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Preface

The 22nd Australasian Conference on Information Security and Privacy was organized
in beautiful New Zealand on the Massey University campus in Auckland, July 3–5,
2017. This was the first time that the conference was organized outside Australia.

This year we received 150 submissions. Each paper got assigned to four referees. In
the first stage of the review process, the submitted papers were read and evaluated by
the Program Committee members. In the second stage, the papers were scrutinized
during an extensive discussion. Finally, the Program Committee chose 45 regular and
ten short papers to be included in the conference program. The authors of the accepted
papers had ten days for revision and preparation of final versions. The revised papers
were not subject to editorial review and the authors bear full responsibility for their
contents. The submission and review process was supported by the EasyChair con-
ference submission server. We thank the EasyChair people for letting us use it.

The Program Committee voted for the best paper using the Doodle software. We
nominated four papers with best reviews. Out of the four, two papers were the preferred
options with no clear winner. We decided to award the ACISP2017 Best Paper Award
to the two papers:

– “Dynamic Searchable Symmetric Encryption with Physical Deletion and Small
Leakage” by Peng Xu, Shuai Liang, Wei Wang, Willy Susilo, Qianhong Wu and
Hai Jin

– “Multi-user Cloud-Based Secure Keyword Search” by Shabnam Kasra Kerman-
shahi, Joseph K. Liu and Ron Steinfeld

The awards were handed during the conference dinner.
The Jennifer Seberry Lecture this year was delivered by Clark Thomborson from the

University of Auckland, New Zealand. The keynote lecture was presented by L. Jean
Camp from Indiana University, USA. The program also included invited talks by
well-known researchers working in different areas of cybersecurity. They were Dong
Seong Kim, University of Canterbury, New Zealand; Dongxi Liu, CSIRO/Data61,
Australia; Surya Nepal, CSIRO/Data61, Australia; Paul Pang, Unitec Institute of
Technology, New Zealand; Peter Pilley, Department of Internal Affairs, New Zealand;
Ian Welch, Victoria University of Wellington, New Zealand and Henry B. Wolfe,
University of Otago, New Zealand.

We would like to thank the Program Committee members and the external reviewers
for their effort and time to evaluate the submissions. Big thanks go to Julian
Jang-Jaccard and Paul Watters for their excellent job in the organization of the con-
ference. We are indebted to the team at Springer for their continuous support of the
conference and for their help in the production of the conference proceedings.

July 2017 Josef Pieprzyk
Suriadi Suriadi
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Analysis of Toeplitz MDS Matrices

Sumanta Sarkar(B) and Habeeb Syed

TCS Innovation Labs, Hyderabad, India
{Sumanta.Sarkar1,Habeeb.Syed}@tcs.com

Abstract. This work considers the problem of constructing efficient
MDS matrices over the field F2m . Efficiency is measured by the met-
ric XOR count which was introduced by Khoo et al. in CHES 2014.
Recently Sarkar and Syed (ToSC Vol. 1, 2016) have shown the existence
of 4×4 Toeplitz MDS matrices with optimal XOR counts. In this paper,
we present some characterizations of Toeplitz matrices in light of MDS
property. Our study leads to improving the known bounds of XOR counts
of 8 × 8 MDS matrices by obtaining Toeplitz MDS matrices with lower
XOR counts over F24 and F28 .

Keywords: Toeplitz matrix · MDS matrix · XOR count · Lightweight
block cipher · Diffusion layer

1 Introduction

Internet of Things (IoT) is a network of interconnected devices that can share
data with each other and process when required. IoT applications range from
health monitoring and traffic management to several other daily life activities;
this is one of the reasons that it also has drawn attention from the industry.
The devices used in IoT are mostly RFIDs and sensors, which have very low
resources. Thus for ensuring privacy and confidentiality of the data in IoT,
classical cryptosystems like AES, RSA are not suitable. To bridge this gap
the topic lightweight cryptography has emerged. Lightweight cryptography is
mostly based on symmetric key. The eSTREAM finalists Grain v1 [7], MICKEY
2.0 [1], and Trivium [18] are examples of lightweight stream ciphers. CLEFIA [16],
PRESENT [5], PRINCE [6] are some of the existing lightweight block ciphers.

In this paper we are interested in lightweight block ciphers. Confusion and
diffusion layers are the two important building blocks of a block cipher. While
confusion layer is responsible for making the relation between key and cipher-
text as complex as possible, the diffusion layer spreads the plaintext statistics
through the ciphertext. Maximum distance separable (MDS) matrices are a pop-
ular choice to build diffusion layer as these matrices achieve the maximum dif-
fusion power. However, constructing an MDS matrix with low implementation
cost (as to suit lightweight cryptosystems) is a nontrivial task.

In CHES 2014, [9] introduced the metric XOR count that measures the cost
of implementation of a diffusion matrix. A matrix filled with field elements hav-
ing low Hamming weight may not necessarily result in low hardware cost for the
c© Springer International Publishing AG 2017
J. Pieprzyk and S. Suriadi (Eds.): ACISP 2017, Part II, LNCS 10343, pp. 3–18, 2017.
DOI: 10.1007/978-3-319-59870-3 1
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implementation of the matrix, which was shown in [9]. This paper measured the
number of XORs required to compute the multiplication of a fixed field element
and showed that there are MDS diffusion matrices with higher Hamming weight
than the AES diffusion matrix, but needed lesser XORs to implement. Then sev-
eral works [10,11,14,15,17] followed to find MDS matrices with low XOR counts.
Search effort for MDS matrices with low XOR count in the previous works have
been made in some subclasses of matrices like Hadamard matrices and circu-
lant matrices. Recently [15] settled the question of the minimum XOR counts of
4 × 4 MDS matrices over F24 and F28 . They showed that matrices achieving the
minimum XOR count exist in the class of Toeplitz matrices. This motivates us
to study Toeplitz MDS matrices further and analyze several properties of such
matrices.

Our Contributions. Since a Toeplitz MDS matrix cannot be involutory [15],
there is no scope of getting involutory MDS matrices in the class of Toeplitz
matrices. In this work we restrict our study to MDS matrices only. In a Toeplitz
matrix, several submatrices repeat. We count the number of distinct d × d,
(1 ≤ d ≤ n) submatrices in Proposition 1; later Theorem 1 shows how many
of these distinct submatrices are indeed Toeplitz. One can take the advantage
of this redundancy while checking the MDS property of a Toeplitz matrix (see
Remark 1). We also study Toeplitz matrices in the class of Cauchy matrices,
and prove that a Cauchy-Toeplitz matrix cannot be MDS for dimension greater
than 2.

In Sect. 4, we improve the XOR count of 8× 8 MDS matrices over F24 and
F28 . As the class of all MDS 8 × 8 matrix is huge, we search in the subclass
formed by the Toeplitz matrices. However, it is not easy to exhaust the full class
of Toeplitz matrices for these fields. We develop a pruning based search algorithm
which enables us to find Toeplitz MDS matrices with lower XOR counts. For F24

the lowest XOR count that we obtain is 170 + 8 · 7 · 4 (earlier known value was
208 + 8 · 7 · 4), whereas for F28 the improved XOR count is 232 + 8 · 7 · 8 (earlier
known value was 240 + 8 · 7 · 8). Thus we improve the bounds of XOR counts of
8 × 8 MDS matrices over F24 and F28 .

2 Preliminaries

We denote by F2m the finite field with 2m elements, and by F
m
2 we denote the

m-dimensional vector space over F2. MDS codes are the class of linear codes over
the field F2m that achieve the Singleton bound, that is for an [N,K] MDS code
the minimum distance is N −K +1. An n×n matrix M over F2m is MDS if the
n × 2n matrix G = [In M ] is a generator of a [2n, n] MDS code, where In is the
n × n identity matrix. Another characterization of MDS matrices is as follows:
M is MDS if and only if every submatrix of M is nonsingular. For details on this
one may consult [12]. MDS matrices are popular choice for building diffusion
layers of block ciphers, as they attain the maximum diffusion power.
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2.1 XOR Counts

The field F2m can be identified to the vector space F
m
2 , by choosing some basis.

There are several kinds of bases for a finite fields, and the mostly used one is the
polynomial basis of the form {1, α, . . . , αm−1}. To measure the implementation
cost of field multiplication [9] proposed the metric XOR count defined as follows.

Definition 1. Let P (X) be an irreducible polynomial that defines F2m and let
B be a basis of F2m . The XOR count of an element a ∈ F2m with respect to B
is the number of XORs required to implement the multiplication of a with an
arbitrary element b ∈ F2m . We denote by XOR (a) the XOR count of a.

Note that XOR (0) = 0 = XOR (1). It is mentioned in [9] that low XOR count
is strongly correlated to the minimization of hardware area (GE). Thus finding
MDS matrices with low XOR count is an active research topic in the context of
lightweight cryptography. The set of XOR counts of all the elements of F2m is
termed as the XOR count distribution which depends on P (X) and B [14,17].
Note that polynomial basis is a conventional choice for implementation and as
noted in [15], we will only be considering polynomial basis. Recently [4] has
relooked at XOR count of an element and allowed reuse of repeating terms in
the product vector. However, we do not consider such optimization and regard
XOR count in its simplified form as given by [9] and many subsequent works
[14,15,17].

In [9] the formula for the XOR count of a row of a matrix was derived, later
[15] extended it to the full n × n matrix M defined over F2m as

n−1∑

i=0

⎛

⎝
n−1∑

j=0

γij + (�i − 1) · m

⎞

⎠ = C(M) +
n−1∑

i=0

(�i − 1) · m (1)

where γij is the XOR count of the j-th entry of the i-th row of the matrix, and
�i is the number of nonzero entries in that row. The term C(M) is the sum of
XOR counts of all the entries of M . For an n × n MDS matrix over F2m , �i = n,
so (1) becomes C(M) + n · (n − 1) · m, and C(M) is the part that varies with
the matrices.

3 Toeplitz MDS Matrices

In this section we study Toeplitz MDS matrices in details.

Definition 2. A matrix is called Toeplitz if every descending diagonal from left
to right is constant.

The following is the general form of an n × n Toeplitz matrix.

T =

⎡

⎢⎢⎢⎣

a0 a1 a2 . . . an−2 an−1

a−1 a0 a1 . . . an−3 an−2

...
...

...
...

...
...

a−(n−1) a−(n−2) a−(n−3) . . . a−1 a0

⎤

⎥⎥⎥⎦ . (2)
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A Toeplitz matrix is defined by its first row and first column, henceforth we will
use

Toep(a0, a1, . . . , an−1, a−1, a−2, . . . , a−(n−1)) (3)

to describe an n × n Toeplitz matrix of the form (2). This matrix can also be
defined as follows:

T = [mi,j ], where mi,j = aj−i. (4)

3.1 Properties of a Toeplitz Matrix

To check the MDS property of an n × n matrix, one has to check if all the sub-
matrices are nonsingular. The total number of such submatrices are

∑n
i=1

(
n
i

)2
.

However, it is easy to see that in a Toeplitz matrix several sub matrices are dupli-
cates and hence can be ignored while checking MDS property. In this section we
compute the number of distinct submatrices of a Toeplitz matrix. Following is a
result in this regard proof of which is given in Appendix A.

Lemma 1. Suppose T is a Toeplitz matrix as given in (2). Every d×d submatrix
of T is equal to a d × d submatrix Tsub such that

1. the first row of Tsub belongs to the first row of T . Or,
2. the first column of Tsub belongs to the first column of T .

Example 1. Consider the following 4 × 4 Toeplitz matrix T .

T =

⎡

⎢⎢⎢⎣

a0 a1 a2 a3

a−1 a0 a1 a2

a−2 a−1 a0 a1

a3 a−2 a−1 a0

⎤

⎥⎥⎥⎦ .

The 2× 2 submatrix formed by the 2nd and 4th row, and 2nd and 4th column
(marked by circles) is equal to the 2 × 2 submatrix formed by the 1st and 3rd
row, and 1st and 3rd column (marked by rectangles).

Let us now count the number of distinct submatrices of a Toeplitz matrices
considering that all the ai’s are distinct.

Proposition 1. Let T = Toep(a0, . . . , a−(n−1)) be a Toeplitz matrix in which
all ai’s are distinct. Then the number of distinct d × d submatrices is

(
n − 1
d − 1

)2

+ 2
(

n − 1
d − 1

)(
n − 1

d

)
=

(
n − 1
d − 1

)2 (
2n − d

d

)
. (5)

Consequently, the total number of distinct submatrices are
(

2n − 2
n − 1

)
+ 2

(
2n − 2
n − 2

)
. (6)



Analysis of Toeplitz MDS Matrices 7

Proof. We will count the distinct submatrices as per Lemma 1, i.e., submatrices
having elements from the first row or first column. Let T [0, 0] be the (0, 0)-th
element of T . We count the number of submatrices with and without T [0, 0]
separately.
Case 1: When T [0, 0] is absent. In this case there are two kinds of submatrices:
submatrices that have elements from the first row, but not from the first column,
or submatrices that have elements from the first column, but not from the first
row. The number of distinct d × d submatrices that have elements from the first
row is

(
n−1
d−1

)(
n−1

d

)
, and the number of submatrices that have elements from the

first column is
(
n−1
d−1

)(
n−1

d

)
.

Case 2: When T [0, 0] is present. In this case the number of distinct d × d
submatrices is

(
n−1
d−1

)(
n−1
d−1

)
.

Now adding the above two counts we get the number of distinct d × d sub-
matrices as (5).

Further note that for any positive integer t,
∑t

i=0

(
t
i

)2
=

(
2t
t

)
and∑t−1

i=0

(
t
i

)(
t

i+1

)
=

(
2t
t

)
+

(
2t

t−1

)
. Using these, the total number of distinct sub-

matrices is obtained as
n∑

d=1

(
n − 1
d − 1

)2

+ 2
n∑

d=1

(
n − 1
d − 1

)(
n − 1

d

)
=

(
2n − 2
n − 1

)
+ 2

(
2n − 2
n − 2

)
.

��
Note that a submatrix of a Toeplitz matrix could also be Toeplitz. Denote by
Row(S) = (i0, . . . , id−1), the ordered set of row indices of S and Col(S) =
(j0, . . . , jd−1) ordered set of column indices of S. We now present a charac-
terization of a submatrix of a Toeplitz matrix to be Toeplitz also.

Proposition 2. Let T = Toep(a0, . . . , a−(n−1)) be a Toeplitz matrix in which all
ai’s are distinct and S be a d × d submatrix of T for some 2 ≤ d ≤ n − 1. Then
S is Toeplitz if and only if Row(S) = (i0, . . . , id−1), and Col(S) = (j0, . . . , jd−1)
satisfy

ik+1 − ik = jk+1 − jk = ρ, k = 0, . . . , d − 2 (7)

for some integer ρ such that

1 ≤ ρ ≤
⌊

n − 1
d − 1

⌋
. (8)

Proof. Recall that a square matrix X = [xij ] of order n is Toeplitz if and only
if for all 0 ≤ i, j ≤ n − 2

xi,j = xi+θ,j+θ

for every θ ≥ 1 is such that max {i+θ, j+θ} ≤ n−1. Now let’s prove the lemma.
Suppose that S is a d × d submatrix of T such that Row(S) and Col(S) satisfy
(7) with ρ as in (8). This implies that for any ik ∈ Row(S), jt ∈ Col(S), 0 ≤
k, t ≤ d − 2 we have

Sik,jt = Tik,jt = Tik+θ,jt+θ = Sik+θ,jt+θ
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as S is a submatrix of T which is a Toeplitz matrix. This shows that S is Toeplitz
and hence the sufficiency part. Let us prove the necessary part. Suppose S is
a d × d Toeplitz submatrix of T for some 2 ≤ d ≤ n − 1, then we show that
Row(S), Col(S) satisfy (7) with ρ as in (8). Observe that since (by hypothesis)
all the elements of first row and column of T are distinct, it follows from the
definition of a Toeplitz matrix that for any 0 ≤ i, j, i′, j′ ≤ n − 1,

Ti,j = Ti′,j′ if and only if j − i = j′ − i′. (9)

Using this in case of S (which is a Toeplitz submatrix), we have for every element
of Row(S), Col(S)

ik − jk = ik−1 − jk−1 =⇒ ik − ik−1 = jk − jk−1,

which proves (7). Next suppose ρ = ik − ik−1 then the condition (8) is necessary
to make sure that none of the indices of S grows bigger than indices of T . From
(7) it follows that

id−1 = id−2 + ρ = . . . = i0 + ρ (d − 1). (10)

Using the facts 2 ≤ d ≤ (n − 1), ρ ≥ 1, and 1 ≤ id−1 ≤ n − 1 in (10) we get

1 ≤ 0 + ρ (d − 1) ≤ (n − 1) =⇒ 1 ≤ ρ ≤
⌊

n − 1
d − 1

⌋
.

��
In the following we count the number of d × d Toeplitz submatrices of an n × n
Toeplitz matrix.

Theorem 1. Let T be an n × n Toeplitz matrix as given in (2) in which all the
elements of first row and first column are distinct. Then the number of distinct
d × d Toeplitz submatrices are

δd,n =

{
2n − 1 if d = 1
(n − d + τd,n + 1) · �n−1

d−1 	 if d = 2, . . . , n
, (11)

where τd,n is given by n − 1 = �n−1
d−1 	(d − 1) + τd,n.

Proof. Suppose S is a d × d a submatrix of T with Row(S) = (i0, . . . , id−1) and
Col(S) = (j0, . . . , jd−1). Let

Γ =
�n−1

d−1 �∑

θ=1

n − θ (d − 1)

︸ ︷︷ ︸
(*)

+
�n−2

d−1 �∑

θ=1

(n − 1) − θ (d − 1)

︸ ︷︷ ︸
(**)

. (12)

We will show that the distinct d × d Toeplitz submatrices of an n × n Toeplitz
matrix T is given by Γ as in (12) and this simplifies to (11). To count distinct
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submatrices S we use Proposition 1 and consider only those submatrices S for
which

(i0 = 0) or (i0 > 0 and j0 = 0),

and for each case we count the exact number of Toeplitz submatrices using
conditions of Proposition 2 which put together gives (11).
Case 1: When i0 = 0.
This gives the term (*) in (12). In this case for every ρ satisfying (8), the only
possibility for Row(S) is Row(S) = (0, ρ, . . . , ρ (d − 1)). For every such possible
Row(S), the number of possibilities for Col(S) = (j0, . . . , jd−1) satisfying (7) is
n − ρ (d − 1). Varying ρ from 1 to �n−1

d−1 	 and summing all the terms we get (*)
in (12)

Case 2: When i0 > 0, and j0 = 0.
Let ρ0 be a value of ρ satisfying (8). One can choose Row(S) = (i0, . . . , id−1)
satisfying (7) for ρ = ρ0 in exactly (n − 1) − ρ (d − 1) ways. For every such
chosen Row(S) there exits a unique value Col(S) = (0, j1, . . . , jd−1) (satisfying
(7) for ρ = ρ0) which together give a Toeplitz matrix S. Since i0 > 0 total
number of available rows is only n − 1 and hence the total number of Toeplitz
submatrices which do not involve 0 can be obtained by by adding the quantity
[(n − 1) − ρ (d − 1)] for ρ = 1 to �n−2

d−1 	 we obtain (**) in (12).
To complete the proof we need to show that Γ in (12) simplifies to (11).

This can be easily shown by considering the two cases τd,n > 0 and τd,n = 0
separately. ��

Using this result, we compare the number of distinct submatrices of Toeplitz
and general matrices in Table 2 in Appendix B.

Remark 1. Given an n × n matrix, to check the MDS property one needs to
verify whether all the

∑n
i=1

(
n
i

)2 =
(
2n
n

) − 1 square submatrices are nonsingular.
However, as we see in Lemma 1 that there are too many redundancies in a
Toeplitz matrix, so we need to consider fewer submatrices as opposed to a general
matrix. By Proposition 1, we need to consider

(
2n−2
n−1

)
+ 2

(
2n−2
n−2

)
submatrices

in total for an n × n Toeplitz matrix.

3.2 Cauchy-Toeplitz Matrices

Cauchy matrices are interesting in the sense that it is easy to construct MDS
matrices in this class. A Cauchy matrix over F2m is of the form

M = [ai,j ]n×n, where ai,j =
1

xi + yj
, xi 
= yj , 0 ≤ i, j ≤ n − 1. (13)

Fact 1. The Cauchy matrix M is nonsingular if and only if xi 
= xj and yi 
= yj,
for all 0 ≤ i, j ≤ n − 1.
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There have been constructions of MDS matrices which are both Hadamard
and Cauchy (see [17] for example). We now analyze the MDS property of matrices
which are both Toeplitz and Cauchy. We call matrices which are both Toeplitz and
Cauchy as Cauchy-Toeplitz. Example of such a matrix is given in Example 2 in
Appendix A.

Theorem 2. Let T be a n × n Cauchy-Toeplitz matrix over F2m . Then the
following hold.

1. T is symmetric.
2. T is singular if n ≥ 3, and thus T is not MDS if n ≥ 3.

Proof. As T is Toeplitz, we must have Ti,i = Tj,j . Then

1
xi + yi

=
1

xj + yj
=⇒ 1

xi + yj
=

1
xj + yi

,

that is Ti,j = Tj,i. So T is symmetric.
Next we prove that T is singular whenever n ≥ 3. Consider a 3 × 3 Cauchy

matrix

T3 =

⎡

⎣
1

x0+y0

1
x0+y1

1
x0+y2

1
x1+y0

1
x1+y1

1
x1+y2

1
x2+y0

1
x2+y1

1
x2+y2

⎤

⎦ .

By the definition of Cauchy matrix xi 
= yj for i, j = 0, 1, 2 and from Fact 1
it follows that T3 is nonsingular if and only if

xi 
= xj and yi 
= yj for 0 ≤ i < j ≤ 2. (14)

Suppose that T3 is Toeplitz, then by Definition 2 we have the following.

x0 + y0 = x1 + y1 = x2 + y2 = C0

x0 + y1 = x1 + y2 = C1

x1 + y0 = x2 + y1 = C2,

(15)

for some C0, C1 and C2 in F2m . As it was proved above that T3 is symmetric,
C1 = C2 must hold. Using this in (15) we get x2 + y1 = C1, and we also have
x0 + y1 = C1, which together imply x0 = x2. Then from (14) it follows that T3

is singular matrix.
Next, for n > 3, consider an n × n Cauchy-Toeplitz matrix T defined by

the elements (x0, . . . , xn−1) and (y0, . . . , yn−1) of F2m . Denote by T ′ the 3 × 3
submatrix of T consisting of first three rows and columns. Then T ′ is a Cauchy-
Toeplitz matrix defined by the elements (x0, x1, x2) and (y0, y1, y2), and we just
proved that x0 = x2. Consequently using Fact 1 it follows that T is singular.
This also shows that T is not MDS. ��
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3.3 More Classes of Non-MDS Toeplitz Matrices

We now propose a characterization of Toeplitz matrices that are not MDS. Proofs
of these lemmas can be found in Appendix A.

Lemma 2. The n×n Toeplitz matrix T as given in (2) is not MDS if for some
i < j such that i + j ≤ n − 1, ai = aj and a−i = a−j hold.

Lemma 3. The maximum number of occurrences of an element β ∈ F2m in a
8 × 8 MDS matrix is 24.

4 Searching for MDS Matrices with Low XOR Count

In [15], authors have searched efficiently in the class of 4× 4 MDS matrices over
F24 and F28 to obtain the least possible XOR count. However, the space of 8× 8
MDS matrices is so vast that it is difficult to exhaust. In this section we search
in the class of Toeplitz matrices as 4 × 4 MDS matrices with the optimal XOR
counts in this class [15]. However, the class of 8 × 8 Toeplitz matrices is also
large enough that searching for an improved matrix becomes a challenging task.
To tackle this we apply a pruning strategy so that we get search results faster.
First we form a search tree as follows.

Forming a Search Tree
A 8 × 8 Toeplitz matrix T can be defined as T = Toep(a0, . . . , a7, a8, . . . , a14).
From (1) we have that for any 8×8 matrix M , over F2m the sum of XOR counts
of all the elements of M is C(M). We define C as the lowest known value of
C(M). If we find a Toeplitz MDS matrix T such that

C(T ) =
13∑

i=0,i �=7

(8 − (i mod 7))XOR (ai) + XOR (a7) + XOR (a14) < C, (16)

we obtain a new MDS matrix with lower XOR count.
Suppose the matrix is defined over the set U ⊆ F2m . Then every ai has

|U | options to choose from. So the naive search complexity is |U |15. Given ai,
for i = 0, . . . , 13, next ai+1 will be one of |U | choices, that is, we can view
this as a tree where every node has |U | children. As a0 itself has |U | choices,
there will be |U | such trees. Traveling from the root to a leaf will give us one
tuple (a0, . . . , a7, a8, . . . , a14). If Toep(a0, . . . , a7, a8, . . . , a14) is MDS, and it also
satisfies (16), we get an improved MDS matrix with respect to XOR count. How-
ever, if we see that for a choice of ai, the tuple (a0, . . . , ai) cannot be a part of
any (a0, . . . , a7, a8, . . . , a14) such that Toep(a0, . . . , a7, a8, . . . , a14) is not MDS
or does not satisfy (16), then we can prune the whole subtree rooted at that ai,
as Toep(a0, . . . , a7, a8, . . . , a14) will not improve C for such a choice of ai. Next
we discuss in detail the pruning criteria which we call as E1, E2, E3 and E4.
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E1: Occurrence of an element is more than 24 times
Suppose we are at the i-th level, that is with the subtuple (a0, . . . , ai). With
this we have a submatrix where each ar, 0 ≤ r ≤ i occurs 8 − (r mod 7)
times if r ≤ 13 and only once if r = 14. We count the number of occur-
rences of the value of ai in this submatrix, and if ai occurs more than 24 times,
then by Lemma 3, (a0, . . . , ai) cannot be a part of any Toeplitz MDS matrix
Toep(a0, . . . , ai, . . . , a14). So we prune the subtree rooted at this value of ai, and
switch to the next sibling. Figure 1 in Appendix B describes one such scenario.

E2: XOR count of the submatrix ≥ C
First we sort U in ascending order with respect to XOR counts of its elements.
Now suppose that we are at the subtuple (a0, . . . , ai) and if

i∑

r=0

(8 − (r mod 7))XOR (ar) ≥ C, for i < 14, or

13∑

r=0

(8 − (r mod 7))XOR (ar) + XOR (a14) ≥ C, for i = 14

(17)

holds, then for the current value of ai, (a0, . . . , ai) cannot be a part of any
Toeplitz matrix Toep(a0, . . . , ai, . . . , a14), (ai 
= 0,∀i) whose XOR count is < C.
Since ai takes values from U which is sorted in increasing order, then all the
next siblings will have equal or higher XOR counts, so they will also satisfy (17).
Hence we prune the subtree rooted at the current value of ai and all the other
possible subtrees rooted at its next siblings having higher XOR counts. So we
move back to ai−1 and update it by a new value from U . Figure 2 describes one
such scenario.

E3: Submatrices satisfying Lemma 2
Suppose we are with a subtuple (a0, . . . , a7, . . . , ai). That is we are now dealing
with a (i − 6) × 8 Toeplitz submatrix. If (a0, . . . , ai) is such that the condi-
tion stated in Lemma 2 is satisfied, then (a0, . . . , a7, . . . , ai) cannot be a part of
any Toeplitz MDS matrix defined (a0, . . . , ai, . . . , a14). So we prune the subtree
rooted at this value of ai, and switch to the next sibling.

E4: One submatrix is singular
When we are dealing with a (i − 6) × 8 Toeplitz submatrix T ′ formed by
(a0, . . . , a7, . . . , ai), if one of the submatrices of T ′ is singular, then we prune
the subtree rooted at ai’s current value, and replace it by a new value.

Finally when we land up having a tuple (a0, . . . , a14) which has survived all
the pruning criteria E1, E2, E3, E4 at every level, then we obtain a Toeplitz MDS
matrix T = Toep(a0, . . . , a14) with lower XOR count than C. Next we replace
C = C(T ), and continue the search.
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5 MDS Matrices over F24 with Improved XOR Count

Using the above mentioned search method we now search for 8 × 8 Toeplitz
MDS matrices over F24 . The lowest known XOR count of 8 × 8 MDS matrix is
208 + 7 · 4 · 8 as reported in [17]. So we set C = 208, and we look for Toeplitz
MDS matrices over F24 with C(T ) < C. We consider F24 defined by primitive
polynomial X4 + X + 1 whose primitive element is denoted by α. We select
U = F

∗
24 that is sorted in ascending order according to the XOR counts of

its elements, U = {1, α, α14, α2, α3, α13, α4, α5, α6, α7, α8, α12, α9, α11, α10}. The
corresponding XOR counts are {0, 1, 1, 2, 3, 3, 5, 5, 5, 6, 6, 6, 8, 8, 9}. We apply our
search strategy and obtain improved matrices. In fact we obtain several matrices
T with C(T ) < 208, we mention a matrix with least one. The matrix

Toep(α1, 1, α4, 1, α5, α14, α7, α8, α3, α6, α14, α14, α8, α6, α3) (18)

has XOR count 170 + 7 · 4 · 8.
The naive search would require to consider 1515 = 259 elements of F24 . As

our search is applying pruning, thus it ends up considering only

22275827417 ≈ 235

possible F24 elements for the ai’s in total. This explains the effectiveness of our
search strategy. As it is observed by [17] that change of irreducible polynomial
has effect on the XOR count, so we consider other irreducible polynomials that
define F24 . Note that X4+X3+X2+X+1 is the only such irreducible polynomial
apart from X4 + X + 1 up to reciprocal. However, we do not find any better
matrix under this irreducible polynomial.

6 MDS Matrices over F28 with Lower XOR Count

Next we apply the same search strategy to obtain 8 × 8 Toeplitz MDS matrices
over F28 . The best known MDS matrix is reported in [11], which is a circulant
matrix that has XOR count 240+8·7·8. We consider F28 defined by the primitive
polynomial X8 + X7 + X6 + X + 1. We take Toeplitz matrices over a subset
U ⊂ F28 of 15 elements1, and sort it according to the XOR counts of the elements
in increasing order. Precisely U = {x : XOR (x) ≤ 10}. In this case |U | = 11.
Our search begins with C = 240. When the search completes the lowest XOR
count of Toeplitz MDS matrix that we obtain is 232 + 8 · 7 · 8, example of such
a matrix is

Toep(1, 1, α, α253, 1, α253, α252, α157, α158, α253, α254, α, α254, α2, α). (19)

As |U | = 11, the naive search would require to consider 1115 = 243 elements
from F28 . Using our pruning strategy, we only need to consider

1427292833 ≈ 231

1 We do not consider full F28 as this leads to a huge search space which will be difficult
to complete.
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possible F28 elements for the ai’s in total. Further with a larger U = {x :
XOR (x) ≤ 12}, in which case |U | = 18, we do not find any improved matrix.
In this case we need to consider approximately 234 elements from F28 instead of
1518 ≈ 271 elements. Like F24 , the search strategy is proving to be effective in
case of F28 also.

We also consider other primitive polynomials (up to reciprocals) that define
F28 with small a set U as above. However, we do not obtain any better matrices
than the example above.

7 Comparisons

We summarize our findings and compare with the existing results in Table 1.

Table 1. Comparison of XOR count of 8× 8 MDS matrices over F28 and F24 with the
previously known values.

Irreducible polynomial Reference Matrix type XOR Counts

F28

X8 + X7 + X6 + X + 1 Sect. 6 Toeplitz 232 + 8 · 7 · 8
X8 + X7 + X6 + X + 1 [11] Circulant 240 + 8 · 7 · 8
X8 + X7 + X6 + X + 1 [17] Hadamard 320 + 8 · 7 · 8
X8 + X4 + X3 + X2 + 1 [3] Circulant 392 + 8 · 7 · 8

F24

X4 + X + 1 Sect. 5 Toeplitz 170 + 8 · 7 · 4
X4 + X + 1 [17] Hadamard 208 + 8 · 7 · 4
X4 + X + 1 [2] Hadamard 264 + 8 · 7 · 4

8 Conclusions

We have presented an extensive study on Toeplitz MDS matrices theoretically
and also in the context of hardware implementation. We have developed an
efficient search strategy that has helped find 8 × 8 Toeplitz MDS matrices with
improved XOR count over F24 and F28 . As these matrices are in the Toeplitz
class, it restates along with [15] the richness of this class of matrices with respect
to containing efficient MDS matrices. On the other hand it will be interesting to
have families of efficient (in terms of XOR count) 8 × 8 MDS matrices. As we
have shown that Cauchy-Toeplitz matrices cannot be MDS in general, one has
to consider more general matrices for such a construction.
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A Proofs and Example

Proof of Lemma 1

Proof. Consider the following d × d submatrix A.

A =

⎡

⎢⎢⎢⎣

mi0,j0 mi0,j1 . . . mi0,jd−1

mi1,j0 mi1,j1 . . . mi1,jd−1

...
...

...
...

mid−1,j0 mid−1,j1 . . . mid−1,jd−1

⎤

⎥⎥⎥⎦ .

Applying (4), we get the form of this matrix as

A =

⎡

⎢⎢⎢⎣

aj0−i0 aj1−i0 . . . ajd−1−i0

aj0−i1 aj1−i1 . . . ajd−1−i1
...

...
...

...
aj0−id−1 aj1−id−1 . . . ajd−1−id−1

⎤

⎥⎥⎥⎦ . (20)

If j0 − i0 ≥ 0, then A is equal to the following submatrix whose first row
belongs to the first row of the main matrix T :

Tsub =

⎡

⎢⎢⎢⎣

m0,j0−i0 m0,j1−i0 . . . m0,jd−1−i0

mi1−i0,j0−i0 mi1−i0,j1−i0 . . . mi1−i0,jd−1−i0
...

...
...

...
mid−1−i0,j0−i0 mid−1−i0,j1−i0 . . . mid−1−i0,jd−1−i0

⎤

⎥⎥⎥⎦ .

On the other hand, if j0 − i0 < 0, then (20) is equal to the following matrix
whose first column belongs to the first column of the main matrix T :

Tsub =

⎡

⎢⎢⎢⎣

mi0−j0,0 mi0−j0,j1−j0 . . . mi0−j0,jd−1−j0

mi1−j0,0 mi1−j0,j1−j0 . . . mi1−j0,jd−1−j0
...

...
...

...
mid−1−j0,0 mid−1−j0,j1−j0 . . . mid−1−j0,jd−1−j0

⎤

⎥⎥⎥⎦ .

��
Proof of Lemma 2

Proof. As i + j ≤ n − 1, in the (i + j)-th row (row and column number starts
from 0), a−j appears in the i-th column, i.e., both ai and a−j are in the same
column. Again in the (i + j)-th row, a−i appears in the j-th column, i.e., a−i

and aj are in the same column. Therefore, the 2 × 2 submatrix of T formed by

the 0, (i + j)-th row and i, j-th column is
[

ai aj

a−j a−i

]
. The determinant of this is

aia−i + aja−j = 0 by hypothesis. ��
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Proof of Lemma 3

Proof. It is easy to check that given an MDS matrix M = [mi,j ]n×n and β ∈ F
∗
2m

the matrix βM = [β mi,j ]n×n is also MDS. From [8] it is known that in a 8 × 8
MDS matrix, 1 can occur at most 24 times. So if there is an element β in an
8 × 8 MDS matrix V that occurs more than 24 times, then β−1V contains 1
more than 24 times, a contradiction. ��
Example 2. Suppose α is a primitive root of X4 + X + 1 = 0 that generates
GF (24). Consider

x0 = 1, y0 = α + 1,

x1 = α, y1 = x0 + y0 + x1,

x2 = x0, y2 = y0.

Then the following is a Cauchy-Toeplitz matrix
⎡

⎣
a3 + 1 1 a3 + 1

1 a3 + 1 1
a3 + 1 1 a3 + 1

⎤

⎦ .

B Figures and Tables

Table 2. Number of submatrices of general matrices, and number of general and
Toeplitz submatrices of Toeplitz matrices.

Dimension Submatrices of
General matrix

Toeplitz matrix

General sub-
matrices

Toeplitz
submatrices

4 × 4 69 50 20

5 × 5 251 182 35

6 × 6 923 672 55

7 × 7 3431 2508 81

8 × 8 12869 9438 113

16 × 16 601080389 445962870 614
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Fig. 1. If the value of ai occurs more than 24 times then the whole subtree rooted at
ai is pruned.

Fig. 2. If the value of ai satisfies (17), all the subtrees rooted at this ai and its subse-
quent siblings are pruned.
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Abstract. This work pursues the idea of multi-forgery attacks as intro-
duced by Ferguson in 2002. We recoin reforgeability for the complexity
of obtaining further forgeries once a first forgery has succeeded. First,
we introduce a security notion for the integrity (in terms of reforgeabil-
ity) of authenticated encryption schemes: j-Int-CTXT, which is derived
from the notion INT-CTXT. Second, we define an attack scenario called
j-IV-Collision Attack (j-IV-CA), wherein an adversary tries to construct
j forgeries provided a first forgery. The term collision in the name stems
from the fact that we assume the first forgery to be the result from an
internal collision within the processing of the associated data and/or the
nonce. Next, we analyze the resistance to j-IV-CAs of classical nonce-
based AE schemes (CCM, CWC, EAX, GCM) as well as all 3rd-round
candidates of the CAESAR competition. The analysis is done in the
nonce-respecting and the nonce-ignoring setting. We find that none of
the considered AE schemes provides full built-in resistance to j-IV-CAs.
Based on this insight, we briefly discuss two alternative design strategies
to resist j-IV-CAs.

Keywords: Authenticated encryption · CAESAR · Multi-forgery
attack · Reforgeability

1 Introduction
(Nonce-Based) Authenticated Encryption. The goal of authenticated
encryption (AE) schemes is to simultaneously protect authenticity and privacy of
messages. AE schemes with support for Associated Data (AEAD) provide addi-
tional authentication for associated data. The standard security requirement for
AE schemes is to prevent leakage of any information about secured messages
except for their respective lengths. However, stateless encryption schemes would
enable adversaries to detect whether the same associated data and message has
been encrypted before under the current key. Thus, Rogaway proposed nonce-
based encryption [44], where the user must provide an additional nonce for every
message it wants to process – a number used once (nonce). AE schemes that

c© Springer International Publishing AG 2017
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require a nonce input are called nonce-based authenticated encryption (nAE)
schemes.

Reforgeability. In the cryptographic sense, reforgeability refers to the com-
plexity of finding subsequent forgeries once a first forgery has been found. Thus,
it defines the hardness of forging a ciphertext after the first forgery succeeded.
The first attack known was introduced in 2002 by Ferguson by showing collision
attacks on OCB [45] and a Ctr-CBC-like MAC [17]. He showed that finding a
collision within the message processing of OCB “ leads to complete loss of an
essential function” (referring to the loss of authenticity/integrity).

Later on, in 2005, the term multiple forgery attacks was formed and defined
by McGrew and Fluhrer [35]. They introduced the measure of expected num-
ber of forgeries and conducted a thorough analysis of GCM [34], HMAC [6],
and CBC-MAC [8]. In 2008, Handschuh and Preneel [22] introduced key recov-
ery and universal forgery attacks against several MAC algorithms. The term
Reforgeability was first formally defined by Black and Cochran in 2009, where
they examined common MACs regarding their security to this new measure-
ment [13]. Further, they introduced WMAC, which they argue to be the “best
fit for resource-limited devices”.

Relevance. For a reforgeability attack to work, an adversary must be provided
with a verification oracle in addition to its authentication (and encryption) ora-
cle. In practice, such a setting can, for example, be found when a client tries to
authenticate itself to a server and has multiple tries to log in to a system. Thus,
the server would be the verification oracle for the client.

Obviously, the same argument holds for the case when the data to be send
is of sensitive nature, i.e., the data itself has to be encrypted. Thus, besides the
resistance of MACs to reforgeability, also the resistance of AE schemes is of high
practical relevance.

Since modern and cryptographically secure AE schemes should provide at
least INT-CTXT security in terms of integrity, the first forgery is usually not
trivially found and depends on the size of the tag or the internal state. For that
reason, reforgeability becomes especially essential when considering resource-
constrained devices limited by, e.g., radio power, bandwidth, area, or through-
put. This is not uncommon in the area of low-end applications such as sensor
networks, VoIP, streaming interfaces, or, for example, devices connected to the
Internet of Things (IoT). In these domains, the tag size τ of MACs and AE
schemes is usually quite small, e.g., τ = 64 or τ = 32 bits, or even smaller
(τ = 8 bits) as mentioned by Ferguson in regard to voice systems [18]. There-
fore, even if the AE scheme is secure in the INT-CTXT setting up to τ bits,
it is not unreasonable for an adversary to find a forgery for such a scheme in
general. Nevertheless, even if finding the first forgery requires a large amount
of work, a rising question is, whether it can be exploited to find more forgeries
with significantly less than 2τ queries to an authentication oracle per forgery.
For our analysis, we derive a new security notion j-Int-CTXT, which states
that an adversary who finds the first forgery using t1 queries, can generate j
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additional forgeries in polynomial time depending on j. In general, the best case
would be to find j additional forgeries using t1 + j queries. Nevertheless, for five
schemes (AES-OTR [37], GCM [34], COLM [3], CWC [29], and OCB [30]),
there already exist forgery attacks in the literature (see [19] for details) leading
to j forgeries using only t1 queries (thus, the j additional authentication queries
are not even required).

Due to the vast number of submissions to the CAESAR competition [10],
cryptanalysis proceeds slowly for each individual scheme. For instance, forgery
attacks on 3rd-round CAESAR candidates have only been published for AES-
COPA [4,32,39], which even might become obsolete since AES-COPA and
ELmD [14] have been merged to COLM [3]. Besides looking at 3rd-round CAE-
SAR candidates, we also analyze other existing and partially widely-used AE
schemes, e.g., GCM, EAX [9], CCM [16], and CWC. Naturally, due to their
longer existence, there exist a lot more cryptanalysis on those schemes in com-
parison to the CAESAR candidates (see [20,27,28,36,42,46] for some examples).
The hope is that an INT-CTXT-secure AE scheme does not lose its security
when considering reforgeability, i.e., j-Int-CTXT.

We briefly introduce what we mean by resistant to j-IV-CAs, whereby we
assume the first forgery to be the results from an internal collision of the process-
ing of the associated data and/or the nonce.

• Nonce-Ignoring: We call an nAE scheme resistant to j-IV-CAs if the
required number of queries of a nonce-ignoring j-IV-CA adversary for finding
1 + j forgeries (including the first) is greater than t1 + j, where t1 denotes
the number of queries for finding the first forgery.

• Nonce-Respecting: We call an nAE scheme resistant to j-IV-CAs if the
required number of queries of a nonce-respecting j-IV-CA adversary for find-
ing 1+j forgeries (including the first) is greater than t1 ·j/2, where t1 denotes
the number of queries for finding the first forgery.

Further, we say that an nAE scheme is semi-resistant to j-IV-CAs if the
internal state is of wide size and the scheme itself is not trivially insecure in
terms of j-IV-CA. Thereby, following a similar approach to the wide-pipe mode
introduced for hash functions [33], the internal state of an nAE scheme is at
least twice as big as the output, i.e., the tag value. Such a design is, for example,
given by the widely used Sponge construction [11]. That would make the search
for a generic collision significantly harder than the search for multiple forgeries.
We denote the number of queries required for finding a collision within a wide
internal state by t2. Finally, we call an nAE scheme vulnerable to j-IV-CAs if it
is neither resistant nor semi-resistant to j-IV-CA.

Contribution. This work classifies nonce-based AE schemes depending on
the usage of their inputs to the initialization, encryption, and authentication
process, and categorize the considered AE schemes regarding to that classifi-
cation. To allow for a systematic analysis of the reforgeability of AE schemes,
we introduce the j-IV-Collision Attack based on the introduced security defini-
tion j-Int-CTXT, providing us with expected upper bounds on the hardness of
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further forgeries (a summary of our results can be found in Table 1). For our
attack, we pursue the idea of the message-block-collision attacks presented
in [17,45]. However, in contrast, we focus on an internal collision within the
processing of the associated data and/or the nonce. In the last section, we provide
two approaches to provide resistance in the sense of reforgeability and j-IV-CAs.
Moreover, in the full version of this work [19], for AES-OTR, COLM, and OCB,
we describe three attacks making multi-forgery attacks more efficient than our
generic approach.

Table 1. Expected #oracle queries required for j forgeries for IV/nonce-based classical
schemes and 3rd-round CAESAR candidates. By t1 and t2, we denote the computa-
tional cost for obtaining the first forgery, where t2 relates to wide-state designs. NR
= nonce-respecting setting; NI = nonce-ignoring setting. Since we obtained the same
results for Deoxys-I and Deoxys-II, we combine them to Deoxys in this table. NR-
NORX (draft) means the nonce-misuse-resistant version of NORX.

Scheme NI NR Scheme NI NR

3rd-round CAESAR candidates
ACORN [47] t1 + j t1 · j/2 Ketje [12] t2 + j t2 · j/2

AEGIS [50] t2 + j t2 · j/2 Keyak [21] t2 + j t2 · j/2

AES-OTR [37] t1 t1 MORUS [48] t2 + j t2 · j/2

AEZv4 [23] t1 + j t1 · j/2 NORX [5] t2 + j t2 · j/2

Ascon [15] t2 + j t2 · j/2 NR-NORX [5] t2 + j t2 · j

CLOC [24] t1 + j t1 · j OCB [30] t1 t1

COLM [3] t1 t1 + j SILC [24] t1 + j t1 · j

Deoxys [26] t1 + j t1 · j Tiaoxin [40] t2 + j t2 · j/2

JAMBU [49] t1 + j t1 · j/2

Classical schemes
CWC [29] t1 t1 CCM [16] t1 + j t1 + j

EAX [9] t1 + j t1 · j GCM [34] t1 t1

Outline. Section 2 provides necessary preliminaries including our security
notions. Section 3 introduces our classification of generic AE schemes. Section 4
presents the j-IV-CA and a generic security analysis. Section 5 contains possible
remedies to j-IV-CAs and Sect. 6 concludes our work.

2 Preliminaries
We use lowercase letters x for indices and integers, uppercase letters X,Y for
binary strings and functions, and calligraphic uppercase letters X ,Y for sets and
combined functions. We denote the concatenation of binary strings X and Y by
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X ‖Y and the result of their bitwise XOR by X ⊕ Y . We indicate the length of
X in bits by |X|, and write Xi for the i-th block (assuming that X can be split
into blocks of, e.g., n bits). Furthermore, we denote by X � X that X is chosen
uniformly at random from the set X . For an event E, we denote by Pr[E] the
probability of E.

Adversaries and Advantages. An adversary A is an efficient Turing machine
that interacts with a given set of oracles that appear as black boxes to A. We
denote by AO the output of A after interacting with some oracle O. We write
AdvX

F (A) for the advantage A against a security notion X on a function/scheme
F . All probabilities are defined over the random coins of the oracles and those
of the adversary, if any. We write AdvX

F (q, �, t) = maxA{AdvX
F (A)} to refer

to the maximal advantage over all X-adversaries A on a given scheme/function
F that run in time at most t and pose at most q queries consisting of at most
� blocks in total to the available oracles. Wlog., we assume that A never asks
queries to which it already knows the answer, and by O1 ↪→ O2 we denote that
A never queries O2 with the output of O1.

We define as (qE , qD, �, t)-adversary A an adversary that asks at most qE

queries to its first oracle, qD queries to its second oracle, which consist of at
most � blocks in sum, where A runs in time at most t. We define a scheme
Π to be (qE , qD, �, t, ε)-X-secure to a notion X if the maximal advantage of all
(qE , qD, �, t)-X-adversaries on Π is upper bounded by ε. During the query phase,
we say that an adversary A maintains a query history Q collecting all requests
together with their corresponding answer. We write Q|X , if we refer only to all
entries of type X in the query history. For example, Ni /∈ Q|N denotes that the
nonce Ni is not contained in the set of nonces already in the query history.

Nonce-Based AE Schemes. A nonce-based authenticated encryption (nAE)
scheme (with associated data) [43] is a tuple Π = (E ,D) of a deterministic
encryption algorithm E : K×A×N ×M → C×T , and a deterministic decryption
algorithm D : K × A × N × C × T → M ∪ {⊥}, with associated non-empty key
space K, associated data space A ⊆ {0, 1}∗, the non-empty nonce space N , and
M, C ⊆ {0, 1}∗ denote the message and ciphertext space, respectively. We define
a tag space T = {0, 1}τ for a fixed τ ≥ 0. We write EA,N

K (M) and DA,N
K (C, T ) as

short forms of E(K,A,N,M) and D(K,A,N,C, T ). If a given tuple (A,N,C, T )
is valid, DA,N

K (C, T ) returns the corresponding plaintext M , and ⊥ otherwise.
We assume that for all K ∈ K, A ∈ A, N ∈ N , and M ∈ M holds stretch-
preservation: if EA,N

K (M) = (C, T ), then |C| = |M | and |T | = τ , correctness: if
EA,N

K (M) = (C, T ), then DA,N
K (C, T ) = M , and tidiness: if DA,N

K (C, T ) = M 
=
⊥, then EA,N

K (M) = (C, T ), for all C ∈ C and T ∈ T .

Security Notions for Reforgeability. In 2004, Bellare et al. introduced
the two security notions Int-PTXT-M and Int-CTXT-M [7]; however, these
notions capture the setting that an adversary can pose multiple verification
queries for a single forgery. In contrast, we are interested in finding multiple (in
general j ≥ 1) forgeries based on multiple verification queries. In the scenario of
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Algorithm 1. The j-Int-CTXT Experiment.
Experiment j-Int-CTXT
1: K � K
2: Run AE(·),D(·) such that A never queries E ↪→ D
3: if A made j distinct decryption queries (Ai, Ni, Ci, Ti), 1 ≤ i ≤ j such that

DK(Ai, Ni, Ci, Ti) �= ⊥ for all 1 ≤ i ≤ j then return 1

4: return 0

INT-CTXT, an adversary wins if it can find any valid forgery, that is a tuple
(A,N,C, T ) for which the decryption returns anything different from the invalid
symbol ⊥ and which has not been previously obtained by A as response of the
encryption oracle. The j-Int-CTXT security notion, as shown in Algorithm 1,
is derived from INT-CTXT in the sense that A now has to provide j distinct
valid forgeries that all have not been obtained from the encryption oracle. In the
following, we define the j-Int-CTXT Advantage of an adversary.

Definition 1 (j-Int-CTXT Advantage). Let Π = (E ,D) be a nonce-based
AE scheme, K � K, and A be a computationally bounded adversary on Π with
access to two oracles E and D such that A never queries E ↪→ D. Then, the
j-Int-CTXT advantage of A on Π defined as

Advj-Int-CTXT
Π (A) := Pr

[
AE,D forges j times

]
,

where “forges” means that DK returns anything other than ⊥ for a query of
A, and “forges j times” means that A provides j distinct decryption queries
(Ai, Ni, Ci, Ti), 1 ≤ i ≤ j such that DK(Ai, Ni, Ci, Ti) 
= ⊥ for all 1 ≤ i ≤ j.

We define Advj-Int-CTXT
Π (qE , qD, �, t) for the maximal advantage over all

adversaries A on Π that ask at most qE encryption queries, qD decryption
queries, which sum up to at most � blocks in total, and run in time at most t.

3 Classification of AE Schemes
In our work, we consider AE schemes from a general point of view. Therefore, in
comparison to the classification of Namprempre, Rogaway, and Shrimpton [38],
we introduce one additional optional input to the tag-generation step (a key-
dependent chaining value) and further, we distinguish between the message and
the ciphertext being input to the tag generation.

We classify AE schemes according to their inputs to an initialization function
FIV and a tag-generation function FT . Let K,A,N , IV , T ,M, CV, and C define
the key, associated data, nonce, IV, tag, message, chaining-value, and ciphertext
space, respectively. We define three functions FIV , E , and FT as follows:

FIV : K[×A][×N ][×M] → IV,

E : K × IV × M → C[×CV],
FT : K[×CV][×M][×C][×A][×N ] → T ,



Reforgeability of Authenticated Encryption Schemes 25

where A,N ,M, CV , C ⊆ {0, 1}∗, T ⊆ {0, 1}τ , and IV ⊆ {0, 1}∗. The expressions
(sets) given in brackets are optional inputs to the corresponding function, e.g.,
the function FIV must be provided with at least one input (the key K ∈ K),
but is able to process up to four inputs (including associated data A ∈ A, nonce
N ∈ N , and message M ∈ M).

Fig. 1. Generic AE scheme as considered in our analysis.

From this, we introduce a generic classification based on which input is used
in FIV and FT . Note that the encryption algorithm E is equal for all classes
described, i.e., it encrypts a message M under a key K and an IV ∈ IV, and
outputs a ciphertext C ∈ C. However, the authors of [38] distinguished between
IV-based (ivE) and nonce-based (nE) encryption schemes. Such a distinction
is covered by our generalized approach since one can simply assume the only
input to FIV to be the nonce (and the key) and making FIV itself the identity
function, i.e., it forwards the nonce N to the encryption function E . Moreover,
AE schemes built from generic composition can be modelled by setting x3 = 0
and assuming FT to be a PRF-secure MAC (see below for the meaning of x3).

In the following, we encode the combination of inputs as a sequence of eight
bits x0, . . . , x7, where each bit denotes whether an input is used (1) or not (0),
resulting in a total of 28 = 256 possible classes. More detailed, the first three bits
x0, x1, x2 denote whether the associated data A, the nonce N , or the message M
is used as input to FIV , respectively. The bits x3, . . . , x7 denote whether a key-
dependent chaining value CV , M , C, A, or N is used as input to FT , respectively
(see Fig. 1 for a depiction of our generic AE scheme). For example, the string
(11010011) represents FIV : K × A × N → IV and FT : K × CV × A × N → T
as it would be the case for, e.g., POET [2], CLOC, and SILC [24]. Further, we
mark a bit position by ‘*’ if we do not care about whether the specific input is
available or not.

Our next step is to significantly reduce the number of possible classes
by disregarding those that are trivially insecure. First, we can simply discard
24 = 16 classes of the form (00 ∗ ∗ ∗ ∗00), where neither the nonce N nor the
associated data A is considered as input. Similarly, we can exclude 6 · 24 = 96
classes which lack the use of either the nonce or the associated data, i.e.,
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Table 2. Overview of accepted classes. All excluded classes are trivially insecure.

Set of classes Input to FIV Input to FT

(01 ∗ ∗ ∗ ∗10) K × N [×M] K[×CV][×M][×C] × A
(01 ∗ ∗ ∗ ∗11) K × N [×M] K[×CV][×M][×C] × A × N
(11 ∗ ∗ ∗ ∗00) K × A × N [×M] K[×CV][×M][×C]
(11 ∗ ∗ ∗ ∗01) K × A × N [×M] K[×CV][×M][×C] × N
(11 ∗ ∗ ∗ ∗10) K × A × N [×M] K[×CV][×M][×C] × A
(11 ∗ ∗ ∗ ∗11) K × A × N [×M] K[×CV][×M][×C] × A × N

{(01∗∗∗∗00), (01∗∗∗∗01), (10∗∗∗∗00), (10∗∗∗∗10), (00∗∗∗∗01), (00∗∗∗∗10)}.
Finally, since a secure nonce-based AE scheme requires the nonce to influence
at least the encryption step, we can further disregard the 3 · 24 = 48 classes
{(00 ∗ ∗ ∗ ∗11), (10 ∗ ∗ ∗ ∗01), (10 ∗ ∗ ∗ ∗11)} which omit the nonce in the initial-
ization function FIV . As a result, we reduced the number of relevant classes to
96. An overview can be found in Table 2.

4 j-Int-CTXT-Analysis of nAE Schemes
In this section, we introduce a new attack type called j-IV-Collision Attack
(j-IV-CA) as one possible way to analyze the security of a nonce-based AE
scheme regarding to reforgeability. We provide two variants (1) for the nonce-
ignoring (NI; also known as nonce misuse) and (2) the nonce-respecting (NR)
setting.

4.1 j-IV-Collision Attack
The core idea of a j-IV-CA is to (1) assume a first forgery can be found caused
by an internal collision within the processing of the associated data A and/or
the nonce N and (2) to exploit this collision for efficiently constructing j further
forgeries. Depending on the class of an AE scheme, such a collision can occur
during the invocation of FIV , FT , or both.

Due to the character of the attacks presented in this section, we can derive a
set of classes C0 of nAE schemes for which those attacks are trivially applicable.
For all schemes belonging to that class, it holds that neither the message M , a
message/ciphertext-depending chaining CV , nor the ciphertext C influence the
first collision found by our adversary, e.g., if an adversary tries to construct a
collision for the outputs of FIV , the only possible inputs to FIV are either the
nonce N , the associated data A, or both. Therefore, the set C0 contains the
following 22 classes of AE schemes:

C0 = {(110 ∗ ∗ ∗ 0∗), (01 ∗ 0001∗), (11000011), (11000010)}.
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Algorithm 2. j-IV-Collision Attack for nonce-ignoring adversaries.
1: Choose an arbitrary fixed message M
2: Q ← ∅
3: for i ← 1 to t1 do
4: Choose (Ai, Ni) with (Ai, Ni) /∈ Q|A,N

5: Query (Ai, Ni, M) and receive (Ci, Ti).
6: Q ← Q ∪ {(Ai, Ni, M, Ci, Ti)}
7: if Ti ∈ Q|T then
8: Store the tuples (Ai, Ni, M, Ci, Ti) and (Ak, Nk, M, Ck, Tk) for which Ti = Tk

9: break
10: for � ← 1 to j do
11: Choose M� /∈ Q|M
12: Query (Ai, Ni, M�) and receive (C′

�, T
′
�)

13: Q ← Q ∪ {(∗, ∗, M�, ∗, ∗)}
14: Output the forgery (Ak, Nk, C′

�, T
′
�)

Nonce-Ignoring Setting The attack for the nonce-ignoring setting is described
in Algorithm 2. An adversary A starts by choosing a fixed arbitrary message M
and pairs (Ai, Ni) not queried before ((Ai, Ni) /∈ Q|A,N , see Line 4). That builds
up a query (Ai, Ni,M) resulting in an oracle answer (Ci, Ti) which is stored by
A in the query history Q. Once a collision of two tag values Ti and Tk (implying
a collision of two pairs (Ai, Ni) 
= (Ak, Nk))1 was found (Line 7 of Algorithm 2),
A starts to generate j additionally queries with an effort of O(j) (Lines 10–14).
In Lines 6 and 13, the adversary is collecting all tuples queried so far, where in
Line 13 we are only interested in the values of M�, since these are not allowed
to repeat (see Line 11) by the definition of A.

It is easy to observe that A has to use the same nonce twice, i.e., Ni is chosen
in Line 4 and reused in Line 12 of Algorithm 2. Independent from the number
of queries of finding the j additional forgeries, A always (in the nonce-ignoring
as well as in the nonce-respecting setting) has to find a collision for two pairs
(Ai, Ni) 
= (Ak, Nk). That number of queries (denoted by t1 in general, or by t2 if
the scheme employs a wide state of ≥ 2n bits (or ≥ 2τ bits, when referring to the
size of the tag value), see Table 1) always depends on the concrete instantiation
of our generic AE scheme and is usually bounded by at least O(q2/2n) (birthday
bound), where q denotes the number of queries and n the state size in bit. In
Table 4 of Appendix B, the reader can find the security claims of the considered
AE schemes provided by their respective designers.

Nonce-Respecting Setting. The second setting prohibits an adversary from
repeating any value Ni during its encryption queries. Therefore, we introduce a
1 Based on our assumption, the case Ti = Tk can be caused by an internal collision of

the processing of two pairs (Ai, Ni) �= (Ak, Nk). Moreover, since we are considering
the nonce-ignoring setting allowing an adversary for repeating the values Ni, we can
say wlog. That we must have found two associated data values Ai �= Ak leading
to an equal output of the processing of the associated data, e.g., the initialization
vector IV (see Fig. 1).
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Algorithm 3. j-IV-Collision Attack for nonce-respecting adversaries.
1: Choose an arbitrary fixed message block M
2: Q ← ∅
3: for 1 to j do
4: for i ← 1 to t1 do
5: Choose (Ai, Ni) with (Ai, Ni) /∈ Q|A,N

6: Choose Pi with Pi /∈ Q|P
7: Query (Ai, Ni, M ‖ Pi) and receive (C1

i ‖ CPi
i , Ti).

8: Q ← Q ∪ {(Ai, Ni, C
1
i ‖ CPi

i , Ti)}
9: if C1

i ∈ Q|C1 then
10: A outputs the tuples (Ai, Ni, C

1
i ‖ C

Pk
k , Tk) and (Ak, Nk, C1

k ‖ CPi
i , Ti)

11: for which C1
i = C1

k holds
12: goto Step 4

modified version of the j-IV-CA as proposed above. Such an attack works for
all schemes that allow to observe a collision of the outputs of the IV-generation
step by just looking at the ciphertext blocks. Thus, during the first step, we do
not care about finding the first forgery but only about the collision during FIV

as shown in Algorithm 3. This attacks works also for nAE schemes that consider
the associated data Ai only as input to FT . In such a situation, A would leave
Ai constant (or empty when considering FIV ) and would vary only Ni to find a
collision within FIV .

If the number of queries for finding a collision during the processing of the
associated data is given by t1, an adversary requires j · t1 queries in average to
obtain 2 ·j forgeries. Clearly, this attack is weaker than that in the nonce-misuse
setting above, but still reduces the number of queries for finding j forgeries from
j · t1 to 1/2 · (j · t1).

4.2 Security Analysis
For all nAE schemes which belong to C0, there exist a straight-forward argument
that they are insecure in the nonce-ignoring setting. A j-IV-CA, as defined in
Algorithm 2, requires an adversary A to choose j pair-wise distinct messages
M1, . . . ,Mj . Beforehand, we assume A to be successful in finding the first forgery
for two distinct pairs (Ai, Ni) and (Ak, Nk) (Lines 3–9 of Algorithm 2) using t1
queries.

Therefore, the j-IV-CA adversary A queries t1 distinct pairs (Ai, Ni) 
=
(Ak, Nk), together with a fixed message M , until an internal collision leads to
the case Ti = Tk. Since the event of that very first collision does not depend on
the message, a chaining value, and/or the ciphertext (requirement for an nAE
scheme to be placed in C0), we can always choose a new message and still can
ensure the internal collision for the pairs (Ai, Ni) and (Ak, Nk). Then, A only
has to query (Ai, Ni,M�) for a fresh message M� to the encryption oracle and
receives (C ′

�, T
′
�), where it is trivial to see that the pair (C ′

�, T
′
�) will also be valid
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for (Ak, Nk,M�). A then only has to repeat this process for j pairwise distinct
messages M�.

In the case of a nonce-respecting adversary (see Algorithm 3), an internal
collision of the processing of ((Ai) and) Ni is detected by observing colliding
ciphertext blocks (see Line 9). Since the attack requires an internal collision
within the IV-generation step and the nonce Ni must not directly influence the
tag-generation step FT , the nonce Ni must be given as input to FIV , but not to
FT . The associated data Ai can be given as input to FIV , FT , or both. Therefore,
the attack described in Algorithm 3 is applicable to all schemes belonging to the
subset {(11 ∗ ∗ ∗ ∗00), (11 ∗ ∗ ∗ ∗00), (01 ∗ ∗ ∗ ∗10)} of C0.

All remaining 74 classes in the set C1 provide resistance to j-IV-CAs from
a theoretical point of view, i.e., with regard to our generalized AE scheme as
shown in Fig. 1.

C1 = {(01 ∗ 0011∗), (01 ∗ 0101∗), (01 ∗ 0111∗), (01 ∗ 1001∗), (01 ∗ 1011∗),
(01 ∗ 1101∗), (01 ∗ 1111∗), (1100011∗), (1100101∗).(1100111∗),
(1101001∗), (1101011∗), (1101101∗), (1101111∗), (111 ∗ ∗ ∗ ∗∗)}

However, in practice, their security highly depends on the specific instanti-
ation of FIV and/or FT . Due to space constraints, the discussion of concrete
instantiations from the class C1 as well as from C0 when considering classical
nAE schemes and 3rd-round CAESAR candidates, is provided in Appendix C.

5 Countermeasures to j-IV-C Attacks
This section describes two possible approaches for providing resistance to
j-IV-CAs in the nonce-respecting (NR) as well as in the nonce-ignoring (NI)
setting.
Independence of FIV and FT . For realizing that approach, the pair (Ai, Ni)
has to be processed twice. Let FIV (Ai, Ni, ∗) be the IV-generation step of an nAE
scheme processing the tuple (Ai, Ni, ∗), where ‘∗’ denotes that FIV can optionally
process the message M . Usually, it is proven that FIV behaves like a PRF. Fur-
ther, let FT (∗, ∗, ∗, Ai, Ni) be the tag-generation step of an AE scheme processing
the tuple (∗, ∗, ∗, Ai, Ni), where the first three inputs can be the chaining value
CV , the message M , and or the ciphertext C2, and there exists a proof show-
ing that FT also behaves like a PRF. Hence, the corresponding scheme would
have the class (11 ∗ ∗ ∗ ∗11) which belongs to C1. If one can guarantee inde-
pendence between FIV and FT , we can say that the outputs of FIV (Ai, Ni, ∗)
and FT (∗, ∗, ∗, Ai, Ni) are independent random values. Based on that assump-
tion, a simple collision of the form FIV (Ai, Ni, ∗) = FIV (Ak, Nk, ∗) (as required
by the j-IV-CA) does not suffice to produce a forgery since it is highly likely
that FT (Ai, Ni, ∗) 
= FT (∗, ∗, ∗, Ak, Nk) and vice versa. Therefore, this two-pass

2 Note that at least one of the three inputs must be given since else, the tag would be
independent from the message, which would make the scheme trivially insecure.
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processing realizes a domain separation between the IV-generation and the tag-
generation step, providing resistance to j-IV-CAs. One way to achieve that goal
can be to invoke the same PRF twice (for FIV and FT ) but always guarantee dis-
tinct inputs, e.g., FIV (Ai, Ni, ∗, 1) and FT (∗, ∗, ∗, Ai, Ni, 2). Another approach
would be to just use two independent functions.

Wide-State IV. A second approach requires a PRF-processing of the associ-
ated data FIV which produces a wide-state output τ ← FIV (Ai, Ni) with |τ | > n
bit. For example, for |τ | = 2n, a pair (Ai, Ni) would be processed to two inde-
pendent n-bit values τ1 and τ2. Then, one could use τ1 as initialization vector
to the encryption step and τ2 as initialization vector to the tag-generation step.
Therefore, one can always guarantee domain separation between encryption and
tag generation, while remaining a one-pass AE scheme. One possible instantia-
tion for such a MAC (which can be utilized for the processing of the associated
data) is PMAC2x [31].

6 Conclusion
In this work, we followed on the idea of multi-forgery attacks first described by
Ferguson in 2002 and went on with introducing the j-Int-CTXT notion. Fur-
ther on, we introduced a classification of nonce-based AE schemes depending
of the usage of their inputs to the initialization, encryption, and authentication
process, and categorize them regarding to that classification. To allow a system-
atic analysis of the reforgeability of nonce-based AE schemes, we introduced the
j-IV-Collision Attack, providing us with expected upper bounds on the hardness
of further forgeries. During our analysis, we found that (1) no considered nAE
schemes provides full resistance to j-IV-CA, (2) ACORN, AES-OTR (serial),
Ascon, COLM, JAMBU, Ketje, and NORX belong to the class C0, render-
ing them implicitly vulnerable to j-IV-CAs, and (3) Ascon, Ketje, Keyak,
MORUS, NORX, NR-NORX, and Tiaoxin are semi-resistant to j-IV-CAs
since all of them employ a wide state. This has no impact on the applicability
of a j-IV-CA itself, but a wide state hardens the computation of the internal
collision, e.g., if the internal state is of size 2n (wide state) instead of n, a generic
collision can be found in 2n instead of 2n/2. Finally, we briefly proposed two alter-
native approaches which would render an nAE scheme resistant to j-IV-CAs in
the nonce-respecting as well as the nonce-ignoring setting.

A Classification of NRS’14 Schemes
This section shows the eleven “favored” nAE schemes considered by [38] and how
we map them according to our classification. From Table 3, one can observe that
the classes (A1, A7) and (A2, A8) have pairwise the same class according to our
generic nAE scheme. That stems from the fact that we do not follow the dis-
tinction of nAE schemes from [38] regarding to whether the message/ciphertext
can be processed in parallel or if the tag can be truncated. For the scheme N3, it
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Table 3. The eleven “favored” nAE schemes considered by the authors of [38] according
to our classification.

Name & Class [38] Class Sect. 3 Name & Class [38] Class Sect. 3

A1, A1.100111 (01001011) A7, A3.100111 (01001011)
A2, A1.110111 (11001011) A8, A3.110111 (11001011)
A3, A1.101111 (01101011) N1, N1.111 (11100000)
A4, A1.111111 (11101011) N2, N2.111 (01000111)
A5, A2.100111 (01000111) N3, N3.111 (01001011)
A6, A2.110111 (11000111)

holds that E gets the two separate inputs FL(A,N,M) and the nonce N . Since
there is no segregated tag generation for N3 (the tag is part of the ciphertext),
we interpreted FL as FIV and consider FIV to additionally hand over the nonce
N to the encryption E internally in plain.

B Security Claims
In Table 4, we state the security as claimed by the authors of the corresponding
scheme. We denote by τ, n, c, and r the tag length, block length, capacity, and
the rate, respectively.

Table 4. Claimed INT-CTXT bounds. NR = nonce-respecting adversary, NI = nonce-
ignoring adversary, where τ denotes the length of the tag, n the size of the internal
state (usually the block size of the internally used block cipher), and c the capacity for
sponge-based designs.

Scheme NI NR Scheme NI NR

3rd-round CAESAR candidates
ACORN – 2τ JAMBU 22n/2 22n/2

AEGIS – 2τ Ketje – 2min{τ,s}

AES-OTR – 2τ/2 Keyak 2min{c/2,τ} 2min{c/2,τ}

AEZv4 255 255 MORUS – 2128

Ascon – 2τ OCB – 2τ

CLOC 2n/2 2n/2 SILC – 2τ/2

COLM 264 264 NORX – 2|τ |

Deoxys-I – 2τ Tiaoxin – 2128

Deoxys-II 2τ/2 2τ−1

Classical AE schemes
CCM – 2n/2 CWC – 2n/2

EAX – 2n/2 GCM – 2n/2
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C Concrete Instantiations of C1 and C0

The resistance of the classes in C1 to j-IV-CA regarding to our generalized AE
scheme stems from the fact that the message, and/or a chaining value, and/or the
ciphertext affect the generation of the IV or the tag, i.e., is input to FIV and/or
FT . However, if we move from our generalized approach to concrete instantiations
of these classes, i.e., to existing AE schemes whose structure is defined by a
class in C1, we will see that some of those classes do not provide resistance to
j-IV-CAs. However, AE schemes whose classes belong to C0 are vulnerable to
j-IV-CAs in both the NI and the NR setting. In Table 5, we give an overview
of the resistance the considered AE schemes to j-IV-CAs and we additionally
provide a brief discussion for those cases that are not trivially observable. In
addition to the generic j-IV-CAs in this section, we recall stronger multi-forgery
attacks on OCB, AES-OTR, and COLM from the literature in the full version
of this work [19].

Table 5. j-IV-CA-Resistance of the third-round CAESAR candidates and considered
classical AE schemes, in the nonce-ignoring (NI) and the nonce-respecting (NR) set-
ting. ‘•’ indicates resistance, ‘◦’ vulnerability under certain requirements (e.g., the
scheme employs a wide state), and ‘–’ vulnerability. AES-OTR (ser.) means the serial
and (par.) the parallel mode.

Scheme Class NI NR Scheme Class NI NR

3rd-round CAESAR candidates (C0) 3rd-round CAESAR candidates (C1)
ACORN (11011000) – – AEGIS (11011010) ◦ ◦
AES-OTR (ser.) (11001100) – – AES-OTR (par.) (01001110) – –
Ascon (11010100) ◦ ◦ AEZv4 (11011011) – –
COLM (11011000) – – CLOC (11010101) – •
JAMBU (11011000) – – Deoxys-I (01011001) – •
Ketje (11010000) ◦ ◦ Deoxys-II (01011001) – •
NORX (11010100) ◦ ◦ Keyak (01011010) ◦ ◦
Classical AE schemes (C1) MORUS (11011010) ◦ ◦
CCM (01011011) – • NR-NORX (11110100) ◦ •
CWC (01010110) – – OCB (01001010) – –
EAX (01000111) – • SILC (11010101) – •
GCM (01000111) – – Tiaoxin (11011010) ◦ ◦

AEGIS, MORUS, and Tiaoxin. These schemes provide semi-resistance to
j-IV-CAs in the nonce-respecting and the nonce-ignoring setting. This stems
from the fact that they employ very wide states, which are initialized by nonce
and associated data, and which are more than twice as large as the final
ciphertext stretch; therefore, the search for state collisions is at best a task of
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sophisticated cryptanalysis, and at worst by magnitudes less efficient than the
trivial search by querying many forgery attempts. As a side effect, the search
for state collisions is restricted to associated data and messages of equal lengths
since their lengths are used in FT (for that reason, we set the bit x6).

CWC and GCM. In the nonce-ignoring setting, forgeries for CWC and GCM
can be obtained with a few queries. The tag-generation procedures of both modes
employ a Carter-Wegman MAC consisting of XORing the encrypted nonce with
an encrypted hash of associated data and ciphertext. The employed hash are
polynomial hashes in both cases, which is well-known to lead to a variety of
forgeries after a few queries when nonces are repeated.

In the nonce-respecting setting, both CWC and GCM possess security proofs
that show that they provide forgery resistance up to the birthday bound (Iwata
et al. [25] invalidated those for GCM and presented revised bounds which still
are bound by the birthday paradox). However, a series of works from the past five
years [1,41,46] illustrated that the algebraic structure of polynomial hashing may
allow to retrieve the hashing key from forgery polynomials with many roots. The
most recent work by Abdelraheem et al. [1] proposes universal forgery attacks
that work on a weak key set. Thus, a nonce-respecting adversary could find the
hash key and possess the power to derive universal forgeries for those schemes,
even with significantly less time than our nonce-respecting attack.

AES-OTR and OCB. In the nonce-ignoring setting, these schemes are trivially
insecure, as has been clearly stated by their respective authors. We consider OCB
as an example, a similar attack can be performed on AES-OTR if nonces are
reused. A nonce-ignoring adversary simply performs the following steps:

1. Choose (A,N,M) such that M consists of at least three blocks: M =
(M1,M2, . . .), and ask for their authenticated ciphertext (C1, C2, . . . , T ).

2. Choose Δ 
= 0n, and derive M ′
1 = M1 ⊕ Δ and M ′

2 = M2 ⊕ Δ. For
M ′ = M ′

1,M
′
2 and M ′

i = Mi, for i ≥ 3, ask for the authenticated cipher-
text (C ′

1, C
′
2, . . . , T ) that corresponds to (A,N,M ′).

3. Given the authenticated ciphertext (C ′′, T ′′) for any further message (A, N ,
M ′′) with M ′′ = (M1,M2, . . .), the adversary can forge the ciphertext by
replacing (C ′′

1 , C ′′
2 ) = (C1, C2) with (C ′

1, C
′
2).

Therefore, the complexities for j forgeries under nonce-ignoring adversaries are
only t1 (and not t1+j, see Table 1). Because of their structure, there exist nonce-
respecting forgery attacks on AES-OTR and OCB that are stronger than our
generic j-IV-CA. Those can be found in the full version of this work [19].

AEZv4. Since AEZv4 does not separate the domains of (Ai, Ni) for IV and
tag generation, our j-IV-CAs work out-of-the box here. More detailed, nonce and
associated data are parsed into a string T1, . . . , Tt of n-bit strings Ti, and simply
hashed in a PHASH-like manner inside AEZ-hash: Δ ←

⊕t
i=1 Ei+2,1

K (Ti), where
E denotes a variant of four-round AES. The adversary can simply ask for the
encryption of approximately 264 tuples (Ai, Ni,M) for fixed M . Obtaining a col-
lision for this hash (requiring birthday-bound complexity) can be easily detected
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when the message is kept constant over all queries. Given such a hash collision
for (Ai, Ni) and (Ak, Nk), the adversary can directly construct subsequent forg-
eries by asking for the encryption of (Ai, Ni,M

′) and the same ciphertext will
be valid for (Ak, Nk,M ′) for arbitrary M ′.

Deoxys. The nonce-requiring variant of Deoxys, i.e., Deoxys-I, possesses a
similar structure as OCB. Hence, there are trivial multi-forgery attacks with
few queries if nonces repeat:

1. Choose (A,N,M) arbitrarily and ask for (C, T ).
2. Choose A′ 
= A, leave N and M constant and ask for (C ′ = C, T ′). Since the

tag is computed by the XOR of Hash(A) with the encrypted checksum under
the nonce as tweak, the adversary sees the difference in the hash outputs in
the tags: Hash(A) ⊕ Hash(A′) = T ⊕ T ′.

3. Choose (A,N ′,M ′) and ask for (C ′′, T ′′). It instantly follows that for (A′, N ′,
M ′), (C ′′, T ′′′ = T ⊕ T ′ ⊕ T ′′) will be valid.

However, in the nonce-respecting setting, the use of a real tweaked block cipher
that employs the nonce in tweak (instead of the XEX construction as in AES-
OTR and OCB) prevents the attacks shown in [19]; the tag generation seems
surprisingly strong in the sense that an adversary can not detect collisions
between two associated data since the hash is XORed with an output of a fresh
block cipher (because of the nonce is used as tweak) for every query. Therefore,
we indicate that Deoxys-I provides resistance in the nonce-respecting setting.

Deoxys-II is a two-pass mode, i.e., the message is processed twice (1) once
for the encryption process and (2) for the authentication process. In the nonce-
ignoring setting, an adversary can simply fix Ni and vary Ai for finding a collision
for Auth, which renders the scheme vulnerable to j-IV-CAs. Therefore, that kind
of two-pass scheme (in comparison to SIV, where the message is used as input
to FIV ), does not implicitly provide resistance to j-IV-CAs.

NORX. The authors of NORX presented a nonce-misuse resistant version of
their scheme in Appendix D of [5]. NR-NORX follows the MAC-then-Encrypt
paradigm, which yields a two-pass scheme similar to SIV. Therefore, NR-NORX
provides at the least resistance to j-IV-CAs in the NR setting, which renders it
stronger than NORX. However, this security comes at the cost of being off-line
and two-pass.

