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Abstract. This paper presents new differential addition (i.e., the addi-
tion of two points with the known difference) and doubling formu-
las, as the core step in Montgomery scalar multiplication, for twisted
Edwards curves. The formulas are provided with cost of 5M+ 4S+ 1D,
3M + 7S + 1D and 3M + 6S + 3D when the given difference point is
in affine form. Here, M,S,D denote the costs of a field multiplication, a
field squaring and a field multiplication by a constant, respectively.

Keywords: Elliptic curves · Twisted Edwards curves · Montgomery
ladder · Differential addition

1 Introduction

An elliptic curve E over a field F is given by the Weiersrasß equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

where coefficients a1, a2, a3, a4 and a6 are in F. Elliptic curves are represented
in other forms such as Legendre equation, cubic equations, quartic equations
and intersection of two quadratic surfaces [16,17]. Koblitz [13] and Miler [14]
independently proposed the use of elliptic curves over finite fields in cryptogra-
phy. Since the introduction of elliptic curve cryptography (ECC) elliptic curves
over finite fields have been studied intensively and in particular, many proposals
have been made to speed up their group arithmetic. ECC is one of the attractive
asymmetric key cryptosystems with the main advantage of achieving smaller key
sizes under the same security level compare to that of other existing asymmetric
systems such as RSA. This makes ECC suitable for software and hardware imple-
mentation in constrained environments including RFID tags, mobiles, sensors,
and smart cards.

The scalar multiplication is the main important operation of ECC which is
implemented based on the basic operations in finite fields. That is to compute kP
for a given point P on elliptic curve E defined over a finite field Fq and a given
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integer k. The scalar multiplication is performed recursively by point addition
and point doubling operations. One of the key factor in implementation of these
basic curve operations is to reduce the number of field operations. This is why
different forms of elliptic curves with several coordinates systems have been
studied to improve the efficiency and to speed up the point multiplication. The
well known recent form is Edwards curves [7] and their variants (see [1–3,12])
with great impact to ECC.

Side channel attacks use the time or power differences between implement-
ing point addition and point doubling to reveal information about the bits of
the secret k. Montgomery [15] introduced a technique for scalar multiplication
of points for a special type of curves in large characteristic that is known as
Montgomery ladder. In each step of the Montgomery scalar multiplication algo-
rithm both the addition and the doubling are used which makes this method
resistant against simple side-channel attacks. For Montgomery curves, the basic
formulas in each step of the Montgomery ladder is differential addition and dou-
bling expressed only by the x-coordinates of the points. For the fixed point P
on the curve, this method computes the x-coordinate of the point kP recur-
sively by computing the x-coordinates of the points P + 2Q and 2Q from the
x-coordinates of the points P + Q, Q. To avoid the costly field inversion opera-
tion, the computations are performed where points are represented in projective
coordinates and the cost of projective x-coordinate formulas for Montgomery
curves is 6M + 4S + 1D. Here a multiplication in Fq costs one M, a squaring
costs one S and the cost of field multiplication by a parameter (as a constant)
is denoted by D. The x-coordinate of the fixed base point P can be represented
in affine form, then the differential mixed addition and doubling formulas are
computed using 5M + 4S + 1D.

The Montgomery method is extended to other forms of elliptic curves, where
the basic operation in each step of the ladder is differential addition and doubling
expressed only by suitable w-coordinates of the points. That is to compute the w-
coordinates of the addition and doubling from the w-coordinates of given points
and their difference. The Montgomery-like formulas for Edwards and binary
Edwards curves are presented in [3,6,8]. Gaudry and Lubicz [9] presents a very
efficient Montgomery-like formulas for Kummer line the cost of 4M + 6S + 3D,
and 3M + 6S + 3D if the base point is affine. Bernstein and Lange [5] extends
the Kummer-line formulas for incomplete Edwards curves with the same costs.

