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Abstract. Synthesizing images of the eye fundus is a challenging task
that has been previously approached by formulating complex models of
the anatomy of the eye. New images can then be generated by sam-
pling a suitable parameter space. Here we propose a method that learns
to synthesize eye fundus images directly from data. For that, we pair
true eye fundus images with their respective vessel trees, by means of
a vessel segmentation technique. These pairs are then used to learn a
mapping from a binary vessel tree to a new retinal image. For this pur-
pose, we use a recent image-to-image translation technique, based on the
idea of adversarial learning. Experimental results show that the original
and the generated images are visually different in terms of their global
appearance, in spite of sharing the same vessel tree. Additionally, a quan-
titative quality analysis of the synthetic retinal images confirms that the
produced images retain a high proportion of the true image set quality.
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1 Introduction

Modern machine learning methods require large amounts of training data. This
data is rarely available in the field of medical image analysis, since obtaining clin-
ical annotations is often a costly process. Therefore, the possibility of syntheti-
cally generating medical visual data is greatly appealing, and has been explored
for years. However, the realistic generation of high-quality medical imagery still
remains a complex unsolved challenge for current computer vision methods.

Early methods for medical image generation consisted of digital phantoms,
following simplified mathematical models of human anatomy [2]. These mod-
els slowly evolved to more complex techniques, able to reliably model relevant
aspects of the different acquisition devices. When combined with anatomical and
physiological information arising from expert medical knowledge, realistic images
can be produced [4]. These are useful to validate image analysis techniques, for
medical training, therapy planning, and a wide range of applications [6,11].
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Fig. 1. Overview of the proposed retinal image generation method.

However, the traditional top-down approach of observing the available data
and formulating mathematical models that explain it (image simulation) implies
modeling complex natural laws by unavoidably simplifying assumptions. More
recently, a new paradigm has arisen in the field of medical image generation,
exploiting the bottom-up approach of directly learning from the data the relevant
information. This is achieved with machine learning systems able to automatically
learn the inner variability on a large training dataset [18]. Once trained, the same
system can be sampled to output a new but plausible image (image synthesis).

In the general computer vision field, the synthesis of natural images has
recently experimented a dramatic progress, based on the general idea of adver-
sarial learning [5]. In this context, a generator component synthesizes images
from random noise, and an auxiliary discriminator system trained on real data
is assigned the task of discerning whether the generated data is real or not. In
the training process, the generator is expected to learn to produce images that
pose an increasingly more difficult classification problem for the discriminator.

Although adversarial techniques have achieved a great success in natural
image generation, medical imaging applications are still incipient. This is par-
tially due to the lack of large amounts of training data, and partially to the
difficulty of finely controlling the output of the adversarial generator. In this
work, we propose to apply the adversarial learning framework to retinal images.
Notably, instead of generating images from scratch, we propose to generate new
plausible images from binary retinal vessel trees. Therefore, the task of the gen-
erator remains achievable, as it only needs to learn how to generate part of the
retinal content, such as the optical disk, or the background’s texture (Fig. 1).

The remaining of this work is organized as follows: we first describe a recent
generative adversarial framework [7] that can be employed on pairs of vessel
trees and retinal images to learn how to map the former to the latter. Then, we
briefly review U-Net, a Deep Convolutional Neural Network designed for image
segmentation, which allows us to generate pairs of retinal images and correspond-
ing binary vessel trees. This model provides us with a dataset of vessel trees and
corresponding retinal images that we then use to train an adversarial model,
producing new good-quality retinal images out of a new vessel tree. Finally, the
quality of the generated images is evaluated qualitatively and quantitatively, and
a description of potential future research directions is presented.
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2 Adversarial Retinal Image Synthesis

2.1 Adversarial Translation from Vessel Trees to Retinal Images

Image-to-image translation is a relatively recent computer vision task in which
the goal is to learn a mapping G, called Generator, from an image x into another
representation y [7]. Once the model has been trained, it is able to predict the
most likely representation G(xnew) for a previously unseen image xnew.

However, for many problems a single input image can correspond to many
different correct representations. If we consider the mapping G between a retinal
vessel tree v and a corresponding retinal fundus image r, variations in color or
illumination may produce many acceptable retinal images that correspond to
the same vessel tree, i.e. G(v) = {r1, r2, . . . , rn}. Directly related to this is the
choice of the objective function to be minimized while learning G, which turns
out to be critical. Training a model to naively minimize the L2 distance between
G(vi) and ri for a collection of training pairs given by {(r1, v1), . . . , (rn, vn)} is
known to produce low-quality results with lack of detail [12], due to the model
selecting an average of many equally valid representations.