CCM, EAX, CLOC and SILC. The resistance to j-IV-CAs in the nonce-
respecting setting provided by CCM, EAX, CLOC, and SILC stems from sim-
ilar reasons as for Deoxys-II; the tag is generated by the XOR of the MAC
of the nonce with the MAC of the ciphertext and the MAC of the associated
data. Hence, collisions in ciphertext or header can not be easily detected since
the MAC of a fresh nonce is XORed to it.
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Abstract. Designing a cryptographic scheme with minimal components
is a main theme in cryptographic research. Regarding double-block-
length (DBL) hashing, feed-forward operations are used to avoid attacks
from the blockcipher’s decryption function, whereas Özen and Stam
showed that by using an iterated structure the feed-forward operations
can be eliminated. Precisely, DBL iterated hash functions are collision
resistant up to about 2n query complexity when a blockcipher with n-bit
blocks is used.

Regarding the security of hash functions, pseudorandom-oracle (PRO)
security, which is a stronger security notion than collision resistance, is an
important security criterion of hash functions. Though several DBL hash
functions with PRO security have been proposed, these use feed-forward
operations. Note that Özen-Stam’s hash functions are not secure PROs
due to the length-extension attack. Hence, it remains an open problem
to design a PRO-secure DBL hash function without feed-forward opera-
tions.

In this paper, we show that the feed-forward operations in the PRO-
secure DBL hash function can be eliminated, that is, the simplified
scheme is a secure PRO up to about 2n query complexity. To our knowl-
edge, this is the first time PRO-secure DBL hash function without feed-
forward operations.

Keywords: Double-block-length hash · Blockcipher · Feed-forward
operations · Pseudorandom oracle

1 Introduction

Simplification of Cryptographic Scheme. Designing a cryptographic
scheme with minimal components is a main theme in cryptographic research,
because it offers efficient and/or compact schemes. For example, Even and Man-
sour [5,6] addressed this problem with respect to blockcipher design in 1991.
They were motivated by DESX proposed by Rivest in 1984. DESX was designed
to protect DES against exhaustive search attacks by XOR-ing two independent
prewhitening and postwhitening keys to the plaintext and ciphertext, respec-
tively. In the Even-Mansour (EM) scheme, the keyed blockcipher is eliminated,
where it is replaced with a public random permutation. Another example is
c© Springer International Publishing AG 2017
J. Pieprzyk and S. Suriadi (Eds.): ACISP 2017, Part II, LNCS 10343, pp. 38–57, 2017.
DOI: 10.1007/978-3-319-59870-3 3
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tweakable blockcipher (TBC) design, e.g., the first TBC called LRW2 [22] has
the DESX-style structure, and after that, it has been shown that the blockci-
pher’s key or the output masking can be eliminated [14,16,35].

The same research was done in the area of double-block-length (DBL) hash
design. In this paper, we focus on simplifying DBL-hash constructions.

DBL Hash. DBL hashing is a well-established method for constructing a hash
function with 2n-bit outputs based only on a blockcipher with n-bit blocks.
The idea dates back to the designs of MDC-2 and MDC-4 in 1988 by Meyer
and Schilling [28]. DBL hash functions have an obvious advantage over classical
blockcipher-based functions such as Davies-Meyer and Matyas-Meyer-Oseas, and
more generally the PGV class of functions [1,33,37]: blockciphers with small
blocks can be used such as AES (n = 128) [30] and lightweight blockciphers
(n = 64) e.g., [2,11,36,39], thus implementing both a hash function and an
encryption scheme, one can save its memory size by sharing the blockcipher
algorithm.

A DBL hash function is mainly designed by the following steps: (1) A
collision-resistant DBL compression function (CF) is designed; (2) A DBL hash
function is designed by combining the scheme in (1) with a domain extender that
preserves the collision security, e.g., the (strengthened) Merkle-Damg̊ard [4,27].
In the research of DBL hash design, (1) has been mainly studied.

A well-known approach to construct a DBL CF is to use feed-forward
operations with the aim of avoiding attacks from the blockcipher’s decryp-
tion function [1,33,37]. The following example is Davies-Meyer construction
DM : {0, 1}k ×{0, 1}n → {0, 1}n [33], where a blockcipher E : {0, 1}k ×{0, 1}n →
{0, 1}n with k-bit keys and n-bit blocks is used.

DM(X,Y ) = Y ⊕ E(X,Y ) where Y is feed-forwarded to the output.

Note that the Davies-Meyer construction is a single-block-length scheme, thus
the security is ensured up to 2n/2 query complexity. DBL schemes [7–9,12,18–
21,23,25], in order to avoid the 2n/2 attack, performs a blockcipher twice to
extend its hash size to 2n bit. The following construction is Hirose’s DBL one [12],
where the Davies-Meyer construction is performed twice.

Hirose(X,Y ) = DM(X,Y )‖DM(X,Y ⊕ const)

where k > n and const is an n-bit non-zero constant value. By the DBL con-
struction, the DBL schemes are collision resistant up to 2n query complexity.

Simplification of DBL Hash. As mentioned above, in order to avoid attacks
from the blockcipher’s decryption function, we need to use feed-forward oper-
ations. However, Özen and Stam showed that the attacks can be avoided in
the iteration even the feed-forward operations are absent [31], which is an exten-
sion of Rabin’s mode [34] that is a blockcipher-based single-block-length hashing
mode (defined as Rabin(X,Y ) = E(X,Y ) where X is a message block and Y
is a chaining value). Precisely, the DBL iterated hash functions without the
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feed-forward operations are collision resistant up to about 2n query complexity.
By this simplification, the memory size (or internal state size) and the soft-
ware/hardware size from the feed-forward operations are reduced.

Open Problem. Since the SHA-3 competition, hash functions have been
designed to be a secure pseudorandom oracle (PRO) or indifferentiable from
a random oracle [24]. It can be ensured that PRO-secure hash functions have no
structural flaw up to the proven bound. Indeed, the SHA-2 hash family includes
PRO-secure hash functions, and all hash functions in the SHA-3 family are secure
PROs.

Regarding DBL hashing, several schemes that are secure PROs up to 2n

query complexity have been proposed [13,17,29]. However, these DBL hash func-
tions use the feed-forward operations. Note that the Özen-Stam’s DBL hash
function has the iterated structure, thus is not a secure PRO by a so-called
length-extension attack [3]. Therefore, the next question naturally arises: can we
securely eliminate feed-forward operations in a PRO-secure DBL hash function?

Our Contribution. In this paper, we simplify the PRO-secure DBL hash func-
tion based on Hirose’s CF given in [29], because it is most efficient due to Hirose’s
construction: in each CF evaluation the same blockcipher’s key are inputted to
two blockcipher calls, thus the key scheduling of the blockcipher is performed
only one time. In the previous scheme, Hirose’s CF is iterated, then a finalization
function with two blockcipher calls is used in order to avoid the length-extension
attack. Note that the finalization function does not use the feed-forward oper-
ations. Thus we remove the feed-forward operations in Hirose’s CF. We prove
that the simplified DBL hash function is a secure PRO up to about 2n query
complexity, thus achieving the same level of PRO security as the previous DBL
hash functions.

We next compare our hash function with Özen-Stam’s hash function [31]
with respect to efficiency. For each message block, both hash functions perform
a blockcipher twice. However, after processing message blocks, our hash function
requires two blockcipher calls in order to ensure the PRO-security. Hence, our
hash function is slightly slower than Özen-Stam’s hash function by the finaliza-
tion procedure. Note that Özen-Stam’s hash function is not a secure PRO due
to the length extension attack.

Finally, we note that several hashing modes e.g., [3,15] are secure PROs
where the underling CFs are random oracles, and combinations of these and
Özen-Stam’s hash function, which don’t require the finalization procedure, might
become secure PROs. In order to prove birthday PRO security, one needs to
overcome the PRF/PRP switch regarding the underlying blockcipher. We leave
the proof as an open problem from this paper.

Related Works. It was proved that a DBL hash function with the PBGV
scheme [32] is a secure PRO up to 2n/2 query complexity [10]. This scheme uses
feed-forward operations and does not achieve 2n-PRO security. It were proved
that MDC4 [28] and Mennink’s function [25] are secure PRO up to 2n/4 and



Indifferentiability of Double-Block-Length Hash Function 41

2n/2 query complexities, respectively [26]. These use feed-forward operations
and don’t achieve 2n-PRO security.

2 Notation

Let {0, 1}∗ be the set of all bit strings, {0, 1}n be the set of all n-bit strings,
and ({0, 1}n)∗ be the set of all strings whose length in bits is a multiple of n,
where n is an integer. For a bit string m ∈ ({0, 1}n)∗, we write its partition into
n-bit strings as m1,m2, . . . , ml

n←− m. For a bit string x ∈ {0, 1}n, x[u, v] is a
bit string of x from u-th bit to v-th bit, where 1 ≤ u ≤ v ≤ n. For a bit string
y, x ← y means that y is assigned to x. For a finite set X, x

$←− X means that
an element is sampled uniformly at random from X and is assigned to x. For
finite sets X, Y ← X means that X is assigned to Y , and Y

∪←− X means that
Y ← X ∪ Y . For an integer x, Func(∗, x) denotes the set of all functions from
{0, 1}∗ to {0, 1}x, and Func(x, y) denotes the set of all functions from {0, 1}x to
{0, 1}y. For integers k, n, BC(k, n) denotes the set of all blockciphers with k-bit
keys and n-bit blocks.

3 PRO-Secure DBL Hash Function Without
Feed-Forward Operations

We define a DBLHF without feed-forward operations. Throughout this paper,
a blockcipher with k-bit keys and n-bit blocks is denoted by E ∈ BC(k, n), the
decryption function is denoted by E−1, and the key length is k = 2n.
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Fig. 1. Hash function FE with three message blocks m1‖m2‖m3

3.1 Specification of F

First, a compression function CFE : {0, 1}2n × {0, 1}n → {0, 1}2n is defined as

CFE(ti−1‖bi−1,mi) = E(mi‖bi−1, ti−1)‖E(mi‖bi−1, ti−1 ⊕ [1]n)
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where [1]n = 0n−1‖1. Note that the compression function is Hirose’s one [12]
without feed-forward operations.

Second, a hash function HE : {0, 1}∗ → {0, 1}2n using CFE is defined as
HE(m) = tl‖bl where m1,m2, . . . , ml

n←− pad(m); t0‖b0 ← 0n‖0n;

ti‖bi ← CFE(ti−1‖bi−1,mi) for i = 1, . . . , l.

Here, pad : {0, 1}∗ → ({0, 1}n)∗ is an injective padding function. By HE
0 :

({0, 1}n)∗ → {0, 1}2n, we denote the function HE without pad. Hence HE(m) =
HE

0 (pad(m)).
Next, a finalization function gE : {0, 1}2n → {0, 1}2n is defined as gE(x) =

E(x, [2]n)‖E(x, [3]n) where [2]n = 0n−2‖10 and [3]n = 0n−2‖11.
Finally, our hash function FE : {0, 1}∗ → {0, 1}2n is defined as FE(m) =

gE(HE(m)). By FE : ({0, 1}n)∗ → {0, 1}2n, we denote the function F without
pad. Hence FE(m) = FE(pad(m)). Figure 1 shows the FE construction.

3.2 Security of F

We will prove that FE is a secure pseudo-random oracle (PRO) up to about
2n query complexity. Before giving the security result, we explain the security
notion.

PRO [24]. In this security, the underlying blockcipher is assumed to be an

ideal cipher that is defined as E
$←− BC(2n, n). A random oracle RO is defined

as RO $←− Func(∗, n). The PRO-security game considers the indistinguishability
between a real world and an ideal world. Let D be a distinguisher (algorithm).
In the real world, D interacts with the target hash function FE and an ideal
cipher (E,E−1) for E

$←− BC(2n, n). In the ideal world, D interacts with RO
and a simulator S having access to RO denoted by SRO for RO $←− Func(∗, 2n).
In the PRO-security game, D tries to distinguish between the real world and
the ideal world. Thus the role of the simulator is to simulate an ideal cipher so
that it is consistent with RO as in the real world, that is, the relation between
query-responses for FE and those for (E,E−1) is satisfied in the ideal world.
The advantage function of D is defined as follows. Here, DO ⇒ 1 denotes an
event that D, which interacts with one or more oracles O, outputs 1.

Advpro
FE ,S

(D) = Pr[WorldR] − Pr[WorldI]

where WorldR :=
(
E

$←− BC(2n, n);DFE ,E,E−1 ⇒ 1
)

WorldI :=
(
RO $←− Func(∗, 2n);DRO,SRO ⇒ 1

)

Here, the probabilities are taken over D, E, RO, and S. The security goal is
to prove that for any distinguisher D there exists a simulator S such that the
advantage function is upper-bounded by a negligible probability (the birthday
bound in this paper).
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PRO-Security Bound of F . The upper-bound of the PRO advantage is given
in the following.

Theorem 1. Assume that a distinguisher D makes qL queries to FE of length
in blocks at most � (that is, l ≤ �), qF queries to E, qI queries to E−1, and runs
in time t. Let σ = 2�(qL + 1) + qF + qI be the maximum number of blockcipher
calls by D’s queries. Then for any distinguisher D, there exists a simulator S =
(SE ,SE−1) such that

Advpro
FE ,S

(D) ≤ 48σ2

(2n − 4σ)2
+

10σ + nqI

2n − 4σ
+

(
16eσ

n(2n − 4σ)

)n

.

Here, S makes queries to RO at most qF + qI times and runs in time at most
t + O((qF + qI)2).

The above theorem ensures that FE is a secure PRO as long as (σ, qI) is less
than roughly (2n, 2n/n).

Remark 1. The nqI/2n term comes from the proof technique where in order to
overcome the absence of feed-forward operations, the multi-collision technique
given in e.g., [38] is used (See Sect. 4). However, we have not found out the
attack matching this term. Hence, this bound might not be tight, and proving
the tightness is an open problem from this paper.

4 Proof of Theorem 1

In this proof, we consider the PRO security of FE instead of FE , where in the
PRO-security game, D makes a hash query in ({0, 1}n)∗ to FE . Since FE(m) =
FE(pad(m)), D with access to FE can obtain outputs of FE by making queries
pad(m) to FE . Hence, the PRO-security of FE implies that of FE .

First, we introduce a middle world between WorldR and WorldI. The middle
world uses a hash function Fg,E

1 : ({0, 1}n)∗ → {0, 1}2n defined as Fg,E
1 (m) =

g(HE
0 (m)) for E

$←− BC(2n, n) and g
$←− Func(2n, 2n).

Then our proof consists of the following three steps.

1. Prove that Fg,E
1 is a secure PRO (Lemma 1). Precisely, prove that for any

distinguisher D, there exists a simulator S1 such that the following PRO
advantage is upper-bounded by the birthday bound.

Advpro

Fg,E
1 ,S1

(D) = Pr[World
(1)
M ] − Pr[World

(1)
I ],where

World
(1)
M :=

(
g

$←− Func(2n, 2n);E $←− BC(2n, n);DFg,E
1 ,g,E,E−1 ⇒ 1

)
, and

World
(1)
I :=

(
RO $←− Func(∗, 2n);DRO,SRO

1 ⇒ 1
)

Note that the role of the simulator S1 = (S1g,S1E ,S1E−1) is to simulate
(g,E,E−1) such that it is consistent with RO as in World

(1)
M .
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2. Prove that FE is indifferentiable from Fg,E
1 (Lemma 2). Precisely, prove that

for any distinguisher D, there exists a simulator S2 such that the following
indifferentiable advantage is upper-bounded by the birthday bound.

Advindiff
FE ,Fg,E

1 ,S2
(D) = Pr[WorldR] − Pr[World

(2)
M ], where

World
(2)
M :=

(
g

$←− Func(2n, 2n);E $←− BC(2n, n);DFg,E
1 ,Sg,E,E−1

2 ,E,E−1 ⇒ 1
)

Note that the role of the simulator S2 = (S2E ,S2E−1) is to simulate (E,E−1)
such that it is consistent with Fg,E

1 as in WorldR.
3. Conclude that FE is a secure PRO from Step 1 and Step 2 via the composition

theorem of the indifferentiability [24] up to the proven bounds.

Lemma 1 (Step 1). Assume that a distinguisher D runs in time t and makes
qL queries to Fg,E

1 , qg queries to g, qF queries to E, and qI queries to E−1 such
that the maximum number of message blocks induced by a query to Fg,E

1 is �. Let
αF = 2(�qL + qF ) and α = 2(�qL + qF + qI). For any distinguisher D there exists
a simulator S1 such that

Advpro

Fg,E
1 ,S1

(D) ≤ αF (2αF + 4qI + qg − 4)
(2n − α)2

+
αF + nqI

2n − α
+

(
2eαF

n(2n − α)

)n

.

S makes queries to RO at most qg times and runs in time at most t + O((qF +
qI)qg).

The proof of Lemma 1 is given in Sect. 4.1.

Lemma 2 (Step 2). Assume that a distinguisher D makes qL queries to FE,
qF queries to E, and qI queries to E−1 such that the maximum number of
message blocks induced by a query to L is �. Let βF = 2((� + 1)qL + qF ) and
β = 2((� + 1)qL + qF + qI). For any distinguisher D there exists a simulator S2
such that

Advindiff
FE ,Fg,E

1 ,S2
(D) ≤ 6β

2n − β

S makes queries to g at most qF + qI times, to E at most 2qF + qI times and to
E−1 at most qI times, and runs in time at most t + O(qF + qI).

The proof of Lemma 1 is given in Subsect. 4.2.
Step 3. By the composition theorem of the indifferentiability [24], for any dis-
tinguisher D there exist distinguishers D1 and D2, and a simulator S such that

Advpro
FE ,S

(D) ≤ Advpro

Fg,E
1 ,S1

(D1) + Advindiff
FE ,Fg,E

1 ,S2
(D2).

Putting the upper-bounds of Lemma 1 and of Lemma 2 into the above gives the
upper-bound in Theorem 1. The detail is given in Appendix B.
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4.1 Proof of Lemma 1

A simulator S1 consists of three algorithms S1g,S1E ,S1E−1 that simulate
g,E,E−1, respectively. Let D be a distinguisher which has access to oracles
(L,Rg, RE , RE−1), where (L,Rg, RE , RE−1) = (Fg,E

1 , g, E,E−1) in World
(1)
M , and

(L,Rg, RE , RE−1) = (RO,S1g,S1E ,S1E−1) in World
(1)
I . We denote a query to

RE by (k, x) and the response by y, a query to RE−1 by (k, y) and the response
by x, and a query to g by w and the response by z. Hence, y = RE(k, x),
x = RE−1(k, y), and z = g(w).

Note that the role of the simulator is to simulate g,E,E−1 so that it is
consistent with RO as in World

(1)
M . In World

(1)
M , there is a relation between queries

to L and to Rg, RE , RE−1 with respect to the structure of F1, thus we need a
definition to represent the relation. Let Lqr be a table that keeps query-responses
of RE or of RE−1 that have been defined and that is updated by a query to RE

or RE−1 .

Definition 1 (Block). w
m−→ w′ is a block if ∃(k, x, y), (k′, x′, y′) ∈ Lqr s.t.

w′ = CFRE (w,m), that is, k = k′, x = x′ ⊕ [1]n, w[1, n] = x, m = k[1, n],
w[n+1, 2n] = k[n+1, 2n], and w′ = y‖y′. w and w′ are called “nodes.” Lblock is
a table that keeps all blocks. w is called the first node and w′ is called the second
node.

Definition 2 (Path). 02n m1‖m2‖···‖mi−−−−−−−−−→ wi is a path if ∃02n m1−−→ w1, w1
m2−−→

w2, . . . , wi−1
mi−−→ wi ∈ Lblock. wi is called the “end node.” Lpath is a table that

keeps all paths from Lblock.

• Simulator

The goal of the simulator is to simulate (g,E,E−1) so that it is consistent with
RO as in World

(1)
R , that is, the following relation is satisfied:

∀(02n m−→ w) ∈ Lpath : L(m) = Rg(w). (1)

First S1E : {0, 1}2n ×{0, 1}n → {0, 1}n and S1E−1 : {0, 1}2n ×{0, 1}n → {0, 1}n

are defined. They keep query-response triples in Tqr and keep blocks in Tblock

from Tqr. These tables are initialized by empty sets. In these simulators, an ideal
cipher ES : {0, 1}2n × {0, 1}n → {0, 1}n is implemented by an appropriate way
(e.g., lazy sampling), and the simulator responses are defined by using the ideal
cipher. When a query-response triple of the simulator is defined, the companion
triple is also defined then the corresponding blocks are defined in Tblock. Note
that Tblock equals Lblock, and Tblock equals Lpath.

– S1E(k, x)
1. If ∃(k, x, y) ∈ Tqr then return y
2. y ← ES(k, x); x∗ ← x ⊕ [1]n; y∗ ← ES(k, x∗)
3. Tqr

∪←− {(k, x, y), (k, x∗, y∗)};

Tblock
∪←−

{
x‖k[n + 1, 2n]

k[1,n]−−−→ y‖y∗, x∗‖k[n + 1, 2n]
k[1,n]−−−→ y∗‖y

}
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4. Return y
– S1E−1(k, y)

1. If ∃(k, x, y) ∈ Tqr then return x
2. x ← E−1

S (k, y); x∗ ← x ⊕ [1]n; y∗ ← ES(k, x∗)
3. Tqr

∪←− {(k, x, y), (k, x∗, y∗)};

Tblock
∪←−

{
x‖k[n + 1, 2n]

k[1,n]−−−→ y‖y∗, x∗‖k[n + 1, 2n]
k[1,n]−−−→ y∗‖y

}

4. Return x

Next S1g : {0, 1}2n → {0, 1}2n is defined so that the relation (1) is satisfied, that
is,

∀(02n m−→ w) ∈ Lpath : RO(m) = S1g(w).

To satisfy the relation, for a query w, S1g searches a path with the end node
w by using Tblock. If such path, denoted by 02n m−→ w, is found, the output is
defined by RO(m). Otherwise, it is randomly drawn from {0, 1}2n. S1g keeps
query-responses in Tg which is initialized by an empty set.

– S1g(w)
1. If (w, z) ∈ Tg then return z
2. By using Tblock, search a path with the end node w
3. If such path, denoted by 02n m−→ w, is found then z ← RO(m); Else

z
$←− {0, 1}2n

4. Tg
∪←− (w, z); Return z

In the step 2, a path ending at w can be searched by the following procedure:
(1) find a block with the second node w, denoted by w1

m1−−→ w; (2) find a block
with the second node w1, denoted by w2

m2−−→ w1; (3) repeat this procedure until
such block is not found or a block with the first node 02n is found. Note that if
a collision occurs,1 then S1g determines that a path is not found.

• Upper-Bound of Advpro

Fg,E
1 ,S1

(D)

In order to upper-bound the advantage, the following games are considered,
where in Game i, D has access to oracles (L,Rg, RE , RE−1) that are defined as
follows.

– Game 0: (L,Rg, RE , RE−1) = (Fg,E
1 , g, E,E−1)

– Game 1: (L,Rg, RE , RE−1) = (FRg,RE

1 ,S1g,S1E ,S1E−1)
– Game 2: (L,Rg, RE , RE−1) = (RO,S1g,S1E ,S1E−1)

Note that in Game 1, F
Rg,RE

1 is the function F1 that uses Rg (= S1g) and
RE (= S1E) as the underlying primitives, and S1 has access to RO. Figure 2
shows these games. Let Gi = (L,Rg, RE , RE−1) in Game i. Then we have

1 A collision means that there exist distinct blocks ending at the same node, that is,

u′ m′−−→ u and u∗ m∗−−→ u.
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Fig. 2. Games in the proof of step 1

Advpro

Fg,E
1 ,S1

(D)=(Pr[DG0 ⇒ 1] − Pr[DG1 ⇒ 1]) + (Pr[DG1 ⇒ 1] − Pr[DG2 ⇒ 1]).

Hereafter, these differences are upper-bounded.

Upper − Bound of Pr[DG0 ⇒ 1] − Pr[DG1 ⇒ 1]. Since S1E , S1E−1 , and S1g

behave as E, E−1 and g, respectively, we have Pr[DG0 ⇒ 1]−Pr[DG1 ⇒ 1] = 0.

Upper − Bound of Pr[DG1 ⇒ 1] − Pr[DG2 ⇒ 1]. First we prove that Game 1
and Game 2 are indistinguishable unless one of the following events occurs.

– hitIV+ ⇔ A block
(
u

m−→ v
)

is defined by S1E such that v = 02n.

– hitIV− ⇔ A block
(
u

m−→ v
)

is defined by S1E−1 such that u = 02n.

– hit+ ⇔ When a block
(
u

m−→ v
)

is defined by S1E , there exists a block(
u′ m′

−−→ v′
)

∈ Tblock such that v = u′ or v = v′.

– hit− ⇔ When a block
(
u

m−→ v
)

is defined by S1E−1 , there exists a block(
u′ m′

−−→ v′
)

∈ Tblock which was defined by S1E such that u = v′.

– hitg+ ⇔ When a block
(
w′ m−→ w

)
is defined by S1E , there exists (w, z) ∈ Tg.

Let bad = hitIV+∨hitIV−∨hit+∨hit−∨hitg+. We assume that bad is a monotone
event, that is, firstly bad is false, and if one of the above event occurs, then it
becomes true, and after that it will not be changed.

Lemma 3. Game 1 and Game 2 are indistinguishable as long as bad = false. �

Proof. Assume that bad = false. In Game 1, for a query m, L makes queries to
RE and Rg according to F

Rg,RE

1 (m), whereas in Game 2, L does not make such
queries since L(m) = RO(m). Thus, Game 1 and Game 2 are indistinguishable
as long as the structural difference does not affect D’s behavior, that is, the
following two points are satisfied.
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– Point 1: In Game 1, for any query m, L(m) (= F
Rg,RE

1 (m)) equals RO(m),
since so is in Game 2.

– Point 2: In Game 2, all query-responses of (Rg, RE , RE−1) are consistent with
L as in Game 1 with respect to the structure of F1, since in Game 1, for a
query m L makes queries to Rg, RE according to the evaluation of FRgRE

1 (m).

Thus, we prove that in both games the following claim is satisfied.

∀
(
02n m−→ w

)
∈ Tpath : RO(m) = Rg(w)

If the above relation is true, the above two points are clearly satisfied.
We prove that the above claim is true. By ¬hitIV−, ¬hit− and ¬hit+, for any

path
(
02n m−→ w

)
∈ Tpath, all blocks in the path are defined by S1E . By ¬hitIV+

and ¬hit+, first the first block (with node 02n) is defined, second the next block
is defined, and the following blocks are defined in sequence. By ¬hitg+, the path
02n m−→ w was defined before the query w to Rg is made. By ¬hitIV+ and ¬hit+,
there is no another path with the end node w. Therefore, for the query w to
Rg (= S1g), S1g can find m by the step 2 and defines the output which is equal
to RO(m) by the step 3. Consequently, the above relation is satisfied. ��

Let badi be an event that D sets bad in Game i. Analogously, hitIV+
i , hitIV−

i ,
hit+i , hit−i and hitg+i are defined. The above lemma ensures that Pr[DG1 ⇒
1|bad1] = Pr[DG2 ⇒ 1|bad2]. Hence we have

Pr[DG1 ⇒ 1] − Pr[DG2 ⇒ 1] ≤ max{Pr[bad1],Pr[bad2]}.

The detail transformation of the inequality is given in Appendix A. Since
the numbers of queries to RE and queries to RE−1 in Game 1 are equal to
or greater than those in Game 2 due to additional queries by L, we have
Pr[bad2] ≤ Pr[bad1]. Hence Pr[bad1] is upper-bounded.

By bad1 = hitIV+
1 ∨ hitIV−

1 ∨ hit+1 ∨ hit−1 ∨ hitg+1 , we have

Pr[bad1] ≤ Pr[hitIV+
1 ] + Pr[hitIV−

1 ] + Pr[hit+1 ] + Pr[hit−1 ] + Pr[hitg+1 ].

Hereafter, these probabilities are upper-bounded. Recall that D makes qL, qg,
qF , qI queries to L,Rg, RE , RE−1 , respectively, the maximum number of query
length in blocks to L is �, αF = 2(�qL +qF ) (the maximum number of ES calls in
SE), and α = 2(�qL + qF + qI) (the maximum number of ES calls by all queries).

– Pr[hitIV+
1 ] is upper-bounded. hitIV+

1 implies that for some query to RE (=
SE), the two outputs of ES are equal 0n. Fixing a query, the probability is at
most 1/(2n − α)2. We thus have Pr[hitIV+

1 ] ≤ αF /(2n − α)2.
– Pr[hitIV−

1 ] is upper-bounded. hitIV−
1 implies that some response of E−1

S equals
0n. We thus have Pr[hitIV−

1 ] ≤ qI/(2n − α).
– Pr[hit+1 ] is upper-bounded. At the i-th query to SE , at least 2(i − 1 + qI)

blocks (with 4(i − 1 + qI) nodes) have been defined, and in SE two blocks
are defined. hit+1 implies that for some i-th query to SE , one of two blocks
collide with one of 4(i − 1 + qI) nodes. Since SE is called 0.5αF times, we
have Pr[hit+1 ] ≤

∑0.5αF

i=1 2 × 4(i−1+qI)
(2n−α)2 ≤ 2α2

F+4αF (qI−1)
(2n−α)2 .



Indifferentiability of Double-Block-Length Hash Function 49

– Pr[hit−1 ] is upper-bounded. First a multi-collision event is defined: mcoll ⇔
∃(k1, x1, y1), . . . , (kn, xn, yn) ∈ Tqr such that these triples are defined by ES

and y1 = · · · = yn. Then, we have Pr[hit−1 ] ≤ Pr[hit−1 |¬mcoll] + Pr[mcoll].
First, Pr[hit−1 |¬mcoll] is upper-bounded. Fix i ∈ [1, qI ]. Let u

m−→ v be the
block defined at the i-th query to RE−1 . At the i-th query, the number of

paths u′ m′
−−→ v′ that are defined by SE and that may satisfy u = v′ is at most

n − 1 by ¬mcoll. Hence, we have Pr[hit−1 |¬mcoll] ≤ (n−1)qI
2n−α .

Next, Pr[mcoll] is upper-bounded. By Stirling’s approximation (x! ≥ (x/e)x

for any x), we have Pr[mcoll] ≤ 2n
(
αF

n

) (
1

2n−α

)n

≤ 2n
(

eαF

n(2n−α)

)n

.

Finally we have Pr[hit−1 ] ≤ (n−1)qI
2n−α +

(
2eαF

n(2n−α)

)n

.

– Pr[hitg+1 ] is upper-bounded. Since there are at most qg inputs to Sg, we have
Pr[hitf+1 ] ≤

∑αF

i=1
qg

(2n−α)2 = αF qg
(2n−α)2 .

Summing the above upper-bounds gives

Pr[DG1 ⇒ 1] − Pr[DG2 ⇒ 1]

≤ αF (2αF + 4qI + qg − 4)
(2n − α)2

+
αF + nqI

2n − α
+

(
2eαF

n(2n − α)

)n

.

Conclusion of the Proof. Finally, the above upper-bounds give

Advpro

Fg,E
1 ,S1

(D) ≤ αF (2αF + 4qI + qg − 4)
(2n − α)2

+
αF + nqI

2n − α
+

(
2eαF

n(2n − α)

)n

.

4.2 Proof of Lemma 2

A simulator S2 consists of two algorithms S2E ,S2E−1 that simulate E,E−1,
respectively. Let D be a distinguisher with access to oracles (L,RE , RE−1),
where (L,RE , RE−1) = (FE , E,E−1) in WorldR, and (L,RE , RE−1) =
(Fg,E

1 ,S2E ,S2E−1) in World
(2)
M . We denote a query to RE by (k, x) and the

response by y, and a query to RE−1 by (k, y) and the response by x. Hence,
y = RE(k, x) and x = RE−1(k, y). In this proof, blocks in Definition 1 and paths
in Definition 2 are used. Let Lqr be a set of query-responses of RE and of RE−1 ,
Lblock be a set of blocks defined by Lqr, and Lpath be a set of paths defined by
Lblock.

• Simulator

The goal of simulator is to simulate (E,E−1) so that the following relation is
satisfied (since in WorldR the relation is satisfied):

∀(02n m−→ k) ∈ Lpath : L(m) = RE(k, [2]n)‖RE(k, [3]n).

In World
(2)
M , since L(m) = g(HE

0 (m)), in order to satisfy the above relation, we
define the simulator so that for a query (k, x) to S2E , if x = [2]n (resp., x = [3]n),
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the response is defined so that S2E(k, x) = g(k)[1, n] (resp., S2E(k, x) = g(k)[n+
1, 2n]). Since an output of SE is defined by g or E, a collision in outputs with
the same key of S2E or of S2E−1 might occur, whereas the collision does not
occur in WorldR. We define S2 so that if the collision occurs then S2 aborts. S2
keeps query-responses in Tqr which is initialized by an empty set.

S2E(k, x)

1. If ∃(k, x, y) ∈ Tqr then return y
2. y2‖y3 ← g(k)
3. Tqr

∪←− {(k, [2]n, y2), (k, [3]n, y3)}
4. If y2 = y3 then abort
5. If x = [2]n then return y2
6. If x = [3]n then return y3
7. y ← E(k, x); y∗ ← E(k, x ⊕ [1]n)
8. Tqr

∪←− {(k, x, y), (k, x⊕ [1]n, y∗)}
9. If y = y2, y = y3, y∗ = y2 or

y∗ = y3 then abort
10. Return y

S2E−1(k, y)

1. If ∃(k, x, y) ∈ Tqr then return x
2. y2‖y3 ← g(k)
3. Tqr

∪←− {(k, [2]n, y2), (k, [3]n, y3)}
4. If y2 = y3 then abort
5. If y = y2 then return [2]n
6. If y = y3 then return [3]n
7. x ← E−1(k, y); y∗ ← E(k, x ⊕ [1]n)
8. Tqr

∪←− {(k, x, y), (k, x ⊕ [1]n, y∗)}
9. If x = [2]n, x = [3]n, y∗ = y2 or y∗ =

y3 then abort
10. Return x

• Upper-Bound of Advindiff
FE,Fg,E

1 ,S2
(D)

We consider three games, where in Game i, D has access to oracle (L,RE , RE−1)
defined as follows.

– Game 0: (L,RE , RE−1) = (FE , E,E−1)
– Game 1: (L,RE , RE−1) = (FRE ,S2E ,S2E−1)
– Game 2: (L,RE , RE−1) = (Fg,E

1 ,S2E ,S2E−1)

Figure 3 shows these games. Note that in Game 1, FRE is the function F that
uses RE (= S2E) as the underlying primitives, and S2E has access to E, E−1

and g. Let Gi = (L,RE , RE−1) in Game i. We have

Advindiff
FE ,Fg,E

1 ,S2
(D)

=
(
Pr[DG0 ⇒ 1] − Pr[DG1 ⇒ 1]

)
+

(
Pr[DG1 ⇒ 1] − Pr[DG2 ⇒ 1]

)
.

Hereafter, the two differences are upper-bounded.

Upper − Bound of Pr[DG0 ⇒ 1] − Pr[DG1 ⇒ 1]. In this case, Game 0 and
Game 1 are indistinguishable as long as S2 behaves as an ideal cipher. In S2,
outputs are defined by using E, E−1 or g, thus outputs with the same key might
collide. If the collision occurs, S2 aborts. Thus S2 behaves as an ideal cipher as
long as it does not abort, that is, Pr[DG0 ⇒ 1]−Pr[DG1 ⇒ 1] is upper-bounded
by the probability that S2 aborts in Game 1.

In the following, the abort probability is evaluated. Note that if one of the
following events occurs, then S aborts. Recall that D makes qL, qF and qI queries
to L,RE and RE−1 , respectively, the maximum number of blocks of a query to
L is �, βF = 2((� + 1)qL + qF ), and β = 2((� + 1)qL + qF + qI).
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Fig. 3. Games in the proof of step 2

1. In SE or S−1
E , if y2 = y3, S2 aborts. Since the number of queries to g is at

most 0.5β, the probability that y2 = y3 is at most 0.5β/2n.
2. In SE , if y = y2, y = y3, y∗ = y2 or y∗ = y3, S2 aborts. Since the number of

queries to SE is at most 0.5βF , the probability that y = y2, y = y3, y∗ = y2
or y∗ = y3 is at most 2βF /(2n − β).

3. In SE−1 , if x = [2]n, x = [3]n, y∗ = y2 or y∗ = y3, then S2 aborts. Since
the number of queries to SE−1 is at most qI , the probability that x = [2]n or
x = [3]n is at most 2qI/(2n − β), and the probability that y∗ = y2 or y∗ = y3
is at most 2qI/(2n − β).

Hence the probability that S2 aborts is at most 0.5β+2βF+4qI
2n−β .

We thus have Pr[DG0 ⇒ 1] − Pr[DG1 ⇒ 1] ≤ 0.5β+2βF+4qI
2n−β .

Upper − Bound of Pr[DG1 ⇒ 1] − Pr[DG2 ⇒ 1]. First the following events
are defined, which ensure that Game 1 and Game 2 are indistinguishable unless
one of the events occurs (See Lemma 4).

– abort ⇔ S2 aborts.
– hit23+ ⇔ S2 makes a query to E such that [2]n or [3]n is returned.

Let bad = abort ∨ hit23+ be the sum event. We assume that bad is a monotone
event, that is, firstly bad is false, and if one of the above event occurs then it
becomes true and after that it will not be changed.

Lemma 4. Game 1 and Game 2 are indistinguishable as long as bad = false.

Proof. Assume that bad = false. In Game 1, for a query m, L makes queries
to RE according to FRE (m), whereas in Game 2, L does not such queries since
L(m) = Fg,E

1 (m). Thus, Game 1 and Game 2 are indistinguishable as long as
the structural difference does not affect D’s behavior, that is, the following two
points are satisfied.
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– Point 1: In Game 1, for any query m, L(m) (= FRE (m)) equals Fg,E
1 (m), since

so is in Game 2.
– Point 2: In Game 2, all query-response triples of (RE , RE−1) are consistent

with L as in Game 1 with respect to the structure of F, since in Game 1, for
a query m, L makes queries to RE according to the evaluation of FRE (m).

In order to prove the two points, we show the following claims.

– Claim 1: All blocks of all paths are defined by E (and are not defined by g).
– Claim 2: (w, [2]n, z2), (w, [3]n, z3) ∈ Tqr ⇒ z2‖z3 = g(w).

By the above claims, Point 1 is clearly satisfied. Regarding Point 2, in Game
2, for any path

(
02n m−→ w

)
∈ Tpath, Claim 1 ensures that the inner blocks are

defined by E or E−1, and Claim 2 ensures that for the corresponding pairs
(w, [2]n, z2), (w, [3]n, z3) ∈ Tqr, z2‖z3 = g(w) is satisfied. As a result, L(m) (=
Fg,E
1 (m)) = z2‖z3, that is, all query-response triples of (RE , RE−1) are consistent

with L.
Finally, we show that the above claims are valid. Note that the following

proofs hold in both Game 1 and Game 2. Consider Claim 1. By ¬abort, in S2E−1 ,
all outputs of E−1 don’t equal [2]n and [3]n. By ¬hit23+, in S2E , all outputs of
E don’t equal [2]n and [3]n. Thus, for any path

(
02n m−→ w

)
∈ Tpath, all nodes in

the path don’t equal [2]n and [3]n, thus all nodes in the path are defined by E.
Hence, Condition 1 is satisfied. Next, consider Claim 2. By ¬abort, in S2E−1 , all
outputs of E−1 don’t equal [2]n and [3]n, thus any (w, [2]n, z2), (w, [3]n, z3) ∈ Tqr

are defined by S2E , and by the definition of S2E , (w, [2]n, z2), (w, [3]n, z3) ∈
Tqr ⇒ z2‖z3 = g(w).

��

Let badi be an event that D sets bad in Game i. Similarly, aborti and hit23+i
are defined. By the above lemma, Pr[DG1 ⇒ 1|bad1] = Pr[DG2 ⇒ 1|bad2], thus
we have

Pr[DG1 ⇒ 1] − Pr[DG2 ⇒ 1] ≤ max{Pr[bad1],Pr[bad2]}.

The detail of the transformation for the inequality is given in Appendix A. Since
the numbers of queries to RE and to RE−1 in Game 1 are equal to or greater than
those in Game 2 due to additional queries by L, we have Pr[bad2] ≤ Pr[bad1].
Note that

Pr[bad1] ≤ Pr[abort1] + Pr[hit23+1 ].

The upper-bound of Pr[abort1] is given in the evaluation of Pr[DG0 ⇒ 1] −
Pr[DG1 ⇒ 1], where Pr[abort1] ≤ 0.5β+2βF+4qI

2n−β . Regarding Pr[hit23+], since an
output of E is randomly drawn from at least 2n −β values, we have Pr[hit23+1 ] ≤
βF+qI
2n−β .



Indifferentiability of Double-Block-Length Hash Function 53

Finally, we have

Pr[DG1 ⇒ 1] − Pr[DG2 ⇒ 1] ≤ 0.5β + 2βF + 4qI

2n − β
+

βF + qI

2n − β

=
0.5β + 3βF + 5qI

2n − β
.

Conclusion of the Proof. Finally, the above upper-bounds give

Advindiff
FE ,Fg,E

1 ,S2
(D) ≤ 0.5β + 2βF + 4qI

2n − β
+

0.5β + 3βF + 5qI

2n − β
≤ 6β

2n − β
.

A Upper Bound of Pr[DG1 ⇒ 1] − Pr[DG2 ⇒ 1]

Let Gi =
(
DGi ⇒ 1

)
be an event.

Pr[DG1 ⇒ 1] − Pr[DG2 ⇒ 1] = Pr[G1] − Pr[G2]
= Pr[G1 ∧ bad1] + Pr[G1 ∧ ¬bad1]

− (Pr[G2 ∧ bad2] + Pr[G2 ∧ ¬bad2])
= Pr[G1|bad1] Pr[bad1] + Pr[G1|¬bad1] Pr[¬bad1]

− Pr[G2|bad2] Pr[bad2] − Pr[G2|¬bad2] Pr[¬bad2]

From Pr[G1|¬bad1] = Pr[G2|¬bad2], we have

Pr[DG1 ⇒ 1] − Pr[DG2 ⇒ 1] = Pr[G1|bad1] Pr[bad1] − Pr[G2|bad2] Pr[bad2]
+ Pr[G1|¬bad1] (Pr[¬bad1] − Pr[¬bad2])

= Pr[G1|bad1] Pr[bad1] − Pr[G2|bad2] Pr[bad2]
+ Pr[G1|¬bad1] (Pr[bad2] − Pr[bad1])

≤max{Pr[bad1],Pr[bad2]}.

B Proof of Theorem 1

We show that for any distinguisher D there exist distinguishers D1 and D2, and
a simulator S such that

Advpro
FE ,S

(D) ≤ Advpro

Fg,E
1 ,S1

(D1) + Advindiff
FE ,Fg,E

1 ,S2
(D2),

where

– SRO = (SRO
E ,SRO

E−1) is a simulator of the PRO security of FE ,
– SRO

1 = (S1RO
g ,S1RO

E ,S1RO
E−1) is a simulator of the PRO security of Fg,E

1 , and

– Sg,E,E−1

2 = (S2g,E,E−1

E ,S2g,E,E−1

E−1 ) is a simulator of the indifferentiability of
FE from Fg,E

1 .
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We first transform the advantage Advpro
FE ,S

(D) as follows.

Advpro
FE ,S

(D) = Pr[DFE ,E,E−1 ⇒ 1] − Pr[DRO,SRO
E ,SRO

E−1 ⇒ 1]

=
(

Pr[DFE ,E,E−1 ⇒ 1] − Pr[DFg,E
1 ,S2g,E,E−1

E ,S2g,E,E−1

E−1 ⇒ 1]
)

+
(

Pr[DFg,E
1 ,S2g,E,E−1

E ,S2g,E,E−1

E−1 ⇒ 1] − Pr[DRO,SRO
E ,SRO

E−1 ⇒ 1]
)

We then define S and D1 as

SRO = (SRO
E ,SRO

E−1) = (S2
S1RO

g ,S1RO
E ,S1RO

E−1

E ,S2
S1RO

g ,S1RO
E ,S1RO

E−1

E−1 ) and

DL,Rg,RE ,RE−1
1 = DL,S2

Rg,RE,R
E−1

E ,S2
Rg,RE,R

E−1

E−1

where (L,Rg, RE , RE−1) is either (Fg,E
1 , g, E,E−1) or (RO,S1RO

g ,S1RO
E ,S1RO

E−1).
Then we have

Advpro
FE ,S

(D) ≤
(

Pr[DFE ,E,E−1 ⇒ 1] − Pr[DFg,E
1 ,S2g,E,E−1

E ,S2g,E,E−1

E−1 ⇒ 1]
)

+
(

Pr[DFg,E
1 ,g,E,E−1

1 ⇒ 1] − Pr[DRO,S1RO
g ,S1RO

E ,S1RO
E−1

1 ⇒ 1]
)

We define D2 as DL,RE ,RE−1
2 = DL,RE ,RE−1 where L,RE , RE−1 is either

(FE , E,E−1) or (RO,S2g,E,E−1

E ,S2g,E,E−1

E−1 ). Then we have

Advpro
FE ,S

(D) ≤
(

Pr[DFE ,E,E−1

2 ⇒ 1] − Pr[DFg,E
1 ,S2g,E,E−1

E ,S2g,E,E−1

E−1
2 ⇒ 1]

)

+
(

Pr[DFg,E
1 ,g,E,E−1

1 ⇒ 1] − Pr[DRO,S1RO
g ,S1RO

E ,S1RO
E−1

1 ⇒ 1]
)

=Advpro

Fg,E
1 ,S11

(D1) + Advindiff
FE ,Fg,E

1 ,S2
(D2).

Next Lemma 1 and Lemma 2 are applied into the above inequation. Assume
that D makes queries to L,RE , RE−1 at most qL, qF , qI , respectively, and the
maximum number of message blocks of a query to L is �. In this case,

– D1 makes queries to L,Rg, RE , RE−1 at most qL, qF + qI , 2qF + qI , qI , respec-
tively, and the maximum number of message blocks of a query to L is �,
and

– D2 makes queries to L,RE , RE−1 at most qL, qF , qI , respectively, and the
maximum number of message blocks of a query to L is �.

Let σF = 2(� + 1)qL + qF be the total number of E calls and σ = σF + qI

the total number of (E,E−1) calls. Then, putting the above parameters into
Lemma 1 gives αF = 2(�qL + 2qF + qI), α = 2(�qL + 2qF + 2qI), and then
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Advpro

Fg,E
1 ,S1

(D1) ≤αF (2αF + 4qI + qg − 4)
(2n − α)2

+
αF + nqI

2n − α
+

(
2eαF

n(2n − α)

)n

=
2(�qL + 2qF + qI)(4(�qL + 2qF + qI) + 4qI + (qF + qI) − 4)

(2n − 2(�qL + 2qF + 2qI))2

+
2(�qL + 2qF + qI) + nqI

2n − 2(�qL + 2qF + 2qI)
+

(
2e · 2(�qL + 2qF + qI)

n(2n − 2(�qL + 2qF + 2qI))

)n

≤ (σ + 3qF + qI)(4σ + 7qF + 8qI)
(2n − 4σ)2

+
σ + 3qF + (n + 1)qI

2n − 4σ

+
(

4e(σ + 3qF + qI)
n(2n − 4σ)

)n

≤ 48σ2

(2n − 4σ)2
+

4σ + nqI

2n − 4σ
+

(
16eσ

n(2n − 4σ)

)n

Putting the above parameters into Lemma 2 gives

Advindiff
FE ,Fg,E

1 ,S2
(D2) ≤ 12((� + 1)qL + qF + qI)

2n − 2((� + 1)qL + qF + qI)
≤ 6σ

2n − σ
.

Hence we have

Advpro
FE ,S

(D) ≤Advpro

Fg,E
1 ,S1

(D1) + Advindiff
FE ,Fg,E

1 ,S2
(D2)

≤ 48σ2

(2n − 4σ)2
+

10σ + nqI

2n − 4σ
+

(
16eσ

n(2n − 4σ)

)n

.
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Abstract. We present a new black-box mutational fuzzing technol-
ogy and the corresponding tool which named FFFuzzer to improve the
efficiency of fuzzing towards serveral given suspicious vulnerable code
blocks.

Our main intuition is by adjusting dynamic taint tracing and doing
constraint verification, we can build 2 quite light filters to sieve the
mutated input, which is the result of fuzzing’s mutation stage, thus
FFFuzzer can runs under fuzzing level speed while enjoys better accuracy
and schedulability. We collect 14 CVEs that can get enough details to
generate a POC from the PDF rendering library poppler ’s recent 10 years
bug list as our benchmark to fully analyzes FFFuzzer’s real world chal-
lenges. And we build 2 mathematical models to do performance analysis.
Analysis and experiments show although FFFuzzer has limitations on
fuzzing metadata-related vulnerabilities and its efficiency also depends
on seed file like traditional fuzzer, FFFuzzer has much powerful parallel-
lism and it can run an order of magnitude faster than traditional fuzzer.

Keywords: Black-box fuzzing · Dynamic taint analysis · Constraint
verification

1 Introduction

1.1 Background

Fuzzing [30] is attractive on its simplicity and effectiveness in bug finding. It is
very popular, we can fuzz common software [7,9], network protocol [27], com-
piler [33] and even operating system [19].

The main course of a single fuzzing run is: given a configuration pair (pro-
gram, input), mutate the input by random and test the program. You can repeat
the fuzzing run, deploy fuzzer runs in several machines and once the program
under test behaves strangely, e.g. crash, you may find a bug.

Although fuzzing is shiny, plain black-box fuzzing isn’t always the best
choice for every bug finding scenario. Adjusting fuzzing to improve its efficiency
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under certain application cases is necessary. Considering the following scenario,
a binary analyst has targeted some suspicious vulnerable code block using static
analysis (maybe just simply target the location where calls an unsafe library
function like strcpy), and he wants to get the real buggy one, how best can he
do? How best can black-box fuzzing do?

To the best of our knowledge, except the scope of scheduling fuzzing, we have
3 solutions and each one has its pros and cons.

– Dumb fuzzing. This is the traditional solution but some kind of blindness.
Random mutation of the input doesn’t target any specific suspicious code
block. We have no idea whether suspicious code block is really under testing,
and the redundancy between fuzzing machine is exactly a big thing.

– Taint-based fuzzing. According to BuzzFuzz [12] and TaintScope [32], we
can locate target code block related bytes in seed file using dynamic taint
tracing and only fuzz related bytes. This is a brilliant idea but we find that
neither the evaluation of its real world limitation nor an analysis of perfor-
mance in mathematical way has been shown in previous research, especially
in black-box scenario. Thus this technology needs more usage instructions.

– Symbolic execution based fuzzing. This technology is the most sophis-
ticated one. There are several related research [5,13–15,22]. It has the pon-
tential to traverse every path in the suspicious area. But it is hard to be as
popular as fuzzing because of its complexity and performance issue. And to
avoid several exponential explosion problem, users have to make much efforts
on optimization and use binary analysis to steer the path exploration.

And apparently symbolic execution based fuzzing, which can use path as its
basic scheduling unit, has the best schedulability.

So do we have an integrated option that combines fuzzing’s speed and modern
technology’s accuracy and schedulability? If has, how to achieve it by adjusting
the existing technology? What challenges are waiting for us in the real world
application? And can we quantify the improvement of efficiency comparing with
the dumb fuzzing in a mathematical way?

1.2 Our Approach

To answer the above questions, we focus on black-box mutational fuzzing and
present the new option – FFFuzzer. The triple F in the name means we add 2
filters to standard fuzzing course. We list the brief introduction of the filters as
follows.

– Taint filter. We slightly adjust the taint-based fuzzing, collect taint usage
in the target code block. The meaning of taint usage is similar as target
area related taints in taint-based fuzzing. This filter limits the bytes we can
mutate, i.e. we only fuzz the collected taint usage.

– Constraint filter. The second filter is inspired by symbolic execution based
fuzzing, we set the taint usage as symbolic value and collect their constraints
during the symbolic execution, but we leverage the constraints to generate
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a constraint verifier instead of calling an SMT solver. This filter sieves the
mutated file – we put the mutated input into the verifier, and the real testing
comes if verifier returns true, otherwise we regenerate the mutated input.

FFFuzzer’s filters are light enough to guarantee the fuzzing speed, this means
that the consuming time of a single fuzzing run in FFFuzzer is nearly the same
as traditional fuzzing (and even smaller in some cases).

We collect 14 CVEs from poppler ’s recent 10 years CVE list as our benchmark
to analyze the real world challenges of FFFuzzer. From the analysis of the taint
filter, we learn that not only FFFuzzer but also all the taint-based fuzzers have
problems to handle metadata-related taint propagation. We are the first one use
metadata relation to model taint-based fuzzer’s common drawback and show why
this problem is still hard to handle. And analysis shows the constraint filter can
be further optimized when fuzzing at a specific type vulnerability, we present an
automatic configuration and optimization method on targeting integer overflow
vulnerability.

And we also build 2 mathematical models to analyze the 2 filters’ performance
respectively. Analysis and experiments prove that FFFuzzer can be at least an
order of magnitude faster than dumb fuzzing in finding specific code block’s bug.

The rest of the paper is organized as the following. Section 2 discusses related
work. Section 3 provides an overview of FFFuzzer with a CVE example. Section 4
discusses FFFuzzer in detail. Section 5 analyzes performance of the filters math-
ematically. Section 6 shows the experiment. Section 7 concludes and paints the
future work.

2 Related Work

As we said before, FFFuzzer is an integrated option of the existing technologies.
In this section, we discuss the relations and the differences with the existing
researches. We start from the pointer tainting research of Dynamic Taint Analy-
sis (abbreviated as DTA). And then, we review existing works on DTA directed
fuzzing. Finally, we discuss researches on symbolic execution based fuzzing.

DTA has some issues which are hard to handle in real world application,
roughly speaking, it is the problem of Undertainting and Overtainting [26]. Asia
Slowinska et al. [29] defines what is pointer tainting and use a keylogger program
to prove that how tough realizing an accurate DTA is. Then Tao Bao et al. [1]
and Min Gyung Kang et al. [18] present solutions to the pointer tainting on
source code and binary respectively. Our work base on these researches, but the
problem we summarized is not limited to the pointer tainting.

BuzzFuzz [12] uses DTA to locate regions of input that influence values used
at library calls, which is called taint-based fuzzing which is one of the key com-
ponent of our FFFuzzer. TaintScope [32] is similar as BuzzFuzz but it operates
at binary level and capable of identifying and bypassing checksum checking. But
both of them just ignore pointer tainting problem and haven’t done a mathe-
matical performance analysis. Part of our work can be seen as a completion to
the research of DTA directed fuzzing, let subequent researchers understand this
technology quicker, deeper and more comprehensive.
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A lot of researchers are interested in symbolic execution based fuzzing, e.g.
SAGE [14], BitScope [2], CUTE [28], DART [13], KLEE [5], EXE [6] and so on.
These researches include white-box/black-box fuzzing, symbolic/concolic execu-
tion, and offline/online execution. All of the systems are sophisticated and can
fuzz at a very accurate way. However, symbolic execution based fuzzing needs
much efforts and more computation resources in exchange. And it is difficult to
handle a large scale real world program without additional steering work, e.g.
SmartFuzz [22] and Dowser [15]. FFFuzzer doesn’t like the system mentioned
above. We drop the SMT solver, turn the collected constraints into a verifier and
let whole system running in fuzzing level speed. Hence the difference between
FFFuzzer and the system mentioned above is they are systems in different design
philosophy. FFFuzzer is a new option for researchers and bugfinders.

3 FFFuzzer Overview

3.1 Problem Context Declaration

Before fully introducing our approach, we declare the context of our problem in
this section.

Black-box mutational fuzzing. To simplify the problem we focus on black-
box mutational fuzzing and consider we have a fuzzer like zzuf [20] or BFF [7].
The key difference between mutational fuzzing and generally speaking fuzzing
is mutational fuzzing keeps the file length unchanged. Thus mutation can be
considered as just reverting some bits in the original input. Generally speaking
fuzzing means we can use arbitrary mutation strategy which makes fuzzing hard
to model mathematically [8].

This paper assumes the input is in file format, but the analysis and results
can be extended to other kinds of input directly.

The fuzzing configuration of black-box mutational fuzzing can be seen as
(ρ, ς, γ). ρ represents the program under test, ς represents a seed file and γ
represents the range of mutation ratio, which is the proportion of the amount of
the flipped bits to the input’s bit length.

Target area. Note that our background is there is an analyst, he/she locates
some suspicious code blocks likely to be vulnerable. Code block can be a set
of assembly instructions. Usually, the code blocks you locate for 1 suspicious
target are in a single function and let us call it target area. This paper only does
analysis on single target area scenario but it is quite straightforward to extend
the result in multiple target areas case. And this paper also assumes that we
have the seed file that can reach the target area.

Benchmark. Poppler is a commonly used PDF rendering library [11], and we
collect 14 CVEs of poppler as our benchmark. This is not a full list of poppler ’s
recent 10 years’ bug, but some of them have too few details to generate a POC.
We get details mainly from NVD [24], Mitre [21], Bugzilla [23] and SecurityFo-
cus [31]. We analyze these CVEs, locate their root cause, generate the seedfile
and set the target area manually.
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Fig. 1. Source code of CVE-2010-3704

3.2 Overview with Example

In this subsection we draw the full picture of our approach and use CVE-2010-
3704 [16] as an example to make illustration clearer. Figure 1 shows the source
code of the vulnerability.

Example. The root cause of CVE-2010-3704 is the unsafe use of atoi library
function. atoi(const char * str) parses C-string str interpreting its content
as an integral number, which is returned as a value of type int. This means if
atoi function receives a big number (bigger than the macro INT MAX in limit.h),
atoi may return a negative. This leads code < 0 and thus we can write anything
in the address smaller than encoding.

To reach line 17’s vulnerable code in Fig. 1, the original seed file must have
an embeded Type 1 font program including Encoding Array entry in its dictio-
nary [25].

Note that the target area of this example is the entire FoFiType1::parse()
function and the parse function only wants to get FontName and Encoding info,
it returns immediately when enough info is collected.

Buliding taint filter. First, FFFuzzer treats the whole seed file as initial taints
and do dynamic taint tracing in the byte granularity, which means that every
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Fig. 2. Work flow of FFFuzzer

byte in the seed file has its own taint color. Taints propagate during the execution
and once the program reaches the entry of target area, we start recording used
taints of every executed assembly instruction until the program exits the function.
We say a taint is used if it appears in an instruction’s operator except it is going
to be cleaned. And taint usage represents all used taints collected in the target
area. Note that the taint usage are not only collected from the target area but
also collected from the function it calls during its execution. Taint filter sieves
input by only mutating the byte which its taint color is collected in the taint
usage. As for the example, the original seed file is 13339 bytes. The taint usage we
collected covers 1510 bytes, consists of the parsed part of embeded font program
and a few metadata field like obj’s length, objstm’s N.

Remember that the fuzzing configuration is (ρ, ς, γ). Now it becomes
(ρ, ς, γ, τ) and the new parameter τ represents the taint usage related bytes.
And note that the meaning of γ changes. It becomes the range of the proportion
of the amount of flipped bits to the bit length of taint usage.

Building constraint filter. Second, FFFuzzer reanalyzes the seed file. And
this time it treats the taint usage related bytes as symbolic input, i.e. the 1510
bytes in this example. Like any other symbolic execution system, we deduce new
symbol expression according to the instruction’s operational semantics along the
program’s execution and generate a constraint if a conditional branch’s choose
is influenced by symbol. We stop the execution when it reaches target area
and transform the collected constraints into OCaml source code and compile
the source code to an executable named constraint verifier. Because the verifier
contains all constraints from the program start to the target area, when you input
the mutated taint usage value into the verifier it tells you whether the input can
let program reaches the target area. And the verification speed is much faster
than constraint solving. As for this example, we collect 22679 constraints on the
way to parse, and we turn it into a verifier that has 60 MB size. It can do 100
times of verification in 4 s. And note that setting all taint usage as symbolic and
collect all their constraints is only suitable for a small part of fuzzing target like
this example, we show this simply method here just for an illustration. And we
discuss a more practical usage in Subsect. 4.2.

Constraint filter uses the verifier to determine whether a mutated file is worth
to do real testing. And the fuzzing configuration is changed again – (ρ, ς, γ, τ, υ).
The parameter υ represents the verifier.
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Table 1. Evaluation of taint filter’s capacity

CVE NO. Vulnerability type Fully collected Undertainting type

20082950 Pointer Uninitialization No 1©
20090755 Design Error No 1© 3©
20093603 Integer Overflow Yes

20093604 Integer Overflow Yes

20093606 Integer Overflow Yes

20093608 Integer Overflow Yes

20093609 Integer Overflow Yes

20093938 Buffer Overflow Yes

20094035 Buffer Overflow No

20103704 Unsafe Use of Library Yes

20134472 Race Condition No 4©
20134473 Stack Overflow Yes

20134474 Format String Yes

20158868 Array Overbound Write Yes 1© 3©

Complete course of fuzzing. Figure 2 shows the entire course of FFFuzzer,
the shaded trapezoids are the filters we added and the rectangles are the key
components in traditional fuzzing. The arrows represent input stream and the
fuzzing configuration is commented above the arrows. Filters add new parame-
ters to fuzzing configuration but let mutation be more targeted.

Results. In this example, assuming we have the above fuzzing configuration,
and set γ to the range (0.0165, 0.0331). We do a little modification to BFF [7]
and let it be our fuzzer, use 1 verification process and 1 fuzzing process. The
result shows taint filter let FFFuzzer runs 10 times faster than dumb fuzzing
and then constraint filter sieves nearly half of the mutated input.

4 FFFuzzer Details and Discussion

4.1 Taint Filter

Taint filter is mainly based on the well-known technology – dynamic taint
analysis, thus we skip the technical details to avoid redundancy with existing
researches and only discuss its settings, evaluation and real world challenges.

Settings of taint filter. We see the course of taint filter as 2 parts: taint
propagation and taint collection. Hence we discuss their settings separately.

We recommend setting basic tainting [29] as FFFuzzer’s default propaga-
tion rule. Basic tainting only propagates taints when operation establishes data
dependency between source and destination. Apparently this limits the taint fil-
ter’s capacity, but this is the most suitable choice under existing researches, and
we detail the reason later.
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Fig. 3. Taint propagation model in execution

The recommended setting of taint collection has been emphasized in Sub-
sect. 3.2.

Evaluation with benchmark. Define the minimum crash bit set [17] as a
minimal set of the bits required to be reverted to trigger a bug and let us
abbreviate it as MCBS. One bug may has several independent trigger point
thus has several MCBSs. We see the evaluation of taint filter’s capacity as the
evaluation of whether the collected taint usage is a superset of one of the specific
bug’s MCBS. Table 1 shows the results of testing with our benchmark. The
reason also can be divided into 2 parts – problem in taint propagation and
problem in taint collection.

Problem in taint propagation. Before we deep into the reason, we detail the
conception of advanced tainting first. Advanced tainting is a taint propagation
rule concerning tainted addresses and control-flow taint [26]. It is capable of
propagating taints when operation establishes some specific metadata relation
between operators. Applying advanced tainting accurately is hard because it is
difficult to distinguish whether this operation really builds metadata relation
in binary level. And simply applying advanced tainting surely leads to taint
explosion.

The problem in taint propagation is it is hard to propagate taints accurately
concerning metadata relations.

Figure 3 shows the taint propagation model. Square represents a variable in
execution, and shaded square means the variable is tainted while empty means
it’s clean. The ellipse represents the target area and we collect all used taints
in the ellipse. The circle represents some data out of the scope of our tainting
model. Notice that in the figure we should collect all taints but only catch Tb
finally.

Arrow 1©, 3©, 4© represent 3 types of metadata relation we summarized from
analysis. 1© represents the case destination is source’s metadata, e.g. let #A be
an Array, program calculates the length of #A and stores it into #D. 3© represents
the case source is destination’s metadata, e.g. a string object in PDF file would
be (This is a string), and the parentheses surrounding the content is used
to indicate its string type. Thus let #B be the content and #C be parentheses,
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#C instructs program to parse #B as a String class #E. 4© also represents source
is destination’s metadata but the source is out of the traditional tainting model
hence we can’t mark it as a taint, e.g. time, a key metadata for race condition
bug. Table 1 also records what kinds of metadata relation the failure CVE should
do taint propagation but not.

Theoretically, advanced tainting is capable of fixing the case of 1© and 3© if
we can distinguish which operation really build a metadata relation. M.G. Kang
et al. presents DTA++ [18] that do advanced tainting only in strong condition
checked by constraint solving in black-box scenario. It is a fantastic idea but
we find it is not very suitable in our scenario because of the performance issue.
DTA++ needs us specify a taint and it checks if there exists undertainting in
the taint propagation. Look at Fig. 3, we have no idea to recognize which bytes
in the input is #A or #C. And it would be very time-consuming if we want to
check all taints in the input just assume the length of input file is 2 KB. And we
may have dozens of the seed file. Thus this is not a scalable solution.

Problem in taint collection. The intuition of taint collection is function is
designed to accomplish some specific task, unlike a piece of suspicious code block,
the logic of a function is integrated. Thus the function’s entire taint usage is much
more likely to be a superset of the bug’s MCBS than a code fragment of the
function’s. This assumption usually works well in our experiment except CVE-
2009-4035. The deep reason of the failure is single dynamic trace can’t extracts
the full information of a function, it needs the help of static binary analysis
or many good enough trace or both. Apparently this let FFFuzzer’s capability
depends on the seed file to some extent if there is no additional auxiliary static
analysis.

Note that our collection strategy is not the only choice, you can leverage your
own knowledge about the target to customize your strategy.

4.2 Constraint Filter

The main intuition of constraint filter is by turning the constraint solving into
constraint verification, we can enjoy more accuracy while keeping the fuzzing
level speed. This subsection we first discuss how to use constraint filter better,
then give the key points we learned on building constraint filter.

4.2.1 Practical Usage Discussion
False Negative. Verifier may returns false negative results. It means verifier
may has unnecessary constraints which may let FFFuzzer misses the mutated
input that can expose the vulnerability. Unlike Subsect. 3.2’s dump all constraints
in execution strategy, we maintain a constraint stack along with the program’s
execution and only collect the constraints from the branches of the path from
the program start to the start point of the target area. This strategy reduces a
lot of needless constraints but still has two problems.

Firstly, target area is used for specifying the range of taint collection and for
preventing the constraints of the path from the start of target area to the real
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// b e s t border o f t a r g e t
// area : ∗∗∗∗∗∗∗∗∗∗

{
i f ( x > 0)
{// ∗∗∗∗∗∗∗∗∗∗
// b i g x can l e t bu f
// overbound wr i t e
buf [ x ] = k ;

}// ∗∗∗∗∗∗∗∗∗∗
. . .

}

(a) Buffer Overbound Write

{// ∗∗∗∗∗∗∗∗∗∗
i f ( x == CERTAIN VALUE)
{
// a branch hard to reach ,
// bu f i s u n i n i t i a l i z e d

buf [ x ] = k ;
}
else
{// normal input can reach

. . .
}

}// ∗∗∗∗∗∗∗∗∗∗

(b) Pointer Uninitialization

Fig. 4. Examples of the best division of target area

trigger point from being collected. But when aiming at different type vulnera-
bility, the best target area division strategy is different. For example, in Fig. 4a,
the best division of target area is the trigger point’s nearest branch because
this can let us get maximum constraints on x. But in Fig. 4b, the best division
becomes the function of the trigger point because we need less limitations to let
the mutated x has the possibility to reach the trigger point’s branch. Thus, we
had better choose different division strategy of target area for different fuzzing
target to get the best efficiency.

Secondly, there may still exist unnecessary constraints because we only lever-
age a single execution trace’s information, we don’t know whether the path for-
bade by the branches of this path can also reach the target area and trigger
the bug. This means a better fuzzing result needs additional static analysis or
several valuable seed files.

Filter Ratio. We also need to consider the filter ratio of the verifier – we may not
get enough efficiency benefit when the verifier’s filter ratio is relatively low. We
give an answer about when we can get benefit in Subsect. 5.2 by mathematical
analysis.

Optimization on Integer Overflow. We find constraint filter has more advan-
tages in testing suspicious integer overflow. Suspicious integer overflow usually is
located by giving some sensitive functions or instructions, and then finding which
one can be influenced by user’s input, e.g. there may exists integer overflow vul-
nerability when malloc’s size parameter is tainted. Thus the best division way
of target area is the sensitive instruction’s nearest branch.

The input field related with integer overflow in the seed file (i.e. the taint
usage we located) are actually numbers, and the field can be ASCII or binary
format in a fixed or variable length. We give its main automatic recognization
and optimization method as follows.
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First, we recognize whether the field is in ASCII or binary format. We can
achieve this easily with the help of protocol reverse technology [4], e.g. if a field’s
taint is the parameter of atoi or all the field’s bytes is in the range of 0x30-0x39
and the byte’s value is substracted from 0x30 in the execution, we can say this
field is in ASCII format. And we can add additional filter rules for the ASCII
format field to reject the mutation that contains a byte not in the number range
(0x30-0x39).

Second, we recognize whether the field has a fixed or variable length. We
insert an extra byte at the beginning of the field and do taint propagation again.
The inserted byte is 0x30 or 0x00 according to its format is ASCII or binary. If
the taint propagation result shows all bytes (original field bytes and the extra
byte) are used in the sensitive instruction, e.g. the malloc’s size parameter has
all bytes’ taint colors, we can say this field has a variable length. The intuition is
that a variable length field is distinguished by separators and the inserted byte
hasn’t broken this field’s lexical structure. And even if there is an outside layer’s
length field and the inserted byte breaks its meaning, the parsing program is
still very likely to parse it rightly because the parsing logic for variable length
format input usually has a certain degree of fault tolerance.

Finally, if the field has a variable length, we should enlarge its length to let it
has enough bytes to express big values, e.g. 0xFFFFFFFF (the border value of 32
bit int type) equals 4294967295, it needs 10 bytes in ASCII format. We repeat
the insertion operation described in the second step until the field has enough
bytes or the inserted byte can’t be used together with other bytes of the field in
the sensitive instruction.

4.2.2 Verifier Generation
FFFuzzer mainly does 2 kinds of optimization on verifier’s generation, one is on
constraint generation and the other is on verifier’s source code architecture.

Symbolic expression reusing. During the symbolic execution, FFFuzzer
deduces new symbolic expression and gives them a unique variable name which
called variable definition to prevent the symbolic expression’s length grows explo-
sively. We believe not every variable definition is necessary because we are run-
ning in binary level and there certainly exists semantic redundancy due to the
limitations of assembly language. Thus we create an additional hash table, it
records the mapping from symbolic expression to variable name. We check if the
symbolic expression has already emerged every time before we want to define a
new variable. This technology reduces half of the redundant definition of variable
in our statistics.

Constraint folding. This is a technology SAGE [14] first comes up with.
FFFuzzer is build on the BAP [3] and runs on BIL1. We find that the constraint
formulas we generated contain many reducible constant bit extract operations2

– BAP doesn’t do optimization to the BIL lifted from assembly. This is right
1 BAP’s intermediate language.
2 Bap.Std.Bitvector.extract exn.
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as a default behavior but we should work this out. We model the redundancy
elimination rules to fold constant operation. As a result, constant folding reduce
the whole formulas’ length from 14 MB to 8.9 MB in the example of Subsect. 3.2.

Constraint independence. EXE [6] first presents this technology to reduce
the pressure of SMT solver, and we find it is also useful in verifier generation.
FFFuzzer transforms the constraints to OCaml source codes and compiles them
to an executable. Thus spliting the constraints into exclusive subgroups to get
more but smaller .ml3 file is an attractive idea. In the example of Subsect. 3.2,
the constraints are divided into more than 100 subgroups.

Source code architecture. FFFuzzer choose OCaml as constraint transfor-
mation target language just because we can reuse the library of the core data
structure – BAP’s bitvector instead of finding a similar one in other language.
We find that different source code architecture of verifier has very different per-
formance. Ours is just a feasible one and it is not surprising to see you can design
a better one than ours, and the speed of yours is surely faster if you choose C++
as transformation’s target language.

FFFuzzer keeps the verifier’s architecture as simple as possible to make com-
piler happier. Verifier is designed to do 1 verification per execution. It accepts
this-time-value of the symbols as input and loads them to its inner hashtable.
Then it begins to repeat the course of calculating the variables used by a con-
straint and verifying that constraint. Verifier perpares a hashtable for variables
too. The constraints are verified linearly and it throws exception immediately
once a constraint is unsatisfied, thus returning false is usually faster than return-
ing true because returning true means verifier has finished all constraints’ veri-
fication.

5 Performance Analysis with Mathematical Model

5.1 Taint Filter

To roughly measure the performance enhancement of taint filter, we do the
following assumption and abstraction.

Remember that taint filter’s fuzzing configuration is (ρ, ς, γ, τ). We assume
the target area really contains a bug and the seed file ς is capable of triggering
that bug by flipping bits. We model the fuzzing process as a sequence of Bernoulli
trials. The probability of success is p and success result means the input triggers
the bug. In our model, trigger a bug means the flipped bits is a superset of one of
the bug’s trigger point’s MCBS. Assume there are totally xt independent trigger
points in the file and the taint filter can catch xf of them. And we assume the size
of every trigger point’s MCBS equals hmin, this means the hamming distance
between the seed file with any minimized crash file is hmin. Assume γ is not
a range but a small fixed value, i.e. we revert a fixed amount of bits for every

3 OCaml source code filename extension, like .cpp.
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mutation, let the amount be hmin + ha. Assume lt represents the seed file’s bit
length and lf represents taint usage’s.

For traditional fuzzing, p is marked as pt, for fuzzing with taint filter p is
marked as pf , because γ is small and usually xt is relatively small to lt and lf ,
thus we ignore the case that mutation covers more than 1 MCBS and calculate
their value as:

pt =
xt · (

lt−hmin

ha

)

(
lt

hmin+ha

) , pf =
xf · (

lf−hmin

ha

)

(
lf

hmin+ha

) (1)

Define X as the number of trails we have run to get one success, X obeys
the shifted geometric distribution4. Let E[X] be the expected value of X, then
we get E[X] = 1

p . Define Xt as X for traditional fuzzing, Xf as X for fuzzing
with taint filter, r as the proportion of E[Xt] to E[Xf ], we get:

E[Xt] =
1
pt

, E[Xf ] =
1
pf

, r =
E[Xt]
E[Xf ]

=
pf
pt

Substitute pt and pf , and notice we have the implicit conditions lt ≥ lf > 0
and hmin ≥ 1, r is:

r =
xf · (

lf−hmin

ha

)

(
lf

hmin+ha

) ·
(

lt
hmin+ha

)

xt · (
lt−hmin

ha

) =
xf · (lf − hmin)! · lt!
xt · lf ! · (lt − hmin)!

=
xf

xt
· lt
(lt − hmin)

· (lt − 1)
(lt − hmin − 1)

· · · (lf + 1)
(lf − hmin + 1)

r represents the performance enhancement of taint filter fuzzing towards a
specific target area. And in real world fuzzing case, the inequation lt − lf ≥
hmin + 1 is usually true, thus r can be:

r =
xf

xt
· lt
lf

· (lt − 1)
(lf − 1)

· · · (lt − hmin + 1)
(lf − hmin + 1)

≥ xf

xt
·
(

lt
lf

)hmin

(2)

Notice that three of our assumptions are not always true – trigger a bug
equals mutation bit set is a superset of MCBS, all MCBS’s size equals hmin and
multiple counting when mutation covers more than 1 MCBS in Eq. 1. Last 2
assumptions perform well when the amount of trigger points is low or just 1.
Thus our approximation of r is more accurate when xt is small.

For example, in CVE-2010-3704, the rreal we get from experiments is 9.887,
and xf

xt
= 1, lt = 13339 × 8 = 106712, lf = 1510 × 8 = 12080, hmin = 1, thus

rmath is:

rmath =
106712
12080

≈ 8.834

What’s more, we can analyze the trend of r from Eq. 2. r is an exponential
type expression like k · ab. When taint filter catches more trigger point’s MCBS,
4 Shifted means X’s value starts from 1 not 0, see details in https://en.wikipedia.org/

wiki/Geometric distribution.

https://en.wikipedia.org/wiki/Geometric_distribution
https://en.wikipedia.org/wiki/Geometric_distribution
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k is bigger, and r increases linearly. When the division of the length of seed file
to taint usage is bigger, a is bigger, and r increases in power growth speed. When
the bug is harder to trigger, b is bigger, and r increases exponentially.

5.2 Constraint Filter

To compare performance about fuzzing with or without a verifier, we do the
following abstraction. Consider a single CPU fuzzing machine, it runs every
fuzzing iteration independently. Each iteration can return 3 possible results – 2
failure results and 1 success result. Define the possibility of first failure result as
p1, costing time as t1. And define the second failure result’s p2 and t2 analogously.
Thus the success result’s possibility is (1 − p1 − p2), and we also define the
consuming time as t3. Let the machine’s average running time to get the first
success result be T , we get:

T = p1 · (t1 + T ) + p2 · (t2 + T ) + (1 − p1 − p2) · t3

=
p1 · t1 + p2 · t2 + (1 − p1 − p2) · t3

1 − p1 − p2

The first type failure represents the verifier’s rejection, and the second type
failure represents the situation that mutated input pass the verification but
still can’t trigger the bug. Let the mean time of a single verification be tv, the
mean time of a single iteration without verification be tr. Based on the above
assumption, when fuzzing with no verifier, we get t1 = t2 = t3 = tr, when fuzzing
with a verifier, we get t1 = tv, t2 = t3 = tv + tr, the machine’s average running
time under 2 cases are:

Tno v =
tr

1 − p1 − p2
, Tone v =

tv + (1 − p1) · tr
1 − p1 − p2

Now the performance analysis question becomes a math inequation, i.e. let
Tone v be smaller than Tno v:

Tno v ≥ Tone v ⇔ tr
1 − p1 − p2

≥ tv + (1 − p1) · tr
1 − p1 − p2

⇔ tv
tr

≤ p1

In this inequation, p1 is the rejection possibility of verifier, i.e. the filter ratio
of constraint filter. It is necessary to mention that p1 is not a fixed value, there
has a positive correlation between p1 and the mutation ratio range γ – the more
bits you flips, the more possible the verification fails.

tv depends on the amount of constraints and how better the verifier you
generated. But remember that our verifier contains more than 20000 constraints
only need 0.04 s per run on average.