From the literature, the mixed differential addition and doubling formulas
with the cost of 3M + 6S + 3D are only given for elliptic curves with 3 points
of order 2. Notice, complete twisted Edwards are suitable for cryptographic
applications because of their fast complete addition law. A complete twisted
Edwards curve has two points of order 4 and one single point of order 2. The
main contribution of this paper is to provide faster Montgomery-like formulas
for complete twisted Edwards curves, which covers all elliptic curves over finite
fields with a point of order 4 and a single point of order 2. This paper presents
new differential addition and doubling formulas for twisted Edwards curves with
cost of 5M+4S+1D, 3M+7S+1D and 3M+6S+3D when the given difference
point is in affine form.
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The rest of the paper is organized as follows. In Sect. 2 we review twisted
Edwards curves, and in Sect. 3 we briefly describe differential addition on ellip-
tic curves. The proposed new differential addition and doubling formulas are
provided in Sect. 4 and finally, Sect. 5 concludes the paper with a comparison
between our work and other previously related work.

Throughout the paper, the letter p always denotes an odd prime number and
q denotes a prime power of p. A field is denoted by F and a finite field of size q is
denoted by Fq. Let χ denote the quadratic character in Fq, where p ≥ 3. Then,
for any q where p ≥ 3, we have u = w2 for some w ∈ F

∗
q if and only if χ(u) = 1.

2 Twisted Edwards Curve

In 2007, Edwards introduced a new normal form for elliptic curves [7]. An original
Edwards curve, defined over a field F with characteristic p �= 2, by the equation

EE,c : X2 + Y 2 = c2(1 + X2Y 2),

with c ∈ F and c5 �= c. Bernstein and Lange [2] considered the use of Edwards
curves over finite fields for elliptic curve cryptography. They extended the orig-
inal curves to the family of so called Edwards curves

EBL,d : X2 + Y 2 = 1 + dX2Y 2,

where d ∈ F with d �= 0, 1. The family of Edwards curves over a finite field Fq

with odd characteristic is equivalent (up to Fq isomorphism) to the family of all
elliptic curves over Fq with a Fq-rational point of order 4 [1]. In other words,
EBL,d(Fq), the group of Fq-rational points of the Edwards curve EBL,d, has a
Fq-rational point of order 4 and in the other way around, every elliptic curve
E over Fq with a point of order 4 can be represented as an Edwards curve. In
addition, EBL,d(Fq) has a single point of order 2 if and only if χ(d) = −1, i.e.,
the group EBL,d(Fq) has three points of order 2 if and only if χ(d) = 1.

Edwards curves and their extensions have attracted great interest in elliptic
curve cryptography (see [1–3,12]). Bernstein et al. proposed the family of so-
called twisted Edwards, [1], given by

ETE,a,d : aX2 + Y 2 = 1 + dX2Y 2,

where a, d are distinct nonzero elements of Fq. The addition and doubling law
for ETE,a,d are given by

(x1, y1), (x2, y2) �→
(

x1y2 + x2y1
1 + dx1x2y1y2

,
y1y2 − ax1x2

1 − dx1x2y1y2

)
,

(x1, y1) �→
(

2x1y1
1 + dx2

1y
2
1

,
y2
1 − ax2

1

1 − dx2
1y

2
1

)
.

(1)

The identity point of the addition law is (0, 1) and the additive negation of a
point (x, y) is (−x, y). The point (0,−1) is a point of order 2. If χ(a) = 1 then
the points (±1/

√
a, 0) are of order 4.
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The projective closure of the twisted Edwards curve ETE,a,d in P
2 includes

the projective points (X : Y : Z) in P
2(Fq) satisfying the curve equation

aX2Z2 + Y 2Z2 = Z4 + dX2Y 2,

with the points at infinity ∞1 = (1 : 0 : 0) and ∞2 = (0 : 1 : 0). These points
are singular. In the nonsingular model of ETE,a,d the point ∞1 splits into two
distinct Fq-rational points if χ(ad) = 1 and is removed if χ(ad) = −1. Similarly,
above the point ∞2 there exists exactly two distinct points if χ(d) = 1 and
no point if χ(d) = −1. So, if χ(d) = χ(ad) = −1 then the set of Fq-rational
projective points of ETE,a,d is the set of Fq-rational affine points which form a
group. To represent the points above the points at infinity, the projective closures
of ETE,a,d in P

3 or in P × P are considered [4,12]. The twisted Edwards curve
ETE,a,d over Fq is represented by the set of points (X : Y : T : Z) in P

3(Fq)
satisfying the equations

aX2 + Y 2 = Z2 + dT 2, XY = ZT.

