation at hand, Theorem 6.5.2 can be proven directly, essentially in a
similar way as at the end of Section 6.3. In fact, it follows easily from the fact that
the projections fJ , J ∈ F satisfy the regularity condition of Definition 6.5.1, that
the equivariant map κ induces a K-theory isomorphism K∗(C0(F)) → K∗(D̄).
This can be used as a starting point for an iteration of the Pimsner–Voiculescu
sequence to compute first the K-theory for the crossed product by K and then by
K×. The reader may also consult Section 5.10.

There is, however, a much more powerful approach based on techniques from work
on the Baum–Connes conjecture as explained in Chapter 3 (Section 3.5) based on
the following principle:

Assume that the group G satisfies the Baum–Connes conjecture with coeffi-
cients in the G-algebras A and B. Let κ : A → B be an equivariant homo-
morphism that induces, via descent, isomorphisms K∗(A�H) ∼= K∗(B�H)
for all compact subgroups H of G. Then κ also induces an isomorphism
K∗(A�r G) ∼= K∗(B �r G).
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The reader may consult Theorem 3.5.1 for more details about this principle. The-
orem 6.5.2 then follows from checking that the equivariant map C0(F)→ K⊗ D̄
used there satisfies this condition for all finite subgroups of G.

This approach to Theorem 6.5.2 has a much broader scope of applications. It
allows us to extend the argument to general actions of a group G, which satisfies
the Baum–Connes conjecture with coefficients, on a commutative C∗-algebra C
admitting a G-invariant regular basis of projections in the sense of Definition
6.5.1. In particular, it can then be used to compute the K-theory of the left
regular C∗-algebra for a large class of semigroups as well as for crossed products
by automorphic actions by such semigroups. Moreover, this more general method
also allows us to compute the K-theory for crossed products for an action of a
group on a totally disconnected space that admits an invariant regular basis as in
Definition 6.5.1, [CEL15], [CEL13]. For instance, the semigroups R× and R×/R∗

are simpler than the ax + b-semigroup R � R×, but still have a very interesting
structure. The general method applies to compute the K-theory for their left
regular C∗-algebras and for crossed products by these semigroups. One obtains:

Theorem 6.5.5. ([CEL13]) Let R be a Dedekind domain with quotient field Q(R)
and A a C∗-algebra. Then the following are true:

1. For every action α : R× → Aut (A) there is a canonical isomorphism

K∗(A�α,r R
×) ∼=

⊕
γ∈ClQ(R)

K∗(A�α,r R
∗).

2. For every action α : R×/R∗ → Aut (A) there is a canonical isomorphism

K∗(A�α,r (R
×/R∗)) ∼=

⊕
γ∈ClQ(R)

K∗(A).

3. For every action α : R�R× → Aut (A) there is a canonical isomorphism

K∗
(
A�α,r (R�R×)

) ∼= ⊕
γ∈ClQ(R)

K∗
(
A�α,r (Iγ �R∗)

)
.

The above method of computing K-theory for semigroup C∗-algebras and for cer-
tain crossed products for actions on totally disconnected spaces has been developed
further by Li–Norling in [LN15], [LN16].

To end this section, let us briefly discuss a phenomenon concerning the regu-
lar C∗-algebras of semigroups that does not occur for groups. Let S be a can-
cellative semigroup. Then besides the left regular C∗-algebra C∗

λ(S), one may
also consider the right regular C∗-algebra C∗

ρ (S) generated by the right regular
(anti)representation ρ of S on �2(S). Alternatively, we may think of C∗

ρ (S) as
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of the left regular C∗-algebra of the opposite semigroup. In the case, where S
is a group, it is an elementary fact, that the left and right regular C∗-algebras
are isomorphic, but for semigroups this is far from being true. The C∗-algebra
C∗

λ(R � R×) is an intriguing example for this situation. In fact, in this case, the
opposite semigroup does not satisfy the left Ore condition and C∗

λ(R � R×) and
C∗

ρ (R�R×) are wildly different. For instance, the second algebra admits nontrivial
abelian quotients, while the first one does not.

Nevertheless it is shown in [CEL13] that their K-theory is the same, in fact, that
they are KK-equivalent. This is done by showing that the method sketched for the
proof of Theorem 6.5.2 above can also be applied to compute K∗(C∗

ρ (R � R×)),
after replacing the Ore condition by the “Toeplitz condition” (see Section 5.8)
in order to construct a suitable dilation. It is further shown in [CEL13] that the
phenomenon of nonisomorphism, but KK-equivalence of right and left regular C∗-
algebras occurs for other natural examples of semigroups, but it is unclear how
far this can be pushed.

We refer the reader to Section 5.10 for more K-theory computations for semigroup
C∗-algebras.

6.6 KMS-states

To end this survey we briefly discuss the KMS-structure for the natural one-
parameter automorphism group of C∗

λ(R � R×) where, again, R is the ring of
algebraic integers in a number field K. After all, part of the motivation for the
study of ring C∗-algebras came from Bost–Connes systems and a main feature of
such systems is the rich KMS-structure. Also, one of the reasons in [CDL13] for
passing from the ring C∗-algebra A[R] to C∗

λ(R�R×) was the existence of many
KMS-states on the latter algebra.

Recall that, for a nonzero ideal I in R, we denote by N(I) the norm of I,
i.e., the number N(I) = |R/I| of elements in R/I. For a ∈ R× we also write
N(a) = N(aR). The norm is multiplicative, [Neu99]. Using the norm one defines
a natural one-parameter automorphism group (σt)t∈R on C∗

λ(R � R×), given on
the generators by

σt(ux) = ux, σt(eJ) = eJ , σt(sa) = N(a)itsa

(this assignment manifestly respects the relations between the generators and thus
induces an automorphism). Let β be a real number ≥ 0. Recall that a β-KMS
state with respect to a one-parameter automorphism group (σt)t∈R is a state ϕ
that satisfies ϕ(yx) = ϕ(xσiβ(y)) for a dense set of analytic vectors x, y and for the
natural extension of (σt) to complex parameters on analytic vectors, [BR97]. For
the one-parameter automorphism group σ defined above, the β-KMS condition
for a state ϕ translates to

ϕ(eJz) = ϕ(z eJ), ϕ(uxz) = ϕ(z ux), ϕ(saz) = N(a)−βϕ(z sa) (6.9)
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for the generators ux, eJ , sa of C∗
λ(R � R×) and for all polynomials z in these

generators.