Different target program has a very different tr. And tr also varies when
testing different kind vulnerability. For example, the tr of a command line tool
like pdftotext is at the same order of magnitudes as tv, but tr of a GUI program
is usually several seconds, it is dozens times bigger than tv. And testing bugs
related to memory allocation is usually slow and often set a dead time like 3 s.
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Thus we should first calculate tv
tr

and p1 using a few tests before fuzzing and
then determine use a second filter or not.

What we analyzed above is under the single CPU fuzzing machine. But we
can leverage constraint filter’s concurrency potential under certain scenarios.
Some program only can run 1 instance in 1 system simultaneously like most
GUI program while we can have several concurrent verification processes. With
the help of multiprocessing, at best case we can ignore the consuming time of
verification and at most save p1·tr

1−p1−p2
time.

6 Experiment

6.1 Implementation and Experiment Setup

We implement our system on BAP platform in approximately 3000 lines of
OCaml. This includes offline taint usage collection module and verifier gener-
ation module. We modify the open source pintool [10] to record offline execution
trace. And our fuzzer is based on BFF and zzuf but do some modification.

Experiments are prepared to verify 2 things, one is the performance issue we
analyzed in Subsect. 5.1, and the other one is the performance enhancement for
constraint filter in finding suspicious integer overflow. Each verification has its
own experiments.

6.2 Taint Filter

We choose several CVEs from our benchmark to verify the taint filter’s perfor-
mance issue. To verify it more comprehensively, we choose 6 CVEs that each
CVE belongs to a different vulnerability type. There are totally 9 types, but
some of them are not suited for this experiment – CVE-2013-4472 belongs to
race condition which is a vulnerability type out of our fuzzing scope and CVE-
2013-4473/4474 are 2 vulnerabilities only triggered by command line input.

For each selected CVE, we manually set its own fuzzing configuration.
Because of the randomness of fuzzing, we do 100 fuzzing campaigns for each
CVE using taint filter fuzzing and traditional mutational fuzzing and compare
the 2 method’s performance using the average result. A fuzzing campaign rep-
resents the whole course of fuzzing – start and repeat fuzzing iteration, find the
specified crash, record crash iteration number and crash time. We write addi-
tional scripts to distinguish whether this crash’s root cause is actually the target
CVE. We adjust the seed file ς and the mutation ratio γ to let fuzzing easier
because finish 100 traditional fuzzing campaigns using a hard to crash seed file is
too time consuming. In this experiment, every fuzzing machine is set as a single
CPU system.

Table 2 shows the related fuzzing parameters and results. Most parameters
are the same meaning as Subsect. 5.1, γ means the mutation ratio range, hmin

means the number of bits needed to be flipped to trigger a crash (it is assumed to
be the same value for all trigger points), x means the number of trigger points,
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Table 2. Taint filter performance evaluation.

CVE NO. γtrad γtaint hmin xf/xt Itrad Itaint Ttrad Ttaint rmath rreal

20082950 0.00000 0.00017 0.00000 0.00290 1 0.6 11,014 808 928 s 78 s 10.2 13.6

20090755 0.00000 0.00084 0.00000 0.01340 1 a 439 249 68 s 43 s (16.0 * a) 1.8

20093604 0.00009 0.00151 0.00560 0.09000 1 1 151,310 1,872 62,319 s 982 s 59.3 80.8

20094035 0.00000 0.00073 0.00000 0.00270 1 1 5,684 1,354 684 s 193 s 3.7 4.2

20103704 0.00000 0.00380 0.00000 0.03310 1 1 25,232 2,552 2,354 s 233 s 8.8 9.9

20158868 0.00000 0.00038 0.00000 0.00390 1 a 19,351 6,614 1,602 s 507 s (10.2 * a) 2.9

I means average triggering iteration number, T means the average triggering
time. Some bug’s xf

xt
is too difficult to calculate because there are many ways

to trigger it, we mark it as a in the table. Apparently a < 1 and we can see
their real performance has gotten very limited enhancement. And during the
experiment, traditional fuzzing usually has a lot of duplicated crashes which are
unrelated with the target bug. That kind of crashes usually are easy to trigger
and need additional time do triage thing.

6.3 Constraint Filter

We use all integer overflow vulnerabilities of our benchmark except CVE-2009-
3606 to test the constraint filter’s performance enhancement. CVE-2009-3606
is excluded because its trigger path is overlapped with CVE-2009-3609 and its
constraint set is a subset of CVE-2009-3609’s.

This experiment is similar as the taint filter’s. We do 100 fuzzing campaigns to
get the average result of taint filter only fuzzing and full FFFuzzer’s fuzzing. We
still set fuzzing machine as a single CPU system but use 1 process do verification
and 1 process do the rest of fuzzing. Verification process do the mutation and
verification work, it can be seen as a producer and the fuzzing process is the
consumer.

Table 3 shows the results. Because we are testing integer overflow and it
is related with memory allocation thus the average running time of 1 fuzzing
iteration is apparently slower than first experiment’s. And due to this, the veri-
fication’s consuming time can be ignored even we do multiprocessing in a single
CPU system. The filter ratio is high even under a low mutation ratio because the
inputs are in ASCII format, thus we have the extra rules to reject the mutation

Table 3. Constraint filter performance evaluation

CVE NO. Mutation ratio Itaint Ifffuzz Ttaint Tfffuzz Filter ratio Performance
enhancement

20093603 (0.00616, 0.09900) 2,351 721 728 s 209 s 0.90 3.26

20093604 (0.00560, 0.09000) 1,872 672 982 s 312 s 0.81 2.79

20093608 (0.01200, 0.13000) 6,554 1,685 4,388 s 1,083 s 0.87 3.89

20093609 (0.01200, 0.13000) 893 390 1,631 s 773 s 0.77 2.29



FFFuzzer: Filter Your Fuzz to Get Accuracy, Efficiency and Schedulability 77

contains byte that is not in range 0x30-0x39. And the reason that the perfor-
mance enhancement doesn’t equal to 1

1−FilterRatio is the extra rules also incur
false negative, e.g. 0xb3 represents 3 and it totally equals 0x33, which represents
the normal 3, in poppler ’s parsing logic.

7 Conclusion

This paper presents a new option for fuzzing towards several suspicious code
block named FFFuzzer. The key point is by locating taint related bytes and doing
constraint verification instead of constraint solving, FFFuzzer can run at fuzzing
level speed but more concentrate on the target. Experiments show FFFuzzer can
run an order of magnitude faster than traditional fuzzer and it can be further
optimized when targeting specific type vulnerability, e.g. the integer overflow.
Besides, we use real world CVEs to evaluate FFFuzzer’s capability. We are the
first one use metadata relation to model the taint-based fuzzer’s drawback and
point out why it is still hard to be solved efficiently and comprehensively in
black-box scenario. And we analyze each filter’s performance mathematically.

Our research on constraint verification is ongoing, in future research, we
would like to release more potential about constraint filter, e.g. finding more
especially suitable vulnerability type or absorbing more assistant technologies to
extend its usage. And realizing white-box scenario’s FFFuzzer is also promising,
we may generate a super lightweight verifier that may only contain thousands
of lines of code with the help of compiler.

References

1. Bao, T., Zheng, Y., Lin, Z., Zhang, X., Xu, D.: Strict control dependence and its
effect on dynamic information flow analyses. In: Proceedings of the 19th Inter-
national Symposium on Software Testing and Analysis, ISSTA 2010, pp. 13–24.
ACM, New York (2010). http://doi.acm.org/10.1145/1831708.1831711

2. Brumley, D., Hartwig, C., Kang, M.G., Liang, Z., Newsome, J., Poosankam, P.,
Song, D., Yin, H.: Bitscope: automatically dissecting malicious binaries (2007)

3. Brumley, D., Jager, I., Avgerinos, T., Schwartz, E.J.: BAP: a binary analysis plat-
form. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
463–469. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 37

4. Caballero, J., Yin, H., Liang, Z., Song, D.: Polyglot: automatic extraction of proto-
col message format using dynamic binary analysis. In: ACM Conference on Com-
puter and Communications Security, CCS 2007, Alexandria, Virginia, USA, pp.
317–329, October 2007

5. Cadar, C., Dunbar, D., Engler, D.: Klee: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation, OSDI
2008, pp. 209–224. USENIX Association, Berkeley (2008). http://dl.acm.org/
citation.cfm?id=1855741.1855756

6. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: Exe: automat-
ically generating inputs of death. Acm Trans. Inform. Syst. Secur. 12(2), 1–38
(2008)

http://doi.acm.org/10.1145/1831708.1831711
http://dx.doi.org/10.1007/978-3-642-22110-1_37
http://dl.acm.org/citation.cfm?id=1855741.1855756
http://dl.acm.org/citation.cfm?id=1855741.1855756


78 F. Jiang et al.

7. CERT/CC: Bff. https://www.cert.org/vulnerability-analysis/index.cfm, basic
Fuzzing Framework

8. Cha, S.K., Woo, M., Brumley, D.: Program-adaptive mutational fuzzing. In: 2015
IEEE Symposium on Security and Privacy, pp. 725–741, May 2015

9. Eddington, M.: Peach fuzzer. http://www.peachfuzzer.com, grammar based fuzzer
10. feseal: Pin tracer - a tracer based on pin: Intels dynamic binary instrumentation

engine (2016). https://github.com/BinaryAnalysisPlatform/bap-pintraces
11. Freedesktop: Pdf rendering library. https://poppler.freedesktop.org/
12. Ganesh, V., Leek, T., Rinard, M.: Taint-based directed whitebox fuzzing. In: Pro-

ceedings of the 31st International Conference on Software Engineering, ICSE 2009,
pp. 474–484. IEEE Computer Society, Washington, DC (2009). http://dx.doi.org/
10.1109/ICSE.2009.5070546

13. Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random test-
ing. SIGPLAN Not. 40(6), 213–223 (2005). http://doi.acm.org/10.1145/1064978.
1065036

14. Godefroid, P., Levin, M.Y., Molnar, D.: Sage: whitebox fuzzing for security test-
ing. Commun. ACM 55(3), 40–44 (2012). http://doi.acm.org/10.1145/2093548.
2093564

15. Haller, I., Slowinska, A., Neugschwandtner, M., Bos, H.: Dowsing for overflows: a
guided fuzzer to find buffer boundary violations. In: Usenix Conference on Security,
pp. 49–64 (2013)

16. Hoger, T.: Array indexing error in xpdf. https://bugzilla.redhat.com/show bug.
cgi?id=638960, bug track in bugzilla

17. Householder, A.: Well theres your problem: Isolating the crash-inducing bits in a
fuzzed file. Technical report CMU/SEI-2012-TN-018, Software Engineering Insti-
tute, Carnegie Mellon University, Pittsburgh, PA (2012). http://resources.sei.cmu.
edu/library/asset-view.cfm?AssetID=28043

18. Kang, M.G., Mccamant, S., Poosankam, P., Song, D.: Dta++: dynamic taint analy-
sis with targeted control-flow propagation. In: Network and Distributed System
Security Symposium, NDSS 2011, San Diego, California, USA, February 2011

19. eSage Lab: Ioctl fuzzer. https://github.com/Cr4sh/ioctlfuzzer, windows NT kernel
fuzzer

20. Labs, C.: zzuf. http://caca.zoy.org/wiki/zzuf, multi-purpose fuzzer
21. MITRE: Cve: Common vulnerabilities and exposures. https://cve.mitre.org/, the

Standard for Information Security Vulnerability Names
22. Molnar, D., Li, X.C., Wagner, D.A.: Dynamic test generation to find integer bugs

in x86 binary linux programs. In: Proceedings of the Usenix Security Symposium,
Montreal, Canada, 10–14 August 2009, pp. 67–82 (2009)

23. Mozilla: Web-based general-purpose bugtracker and testing tool. https://bugzilla.
mozilla.org/

24. NVD: National vulnerability database. https://nvd.nist.gov/home.cfm, automat-
ing vulnerability management, security measurement, and compliance checking

25. Press, A.: Adobe Type 1 Font Format, 1st edn. Addison-Wesley Longman Pub-
lishing Co. Inc., Boston (1990)

26. Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In: 2010 IEEE Symposium on Security and privacy (SP), pp. 317–331.
IEEE (2010)

27. Sec, I.: Spike fuzzer. https://www.blackhat.com/presentations/bh-usa-02/bh-us-
02-aitel-spike.ppt, network protocol fuzzer

https://www.cert.org/vulnerability-analysis/index.cfm
http://www.peachfuzzer.com
https://github.com/BinaryAnalysisPlatform/bap-pintraces
https://poppler.freedesktop.org/
http://dx.doi.org/10.1109/ICSE.2009.5070546
http://dx.doi.org/10.1109/ICSE.2009.5070546
http://doi.acm.org/10.1145/1064978.1065036
http://doi.acm.org/10.1145/1064978.1065036
http://doi.acm.org/10.1145/2093548.2093564
http://doi.acm.org/10.1145/2093548.2093564
https://bugzilla.redhat.com/show_bug.cgi?id=638960
https://bugzilla.redhat.com/show_bug.cgi?id=638960
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=28043
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=28043
https://github.com/Cr4sh/ioctlfuzzer
http://caca.zoy.org/wiki/zzuf
https://cve.mitre.org/
https://bugzilla.mozilla.org/
https://bugzilla.mozilla.org/
https://nvd.nist.gov/home.cfm
https://www.blackhat.com/presentations/bh-usa-02/bh-us-02-aitel-spike.ppt
https://www.blackhat.com/presentations/bh-usa-02/bh-us-02-aitel-spike.ppt


FFFuzzer: Filter Your Fuzz to Get Accuracy, Efficiency and Schedulability 79

28. Sen, K., Marinov, D., Agha, G.: Cute: a concolic unit testing engine for C. In:
Proceedings of the 10th European Software Engineering Conference Held Jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ESEC/FSE-13, pp. 263–272. ACM, New York (2005). http://doi.acm.
org/10.1145/1081706.1081750

29. Slowinska, A., Bos, H.: Pointless tainting? evaluating the practicality of pointer
tainting. In: Proceedings of the 4th ACM European Conference on Computer Sys-
tems, EuroSys 2009, pp. 61–74. ACM, New York (2009). http://doi.acm.org/10.
1145/1519065.1519073

30. Sutton, M., Greene, A., Amini, P.: Fuzzing: Brute Force Vulnerability Discovery.
Addison-Wesley Professional, Amsterdam (2007)

31. Symantec: Online computer security news portal and purveyor of information secu-
rity services. http://www.securityfocus.com/

32. Wang, T., Wei, T., Gu, G., Zou, W.: Checksum-aware fuzzing combined with
dynamic taint analysis and symbolic execution. ACM Trans. Inf. Syst. Secur. 14(2),
15:1–15:28 (2011). http://doi.acm.org/10.1145/2019599.2019600

33. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in
c compilers. SIGPLAN Not. 46(6), 283–294 (2011). http://doi.acm.org/10.1145/
1993316.1993532

http://doi.acm.org/10.1145/1081706.1081750
http://doi.acm.org/10.1145/1081706.1081750
http://doi.acm.org/10.1145/1519065.1519073
http://doi.acm.org/10.1145/1519065.1519073
http://www.securityfocus.com/
http://doi.acm.org/10.1145/2019599.2019600
http://doi.acm.org/10.1145/1993316.1993532
http://doi.acm.org/10.1145/1993316.1993532


Splitting Third-Party Libraries’ Privileges
from Android Apps

Jiawei Zhan1,2,3, Quan Zhou1,2, Xiaozhuo Gu1,2, Yuewu Wang1,2(B),
and Yingjiao Niu1,2

1 Data Assurance and Communication Security Research Center,
CAS, Beijing, China

2 Institute of Information Engineering, CAS, Beijing, China
wangyuewu@iie.ac.cn

3 University of Chinese Academy of Sciences, Beijing, China

Abstract. Third-party libraries are very prevalent in the development
of Android Apps. However, the wide use of third-party libraries may
cause potential violations on user’s privacy. In the original Android per-
mission mechanism, host Apps share all permissions with their third-
party libraries. Moreover, the details of most third-party libraries are not
very clear to developers and malicious code may be contained. With priv-
ileges and malicious code, the attack may be conducted. In this paper, we
present a novel privilege splitting mechanism for the third-party libraries
in Android Apps. Different from other similar approaches, our system
makes full use of the original permission mechanism to minimize the
attack surface and the impact on Android system. Since the lightweight
customization on Android, our system can be easily adapted to both
Dalvik and ART (Android Runtime) virtual machines. We deployed a
prototype on a real Android device and evaluated it’s compatibility, effec-
tiveness and performance. The experiment results show that our system
is compatible with existing Apps, splits the third-party libraries’ priv-
ileges effectively according to the given policies, and works well with
negligible performance overhead.

Keywords: Android · Third-party library · Privilege splitting ·
Fine-grained

1 Introduction

Nowadays, third-party libraries are very widely used by the developers to imple-
ment interesting functions in a more cost-efficient way. For example, through
including a map library [1], a developer may complete a Location Based Ser-
vices (LBS) App with only a small amount of code. There are also lots of other
prevalent third-party libraries, such as game engine [2], advertisement [3], image
processing [4], User Interface (UI) [5], and so on. Unfortunately, third-party
libraries may become an appropriate channel for the propagation of mobile mali-
cious code. Generally, the details of third-party libraries are not very clear to
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J. Pieprzyk and S. Suriadi (Eds.): ACISP 2017, Part II, LNCS 10343, pp. 80–94, 2017.
DOI: 10.1007/978-3-319-59870-3 5



Splitting Third-Party Libraries’ Privileges from Android Apps 81

the App developers, thus various malicious code may be contained and packaged
into legitimate Apps unconsciously.

Android provides permission mechanism to restrict the access of system
resources and mitigate the attacks. However, permission mechanism only pro-
vides access control at App level and cannot enforce special policies on the
third-party libraries. The check procedure of Android permission mechanism is
based on an App’s UID [6]. Every App will be allocated to a unique UID during
its installation. As a part of Apps, third-party libraries share the same UID with
their host App, and inherit all the permissions. Potential malicious code which
hidden in the third-party libraries may use these privileges to access sensitive
resources and carry out attacks.

More and more attention has been paid on mitigating the privacy risks posed
by the third-party libraries. A great deal of previous works [7,8] load the third-
party libraries into a standalone process space, and assign the process with a new
UID. Inter-Process Communication (IPC) channel has been introduced between
host App and these libraries, therefore host App can work well even divided into
different processes. Through these mechanisms, special permission polices can be
enforced on the third-party libraries. In those methods, considerable modifica-
tion on the host App is required. The other methods implement in-App privilege
regulation through extending the Android permission mechanism. For example,
FLEXDROID [9] introduces a new mechanism (inter-process stack inspection)
to identify the source of a system resource access, and enforce different access
control policies. These approaches are mainly implemented based on the Dalvik
VM, and cannot work well on ART. However, Dalvik has been replaced by ART
in Android 5.0 or higher version. According to the data provided by Google [10],
64.8% of Android devices run on ART VM by the end of February 2017. There-
fore, it is critical that we should take ART into consideration.

In this paper, a fine-grained privilege splitting scheme on third-party libraries
is presented. Different from existing solutions, we take full advantages of the
permission mechanism to minimize the impact on Android system and adapt
our scheme to both Dalvik and ART virtual machines. The key challenge of our
scheme is to distinguish the source of a system API call at library level. The
library call sequences are stored in the stack of a thread, and can be obtained by
the host App process. However, the permission check occurs at an independent
system server process. It must be ensured that the stack information of a system
call could be transmitted from host App to the permission check point in a
trustworthy way. Furthermore, multi-thread and dynamic Java code execution
are very popular [9], which may break the permission policy on third-party
libraries. It is also important to ensure that our scheme works effectively in such
situations.

In our work, we modified the Android system libraries to make sure that
the stack information could be fetched by every specific Android API when it
is invoked by the host App. Then, we reused the existing service communica-
tion channel, so that stack information is packed into a Parcel package with the
request parameters, and sent to the permission check point to support library-level
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permission check. We also extended the thread creation and dynamic class loading
mechanism to ensure that our library level permission control may not be bypassed
through these dynamic features. The PackageManageService (PMS) is modified
to make sure that the library-level permission check may be performed in a similar
way as the App level permission check. Finally, we implement our prototype and
evaluate its effectiveness and performance.

In summary, we make the following contributions in this paper.

– Based on the features of Android system, we present a novel privilege splitting
mechanism to enforce a fine-grained control on third-party libraries. Most of
our extensions are implemented based on the original system modules, and
only few mechanisms are newly introduced. Therefore, the potential attack
surface of our scheme and its impact on the whole system are minimized.

– Our scheme is well compatible with existing Apps. Since we treated dynamic
features carefully, App developers can use multi-thread, dynamic class load-
ing and reflection technologies without any restrictions. In addition, we also
extended PMS to make the privileges of third-party libraries can be config-
ured in the same way as the whole App.

– Our system is the first libraries’ privilege splitting scheme that can work
well on both Dalvik and ART, thus can be deployed on the newer version of
Android. We developed a prototype system and evaluated its effectiveness and
efficiency. The results show that our scheme can effectively split the third-
party libraries from their host App with an ignorable impact on Android
system.

The remainder of this paper is organized as follows. Section 2 introduces nec-
essary background knowledge. Section 3 presents the system design. A prototype
implementation is detailed in Sect. 4. Section 5 discusses the evaluation of our
system. We describe related works in Sect. 6. Finally, we conclude this paper in
Sect. 7.

2 Background

2.1 Third-Party Libraries

App development often relies on various libraries. The libraries provided by the
Android system are called as system libraries while the libraries developed by
other people or organizations are called as third-party libraries. Third-party
libraries can be used by Apps in the same way as system libraries. However,
contrast to third-party libraries, system libraries are more trustworthy. Moreover,
most Android framework APIs are implemented in system libraries.

According to the way of realization, third-party libraries may be classified
into two types: Java libraries and native libraries. Java libraries are compiled
into bytecode and executed on the virtual machine provided by Android system.
Meanwhile, as a Linux-based operating system, Linux dynamic library is well
supported in Android. Native libraries are often written in C/C++ and compiled
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into Linux shared objects (.so). Native libraries are usually called by Java code
through Java Native Interface (JNI). With the help of JNI, we can create a
specific Java class for a native library, so that host App may access the functions
of the native library through this class.

2.2 The Dynamic Features of Third-Party Libraries

In addition to traditional techniques like callback, class inheritance and JNI,
there are also many dynamic features in Java programming language including
reflection, multi-thread and dynamic code generation.

The wide use of these techniques in current Apps improves the efficiency and
flexibility for App development, but also brings new challenges in distinguishing
the boundaries between the third-party libraries and their host App. Reflection
allows Java code to dynamically modify the access specifiers of member variables
and methods at runtime, thus breaks the original encapsulation. Multi-thread
allows Apps to execute tasks by creating a lot of new threads. However, the
child thread will lose the stack information of its parent thread. Dynamic code
generation can dynamically create a new class and load it to VM using class-
loader, which compromises the code integrity of the third-party libraries. These
dynamic features should be considered when implementing a fine-grained access
control on third-party libraries.

2.3 UID Based Access Control in Android

There are many system resources in Android, including location, SMS, contacts,
etc. All of these resources are protected by permission mechanism. Developers
apply for permissions in a file called AndroidManifest.xml which is packed as a
part of Android package. When an App is being installed, the requested per-
missions will be extracted from AndroidManifest.xml and displayed to the user.
The user can decide to accept all permission requests or reject them (Starting
with Android 6.0, permissions are requested and granted to Apps at runtime
rather than installation time). If the permission requests are accepted, PMS will
store these permission information in a system file named Package.xml and index
them by App’s UID. When Android system is booted, these information will be
loaded into the process space of PMS for subsequent permission check.

When an App wants to access protected resources through system APIs,
a request will be sent to the corresponding system service provider through
binder mechanism. Once receiving the request, the service will communicate with
permission checking related service to verify whether corresponding permission
is granted to this App according to its UID. Instead of using the system APIs
directly, some Apps may access system resources through abnormal ways such
as native code, this problem may be solved by [8] and is not considered in this
paper.
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3 System Design

The system architecture is shown in Fig. 1. The white rectangle is a component
that already exists in Android system, the gray part indicates an extended com-
ponent, the rounded rectangle dedicates an existing component that has been
modified. Our system is composed of five components that scatter in different
processes and cooperate to enforce fine-grained access control on third-party
libraries. The details of each component are described below.

Fig. 1. System architecture

Policy Configuration Interface. App developers are the best candidate for
policy configuration on third-party libraries, because they have a clear under-
standing of what privileges should be granted to a library. In order to be compat-
ible with the existing permission configuration, the interface is also implemented
as statements in AndroidManifest.xml. The only difference is that the permission
statements for libraries are marked with new tags. PMS is extended to be able to
parse and extract the libraries’ permissions. Since the permissions of the third-
party libraries cannot go beyond the scope of their host App, the user’s approval
on the corresponding statements are no longer required. Thus, our system makes
no difference on user’s experience.

Runtime Information Extractor. In order to implement a fine-grained per-
mission control, it is necessary to identify the source of a request at library level.
The stack information contains the calling sequences of all libraries. Thus, we
can get the call traces of an system API clearly through the runtime stack infor-
mation. As described in Sect. 2, both host App and third-party libraries access
system resource via APIs implemented in various system libraries. Therefore,
by extending the system libraries, we can extract the stack information when a
system API is called.
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Efficient Transmitting Channel. Binder is a mechanism for inter-process
communication and widely used in the Android system. The communication
between system services and Apps is implemented based on binder. Our scheme
implements the stack information transmitting based on the extending of service
access. In the Java layer, the service request data will be packed in the form of
Parcel package before being transmitted to service provider. By extending the
calling procedure of Android service access communication, we can implement
an efficient channel between stack information extractor and permission checker.

Library Permission Checker. This component is introduced in system server
process to complete permission check at library level. Library permission checker
is serial connected to the original permission checker. After receiving a check
request from a system service, the original permission checker will first work
based on the App’s UID. If passed, library permission checker will be called
based on the stack information contained in the request and the related policies
configured by developers.

Dynamic Permission Manager. The dynamic features of Java programming
language may disturb the library sequences of stack information. The child
thread’s stack information will be cleared during its creation, this may cause the
loss of parent thread’s library calling sequences. In addition, libraries can create
and use a new class through reflection and dynamic class loading, which breaks
the limit of its parent’s policy. To solve these problems, we introduce Dynamic
Permission Manager (DPM) to adjust the permissions of newly-created threads
or classes dynamically, ensuring that their privileges cannot be escalated over
their parents.

4 Implementation

We have implemented a prototype and the details of critical techniques are given
below.

4.1 Library Permission Configuration

W e add two tags to announce the application of library permission in Android-
Manifest.xml file. lib-permission tag is used to specify a library, and allow sub
tag is used to apply for permissions by this library. PMS uses PackageParser
class to parse the AndroidManifest.xml file, and store the data in the form of a
Package class. PackageParser is extended to be able to parse these new tags in
AndroidManifest.xml. A HashMap is introduced into Package class as a library
permission table. The key of this table is the package name of a third-party
library, the value is a set of approved permissions. The data contained in library
permission table is also stored in package.xml to make library permission con-
figuration is still effective when system is rebooted.
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Listing 1.1. Permission Configuration in AndroidManifest.xml

1 <uses -permission android:name=" android.Permission.SEND_SMS" />

2 <uses -permission android:name=" android.Permission.READ_SMS" />

3
4 <lib -permission android:name="com.thirdParty.lib">

5 <allow android:permission =" android.permission.READ_SMS" />

6 </lib -permission >

Listing 1.1 shows an example of configuring permissions for third-party
libraries in a AndroidManifest.xml file. First two lines are the original permis-
sions application for the whole App. Fourth line indicates that the following per-
mission application is for a library which package name is “com.thirdParty.lib”.
Subsequent lines are the specific permission applications marked with allow sub
tag. A third-party library can apply for multiple permissions. According to
Listing 1.1, the App needs the permissions to both read and send SMS, but
the library which package name is “com.thirdParty.lib” only need a permission
to read SMS.

4.2 Runtime Stack Information Extracting

The stack of a thread contains the calling sequence of libraries. Each sequence
item mainly consists of a package name, a class name and a method name. An
example of call stack is shown in Table 1. So, with the stack information, we can
identify the call traces of a system API clearly.

Table 1. Call stack information

Description Call stack

System library android.telephony.SmsManager.sendTextMessage

Third-party library com.ThirdPartLib.SmsUtil.senSmsWithDelay

Third-party library com.ThirdPartLib.MainService.initService

Host code com.example.hostApp.MainActivity.sendSms

Host code com.example.hostApp.MainActivity.onCreate

There are two ways to get the stack information of target thread depending
on different situations. One is to hook the stack frame pointer of VM by sending
a request to target process, but this requires that each App process has the
ability to respond such request, and needs the modification to process creation
or VM. The other is to use existing system API if the extractor share the same
process with target thread, this can be realized utilizing getStackTrace method.
The former will cause two extra inter-process communications, and need to adapt
different VMs. The later has no extra communication, but can only get the stack
information of current process.

In our scheme, the second way is adopted. Every App process that created by
the zygote process contains an instance of the VM which preloaded a variety of
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system libraries including Android Framework, runtime libraries, etc. Through
the modification to these libraries, we can extract the call stack information
when a system API is called.

4.3 Runtime Stack Information Transmitting

We construct the channel between stack information extractor and permis-
sion check point based on Android service communication mechanism. Android
system services may work in the system server process or other standalone
processes, such as Phone and Media. Since the isolation between processes, all
these services are accessed by Apps through binder communication.

In the general communication scenarios, system services are responsible to
provide access interfaces to protected resources, Apps access these resources by
sending request to system services. Figure 2 shows the details of requesting a
location resource through binder based Android service communication. Loca-
tionManagerService is a system service that provides location resource for Apps,
it inherits from the ILocationManager.Stub class, and acts as a server. Location-
Manager is a system library that provides APIs for apps to request location
resource, it contains a Proxy class. Proxy is an internal class of ILocationMan-
ager.Stub, and acts as a client. The service request data is packed and sent by
ILocationManager.Stub.Proxy and the replay data is transmuted with ILocation-
Manager.Stub. Through extending these two classes, the stack information can
be transmitted along with service parameters.

Similar to most services, ILocationManager and all it’s inner classes are
generated by ILocationManager.aidl file. Android Interface Definition Language
(AIDL) is a Java-based specification Language that supports local and remote
procedure calls in Android platform. Some communications of resource access
may implement related interface by themselves instead of using AIDL. In this
case, the same specification as AIDL must be followed. So, the information trans-
mitting channel of different service accesses may be implemented in a same way.

Fig. 2. Location request based on binder
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4.4 Dynamic Permission Adjusting

In order to resist the potential collusive attack caused by new thread creation, we
record the parent thread information by maintaining a thread table in the global
data area of the VM (DvmGlobals structure in Dalvik or runtime class in ART).
The key of thread table is a thread ID, and the value is the call sequence of its
parent thread. Thus, when a non-system application (UID greater or equal to
10000) creates a new thread, its current call sequence will be passed to this new
thread. There are two kinds of thread in Android. One is the VM thread, this
type of thread will automatically be appended to threadList (a list to describe
the threads in VM) when it is created. The other is native thread which cannot
execute Java code unless it has been appended to the threadlist. DPM uses
the threadList as a point to monitor the thread creation, so that every thread
creation operation may be recorded in the thread table. With this table, the
runtime stack information extractor can work effectively even the multi-thread
is adopted in Apps.

For reflection and dynamic class generation, we maintain a class table in
the VM. Once a new class is dynamically loaded, the caller’s permissions will
be passed to the new class based on Least Privilege Rule. Dalvik VM uses the
loadClassFromDex function to load a class, and ART VM uses the other one
named DefineClass. DPM takes these functions as a monitoring point to ensure
that all the dynamic class loading operations can be recorded in class table.
With this table, our library-level permission checker can work effectively even in
the context of dynamic class generation.

4.5 Library-Level Permission Checking

Library-level permission checker serial connects to the original UID-based per-
mission checker. As showed in Fig. 3, only original permission checking is passed,
library-level permission checker begins to work. The whole procedure can be
divided into three steps, including thread table check, library check and class

Fig. 3. Procedure of library-level permission checking
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table check. The first step aims to identify whether the parent of request thread
is granted such permission using the thread table described in Sect. 4.4. The
second step is used to judge whether the library calling sequence has the per-
mission violation by utilizing the HashMap described in Sect. 4.1. At last, class
table described in Sect. 4.4 will be used to check the permission of dynamically
loaded class.

5 Evaluation

We evaluate our prototype in four aspects:

(i) demonstrate its compatibility by running existing Apps on our system over
Dalvik and ART respectively;

(ii) demonstrate its effectiveness by enforcing fine-grained permission control
on the third-party libraries;

(iii) evaluate the performance overhead caused by library permission checker
which is the core component of our system;

(iv) evaluate the overall performance of our system.

Our system is mainly deployed on Nexus 6 that has Snapdragon 805 CPU
(2.7 GHZ, quad-core) and 3 GB RAM, with Android 5.1.1 (Lollipop) and Linux
kernel 3.10.40.

5.1 Compatibility and Effectiveness

To demonstrate the compatibility and effectiveness of our system, we deployed
our system on two platforms. The one is the Nexus 6 described above which uses
the ART VM. The other is a qemu emulator with Android 4.4.4 (KitKat) and
Linux kernel 3.4.0, which uses Dalvik VM.

Compatibility with existing Apps. We downloaded 100 popular Apps of
various categories from Google Play [11] as an experiment sample. We chose
Monkey [12] as our testing tools which is provided by Google. Monkey can send
random touch events to Apps automatically, thus help us to find the potential
bugs. To improve the validity of the results, we randomly chose 30% of the
sample and ran cases manually. Among the sample Apps, no one crashed during
the Monkey testing on both two platforms. After checking the log and testing
them manually, we can conclude that our system is well compatible with existing
Apps on both two kinds of Android virtual machines.

Effectiveness on third-party libraries. We chose five third-party libraries to
evaluate the effectiveness of our system, the first three libraries are widely used
by developers and the others are written by ourselves. As showed in Table 2, every
third-party library has the code to access corresponding protected resources, and
its host App have all permissions they needed. We blocked the permission of
third-party libraries by appending our policy to the AndroidManifest.xml using
the specific tags described in Sect. 4.1. The result shows that our system can
effectively split third-party libraries’ permissions from their host App.
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Table 2. Effectiveness on third-party libraries

Third-party library Resource Blocked permission Result

com.tencent.mm.sdk.* Network ACCESS NETWORK STATE Success

com.amap.api.* Phone READ PHONE STATE Success

com.amap.api.location.* Location ACCESS FINE LOCATION Success

com.example.readcontacts.* Contacts READ CONTACTS Success

com.example.sendsms.* SMS SEND SMS Success

5.2 Permission Check Overhead

Our system aims to provide a fine-grained permission control on third-party
libraries, thus the check procedure will be more complicated than the origi-
nal one. There are three parts may cause extra overhead, one is the stack info
extracting, the second is an extra data transmission based on the service access
communication, the last but most expensive one is the extra checking opera-
tions including library sequence processing and permission matching. We use
the pseudo code showed in Listing 1.2 as our experiment procedure.

Listing 1.2. Experiment Procedure

startTime = getCurrentTime ()

for i = 1 to 10000 do

check random permission

endTime = getCurrentTime ()

runTime = endTime - startTime

averageTime = runTime / 10000

In order to ensure the accuracy of result, we conducted this experiment by
checking random permissions 10000 times, and compared with the same device
which operating system is the original Android 5.1.1 from Android Open Source
Project (AOSP). On the original platform without our system, the average time
of each permission check is 1234 us. On the platform deployed with our system, it
takes 1451 us, which means extra 17.59% overhead. The overhead of permission
check in Compac [13] is 22.2%, which is higher than our system. The main
reason may be the less Inter-process communication of our system. Although
the number seems like a great overhead, but it makes little difference on the
whole system. Because the permission check only occurs when accessing system
resources, and this would not happen frequently during Apps’ runtime.

5.3 Overall Performance

In order to evaluate the overall performance of our system exactly, we chose four
benchmarks which are widely used in Android. The experiment result is shown
in Table 3, AOSP 5.1.1 means the original Android without our system. Each
row of the table represents the result of one benchmark, including the score of
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each system, the differences and the extra overhead. Antutu produces an holistic
score based on various measures, CF Benchmark conducts its evaluation based
on Java code and native code, GeekBench and Linpack evaluate the system in
single-thread and multi-thread mode separately.

Table 3. Overall performance

Benchmark AOSP 5.1.1 Our system Over. Over.(%)

Antutu 6.1.1 71291 69602 1689 2.37%

CF Benchmark 1.3 36409 36243 166 0.46%

GeekBench 4(GPU) 3537 3457 80 2.26%

GeekBench 4(CPU Single-thread) 1000 986 14 1.40%

GeekBench 4(CPU Multi-thread) 2825 2793 32 1.13%

Linpack 1.4(Single-thread) 5.68 5.67 0.01 0.18%

Linpack 1.4(Multi-thread) 3.24 3.23 0.01 0.31%

From the table, we find that Linkpac produces the overhead less than 0.31%
which is negligible to the system. Antutu produces the highest overhead (2.37%),
but is also quit close to the original Android. In conclusion, our system produces
little impact on the overall performance.

6 Related Work

Inter-process isolation on third-party libraries. This kind of researches
split libraries’ permissions from their host Apps by moving them to a separate
process. AdDroid [14] builds a uniform management platform for advertising
functions of Apps by creating a new system service in Android, isolating ad
libraries from their original process. AdSplit [7] and AFrame [15] run the ad
libraries as a separate application so that developers have no need to apply for
any permissions for such libraries, which helps to restrict the malicious behavior
of ad libraries effectively. NativeGuard [8] uses a similar approach, but only works
on native libraries. LayerCake [16] provides secure third-party libraries that can
be embedded in the Apps’ user interface by splitting related libraries from their
host Apps. However, these approaches require extra IPC when libraries interact
with their host Apps. This feature will cause great impact on system performance
when using the libraries which interact with Apps frequently.

Inter-component isolation on third-party libraries. Such kind of
researches isolate third-party libraries’ permissions from their host Apps under
the conditions of not migrating libraries to other process. Compac [13] mainly
aims at enforcing component level access control in Android, especially for the
third-party libraries. FLEXDROID [9] considers the features of JNI and dynamic
code execution of Java based on the above approach. However, these approaches
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cause extra IPC when check a permission request, and cannot be applied to the
Android 5.0 or higher version (the Dalvik VM has been replaced with ART).

Extra access control in Apps. In order to solve problems caused by the
coarse-grained control of permission mechanism, researchers proposed many
solutions to regulated the behaviors of Apps. Apex [17] and Kirin [18] allow
users to grant part of permissions to Apps, and enforce policies at the instal-
lation. Saint [19] provides extra interface to enforce policies at runtime. Ref-
erences [20,21] uses an adaptive approach to dynamically configure App’s per-
missions based on the context. There are also some researches aim to enhance
the system security by introducing mandatory access control (MAC) into the
Android platform. References [22–24] use MAC mechanism to mitigate privi-
lege escalation attacks in Android. SEAndroid [25] extends the SELinux to the
Android system, implementing MAC on both the kernel and framework layer.
FlaskDroid [26,27] and SEDalvik [28] implement MAC for components and vir-
tual machines respectively.

7 Conclusions and Future Work

In this paper, a fine-grained library-level permission control scheme is presented
to resist the potential malicious code contained in third-party libraries. Our
scheme is mainly implemented based on extending the existing modules of cur-
rent permission mechanism. With the extending of AndroidManifest.xml and
PMS, App developers to could configure permission policy at library level. Then,
Android system libraries are extended to make our system has the ability to
extract the runtime libraries sequence information when an system API is called.
Through extending Android service request communication mechanism, a chan-
nel between information extracting point and permission checking point is built.
With libraries sequence information, a library-level permission checking is con-
ducted. In addition, dynamic code execution features are considered carefully in
our scheme. We implement a prototype and evaluate it in four aspects, the result
shows that our scheme can work well on Dalvik and ART virtual machines with
reasonable overhead.

The code obfuscation technique makes the names of third-party libraries
incomprehensible. Thus, our work may lose effectiveness. Fortunately, the code
obfuscation is usually operated by App developers. They can exclude the sus-
picious libraries from obfuscation by modifying related configurations. In our
future work, we intend to introduce customized ACL (Access Control List) [29]
to split privileges in native layer without moving libraries to other process.
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Abstract. SafeStack, initially proposed as a key component of Code
Pointer Integrity (CPI), separates the program stack into two distinct
regions to provide a safe region for sensitive code pointers. SafeStack
can prevent buffer overflow attacks that overwrite sensitive code point-
ers, e.g., return addresses, to hijack control flow of the program, and
has been incorporated into the Clang project of LLVM as a C-based lan-
guage front-end. In this paper, we propose and implement SafeStack+, an
enhanced dual stack LLVM plug-in that further protects programs from
data-flow hijacking. SafeStack+ locates data flow sensitive variables on
the unsafe stack that could potentially affect evaluation of branching
conditions, and adds canaries of random sizes and values to them to
detect malicious overwriting. We implement SafeStack+ as a plug-in on
LLVM 3.8 and perform extensive experiments to justify a lazy checking
mechanism that adds on average 3.0% of runtime and 5.3% of memory
overhead on top of SafeStack on SPEC CPU2006 benchmark programs.
Our security analysis confirms that SafeStack+ is effective in detecting
data-flow hijacking attacks.

Keywords: Buffer overflow · Data flow · Control flow

1 Introduction

Many techniques have been proposed to fight against memory attacks, e.g., Data
Execution Prevention (DEP) [8] to prevent code execution in non-executable
memory regions, Address Space Layout Randomization (ASLR) [3] to random-
ize the location where executable is loaded into memory, Control Flow Integrity
(CFI) [23,26,31] to prevent redirecting of execution flows. Code Pointer Integrity
(CPI) [22] is a recent addition to the family of defenses to provide integrity of
code pointers in a program and thereby prevent control-flow hijacking attacks.
The core of CPI is a C-based language front-end of LLVM called SafeStack that
splits the regular stack into two parts: a safe stack and an unsafe stack. All
proven-safe objects are placed onto the safe stack while those that cannot be
proven safe are placed onto the unsafe stack, such as buffers which may over-
flow. SafeStack prevents a buffer overflow on the unsafe stack from corrupting
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anything on the safe stack, and thereby prevents control-flow hijacking attacks.
It introduces negligible runtime overhead of less than 0.1%, and has been incor-
porated into the Clang project of LLVM due to its increasing acceptance by
developers.

Being proposed as a defense to provide code pointer integrity, SafeStack,
however, is susceptible to data-flow hijacking attacks. In particular, objects on
the unsafe stack could overwrite each other, and such unsafe objects could poten-
tially be used subsequently in an evaluation of branch conditions, changing which
would lead to a successful data-flow hijacking attack. In this paper, we propose
SafeStack+, an enhanced dual stack mechanism that works on top of SafeStack
to detect data-flow hijacking attacks. The idea of SafeStack+ is to add protec-
tions into the unsafe stack rather than leaving it as the attackers’ playground.
SafeStack+ first locates all variables on the unsafe stack that could potentially
affect the execution of conditional branches using a def-use analysis, and then
adds canaries of random sizes and values around them. Finally, SafeStack+ adds
runtime checks into the program to verify the integrity of the canaries to detect
data-flow hijacking attacks.

Although the idea sounds simple, the key to a successful defense of memory
attacks that can gain acceptance by developers is a low runtime overhead in the
resulting binary executable. To achieve this goal, we implement SafeStack+ on
LLVM 3.8 with various canary checking mechanisms to test the corresponding
runtime overheads. The extensive experiments show that our lazy checking mech-
anism that verifies the integrity of canaries at the point of branching evaluation
results in a small runtime overhead of 3.0% and memory overhead of 5.3% on
average on top of SafeStack. We further confirm SafeStack+’s enhanced security
with a real-world vulnerability CVE-2013-0230.

In summary, this paper makes the following contributions:

1. We propose SafeStack+, an LLVM plug-in on top of SafeStack that adds
canaries around sensitive objects on the unsafe stack to detect data-flow
hijacking attacks.

2. We perform extensive testing on various canary checking mechanisms to jus-
tify our lazy checking technique, and show that it results in low runtime and
memory overhead.

3. We demonstrate that SafeStack+ can be used to effectively defend against
data-flow hijacking attacks with a real-world vulnerability.

The remainder of this paper is structured as follows. We first discuss in Sect. 2
the limitation of SafeStack and our motivation. Section 3 introduces the design
and implementation of SafeStack+. We demonstrate the efficiency of SafeStack+

with extensive performance evaluations and present the security analysis in
Sect. 4. Section 5 briefly introduces the related work on memory corruption coun-
termeasures and points out the limitation of SafeStack+. In the end, we conclude
in Sect. 6.
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2 SafeStack and Our Motivation

As mentioned in Sect. 1, SafeStack is a core component of Code Pointer Integrity
(CPI). In this section, we first briefly discuss how SafeStack works and its limita-
tions. After that, we present our motivation of SafeStack+ in tackling SafeStack’s
limitations.

2.1 SafeStack

Kuznestsov et al. [22] proposed Code Pointer Integrity (CPI) to guarantee the
integrity of all code pointers in a program (e.g., function pointers and saved
return addresses) by storing the sensitive pointers and their metadata (which
describes the target object on which the sensitive pointer is based) in a safe
memory region. Every dereference of a sensitive pointer is instrumented to check
at runtime whether it is safe using the metadata associated with the pointer being
dereferenced. CPI treats the stack specially, because the safety of most accesses
to stack objects requires no runtime checks as they can be checked statically
during compilation.

SafeStack is used to protect critical data on the stack by separating the
native stack into two areas. There is a safe stack which is used for control flow
information and data that is only ever accessed in a safe way (safe in the sense
that the pointer dereference is safe – the memory it accessed lies within the target
object on which the dereferenced pointer is based). There is an unsafe stack which
is used for everything else that is stored on the stack. By arranging information
on the two separated stacks, the safe stack can be accessed without any checks.
The two stacks are located in different memory regions in the process’s address
space and thus prevents a buffer overflow on the unsafe stack from corrupting
anything on the safe stack.

Listing 1 shows an example where we indicate results of the static analysis
in SafeStack as comments below the code lines. We encourage readers to refer
to the original paper of CPI [22] and source code of SafeStack [2] for the precise
definitions.

SafeStack is implemented as a plug-in of LLVM to statically analyze source
code of a program to identify its safe and unsafe objects. After identifying the
safe and unsafe objects, SafeStack allocates space for unsafe objects in the unsafe
memory region, which is accessible through a dedicated segment register (%gs in
x86-32). Unsafe objects are placed onto the unsafe stack next to each other to
minimize memory overhead.

Although the design of SafeStack meets the requirement of minimal memory
overhead which is likely an important reason why it has been gaining developers’
acceptance, it leads to an important limitation – unsafe objects are located at
predictable locations on the unsafe stack, and could overwrite one another in a
predictable manner.

Figure 1 shows the layout of the safe and unsafe stacks when the code in
Listing 1 executes. We notice that all unsafe objects are pushed onto the unsafe
stack one next to the other, and other proven-safe objects are stored on the
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Listing 1. Example code

1 void determine_privilege_level(int *pl) {
2 *pl = get_priviliege();
3 }
4 int main() {
5 int i = 0;
6 int pl;
7 int *ptr;
8 char buffer[16];
9 int p[16];

10 int b = 1;
11 int len;
12
13 ptr = &b;
14 /*b is unsafe -- conservatively assume that storing a pointer is unsafe as
15 there’s no way to tell whether it points to a valid object or not.*/
16
17 memset(p,0,20);
18 /*p is unsafe -- the size of memory access region of p is 20, greater than
19 the allocated size of 16.*/
20
21 determine_privilege_level(&pl);
22 /*pl is unsafe -- potential information leak when a pointer to a local
23 variable is passed to another function.*/
24
25 gets(buffer);
26 /*buffer is unsafe -- potential information leak when a pointer to a local
27 variable is passed to another function.*/
28
29 len = pl;
30 if (pl == 0x42)
31 access_file(FILE *f);
32 else
33 printf("Not allowed to access the file");
34
35 return &i;
36 /* i is unsafe -- returning a pointer may cause information leakage.*/
37 }

safe stack. This ensures that unsafe objects could not modify objects on the
safe stack; however, e.g., pl can be overwritten by buffer and p in a typical
buffer overflow, and since the offsets between pl and the buffers are fixed and
can be easily learned from the code, the overwriting of pl is easy and its effect
is predictable by an attacker.

To make things worse, pl is a sensitive variable in the sense that its value
determines the branching decision at line 30 of Listing 1, which makes the over-
writing of pl a successful data-flow hijacking attack.

2.2 Motivation

As shown in Sect. 2.1, SafeStack defeats control-flow hijacking attacks with mini-
mal overhead, but it is vulnerable to data-flow hijacking attacks. This limitation
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Fig. 1. Layout of the unsafe stack and safe stack

stems from the fact that SafeStack was initially proposed in the project of Code
Pointer Integrity (CPI) which concerns only control flow integrity. In this paper,
we investigate the possibility of enhancing SafeStack such that it is resistant to
data-flow hijacking attacks while retaining the advantages of SafeStack in its
negligible runtime overhead.

A simple yet effective way of protecting data-flow sensitive variables is to
add canaries around them and to check for integrity of the canaries during pro-
gram execution. However, in such an approach, it is crucial to precisely identify
sensitive data for canary introduction to minimize the potential overheads –
runtime overhead for checking their integrity and memory overhead for storing
the canaries. Not only that, the runtime checking of the canaries also need to
be efficient enough not to cause excessive runtime overheads. In this paper, we
focus on protecting data whose values could potentially affect the evaluation of
conditional branches (e.g., pl as in Listing 1; referred to as sensitive data in the
rest of the paper), since other control-sensitive data (e.g., the return addresses)
are already well protected in the safe stack.

3 Design and Implementation of SafeStack+

To show how SafeStack+ achieves its objects in defending against data-flow
hijacking attacks, we present our design and implementation of SafeStack+, an
enhanced dual stack mechanism built on top of SafeStack. SafeStack+ is an
enhancement to SafeStack in the sense that it retains the dual-stack design of
SafeStack and its definition of safe and unsafe objects. SafeStack+ achieves its
design objective by introducing canaries in the unsafe stack to detect modifica-
tions to sensitive data.

In this section, we will begin with the threat model of SafeStack+, and then
present its detailed design. We then present some implementation details of
SafeStack+ to improve its performance.
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3.1 Threat Model

This paper is concerned with control flow (return) and data flow hijacking
attacks, namely ones that give the attacker control of the return targets and
ones in which the attacker can overwrite data that affect the execution of con-
ditional branches. The purpose of the former type of attacks is to divert control
flow to a location that would not otherwise be reachable in the same context,
whereas the latter is to corrupt the decision making data and make the program
execute another path.

We assume that the attacker can fully control over the process memory, but
he does not have the ability to modify the code segment. Attackers can carry
out arbitrary memory reads and writes by exploiting input-controlled memory
corruption errors in the program. They cannot modify the code segments as code
pages are marked read-executable and not writable. Meanwhile, they cannot
control the program loading process. These assumptions ensure the integrity of
the original program code instrumented at compile time, and enable the program
loader to safely configure the dedicated segment register used by the canaries
and the unsafe stack.

3.2 Design

The high-level design of SafeStack+ follows that of SafeStack in that both consist
of a static analysis pass that identifies important objects in a program P (sensi-
tive unsafe variables in the case of SafeStack+) and an instrumentation pass that
rewrites P to protect the important objects. However, SafeStack+ differs from
SafeStack in that we introduce canaries to further protect unsafe objects on the
unsafe stack. In this section, we present our detailed design of SafeStack+.

Figure 2 shows the workflow of SafeStack+. We run static analysis to find
sensitive variables first, and then instrument the code for canary insertion and
runtime canary checking.

Fig. 2. Illustration of SafeStack+’s workflow

Static Analysis. We determine the set of sensitive variables using def-use
analysis in LLVM where a variable is considered sensitive if it affects the execu-
tion of conditional branches and it is unsafe. The definition of an unsafe variable
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follows that in SafeStack that the pointer dereference of it is unsafe – the mem-
ory it accessed may not lie within the target object on which the dereferenced
pointer is based. We could do this via a forward execution analysis by keeping
track of all code locations where an unsafe variable is used (directly and indi-
rectly). If the target location involves a conditional branch, we add the unsafe
variable to the sensitive set. Alternatively, we can also perform a backward track-
ing analysis starting from the sink of conditional branches, and trace back to the
unsafe variables as sources. Since we implement SafeStack+ as an LLVM plug-in
and perform the static analysis during compilation time, we choose the former
method for its simplicity. Note that if an unsafe variable is used as the argument
of a call instruction, the analysis needs to jump inside the callee function to
check whether the arguments will be used by a conditional branch.

Instrumentation for Runtime Checking. We protect the sensitive unsafe
variables by inserting canaries around them and checking the integrity of the
canaries at runtime. A canary is a piece of data inserted on the stack to detect
memory corruption attacks [13]. For example, if any buffer is overflown in an
attack, the canary on the stack is likely overwritten before the sensitive data
next to it is modified. Therefore, checking the integrity of the canaries enables
detection of memory corruptions. Both inserting and checking the canaries are
done via instrumenting the target program during compilation.

As shown in Fig. 3, a canary is added next to the sensitive variable at the
lower address (toward the direction of stack growth) to detect overwriting by
other unsafe variables from lower addresses. To deal with brute-force attacks,
canaries added in SafeStack+ do not have fixed sizes or values. There is a trade-
off between security and performance when setting the maximum size of the
canaries – bigger size gives better security in that it provides higher entropy to
the canary value, but also adds more runtime overhead to checking its integrity
and bigger memory usage. SafeStack+ randomly chooses from three different
sizes: 4, 8, and 16 bytes (for memory alignment purposes) at compile time.
Canaries are accessible through a dedicated segment register (%gs) to prevent
attackers from obtaining them easily.

After canaries are inserted next to the sensitive variables, we need to check its
integrity at runtime. The time of checking also involves trade-off between security
and performance: checking integrity at every access of the sensitive variable
(reading from and writing to) gives better security, but the frequent access might
introduce prohibitive overhead. We introduce a lazy checking mechanism by
delaying the integrity check till the point of conditional branch evaluation. We
consider this an acceptable security policy since SafeStack+ is designed to fight
against data-flow hijacking attacks, and the lazy checking right before branching
satisfies the security requirement. Although it may lead to a delay in detecting
the corresponding attack, it could greatly improve performance due to the lower
checking frequency.
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Fig. 3. SafeStack+ approach

Figure 4 shows the different locations to check the integrity of the canary
for the sensitive variable pl in the sample code in Listing 1. We can perform
checking

– When reading the value of the sensitive variable from memory, see Fig. 4(a);
– When storing the value of the sensitive variable to memory, see Fig. 4(b);
– or, when evaluating the branching condition, see Fig. 4(c).

void determine_privilege_level(int *p){
     *pl = get_priviliege();
}
int main(){ 

    determine_privilege_level(&pl);
    gets(buffer);
    // canary checking
    len = pl;
   // canary checking
    if ( pl == 0x42 )
        printf("Accessed\n");
    else
        printf("Not allowed to access the file\n");
    return 0;
}

(a) When reading from
memory,

void determine_privilege_level(int *p){
    *pl = get_priviliege();
    // canary checking
}
int main(){ 

    determine_privilege_level(&pl);
    gets(buffer);
    len = pl;
    if ( pl == 0x42 )
        printf("Accessed\n");
    else
        printf("Not allowed to access the file\n");
    return 0;
}

(b) When storing to mem-
ory,

void determine_privilege_level(int *p){
    *pl = get_priviliege();
}
int main(){ 

    determine_privilege_level(&pl);
    gets(buffer);
    len = pl;
    // canary checking
    if ( pl == 0x42 )
        printf("Accessed\n");
    else
        printf("Not allowed to access the file\n");
    return 0;
}

(c) When evaluating branch
conditions,

. . . . . .

. . . . . .
. . . . . .

Fig. 4. Lazy checking of integrity of canaries

Intuitively, delaying the checking at branching evaluation might result in
the smallest number of checks because each branching evaluation might corre-
spond to multiple reads and writes of the sensitive variable. We delay our further
discussion on the design choice to Sect. 4 where we discuss the experiments per-
formed, since we want to measure the amount of saving before making the design
decision.
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3.3 Implementation

We obtained the source code of SafeStack integrated in LLVM 3.8 compiler
infrastructure [5], and added more than 700 lines of code in C++ to implement
SafeStack+. Most of the additional code is added to perform static analysis to
find instructions that manipulate the sensitive variables and to add instruc-
tions to check the value of the canary. Some code is also added to add canaries
when allocating space for these sensitive variables. SafeStack+ accepts unmodi-
fied C/C++ program source as its input.

Sensitive Variable Analysis. We implement the sensitive data analysis for
SafeStack+ as an LLVM pass. The LLVM pass operates on the LLVM Inter-
mediate Representation (IR), which is a low-level strongly-typed language-
independent program representation tailored for static analysis and optimiza-
tion. The LLVM IR is generated from the C/C++ source code by clang [1], which
preserves most of the type information that is required by our analysis and the
def-use chain can be used easily to get the locations for each variable.

For every unsafe alloca instruction that allocates memory on the stack
frame, we traverse the list of instructions that make use of it using the def-use
chain provided by LLVM. If the corresponding memory is used by a conditional
branch, we consider it as sensitive. When checking whether arguments of each
function call are involved in the evaluation of a conditional branch, if the caller
and callee are located in different modules, it will be difficult to carry out the
analysis. We take a simple solution to first compile all source code into one IR
file.

Note that the determination of sensitive variables is a conservative process
– a sensitive variable may not be overwritten forever as there are no vulnerable
buffers being stored beyond it. We leave a more precise static analysis to find
sensitive variables our future work.

Canary Insertion and Integrity Check. Canaries on SafeStack+ are stored
in the thread control block which can be accessed only directly through one of
the segment registers. We implement this by using the InitialExecTLSModel
flag. To insert a canary to protect a sensitive variable, we modify function
moveStaticAllocasToUnsafeStack() so that a canary is created right after
allocating spaces for unsafe variables on the unsafe stack.

Integrity checking of the canaries at every reading (or writing) of the sensi-
tive variables is implemented by traversing the list of instructions that make use
of the corresponding sensitive variable, and inserting a call before (or after) the
instruction to check for integrity. Our lazy checking, on the other hand, is imple-
mented by finding conditional branches whose evaluation is affected by sensitive
variables and inserting a call before the evaluation to check for integrity of the
Canaries. We do not make additional effort to optimize the instrumentation code
(e.g., by inlining the code of integrity checking instead of inserting a function
call) because the compiler will perform further compilation and optimization
after our instrumentation.
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4 Evaluation

In this section, we perform a number of experiments to demonstrate the efficiency
and effectiveness of SafeStack+. Specifically, we first perform some simple sta-
tistical analysis on software programs to find out the number of variables that
require protection in order to defend against data-flow hijacking. After that,
we empirically test a number of ways of implementing our idea to justify our
lazy checking mechanism. Finally, we test SafeStack+’s capability in defending
against a suite of security attacks and a real-world data-flow hijacking attack.

All experiments were performed on a desktop computer with an Intel i7
4510u CPU with 8GB of memory running the x86 version of Ubuntu 14.04. All
experiments were conducted 10 times, average of which is reported in this paper.

4.1 Variables to be Protected for Data-Flow Hijacking

The first experiment we performed is to find out how many sensitive variables
need to be protected to defend against data-flow hijacking. If there are many,
then it may make sense to just add canaries for every one and skip the process of
locating sensitive ones. Table 1 shows some simple statistics for SPEC CPU2006
programs compiled without optimization. Specifically, we show percentage of
unsafe functions (functions with at least one unsafe variable) upon all functions,
percentage of unsafe variables upon all variables, and percentage of sensitive
variables upon all unsafe variables.

Table 1. Simple statistics of SPEC benchmark programs

Program Unsafe functions Unsafe variables Sensitive variables

bzip2 23.3% 8.3% 44.4%

gcc 13.1% 4.0% 47.0%

mcf 8.3% 4.4% 87.5%

sjeng 27.1% 13.2% 60.4%

libquantum 33.0% 8.6% 14.9%

astar 15.1% 9.7% 21.3%

namd 43.2% 4.6% 78.9%

soplex 11.9% 7.7% 19.5%

lbm 28.5% 8.6% 18.2%

average 22.6% 7.7% 43.6%

The first two columns of results basically show that there are not that many
functions requiring an unsafe stack, and there are not that many unsafe variables
on the unsafe stack when it is needed. This explains why, in general, SafeStack
has small overheads. The last column of results, which are more specifically
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about SafeStack+, show that the percentage of sensitive variables upon all unsafe
variables covers a relatively big range from 18% to 87%. That said, the average
is still below 50%, which justifies our strategy of locating only sensitive variables
for added protection.

Note that the analysis above is purely static, which may not closely corre-
spond to the overhead experienced by end users. We therefore need some dynamic
analysis in order to precisely find out the user experience in terms of runtime
overhead.

4.2 Dynamic Analysis for Various Strategies of Integrity Check

Having shown that there are fewer than 50% of the unsafe variables requiring
protection against data-flow hijacking attacks, we now move on to dynamically
analyzing the overhead when the benchmarking programs are running on certain
workloads. At the same time, we also want to try out different integrity checking
mechanisms to test the extent to which our intuition of lazy checking generating
less overhead is correct. Figure 5 shows the results for our three canary integrity
checking strategies – before reading sensitive variables from memory, after stor-
ing them to memory, and before evaluating branching conditions. Please refer to
Sect. 3.2 for more discussions of the three strategies. Note that here we show the
additional overhead of dynamically executing the benchmarking programs on
SafeStack+ over that on SafeStack, when the programs are given the workload
of the largest input file under the ref folder provided by SPEC CPU2006.

Fig. 5. Additional runtime overhead of SafeStack+ over SafeStack

Results show that performing integrity check before branch condition eval-
uation enjoys a smaller runtime overhead of 3.0% compared to 5.8% and 4.5%,
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respectively, when checking before reading or after storing the sensitive variables.
This confirms our intuition since each branch condition evaluation may corre-
spond to multiple variable reads and writes. We therefore decide that SafeStack+

shall adapt the lazy checking mechanism for improved efficiency. sjeng experi-
ences much higher runtime overhead than other programs. We investigate the
detailed execution, and find that this is due to a large number of looping that
result in more integrity checking needed. That said, our general finding of lazy
checking enjoying better efficiency still holds true for this special case.

Table 2 shows the number of additional instructions executed for integrity
checks of the canaries when the benchmarking programs are running the same
workload. Results are consistent with those shown in Fig. 5, which, again, con-
firms our intuition that lazy checking enjoys better efficiency in general.

Table 2. Instructions added for canary integrity check

Program Reading Storing Branch evaluation

# % # % # %

bzip2 4.56E+09 12.17 1.32E+09 3.53 3.49E+09 9.32

gcc 8.91E+09 3.93 6.22E+09 2.74 5.39E+09 2.38

mcf 1.06E+08 0.28 5.02E+07 0.13 3.57E+07 0.09

sjeng 2.54E+11 38.36 2.39E+11 36.04 2.19E+11 33.01

libquantum 3.29E+11 5.89 3.29E+11 5.90 3.28E+11 5.89

astar 1.63E+10 6.66 9.79E+09 4.01 7.75E+09 3.17

namd 1.60E+08 0.00 1.44E+08 0.00 8.50E+07 0.00

soplex 3.17E+07 0.01 3.59E+06 0.00 1.65E+07 0.00

lbm 2.40E+07 0.00 9.99E+06 0.00 1.29E+06 0.00

The percentage of additional instructions executed for some programs, such
as namd, soplex, and lbm is around 0%. However, the runtime overhead for
them is still about 2% to 3% as shown in Fig. 5. This is because the number
of additional instructions executed cannot be ignored although the percentage
number is small. Executing these additional branches still produces runtime
overhead, but the overhead is small.

4.3 Memory Usage Overhead

Table 3 shows the memory overhead of our experiments with the benchmarking
programs in terms of the number of bytes and percentage. As shown, the memory
overhead ranges from 24 bytes to 5,220 bytes with an average of 960 bytes, which
is about 5.3%. We find such memory usage overhead acceptable.

Note that the memory usage overhead is proportional to the number of sensi-
tive variables statically found in the program and not dynamically related to the
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Table 3. Memory usage overhead

Program Memory overhead (Bytes) Percentage (%)

bzip2 224 0.01

gcc 5220 5.76

mcf 52 18.31

sjeng 496 0.18

libquantum 64 6.45

astar 108 1.89

namd 1632 0.13

soplex 820 5.87

lbm 24 9.09

average 960 5.3

specific workload. For example, lbm contains only two sensitive variable, which
result in 24 bytes of memory overhead; however, its runtime overhead is still
noticeable at 1.3% with some specific workload, as shown in Fig. 5.

Security Evaluation on the RIPE Benchmark. Having shown that
SafeStack+ enjoys reasonably small runtime and memory overhead, we now
turn to the security evaluation. First, we want to make sure that SafeStack+

is no worse than SafeStack in defending against control-flow hijacking attacks.
For this purpose, we use the RIPE [29] benchmark that contains 850 exploits
that attempt to perform control-flow hijacking attacks. Table 4 summarizes the
evaluation results under three different settings.

Table 4. Statistical results on RIPE Benchmark

System name # of success # of failure

RIPE with ASLR 130 720

RIPE with ASLR and compiled with SafeStack 80 770

RIPE with ASLR and compiled with SafeStack+ 80 770

Our evaluation shows that SafeStack+ and SafeStack enjoys the same advan-
tages in defending against control-flow hijacking attacks (not only the same
number of exploits failed but they are the exact same set). Although this result
is as expected, it is interesting to observe the consistency of the behavior of
these exploits under SafeStack and SafeStack+, i.e., although the unsafe stack
has quite different structure, all the exploits behave in the same way on both
SafeStack and SafeStack+.
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4.4 Security Evaluation on a Data-Flow Hijacking Attack

In this section, we use a real-world example to show how SafeStack+ defends
against a data-flow attack. This experiment was based on CVE-2013-0230 on a
memory corruption vulnerability for miniupnpd.

CVE-2013-0230 reports a buffer overflow bug in miniupnpd before version 1.0.
The vulnerability can be exploited by overflowing the stack [4] which results in
potentially a control-flow hijacking and a data-flow hijacking scenario. We will
show how SafeStack+ defends against the data-flow hijacking attack. Listing 2
presents (part of) the source code of miniupnpd 1.0, with line 11 showing a
stack-based buffer overflow if methodlen is more than 2048 bytes long.

Listing 2. ExecuteSoapAction

1 ExecuteSoapAction(struct upnphttp * h, const char * action, int n)
2 {
3 char * p;
4 char method[2048];
5 int i, len, methodlen;
6 i = 0;
7 p = strchr(action, ’#’);
8 methodlen = strchr(p, ’"’) - p - 1;
9 .......

10 memset(method, 0, 2048);
11 memcpy(method, p, methodlen);
12 syslog(LOG_NOTICE,"SoapMethod: Unknown: %s", method);
13
14 SoapError(h, 401,"Invalid Action");
15 }

Figure 6 shows the stack layout when function ExecuteSoapAction is called
under SafeStack (left) and SafeStack+ (right), respectively. As we can see,
HttpCommand[16] and HttpUrl[128] can be overwritten by method[2048] in
SafeStack, which may cause a data-flow hijacking since both HttpCommand[16]
and HttpUrl[128] are sensitive variables whose values may affect the execution
of conditional branches. However, on SafeStack+, we add canaries for these two
variables, which can help detecting the overflow of method[2048].

We stress that this is a real-world example of vulnerability and the corre-
sponding data-flow hijacking exploits detected by SafeStack+.

5 Limitations and Related Work

In this section, we briefly discuss limitations of SafeStack+ and some related
work.
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Fig. 6. Layout of unsafe stack

5.1 Limitations

As discussed earlier, the set of sensitive variables we find is an over approximation
– a sensitive variable may not be overwritten at all as there are no vulnerable
buffers being stored beyond it. We leave it our future work – a more precise
static analysis to find the sensitive variables.

A simple idea of attacking SafeStack+ is to brute force the size and value
of the canary. With a canary size of 4 bytes, the expected number of tries the
attack has to make is 231. Having a canary of bigger size or multiple canaries (for
multiple sensitive variables) makes the attack even more impractical. Memory
leakage attacks are possible but very difficult since canaries are only accessible
through a dedicated segment register (%gs).

Now we have to find the data-flow vulnerability described in this paper man-
ually, which is time consuming. We leave it our future work – automatically find
the data-flow vulnerability that can overwrite the data which could potentially
affect evaluation of branching conditions.

5.2 Related Work

Many bounds checking methods are proposed to fight against memory corrup-
tions. Cyclone [21] and CCured [25] fuse pointer values and associated bounds
meta information into one unified object. With this, bounds information can
be read directly from this object and this information can be used for bounds
checking instrumentation. SoftBound [24] and Baggy Bounds Checking [7,15]
store the bounds meta information in a shadow space or shadow memory that
is separated from the main memory of the program. Shadow memory has better
binary compatibility as the layout of objects in main memory is not changed.
LowFAT [16] extends the low-fat pointer to stack objects by using pointer mir-
roring and memory aliasing.
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StackGuard [13] patches gcc to add a canary before every return address and
checks the value of the canary before a function returns. StackGuard ensures tar-
gets of return instructions are not overwritten, while SafeStack+ ensures that
both targets of return instructions and path sensitive variables are not overwrit-
ten. PointGuard [12] encrypts pointers when they are in memory, and decrypts
encrypted pointers when they are loaded into CPU registers. PointGuard is sim-
ilar to SafeStack+ with the main difference being that PointGuard needs to
check when each pointer is loaded into register, which may produce a high run-
time overhead. SafeStack+ just checks path sensitive variables when they are
loaded from memory (stored into memory or before the execution of conditional
branches). Therefore, the performance overhead is much smaller.

Address Space Layout Randomization (ASLR) [3] randomizes the base
addresses of the text segment, data segment, stack, and heap at load time. Soft-
ware diversity [18,20,28] implements fine-grained code randomization to mask
important details of a program. StackArmor [11] focuses on stack layout random-
ization. It disrupts the traditional stack organization by making the stack frames
and vulnerable buffers neither temporally nor spatially adjacent in memory.

Control Flow Integrity (CFI) [6] ensures that the targets of all indirect
branches point to legitimate locations determined statically. However, getting
all precise targets for each indirect branch statically is difficult, so many coarse
grained CFI methods are proposed [23,26,31] to simply include every function
in a program in the set of valid targets. CFI could not guarantee protection
against all control flow hijacking attacks. Recent results [10,19,27] show that
many existing CFI solutions can be bypassed in a principled way.

Shadow stack techniques [9,14,17,30] split the stack into two parts: a shadow
stack for storing sensitive data such as return addresses and the main stack for
storing everything else. SafeStack [22] can be seen as one special case of shadow
stack. It stores local variables (called unsafe variables) that may cause memory
error onto one unsafe stack (shadow stack), and return addresses and other safe
variables are placed onto the main stack. However, this strategy alone does not
prevent unsafe variables from attacking each other.

6 Conclusion

This paper presents SafeStack+, which extends SafeStack to make it can defend
against both control flow and data flow hijacking attacks. We show that the
average runtime and memory overhead of SafeStack+ are 3.0% and 5.3% respec-
tively. In addition, we evaluate how different checking locations would affect the
runtime overhead. Results show that, for most programs, checking at memory
related operations experiences more runtime overhead and adds more instruc-
tions. The security evaluation shows SafeStack+ can effectively counter against
both control flow and data flow hijacking attacks.
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Abstract. With the emergence of cloud computing services, compu-
tationally weak devices (Clients) can delegate expensive tasks to more
powerful entities (Servers). This raises the question of verifying a result
at a lower cost than that of recomputing it. This verification can be pri-
vate, between the Client and the Server, or public, when the result can
be verified by any third party. We here present protocols for the verifica-
tion of matrix-vector multiplications, that are secure against malicious
Servers. The obtained algorithms are essentially optimal in the amortized
model: the overhead for the Server is limited to a very small constant fac-
tor, even in the sparse or structured matrix case; and the computational
time for the public Verifier is linear in the dimension. Our protocols com-
bine probabilistic checks and cryptographic operations, but minimize the
latter to preserve practical efficiency. Therefore our protocols are overall
more than two orders of magnitude faster than existing ones.

1 Introduction

With the emergence of cloud computing services, computationally weak devices
(Clients, such as smart phones or tablets) can delegate expensive tasks to more
powerful entities (Servers). Such heavy tasks can, e.g., be cryptographic opera-
tions, image manipulation or statistical analysis of large data-sets. This raises
the question of verifying a result at a lower cost than that of recomputing it.
This verification can be private, between the Client and the Server, or public,
when the result can be verified by any third party.

For instance within computer graphics (image compression and geometric
transformation), graph theory (studying properties of large networks), big data
analysis, one deals with linear transformations of large amount of data, often
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arranged in large matrices with large dimensions that are in the order of thou-
sands or millions in some applications. Since a linear transformation on a vector
x can be expressed by a matrix-vector multiplication (with a matrix of size
m× n), a weak client can use one of the protocols in the literature [4,6,16] to
outsource and verify this computation in the optimal time O(m + n), i.e., linear
in the input and the output size. However as these protocols use expensive cryp-
tographic operations, such as pairings, the constants hidden in the asymptotic
complexity are usually extremely large [15].

In this paper, we propose an alternative protocol, achieving the same optimal
behavior, but which is also practical: the overhead for the Prover is now very
close to the time required to compute the matrix-vector multiplication, thus
gaining two orders of magnitude with respect to the literature. Our protocol not
only does this for dense matrices, but is also sensitive to any structure or sparsity
of the linear transformation. For this, we first remove any quadratic operation
that is not a matrix-vector multiplication (that is we use projections and rank-1
updates) and second we separate operations in the base field from cryptographic
operations so as to minimize the latter. More precisely, we first combine rank-
one updates of [6] and the projecting idea of [4] with Freivalds’ probabilistic
check [7]. Second, we use a novel strategy of vectorization. For instance, with a
security parameter s (e.g., an s = 128-bits equivalent security), exponentiations
or pairings operations usually cost about O(s3) arithmetic operations. To make
the whole protocol work practical, we thus reduce its cost from O (

s3mn
)

to
O (

μ(A) + s3(m + n4/3)
)
, where μ(A) < 2mn is the cost of one, potentially

structured, matrix-vector multiplication. We also similarly reduce the work of
the Verifier. This allows us to gain two orders of magnitude on the Prover’s work
and therefore on the overall costs of outsourcing, while preserving and sometimes
even improving the practical efficiency of the Verifier.

Thus, after some background in Sect. 2, our first improvement is given in a
relaxed public verification setting in Sect. 4 via matrix projection and proba-
bilistic checks. Our second improvement is given in Sect. 5 where the verification
is bootstrapped efficiently by vectorization. We then show how to combine all
improvements in Sect. 6 in order to obtain a complete and provably secure pro-
tocol. Finally, we show in Sect. 7 that our novel protocol indeed induces a global
overhead factor lower than 3 with respect to non verified computations. This
is gaining several orders of magnitude on the Prover side with respect to previ-
ously known protocols, while keeping the Verification step an order of magnitude
faster.

2 Background and Definitions

In this paper, we want to be able to prove fast that a vector is a solution to
a linear system, or equivalently that a vector is the product of another vector
by a matrix. This is useful, e.g., to perform some statistical analysis on some
medical data. We distinguish the matrix, a static data, from the vectors which
are potentially diverse. In the following, Fp will denote a prime field and we
consider:
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– Data: matrix A ∈ F
m×n
p .

– Input: one or several vectors xi ∈ F
n
p , for i = 1..k.

– Output: one or several vectors yi = Axi ∈ F
m
p , for i = 1..k.

Then, we denote by � an operation performed in the exponents (for instance, for
u ∈ G

n and v ∈ Z
n, the operation uT � v actually denotes

∏n
j=1 u[j]v[j]).

Publicly Verifiable Computation. A publicly verifiable computation scheme, in
the formal setting of [13], is in fact four algorithms (KeyGen, ProbGen, Compute,
Verify), where KeyGen is some (amortized) preparation of the data, ProbGen
is the preparation of the input, Compute is the work of the Prover and Verify
is the work of the Verifier. Usually the Verifier also executes KeyGen and Prob-
Gen but in a more general setting these can be performed by different entities
(respectively called a Preparator and a Trustee). More formally we define these
algorithms as follow:

– KeyGen(1λ, f) → (param, EKf , V Kf ): a randomized algorithm run by a
Preparator, it takes as input a security parameters 1λ and the function f
to be outsourced. It outputs public parameters param which will be used by
the three remaining algorithms, an evaluation key EKf and a verification key
V Kf .

– ProbGen(x) → (σx): a randomized algorithm run by a Trustee which takes
as input an element x in the domain of the outsourced function f . It returns
σx, an encoded version of the input x.

– Compute(σx, EKf ) → (σy): an algorithm run by the Prover to compute an
encoded version σy of the output y = f(x) given the encoded input σx and
the evaluation key EKx.

– Verify(σy, V Kf ) → y or ⊥: given the encoded output σy and the verification
key V Kf , the Verifier runs this algorithm to determine whether y = f(x) or
not. If the verification passes it returns y otherwise it returns an error ⊥.

Completeness. A publicly verifiable computation scheme for a family of function
F is considered to be perfectly complete (or correct) if for every function belong-
ing to F and for every input in the function domain, an honest Prover which
runs faithfully the algorithm Compute will always (with probability 1) output
an encoding σy which will pass Verify.

Soundness. A publicly verifiable computation scheme for a family of function
F is called sound when a prover cannot convince a verifier to accept a wrong
result y′ �= y except with negligible probability. More formally we evaluate the
capability of an adversary A to deceive the verifier through a soundness experi-
ment. In this experiment, we assume that the adversary A accesses to the output
of the algorithm KeyGen by calling an oracle OKeyGen with inputs 1λ and the
function to evaluate f . This oracle OKeyGen returns public parameters for the
protocol param, an evaluation key EKf and a verification key V Kf . Afterwards
the adversary A sends its challenge input x to an oracle OProbGen which returns
σx. Finally A outputs an encoding σy∗ �= σy and runs the Verify algorithm
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on inputs σy∗ and V Kf , whether it outputs y or ⊥ the experiment has either
succeeded or failed.

Definition 1. A publicly verifiable computation scheme for a family of function
F is sound if and only if for any polynomially bounded adversary A and for any
f in F the probability that A succeeds in the soundness experiment is negligible
in the security parameter.