Here, the Fq-rational points above ∞1 are (1 : 0 : ±√
a/d : 0) if χ(ad) = 1, and

the points above ∞2 are (0 : ±√
d : 1 : 0) if χ(d) = 1. Hisil et al. [12] gave the

addition laws for the projective closure of ETE,a,d embedded in P
3 as follows.

(X1 : Y1 : T1 : Z1) + (X2 : Y2 : T2 : Z2)

=
((X1Y2 + Y1X2)(Z1Z2 − dT1T2) : (Y1Y2 − aX1X2)(Z1Z2 + dT1T2)
: (Y1Y2 − aX1X2)(X1Y2 + Y1X2) : (Z1Z2 − dT1T2)(Z1Z2 + dT1T2)).

(2)

Here the identity point is (0 : 1 : 0 : 1) and the additive negation of a point
(X : Y : T : Z) is (−X : Y : −T : Z)). The point (0 : −1 : 0 : 1) is a point of
order 2 and the points (1 : 0 : ±√

a/d : 1) are the points of order 2 if χ(ad) = 1.
The points (±1/

√
a : 0 : 0 : 1) and (0 : ±√

d : 1 : 0) are of order 4 if χ(a) = 1
and χ(d) = 1, respectively. Other points of order 4 are (α : β : αβ : 1) where
α4 = 1/ad and β4 = a/d.

Notice, that the family of twisted Edwards curves is the extension of the
family of Edwards curves. Clearly, every Edwards curve EBL,d is the twisted
Edwards ETE,1,d. Furthermore, a twisted Edwards curve ETE,a,d is a twist of
the Edwards curve EBL, da

. Therefore, the family of twisted Edwards includes
Edwards curves and their twists.

The addition law in twisted Edwards curve ETE,a,d is complete if χ(d) =
χ(ad) = −1. In other words, the projective formulas (2) have no exceptional
cases if χ(a) = 1 and χ(d) = −1 [1,12]. Here, we show that the addition law in
twisted Edwards curve ETE,a,d is also complete if χ(a) = χ(ad) = −1.

Theorem 1. Let a, d be elements of Fq such that ad(a − d) �= 0. Let ETE,a,d

be a twisted Edwards curve over Fq. Then, ETE,a,d has a complete projective
formulas over Fq if χ(ad) = −1.

Proof. If χ(d) = χ(ad) = −1, then the projective formulas (2) are complete
formulas for ETE,a,d [1,12]. If χ(a) = χ(ad) = −1, then the twisted Edwards
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curve ETE,a,d is birationally equivalent to ETE,d,a via the map (x, y) → (x, 1/y).
In other words, the projective points of the projective closures of ETE,a,d and
ETE,d,a in P

3(Fq) are corresponded to each other via the map (X : Y : T : Z) →
(T : Z : X : Y ). From (2) and using the exchange of variables, we obtain the
projective formulas for the curve ETE,a,d as follows.

(X1 : Y1 : T1 : Z1) + (X2 : Y2 : T2 : Z2)

=
((Z1Z2 − dT1T2)(T1Z2 + Z1T2) : (Y1Y2 − aX1X2)(Y1Y2 + aX1X2)
: (T1Z2 + Z1T2)(Y1Y2 − aX1X2) : (Z1Z2 − dT1T2)(Y1Y2 + aX1X2)).

(3)

Therefore, the projective formulas (3) are complete formulas for ETE,a,d over Fq

where χ(a) = −1 and χ(d) = 1 which concludes the proof.

