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Abstract. In this paper, a vessel segmentation method from hyperspectral
retinal images based on the Multi-Scale Line Detection algorithm is proposed.
The method consists in combining segmentation information from several
consecutive images obtained at specific wavelengths around the green channel
to produce an accurate segmentation of the retinal vessel network. Images
obtained from six subjects were used to evaluate the performance of the pro-
posed method. Preliminary results suggest a potential advantage of combining
multispectral information instead of using only the green channel in segmenting
retinal blood vessels.
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1 Introduction

The eye allows the observation of human blood circulation in-vivo. Studies [1, 2] have
shown that the arterio-venule diameter ratio (AVR) is associated with different risk
factors such as hypertension, cardiovascular diseases, and diabetes. For that reason,
assessing the AVR is of paramount importance in ocular examination.

Automatic assessment of AVR, or any other biomarker that manifests in the
morphology, the tortuosity or the spatial configuration of the retinal vessels, require
accurate segmentation of the whole retinal vascular network including veins and
arteries.

Standard segmentation methods use the green channel in fundus images to extract
the retinal vessel topology. The reason the green channel is usually used is that it
provides the best contrast between the vessel structures and the background of the
retina. However, most of these methods lack the capacity to segment the small vessels
given that the contrast in the green channel is not sufficient for such segmentation. The
width of these vessels and possible discontinuities in their curvature are also a major
hindrance to their segmentation.
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Hyperspectral imaging can potentially improve the segmentation of retinal blood
vessels using images obtained at different wavelengths around the specific wavelength
corresponding to the green channel. The hyperspectral imaging not only captures
images of the retina at different wavelengths but also takes advantage of oximetry
information which allows the varying oxyhemoglobin concentration or lack of it in a
region of interest to be captured differently at each wavelength. For instance 569 nm
captures a better contrast between the vessels and the retinal background while 600 nm
is more sensitive to the higher level of HbO2 concentration level in the arteries.

Several methods have been proposed to automatically segment the retinal vessels
from fundus images. These methods can be classified in two main categories. The first
category of retinal vessel segmentation methods uses supervised algorithms [3–6]. The
general idea is to train a classifier on local or global extracted features. The classifiers
used in the literature include, among others, Bayesian classifiers [3], Neural Networks
[4, 5] and Support Vector Machine [6]. These methods gained popularity due to their
better performance when compared to their unsupervised counterparts. Their main
drawback is the requirement of large datasets for the training phase. In this article, we
investigate the potential advantage of using multispectral images for vessel segmen-
tation and only a small dataset is currently available as the hyperspectral imaging is a
new modality, which makes the use of supervised methods unpractical.

The second category consists of unsupervised methods [7–14] spanning a wide
range of basic schemes. Jiang and Mojon [7] used multi-thresholding at different
scales and combined the results of the segmentation of each level. Zana and Klein [8]
used mathematical morphological operators to enhance and segment retinal vessels.
Chaudhuri et al. [9] proposed a retinal vessel segmentation method based on matched
filters. The authors assumed that the intensity distribution along the cross section of the
vessels is Gaussian. For this purpose they applied a set of rotated Gaussian filters to
detect the vessels. Several extensions were proposed to the initial matched filter seg-
mentation method [10, 11]. However, all these methods assume that the cross-section
intensity distribution follows a Gaussian profile, which is not always the case. Other
works [12, 13] used tracking to trace vessels from a seed point to an extremity using
local information to trace the vessels. The seed points can be either manually or
automatically identified. The drawback of these approaches is that they tend to ter-
minate at bifurcations and return an incomplete segmentation. In [14] the authors
extended the vessel tracking method by using Tensor Voting to connect the fragmented
vessel segments and reach the smaller sections of the vessels. Line detection was also
proposed by Ricci and Perfetti [6]. Measuring the average intensity along a rotating line
in a window centered at a given pixel, one can associate window size to the assumed
range of vessel widths. A pixel is classified as a vessel pixel based on the line detector
response. Nguyen et al. [15] expanded on this method and proposed a more generalized
version. This version is dubbed the Multi-Scale Line Detector (MSLD). The MSLD
algorithm proved to be a very robust algorithm when tested on the STARE [10] and
DRIVE [4] datasets. Our work below is based on an extension of this approach. We
chose this method for its simplicity and shorter execution time when compared to other
highly achieving methods as in [14]. However, we should keep in mind that setting the
parameters of the MSLD algorithm is not a trivial task that mostly affects the seg-
mentation of the thinner blood vessels.
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To the best of our knowledge, only one work in the literature [16] proposed a
dual-wavelength retinal vessel segmentation. The main purpose of the article is to
classify arteries and veins. For this purpose, the vessel structure was segmented using
the algorithm described in [13]. However, no performance evaluation was provided for
the segmentation algorithm.