Theorem 6.6.1. ([CDL13]) The KMS-states on C∗
λ(R�R×) at inverse temperature

β can be described. One has

1. no KMS-states for β < 1;

2. for each β ∈ [1, 2] a unique β-KMS state;

3. for β ∈ (2,∞) a bijection between β-KMS states and tracial states on⊕
γ∈ClK

C∗(Iγ)�R∗

where ClK is the ideal class group, Iγ is any ideal representing γ and R∗

denotes the multiplicative group of invertible elements in R (units).

Loosely speaking, the uniqueness or nonuniqueness of a β-KMS-state ϕ is due to
the fact that, depending on β, certain projections in the weak closure of C∗

λ(R�R×)
in the GNS-representation for ϕ take more space and therefore are nonzero or not.
The value of ϕ on these projections is determined by the third condition in (6.9),
and the question whether they can be nonzero, depends on the question if the
series representing the partial Dedekind ζ-functions for K converge at β − 1 or
not.

There is a striking parallel between the formula for the KMS-states for β >
2 in the theorem above and the formula for the K-theory of C∗

λ(R � R×) in
Corollary 6.5.4. The K-theory is isomorphic to the K-theory of the C∗-algebra⊕

γ∈Γ C
∗(Iγ)�R∗ while the simplex of KMS-states is in bijection with the trace

simplex of this direct sum C∗-algebra. Note that both results are nontrivial, as⊕
γ∈Γ C

∗(Iγ)�R∗ is not a subalgebra of C∗
λ(R�R×) in a natural way.

The proof of Theorem 6.6.1 given in [CDL13] does not really explain the similarity
with the formula for the K-theory of C∗

λ(R�R×) in Theorem 6.5.5. We will now
sketch a proof of point (3) in 6.6.1 that is closer to the proof of the formula for
K∗(C∗

λ(R � R×)) in 6.5.5 sketched in Section 6.5. As in Section 6.5 we consider
the dilation D ⊂ D̄ of the action of R�R× to an action of the enveloping group
G = K �K× so that C∗

λ(R�R×) ∼= D� (R�R×) becomes Morita equivalent to
D̄ �G. As before, we also denote by F the set of translated fractional ideals and
by eJ , J ∈ F the projections generating D̄.

In Section 6.5 the computation of the K-theory of C∗
λ(R � R×) was based on

comparing this K-theory to the K-theory of the much simpler crossed product
C0(F)�G and noting that, by Green imprimitivity, this latter algebra is isomor-
phic to

⊕
γ∈ClK

C∗(Iγ)�R∗. We will now employ a similar strategy to prove 6.6.1
(3). We can define a phantom version (αt) of the one-parameter group (σt) on
C0(F)�G by letting (αt) act trivially on C0(F) and defining αt(ūx) = ūx, x ∈ K,
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αt(s̄a) = N(a)its̄a, a ∈ K× for the unitary multipliers ūx and s̄a implementing
the action of G = K � K× on C0(F) (note that s̄a is here no longer a proper
isometry, but a unitary, and note also that the norm N extends to a multiplicative
map N : K× → R).

Now, it is easy to analyze the KMS-structure for (αt). Given β > 0, any KMS
weight μ on C0(F)�G must, just as in equation (6.9) above, satisfy the conditions

μ(δJz) = μ(z δJ), μ(ūxz) = μ(z ūx), μ(s̄az) = N(a)−βμ(z s̄a), (6.10)

where, as in Section 6.5, the δJ , J ∈ F are the characteristic functions of the
one-point sets {J} and z is a linear combination of elements of the form s̄aūxδJ .

The first condition in (6.10) shows that μ factors through the conditional ex-
pectation C0(F) � G → C0(F). The third condition implies that μ is uniquely
determined by its restrictions to δIγ (C0(F) � G)δIγ , γ ∈ CLK and the second
and third conditions together imply that these restrictions have to be bounded
traces. Since we know that δIγ (C0(F)�G)δIγ is isomorphic to the C∗-algebra of
the stabilizer group Iγ �R∗ of γ we trivially obtain:

Proposition 6.6.2. There is a bijection between KMS-weights on C0(F) � G and
bounded traces on

⊕
γ∈ClK

C∗(Iγ)�R∗.

We now define a faithful representation π of C∗
λ(R�R×) in the multiplier algebra

M(C0(F)�G) as follows. Let E be the projection in M(C0(F)�G) defined by
E =

∑
δI+x where the sum is over all (nonfractional!) ideals I of R and x ∈ R.

Then we can set

π(ux) = EūxE, π(sa) = Es̄aE, π(ex+I) =
∑

(I′+x′)⊂(I+x)

δ(I′+x′).

It is clear that π is equivariant for the action (σt) on C∗
λ(R�R×) and the action

induced by (αt) on the multiplier algebra.

Lemma 6.6.3. Let μ be a β-KMS weight on C0(F)�G ∼= ⊕
γ∈ClK

C∗(Iγ)�R∗ with
components μγ , γ ∈ ClK , and let μ̄ be its extension to a weight onM(C0(F)�G)
via the GNS-representation. Then μ̄ is bounded on the image π(C∗

λ(R � R×)) if
and only if the series

∑
I∈γ N(I)1−β representing ζγ(β − 1) converges. Here ζγ

denotes the partial Dedekind ζ-function, for the number field K and γ ∈ ClK .

Proof. Obviously μ̄ is bounded iff μ̄(E) < ∞ and this is the case iff μ̄γ(E) < ∞
for each γ. But now

μ̄γ(E) =
∑

I∈γ, x∈R/I

N(I) =
∑
I∈γ

|R/I|N(I)−β =
∑
I∈γ

N(I)1−β . �

Now, it is well known that the series representing ζγ(s) converges iff Re s > 1.
Therefore, Lemma 6.6.3 shows that a β-KMS weight μ on C0(F) � G induces a
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β-KMS state on C∗
λ(R � R×) iff β > 2. In particular, for each β > 2, we get an

injective map from trace states on C∗(Iγ �R∗) to β-KMS states on C∗
λ(R�R×).