It is shown in [1], that a twisted Edwards curve ETE,a,d over a field F is
birationally equivalent to a Montgomery curve [15] given by the equation

EM,A,B : BY 2 = X3 + AX2 + X, (4)

where A,B ∈ F with A �= ±2 and B �= 0. In more details a twisted Edwards
curve ETE,a,d is birationally equivalent to the Montgomery curve EM,A,B by the
map ψ : ETE,a,d → EM,A,B

ψ(x, y) =
(1 + y

1 − y
,

1 + y

x(1 − y)

)
. (5)

where A = 2(a+d)/(a−d), B = 4/(a−d). Also, the Montgomery curve EM,A,B

is birationally equivalent to the twisted Edwards curve ETE,a,d by the inverse
map

ψ−1(x, y) =
(x

y
,
x − 1
x + 1

)
,

where a = (A + 2)/B, d = (A − 2)/B.

3 Differential Addition

The main computational core for elliptic curve cryptography is performing scalar
multiplication in an efficient and secure way. The computation of kP , for a given
point P on elliptic curve E defined over a finite field Fq and a given integer k, is
performed recursively by point addition (PA) and point doubling (PD) formulas.
The time or power differences between implementing point addition (PA) and
point doubling (PD) can reveal information about the bits of the secret k which
makes the system insecure against side channel attacks.

In Montgomery curves [15], the special formulas for addition and doubling
is done with the X and Z coordinates of a point in projective form. In each
step of Montgomery ladder both addition and doubling are performed, which
makes this method resistant against simple side-channel attacks. Recovering the
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Algorithm 1. Projective x-coordinate dADD for Montgomery curves
Input : EM,A,B/Fq : BY 2 = X3 + AX2 + X � The Montgomery curve EM,A,B

(Xi : Zi) = x(Pi), i = 0, 1, 2. � x(P0) = x(P1 − P2)
Output : (Xi : Zi) = x(Pi), i = 3, 4. � x(P3) = x(P1 + P2), x(P4) = x(2P1)

1: function dADD((X0 : Z0), (X1 : Z1), (X2 : Z2))
2: X3 = Z0 (X1X2 − Z1Z2)

2

3: Z3 = X0 (X1Z2 − X2Z1)
2

4: X4 = (X2
1 − Z2

1 )2

5: Z4 = 4X1Z1( (X1 + Z1)
2 + (A − 2)X1Z1 )

6: return ((X4 : Z4), (X3 : Z3)) � The differential addition and doubling
7: end function

Y coordinate of the output point is done in the last step from the X and Z coor-
dinates. Algorithm 1 provides the differential x-coordinate formulas for Mont-
gomery curves EM,A,B over Fq [15].

We note, that O = (0 : 1 : 0) is the point at infinity on the Montgomery curve
EM,A,B over Fq and x(O) in P(Fq) is represented by (1 : 0). Also, x((0, 0)) is
given by (0 : 1). We can easily check, that the projective x-coordinate differential
addition formulas in Algorithm 1 work for all inputs except for the case where
x(P0) equals (1 : 0) or (0 : 1), i.e., where the point P0 equals O or (0, 0). In
other words, the Montgomery ladder works for all inputs if the base point is
not a point at infinity or the point (0, 0). The Montgomery ladder is given by
the Algorithm 2, that for any integer k and any point P (not equal O and
(0, 0)) computes x(kP ) correctly. In particular, the ladder works properly even
if the integer k is bigger than the order of the base point P . Therefore, one can
use random scalar k as a countermeasure to protect against differential power
analysis attack.

