
Scalable Disambiguation System Capturing
Individualities of Mentions

Tiep Mai1, Bichen Shi2(B), Patrick K. Nicholson1, Deepak Ajwani1,
and Alessandra Sala1

1 Nokia Bell Labs, Dublin, Ireland
{tiep.mai,patrick.nicholson,

deepak.ajwani,alessandra.sala}@nokia-bell-labs.com
2 University College Dublin, Dublin, Ireland

bichen.shi@insight-centre.org

Abstract. Entity disambiguation, or mapping a phrase to its canoni-
cal representation in a knowledge base, is a fundamental step in many
natural language processing applications. Existing techniques based on
global ranking models fail to capture the individual peculiarities of the
words and hence, struggle to meet the accuracy-time requirements of
many real-world applications. In this paper, we propose a new sys-
tem that learns specialized features and models for disambiguating each
ambiguous phrase in the English language. We train and validate the
hundreds of thousands of learning models for this purpose using a
Wikipedia hyperlink dataset with more than 170 million labelled annota-
tions. The computationally intensive training required for this approach
can be distributed over a cluster. In addition, our approach supports
fast queries, efficient updates and its accuracy compares favorably with
respect to other state-of-the-art disambiguation systems.

Keywords: Entity linking · Entity disambiguation · Wikification ·
Word-sense disambiguation

1 Introduction

Many fundamental problems in natural language processing, such as text under-
standing, automatic summarization, semantic search, machine translation and
linking information from heterogeneous sources, rely on entity disambigua-
tion [6,22]. The goal of entity disambiguation and more generally, word-sense
disambiguation is to map potentially ambiguous words and phrases in the
text to their canonical representation in an external knowledge base (e.g.,
Wikipedia, Freebase entries). This involves resolving the word ambiguities inher-
ent to natural language, such as homonymy (phrases with multiple meanings)
and synonymy (different phrases with similar meanings), thereby, revealing the
underlying semantics of the text.

T. Mai—Now at TrustingSocial (tiep@trustingsocial.com).

c© Springer International Publishing AG 2017
J. Gracia et al. (Eds.): LDK 2017, LNAI 10318, pp. 365–379, 2017.
DOI: 10.1007/978-3-319-59888-8 31

366 T. Mai et al.

Challenges: This problem has been well-studied for well over a decade and
has seen significant advances. However, existing disambiguation approaches still
struggle to achieve the required accuracy-time trade-off for supporting real-world
applications, particularly those that involve streaming text such as tweets, chats,
emails, blogs and news articles.

A major reason behind the accuracy limitations of the existing approaches is
that they rely on a single global ranking model (unsupervised or supervised) to
map all entities. In a sense, such inflexible methods use a single rule set (a single
trained/unsupervised model) for the disambiguation of all text phrases. Apart
from their meanings, the phrases also differ in their origins, emotional images
they evoke, their general popularity, their usage by demographic groups as well
as in how they relate to the local culture. Hence, even synonymous phrases can
have very different probability distribution of being mapped to different nodes
in the knowledge base. However, global ranking models do not customize disam-
biguation rules per text phrase, fail to capture the subtle nuances of individual
words and phrases in the language, and are, thus, more prone to mistakes in
entity disambiguation.

Some systems perform joint disambiguation on multiple text phrases together
for accuracy improvement. However, due to the utilization of pairwise word-
entity, entity-entity interactions or even combinatorial interactions, many joint
disambiguation approaches suffer from slow query time.

Our Approach: We propose a novel approach to address all of these issues
in word-sense disambiguation. Our approach aims at learning the individual
peculiarities of entities (words and phrases) in the English language and learns
a specialized classifier for each ambiguous phrase. This allows us to find and
leverage features that best differentiate the different meanings of each phrase.

To train the hundreds of thousands of classifiers for this purpose, we use
the publicly available Wikipedia hyperlink dataset. This dataset contains about
170 million annotations. Since training each classifier is an independent task, our
approach can be easily parallelized and we use a distributed Spark cluster for this
purpose. The small number of features used in these classifiers are based on text
overlap and are, therefore, light-weight enough for its usage in real-time systems.
We consider this parallelization to be an important advantage of our approach of
learning specialized and independent classifier for each mention (as most global
supervised and unsupervised approaches are non-trivial to parallelize, if they can
be parallelized at all).

Updating our system for new entities (e.g.,“Ebola crisis”, “Panama papers”,
“Migrant crisis”) as well as for changing meanings of existing entities (e.g., the
phrase “US President” has a higher prior of referring to “Donald Trump” after
Jan. 20, 2017 and to “Barack Obama” for the previous eight years) simply
requires learning the models for those entities, and does not affect the other
classifiers. In contrast, existing state-of-the-art approaches would either fail to
capture such changes in semantics of individual entities or require significant
amount of time to update their global models.