Instead of explicitly defining a particular loss function for each task, it is
possible to employ Generative Adversarial Networks to implicitly build a more
appropriate loss [7]. In this case, the learning process attempts to maximize
the misclassification error of a neural network (called Discriminator, D) that
is trained jointly with G, but with the goal of discriminating between real and
generated images. This way, not only G but also the loss are progressively learned
from examples, and adapt to each other: while G tries to generate increasingly
more plausible representations G(vi) that can deceive D, D becomes better at
its task, thereby improving the ability of G to generate high-quality samples.
Specifically, the adversarial loss is defined by:

Ladv(G,D) = Ev,r∼pdata(v,r)[logD(v, r)] + Ev∼pdata(v)[log(1 −D(v,G(v)))], (1)

where Ev,r∼pdata
represents the expectation of the log-likelihood of the pair

(v, r) being sampled from the underlying probability distribution of real pairs
pdata(v, r), while pdata(v) corresponds to the distribution of real vessel trees. An
overview of this process is shown in Fig. 2.

To generate realistic retinal images from binary vessel trees, we follow recent
ideas from [7,15], which propose to combine the adversarial loss with a global L1
loss to produce sharper results. Thus, the loss function to minimize becomes:

L(G,D) = Ladv(G,D) + λEv,r∼pdata(v,r) (||r − G(v)||1) , (2)

where λ balances the contribution of the two losses. The goal of the learning
process is thus to find an equilibrium of this expression. The discriminator D
attempts to maximize Eq. (2) by classifying each N×N patch of a retinal image,
deciding if it comes from a real or synthetic image, while the generator aims at
minimizing it. The L1 loss controls low-frequency information in images gener-
ated by G in order to produce globally consistent results, while the adversarial
loss promotes sharp results. Once G is trained, it is able to produce a realistic
retinal image r from a new binary vessel tree v.
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Fig. 2. Overview of the generative model mapping vessel trees to retinal images.

2.2 Obtaining Training Data

The model described above requires training data in the form of pairs of binary
retinal vessel trees and corresponding retinal images. Since such a large scale
manually annotated database is not available, we apply a state-of-the-art retinal
vessel segmentation algorithm to obtain enough data for the model to learn the
mapping from vessel trees to retinal images. There exist a large number of meth-
ods capable of providing reliable retinal vessel segmentations. Here we employ
a supervised method based on Convolutional Neural Networks (CNNs), namely
the U-Net architecture, first proposed in [13] for the segmentation of biomedical
images. This technique is an extension of the idea of Fully-Convolutional Net-
work (FCNs), introduced in [14], adapted to be trained with a low number of
images and produce more precise segmentations.

The architecture of the U-Net consists of a contracting and an expanding
part. The first half of the network follows a typical CNN architecture, with
stacked convolutional layers of stride two and Rectified Linear Unit (ReLU)
activations. The second part of the architecture is an expanding path, symmet-
ric to the contracting path. The output feature map of the last layer of the
contracting path is upsampled so that it has the same dimension of the second
last layer. The result is concatenated with the feature map of the corresponding
layer in the contracting path, and this new feature map undergoes convolution
and activation. This is repeated until the expanding path layers reach the same
dimensions as the first layer of the network.

The final layer is a convolution followed by a sigmoid activation in order to
map each feature vector into vessel/non-vessel classes. The concatenation opera-
tion allows for very precise spatial localization, while preserving the coarse-level
features learned during the contracting path. A representation of this architec-
ture as used in the present work is represented in Fig. 3.
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Fig. 3. Overview of the U-Net architecture. Each box corresponds to a multi-channel
feature map.

2.3 Implementation

For the purpose of retinal vessel segmentation, the DRIVE database [16] was
used to train the method described in the previous Section. Images and ground
truth annotations were divided into overlapping patches of 64 × 64 pixels and fed
randomly to the U-Net, with 10% of the patches used for validation. The network
was trained with the Adam optimizer [8] and a binary crossentropy loss function.

Retinal vessel segmentation using the U-Net was evaluated on DRIVE’s test
set, achieving a 0.9755 AUC, aligned with state-of-the-art results [10]. The opti-
mal binarization threshold maximizing the Youden index [19] was selected. Mes-
sidor [3] images were cropped, in order to only display the field of view, and
downscaled to 512 × 512. Then, the segmentation method was applied to these
images. Messidor contains 1200 images annotated with the corresponding dia-
betic retinopathy grade, and displays more color and texture variability than
DRIVE’s 20 training images. Due to the U-Net being trained and tested in dif-
ferent databases, some of the produced segmentations were not entirely correct.
This may be related to DRIVE only containing 7 examples of images with signs
of mild diabetic retinopathy (grade 1). For this reason, we retained only pairs of
images and vessel trees in which the corresponding image had grade 0, 1, and 2.