In this study, we propose a method that extends the Multi-Scale Line Detector
(MSLD) method [15] to segment retinal vessels in multispectral retinal images. Our
contribution consists in demonstrating that the limitations of the MSLD segmentation
algorithm in detecting small vessels could be compensated when multispectral images
are available by combining the information from each of the segmentation results into a
single vessel map.

2 Methodology Description

Retinal vessels are usually segmented from the green channel (one wavelength) in
fundus image. Our method assumes that better segmentation can be achieved when
more than one image obtained at different wavelengths are combined. For this reason,
we use a sub-band of a hyperspectral retinal image. A hyperspectral retinal image is a
3D image that consists of several 2D images taken at different wavelengths of the same
retina in the span of a second.

Each of the wavelength images was preprocessed to enhance its contrast. The
vessel structure was then segmented in each of these images using the MSLD algo-
rithm. Finally, a global segmentation map is reconstructed by adding the individual
segmented vessel maps from each individual wavelength. The value of a pixel in the
reconstructed image is the summation of the pixel intensities from each of the indi-
vidual wavelength segmentation maps that are at the same position of that pixel. The
reconstructed image is then thresholded in such a way that any value that is greater than
zero is set to one. The regions wrongly detected as retinal vessels in that reconstructed
image are cleared by deleting any connected region with a number of pixels smaller
than a given threshold a.

3 Experimental Settings and Results

Our dataset was captured using a Metabolic Hyperspectral Retinal Camera (MHRC)
developed by Optina Diagnostic (Montreal, Canada). An early prototype is described in
details in [17]. Figure 1(a) shows the camera setup and Fig. 1(b) gives a rough
description on the functionality of the apparatus. The camera sends a beam of
monochromatic light through a tunable filter. The reflected light is collected on a 2D
sCMOS sensor. The 2D images from different wavelength beams are stacked into one
3D cube to form the hyperspectral image. Compared to the previously described
MHRC in [17], this version of the system included a sCMOS sensor which permitted
acquisitions at a rate up to 100 frames per second.
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The processed images are a sub-band of the original multispectral images that span
the interval of 450 nm to 900 nm with a step of 5 nm. For our purposes, we considered
the interval between 495 and 570 nm that spans the green region of the spectrum and
presents the best contrast between the vessel structures and their environment. Thus,
the dimensions of the processed images are 1536 � 1536 � 16 pixels.

The raw reflectance images were preprocessed using an in-house Matlab (The
Mathworks, Natick, MA) tool. Preprocessing consists in normalization and registration
of the acquired images. Normalization was necessary to account for spatial and spectral
variations in the light source intensity and the system optics [17]. Registration was used
to account for slight eye motion.

We set the threshold a on the small connected regions size to 800. This value was
determined empirically and kept constant for all the subjects.

We processed multispectral images from six subjects including healthy controls and
subjects followed at the ophthalmology clinic. We qualitatively compared the MSLD
results for each of the individual wavelength images and the corresponding MSLD
reconstructed image. Figure 2 shows a detailed case for subject 1. Only one case was
detailed in this paper due to space constraints. In Fig. 2, the regions shown in the right
columns are the enlarged detailed version of the contoured regions in one of the images
that belongs to the same row. Each two corresponding regions are contoured with the
same color.

To quantitatively evaluate the results of the proposed segmentation we built a
ground truth by manually segmenting the vessels. Given that the higher wavelength
images showed better contrast, the image at 570 nm was used to build the represen-
tative ground truth map for a given multispectral image. It is true that the degree of
contrast in that image was not enough to permit an automatic segmentation of the
thinner blood vessels. However, it was enough to allow a more precise manual seg-
mentation. For instance, manual segmentation was able to account for discontinuities in
the vessel structure in that image.