To finish the proof of Theorem 6.6.1 (3), one has to show that any β-KMS state
for β > 2 arises that way. This is done in the following way. Given a prime ideal
P in R and k = 0, 2, . . . we consider the projection

δPk = ePk −
∑

x∈Pk/Pk+1

uxePk+1u∗
x

with the convention that P 0 = R. Let now P1, P2, . . . be an enumeration of the
prime ideals in R and denote by In the set of ideals in R that are products of
powers only of the first n prime ideals P1, . . . , Pn.

Given an ideal I ∈ In of the form I = P k1
1 · · ·P kn

n and x ∈ R/I we set

δI+x,n = uxδPk1 · · · δPknu
∗
x.

Then the δI+x,n are pairwise orthogonal and in bijection with the set Fn of trans-
lates I + x of ideals I in In.
Consider now a β-KMS-state ϕ for β > 2 and let (πϕ, Hϕ) be the corresponding
GNS-representation. It is easily checked that the KMS-condition implies that

ϕ(δI+x,n) =
N(I)−β

N(Iγ)−β
ϕ(δIγ ,n)

for each I in In∩γ. Moreover, the closed subspace En generated by the ϕ(δI+x,n)
in Hϕ is invariant under πϕ(C

∗
λ(R � R×)). Using the fact that ϕ has to induce

a β-KMS-state on the restriction of πϕ to the complement E⊥
n and that on that

complement one has the algebraic relation 1 =
∑

x∈R/P πϕ(δP ) for each prime
ideal P ∈ In, which can only hold for β = 1, one concludes that En = Hϕ.

This shows that

ϕ(1) =
∑

I∈In, x∈R/I

ϕ(δI+x,n) =
∑

γ∈CLK

∑
I∈In∩γ

N(I)N(I)−β

N(Iγ)−β
ϕ(δIγ ,n)

and, rewriting the last sum,

ϕ(1) =
∑

γ∈CLK

∑
I∈In∩γ

N(Iγ)
βN(I)1−βϕ(δIγ ,n). (6.11)

The sequence of projections πϕ(δI,n) is eventually defined (since I is eventually in
In) and decreasing for each ideal I in R, and therefore has a strong limit dI as
n→∞. Since for (1− β) > 1, the series

∑
I∈γ N(I)1−β converges and represents

the partial Dedekind ζ-function ζγ(β − 1), equation (6.11) becomes in the limit
n→∞

ϕ(dIγ ) =
(
N(Iγ)

βζγ(β − 1)
)−1

.
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This identity shows that for β > 2 we get a representation of E(C0(F)�G)E in
Hϕ

∼= C∗
λ(R�R×) by mapping the δ-function for (I+x) ∈ F to πϕ(ux)dIπϕ(ux)

∗

and EūxE, Es̄aE to πϕ(ux), πϕ(sa). Thus, πϕ is unitarily equivalent to the rep-
resentation of C∗

λ(R � R×) that we constructed above from a KMS-weight on
C0(F)�G. This finishes the proof of point (3) in Theorem 6.6.1. We do not dis-
cuss the (nontrivial) proof of point (2) here and refer for this to [CDL13] and
[Nes13]

Remark 6.6.4. Given a KMS-state ϕ, the relation ϕ(eJz) = ϕ(zeJ) in (6.10) above
shows that ϕ factors through the conditional expectation C∗

λ(R � R×) → D. For
β > 1, the induced measure on Spec D has to be concentrated on the complement
of the boundary R ⊂ Spec D in Remark 6.4.2.

Remark 6.6.5. Just as for the K-theory computation in Section 6.5, the method
for describing the KMS-states for large β sketched here also works to determine
the KMS-states for the natural one-parameter automorphism groups on the left
regular C∗-algebras C∗

λ(R
×) and C∗

λ(R
×/R∗). One obtains:

1. For β > 1, there is a bijection between β-KMS-states on C∗
λ(R

×) and trace
states on

⊕
γ∈ClK

C∗(R∗).

2. For β > 1, there is a bijection between β-KMS-states on C∗
λ(R

×/R∗) and
trace states on

⊕
γ∈ClK

C.

The simpler case of Theorem 6.6.1, where R = Z, K = Q, had essentially been
treated already by Laca–Raeburn in [LR10]. The first assertion in Theorem 6.6.1
is basically obvious. The original proof of point (3), in [CDL13], implicitly uses
the representations of C∗

λ(R�R×) arising from the homomorphism into the mul-
tiplier algebra of C0(F) � G that we described above – but in a different (more
complicated) guise. The proof of (2) in [CDL13] uses a result, also of some inde-
pendent interest, on asymptotics of partial Dedekind ζ-functions. An alternative
subsequent proof of Theorem 6.6.1, due to Neshveyev, is obtained by relating
the problem to a general result on KMS-states for C∗-algebras of nonprincipal
groupoids, and using previous results on KMS-states for Bost–Connes systems by
Neshveyev and others, [Nes13].



Chapter 7

Semigroup C∗-algebras and
toric varieties
Joachim Cuntz

7.1 Introduction

Let S be a finitely generated subsemigroup of Zn. Then its monoid algebra CS is
a finitely generated C-algebra with no nonzero nilpotent elements. It is therefore
the coordinate ring of an affine variety over C. Such varieties are called affine
toric varieties (they carry an action of an n-dimensional torus). Of course, here
we may replace C by an arbitrary field. General references for toric varieties and
the corresponding semigroups are, for instance, [CLS11] or [Nee92].

In this chapter we study the left regular semigroup C∗-algebra C∗
λS which, in

contrast to CS, is generated not only by the elements of S but also by their
adjoints (it is, in fact, generated by the enveloping inverse semigroup to S). It also
carries a natural action of Tn.