The final dataset collected for training our adversarial model consisted of 946
Messidor image pairs. This dataset was further randomly divided into training
(614 pairs), validation (155 pairs) and test (177 pairs) sets. Regarding image
resolution, the original model in [7] used pairs of 256 × 256 images, with a
U-Net-like generator G. We modified the architecture to handle 512× 512 pairs,
which is closer to the resolution of DRIVE images. For that, we added one layer to
the contracting part and another to the expanding part of G. The discriminator
D classifies 16 × 16 overlapping patches of size 63 × 63. The implementation was
developed in Python using Keras1 [1]. The learning process starts by training
D with real (v, r) and generated pairs (v,G(v)). Then, G is trained with real
(v, r) pairs. This process was repeated iteratively until the losses of D and G
stabilized.

3 Experimental Evaluation

For subjective evaluation of the images generated by our model, we show in
Fig. 4 some visual results. The first row depicts a random sample of vessel trees
extracted from the held-out test set, which was not used during training. The
1 Code to reproduce our results is available at https://github.com/costapt/vess2ret.

https://github.com/costapt/vess2ret
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Fig. 4. Results of our model. First row: Vessel trees not used during training. Second
row: True retinal images corresponding to the above vessel trees. Third row: Corre-
sponding retinal images generated by our model. All images have 512× 512 resolution.

second row shows the real images from which those vessel trees were segmented
with the method outlined in Sect. 2.2, and the bottom row shows the synthetic
retinal images produced by the proposed technique. We see that the original
and the generated images share some global geometric characteristics. This is
natural, since they approximately share the same vascular structure. However,
the synthetic images have markedly different high-level visual features, such
as the color and tone of the image, or the illumination. This information was
extracted by our model from the training set, and effectively applied to the input
vessel trees in order to produce realistic retinal images.

The last column in Fig. 4 shows a failure case of the proposed technique.
Therein, the segmentation technique described in Sect. 2.2 failed to produce a
meaningful vessel network out of the original image. This is probably due to the
high degree of defocus that the input image had. In this situation, the binary ves-
sel tree supplied to the generator contained too few information, and it reacted
by creating spurious artifacts and chromatic noise in the synthetic image. For-
tunately, the amount of cases in which this happened was relatively low: from
our test set of 177 images, 7 were found to suffer from artifacts.

Regarding objective image quality verification, this is a hard challenge when
no reference is available. In addition, for generative models it has been recently
observed that specialized evaluation should be performed for each problem [17].
In our case, to achieve a meaningful objective quantitative evaluation of the
quality of the generated images, we apply the no-reference retinal image quality
assessment technique proposed in [9]. This score, denoted Qv, is derived by calcu-
lating a local degree of vesselness around each pixel, computing a local estimate
of anisotropy on regions that are good candidates for containing vessels, and
averaging the results, see [9] for the technical details. The results of computing
the Qv metric on both sets of real and synthetic images are shown in Table 1.

The first two columns on Table 1 show the mean and standard deviation of
the Qv scores computed from the original and synthetic images. We can see that
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Table 1. Result of computing the Qv quality measure on real/synthetic images.

Mean Qv score Std. dev Avg. per-image variation

Real images 0.1234 0.0207 100%

Synthetic images 0.1040 0.0131 87.55%

the mean Qv score obtained for the synthetic images was relatively close to the
score computed from the dataset of true images. Furthermore, since from each
vessel tree we have the corresponding true and synthetic images available, we
can perform a per-image analysis of the results of the computation of the Qv

measure. For that, we considered the quality of the true retinal fundus images
to be 100%, and for each synthetic image we computed the percentage of quality
variation observed. Results of this analysis are shown in the third column, where
we see that, on average, 87.55% of the true images quality was preserved. A
more detailed analysis revealed that, from the 177 test binary vessel trees, the
corresponding synthetically generated images achieved a better Qv scores than
the true images in 30 cases.

4 Conclusions and Future Work

The above results demonstrate the feasibility of learning to synthesize new reti-
nal images from a dataset of pairs of retinal vessel trees and corresponding retinal
images, applying current generative adversarial models. In addition, the dimen-
sion of the produced images was 512 × 512, which is greater than commonly
generated images on general computer vision problems. We believe that achieving
this resolution was only possible due to the constrained class of images in which
the method was applied: contrarily to generic natural images, retinal images show
a repetitive geometry, where high-level structures such as the field of view, the
optical disc, or the macula, are usually present in the image, and act as a guide
for the model to learn how to produce new texture and background intensities.

The main limitation of the presented method is its dependence on a pre-
existing vessel tree in order to generate a new image. Furthermore, if the vessel
tree comes from the application of a segmentation technique to the original
image, the potential weaknesses of the segmentation algorithm will be inher-
ited by the synthesized image. We are currently working on overcoming these
challenges.
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