Scalable Disambiguation System Capturing Individualities of Mentions 367

Furthermore, unlike the increasingly popular deep learning architectures, our
approach is interpretable: it is easy to understand why our models chose a par-
ticular mapping for a phrase.

We provide an extensive experimental evaluation to show that even though
our system was designed to support fast disambiguation queries (average less
than 3 ms) and enable efficient updates, the accuracy of our approach is compa-
rable to many state-of-the-art disambiguation systems.

Outline: The rest of the paper is organized as follows. Section 2 presents related
disambiguation techniques. Section 3 gives an overview of the Wikipedia hyper-
link data used in the training of our disambiguation system. In Sect. 4, we present
the details of our novel disambiguation approach. Sections 5, 6 and 7 present the
experimental results of comparing with other disambiguation systems, using both
Wikipedia data and the benchmark framework GERBIL [24].

2 Related Work

There is a substantial body of work focussing on the task of disambiguating
entities to Wikipedia entries. The existing techniques can be roughly catego-
rized into unsupervised approaches that are mostly graph-based and supervised
approaches that learn a global ranking model for disambiguating all entities.

Graph-Based Approaches: In these approaches, a weighted graph is gener-
ally constructed with two types of nodes: phrases (mentions) from the text and
the candidate entries (senses) for that phrase. For the mention-sense edges, the
weights represent the likelihood of the sense for the mention in the text context.
For the sense-sense edges, the weights capture their relatedness, e.g. the simi-
larity between two Wikipedia articles in terms of categories, in-links, out-links.
A scoring function is designed and then optimized on the target document so
that a single sense is associated with one mention. Depending on the scoring
function, this optimization can be solved using one of the following algorithms:

– Densest subgraph algorithms on an appropriately defined semantic graph and
selecting the candidate sense with maximum score [11,18]

– Random walk techniques and choosing the candidate senses by the final state
probability [8,10]

– Some path-based metrics for joint disambiguation [13]
– A centrality measure based on HITS algorithm on a DBpedia subgraph con-

taining all the candidate senses (AGDISTIS approach) [23]
– PageRank on the mention-entity graph where the transition probabilities are

evaluated by Word2Vec semantic embeddings and Doc2Vec context embed-
dings [25]

– Other centrality measures such as variant of Betweenness, Closeness, Eigen-
vector and Degree centrality [1]

– A probabilistic graphical model that addresses collective entity disambigua-
tion through the loopy belief propagation [7]

368 T. Mai et al.

Since these graph-based solutions are mostly unsupervised, there is no para-
meter estimation or training during the design of the scoring function to guar-
antee the compatibility between the proposed scoring function and the observed
errors in any trained data [10,11,20]. Some disambiguation systems do apply a
training phase on the final scoring function (e.g., TAGME [5]), but even here,
the learning is done with a global binary ranking classifier. An alternative system
uses a statistical graphical model where the unknown senses are treated as latent
variables of a Markov random field [14]. In this system, the relevance between
mentions and senses is modeled by a node potential and trained with max-margin
method. The trained potential is combined with a non-trained measure of sense-
sense relatedness, to form the final scoring function. However, maximizing this
scoring function is NP-hard and computationally intensive [5].

Supervised Global Ranking Models: On the other hand, non-graph-based
solutions [4,9,15–17,19] are mostly supervised in the linking phase. Milne and
Witten [17] assumed that there exists unambiguous mentions associated with a
single sense, and evaluated the relatedness between candidate senses and unam-
biguous mentions (senses). Then, a global ranking classifier is applied on the
relatedness and commonness features. Not relying on the assumption of existing
unambiguous mentions, Cucerzan [2] constructed document attribute vector as
an attribute aggregation of all candidate senses and used scalar product to mea-
sure different similarity metrics between document and candidate senses. While
the original method selected the best candidate by an unsupervised scoring func-
tion, it was later modified to use a global logistic regression model [3].

Han and Sun [9] proposed a generative probabilistic model, using the fre-
quency of mentions and context words given a candidate sense, as independent
generative features; this statistical model is also the core module of the pub-
lic disambiguation service DBpedia Spotlight [4]. Olieman et al. [19] proposed
various adjustments (calibrating parameters, preprocessing text input, merging
normal and capitalized results) to adapt Spotlight to both short and long texts.
They also used a global binary classifier with several similarity metrics to prune
off uncertain Spotlight results. Houlsby and Ciaramita [12] employed a proba-
bilistic model based upon Latent Dirichlet Allocation (LDA), and proposed a
scalable Gibbs sampling scheme that exploits sparsity in the Wikipedia-LDA
model.

In contrast to these approaches that learn a global ranking model for dis-
ambiguation, our approach constructs specialized features by contrasting the
Wikipedia contexts of candidate senses, and learns a specialized model for each
unique mention. This specialization is the main factor that enables our proposed
system to achieve high accuracy, fast queries and efficient updates.