Algorithm 2. The modified Montgomery scalar multiplication
Input : EM,A,B/Fq : BY 2 = X3 + AX2 + X � The Montgomery curve EM,A,B

P = (x : y : z) ∈ EM,A,B(Fq) � P �= O = (0 : 1 : 0), P �= (0 : 0 : 1)
k = (km−1, · · · , k1, k0) � 0 ≤ k ∈ Z

(X0 : Z0) := (x : z), (X1 : Z1) := (1 : 0), (X2 : Z2) := (x : z).
Output : x(kP )

1: for i := m − 1 down to 0 do
2: if ki = 0 then
3: ((X1 : Z1), (X2 : Z2)) := dADD((X0 : Z0), (X1 : Z1), (X2 : Z2))
4: else
5: ((X2 : Z2), (X1 : Z1)) := dADD((X0 : Z0), (X2 : Z2), (X1 : Z1))
6: end if
7: end for
8: return (X1 : Z1), (X2 : Z2) � The differential addition and doubling
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The Montgomery method is extended to other forms of elliptic curves with a
suitable rational function. Let w be a rational function in the coordinate ring of
the elliptic curve E over Fq where w(P ) = w(−P ) for every point P in E(Fq).
The w-coordinate differential addition and doubling means to compute w(P +Q)
and w(2Q) from given values w(P ), w(Q) and w(P − Q), where P,Q are points
on E(Fq). If w is regular at the point P then w(P ) is represented by (w(P ) : 1)
in the projective line P(Fq). Otherwise, it is represented by (1 : 0). For the fixed
point P on the curve and a positive integer k, the w-coordinate of the point kP
is performed recursively by differential addition and doubling formulas expressed
only by w-coordinates of the points.

A projective w-coordinate differential addition is complete if it works for all
inputs. Also, it is almost complete if the w-coordinate differential formulas work
for all inputs except for the case where w(P0) equals w(O), where O is the neutral
element of the group of points E(Fq). Note that, the projective x-coordinate
differential addition for Montgomery curves given in Algorithm 1 works for all
inputs except for the case where w(P0) equals (1 : 0) or (0 : 1). The fast and
complete differential addition formulas are very interesting for implementations.
But, if the base point P0 has large prime order then with suitable w-function
w(P0) �= w(O) and w(P0) �= (1 : 0), (0 : 1). Therefore, the almost complete and
Montgomery-like formulas are usable for cryptographic applications.

The cost of projective x-coordinate differential addition and doubling formu-
las for Montgomery curves EM,A,B over Fq given by Algorithm 1 is 6M+4S+1D.
The x-coordinate of the fixed base point P can be represented by x(P ) = (X0 :
Z0), where Z0 = 1, then the differential addition and doubling formulas are
computed using 5M + 4S + 1D.

Castryck, Galbraith and Farashahi [6] give the y-coordinate differential addi-
tion Montgomery-like formulas for Edwards curves. They use the quasi free
projective map between twisted Edwards and Montgomery curves which pro-
vides the Montgomery formulas for twisted Edwards curves with the cost of
6M + 4S + 1D, and 5M + 4S + 1D if the base point is affine. They also
give a doubling formulas with cost of 1M + 3S + 3D assuming d is a square
element. Gaudry and Lubicz [9] obtained a very efficient differential addition
Montgomery-like formulas for Kummer line with the cost of 4M + 6S + 3D,
and 3M + 6S + 3D if the base point is affine. The Kummer line behaves very
similar to the Montgomery form. Compare to the Montgomery form, the Kum-
mer line formulas saves 2M − 2S, but have extra 2 multiplication by constants.
The Kummer line is linked to the Legendre curve Eλ : Y 2 = X(X − 1)(X − λ),
where λ = a4/(a4 − b4) and (a : b) defines the Kummer line. The group order of
the corresponding curve Eλ over Fq is divisible by 4, and in particular it has 3
points of order 2. Bernstein and Lange [5] provides a Kummer-line formulas for
Edwards curves EBL,d where d = r2 is a square element. They give the cost of
w-coordinates mixed differential addition and doubling formulas for w = ry and
w = ry2 by 3M + 6S + 5D and 3M + 6S + 3D respectively. Here, the Edwards
curve EBL,d over Fq with χ(d) = 1 has 3 points of order 2 and the addition law
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is not complete. In the next section, we provide new Montgomery-like formulas
for complete twisted Edwards curves.