Adversary model. The protocol in [6], see afterwards, is secure against a mali-
cious Server only. That is the Client must trust both the Preparator and the
Trustee. We will stick to this model of attacker in the remaining of this paper.

Public delegatability. One can also further impose that there is no interaction
between the Client and the Trustee after the Client has sent his input to the
Server. Publicly verifiable protocols with this property are said to be publicly
delegatable [4]. The protocol in [6] does not achieve this property, but some
variants in [4,16] already can.

Bilinear Pairings. The protocols we present in this paper use bilinear pairings
and their security is based on the co-CDH assumption, for the sake of complete-
ness we recall hereafter these definitions.

Definition 2. (bilinear pairing)
Let G1, G2 and GT be three groups of prime order p, a bilinear pairing is a map
e : G1 × G2 → GT with the following properties:

1. bilinearity: ∀a, b ∈ Fp, ∀(g1, g2) ∈ G1 × G2, e(ga
1 , gb

2) = e(g1, g2)ab;
2. non-degeneracy: if g1 and g2 are generators of G1 and G2 respectively then

e(g1, g2) is a generator of GT ;
3. computability: ∀(g1, g2) ∈ G1 ×G2, there exist an efficient algorithm to com-

pute e(g1, g2).

Definition 3. (co-CDH assumption)
Let G1, G2 and GT be three groups of prime order p, such that there exist a bilin-
ear map e : G1×G2 → GT . Let g1 ∈ G1, g2 ∈ G2 be generators and a, b

$← Fp be
chosen randomly. We say that the co-computational Diffie-Hellman assumption
(co-CDH) holds in G1, if given g1, g2, ga

1 , gb
2 the probability to compute gab

1 is
negligible.

Fiore and Gennaro’s protocol. For the sake of completeness, we briefly remind
the original protocol for matrix-vector verification in [6], but with our rank-
one update view. It stems from the fact that if s, t, ρ, τ are randomly generated
vectors then the function gM [i,j], where M = s · tT + ρ · τT , is a pseudoran-
dom function [6, Theorem 3], provided that the Decision Linear assumption [6,
Definition 3] (a generalization of the External Diffie-Hellman assumption for
pairings), as well as co-CDH, hold.
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– KeyGen: for A ∈ F
m×n
p , generate 3 multiplicative groups (G1,G2,GT ) of

prime order p (g1, g2 generating respectively G1 and G2) and a bilinear map
e : G1×G2 → GT . Generate secret random values s ∈ F

m
p , t ∈ F

n
p , ρ ∈ F

m
p , τ ∈ F

n
p

and α ∈ Fp. Compute W ∈ G
m×n
1 such that W [i, j] = g

αA[i,j]+s[i]t[j]+ρ[i]τ [j]
1 , give

it to the server and publish a = e(gα
1 ; g2) ∈ GT .

– ProbGen: for x ∈ F
n
p a query vector, compute VKx ∈ G

m
T , such that VKx[i] =

e(g
(s[i]tT+ρ[i]τT )·x
1 ; g2). Send x to the server and publish VKx.

– Compute: compute y = Ax and z = W �x ∈ G
m
1 (that is z[i] =

∏n
j=1 W [i, j]x[j]).

– Verify : check that e(z[i]; g2) = ay[i]VKx[i], for all i = 1, . . . , m.

This protocol is sound, complete and publicly verifiable. It however uses
many costly exponentiations and pairings operations that renders it inefficient
in practice: even though the Client and Trustee number of operations is linear
in the vector size, it takes still way longer time that just computing the matrix-
vector product in itself, as shown in the experiment Sect. 7.

Related work. The work of [6] introduced the idea of performing twice the compu-
tations, once in the classical setting and once on encrypted values. This enables
the Client to only have to check consistency of both results. Then [16] extended
the part on matrix-vector multiplication to matrix-matrix while adding public
delegatability. Finally, [4] introduced the idea of projecting the random addi-
tional matrix and the extra-computations allowing to reduce the cost of the
Verify algorithm and also to decrease the size of the verification key by a fac-
tor m. For an m×n dense matrix, the protocol in [6] has a constant time overhead
for the Prover, but this constant is on the order of cryptographic public-key oper-
ations like pairings. Similarly, the Verifier has O (mn) cryptographic public-key
pre-computations and O (n) of these for the public verification. Unfortunately,
these cryptographic operations can then induce some 106 slow-down [15] and do
no improve even if the initial matrix is sparse or structured (as the rank one
updates, s · tT and σ · τT , are always dense). Other approaches include follow up
of the celebrated PCP theorem [8], with software like Pepper [14], or quadratic
arithmetic programs, with software like Pinocchio [12]. These breakthrough suf-
fer however from the same practical slowness [15].

3 Probabilistic Verification and the Random Oracle
Model

First we recall that private verification is very fast and does not require any
cryptographic routines. Then we show that this allows to obtain a very efficient
protocol in the random oracle model, but for a fixed number of inputs.

3.1 Private Verification

Without any recourse to cryptography, it is well known how to privately verify
a matrix-vector multiplication. The idea is to use Freivalds test [7], on the left,
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provided that multiplication by the transpose matrix is possible:
– Verifier to Prover: A, xi ∈ F

n
p , for i = 1, . . . , k.

– Prover to Verifier: yi ∈ F
m
p , for i = 1, . . . , k.

– Verifier verification: random u ∈ F
m
p , then wT = uT · A, and finally check, for

i = 1, . . . , k, that wT · xi
?

== uT · yi in Fp.

On the one hand, this protocol uses only classical arithmetic and is adaptable
to sparse matrices, that is when a matrix vector product costs μ(A) operations
with μ(A) < 2mn (this is the case for instance if the matrix is not structured
but is sparse with μ(A)/2 < mn non-zero elements). Indeed, in the latter case,
the cost for the Prover is kμ(A), where the cost for the Verifier is μ(A) + 4kn.

On the other hand, the protocol has now Freivalds probability of revealing
an error in any of the yi: 1 − 1/p, if Fp is of cardinality p (or 1 − 1/p� if u is
chosen in an extension of degree � of Fp).

3.2 Public Verification in the Random Oracle Model

Using Fiat-Shamir heuristic [5], the privately verifiable certificate of Sect. 3.1 can
be simulated non-interactively: uniformly sampled random values produced by
the Verifier are replaced by cryptographic hashes (to prove security in the ran-
dom oracle model) of the input and of previous messages in the protocol. Com-
plexities are preserved, as producing cryptographically strong pseudo-random
bits by a cryptographic hash function (e.g., like the extendable output functions
of the SHA-3 family defined in [2,11]), is linear in the size of both its input
and output (with atomic operations often even faster than finite field ones):

– Preparator to Prover: A ∈ F
m×n
p .

– Verifier to Prover: xi ∈ F
n
p , for i = 1, . . . , k.

– Prover to Verifier: yi ∈ F
m
p , for i = 1, . . . , k.

– Verifier to Trustee: all the xi and yi.
– Trustee publishes and signs both u ∈ F

m
p and w ∈ F

n
p such that: u =

Hash(A, x1, . . . , xk, y1, . . . , yk) ∈ F
m
p , then wT = uT · A ∈ F

n
p .

– Verifier public verification: wT · xi
?

== uT · yi in Fp.

There is no overhead for the Prover; the cost for the Trustee is a single matrix-
vector product for any k, plus a linear cost, and the cost for the Verifier is O (nk).
Using Fiat-Shamir heuristic this allows an afterwards public verification but this
not possible to test new vectors once u has been revealed.

4 A First Step Towards Public Verifiability

Freivalds’ probabilistic verification of matrix multiplications [7] allows for pri-
vate verifiability of matrix-vector computations. This can be naturally extended
in the random oracle model via Fiat-Shamir heuristic [5]. This however forces
the vectors to be multiplied to be known in advance, whereas our goal is instead
to obtain public verifiability with an unbounded number of vector inputs. As an
upstart, we thus first present an improvement if the public verification model
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is slightly relaxed: in this section, we allow the Trustee to perform some opera-
tions after the computations of the Server. We will see in next sections how to
remove the need for the Trustee’s intervention. For this, we combine Freivalds
projection (to check that Axi = yi, one can first precompute wT = uT A and
check that wT xi = uT yi) with Fiore & Gennaro’s protocol, in order to improve
the running time of both the Trustee and the Client: we let the Prover compute
its projection in the group. That way most of the pairings computations of the
Trustee and Client are transformed to classical operations: the improvement is
from O (n) cryptographic operations to O (n) classical operations and a single
cryptographic one. Further, the projection can be performed beforehand, during
the precomputation phase. That way the preparation requires only one matrix-
vector for the Freivalds projection and the dense part is reduced to a single
vector. The cryptographic operations can still be delayed till the last check on
pairings. This is shown in Fig. 1.

Fig. 1. Interactive protocol for Sparse-matrix vector multiplication verification under
the co-CDH.

Theorem 1. The protocol of Fig. 1 is perfectly complete and sound under the
co-Computational Diffie-Hellman assumption.

Proof. For the correctness, we have that: ζi = g
(uT A+tT )·xi

1 = guT ·yi+tT ·xi

1 =
ghi
1 gdi

1 = ghi+di
1 . Then, by bilinearity, e(ζi; g2) = e(g1; g2)hi+di = ηi.

For the soundness, a malicious Prover can guess the correct output values,
but this happens once in the number of elements of GT . Otherwise he could try
to guess some matching hi and di, but that happens less than one in the number
of elements of Fp. Finally, the Prover could produce directly ζi. Suppose then
it is possible to pass our verification scheme for some A, x and y′ �= y = Ax.
Then without loss of generality, we can suppose that the first coefficients of both
vectors are different, y′[1] �= y[1] (via row permutations) and that y′[1]−y[1] = 1
(via a scaling).

Take a co-computational Diffie-Hellman problem (gc
1, g

d
2), where gcd

1 is
unknown. Then denote by a = e(gc

1; g
d
2) = e(gcd

1 ; g2) and consider the vec-
tor zT = [a, e(1; 1), . . . , e(1; 1)]. Compute χT = zT � A. The latter correspond
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to χT = e(guT A
1 ; g2) for (a not computed) uT = [cd, 0, . . . , 0]. Now randomly

choose ψT = [ψ1, . . . , ψn] and compute ωT = gψT

1 . Compute also the vector
φT = e(ωT ; g2)/χT coefficient-wise. The latter correspond to φT = e(gtT

1 ; g2)
for tT = ψT − uT A. Finally, compute ζ = gψT ·x

1 (indeed, then μ = e(ζ; g2) =
e(gψT ·x

1 ; g2) = η = e(guT ·y
1 ; g2)e(gtT ·x

1 ; g2), that is η = (χT � x)(φT � x) is actu-
ally η = (zT � y)(φT � x)). Now, if it is possible to break the scheme, then
it is possible to compute ζ ′ that will pass the verification for y′ as Ax, that
is e(ζ ′; g2) = (zT � y′)(φT � x). Let h = uT y, d = tT x and h′ = uT y′. Then
e(ζ; g2) = e(gh

1 ; g2)e(gd
1 ; g2) and e(ζ ′; g2) = e(gh′

1 ; g2)e(gd
1 ; g2). But h′ − h =

uT (y′ − y) = cd(y′[1] − y[1]) = cd by construction. Therefore ζ ′/ζ = gcd
1 , as e is

non-degenerate, and the co-CDH is solved.

5 Verifying the Dot-Products by Bootstrapping
and Vectorization

To obtain public verifiability and public delegatability, the Client should perform
both dot-products, uT · y and tT · x (from now on, for the sake of simplicity, we
drop the indices on x and y). But as u and t must remain secret, they will be
encrypted beforehand. To speed-up the Client computation, the idea is then to
let the Server perform the encrypted dot-products and to allow the Client to
verify them, mostly with classical operations.

For this trade-off, we use vectorization. That is, for the vectors u and y, we
form another representation as

√
m × √

m matrices:

U =

⎡

⎢
⎢
⎣

u1 . . . u√
m

u1+
√

m . . . u2
√

m

. . . . . . . . .
u1+m−√

m . . . um

⎤

⎥
⎥
⎦ and Y =

⎡

⎢
⎢
⎣

y1 . . . y1+m−√
m

y2 . . . y2+m−√
m

. . . . . . . . .
y√

m . . . ym

⎤

⎥
⎥
⎦ .

Then uT · y = Trace(UY ). Computing with this representation is in general
slower than with the direct dot-product, O

(√
m

3
)

instead of O (m). As shown
next, this can be circumvented with well-chosen left-hand sides and at least
mitigated, with unbalanced dimensions.

5.1 Dot-Product with Rank 1 Left-Hand Side

The first case is if u is of rank 1, that is if in matrix form, u can be represented
by a rank one update, U = μ · ηT for μ, η ∈ F

√
m

p . Then both representations
require roughly the same number of operations to perform a dot-product since
then:

Trace(μ · ηT · Y ) = ηT · Y · μ (1)

Therefore, we let the Prover compute zT = gηT

1 � Y , where z[i] = g
∑

η[j]Y [j,i]
1 ,

and then the Verifier can check this value via Freivalds with a random vector v:
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gηT

1 �(Y · v) ?== zT �v. The point is that the Verifier needs now O (m) operations
to compute (Y · v), but these are just classical operations over the field. Then
its remaining operations are cryptographic but there is only O (

√
m) of these.

Finally, the Verifier concludes the computation of the dotproduct, still with
cryptographic operations, but once again with only O (

√
m) of them. Indeed,

the dot product d = uT y = Trace(UY ) = Trace(μ · ηT · Y ) = ηT · Y · μ

is checked by e(gd
1 ; g2) = e(g1; g2)d =

∏√
m

i=1 e(z[i]; gμ[i]
2 ) and the latter is

e(g1; g2)
∑∑

μ[i]η[j]Y [j,i] = e(g1; g2)ηT ·Y ·μ.

Fig. 2. Publicly delegatable protocol for the dot-product with a rank-1 left hand side.

In practice, operations in a group can be slightly faster than pairings. More-
over 	√m
2 can be quite far off m. Therefore it might be interesting to use a
non square vectorization b1×b2, as long as b1b2 ≥ m and b1 + b2 = Θ (

√
m) (and

0 padding if needed). Then we have U ∈ F
b1×b2
p , μ ∈ F

b1
p , η ∈ F

b2
p , Y ∈ F

b2×b1
p

and z ∈ G
b1
2 . The obtained protocol can compute e(g1; g2)uT ·y with O (

√
m)

cryptographic operations on the Verifier side and is given in Fig. 2.

Lemma 1. The protocol of Fig. 2 for publicly delegation of a size m exter-
nal group dot-product verification with rank-1 left hand side is sound, perfectly
complete and requires the following number of operations where b1b2 ≥ m and
b1 + b2 = Θ (

√
m):

– Preparation: O (b1+b2) in Gi;
– Prover: O (m) in Gi;
– Verifier: O (m) in Fp, O (b1+b2) in Gi and O (b1) pairings.

Proof. Correctness is ensured by Eq. (1). Soundness is given by Freivalds check.
Complexity is as given in the Lemma: indeed, for the Verifier, we have: for
Y · v: O (b2b1) = O (m) classic operations; for gηT

1 � (Y v): O (b2) cryptographic
(group) operations; for zT � v: O (b1) cryptographic (group) operations; and for
∏b1

i=1 e(z[i]; gμ[i]
2 ): O (b1) cryptographic (pairings) operations. Then the prepa-

ration requires to compute gη
1 ∈ G

b2
1 and gμ

2 ∈ G
b1
1 , while the Prover needs to

compute gηT

1 � Y for Y ∈ F
b2×b1
p and b1b2 = O (m).
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5.2 Rectangular General Dot-Product

Now if u is not given by a rank 1 update, one can still verify a dot-product
with only O (

√
m) pairings operations but as the price of slightly more group

operations as given in Fig. 3.

Fig. 3. Publicly delegatable protocol for the external dot-product.

Lemma 2. The protocol of Fig. 3 is sound, perfectly complete and requires the
following number of operations with b1b2 ≥ m:

– Preparation: O (m) in Fp and O (m) in Gi;
– Prover: O (mb1) in G1;
– Verifier: O (m) in Fp, O (

b21+b2
)

in Gi and O (b1) pairings.

Proof. Correctness is ensured by the vectorization in Eq. (1). Soundness is given
by the Freivalds check. Complexity is as given in the Lemma: indeed, for the
Verifier, we have:

1. Y · v: O (b2b1) = O (m) classic operations;
2. gwT U

1 � (Y v): O (b2) cryptographic (group) operations;
3. z = C � v: O (

b21
)

cryptographic (group) operations;
4.

∏b1
i=1 e(z[i]; gw[i]

2 ): O (b1) cryptographic (pairings) operations;

Then the preparation requires to compute wT ×U . This is O (b1b2 = m) opera-
tions. Finally, the Prover needs to compute the matrix multiplication gU

1 � Y for
U ∈ F

b1×b2
p and Y ∈ F

b2×b1
p , in O (

b21b2
)

= O (mb1).

Therefore, one can take b1 = O ( 3
√

m) and b2 = O (
m2/3

)
which gives only

O (
m2/3

)
cryptographic operations for the Verifier, and O (

m4/3
)

cryptographic
operations for the Prover.
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6 Public Delegatability via Bootstrapping

To recover the public delegatability model, we use the protocol of Fig. 1 but we
trade back some cryptographic operations using the protocols of Figs. 2 and 3 to
the Verifier. With an initial matrix A ∈ F

m×n
p we however trade back only on the

order of O (
√

m +
√

n) cryptographic operations. This gives a slower verification
in practice but interaction is not needed anymore. We present our full novel
protocol for matrix vector product in Fig. 4 (with the flow of exchanges shown
in Fig. 5, next).

Fig. 4. Proven publicly delegatable protocol for matrix-vector product

Apart from Freivalds’s checks and vectorization, we need to use a masking
of the form uT A + tT (see Fig. 1) indistinguishable from a random distribution,
but:
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Fig. 5. Exchanges in the proven publicly delegatable protocol with negligible crypto-
graphic operations of Fig. 4.
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1. We have to add an extra component γδvT to uT A + tT so that it is possible,
when proving the reduction to co-CDH, to make up a random vector ωT =
guT A+t where the components of uT A+ tT are canceled out. This component
cannot be revealed to the Prover, nor the Verifier in the delegatable setting,
otherwise its special structure could have been taken into account by the
reduction. Also this component cannot have the rank-1 update structure as
its has to be a multiple of uT A+ tT . Therefore only the protocol of Fig. 3 can
be used to check the dotproduct with gvT

.
2. To be able to apply the analysis of [6, Theorem 3] while allowing fast com-

putations with t, we use a special form for t, namely: tT = ρ1τ
T
1 + ρ2τ

T
2 .

With these modifications we are able to prove the soundness of the protocol in
Fig. 4.

Theorem 2. Let A ∈ F
m×n
p whose matrix-vector products costs μ(A) arithmetic

operations. Protocol Fig. 4 is sound under the co-CDH assumption, perfectly com-
plete and its number of performed operations is bounded as follows:

Preparation Prover Verifier

Fp μ(A)+O (m+n) μ(A) O (m+n)

Gi O (m+n) O
(
m+n4/3

)
O
(√

m+n2/3
)

Pairings 0 0 O (
√

m+
√

n)

Proof. Completeness stems again directly from Eq. (1).
For the complexity bounds, we fix b1b2 ≥ m and b1 + b2 = Θ (

√
m) (usually,

pairing operations are costlier than group operations, therefore a good practice
could be to take b1 < b2 and we, for instance, often have used b2 = 100b1 with
b1b2 ≈ m which gave us a speed-up by a factor of 5), c1c2 ≥ n and c1 + c2 =
Θ (

√
n), and finally d1 = O (

m1/3
)

and d2 = O (
m2/3

)
. For the Prover, we then

have that y obtained in μ(A) operations; ζ in O (n); s1, s2 and z computations
are bounded by O (n + m) where C thus requires O (

n4/3
)

operations. The cost
for the preparation is O (m + n) for U , T and �T V . ω requires μ(A) + 2m
classical operations and O (m) group operations. (gδ

1)
V T

requires O (n) group
operations while gτi

1 , gηi

1 , gρi

2 , and gμi

2 , require Θ (
√

m +
√

n) operations, more
than for (gγ

2 )
T

and (gδ
1)


T V . The complexity for the Verifier is then dominated
by O (

n2/3
)

operations to check C, O (n) classical operations for Y · v3 and
O (

√
n) pairing operations.

Finally for the soundness, assume that there is an adversary A that breaks
the soundness of our protocol with non-negligible advantage ε for a matrix A ∈
F

m×n
p . In the following we will prove how an adversary B can use adversary

A to break the co-CDH assumption with non-negligible advantage ε′  ε. Let
assume that B was given a co-CDH sample (L = ga

1 , R = gb
2). First B simulates

the soundness experiment to adversary A in the following manner: when A calls
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the oracle OKeyGen, adversary B first chooses integers, b1, b2, c1, c2, d1, and d2
such that m = b1b2 and n = b1b2 = d1d2. Then it generates random vectors
μ0 ∈ F

b1
p , η0 ∈ F

b2
p , ρ01 ∈ F

c1
p , τ01 ∈ F

c2
p , ρ02 ∈ F

c1
p , τ02 ∈ F

c2
p , � ∈ F

d1
p and a

value r ∈ Fp. We let u0 be the vector representation of μ0 · ηT
0 and t0 that of

ρ01·τT
01+ρ02·τT

02. We also let v = −(AT u0+t0) ∈ F
n
p . Finally, B forms ωT = Lr·vT

;
gη
1 = Lη0 , gμ

2 = Rμ0 ; gτ1
1 = Lτ01 , gρ1

2 = Rρ01 ; gτ2
1 = Lτ02 , gρ2

2 = Rρ02 ; gδ
1 = L,

gγ
2 = gr

2; gδV
1 = LV , (gr

2)

T

= (gγ
2 )
T

and (gδ
1)


T ∗V = (gγ
1 )
T V and outputs:

param = (m,n, b1, b2, c1, c2, d1, d2, p, e,G1,G2,GT , g1, g2, gT ).

EKf = {A,ωT , (gτT
1

1 ), (gτT
2

1 ), (gηT

1 ), (gδ·V
1 )}

V Kf = {(gτT
1

1 ), (gτT
2

1 ), (gρ1
2 ), (gρ2

2 ), (gηT

1 ), (gμ
2 ), (gδ
T ·V

1 ), (gγ

2 ), gγ

2 }.
Thanks to the randomness and the decisional Diffie-Hellman assumption

(DDH) in each group Gi, as well as [6, Theorem 3] for ωT = (Lr)vT

, these
public values are indistinguishable from randomly generated inputs. Further, we
have ωT = garvT

1 = g
ab(uT

0 A+tT0 +vT )+arvT

1 = g
abuT

0 A+abtT0 +a(b+r)vT

1 .
When adversary A calls the oracle OProbGen on input x, adversary B returns

σx = x. Therefore, if y = Ax and ζ = ωT � x, then the verification will pass:
indeed the first two checks will ensure that sT

1 = g
τT
1

1 �X and sT
2 = g

τT
2

1 �X when
the third check ensures that zT = gηT

1 � Y . This shows that:

H =
(∏

e(z[i]; gμ[i]
1 )

)
= e(g1; g2)abuT

0 y,

and that:

Dj =
(∏

e(sj [i]; g
ρj [i]
2 )

)
for j = 1, 2.

Finally, the last check is that these two parts, as well as the last one,
which is e(gδ

1; g
γ
2 )vT ·x = e(g1; g2)a(b+r)vT ·x = e(Trace(gδ·V X

1 ); gγ
2 ), are coher-

ent with the definitions of ω and ζ above. Now, with a non-negligible prob-
ability ε, adversary A can pass the check for another y′ �= y, by providing
an adequate ζ ′. First, zT , sT

1 , sT
2 and C must be correct, as they are checked

directly and independently by the Freivalds first four checks. Second, we have
that e(ζ ′; g2) = e(g1; g2)abuT

0 y′+abtT0 xe(gδ
1; g

γ
2 )vT ·x and therefore, we must also

have e(ζ(ζ ′)−1; g2) = e(g1; g2)abuT
0 (y−y′). As u0 is a secret unknown to adver-

sary A, for a random y′ the probability that uT
0 (y − y′) = 0 is bounded by

1/|G1| and thus negligible. Thus adversary B can compute c ≡ (
uT
0 (y′ − y)

)−1

mod |G1| and (ζ/ζ ′)c = gab
1 . Therefore it breaks the co-CDH assumption with

non-negligible probability ε′  ε. The only other possibility is that adversary A
was able to recover uT

0 . But that would directly implies that it has an advantage
in the co-CDH: gη

1 = Lη0 , gμ
2 = Rμ0 .

Remark 1. Fast matrix multiplication can be used for the computation of C
in the protocol of Fig. 4. This decreases the O (

n4/3
)

factor of the Prover to
O (

n(1+ω)/3
)

where ω is the exponent of matrix-matrix multiplication. The cur-
rently best known exponent, given in [9], is ω ≤ 2.3728639. This immediately
yields a reduced bound for the Prover of μ(A) + O (

m + n1.12428797
)
.
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7 Conclusion and Experiments

We first recall in Table 1 the leading terms of the complexity bounds for our
protocols and those of [4,6,16] (that is each value x in a cell is such that the
actual cost is bounded by x + o(x)). There, we denote the base field operations
by ·F , the cryptographic group exponentiations or pairing operations by ·G, and
the cost of a product of the matrix A ∈ F

m×n
p by a vector is μ(A). We see that

our protocols are suitable to sparse or structured matrix-vector multiplication
as they never require O (mn) operations but rather μ(A). Moreover, we see that
most of the Verifier’s work is now in base field operations where it was crypto-
graphic operations for previously known protocols. As shown in Table 2 and in
Fig. 6, this is very useful in practice, even for dense matrices. For these exper-
iments we compare with our own implementations of the protocols of [4,6,16]
over the PBC library1 [10] for the pairings and the FFLAS-FFPACK library2 [3]
for the exact linear algebra over finite fields (C++ source files are available there:
smc-vc.forge.imag.fr). We used randomly generated dense matrices and vectors
and to optimize the costs (pairings are more expensive than exponentiations),
we also chose the following parameters for the vectorizations: b1 = 	√m/10
;
b2 = 	10

√
m
; c1 = 	√n/10
; c2 = 	10

√
n
; d1 = 	n1/3/3
; d2 = 	3n2/3
. We

indeed chose a type 3 pairing over a Barreto-Naehrig curve [1] based on a 256-
bits prime field, which should guarantee 128 bits of security. First, with Fp the

Table 1. Leading terms for the time and memory complexity bounds (exchange of A,
x and y excluded).

Scheme [6] [16] [4]

Mode Public verif. Public deleg. Public deleg.

Preparator (KeyGen) 2mn · F +mn · G − 2mn · F + 2mn · G
Trustee (ProbGen) 2(m+ n) · F + 2m · G mn · F + (2m+ n) · G n · G
Prover (Compute) µ(A) · F + 2mn · G µ(A) · F + 2mn · G µ(A) · F + 2mn · G
Verifier 2m · G 2m · G m · G
Extra storage O (mn) O (mn) O (mn)

Extra communications O (m) O (m) O (1)

Scheme Fig. 1 Fig. 4

Mode Public verif. Public deleg.

Preparator (KeyGen) (µ(A) + n) · F + n · G (µ(A) +m+ 5n) · F + 2n · G
Trustee (ProbGen) 2(m+ n+ 1) · F + 1 · G 0

Prover (Compute) µ(A) · F + 2n · G µ(A) · F + (2n4/3 +m) · G
Verifier 1 · G (2m+ 4n) · F + (6

√
m+ 2n2/3) · G

Extra storage O (m+ n) O (n)

Extra communications O (1) O (n2/3 +
√
m
)

1 https://crypto.stanford.edu/pbc, version 0.5.14.
2 http://linbox-team.github.io/fflas-ffpack, version 2.2.2.

http://smc-vc.forge.imag.fr/
https://crypto.stanford.edu/pbc
http://linbox-team.github.io/fflas-ffpack
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Table 2. Matrix-vector multiplication public verification over a 256-bit finite field with
different protocols on a i7 @3.4 GHz.

1000 × 1000 2000 × 2000

[14] [6] [16] [4] Fig. 4 [6] [16] [4] Fig. 4

KeyGen 141.68 s 152.62 s - 154.27 s 0.80 s 615.81 s - 612.72 s 1.75 s

ProbGen - 1.25 s 2.28 s 2.30 s - 2.13 s 4.98 s 4.56 s -

Ax = y 20.14 s 0.19 s 0.19 s 0.19 s 0.19 s 0.78 s 0.78 s 0.78 s 0.78 s

Compute 188.60 s 273.06 s 433.88 s 271.03 s 2.26 s 1097.96 s 1715.46 s 1079.71 s 5.37 s

Verify 2.06 s 26.62 s 27.56 s 0.33 s 0.90 s 52.60 s 55.79 s 0.62 s 1.19 s

4000 × 4000 8000 × 8000

[6] [16] [4] Fig. 4 [6] [16] [4] Fig. 4

KeyGen 2433.10 s - 2452.98 s 4.89 s 9800.42 s - 9839.26 s 15.64 s

ProbGen 3.81 s 13.29 s 9.24 s - 7.41 s 43.44 s 18.46 s -

Ax = y 3.28 s 3.28 s 3.28 s 3.28 s 13.30 s 13.30 s 13.30 s 13.30 s

Compute 4360.43 s 6815.40 s 4329.46 s 13.76 s 17688.69 s 27850.90 s 17416.38 s 37.00 s

Verify 103.14 s 107.99 s 1.20 s 1.65 s 211.07 s 220.69 s 2.37 s 2.25 s

256-bits prime field3, G1 is the group of Fp-rational points E(Fp) with parame-
ters: G1 (E) : y2 = x3 + 6, modulo p. Second, G2 is a subgroup of a sextic twist
of E defined over Fp2 denoted E′(Fp2) with parameters4: G2 (E′) : y2 = x3 +6e,
Fp2 ∼= Fp[X]/(X2 − 2), e = a0 + a1X ∈ Fp2 . The third group GT is then a
subgroup of the multiplicative group of the field Fp12 . This curve is reasonably
well-suited to our needs and is supported by the PBC library.

In the first set of timings of Table 2, we also compare the latter protocols
with a compiled verifiable version obtained via the Pepper software5 [14]. This
software uses a completely different strategy, namely that of compiling a C pro-
gram into a verifiable one. We added the timings for n = 1000 as a comparison,
but the Pepper compilation thrashed on our 64 GB machine for n ≥ 2000.

In terms of Prover time, we see that our protocols are between two to three
orders of magnitude faster than existing ones. Further evidence is given in
Table 3, where we present more timings for the comparison between our pro-
tocol and, to our knowledge and according to Table 2, the best previously known
from [4]. The associated speed-ups supports our claim of a Prover efficient pro-
tocol with a gain of two orders of magnitude.

Moreover, overall we see that with the new protocol, the data preparation
(KeyGen) is now very close to a single non-verified computation and that the
work of the Prover can be less than three times that of a non-verified computa-
tion (note first, that in both Table 2 and Fig. 6, the “Compute” fields include the
computation of y = Ax, and, second, that the Prover overhead being asymptot-
ically faster than the compute time, this latter overhead is rapidly amortized).
Finally, only the protocol of [4] did exhibit a verification step faster than the

3
p = 57896044618658115533954196422662521694340972374557265300857239534749215487669.

4
a0=52725052272451289818299123952167568817548215037303638731097808561703910178375,
a1=39030262586549355304602811636399374839758981514400742761920075403736570919488.

5 https://github.com/pepper-project/pepper, git: fe3bf04.

https://github.com/pepper-project/pepper
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Table 3. Speed-up of our novel Protocol over a 256-bit finite field on a i7 @3.4 GHz.

Size 100 200 500 1000 2000 3000 4000

[4] 2.77 s 10.93 s 67.93 s 271.03 s 1079.71 s 2430.05 s 4329.46 s

Fig. 4 0.17 s 0.34 s 0.98 s 2.26 s 5.37 s 9.16 s 13.76 s

Speed-up 17 32 69 120 201 265 315

Size 5000 6000 7000 8000 9000 10000

[4] 6790.15 s 9780.24 s 13309.61 s 17416.38 s 22002.51 s 27175.12s

Fig. 4 18.55 s 24.03 s 29.93 s 37.00 s 44.00 s 51.97 s

Speed-up 366 407 445 471 500 523

computation itself for size 2000 × 2000 whereas, as shown in Fig. 6, our protocol
achieves this only from size 3000×3000. However, we see that we are competitive
for larger matrices. Moreover, as shown by the asymptotics of Theorem 2, our
overall performance outperforms all previously known protocols also in practice,
while keeping an order of magnitude faster Verification time.

A Small Fields

The protocol of Fig. 1 is quite efficient. We have made experiments with randomly
generated dense matrices and vectors with the PBC library (see Footnote 1) for
the pairings and the FFLAS-FFPACK library (see Footnote 2) for the exact
linear algebra over finite fields. For instance, it is shown in Table 4, that for a
8000 × 8000 matrix over a field of size 256 bits, the protocol is highly practical:
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Table 4. Verification of a 8000× 8000 matrix-vector multiplication with different field
sizes via the protocol in Fig. 1 on a single core @3.4 GHz.

Field size |G| Security KeyGen Compute Verify

Total uT A Overhead Total y = Ax Overhead

256 256 128 13.65 s 12.34 s 1.22 s 15.72 s 13.46 s 2.26 s 0.03 s

10 322 128 1.96 s 0.05 s 1.81 s 0.22 s 0.09 s 0.13 s 0.04 s
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Fig. 7. Trustee-helped Verification of a dense matrix-vector product in a 10-bits finite
field on a single core @3.4 GHz.

first, if the base field and the group orders are of similar sizes, the verification
phase is very efficient; second, the overhead of computing ζ for the server is quite
negligible and third, the key generation is dominated by the computation of one
matrix-vector product.

Differently, if the base field is small, say machine word-size, then having
to use cryptographic sizes for the group orders can be penalizing for the Key
Generation: multiplying a small field matrix A with a large field vector uT is
much slower than y = Ax with x and A small. First of all, the computations must
be compatible. For this, one possibility is to ask and verify instead for y = Ax
over Z and then to let the Verifier compute y mod p for himself. There, to reduce
the overhead of computing uT A, one can instead select the m values of the vector
u as u� = αrisj with � = i	√m
 + j for α a randomly chosen large value and
ri, sj some randomly chosen small values. Indeed then uT A can be computed
by first performing (rsT )A via O (

√
m) matrix-vector computations with s (or a√

m×n
√

m matrix-vector multiplication) followed by O (n
√

m) multiplications
by r (or a n×√

m matrix-vector multiplication) where sj and ri are small values.
Then it remains only to multiply a vector of small values by α. We have traded
O (mn) operations with large values for O (

√
mn

√
m + n

√
m) operations with

small values and O (n) with large values.
Now, in order for the values to remain correct over Z, the value of (uT A+tT )x

must not overflow. For this, one must choose a group order larger than mnp4

(for (rsT )Ax). Now the security is not anymore half the size of the group order
but potentially half the size of the set from which tT is selected, that is at most
the group order size minus that of np (for tT x). To be conservative we even
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propose, as an estimated security of the obtained protocol, to consider only half
the size of α (that is the size of the group order minus that of mnp4). In terms
of efficiency, the improvement is shown in Table 4, last row. On the one hand,
the key generation is now dominant and can be amortized only after about 10
matrix-vector multiplications. On the other hand, the verification time starts
to be faster than the computation time. This is also shown in Fig. 7 where the
equivalent of the last row in Table 4 is shown for different matrix dimensions.
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Abstract. Current web applications incorporate third-party content
hosted at different origins that offer a series of online services, as well as
a suit of reusable libraries. Since those services and libraries constantly
demand access to privacy-sensitive data for implementing normal oper-
ations, web developers and users must trust them not to induce privacy
exfiltration. However, due to a common feature of all-or-nothing fashion,
the security mechanisms of present web browsers are essentially insuffi-
cient for mitigating the risks caused by third-party code.

This paper presents JSFfox, a JavaScript confinement system which
enforces flexible information-flow policies for Firefox. Under JSFfox, not
only the compartments but also the transferred message that contains the
sensitive data are associated with information-flow labels, which can be
tracked for enforcing substantial policies. We characterize a wide range
of web applications for demonstrating the motivations and requirements
of JSFfox’s design and implement the secure versions of those applica-
tions, which guarantees flexibility for developers as well as privacy for
users. We develop a functional prototype of JSFfox built on top of Fire-
fox, and the experimental results show that JSFfox has a fully backward-
compatibility with current web and introduces a negligible overhead com-
pared with the legacy Firefox.

1 Introduction

Modern web applications incorporate a large number of third-party content from
a variety of origins that are not equally trustworthy. Previous research [16] has
indicated that 88.45% of the Alexa top 10,000 web sites include at least one third-
party and remotely-hosted content, and such inclusions will request JavaScript
from a total of 20,225 uniquely-addressed remote hosts. That content, in the
form of the markup and executable script, can interact with the web environ-
ment through a collection of powerful API, including issuing requests to remote
servers, communicating with other scripts loaded in the browser, and accessing
users’ confidential data (e.g., passwords, geographical location, banking account,
and emails). Especially, the emerging HTML5 standards [24] have sufficiently
expanded the API available to scripts.
c© Springer International Publishing AG 2017
J. Pieprzyk and S. Suriadi (Eds.): ACISP 2017, Part II, LNCS 10343, pp. 135–150, 2017.
DOI: 10.1007/978-3-319-59870-3 8
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Such untrusted content can cause a series of damaging consequences includ-
ing users’ browsing histories being tracked [7], users’ input in web forms being
obtained [11], cookies and confidential data from web page content being stolen
[6], and even forgery requests being injected into an ongoing session on behalf
of the user [3,17].

To impose restrictions on the untrusted content, present browsers rely on
numerous security mechanisms, such as the Same Origin Policy (SOP), Content
Security Police (CSP) [22], and Cross-Origin Resource Sharing (CORS) [23].
These mechanisms, however, have a notable feature of either denying or granting
complete access to the untrusted scripts. Obviously, this all-or-nothing manner
is not suitable for such a flexible and constantly changing web environment.

Recently, information-flow control has been applied as a promising and effec-
tive approach that can mitigate the misbehavior of the untrusted content, and,
therefore, make up for the current browser security mechanisms [4,9,12,20,27].
Some of the solutions enforce per-object granularity policies, and, therefore, lead
to a heavy overhead. Moreover, they require the modification of the existing
JavaScript interpreter [9], or the implementation of a new one [12]. In contrast,
other solutions [5,20,27] built on existing JavaScript engines, compartmentalize
scripts into compartments that encapsulate content from a single origin, enforce
policies at the granularity of compartments.

In this paper, we propose JSFfox, a novel information-flow control system
that confines untrusted JavaScript for Firefox. JSFfox can implement general and
flexible information flow control policies for interactions between web application
components and the browser APIs, and prohibit untrusted code from leaking
sensitive data (e.g., through an untrusted Internet channel).

More specifically, each component in a browser is specifically associated with
an information-flow label which is identified by web origins. JSFfox offers two
different granularities of information-flow labels. The context label is the one
regrarding the granularity of a context (e.g., iframe, worker), which represents
the privilege of all data within the relevant context. It can not only express
secrecy and integrity but also precisely define the endorsement and declassifica-
tion operations, permitting the controlled flow of data to untrusted contexts for
realizing a specific functionality (e.g., a password manager can obtain or send
the password from or to a relevant page).

The message label is the one specifically introduced in JSFfox and it can be
assigned to a transferred message that contains sensitive data between contexts.
Since some data (e.g., bank account, password) in a context can be considered
as absolute private which cannot be disclosed from the browser by untrusted
contexts, the message label enables JSFfox to track that kind of data and restrict
the communication capability of the context which receives the data.

We characterize three motivating web applications; an application that incor-
porates third-party online services, a third-party mashup, and an application
which imports untrusted third-party libraries. All of these are difficult to be
deployed in a way that guarantees both privacy and flexibility in present
browsers. By realizing secure versions of three mentioned applications under
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a JSFfox prototype, we concretely prove that JSFfox can enforce practical and
efficient information-flow control policies to prevent the leakage of secrets from
browsers.

In summary, this paper makes the following contributions:

– We describe the design of the JSFfox, a confine system for untrusted code
which specifies and enforces fine-grained information-flow polices to prohibit
secrets from leaving the browser.

– We introduce a feasible approach to track and secure the sensitive data, as
well as to confine the insecure declassification.

– We present a case-study regarding web applications of enforcement of prac-
tically relevant policies enabled by JSFfox.

– We describe functional prototype implementation built on Firefox with a
reasonable performance overhead.

The remainder of this paper is organized as follows. In Sect. 2, we describe
background, and give motivation examples. Section 3 gives a high-level overview
of the design of JSFfox, and Sect. 4 details the secure versions of our motiva-
tion examples mentioned in Sect. 2.2. In Sect. 5, we discuss key implementa-
tion aspects and we evaluate JSFfox with respect to compatibility, security, and
performance in Sect. 6. Section 7 discusses related work, and Sect. 8 gives the
conclusion.

2 Background and Motivation

In this section, we first review the security mechanisms in today’s browsers, and
then give several motivating applications that indicate the requirements which
JSFfox needs to satisfy.

2.1 Browser Security Mechanisms

Same Origin Policy (SOP) simply requires that dynamic content can only read
the resources (e.g., cookies, DOM, http response) of content from the same
origin1, rather than access content from a different origin. Typically, browsers
isolate content retrieved from different origins to prevent malicious web site
operators from interfering with the operation of benign web sites.

Today’s browsers offer several approaches to bypass SOP for developers. The
postMessage [24] allows data to be sent between two contexts across domains.
For safety reasons, a sender always specifies an exact target origin, meanwhile a
receiver always verifies the sender’s identity using the origin and possibly source
properties. However, recent research [19] illustrates the potential risk of privacy
disclosure due to incorrect or nonexistent origin check in postMessage. Cross-
Origin Resource Sharing (CORS) [23] introduces a standard mechanism that

1 An origin is a source of authority encoded by the protocol (e.g., http), domain name
(e.g., a.com), and port (e.g., 80 ) of a resource URL.
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can be used by browsers for the support of issuing cross-domain requests to
remote servers.

Moreover, Content Security Policy (CSP) [22] enforced by browsers is techni-
cally a whitelist-style tool which web developers can leverage to lock down their
applications in various ways, mitigating the risk of content injection vulnerabil-
ities, and reducing the privilege that their applications execute.

Note that all of the aforementioned security mechanisms are purely all-or-
nothing style in nature. At runtime, those mechanisms maintain static and con-
stant access control policies but do not confine a receiving compartment which
can deal with the obtained data at will. Therefore, if a privacy-fixated web devel-
oper needs to deliver secret information to a context of foreign origin then the
receiving context must be completely trustworthy and benign.

2.2 Motivations

After a brief review of the security mechanisms in the status-quo browsers, we
introduce three typical motivating application examples which demonstrate the
imperfections of those security mechanisms and indicate the important require-
ments that JSFfox needs to satisfy.

Third-party service. An online service, like a cloud note, can help users ubiq-
uitously organize cross-platform data. Accordingly, developers are willing to offer
this service in the form of an extension or library. We suppose a cloud note exten-
sion wants to capture the document from a web site, say a.com, and upload the
obtained data. The existing browser security mechanisms allow the cloud note to
access all data from a.com and then write to the network. Therefore, the cloud
note which might encompass privacy-disclosure vulnerabilities or be injected
with malicious code, is allowed to access the sensitive data from a.com, and
then exfiltrate it from the browser. That situation, thus, demands that JSFfox
tracks the flow of sensitive data, and whenever such unexpected access appears,
prohibits the receiving context from communicating with untrusted origins.

Fig. 1. Third-party cloud note architecture under JSFfox

Figure 1 shows how such a design might look. In this, and subsequent exam-
ples, compartments are represented by rectangular frames, communication oper-
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ations are denoted as arrows, and the execution sequence of events is numbered.
Each compartment could be labeled (Sect. 3.1, Context label) with the origins
to whose sensitive data they have been exposed, and also be granted with the
capability of raising or reducing that label. A compartment’s initial label is
denoted as its own origin; if a compartment wishes to send/receive data, it has
to reduce/raise its label at the cost of becoming more restricted in the capa-
bility of reading/writing. Moreover, a compartment can impose a restriction on
another compartment by labeling the transferred message (Sect. 3.1, Message
label), and then the receiving compartment cannot reduce the origins in the
message label from its own label even with relevant declassifying capability. We
use the “addition” or “subtraction” operators to indicate the operation of raising
or reducing the label and the “lock” symbol to represent the origin that cannot
be removed because of the imposed message label.

As shown in Fig. 1, the initial label of the loaded a.com simply holds its own
origin. In step 1, the cloud note raises its label to obtain the document (whose
label is null) from a.com. In step 2, with reduction of the label, the cloud note
can freely communicate with the remote server to upload the document. In step
3, malicious code in the cloud note wants to steal the user’s password using
postMessage; the password is labeled a.com to indicate that the data is sensitive
to this origin and cannot be leaked from a browser by third-party contexts.
Once receiving the labeled message, the cloud note cannot reduce the origin
a.com from its label. Therefore, JSFfox can automatically deny the cloud note’s
further access to the network in step 4.

Third-party mashup. Mashup applications use content from more than one
origins to create a single new service. For instance, there is a shopping guide
platform which needs to reunite a user’s purchase data hosted by taobao.com with
a user’s bank account statement hosted by unionpay.com. Apparently, both types
of data are sensitive for a privacy-fixated user. However, the mashup increases
the privacy disclosure risk, because the data from taobao.com might be exposed
to unionpay.com, and vice-verse, and to any other remote origins.

Currently, to implement the mashup, the application code must bypass SOP
to allow the sharing of data across domains by configured CORS policy. Note that
when an origin receives sensitive data from another through XHR, it can freely
do anything including exfiltrate that data from the browser. The key requirement
of confinement for mashup is that untrusted code can make requests to multiple
origins but once the sensitive data from those origins flows to it, then its privilege
of communicating with untrusted origins must be restricted.

Untrusted third-party library. To conveniently build applications, third-
party libraries such as jQuery, make a great difference for developers. If a devel-
oper purely imports a third-party library into a page that possesses sensitive
data, there is no confinement to the untrusted library because of the absence of
isolation. However, we cannot isolate third-party library into the isolated com-
partment, as we can do so in the cloud note example, since a library generally
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possesses the privilege of sensitive operations of the entire page such as DOM
manipulation, event handling, and XHR.

The critical requirement is to achieve the isolation of an untrusted library
without affecting functional operations. Besides, JSFfox needs to support the
capability of granting and restricting privilege. For example, a page should be
able to create a compartment, confer its privilege (e.g., importing jQuery code
into an untrusted page, sending network requests to a wider web) on that com-
partment, and then, be confined, resulting in the loss of that privilege.

Currently, a library generally imports another untrusted library to reuse
provided functionality. Therefore, JSFfox needs to support the multi-level com-
partment confinement (i.e., one trusted context confines an untrusted one which
in turn confines a further untrusted one).

3 System Design

In this section, we first detail JSFfox’s label-based policies, and then, outline
how to assign and enforce policies.

3.1 Policy Specification

In JSFfox, each browser component is associated with an information-flow label,
which specifies the allowed flows of information between components. JSFfox
introduces two different granularities of information-flow labels, both of which
appear in the third-party service example in Fig. 1. A context label consists of
basic labels and a capability label, representing the privilege of all data within
the context. When a context sends sensitive data to another, it can use a message
label to track that data and confine the potentially untrusted receiving context.

Basic label. Each context possesses two kinds of basic labels: secrecy (S) and
integrity (I). If a secrecy tag, for example, identified as a.com2, belongs to S, then
JSFfox supposes that the context has observed the data from the origin a.com.
For integrity, if I contains an integrity tag written with localStorage, then the
privilege of accessing localStorage has been granted to that context.

Capability label. To make up for the static nature of the basic label, JSFfox
introduces the capability label, denoted as O, which has three kinds of special
tags; t+ for endorsement; t- for declassification; and t1 → t2 for reclassification.

A context with the endorsement capability as t+ ∈O enables itself to add tag
t to its basic labels. For secrecy, endorsement lets a context expand its secrecy
label to enhance the privilege receiving data from other origins. For integrity, it
lets a context access the sensitive resource relevant to the tag t.

Declassification is a powerful (and dangerous) operation, which gives a
context the capability of subtracting the relevant tags from its secrecy label.

2 For clarity, we use a.com as the hostname-based tag; while the complete tag certainly
include the scheme and port.
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A context holding the declassification capability might narrow its secrecy label
to communicate with wider contexts and servers. Meanwhile, declassification is
necessary because some provided services need to transfer the obtained secrets
to arbitrary web pages to achieve specific functionality.

We describe the third-party service application as a typical example, in
Sect. 2.2. This application should have the a.com- capability for uploading the
document obtained from a.com. Without declassification, the tag a.com in the
cloud note’s label would cause the label check to fail since that tag is not in
secrecy label of network channel to the remote server. With declassification, how-
ever, the cloud note can freely deal with the sensitive data from a.com (e.g., pass-
word, cookies, etc.), including disclosing the data to untrusted origins. There-
fore, the declassification must be judiciously assigned, and even when necessary,
it must be confined. However, such confinement is not supplied in the existing
coarse-grained systems [5,20].

Reclassification is a weaker form of declassification. The t1 → t2 reclassifica-
tion tag only enables the context to transform tag t1 into t2 in secrecy label.

Context label. In JSFfox, labeled contexts directly extend browsing contexts
in form of iframes, pages, etc. A context label specifies the security policy for
all data within the context, which JSFfox enforces by tracking the information
flow to and from other contexts and servers. In general, a context label, written
with (S,I,O), consists of a secrecy label S, an integrity label I, and a capabil-
ity label O. To realize label-based policies, JSFfox’s enforcement only permits
interactions between contexts and servers whose labels are, at least, restricted.
Ignoring capability labels, a sender can communicate with a receiver only when
Ssender ⊆ Sreceiver (i.e., the receiver should at least know all secrets of the sender)
and Isender ⊇ Ireceiver (i.e., the sender should at least have all permissions of
the receiver).

A context can voluntarily raise and reduce its basic labels based only on its
capability label. To achieve an information transmission, the receiver raises it
secrecy label with corresponding endorsement tags, while the sender narrows
its secrecy label by declassification and expands its integrity label by endorse-
ment. Naturally, the receiver becomes more restricted in its capability of sending
messages and the sender’s capability of accepting information is limited as well.

To support the multi-level contexts confinement discussed in Sect. 2.2, a
labeled context can create additional labeled sub-contexts in the form of iframes,
workers, etc. Thus this permits developers to isolate the code of different levels
of trustworthiness within the same page into isolated compartments. Certainly,
child contexts should not exceed the privilege of their parent, otherwise they
can probably reveal secret data. Therefore, when a child context is created, its
initial label should either be specified by the parent and must be more limiting
or directly inherit the current label of parent.

Web developers can create two categories of labeled contexts. The first
one is for the standard compartments in the form of pages, workers, iframes,
etc. Inspired by TreeHouse [14], the second category of labeled context is in
the form of a lightweight worker (LWorker), which we use in the untrusted
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third-party library example for isolating the trusted code, from the untrusted
jQuery library. Different from normal workers [25], LWorker runs in the same
thread as the parent, sharing its event loop. JSFfox benefits from that sharing
which permits the child worker to freely access the DOM of the parent.

Message label. To track the flow of sensitive data and guarantee the secure
declassification, we introduce the message label, which is bound with the payload
of an individual inter-context message. The payload takes the form of a serialized
immutable object of type Blob [24]. JSFfox allows the developers to specify
the message label which will be attached to a message Blob being transferred
between contexts.

A message label simply in the form of a secrecy label indicates that the
encapsulated data is sensitive to the origins in the label, and cannot be disclosed
by any other untrusted third-party context. To prevent overuse of the message
label, any message label should be as or more limiting than the current secrecy
label of the sending context.

A sender can impose a message label on a receiver by utilizing provided
labeledMessage API. When the labeled message is accepted, the tags in receiver’s
secrecy label that belong to the message label is locked, which means those tags
cannot be removed by de- or reclassification operations. In the third-party service
example as discussed in Sect. 2.2, after receiving the password labeled with a.com,
the third-party context even with relevant declassification a.com-, cannot remove
that tag to issue network requests.

3.2 Policy Assignment

JSFfox provides two methods, of different priorities, to allocate labels. The high
priority method is the API offered by JSFfox, which can help developers freely
customize the security policies for their applications.

JSFfox also provides the second method, with low priority, in which labels are
automatically derived from the annotated policy (e.g., CSP, permissions). For
example, if the browser loads a.com, and its annotated CSP permits third-party
content only from trust.com, then a.com’s label might be:

S = {a.com}, I = {}, O = {a.com+, network+, a.com → trust.com}
It is worth mentioning that JSFfox automatically formulates the labels for

the static and passive components that have no attached capability labels, such
as the APIs for accessing browser storage and network channels. Their secrecy
labels might rely on the parameters of the API invocation (e.g., hostname of
accessing site), while their integrity labels might correspond to the permissions
with which they are protected. For example, the label of the API for accessing
the network of origin a.com might be S = {a.com}, I = {network}.

3.3 Policy Enforcement

Whenever a cross-compartment communication occurs, all relevant labels will
be checked by the policy enforcement functionality. Consider the example that
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a sender wants to send message to a receiver. We assume the sender’s label as
(S1, I1, O1), the receiver’s label as (S2, I2, O2), and the transferred message’s label
as (Sm). The communication should be permitted only if all the following con-
ditions are satisfied; (1) the sender holds an S′

1 which is obtained by applying
declassification to S1 as permitted by O1, and the receiver holds an S′

2 which is
obtained by raising S2 through endorsement defined by O2, such that S′

1 ⊆ S′
2; Sm

should belong to S′
1; (2) the sender holds an I ′

1 which is obtained by applying
endorsement capabilities to I1 in O1, and I ′

1 ⊇ I2. After the success of communi-
cation, the receiver’s secrecy label will become S′

2 and all the tags in the subset
(which is equivalent to Sm) of S′

2, as discussed before, will be locked.

4 Applications

In this section, we demonstrate how to implement secure versions of the appli-
cations discussed in Sect. 2.2.

Fig. 2. Third-party mashup under
JSFfox

Fig. 3. Untrusted third-party library under
JSFfox

Third-party mashup. Due to the requirement of sharing data across domains,
mashup applications rely on CORS for issuing cross-origin requests. However,
the whitelist-based confinement provided by CORS is insufficient, because once
the data is received, the requesting mashup can disclose that data at will. Unlike
the all-or-nothing fashion in CORS, reclassification enables a context to bypass
the SOP by providing a more sophisticated way to restrict the communication
privilege of that context. We assume a shopping guide website, say guide.com,
utilizing the authorized read-only API, separately exposed by guide.com and
unionpay.com to access a user’s purchase data and bank account. Since guide.com

requires issuing cross-domain network requests, its initial label is denoted as:

S = {guide.com}, I = {}, O = {network+,
taobao.com+, unionpay.com+, guide.com-, unionpay.com � taobao.com}
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As shown in Fig. 2, in step 1, as the declassification guide.com-, and endorse-
ment network+ and taobao.com+, are assigned to guide.com, it can make a network
request to origin taobao.com via XHR. In step 2, after receiving the response
from taobao.com, the mashup can convert the secrecy label by using the reclas-
sification taobao.com → unionpay.com, and then, communicate with the origin
unionpay.com. Due to the restriction of reclassification, the mashup cannot sub-
tract both tags taobao.com and unionpay.com simultaneously from its secrecy
label. Thus, any message being sent from this mashup to any origin other than
taobao.com and unionpay.com will not succeed (as shown in step 3).

In contrast to simply applying CORS in the all-or-nothing fashion, in JSFfox,
the guide.com and unionpay.com do not need to trust the mashup—even if the
mashup has already seen the secrets, it cannot arbitrarily leak the secrets.

Untrusted third-party library. To support the confinement for an untrusted
third-party library, JSFfox enables the page being protected to create a specific
compartment called LWorker, to isolate the trusted code from that page which
is tightly coupled with the library. Then, the message label is utilized to enable
the LWorker to conversely restrict the declassification of main page. We suppose
an application that imports the untrusted jQuery library. Since the main page,
say a.com, needs to request the library code from jquery.com, then its initial label
could be denoted as:

Lmp: S = {a.com}, I= {}
O = {network+, a.com → jquery.com, a.com+, jquery.com-}

As shown in Fig. 3, in step 1, the main page creates an LWorker with a fresh
origin uniqO, and confers its privilege to the LWorker so that the LWorker’s initial
label equals to Lmp. In step 2, the trusted LWorker transforms its basic label
with the reclassification a.com → jquery.com and endorsement network+, and
then, requests to jquery.com to download the untrusted jQuery code. In step 3,
the LWorker then uses the declassification jquery.com- and endorsement a.com+

to inject into the main page with the untrusted jQuery code encapsulated in the
message labeled with a.com. After the labeled message is received, the tag a.com

in secrecy label of the main page is locked, and then that secrecy label cannot be
transformed into jquery.com by using the reclassification a.com → jquery.com,
which prohibits the untrusted jQuery library in main page to send the data to
the untrusted origins (as shown in step 4).

Note that after loading the untrusted library which is associated with the
message label a.com, the main page becomes untrusted but completely confined,
while the LWorker containing the trusted code can still access the DOM of the
main page, as well as communicate with the wider web.

5 Implementation

We implement JSFfox based on Firefox version 36.0a1. As we have discussed
in Sect. 3, the implementation of JSFfox demands to modify Firefox in order
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to support two main mechanisms: (1) assignment of labels; (2) enforcement for
protect access to sensitive API and communication.

Assignment of labels. Since enforcement granularity of JSFfox works at the
context lever, we can develop a new DOM-level API to specify and assign labels
for the Gecko, without any modifications to the browser’s JavaScript engine.

Table 1. Existing browser mechanisms modified for enforcement

Channel Mechanism

Intra-browser communication Cross-compartment wrappers

XHR CSP + DOM interception

Content loading CSP

Browser storage SOP + sandbox (CSP)

Intra-browser enforcement. Compartments are the foundation for Gecko’s
existing isolation model [26]. Gecko guarantees that JavaScript code running in
a given compartment is only allowed to access objects in the same compartment.
When code in compartment A tries to access an object in compartment B, Gecko
gives it a cross-compartment wrapper, which is a real Proxy-Object with access-
methods needed for security restrictions.

Table 1 shows existing browser mechanisms modified for enforcement of JSF-
fox. Since JSFfox’s implementation shares many features with existing isola-
tion model, we depend upon cross-compartment wrappers to mediate the intra-
browser communication. We modify all wrappers and give priority to JSFfox for
enforcing relevant labels, which guarantees that all cross-compartment commu-
nication is prioritized when it is confined by JSFfox’s policies.

Browser-server enforcement. As shown in Table 1, CSP is the main confine-
ment mechanism for browser-server communication. While CSP helps mediate
external communication by restricting the source and destination of web content,
its whitelist-style is insufficient for supporting our flexible policies. To adapt to
the dynamically changing labels, whenever a compartment wants to issue a net-
work request, we customize a new CSP policy for that compartment according
to its present label. For example, we assume an active compartment with origin
a.com holds the secrecy label S = {a.com, ad.com}, while it has no capability
of declassifying the tag a.com. If that compartment makes a network request
to ad.com, JSFfox will automatically set the CSP directives to “none”, Thus,
preventing this network communication.

Browser storage enforcement. As shown in Table 1, we rely on the sandbox
directive to restrict access to browser storage (e.g., cookies, localStorage).
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Fig. 4. Macro-benchmark for page loads of the main pages of the top 10 Alexa

6 Evaluation

We conduct all experiments on three setups; Firefox without JSFfox (base); Fire-
fox with disabled JSFfox (unlabeled); and Firefox with enabled JSFfox (labeled).
Our evaluation comprises macro-benchmark for page loads, micro-benchmark of
API functions, and benchmarks of motivating examples, all of which are mea-
sured on a 4-core i7-6700HQ with 8 GB of RAM, running Linux 3.10.

6.1 Macro-Benchmark of Page Loads

We evaluate the page loads for Alexa’s global top-10 sites [2] to measure the
latency of page loads, as well as to verify the compatibility of JSFfox. Since we
cannot modify those web applications to assign labels through JSFfox’s API, we
manually generate CSPs for the sites that are not configured with the under-
lying CSP to allow them to completely load. To simulate a typical browsing
environment, caching is enabled during browsing but cleared between different
runs. Figure 4 shows that, by setting Firefox with JSFfox enabled, the over-
head added by JSFfox to the page loads at an average of 19.9%, and the main
cost drives from the label checking that occurs when a page is loaded. Note

Fig. 5. Latency for communication Fig. 6. Benchmarks of applications
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that popular web sites constantly modify the content, which brings in inevitable
imprecision on the measurements.

6.2 Micro-Benchmark of API Functions

Operations of label. We measure the latency of setting/getting the current
label and checking the labels, respectively. The results show that the cost of
setting/getting the label is on the magnitude of one microsecond, while the
operation of checking labels is slower with 7 ms on average.

Communications. We evaluate the round-trip communication latency across
iframes, workers, as well to the network. As shown in Fig. 5, compared with
legacy Firefox (base), for the iframe communication, JSFfox incurs a slowdown
of 15.3%; for the network communication, it incurs a slowdown of 9.6%. How-
ever, LWorker runs faster than the normal worker on legacy Firefox (base), with
48.3%, which is because the LWorker shares an OS thread and event loop with
its parent.

DOM. We also measure the performance of core functionalities of DOM, such as
querying, traversing the DOM, by executing the Dromaeo benchmark suite [18].
The result shows the overhead added by JSFfox averages 4%, and the maximum
is less than 7%.

6.3 Benchmarks of Applications

Figure 6 shows the performance of applications, and we detail it as follows.

Third-party service. We implement an application which incorporates a third-
party service. This third-party service being isolated into an iframe, simulates
the main functions of the cloud note service, including capturing the content, and
uploading obtained data. On JSFfox (labeled), the workload completes in 156 ms;
on the legacy Firefox (base), it completes in 131 ms. The slowdown mainly derives
from the processing of the labeled message.

Third-party mashup. We implement a simple third-party mashup application
which issues AJAX requests to two separate origins, each of which produces a
response containing a 36-byte JSON object. The average execution time is 68 ms
on JSFfox (labeled), which is 11 ms slower than the unconfined version running
on legacy Firefox (base). The slowdown is caused by the operation for changing
the current label which requires re-computing CSP.

Untrusted third-party Library. We evaluate the load time of a shopping
application which separately imports a jQuery library and a library which tra-
verses the DOM to add dynamic effects to buttons. The latter library attempts
to disclose the page’s content via XHR. We use an LWorker to encapsulate the
trusted code of the application, and consider the rest code staying in the main
page as untrusted. The average latency on JSFfox (labeled) is 226 ms, 23 ms
slower than that on the legacy Firefox (base). In summary, JSFfox prevents the
privacy leakage with negligible overhead.
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7 Related Work

The existing JavaScript confinement systems based on information flow control
can be classified as fine-grained and coarse-grained. We compare JSFfox with
these two categories of related systems.

Coarse-grained IFC. JSFfox shares many features with existing coarse-grained
IFC systems. COWL [20] proposes a label-based mandatory access control model
for today’s browsers. Aside from the differences in the policy language, JSFfox
additionally specifies the least privilege for each compartment by defining its
capability label, and explores the confinement for browser extensions.

Recently, Lujo Bauer et al. proposed an approach for enforcing flexible infor-
mation flow policies on the Chromium [5], which can encompass a wide range
of browser features. However, that approach cannot confine the declassification
which the authors mentioned is dangerous, while JSFfox introduces the message
label to guarantee the secure declassification. In addition to assigning labels
based on annotated policies as that approach did, JSFfox provides substan-
tial APIs for developers to customize the security policy for their applications.
Besides, JSFfox supports the confinements for a wider range of applications, due
to the distinctive confinement to third-party libraries.

Fine-grained IFC. These approaches investigate prevention of privacy leakage
at per-object granularity, which is easier to confine misbehavior of untrusted
libraries. FlowFox [9] implements a fine-grained information flow control mech-
anism based on the technique of secure multi-execution (SME) [10]. SME oper-
ates the program at different security levels and strictly manages communication
between them, which ensures that no secret from a high level context can flow
into a low-level context. JSFlow [12] tracks fine-grained information flow by exe-
cuting JavaScript in an interpreter written in JavaScript, which makes JSFlow
slower by two orders of magnitude on average than a fully JITed JavaScript
engine.

While fine-grained IFC systems operate at much finer granularity than JSF-
fox, they need to track every piece of JavaScript instructions and require mas-
sive modifications to the JavaScript interpreter. JSFfox only enforces label-based
policies when cross-compartment operations are made, so it needs to make no
modifications to the JavaScript engine and only adds negligible overhead to
cross-compartment operations. Consequently, JSFfox is not only more efficient,
but also relatively more straightforward to be added to the legacy browsers.

Isolation and safe sub-languages. Many systems based on isolation and safe
sub-languages have been implemented to offer web security, including Caja [8],
ConScript [15], WebJail [21], TreeHouse [14], JSand [1], and Embassies [13].

These systems generally aim at mediating security-sensitive operations of
JavaScript, such as accessing the DOM, and issuing the network request. Com-
pared to JSFfox, they generally impose the most restrictions in an all-or-nothing
fashion, and are thus not suitable for building some of the applications which
rely on more flexible policies (e.g., the third-party mashup example).
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8 Conclusion

Web applications currently incorporate third-party content from multiple ori-
gins which are not equally trustworthy. The confinement for untrusted code in
the status-quo browser security mechanisms is insufficient, thus, putting users’
privacy at risk.

In this paper, we propose JSFfox, a novel information-flow control system
that confines untrusted JavaScript in web browsers. JSFfox provides developers
with flexibility in constructing applications which incorporate untrusted third-
party code, while preserving the privacy of users. Moreover, our positive experi-
ence of implementing secure versions of three types of typical web applications
which cannot be enhanced by current web browsers by keeping enough privacy
for users at negligible cost in performance, suggests that JSFfox holds potential
to be a practical IFC system for preserving privacy of users in web environment.
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7. Boda, K., Földes, Á.M., Gulyás, G.G., Imre, S.: User tracking on the web via
cross-browser fingerprinting. In: Laud, P. (ed.) NordSec 2011. LNCS, vol. 7161,
pp. 31–46. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29615-4 4

8. Caja, G.: A source-to-source translator for securing javascript- based web content
(2014). http://code.google.com/p/google-caja/

9. De Groef, W., Devriese, D., Nikiforakis, N., Piessens, F.: Flowfox: a web browser
with flexible and precise information flow control. In: Proceedings of the 19th ACM
Conference on Computer and Communications Security, pp. 748–759. ACM (2012)

10. Devriese, D., Piessens, F.: Noninterference through secure multi-execution. In: Pro-
ceedings of the 31st IEEE Symposium on Security and Privacy, pp. 109–124 (2010)

http://www.alexa.com/topsites
http://dx.doi.org/10.1007/978-3-642-29615-4_4
http://code.google.com/p/google-caja/


150 W. Qiang et al.

11. Martani, F.: XSS, passwords theft using JavaScript (2015). http://www.martani.
net/2009/08/xss-steal-passwords-using-javascript.html

12. Hedin, D., Birgisson, A., Bello, L., Sabelfeld, A.: JSFlow: tracking information flow
in JavaScript and its APIs. In: Proceedings of the 29th Annual ACM Symposium
on Applied Computing, pp. 1663–1671. ACM (2014)

13. Howell, J., Parno, B., Douceur, J.R.: Embassies: radically refactoring the web. In:
Proceedings of the 10th USENIX Symposium on Networked Systems Design and
Implementation, pp. 529–545 (2013)

14. Ingram, L., Walfish, M.: Treehouse: JavaScript sandboxes to help web develop-
ers help themselves. In: Proceedings of the 23rd USENIX Conference on Annual
Technical Conference, pp. 13–13. USENIX Association (2012)

15. Meyerovich, L.A., Livshits, B.: Conscript: specifying and enforcing fine-grained
security policies for JavaScript in the browser. In: Proceedings of the 31st IEEE
Symposium on Security and Privacy, pp. 481–496. IEEE (2010)

16. Nikiforakis, N., Invernizzi, L., Kapravelos, A., Van Acker, S., Joosen, W., Kruegel,
C., Piessens, F., Vigna, G.: You are what you include: large-scale evaluation of
remote JavaScript inclusions. In: Proceedings of the 19th ACM Conference on
Computer and Communications Security, pp. 736–747. ACM (2012)

17. Nikiforakis, N., Meert, W., Younan, Y., Johns, M., Joosen, W.: SessionShield:
lightweight protection against session hijacking. In: Erlingsson, Ú., Wieringa, R.,
Zannone, N. (eds.) ESSoS 2011. LNCS, vol. 6542, pp. 87–100. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-19125-1 7

18. Resig, J.: Dromaeo JavaScript performance test suite (2016). http://dromaeo.com/
19. Son, S., Shmatikov, V.: The postman always rings twice: attacking and defending

postmessage in html5 websites. In: Proceedings of the 20th Annual Network and
Distributed System Security Symposium (2013)

20. Stefan, D., Yang, E.Z., Marchenko, P., Russo, A., Herman, D., Karp, B., Mazieres,
D.: Protecting users by confining JavaScript with cowl. In: Proceedings of the
11th USENIX Symposium on Operating Systems Design and Implementation, pp.
131–146 (2014)

21. Van Acker, S., De Ryck, P., Desmet, L., Piessens, F., Joosen, W.: WebJail: least-
privilege integration of third-party components in web mashups. In: Proceedings of
the 27th Annual Computer Security Applications Conference, pp. 307–316. ACM
(2011)

22. W3C: Content security policy level 3 (2016). http://www.w3.org/TR/CSP/
23. W3C: Cross-origin resource sharing (2014). http://www.w3.org/TR/cors/
24. W3C: HTML5 web messaging. http://www.w3.org/TR/webmessaging/. Accessed

4 Apr 2015
25. W3C: Web workers (2015). http://www.w3.org/TR/workers/
26. Wagner, G., Gal, A., Wimmer, C., Eich, B., Franz, M.: Compartmental memory

management in a modern web browser. ACM SIGPLAN Notices 46(11), 119–128
(2011)

27. Yip, A., Narula, N., Krohn, M., Morris, R.: Privacy-preserving browser-side script-
ing with BFlow. In: Proceedings of the 4th ACM European Conference on Com-
puter Systems, pp. 233–246. ACM (2009)

http://www.martani.net/2009/08/xss-steal-passwords-using-javascript.html
http://www.martani.net/2009/08/xss-steal-passwords-using-javascript.html
http://dx.doi.org/10.1007/978-3-642-19125-1_7
http://dromaeo.com/
http://www.w3.org/TR/CSP/
http://www.w3.org/TR/cors/
http://www.w3.org/TR/webmessaging/
http://www.w3.org/TR/workers/


Malware Detection



PriMal: Cloud-Based Privacy-Preserving
Malware Detection

Hao Sun1, Jinshu Su1,2(B), Xiaofeng Wang1, Rongmao Chen1,
Yujing Liu1, and Qiaolin Hu3

1 College of Computer, National University of Defense Technology, Changsha, China
haosunlight@163.com, sjs@nudt.edu.cn

2 Science and Technology on Parallel and Distributed Laboratory,
National University of Defense Technology, Changsha, China

3 Air Force Early Warning Academy, Wuhan, China

Abstract. The ongoing threat of malware has raised significant security
and privacy concerns. Motivated by these issues, the cloud-based detec-
tion system is of increasing interest to detect large-scale malware as it
releases the burden of client and improves the detection efficiency. How-
ever, most existing cloud-based detection systems overlook the data pri-
vacy protection during the malware detection. In this paper, we propose a
cloud-based anti-malware system named PriMal, which protects the data
privacy of both the cloud server and the client, while still achieves usable
detection performance. In the PriMal, a newly designed private malware
signature set intersection (PMSSI) protocol is involved to enable both the
cloud server and client to achieve malware confirmation without revealing
the data privacy in semi-honest model. Moreover, we propose the relevant
signature engine to reduce the detection range and overhead. The exper-
imental results show that PriMal offers a practical approach to achieve
both usable malware detection and strong data privacy preservation.

Keywords: Privacy preservation · Oblivious transfer · Cloud-based ·
Malware detection

1 Introduction

In recent years, the prevalence of malicious software (a.k.a. malware) is a growing
threat to the security and privacy of our computers and networks. Statistical
analysis from Symantec shows that the total volume of malware in 2015 was
around 2.1 billion, and was 25.3% more than that in the preceding year [1]. This
explosive growth indicates that it is of significant interest to provide a scalable
and efficient approach to detect the large-scale malware.

Signature-based detections have been de facto most widely used solutions
against malware for decades [16]. Many anti-malware systems still rely primar-
ily on pattern matching for screening and analyzing suspicious contents [5]. Due
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to the quantity of signatures growing with the volume of malware, current preva-
lent anti-malware solutions [4,14,19] adopt the cloud services to achieve high-
performance service and lightweight engine. In these cloud-based systems, differ-
ent types of detection agents are centralized into the cloud server to provide the
security detection as a service. To detect the suspicious files, the client generally
needs to upload certain information about the files, such as bare contents or
hash checksums (e.g., MD5, SHA-1), and receives an assessment indicating that
whether the file is infected or not.

Unfortunately, most existing cloud-based detection systems overlook the data
privacy protection, which is a critical issue due to the untrustworthy cloud envi-
ronment. Apparently, uploading bare contents will result in some important
information(location, password) directly exposed. Moreover, the security of MD5
and SHA-1 hashes have been compromised by feasible collision attacks [18,20].

For cloud-based malware detection, we focus on the privacy requirements of
two traditional parties: cloud server and client. Four different levels are listed
to indicate the gradually increasing strength of data privacy protection:

• Level I: One-Party Protection (OPP). In this level, only one party’s
privacy is protected. The other party without protection is designed to expose
its privacy information (signatures or file contents) in the system. We consider
this level as the lowest requirement for privacy protection.

• Level II: Two-Party Weak Protection (TPWP). In this level, both
parties are considered to be trusted to each other. The private information
can be transmitted between two parties but should not be exposed to the
third party. Certain mechanisms, such as encryption or transformation, are
needed to prevent the eavesdropping.

• Level III: Two-Party Strong Protection (TPSP). In this level, the pri-
vacy requirements are considered in semi-honest model1. It means the parties
are honest but curious, i.e., they honestly follow the system specification, but
try to learn additional information from the communication [10]. Therefore,
the secure system in this level should be resistant to the curious attempts
from either party.

• Level IV: Two-Party Complete Protection (TPCP). In this level, the
privacy of both parties is protected in malicious model. It means the parties
run any arbitrary strategy in an attempt to break the protocol and dig the
privacy information.

Motivations of This Work. To well address the aforementioned security and
privacy concerns, an ideal cloud-based system should perform well with respect
to both the malware detection and the data privacy protection for both server
and client. Hence, there are two main motivations which inspire our design:
(1) Privacy preservation. Most related cloud-based anti-malware systems
focus on the detection performance and their privacy preservation need to be
1 In the field of secure computation, the semi-honest model is not the strongest model

but it is widely accepted and used in many applications. Hence, we conclude the
protection is strong as compared to Level II.
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strengthened. In SplitScreen [4], the client does not need to upload their files but
the cloud server is designed to deliver parts of the signature database to the client
which also induces disclosing of server privacy. As defined above, SplitScreen
meets the requirement of Level I. RScam [19] satisfies Level II because only hash
locations of suspicious information, rather than bare contents, are transmitted
between two parties. However, a curious server could retrieve the file contents
via detection results without the permission or awareness of client.

Our proposed design should meet the privacy requirements of Level III. The
privacy concerns should be considered for both client and cloud server. The
important data of client should not be exposed as reported in [2,12] and the sig-
nature databases are proprietary assets which should not be known by untrusted
clients [12]. It is worth mentioning that the commercial cooperations which many
security vendors voluntarily share the signature databases with each other to
improve detection do not belong to the issues of privacy leakage.
(2) Scalability. Recently, several similar kinds of research [12,13,17] are trying
to provide secure and usable cloud-based middlebox services (network intrusion
detection, web firewall application and so on) by applying privacy-preserving
mechanisms over untrusted cloud environment. Nevertheless, they all encounter
non-trivial challenges of practical performance when taking the data privacy
protection into consideration [21]. It may indicate that there is a strong tension
between the efficiency and privacy of cloud-based services.

Our design aims at secure cloud-based malware detection and encounters
more serious obstacles. Similar with prevalent cloud-based middlebox services
[5,21], the scale of signature set we apply is also large (details are listed in
Table 2). Moreover, the data to be detected are irregular in our application.
There are no fixed tuples or offsets in file contents which mean the states to
be checked are complicated and randomized. Hence, the detection range must
be narrowed and the application of privacy-preserving mechanisms should be
targeted.
Our Contributions. To achieve our design goals, we propose PriMal to provide
cloud-based malware detection service with privacy preservation. Our central
principle is achieving practical and secure malware detection over unencrypted
data. In the following, we detail our contributions.

– Firstly, we adopt oblivious transfer (OT) [3,11], which is an important foun-
dation for secure computation, as the crypto building block to assure privacy
preservation. The core challenge of privacy-preserving malware detection is
achieving exact pattern matching between the signatures from cloud server
and the file contents from client without revealing any information (except
that the client receives detection results2) about them to either party. Fortu-
nately, OT is an appropriate and powerful tool for dealing with such challenge
in secure computation. Based on the latest improvement of OT, we propose a
novel privacy-preserving detection mechanism PMSSI, short for private mal-

2 The cloud server has to ask for the permission of client if the detection results are
needed to improve the security service.
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Table 1. Comparison with existing malware detection systems

Systems Privacy requirements

Level I:
One-Party
Protection

Level II:
Two-Party
Weak
Protection

Level III:
Two-Party
Strong
Protection

Level IV:
Two-Party
Complete
Protection

ClamAVa × × × ×
SplitScreen [4]

√ × × ×
RScam [19]

√ √ × ×
PriMal

√ √ √ ×
a ClamAV is a widely used open-source and host-based system for malware detec-
tion [6]. We implement a cloud version of it in our evaluation and set it as the
baseline of our comparison.

ware signature set intersection. To the best of our knowledge, no previous
work has implemented similar endeavor.

– Secondly, we construct an efficient filtering engine to achieve scalability with
large-scale signatures and file contents. The engine extracts representative
information to avoid directly encrypting and exposing the original data (sig-
natures and file contents). The results contribute to the reduction of scanning
range and detection consumption.