Per-mention Disambiguation: In terms of per-mention disambiguation learn-
ing on the Wikipedia knowledge base, the method by Qureshi et al. [21] is
the most similar to our proposed method. However, as their method only uses
Wikipedia links and categories for feature design and is trained with a small
Twitter annotation dataset (60 mentions), it does not fully leverage the signifi-
cantly larger Wikipedia annotation data to obtain highly accurate per-mention

Scalable Disambiguation System Capturing Individualities of Mentions 369

trained models. Also, while our feature extraction procedure is light and tuned
to contrast different candidate senses per mention, their method extracts related
categories, sub-categories and articles up to two depth level for each candidate
sense, and requires pairwise relatedness scores between candidate sense and con-
text senses. All these high cost features are computed on-the-fly due to the depen-
dency on the context, potentially slowing down the disambiguation process.

3 Annotation Data and Disambiguation Problem

We begin with an example to illustrate terminology. Consider the sentence,
“Java is a language understood by my computer,” and focus on the under-
lined phrase, “Java”. A human can easily link this phrase to its corresponding
entity, Java (programming language), by understanding that the context (i.e.,
the sentence) refers to a programming language. However, this is a non-trivial
task, as there are numerous other senses of this phrase, such as, Java (island)
and Java (coffee).

Since the senses of phrases are subjective, the first task is to fix a knowledge
base and produce a mapping between phrases and senses. For this purpose, we
use Wikipedia as our knowledge base.1 From Wikipedia, we extract the text bod-
ies from Wikipedia entities (i.e., articles) e. In each entity’s text body, there are
hyperlink texts, linking text phrases to other Wikipedia entities. These hyperlink
texts are called annotations ; their associated text phrases and Wikipedia entities
are called mentions and senses, respectively. In terms of the example above, if the
example sentence appeared on some Wikipedia page in which the phrase Java was
linked to the Wikipedia page Java (programming language), we would refer to
the combination of the hyperlink and phrase as an annotation: “Java” would be
the mention, and Java (programming language) would be the sense.

We extract all such annotations a, linking mentions m to Wikipedia senses e2.
Each annotation includes an annotation context, which is a number of sentences
extracted from both sides of the annotation, such that the number of words
on each side exceeds a predefined threshold. This threshold is set to 50 in this
paper. During the extraction, text elements such as text bodies, mentions, anno-
tation contexts are lemmatized using the python package nltk3 for the purpose
of grouping different forms of the same term. This extracted dataset is denoted
by A in the sequel.

Formal Problem Statement: The extracted annotations are grouped by their
mentions. For a single unique mention m such as “Java”, we obtain the list
of distinct candidate senses E(m) from the annotation group of mention m,
e.g. Java (programming language), Java (island), Java (coffee). In the dis-
ambiguation problem, given a new unlinked annotation a with its mention m
and context, one wants to find correct destination sense e among all candidate
senses E(m).
1 We used WikiExtractor (http://medialab.di.unipi.it/wiki/Wikipedia Extractor) on

the 2015-07-29 dump.
2 In our notation, a sense is a Wikipedia entity and is coupled with a specific mention.
3 http://www.nltk.org/.

http://medialab.di.unipi.it/wiki/Wikipedia_Extractor
http://www.nltk.org/

370 T. Mai et al.

4 Disambiguation Method

Disambiguation: We use a big data approach with supervised discriminative
machine learning models for the disambiguation problem. In our approach, all
annotations with the same lemmatized mention are grouped together and one
multi-class classifier is learnt for each lemmatized mention only using the anno-
tations corresponding to it.

We use the light-weight and robust word-based similarity features between
annotation context and sense text body, and show that coupling the specialized
per-mention classifier with these features, which are tuned to contrast candidate
senses, can deliver a very accurate and fast disambiguation solution. We also
tried other more complex features, but they turned out to be either too costly
or not as good as similarity features.

For each unique mention m, we first construct a local tf-idf matrix for the
text bodies of all candidate senses E(m). For each candidate sense e in E(m),
we consider the top n1 words, ranked by tf-idf values. We then evaluate the
similarity between an annotation context and a candidate sense by measuring
the overlap between the set of annotation-context-words and the set of sense-
text-body-words.

The overlap metrics are weighted in 4 different ways: (a) the overlap between
context-words and text-body-words (number of common words in the two sets);
(b) the overlap weighted by the tf-idf of the sense text body; (c) the overlap
weighted by the word count of the annotation context; (d) the overlap weighted
by the product of tf-idf and the word count. For standardization, the metrics are
scaled by logarithm of the context length, which can be different for different
annotations.

To further improve the accuracy, the n1 words in the annotation context are
divided, in order of their tf-idf values, into n2 parts. In the classification model,
the various overlap metrics for each part are treated as separate features, thus
enabling the different tf-idf value-bands to play different roles in measuring the
overall similarity.

