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Abstract. In this paper, we introduce a new technique for change detec-
tion in urban environment based on the comparison of 3D point clouds
with significantly different density characteristics. Our proposed app-
roach extracts moving objects and environmental changes from sparse
and inhomogeneous instant 3D (i3D) measurements, using as reference
background model dense and regular point clouds captured by mobile
laser scanning (MLS) systems. The introduced workflow consist of con-
secutive steps of point cloud classification, crossmodal measurement reg-
istration, Markov Random Field based change extraction in the range
image domain and label back projection to 3D. Experimental evalua-
tion is conducted in four different urban scenes, and the advantage of
the proposed change detection step is demonstrated against a reference
voxel based approach.
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1 Introduction

The progress of real time Lidar sensors, such as rotating multi-beam (RMB)
Lidar scanners, open several new possibilities in comprehensive environment per-
ception for autonomous vehicles (AV) and mobile city surveillance platforms. On
one hand, RMB Lidars directly provide instant 3D (i3D) information facilitat-
ing the detection of moving street objects and environmental changes. On the
other hand, with registering the i3D measurements to a detailed 3D city map,
the detected objects and changes can be accurately localized and mapped to a
geo-referred global coordinate system.

Using new generation Geo-Information Systems, several major cities main-
tain from their entire road network dense and accurate 3D point cloud mod-
els obtained by Mobile Laser Scanning (MLS) technology. As a possible future
utilization, these MLS point clouds can be efficiently considered by the AV’s
onboard i3D environment sensing modules as highly detailed reference back-
ground models. In this context, change detection between the instantly sensed
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RMB Lidar measurements and the MLS based reference environment model
appears as a crucial task, which indicates a number of key challenges.

Particularly, there is a significant difference in the quality and the density
characteristics of the i3D and MLS point clouds, due to a trade-off between
temporal and spatial resolution of the available 3D sensors. RMB Lidar scanners,
such as the Velodyne HDL-64 provide sequences of full-view point cloud frames
with 10–15 fps, and the size of the transferable data is also limited enabling real
time processing. As a consequence the measurements have a low spatial density,
which quickly decreases as a function of the distance from the sensor, and the
point clouds may exhibit particular patterns typical to sensor characteristic,
such as the ring patterns of the Velodyne sensor (see Fig. 1(c)). Although the 3D
measurements are quite accurate (up to few cms) in the sensor’s local coordinate
system, the global positioning error of the vehicles may reach several meters in
city regions with poor GPS signal coverage.

Recent MLS system such as the Riegl VMX450 are able to provide dense
and accurate point clouds from the environment with homogeneous scanning
of the surfaces (Fig. 1(a) and (b)) and a nearly linear increase of points as a
function of the distance. The point density of MLS point clouds is with 2–3

(a) MLS reference point cloud (b) MLS classification result

(c) Output: classification result of a selected i3D RMB Lidar frame

Fig. 1. Overview on the proposed approach: based on reference MLS data (a, b), the
goal is separation of static scene elements and moving objects/changes on instant RMB
Lidar frames (c)
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orders of magnitude higher than the density of i3D scans which makes direct
point-by-point comparison inefficient. On the other hand, due to the sequential
environment scanning process, the result of MLS is a static environment model,
which can be updated typically with a period of 1–2 years in large cities. There-
fore, apart from the changes caused by moving objects we must expect various
differences caused by environmental changes such us altering the buildings and
street furniture, or seasonal changes of the tree-crowns or bushes etc.

2 Previous Work

In the recent years various techniques have been published for change detection
in point clouds, however, the majority of the approaches rely on dense terres-
trial laser scanning (TLS) data recorded from static tripod platforms [6,8]. As
explained in [8], classification based on calculation of point-to-point distances
may be useful for homogeneous TLS and MLS data, where changes can be
detected directly in 3D. However, the point-to-point distance is very sensitive
to varying point density, causing degradation in our addressed i3D/MLS cross-
platform scenario. Instead, [8] follows a ray tracing and occupancy map based
approach with estimated normals for efficient occlusion detection, and point-to-
triangle distances for more robust calculation of the changes. Here the Delaunay
triangulation step may mean a critical point, especially in noisy and cluttered
segments of the MLS point cloud, which are unavoidably present in a city-scale
project. [6] uses a nearest neighbor search across segments of scans: for every
point of a segment they perform a fixed radius search of 15 cm in the reference
cloud. If for a certain percentage of segment points no neighboring points could
be found for at least one segment-to-cloud comparison, the object is labeled there
as moving entity. A method for change detection between MLS point clouds and
2D terrestrial images is discussed in [5]. An approach dealing with purely RMB
Lidar measurements is presented in [7], which use a ray tracing approach with
nearest neighbor search. A voxel based occupancy technique is applied in [4],
where the authors focus on detecting changes in point clouds captured with dif-
ferent MLS systems. However, the differences in data quality of the inputs are
less significant than in our case.