Fig. 1. (a) Shows the MHRC set up (b) Shows the functionality of the system. This picture was
adapted from [17]

562 R. Farah et al.



For each of the individual wavelength images and the reconstructed image, a score
was calculated. The score is the normalized sum of the intersection foreground pixels in
both the ground truth map and the automatically segmented map as described in
Eq. (1).

score ¼ sum pixelsðGTforeground \ASforegroundÞ
sum pixelsðGTforegroundÞ ð1Þ

Where GT refers to the ground truth map and AS refers to an automatically seg-
mented map. The calculated scores for all 6 subjects are shown in Table 1. In this case
the higher the score the more successful is the segmentation. Also the optical disk
region is excluded from the score calculation.

When examined, the high wavelength individual images appear to have most of the
information. The vessels in these images are less fragmented than in the lower
wavelength images. However, even the higher wavelength individual images, when
taken separately, lack the complete information gathered in the reconstructed image.
The fact that the vessels are less fragmented in the reconstructed image makes it easier
to clean the final results of noisy patches. In fact, the noise was more likely to be
distinguished from any fragmented vessel part. Furthermore, in the MSLD method the

Table 1. The calculated score for the reconstructed image (Recon.) and each of the wavelength
images for the six subjects. The captured wavelength in subject 3 did not extend to 510 nm or
lower.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6

Recon. 0,90 0,98 0,92 0,89 0,92 0,80
570 nm 0,83 0,95 0,80 0,72 0,87 0,87
565 nm 0,76 0,93 0,73 0,76 0,85 0,84
560 nm 0,73 0,93 0,71 0,75 0,81 0,82
555 nm 0,70 0,92 0,68 0,75 0,80 0,81
550 nm 0,71 0,91 0,72 0,74 0,82 0,83
545 nm 0,74 0,91 0,75 0,74 0,83 0,82
540 nm 0,71 0,87 0,72 0,73 0,81 0,81
535 nm 0,66 0,80 0,73 0,67 0,77 0,76
530 nm 0,57 0,71 0,64 0,61 0,74 0,73
525 nm 0,46 0,64 0,57 0,58 0,67 0,64
520 nm 0,37 0,53 0,51 0,55 0,59 0,55
515 nm 0,31 0,45 0,46 0,51 0,53 0,47
510 nm 0,33 0,41 0,50 0,54 0,44
505 nm 0,30 0,37 0,51 0,52 0,43
500 nm 0,30 0,34 0,50 0,51 0,43
495 nm 0,31 0,31 0,50 0,53 0,42
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choice of the threshold value that provide an optimal vessel segmentation is not
obvious and may depend on the intensity distribution in each image. The impact of this
effect was minimized using several wavelength images. Even though the threshold
value may not be optimal for some of the images, the combination of multiple images
resulted in a better reconstructed segmentation map.

Figure 3 shows the results for subject 6 where the segmentation was not as suc-
cessful as for the other subjects. The algorithm wrongly identified vessels in regions
where anatomical features related to age-related macular degeneration (ARMD) such as
the large hypopigmented region (clear zone) and the drusen (smaller white patches)
were present.

Fig. 2. The upper 4 rows and left side 4 columns show the MSLD segmentation result for the
individual images captured at the different identified wavelengths. The image in the lower left
column is the preprocessed raw image at wavelength 530 nm. The middle image at the lowest
row is the reconstructed segmented image. The right most column shows the enlarged contoured
details at the image in the corresponding row. The yellow contour marks the same region in all
involved images and the same is true for the green one. (Color figure online)

564 R. Farah et al.



4 Conclusion

We proposed a multispectral retinal vessel segmentation technique that is based on the
MSLD method. The proposed method combined information from the individual
segmentation of each spectral image into a global reconstructed segmentation image.
We tested our method on six different subjects. The preliminary results show the
advantage of combining multispectral images to exploit more information than when
using only one-wavelength image.

The current approach used to combine the information is not sufficient when signs
of ARMD are present in the images. Thus, a combination method that is less sensitive
to these confounding features is needed. Otherwise, a mid-processing step can be
applied to the results of the individual MSLD images to exclude the wrongly-identified
vessels before combination.

It would also be interesting to investigate the contribution of each wavelength
image to the final reconstructed image. This can be used to determine if all the images
are needed for the reconstruction.

An extensive validation is needed to understand better why the higher wavelength
images gave more accurate segmentation results. We suspect the better contrast
obtained for the hemoglobin and the choice of the MSLD threshold. Thus, it could be
useful to adapt the threshold value for each wavelength. Also we will enhance the
robustness of the method used to set the parameters of the algorithm once applied on a
larger database.
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