We then group all weighted metrics of all candidate senses together as a single
feature vector and learn a different multinomial logistic regression model for each
mention. The size of the feature vector for a mention m is 4∗ length(E(m))∗n2.
After the learning process, the estimated model can be used to disambiguate new
unlinked annotations. The complexity for each disambiguation of unlinked anno-
tations is linear with respect to the context length and the number of candidate
senses.

The key point in the above process is the per-mention learning. By doing
so, we can leverage the local tf-idf construction among candidate senses to learn
highly discriminative words specific to each mention. For instance, for the men-
tion “Java”, we can extract words such as “code”, “machine”, “drink”, “deli-
cious”, that best discriminate between its different senses like “Java (program-
ming language)”, “Java (coffee)”. This is different from constructing features
from a single global tf-idf of all Wikipedia articles, which suffers from noisy
and unrelated Wikipedia articles. Furthermore, this procedure allows flexible

Scalable Disambiguation System Capturing Individualities of Mentions 371

weighting of words and features among different unique mentions, capturing the
individual nuances of mentions to improve the disambiguation accuracy. The
idea of this procedure is analogous to the localization property of kernel method
and smoothing spline in machine learning.

Pruning: Like other annotation systems, our system has a pruner which can
be enabled to remove uncertain annotations and balance the trade-off between
precision and recall. However, our pruning is performed on the per-sense level.

The output of the previous multinomial logistic regression model includes
both the predicted senses and the probability. Annotations with same predicted
sense are grouped together. By comparing the predicted probabilities with the
ground-truth, we obtain, for each sense, a list of probability scores for the correct
and a list for incorrect annotations. Then, for each sense, we adjust its probability
threshold to maximize the precision, subject to the constraint that the F1 should
be higher than a predefined value. Thus, for each sense, we get a threshold
value specific to it and we use these thresholds to prune at a per-sense level.
This procedure can be easily modified to optimize F1-measure or any predefined
criteria. Due to the space constraint, the pruning experiments for tuning the
constraint of F1-measure and precision are omitted.

5 Experimental Set-up

One of the numerical challenges for this approach is the required computation
power needed for the processing of more than 700K of unique ambiguous men-
tions and 170 million labelled annotations. Fortunately, as the feature construc-
tion and classification learning is per-mention, the disambiguation system is
highly compatible with a data-parallel computation system. So, in order to deal
with the numerical computation, we use Apache Spark4, a distributed process-
ing system based on Map-Reduce framework, for all data processing, feature
extraction and model learning. Our Spark cluster consists of three 16× 2.6 GHz
96 GB-RAM machines. All the algorithms and procedures are implemented in
Python with PySpark API. For machine learning methods, we use the standard
open source library scikit-learn5.

Training and Validation Set-up: For the purposes of training and validation,
the annotation dataset A in Sect. 3 is split by ratio (90%, 10%) per-mention.
The 90% training dataset is denoted by A1 and the other is by A2. In order to
validate the disambiguation system in different data scenarios such as short-text
and noisy-text, we use the following transformation on the original annotation
dataset A and create different validation sets (aside from the original validation
set A2).

For a mention m and its candidate senses, we construct a noisy vocabulary
by the unique words of the text bodies of the candidate senses. Then, for every
original annotation of m in A, we form a new annotation by sampling a fraction of
4 http://spark.apache.org/.
5 http://scikit-learn.org/stable/.

http://spark.apache.org/
http://scikit-learn.org/stable/

372 T. Mai et al.

Table 1. Data transformation parameters

Dataset B C D E
p1 80% 60% 40% 20%

p2 20% 0% 0% 0%

original context-words with ratio p1, and a fraction of noisy vocabulary with ratio
p2. For instance, given p1 = 80%, p2 = 20%, the new annotation contains 80%
of the original content (randomly sampled) with 20% noisy. Four such datasets
are constructed with parameters p1, p2 specified in Table 1 and are only used for
validation purpose. We would like to see how the disambiguation system performs
in short text environemnt (small values of p1) or in the case where the real context
words are contaminated by random context words (non-zero value of p2).

Metrics: We use the standard metrics, precision P and recall R, for evaluating
our system. As the above metrics may be biased to mentions with a large number
of labelled annotations in Wikipedia dataset, we also use a slightly different
precision P and recall R, which are averaged by per-mention precision and recall
metrics across all mentions.

6 Analysis on Learning Settings

In this section, we explore and analyze the accuracy of the proposed disambigua-
tion system.

In the feature extraction step, n1 defines the number of unique words, ranked
by tf-idf values, in each candidate sense context, used for matching with an
annotation context. In the case of using a large value of n1, we may expect the
effect of high ranking words to the disambiguation classifier is different from the
ones of low ranking words, and hence divide them in a number of parts n2, as
described in Sect. 4. In terms of computation, n1 affects the cost of matching
the annotation context with the top-ranked words of candidate context while n2

affects the number of training features.
Another variable that affects the system performance is the classifier.