As we shall see (Lemma 7.3.5), the case n = 1 is without interest: for a non-
trivial subsemigroup S of Z the C∗-algebra C∗

λS is, in fact, always isomorphic
(noncanonically) to the ordinary Toeplitz algebra C∗

λN. But our main objective in
this chapter is the computation of the K-theory of C∗

λS for a finitely generated
subsemigroup S of Z2. In [CEL15], [CEL13] we had determined the K-theory of
a large class of semigroup C∗-algebras using Xin Li’s independence condition, cf.
Definition 5.6.30 (this condition plays an important role in large parts of Chapter
5). The computation of K-theory on the basis of independence is described and
used in this book in different chapters: Section 3.5.3, Section 5.10 and Section 6.5.
The interesting feature of the semigroups that we meet in the present chapter,
however, is that they do not satisfy independence except in trivial cases. One con-
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sequence is that the K-theory contains a torsion part and, as another consequence,
we cannot rely here on an elegant general method for its determination.

But, by a more detailed study of the structure of arbitrary finitely generated
subsemigroups of Z2, we are able to show that the K-theory of the C∗-algebra is
always described by a simple formula involving only the “faces” of the semigroup.

In [PS91], on the basis of previous results in [JK88], [JX88] and [Par90], a formula
for the K-theory of C∗

λS (which looks different from ours, but gives the same re-
sult) had been established in the important special case of a “saturated” finitely
generated subsemigroup of Z2. These authors consider “Toeplitz algebras” asso-
ciated with cones, but, upon inspection, their Toeplitz algebra is exactly the left
regular C∗-algebra of the (automatically saturated) semigroup defined by a cone
in Z2. In the saturated case our computation is somewhat more direct than the
one in [PS91]. But much of our analysis here is really concerned with the nonsat-
urated case. The result in [PS91] actually also covers saturated subsemigroups of
Z2 which are defined by a cone where one face has irrational slope. Such semi-
groups are not finitely generated. But the semigroup defined by a half-plane with
irrational slope in Z2 does satisfy the independence condition. Thus, one easily
derives the main result in [JK88], on the K-theory of the corresponding Toeplitz
algebra, by applying the general method based on independence from Chapters 3
and 5. Using this, the case of a cone with one irrational face considered in [PS91]
also lies within the scope of our methods.

Even though the exact sequences in K-theory that we use become significantly
more complicated in higher dimensions, it may well be possible that our argument
can be extended to subsemigroups of Zn for n > 2.

7.2 Toric varieties

Much of the material in this section is well known. We consider a finitely generated
subsemigroup S of Zn. We write the semigroup operation as addition and always
assume that a semigroup contains 0. It is then easily seen that the subgroup S−S
generated by S in Zn is the enveloping group of S and is, of course, isomorphic
to Zk for some k. Thus, without restriction of generality, we may assume that Zn

already is the enveloping group and therefore that S generates Zn and that this
embedding is natural. We will also assume that S∩(−S) = {0}, i.e that S contains
no invertible elements besides 0.

Summarizing, we assume from now on that S is a finitely generated subsemigroup
of Zn, for some n, generating Zn as a group. We also assume that S∩ (−S) = {0}.
The following easy lemma will be used in two places.

Lemma 7.2.1. Let Y = {y1, . . . , ym} be a finite set in Zn. Then there is z ∈ S such
that z + Y ⊂ S.
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Proof. Let x1, . . . , xl denote the generators of S. Since S generates Zn as a group,
there are kij ∈ Z such that yi =

∑
j k

i
jxj . We may assume that the kij are ordered in

such a way that kij < 0 for i ≤ ri and kij ≥ 0 for i > ri. Denote by ȳi =
∑ri

j=1 k
i
jxj

the “negative part” of yi. Then z = −∑
i ȳi has the required property. �

A subsemigroup F ⊂ S is said to be a face of S if x+ y ∈ F with x, y ∈ S implies
that x, y ∈ F . A semigroup S ⊂ Zn is said to be saturated if kx ∈ S, x ∈ Zn, k ∈
N\{0} implies that x ∈ S. For an arbitrary subsemigroup S of Zn let S̄ denote the
saturation of S, i.e., the semigroup consisting of all s ∈ Zn for which an integral
multiple ks, k ∈ N\{0} lies in S. There is a bijection between faces in S and faces
in S̄ as follows:

Lemma 7.2.2. (see also [Nee92] Lemma II.7) Let F ⊂ S be a face of S. Then F̄ is
a face in S̄ and F = F̄ ∩ S. Conversely, if G is a face in S̄, then G ∩ S is a face
in S.

Proof. Assume that F is a face and let x′, y′ be in S̄ and f ′ in F̄ such that x′+y′ =
f ′. We have that kx′, jy′, nf ′ are in S and F , respectively, for suitable k, j, n in
N. Let m be the least common multiple of k, j, n. It follows that mx′+my′ = mf ′

with mx′,my′ ∈ S and mf ′ ∈ F . Since F is a face, mx′ and my′ are in F and
thus x′, y′ are in F̄ . By the defining property of a face we have that F = F̄ ∩ S.

Conversely, assume that F̄ is a face. If x, y ∈ S and f ∈ F̄ ∩ S are such that
x+ y = f , then x, y are in F̄ and thus also in F = F̄ ∩ S. �

A subsemigroup T of S is said to be one-dimensional, if the subgroup of Z2 it
generates, is isomorphic to Z. Since a saturated generating semigroup of Z2 is
determined by a convex cone (see e.g. [Nee92] Lemma II.7), Lemma 7.2.2 implies
that any generating subsemigroup S of Z2 has exactly two one-dimensional faces.
Note, that a subsemigroup of Z that contains no nonzero invertibles has to lie
entirely in N or in −N. Therefore, the structure of one-dimensional subsemigroups
of S is determined by the following Lemma.

Lemma 7.2.3. Let F be a finitely generated subsemigroup of N. Then there is d ∈ N
such that F ⊂ dN and such that dN \ F is finite.

Proof. Let F ′ = F −F be the subgroup of Z generated by F . Then there is d ∈ N
such that F ′ = dZ. It follows that F ⊂ dN. Let m ∈ N such that md ∈ F . By
Lemma 7.2.1 there is z ∈ F such that z + jd is in F for j = 1, . . . ,m − 1. Since
md ∈ F , it follows that z + Nd is contained in F . �

Let F ⊂ S be a one-dimensional subsemigroup. By Lemma 7.2.3 there exists a
unique a ∈ Zn such that F is contained in Na with finite complement. Moreover,
F then generates Za as a group.