3 Proposed Change Detection Method

We assume that the reference MLS data is accurately geo-referred, and the i3D
Lidar platform also has a coarse estimation of its position up to maximum 10 m
translational error. Initially, the orientation difference between the car’s local
and the MLS point cloud’s global coordinate systems may be arbitrarily large
(see Fig. 2). The proposed approach consists of four main steps: ground removal
by point cloud classification, i3D–MLS point cloud registration, change detection
in the 2D range image domain, and label backgrojection to the 3D point cloud.

The ground removal step separates terrain and obstacle regions using a locally
adaptive terrain modeling approach, expecting inhomogeneous RMB Lidar point
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clouds with typically non-planar ground. First we fit a regular 2D grid with fixed
rectangle side length onto the horizontal Pz=0 plane, using the Lidar sensor’s
vertical axis as the z direction. We assign each p point of the point cloud to the
corresponding cell, which contains the projection of p to Pz=0. After excluding
the sparse grid cells, we use point height information for assigning each cell to
the corresponding cell class. All the points in a cell are classified as ground, if the
difference of the minimal and maximal point elevations in the cell is smaller than
an elevation threshold (used 25 cm), moreover the average of the elevations in
neighboring cells does not exceeds an allowed height range. The result of ground
segmentation is shown in Fig. 1(b) and (c), which confirms that our technique
handles robustly the various i3D and MLS Lidar point cloud types.

For point cloud registration we adopt our latest technique [3] for matching
point cloud measurements with significantly different density characteristics. The
registration process includes three steps. First, following the removal of ground
points, we search for distinct groups of close points in the remaining obstacles
cloud, and assign each group to an abstract object. For handling difficult scenar-
ios with several nearby adjacent objects, we adopted a hierarchical 2-level model
[1], which separates first large objects or object groups at a coarse grid level
with large cells, then in the refinement it can efficiently separate the individual
objects within each group. Second, we coarsely align the two point clouds by
considering only the center points of the previously extracted abstract objects.
We apply here the generalized Hough transform to extract the best similarity
transformation in the sense that when applying the transformation to the object
centers in the first frame as many of these points as possible overlap with the
object centers in the second frame [3]. Third, we run a point-level refinement
on the above approximate global transform, applying the Normal Distribution
Transform (NDT) for all object points. The success of the registration process
from an extremely weak initial point cloud alignment is demonstrated in Fig. 2.

Fig. 2. Demonstration of the proposed point cloud registration step (Deák tér,
Budapest). Blue and red points represent the i3D and MLS point clouds, respectively.
(Color figure online)
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The change detection module receives a co-registered pair of i3D and and
MLS point clouds, where the terrain is already removed (see Fig. 2 right image).
Our proposed solution extracts changes in the range image domain. Creating
a range image Ii3D from the RMB Lidar’s point stream is straightforward as
its laser emitter and receiver sensors are vertically aligned, thus every measured
point has a predefined vertical position in the image, while consecutive firings
of the laser beams define their horizontal position. Geometrically, this mapping
is equivalent to projecting the 360◦ obstacle point cloud to a cylinder surface,
whose main axis is equal to the vertical axis of the RMB Lidar scanner. Using
Velodyne HDL-64 sensor with 15 Hz rotation frequency, the typical size of this
Ii3D range image is 64 × 1024. Since the the above projection only concerns the
obstacle cloud (without the ground), and several fired laser beams do not produce
reflections at all (such as those from the direction of the sky), several pixels of
the range map will be assigned to zero (i.e. invalid) depth values. Moreover, such
holes may also appear in the range maps due to noise or quantization errors of
the rotation angles. On account of this artifact we interpolate the pixel values
which have in their 8-neighborhood at least four valid (non-zero) neighboring
depth values, as demonstrated in Fig. 3. A sample full-view i3D range image is
shown in Fig. 4(a).