Through preliminary experiments which are omitted from this paper due to
the page limit, we find multinomial logistic regression to be the best in terms of
accuracy and time complexity for this problem.

For this analysis of configurable system variables, the system is trained and
evaluated on 3.4 million random annotations of 8834 randomly selected unique
mentions. The validation results are provided for both the original validation
dataset A2 and the scrambled datasets described in Sect. 5

Performance results by varying n1 and n2 with multinomial logistic regression
are given in Table 2. The validation on A2 follows the holdout approach while
the other validation results are evaluated on modified test sets (with shrinked
contexts and random context words). Ttotal is the total time of feature con-
struction, training and validation of all datasets and Tpred is the prediction time

Scalable Disambiguation System Capturing Individualities of Mentions 373

Table 2. Performance results of different settings (n1, n2) with multinomial logistic
regression. The best results are in bold.

n1 n2 PA2 PA2 PB PB PC PC PD PD PE PE Ttotal(×103s) Tpred(ms)

400 8 .9186 .9206 .9325 .9274 .9351 .9529 .9053 .9260 .8550 .8787 47.56 5.69

100 2 .9157 .9163 .9243 .9203 .9225 .9347 .8947 .9098 .8487 .8686 2.55 3.00

400 1 .9152 .9215 .9213 .9186 .9182 .9296 .8951 .9106 .8532 .8754 24.32 3.91

100 1 .9138 .9188 .9193 .9163 .9160 .9263 .8916 .9063 .8491 .8701 18.13 2.81

Table 3. Results of setting (n1 = 100, n2 = 1) for entire Wikipedia

PA2 PA2 PB PB PC PC PD PD PE PE Ttotal(×103s) Tpred(ms)

.9188 .9220 .9261 .9172 .9238 .9265 .9012 .9067 .8617 .8712 1400.77 2.82

per-annotation (including the feature construction time); both are measured in
a sequential manner as the running time of all mentions in all Spark executor
instances is summed up before the evaluation.

As we want to validate purely the disambiguation process, we do not prune
off uncertain predictions in this section and the disambiguation always returns
a non-NIL candidate for any annotation. Consequently, precision, recall and F1-
measure are all equivalent and only precision values are reported. We make the
following observations about Table 2:

– Increasing n1 and n2 raises the precision but the increment magnitude is
diminishing.

– There is a trade off between precision and running time/prediction time. If
more top-ranked candidate context words and number of features are consid-
ered, the result is higher precision but slower training per-mention/prediction
time per-annotation.

– The precision decreases when the context length is reduced between validation
datasets C and E .

– Between dataset B and C, B has a longer but noisier context than C, resulting
in a lower precision.

The trends are clear without any random fluctuation, indicating experiment
stability.

Our last experiment in this section extends to all Wikipedia mentions of more
than one candidate senses. Due to the long processing time of more than 170
million annotations, we only run the system with one setting (n1 = 100, n2 = 1).
The precision results and time statistics are presented in Table 3, and it can be
seen that the full performance results are stable and comparable to the ones of
the corresponding settings in Table 2.

7 Comparison to Other Systems

A big advantage of our system Per-Mention Learning (PML) is that it has very
fast sequential query time (less than 3ms on average). The only other system

374 T. Mai et al.

Table 4. Comparison of DBpedia Spotlight (DS) and our proposed system (PML)

DS instance (γ) |G′| PDS PDS PPML PPML

0.0 65k .8781 .8169 .9035 .8985

0.5 64k .8822 .8201 .9051 .8989

Table 5. Comparison of TAGME (TM) and our proposed system (PML)

|G′| PTM PTM PPML PPML

37872 .8752 .8244 .9077 .8950

Table 6. GERBIL v.1.2.2 comparison of different systems. The micro-F1 (top) and
macro-F1 (bottom) scores of each system on each dataset are reported. Each column
displays the best micro/macro-F1 score in red (marking the row with †), and the second
best micro/macro-F1 score in blue (marking the row with ‡). An archived version of
the GERBIL experiment (for all systems except for PML) can be found at http://
gerbil.aksw.org/gerbil/experiment?id=201604050003.

A
C
E
2
0
0
4

A
ID

A
-C

o
N
L
L

A
Q
U
A
IN

T

D
B
S
p
o
tl
ig
h
t

II
T
B

K
O
R
E
5
0

M
ic
ro

p
o
st

M
S
N
B
C

N
3
-R

e
u
te
rs
-1
2
8

N
3
-R

S
S
-5
0
0

O
K
E
-2
0
1
5

M
a
c
ro

-A
v
e
ra

g
e

PML
.637 ‡.545 .685 †.806 .460 .403 .527 .573 ‡.553 †.677 .737 ‡.600

†.793 ‡.571 .683 †.812 ‡.459 .376 .729 †.648 ‡.592 †.676 .742 †.644
AGDISTIS

.618 .498 .508 .263 ‡.467 .323 .323 ‡.621 †.642 ‡.607 .615 .499

.752 .491 .495 .273 †.480 .290 .593 .569 †.699 ‡.607 .629 . 534

AIDA
.076 .416 .071 .210 .166 ‡.623 .331 .069 .353 .404 .617 .303
.410 .384 .072 .184 .173 ‡.563 .556 .077 .294 .347 .607 . 333