4 New Differential Additions

In this section, we provide new differential addition and doubling formulas for
twisted Edwards. The mixed formulas have the cost 5M+4S+1D, 3M+7S+1D.
In addition, we give mixed formulas with cost of 3M + 6S + 3D for subfamily
of twisted Edwards curves. These efficient and fast formulas are applicable for
complete twisted Edwards in this subfamily. From the birational map between
the twisted Edwards and Montgomery curve, we can use similar formulas for
Montgomery curves.

4.1 Twisted Edwards

Here, we consider twisted Edwards curves ETE,a,d and present new w -coordinates
differential formulas.

We define the rational function w by w(x, y) = d(xy)2. This function
is well computed for all affine points on a twisted Edwards curves. Since
−(x, y) = (−x, y), for all points P on the curve, we have w(P ) = w(−P ). Also,
we have w(O) = 0. For i = 0, 1, 2, 3, 4, let wi = w(Pi), where Pi ∈ Ea,d with
w0 = w(P1 − P2), w3 = w(P1 + P2) and w4 = w(2P1). From the addition and
doubling formulas for ETE,a,d (1) with a straightforward calculation, we obtain
the following differential addition formulas.

w4 =
4w1((w1 + 1)2 − ew1)

(w2
1 − 1)2

, w3w0 =
(w1 − w2)2

(w1w2 − 1)2
. (6)

where e = 4a/d.
Assume that w0 is given as a field element, and the inputs w1, w2 are given

as fractions W1/Z1, W2/Z2 and the outputs w4, w3 are given as fraction W4/Z4

and W3/Z3. From Eq. (6) the explicit projective formulas are given by

W4

Z4
=

4W1Z1( (W1 + Z1)2 − eW1Z1)
(W1 − Z1)2(W1 + Z1)2

,

W3

Z3
=

Z0 (W1Z2 − W2Z1)2

W0 (W1W2 − Z1Z2)2
.

(7)

From the Eqs. (7), the cost of projective w-coordinates addition and doubling
formulas is 6M + 4S + 1D. If we set Z0 = 1, then the mixed projective w-
coordinates differential addition and doubling formulas have the total cost 5M+
4S + 1D as follows:

A1 = (W1 + Z1), B1 = (W1 − Z1), A2 = (W2 + Z2), B2 = (W2 − Z2),
C = A1B2, D = A2B1, E = A2

1 − B2
1 ,

W4 = E(A2
1 − (e/4) E), Z4 = A2

1B
2
1 ,

W3 = (C − D)2, Z3 = w0(C + D)2.

(8)
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From (8), the costs of differential addition and doubling formulas are 3M + 2S
and 2M + 2S + 1D, respectively. And, the total cost of the mixed differential
addition and doubling is 5M+4S+1D. In addition, the cost of following mixed
differential addition and doubling formulas is 3M + 7S + 1D.

A1 = (W1 + Z1), B1 = (W1 − Z1), A2 = (W2 + Z2), B2 = (W2 − Z2),
C = A1B2, D = A2B1, E = A2

1 − B2
1 , F = (A4

1 + B4
1) − E2,

W4 = 2(A4
1 − (e/4)E2) − F, Z4 = F,

W3 = (C − D)2, Z3 = w0(C + D)2.

(9)

Furthermore, for the twisted Edwards curves ETE,a,d with χ(e(e − 4)) =
χ(a(a−d)) = 1, the cost of the following mixed differential addition and doubling
formulas is 3M + 6S + 3D. Here we let r2 = (e − 4)/e.

A1 = (W1 + Z1), B1 = (W1 − Z1), A2 = (W2 + Z2), B2 = (W2 − Z2),
C = A1 B2, D = A2 B1, H1 = (rA2

1 + B2
1)

2, H2 = (rA2
1 − B2

1)
2,

G = (H1 + H2), K = (H1 − H2), S = 1
r K, T = rK,

W4 = 2G − S − T, Z4 = T − S,
W3 = (C − D)2, Z3 = w0(C + D)2.