– Finally, we analyze PriMal theoretically and experimentally to demonstrate
that it is practical to achieve both usable malware detection and strong pri-
vacy preservation in semi-honest model. Moreover, the detailed comparison
in privacy requirements with existing malware detection systems is listed in
Table 1.

2 Related Work

Malware detection based on signature remains important and technically reli-
able after decades of development in anti-malware industry. It is always utilized
as a filter to rapidly distinguish the suspicion from large-scale contents. Nowa-
days, the cloud-based anti-malware systems become more and more widespread.
They place different types of detection agents over the cloud server and offer
security as a service. The cloud environment provides high-performance com-
putation support to reduce the match consumption in malware scanning and
largely lighten the resource burden on the client.

CloudAV [14] first puts forward the notion of cloud-based malware scanning
in academic research and the authors apply their strategy to a mobile environ-
ment. It runs a local cloud service consists of heterogeneous anti-virus engines
running in parallel virtual machines and uses an end-user agent to transfer sus-
picious files to the cloud server to be checked by all anti-virus engines. CloudAV
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Fig. 1. The system architecture of PriMal

achieves high detection rate, yet obviously, exposes the sensitive data which
compromise the privacy of users.

SplitScreen [4] implements a distributed anti-malware system to speed up
the malware scanning. SplitScreen designs its first scanning mechanism based
on bloom filter to perform slight comparisons with file data and reduce the size
to be accurately matched. However, the server is designed to deliver parts of
the signature database to the client which will cause the privacy leakage of the
server. RScam [19] is a cloud-based anti-malware system which provides efficient
security service and data privacy protection for resource-constrained devices.
However, the untrusted of the cloud server has not been considered. Or rather,
RScam can prevent the eavesdropping from the third party but cannot deal
with the curious or malicious server, because the cloud server will know the file
contents of client if the signature segments successfully match.

Recently, privacy-preserving mechanism starts to be applied to the untrusted
cloud to solve the privacy issue of cloud-based services. The core challenge is how
to achieve practical performance and strong security simultaneously. BlindBox
[17] tries to enable deep packet inspection (DPI) services over encrypted HTTPS
traffic. It protects the data by a strong privacy-preserving scheme but with
limited application scenarios and prohibitive performance. An improved design
[12] is proposed to extend BlindBox to support wider middlebox functionalities
with the privacy-preserving premise. Several designs that aim at other middlebox
applications, such as IDS [21] and Web Application Firewall [13], are proposed
to guarantee the secure cloud-based services. Our proposed design which aims
at malware detection encounters the homologous but more serious challenge
(discussed in Sect. 1) as compared to these middlebox designs.

3 Overview of System Architecture

In this paper, we propose PriMal, a new cloud-based privacy-preserving anti-
malware system to provide malware detection service and assure strong data
privacy protection for both the cloud server and client. Figure 1 shows the overall
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design of PriMal that consists of Signature Engine and Detection Engine. The
entire process can be divided into four steps:

(1) Initialization. As shown in Fig. 1, the signature databases are maintained
in the cloud. Before the detection, the cloud server initializes the signatures
and then inserts them into the Container by tailored hash mechanisms.
Meanwhile, the cloud server generates a hash digest of the signature con-
tainer and sends the digest to the client when the client installs PriMal.
The cloud server regularly updates the signature databases and container
and sends the updated digest to the client.

(2) Fast Scanning. When the client needs to detect files, three substeps are
carried out. (1) The client initializes the file contents into the segments.
(2) The client maps the file segments into bit vectors by the same hash
mechanisms in Initialization and makes the comparison with the digest.
It is noteworthy that the client considers each matched segment as the
suspicious one and sifts out the unmatched segments. (3) The coordinates
of suspicious segments in the digest are sent to the cloud server.

(3) PMSSI. Once the cloud server receives the suspicious coordinates, it will
find the corresponding signature segments in Container. Then the PMSSI
mechanism is called to offer exact matching between the signature segments
and suspicious file segments in a privacy-preserving manner. After PMSSI,
the client gets the matching results while the cloud server gets nothing.

(4) Verification. If the files are compromised by malware, the client will get the
right results which mean the suspicious file segments successfully match with
the signature segments. Otherwise, the client gets random and meaningless
contents. Subsequent measures, such as deletion or isolation, can be taken
according to the results.

4 Signature Engine

In this section, we introduce the details about signature engine based on Cla-
mAV signature database which consists of MD5 signatures and string signatures.
These signatures are unpacked and uncompressed by ClamAV engine before
inserted into signature engine. Hence, the file contents in the client also need to
be unpacked before malware detection.

Let DB be the signature databases managed in the cloud server PS , FC be
the normal files stored in the client PC . We describe the initialization method
using the signatures in DB as a general example. The file contents should be
initialized by the same method and parameters.

Considering signatures do not have a uniform length generally, we set a slid-
ing window with the size of w to scan the signatures in DB. For an arbitrary
signature X of length l, there will be a set of segments of length w-byte after
initial scanning, namely, X → {X1,X2, . . . , Xl−w+1}. The value of w should be
set deliberately and practically to reduce the false negative. According to sta-
tistics, for the databases of ClamAV (from 2009 to 2015), an average of 96%
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signatures are MD5 signatures with constant 16 bytes and the rest are string
signatures. Hence, we set w = 16 in the implementation and consider the signa-
ture whose length is less than 16 bytes as the short signature. The proportion of
short signatures is at most 0.048% after initialization and it is evaluated as the
false negative in Table 4.

Based on the latest efficient hash table design [7], we construct the signature
engine which consists of a Container and a Digest (shown in Fig. 1) to improve
efficiency and scalability. The basic infrastructure of the container is the H-way
associated hash table with the size of M . Each element of the hash table is
indicated by the bucket (CB) which contains b entries to store the hash of a
signature segment. Meanwhile, the hash digest (D) is a bit vector which stands
for the buckets are empty or not, with the value 0 or 1 respectively. Generally,
each segment has two candidate buckets determined by two hash functions in the
container, which means H = 2. In PriMal, we use one 2-universal hash function
h and modulo(q) hash3 function mh to generate two candidate locations for the
segments. For instance, the first bucket location of X1 is l1(X1) = h(X1) ∈ [M ],
the second one is l2(X1) = (l1 ⊕ h(mh(X1))) ∈ [M ], and the value stored in
either bucket is mh(X1).

Fig. 2. Illustration of insertion operation in signature engine

The basic operations of the engine are similar with the partial-key cuckoo
hashing in [7], and the insertion operation is illustrated in Fig. 2. For X1 that
has not been inserted, firstly the two candidate bucket locations are computed,
then if either l1 or l2 has vacant entries, mh(X1) will be added randomly to that
bucket. If both candidate buckets of X2 are full (all the entries are occupied, gray
in Fig. 2), then one existing segment must be relocated. The victim segment X3 is
chosen randomly from the 2b entries and kicked out or displaced by X2. Then X3

will repeat the insertion operation and may kick out other victim segments until

3 Modulo(q) hash function [9] randomly maps a byte to a class between 0 to q − 1, q
is the power of 2 and smaller than 256.
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a vacant entry is found or a maximum number of displacements is reached (e.g.,
displacement times dt = 50 in our implementation). If no vacant entry is found,
then the engine is too full to insert and the insertion is considered as a failure.
In the evaluation of PriMal, we adjust reasonable parameters of the signature
engine to generate fewest failures. In addition, the digest D is maintained along
with the operations in CB. Initially, CB contains no element and all the bits
in D are 0. After a successful insertion in an empty bucket, the value of the
corresponding bit in D is set to be 1. Any subsequent insertions to that bucket
will not change the bit value.

The lookup process is simple and efficient. Given a segment X, the two
candidate bucket locations are firstly computed, then 2b corresponding entries
are matched with mh(X) to check if X has been inserted. Moreover, the signature
engine also supports efficient deletion operations. For the signature segment X
that is proved to be incorrect or reduplicate for malware description, the cloud
server call delete operation to get rid of X from the engine. The lookup process
is executed and if any entry matches in any bucket, mh(X) will be deleted
from that entry. If the deletion makes the bucket empty, the corresponding bit
in D should be set to 0. The cloud server needs to periodically update the
signature database with the increment of signature quantity. The update is a
set of operations which consists of several insertions and deletions. When the
cloud server accomplishes the update operation, the locations of D where the
corresponding bits have changed are sent to the client. More theoretical analysis
about the accuracy of the signature engine is discussed in Sect. 6.

5 Detection Engine

The design of detection engine in PriMal is established in two purposes we desired
for usable and secure service: (1) reducing the range of exact match in malware
detection to improve the performance; (2) endeavoring to protect the privacy
of cloud server and client. We divide the detection process into two steps: fast
scanning and PMSSI. Detail descriptions are listed below.

5.1 Fast Scanning

In the PriMal system, the signature engine, which consists of the CB and D,
is designed to store the hash value of signatures and serve for detection. The
digest D is the crux of fast scanning process which is stored in the client when
the system is firstly installed. As aforementioned in Sect. 4, the files of client
need to be initialized with the sliding window with length w as same as the
signatures. Let Fseg be the set of file segments after initialization, fast scanning
is executed on the client side, and the purpose is picking out the suspicious set
of segments Fsus and the corresponding location set Lsus by the digest D.

Algorithm 1 presents details of fast scanning. At the beginning, we divide
the Fseg into several regular subsets of size n. It means that the detection engine
detects at most n file segments one time. For each segment f in Fi, we calculate
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Algorithm 1. Fast Scanning
Input: file segments set Fseg, digest D
Output: suspicious segment set Fsus and bucket location set Lsus

1: Fsus, Lsus = ∅
2: The size of Fseg is various, so we divide Fseg into set {F1, · · · , Fi, · · · }, n is the

uniform size of Fi.
3: while each f ∈ Fi do
4: calculate mh(f), l1(f) and l2(f);
5: if D[l1(f)] == 1 or D[l2(f)] == 1 then
6: insert mh(f) into Fsus;
7: insert lα(f) into Lsus; //α is the matched location, can be 1 or 2 or both
8: end if
9: end while

10: send Lsus to the cloud server

its modular hash and the two candidate bucket locations, and then we check the
corresponding bits value in D. The hash functions which are utilized to generate
D bring no false negative [7], so if the bit value is 0, it means the segment is
trustworthy. However, any match (value is 1) means the segment is suspicious
because we cannot confirm which candidate bucket the segment is finally inserted
into. Both the matched location and the modular hash stored in it should be
inserted into the corresponding suspicious set.

When the scanning of all segments finishes, we randomly permute the ele-
ments in Fsus and Lsus simultaneously to prevent the matched segments from
leaking information about the other segments in Fseg. It is noteworthy that
the client can privately maintenance the mapping relationship of file names and
segments in order to easily find the victim files after the whole detection. Fast
scanning is easy to be applied in the client due to its lightweight and it can
largely reduce the number of file segments to be further confirmed. After fast
scanning, the client sends the Lsus to the cloud server which can also cut down
the communication overhead. Figure 3 illustrates the process of fast scanning.

Fig. 3. Illustration of fast scanning
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5.2 PMSSI Mechanism

Before we present the PMSSI mechanism, let us briefly introduce our crypto
building block: oblivious transfer (OT) [3,11] which is an extremely powerful
tool in privacy-preserving computation. In a classical OT, a sender with a pair
of input strings (x0, x1) communicates with a receiver with the input of a choice
bit α ∈ {0, 1}. The result is the receiver gets xα without getting anything about
x1−α, and the sender gets nothing about α. Generally, an OT protocol is denoted
as OTm

l which means the sender has m pairs l-bit strings (xj,0, xj,1)(j ∈ [m])
and the receive has an m-bit selection vector r = (r1, · · · , rm). After protocol
execution, the receiver gets xj,rj

.
The first efficient OT-extension [11] is proposed to solve the inefficiency prob-

lem of OT. It can reduce OTm
l to OTκ

κ, κ is a security parameter which is always
equal to l but smaller than m, and OTκ

κ can be further reduced by invoking OT1
κ

κ times. We adopt [3], which is the latest improvement of OT-extensions in semi-
honest model, to assure the security of basic interaction.

The intuitive heuristic to ensure comprehensive privacy preservation is stipu-
lating both the cloud server and client to participate the OT extension protocol.
The input of cloud server would be CB and that of the client would be Fseg. How-
ever, communication and computation overhead of the client will be inevitably
high in most OT-based protocols if strong privacy protection is provided [15].
Therefore applying the OT directly is unsuitable for the client and the purpose
of cloud-based malware detection.

We design the fast scanning process to decrease the volume of segments
that need to be scanned in the client. After fast scanning, we utilize PMSSI
mechanism to serve as the exact match in malware detection. The detection
results in this process are cryptic to semi-honest cloud server because the safe
OT-extension [3] adapted in PMSSI.

Algorithm 2 shows the process of PMSSI which can be divided into two
substeps. Firstly, for each suspicious bucket location l in the Lsus, the client PC

gets the corresponding modular hash mh(fl) ∈ Fsus, and the cloud server PS

check each entry E of CB[l]. Because D[l] == 1 is confirmed in fast scanning,
there will be at least one entry occupied in CB[l]. If the bucket contains any
vacant entry, the obscuration is needed to prevent the accurate status of CB[l]
from leaking. PS generates random μ-bit strings to replace the vacant entries in
CB[l] as the input of OTSI (short for OT-based set intersection) to make the
client cannot differentiate the buckets. Note that we do not actually insert the
random strings to those vacant entries in CB.

Secondly, PC and PS respectively invoke function OTSI to achieve privacy
preservation and exact match, although we describe the function in a combined
way. PS starts with generating λ = bmμ pairs κ-bit random strings (xi,0, xi,1)
and acts as the sender. PC generates λ-bit selection vector r which consists of b
copies of each mh(fl) ∈ Fsus and acts as the receiver. Then PC and PS invoke
OTλ

κ based on [3] with their respective inputs. The OTλ
κ will be reduced to OTκ

κ

where PC and PS play reversed roles (PC acts as the sender, PS acts as the
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Algorithm 2. PMSSI Mechanism
Input: Suspicious bucket location set Lsus, PS : CB, PC : Fsus

Output: PC gets the result set Rmal, PS gets ⊥
1: Rmal = ∅, κ is a security parameter, m is the size of Lsus and Fsus, μ is the bit

length of modular hash result mh;
2: while each l ∈ Lsus do
3: if CB[l] in PS has d vacant entries E then
4: PS generates d random μ-bit strings
5: end if
6: end while
7: PC gets modular hash set Fsus =

⋃m
1 {mh(fl)};

8: PS gets entry set Ebm =
⋃bm

1 {E};
9: PS : OTSI(Ebm), PC :OTSI(Fsus);

10: Verification: PC compares bm pairs (XRSk, XRCk). if any pair matches, add fl

into Rmal;
11: return PC ← Rmal

12:
13: function OTSI(Ebm, Fsus) //combined description;
14: PS initializes λ = b ∗ m ∗ μ pairs of κ-bit random strings (xi,0, xi,1), i ∈ [λ];
15: PC initializes λ-bit selection vector r = {r1, · · · , rm}, and rj =

{mh(f j
l , · · · , f j

l )}, 1 ≤ j ≤ m, means rj consists of b copies of each mh(fl) ∈ Fsus;
16: PS and PC invoke the OT λ

κ protocol, input of PS is the random strings, input
of PC is the selection vector r;

17: PS calculate bm xor results. let Ek = mh(Xl,k) = {mh1
k, · · · , mhμ

k},mht
k ∈

{0, 1}, XRSk =
⊕kμ

(k−1)μ+1 xp,mht
k
, k ∈ [1, bm], t ∈ [1, μ], p ∈ [1 + (k − 1)μ, kμ].

Send XRS = {XRS1, · · · , XRSbm} to PC ;
18: PC gets λ strings xi,ri , calculates bm xor results XRCk according to r;
19: end function

receiver), then further to κ invocations of basic OT1
κ extensions. In this way, the

computational and communication overheads are reduced.
After the OTSI, PC gets λ strings xi,ri

, i ∈ [λ] while PS gets noth-
ing about the selection vector r. However, the xi,ri

are randomly generated
by PS which contains no information about the signatures. Hence PS calcu-
lates bm XOR results XRS = {XRS1, · · · ,XRSbm} according to the mod-
ular hash value of signature segments Ebm as depicted in Algorithm 2. For
instance, t ∈ [1, μ],XRS1 =

⊕μ
1 xp,mht

1
, p ∈ [1, μ],XRS2 =

⊕2μ
μ+1 xp,mht

2
, p ∈

[μ + 1, 2μ], · · · ,XRSb =
⊕bμ

(b−1)μ+1 xp,mht
b
, p ∈ [(b − 1)μ + 1, bμ], · · · . Each

XRSk is the XOR result of μ random strings which are selected according to
the mh(Xl,k), and XRS will be sent to the client after calculating all the XOR
results.

Similarly, PC calculates the bm XOR results XRC and compares with XRS.
If and only if the mh(fl) is exactly same with mh(Xl,k), the XRCk matches
XRSk successfully. Otherwise, the XRSk are random to PC . At last, if any pair
of (XRCk,XRSk) matches, fl should be added to Rmal. Otherwise, fl can be
confirmed as clean segment. The workflow of PMSSI is depicted in Fig. 4.
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Fig. 4. Workflow of PMSSI

In PriMal, the public key operations in OT extension protocols [3] are imple-
mented based on elliptic curve (EC) groups over Fp in OpenSSL (1.0.2a), other
implementation parameters will be specified in Sect. 6. The main computational
complexity of PMSSI is determined by the OTSI function which invokes OTλ

κ

based on [3]. Before invoking the OTSI function, the operation cost focuses on
d times generation of random μ-bit in PS which is negligible. In one execution
of OTSI function in PC , the detail computational cost includes: generating κ
pairs of κ-bit seeds, basic OTκ

κ based on EC, generating 2κ random λ-bit, cal-
culating bm XOR results and comparing them. The computational cost of PS is
proportional to that of PC . The communication cost between the cloud server
and client is (3λ + bm + 2κ)κ bits which mainly comes from [3]. The execution
times of OTSI function are determined by the quantity of file segment n. For
the powerful cloud server, these costs listed above are very slight; for the client,
the costs would be acceptable given that their privacy is protected.

6 Discussion

In this section, we discuss the security and accuracy of PriMal from the theoreti-
cal perspective to show the balance between the intensity of privacy preservation
and detection performance.

6.1 Security

Following the most of related privacy-preserving researches, we hypothesize the
untrusted behaviors of both parties based on the semi-honest model [8]. In this
model, the cloud server offers malware detection services faithfully, but intends to
exploit the sensitive information from the interactive communication and tries to
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infer the file contents of client. Likewise, the client honestly follows the protocol
specification but is curious about the signatures. In the following section, we
briefly analyze the security of PriMal in semi-honest model. The main theorem
is stated below:

Theorem 1. Let the OTSI (Ebm, Fsus) in Algorithm 2 be indicated as π∩. If
the underlying OTλ

κ protocol is secure, then the π∩ is secure in the presence of
semi-honest adversaries.

Server’s view: Assuming the cloud server is corrupted. The view of cloud server
simulator during the protocol contains the message OTsrv from the OTλ

κ proto-
col, λ pairs of κ-bit random strings (xi,0, xi,1) and the XRS. The XRS can be
seen as the function ⊕ which inputs {Ek, (xi,0, xi,1)} and outputs random results.
So the simulator Simsrv outputs the simulated view: (Ek, xi,0, xi,1,⊕, OTsrv).
A view of the real protocol execution contains the message from OT protocol,
the λ pairs of random strings and XOR operation results. In the simulated view,
the random strings are distributed uniformly as in a real execution, so the dis-
tribution of XRS is also same as in the real execution. The protocol meets the
requirements of TPSP (Level III): (1) If the file segments is confirmed to be
malicious, the client gets XRS ∩XRC but cannot reveal Xl because of modular
hash; (2) if the file segment is trustworthy, the XRS is randomly distributed to
the client. As the OT protocol is secure, then the message OTsrv should be indis-
tinguishable from the view in a real execution. Thus we conclude the simulated
view is indistinguishable from a real view.

Client’s view: Assuming the client is corrupted. The view of client simulator
during the protocol only contains the message OTcli from OTλ

κ protocol and
the selection vector r. The view of a real execution contains the same. In the
simulated view, r is set to be same as in the real execution according to the
security definitions of secure computation [8]. As the OT protocol is secure, the
message OTcli should be indistinguishable from the view in a real execution.
Thus we conclude the simulated view is indistinguishable from a real view.

6.2 Accuracy

The accuracy is measured based on the false negative and false positive caused by
the hashing scheme adopted in PriMal. A false negative occurs when a segment
has been inserted into the signature engine earlier but is asserted as clean when
matching. While the false positive occurs when a query segment not inserted
into the signature engine is incorrectly stated as present. In what follows we will
conduct the theoretical analysis of these measurements.
False Negative. The false negative is caused by two main factors. The first one
is the initialization based on fixed-size slide window. For instance, suppose the
signature “abcdefg” has been inserted with w = 6, which means two signature
fragments are constructed and inserted into the engine: “abcdef” and “bcdefg”.
Now if we scan the file content “bcdef” will get the incorrect response that the
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file is clean. However, it is remarkable that false negative in PriMal would occur
only for the short file content whose length is less than w bytes. This situation
seldom takes place and is hard to be evaluated in prevalent security detection
because sizes of files to be scanned are always larger than w bytes.

The second one is the insertion failures of cuckoo hashing. It is noteworthy
that this factor is not treated as a false negative in [7] because the failure seg-
ments can be maintained for further lookup. In our paper, it is incompatible that
maintaining these segments for exact matching and satisfying the requirements
of Level III. The number of insertion failures is impacted by the bucket size b,
hash table size m and the displacement times dt. The detailed false negatives
are evaluated in Table 4.
False Positive. There are two types of false positives in PriMal. The first
one is caused by the hash functions employed in the signature engine, which
is called hashing false positive. Secondly, the modular arithmetic adopted in the
initialization brings the possibility of collision between two different segments
and the modular hash of signature segments adopted in the storage mechanism.
Here we call it segment false positive.
Hashing false positive: The hash functions we use above are 2-universal which
make the hash results are nearly randomized and the process of modular hash
serves similarly as the fingerprint of [7]. This type of false positive comes from
the hash collisions which may lead to the conclusion that a specific segment is
suspicious when it is not. In the worst case of looking up a non-existent item,
the 2b candidate entries are checked. The upper bound of the total probability
of a false modular hash hit is:

ε = 1 − (1 − 1
2w·log2 q

)2b ≈ 2b

qw
(1)

Let NS be the number of signatures in DB, l be the average length of sig-
natures be queried at a time in DB. Then the number of segments after being
incised by the window w is (l − w + 1) · NS . According to the relation (1), let
FPh be the hashing false positive of an arbitrary signature in DB that is:

FPh = 1 − (1 − ε)(l−w+1)·NS (2)

Segment false positive: As we described in Sect. 4, the PriMal system adopts the
modulo(q) hash function mh to generate candidate locations in CB. However,
this will introduce collisions between different segments. Specifically, there are
two distinct situations lead to segment collisions.

The first situation happens when two uninserted segments whose modular
hash values are equal. Suppose that S and S′ are two different strings (signatures
or files) with the same length of l-byte. The collision happens if each byte of string
belongs to same class after the modular hash. The second situation happens when
the uninserted file segments is wrongly matched. Suppose that S = s1s2 . . . sl is
initialized into (l − w + 1) segments with w-byte. The collision happens when



PriMal 167

all these fragment are wrongly resulted in suspicion. Let F1 be the false positive
before inserting, F2 be the false positive after inserting, we can conclude the
relations below:

F1 = (
� 256

q �
256

)l, F2 = (
� 256

q �
256

)w·(l−w+1) (3)

Consequently the probability of collisions are the sum of F1 and F2. However,
we should negate the situation that all the bytes in the string are really equal.
Let FPs be the segment false positive rate, then we have:

FPs = [F1 + F2 − ( 1
256 )l] · NS ≤

[(1q + 1
256 )l + (1q + 1

256 )w·(l−w+1) − ( 1
256 )l] · NS

(4)

In conclusion, the false positive of PriMal can be computed by the summation
of relation (2) and (4). Figure 5 shows the detail values of FPh and FPs with two
values of q. As observed, FPh is much larger than FPs with different numbers
of signatures. So FPs is negligible as compared to FPh and the false positive of
PriMal is mainly determined by FPh. It is reasonable that FPh mounts up with
the growth of signatures because empty entries get rare. Meanwhile, the growth
of q decreases FPh and FPs distinctly because larger q generates larger result
space of modular hash which dilutes the probabilities of collisions.

Fig. 5. Two types of false positive in PriMal with different values of q. (Parameters: l =
30, w = 16, b = 2 and different numbers of signatures range from 530000 to 4200000.)

7 Performance Evaluation

In this section, we evaluate the performance of PriMal system and make some
comparisons with related works. Our system is constructed based on Cla-
mAV(engine version 0.96) as detection infrastructure and EC groups over Fp
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Table 2. Signature segment distribution with different numbers of signature

Segments The number of signature

530K 830K 1M 2M 3M 3.7M 4.2M

MD5 429,422 739,290 956,952 1,835,112 2,808,716 3,585,710 4,072,748

String 7,287,854 7,495,898 7,682,817 7,732,660 7,924,836 8,332,140 8,081,249

in OpenSSL (1.0.2a) for basic OT protocols. We implement PriMal with addi-
tional 3 K lines of C code and the cloud version of ClamAV, SplitScreen, and
RScam for comparison. The signature databases we adopt originate from the
ClamAV open source platform. Several versions from Feb 2009 to Dec 2015 are
employed, the numbers of signatures range from 530000 to 4200000, respectively.
The vast majority of signatures are MD5 with uniform size of 16 bytes each which
means one MD5 signature can be treated as a signature segment directly. The
residual signatures are string signatures. Table 2 lists the specific distribution of
two different types (MD5 and string) of signatures after initialization.

If unspecified, we use w = 16, q = 4, b = 2, κ = 80, n = 217 for the evaluations
with the latest database (main v.55 and daily v.21187) and show the average
results over 10 runs. Our total 12 GB suspicious traffic set consists of about
100000 unique samples named by MD5 hashes, which are captured by specific
IDS from the campus network. Experiments are performed on a CentOS 5.6
virtual cloud server (8 cores, 32-GB memory and 2.53 GHz) and a common open
research network emulator based on OpenVZ which provides distributed network
and different types of virtual machines.

7.1 Memory Analysis

As aforementioned, PriMal adopts signature engine to insert the large-scale sig-
nature database in the cloud server. Before the inserting of signature segments,
we utilize the dynamic red-black tree structure to store these segments and
prune the reduplicate ones after initialization. This is because the infrastructure
is based on cuckoo hashing and it is not suitable for applications that insert the
same item more than 2b times [7]. This process takes up a period of time, but
we do not count it in the performance of PriMal since it performs only once at
the starting of evaluation.

We first practically analyze the memory cost of the cloud server with ten
different versions of signature databases. Moreover, we compare our statistic
with the memory cost of the cloud server in Clamav, SplitScreen and RScam.
Figure 6 shows the details when M = 224. As observed, the memory costs of the
cloud server in PriMal increase slowly with the growth of signature volume which
benefits from the efficient infrastructure and modular hashing mechanism. The
RScam costs the most memory footprint because the server needs to maintain
the statements of signature segments to achieve accurate orientation and exact
matching. The growth of SplitScreen is faster than PriMal which induces the
total memory cost of SplitScreen is larger than that of PriMal when the number
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Fig. 6. Memory cost comparison with different numbers of signatures

of signatures exceeds 3 million. Hence, we can conclude that our signature engine
achieves high space efficiency in dealing with large-scale signature databases.

7.2 Time and Communication Analysis

We evaluate the time performance of PriMal in the virtual machine as a
client with 1 GB memory, 256 KB L2 cache, 2.53 GHz CPU, and the bandwidth
between the cloud server and client is 10 Mbps. In PriMal, the cloud server and
client invoke one execution of PMSSI for n file segments. To make it easier to
understand, we randomly choose 200 suspicious samples with the average size of
n bytes to evaluate the average time cost of one execution of PMSSI.

There are two parameters that impact the time performance. The first one
is the size of signature engine(M). If M grows large, the digest D will become
sparse and the collision probability of two different segments becomes low. Then
the size of Lsus will decrease and the computation cost during the PMSSI will
reduce. The second one is the number of signatures which impacts in the opposite
way as M do. The more signatures are inserted into the signature engine, the
less sparse D becomes.

Figure 7 depicts the detailed average time costs of one OTSI execution with
the different number of signatures and M . Moreover, the time costs of SplitScreen
(M = 228) scanning individual file are also showed in Fig. 7 as a comparison.
As observed, the time performance can be approximate to SplitScreen when
M = 228. The total time cost of scanning multiple files grows linearly with the
times of PMSSI executions, but these executions can be processed independently
and using multiple threads. It is noteworthy that larger M causes higher memory
cost while brings lower time cost. When M = 228 with 4200000 signatures, the
memory cost of PS is 2.4 GB which is acceptable for the cloud server.

As described in PMSSI, the communication cost is (3λ + bm + 2κ)κ. In our
evaluation, m is the major factor that impacts the cost, and it depends on the
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total number of file segments n. Hence, we evaluate the communication cost with
the different number of file segments and signatures. Table 3 lists the details with
M = 224. The cost is inevitably high to assure all the file segments are checked
in the privacy-preserving manner. However, cost remains stable with the number
of signatures grows because of the low false positive.

The practical statistics of time and communication prove that it is a real chal-
lenge to achieve both high-performance malware detection and strong privacy
preservation. However, the time and communication costs are reasonable consid-
ering that we rely on the most efficient OT protocols and provide strong security
in the semi-honest cloud environment. We conclude that PriMal is competent to
protect the security and privacy of small but sensitive data.

Table 3. Average communication cost of PMSSI

Comm. (MB) The number of signature

530 K 1 M 2 M 3 M 4.2 M

n = 213 9.8 10.2 10.3 10.5 10.6

n = 215 38.4 40.1 40.7 41.2 41.7

n = 217 109 114.7 116.1 117.6 119.5

7.3 False Negative

In this section, we give a practical evaluation of the false negative. As discussed
in Sect. 6.2, it originates from the short signatures and insertion failures during
initialization. The number of short signatures is determined by the length of
sliding window w. As we set w to be 16 (length of standard MD5 signatures),
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Table 4. False negative (FN) and corresponding number of negative segments. Entries
in bold are the best choice among the column.

FN (Segments) b = 2, M = 224 b = 4, M = 223 b = 8, M = 222

dt = 10 0.3493% (42454) 0.1932% (23477) 0.1081% (13135)

dt = 20 0.3449% (41913) 0.1930% (23454) 0.1080% (13133)

dt = 30 0.3448% (41904) 0.1930% (23454) 0.1080% (13133)

dt = 50 0.3447% (41895) 0.1930% (23454) 0.1080% (13133)

the number of short signatures is fixed. We mainly discuss the insertion failures
in the case of different parameter settings.

Table 4 shows that the false negative decreases with the increase of dt and b.
The total number of entries is fixed to be 225 because this volume is sufficient to
contain the latest signature database according to Table 2. The intuitive choice
to ensure lowest false negative is setting b = 8,M = 222 and dt = 20. However,
the increment of b increases the number of suspicious segments to be checked
in PMSSI. As a result, the time and communication cost will increase greatly.
Therefore, we conclude the most moderate setting is b = 2,M = 224, dt = 50
because the false negative and costs are acceptable.

8 Conclusion

In this paper, we have presented PriMal, a cloud-based anti-malware system
with privacy preservation which is the first system to take the privacy into
consideration in the malware detection. In PriMal, we propose a novel malware
detection protocol, called PMSSI, which enables the cloud server and client to
achieve malware confirmation with privacy preservation in semi-honest model.
Meanwhile, we design the relevant signature engine to reduce the detection range
and cut down the computation and communication costs. Theoretical analysis
proves that PriMal achieves strong privacy preservation and extremely low false
positive. Statistical results show that PriMal provides low-cost memory overhead
with acceptable performance on computation and communication costs.

Acknowledgement. This research is supported in part by the project of Guangxi
cooperative innovation center of cloud computing and big data No. YD16505. The
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Abstract. Dynamic analysis plays an important role in analyzing mal-
ware variants which have used obfuscation, polymorphism and meta-
morphism techniques. Malware classification is an emerging approach
for discriminating different malware families. However, existing malware
classification methods have mediocre performance in small scale datasets
and some machine learning algorithms have difficulties in handling imbal-
anced datasets. To solve these issues, we propose an ensemble learning
based dynamic malware classification approach aiming at datasets of dif-
ferent scales. Additionally a novel feature selection method is presented
to select features with strong discrimination power. In particular, we con-
tinue to explore issues in feature representation and feature selection. To
verify the efficiency of our approach, we perform a series of compar-
ative experiments with existing feature selection methods, commercial
anti-malware tools and current malware classification techniques. The
experimental results demonstrate that our approach can classify mal-
ware variants in high F1-score while imposing low classification time in
datasets of different scales.

Keywords: Malware classification · Ensemble learning · Feature
selection · TF-IDF

1 Introduction

Malware as a crucial security threat presents significant challenges to cyber-
security. The large number of variants and the sophisticated malware behavior
can bring considerable difficulties in malware analysis.

Yet malware analysis tools have troubles in alleviating threats of malware
variants [1], and the number of new malware variants remains high. As the
unknown malware variants are largely from known malware families, existing
dynamic analysis tools can be improved by classification studies. For the reason
that characteristics of known malware families can be inferred and comprehended
by studying malware classification, and such characteristics can be deployed
in new malware analysis tools as heuristic rules. Therefore, it is necessary to
conduct a research on malware classification.
c© Springer International Publishing AG 2017
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Existing automated malware analysis techniques fall into two general cate-
gories: (1) static and (2) dynamic methods [2]. However, obfuscation and mor-
phism techniques have developed a lot to evade static malware analysis tools [3].
In order to reduce the limitation of static analysis, researchers analyze malware
in dynamic manner, which means executing malicious code in a virtual system
environment and collecting dynamic information such as system call [4], network
access [5] and memory modification [6]. The dynamic information can provide
an intuitive comprehension of malware behaviors to further deduction of their
intentions.

However, the results of traditional machine learning algorithms are easy to
be limited by the raw data, and over-fitting is sometimes hard to be avoided
[7], especially the imbalanced datasets are more likely to cause deviation. Mean-
while existing malware classification researches focus on large scale datasets [8],
and few studies research on how to classify small scale datasets. Small scale
datasets contain less information than the large one, and it is more difficult to
decide which feature should be extracted and selected. Furthermore in reality,
some malware families such as Regin and Flame own no more than 100 samples.
Taking these facts into consideration, we present an ensemble learning based
malware classification approach that uses a new feature selection method aim-
ing at classifying malware variants in different scale datasets accurately and
efficiently.

In this paper, we present a novel dynamic-based malware classification app-
roach using ensemble learning algorithms, which can be used in datasets of
different scales. The considered dynamic features include Application Program
Interface (API) calls, return value and module name. In the feature selection
phase, we propose a new method based on Term Frequency-Inverse Document
Frequency (TF-IDF) [9]. Our approach is evaluated in different scale datasets
and compared with existing malware classification approaches and anti-malware
tools. Our feature selection method is compared with Chi-square test (CHI) [10]
and Principal Component Analysis (PCA) [11,12].

The contributions of this paper are shown below:

– We present a new feature selection method based on TF-IDF. By using this
method, our dynamic-based malware classification approach can generate
higher accuracy than previous work.

– We explore the ideal representation of feature space and employ various pop-
ular ensemble learning techniques in malware classification.

The rest of the paper is organized as follows. Section 2 describes the frame-
work of classification approach and the method of constructing the feature space.
Section 3 presents the evaluation of our approach. Related works are reviewed
in Sect. 4. Section 5 concludes our work.
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2 Methodology

In this section, we firstly describe the framework of our approach, then we present
the method of extracting, representing and selecting features, finally the ensem-
ble learning algorithms we used are introduced.

2.1 Framework Overview

Figure 1 gives an overview of our framework for malware classification. Firstly a
training dataset and a testing dataset are built, and then the malware variants
are monitored in a SandBox [13] for obtaining the malicious traces. In the train-
ing phase, from dynamic execution traces, API calls, return value and module
name are extracted as features and their number of occurrences are saved in
a trace frequency information table (TFIT). According to TFIT, the weight of
each feature is calculated and the feature with high weight is selected. After
that, the selected features are weighted and normalized. Since the feature vec-
tors have been obtained, malware variants are labeled with their families and
the malware classification model can be constructed via ensemble learning algo-
rithm. In the testing phase, at first the feature vectors are gained with the same
method which is used in the training phase. Then the feature vectors are tested
in our classification model and the evaluation results can be obtained.

2.2 Feature Extraction

To extract features from runtime malware variants, Pin (A dynamic binary
instrumentation tool) is used to obtain the real-time dynamic execution traces.
A real-world example of the trace is shown in Fig. 2:

From the dynamic execution trace of malware variants, several data types
including function call names, action time, input and output parameters, exe-
cution results and other details are gathered. These trace types are analyzed
preliminarily to assign which type in execution trace should be chosen. With
twenty malware variants in two different malware families, each trace type is
extracted respectively and Term Frequency (TF) is used as features. The fea-
ture space is constructed as a classification model using Random Forest (RF)
algorithm. Table 1 shows the Accuracy of each trace type. Therefore, API calls,
return value and module name are elected for further analysis. TFIT contains
these features and their number of occurrences. In Table 2, an example of TFIT
is listed.

Table 1. The Accuracy of each trace type

Trace Type Function
call names

Action time Return Module Repeated Details Result

Accuracy 0.85 0.52 0.97 0.94 0.41 0.23 0.45
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Fig. 1. The framework of malware classification approach

Table 2. An example of trace frequency information table

Execution trace Frequency Execution trace Frequency

GetProcAddress 936 RegQueryValueExW 296

strncmp 0 ReadProcessMemory 0

VirtualAllocEx 0 VirtualAllocEx 16

RegSetValueExA 80 RegOpenKeyExA 0

RegQueryValueExA 0 WSAStartup 2
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Fig. 2. An example of dynamic execution trace

2.3 Feature Representation

In our case, the dynamic execution traces are extracted as strings, and the feature
representation choices are inspired from Sect. 4 and listed below:

1. Hash. A hash function can map data from arbitrary size to fixed size. A string
is transformed into fixed size binary number via overlapping and mapping
each element in the string. Finally, the output binary number is transformed
into decimal number.

2. Binary. To simplify the extracted feature, TF of each string is used as raw
features and a threshold T is set. Then we truncate the TF to either 0 or 1,
which means that if TF ≥ T , set it to 1, else if TF < T , set it to 0.

2.4 Feature Selection

As described previously, the malware classification task is treated as a feature-
based classification problem [14]. The classifier can learn a model from the fea-
tures that we have extracted and predict which malware family the candidate
variants should be in. In this section, we describe our feature selection method.

The first step is to calculate the weight of each feature vector. The weight
defines the importance of each feature. Therefore a lightweight and accurate clas-
sification model can be built through the strategy of weighting. The second step
is to select features according to the calculated weight. The third step is to weight
and normalize feature vectors. We choose Min-Max scaling in this step [15].

A. Weight calculation
Weight calculation is based on TF-IDF and used for feature selection, and the
improved algorithm is proposed due to the limitations of TF-IDF algorithm itself.
Let t = (x1, x2, · · ·xn) denotes the feature in malware variant a, its dimension is
n; Num is the total number of malware variants in the training dataset; m is the
total number of malware variants that include feature t; e indicates the number of



178 Y. Fang et al.

Table 3. An example of malware variants

Malware
family

Malware
variant

feature r
(counts)

feature s
(counts)

feature t
(counts)

A a r1 s1 t1

B b1 r2 s2 t2

b2 r3 s3 t3

malware families; ci(1 ≤ i ≤ e) defines each malware family. Table 3 exemplifies
malware variants and their features to illustrate the weight calculation method.

First the post-probability P (ci|t) is calculated.

P (ci|t) =
P (t|ci)P (ci)

P (t)

Some elements in Table 3 are acquired to illustrate the formula listed above.

P (A|t) =
P (t|A)P (A)

P (t)
=

t1
r1+s1+t1

∗ r1+s1+t1
r1+···+t3

t1+t2+t3
r1+···+t3

=
t1

t1 + t2 + t3

Namely, P (ci|t) = countc
countt

, countc is the number of occurrences of feature t in
family ci; countt is the number of occurrences of feature t in the training dataset.

Then, a formula is defined to confirm the distinguish ability E[P (c|t)] of
feature t.

E[P (c|t)] =

∑e
i=1

∑e
j=1[P (ci|t) − P (cj |t)]2

2
TF of feature t in malware variant a is calculated as follows:

TF (t, a) =
counta

countalla

counta is the number of feature t in malware variant a, countalla is the total
number of features in malware variant a.

The weight of feature t is computed the following:

w(t, a) =
TF (t, a) × E[P (c|t)]

√∑
t∈a[TF (t, a) × E[P (c|t)]]2

B. Feature selection and normalization
Since the weights of features have been gained, the feature with strong discrim-
ination power can be selected, namely, the feature with high weight value. Top
u features are elected and the weighted formula is shown as follows:

tw = t × w(t, a)
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Namely,

(xw
1 , x

w
2 , · · ·xw

u ) = (x1, x2, · · ·xu) × w(t, a)

The weighted features have different value ranges, while normalization can
reduce its influences in constructing classification model. Min-Max scaling is
chosen for normalization, the value domain of each element in the weighted
feature vector is adjusted to [0.0, 1.0]. The formula is shown as the following:

xnorm
j =

xw
j − xmin

xmax − xmin

In a weighted feature vector, xw
j indicates the jth element, xmin is the min-

imum value and xmax is the maximum value. xnorm
j indicates the jth element

in the normalized feature vector. After normalization, our feature space can be
gained.

2.5 Ensemble Machine Learning Algorithms

Ensemble learning builds a prediction model by combining the strengths of a
collection of simpler-base models [16]. In our malware classification approach,
ensemble machine learning algorithms are applied in training the obtained fea-
ture space and building the classification model. Figure 3 illustrates how to build
the model. We choose RF [17], Gradient Boosted Regression Trees (GBRT) [18]
and Voting Classifier (VC) [19] in our experiments for their high efficiency. GBRT
is a generalization of boosting to arbitrary differentiable loss functions [16]. VC
combines different machine learning classifiers, which can predict the label of
each class and balance out their individual weaknesses. In our case, the machine
learning algorithms in Voting Classifier are SVM, DT and KNN.

Fig. 3. Building a classification model
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3 Experiments and Discussion

In this section, we describe our datasets and a series of experiments in our
classification approach. Our approach will be investigated in many aspects, each
of which is used to answer one of the questions listed below:

(1) How to represent feature for better malware classification? (Sect. 3.2)
(2) Can proposed feature selection method help? Selecting features for con-

structing feature space and comparing with other feature selection methods
(Sect. 3.3).

(3) How is the performance of presented approach on our datasets? (Sect. 3.4)
(4) How is the performance of our approach compared to commercial tools and

other existing classification approaches? (Sect. 3.5)

The experiments are performed on Intel Core i7 2.00 GHz with 8.00 GB RAM,
running on Ubuntu 15.10 operating system. Malware variants are monitored in
Windows XP via Sandbox for obtaining the dynamic execution traces.

We evaluate the performance of our approach in terms of popular evaluation
metrics [20], Accuracy and F1-score. Accuracy is the fraction of variants that are
correctly detected; F1-score is a weighted harmonic average between Precision
and Recall [21]; Precision is the fraction of detected malware variants that are
correctly detected out of the total detected dataset, and Recall is the fraction of
the detected malware variants out of the total malware dataset.

3.1 Dataset

In this research, our work only aims at Windows malware. We collected two dif-
ferent scale malware datasets from our previous work. The first dataset Data20
is a small scale dataset, which includes 400 malware variants and 20 malware
families. The second dataset Data10 is a large and imbalanced dataset, which
includes 760 malware variants and 10 malware families. The malware families
and their types in our datasets are given in Table 4.

Table 4. Malware families in Data20 and Data10

Type Malware family (� of Variants in Data20/� of Variants in Data10)

Worm Abuse (20/82) Bybz (20/0)

Clisbot (20/68) Downloader (20/0)

Backdoor Allaple (20/91) Bredolab (20/0)

DarkKomet (20/54) Gbot (20/0)

Trojan Arto (20/101) BHO (20/0)

Boht (20/65) Buzus (20/0)

Phires (20/81) Pirminay (20/0)

Ragterneb (20/77) Refroso (20/0)

Trojan-Downloader Adnur (20/65) BHO (20/0)

BrainInst (20/76) Calipr (20/0)
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3.2 Experiments for Feature Representation

Two types of feature representations introduced in Sect. 2.3 are tested in Data20
using our classification approach. RF is used in this section to build the classifi-
cation model. Firstly, the Accuracy of API calls, return value, module name and
the combined feature are evaluated to choose the threshold in Binary method.
Table 5 shows the Accuracy of different threshold T in different feature types.
Our approach achieves the highest Accuracy of 0.83 at T = 0.3. Therefore,
T = 0.3 is the threshold.

Table 5. The Accuracy of different threshold T

T API calls Return value Module name Combined

0.10 0.31 0.37 0.53 0.48

0.20 0.52 0.63 0.58 0.66

0.25 0.60 0.71 0.71 0.68

0.3 0.71 0.81 0.81 0.83

0.35 0.62 0.66 0.66 0.66

0.40 0.47 0.56 0.54 0.56

0.45 0.40 0.53 0.50 0.49

0.50 0.28 0.26 0.37 0.30

Then, the classification Accuracy of each feature representation method is
illustrated in Table 6. Therefore the better choice of feature representation is
Hash.

Table 6. The classification Accuracy of Hash and Binary

Feature Hash Binary

API calls 0.90 0.71

Return value 0.94 0.81

Module name 0.97 0.81

combined 0.96 0.83

3.3 Experiments for Feature Selection

To assess our presented feature selection method, our method is compared to
CHI and PCA in Data20 and Data10 respectively. Firstly, we evaluate how
many features in our method should be selected. The dimension of API calls
is relatively small, which is 67, so the experiments of feature selection are only
performed on return value and module name. The feature space gained from
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Data20 is fed to RF classifier. The feature number u = {100, 200, 300, 400, 500}
is evaluated, the Accuracy and time overhead of different u are presented in
Table 7. Therefore, in follow-up experiments, top 300 features in return value
and top 200 features in module name are selected for constructing feature space,
namely, the dimension of combined feature space we selected is 567.

Table 7. The Accuracy and overhead of u

Feature number 100 200 300 400 500

Return value 0.63 0.84 0.94 0.94 0.94

Overhead(s) 0.89 1.23 1.76 1.88 2.03

Module name 0.90 0.97 0.97 0.97 0.97

Overhead(s) 2.47 2.67 3.06 3.11 3.23

Figure 4 compares the Accuracy of three feature selection methods in Data20
and Data10. The classification models are built via RF, GBRT and VC respec-
tively. Meanwhile, the results we recorded of CHI and PCA are the best classi-
fication results they have got by reducing the combined features. We can find
that our feature selection method perform better in datasets with different scales,
especially in the small ones.

Fig. 4. Comparison with existing feature selection methods

3.4 Experiments for Feature Selection

For Data20 in our evaluation, Table 8 summarizes the Accuracy, F1-score and
classification overhead with different kinds of features from three classification
models built via RF, GBRT and VC. It can be easily inferred from the table sta-
tistics that our constructed model has the ability to classify malware variants in
small scale datasets into correct categories. For malware classification, Precision
and Recall should be high as a low value shall result in a wrong classification of
malware. However, Precision and Recall are contradictory in some case. There-
fore, F1-score is used to evaluate our approach. F1-score combines Precision and
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Recall, and it should be as high as possible. As can be seen from Table 8, we
achieve 0.98 of Accuracy and F1-score respectively, which means the features
we extracted have high recognition, and the approach is suitable for malware
classification. It also demonstrates that the model built by GBRT algorithm can
achieve the best Accuracy and the model built by VC algorithm can classify
the most rapidly. Additionally, the time of building feature space in Data20 is
shown in Table 9 which indicates the efficiency of our classification approach.

Table 8. Classification results of Data20

RF API calls Return value Module name Combined

Accuracy 0.92 0.94 0.97 0.96

F1-score 0.91 0.93 0.97 0.95

Overhead(s) 2.41 1.76 2.67 2.31

GBRT API calls Return value Module name Combined

Accuracy 0.91 0.94 0.98 0.98

F1-score 0.90 0.93 0.98 0.98

Overhead(s) 1.18 0.61 1.58 1.21

VC API calls Return value Module name Combined

Accuracy 0.95 0.96 0.97 0.98

F1-score 0.95 0.95 0.97 0.97

Overhead(s) 0.25 0.21 3.93 0.24

Table 9. Runtime overhead of feature processing

Feature API calls Return value Module name Combined

Feature processing(s) 371.72 415.41 440.41 1227.24

To further evaluate the robustness of our approach, we compare receiver
operating characteristic (ROC) curves via the combined feature in Data10 and
Data20. ROC curve is a graphical plot that illustrates the performance of a
binary classifier system. In our evaluation, we calculate the ROC curve of each
malware family and compute the average curve as the ROC curve in our multi-
classifier. Figure 5 depicts the ROC curves of RF, GBRT and VC in Data10 and
Data20. Each dataset shows great performance on malware classification, which
demonstrates that our approach can be used in different scale datasets.

3.5 Experiments for Comparison

In the previous section, we have evaluated our proposed malware classification
approach. To adequately assess the quality of our results, we perform two com-
parative experiments with commercial anti-malware tools (Kaspersky and 360)
and other malware classification approaches.
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Fig. 5. ROC curves of RF, GBRT and VC

In this section, our classification model is constructed by GBRT algorithm
and the combined features extracted from Data20 are used to train the model.

A. Commercial tools
Kaspersky and 360 are two universal anti-malware commercial tools. Confusion
matrix is used in this section to illustrate the classification results of our approach
and these two tools. Confusion matrix is a specific table layout the performance
of an algorithm, each column of the matrix represents the variants in a predicted
class while each row represents the variants in an actual class [22]. The confusion
matrices are presented in Fig. 6. From the figure, our approach is outperformed
other tools.

Fig. 6. The confusion matrices of GBRT, 360 and Kaspersky
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From statistical analysis, 360 and Kaspersky can detect malware accurately,
however, the ability of classifying malware variants is not as good as we sup-
posed. It may due to the differences in designing the anti-malware tools and the
proposed classification method. In fact, 360 only classified 37% malware variants
into our offered families, and Kaspersky only classified 38.5%. The rest malware
variants are assigned into other malware families, which we did not mention
in Fig. 6. Especially in Kaspersky, 31.25% malware variants are considered as
HEUR:Trojan.Win32.Generic. Therefore, we observe that existing anti-malware
tools cannot classify malware variants into their real malware families.

B. Existing approaches
In this section, our classification approach is compared with previous work [23,
24]. Figure 7 indicates the Accuracy and F1-score of each approach. From the
figure, our proposed approach achieves the highest Accuracy and F1-score for
the reason that the extraction and representation method in our approach can
cover the most useful features.

Fig. 7. Comparison with existing malware classification approaches

4 Related Work

Existing machine learning based malware analysis techniques can result in better
outcomes such as [25]. In this section, we review the machine learning based
malware analysis approaches by the following steps.

(1) Data collection and feature extraction. Features are extracted and converted
into a multi-dimensional vector space which aims at distinguishing malware
families or malicious and benign programs. The transformation techniques
include N-gram, TF, etc.
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(2) Model construction and training. The model for analyzing malware can
be constructed through training machine learning algorithms with feature
space.

(3) Evaluation. The model is tested for evaluating the results and improving
itself.

Feature extraction and feature representation play an important role in
machine learning based malware analysis works, and excellent feature space
is necessary for analyzing malware. Features can be extracted from opcode
sequences [11,26] or quantitative data flow graphs [27] via n-gram method.
Cesare et al. [12] have decomposed control flow graphs and obtained fixed size
k-subgraphs, or n-gram strings as features. Graphs such as machine-domain
behavior graph [28], annotated control flow graph [29], triggering relation graph
[30], API dependency graph [31] and ordered system-call graph [32] also can be
extracted for representing malware variants. These graphs are pruned to boost
performance and reduce noise, as well as it can be used to analyze malware
via image matching or further extracting. Cen et al. [14] and Zhao et al. [33]
have listed total five feature representation methods (Binary, TF, Inverse Docu-
ment Frequency (IDF), TF-IDF and log(TF + 1)) to express feature, which has
inspired our work.

To reduce the dimension of extracted feature vectors, Information Gain (IG)
[34], CHI, PCA and TF-IDF [33] etc. can be used for feature selection and feature
reduction. Thus the feature space can be built.

Machine learning models include supervised learning model for malware
detection and classification, and unsupervised learning model for malware clus-
tering. Moreover, semi-supervised learning [23] can be used to analyze malware
incrementally. Supervised learning algorithms include Support Vector Machine
(SVM) [35,36], Decision Tree (DT) [26], Naive Bayes (NB) [37] and some ensem-
ble learning algorithms such as RF, etc., and KNN [26] is common in unsuper-
vised learning algorithms. Popular evaluation metrics include Precision, Recall
and F-measure and ROC [22] etc.

However, it is possible that these malware analysis methods may not be
suitable for malware variants in datasets of small scales or imbalance. Meanwhile
traditional machine learning algorithms are sometimes too sensitive and not as
robustness as enough. As introduced previously, ensemble learning algorithms
can be used to balance out shortages of machine learning, and a new malware
classification approach is demanded for tackling datasets of different scales.

5 Conclusion

In this paper, we propose a new dynamic-based malware classification approach
using ensemble learning algorithms which is able to handle datasets of different
scales. To carry out this objective, we capture the execution traces of malware
variants and extract features from these traces. Then, we presented a novel TF-
IDF based feature selection method which can elect high discriminative features
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in different scale datasets. The feature space is formed from the reduced feature
vectors, and it can be used to build classification model via ensemble learn-
ing algorithms. Our experimental results demonstrate that our approach can be
used to classify malware variants and achieves a high F1-score and a low time
overhead. In addition, the presented feature selection method and our classifica-
tion approach are compared with other related solutions, the results show that
our approach performs better. Our future work aims at ameliorating the feature
processing method to achieve more rapidly processing.
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Abstract. Aggregator oblivious encryption was proposed by Shi et al.
(NDSS 2011), where an aggregator can compute an aggregated sum of
data and is unable to learn anything else (aggregator obliviousness).
Since the aggregator does not learn individual data that may reveal users’
habits and behaviors, several applications, such as privacy-preserving
smart metering, have been considered. In this paper, we propose aggre-
gator oblivious encryption schemes with public verifiability where the
aggregator is required to generate a proof of an aggregated sum and any-
one can verify whether the aggregated sum has been correctly computed
by the aggregator. Though Leontiadis et al. (CANS 2015) considered the
verifiability, their scheme requires an interactive complexity assumption
to provide the unforgeability of the proof. Our schemes are proven to be
unforgeable under a static and simple assumption (a variant of the Com-
putational Diffie-Hellman assumption). Moreover, our schemes inherit
the tightness of the reduction of the Benhamouda et al. scheme (ACM
TISSEC 2016) for proving aggregator obliviousness. This tight reduction
allows us to employ elliptic curves of a smaller order and leads to efficient
implementation.

1 Introduction

1.1 Aggregator Oblivious Encryption

Aggregator oblivious encryption was proposed by Shi et al. [44], where an aggre-
gated sum of n users’ data (such as energy consumption from smart meters) can
be computed in a privacy-preserving manner. In brief, an honest dealer gener-
ates secret keys for users and an aggregator. A user i encrypts data xi,t at time
t, and sends the ciphertext ci,t to the aggregator. The aggregator can compute
the aggregated sum Xt =

∑n
i=1 xi,t from {ci,t}i∈[1,n] and sends Xt to a data

analyzer (such as an energy provider). It is particularly worth noting that the
aggregator learns Xt and nothing else and this security notion has been formal-
ized as aggregator obliviousness. Note that if homomorphic encryption [19,41]
is simply employed, then the aggregator has the capability to decrypt each ci,t

and can obtain xi,t. Since xi,t may reveal consumer habits and behaviors, e.g.,
c© Springer International Publishing AG 2017
J. Pieprzyk and S. Suriadi (Eds.): ACISP 2017, Part II, LNCS 10343, pp. 193–213, 2017.
DOI: 10.1007/978-3-319-59870-3 11
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when a certain consumer turns the air conditioner on, it may appear when the
consumer returns home, aggregator oblivious encryption is better to preserve the
privacy of users. Moreover, the aggregator is not required to be a fully trusted
authority and is modeled as honest-but-curious. That is, the data analyzer can
collect the aggregated sum of xi,t via the aggregator in a privacy-preserving man-
ner. In addition, only a unidirectional channel is required from each user to the
aggregator. This could be an advantage compared to the schemes that require
bidirectional channels between the smart meters and the aggregator [18,42].
Though the Shi et al. scheme is not tolerant of user failures (i.e., if even a single
user fails to respond in a certain aggregation round, the aggregation algorithm
does not work), Chan et al. [11] proposed a fault-tolerant solution such that the
aggregator can still compute the aggregated sum from the remaining users.

The Shi et al. scheme is aggregator obliviousness under the Decisional Diffie-
Hellman (DDH) assumption in the random oracle model. They employed the
lifted ElGamal encryption approach [12] and therefore Xt =

∑n
i=1 xi,t needs to

be suitably small since the aggregator is required to solve the discrete logarithm
gXt with respect to basis g. Later, Joye and Libert [27] proposed an aggrega-
tor oblivious encryption scheme with large plaintext spaces by employing the
Paillier-type homomorphic operation [41]. The Joye-Libert scheme is aggrega-
tor obliviousness under the Decision Composite Residuosity (DCR) assumption
in the random oracle model. Both schemes [27,44] were generalized by Ben-
hamouda, Joye, and Libert (BJL) [8]. They gave a generic construction of aggre-
gator oblivious encryption from smooth projective hash functions [13] with an
extra additively homomorphic property over the key space, with both DDH
and DCR-based instantiations. An attractive point of the BJL construction is
its tight reduction. Namely, the reduction loss is O(tmax) whereas that of the
Shi et al. scheme [44] is O(tmaxn

3) where tmax is the maximum time to be sup-
ported by the system and n is the number of users. If we consider the exact
security [7,37], then tight reduction is important. As in Benhamouda et al. [8],
we set that n = tmax = 220 ≈ 106 which approximately allows the computation of
an aggregation every 15 min for 30 years throughout a city like Paris. Then, the
security loss of the Shi et al. scheme is approximately 280. That is, That is, for
achieving 112-bit security, the Shi et al. scheme requires approximately 7,680-
bit public key or elliptic curves with 384–511-bit order, which is recommended
by NIST [4] for achieving 192-bit security. On the other hand, the security loss
of the Benhamouda et al. scheme is approximately 220, and to achieve 112-bit
security, approximately 3,072-bit public key or elliptic curves with 256–383-bit
order is required.1

1.2 Aggregator Oblivious Encryption with Public Verifiability

As mentioned above, the aggregator is modeled as honest-but-curious and is
assumed to output Xt correctly. For stronger security, Leontiadis et al. [31]
1 This key-length is recommended by NIST [4] for achieving 128-bit security. To be pre-

cise, the Benhamouda et al. scheme archives 108-bit security under this key length.
Thus, a slightly longer key is required to achieve 112-bit security.
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considered a new model: a user i produces a tag σi,t in addition to ci,t, and
sends (ci,t, σi,t) to the aggregator, and the aggregator is required to generate a
publicly verifiable proof σt that proves the decryption result of {ci,t}i∈[1,n] is
exactly Xt. Of course, it is required that the aggregator cannot produce a forged
σt for some Xt �= ∑n

i=1 xi,t, and this security notion is formalized as aggregator
unforgeability. Since the data analyzer can recognize whether the aggregator
correctly computed the aggregated sum, this functionality can be seen as a kind
of verifiable computation [2,17].

Though the Leontiadis et al. approach is interesting, one drawback of their
construction is the underlying complexity assumption. They introduced an inter-
active assumption called the LEOM assumption for proving aggregator unforge-
ability. The LEOM assumption is defined as follows.

Definition 1 (LEOM Assumption [31]). Let D = (p, e, g1, g2, G1, G2, GT ) be

bilinear groups. Choose α
$← G1 and δ, γ1, . . . , γn

$← Zp and set Γ = gγ
2 and Δ =

g
∑n

i=1 γi

2 . The LEOM oracle OLEOM takes as input (t, {xi,t}n
i=1), chooses βt

$← G1,
and returns (α, βt, {βγi

t αδxi,t}n
i=1). If a query at t contains i′ ∈ [1, n] such that

xi,t �= x′
i,t, then OLEOM returns ⊥. Assume that OLEOM is called once at each t.

We say that the LEOM assumption holds if for any probabilistic polynomial time
(PPT) adversary A, the advantage AdvLEOM (λ) := Pr[AOLEOM(·,·)(D,Γ,Δ) →
(t, z, c)] is negligible where A has queried (t, {xi,t}n

i=1) and z �= ∑n
i=1 xi,t and

c = β
∑n

i=1 γi

t αzδ holds.

However, as explained by Naor [38], it is better to avoid interactive assump-
tions as much as possible to prevent circular arguments. Making cryptographic
primitives secure under weak assumptions is one of the important topics of
cryptography. To name a few, verifiable random functions [23,24], group signa-
tures [33,34], structure-preserving signatures [1], identity-based encryption [46],
attribute-based encryption [40,45], oblivious transfer [21] and so on, and con-
structing an aggregator oblivious encryption scheme with public verifiability
from static and simple assumptions are still left as open problems.

1.3 Our Contribution

In this paper, we propose two aggregator oblivious encryption schemes with
public verifiability from static and simple assumptions (a variant of the Com-
putational Diffie-Hellman (CDH) assumption). See Table 1 for detailed compar-
isons. For aggregator obliviousness, both schemes are tightly reduced to the BJL
scheme. That is, our schemes inherit the tightness of the reduction of the Ben-
hamouda et al. scheme. This tight reduction allows us to employ elliptic curves
with a smaller order and leads to efficient implementation. On the other hand,
the Leontiadis et al. scheme is reduced to the Shi et al. scheme and has a loose
reduction.

The first scheme provides weak aggregator unforgeability, where an adver-
sary can obtain ciphertexts and tags {(ci,t, σi,t)}n

i=1 of xi,t chosen by the
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Table 1. Comparison of DL-based aggregator oblivious encryption

Scheme Ciphertext

size (ci,t)

Tag size (σi,t) Secret key size Public parameter size (params + vk)

BJL (DDH) [8] |G1| - 2|Zp| |G1|+ 2 hash

LEOM [31] |G1| |G1| 2|Zp| + |G1| |G1|+|G2|+ 1 hash

Ours 1 |G1| |G1| 3|Zp| + |G1| |G1| + (1 + tmax)|G2| + |GT |+6 hashc

Ours 2 |G1| |G1| 2|Zp| + |G1| |G1| + |G2| + |GT |+5 hash

Scheme |p|b Encryption

algorithm

Aggregator

unforgeability

Complexity assumptions

for proving AO/AUd
Bulletin

board

BJL (DDH) [8] 256 Deterministic - DDH/- -

LEOM [31] 1031 Deterministic Full DDH/LEOMe -

Ours 1 383 Deterministic Weak DDH/mCDHf -

Ours 2 383 Probabilistic Full DDH/mCDHf Required
a

Zp, |G1|, |G2|, and |GT | denote the bit-length of an element of Zp, G1, G2, and GT , respectively.
b |p| denotes the bit-length of p for 112-bit security. Here, we set n = tmax = 220 [8]. For the BJL scheme, we

refer the NIST recommendation [4] since the BJL scheme is pairing-free. For the LEOM scheme and ours, we

refer the result by Menezes, Sarkar, and Singh [36] who re-evaluated parameters of pairing-friendly elliptic

curves by considering the result by Kim and Barbulescu [29].
c Remark that no user is required to have the large-size verification key.
d AO/AU: Aggregator Obliviousness/Aggregator Unforgeability
e LEOM: Leontiadis-Elkhiyaoui-Önen-Molva. An interactive complexity assumption.
f mCDH: modified Computational Diffie-Hellman. A static complexity assumption.

encryption oracle. Note that in the smart meter setting, xi,t (such as power
consumption) is measured by the meter. Thus, we believe that weak aggrega-
tor unforgeability is still meaningful in the actual usage. One drawback to the
first scheme, beside weak aggregator unforgeability, is the large-size verification
key vk = {vkt := g

∑n
i=1 vi,t

2 }t∈[1,tmax] where tmax is the maximum time to be
supported by the system. If we employ Barreto-Naehrig (BN) curves [5] with
a 383-bit order, then approximately 100 MByte-sized verification keys need to
be published when tmax = 220 ≈ 106 [8]. Note that no user is required to have
the large-size verification key. Moreover, verification keys for past times can be
removed. In addition, if we can assume that these keys are updated by the dealer
every time over a certain time period (i.e., periodic inspection of meters every
one to two years), or if we can set a relatively small tmax, then we can signifi-
cantly reduce the size of the keys to be stored. Remark that, if a user manages
all vi,t as its secret key, then the secret key size also depends on tmax. To avoid
such a large-size secret key, we additionally introduce a hash function H and a
time-independent secret key vi, and we compute vi,t = H(vi, t). This helps us to
reduce the secret key size.

Though we can reduce the verification key size according to the tmax settings,
it would be better to support constant-size keys. Our second scheme solves the
large-size key problem by choosing vi,t on the fly. That is, in the second scheme
a user i chooses vi,t in the encryption phase, whereas in the first scheme all keys
are generated by an honest dealer, as in previous works [8,27,31,44]. Though
the Enc algorithm becomes probabilistic, this strategy allows us to prove that
the scheme provides aggregator unforgeability where an adversary can obtain
ciphertexts and tags {(ci,t, σi,t)}n

i=1 of xi,t chosen by the adversary. Moreover,
vk can be removed from the public value. A drawback of the second scheme
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is that a malicious aggregator could modify vk. Thus, we additionally need to
introduce public channels equipped with memory, such as a bulletin board [22]
that is publicly readable and that every user can write to, but nobody can delete
from. See Sect. 4 for a more detailed explanation.

1.4 Related Work

Aggregator oblivious encryption considers collecting the aggregated sum of users
(e.g., the total consumption of customers) in a certain region for each time
period. This could be employed for privacy-preserving energy management sys-
tems. On the other hand, collecting the aggregated sum of a particular user
might be desired for a certain reason. For example, if an energy provider would
like to send an invoice to a customer and would like to know the total amount of
the consumption of the customer. This could be employed for privacy-preserving
supplier billing systems [25,43]. Some schemes support both billing and energy
management functionality [6,15,39]. Ohara et al. [39] in particular proposed such
a smart metering scheme with verifiability of the integrity of the total amount
of consumption or the billing price.

In our setting (as in [8,27,31,44]), the number of users n is selected and fixed
during the setup phase. Some papers considered dynamic joins and leaves [11,26,
30,32]. Chan et al. [11] proposed a binary interval tree technique that reduces the
communication cost for joins and leaves, and Jawurek et al. [26] further improved
the communication overhead of the Chan et al. scheme. Although the Chan et al.
and Jawurek et al. schemes require public key settings, Li and Cao [32] proposed
a more efficient scheme that only requires symmetric key settings. Though these
schemes assume an honest dealer that issues keys to the users and the aggregator
via a secure channel, Leontiadis et al. [30] proposed a key update mechanism
that does not require any trusted dealer. They introduced an additional semi-
trusted party called the collector that collects partial key information from users
via a secure channel.

Some schemes employ bilinear groups with composite order N = pq [16,35].
This could be a bottleneck since we need to assume that N is difficult to be
factorized and is selected as sufficiently large. In the meantime, our schemes are
constructed over bilinear groups with a prime order.

Benhamouda et al. [8] mentioned that multi-input functional encryption [20]
implies aggregator oblivious encryption. Since Badrinarayanan et al. [3] proposed
verifiable functional encryption and also considered its multi-input setting, we
might be able to construct verifiable aggregator oblivious encryption from veri-
fiable multi-input functional encryption. Though, as in Benhamouda et al., we
leave this attempt in this paper due to the efficiency point of view.

2 Preliminaries

Let p is a λ-bit prime, G1, G2 and GT are groups of order p, e : G1 × G2 → GT

is a bilinear map, and g1 and g2 are generators of G1 and G2, respectively. We
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use the (type 3) asymmetric setting, i.e., G1 �= G2, and no efficient isomorphism
between G1 and G2 is known.

Next, we define the Decisional Diffie-Hellman (DDH) assumption on G1 as
follows.

Definition 2 (DDH Assumption). Let D := (p, e, g1, g2, G1, G2, GT ), g′
1

$←
G1 and r1, r2

$← Z
∗
p where r1 �= r2. We say that the DDH assumption

holds on G1 if for any PPT adversary A, the advantage AdvDDH(λ) :=
|Pr[A(D, g′

1, g
r1
1 , g′

1
r1) → true] − Pr[A(D, g′

1, g
r1
1 , g′

1
r2) → true]| is negligible.

Next, we define a new complexity assumption. This is a variant of the Computa-
tional Diffie-Hellman (CDH) assumption. We call this assumption the modified
CDH (mCDH) assumption.2

Definition 3 (Modified CDH Assumption). Let D := (p, e, g1, g2, G1,

G2, GT ), and a, b
$← Z

∗
p. We say that the Modified CDH assump-

tion holds if for any PPT adversary A, the advantage AdvmCDH(λ) :=
Pr[A(D, ga

1 , g
1/a
1 , gb

1, g
a
2 ) → gab

1 ] is negligible.

We can check that the mCDH assumption holds in the generic bilinear
group model by reducing the mCDH problem to the following problem: given
(g1, ga

1 , ga2

1 , gb
1, g2, g

a
2 ) ∈ G

4
1 × G

2
2 for random a, b ∈ Zp, compute e(g1, g2)a2b. We

can assume that the problem is difficult to be solved since it belongs to the Uber
assumption family [10]. This reduction can be easily done by setting g′

1 := g
1/a
1

and B := ab. Then, an instance of the mCDH problem (g1, ga
1 , g

1/a
1 , gb

1, g2, g
a
2 )

is represented as: given (g′
1
a
, g′

1
a2

, g′
1, g

′
1
B

, g2, g
a
2 ), compute gab

1 = g′
1
a2b = g′

1
aB .

We rewrite it: given (g1, ga
1 , ga2

1 , gb
1, g2, g

a
2 ), compute gab

1 . That is, if the mCDH
problem can be solved, then we can compute e(gab

1 , ga
2 ) = e(g1, g2)a2b.

3 Definitions of Verifiable Aggregator Oblivious
Encryption

In this section, we give the syntax of verifiable aggregator oblivious encryption
and its security definitions (aggregator obliviousness and aggregator unforgeabil-
ity), and introduce the DDH-based BJL scheme [8]. As in Shi et al. we consider
encrypt-once security where each user only encrypts once at each time t.

2 Kiltz and Vahlis [28] defined the modified Decisional Bilinear Diffie-Hellman

(mDBDH) assumption where given (g, gx, gy, gy2
, gz, Z) decide whether Z =

e(g, g)xyz or not. That is, compared to the original DBDH assumption, the element

gy2
is additionally given to the adversary. In our assumption, if we set g

1/a
1 := g′

1

then (g
1/a
1 , g1, g

a
1 ) can be seen as (g′

1, g
′
1

a
, g′

1
a2

). That is, the element g′
1

a2
is added

to an instance of the CDH assumption. Hence, we call the assumption mCDH.
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3.1 Syntax of Verifiable Aggregator Oblivious Encryption

Definition 4 (Verifiable Aggregator Oblivious Encryption [31])

Setup: The setup algorithm takes as input a security parameter λ, and outputs
a public parameter param and a secret key of aggregator skA, a set of user
secret keys {ski}n

i=1, and the aggregate verification key vk. We assume that
the maximum time tmax is contained in param, and tmax is a polynomial of the
security parameter. We assume that t ∈ [1, tmax] and the verification key at t
vkt is contained in vk.

Enc: The encryption algorithm takes as input param, t, a value xi,t, and ski, and
outputs a ciphertext ci,t and a tag σi,t.

AggrDec: The aggregation and decryption algorithm takes as input param, t,
and a set of ciphertexts and tags {(ci,t, σi,t)}n

i=1, and skA, and outputs Xt :=∑n
i=1 xi,t mod M , and the proof σt where M is some fixed integer contained

in param.
VerifySum: The verification of aggregation algorithm takes as input param, t,

vkt, and (Xt, σt), and outputs 1 or 0.

We require the following correctness. For all (param, skA, {ski}n
i=1, vk) ←

Setup(1λ), and (ci,t, σi,t) ← Enc(param, t, xi,t, ski), and (Xt, σt) ←
AggrDec(param, t, {(ci,t, σi,t)}n

i=1, skA), VerifySum(param, t,Xt, σt, vkt) = 1, and
Xt =

∑n
i=1 xi,t mod M hold.

Let us introduce the entities of the system and how to run the algorithms
above as follows. We consider four entities, a trusted dealer, an aggregator,
users, and a data analyzer. First, the dealer runs (param, skA, {ski}n

i=1, vk) ←
Setup(1λ), and issues skA to the aggregator and ski to the user i, respectively, and
publishes (param, vk).3 At time t, each user i encrypts xi,t such that (ci,t, σi,t) ←
Enc(param, t, xi,t, ski), and sends (ci,t, σi,t) to the aggregator. The aggregator
runs (Xt, σt) ← AggrDec(param, t, {(ci,t, σi,t)}n

i=1, skA), and sends (Xt, σt) to
the data analyzer. The data analyzer checks whether the computed aggregated
sum Xt is correct by running 1/0 ← VerifySum(param, t,Xt, σt, vkt).

3.2 Security Definitions

Next, we define aggregator obliviousness. This requires that the aggregator can-
not learn anything more than the aggregate value Xt for each time t. We addition-
ally require that tags σi,t do not affect the security. Let st be state information
that A can preserve any information, and st is used for transferring state infor-
mation to the other stage. Let U be the whole set of users for which, at the end of
the game, no encryption queries have been made on t∗ and no corruption queries

3 In the definition of Leontiadis et al. [31], each user i chooses a tag value tki, and sends
its encoding value to the dealer in the Setup phase. The dealer computes vk from
all tki. Here we simply assume that vk is generated by the dealer since the dealer
is modeled as a trusted entity. Later, we consider the case that vk is generated by
users in the encryption phase.
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have been made. The adversary indicates St∗ ⊆ U and obtains (ci,t∗ , σi,t∗) for all
i ∈ St∗ . Remark that the AggrDec algorithm works only when all ciphertexts are
collected. That is, if St∗ is a proper subset of U (St∗ � U), then there exist at least
one ciphertext ci,t∗ such that i ∈ U\St∗ . In this case, the adversary cannot run
the AggrDec algorithm. Thus, as in the definition of Benhamouda et al. [8] and
Shi et al. [44], we require that

∑
i∈St∗ x

(0)
i,t∗ mod M =

∑
i∈St∗ x

(1)
i,t∗ mod M must

be hold if skA is compromised by the adversary and St∗ = U. Though in the def-
inition of Leontiadis et al. [31], skA is always given to the adversary and always
the condition

∑
i∈St∗ x

(0)
i,t∗ mod M =

∑
i∈St∗ x

(1)
i,t∗ mod M is required, we follow

the definition given in [8,44] where the adversary is allowed to select whether the
adversary compromises skA or not.

Definition 5 (Aggregator Obliviousness [8,31]). For any PPT adversary A
and a security parameter λ ∈ N, we define the experiment ExpAO

A (λ) as follows.
If skA is compromised at the end of the game and St∗ = U, then it is required
that

∑
i∈St∗ x

(0)
i,t∗ mod M =

∑
i∈St∗ x

(1)
i,t∗ mod M .

ExpAO
A (λ) :

(param, skA, {ski)}n
i=1, vk) ← Setup(1λ)

(St∗ , t∗, {(x(0)
i,t∗ , x

(1)
i,t∗)}i∈St∗ )←AOenc,Ocorrupt(param, vk, st); St∗ ⊆ U; b

$← {0, 1}
For all i ∈ St∗

(ci,t∗ , σi,t∗) ← Enc(param, t, x
(b)
i,t∗ , ski)

b′ ← AOenc,Ocorrupt({(ci,t∗ , σi,t∗)}i∈St∗ , st)
If b = b′, then return 1 and 0 otherwise

– Oenc: This encryption oracle takes as input a tuple (i, t, xi,t), and returns
(ci,t, σi,t) ← Enc(param, t, xi,t, ski). Note that A is not allowed to input
(i, t∗, ·) where i ∈ St∗ to this oracle.

– Ocorrupt: This corruption oracle takes as input i ∈ [0, n], and returns ski. If
i = 0, then the oracle returns skA. Note that A is not allowed to input i ∈ St∗

to this oracle.

We say that an encryption scheme is aggregator obliviousness if the advantage
AdvAO

A (λ) := 2|Pr[ExpAO
A (λ) = 1]− 1/2| is negligible for any PPT adversary A.

Next, we define aggregator unforgeability. This requires that an adversary (mod-
eled as the malicious aggregator) cannot produce a forged tag σt that is accepted
by the VerifySum algorithm. As in the definition of unforgeability given by Leon-
tiadis et al. [31], we consider two cases: an adversary is required either the
adversary does not obtain ciphertexts and tags at the challenge time t∗ (type I
forgery) or the adversary has obtained all ciphertexts and tags {(ci,t∗ , σi,t∗)}n

i=1

(type II forgery). In the type II forgery case, it is assumed that ciphertexts and
tags are honestly generated, and A obtains ciphertexts and tags of all users in the



Privacy-Preserving Aggregation of Time-Series Data with Public Verifiability 201

system. Type I adversary captures the case that the aggregator tries to generate
a forged tag σt at a future time t (i.e., users have not generated (ci,t, σi,t)). Type
II adversary captures the case that the aggregator tries to generate a forged tag
σt at a past/current time t (i.e., users have generated (ci,t, σi,t)).

Definition 6 (Aggregator Unforgeability [31]). For any PPT adversary A
and a security parameter λ ∈ N, we define the experiment ExpAU

A (λ) as follows.