Babelfy
.517 .543 .668 .520 .364 †.731 .471 .600 .439 .441 .684 .543
.685 .496 .667 .512 .348 †.696 .621 .538 .378 .379 .663 . 544

DBSpotlight
.471 .426 .520 .701 .296 .439 .495 .351 .325 .200 .244 .406
.664 .436 .502 .675 .279 .401 .660 .333 .255 .161 .200 .415

Dexter
.507 .407 .513 .284 .204 .183 .404 .293 .354 .369 .580 .373
.667 .387 .502 .251 .204 .123 .587 .298 .302 .293 .510 . 375

EC-NER
.488 .439 .403 .244 .137 .290 .412 .429 .365 .331 .192 .339
.656 .420 .369 .194 .150 .252 .594 .407 .335 .320 .160 .351

Kea
.634 .539 †.763 ‡.733 †.472 .588 †.631 †.662 .501 .435 ‡.761 †.611
.755 .524 †.753 ‡.725 .453 .527 †.758 ‡.615 .447 .387 ‡.753 ‡.609

NERD-ML
.558 .465 .575 .548 .422 .312 .478 .513 .402 .367 .740 .489
.714 .427 .554 .528 .411 .252 .629 .502 .340 .297 .719 .488

TAGME 2
†.660 .513 ‡.723 .661 .385 .590 .578 .590 .445 .470 †.832 .586
‡.776 .481 .708 .642 .372 .532 .712 .556 .380 .391 †.814 .579

WAT
‡.643 †.597 .714 .653 .401 .593 ‡.601 .601 .504 .433 .697 .585
.758 †.581 ‡.714 .666 .385 .491 ‡.740 .542 .427 .364 .648 .574

Macro-Average
.528 .490 .558 .511 .343 .461 .477 .482 .444 .430 .609
.694 .473 .547 .497 .338 .409 .653 .462 .404 .384 .586

with comparable query time is TAGME. Nonetheless in this section, we show
the accuracy comparison results of PML with 10 other disambiguation systems
(including the ones with significantly slower query time) for the sake of com-
pleteness.

http://gerbil.aksw.org/gerbil/experiment?id=201604050003
http://gerbil.aksw.org/gerbil/experiment?id=201604050003

Scalable Disambiguation System Capturing Individualities of Mentions 375

Comparison using Wikipedia as Ground Truth: In this section, we
compare the proposed disambiguation system with DBpedia Spotlight6 and
TAGME7.

An annotation set G ⊂ A2 is used as an input of two Spotlight instances of
different confidence values γ = 0.0 and γ = 0.5. We note that as Spotlight may
not return disambiguation results for intended target mentions in annotations
input due to pruning, Spotlight outputs are only for a subset G′ ⊂ G. We then use
the proposed PML disambiguation system of setting (n1 = 100, n2 = 1) without
pruning. For fairness, we only compare precision results on the subset G′. The
results are shown in Table 4, indicating that our proposed system has a higher
accuracy of between 2.2% and 8.2% depending on the metric. The precision drop
from PDS to PDS implies that Spotlight disambiguation does not work as well
as PML across distinct mentions.

For TAGME, a similar methodology is employed, but with a minor difference:
the TAGME web API does not allow the user to specify the annotation for
disambiguation. As a result, we rely on the TAGME spotter, and only include
results where TAGME annotated exactly the same mention as the ground truth
data. The precision results are shown in Table 5, indicating that our proposed
system has a higher accuracy from 3.3% to 7.1%.

Comparison using GERBIL: To provide convincing evidence that our system
works well on more than just Wikipedia text, we also compared our system to
10 other disambiguation systems over 11 different datasets. This was done by
implementing a web-based API for our system that is compatible with GERBIL
1.2.2. [24]. Due to space constraints, we refer the interested reader to the GER-
BIL website8 and paper [24] for a complete description of these systems and
datasets. The task we considered is the strong annotation task (D2KB). In this
task, we are given an input text containing a number of marked phrases, and
in the output, marked phrases are associated with entities from the knowledge
base. Note that the systems AGDISTIS, Babelfy, KEA, Spotlight, and WAT
support D2KB directly, whereas other systems only support a weak annota-
tion task (A2KB). However, GERBIL has a built-in methodology to allow these
annotators to take part in the experiment9.