Definition 7.2.4. Given F ⊂ S as above, we say that the element a is the asymptotic
generator of F .
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Recall that the quotient of a commutative semigroup S by a subsemigroup F is the
semigroup consisting of equivalence classes of elements s in S for the equivalence
relation s1 ∼ s2 ⇐⇒ ∃f1, f2 ∈ F such that s1 + f1 = s2 + f2.

Lemma 7.2.5. Let F ⊂ S be as above and a the asymptotic generator of F . Denote
by x �→ ẋ the quotient map S → S/F . Then ẋ = ẏ for x, y ∈ S if and only if
(x+ Za) ∩ S = (y + Za) ∩ S. If ẋ �= ẏ, then (x+ Za) ∩ (y + Za) = ∅.
Proof. If ẋ = ẏ, then there are f1, f2 in F such that x+ f1 = y+ f2 and thus that
x− y = f2 − f1 ∈ Za. This implies that x ∈ y + Za and y ∈ x+ Za.

Conversely, assume that x = y + ka with k ∈ Z. By Lemma 7.2.3 there is n ∈ N
such that ka+ na and na are in F . It follows that x+ na = y+ ka+ na and thus
that ẋ = ẏ. The same argument shows that, if x + k1a = y + k2a for k1, k2 ∈ Z,
then ẋ = ẏ. �

Corollary 7.2.6. Let S and F be as in Lemma 7.2.5. Then S is a disjoint union

S =
⊔

ẋ∈S/F

(x+ Za) ∩ S.

Proof. Since, for ẋ ∈ S/F , the set x + Za does not depend on the representative
x, this is an immediate consequence of Lemma 7.2.5. �

Lemma 7.2.7. Let F be a nontrivial face in S. Then for each x ∈ S with x /∈ F ,
we have that F ⊂ S \ (S + x).

Proof. If F is a face, then x /∈ F implies that F ∩ (S + x) = ∅. �

Lemma 7.2.8. Let x ∈ S and 〈x〉 the subsemigroup generated by x. Then the
quotient map y �→ ẏ ∈ S/〈x〉 induces a bijection between S \ (S + x) and S/〈x〉.
Proof. Assume that ẏ1 = ẏ2 for y1, y2 ∈ S \ (S+x). Then there is n ∈ N such that
y1 + nx = y2 or y2 + nx = y1. Since y1, y2 ∈ S \ (S + x), n has to be zero, so that
y1 = y2. This shows injectivity.

To show surjectivity, take ẏ ∈ S/〈x〉 represented by y ∈ S. There is a minimal
n ∈ N such y ∈ S + nx, i.e., y = z + nx and z /∈ S + x. Then ż = ẏ. �

Lemma 7.2.9. Let S ⊂ Z2 and let F1, F2 denote the two one-dimensional faces of
S. Let a1, a2 be the asymptotic generators of F1, F2 and C the cone in Z2 spanned
by a1 and a2 (i.e., C = S̄ using the notation above). Then there is z ∈ S such that
z + C ⊂ S.

Proof. Let x1, . . . , xn denote the generators of S and let b1, b2 be multiples of a1, a2
such that bi ∈ Fi, i = 1, 2. Let P = {y1, . . . , ym} denote the set of all elements in
Z2 that lie inside the parallelogram spanned by b1 and b2. Then P + F ′ = C for
the subsemigroup F ′ of S spanned by b1, b2. By Lemma 7.2.1 there is z ∈ S such
that z + P ⊂ S. Then, since C = F ′ + P , also z + C ⊂ S. �
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Lemma 7.2.10. Let F ⊂ S be a one-dimensional face and a the asymptotic gener-
ator of F . Then F = S ∩ Za.

For each x ∈ S, S \ (S + x) is a finite union of finitely many translates of F1 and
F2, and of a finite set.

Proof. It is clear that F ⊂ S ∩ Za. Conversely, let ka ∈ S for k ∈ Z. By Lemma
7.2.3 there is n in N such that na and na + ka are in F . Since F is a face, this
implies that ka ∈ F .

Let C be as in 7.2.9. If x ∈ S, then by Lemma 7.2.9, there is z ∈ S such that
C+z ⊂ S+x. Now, S \(C+z) is a finite union of subsets of the form (y+Za1)∩S
or (y + Za2) ∩ S (each diagonal in Z2 parallel to ai is a finite union of subsets of
the form y + Zai), and thus, up to a finite set, a finite union of translates y + Fi,
i = 1, 2. Therefore also S\(S+x) is a finite union of subsets (y+Fi)∩(S\(S+x)),
i = 1, 2, y ∈ S.

By Corollary 7.2.6, for each translate y+Fi, the intersection with S + x is empty
or has finite complement in y + Fi. �

7.3 The regular C∗-algebra for a toric semigroup

We consider a finitely generated generating subsemigroup S of Z2 and denote
by F1, F2 the two one-dimensional faces of S. We denote by λ the left regular
representation of S on �2S and by C∗

λS the C∗-algebra generated by λ(S). As
usual, there is the commutative sub-C∗-algebra D of C∗

λS which is generated by
all range projections of the partial isometries obtained as all possible products of
the λ(s), s ∈ S and their adjoints.

Lemma 7.3.1. D contains all orthogonal projections onto �2(X) where X is a finite
subset of S. Consequently, C∗

λS contains the algebra K of all compact operators
on �2S.

Proof. D contains the orthogonal projection onto �2(X) where X = (S \ (S +
f1)) ∩ (S \ (S + f2)), f1 ∈ F1, f2 ∈ F2. Lemma 7.2.10 implies that X is finite.
Consider now all subsets of S obtained as the intersection of X with finitely many
translates s+X with s ∈ S − S. Let Y denote a minimal set in this family. Then
(Y + s1) ∩ (Y + s2) = ∅ whenever s1 �= s2. Let now y1, y2 ∈ Y . Then, since the
enveloping group S − S is Z2, there are s1, s2 ∈ S such that y1 + s1 = y2 + s2.
This implies s1 = s2 and thus also y1 = y2. We see that Y consists of only one
point. The one-dimensional projection onto �2(Y ) is in D and therefore also all of
its translates. �
Given a subset X of S, denote by eX the orthogonal projection onto the subspace
�2X ⊂ �2S.