ExpAU
A (λ) :

(param, skA, {ski}n
i=1, vk) ← Setup(1λ)

(t∗,Xt∗ , σt∗) ← AOenc(param, skA, vk)
If one of the followings hold, then return 1 and 0 otherwise
(Type I) : VerifySum(param, t∗,Xt∗ , σt∗ , vkt∗) = 1

∧ No encryption oracle is called at t∗

(Type II) : VerifySum(param, t∗,Xt∗ , σt∗ , vkt∗) = 1

∧ Xt∗ �=
n∑

i=1

xi,t∗ mod M

– Oenc: This encryption oracle takes as input a tuple (i, t, xi,t), and returns
(ci,t, σi,t) ← Enc(param, t, xi,t, ski).

We say that an encryption scheme is aggregator unforgeable if the advantage
AdvAU

A (λ) := Pr[ExpAU
A (λ) = 1] is negligible for any PPT adversary A.

Next, we slightly weaken the definition of Leontiadis et al. in the following. In
their definition, the adversary (modeled as the malicious aggregator) can choose
xi,t and can obtain the corresponding (ci,t, σi,t) from the encryption oracle. This
definition is an analogy of Existential Unforgeability against Chosen Message
Attack (EUF-CMA) in the signature context where an adversary is allowed to
obtain signatures on messages which are (adaptively) chosen by the adversary.
However, in the actual situation, the aggregator does not decide xi,t, and just
receives ci,t sent from users. Actually, in the smart meter setting, xi,t (such as
power consumption) is measured by the meter. Thus, it seems reasonable to
propose that the adversary just queries (i, t) to the encryption oracle, and the
oracle chooses xi,t and returns the corresponding (ci,t, σi,t) to the adversary.
Our definition is an analogy of Existential Unforgeability against Random Mes-
sage Attack (EUF-RMA) in the signature context where an adversary is given
signatures on randomly chosen messages.

Definition 7 (Weak Aggregator Unforgeability). For any PPT adversary
A and a security parameter λ ∈ N, the experiment ExpwAU

A (λ) is the same as
ExpAU

A (λ) except Oenc.

– Oenc: This encryption oracle takes as input a tuple (i, t). The oracle chooses
xi,t and returns (ci,t, σi,t) ← Enc(param, t, xi,t, ski).

We say that an encryption scheme is weakly aggregator unforgeable if the advan-
tage AdvwAU

A (λ) := Pr[ExpwAU
A (λ) = 1] is negligible for any PPT adversary A.
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3.3 The DDH-based BJL Scheme

Benhamouda, Joye, and Libert (BJL) [8] gave a generic construction of aggre-
gator oblivious encryption from smooth projective hash functions [13]. Here, we
introduce its DDH instantiation. The underlying idea is essentially the same as
that of the She et al. aggregator oblivious encryption. The aggregator has keys
(s0, t0) where s0 +

∑n
i=1 si = 0 and t0 +

∑n
i=1 ti = 0, and this structure allows

the aggregator to cancel out a part of ciphertext H1(t)
∑n

i=1 si and H2(t)
∑n

i=1 ti .

Setup: Let G1 be a DDH-hard group with λ-bit prime order p = M and g1 be a
generator of G1.

Let Hi : Z → G1 (i = 1, 2) be hash functions. Choose s1, . . . , sn, t1, . . . , tn
$←

Zp, set s0 = −∑n
i=1 si and t0 = −∑n

i=1 ti. Output param =
((p, g1, G1),H1,H2), skA = (s0, t0) and ski = (si, ti).

Enc: Parse ski = (si, ti). Compute ci,t = g
xi,t

1 H1(t)siH2(t)ti and output ci,t.
AggrDec: Parse skA = (s0, t0). Compute Vt = H1(t)s0H2(t)t0

∏n
i=1 ci,t = gXt

1

where Xt =
∑n

i=1 xi,t, and solve the discrete logarithm Vt with respect to
basis g1. Output Xt.

4 Proposed Constructions

In this section, we propose two schemes. For aggregator obliviousness, both
schemes are tightly reduced to the DDH-based BJL scheme. The first scheme
only provides weak aggregator unforgeability, whereas the second scheme pro-
vides aggregator unforgeability. The unforgeability of both schemes relies on the
mCDH assumption and the second scheme additionally requires public channels
with memory, such as a bulletin board [22] (which is publicly readable, and every
user can write to, but nobody can delete from). Moreover, users are required to
generate random numbers in the Enc algorithm. Thus, the Enc algorithm in the
second scheme is probabilistic whereas that of the first scheme is deterministic.

4.1 High-Level Description

Aggregator Obliviousness: We employ (type 3) elliptic curves where G1 �= G2 and
no efficient isomorphism between G1 and G2 is known. Then, we run the BJL
scheme [8] over the DDH-hard group G1, and borrow the ciphertext form ci,t and
secret keys skA and ski. Since the BJL scheme is aggregator obliviousness under
the DDH assumption, we can expect that our scheme is also aggregator oblivi-
ousness. In order to directly reduce the aggregator obliviousness of our scheme
to that of the BJL scheme, we independently prepare the verification part. That
is, we introduce vi,t for each user i and in the security proof, vi,t can be chosen
independently from the BJL scheme. This setting allows us to compute the tag
σi,t from ci,t and vi,t in the security proof. More precisely, the challenge cipher-
texts and tags of our scheme {(ci,t∗ , σi,t∗)}i∈St∗ can be constructed from the
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challenge ciphertext of the BJL scheme {ci,t∗}i∈St∗ and the corresponding vi,t.
Thus, we can construct an algorithm that breaks the aggregator obliviousness
of the BJL scheme by using an adversary of our scheme. Remark that σi,t has
the similar form of ci,t in our scheme due to this reason. This strategy has been
considered by Leontiadis et al. [31]. They provided a reduction of their scheme
to the Shi et al. scheme [44]. However, as mentioned by Benhamouda et al. [8],
the security loss is O(tmaxn

3) in the Shi et al. scheme, whereas it is O(tmax) in the
BJL scheme. Thus, we have chosen the BJL scheme as the underlying scheme in
this paper.

Aggregator Unforgeability: For public verification, we pay attention to that the
form of the ciphertext ci,t of the BJL scheme is similar to a decryption key of
the Boneh-Boyen identity-based encryption (IBE) scheme [9].4 Due to the above
reason, the tag σi,t has the similar form of ci,t in our schemes. Since secure IBE
implies a signature [14] (informally, ID is regarded as a message to be signed,
and its decryption key is regarded as a signature), we can expect that σi,t is
unforgeable. However, to utilize the Boneh-Boyen technique, Xt needs to be
embedded into vk in the security proof. Here, we have two choices: whether vk is
fixed in the setup phase or not. If vk is chosen by the honest dealer and is fixed
in the setup phase, Xt is also required to be fixed in the setup phase (to utilize
the security proof technique of selective-ID security of Boney-Boyen IBE), and
therefore only weak aggregator unforgeability is provided. Moreover, since one
Xt is embedded with one vk, long verification keys is also required where the
size lineally depends on tmax. We set vk = {vkt}t∈[1,tmax] and vkt := g

∑n
i=1 vi,t

2 for
t ∈ [1, tmax]. We remark that no user is required to have the large-size verification
key. Moreover, if a user i manages all vi,t for t ∈ [1, tmax] as its secret key ski,
the secret key size also depends on tmax. To avoid such a large-size secret key,
we additionally introduce a hash function H and a time-independent secret key
vi, and we compute vi,t = H(vi, t). That is, in the scheme vi,t is computed
by H(vi, t) whereas in the security proof, vi,t is selected so as to utilize the
Boneh-Boyen technique, and set H(vi, t) := vi,t. This helps us to reduce the
secret key size.

4.2 The Proposed Scheme 1: Providing Weak Aggregator
Unforgeability

We give the first scheme as follows. As mentioned above, vk is chosen in the
setup phase.

Setup(1λ): Choose (p, e, g1, g2, G1, G2, GT ) where G1, G2 and GT are groups of
λ-bit prime order p = M , g1 ∈ G1 and g2 ∈ G2 are generators, and e : G1 ×

4 A decryption key of the Boneh-Boyen IBE scheme is informally described as
(gαHBB(ID)r, gr) for a master key α and a random r, the Boneh-Boyen hash HBB.
In our first construction, α, ID, and r are regarded as xi,t, t, and vi,t respectively.
Thus, the number of verification keys depends on tmax.
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G2 → GT is a bilinear map. Let H : Zp × [1, tmax] → Zp and Hi : Z → G1 (i =

1, 2, 3, 4, 5) be hash functions. Choose γ, s1, . . . , sn, t1, . . . , tn, v1, . . . , vn
$←

Zp, compute vi,t = H(vi, t) for all i ∈ [1, n] and t ∈ [1, tmax] and set
s0 = −∑n

i=1 si, t0 = −∑n
i=1 ti, h = gγ

1 , and Z = e(h, g2). Output
param = ((p, e, g1, g2, G1, G2, GT ), Z,H,H1,H2,H3,H4,H5), skA = (s0, t0),
ski = (si, ti, vi, h), and vk = {vkt}t∈[1,tmax] where vkt = g

∑n
i=1 vi,t

2 .
Enc(param, t, xi,t, ski): Parse ski = (si, ti, vi, h). Compute

vi,t = H(vi, t), ci,t = g
xi,t

1 H1(t)
siH2(t)

ti , and σi,t = hxi,tH3(t)
siH4(t)

tiH5(t)
vi,t

and output (ci,t, σi,t).
AggrDec(param, t, {(ci,t, σi,t)}n

i=1, skA): Parse skA = (s0, t0). Compute

Vt = H1(t)s0H2(t)t0

n∏

i=1

ci,t = gXt
1

where Xt =
∑n

i=1 xi,t, and solve the discrete logarithm Vt with respect to
basis g1. Moreover, compute

σt = H3(t)s0H4(t)t0

n∏

i=1

σi,t

Output (Xt, σt).
VerifySum(param, t,Xt, σt, vkt): Output 1 if

e(σt, g2)
e(H5(t), vkt)

= ZXt

holds. Otherwise, output 0.

The correctness cleary holds from the following equations.

H1(t)s0H2(t)t0

n∏

i=1

ci,t = H1(t)s0H2(t)t0

n∏

i=1

g
xi,t

1 H1(t)siH2(t)ti

= H1(t)s0−∑n
i=1 siH2(t)t0−∑n

i=1 tig
∑n

i=1 xi,t

1

= gXt
1

σt = H3(t)s0H4(t)t0

n∏

i=1

σi,t

= H3(t)s0H4(t)t0

n∏

i=1

hxi,tH3(t)siH4(t)tiH5(t)vi,t

= hXtH5(t)
∑n

i=1 vi,t

e(σt, g2) = e(hXtH5(t)
∑n

i=1 vi,t , g2) = e(h, g2)Xte(H5(t), g
∑n

i=1 vi,t

2 )

= ZXte(H5(t), vkt)
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Theorem 1. Our scheme 1 is aggregator obliviousness under the DDH assump-
tion on G1 in the random oracle model.

We consider the following two games. Game 0 is the original game. Game 1
is the same as Game 0 except that H3 and H4 are computed as H3(t) = H1(t)γ

and H4(t) = H2(t)γ for some γ ∈ Zp. Since (H1(t),H2(t),H3(t),H4(t)) is a DDH
tuple, this modification does not affect the security under the DDH assumption
on G1. Briefly, let (g1, g′

1, g
r1
1 , g′

1
r2) ∈ G

4
1 be an DDH instance on G1. For t ∈

[1, tmax], choose t̃1, t̃2
$← Zp, and set H1(t) := gt̃1

1 , H2(t) := g′
1
t̃2 , H3(t) := (gr1

1 )t̃1 ,
and H4(t) := (g′

1
r2)t̃2 . Clearly, if the instance is not a DDH tuple, i.e., r1 �= r2,

then we simulate Game 0, and if the instance is a DDH tuple, i.e., r1 = r2,
then we simulate Game 1. In Game 1, we construct an algorithm B that breaks
aggregator obliviousness of the BJL scheme as follows.

Proof: Let A be the adversary of our scheme, and C be the challenger of the
BJL scheme. We construct an algorithm B that breaks aggregator obliviousness
of the BJL scheme as follows. First, C prepares (p, e, g1, g2, G1, G2, GT ,H1,H2)

and sends it to B. B chooses γ, v1, . . . , vn, v1,1, . . . , vn,tmax

$← Zp. B computes
h = gγ

1 , Z = e(h, g2), vki,t = g
vi,t

2 for i ∈ [1, n] and t ∈ [1, tmax], and vkt =
g
∑n

i=1 vi,t

2 . B sets H(vi, t) := vi,t for i ∈ [1, n] and t ∈ [1, tmax]. Remark that
if A sends a hash query t, then B forwards it to C when A requests H1(t)
or H2(t). For H3 and H4, B sets H3(t) = H1(t)γ and H4(t) = H2(t)γ , and
returns the hash values. For H5, B just returns a random value. B sends param =
((p, e, g1, g2, G1, G2, GT ), Z,H,H1,H2,H3,H4,H5), {vkt}t∈[1,tmax], and vk to A.

If A sends an encryption query (i, t, xi,t) to B, then B forwards it to
C as an encryption oracle, and obtains ci,t. B computes cγ

i,tH5(t)vi,t =
hxi,tH3(t)siH4(t)tiH5(t)vi,t , and returns (ci,t, σi,t) to A. If A sends a corrup-
tion query i ∈ [0, n] to B, B forwards it to C as a corruption query, and obtains
skA (if i = 0) or (si, ti) (if i ∈ [1, n]). If i = 0, then B returns skA to A. If
i ∈ [1, n], then B sets ski = (si, ti, vi, h), and returns ski to A. We remark that
if A sends a hash query (vi, t), then B responds vi,t to A.

In the challenge phase, A sends (St∗ , t∗, {(x(0)
i,t∗ , x

(1)
i,t∗)}i∈St∗ ) to B. Then, B

forwards it to C as the challenge, and obtains {ci,t∗}i∈St∗ . As in the response of
encryption queries, B computes σi,t∗ = cγ

i,t∗H5(t)vi,t∗ for i ∈ St∗ , and returns
{(ci,t∗ , σi,t∗)}i∈St∗ to A.

B responds queries sent from A as in the previous phase. Finally, A outputs
a bit b′. B outputs b′ and then B can break aggregator obliviousness of the BJL
scheme with the same advantage of A. This concludes the proof since the BJL
scheme is aggregator obliviousness under the DDH assumption on G1 in the
random oracle model. 
�
Theorem 2. Our scheme 1 is weakly aggregator unforgeable under the mCDH
assumption in the random oracle model.

For the proof of Type I forgery, we employ the following assumption: given
(ga

1 , gb
1, g

a
2 ) compute gab

1 . Since this is equivalent to the CDH assumption if the
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symmetric pairing setting is employed, we simply call the assumption the CDH
assumption in this paper. Remark that this is weaker than mCDH since g

1/a
1

is not contained in the instance. Since no encryption oracle is called at t∗, the
proof is relatively easy. We embed the instance ga

1 to vi,t and gb
1 to the response

of the random oracle H5 respectively. At time t∗, A outputs (σt∗ ,Xt∗). From the
verification equation, (σt∗ ,Xt∗) must satisfy σt∗ = H5(t∗)

∑n
i=1 vi,thXt∗ . Since

H5(t∗)
∑n

i=1 vi,t contains gab
1 , we can solve the CDH problem. Remark that this

proof strategy requires O(tmax) reduction loss from the advantage of the CDH
problem. However, we can achieve a tight reduction (i.e., O(1) reduction loss)
from the advantage of the mCDH problem (see below).

For the proof of Type II forgery, our proof strategy is explained as follows.
Again, (σt∗ ,Xt∗) must satisfy σt∗ = H5(t∗)

∑n
i=1 vi,thXt∗ . Though Z = e(h, g2)

is published, h itself is not published (contained in ski). Thus, we set h = gab
1

and simulate the encryption oracle by using the Boneh-Boyen technique. We
embed 1/a to xi,t such that xi,t := x′

i,t/a for x′
i,t ∈ Zp. This setting helps us

to compute hxi,t = (gab
1 )x′

i,t/a = (gb
1)

x′
i,t without knowing h = gab

1 . Remark
that ciphertexts {ci,t} must be decryptable by the adversary, i.e., the discrete
logarithm logg1

Vt must be sufficiently small. If all xi,t are related to 1/a as
above, then logg1

Vt∗ = (
∑n

i=1 x′
i,t)/a is not computable. Thus, for relatively

small X ′
t, we set xi,t := x′

i,t/a for i ∈ [1, n− 1] and set xn,t := X ′
t −∑n−1

i=1 x′
i,t/a.

Then,
∑n

i=1 xi,t = X ′
t holds and logg1

Vt = X ′
t is computable by the adversary

as in the scheme. For simulation, we need to decide each X ′
t in the setup phase,

and embed it to vn,t for utilizing the Boneh-Boyen technique. This is the reason
why our scheme is weak aggregator unforgeable (xi,t is chosen by the oracle),
and the size of verification keys linearly depend on tmax. Remark that we can
achieve a tight reduction (i.e., O(1) reduction loss) from the advantage of the
mCDH problem, and this proof also works well for Type I forgery (simply we
assume that the encryption oracle at t∗ is not sent from A, choose X ′

t∗ randomly,
and Xt∗ �= X ′

t∗ holds with overwhelming probability 1 − 1/p).

Proof

Type I Forgery: Let (p, e, g1, g2, G1, G2, GT , (ga
1 , gb

1, g
a
2 )) be an instance of the

CDH problem. We construct an algorithm B that computes gab
1 by using an

adversary A that breaks aggregator unforgeability of our scheme as follows.
B sets param = (p, e, g1, g2, G1, G2, GT ), chooses γ, si, ti, and skA as usual,

chooses v′
i,t

$← Zp for i ∈ [1, n] such that
∑n

i=1 v′
i,t �= 0, and chooses t ∈

[1, tmax], and implicitly sets vi,t := v′
i,ta. B computes vkt = (ga

2 )
∑n

i=1 v′
i,t . B

sends (params, skA, vk = {vkt}t∈[1,tmax]) to A.
Moreover, B guesses t∗ (with success probability 1/tmax). For a time t, B

chooses t̃
$← Zp and sets H5(t) as

H5(t) =
{

gt̃
1 (t �= t∗)

(gb
1)

t̃∗
(t = t∗)
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For other hash functions, B just returns a random value. For respond-
ing an encryption query (i, t) where t �= t∗, B chooses xi,t and com-
putes ci,t as usual, and computes σi,t = hxi,tH3(t)siH4(t)ti(ga

1 )v′
i,t t̃ =

hxi,tH3(t)siH4(t)ti(gt̃
1)

av′
i,t = hxi,tH3(t)siH4(t)tiH5(t)vi,t . Remark that A

does not send an encryption query at time t∗ in this type.
Finally, at time t∗, A outputs (σt∗ ,Xt∗). From the verification equation,

(σt∗ ,Xt∗) must satisfy σt∗ = H5(t∗)
∑n

i=1 vi,thXt∗ . That is,

σt∗h−Xt∗ = H5(t∗)
∑n

i=1 vi,t∗ = ((gb
1)

t̃∗
)a
∑n

i=1 v′
i,t∗

holds. B solves the CDH problem by computing (σt∗h−Xt∗ )1/t̃∗∑n
i=1 v′

i,t∗ =
gab
1 .

Type II Forgery: Let (p, e, g1, g2, G1, G2, GT , (ga
1 , gb

1, g
1/a
1 , ga

2 )) be an instance
of the Modified CDH problem. We construct an algorithm B that computes
gab
1 by using an adversary A that breaks aggregator unforgeability of our

scheme as follows. B sets param = (p, e, g1, g2, G1, G2, GT ), chooses γ, si, ti,
skA, and vi,t for i = [1, n − 1] and t ∈ [1, tmax] as usual. For t ∈ [1, tmax], B
chooses v′

n,t
$← Zp, and also chooses X ′

t
$← Zp such that the size of X ′

t is
sufficiently small where the discrete logarithm problem gXt

1 with respect to
basis g1 can be solved. This is the necessary condition that ciphertexts can
be decrypted by the adversary as in the scheme. For t ∈ [1, tmax], B chooses

t̃
$← Zp and sets H5(t) as (gb

1)
t̃. B implicitly sets vn,t = v′

n,t + (−aX ′
t)/t̃.

B computes vkt = (ga
2 )−X′

t/t̃g
v′
n,t+

∑n−1
i=1 vi,t

2 . B implicitly sets h = gab
1 and

computes Z = e(gb
1, g

a
2 ) = e(h, g2). B sends (params, skA, vk = {vkt}t∈[1,tmax])

to A.
For responding an encryption query (i, t), B computes (ci,t, σi,t) as follows.

B chooses x′
i,t

$← Zp for i ∈ [1, n − 1] and implicitly sets xi,t as

xi,t =
{

x′
i,t/a (i ∈ [1, n − 1])

X ′
t − ∑n−1

i=1 x′
i,t/a (i = n)

and computes

i ∈ [1, n − 1] : ci,t = (g1/a
1 )x′

i,tH1(t)siH2(t)ti

= g
x′
i,t/a

1 H1(t)siH2(t)ti = g
xi,t

1 H1(t)siH2(t)ti

i = n : ci,t = g
X′

t
1 (g1/a

1 )−∑n−1
i=1 x′

i,tH1(t)siH2(t)ti

= g
X′

t−
∑n−1

i=1 x′
i,t/a

1 H1(t)siH2(t)ti

= g
xi,t

1 H1(t)siH2(t)ti
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and

i ∈ [1, n − 1] : σi,t = (gb
1)

x′
i,tH3(t)siH4(t)tiH5(t)vi,t

= (gab
1 )x′

i,t/aH3(t)siH4(t)tiH5(t)vi,t

= hxi,tH3(t)siH4(t)tiH5(t)vi,t

i = n : σi,t = (gb
1)

−∑n−1
i=1 x′

i,t+t̃v′
n,tH3(t)siH4(t)ti

= (gab
1 )X′

t(gb
1)

−∑n−1
i=1 x′

i,t(g−ab
1 )X′

t(gb
1)

t̃v′
n,tH3(t)siH4(t)ti

= (gab
1 )X′

t(gab
1 )−∑n−1

i=1 x′
i,t/a(g−ab

1 )X′
t(gb

1)
t̃v′

n,tH3(t)siH4(t)ti

= (gab
1 )X′

t−
∑n−1

i=1 x′
i,t/aH3(t)siH4(t)ti((gb

1)
t̃)v′

n,t+(−aX′
t)/t̃

= hxi,tH3(t)siH4(t)tiH5(t)vi,t

Remark that
∑n

i=1 xi,t = X ′
t and {ci,t}i∈[1,n] can be decrypted by the adver-

sary who has skA.
Finally, A outputs (t∗,Xt∗ , σt∗) where t∗ ∈ [1, tmax] and Xt∗ �= X ′

t∗ . From the
verification equation, (σt∗ ,Xt∗) must satisfy σt∗ = H5(t∗)

∑n
i=1 vi,t∗ hXt∗ . Here,

σt∗ = H5(t∗)
∑n

i=1 vi,t∗ hXt∗ = ((gb
1)

t̃∗)v′
n,t∗+(−aX′

t∗ /t̃∗)+
∑n−1

i=1 vi,t∗ (gab
1 )Xt∗ =

(gab
1 )Xt∗ −X′

t∗ (gb
1)

t̃∗(v′
n,t∗+

∑n−1
i=1 vi,t∗ ) holds. B computes

(σt∗/(gb
1)

t̃∗(v′
n,t∗+

∑n−1
i=1 vi,t∗ ))1/(Xt∗ −X′

t∗ ) = gab
1

and solves the mCDH problem. 
�

4.3 The Proposed Scheme 2: Providing Aggregator Unforgeability

In the first scheme, vi,t is chosen in the setup phase. This leads to large-size
verification keys, and is the reason why the first scheme provides weak aggregator
unforgeability. As mentioned before, as another choice, a user i chooses vi,t

$← Zp

at time t on the fly (i.e., in the encryption phase), computes vki,t := g
vi,t

1 , and
sends vki,t to the aggregator together with (ci,t, σi,t). Then vkt =

∏n
i=1 vki,t is

used in the VerifySum algorithm. In this case, Xt, chosen by the adversary in the
security proof, can be embedded to vkt on the fly in the encryption oracle, and
therefore we can provide aggregator unforgeability. Moreover, one hash function
H and vk can be removed from the public value, and vi can also be removed
from ski.

One problem with this strategy is that the Enc algorithm becomes proba-
bilistic. That is, a user is required to generate a random number vi,t for each
time t. This could be problematic if users have limited computational power.
Another problem is that the aggregator (which is an adversary of the aggregator
unforgeability game) could modify vkt, and the VerifySum algorithm is run by
a maliciously generated vkt. Then, no security is guaranteed. One solution is to
use a bulletin board [22] which is publicly readable and every user can write
to, but nobody can delete from. The bulletin board can be considered a public
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channel with memory. That is, a user i writes vki,t to the bulletin board BB.
Remark that the computation cost of vkt =

∏n
i=1 vki,t is almost similar to that of

Vt = H1(t)s0H2(t)t0
∏n

i=1 ci,t. That is, if a data analyzer who runs the VerifySum
algorithm computes vkt, then the data analyzer does not need to delegate the
computation of the aggregated sum to the aggregator, and this leads to a wag-
the-dog situation. So, we assume that the aggregator computes vkt, and vki,t

written in BB acts as a deterrent against the aggregator that modifies vkt, since
the data analyzer can check anytime whether vkt provided by the aggregator is
computed by {vki,t}n

i=1 or not. In summary, we slightly modify the syntax such
that the bulletin board BB is added as an input of the Enc algorithm, and the
AggrDec algorithm outputs vkt together with (Xt, σt).

We give the second scheme as follows.

Setup(1λ): Choose (p, e, g1, g2, G1, G2, GT ) where G1, G2 and GT are groups
of λ-bit prime order p = M , g1 ∈ G1 and g2 ∈ G2 are genera-
tors, and e : G1 × G2 → GT is a bilinear map. Let Hi : Z → G1

(i = 1, 2, 3, 4, 5) be hash functions. Choose γ, s1, . . . , sn, t1, . . . , tn
$← Zp,

set s0 = −∑n
i=1 si, t0 = −∑n

i=1 ti, h = gγ
1 , and Z = e(h, g2). Out-

put param = ((p, e, g1, g2, G1, G2, GT ), Z,H1,H2,H3,H4,H5), skA = (s0, t0),
ski = (si, ti, h), and vk = ∅.

Enc(param, t, xi,t, ski,BB): Parse ski = (si, ti, h). Choose vi,t
$← Zp, compute

vki,t := g
vi,t

1 , and compute

ci,t = g
xi,t

1 H1(t)siH2(t)ti and σi,t = hxi,tH3(t)siH4(t)tiH5(t)vi,t

and output (ci,t, σi,t, vki,t). Moreover, write vki,t to the bulletin board BB.
AggrDec(param, t, {(ci,t, σi,t, vki,t)}n

i=1, skA): Parse skA = (s0, t0). Compute

Vt = H1(t)s0H2(t)t0

n∏

i=1

ci,t = gXt
1

where Xt =
∑n

i=1 xi,t, and solve the discrete logarithm Vt with respect to
basis g1. Moreover, compute

σt = H3(t)s0H4(t)t0

n∏

i=1

σi,t and vkt =
n∏

i=1

vki,t

Output (Xt, σt, vkt).
VerifySum(param, t,Xt, σt, vkt): Output 1 if

e(σt, g2)
e(H5(t), vkt)

= ZXt

holds. Otherwise, output 0.

Theorem 3. Our scheme 2 is aggregator obliviousness under the DDH assump-
tion on G1 in the random oracle model.
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This is essentially the same as that of the first scheme. We omit it.

Theorem 4. Our scheme 2 is aggregator unforgeable under the mCDH assump-
tion in the random oracle model.

Proof (Sketch): The proof is almost similar to that of the first scheme. The
difference is the response of the encryption query (i, t, xi,t) for Type II forgery.
Let (in, t, xin,t) where in ∈ [1, n] be the last encryption query at t. Without

loss of generality, we set in = n. If i ∈ [1, n − 1], then choose x′
i,t

$← Zp

(regardless of xi,t) and vi,t
$← Zp, compute ci,t = (g1/a

1 )x′
i,tH1(t)siH2(t)ti

and σi,t = (gb
1)

x′
i,tH3(t)siH4(t)tiH5(t)vi,t . Return (ci,t, σi,t) to A, and write

vki,t = g
vi,t

2 to BB. If i = n, then choose v′
i,t

$← Zp, compute X ′
t =

∑n−1
i=1 xi,t

from queries {(i, t, xi,t)}i∈[1,n−1], and compute

ci,t =g
X′

t
1 (g

1/a
1 )−∑n−1

i=1 x′
i,tH1(t)

siH2(t)
ti and σi,t = (gb

1)
−∑n−1

i=1 x′
i,t+t̃v′

n,tH3(t)
siH4(t)

ti

Here, H5(t) is set as (gb
1)

t̃ as in the proof of the first scheme. Return

(ci,t, σi,t, vki,t) to A, and write vki,t = (ga
2 )−X′

t/t̃g
v′
n,t

2 to BB. We note that
{ci,t}i∈[1,n] can be decrypted by the adversary, and the decryption result is
exactly

∑n
i=1 xi,t that the adversary queried. We conclude the proof. 
�

5 Conclusion and Open Problem

In this paper, we propose two aggregator oblivious encryption schemes with pub-
lic verifiability from static and simple assumptions. The first scheme just provides
weak aggregator unforgeability, and it seems still meaningful in the smart meter
settings since power consumption is measured by the meter. Though the scheme
requires O(tmax)-size verification keys, and it could be a bottleneck for support-
ing long-term period, the scheme still efficiently works for a relatively short-term
period. The second scheme provides aggregator unforgeability and constant-size
verification keys, whereas we need to additionally assume the existence of public
channels with memory, such as bulletin board [22]. Thus, removing the bulletin
board assumption (without increasing the size of verification keys) could be an
interesting future work. Moreover, as in [8], proposing a generic construction of
aggregator oblivious encryption with public verifiability (containing a Paillier-
type instantiation) also could be an interesting open problem.

Acknowledgement. The author would like to thank Dr. Miyako Ohkubo for her
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Abstract. Privacy-preserving data mining technologies have been stud-
ied extensively, and as a general approach, du Pin Calmon and Fawaz
have proposed a data distortion mechanism based on a statistical infer-
ence attack framework. This theory has been extended by Erdogdu et al.
to time-series data and been applied to energy disaggregation of smart-
meter data. However, their theory assumes both smart-meter data and
sensitive appliance state information are available when applying the
privacy-preserving mechanism, which is impractical in typical smart-
meter systems where only the total power usage is available. In this
paper, we extend their approach to enable the application of a privacy-
utility tradeoff mechanism to such practical applications. Firstly, we
define a system model which captures both the architecture of the smart-
meter system and the practical constraints that the power usage of each
appliance cannot be measured individually. This enables us to formalize
the tradeoff problem more rigorously. Secondly, we propose a privacy-
utility tradeoff mechanism for that system. We apply a linear Gaussian
model assumption to the system and thereby reduce the problem of
obtaining unobservable information to that of learning the system para-
meters. Finally, we conduct experiments of applying the proposed mech-
anism to the power usage data of an actual household. The experimental
results show that the proposed mechanism works partly effectively; i.e.,
it prevents usage analysis of certain types of sensitive appliances while
at the same time preserving that of non-sensitive appliances.

Keywords: Privacy-preserving data mining · Statistical inference ·
Non-intrusive appliance load monitoring · Convex optimization

1 Introduction

1.1 Background

The proliferation of personal devices capable of Internet connectivity has enabled
new applications and services [3]. Examples include healthcare advice service
based on the user’s activity data captured by fitness tracking devices, naviga-
tion services based on the GPS data from the user’s smart phone, and demand
c© Springer International Publishing AG 2017
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response services based on the power consumption data of household smart-
meters. Such new services will definitely enrich our everyday life.

At the same time, however, these services will collect users’ personal data
intentionally or unintentionally, which may in some cases violate their privacy
[30]. In a well-known case, a retail company identified a teenage girl as pregnant
based on her shopping habits [7], which can be thought of as illegal acquisition
of sensitive information. The primary target of the paper is smart-meter data,
which has been shown to potentially reveal the behavior of individuals [24,26].

These privacy concerns in the era of Internet of Things have triggered re-
examination of privacy regulation around the world. For instance, the EU Par-
liament passed the General Data Protection Regulation (GDPR) in 2016 which
will be enforced in 2018. Most of the new privacy regulations, including the
GDPR, now require explicitly that “natural persons should have control of their
own personal data.”1 It is therefore required for any service providers to treat
users’ personal data solicitously according to the demands of each individual.
This social trend motivates the rapid development of privacy-preserving data
mining technologies.

1.2 Related Work

A prominent line of privacy-preserving techniques is k-anonymity [29,32] and its
derivatives such as �-diversity [21], t-closeness [19] and m-invariance [34]. Their
primary goal is to convert an aggregation of personal data into a non-personal
(anonymous) dataset while preserving information as much as possible. Although
their privacy metrics are intuitive and easy to evaluate, it is difficult or almost
impossible to protect users’ privacy according to the detailed demands of each
individual. Indeed, their basic strategy is to anonymize individuals by bundling
similar records into indistinguishable bunches via generalization and omission of
data. However, by nature of these metrics, privacy on an individual basis cannot
be addressed.

Differential privacy [8,9] is in another line of research. Unlike k-anonymity
and its derivatives, differential privacy defines the privacy metrics based on a
rigorous mathematical framework. The privacy definition of differential privacy
is such that an adversary querying the database, which contains personal data of
many individuals, should face difficulty in determining whether the data record
of any specific individual is even in the database. Anonymity is their primary
concern and accommodating users’ specific privacy demands is therefore almost
outside of their scope.

The most relevant work to ours is the consideration of privacy within a sta-
tistical inference attack framework [4,11,12,25,28]. In this framework, privacy is
modeled as the amount of information obtained about the sensitive data when
observing the released data. It is therefore possible to evaluate privacy on an
individual basis by modeling the system with an appropriate definition of the

1 In Recital 7 of the GDPR.
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sensitive and useful data. The primary goal of this framework is to find an opti-
mal balance between privacy of an individual and utility of the service, and the
problem of finding an optimal balance is formalized as an optimization problem
where the objective function and constraint functions represent the privacy and
utility. A solution of the optimization problem gives an optimal privacy mapping
which distorts the useful data to obtain privacy while still proving utility.

The theoretical aspect of this framework is proposed and analyzed by du Pin
Calmon and Fawaz [25]. Salamatian et al. applied the theory to a Census dataset
and TV rating dataset, and showed that it is indeed possible to reduce the rev-
elation of political affiliation while enabling TV program recommendation ser-
vices [28]. Erdogdu et al. extended the theory to time-series datasets and applied
the extended theory to energy disaggregation of smart-meter data [11,12]. They
showed that it is possible to modify power data to conceal the usage of a sensitive
appliance while still allowing detection of the usage of a useful appliance, where
the useful and sensitive appliances in their experiments were the washer-dryer and
microwave, respectively.

Although Erdogdu et al. [11,12] made a significant step towards applying the
theory to real systems, there is still much room for improvement. For example,
they considered only the case where both the smart-meter data and usage data
of the sensitive appliances are directly observable. However, in actual use cases
such as ordinary smart-meter systems, individual appliance usage data may not
be directly observable. Therefore, it is desirable to achieve the optimal privacy
mapping even in the case where usage of sensitive appliances is not available.

Privacy on smart-meter systems has been considered and tackled by many
researchers [16,20,33,35,37]. Most of the privacy preservation techniques they
use are introduction of additional batteries and disturbance of the power usage
data with the batteries. However, introducing additional devices may be unde-
sirable due to cost.

1.3 Contribution

In this paper, we extend the approach of Erdogdu et al. [11,12] to apply a
privacy-utility tradeoff mechanism to practical applications and thereby close
the academic-industry gap. As an example of practical applications, we consider
in this paper an anomaly detection service of elderly residents living alone. The
detection of anomalies with the residents can be based on the states of house-
hold appliances inferred via energy disaggregation. Using a smart-meter as a
sensor device for anomaly detection is attractive because it requires no addi-
tional devices. This motivates many research efforts [1,2,31], but most of them
pay little attention to privacy.

Firstly, we define a system model which captures both the architecture of
the smart-meter system and the practical constraints that the power usage of
each appliance cannot be measured individually. In our system model, modified
smart-meter data is sent to a service provider who then conducts energy dis-
aggregation of the smart-meter data to infer the appliance states. The energy
disaggregation is conducted by a provider rather than on the user side since
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energy disaggregation often requires significant computational effort which may
be impractical for the limited processing power of a smart-meter. The privacy
issue here is that the provider may infer states of appliances that the user thinks
of as sensitive. We capture this privacy issue by defining an adversary model and
specifying adversary’s goal as well as his prior knowledge.

Secondly, we modify the optimization problem of Erdogdu et al. [11,12] in
such a way that individual appliance energy usage data is not required. As
we have noted, their privacy-utility tradeoff mechanism takes as input both
the smart-meter data and usage data of the sensitive appliances. In our sys-
tem model, however, the latter information is unavailable. We apply a linear
Gaussian model to the system and thereby reduce the problem of determining
an unknown system model to that of learning the model parameters such as the
mean power consumption of each appliance and the stationary distribution of
appliance states. These system parameters are, in some cases, available with-
out conducting supervised learning on each household, because the mean power
is often listed on a specification document of the appliance and the stationary
distribution can be simulated based on typical usage pattern of the residents.
Therefore, our mechanism is considered to be applicable to practical smart-meter
systems.

Thirdly, we conduct several experiments of applying the proposed mecha-
nism to the power usage data of an actual household. We collected power usage
data for nine days, and we also manually collected the ground truth appliance
usage for the same period to compute the system parameters that the adversary
would possess a priori. Optimal privacy-utility tradeoffs are computed for two
use cases, and the raw power data is distorted according to the optimized mecha-
nism. We evaluate the privacy and utility aspects by examining the degradation
of appliance usage inference performance. It is shown quantitatively that our
mechanism is reasonable and effective, especially when high-power appliances
such as the oven toaster are designated as sensitive. We elaborate in this paper
the steps we conducted, the parameters we computed and the inference results
we obtained in detail, so that interested researchers can follow our work.

1.4 Organization of the Paper

The rest of the paper is organized as follows. Section 2 elaborates our target
application and defines a system model and an adversary model. Our theoret-
ical analysis and proposition is given in Sect. 3, and experimental results and
discussions are described in Sect. 4. Section 5 concludes the paper with future
directions. Where necessary, detailed discussions are provided in the appendices.

2 Target Application: System and Adversarial Models

In this section, we first elaborate our target application and its privacy issue.
Then we define a system model of the application and an adversary model of an
“honest-but-curious” service provider.
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2.1 Target Application and Privacy Issue

The target application we consider in this paper is an anomaly detection ser-
vice of elderly residents living alone. More concretely, we consider an applica-
tion where smart meter data, which is the aggregated power usage of all the
appliances in a household, is collected from the house and disaggregated on a
remote monitoring site, and appliance states are inferred whereby anomalies of
the residents are detected. This service is proposed by Alcalá et al. [1,2] and
implemented by Song et al. [31].

The use of smart-meter for an anomaly detection is preferable in that unlike
anomaly detection using additional sensors such as wearable medical devices, we
need no extra devices since smart-meters have already been installed in many
countries and are ready for use. The rapid development of energy disaggregation
technologies, also known as non-intrusive appliance load monitoring (NILM)
[15,17,18,22,23], also motivates the use of smart-meter as a sensor device for
anomaly detection.

A straightforward way of implementing this service will be to disaggregate
and detect the anomaly state on the user side and notify it to the service provider.
However, energy disaggregation and anomaly detection could be too computa-
tionally intensive to be performed efficiently in a typical smart-meter with lim-
ited processing and memory capabilities. Besides, the correctness of anomaly
detection can be improved by comparing the smart-meter data of a user with
that of other users, which is easily conducted on the provider side but difficult
on the user side.

The privacy issue we need to resolve in this application is that the service
provider may infer states of the appliances that the user think of as sensitive,
as well as those required for anomaly detection. For example, the kettle is ideal
for anomaly detection because many people, especially those in the UK, use
it regularly and also they often think of it as a non-sensitive appliance. The
hairdryer, on the other hand, is useful but many people (especially women)
would think of it as sensitive because usage of the dryer implies that the user
must have taken a bath. The difficulty of this issue lies in the fact that appliances
in a household differ from person to person and the sensitivity to each appliance
also differ. It is therefore required to develop a privacy technology that can
prevent the service provider from inferring states of the appliances that the
user thinks of as sensitive while allowing inference of states of the non-sensitive
appliances, based on the preference of each user.

From the cryptography perspective, the service provider can be thought of
as so-called “honest-but-curious” adversary, because he basically obeys the pro-
tocol (providing anomaly detection service to the user) but at the same time
he tries to extract as much sensitive information as possible (inferring states of
the appliances that the user think of as sensitive). We capture this adversarial
situation with our adversary model in Sect. 2.2.
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2.2 System and Adversary Models

System Model. Our system model is depicted in Fig. 1.

Fig. 1. Our system model. We assume App. 1 through App. M∗ are the appliances
that a user U designated as sensitive, and App. M∗ +1 through App. M are those that
U designated as non-sensitive. Solid lines represent observable data and dotted lines
represent unobservable data.

Suppose there are M appliances in the house of a user U . Each appliance
App. m (m = 1, . . . , M) has several operating states denoted by 1, . . . ,Km, where
Xm ∈ {1, . . . , Km} denotes the realization of its operating state, and Ym denotes
its energy consumption. Note however that we cannot directly measure either
Xm or Ym, and can only measure the aggregated power usage Y =

∑M
m=0 Ym at

the smart-meter, where Y0 is the background noise. The smart-meter data Y is
then passed to the privacy mapping module which takes as input Y and maps
it into the distorted data Z. Here the mapping from Y to Z is according to the
conditional probability distribution pZ|Y which is computed beforehand by solv-
ing the privacy-utility tradeoff problem proposed in Sect. 3. The distorted data
Z is then sent to a service provider P, and P will conduct energy disaggregation
with Z and infer the appliance states X̂ = (X̂1, . . . , X̂M ) using some inference
algorithms.

The smart-meter measures the power usage Y regularly (typically every one
minute), and the distorted data Z is sent to P successively. P may store all the
time-series Z(1), . . . , Z(T ) for some time period T (typically one day; we used nine
days for our experiment in Sect. 4) and use them for inference of X̂(1), . . . , X̂(T ).

We should note here that although we modeled in Fig. 1 that the privacy
mapping module is on the outside of the smart-meter, this is only for clarity
and in practice it can be integrated into the smart-meter. Indeed, the privacy
mapping operation is lightweight and can be executed with limited processing
power and memory.

Adversary Model. The goal of an adversarial service provider P is to infer
states of the appliances that U thinks of as sensitive. Suppose that U designated
appliances App. 1 through App. M∗ as sensitive and App. M∗+1 through App. M
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as non-sensitive. In this case, the adversarial goal of P is to infer X1, . . . , XM∗

from Z.
We assume that P knows all the appliances in U ’s house. Also, we assume P

knows the statistical distribution of each appliance.
The most typical probabilistic model used in energy disaggregation is the

factorial hidden Markov model (FHMM) [13]. In FHMM, the emission distri-
bution, transition probabilities and initial probabilities of all the appliances
are used for inference of the hidden states. Therefore, concretely we make the
following assumptions. First, we assume that P knows App. 1, . . . , App. M ,
including the fact that U designated App. 1 through App. M∗ as sensitive and
App. M∗ + 1 through App. M as non-sensitive. P also knows the emission dis-
tribution p

Y
(t)
m |X(t)

m
(ym|xm,k) for all m = 1, . . . ,M and k = 1, . . . ,Km. I.e., we

assume that P knows the probability distribution of the power usage of App. m
at the state xm,k, for all m and k. P additionally knows the transition proba-
bilities P

X
(t+1)
m |X(t)

m
(xm,k′ |xm,k) and the initial probabilities P

X
(1)
m

(xm,k) for all
m = 1, . . . ,M and k, k′ = 1, . . . ,Km, i.e., the probability with which App. m
transits the state from xm,k to xm,k′ when the time steps from t to t + 1.

We now elaborate the justification of these assumptions. In actual use cases,
P does not necessarily need to know the parameters for the sensitive appliances
App. 1, . . . , App. M∗. Namely, P does not need to know p

Y
(t)
m |X(t)

m
(ym|xm,k) and

P
X

(t+1)
m |X(t)

m
(xm,k′ |xm,k) for m = 1, . . . ,M∗. However, we make this assumption

to consider a more adversarial P.

3 A Proposed Privacy-Utility Tradeoff Mechanism

In this section, we modify the optimization problem of Erdogdu et al. [11,12] in
such a way that appliance usage data is not required. We formalize the optimiza-
tion problem with definitions of privacy and utility in Sect. 3.1. Then in Sect. 3.2
we modify the problem by applying the linear Gaussian model assumption.

3.1 Formalization of the Problem

Here we formalize the privacy-utility tradeoff problem in a rigorous way.

Notation. Suppose X ∈ X is a discrete random variable and Y ∈ Y is a
continuous random variable, where X and Y are some (possibly infinite) sets.
We use capital PX(x) for the probability mass function of X and small pY (y)
for the probability density function of Y . EY [f(Y )] denotes the expected value
of function f(Y ), i.e., EY [f(Y )] =

∫
Y pY (y)f(y)dy. We use N (μ, σ2) to denote

the Gaussian distribution with mean μ and variance σ2, and pY |X=x ∼ N (μ, σ2)
denotes that given that X = x, Y is conditionally distributed according to the
Gaussian distribution with mean μ and variance σ2.

Let X = (X∗, X̄) be a vector of discrete random variables representing the
appliance states, where X∗ = (X1,X2, . . . , XM∗) are discrete random variables
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of the sensitive appliance states and X̄ = (XM∗+1,XM∗+2, . . . , XM ) are those
of the non-sensitive appliance states, both of which are designated by U .

Definitions of Privacy and Utility. The privacy metric we consider in this
paper is as follows.

Definition 1 (Privacy metric). The privacy metric is the mutual information
of sensitive appliance states X∗ and distorted smart-meter data Z; i.e.,

I(X∗;Z) =
∑

x∗∈X∗
PX∗(x∗)

∫

Z
pZ|X∗(z|x∗) log

pZ|X∗(z|x∗)
pZ(z)

dz. (1)

The mutual information I(X∗;Z) represents the quantity of information one
can obtain about X∗ from the observed Z. It is therefore used extensively in the
literature as a privacy metric [11,12,25,27,36]. Note however that X∗ is a vector
of discrete random variables while Z is a continuous random variable, which is
different from the situation considered in the literature where all the random
variables were discrete. We therefore extended the theory.

Utility is measured by the following distortion metric.

Definition 2 (Distortion metric). Let d : Y × Z → R
+ be some distortion

function.2 The distortion metric is the expectation of d(Y,Z); i.e.,

EY,Z [d(Y,Z)] =
∫∫

Y×Z
pZ|Y (z|y)pY (y)d(y, z)dydz. (2)

Lower distortion intuitively corresponds to better utility.
However, the distortion metric in Definition 2 may appear slightly different

from what we should deal with in this paper. Indeed, the ideal distortion met-
ric would be the one that directly captures the degradation of the results of
appliance usage analysis. However, the outcome of the appliance usage analy-
sis depends heavily on the algorithms used for the analysis and therefore it is
infeasible to estimate the degradation in general. Also, empirically the distortion
metric in Definition 2 is effective, as shown in Sect. 4.

The Privacy-Utility Tradeoff Problem. Suppose for now that the joint
distribution pX∗,Y is already known. Then given pX∗,Y , a distortion function
d and a distortion constraint δ, the privacy mapping pZ|Y that minimizes the
privacy information leakage can be found by solving the following optimization
problem:

inf
pZ|Y

I(X∗;Z) subject to EY,Z [d(Y,Z)] ≤ δ. (3)

We show in Appendix A that (3) is computable and has a desirable property
that is convexity.
2 Examples of distortion function include the L1 norm, L2 norm and more generally

Lp norm.
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3.2 Gaussian Model Assumption

We assumed in Sect. 3.1 that pX∗,Y is already known. In practical smart-meter
systems, however, this assumption does not hold and we need to substitute pX∗,Y
with other known parameters. We propose here the substitution method.

First, observe that from the law of total probability,

pX∗,Y (x∗, y) =
∑

x̄∈X̄
pX∗,X̄,Y (x∗, x̄, y) =

∑

x̄∈X̄
pX,Y (x, y)

=
∑

x̄∈X̄
PX(x)pY |X(y|x).

(4)

Now, computing pX∗,Y (x∗, y) boils down to computing PX(x) and pY |X(y|x).
In order to compute pY |X(y|x), we apply a linear Gaussian model. This

model has been used extensively to simulate the emission of home appliances in
the energy disaggregation literature [14,18,22].

Let Y0 be a random variable of the background noise and Ym be that of the
emission of appliance m. Then,

Y = Y0 +
M∑

m=1

Ym, (5)

pY0 ∼ N (μ0, σ
2
0), (6)

pYm|Xm=xm,k
∼ N (μm,k, σ

2
m,k), (7)

where μ0 and σ2
0 are the mean and variance of the Gaussian distribution of the

background noise, and μm,k and σ2
m,k are those of appliance m in state k. Then,

according to the standard probability theory [10],

pY |X=x ∼ N
(

μ0 +
M∑

m=1

μm,k, σ2
0 +

M∑

m=1

σ2
m,k

)

. (8)

Equation (8) implies that computing pY |X is now reduced to obtaining the para-
meters Θ = {μ0, σ

2
0 , {μm,k, σ

2
m,k}}. These parameters can be obtained either

from the specification documents or reference models of the appliances, or by
doing preliminary training activities.

Assuming that the variance of the total power data Y is independent of states
of the appliances, (8) can further be simplified as

pY |X=x ∼ N
(

μ0 +
M∑

m=1

μm,k, σ2

)

, (9)

where σ2 is the variance of Y . In this case, computing pY |X can be reduced to
obtaining the parameters Θ′ = {μ0, {μm,k}, σ2}. We use this simplified model in
Sect. 4.

PX(x) can also be obtained from the reference models of the appliances or
by doing preliminary training activities.

Now, it is easy to see that pX∗,Y can be obtained from Θ′ and PX and
therefore the optimization problem is solvable.
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4 Experiments on Household Power Usage Data

This section exhibits our experimental results of applying the proposed mecha-
nism to the power usage data of an actual household. We give an overview of
our experiments in Sect. 4.1, and we discuss in Sect. 4.2 the electric power meter
and the home appliances that we used for the experiments. Section 4.3 shows the
datasets and parameters that we obtained in the experiments. The optimization
problem is solved and the privacy mapping is applied in Sect. 4.4. Section 4.5
evaluates the privacy and utility aspects of our mechanism quantitatively, and
the implications of the results are discussed in Sect. 4.6.

4.1 Overview

Our goal is to examine whether the theory we propose in Sect. 3 is effective in
an actual situation (i.e., in natural daily life), not in an artificial environment
or in a special circumstance. To this end, we collected the power usage data of
an actual household using a commercially available power meter device for nine
days. As our proposed theory requires estimation of Θ′ and PX for the assumed
model distribution, and as our adversary model assumes that the adversarial P
has full knowledge of the emission, transition and initial probabilities, we also
manually collected the ground truth of the appliance usage in the household for
the same nine days, and then applied a supervised learning algorithm to estimate
those parameters.

Then, we considered two use cases: (1) oven toaster is designated as sensi-
tive; and (2) television is designated as sensitive. For each case, we chose an
appropriate distortion constraint δ by trial-and-error, and with Θ′, PX and δ,
we solved the convex optimization problem (3) and obtained a privacy mapping
pZ|Y . We then distorted the power usage data according to pZ|Y , and obtained
distorted power usage data. In order to evaluate the privacy and utility of our
mechanism, we applied an inference algorithm to the distorted data to infer the
appliance usage of the sensitive and non-sensitive appliances, and compared the
performance with that of the original data.

Since the power meter we used outputs discrete values, in the experiments
we regard Y and Z as discrete random variables Ỹ and Z̃ respectively, and
compute and apply a conditional probability mass function PZ̃|Ỹ . Discussion
on the optimization problem with discrete random variables can be found in
Appendix B.

4.2 Devices

The electric power meter we used is the OWL +USB3 which records the electric
power used in a household every minute. This power meter is attached to the

3 http://www.theowl.com/index.php/energy-monitors/standalone-monitors/owl-usb/.

http://www.theowl.com/index.php/energy-monitors/standalone-monitors/owl-usb/
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circuit-breaker of the target household, and the total power usage of the house-
hold is recorded. Due to limitations of the A/D converter used in the power
meter, the resolution of the power recorded is 7 W.

All the appliances in the target household are listed in Table 1. As Table 1
shows, a total of 17 appliances are present.4

Table 1. Appliances used in the target household and the parameters obtained from
the supervised learning. μm,ON is the estimated mean power of appliance m. am and
bm are the estimated transition probabilities of transiting from OFF to ON and from
ON to OFF, respectively.

m Appliance μm,ON am bm

0 Background + refrigerator 103.44

1 Bathroom light 12.73 0.000404 0.0219

2 Hairdryer 380.02 0.000159 0.667

3 Electric heater 350.37 0.000161 0.0148

4 Entrance light 90.90 0.000318 0.222

5 Kitchen light 175.63 0.00257 0.0321

6 Kotatsu 168.77 0.000652 0.0246

7 Laundry machine 57.00 0.00408 0.0142

8 Lavatory light 51.95 0.00408 0.505

9 Living room light 84.69 0.00194 0.00544

10 Microwave 1115.80 0.000159 0.333

11 Oven toaster 1133.40 0.000957 0.245

12 Personal computer 111.85 0.000663 0.0152

13 Reading room light 72.24 0.00219 0.0366

14 Rice steamer 323.62 0.000322 0.0230

15 Television 123.16 0.00366 0.00335

16 Vacuum cleaner 1057.90 0.000159 0.182

17 Washstand light 34.89 0.000637 0.216

σ2 = 5436.5

4.3 Datasets and Parameters

Power Usage and Appliance Usage Datasets. We collected the power
usage data for nine days. Samples are shown in Fig. 2 and the histogram is
shown in Fig. 3. The minimum power is 35 W, the maximum power is 2093 W
and the average power is 232.78 W.
4 Strictly speaking, the number of appliances used in the household is 18 because a

refrigerator is also used. However, it was always ON throughout the data collection
and therefore we regarded it as a part of the background noise.
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Fig. 2. Samples of the power usage data

Fig. 3. Histogram of the power usage data

We also collected manually the ground truth of the appliance usage in the
target household. Table 2 shows an excerpt from the ground truth.

Model Parameters. In order to obtain the model parameters Θ′ and PX

from the power usage data and the ground truth, we used a supervised learning
algorithm.

For simplicity, we employed a couple of simplification techniques. First, we
modeled the hidden states of the appliances with the factorial hidden Markov
model (FHMM) [13]. The FHMM assumes that the hidden states between appli-
ances are independent, which reduces the computational complexity of learning
and inference. This assumption is reasonable in our situation and therefore we
used this model to simplify the computation of Θ′ = {μ0, {μm,k}, σ2}.

Second, we assumed each appliance has only two possible states: Xm =
{ON,OFF} for all m ∈ {1, 2, . . . ,M = 17}. This two-state assumption sim-
plifies the computation of PX . Note here that since we have assumed all the
appliances behave independently from each other, we can compute PX(x) as
the product of probability of each appliance; i.e., PX(x) =

∏M
m=1 PXm

(xm). We
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Table 2. An excerpt from the ground truth of the appliance usage

Day Time m Appliance Operation

1 3:20 12 Personal computer ON

3:20 13 Reading room light ON

4:16 8 Lavatory light ON

4:17 8 Lavatory light OFF
...

...
...

...

9 4:33 13 Reading room light ON
...

...
...

...

23:18 9 Living room light OFF

23:20 15 Television OFF

also assume that the appliance state Markov chains have already converged to
the steady-state, that is, the initial state distributions are equal to the steady-
state distributions implied by the transition distributions. Thus, each PXm

(xm)
is stationary across time and can be computed from the transition probabilities
of the appliance states.

Let am be the transition probability of appliance m from OFF to ON and bm
be that of the opposite direction (ON to OFF). Then,

PXm
(ON) =

am

am + bm
, PXm

(OFF) =
bm

am + bm
. (10)

Hence, PX can be computed by {am, bm}. In addition, we assumed that μm,OFF =
0 for all m.

We used all of the nine day data of power usage and appliance usage for the
supervised learning, and obtained Θ′ = {μ0, {μm,ON}, σ2} and {am, bm}. The
results are shown in Table 1.

4.4 Optimization and Distortion

As we explained in Sect. 4.1, we considered the following two use cases:

Case 1. Oven toaster (m = 11) is designated as sensitive,
Case 2. Television (m = 15) is designated as sensitive.

For each case, we solved the convex optimization problem and obtained a discrete
privacy mapping PZ̃|Ỹ . We used as a distortion metric the L1 distance d(ỹ, z̃) =
|ỹ−z̃|. The optimization problem was solved by the convex optimization software
CVX,5 where we used δ = 6 for Case 1 and δ = 72 for Case 2.

Then we distorted the power usage data according to PZ̃|Ỹ (z̃|ỹ). A sample
of the raw and distorted power usage data is shown in Figs. 4 and 5.
5 http://cvxr.com/cvx/.

http://cvxr.com/cvx/
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Fig. 4. A sample of the raw and distorted power usage data (sensitive appliance is oven
toaster and δ = 6)
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Fig. 5. A sample of the raw and distorted power usage data (sensitive appliance is
television and δ = 72)

4.5 Evaluation of Privacy and Utility

We now evaluate both the privacy and utility aspects of the distorted power
usage data.

Since our goal of the privacy-utility tradeoff is to retain the inference of the
non-sensitive appliance states while preventing that of the sensitive appliance
states, we evaluate them by measuring the degradation of the appliance state
inference. We therefore apply an inference algorithm to the raw data and the
distorted data (for both Case 1 and 2) to infer the hidden states of the appliances,
and evaluate the detection rates.

We again model the hidden states with the FHMM accompanied by the para-
meters we obtained in the supervised learning, and infer the hidden states for
the nine days using an approximate inference algorithm called the completely
factorized variational approximation (CFVA) [13]. CFVA is used to avoid the
computational complexity of exact inference algorithms. For this binary (ON and
OFF) classification, the CFVA algorithm provides marginal posterior likelihoods
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which we can threshold at custom values to obtain a receiver operating char-
acteristic (ROC) curve in order to evaluate the inference performance across
different tradeoffs between true positive and false positive rates. We can also
compute the area under the curve (AUC) which quantifies the inference perfor-
mance across this tradeoff in a single number. We perform and compare this
evaluation between the raw data and the distorted data.

Table 3. AUC values of the ROC curves (Figs. 6, 7 and 8)

m Appliance AUC

Raw (Fig. 6) Oven toaster (Fig. 7) Television (Fig. 8)

3 Electric heater 0.904 0.902 0.889

11 Oven toaster 0.969 0.551 0.969

12 Personal computer 0.787 0.783 0.648

15 Television 0.914 0.913 0.459
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Fig. 6. ROC curves of the results of inference with raw data

Figure 6 shows the ROC curve of the inference results of several appliances,
where the analysis was performed on the raw dataset. The AUC values are evalu-
ated and shown in Table 3. As the AUC values tell, the states of the oven toaster
are inferred almost correctly, the states of the electric heater and television are
inferred with high accuracy, and the states of the personal computer are inferred
with marginal accuracy.

Figure 7 gives ROC curves of the inference results with the distorted data for
Case 1. The inference performance for the oven toaster is degraded severely while
the inference performance for the other appliances are preserved, as desired.
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Figure 8 gives ROC curves of the inference results with the distorted data
for Case 2. The inference performance for the television is degraded severely.
The inference performance for the oven toaster and electric heater are pre-
served almost completely. The inference performance for the personal computer
is degraded to some extent, but still enables meaningful inference.
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Fig. 7. ROC curves of the results of inference with distorted data (sensitive appliance
is oven toaster and δ = 6)

4.6 Discussion

As we have shown in Sect. 4.5, the distortion works highly effectively for the case
where the sensitive appliance is the oven toaster. This may be due to the fact
that the oven toaster is realistically modeled with only two states: {ON, OFF},
and therefore our simplified model fits well. Moreover, the consumed power is as
high as 1,000 W, which enables us to compute an optimal privacy mapping PZ̃|Ỹ
that attains both small mutual information and small distortion such as δ = 6.
Note that 1,000 W or higher power consumption occurs rarely, as Fig. 3 shows,
and thus the distortion of higher power values does not affect other low-power
appliances.

On the other hand, for the case where the sensitive appliance is the television,
the distortion renders inference of the sensitive appliance almost impossible but
at the same time makes inference of the personal computer degraded to some
extent. This may stem from the fact that the television consumes a relatively low
power of 123 W and thus distortion of middle power values would affect other
middle-power appliances including the personal computer. Another possibility
is that the personal computer takes not only two but multiple states and the
distortion to the middle-range power usage degrades the inference.

We should discuss the impact of the assumptions and approximations we
made in the evaluation. We modeled the hidden states of the appliances with
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Fig. 8. ROC curves of the results of inference with distorted data (sensitive appliance
is television and δ = 72)

FHMM. FHMM is used typically in the energy disaggregation literature [18] and
therefore this can be thought of as a reasonable modeling, but other inference
algorithms such as neural networks [17] may give greater advantage to an adver-
sarial P. We used a binary-state (ON and OFF) assumption for all the appliances.
This may fit to some appliances (e.g. electric heater) but not to others (e.g. per-
sonal computer). Multiple-state model will definitely give higher performance to
both benign and adversarial P. Use of an exact inference algorithm will make
the performance better at the price of computational complexity.

5 Conclusion

We proposed in this paper a privacy-utility tradeoff mechanism which accom-
modates the situation where the sensitive appliance usage is not observable.
We first described a target application and its privacy issue, and gave a system
and adversary model. Then we formalized the tradeoff as a convex optimization
problem that we show can be solved. Finally, we exhibited experimental results
on smart-meter data and showed that the proposed mechanism is practical and
effective.

Future work will be to extend this theory to the case where the service
provider uses other inference algorithms such as neural networks.

Acknowledgments. We would like to thank the anonymous referees for their valuable
comments.



Privacy-Utility Tradeoff for Applications Using Energy Disaggregation 231

A Computability and Convexity of the Optimization
Problem

A.1 Computability

We show that both the objective function (1) and constraint function (2) can be
computed respectively and therefore the optimization problem (3) is solvable,
assuming pX∗,Y is known.

We start with (1). First note that X → Y → Z forms the Markov chain
because the smart-meter data Y depends on the appliance states X and the
distorted data Z depends on the smart-meter data Y . Then,

pZ|X∗(z|x∗) =
∫

Y
pZ|Y (z|y)pY |X∗(y|x∗)dy. (11)

Here,

pY |X∗(y|x∗) =
pX∗,Y (x∗, y)

PX∗(x∗)
, (12)

PX∗(x∗) =
∫

Y
pX∗,Y (x∗, y)dy. (13)

Also,
pZ(z) =

∑

x∗∈X∗
PX∗(x∗)pZ|X∗(z|x∗). (14)

Therefore, we can confirm that all the members in (1) can be computed from
pX∗,Y and pZ|Y .

As for (2), we can easily confirm the computability by seeing that

pY (y) =
∑

x∗∈X∗
pX∗,Y (x∗, y). (15)

A.2 Convexity

We additionally note here that (3) is a convex optimization problem. This is
because, as with [25], the objective function and the constraint function are
convex functions of the optimization variable pZ|Y .

Convex optimization has several desirable properties. From an analytical
viewpoint, it is assured that any local minimum is a global minimum and finding
a global minimum is therefore reduced to finding a local minimum [5]. From a
practical viewpoint, efficient algorithms such as interior-point methods have been
proposed, and software libraries are available [6].
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B Modification to Discrete Power Data

In Sect. 3.2 we considered the case where the smart-meter data and distorted data
are continuous. In practical situations, however, it is possible that the smart-
meter data is quantized to discrete levels. Indeed, as we describe in detail in
Sect. 4, we use discrete power data in our experiment that has been quantized to
a resolution of 7 W. It is therefore required to modify the optimization problem
(3) to accommodate such cases. We describe here the discretized version of the
optimization problem.

Let Ỹ ∈ Ỹ be a discrete random variable representing the quantized smart-
meter data and Z̃ ∈ Z̃ represent the distorted data, where Ỹ and Z̃ are finite
sets. Let d : Ỹ × Z̃ → R

+ be some distortion function. Then the optimization
problem in (3) becomes

min
pZ̃|Ỹ

I(X∗; Z̃) subject to EỸ ,Z̃ [d(Ỹ , Z̃)] ≤ δ, (16)

where

I(X∗; Z̃) =
∑

x∗∈X∗

∑

z̃∈Z̃
PX (x∗)PZ̃|X∗(z̃|x∗) log

PZ̃|X∗(z̃|x∗)

PZ̃(z̃)
, (17)

EỸ ,Z̃ [d(Ỹ , Z̃)] =
∑

ỹ∈Ỹ

∑

z̃∈Z̃
PZ̃|Ỹ (z̃|ỹ)PỸ (ỹ)d(ỹ, z̃). (18)
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Abstract. A wide range of applications can benefit from storing and
managing data as graph structures, and graph theory algorithms can be
used to solve various computing problems. In this paper, we propose a
secure two-party private graph intersection protocol against semi-honest
servers. The protocol allows a server and a client, each holding a private
graph, to jointly compute the intersection of their graphs. The proto-
col utilizes homomorphic encryptions and a private set intersection sub-
protocol to prevent information leakage during the process. At the end
of the protocol, the server learns the graph intersection, and the client
learns the vertex intersection.

Keywords: Graph encryption · Graph theory · Multi-party computa-
tion · Homomorphic encryption

1 Introduction

Graph data and graph processing have received increased interests, since they
can help to solve many practical problems. Using graph structures to store and
process web data has been extensively studied over the past decades [1–3]. Rep-
resenting static pages as vertices and the links between the pages as edges natu-
rally convert web data into directed graphs. Furthermore, various types of graph
operations can be used to solve different web problems, including web searching
[4–7], web crawling [8–10] and data mining [11–13].

Beyond web data, many other areas start to store data as graph structures
in order to convert different computing problems into graph problems, such as
social network [14–16], biological network [17–19] and communication network
[20]. Graph intersection is one of the most common graph problems, and it can be
used to solve various practical problems. In more details, graph intersection com-
putes the intersected part, for both vertex and edge, between two input graphs.

Various database systems have been proposed to store, manage and query
graph data [21]. However, along with the rapid growth in the size of the graph
data in recent years, efficient processing of large graphs has becoming a challenging
problem. For example, traditional methods and algorithms tend to fail for graphs
with billions or trillions of vertices and edges. As a result, several solutions and
systems for efficient processing of large-scale graphs have been studied [22,23].

Along with the development of cloud computing and remote storage, out-
sourcing data storage to third parties has become a common solution for both
c© Springer International Publishing AG 2017
J. Pieprzyk and S. Suriadi (Eds.): ACISP 2017, Part II, LNCS 10343, pp. 235–248, 2017.
DOI: 10.1007/978-3-319-59870-3 13
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corporations and individuals. However, outsourcing sensitive data to untrusted
service providers remains at risk. For example, the cloud storage providers may
dig into the private data themselves, or they may leak the data to other par-
ties for profits. As a result, the study of privacy-preserving data storage, while
remaining the ability to query and search, has become a popular research area in
academia in the past years. The most well-studied solution so far is the searchable
symmetric encryption (SSE) [24,25]. Briefly speaking, a searchable symmetric
encryption scheme allows a client to outsource his data to a third party without
losing confidentiality. In addition, the client can perform searches and queries
on his data without leaking any useful information. A number of SSE schemes
have been proposed with different features [26–28]. In 2010, Chase and Kamara
introduced the notion of structured encryption and proposed a SSE scheme for
graph data [29]. The scheme allows privacy-preserving storage for graph data,
and supports neighbor queries and adjacency queries. In 2015, Meng, Kamara,
Nissim and Kollios proposed a SSE scheme that supports approximate shortest
distance queries for graph data [30].

1.1 Our Result

In this paper, we present the first private graph intersection protocol. As far as
we can tell, only few graph intersection protocols have been proposed, and none
of them concerns about the privacy protection for the input graphs.

The private graph intersection protocol involves two participants, a server S
and a client C. Each of the participants holds a private graph, denoted as GS

and GC , respectively. The protocol allows the two participants to interactively
compute the intersection of their graphs. At the end of the protocol, the server
learns the graph intersection, and the client learns the vertex intersection.

In the protocol, the vertex collection of a graph is represented as a sorted
set, and the edge collection is represented as an adjacency matrix. The protocol
utilizes a secure two-party private set intersection protocol as a sub-protocol for
computing the vertex intersection. Furthermore, the protocol uses the homomor-
phic property of the Paillier encryption scheme to compute the edge intersection.
During the protocol, neither the server nor the client can learn any information
about the private graph of the other participant, beyond that can be deduced
from the result of the protocol.

We give a security analysis about the protocol, and we proof that the protocol
is secure against semi-honest adversarial servers. We also provide a discussion
on the performance of the protocol.

2 Preliminaries

2.1 Paillier Encryption Scheme

The Paillier encryption scheme is a public key cryptosystem, proposed by Paillier
in 1999 [31]. The scheme involves three algorithms, (KeyGen,Enc,Dec), defined
below:
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(pk, sk) ← KeyGen(1k) is the key generation algorithm. The input is a secu-
rity parameter k. The outputs are a public key pk and a secret key sk. The
public key contains a large number N which specifies the message space, the
ciphertext space and the random space to be ZN , Z∗

N2 and Z
∗
N , respectively.

m⊕ ← Enc(pk,m; r) is the encryption algorithm. The input is the public
key pk, a plaintext m ∈ ZN and a random number r ∈ Z

∗
N . The output is the

ciphertext m⊕ ∈ Z
∗
N2 . For simplicity, we use the notion m⊕ = Enc(m).

m ← Dec(sk,m⊕) is the decryption algorithm. The input is the secret key sk
and a ciphertext m⊕ ∈ Z

∗
N2 . The output is the plaintext m ∈ ZN . For simplicity,

we use the notion m = Dec(m⊕).
The Paillier encryption scheme has the following properties:

Correctness. For any (pk, sk) ← KeyGen(1k) and any m ∈ ZN , Dec(Enc
(m)) = m always holds.

IND-CPA Security. The ciphertexts of two plaintexts, m⊕
0 and m⊕

1 , are indis-
tinguishable for probabilistic polynomial-time adversaries that only have access
to the public parameters.

Homomorphic Property. For any m0,m1 ∈ ZN , there exists an operation
⊕ in the ciphertext space, such that Dec(Enc(m0) ⊕ Enc(m1)) = m0 + m1.
Furthermore, there exists an operation � in the ciphertext space, such that
Dec(Enc(m0) � m1) = m0 · m1.

2.2 Private Set Intersection

Private Set Intersection (PSI) is a cryptographic protocol that allows two parties,
each holding a private set, to jointly compute the intersection of their sets with-
out leaking any additional information. Private set intersection protocols have
many important application areas in the real world, such as privacy-preserving
data mining and sensitive database computation.

The first secure two-party private set intersection protocol is introduced by
Freedman, Nissim and Pinkas (FNP) in 2004 [32]. The protocol utilizes homo-
morphic encryption and oblivious polynomial evaluation to ensure each party
learns no information about the other party’s private input during the compu-
tation. Later, several other protocols have been proposed with different features
and security levels [33–35].

3 Problem Formation

3.1 Model and Definition

We formally describe the private graph intersection protocol (PGI). The proto-
col involves two participants, a server S and a client C. Each of the participants
holds a private graph, which is intended to be kept secret from the other par-
ticipant. We denote the graphs of the server and client as GS = (VS , ES) and
GC = (VC , EC), respectively, where V and E are the vertex collection and
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edge collection of the graphs. The intersection of the two graphs is defined as
GI = GS

⋂
GC = (VI , EI), where VI = VS

⋂
VC and EI = ES

⋂
EC . The private

graph intersection protocol allows the server and the client to jointly compute
GI . At the end of the protocol, the server learns GI and the client learns VI .

Definition 1 (Private Graph Intersection Protocol). Two probabilistic
polynomial-time interactive Turing machines, S and C, define a Private Graph
Intersection Protocol if the following properties hold:

Correctness: If both participants are honest, for any GS = (VS , ES) and
any GC = (VC , EC), the private graph intersection protocol computes GI =
(VI , EI) = GS

⋂
GC . At the end of the protocol, S learns GI and C learns VI .

Server Zero-Knowledge: A semi-honest server learns nothing about the
client’s graph, beyond that can be deduced from GI .

Client Zero-Knowledge: A semi-honest client learns nothing about the
server’s graph, beyond that can be deduced from VI .

3.2 Graph Representation

In our protocol, we represent a graph as G = (V,E), where V is the vertex
collection and E is the edge collection. We represent the vertex collection as a
sorted set with ascending order, V = {v1, v2, ..., vm}, where m is the number of
vertices, vi ∈ Z and vi < vi+1 for 1 ≤ i ≤ m−1. We represent the edge collection
as an adjacency matrix,

E =

⎛

⎜
⎝

e1,1 . . . e1,m
...

. . .
...

em,1 · · · em,m

⎞

⎟
⎠ ,

where ei,j is the adjacency relation between the vertices vi and vj , and ei,j ∈
{0, 1}. If vertices vi and vj are adjacent, i.e. there is at least one edge that
connects them, ei,j = 1, otherwise ei,j = 0. Note that, E is a square matrix with
m rows and m columns. For an undirected graph, E is a symmetric matrix, since
the edges are two-way.

For example, we represent the directed graph illustrated in Fig. 1 as G =
(V,E), where V = {1, 5, 23, 50, 74} and

E =

⎛

⎜
⎜
⎜
⎜
⎝

0 1 0 1 0
0 1 0 0 0
1 0 0 0 1
0 0 0 0 1
0 0 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

.

Furthermore, we define a notion of sub-edge, denoted as A. For a graph
G = (V,E) and a vertex collection V ′ ⊆ V , the sub-edge is a sub matrix of E,
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Fig. 1. Example graph

such that it only contains the adjacency relations between the vertices in V ′. In
more details, let V = {v1, v2, ..., vm} and V ′ = {v′

1, v
′
2, ..., v

′
n}, where v′

i ∈ V and
n ≤ m. A is defined as:

A =

⎛

⎜
⎝

a1,1 . . . a1,n

...
. . .

...
an,1 · · · an,n

⎞

⎟
⎠ ,

where ai,j is the adjacency relation between the vertices v′
i and v′

j in graph G,
and ai,j ∈ {0, 1}.

For example, for the graph illustrated in Fig. 1, let V ′ = {1, 5, 74}. The sub-
edge A is calculated as:

A =

⎛

⎝
0 1 0
0 1 0
0 0 1

⎞

⎠ .

4 Private Graph Intersection Protocol

In this section, we propose a construction of the private graph intersection pro-
tocol. In the construction, the server and the client use the Paillier encryption
scheme to achieve homomorphic multiplication, and use the FNP protocol as a
sub-protocol for private set intersection (PSI).

4.1 Building Block: Private Set Intersection Protocol

In our construction, we use the FNP protocol as a sub-protocol to compute
the vertex intersection. The FNP protocol is a construction of the private set
intersection (PSI), and is proposed by Freedman, Nissim and Pinkas [32]. The
protocol has two participants, a server S and a client C. Each of the partic-
ipants hold a private set, and they wish to compute the intersection of their
sets. The FNP protocol allows the server and the client to interactively compute
the intersection without leaking any information, and only the server learns the
result.

The FNP protocol is described as below:
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Input: S and C hold the sets A = {a1, a2, ..., am} and B = {b1, b2, ..., bn},
respectively.

Output: S learns I = A
⋂

B.

Protocol:

1. S performs the following:
(a) S generates the public and secret keys of the Paillier encryption scheme,

and publishes the public key.

(b) S constructs a polynomial P (x) =
m∑

u=0
αuxu, such that all the roots are

exactly the elements in A. In other words, P (x) = 0 if and only if x ∈ A.
(c) S encrypts each αi, for 0 ≤ i ≤ m, under the Paillier encryption scheme,

and sends the ciphertexts to C.
2. C performs the following:

(a) By using the homomorphic properties of the Paillier encryption scheme,
C evaluates Enc(P (x)) using the elements in B as inputs. In other words,

C computes Enc(P (bi)) = Enc(
m∑

u=0
αubui ), for 1 ≤ i ≤ n.

(b) For each bi ∈ B, C chooses a random value r and computes Enc(rP (bi)+
bi). Then C sends all the resulting ciphertexts to S.

3. S decrypts all the ciphertexts received, and compares the decrypted values
with his set A. If a decrypted value d has a corresponding element in A,
it is an element of the intersection of A and B. In other words, if d ∈ A,
d ∈ I = A

⋂
B.

The FNP protocol has the following properties:

Correctness: If both the participants are honest, the FNP protocol evaluates
the intersection of the two input sets with high probability, and only the server
obtains the result.

Zero-Knowledge: If the Paillier encryption scheme is semantically secure, the
client learns nothing about the server’s set, and the server learns nothing about
the client’s set, beyond that can be deduced from the result.

4.2 Protocol Construction

In our construction, the Paillier encryption scheme is denoted as a collection of
algorithms (KeyGen, Enc, Dec). (pk, sk) ← KeyGen(1k) is the key generation
algorithm, m⊕ ← Enc(m) is the encryption algorithm and m ← Dec(m⊕) is
the decryption algorithm. The homomorphic multiplication operation between
a ciphertext and a constant is denoted as �.

Furthermore, the FNP sub-protocol is denoted as VI ← PSI(VS , VC , pk, sk).
The inputs are the vertex collections of the server and the client, VS and VC ,
and the public and secret keys of the Paillier encryption scheme, pk and sk. The
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output is the vertex intersection, VI = VS

⋂
VC , which is only obtained by the

server.
The server’s graph is represented as GS = (VS , ES), where VS =

{vS,1, vS,2, ..., vS,m} and

ES =

⎛

⎜
⎝

s1,1 . . . s1,m
...

. . .
...

sm,1 · · · sm,m

⎞

⎟
⎠ .

The client’s graph is represented as GC = (VC , EC), where VC =
{vC,1, vC,2, ..., vC,n} and

EC =

⎛

⎜
⎝

c1,1 . . . c1,n
...

. . .
...

cn,1 · · · cn,n

⎞

⎟
⎠ .