We tested our system using all datasets available by default in GERBIL,
which are primarily based on news articles, RSS feeds, and tweets. In Table 6,
we report, for each combination of system and dataset, the micro-F1 (top) and

6 We used Spotlight 0.7 [4] (statistical model en 2+2 with the SpotXmlParser.
7 We used the TAGME version 1.8 web API http://tagme.di.unipi.it/tag in January,

2016.
8 http://aksw.org/Projects/GERBIL.html.
9 See the main Gerbil website as well as https://github.com/AKSW/gerbil/wiki/

D2KB#handling-of-higher-order-annotators for more details. To quote the GERBIL
documentation, “The response of these annotators is filtered using a strong anno-
tation match filter. Thus, all entities that do not exactly match one of the marked
entities in the gold standard are removed from the response of the annotator before
it is evaluated.”.

http://tagme.di.unipi.it/tag
http://aksw.org/Projects/GERBIL.html
https://github.com/AKSW/gerbil/wiki/D2KB#handling-of-higher-order-annotators
https://github.com/AKSW/gerbil/wiki/D2KB#handling-of-higher-order-annotators

376 T. Mai et al.

macro-F1 (bottom) scores. The micro-F1 score is the F1-measure aggregated
across annotations, while the macro-F1 score is aggregated across documents.
Even though not being trained on such datasets, our system is very competitive
to the others.

Firstly, we observe that our system achieves very high macro-F1 scores. These
macro-F1 scores are the highest in terms of average (c.f. Fig. 1), .644, and lowest
in terms of the average of the ranking among 11 systems (c.f. Fig. 2), 2.45; Kea
comes in second with .609 and 2.64 respectively. In terms of micro-F1, we fall
slightly short of Kea in terms of average and ranking-average, .611 vs. .600 and
2.72 vs. 3.36, respectively.

Fig. 1. The average of Micro and Macro F1 for different techniques across different
data sets in Table 6

Fig. 2. Average rank of Micro and Macro F1 for different techniques (across different
data sets in Table 6)

Scalable Disambiguation System Capturing Individualities of Mentions 377

Secondly, our system does very well on news. If we restrict ourselves to the
news datasets (ACE2004, AIDA/CoNLL, AQUAINT, MSNBC, N3-Reuters-128,
N3-RSS-500), then we achieve the highest average and lowest rank-average scores
in terms of both micro-F1 and macro-F1: .661/1.83 and .612/3.

However, our system performs quite poorly on the KORE50 dataset, which
is significantly different from the training environment of Wikipedia dataset.
Many entries in KORE50 dataset are single sentences involving very ambiguous
entities: since our system does not perform joint disambiguation, these highly
ambiguous entities are problematic, resulting in a performance drop10.

8 Conclusions

This paper proposes a new per-mention learning (PML) disambiguation system,
in which the feature engineering and model training is done per unique mention.
The most significant advantage of this approach lies in the specialized learning
that is highly parallelizable, supports fast queries and efficient updates. Fur-
thermore, this per-mention disambiguation approach can be easily calibrated or
tuned for specific mentions with new datasets, without affecting the results of
other mentions.

In a pairwise direct comparison over 30–60 thousands of samples, our sys-
tem clearly outperforms Dbpedia Spotlight and TAGME. Moreover, under the
public benchmark system GERBIL, we have shown that our PML system is
very competitive with 10 state-of-the-art disambiguation systems over 11 differ-
ent datasets, and, for the case of disambiguating news, consistently outperforms
other systems. In terms of macro-F1, PML achieves the highest average-score
and the lowest average-ranking across all datasets.

References

1. Brando, C., Frontini, F., Ganascia, J.: REDEN: named entity linking in digital
literary editions using linked data sets. CSIMQ 7, 60–80 (2016)

2. Cucerzan, S.: Large-scale named entity disambiguation based on wikipedia data.
In: Proceedings of the EMNLP-CoNLL, pp. 708–716, June 2007

3. Cucerzan, S.: Name entities made obvious: the participation in the ERD 2014
evaluation. In: Proceedings of the ERD, pp. 95–100. ACM, New York (2014)

4. Daiber, J., Jakob, M., Hokamp, C., Mendes, P.N.: Improving efficiency and accu-
racy in multilingual entity extraction. In: Proceedings of the I-SEMANTICS (2013)

5. Ferragina, P., Scaiella, U.: TAGME: on-the-fly annotation of short text fragments
(by Wikipedia entities). In: Proceedings of the CIKM, pp. 1625–1628 (2010)

10 Ideally, to achieve better performance, one would need to adapt and retrain super-
vised models for scenarios with short and dynamic contexts such as KORE50 dataset.
One potential issue of such retraining is the lack of big labelled data. This issue
could be solved by integrating the target labelled dataset with Wikipedia dataset
and adjusting the sample weights to balance the training cost of the target and
Wikipedia datasets. However, we decided not to do so to maintain the fairness of
this comparison.