(a) Raw i3D range image (b) Interpolated range image

Fig. 3. Range image segment from the Velodyne i3D sensor

The reference background range image is generated from the 3D MLS point
cloud with ray tracing, exploiting that that the current position and orientation
of the RMB Lidar platform are available in the reference coordinate system as a
result of the point cloud registration step. Thereafter simulated rays are emitted
into the MLS cloud from the moving platform’s center position with the same
vertical and horizontal resolution as the RMB Lidar scanner. To handle minor
registration issues and sensor noise, each range image pixel value is determined
by examining multiple MLS points lying inside a pyramid around the simulated
RMB Lidar ray. For a given pixel of the MLS range map the depth values of the
corresponding points are weighted with a sigmoid function:

IMLS(i, j) =
∑Ki,j

k=1 wi,j
k Di,j

k
∑Ki,j

k=1 wi,j
k

, wi,j
k =

1

1 + el(D
i,j
k −mini,j Di,j

k )−m
, (1)

where Ki,j is the number of MLS points in the (i, j) pyramid, Di,j
k is distance

of the k-th point from the ray origin, and the weights wi,j
k are calculated using
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(a) Filtered & interpolated Velodyne (i3D) range image

(b) MLS based range image from the actual position of the Velodyne platform

(c) MRF based change mask in the range image domain

(d) Back projection of the change mask to the Velodyne point cloud

Fig. 4. Demonstration of the proposed MRF based change detection process in the
range image domain, and result of label back projection to the 3D point cloud

a sigmoid function (l = 0.5 and m = 5 parameters were empirically set). This
calculation formula ensures that the nearest points within the pyramid receive
the highest weights, but due to the smoothing effect of weighted averaging, the
presence of outlier points, or highly scattered regions (such as vegetation) do not
cause significant artifacts. A sample MLS range image generated by the above
process is shown in Fig. 4(b).

In the next step, the calculated RMB Lidar-based Ii3D, and MLS-based IMLS

range images are compared using a Markov Random Field (MRF) model, which
classifies each pixel of the range image lattice as foreground (FG) or background
(BG). Foreground pixels represent either moving/mobile objects in the RMB
Lidar scan, or various environmental changes appeared since the capturing date
of the MLS point cloud.
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Two sigmoid functions are used to define fitness scores for each class:

FBG(i, j) = 1 − 1
1 + e(di,j−ai,j)

, FFG(i, j) = 1 − 1
1 + e−(di,j−ai,j)

, (2)

where di,j = Ii3D(i, j) and ai,j = IMLS(i, j).
To formally define the range image segmentation task, we assign to each

(i, j) pixel of the pixel lattice S a li,j ∈ {FG,BG} class label so that we aim to
minimize the following energy function:

E =
∑

(i,j)∈S

VD(di,j |li,j) +
∑

(i,j)∈S

∑

(m,n) ∈Ni,j

β · 1{li,j �= lm,n}, (3)

where β > 0 is a smoothness parameter for the label map (used β = 0.5), and
Ni,j the four-neighborhood of pixel (i, j). VD(di,j |li,j) denotes the data term,
derived as:

VD(di,j |li,j = BG) = − log(FBG(i, j)), VD(di,j |li,j = FG) = − log(FFG(i, j))

The MRF energy (3) is minimized via the fast graph-cut based optimization
algorithm [2], which process results in a binary change mask in the range image
domain, as shown in Fig. 4(c). The final step is label backprojection from the
range image to the 3D point cloud (see Fig. 4(d)), which can be performed in a
straightforward manner, since in our i3D range image formation process, each
pixel represents only one Velodyne point.

4 Experiments

We have evaluated the proposed change detection technique in four test sce-
narios. Each test sequence contains 70 consecutive time-frames from the RMB
Lidar sensor, where each i3D frame has a GPS-based coarse location estimation
for the point cloud centers, with maximum few meters position error. The MLS
reference cloud is accurately geo-referred, and we assume that it only contains
the static scene elements such as roads, building facades, and street furniture.
For each RMB Lidar frame, we execute the complete workflow of the proposed
algorithm.

The Ground Truth (GT) labeling of the RMB Lidar’s i3D point clouds was
done in a semi-automatic manner. First, using the registered i3D and MLS
frames, we applied an automated nearest neighbor classification with a small
distance threshold (3 cm), thereafter the labeling of the changed regions was
manually revised. As evaluation metrics, we calculated the Precision, Recall and
F score values of the detection output at point level, based on comparison to
the GT.