Note that, vS,i, vC,j ∈ ZN for 1 ≤ i ≤ m and 1 ≤ j ≤ n, where N is generated
by the KeyGen algorithm of the Paillier encryption scheme as a part of the public
key.

The private graph intersection protocol is described below:

Input: S and C hold the graphs GS = (VS , ES) and GC = (VC , EC), respec-
tively.

Output: S learns GI = (VI , EI) = GS

⋂
GC , and C learns VI = VS

⋂
VC .

Protocol:

Step 1: S runs the (pk, sk) ← KeyGen(1k) algorithm, and obtains the public
key and the secret key of the Paillier encryption scheme. Then S publishes pk.
Step 2: S and C jointly run the VI ← PSI(VS , VC , pk, sk) sub-protocol, and S
obtains VI = VS

⋂
VC = {vI,1, vI,2, ...vI,t}.

Step 3:
(a) By using VI , S constructs the sub-edge AS from ES :

AS =

⎛

⎜
⎝

a1,1 . . . a1,t

...
. . .

...
at,1 · · · at,t

⎞

⎟
⎠ .

(b) S runs the Enc() algorithm to encrypt each element in AS , and obtains
an encrypted matrix A⊕

S = Enc(AS).
(c) S sends A⊕

S and VI to C.
Step 4:

(a) By using VI , C constructs the sub-edge AC from EC :

AC =

⎛

⎜
⎝

b1,1 . . . b1,t
...

. . .
...

bt,1 · · · bt,t

⎞

⎟
⎠ .
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(b) C computes

E⊕
I = A⊕

S � AC =

⎛

⎜
⎝

a⊕
1,1 . . . a⊕

1,t
...

. . .
...

a⊕
t,1 · · · a⊕

t,t

⎞

⎟
⎠ �

⎛

⎜
⎝

b1,1 . . . b1,t
...

. . .
...

bt,1 · · · bt,t

⎞

⎟
⎠

=

⎛

⎜
⎝

a⊕
1,1 � b1,1 . . . a⊕

1,t � b1,t
...

. . .
...

a⊕
t,1 � bt,1 · · · a⊕

t,t � bt,t

⎞

⎟
⎠ .

(c) C sends E⊕
I to S.

Step 5: S uses the Dec() algorithm to decrypt each element in E⊕
I , and obtains

EI = Dec(E⊕
I ). At last, S obtains GI = (VI , EI).

5 Analysis

5.1 Security Analysis

Lemma 1 (Correctness). If both participants are honest, for any GS =
(VS , ES) and any GC = (VC , EC), the private graph intersection protocol com-
putes GI = (VI , EI) = GS

⋂
GC . At the end of the protocol, S learns GI and C

learns VI .

Proof. The correctness of our protocol is ensured by the correctness of the FNP
sub-protocol and the homomorphic property of the Paillier encryption scheme.

During the Step 2 of the protocol, the client and the server jointly perform
a FNP sub-protocol using their vertex collections as inputs. At the end of the
sub-protocol, the server learns the vertex intersection VI . At the end of Step 3
of the protocol, the client receives VI from the server.

During Step 3 and Step 4 of the protocol, the client and the server construct
the sub-edges AC and AS , respectively, by using VI . Note that, AC and AS

contain the adjacency relations between the vertices in VI for graphs GC and
GS , respectively. In other words, if an edge exists between two vertices in VI ,
it will have to a value of 1 in the sub-edge, otherwise it will have a value of 0.
Therefore, the dot product of AC and AS will produce the adjacency matrix for
the edge intersection. The reason is, if and only if an edge exists in both AC and
AS , i.e. it is a common edge, the dot product of the adjacency relations will be
1, otherwise it will be 0.

In Step 4 of the protocol, the client receives the ciphertext of the server’s sub-
edge under the Paillier encryption scheme. If the Paillier encryption scheme has
the homomorphic property, i.e. it supports multiplication between a ciphertext
and a constant, the client can compute the dot product of the sub-edges, and
the result is the ciphertext of the edge intersection. Finally, the server can learn
the edge intersection after decryption.
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As a result, if the FNP protocol is correct and the Paillier encryption
scheme has the homomorphic property, the server learns the graph intersec-
tion GI = (VI , EI), and the client learns the vertex intersection VI . Since the
FNP sub-protocol used in our construction is proved to be correct [32] and the
Paillier encryption scheme is proved to have the homomorphic property [31], the
correctness property holds for our protocol. �	
Lemma 2 (Server Zero-knowledge). A semi-honest server learns nothing
about the client’s graph, beyond that can be deduced from GI .

Proof. The proof of Server Zero-knowledge is trivial. During the protocol, there
are two parts where the server receives information about the client’s graph. The
first part is during the FNP sub-protocol at Step 2 of the protocol, and the
second part is during Step 4.

For the first part, the Server Zero-knowledge relies on the zero-knowledge
property of the FNP sub-protocol. In other words, if the FNP sub-protocol is
zero-knowledge, the server cannot learn any information about the client’s vertex
collection, beyond the vertex intersection.

For the second part, the server receives E⊕
I from the client, which is the

ciphertext of the edge intersection. Upon decryption, the server only learns the
edge intersection.

As a result, if the FNP sub-protocol is zero-knowledge, the server learns
nothing about the client’s graph, beyond the graph intersection. Since the FNP
sub-protocol is proved to have the zero-knowledge property [32], the Server Zero-
knowledge property holds for our protocol. �	
Lemma 3 (Client Zero-knowledge). A semi-honest client learns nothing
about the server’s graph, beyond that can be deduced from VI .

Proof. There are two parts where the client receives information about the
server’s graph. The first part is the PSI sub-protocol during Step 2 of the
protocol, and the second part is during Step 3.

For the first part, similar to the proof of Lemma2, the Client Zero-knowledge
relies on the zero-knowledge property of the FNP sub-protocol. In other words, if
the FNP sub-protocol is zero-knowledge, the client cannot learn any information
about the server’s the vertex collection.

For the second part, we need to show that the information which the client
receives during Step 3 does not reveal any information about the server’s graph,
beyond the vertex intersection. According to the protocol construction, the client
receives an encrypted adjacency matrix A⊕

S and the vertex intersection VI during
Step 3. Therefore, if the client cannot distinguish between the cases where the
server has different input graphs given the knowledge of A⊕

S and VI , the zero-
knowledge for the client holds. Consider the following experiment:
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EXP IND−CPA
A (1k) :

(pk, sk) ← KeyGen(1k)
(G0, G1) ← A
b

$←− {0, 1}
VI ← PSI(Gb, GC , pk, sk)
Ab ← SubEdge(Eb, VI)

A⊕
b ← Enc(Ab)

b̂ ← A(A⊕
b , VI)

if b̂ = b, output 1
otherwise, output 0

In the above experiment, A is a probabilistic polynomial-time adversarial
client with a private graph GC = (EC , VC). The server first runs the KeyGen
algorithm to generate the public and secret keys of the Paillier encryption scheme
(Step 1). Then A chooses two graphs G0 = (E0, V0) and G1 = (E1, V1),
and sends them to the server. In addition, G0 and G1 have the property that
V0

⋂
VC = V1

⋂
VC . Upon receiving the graphs, the server randomly picks a bit

b = {0, 1}, then sets the graph Gb to be his private graph. After that, the server
and A jointly perform a FNP sub-protocol to compute the vertex intersection VI

(Step 2). By using VI , the server constructs the sub-edge Ab from Eb. Then the
server encrypts Ab using the Enc() algorithm of the Paillier encryption scheme,
and obtains A⊕

b (Step 3). At last, given the knowledge of A⊕
b and VI , A guesses

a bit b̂. If b̂ = b, the experiment outputs 1, otherwise outputs 0. The advantage
of the above experiment for A is defined as AdvA =

∣
∣Pr[EXPA(1k) = 1] − 1

2

∣
∣.

Due to the condition V0

⋂
VC = V1

⋂
VC , the vertex intersection VI gives no

useful information since VI will be the same for both G0 and G1. Therefore, for
A to have a significant advantage in the above experiment, A needs to have the
ability to distinguish between A⊕

0 and A⊕
1 without decryption. Note that, both

A⊕
0 and A⊕

1 are matrices containing ciphertexts under the Paillier encryption
scheme, with the size |VI | × |VI |. As a result, if the Paillier encryption scheme is
IND-CPA secure, there is no probabilistic polynomial-time algorithm that can
distinguish between A⊕

0 and A⊕
1 without decryption. Hence the advantage of the

above experiment for A is negligible, i.e. AdvA =
∣
∣Pr[EXPA(1k) = 1] − 1

2

∣
∣ = ε,

where ε is negligible.
At last, we construct a simulator SimS to simulate the view of the client in

the ideal model. SimS is given the knowledge of the vertex intersection VI . In the
ideal model, SimS sends VI and a matrix with |VI | × |VI | random values in ZN2

to the client during Step 3 of the protocol. Since the client cannot distinguish
between the ciphertexts under the Paillier encryption scheme and random values,
the view of the client in the ideal model is computationally indistinguishable from
the view in the real model, i.e. V iewreal

C [S(GS), C] ≈ V iewideal
C [SimS(VI), C].

As a result, if the FNP sub-protocol is zero-knowledge and the Paillier encryp-
tion scheme is IND-CPA secure, the client learns nothing about the server’s
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graph, beyond the vertex intersection. Since the FNP protocol is proved to have
the zero-knowledge property [32] and the Paillier encryption scheme is proved to
have IND-CPA security [31], the Server Zero-knowledge property holds for our
protocol. �	

5.2 Performance Analysis

In this section, we denote m as the number of vertices in the server’s graph, n
as the number of vertices in the client’s graph and t as the number of vertices in
the intersection of the graphs. The communication cost is in terms of number of
ciphertexts been transferred between the server and the client. The computation
cost is measured using modular additions, multiplications and exponentiations.

Communication Cost: The construction of the protocol is simple and only
requires O(1) rounds of communication. During the FNP sub-protocol, the server
sends m + 1 ciphertexts to the client, and the client sends n ciphertexts to the
server. During the Step 3 of the protocol, the server sends t2 ciphertexts to
the client. During the Step 4, the client sends t2 ciphertext to the client. As a
result, the total communication cost of our protocol is O(m+n+t2) ciphertexts.

Server Computation Cost: During the FNP sub-protocol, constructing the
polynomial requires O(m2) modular additions and multiplication. Encrypting
the coefficients requires O(m) modular exponentiations and multiplications, and
decrypting the received ciphertexts requires O(n) modular exponentiations. In
Step 3, encrypting each element in AS requires O(t2) modular exponentiations
and multiplications. In Step 5, decrypting each element in E⊕

I requires O(t2)
exponentiations.

Client Computation Cost: During the FNP sub-protocol, obliviously evaluat-
ing the polynomial requires O(mn) modular exponentiations and multiplications.
If the balanced hash-bucket scheme is employed, as described in [32], the costs
of polynomial evaluations can be reduced to O(nlnlnm). In step 4, computing
E⊕

I requires O(t2) modular exponentiations.

5.3 Information Leakage

In our construction of the private graph intersection protocol, we assume that
the vertex intersection is allowed to be revealed to the client. In some scenarios
this assumption is reasonable. For example, two airline companies want to find
out which flight routes they have in common within a certain region, and only
one of the companies is allowed to have the result. They can represent all the
cities within the region as vertices and their flight routes as edges. By using
the protocol, they can obtain the result without losing any private information,
since the vertex intersection (all the cities within the region) is assumed to be
publicly known for both client and server.

However, for a stronger security assumption, the vertex intersection should
be considered as private information as well. Therefore, it may cause information
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leakage if the client learns the vertex intersection. We will focus on this problem
in further works.

6 Conclusion

In this work, we propose the first private graph intersection protocol. The proto-
col allows two participants, each holding a private graph, to jointly compute the
graph intersection without leaking any private information. The security of the
protocol is based on homomorphic encryptions and a secure private set inter-
section sub-protocol. The protocol has many application areas, such as sensitive
online services and privacy-preserving data mining.
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Abstract. The advancement of technology and the widespread usage of
smart phones have made the collection of data from users easy and cost-
effective, which allows the government, urban planner, and researchers
to envision novel analysis. Along with the benefits, the shared data can
bring serious privacy concerns as they reveal sensitive information about
a user. Differential privacy has become an effective model for sharing
privacy protected data with others. To facilitate users to protect the
privacy of data before it leaves their personal devices, the concept of
personal local differential privacy (PLDP) has been introduced for count-
ing queries. We formulate PLDP for computing aggregates over numeric
data. We present an efficient approach, private estimation of numeric
aggregates (PENA), that guarantees PLDP of numeric data while com-
puting an aggregate (e.g., the average or the minimum). We perform
extensive experiments over a real dataset to show the effectiveness of
PENA.

1 Introduction

In this era of flourishing Internet and smart phones, data collection from users
has become easier and cost-effective and opened the door for novel applications
and analysis. Business models like Waze - GPS, Maps and Traffic1 have already
been established based on user data. Not only in business, data collection has a
huge impact on research; agglomeration of data and its analysis help researchers
to perceive answers of their research questions and hypotheses. On the other
hand, to grasp the behavior of a community there is no substitute for the data
collection. Thus, the collection of enormous amount of real-time and historical
data from users allows the government, business, and researchers to contribute
in different domains for the improvement of the quality of human lives.

Along with the benefits, sharing data with others may bring serious privacy
concerns as a user’s data can reveal sensitive and private information about the
user’s health, habit and preference. Considering the privacy issues, traditionally
data is shared with trusted parties, who are responsible for ensuring the privacy
of user data before sharing the data with others. However, unexpected leakage of

1 https://www.waze.com.
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personal data from the trusted authority may also cause a massive devastation,
which happened to Netflix 2 and AOL3. In this paper, we aim to develop a novel
approach to ensure the personalized local differential privacy (PLDP) of numeric
data before it leaves a user’s device. We focus on computing aggregate statistics
over private numeric data collected from users in a distributed manner.

Differential privacy [7] is a widely accepted framework developed for ensur-
ing data privacy of a statistical database. Protecting differential privacy of time
series and numeric data in the centralized setting has been studied in the lit-
erature [17,18]. In a centralized setting, users provide data to a central trusted
authority, and the trusted authority protects user data from others by applying
the concept of differential privacy. Differential privacy adds noise to the data
to provide rigorous privacy guarantee with an accuracy bound. However, in the
local setting, users do not even trust the central authority [3] and want their data
to be protected before leaving their devices without knowing the data of other
users. Therefore, the local differential privacy is rigid to achieve and also chal-
lenging. In case of the centralized differential privacy, data from all users need
to be aggregated first and then the noise is added to the data using Laplace or
exponential mechanism according to the sensitivity [5] so that a user’s data is
not identifiable with a certain confidence level in the computed aggregate statis-
tics. In the local setting, data from all users are not aggregated at a single place
and thus, the traditional definition of the differential privacy is not applicable
and the concepts of using Laplace and exponential mechanisms do not apply as
they failed to achieve the desired level of accuracy [3].

Differential privacy in the local setting is termed as Local Differential Privacy
(LDP) [15]. LDP paves a better way to achieve privacy beyond trusting the
central authority and other users. Few recent works [9,15] have been done to
ensure LDP of numeric data. For LDP, a user shares a randomized value instead
of the actual one for a numeric attribute with an accumulator such that no
one can reverse engineer the actual value from the shared data with a certain
confidence level. Specifically, the confidence level is expressed as the maximum
ratio of the probabilities of computing the shared randomized values for any
pair of values of the numeric attribute. A major limitation of LDP is that if
the possible range of the values of a numeric attribute is large, the accuracy of
the computed aggregates over shared randomized values degrades significantly.
However, in reality, people may have background knowledge about the range of
possible values for an attribute. For example, though a salary attribute can have
any positive numeric value but in reality, people may know the range of salaries
depending on the workplace where a user is employed. Furthermore, users may
not need to have the same privacy in terms of the confidence level but LDP does
not provide flexibility to users to set their privacy levels, i.e., LDP assumes all
users have same privacy level [15].

To overcome the above limitations of LDP, recently, personalized local dif-
ferential privacy (PLDP) [3] has been introduced that gives users the flexibility

2 http://money.cnn.com/galleries/2010/technology/1012/gallery.5 data breaches.
3 https://en.wikipedia.org/wiki/AOL search data leak.

http://money.cnn.com/galleries/2010/technology/1012/gallery.5_data_breaches
https://en.wikipedia.org/wiki/AOL_search_data_leak


Computing Aggregates Over Numeric Data 251

to control their privacy levels. However, their work is limited to the counting
query and can not be extended for an aggregate function as they use one bit
protocol [2]. In one bit protocol, a random bit is sent using Bernoulli probability
distribution from the user and by tracing this bit answers of different histogram
queries are estimated (e.g., how many people in a community likes to go for
shopping on Sunday?).

In our research problem, we compute statistical aggregates such as finding the
summation or the minimum values over numeric data, where identities of users
are revealed for the authorization purpose but the privacy of the data shared
by the users is protected. The accumulator knows who are taking part in the
system but does not know what is the actual data of a user. Hence, obscuring
user data from the central authority and from other users while facilitating
the computation of aggregate functions is our main challenge. To the best of
our knowledge, there is no work that ensures PLDP of numeric data and can
compute any aggregate function.

In this paper, we propose a novel approach, private estimation of numeric
aggregates (PENA) to compute aggregates over numeric data while ensuring
PLDP. The underlying idea of PENA is to collect random responses from users
over a safe range, i.e., the range within which a user’s data is not identified
with a specified confidence level. We develop a Local Random Responser (LRR)
that generates a random response while ensuring PLDP of a user’s data using
Bernoulli probability distribution [3]. Bernoulli probability distribution ensures
both the utility of responses and privacy of users.

In summary, the contributions of the paper are as follows:

– We formulate PLDP for computing aggregate functions over numeric data.
– We present an efficient approach PENA that can guarantee PLDP of numeric

data while computing an aggregate function.
– We present the theoretical proof of the correctness of our solution.
– We perform extensive experiments to show that the effectiveness of our pro-

posed approach.

The remainder of this paper is organized as follows. Section 2 formulates
the problem, discusses the threat model, and shows the system architecture. In
Sect. 3, we present our approach, PENA. Section 4 presents the results of our
evaluation of PENA using real datasets. In Sect. 5, we discuss the related work.
Finally, Sect. 6 concludes the paper.

2 Problem Formulation

We first formally define the concepts of differential privacy (DP), local differential
privacy (LDP), and personalized local differential privacy (PLDP), and then
formulate the problem that we consider in this paper. We discuss our threat
model in Sect. 2.1 and the system architecture in Sect. 2.2.
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Differential Privacy (DP) [5,8]. A randomized function f provides ε-
differential privacy if for two databases t, t′ that differs from at most one row
and for all z ∈ Z, Pr[f(t)∈z]

Pr[f(t′)∈z] ≤ eε.

Local Differential Privacy (LDP) [15]. A randomized function f provides
ε-local differential privacy, if and only if for any two values of an attribute t, t′

∈ Dom (f) and for any possible output t∗ of f , Pr[f(t)=t∗]
Pr[f(t′)=t∗] ≤ eε.

Personalized Local Differential Privacy (PLDP) [3]. A randomized func-
tion f provides (T , ε)-personalized local differential privacy, if and only if for
any two values of an attribute t, t′ ∈ τ and for any possible output t∗ of f ,
Pr[f(t)=t∗]
Pr[f(t′)=t∗] ≤ eε.

In the case of PLDP, T defines a safe range for a user and each user can have
her own privacy requirement in term of ε. For example, if the numeric data of
any user u is $700, the user may feel safe to share the data in the range T =
$0−$10000. If ε = 0.2, it means that the ratio of the probabilities of generating
t∗ is less than or equal to e0.2.

In this paper, we address the problem of ensuring PLDP for numeric data
of users while computing aggregate functions like the average or the minimum.
Formally, given a group of n users U = {u1, u2, . . . , un}, a numeric data t ∈ T of
every user in the group transformed according to the privacy specification (T ,
ε) of the user, the accumulator computes the aggregates over the shared private
data of users.

2.1 Threat Model

We consider the accumulator, other users, and eavesdroppers as adversaries.
Users do not want their numeric data to be identified in a safe range with more
than the required confidence level. The target of adversaries is to identify the
actual numeric data of users, refine the safe range and increase the confidence
level of identifying the numeric data. We assume that users and the accumulator
follow the protocol of the system while sharing their numeric data and computing
aggregates.

2.2 System Architecture

Users are connected to an accumulator through the Internet or wireless adhoc
networks. Figure 1 shows the system architecture of our proposed approach.
Every user independently shares their data after ensuring their PLDP. The accu-
mulator then generates the aggregates (e.g., the average or the minimum) and
provides them to the government, researchers, urban planners, and others.

3 Private Estimation of Numeric Aggregates (PENA)

In this section, we present our approach, private estimation of numeric aggre-
gates (PENA) to compute aggregates over numeric data while ensuring PLDP.
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Fig. 1. System architecture.

PENA uses a local random responser (LRR) and exploits Bernoulli probability
distribution [15] to achieve PLDP. Bernoulli probability distribution is initially
designed to guarantee LDP in [15], where every user has same privacy level, i.e.,
same εi. In this paper, we extend it for ensuring PLDP, where users can have
different εi.

Algorithm 1 shows the pseudocode for PENA. The general idea of our PENA
framework is to collect random responses from users over a specified safe range
T . For different subsets of users T can be different. For simplicity, we assume
here for a subset of users {u1, u2, . . . , un} have safe range T . Every user ui

among n users responds with a random numeric value fi that is generated using
Bernoulli probability distribution using function LRR (Line 2). After receiving
f1, f2, . . . , fn, the accumulator estimates the aggregate over the received values
using Function ComputeAggregate (Line 4). For example, if the aggregate is
average then ComputeAggregate estimates the aggregate as (Tmax − Tmin) ×∑n

i=1 fi

n , where Tmax and Tmin represent the maximum and minimum values of
the safe range T .

Algorithm 1. Private Estimation of Numeric Aggregates
Input: A group of n users U = {u1, u2, . . . , un}
Output: Estimate numeric aggregates f over the random responses of users
1: for each user ui do
2: fi ← LRR(T , ti, εi)
3: end for
4: return f ← ComputeAggregate(f1, f2, . . . , fn)

In the next section, we develop a local random responser (LRR) to achieve
PLDP over numeric data.
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3.1 Local Random Responser (LRR)

We use Bernoulli probability distribution to develop an LRR, which has been
already shown in the literature [15] as an effective way to ensure LDP of numeric
data. Algorithm 2 shows the pseudocode for function LRR. Each user ui runs
LRR to compute a randomized value t∗i based on her actual value ti, safe range
T , and privacy parameter εi. The output of the algorithm is t∗i .

A user first scales ti to [−1, 1] using safe range T (Line 1 of Algorithm 2). For
example, if a user’s data is $5700 and the safe range is $0–$10000, the user scales
the data to 0.14. Then the user randomizes ti into a new response t∗i using LRR
and sends it to the accumulator. The value of t∗i is generated using Bernoulli ran-
dom variable in a way that satisfies (T , εi)-PLDP for user ui (proof is presented
in Sect. 3.2). LRR generates two types of random responses. The probability of
generating a random response among two options is calculated using a Bernoulli
random variable, and the calculation of the probability depends on the user’s
scaled value ti and defined confidence level εi (Line 2). It can be compared with
a coin flip. The probability of generating head is calculated by Bernoulli random
variable. Then the coin is flipped with the computed probability. If head is found
then the user responds with eεi+1

eεi−1 (Line 4). Otherwise, the user responds with
− eεi+1

eεi−1 (Line 6).

Algorithm 2. Local Random Responser
Input: Safe range T
Input: User ui’s numeric data ti
Input: User ui’s privacy parameter εi
Output: Randomized response t∗

i ∈ { eεi+1
eεi−1

, − eεi+1
eεi−1

}
1: Generate scaled ti ∈ [-1, 1] using T
2: Sample a Bernoulli variable b such that Pr[b = 1] = ti.(e

εi−1)+eεi+1
2eεi+2

3: if b = 1 then
4: t∗

i ← eεi+1
eεi−1

5: else
6: t∗

i ← − eεi+1
eεi−1

7: end if
8: return t∗

i

3.2 Theoretical Analysis

In this section, we present the theoretical analysis of privacy assurance of our
proposed approach. We give the following theorem to prove that LRR guarantees
PLDP for every user.

Theorem 1. For any user ui with privacy specification (τ, εi) and any t∗i ∈
{ eεi+1

eεi−1 , − eεi+1
eεi−1} LRR guarantees (τ, εi)-PLDP for ui.
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Proof. By definition of PLDP, we have to prove that, for any ti, t′i ∈ τ and any
t∗i ∈ { eεi+1

eεi−1 , Pr[LRR(T ,ti,εi)= t∗
i ]

Pr[LRR(T ,t′
i,εi)= t∗

i ]
≤ eεi .

LRR scales ti to [−1, 1] using safe range T , and assume that t∗i is eεi+1
eεi−1 . For,

the other case, i.e., t∗i = − eεi+1
eεi−1 , the proof can be done similarly.

According to Algorithm2, the probabilities to compute t∗i = eεi+1
eεi−1 for

ti and t′i are Pr[LRR(T , ti, εi)=t∗i ] =
ti.(e

εi−1)+eεi+1
2eεi+2 and Pr[LRR(T , t′i,

εi) = t∗i ] =
t′
i.(e

εi−1)+eεi+1
2eεi+2 , respectively.

Thus,
Pr[LRR(T ,ti,εi)=t∗

i ]
Pr[LRR(T ,t′

i,εi)=t∗
i ]

=
ti.(eεi−1)+eεi+1

2eεi+2
t′
i
.(eεi−1)+eεi+1

2eεi+2

= ti.(e
εi−1)+eεi+1

t′
i.(e

εi−1)+eεi+1

≤maxti∈[−1,1](ti.(e
εi−1)+eεi+1)

mint′
i
∈[−1,1](t

′
i.(e

εi−1)+eεi+1)

≤ 1.(eεi−1)+eεi+1
−1.(eεi−1)+eεi+1

≤ eεi−1+eεi+1
−eεi+1+eεi+1

≤ 2eεi

2

≤eεi

We have Pr[LRR(T ,ti,εi)]
Pr[LRR(T ,t′

i,εi)]
≤ eεi . Hence, LRR guarantees (τ, εi)-PLDP for ui.

3.3 Simulation

In this section, we illustrate our proposed approach PENA with an example.
Suppose the accumulator sets the safe range T as $0–$10000. Users scale their
data to [−1, 1] using the safe range T , and generate random responses using
local random responser (LRR). Without loss of generality, we show how a user
computes her random response. Let the actual numeric data of a user is $800
and ε is 0.2. The scaled numeric data of the user is t = ( 800

10000 )*2−1 = −0.84.
Since, eε+1

eε−1 = 10.03 and t.(eε−1)+eε+1
2eε+2 = 0.46, the user either sends 10.03 with

probability 0.46 or sends −10.03 with probability 0.54 (1− 0.46) to the accumu-
lator. Similarly, other users send their random responses to the accumulator.

The accumulator estimates the aggregate (e.g., the average or the minimum)
over the received values from users and the safe range.

4 Experiments

In this section, we evaluate and compare the performance of our proposed app-
roach PENA through extensive experiments. Since there is no existing work for
PLDP over numeric data in the literature, we modify the work [15] that is pro-
posed for ensuring LDP of numeric data while computing aggregates and com-
pare it with PENA. For LDP, the safe range T does not exist and T is assumed
to be the set of all possible values for numeric data and thus, the achieved level
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Table 1. Parameter settings for experiments

Parameter Values Default

Privacy level ε 0.2, 0.4, 0.6, 0.8, 1 0.5

User participation (%) 20, 40, 60, 80, 100 50

Safe range T 1.0, 1.1, 1.2, 1.3, 1.4, 1.5 1.0

of the accuracy for the computed aggregates is not satisfactory to apply in real
scenarios. For our experiments, we incorporate T in [15]. However, we cannot
extend [15] to support personalize privacy level ε. Note that we select [15] for
our comparison because it has been shown in the literature that [15] outperforms
other LDP based approaches for numeric data like [9].

We show our experiments for aggregate functions average and minimum. Our
approach is also applicable for other types of aggregates (e.g., maximum). We
validate our proposed solution using the dataset:IPUMS [1] that contains 3.15 M
total family income records of United states. The whole data space is normalized
to [−1, 1] using safe range T . We performed several sets of experiments by vary-
ing the following parameters: privacy level ε, the percentage of user participation
over 3.1 M tuples, safe range T .

Table 1 shows ranges and default values used for each parameter. To observe
the effect of one parameter in an experiment others are kept in default values.
For [15], ε = 0.5 means we set ε to 0.5 for all users, and in PENA, ε = 0.5 means
users have the flexibility to generate any random privacy level from 0 to 0.5.
All experiments are run on an Intel-CORE i3 Windows 7 machine. For each
experiment, we perform 100 independent runs and take the average performance
of this 100 independent runs. Experimental results show that PENA outperforms
modified LDP based approach [15] in terms of accuracy while ensuring higher
privacy levels for users for both aggregates average and minimum.
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Fig. 2. Effect of privacy level (ε) on relative error (RE%)
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Effect of Privacy Level (ε). Privacy level (ε) controls the privacy of a partic-
ular user. Figures 2(a) and (b) show that the relative error decreases with the
relaxation of privacy level for both LDP and PENA. This is because, with the
increase of ε, more accurate user data are used in the aggregation. On the other
hand, users can have higher privacy levels in PENA than the LDP-based app-
roach. For example, for ε = 0.5, in PENA, values of ε for users are varied from 0 to
0.5, whereas in the LDP-based approach, all users have ε = 0.5. Since a smaller
value of ε ensures higher privacy for a user, most of the users in PENA have
higher privacy levels than those in the LDP-based approach. In spite of ensur-
ing the higher privacy level for users, both PENA and the LDP-based approach
show similar levels of accuracy as shown in Fig. 2.
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Fig. 3. Effect of safe range (T ) on relative error (RE%)

Effect of Safe Range (T ). A higher value of the safe range T ensures a
higher level of privacy. We scale the maximum numeric value of the dataset to
1. Figure 3(a) and (b) show that relative error increases slowly for every (10%)
increase of the safe range for average aggregation. For privacy level ε = 0.30,
PENA outperforms the LDP-based approach for aggregate function average
(Fig. 3(a)) and for ε = 0.80, PENA outperforms the LDP-based approach for
aggregate function minimum (Fig. 3(b)).

Effect of Percentage of User Participation. Figure 4(a) shows that the
relative error increases slightly with the increase of the percentage of user par-
ticipation for aggregate function average. For 40% or less user participation (i.e.,
1.26 M users among 3.15 M), PENA generates error less than 20%. Figure 4(b)
shows that the relative error remains almost constant over large dataset to evalu-
ate minimum aggregate function. This result shows the effectiveness of PENA to
handle large dataset to compute both aggregate functions average and minimum.
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5 Related Work

Data privacy has been addressed in the literature using techniques like k-
anonymity, perturbation, sampling, cryptography, secure multi-party computa-
tions and differential privacy. In the k-anonymity technique, a user’s data is
indistinguishable from the data of at least k − 1 other users [11,20]. Thus, a
major limitation of the k-anonymity technique is that at least k users need to
have the same data. In the perturbation technique [6,12,19], noise is added to the
data without any theoretical guarantee of privacy. Sampling [6] based technique
to ensure privacy only works well if the dataset is large and similarity exists in
the data. Though cryptographic techniques [16] ensure strong privacy, they are
not feasible for real world applications because of their extremely high processing
overhead. Secure multi-party protocols [13] involve a group of users to compute
aggregates, where a user’s data privacy is violated if all group members collude.
In recent years, differential privacy (DP) [7] has become an effective model to
protect data privacy of users because of its theoretical privacy guarantee and
less processing overhead.

DP has been introduced in [4] and since then it has been applied to solve
variant problems in computing statistics. However, the major limitation of DP is
that users need to trust the data accumulator. The accumulator gathers actual
data from users, and shares the statistics after ensuring the requirements of
DP, i.e., no one can identify a user’s data with a certain confidence level in
the computed aggregate statistics. On the other hand, local differential privacy
guarantees privacy of data without involving a trusted accumulator. There exist
a number of approaches [9,10,15] to ensure LDP for computing histograms and
ordinal queries. In [15], the authors developed a solution for protecting LDP of
numeric data for computing aggregates (e.g., summation or minimum).

Both DP and LDP assume the same privacy levels for all users, which might
not be always the case. In [14], the authors incorporated personalized settings
for differential privacy, where a trusted accumulator is required but users can
have different privacy levels. Recently, in [3], the authors applied the concept of
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personalized privacy in the local setting, and developed an approach to ensure
personalized LDP (PLDP) of users. However, the approach has limited applica-
bility only for counting queries. In this paper, we develop PENA that guarantees
PLDP and can compute any aggregate like average, minimum or maximum.

6 Conclusion

We have developed the first approach, private estimation of numeric aggregates
(PENA), to compute aggregates over numeric data while guaranteeing personal-
ized local differential privacy (PLDP). PENA does not involve a central trusted
authority and provides users the flexibility to control their privacy levels. Exper-
iments using real datasets show that PENA outperforms modified LDP based
approach in terms of accuracy while ensuring higher privacy levels for users for
both aggregates average and minimum.
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Abstract. Private set operation (PSO) protocols provide a natural
way of securely performing operations on data sets, such that crucial
details of the input sets are not revealed. Such protocols have an ever-
increasing number of practical applications, particularly when imple-
menting privacy-preserving data mining schemes. Protocols for comput-
ing private set operations have been prevalent in multi-party computa-
tion literature over the past decade, and in the case of private set inter-
section (PSI), have become practically feasible to run in real applications.
In contrast, other set operations such as union have received less atten-
tion from the research community, and the few existing designs are often
limited in their feasibility. In this work we aim to fill this gap, and present
a new technique using Bloom filter data structures and additive homo-
morphic encryption to develop the first private set union protocol with
both linear computation and communication complexities. Moreover, we
show how to adapt this protocol to give novel ways of computing PSI
and private set intersection/union cardinality with only minor changes
to the protocol computation. Our work resembles therefore a toolkit for
scalable private set computation with linear complexities, and we pro-
vide a thorough experimental analysis that shows that the online phase
of our designs is practical up to large set sizes.

Keywords: Private set operations · Bloom filters · Additively homo-
morphic encryption · Secure computation · Data mining

1 Introduction

The emergence of Big Data has resulted in an increasing need for analytical
data mining techniques allowing entities to gain information from the large data
sets that they own. Even more so can be learnt by combining internal data
sets with private data from external entities. However, in order to safeguard
incentives for combining data, participants require privacy-preserving measures
to be put into place to stop secret information from being leaked to competitors
or untrusted parties. Private set operation (PSO) protocols provide a natural way
of securely performing operations on these combined data sets, such that only
the output of the set operation is revealed. Numerous works in research in genetic
data computations and information sharing have highlighted the importance of
efficient private set operation computation [6,15].
c© Springer International Publishing AG 2017
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Previous Work. Research into private set intersection (PSI) protocols has
resulted in several designs that are practically feasible for real-world use. While
pioneering work such as [12,20] brought the problem into the attention of the
cryptographic research community, more recent research (e.g. [10,19,22–24]) has
shown that certain techniques and data structures, such as oblivious transfer
(OT) and Bloom filters, can be used to design protocols that scale and perform
well even for very large data sets. These constructions play a crucial role in
developing large-scale data mining applications where data privacy and efficient
computation are both important. For example, computations over genetic data,
as shown in [15], may require comparing records from databases with millions
of elements.

In spite of recent progress in the design of PSI protocols, research into per-
forming other set operations with similar security guarantees has not been
as comprehensive. Current designs for computing private set union (PSU)
include [4,13,25], while generic designs for computing multiple set operations are
given in [1,14,18]. With a much smaller base of research, computational complex-
ities for computing PSU remain super-linear in the size of the sets involved (e.g.
O(n log log n)). Moreover, there has been relatively little work done in comput-
ing set cardinality (PSI/PSU-CA) operations where only the size of the output
set is revealed. Dedicated techniques for computing these operations are given
in [5,9,11] though designs are also given in the generic constructions of [1,18].

Consequently, implementations of PSOs such as union are unlikely to scale
well as set sizes increase up to the dimensions being required for current applica-
tions. Furthermore, complex data mining can require a conjugation of several set
operations. Without a way for computing scalable privacy-preserving protocols
for all of the main operations it is not possible to carry out these procedures in an
efficient manner. It is important that privacy-preserving methods for real-world
problems remain almost as efficient as tools with non-cryptographic guarantees
in order to motivate the uptake of these new solutions. Furthermore, it would be
beneficial to have an efficient ‘toolkit’ for performing multiple PSO protocols, so
that developers would no longer need to implement completely different designs
for each set operation to achieve optimal efficiency.

Our Contributions. We first address the void in efficient PSU protocols by
developing a new two-party construction, secure against semi-honest adversaries
where only one participant (the client) learns the output. Our design makes use
of similar design structures to previous works such as [9,10,13,17]: the efficient
data structure provided by Bloom filter alongside partially homomorphic encryp-
tion to allow oblivious computation. However our PSU protocol is the first to
demonstrate both linear computation and communication complexities, and as
a result it is immediately more scalable than previous designs. Table 1 provides
an asymptotic comparison of our design with the previous PSU work; we detail
our protocol design in Sect. 3.

Our protocol for computing PSU is very simple, and we show that minor
changes in the computation done by the server (non-output party) can be
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Table 1. Complexities for previous PSU protocols.

Communication Computation Multi-party?

Kissner and Song [18] O(N2n log |E|) O(n2) Y

Brickell and Shmatikov [4] O((n + m) log |E|) O((n + m) log |E|) N

Frikken [13] O(n) O(n log log n) N

Blanton and Aguiar [1] O(N3n log(Nn)) O(N3n log(Nn)) Y

Our work O(n) O(n) N

leveraged to convert the protocol into a PSI or PSI/PSU-CA exchange. These
constructions also have linear complexities putting them in line with current
practical solutions in the wider research area. We give these adaptations in
Sect. 4. Consequently, our work can be viewed as a toolkit for performing the
main set operations that are required by conventional applications. The simplic-
ity of the design means that developers only need to consider implementations
for an additively homomorphic encryption scheme and a Bloom filter. We focus
here on semi-honest adversaries only, but we could ensure security in the mali-
cious setting using a trusted third party, based on similar methods to those
of [8,17]; full details are provided in the extended version of this paper.

In Sect. 5, we demonstrate the concrete practicality of our design by perform-
ing a rigorous experimental analysis using an implementation written in Go. We
show that our designs run with comparable communication overheads and run-
times relative to state-of-the-art PSI protocols. Observe that our construction
provides a much more generic functionality than dedicated PSI protocols and
so we balance out an expensive offline phase, slightly slower running times and
high communication overheads with the ability to perform much more dynamic
computations.

The main bottleneck of our design is provided by the encryption scheme that
we use (Paillier’s [21]). Our protocols are however agnostic to the encryption
scheme used and so any improvements that can be made in this phase will
directly translate to improvements in our PSO design. The simplicity of our
design is highlighted in the small number of lines of code that we require for our
implementation; we plan to make our code open-source in the near future.

2 Preliminaries and Notation

2.1 Notation

We will primarily consider two-party protocols with players P1 and P2 who own
sets S1 and S2, respectively. We may commonly refer to P1 as the ‘client’ and
P2 as the ‘server’ in the interaction. The client typically receives output from
the computation while the server does not.1

1 It is however possible to enforce bilateral output by running the protocol twice and
swapping the roles.
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We commonly denote the cardinalities of the sets by n = |S1| and m = |S2|.
We denote the domain of elements by E, the security parameter by λ and,
when discussing multi-party protocols, the number of players by N , where c <
N denotes the number of corrupted players in a protocol instantiation. When
discussing the use of homomorphic operations over ciphertexts, we use +H when
invoking additions on underlying plaintext data. Section 2.3 fully describes our
notation regarding partially homomorphic encryption (PHE) schemes. For a key
pair (pk, sk) for a public-key encryption scheme, we denote generic encryption
and decryption by Epk and Dsk, respectively.

2.2 Bloom Filters

Bloom filters were first introduced by Bloom in [2] as a lightweight data struc-
ture that allows for the representation of data sets and checking of inclusion
using only hash function evaluations. A Bloom filter is initially represented
by a string of B bits that are all initialised to 0. There are k hash functions
hl : {0, 1}λ �→ {1, . . . , B} for l ∈ {1, . . . , k} published alongside the Bloom fil-
ter. We then represent set elements x ∈ X in the Bloom filter by evaluating
h1(x), . . . , hk(x) and changing each index that these hash functions point to
from 0 to 1. If a value has already been changed to 1, it is left alone. Any party
can use the hash functions to check if an element is stored in the Bloom filter.

Definition 1. (Represented elements). We say that an element, e, is repre-
sented in the Bloom filter, BF, if we have that

BF[hi(e)] = 1, ∀i ∈ {1, . . . , k}

where {h1, . . . , hk} are the hash functions used in conjunction with BF. We say
that the set S is represented by BF if every element e ∈ S is represented in BF.

Optimal Bloom filter parameters. One constraint on Bloom filters is that
they can lead to false positives when checking membership: an element y /∈ X
may appear to be in X after checking all hash outputs if all the values have been
set to 1. However, as shown in [10], if p = 1− (1−1/B)kn is the probability that
any bit in the Bloom filter is set to 1, then the upper bound of the false-positive
probability is given by

ε = pk ×
(

1 + O

(
k

p

√
lnB − k ln p

B

))
,

which is negligible in k, the number of hash functions. In practice one will select
the values of k and B when building a Bloom filter for a set of size n such that ε
is capped at a specific low value (e.g. 2−50). In [10] it is claimed that performance
optimality is achieved when

k =
B

n
ln 2, and B ≥ n log2 e · log2 1/ε, (1)
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where e is the base of the natural logarithm. By minimising B we get the optimal
value of k to be

k = log2 1/ε. (2)

We will assume (as in [10]) that these parameters are always chosen in this way.
The proofs that these values are optimal can be found in [3].

Inverting and Encrypting Bloom Filters. In this work, we use a non-
standard representation of a Bloom filter by inverting each entry prior to encryp-
tion. Also, rather than treating each entry as a bit, we use 0 and 1 elements from
the plaintext space of a given encryption scheme.

Definition 2. (Encrypted Bloom filters). Let BFi be the Bloom filter computed
for the set Si (using hash functions h1, . . . , hk), with B entries. The correspond-
ing encrypted Bloom filter is denoted by EBFi and has B entries where each
entry is defined in the following way:

EBFi[b] = Epk(BFi[b])

for some public key pk. In the following we define EBFi = {C[1], . . . , C[B]} and
for yj ∈ Si, then EBFi[hu(yj)] = C

(j)
u for u = {1, . . . , k} and where hu is the

uth hash function used in computing the original Bloom filter. In this case C
(j)
u

is the ciphertext obtained by querying the uth hash function for EBFi on yj.

Definition 3. (Inverted Bloom filters). Let BFi be a Bloom filter. We define
the corresponding inverted Bloom filter to be IBFi where

IBFi[j] =
{

1 if BFi[j] = 0
0 otherwise.

When referring to an encrypted, inverted Bloom filter we will write EIBFi.

2.3 Partially Homomorphic Encryption

Let (pk, sk) be a key pair for a public-key encryption scheme, and let x̃ = Epk(x)
and ỹ = Epk(y). We say that the encryption scheme is additively homomorphic
if we have the following properties:

– There is a homomorphic addition operation, +H , over x̃ and ỹ such that
Dsk(x̃ +H ỹ) = x + y.

– It is possible to compute x̃ · r, where r is a scalar and Dsk(x̃ · r) = x · r (scalar
multiplication)

Paillier’s encryption scheme [21] is an example of a semantically secure public
key encryption scheme that is additively homomorphic on operations over the
ciphertexts.

We further define a final property of such a scheme, known as ReRand, which
allows a party with knowledge of the public key to re-randomise ciphertexts. We
use this property later in our protocols.
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– ReRand(pk, c): an algorithm that takes the public key pk and a ciphertext c
encrypted under pk as input. The algorithm encrypts the value 0 by comput-
ing Epk(0) = c0 and then outputs c̃ = c +H c0.

Notice that ReRand does not change the value of the underlying plaintext.

2.4 Security Model

Definition 4. (Indistinguishability of distributions). Let X = {Xλ}λ∈S and
Y = {Yλ}λ∈S be probability ensembles indexed by S. We say that these ensembles
are computationally indistinguishable for all probabilistic polynomial time (PPT)
algorithms, {Dn}n∈N, if there exists a negligible function negl : N �→ [0, 1] where

|Pr[Dn(λ,X ) = 1] − Pr[Dn(λ,Y) = 1] | < negl(n) .

In this case we write X � Y .

Let π be a protocol that represents a polynomial-time functionality f . Let Si

be the input set of a participant Pi for i ∈ {1, 2} and let auxi be a set of
auxiliary information that Pi holds. Define the view of the protocol for Pi to be
viewπ

i (S1, S2) = (Inpi, ri, Ti, π(S1, S2)i) where Inpi = (Si, auxi) is the combined
input of Pi to π, ri represents internal coin tosses, Ti are the messages viewed
by Pi and π(S1, S2)i is the output for Pi. We use the following to define security
against semi-honest adversaries.

Definition 5. (Semi-honest security). Protocol π securely computes the func-
tionality f in the presence of static semi-honest adversaries if there exists
polynomial-time simulators Sim1, Sim2 where

{Sim1(Inp1, f(S1, S2))} � {viewπ
1 (S1, S2)},

{Sim2(Inp2, f(S1, S2))} � {viewπ
2 (S1, S2)}.

Intuitively, this states that each party’s view of the protocol can be simulated
using only the input they hold and the output that they receive from the protocol.
Therefore a corrupted party is unable to learn any extra information that cannot
be derived from the input and output explicitly.

3 PSU Protocol

In this section, we detail the construction of our PSU protocol using encrypted
Bloom filters where encryption is performed via an IND-CPA secure AHE
scheme. The homomorphic aspect allows the ‘server’ to evaluate functions over
the ciphertexts without learning anything. Variations of this technique have been
used previously for oblivious polynomial evaluation, for example [12,13].
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3.1 Overview

Both parties receive the k hash functions which are chosen to evaluate the Bloom
filter for elements in the corresponding sets. The elements yj ∈ S2 are assumed
to be represented by elements in ZN .

Additionally, we assume that P1 has a public key pk which is also made
available to P2. P1 also has a secret key sk that they use for decryption. Both
parties also have access to sources of internal randomness that they can use for
computing any tasks that require to sample random values. The following is a
description of how the protocol operates; we provide a diagrammatic overview
of our PSU design in Fig. 1.

Fig. 1. An overview of our πEBF
∪ protocol that uses encrypted, inverted Bloom filters

Protocol Steps. Inputs - P1: [ (pk, sk), S1, |S2| ], P2: [ pk, S2, |S1| ]

1. P1 calculates BF1 representing S1 using the set of hash functions h1, . . . , hk.
They then invert each entry in BF1 to retrieve IBF1.

2. P1 separately encrypts each element IBF1[l] of the inverted Bloom filter,
where 1 ≤ l ≤ B, using pk. P1 now possesses EIBF1, denote EIBF1[l] = C[l].
They send EIBF1 to P2.

3. P2 evaluates each element yj ∈ S2 using the k hash functions and retrieves
{C

(j)
1 , . . . , C

(j)
k } where C

(j)
d = EIBF1[hd(yj)] for j ∈ {1, . . . , m}.

4. P2 computes cj = (C(j)
1 +H . . . +H C

(j)
k ) and sends (p̃j , c̃j) = (ReRand(cj ·

yj),ReRand(cj)) to P1 (in some randomly permuted order).
5. First P1 checks the value of c̃j by computing Dsk(c̃j) = qj . If qj = 0 then

Dsk(p̃j) = 0 so nothing can be learnt. Else Dsk(p̃j) = qj · yj = pj .
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6. P1 computes qj
−1 for qj 	= 0 and then calculates pj · qj

−1 = yj .
7. P1 adds all yj to the set V where qj 	= 0 and outputs the set S1 ∪ V .

Remark 1. We adopt the notation cj · yj for scalar multiplication between a
ciphertext cj and a scalar yj . This preserves the generality of the protocol relative
to the AHE scheme used. However for Paillier encryption this multiplication
would usually be invoked via an exponentiation, i.e. c

yj

j .

Remark 2. It should be noted that the protocol leaks the size of the intersection
cardinality between the players P1 and P2. This is similar to the previous PSU
designs of [1,13,14], and likewise we don’t consider this as a drawback in our
design.

Remark 3. Randomisation of the ciphertexts by P2 prevents yj being inferred
directly from the ciphertext value. Engaging additive homomorphisms is nec-
essarily deterministic by nature, and thus P1 could use knowledge of BF1 and
h1, . . . , hk to learn values in the intersection.

3.2 Protocol Correctness

Since the Bloom filter is inverted before encryption then for any yj ∈ S1 ∩ S2

we have that Dsk(cj) = 0, therefore any message cj · yj that is received for such
a yj also decrypts to 0 and so cannot be learnt. For a value yj /∈ S1 then we
have that Dsk(cj) = 1 < zj < k, then decrypting cj · yj reveals zj · yj and P1

can add all values yj to V by multiplying by z−1
j . Since V contains all values

(yj ∈ S2)∧(yj /∈ S1) then S1∪V = S1∪S2. Correctness is not perfect due to the
possibility of false positives though we can make this negligible in k as discussed
in Sect. 2.2.

3.3 Protocol Security

We show that this protocol is secure with respect to the ideal functionality of a
PSU computation defined by F∪ and the security model defined in Sect. 2.4. For
two parties P1 and P2 with sets S1, S2 respectively, we define the functionality
for the definition to be:

F∪(S1, S2) = S1 ∪ S2. (3)

As the definition suggests we need to show that it is impossible to derive anything
from the execution of the protocol that is not implied by possession of the input
and output of the corrupted player in question.

Theorem 1. Suppose that the protocol, πEBF
∪ , is instantiated with an IND-CPA

secure AHE scheme with re-randomised messages. Then πEBF
∪ securely realises

F∪, as in Eq. (3), in the presence of static semi-honest adversaries.

Proof. We will show that the PSU protocol is secure when P2 is corrupted first,
due to the simplicity of the proof relative to the P1 corruption case. Recall
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that the input for player P1 is Inp1 = (S1, aux1 = |S2| = m) and for P2 it is
Inp2 = (S2, aux2 = |S1|).
Server corrupted. The simulator receives Inp2 = (S2, aux2 = |S1|) and the
messages (T , ∅), where T is the entire message transcript that P2 witnesses and
∅ denotes the empty output received. For P2, T simply contains an encrypted
Bloom filter sent by P1. Therefore, the simulator is only tasked with constructing
an encrypted Bloom filter that is indistinguishable from the one provided in the
real execution. From knowledge of (|S1|, (h1, . . . , hk)) the simulator is able to
construct an empty Bloom filter using the correct parameters and the same
hash functions. The simulator encrypts each entry of the Bloom filter using
the IND-CPA encryption scheme. Let T ′ denote the simulated transcript; both
T and T ′ just contain IND-CPA encrypted Bloom filters. It is trivial to show
that any adversary who can distinguish between these transcripts can break the
IND-CPA security of the encryption scheme.

Client corrupted. The simulator receives Inp1 = (S1, aux1 = |S2|) and the
messages (T , S1∪S2) where T = {(p̃j , c̃j)}j∈[1,m]. It derives |S1∩S2| = I from S1

and |S2|, by calculating |(S1∪S2)\S1| = U and subsequently |S2|−|(S2\S1)| = I.
It constructs I encryptions, cg, of 0 and U encryptions cj = C

(j)
1 +H . . . +H

C
(j)
k computed as in the original protocol using the elements yj ∈ (S1 ∪ S2)\S1

constructed via the output and the input set. Finally, it sends m = I + U
messages in total where I messages are two encryptions of zero and the remaining
U messages are represented by {(p̃j , c̃j)}, let T ′ be the simulated transcript
containing these messages.

It is clear that the adversary learns the same union output in the case of
T ′ since messages are constructed identically as in the real-setting. Notice that
in the real-world execution the ciphertexts (p̃j , c̃j) are re-randomised after per-
forming homomorphic additions and thus are indistinguishable from brand new
encryptions. Since T ′ only differs in that each message is a fresh encryption, we
can show that any adversary that can distinguish T with non-negligible advan-
tage must break the security of the encryption scheme after re-randomisation.
However, if an adversary is able to do this then they must break its IND-
CPA security since re-randomising involves multiplying with a freshly encrypted
ciphertext. As a consequence, the simulated transcript must be indistinguishable
in its encrypted form from T by the IND-CPA security of the encryption scheme.
Since the correctness of the simulation holds this means that no adversary that
can distinguish between the two real and simulated cases must exist. ��

Malicious Security. It was shown in previous works [8,17] that it is possible
to prove security against malicious adversaries relating to input privacy. Broadly
speaking, P1 presents their set to a trusted certificate authority who verifies that
it is honestly generated before creating an encrypted Bloom filter and signing it.
When P2 receives the Bloom filter, they verify the signature before computing the
functionality above. This prevents P1 from creating an adversarially generated
Bloom filter that would potentially reveal the entirety of S2. Since this method
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requires a trusted third party, this enhanced protocol can be thought of as an
authenticated PSU design. This argument also applies for the PSI and PSI/PSU-
CA protocol variants. We do not provide the full details here but a discussion
will appear in an extended edition of this paper.

3.4 Asymptotic Efficiency

Communication Complexity. In the first round of our protocol, P1 sends B
ciphertexts to P2. By Eq. (1) we have that B = nk log e. By choosing a constant
false-positive probability for ε we also render k as a constant and so O(n) total
ciphertexts are sent.

In the second round, P2 sends 2m ciphertexts to P1 and so clearly we have
communication O(m) here. If we assume, as in previous works, that n = m then
the total communication complexity is given by O(n).2

Computational Complexity. P1 computes B encryptions and 2m decryptions
(in the worst case). P1 must also compute m inverses of group elements, though
techniques for doing this are very efficient. In practice, we can also reduce the
number of decryptions by not computing Dsk(p̃j) if Dsk(c̃j) = 0. On average
this will lead to savings that are proportional to the size of the intersection.

P2 will compute m(k + 1) homomorphic additions and so, by the choice of
k, the work done by both parties is linear in m. Assuming that n = m we get
that computation comprises O(n) operations. The protocols of [1,4,13,14,18] all
exhibit computational complexities that are super-linear in n, by comparison.

4 Adaptations to PSI and PSI/PSU-CA

An attractive feature of our simple protocol construction is the ease that we can
adapt the design to securely compute different set operations. Here we consider
the widely used operations PSI and PSI/PSU-CA and how we can adapt our
technique for securely computing PSU to compute these functionalities instead.
We define the ideal functionalities for PSI (F∩) and PSI-CA (F|∩|) as:

F∩(S1, S2) = S1 ∩ S2, F|∩|(S1, S2) = |S1 ∩ S2| (4)

(with F|∪| defined analogously). We will prove the security of our designs with
respect to these functionalities.

4.1 PSI Protocol

A PSI protocol can be constructed using the same inverted Bloom filter and
AHE scheme that we use for the PSU variant, the only thing that change are

2 This can be easily done by padding the smaller of the two sets up to the size of the
larger one.
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the messages that P2 computes. First, P2 computes cj = C
(j)
1 +H . . . +H C

(j)
k as

before, for each yj ∈ S2 and thus:

cj =
{

Epk(0) if yj ∈ S1

Epk(zj) if yj /∈ S1

where 1 ≤ zj ≤ k is the number of encryptions of 1 corresponding to yj . P2 then
sends the messages (ReRand((rj · cj) +H Epk(yj)),ReRand(cj)) (for randomly
sampled rj) to P1. Recall that P1 should only learn those yj that satisfy yj ∈ S1

since the operation is a set intersection. In the case where yj /∈ S1, we have
that P1 receives encryptions of the pair ((rj · zj) + yj , zj). Since rj is a random
mask, intuitively P1 is unable to learn the value yj . When yj ∈ S1 they receive
encryptions of (yj , 0), where clearly they can learn yj . Figure 2 gives an overview
of this protocol.

Fig. 2. A protocol that securely realises F∩ in a similar way to πEBF
∪ .

Protocol Correctness. The correctness of the protocol follows since P1 out-
puts those yj such that cj is an encryption of 0, since this allows for P1 to
decrypt p̃j to retrieve yj . This only occurs when yj ∈ S1 (with respect tot he
false-positive probability). Moreover, when yj /∈ S1 they receive a randomly
masked decryption and so yj cannot be learnt.

Protocol Security.

Theorem 2. Suppose that the protocol, πEBF
∩ , is instantiated with an IND-CPA

secure, AHE scheme with re-randomised messages. Then πEBF
∩ securely realises

F∩ in the presence of static semi-honest adversaries.
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Proof. The security argument when P2 is corrupted is identical to the one shown
in Theorem 1 since the encrypted Bloom filter is unchanged. For the corruption
of P1 we note that the security relies now on P1 not being able to learn elements
y′

j /∈ S1 ∩ S2 in order to realise F∩ securely. The simulator receives the input
Inp1 = (S1, aux1 = |S2|) and the messages (T , S1 ∩ S2). The transcript contains
m pairs of encryptions {(p̃j , c̃j)}j of the form (rj · cj +H Epk(yj), c̃j).

Let I = |S1 ∩ S2| and J = |S2| − I. The simulator encrypts the I elements
in S1 ∩ S2 along with I encryptions of 0 for the messages that the adversary
should learn. They then sample J random elements r′

i and random 1 ≤ z′
i ≤ k

for 1 ≤ i ≤ J and compute their encryptions. They shuffle the order of the entire
set of ciphertexts and submit pairs (p̃′

j , c̃
′
j) for j ∈ [1,m] to P1.

By a similar argument to the PSU security proof, the re-randomisation pro-
cedure means that P1 cannot learn anything from the ciphertexts themselves.
Therefore, the only situation where the adversary can distinguish is if they can
learn a different output. Note that there are I encryptions of (yj , 0) which cor-
respond exactly to those yj ∈ S1 ∩ S2. Therefore, we only have to show that the
adversary cannot distinguish between the decrypted values ((rj ·zj)+yj , zj) and
(r′

j , z
′
j) from the real and simulated worlds respectively.

Since rj is a random mask, (rj · zj) + yj is also randomly distributed across
the domain. Therefore, this is identically distributed to the decrypted value r′

j

and thus P1 cannot distinguish these two values. Furthermore, as long as z′
j is

chosen such that it mirrors the probability distribution of values given in BF 1

then this should also be indistinguishable. Finally note that this distribution is
entirely public since the simulator can construct the Bloom filter from knowledge
of S1 and h1, . . . , hk. ��

4.2 PSI/PSU-CA Protocol

We can make use of the fact that by calculating one of PSI-CA or PSU-CA then
we can calculate the other using the following relation:

|X ∩ Y | = |X| + |Y | − |X ∪ Y | (5)

and thus we can concentrate on only computing one of the operations. We can
create a secure protocol, πEBF

|∩| , for calculating PSI-CA by adapting the protocol
πEBF

∪ to have P2 to just send the message (c̃j) where cj is calculated in the same
way as the previous protocols and c̃j = ReRand(cj ·rj). We compute c̃j using the
ability to compute scalar multiplications on cj and where rj is some randomly
chosen non-zero integer. We need to mask cj in this way since only adding an
encryption of zero as before would reveal extra information to P1 on decryption.

The protocol proceeds in the same way except that P1 only decrypts c̃j . If
Dsk(c̃j) = 0 then they increment a counter c. Once all c̃j have been decrypted
then P1 outputs c as the answer. For PSU-CA they compute the count of c̃j that
do not decrypt to 0 and then output |S1| + c.
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Protocol Correctness. Correctness is satisfied since Dsk(c̃j) = 0 if and only
if yj ∈ S1 (and thus yj ∈ S1 ∩ S2) with all but the negligible probability of a
false positive occurring.

Protocol Security.

Theorem 3. Suppose that the protocol, πEBF
|∩| , is instantiated with an IND-CPA

secure AHE scheme and that ciphertexts are re-randomised. Then πEBF
|∩| securely

realises F|∩| in the presence of static semi-honest adversaries.

Proof. The proof for security here is encompassed by the previous security argu-
ments, we provide a sketch proof only due to space constraints. The case where P2

is corrupted is covered as before. The simulator can construct the required num-
ber of encrypted values based on knowledge of the output. The adversary cannot
distinguish the real and simulated encrypted formats due to the re-randomisation
of ciphertexts. The decrypted values reveal nothing apart from the cardinality
of the set (which holds by correctness) since the simulator applies an identical
random mask to each concealed value. ��

4.3 Asymptotic Evaluation

It is easily observable that the asymptotic performance of these two adaptations
is essentially the same as the PSU variant. The cardinality variant is slightly
more efficient since P2 sends half as many ciphertexts and computes less homo-
morphic operations. Likewise the PSI variant requires that P2 compute m fresh
encryptions, on for each yj . Fortunately this cost is absorbed into the O(n)
computation cost when taking n = m.

In Table 2, we provide a comparison of the asymptotic performance with the
most efficient cardinality protocols. We do not provide the same analysis for
our PSI protocol due to the relative density of results with similar complexi-
ties, though our design is asymptotically competitive with the most practical
designs. We also provide a comparison of our toolkit with previous designs by
Kissner and Song [18]. Our work improves demonstrably from their designs in
both communication and computation. More recent attempts to provide multiple
functionalities [1,14] also fall short of realising linear computational complexities
and so our toolkit is asymptotically optimal in comparison with these previous
works.

5 Experimental Evaluation

Parameter choices. To fully evaluate the practicality of our designs we present
the results of an implementation of the proposed protocols. The implementations
are written in Go and all experiments have been run on hardware with 256 gb
RAM with an Intel(R) Xeon(R) CPU E5-2667 v2 @ 3.30 GHz and utilising a
maximum of 8 cores (when parallel computation is required). We instantiate the
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Table 2. Left: Comparison of our PSI/PSU-CA protocols with [5,11]. Right: Com-
parison of our complexities with the protocols of [18].

Communication Computation

[5] O(n) O(n)
[11] O(B) O(B)

πEBF
|∩| /πEBF

|∪| O(n) O(n)

Communication Computation

[18]
PSI O(cNn log |E|) O(n2)
PSU O(N2n log |E|) O(n2)

PSI/PSU-CA O(N2n log |E|) O(n2)

πEBF
PSI 2n + B O(n)
PSU 2n + B O(n)

PSI/PSU-CA n + B O(n)

protocol with an open-source implementation of Paillier encryption in Go, known
as go-go-gadget-paillier3 with optimisations4 to provide the homomorphic
capability over ciphertexts. We provide our own implementation of the encrypted
Bloom filter functionality. Our PSO implementation requires only 425 lines of
code.

For the experiments, we examine running times for sets sizes ranging from
28 to 218 elements; these sizes are used commonly in prior work. We choose a
false positive probability of ε = 2−30 alongside the choice of optimal parameters
for our Bloom filter as described in Sect. 2.2 – for example k = 30 and thus
B = kn log e by Eq. (1) for sets of size n. For the Paillier encryption scheme we
experiment with moduli N with bit-lengths 1024 and 2048 roughly equivalent
to 80 and 116 bit security. We chose the domain of possible elements to be 5n
where n is the set size and we choose the sets at random from this domain. This
choice was made merely to guarantee that the size of the intersection is not too
low, ensuring a realistic simulation. During our experimentation we make use
of concurrency features in Go to make significant savings via parallel execution
of operations. Times were ∼3× quicker using parallel execution and thus we do
not present our single-threaded results.

5.1 Results

In Table 3 we give the full runtimes for our PSO protocols. Table 5 provides the
maximum amount of communication data5 and in Table 4 we provide the time
taken for the initial encryption. For reference, in Appendix A, we provide com-
parisons with efficient PSI designs [7,10,16]. The existing works of [19,22,23]
provide even faster designs though these use inherently symmetric primitives
which are not comparable with our work. It should be noted however that our
designs represent a much more generic functionality since we can compute multi-
ple set operations. These previous designs are only suitable for PSI computation.
There are no current implementations of PSU designs for an experimental com-
parison.
3 github.com/roasbeef/go-go-gadget-paillier.
4 github.com/mcornejo/go-go-gadget-paillier.
5 We do not provide estimates for the 2048 bit case since they are derivable by doubling

the 1024 bit estimates.

https://github.com/roasbeef/go-go-gadget-paillier
https://github.com/mcornejo/go-go-gadget-paillier
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Clearly, there is a large gap in efficiency between our protocols and those of
state-of-the-art PSI designs. However, observe that the majority of our running
times are spent on encrypting the initial Bloom filter that is sent to P2. In
fact, the homomorphic operations and output computation each take <5% of
all operating runtime for all set sizes. Subsequently, we can see that the actual
online phase of our protocol could be regarded as practical. As a consequence,
the main bottleneck of our design appears to be the encryption phase and thus
any optimisation in the underlying encryption scheme would drastically improve
the practicality of our construction.

Table 3. Runtimes (secs) for increasing set sizes, left = 1024-bit moduli, right = 2048-
bit. ‘Hom. ops’ refers to time taken for homomorphic operations; ‘Out time’ refers to
time taken to compute output; ‘Full time’ includes time for encryption from Table 4.

Set size Timings PSU PSI CA

28
Hom. ops 0.49 0.5 0.5
Out time 0.56 0.54 0.55
Full time 11.78 11.76 11.75

210
Hom. ops 1.94 1.96 1.95
Out time 2.21 2.2 2.22
Full time 44.73 44.68 44.7

212
Hom. ops 7.82 7.82 7.87
Out time 8.61 8.74 8.86
Full time 175.7 175.79 175.96

214
Hom. ops 31.37 31.32 31.59
Out time 35.78 34.9 35.48
Full time 702.4 702.39 703.24

216
Hom. ops 126.16 127.43 127.01
Out time 141.72 138.82 141.76
Full time 2836.5 2834.68 2837.19

218
Hom. ops 510.19 503.95 508.53
Out time 536.48 556.72 556.05
Full time 11341.2 11327.78 11331.67

Set size Timings PSU PSI CA

28
Hom. ops 3.33 3.36 3.33
Out time 3.66 3.55 3.58
Full time 78.02 77.76 77.76

210
Hom. ops 13.45 13.33 13.44
Out time 14.77 14.26 14.31
Full time 312.44 311.61 311.76

212
Hom. ops 52.97 53.41 53.15
Out time 55.59 57.98 56.44
Full time 1233.59 1235.69 1233.84

214
Hom. ops 212.33 212 212.55
Out time 228.13 223.31 225.11
Full time 4952.94 4947.32 4949.66

216
Hom. ops 856.27 859.67 857.9
Out time 902.81 906.9 907.27
Full time 19881.51 19888.79 19887.17

218
Hom. ops 3411.87 3416.9 3419.2
Out time 3580.25 3595 3575.94
Full time 79272.48 79290.82 79274.15

Table 4. Encryption times (sec)

28 210 212 214 216 218

1024 bits 10.7 40.53 159.23 636.17 2568.41 10267.03

2048 bits 70.85 284.02 1124.3 4512 18122 72278.95

Table 5. Maximum communication costs (mb) for our protocols for 1024 bit security.

Set sizes 28 210 212 214 216 218

Comms (mb) 2.83 11.32 45.28 181.12 724.49 2897.97
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5.2 Amortising Bloom Filter Encryption

Importantly, we can think of the Bloom filter encryption phase as an offline cost.
By encrypting with an additively homomorphic scheme, we are able to retain
functionality of the Bloom filter even after encryption has took place. Notice
that the encrypting party is only required to store new elements, and recall that
it is impossible to remove elements even from a standard Bloom filter. After a
Bloom filter has been encrypted elements can still be added to the set by adding
‘1’ to any specified ciphertext that currently encrypts ‘0’.

Using this homomorphic property allows us to amortise the encryption oper-
ation over the natural life of a Bloom filter (i.e. until the underlying set has to
be recomputed, or the maximum number of elements has been reached). Con-
sequently, it is reasonable to suggest that the encryption phase of our protocol
can be thought of as a one-time cost. The encrypted Bloom filter could then be
used in multiple PSO instantiations, as long as re-randomisation of ciphertexts
takes place. The ‘online’ phase of our protocol is very efficient to run and so it
is an advantageous feature of our design that the main cost can be amortised
across several instantiations.

6 Conclusion

In this paper we have devised a new method of computing the main private set
operations with linear complexities. Our PSU protocol is the first construction
that demonstrates both linear computation and communication. We have also
shown that the design is easily adapted to support other private set functional-
ities. Finally, our experimental work shows the practicality of our protocols in
the online phase. Our designs provides therefore an efficient toolkit for generic
PSO computations.

Acknowledgements. The authors would like to thank Sumit Debnath, Mikkel
Lambaek and Claudio Orlandi for their help in establishing problems with previous
versions of this work. This work was supported by the EPSRC and the UK Govern-
ment as part of the Centre for Doctoral Training in Cyber Security at Royal Holloway,
University of London (EP/K035584/1).

A Runtimes and Communication from Previous Work

See Tables 6 and 7.
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Table 6. Runtimes (seconds) taken from [23]

Security level 80-bit 128-bit

Set sizes 210 212 214 216 218 210 212 214 216 218

De Cristofaro and Tsudik [7] 0.5 2.0 7.9 31.3 124.9 7.7 31.0 124.3 497.2 1982.1

Huang et al. [16]a 1.2 5.1 21.2 100.3 462.7 1.9 7.8 36.5 168.9 762.4

Dong et al. [10]a 0.15 0.5 2.0 8.1 34.3 0.27 1.0 4.1 16.7 67.6
aWith optimisations from [23]

Table 7. Communication costs (mb) taken from [23]

Security level 80-bit 128-bit

Set sizes 210 212 214 216 218 210 212 214 216 218

De Cristofaro et al. [7] 0.3 1.1 4.3 17.3 69.0 0.8 3.1 12.5 50.0 200.0

Huang et al. [16]a 18.8 90.0 420.0 1920.0 8640.0 30.0 144.0 672.0 3072.0 13824.0

Dong et al. [10]a 1.1 4.5 18.1 72.6 290.4 2.9 11.6 46.2 184.9 739.7
aWith optimisations from [23]
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Abstract. Secret handshake allows a group of authorized users to estab-
lish a shared secret key and at the same time authenticate each other
anonymously. A straightforward approach to design an unlinkable secret
handshake protocol is to use either long-term certificate or one-time cer-
tificate provided by a trusted authority. However, how to detect the
misusing of certificates by an insider adversary is a challenging security
issue when using those approaches for unlinkable secret handshake. In
this paper, we propose a novel k-time authenticated secret handshake
(k-ASH) protocol where each authorized user is only allowed to use
the credential for k times. We formalize security models, including ses-
sion key security and anonymity, for k-ASH, and prove the security of
the proposed protocol under some computational problems which are
proved hard in the generic bilinear group model. The proposed protocol
also achieved public traceability property if a user misuses the k-time
credential.

Keywords: Unlinkable secret handshake · Insider adversary · k-time
authentication · Public traceability · Generic bilinear group model

1 Introduction

Secret handshake is a useful cryptographic primitive and has been extensively
studied in the literature. It allows an authorized user to share a secret key with
others without revealing their real identities. The following scenario can clarify
its practicality. A FBI agent wants to contact with another agent, and both
of them do not want to disclose their identity information during interaction.
The only information they need to know is the peer belongs to the same agent
system. There have been two types of unlinkable secret handshake system in the
literature: one is based on the long-term certificate (e.g., [14,15]), and the other
is based on one-time certificate (e.g., [16]). In the former type, the authorized
user generates the shared secret value using the secret long-term certificate given
by a trusted authority (TA) of the organization. In the latter type, the long-term
c© Springer International Publishing AG 2017
J. Pieprzyk and S. Suriadi (Eds.): ACISP 2017, Part II, LNCS 10343, pp. 281–300, 2017.
DOI: 10.1007/978-3-319-59870-3 16
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secret value will be replaced by a set of one-time certificates and the authorized
user will use one of them for unlinkable secret handshake in each session.

For the long-term certificate, an authorized user is allowed to reuse the given
certificate when establishing a secret value with another authorized user. For
example, the given secret certificate is blended with Diffie-Hellman key exchange,
in order to generate a secret key with forward secrecy (e.g., [14,15]). Since the
same certificate is used everytime, how to ensure the unlinkability is the major
challenge in the protocol design. On the other hand, the one-time certificate
approach (e.g., [16]) can address the unlinkability easily since each certificate is
supposed to be used only once. Nevertheless, none of the previous approaches
has considered the issue of misusing of certificates. We should note that for the
one-time certificate schemes, the user is supposed to use each certificate once.
However, reusing the given one-time certificates is a security issue that has not
been formally considered in the previous works.

We give an example where misusing of the certificates (or credentials) should
be prevented in secret handshake in some scenarios. Suppose there are n players
subscribed to a real-time gaming system. Each user will obtain a set of k creden-
tials from the game server after paying a subscription fee that is proportional
to k. The players can form ad-hoc groups to play the game and a player can
join a gaming session using one credential at a time. In order to ensure that
only registered players are eligible to communicate with the peers, the players
should generate a common session key to protect the communication. Also, it is
desirable that the players cannot recognize each other except the fact that they
are all legitimate subscribers of the system. Therefore, we may use a multi-party
secret handshake protocol to achieve the security and privacy goals. However,
in this example, a malicious player may try to reuse his credentials to continue
playing the game without topping up extra money after all the credentials are
used up. Therefore, it is important to identify such cheating players who reuse
their one-time credentials. However, we found that the misusing of credentials
has not been formally addressed in the previous secret handshake schemes. In
this paper, we focus on addressing the credential misusing problem under the
one-time certificate setting, and leave the task of designing such a scheme under
the long-term certificate setting as our future work.

1.1 This Work

In this paper, we introduce the notion of k-time authenticated secret handshake
(k-ASH), allowing all authorized users in a system to agree on a common secret
value anonymously while preventing them from misusing their credentials issued
by a trusted party of the system. Our contributions can be summarized as fol-
lows:

1. We present the formal security definition for k-time ASH protocol. In par-
ticular, we extend the eCK model [21] to define session key security and a
variant of Juels-Weis privacy model [17] to define user anonymity.
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2. We present a new unlinkable k-time ASH using anonymized Schnorr signature
[22] and tag bases [25] to trace the cheating users who reuse their one-time
credentials.

3. We prove a variant of the Computational Diffie-Hellman problem (VoCDH)
and an extension of Decisional Combined Bilinear Diffie-Hellman problem
(EVoDCBDH) [27] in the generic bilinear group model, and prove the security
of the new k-time ASH protocol under these assumptions.

1.2 Related Work

Key Exchange. Bellare and Rogaway [6] introduced the first complexity-
theoretic security model for key exchange under the symmetric-key setting.
The model was later extended and enhanced under different contexts [2,5,7].
Canetti and Krawczyk [11] later refined the previous models and proposed a
new model, known as the CK model, which is widely used in the analysis of
many well-known key exchange protocols. Some variants [20,21] of CK model
were also proposed to allow an adversary to obtain either long-term secret key or
ephemeral secret key of the challenge session. Burmester and Desmedt [10] (BD)
introduced several key exchange protocols in the multi-party setting, including
star-based, broadcast-based, tree-based, and cyclic-based protocols. Later, a few
generic transformations [8,18,19] were proposed to convert passive-secure group
key exchange protocols into active-secure ones.

Secret Handshakes. Balfanz et al. [1] introduced the concept of secret hand-
shake that allows any users in the same group to generate a shared value secretly
using the long-term certificate approach. Afterwards, Castelluccia et al. [12] con-
structed a more efficient scheme than [1] under the standard Computational
Diffie-Hellman Assumption. But both schemes did not provide the unlinkability
property. In [26], Xu and Yung provided an unlinkable scheme but with weaker
anonymity, named k-unlinkability, which means in the worst case, an adversary
can infer that a participant is one out of certain k users. For achieving the full
anonymity, Jarecki et al. [16] proposed two group secret handshake protocols
using the BD group key agreement protocol (e.g., [10]). In particular, the second
construction in [16] used one-time certificate to achieve full anonymity under the
Gap Diffie-Hellman Assumption. Meanwhile, several secret handshake protocols
have been proposed in the literature (e.g., [14,15]) which achieved full anonymity
without using one-time certificate. The protocol in [15] and the improvement
protocol in [14] are long-time certificate based, and both of them are allowed to
reuse the given certificate with unlimited number of times.

2 Security Model

In this section, we present the security models for k-ASH. As mentioned in the
introduction, a secure k-ASH protocol should achieve both session key security
and anonymity. Below we present the corresponding security models to capture
the above requirements. Specifically, the session key security model is a modified



284 Y. Tian et al.

version of eCK model [21], which is an extension of CK model [11] in the secret
handshake setting, while the anonymity model is extended from the privacy
models ([17,24]) for RFID authentication protocols.

States. We define a system user set U with n users, i.e. |U| = n. We say an
oracle Πi

U may be used or unused. The oracle is considered as unused if it has
never been initialized. Each unused oracle Πi

U can be initialized with a secret
key x. The oracle is initialized as soon as it becomes part of a group. After
the initialization the oracle is marked as used and turns into the stand-by state
where it waits for an invocation to execute a protocol operation. Upon receiving
such invocation the oracle Πi

U learns its partner identifier pidi
U and turns into

a processing state where it sends, receives and processes messages according to
the description of the protocol. During that stage, the internal state information
statei

U is maintained by the oracle. The oracle Πi
U remains in the processing state

until it collects enough information to compute the session key Ki
U . As soon as

Ki
U is computed Πi

U accepts and terminates the protocol execution meaning
that it would not send or receive further messages. If the protocol execution fails
then Πi

U terminates without having accepted.

Partnering. We denote the i-th session established by a user U by Πi
U , and

identities of all the users recognized by Πi
U during the execution of that session

by pidi
U . We define sidi

U as the unique session identifier belonging to the session
i established by the user U . Specifically, sidi

U = {mj}n
j=1, where mj ∈ {0, 1}∗ is

the message transcript among users. We say two instance oracles Πi
U and Πj

U ′

are partners if and only if pidi
U = pidj

U ′ and sidi
U = sidj

U ′ .

2.1 System Model

We define a k-time authenticated secret handshake protocol consists of the fol-
lowing algorithms:

– Setup: The algorithm takes the security parameter λ as input, outputs the
master public parameters mpk (including the k-time tag bases) and the mas-
ter secret keys msk.

– KeyGen: The algorithm takes the master public key mpk as input, outputs a
public/secret key pair (X,x).

– Register: This is an interactive algorithm that executed between the user and
the TA. TA takes the master secret key msk and a public key X of one user
as input, outputs a set of credentials {si}k

i=1 on X. The user will become a
registered user after interaction with TA.