Lemma 7.3.2. D is generated by the projections of the form λ(s)eFλ(s)
∗, for s ∈ S

and F a face of S.
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Proof. We show first that eF is in D for each face. This is clear for the trivial faces
{0} and S. Thus, let F be one of the two one-dimensional faces, and C and z as
in Lemma 7.2.9. There is d ∈ Z2 such that C \ ((C+d)∩C) is the face of C which
contains F . Replacing z by a translate z+ x, for a suitable x if necessary, we may
clearly assume that z+d+C ⊂ S. It follows that F = (((z+S)\(z+d+S))−z)∩S
and thus that

eF = λ(z)∗ (λ(z)λ(z)∗ − λ(z + d)λ(z + d)∗)λ(z).

Denote by D0 the subalgebra generated by all projections λ(s)eFλ(s)
∗. Since eF

is in D, we have D0 ⊂ D. Moreover, D0 then contains all diagonal projections of
finite rank. Lemma 7.2.9 also implies that the complement of any range projection
of λ(s) for s ∈ S is a linear combination of finitely many translates of projections
of the form eF . This shows that D0 = D. �
Remark 7.3.3. Toric semigroups typically do not satisfy the independence condition
which says that the projections in D, obtained as range projections of products
of elements λ(s), s ∈ S and their adjoints, should be linearly independent; see
Definition 5.6.30. As a simple example, consider the semigroup S ⊂ Z2 defined
by the cone spanned by the vectors (2, 1) and (2,−1). Then the intersection of
(2, 1) + S and (2, 0) + S equals the union of (4, 1) + S and (4, 0) + S. This kind of
phenomenon occurs for all toric semigroups except for the trivial ones.

Lemma 7.3.4. Let F be a two-dimensional subsemigroup of S. Then the quotient
S/F is a finite abelian group and equal to the quotient (S − S)/(F − F ) of the
enveloping groups. If a = (k, l) and b = (m,n) are generators of F − F , then the
number of elements in S/F is given by the absolute value of the determinant

det

(
k m
l n

)
.

Proof. Elements x, y in F become equal in F/S if and only if there are f, g in F
such that x+ f = y + g and thus if and only if x− y = g − f , i.e., iff x, y become
equal in (S − S)/(F − F ). This means that the map S/F → (S − S)/(F − F ) is
injective. Now, F −F is a two-dimensional subgroup of S − S = Z2 and therefore
(S − S)/(F − F ) is finite. Thus, the image of S/F in (S − S)/(F − F ) is a
subsemigroup of a finite group and therefore already a group. The formula for the
number of elements in S/F is well known and follows from the elementary divisor
theorem. �
Lemma 7.3.5. Let F be a finitely generated subsemigroup of N generating Z as a
group. Then C∗

λF
∼= C∗

λN. Moreover, viewed as subalgebras of L(�2N), the algebra
C∗

λF is a subalgebra of C∗
λN such that C∗

λF/K = C∗
λN/K.

Proof. Lemma 7.2.3 shows that M = N \ F is a finite set. Let n ∈ N be large
enough so that M ⊂ {0, . . . , n} and en be the projection onto �2{0, . . . , n}. Then
we can find f, g ∈ F such that λN(1)(1 − en) = λF (g)

∗λF (f)(1 − en) (we denote
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here by λN, λF the left regular representations on �2N and �2F , respectively). It
follows that C∗

λF = (1− eM )C∗
λ(N) (1− eM ). Moreover, using the fact that C∗

λN
is the universal C∗-algebra generated by a single isometry, it is trivially seen that
C∗

λ(N) ∼= (1− eM )C∗
λ(N) (1− eM ). �

Let F1, F2 be the two one-dimensional faces of S and denote by I1, I2 the closed
ideals generated in C∗

λS by eF1
, and by eF2

, respectively.

Lemma 7.3.6. The intersection I1∩I2 is equal to K(�2S). Each quotient Ij/K(�2S)
is isomorphic to K(�2(S/Fj))⊗ C(T).

Moreover, the quotient C∗
λS/(I1 + I2) is isomorphic to C(T2).

Proof. The first assertion follows from the fact that each intersection of a translate
of F1 and a translate of F2 contains at most one point. The second assertion is
a consequence of Corollary 7.2.6 in combination with Lemma 7.2.10 and Lemma
7.3.5. Finally, Lemma 7.2.10 also shows that any element λ(s), s ∈ S, becomes
unitary in the quotient C∗

λS/(I1 + I2) so that the quotient is isomorphic to the
C∗-algebra of the enveloping group Z2 of S. �

As customary, we will, from now on, not distinguish between the algebras of com-
pact operators on different separable infinite-dimensional Hilbert spaces and just
write K. For the K-theory of the C∗-algebra C∗

λS/K we obtain the following six-
term exact sequence

K∗(İ1)⊕K∗(İ2) �� K∗(C∗
λS/K) �� K∗(CT2)

		
(7.1)

where İj denotes the quotient Ij/K.
Lemma 7.3.7. Let a1, a2 be the asymptotic generators of the faces F1, F2 ordered in
such a way that det(a1, a2) is positive (this implies that det(a1, s) and det(s, a2)
are positive for all s ∈ S). Denote by π the quotient map C∗

λS → C(T2). Let
aj = (xj , yj) and let s = (m,n) ∈ S\Fj. The index map K1(CT2) = K1(C

∗
λS/(I1+

I2))→ K0(İj) ∼= Z, for the extension (7.1), maps the class of π(λ(s)) to

(−1)j+1 det(aj , s) = (−1)j+1 det

(
xj m
yj n

)
.