(10)

From differential addition and doubling formulas (10), the costs of differential
addition and doubling are 3M+2S, 4S+3D respectively. And, the total cost of
the mixed differential addition and doubling formulas is 3M+6S+3D, where 2D
is the multiplication by the parameter r and one D is the multiplication by 1/r.
So, if the parameter r is chosen to be small then the cost of mixed differential
formulas is 3M + 6S + 1D.

Example 1. Let p = 2255 − 19. Let a = 1 and d = −204347024. The twisted
Edwards curve ETE,a,d is a complete Edwards curve over Fp of order 8�, where
� is the prime

� = 72370055773322622139731865630429942408
23162899814764622947667093616846653001.

The cost of the mixed differential addition and doubling formulas (10) is 3M +
6S + 3D, where 2D is the multiplication by the small constant r = 14295 and
one D is the multiplication by 1/r.

Remark 1. Let ETE,a,d be a complete twisted Edwards curve over Fq with χ(d) =
χ(ad) = −1. Then, ETE,a,d has the four torsion subgroup as

ETE,a,d(Fq)[4] = {(0, 1), (0,−1), (1/
√

a, 0), (−1/
√

a, 0)}.

Then the coset of the point P = (x, y) on the curve up to this subgroup equals

P + ETE,a,d(Fq)[4] = {(x, y), (−x,−y), (y
√

a,−x
√

a), (−y/
√

a, x
√

a)}.

We note that the proposed w-function has the property that w(Q) = w(P ) for
all points Q in the coset of P .
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As an alternative w-coordinate differential addition formulas, we define the
rational function w by w(x, y) = a(x/y)2. From the addition and doubling for-
mulas for ETE,a,d (1), we obtain the following differential addition formulas.

w4 =
4w1((w1 + 1)2 − ew1)

(w2
1 − 1)2

, w3w0 =
(w1 − w2)2

(w1w2 − 1)2
,

where e = 4d/a. Similarly, we obtain the same projective and mixed
w−coordinates formulas as (7), (8), (9) and (10). This w-function is also invari-
ant for the coset of a point up to the 4-torsion subgroup of the complete twisted
Edwards curve ETE,a,d over Fq with χ(a) = χ(ad) = −1.

Furthermore, for twisted Edwards curves where χ(ad) = 1, we define another

differential formulas by the rational function w by w(x, y) =
√

ad

(
2xy

ax2 + y2

)2

.

Similarly, we obtain the following differential addition formulas.

w4 =
4w1((w1 + 1)2 − ew1)

(w2
1 − 1)2

, w3w0 =
(w1 − w2)2

(w1w2 − 1)2
,

where e = 2 + (a + d)/
√

ad. So, we have the same results for this w-coordinates
by formulas (7), (8), (9) and (10). Note that, this w-function is invariant for
the coset of a point up to the full 2-torsion subgroup of the incomplete twisted
Edwards curve ETE,a,d over Fq with χ(ad) = 1.

4.2 Montgomery Curves

Now, we consider the Montgomery curves. Note that above w-coordinates differ-
ential addition and doubling formulas for twisted Edwards curves can be applied
for Montgomery curve using the birational maps between these two curves (5).
Furthermore, from formulas (9) and (10), we give the mixed x-coordinates dif-
ferential addition and doubling formulas for Montgomery curves with cost of
3M + 7S + 1D and 3M + 6S + 3D.

We recall [15], that for the Montgomery curve EM,A,B with the rational
function w(x, y) = x, we have the following differential addition formulas.

w4 =
(w2

1 − 1)2

4w1((w1 + 1)2 − ew1)
, w3w0 =

(w1w2 − 1)2

(w1 − w2)2
,

where e = 2 − A. In other words, the x-coordinates formulas for Montgomery
curves and above w coordinates formulas (6) for twisted Edwards curves are
inverse of each other. It means the projective formulas for Montgomery curves
is obtained by the projective formulas (7) only by swapping the role of W and
Z. Therefore, from formulas (9) we have the following formulas with cost of
3M + 7S + 1D

A1 = (W1 + Z1), B1 = (W1 − Z1), A2 = (W2 + Z2), B2 = (W2 − Z2),
C = A1B2, D = A2B1, E = A2

1 − B2
1 , F = (A4

1 + B4
1) − E2,

W4 = F, Z4 = 2(A4
1 − (e/4)E2) − F,

W3 = w0(C + D)2, Z3 = (C − D)2.