Since we have not found any similar i3D-MLS crossmodal change detection
approach in the literature, we adopt a voxel based technique [4] as reference,
which was originally constructed for already registered MLS/TLS point clouds.
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Table 1. Quantitative comparison of the Voxel based (VOX) and the proposed MRF-
range image based (MRF) methods on the four test scenes, considering all regions
(left), and only the crowded sidewalk areas (right)

Overall test set Sidewalk areas only

Scenes Precision Recall F score Precision Recall F score

Deák VOX 0.99 0.87 0.93 0.81 0.71 0.76

MRF 0.99 0.90 0.94 0.87 0.89 0.88

Astoria VOX 1.00 0.94 0.97 0.88 0.81 0.84

MRF 0.95 0.98 0.97 0.84 1.00 0.91

Kálvin VOX 1.00 0.94 0.97 0.89 0.96 0.92

MRF 1.00 0.97 0.98 0.87 0.99 0.93

Fővám VOX 0.98 0.70 0.82 0.84 0.64 0.73

MRF 0.94 0.83 0.88 0.81 0.97 0.88

Therefore by testing both the proposed and the reference models, we apply the
same registration workflow introduced in Sect. 3, and only compare the perfor-
mance of the voxel based and the proposed range image based change detection
steps. The reference voxel based technique fits a regular 3D voxel grid to the
registered point clouds, thereafter a given RMB Lidar point is classified as fore-
ground if and only if its corresponding voxel does not contain any points in the
MLS cloud. We tested this method with multiple w voxel sizes, which parameter
naturally affects both the detection performance and the computational time.
With larger voxels, we cannot detect some changes in cluttered regions, where
the objects can be close to each other and to various street furniture elements.
On the other hand, maintaining and processing a fine 3D grid structure with
small voxels requires more memory and processing time. The results shown in
the upcoming comparative experiments correspond to the voxel size w = 30 cm,
since we observed with this parametrization approximately the same running
speed as using our proposed MRF-range image based model: the change detec-
tion step in each frame takes here around 80 msec on a desktop computer, with
CPU implementation. Note that by decreasing the w parameter to 20 cm and
10 cm, respectively, the calculation time of the voxel based model starts to rapidly
increase (120 msec and 510 msec/frame, resp.), without significant performance
improvements.

The comparative results considering the complete dataset are shown in
Table 1 (left section), which confirms that the proposed method has an effi-
cient overall performance, and it outperforms the voxel based method in general
with 1–6% F scores in the different scenes. We have experienced that the main
advantage of the proposed technique is the high accuracy of change detection in
cluttered street regions, such as sidewalks with several nearby moving and static
objects. As shown in Table 1 (right section), if we restrict the quantitative tests
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(a) Voxel based method (b) Proposed method

Fig. 5. Comparison of the voxel based reference and the proposed range image based
approach: a sample bike shed from a magnified image part of the scene in Fig. 4.

(a) Voxel based method (b) Proposed method

Fig. 6. Results for a sample region captured at Fővám tér, Budapest, by (a) the
voxel based approach, (b) the proposed method. Red and blue points represent the
detected background and foreground points respectively. Differences are marked with
green ellipses. (Color figure online)

to the sidewalk areas, our method surpasses the voxel approach with 7–15% gaps
in three scenes. Similar trends can be observed from the qualitative results of
Figs. 5 and 6, which show successful detection samples of small object segments
and fine changes with our proposed method, and corresponding limitations of
the voxel based approach. As shown in Fig. 6 the voxel based technique results
in many falsely ignored moving object segments, in particularly in the regions
were people were standing next to static objects. On the other hand, vehicles on
the roads with relatively large distances from the street furniture elements can
be well separated even with large voxels, therefore the difference between the
two methods is less significant in the road regions of the test scenes. Figure 7
shows another test scene.

We display in Fig. 8 synthesized view, visualizing the point clouds of moving
objects detected by the i3D RMB Lidar over the geo-referred MLS background
data1.

1 Demo video: http://web.eee.sztaki.hu/i4d/demo iciar17.html.

http://web.eee.sztaki.hu/i4d/demo_iciar17.html
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(a) MLS scan from Kálvin tér (b) Detected changes at Kálvin tér

Fig. 7. Left: MLS laser scan of a tram stop in Kálvin tér, Budapest. Right: detected
changes at the tram stop. Red, blue and green points represent background objects,
foreground objects and ground regions, respectively. (Color figure online)

Fig. 8. Synthesized view for demonstrating geo-referred moving object detection:
object point clouds (tram, car, pedestrians) detected on two subsequent i3D Velo-
dyne frames (marked with blue) are put in and displayed in the MLS reference point
cloud (Color figure online)

5 Conclusion and Future Work

We introduced a new method for change detection between different laser scan-
ning measurements captured at street level. The results show that even small
and detailed changes can be observed with the proposed method, which cannot
be achieved with voxel based techniques. Future work will present a deeper inves-
tigation of various background change classes, and tests with lower resolution
Lidar sensors.
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