Proof. By Lemma 7.2.10, the set S \ (S + s) that represents the index of π(λ(s))
is, up to finite subsets, a union of finitely many translates of F1 and F2. When
we project to İj , the number of translates of Fj that we obtain is, according to
Lemma 7.2.8, given by the number of elements in S/(Fj + 〈s〉), which in turn by
Lemma 7.3.4 is determined by the absolute value of the determinant above. �

Lemma 7.3.8. Let C and z be as in Lemma 7.2.9 and let a1, a2 denote the asymp-
totic generators of the faces F1, F2. Then the projection E onto �2(z + C) is in
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C∗
λS. The formulas vi = λ(ai)E, i = 1, 2 define elements in C∗

λS. The isometries
v1, v2 are relatively prime in the sense that

v1v
∗
2 = v∗2v1.

In particular, the C∗-subalgebra of C∗
λS generated by v1, v2 is isomorphic to the

Toeplitz algebra C∗
λN

2.

Proof. Each diagonal in S parallel to ai is invariant under addition of Fi and
therefore, up to finite sets, a finite union of translates of Fi. It follows that the
complement of z + C in S is, up to finite sets, a finite union of translates of F1

and of F2. Since the projection onto �2 of such a translate is in C∗
λS, we see that

E = ez+C is in C∗
λS.

Consider now v1 and v2. Using Lemmas 7.2.3 and 7.3.5 in combination with the
fact that z+C is invariant under addition of ai, we may assume that the formulas
for v1, v2 actually define elements of C∗

λS (if x ∈ Fi such that x + ai ∈ Fi, then
λ(ai)E = λ(x)∗λ(x + ai)E). The primeness condition is equivalent to the fact
that the range projection of the product v1v2 is equal to the product of the range
projections of the v1, v2. Therefore, we have to show that (z+C+a1)∩(z+C+a2) =
(z+C+a1+a2). But, since a1, a2 span the boundary of the cone, one clearly has
that (C + a1) ∩ (C + a2) = (C + a1 + a2). �
Let S be a finitely generated subsemigroup of Z2 generating Z2 as a group. Let
a1 = (x1, y1) and a2 = (x2, y2) denote the asymptotic generators of the two one-
dimensional faces F1 and F2 of S. In the following we use the integral 2 × 2
matrices:

M =

(
y2 −x2

−y1 x1

)
, M⊥ =

(
x1 x2

y1 y2

)
.

Here again we order a1, a2 so that detM⊥ is positive. Note that M is the adjugate
matrix to M⊥ in the sense of Cramer’s rule so that detM = detM⊥ and MM⊥ =
detM 1.

Lemma 7.3.9. Consider the extensions 0 → I → C∗
λS → C(T2) → 0 and 0 →

I ′ → C∗
λN

2 → C(T2)→ 0, where I, I ′ denote the kernels of the quotient maps. By
Lemma 7.3.8 there is a natural map κ : C∗

λN
2 → C∗

λS which maps the generators
of C∗

λN
2 to v1, v2, where v1, v2 are as in Lemma 7.3.8. Then we have the following:

(1) K0(I) = K0(I
′) = Z2 and K1(I) = K1(I

′) = Z. The generator of K1(I) is
represented by w = λ(a1)eF1

+ λ(a2)
∗eF2

(this is unitary mod K).
(2) The map K0(CT2) → K0(CT2) induced by κ maps the Bott element b to

(detM) b.

(3) The boundary map K1(CT2) = Z2 → K0(I) = Z2 is given by multiplication
by M .

(4) The map K1I
′ ∼= Z→ K1(I) ∼= Z induced by κ is multiplication by detM .
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Proof. (1) It follows from Corollary 7.2.6 and Lemma 7.3.4 that the ideals I and
I ′ are stably isomorphic (and, thus, since both are stable, even isomorphic). In the
long exact K-theory sequence for the extension 0→ I ′ → C∗

λN
2 → C(T2)→ 0 we

know that K0(C
∗
λN

2) = Z with generator [1] and that K1(C
∗
λN

2) = 0. This shows
that K1(I) ∼= Z. The fact that the generator is represented by w follows from the
K-theory sequence for the extension 0 → K → I → I/K → 0 and the fact that
I/K ∼= (K ⊗ C(T))⊕ (K ⊗ C(T)).

(2) It is obvious by definition that κ∗ : K1(C(T2)) ∼= Z2 −→ K1(C(T2)) ∼= Z2

is given by multiplication by the matrix M⊥. The Bott element is represented
by the exterior product of the generators of K1(C(T2)) ∼= Z2. The map induced
by multiplication by M on the exterior product is detM by definition of the
determinant.

(3) In the isomorphism K0(İ) ∼= Z2 we identify K0(İ2) with the first component
and K0(İ1) with the second component of Z2 (this convention is used for the
identification of the maps in diagram (7.3) below). By Lemma 7.3.7 (and keeping
in mind the reverse identification of the components in Z2) we know that the
boundary map for the extension (7.1) maps an element s = (m,n) ∈ K1(CT2) ∼=
Z2 to the element (k2, k1) in Z2 ∼= K0(İ) with components

ki = (−1)i+1 det

(
xi m
yi n

)
where (xi, yi) are the components of the asymptotic generators ai of Fi, i = 1, 2.
In other words, (

k2
k1

)
=

(
y2 −x2

−y1 x1

) (
m
n

)
.

This describes the boundary map to K0(İ) (with İ = I/K). But the long exact
sequence for the extension 0 → K → I → İ → 0 shows that the map K0(I) →
K0(İ) is an isomorphism (using the fact that the induced map K0(K)→ K0(I) is
0).

(4) As above, we write İ , İ ′ for the quotients of I, I ′ by K. We have

İ = İ1 ⊕ İ2 ∼= K ⊗ C(T)⊕K ⊗ C(T) (7.2)

and similarly for İ ′. In particular, K1(İ) = K0(İ) = Z2 and the isomorphism
(7.2) shows that the map Z2 → Z2 induced by κ acting on K1 is the same as
the map Z2 → Z2 induced by κ on K0. This latter map μ fits into the following
commutative diagram of boundary maps

K1(CT2) = Z2

M⊥·
��

id �� K0(İ
′) = Z2

μ

��
K1(CT2) = Z2 M · �� K0(İ) = Z2

(7.3)
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Here, as in point (3) we identify K0(İ
′
2),K0(İ2) with the first component and

K0(İ
′
1),K0(İ1) with the second component of Z2. By commutativity, μ is the

same as multiplication by MM⊥ = detM1. Finally, the maps K1(I) → K1(İ)
and K1(I

′) → K1(İ ′) are injections so that the map K1I
′ ∼= Z → K1(I) ∼= Z

induced by κ is the restriction of μ to the images of these maps. �
Remark 7.3.10. Since S − S = Z2, Lemma 7.3.4 shows that Z2/M⊥Z2 is isomor-
phic to the quotient S/F where F = F1 +F2 is the subsemigroup generated by the
faces F1 and F2. Note also, that M and M⊥ have the same elementary divisors
so that Z2/MZ2 ∼= Z2/M⊥Z2.