(11)
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and from formulas (10), we obtain the formulas with cost of 3M + 6S + 3D as
follows.

A1 = (W1 + Z1), B1 = (W1 − Z1), A2 = (W2 + Z2), B2 = (W2 − Z2),
C = A1 B2, D = A2 B1, H1 = (rA2

1 + B2
1)

2, H2 = (rA2
1 − B2

1)
2,

G = (H1 + H2), K = (H1 − H2), S = 1
r K, T = rK,

W4 = T − S, Z4 = 2G − S − T,
W3 = w0(C + D)2, Z3 = (C − D)2.

(12)

5 Concluding Remarks

The known Montgomery ladder differential addition formulas for elliptic curves
over a finite field are not complete; they work for all input points P except
for the case where w(P ) equals (1 : 0) or (0 : 1). However, the Montgomery
ladder algorithm works perfectly in cryptographic applications, since the order
of base point P should be a large prime number. The cost of the Montgomery-
like formulas is 5M + 4S + 1D if the base point P is affine. We believe, this
record can be obtained for any form of elliptic curve with group order divisible
by 4 by a suitable rational function. This includes the family of Jacobi curves.

Our proposed Montgomery-like formulas for twisted Edwards curves are
improved in terms of efficiency and speed. They are almost complete formulas
if the curve parameters are chosen carefully. The mixed formulas are provided
for twisted Edwards curves with the cost of 3M + 7S + 1D. Also, faster mixed
formulas are presented for a subfamily of twisted Edwards curves with the cost
of 3M + 6S + 3D which gives further speedup if the parameters are chosen to
be small.

In Table 1, we compare our new differential addition formulas with the known
formulas for other forms of elliptic curves. Notice, the fast and efficient presented

Table 1. Cost of differential addition and doubling for families of elliptic curves in odd
characteristic

Model Projective differential Mixed differential

Montgomery [15] 6M + 4S + 1D 5M + 4S + 1D

This work (11) 4M + 7S + 1D 3M + 7S + 1D

This work (12) 4M + 6S + 3D 3M + 6S + 3D

Kummer curve [9] 4M + 6S + 3D 3M + 6S + 3D

Edwards curve EBL,d

(d = r2, w = ry) [5] 4M + 6S + 5D 3M + 6S + 5D

(d = r2, w = ry2) [5] 4M + 6S + 3D 3M + 6S + 3D

Jacobi quartic [10] 6M + 4S + 1D 5M + 4S + 1D

Twisted edwards

This work (8) 6M + 4S + 1D 5M + 4S + 1D

This work (9) 4M + 7S + 1D 3M + 7S + 1D

This work (10) 4M + 6S + 3D 3M + 6S + 3D
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formulas by Gaudry-Lubicz [9] and Bernstein-Lange [5] are given with the cost of
4M+ 6S+ 3D, and 3M+ 6S+ 3D if the base point is affine, only for subfamily
of elliptic curves with 3 points of order 2. Our formulas have the same costs
and presented for a subfamily of twisted Edwards with a point of order 4 which
includes the complete twisted Edwards curves therein.

For complete twisted Edwards curves, the proposed w functions are invariant
in the coset of a point P with respect to the subgroup of Fq-rational points with
order 4. And, for incomplete twisted Edwards curves the suggested w function
is invariant in the coset of a point P up to the subgroup of full 2-torsion points.
For future works, we are going to investigate the use of these differential addition
formulas along with the eliminating cofactors technique through point compres-
sion [11]. Computing the full point representation at the end of Montgomery
ladder is an alternative question which is useful for cryptographic applications
that need the full version of the scalar multiplication algorithm.
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