378 T. Mai et al.

6. Ferrucci, D.A.: Introduction to “This is Watson”. IBM J. Res. Dev. 56(3), 235–249
(2012)

7. Ganea, O., Ganea, M., Lucchi, A., Eickhoff, C., Hofmann, T.: Probabilistic bag-
of-hyperlinks model for entity linking. In: Proceedings of the WWW, pp. 927–938
(2016)

8. Guo, Z., Barbosa, D.: Robust entity linking via random walks. In: Proceedings of
the CIKM, pp. 499–508 (2014)

9. Han, X., Sun, L.: A generative entity-mention model for linking entities with knowl-
edge base. In: Proceedings of the HLT, pp. 945–954 (2011)

10. Han, X., Sun, L., Zhao, J.: Collective entity linking in web text: a graph-based
method. In: Proceedings of the SIGIR, pp. 765–774 (2011)

11. Hoffart, J.: Discovering and disambiguating named entities in text. In: Proceedings
of the SIGMOD/PODS Ph.D. Symposium, pp. 43–48 (2013)

12. Houlsby, N., Ciaramita, M.: A scalable Gibbs sampler for probabilistic entity link-
ing. In: Rijke, M., Kenter, T., Vries, A.P., Zhai, C.X., Jong, F., Radinsky, K.,
Hofmann, K. (eds.) ECIR 2014. LNCS, vol. 8416, pp. 335–346. Springer, Cham
(2014). doi:10.1007/978-3-319-06028-6 28

13. Hulpuş, I., Prangnawarat, N., Hayes, C.: Path-based semantic relatedness on linked
data and its use to word and entity disambiguation. In: Arenas, M., Corcho, O.,
Simperl, E., Strohmaier, M., d’Aquin, M., Srinivas, K., Groth, P., Dumontier, M.,
Heflin, J., Thirunarayan, K., Staab, S. (eds.) ISWC 2015. LNCS, vol. 9366, pp.
442–457. Springer, Cham (2015). doi:10.1007/978-3-319-25007-6 26

14. Kulkarni, S., Singh, A., Ramakrishnan, G., Chakrabarti, S.: Collective annotation
of Wikipedia entities in web text. In: Proceedings of the KDD, pp. 457–466 (2009)

15. McNamee, P.: HLTCOE efforts in entity linking at TAC KBP 2010. In: Proceedings
of the TAC (2010)

16. Meij, E., Weerkamp, W., de Rijke, M.: Adding semantics to microblog posts. In:
Proceedings of the WSDM, pp. 563–572 (2012)

17. Milne, D., Witten, I.H.: Learning to link with Wikipedia. In: Proceedings of the
CIKM, pp. 509–518 (2008)

18. Moro, A., Raganato, A., Navigli, R.: Entity linking meets word sense disambigua-
tion: a unified approach. TACL 2, 231–244 (2014)

19. Olieman, A., Azarbonyad, H., Dehghani, M., Kamps, J., Marx, M.: Entity linking
by focusing DBpedia candidate entities. In: Proceedings of the ERD, pp. 13–24
(2014)

20. Piccinno, F., Ferragina, P.: From TAGME to WAT: a new entity annotator. In:
Proceedings of the ERD, pp. 55–62 (2014)

21. Qureshi, M.A., O’Riordan, C., Pasi, G.: Exploiting wikipedia for entity name dis-
ambiguation in tweets. In: Proceedings of the NLDB, pp. 184–195 (2014)

22. Suchanek, F., Weikum, G.: Knowledge harvesting in the big-data era. In: Proceed-
ings of the SIGMOD, pp. 933–938. ACM, New York

23. Usbeck, R., Ngomo, A.N., Röder, M., Gerber, D., Coelho, S.A., Auer, S., Both, A.:
AGDISTIS - agnostic disambiguation of named entities using linked open data. In:
Proceedings of the ECAI, pp. 1113–1114 (2014)

http://dx.doi.org/10.1007/978-3-319-06028-6_28
http://dx.doi.org/10.1007/978-3-319-25007-6_26

Scalable Disambiguation System Capturing Individualities of Mentions 379

24. Usbeck, R., Röder, M., Ngonga Ngomo, A.-C., Baron, C., Both, A., Brümmer, M.,
Ceccarelli, D., Cornolti, M., Cherix, D., Eickmann, B., Ferragina, P., Lemke, C.,
Moro, A., Navigli, R., Piccinno, F., Rizzo, G., Sack, H., Speck, R., Troncy, R.,
Waitelonis, J., Wesemann, L.: GERBIL: general entity annotator benchmarking
framework. In: Proceedings of the WWW, pp. 1133–1143 (2015)

25. Zwicklbauer, S., Seifert, C., Granitzer, M.: Robust and collective entity disam-
biguation through semantic embeddings. In: Proceedings of the 39th International
ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 425–434. ACM (2016)

	Scalable Disambiguation System Capturing Individualities of Mentions
	1 Introduction
	2 Related Work
	3 Annotation Data and Disambiguation Problem
	4 Disambiguation Method
	5 Experimental Set-up
	6 Analysis on Learning Settings
	7 Comparison to Other Systems
	8 Conclusions
	References