Theorem 7.3.11. Let S be a finitely generated subsemigroup of Z2 as above. The
K-theory of C∗

λS is determined by the formula

K0(C
∗
λS) = S/F ⊕ Z, K1(C

∗
λS) = 0,

where F is the sum of the two one-dimensional faces in S.

Proof. We use the natural map κ : C∗
λN

2 → C∗
λS mapping the generators of C∗

λN
2

to v1, v2 ∈ C∗
λS (see Lemma 7.3.8). We then compare the long exact sequence for

the extension 0 → I → C∗
λS → C(T2) → 0 with the corresponding long exact

sequence for the extension 0 → I ′ → C∗
λN

2 → C(T2) → 0 and use the fact that
the long exact K-theory sequence for the second extension is explicitly known.
Using then that K0(I) = K0(I

′) = Z2, K1(I
′) = Z and that K0(CT2) = Z2,

K1(CT2) = Z2 we obtain the following morphism of exact sequences

�� Z2

��

�� Z

��

�� Z2 β′
��

ϕ

��

Z ��

ψ

��

0 ��

��

Z2 ��

��
M · �� Z2 γ �� K0(C

∗
λS)

�� Z2 β �� Z �� K1(C
∗
λS)

α �� Z2 M · ��

According to Lemma 7.3.9(2) and (4), the map ϕ maps the class [1] in K0(CT2)
to [1] and multiplies the class b of the Bott element in K0(CT2) by detM , while
the map ψ is multiplication by detM . Since β′(b) = 1, it follows that also β(b) = 1
and of course we have β([1]) = 0. Moreover, α is 0 since the subsequent map M ·
is injective. Thus, we see that K1(C

∗
λS) = 0.

It also follows that K0(C
∗
λS) is an extension of Imγ ∼= Z2/MZ2 by Kerβ = Z

and thus that K0(C
∗
λS) = Z2/MZ2 ⊕ Z. Finally, the remark above shows that

Z2/MZ2 ∼= S/F . �
Remark 7.3.12. The proof of the theorem shows that the torsion part of K0(C

∗
λS)

is generated by the classes of the projections eF1 , eF2 .
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[CD71] L.A Coburn and R.G. Douglas, C*-algebras of operators on a half-space, Publ. Math.

Inst. Hautes Études Sci. 40 (1971), 59–68.

[CDL13] J. Cuntz, C. Deninger, and M. Laca, C∗-algebras of Toeplitz type associated with
algebraic number fields, Math. Ann. 355 (2013), 1383–1423.



BIBLIOGRAPHY 309

[CDSS71] L.A. Coburn, R.G. Douglas, D.G. Schaeffer, and I.M. Singer, C*-algebras of opera-

tors on a half-space II. Index theory, Publ. Math. Inst. Hautes Études Sci. 40 (1971),
69–79.

[CE01a] J. Chabert and S. Echterhoff, Permanence properties of the Baum-Connes conjec-
ture, Doc. Math. 6 (2001), 127–183.

[CE01b] , Twisted equivariant KK-theory and the Baum-Connes conjecture for group
extensions, K-Theory 23 (2001), 157–200.

[CE76] M.-D. Choi and E.G. Effros, The completely positive lifting problem for C*-algebras,
Annals of Math. (2) (1976), 585–609.

[CEL13] J. Cuntz, S. Echterhoff, and X. Li, On the K-theory of crossed products by auto-
morphic semigroup actions, Q. J. Math. 64 (2013), 747–784.

[CEL15] , On the K-theory of the C*-algebra generated by the left regular representa-
tion of an Ore semigroup, J. Eur. Math. Soc. 17 (2015), 645–687.

[CEM01] J. Chabert, S. Echterhoff, and R. Meyer, Deux remarques sur l’application de Baum-
Connes, C. R. Acad. Sci. Paris Sér. I Math 332 (2001), 607–610.

[CEN03] J. Chabert, S. Echterhoff, and R. Nest, The Connes-Kasparov conjecture for almost

connected groups and for linear p-adic groups, Publ. Math. Inst. Hautes Études Sci.
97 (2003), 239–278.

[CEOO03] J. Chabert, S. Echterhoff, and H. Oyono-Oyono, Shapiro’s lemma for topological
K-theory of groups, Comment. Math. Helv. 78 (2003), 203–225.
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preprint, arXiv:1608.02725 (2016).

[Osa14] D. Osajda, Small cancellation labellings of some infinite graphs and applications,
preprint, arXiv:1406.5015 (2014).

[Oyo01] H. Oyono, Baum-Connes conjecture and extensions, J. Reine Angew. Math. 532
(2001), 133–149.

[Oza00] N. Ozawa, Amenable actions and exactness for discrete groups, C. R. Acad. Sci.
Paris Sér. I Math 330 (2000), 691–695.

[Oza06] , Amenable actions and applications, International Congress of Mathemati-
cians, 2006, pp. 1563–1580.

[Par02] L. Paris, Artin monoids inject in their groups, Comment. Math. Helv. 77 (2002),
609–637.

[Par90] E. Park, Index theory and Toeplitz algebras on certain cones in Z2, J. Operator
Theory 23 (1990), 125–146.

[Pat88] A.L.T. Paterson, Amenability, Mathematical Surveys and Monographs, Amer. Math.
Soc., Providence, RI, 1988.

[Pat99] , Groupoids, inverse semigroups, and their operator algebras, Birkhäuser,
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