– Handshake: This is an interactive algorithm that executed by registered users.
Each user takes his/her secret key x, one of his/her credentials {si}k

i=1 and
mpk as input, outputs a shared secret key K if and only if his/her counterparts
are registered users.

– Tracing: The algorithm takes two handshake transcripts of one user and one
of tag bases as input, outputs the user’s public key X.



Privacy-Preserving k-time Authenticated Secret Handshakes 285

2.2 Session Key Security

We define the session key security model for k-ASH protocols, in which each user
obtains a set of credentials associated with his/her public key from the TA, and
establishes a session key using one of the given secret credentials in one session.
The model is defined via a game between a probabilistic polynomial time (PPT)
adversary A and a simulator S. A is an active attacker with full control of the
communication channel among all the users.

– Setup: S first generates master public/secret key pair (mpk,msk) for the TA
and long-term secret keys {xi}n

i=1 for n users by running the corresponding
KeyGen algorithms, where xi denotes the secret key of user i. In addition, S
generates a set of secret credentials {si,j}k

j=1 for user i by running the Register
algorithm. S also tosses a random coin b which will be used later in the game.
Let U denote all the registered users.

– Training: A can make the following queries in arbitrary sequence to simula-
tor S.

• Establish: A is allowed to register a user U ′ with public key X ′
i. If a user is

registered by A, then we call this user dishonest ; Otherwise, it is honest.
• Send: If A issues send query in the form of (U, i,m) to simulate a network

message for the i-th session of user U , then S would simulate the reaction
of instance oracle Πi

U upon receiving message m, and returns to A the
response that Πi

U would generate; If A issues send query in the form of
(U,′ start′), then S creates a new instance oracle Πi

U and returns to A
the first protocol message.

• Session key reveal: A can issue reveal query to an accepted instance oracle
Πi

U . If the session is accepted, then S will return the session key to A;
Otherwise, a special symbol ‘⊥’ is returned to A.

• Ephemeral secret key reveal: If A issues an ephemeral secret key reveal
query to (possibly unaccepted) instance oracle Πi

U , then S will return
all ephemeral secret values contained in Πi

U at the moment the query is
asked.

• long term secret key reveal: If A issues a long term secret key reveal (or
corrupt, for short) query to user i, then S will return both the long term
secret key and the secret credential set (xi, {si,j}k

j=1) to A.
• Master secret key reveal: If A issues a master secret key reveal query to

TA, then S will return the master secret keys msk to A.
• Test: This query can only be made to an accepted and fresh (as defined

below) session i of a user U . Then S does the following:
* If the coin b = 1, S returns the real session key to the adversary;
* Otherwise, a random session key is drawn from the session key space

and returned to the adversary.
Note that A can generate a set of secret credentials {si,j}k

j=1 of user i
after issuing Master secret key reveal query to TA. It is also worth noting
that A can continue to issue other queries after the Test query. However,
the test session must maintain fresh throughout the entire game.
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Finally, A outputs b′ as its guess for b. If b′ = b, then the simulator outputs
1; Otherwise, the simulator outputs 0.

Freshness. We say an accepted instance oracle Πi
U is fresh if A does not perform

any of the following actions during the game:

– A issues Session key reveal query to Πi
U or its accepted partnered instance

oracle Πj
U ′ ;

– A issues both Long term secret key reveal query to U ′ s.t. U ′ ∈ pidi
U and

Ephemeral secret key reveal query for an instance Πj
U ′ partnered with Πi

U ;
– A issues Long term secret key reveal query to user U ′ s.t. U ′ ∈ pidi

U prior to the
acceptance of instance Πi

U and there exists no instance oracle Πj
U ′ partnered

with Πi
U .

Note that the Master key reveal query to TA is equivalent to the Long term
secret key reveal to all users in pidi

U .

We define the advantage of an adversary A in the above game as

AdvA(λ) = Pr[S → 1] − 1/2. (1)

Definition 1. We say a k-ASH protocol has session key security if for any PPT
A, AdvA(λ) is a negligible function of the security parameter λ.

2.3 Anonymity

Informally, an adversary is not allowed to identify who are the handshake users,
with the condition that honest users authenticate with each other within k times.
We define a game between an insider adversary A and a simulator S as follows:

– Setup: S generates master public/secret key pairs (mpk,msk) for the TA and
long term secret keys {xi}n

i=1 for n users by running the corresponding KeyGen
algorithms. In addition, S generates a set of secret credentials {si,j}k

j=1 for
user i by running the Register algorithm. S also tosses a random coin b which
will be used later in the game. We denote the original n users set as U .

– Training: A is allowed to issue Establish, Send, Ephemeral secret key reveal,
Session key reveal and at most n-2 Long term secret key reveal queries to S.
We denote the honest (i.e., uncorrupted) user set as U ′.

– Challenge: A randomly selects two users Ui, Uj ∈ U ′ as challenge candidates,
then S remove them from U ′ and simulates U∗

b to A by either U∗
b = Ui if

b = 1 or U∗
b = Uj if b = 0.

Let A interact with U∗
b . Note that A is allowed to activate at most k sessions

for Ui, Uj throughout the entire game.

A ⇔ U∗
b =

{
Ui b = 1
Uj b = 0

Finally, A outputs b′ as its guess for b. If b′ = b, then the simulator outputs
1; Otherwise, the simulator outputs 0.
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We define the advantage of A in the above game as

AdvA(λ) = Pr[S → 1] − 1/2. (2)

Definition 2. We say a k-ASH protocol has anonymity if for any PPT A,
AdvA(λ) is a negligible function of the security parameter λ.

3 Our Construction

3.1 Preliminaries

Bilinear Map. The bilinear map ê : G × G → G1 has the following properties:

1. Bilinearity: ê(gαi , gαj ) = ê(g, g)αi·αj : ∀αi, αj ∈ Zq, g ∈ G.
2. Non-degeneracy: ê(g, g) �= 1.
3. Computable: There exists an efficient algorithm for computing the bilinear

map.

Note that the map ê is symmetric since ê(gαi , gαj ) = ê(g, g)αi·αj = ê(gαj , gαi).

3.2 Modified Computational Diffie-Hellman Problem

Definition 3 Computational Diffie-Hellman (CDH) Assumption [20]:
Given g, ga, gb ∈ G where a, b ∈R Zq, we define the advantage of the adversary
in solving the CDH problem as

AdvCDH
A (λ) = Pr[A(g, ga, gb) = gab ∈ G]

We say a CDH assumption holds in group G if for any PPT A, AdvA(λ) is a
negligible function of the security parameter λ.

We propose a variant of computational diffie-hellman problem (VoCDH) below.

Definition 4. Given g, ga, g1/a, gb ∈ G where a, b ∈R Zq, we define the advan-
tage of the adversary in solving the VoCDH problem as

AdvV oCDH
A (λ) = Pr[A(g, ga, g1/a, gb) = gab ∈ G]

We prove the above VoCDH problem is hard in G with a bilinear map ê :
G × G → G1 in the generic bilinear group model [9,23].

Theorem 1. Let ε1, ε2 : Fp → {0, 1}∗ be two random encodings (injective func-
tions) where Fp is a prime field and G = {ε1(a)|a ∈ Fp},G1 = {ε2(a)|a ∈ Fp}.
If a, b are uniformly and independently chosen from Fp and encodings ε1, ε2 are
randomly chosen, we then define the advantage of the adversary in solving the
VoCDH with at most q, q1 queries to the group operation oracles O,O1 and qê
queries to the bilinear pairing oracle Oê : ε1 × ε1 → ε2 as

AdvV oCDH
A (λ) = Pr[A(ε1(1), ε1(a), ε1(b), ε1(a−1))

= ε1(a · b)] ≤ 4(q + q1 + qê + 4)2

p
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Proof. Let S be the simulator to simulate the entire game for A. S maintains
two polynomial sized dynamic lists: L1 = {(pi, ε1,i)}, L2 = {(qi, ε2,i)}, the pi ∈
Fp[X1,X2] are 2-variate polynomials over Fp, such that p0 = 1, p1 = X1, p2 =
X2, p3 = Xp−2

1 , and {ε1,i}3i=0 ∈R {0, 1}∗ are corresponding arbitrary strings, S
then sets those pairs (pi, ε1,i) as L1. Therefore, the two lists are initialised as
L1 = {(pi, ε1,i)}3i=0, L2 = ∅.

At the beginning of the game, S sends {ε1,i}i=0,··· ,3 to A. After this, S
simulates the group operation oracle O,O1 and the bilinear pairing oracle Oê as
follows. We assume that all requested operands are obtained from S.

– O: The group operation involves two operands ε1,i, ε1,j . Based on these
operands, S searches the list L1 for the corresponding polynomials pi and
pj . Then S perform the polynomial addition or subtraction pl = pi ± pj

depending on whether multiplication or division is requested. If pl is in the
list L1, then S returns the corresponding εl to A. Otherwise, S uniformly
chooses ε1,l ∈R {0, 1}∗, where ε1,l is unique in the encoding string L1, and
appends the pair (pl, ε1,l) into the list L1. Finally, S returns ε1,l to A as the
answer. Group operation queries in G1 (i.e., O1) is treated similarly.

– Oê: The group operation involves two operands ε1,i, ε1,j . Based on these
operands, S searches the list L1 for the corresponding polynomials pi and
pj . Then S perform the polynomial multiplication pl = pi · pj . If pl is in the
list L2, then S returns the corresponding ε2,l to A. Otherwise, S uniformly
chooses ε2,l ∈R {0, 1}∗, where ε2,l is unique in the encoding string L2, and
appends the pair (pl, ε2,l) into the list L2. Finally, S returns ε2,l to A as the
answer.

After querying at most q, q1, qe times of corresponding oracles, A terminates
and outputs ε1(x1 · x2). At this point, S chooses random a, b ∈R Fp and sets
X1 = a,X2 = b. The simulation by S is perfect unless the abort event happens.
Thus, we bound the probability of event abort by analyzing the following cases:

1. pi(a, b) = pj(a, b): Since pi �= pj as the method of L1 is generated, pi − pj

is a non-zero polynomial of degree 0, 1, or p − 2 where p − 2 is produced by
Xp−2

1 . Since X1 ·Xp−2
1 = Xp−1

1 ≡ 1 (mod p), we have X1(pi−pj) is a non-zero
polynomial of degree 0, 1, or 2. Therefore, the maximum degree of X1(pi−pj)
is 2. By using lemma 1 in [23], we have Pr[(X1(pi − pj))(a, b) = 0] ≤ 2

p and
thus Pr[pi(a, b) = pj(a, b)] ≤ 2

p . As there are
(
q+4
2

)
pairs of (pi, pj), we have

the abort probability is Pr[abort1] ≤ (
q+4
2

) · 2
p .

2. qi(a, b) = qj(a, b): Since qi �= qj as the method of L2 is generated and qi, qj

are in the form of
∑

ak,lpkpj for some constants ak,l, qi − qj is a non-zero
polynomial of degree 0, 1, 2, p−1, p−2, or 2p−4. Similar to above case, we have
X2

1 · Xp−1
1 ≡ X2

1 , X2
1 · Xp−2

1 ≡ X1, and X2
1 · X2p−4

1 = (Xp−1
1 )2 ≡ 1 (mod p).

Therefore, X2
1 (qi −qj) is a non-zero polynomial of degree ranging from 0 to 4.

Since the maximum degree of X2
1 (qi−qj) is 4, we have Pr[(X2

1 (qi−qj))(a, b) =
0] ≤ 4

p and thus Pr[qi(a, b) = qj(a, b)] ≤ 4
p . As there are

(
q1+qê

2

)
pairs of

(qi, qj), we have the abort probability is Pr[abort2] ≤ (
q1+qê

2

) · 4
p .
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3. pi(a, b) = ab: Since the degree of p1 is 0, 1, or p − 2, and the degree of X1X2

is 2, we have that pi − X1X2 is a non-zero polynomial of degree 2 or p − 2.
Similar to the case 1, we have X1(pi − X1X2) is a non-zero polynomial of
maximum degree of 3. Therefore, we have Pr[(X1(pi − X1X2))(a, b) = 0] ≤ 3

p

and thus Pr[pi(a, b) = ab] ≤ 3
p . As there are q + 4 polynomials in L1, we have

the abort probability is Pr[abort3] ≤ 3(q+4)
p .

By combining all above cases, we have the abort probability is

Pr[abort] = Pr[abort1] + Pr[abort2] + Pr[abort3]

≤
(

q + 4
2

)
· 2
p

+
(

q1 + qê

2

)
· 4
p

+
3(q + 4)

p

<
(q + 4)2 + 2(q1 + qê)2 + 3(q + 4)

p

<
4(q + q1 + qê + 4)2

p

3.3 Modified Decisional Combined Bilinear Diffie-Hellman Problem

Definition 5. Variant of Decisional Combined Bilinear Diffie-
Hellman Problem: Given g, ga, gb, hc, hd, h1/d ∈ G where a, b, c, d ∈R Zq and
h = ge, we define the advantage of the adversary in solving the VoDCBDH
problem as

AdvV oDCBDH
A (λ) = Pr[w = A(g, ga, gb, gec, ged, ge/d,

T0, T1, w ∈R {0, 1}) : Tw = gab+ecd, Tw−1 = Z].

The VoDCBDH problem is a variant of Decisional Combined Bilinear Diffie-
Hellman Problem [27]. We prove the VoDCBDH problem is hard in G with a
bilinear map ê : G × G → G1 in the generic bilinear group model [9,23].

Theorem 2. The lower bound of the complexity of the VoDCBDH problem is
stated as follows, querying the group operations and bilinear pairing operations
at most q times.

AdvV oDCBDH
A (λ) ≤ 3(q + 9)2

p
.

To prove this theorem, we introduce an intermediate problem (see Lemma2),
and we prove that the hardness of intermediate problem implies the hardness
of the VoDCBDH problem. After that, we prove the intermediate problem is
intractable (see Lemma 1) and then the theorem follows.

Definition 6. Given g, gd, gcd, gd2
, ge, gae, gbe ∈ G where a, b, c, d, e ∈R Zp and

g ∈R G, the modified problem is to distinguish gabe+cd2
from a random element
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Z ∈R G. The advantage of an adversary A to solve the modified problem is
defined as

AdvModified
A (λ) = Pr[w = A(g, gd, gcd, gd2

, ge, gae, gbe,

T0, T1, w ∈R {0, 1}) : Tw = gabe+cd2
, Tw−1 = Z]

Lemma 1. If an algorithm A can solve the VoDCBDH problem with the advan-
tage AdvV oDCBDH

A (λ), then we can built an algorithm S to solve the modified
problem with the advantage AdvModified

S (λ) such that

AdvV oDCBDH
A (λ) ≤ AdvModified

S (λ).

Proof. The simulator S obtains an instance θ̂ = (ĝ, ĝd̂, ĝĉd̂, ĝd̂2
, ĝê, ĝâê,

ĝb̂ê, T0, T1). Then S checks whether ĝd̂ = 1 or not. If ĝd̂ = 1, that is d̂ = 0,
the simulator S returns w = 0 if e(ĝâê, ĝb̂ê) = e(T0, ĝ

ê) or returns w = 1 other-
wise, and solves θ̂ with the probability of 1. If ĝd̂ �= 1, the simulator S continues
and sets θ = (g, ga, gb, h, hc, hd, h

1
d , T0, T1) = (ĝê, ĝâê, ĝb̂ê, ĝd̂, ĝĉd̂, ĝd̂2

, ĝ, T0, T1),
it implicitly sets g = ĝê, h = ĝd̂, a = â, b = b̂, c = ĉ, and d = d̂. After that,
S sends θ to A. At some point, the adversary A outputs a bit w, indicating
Tw = gabhcd. Since Tw = gabhcd = (ĝê)âb̂(ĝd̂)ĉd̂ = ĝâb̂ê+ĉd̂2

, the simulator S wins
with the probability AdvVoDCBDH

A (λ). Therefore, we have

AdvModified
S (λ) ≥ Pr[ĝd̂ = 1] + Pr[ĝd̂ �= 1] · AdvVoDCBDH

A (λ)

≥ 1
p

+
p − 1

p
AdvVoDCBDH

A (λ) ≥ AdvVoDCBDH
A (λ).

Lemma 2. The lower bound of the complexity of the modified problem is stated
as follows, querying the group operations and bilinear pairing operations at most
q times.

AdvModified
S (λ) ≤ 3(q + 9)2

p
.

Proof. The modified problem is an instance of Decisional Bilinear (P, f)-Diffie-
Hellman problem family [27] where P = (p1, . . . , p7) = (1, d, cd, d2, e, ae, be) and
f = abe + cd2. We show that f is not dependent on P by contradiction.

Assume f is dependent on P that by definition in [27] there exists 57 con-
stants ai,j , bk, and c that

Q = cf2 +
7∑

k=1

bkpkf +
7∑

i=1

7∑
j=1

ai,jpipj = 0

where at least one of bk or c is non-zero. We analyze the above equation in two
cases.

1. c �= 0: In this case, there is a term f2 = a2b2e2 + 2abcd2e + c2d4 in Q.
Furthermore, the term a2b2e2 is not in any combination of pkf or pipj , then
f2 cannot be canceled out. Hence, we have Q �= 0 if c �= 0.
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2. c = 0: In this case, we have Q = cf2 +
∑7

k=1 bkpkf +
∑7

i=1

∑7
j=1 ai,jpipj

where at least one of bk is non-zero. In other words, Q has at least a term
pkf = pk(abe + cd2) = pkabe + pkcd2. As Q = 0, both two terms pkabe and
pkcd2 should be canceled out. In the first step, we focus on the term pkabe.
There are two methods to cancel the term pkabe.
(a) To cancel with pk′f = pkabe + pk′cd2 where k �= k′, we have pkabe =

pk′cd2, that is, pk = θcd2 and pk′ = θabe for some polynomial θ. Since no
such pair of pk and pk′ in P , we cannot cancel pkabe via pk′f .

(b) To cancel with pipj , we have pkabe = pipj . By observing P , the only
polynomial which has a is p6 = ae. Thus we have pkabe = p6pj ⇐⇒
pkb = pj . By observing P again, the only polynomial which has b is
p7 = be. Thus we have pk = e = p5.

Therefore, pkabe can be canceled out when k = 5. To further cancel out
p5f , the term p5cd

2 = cd2e has to be canceled out. As before, there are two
methods to cancel the term cd2e.
(a) To cancel with pkf = pkabe + pkcd2 where k �= 5, we have pkabe = cd2e.

Since the term cd2

ab is not in P , we cannot cancel out the term cd2e.
(b) To cancel with pipj , we have pipj = cd2e. By observing P , the only poly-

nomial, which has c is p3 = cd. Thus we have pip3 = cd2e ⇐⇒ pi = de.
Since the term de is not in P , we cannot cancel out the term cd2e.

Since it is impossible to cancel out any term pkf , we have Q �= 0 if c = 0.

To sum up, it is impossible to make Q = 0, which contradicts the assumption.
Therefore, we have f is not dependent on P . By the theorem 1 in [27], we directly
have the lemma.

By combining the Lemmas 1 and 2, we have

AdvVoDCBDH
A (λ) ≤ AdvModified

S (λ) ≤ 3(q + 9)2

p
.

3.4 Extended Decisional Combined Bilinear Diffie-Hellman
Problem

We propose an extension of variant of Decisional Combined Bilinear Diffie-
Hellman Problem below.

Definition 7 Extended variant of Decisional Combined Bilinear
Diffie-Hellman (EVoDCBDH) Assumption: Given g, ga, gb, ge, gf ,
hc, hd, h1/d, hl ∈ G where a, b, c, d, e, f, l ∈R Zq and h = ge, we define the advan-
tage of the adversary in solving the EVoDCBDH problem as

AdvEV oDCBDH
A (λ) = Pr[w = A(g, ga, gb, gf , hc, hd, h1/d,

hl, T0, T1, w ∈R {0, 1}) : Tw = gab+ecd, Tw−1 = gbf+edl]

Theorem 3. We say a EVoDCBDH assumption holds in group G if for any
PPT A, AdvA(λ) is a negligible function of the security parameter λ.
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Proof. Let S denote the VoDCBDH problem solver, who is given (ga, gb, ge,
gf , hc, hd, h1/d, hl), and aims to distinguish T = gab · hcd from another value
gbf · hdl. S simulates the game for A as follows.

– Setup: S chooses f, l ∈R Zq and computes gf , hl, then generates other public
parameters using the given instances and sends them to A. S also tosses a
random coin w which will be used later in the game.

– Challenge stage: S returns the challenge T if b = 0; Otherwise, returns the
value gbf · hdl to A. Note that the value T comes from his own challenger.
Finally, A outputs w′ as its guess for w. If w′ = w, then S outputs 1; Other-
wise, S outputs 0.
Probability analysis: Since the value T from its challenger can be either gab ·
hcd or R, thus we have

AdvV oDCBDH
S = Pr[A → 1 | T = gab · hcd] − Pr[A → 1 | T = R]

= [AdvEV oDCBDH
A + 1/2] − [AdvV oDCBDH

S + 1/2]
= AdvEV oDCBDH

A − AdvV oDCBDH
S

⇒ AdvEV oDCBDH
A = 2 · AdvV oDCBDH

S .

3.5 Exponent Challenge Response Signature

We firstly review the Exponent Challenge-Response signature, which will be used
in our k-ASH protocol.

Definition 8 The Exponential Challenge-Response (XCR) signature
scheme [20]: The signer possess a public/secret key pair (ga, a) (a ∈ Zq).
A verifier provides a message m together with a challenge gw′

(w′ ∈ Zq is chosen
by verifier). The signature produced by signer using challenge gw′

is defined as
(gw, gw′(w+a·H(gw||m))) (w ∈ Zq is chosen by signer). Then the verifier accepts a
signature pair (gw, σ) as valid iff gw �= 0 and σ = (gw · ga·H(gw||m))w′

.

3.6 Our k-ASH Protocol

Now we present our proposed unlinkable secret handshake with k-time authen-
tication protocol in the two party setting (without loss of generality, we use user
Â and user B̂ here). It works as follows:

– Setup: TA takes the security parameter λ and the number of handshakes k as
input, outputs the master public key mpk = (g, h, {gti}i=k

i=1 , h
α, h1/α), and the

master secret key msk = ({ti}i=k
i=1 , α). TA also generates four hash functions

H1 : G × G1 → Zq, H2 : {0, 1}∗ → Zq, H3 : G → Zq, H4 : G → Zq and denotes
the bilinear pairing ê : G × G → G1.

– KeyGen: User Â chooses xa ∈ Zq and computes gxa as his/her public key.



Privacy-Preserving k-time Authenticated Secret Handshakes 293

– Register: User Â submits his/her public key gxa to TA. TA then chooses
wai

∈ Zq and computes sai
= wai

+ α · H1(hwai ||ê(gxa , hα)ti) and returns a
credential set {hwai }i=k

i=1 , {sai
}i=k

i=1 to user Â. While user Â can verify them
using the following equations: {hsai

?=hwai · hα·H1(hwai ||ê(hα,gti )xa )}i=k
i=1 .

– Handshake (Fig. 1):
• User Â chooses the ephemeral secret key ra ∈R Zq, computes Ra = hr′

a =
hH2(ra||xa||sai

) and sends it to user B̂;
• User B̂ performs the following.

* Choose the ephemeral secret key rb ∈R Zq, computes Rb = hr′
b =

hH2(rb||xb||sbi
);

* Compute Cbi
= ê(hα, gti)xb ;

* Compute Ĉbi
= gti·xb · hsbi

·eb/α, where eb = H3(R
r′

b
a );

* Send Rb, g
ti , hwbi , Cbi

, Ĉbi
, eb to user Â.

• User Â receives the incoming message from user B̂, then performs the
following.

* Verify ea = H3(R
r′

a

b ) ?=eb. If verification fails, reject the session; Other-
wise, proceeds;

* Verify ê(Ĉbi
, hα) ?=Cbi

· ê(hwbi · hα·ebi , hea), where ebi
= H1(hwbi ||Cbi

).
If verification fails, reject the session; Otherwise, proceed to the next
step;

* Compute the session key K = H4((hsbi
·e∗

b · Rb)s∗
a), where e∗

b =
H3(Rb||ebi

), s∗
a = sai

· e∗
a + r′

a, e∗
a = H3(Ra||eai

), eai
= H1(hwai ||Cai

);
* Send gti , hwai , Cai

, Ĉai
, ea to user B̂. Note that the computation of

Cai
, Ĉai

by user Â follows the same procedures as above.

• User B̂ verifies the received message using the same method as user Â, and
computes the session key K = H4((hsai

·e∗
a ·Ra)s∗

b ), where e∗
a = H3(Ra||eai

),
s∗

b = sbi
· e∗

b + r′
b, e

∗
b = H3(Rb||ebi

).
Note that the computation of session key used the XCR signature from [20].

– Tracing
If user Â used the same credential twice, e.g., (Ĉai

, eai
) and

(Ĉ ′
ai

, e′
ai

), then anyone can compute gti·xa = [(gti·xa · hsai
·eai

/α)e′
ai /

(gti·xa · hsai
·e′

ai
/α)eai ]1/(e′

ai
−eai

), where eai
= H3(Rra), e′

ai
= H3(R′ra). That

means if user Â reused a credential, then user Â’ identity can be revealed
since ê(gti·xa , g) = ê(gti , gxa) for public key gxa .

4 Security Analysis

4.1 Session Key Security

Theorem 4. The proposed k-ASH protocol achieves session key security
(Definition 1) in the random oracle model if the VoCDH assumption is held
in the underlying group G.
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A B
Ra−−−−−−−−−−−−−−−−−−−−→

Rb, g
ti , hwbi , Cbi , Cbi , eb←−−−−−−−−−−−−−−−−−−−−−−

gti , hwai , Cai , Cai , ea−−−−−−−−−−−−−−−−−−−−→

Fig. 1. Handshake

Proof. We define a sequence of games Gi, i = 0, · · · , 3 and let Advk−ASH
i denote

the advantage of the adversary in game Gi. Assume that A activates at most m
(perhaps m ≥ k) sessions in each game.

– G0 This is original game for session key security.
– G1 This game is identical to game G0 except that S will output a random

bit if the nonce Ri is used twice by two different instance oracles. Therefore,
we have: ∣∣Advk−ASH

0 − Advk−ASH
1

∣∣ ≤ m2/2λ (3)

– G2 This game is identical to game G1 except that S will output a ran-
dom bit if Forge event happens where A made a send query in the form
of (hr0 , gti , hw0 , ê(hα, gti)xi , gti·xi · hs0·H3(R∗r0 )/α, H3(R∗·r0)) and an H4 query
with a valid forgery σ = R∗s∗

0 = R∗[s0·H3(hr0 ||H1(hw0 ||ê(hα,gti )xi ))+r0] for chal-
lenge R∗, such that user i is not corrupted (i.e., no Long term secret key reveal
query to user i or Master secret key reveal query to TA) when the hash query
is made. Then we have:∣∣Advk−ASH

1 − Advk−ASH
2

∣∣ ≤ Pr[Forge] (4)

Lemma 3. The Forge event happens only with a negligible probability when the
VoCDH assumption is held in G.

Let S denote the VoCDH problem solver, who is given ha, h1/a, hb, and aims to
compute hab. S simulates the game for A as follows:

• Setup stage: F sets up the game for A by creating n users (set U) with
the corresponding public/secret key pairs {Xi, xi}n

i=1. F randomly selects an
index i and guesses that the Forge event will happen with regard to user i
and session i. S then sets the mpk as hα = ha, h1/α = h1/a and generates
other public parameters honestly. In addition, S sets the challenge as R∗ = hb

in the guessed session i, S simulates the game for A as follows.
• S answers A’s queries as follows:

* If A issues establish query in the form of (U ′,X ′), such that U ′ /∈ U ,
then user U ′ with public key X ′ will be added to the system.
* If A issues a send query in the form of (hr′

, gti , hw′
, ê(ha, gti)x′

, gti·x′ ·
h(s′·e′)/a) to user i, then S verifies it successfully (notice that A may
corrupt a user with secret key x′ and secret signature pair (hw′

, s′)), and
next to generating the signatures (hwi , si) as follows:
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1. Chooses si, ei ∈R Zq;
2. Sets hwi = hsi/ha·ei ;
3. Sets H1(hwi ||Ci) = ei, where Ci = ê(ha, gti)xi .

Then, S chooses r′
i ∈ Zq and computes e = H3(hr′·r′

i). Eventually, S gen-
erates the message (hr′

i , gti , hwi , Ci, g
ti·xi · h(si·e)/a, e) and sends it to A.

* If A issues an ephemeral secret key reveal query to instance oracle Πi
Ui

,
then S returns the ephemeral value ri (r′

i = H2(ri||xi||si)) to A.
* If A issues a long term secret key reveal query to user j (�=i), then S returns

xj and secret signatures {sj}k
j=1 to A. Note that S can simulate secret

signatures (hwj , sj) of user j (�=i) using the same method that described
above. If A issues a long term secret key reveal key query to user i or a
master secret key reveal key query to TA, then abort.

* Session key reveal query and Test query: S answers the session key reveal
query and the test query by using the session key it has derived during
the protocol simulation described above.

• When Forge event occurs (i.e., A outputs: hr0 , gti , hw0 , ê(ha, gti)xi ,

gti·xi · h(s0·H3(hb·r0 ))/a, H3(hb·r0)), S checks whether:
1. The Forge event with respect to user i on challenge hb;
2. Verifies:

ê(gti·xi · h(s0·H3(hb·r0 ))/a, ha) ?= ê(ha, gti)xi · ê(hs0 , he∗
)

Note that hs0 = hw0 · ha·e1 , s0 = w0 + a · e1, e1 = H1(hw0 ||ê(ha, gti)xi),
e∗ = H3(hb·r0).

3. Verifies:

ê(D,h) = ê((hsi·H3(hb||ei) · hb)s0·H3(hr0 ||e1)+r0 , h)
?= ê(hsi·H3(hb||ei) · hb, hs0·e0 · hr0)

Note that the value D is used to compute session key K(= H4(D)), e0 =
H3(hr0 ||e1).

If all the above conditions hold, S confirms it as a successful forgery from H4
and proceeds:

σ1 =
D

(hs0·e0 · hr0)si·H3(hb||ei)

= (hb)s0·e0+r0 = hb[(w0+a·e1)e0+r0]

According to the forking lemma [4], by rewinding the adversary twice, S
would obtain four forgeries from H4, which will be listed below.

σ1 = hb[(w0+a·e1)e0+r0], e0 = H3(hr0 ||e1);
σ2 = hb[(w0+a·e1)e

′
0+r0], e′

0 = H3(hr0 ||e1);
σ3 = hb[(w0+a·e′

1)ê0+r′
0], ê0 = H3(hr′

0 ||e′
1);

σ4 = hb[(w0+a·e′
1)
̂e′
0+r′

0], ê′
0 = H3(hr′

0 ||e′
1);
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Therefore, S can perform the computation below to obtain a solution to
VoCDH.

D1 = (
σ1

σ2
)1/(e0−e′

0) = hb·w0 · hab·e1

D2 = (
σ3

σ4
)1/(ê0− ̂e′

0) = hb·w0 · hab·e′
1

hab = (
D1

D2
)1/(e1−e′

1).

The simulation performed by S is perfect. Since at most n users and m
sessions in the game, we have:

Pr[Forge] ≤ n · m · AdvV oCDH
S (λ) (5)

– G3: This game is identical to game G2 except that in the test session, we
replace the session key K = H4(hs∗

i ·s∗
j ) by a random value r ∈ Zq. Since we

model H4 as a random oracle, if the event Forge does not happen, then we
have

Advk−ASH
2 = Advk−ASH

3 (6)

It is easy to see that in game G3, A has no advantage, i.e.,

Advk−ASH
3 = 0 (7)

Combining the above results together, we have

Advk−ASH
A (λ) ≤ m2/2λ + n · m · AdvV oCDH

A (λ)

4.2 Anonymity

Theorem 5. The proposed k-ASH protocol achieves anonymity (Definition 2)
in the random oracle model if the EVoDCBDH Assumption is held in the under-
lying group G.

Proof. Let S denote a EVoDCBDH problem distinguisher, who is given (g, h, ga,
gb, gf , hc, hd, H1/d, hl), and aims to distinguish gab ·hcd and gbf ·hdl. S simulates
the game for A as follows.

– Setup: S sets up the game for A by creating n users. S sets hα = h1/d, h1/α =
hd (the msk = (α, 1/α) are implicitly set as (1/d, d) respectively), and ran-
domly selects one tag base gt∗

= gb and generates other tag bases honestly
(i.e., gti , ti ∈ Zq is chosen by S). In addition, S randomly chooses users i, j
from user set U and sets gxi = ga, gxj = gf (the secret keys (xi, xj) are
implicitly set as (a, f) respectively), and generates public/secret key pair for
other users honestly.

– If A issues a send query in the form of (R′, gti , hw′
, Cb′ , Ĉb′) to user i, then

S performs the simulation as follows.
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• S simulates the signature pair (hwi , si) using the same method that
described in Lemma 3;

• S com-
putes Ĉi = ga·ti · hd·si·e′

i , and Ci = ê(h1/d, ga)ti , where e′
i = H3(R′ri),

ri ∈ Zq;
• S generates Ri = hri and sets ei = H1(hwi ||Ci);
• S returns (Ri, g

ti , hwi , Ci, Ĉi, e
′
i) to user A as the response.

Note that S can simulate the response of user j using the same method as
above.

– It is easy to see that all queries to other users can be simulated perfectly
using the user secret keys, and S can simulate secret credentials using the
same method as described in Lemma 3.

– Challenge: If A issues a send query in the form of (R, gti , hw′
, C ′

i, Ĉ
′
i) to user i,

then S computes Ĉi = (gba·hdc)e∗
and Ci = ê(Ĉi, h

1/d)/ê(hc, he∗
), where e∗ =

H3(Rr∗
). Eventually, S returns (R∗, gb, hwi , Ci, Ĉi, e

∗) to A as the response.
Similarly, if A issues a send query to user j, then S computes Ĉj = (gbf ·
hdl)e∗

and Cj = ê(Ĉj , h
1/d)/ê(hl, he∗

), where e∗ = H3(Rr∗
). Eventually, S

returns (R∗, gb, hwj , Cj , Ĉj , e
∗) to A as the response. Note that S can perfectly

simulate the value hwi = hc/hei/d, and sets ei = H1(hwi ||Ci) for user i, S also
can simulate the value hwj of user j using the same method.

Finally, S outputs whatever A outputs. If A guesses the random bit correctly,
then S can break the EVoDCBDH problem. Hence, we have

Advk−ASH
A ≤ AdvEV oDCBDH

S (λ) (8)

5 Extension

We can extend the above k-time ASH protocol in the two party setting to the
multiple party setting using the classic BD broadcasting protocol [10]. The Setup,
KeyGen, Register and Tracing algorithms are same as the two party setting, except
the Handshake algorithm, which will be described below. Note that we suppose
at most n users in the multiple party setting.

– Round 1: User i computes Ri = hr′
i = hH2(ri||xi||si), ri ∈R Zq and broad-

casts (Ri, g
ti , hwi , Ci). Note that xi, si denote the secret key and the secret

credential value of user i, and Ci = ê(hα, gti)xi . Also notice that the indices
are taken module n so that user 0 is user n and user i+1 is user 1.

– Round 2: After receiving n−1 messages in Round 1, then user i com-
putes {Ĉj = gti·xi · hsi·ej/α, ej = H3(R

r′
i

j )}n−1
j=1,j �=i and {hsj = hwj ·

hα·H1(hwj ||Cj)}n−1
j=1,j �=i. Eventually, user i computes the intermediate key Ki =

H4(hs∗
i+1·s∗

i )
H4(hs∗

i−1·s∗
i )

and broadcasts (Ki, {Ĉj , ej}n−1
j=1,j �=i).

Note that s∗
i = si · e∗

i + r′
i, e

∗
i = H3(Ri||H1(hwi ||Ci)),

hs∗
i+1 = (hwi+1 ·hα·H1(hwi+1 ||Ci+1))e∗

i+1 ·Ri+1, e
∗
i+1 = H3(Ri+1||H1(hwi+1 ||Ci+1)),

hs∗
i−1 = (hwi−1 ·hα·H1(hwi−1 ||Ci−1))e∗

i−1 ·Ri−1, e
∗
i−1 = H3(Ri−1||H1(hwi−1 ||Ci−1)).
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– Key Derivation: User i verifies the received messages {Ĉj}j �=i from n−1
users (it supports batch verification, see below), if either of them fail, then
abort; Otherwise, computes the final session key ski = H4(hs∗

i−1·s∗
i )n⊕Kn−1

i ⊕
Kn−2

i+1 · · · ⊕ Ki−2).
1. Batch Verification. User i is able to batch verify the received n-1 messages

from n-1 users using the small exponents test in [3,13].

ê(
n−1∏
j=1

Ĉj

δj

, hα) = ê(
n−1∏
j=1

gti·xj ·δj · hsj ·ej ·δj/α, hα)

=
n−1∏
j=1

ê(gti·xj ·δj , hα) · ê(
n−1∏
j=1

hsj ·ej ·δj , h)

?=
n−1∏
j=1

C
δj

j · ê(
n−1∏
j=1

hsj ·δj , hej ).

where δj ∈ Zq, ej = H3(R
r′

i
j ) and j ∈ [1, j �= i, · · · , n − 1]. If batch verifi-

cation fail, then abort; Otherwise, proceeds.
2. Correctness Check.

ski = H4(hs∗
i−1·s∗

i )n ⊕ Kn−1
i ⊕ Kn−2

i+1 · · · ⊕ Ki−2

= H4(hs∗
i−1·s∗

i )n ⊕ H4(hs∗
i+1·s∗

i )n−1

H4(hs∗
i−1·s∗

i )n−1

⊕ H4(hs∗
i+2·s∗

i+1)n−2

H4(hs∗
i ·s∗

i+1)n−2
· · · ⊕ H4(hs∗

i−1·s∗
i−2)

H4((hs∗
i−3·s∗

i−2)

= H4(hs∗
i−1·s∗

i ) ⊕ H4((hs∗
i ·s∗

i+1) · · · ⊕ H4((hs∗
i−2⊕s∗

i−1).

It is easy to see that all users compute the same key.

The k-time ASH protocol in the multiple party setting also achieved session key
security, anonymity and public traceability. In particular, the security analysis
(including session key security and anonymity) in the two party setting can be
extended to the multiple party setting.

6 Conclusion

In this paper, we proposed a k-time authenticated secret handshake protocol
based on the k-time tag bases and anonymized Schnorr signature. We also defined
the formal security models for session key security and (full) anonymity, and
proved the security of the proposed k-ASK protocol under our proposed com-
plexity assumptions which have been proved hard in the generic bilinear group
model.
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Abstract. Graphical passwords (GPs) that authenticate users using
images are considered as one potential alternative to overcome the
issues of traditional textual passwords. Based on the idea of utilizing an
extremely large image, map-based GPs like PassMap and GeoPass have
been developed, where users can select their secrets (geographical points)
on a world map. In particular, PassMap allows users to select two loca-
tions on a map, while GeoPass reduces the number of locations to only
one. At first glance, selecting one location is more vulnerable to attacks,
while increasing the location number may add burden on users. In the
literature, there is no research exploring this issue. Motivated by this,
our purpose in this work is to explore the effect of location number (the
number of geographical points) and compare two schemes of PassMap
and GeoPass in terms of users’ performance and feedback. In this work,
we develop a generic and open platform for realizing map-based schemes,
and conduct a user study with 60 participants. The study reveals that
selecting two locations would not degrade the scheme performance. Our
effort aims to complement exiting research studies in this area.

Keywords: User authentication · Graphical passwords · Map-based
password authentication · Geographical location · Security and usability

1 Introduction

Over the past few decades, textual passwords are the most widely adopted
method for user authentication, in which users have to recall and input the cor-
rect textual strings for authentication [32]. However, it has long been recognized
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that traditional textual passwords have many serious issues associated with their
security and usability [11,33]. For example, users are not good at remembering
their passwords for a long time, especially complex and random passwords. As
a result, they are very likely to choose simple strings or recycle passwords. The
recent study showed that this situation might be even worse than previously
believed (i.e., little variation in guessing difficulty) [1].

To improve memorability and security, graphical passwords (GPs) have been
developed as a potential alternative to textual passwords. It is known that people
generally have better memory and recognition for images than textual strings [22,
24]. Based on this observation, various graphical password schemes have been
proposed. For example, Wiedenbeck et al. [31] designed PassPoints, a system that
allows users to click several places on an image as their passwords. Chiasson
et al. [2] then proposed a click-based GP scheme, named Cued Click Points
(CCP), which allows users to click on one point for a sequence of images, and
the next image displayed is based on the previous click-point.

To enhance password space, map-based graphical password authentication
has recently attracted more attention like PassMap [28] and GeoPass [30], based
on the idea of using an extremely large image. More specifically, PassMap allows
users to select two sequenced locations on a large world map, whereas GeoPass
reduces the number of locations to only one (while users can only choose a
location at zoom level 16). The use of a map-image is believed to provide much
more memorable points for users.

Motivations. We advocate that map-based GPs can be deployed as a second-
factor authentication method, which improves users’ memorability while requir-
ing more login time. Intuitively, selecting one geographical location is more vul-
nerable to shoulder surfing attacks, but increasing the number of locations may
add unexpected burden on users. With the development of graphical passwords,
a large amount of map-based schemes have been proposed. However, there is no
study aiming to explore the effect of location number on scheme performance.
In this work, our purpose is thus to investigate this issue in terms of users’
performance and feedback.

Our work aims to complement existing research results in this area and ben-
efit the future design for map-based GPs. As PassMap and GeoPass are two
typical schemes in the literature, we choose them in our user study. The contri-
butions of this work can be summarized as follows.

– We develop an open and generic platform for implementing map-based GP
schemes, which can realize both PassMap (i.e., selecting two locations) and
GeoPass (i.e., selecting one location). This platform provides a unified envi-
ronment for usability comparison. According to the observations from both
schemes, a click-point is set to be valid at zoom level 16. More details can be
referred to Sect. 3.

– We conduct a user study with 60 participants to compare the scheme perfor-
mance between PassMap and GeoPass, in terms of users’ performance and
feedback. It is found that users could perform similarly for these two schemes.
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Our results reveal that increasing the number of locations from one to two
would not degrade the performance of users’ memorability.

The remaining parts of this paper are organized as follows. In Sect. 2, we
review related studies in relation to the classification of graphical passwords
and map-based graphical passwords. Section 3 describes our platform implemen-
tation, presents a user study with 60 participants, and analyzes the results in
terms of users’ performance and feedback. We make a further discussion about
security and usability in Sect. 4 and conclude our work in Sect. 5.

2 Related Work

This section introduces a typical classification of graphical password schemes
(e.g., recognition-based, pure recall-based and cued recall-based scheme) and
details the evolution of map-based GP schemes.

2.1 GP Classification

Typically, graphical password systems can be classified into three categories [3,
27]: recognition-based scheme (i.e., recognizing images), pure recall-based scheme
(i.e., reproducing a drawing without a hint) and cued recall-based scheme (i.e.,
reproducing a drawing with hints).

– Recognition-based GPs. Such schemes demand users to select one or more
images from an image pool for authentication. For example, PassFaces [23]
requires users to recognize a set of human faces for authentication. Story [5]
requires users to recognize a set of sequenced images (e.g., people, food) from
a large image pool.

– Pure recall-based GPs. These GP schemes usually ask users to draw some-
thing on an image as their passwords. DAS [12] is one typical pure recall
scheme, which requires users to draw on a grid. In addition, Pass-Go [29]
allows users to select intersections on a grid as a way to input a password.
Based on this idea, unlock patterns have been developed as a tuned version
of Pass-Go on Android phones, which requires users to unlock their phones
by inputting correct patterns.1 More analyses and similar schemes can be
referred to [7,13,19,20].

– Cued recall-based GPs. This kind of GP scheme demands users to click
on a sequence of points on one or multiple background images to construct
their secrets. PassPoints [31] is an example, which requires users to recall
a sequence of five selected points on a single background image. Another
variant is developed by Chiasson et al. [4], called Persuasive Cued Click-
Points (PCCP), which requires users to select a point on each of a sequence
of background images.

1 https://www.berkeleychurchill.com/software/android-pwgen/pwgen.php.

https://www.berkeleychurchill.com/software/android-pwgen/pwgen.php
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The existing GP schemes are mostly based on the actions of choice, click and
draw, so that some combined schemes have also been developed. For example,
Meng [14] proposed a click-draw based graphical password scheme (CD-GPS )
aiming to improve the image-based authentication in the aspects of both security
and usability, through combining the above three actions. More specifically, their
scheme contains two operational steps: image selection and secret drawing. That
is, users first choose an ordered sequence of images and then select some of them
to click-draw their secrets. More analyses and studies on CD-GPS and generic
graphical passwords can be referred to [6,10,15–17,21]

2.2 Map-Based Graphical Passwords

The initial idea of using digital map in graphical password first appeared in [8],
but not much details were given. Spitzer et al. [25] then proposed an imple-
mentation of CCP that combined the graphical approach with user’s navigating
familiarity through Google maps. In their settings, users were presented with an
image of the United States and could simply click some defined key destination
through identifying zooming levels.

In 2012, Georgakakis et al. [9] proposed NAVI, in which the credentials of
a user are his/her username and a password formulated by drawing a route
on a pre-defined map image. They provided an analysis about the password
strength, but did not give any user study. Later, Sun et al. [28] proposed a map-
based GP authentication system called PassMap, in which a password consists
of a sequence of two locations on a world map. They performed a user study
and showed that participants could be easy to remember PassMap passwords
in practice. Similar to PassMap, Thorpe et al. [30] developed GeoPass, where
a user chooses only one location as the secret. They reported that up to 97%
participants were able to remember their selected locations over a span of 8–9
days and most without any failed login attempts. It is worth noting that PassMap
and GeoPass are very similar schemes in that secrets are constructed by clicking
one or two places on a world map (e.g., Google map). Meng [18] then designed
RouteMap, which allows users to draw a route on a map as their passwords. Shin
et al. [26] further implemented a modified version of GeoPass on a mobile device.
These studies prove that users can have a better memorability with map-based
graphical password schemes.

Generally, PassMap and GeoPass have been discussed more often than other
map-based GPs. One big difference between them is the number of locations,
where PassMap requires users to select two locations while GeoPass only needs
to choose one location. Intuitively, selecting one location is vulnerable to shoulder
surfing attacks, while selecting two locations may add burden on users’ memory.
In the literature, Meng [18] previously compared the multiple password memory
between PassMap and GeoPass. However, there is no study to explore the effect
of the number of locations on scheme performance, which can benefit the future
design of map-based GPs.
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3 Implementation and User Study

3.1 Platform and Scheme Implementation

As most map-based GP research did not release their source, we developed
a Python-based generic platform to realize map-based schemes. The platform
interface was implemented in our lab computers with a 17-inch screen, which can
set up the required number of locations and zoom levels. In this case, our plat-
form can realize most existing map-based GPs including PassMap and GeoPass.
Two interface examples are shown in Figs. 1 and 2. In particular, Fig. 1 shows an
interface for registering username and geographical locations. There is a search
bar that can help users locate their preferred area in a quick manner. Figure 2(a)
shows a login page for inputting username and location, and Fig. 2(b) presents
a selected location.

Fig. 1. The registration interface for map-based GP schemes.

(a) (b)

Fig. 2. The login interface for map-based GP schemes.
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Platform Implementation. To develop the GP platform, we utilized the
JavaScript based Google Maps API, which provides an extensive move-by-
dragging, zooming and search functions. As shown in Fig. 1, when users zoom
in/out on the map, our system reports and records the zoom levels. The search
function allows users to shift to a specific part of the map quickly and fur-
ther zoom in to locate a specific area. Similar to [28], our system embedded a
640 × 420 pixel frame block for displaying the world map in a web page and
road map instead of satellite-type map is used by default. The tolerance areas
are 21 × 21 pixels, which is reasonable according to the results in [28,30].

Scheme Implementation. Through applying different rules, our platform can
realize various existing map-based GPs. To implement PassMap and GeoPass,
we follow the same rules from [28,30] as below.

– GeoPass rules. It requires users to choose only one location, which should
be at zoom level 16. For authentication, users have to point out the same
location at zoom level 16.

– PassMap rules. It allows users to select two locations at any zoom level. For
authentication, users have to choose the same location in a right sequence.
To avoid the effect of zoom levels, our system requires users to choose two
locations at zoom level 16.

3.2 User Study

In this section, we conduct a user study with a total of 60 students to investi-
gate users’ performance between PassMap and GeoPass (approved by the Office
of Academic Affairs), including 25 females and 35 males. All participants are
volunteers and have no background of information security (i.e., no participant
has taken any course related to information security before). The recruitment
was done through emails and posters. In the study, participants were randomly
divided into two groups (where each group contains 30 participants).

Methodology. Both PassMap and GeoPass are implemented on the same com-
puter settings. Before the study, we introduced our objectives to all participants
in advance. To avoid any bias, we presented a demo video and gave a detailed
description to all the participants according to the same steps (i.e., how to use
the prototype system).

Before the experiment, each participant could have three trials to get familiar
with the authentication system. In the study, we require all participants to create
five passwords for each scheme and each password corresponds to a scenario. This
study involves five scenarios: the first password is created for an email account
(personal use), the second one is created for a bank account, the third one is
created for another email account (commercial use), the fourth one is created for
a library account (see Fig. 1) and the last one is created for a social networking
account. The detailed steps in each experiment are shown as below:

– Experiment1. This experiment requires each participant to create five
PassMap passwords.
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• Step 1. Creation: creating a password for PassMap.
• Step 2. Confirmation: confirming the password by selecting the same

secrets in the correct place. If users incorrectly confirmed their password,
they could retry the confirmation or return to Step 1.

• Step 3. Login: logging into the system with the created passwords. Users
could cancel an attempt if they noticed an error.

• Step 4. Feedback: All participants were required to complete a feedback
form about the password creation and confirmation.

In the second day, all participants were required to complete a login session
and gave their feedback.

• Step 4. Login: Logging into the prototype system with all created
PassMap passwords. Users can cancel an attempted login if they noticed
an error and try again.

• Step 5. Feedback: All participants should complete a feedback form about
the password login.

– Experiment2. This experiment requires each participant to create five
GeoPass passwords.

• Step 1. Creation: creating a password for GeoPass.
• Step 2. Confirmation: confirming the password by selecting the same

secrets in the correct place. If users incorrectly confirmed their password,
they could retry the confirmation or return to Step 1.

• Step 3. Login: logging into the prototype system with the created pass-
words. Users could cancel an attempted login if they noticed an error.

• Step 4. Feedback: All participants were required to complete a feedback
form about the password creation and confirmation.

In the second day, all participants were required to complete a login session
and gave their feedback.

• Step 4. Login: Logging into the system with all created GeoPass pass-
words. Users could cancel an attempted login if they noticed an error and
try again.

• Step 5. Feedback: All participants should complete a feedback form about
the password login.

Ten-point Likert scales were used in each feedback question where 1-score
indicates strong disagreement and 10-score indicates strong agreement. These
collected questions and scores are mainly used to reflect participants’ perfor-
mance and explore their attitude towards these two schemes. As a result, 150
real trials were recorded for Experiment1 and Experiment2 respectively.

Results. As shown in Table 1, success rate and average completion time are used
for evaluating user’s performance regarding the step of creation, confirmation
and login in Experiment1 and Experiment2. More specifically, success rate in
the step of Creation means that participants created their passwords without
restarting; success rate in the step of Confirmation means that participants
confirmed their passwords without restarting and failed attempts for the first
time; and success rate in the step of Login means that participants, for the first
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Table 1. Success rate and average completion time for the step of creation, confirma-
tion and login in Experiment1 and Experiment2.

Experiment1 (PassMap) Creation Confirmation Login

Success rate (the first time) 120/150 (80.0%) 123/150 (82.0%) 127/150 (84.7%)

Completion time (average in seconds) 32.6 19.7 26.3

Standard deviation (SD in seconds) 10.1 7.3 8.3

Experiment2 (GeoPass) Creation Confirmation Login

Success rate (the first time) 125/150 (83.3%) 128/150 (85.3%) 133/150 (88.7%)

Completion time (average in seconds) 28.2 17.1 20.6

Standard deviation (SD in seconds) 8.7 6.5 7.2

time, pressed the login button and entered into the example system successfully.
Average completion time is an average value computed by all participants.

We also apply chi-squared (χ2) tests for the collected data to compare non-
ordered categorical or nominal data. In all cases, we regard a value of ρ < 0.05
as indicating that the groups being tested are different from each other, making
the results statistically significant. The results of success rate and completion
time are discussed as below.

-Success rate. In Experiment1, success rate is 80.0% and 82.0% for Creation and
Confirmation respectively. Some participants restarted the password creation, as
they changed their selected map area (i.e., from Singapore to Beijing city). On
the other hand, some participants restarted or made failed attempts due to a
wrong click, or incorrect zoom levels. The Login step reaches a success rate of
84.7%, where some failed attempts were made due to incorrect zoom levels for
the first time.

In Experiment2, success rate is 83.3%, 85.3% and 88.7% for Creation, Confir-
mation and Login, respectively. Similar to Experiment1, it is found that several
participants restarted the creation step, selected a wrong location, and made an
incorrect zoom level. The results of success rate in Experiment2 are a bit better
than those in Experiment1, but there are no statistically significant differences
(χ2 ≈ 1.1, ρ > 0.05; χ2 ≈ 1.2, ρ > 0.05; χ2 ≈ 1.5, ρ > 0.05).

-Completion time. Average completion time in Experiment1 is 32.6, 19.7
and 26.3 s for Creation, Confirmation and Login, respectively. Some participants
spent much more time in Creation by considering how to choose a good location.
Then, they spent less time in Confirmation. The time consumption increased a
bit in Login, as participants needed to recall their locations.

In Experiment2, average completion time is 28.2, 17.1 and 20.6 s for Creation,
Confirmation and Login, respectively. The situation is similar to Experiment1,
in which participants could perform fastest in Confirmation. It is found that
there are no statistically significant differences in Creation and Confirmation
(χ2 ≈ 2.1, ρ > 0.05; χ2 ≈ 1.8, ρ > 0.05), but the results are significant for
Login (χ2 ≈ 4.1, ρ < 0.05).
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-Discussion. On the whole, based on the collected data, participants could
perform a bit better in Experiment2. For example, participants in Experiment2
could achieve higher success rate and less time consumption. However, these
results are mostly no statistically significant differences. This indicates that par-
ticipants did similar performance in both experiments, and there is no significant
performance influence on selecting between one location and two locations.

It is worth noting that time consumption in Login is the only one significant
result, which describes that participants could indeed perform a better login
process in Experiment2. After informal interview with participants, it is found
that selecting only one location is the main reason. In comparison, participants
have to zoom-in/out map levels and select two locations in Experiment1.

Feedback. To validate our collected data, we analyze the feedback from par-
ticipants. Ten-point Likert scales were used in each feedback question and we
present main questions and corresponding scores in Table 2. The scores are sim-
ply average values calculated by all received scores.

Table 2. Several main questions and relevant scores in the user study.

Questions Score (average)

1. I could easily create PassMap passwords 8.5

2. I could easily create GeoPass passwords 8.7

3. I could easily log in PassMap system 7.8

4. I could easily log in GeoPass system 8.2

5. The time consumption in the Experiment1 is acceptable 7.4

6. The time consumption in the Experiment2 is acceptable 7.8

7. Are you willing to use PassMap passwords in practice 8.1

8. Are you willing to use GeoPass passwords in practice 8.3

The scores in the first four questions indicate that most participants satisfied
with the password creation and login in both passwords, while GeoPass received
a bit higher score than PassMap (8.7 vs 8.5 and 8.2 vs 7.8). For time consump-
tion, the scores of two schemes went below 8 (with a score of 7.4 and 7.8). At
last, most participants were willing to use map-based GPs in their daily lives. In
our informal interview, we aimed to validate the feedback. Up to 42 participants
(20 from Experiment1 and 22 from Experiment2 ) were satisfied with the use of
map-based GPs and interested in applying such password schemes in their daily
use. There are five participants (3 from Experiment1 ) showed no interest in daily
use due to the time consumption.

Overall, most participants gave positive feedback for utilizing these two map-
based passwords, where they considered it is easier for them to remember geo-
graphical locations than traditional textual passwords. They advocated that a
world map can provide more memorable points, so that they could choose a
secret based on their own knowledge.
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4 Further Discussion

In order to design a strong graphical password scheme, there is a balance should
be made between security and usability. This section briefly discusses and sum-
marizes these two aspects for PassMap and GeoPass.

– Security aspect. Based on the results in [30], the most efficient attacker (i.e.,
has local knowledge) should have 216.36 guessing attempts for GeoPass (with
only one location). In the condition of two locations (like PassMap), the
guessing attempts can be greatly increased. As stated early, selecting one
location is more vulnerable to shoulder surfing attack, in which an attacker
can infer the secret through direct observation. Increasing the number of
locations can mitigate such attack by enhancing the password entropy. Our
motivation in this work thus focuses on exploring the effect of location number
on scheme performance. The detailed calculation of password space between
PassMap and GeoPass can be referred to [28,30].

– Usability aspect. According to our study results, most participants gave pos-
itive feedback and were willing to use map-based passwords for authentica-
tion. It is found that there are no statistically significant differences between
PassMap and GeoPass in the aspects of success rate and completion time,
except for completion time in Login. This because selecting two locations
is intuitively more time-consuming than selecting only one location. On the
whole, this observation shows that selecting two locations would not degrade
the scheme performance.

Overall, our study reveals that appropriately increasing the number of loca-
tions is feasible in designing future map-based graphical schemes, whilst we
should make a balance between security and usability (i.e., how to decide a
proper number of locations). To further investigate this issue, it is expected to
have an even larger study with more diverse participants.

5 Conclusion

Map-based graphical passwords utilize an extremely large image and allow users
to select their secrets on a world map. PassMap allows users to select two loca-
tions on a map, while GeoPass reduces the number of locations to only one. In
this paper, our main purpose is to explore the effect of location number on scheme
performance between PassMap and GeoPass, which are two typical map-based
graphical schemes. We conduct a user study with 60 participants and analyze
the results in terms of user’s performance (e.g., success rate, completion time)
and feedback. The study results demonstrate that participants could perform
similarly for both schemes, and there is no significant performance influence on
selecting between one location and two locations. That is, there is a potential
to increase the number of locations in designing a map-based scheme. Our effort
aims to complement existing research and provide useful guidelines for designing
more secure map-based graphical passwords.
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To the best of our knowledge, this is an early study aiming to explore this
issue for map-based graphical schemes. Future work could include investigating
the user’s performance when increasing the number of locations to three or above,
and exploring the effect of zoom levels on scheme performance.
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Abstract. The rapid growth in Internet and communication technology
has facilitated an escalation in the exchange of digital multimedia con-
tent. This has resulted in an increase in copyright infringement, which
has led to a greater demand for more robust copyright protection mech-
anisms. Digital watermarking is a means of detecting ownership and
illegal use of digital products. This paper presents an approach to water-
marking images by embedding QR code information in a digital image.
The notion of the proposed scheme is to capitalize on the error correc-
tion mechanism that is inherent in the QR code structure, in order to
increase the robustness of the watermark. By employing the QR code’s
error correction mechanism, watermark information contained within a
watermarked image can potentially be decoded even if the image has been
altered or distorted by an adversary. This paper studies the characteris-
tics of the proposed scheme and presents experiment results examining
the robustness and security of the QR code watermarking approach.

Keywords: Data hiding · Discrete Cosine Transform · Discrete Wavelet
Transform · Error correction · QR code · Watermarking

1 Introduction

Advances in Internet and communication technology have given rise to an
increase in the exchange and sharing of digital multimedia content. However,
this has also facilitated the rise in copyright infringement, which has resulted in
the demand for better and more robust copyright protection techniques.

Digital watermarking is an effective solution for detecting copyright infringe-
ment and the illegal usage of digital products. The notion of watermarking is
to embed extra information in an original signal, and when needed, the water-
mark can be extracted [17]. The embedding of additional information in the
original signal, also known as host data, must be done in a way that does not
interfere with the normal usage of data [31]. Hence, to be a successful water-
marking scheme, the difference between the watermarked and the original signal
should be imperceptible. In addition, the watermark should be robust against
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signal alteration, up to a point at which the host signal is damaged and loses its
commercial value [32].

The field of digital watermarking is an area that has been studied exten-
sively for many years [11]. Panah et al. [31] describe four main properties of
any watermarking system; namely, invisibility, capacity, robustness and security.
Invisibility is the property whereby the watermark should be imperceptible by a
human; capacity refers to the amount of data that can be embedded; robustness
is the ability of the watermarking scheme to withstand alterations or distortions
to the signal; and security is the watermarking scheme’s resistance against any
intentional attempt by an adversary to impair the watermark [10,31].

Over the years, researchers have proposed various watermarking techniques
for embedding information in various multimedia signals, including images, video
and audio [35]. The work in this paper focuses on invisible watermarking for
digital images. There are two main categories of invisible digital watermarking;
namely, the spatial domain and the frequency domain. Spatial domain techniques
work by altering the gray levels of some pixels. Whereas, the other category
focuses on modifying coefficients in the frequency domain [19].

There are various advantages of operating in the frequency domain, such as,
being able to incorporate features of the human visual system in watermarking
more effectively, the ability spreading the energy of the embedded signal in the
frequency domain over all pixels in the spatial domain, and being able to operate
in the compressed domain since most image compression standards are based on
the frequency domain [19]. For this reason, numerous researchers have proposed
watermarking techniques in the frequency domain based on the Discrete Cosine
Transform (DCT) and the Discrete Wavelet Transform (DWT) [4,25,28]. In recent
years, the use of DWT-DCT hybrid techniques as a way of improving the robust-
ness of the watermark has also received much attention [1–3,12,14,21,26,35].

This paper proposes a QR code watermarking technique that is based on the
DWT-DCT approach. The QR code is a two-dimensional barcode that has seen
widespread adoption in many different applications over the last few years, due
to its convenience and ease of use, as any smartphone equipped with a camera
and QR code reader can retrieve the information encoded within a QR code. The
fundamental idea behind the technique proposed in this paper is to capitalize on
the error correction mechanism that is inherent in the QR code structure. The
purpose of this is to increase the robustness of the resulting watermark against
alterations or distortions, as the information contained within the QR code can
still be decoded as long as the corrupted data does not exceed the QR code’s
error correction capacity.

Our Contribution. In this paper, we present a watermarking technique for
embedding QR code information in a host signal by adopting a combined DWT-
DCT approach. This paper focuses on applying the proposed technique to digi-
tal images. We examine the scheme based on the key properties of a watermark;
namely, invisibility, capacity, robustness and security. The capacity of the scheme
is simply the data capacity of the embedded QR code, which depends on its ver-
sion and error correction level. For the other properties, this paper shows results
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of our experiments demonstrating the invisibility characteristics of the scheme
using conventional image quality metrics. In addition, we present results exam-
ining the proposed scheme’s robustness and security properties under varying
conditions and against common image alterations and attacks.

2 Background

This section provides a brief background to some of the key concepts and tech-
niques used in this research.

2.1 The QR Code

The company Denso Wave [13] invented the Quick Response Code (QR code) in
1994 for the automotive industry in Japan. After its inception, the International
Organization for Standardization (ISO) established a standard for the QR code
[20]. Since then, QR codes have seen widespread adoption worldwide due to its
ease of use, robustness, fast decoding, high data capacity and so on.

A QR code symbol is constructed as a two-dimensional array of light and
dark squares, referred to as modules. There are forty sizes of QR code symbol
versions ranging from versions 1 to 40, each consisting of a different number of
modules, resulting in different data capacities. A QR code can encode different
types of data (i.e. alphanumeric, binary, Kanji or a combination of these) and has
support for four error correction levels (i.e. L, M, Q and H). The error correction
mechanism provides a means for data recovery even when a certain amount of
modules in a QR code are corrupted. The four error correction levels correspond
to error tolerances of approximately 7%, 15%, 25% and 30% respectively. The
QR code error recovery capability increases at the expense of message length.
Figure 1 shows an example of a QR code version 1 with error correction level H;
it encodes the word “message”.

Fig. 1. QR code version 1, error correction level H.

2.2 Discrete Cosine Transform (DCT)

The Discrete Cosine Transform (DCT) converts a signal into the frequency
domain and is often used in image processing, especially in JPEG compression
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[19,33]. Given an input image, x, the computation of the DCT coefficients for
the transformed output image, y, is obtained using the equation shown in Eq. 1.
Once transformed, the original image can be recovered using the inverse DCT,
as given by Eq. 2 [2,33].
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The blocked based DCT approach separates an image into non-overlapping

blocks, before applying the DCT to each block [22]. Watermark data is typically
embedded in the mid-band coefficients of each DCT transformed block in order
to keep visual alteration of an image to a minimum [4].

2.3 Discrete Wavelet Transform (DWT)

The Discrete Wavelet Transform (DWT) is another technique that is widely
used in image and signal processing. The DWT technique for images involves
the decomposition of an image into frequency channels of constant bandwidth
on a logarithmic scale [25,30]. A 2D image is decomposed into four sub-bands,
which are denoted as LL, LH, HL and HH at level 1 in the DWT domain.
The LL sub-band represents the coarse-level coefficients, whereas the LH, HL
and HH sub-bands represent the finest scale wavelet coefficients. Each sub-band
can be decomposed further until the desired number of levels is reached. The
human visual system is more sensitive to the LL sub-band (i.e. the low frequency
component), watermarking is typically embedded in one or more of the other
three sub-bands to maintain better image quality [25].

2.4 Arnold Transform

The Arnold transform is a invertible method that can be used for pixel scram-
bling, and has been adopted in various watermarking schemes [22]. The purpose
of applying this transform is due to the fact that adjacent pixels in image data
have strong correlation to each other. By using the Arnold transform, this high
pixel correlation can be disrupted. The Arnold transform is shown in Eq. 3 [16],
where p and q are positive integers, det(A) = 1, and (x′, y′) are the new coordi-
nates of the pixel after Arnold transform is applied to a pixel at position (x, y).
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The period of the Arnold transform depends on p, q and the size N of the
image. After several iterations of applying the transform, the correlation among
adjacent pixels can be disturbed completely.[

x′

y′
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= A
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]
mod N =
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1 p
q pq + 1

] [
x
y

]
mod N (3)

The Arnold Transform has also been used for image encryption [16]. The
underlying notion for this is that the shuffling the pixels in the spatial domain
confuses the relationship between the cipher image and the plain image. For
image encryption, the parameters p, q and the number of iterations of applying
the transform, can all be used as the secret keys.

3 Related Work

The QR code has seen a variety of applications in the area of information security.
For example, QR codes have been used for secret sharing [8], authentication and
transaction verification [7], authenticating visual cryptography shares [36] as well
as for e-voting authentication [15].

Researchers have also proposed schemes for using the QR code in the area
of data hiding and steganography. Among the work conducted in this area, Wu
et al. [37] proposed a data embedding approach for hiding a QR code in a digital
image. Their purpose was to camouflage the appearance of a QR code in an
image so as not to degrade the visual quality of the picture. Huang et al. [18]
developed a reversible data hiding approach for images with QR codes. The
purpose of their method was to be able to restore a portion of an image that
was covered by a QR code. A nested image steganography scheme was proposed
by Chen and Wang [5] using QR codes, where two types of secret data, i.e. text
(lossless) and image (lossy), are embedded in a cover image. The text portion
was embedded in the form of a QR code. A similar approach was reported in
Chung et al. [9].

In addition, QR codes have been used in a number of recent digital water-
marking schemes. A method of embedding a QR code in the HH component at
the first level of the DWT domain of a cover image was previously proposed [34].
The objective of this approach was to be able to detect malicious interference
by an attacker based on a unique image registry code. A digital watermark-
ing scheme using a Just Noticeable Difference (JND) model for embedding QR
codes in images was described by Lee et al. [27]. The aim of their approach
was to improve the imperceptibility of a watermark based on JND, which is the
maximum difference at which the human visual system is not able to detect a
difference. Kim et al. [24] studied a method of using 2D barcodes, e.g., QR codes,
to insert a digital object identifier tag in digital content without degrading its
quality. Kang et al. [22] proposed a watermarking approach based on the com-
bination of DCT, QR codes and chaotic theory. In their approach, a QR code
image is encrypted with a chaotic system to enhance the security of the water-
mark. Others have also proposed different QR code watermarking approaches
[6,38].
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The motivation behind the QR code watermarking technique proposed in this
paper is to increase the robustness of the watermark against image alteration
and/or distortion. The proposed approach capitalizes on the error correction
mechanism that is inherent in the QR code structure. By embedding a QR code
watermark into a digital image, the QR code can be decoded correctly as long
as the data in the QR code has not been corrupted above its error correction
capacity. As such, this approach attempts to increase the resulting robustness
of the invisible watermarking scheme against watermarking attacks where an
adversary tries to remove the watermark by altering or distorting the image.

4 Proposed QR Code Watermarking Scheme

4.1 The Embedding Process

The proposed QR code watermarking scheme takes a QR code, which contains
the watermark information, and embeds it in a cover image. An overview of the
process for embedding the QR code in the cover image is depicted in Fig. 2.

Fig. 2. Overview of the QR code watermark embedding process.

For generating the QR code, the QR code’s mask pattern and error correc-
tion level are predetermined beforehand. This is so that the QR code’s format
information can be omitted in the embedding process, and only the data mod-
ules will be embedded in the cover image. The reason for this is to ensure that
the format information cannot be corrupted even if the resulting watermarked
image undergoes alteration or distortion. In that manner, when the QR code
is extracted from the watermarked image, it can be correctly decoded with the
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predetermined format information as long as the data modules have not been
corrupted beyond the QR code’s error correction capacity. The QR code’s data
modules are extracted into a binary matrix, which is scrambled using Arnold
transform to increase its robustness against alteration or distortion. This pro-
duces the data matrix that will be use for embedding the QR code data in the
cover image.

The cover image will be decomposed using DWT into four sub-bands as
depicted in Fig. 3(a). This can be continued to the desired level. In our exper-
iments, we decomposed the HL sub-band to level 2, as shown in Fig. 3(b), and
used the HL22 sub-band for embedding the watermark. The contents of this sub-
band are then separated into non-overlapping blocks where the DCT is applied
to each block. Only the mid-band coefficients of the DCT transformed blocks
are modified to keep the visual alteration to a minimum, as depicted in Fig. 3(c).
In addition, two non-correlated Pseudo-Random Number (PRN) sequences, are
generated to represent bit ‘0’ and bit ‘1’ (i.e. PRN0 and PRN1). The length of
each PRN sequence matches the number of mid-band DCT coefficients. The data
matrix containing the QR code data is then embedded in the DCT coefficient
blocks using the PRN sequences, according to Eq. 4, where x is the respective
mid-band coefficient, x′ is the modified coefficient and α is the gain factor.
Finally, the inverse DCT and inverse DWT are applied to obtain the resulting
watermarked image.

x′ =
{

x + α × PRN0, if the bit is ‘0’
x + α × PRN1, if the bit is ‘1’ (4)

Fig. 3. (a) DWT at level 1; (b) DWT at level 2; (c) Mid-band coefficients of an 8 × 8
DCT block.

4.2 The Extraction Process

Image pre-filtering techniques have been used to improve watermark extrac-
tion results [29]. Therefore, we first apply a sharpening and the Gaussian of
Laplacian filters to the watermarked image to increase the contrast between the
watermark and the cover image related sections [23]. The resulting pre-filtered
image then undergoes the same DWT and DCT procedure as the embedding
process to decompose the image into sub-bands and non-overlapping blocks.
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The data matrix can be extracted based on the correlation between the known
PRN sequences and the mid-band coefficients of each DCT transformed block.
The inverse Arnold transform is then applied to the data matrix using the known
transform parameters to obtain the QR code data, which can be decoded based
on the format information to obtain the encoded message. This process is shown
in Fig. 4.

Fig. 4. Overview of the QR code extraction process.

5 Results and Discussion

To evaluate the proposed watermarking scheme, experiments implementing the
watermarking process in MATLAB were conducted on three well know cover
images; namely Lena, Peppers and Baboon. These images are shown in Fig. 6.
The choice of these images was due to the varying degrees of variance in the
images. These were 8-bit gray scale images with the dimensions of 512 × 512.
The QR code that was previously shown in Fig. 1 was used as the watermark
in the experiments. It was constructed with the error correction level H, which
means that data corruption of below approximately 30% can still be decoded
correctly. In the experiments, the range of PRN values were varied between a
range of values that were centered on zero.
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5.1 Invisibility

Quantitative measurements to ascertain the degree of imperceptibility of the
watermark were conducted using the Peak Signal-to-Noise Ratio (PSNR), which
is a commonly used image quality metric, between the original image and the
watermarked image. Figure 5 shows a plot of the PSNR values for Lena that were
obtained by varying the PRN range, with α = 4, using different pseudo-random
seed values. The other images have the same characteristics. Greater PSNR
values mean less difference between the watermarked image and the cover image.
On the other hand, the larger the PRN range, the more robust the watermark is
to image alterations. Nevertheless, larger ranges also produces greater distortion
in the resulting watermarked image since there will be greater modification of
the DCT coefficients. This is evident from the decreasing PSNR values in Fig. 5
at larger PRN ranges.

Fig. 5. Characteristic PSNR values.

Figures 6(a) to (e) gives a visual comparison of the watermarked image
based on different watermark parameters. The stronger the watermark (i.e. more
robust and higher chance of successful watermark extraction), the higher the
distortion in the resulting watermarked image. The original cover images are
shown in Fig. 6(a). Figure 6(b) show watermarked images with very low distor-
tion obtained from a PRN range of ±4 and α = 2; in Fig. 6(c) the parameters
where PRN: ±6, α = 4; in Fig. 6(d) the parameters where PRN: ±10, α = 6;
Fig. 6(e) in turn shows an example of a watermarked image with very distortion
with PRN: ±14, α = 14. It can be seen that the watermark is imperceptible from
the perspective of the human visual system when the watermarked images were
generated with lower parameters, while the distortion can clearly be seen with
high parameter values. When the distortion is perceptible in the watermarked
image, it looses its commercial value.



QR Code Watermarking Based on DWT-DCT 323

Fig. 6. Comparison between the images with different watermark strengths and levels
of distortion; (a) very low distortion; (b) low distortion; (c) mid distortion; (d) high
distortion; (e) very high distortion.
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Fig. 7. Percentage of codeword errors based on various PRN ranges for the respective
watermarked images.

5.2 Robustness and Security

To evaluate the robustness and security of the proposed scheme, some common
distortions and attacks were applied to the watermarked images; namely, JPEG
compression, salt-and-pepper noise and cropping.

First, the robustness of the proposed scheme was evaluated by varying PRN
ranges for the three images, as depicted in Figs. 7(a) to (c), respectively. Since
the QR code that was used had an error correction level of H, this means that
codeword errors below 30% gives rise to a high probability that the extracted
QR code can be decoded correctly. It can be seen that the percentage of code-
word errors in the watermarked Lena image, Fig. 7(a), is very much below the
30% threshold. While the watermarked Peppers image, Fig. 7(b), shows similar
characteristics, note that the percentage of codeword errors are higher. Never-
theless, the errors are still below the threshold. On the other hand, Fig. 7(c),
which shows the watermarked Baboon image, has a much higher percentage of
codeword error. This is largely due to the fact that the variance in the Baboon
image is much greater than the other two images. This implies that larger PRN
ranges have to be used in the proposed scheme for images with large variances.
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Fig. 8. Robustness to JPEG compression for the respective watermarked images; (a)
to (c) medium strength watermark; (d) to (f) high strength watermark.

JPEG Compression. Figure 8 provides a depiction of the scheme’s robustness
to JPEG compression. JPEG compression is one of the commonly used attacks
for watermark removal. MATLAB’s inbuilt JPEG compression function was used
for the experiments. The function accepts parameters ranging from 0 (i.e. low
quality compression) to 100 (i.e. high quality compression), inclusive. It should
be noted that once the JPEG compression quality is above a certain threshold
the image quality significantly degrades to the point of having no commercial
value.
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It can be seen that the watermarked Lena and Peppers images, Fig. 8(a) and
(b) respectively, are consistently robust to JPEG compression. The robustness
of the watermarked Baboon image, Fig. 8(c), is less that the other two images,
but the watermark can still be decoded under favorable conditions. This is due
to the larger amount of variance in the Baboon image compared to the other two
images. Figure 8(d) to (f) show comparative robustness results when the water-
mark’s strength was increased. It can be seen that with increased watermark
strength, the watermark information can consistently be extracted successfully
even for the Baboon image.

Salt-and-Pepper Noise. A salt-and-pepper noise attack is where an adversary
deliberately introduces sparse random black and white pixels in a watermarked
image in an attempt to corrupt the embedded watermark. For the experiments,
the noise density represents the percentage of pixels that were altered by salt-
and-pepper noise. Figure 9(a) to (c) show examples of the test images which
contain 10% salt-and-pepper noise. Figure 10(a) to (c) present a depiction of the
amount of error in the watermark as a result of varying the intensity of the
salt-and-pepper noise in the respective test images. Figure 10(d) to (f) in turn
show the results when the strength of the watermark was increased in the test
images.

As can be seen from the experiment results, the QR code can be successfully
decoded when some salt-and-pepper noise is present. Obviously as the density
of the noise in the watermarked image is increased, the watermark information
is increasingly corrupted and cannot be decoded if too much noise is introduced.
Nevertheless, this type of noise adversely affects the quality of the noisy image.
In addition, the level of desired watermark robustness is related to the level of
acceptable distortion in the watermarked image, as previously discussed, increas-
ing the strength of the watermark signal also increases the amount of distortion
in the resulting image.

Image Cropping. Another commonly used watermark attack is a cropping
attack, in which the adversary attempts to remove a section of the pixels from a

Fig. 9. Watermarked images containing 10% salt-and-pepper noise.
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Fig. 10. Robustness to salt-and-pepper noise for the respective watermarked images;
(a) to (c) medium strength watermark; (d) to (f) high strength watermark.

watermarked image with the intention of removing embedded watermark infor-
mation. Examples of the respective test watermarked images that were used in
the experiment are provided in Fig. 11(a) to (c). In these images, it can be seen
that a central square area of the image has been cropped out. For the experi-
ments, the size of the cropped area was varied.
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Fig. 11. Watermarked images with their central square area cropped out.

Fig. 12. Robustness to cropping for the respective watermarked images; (a) to (c)
medium strength watermark; (d) to (f) high strength watermark.
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Figure 12(a) to (c) show the robustness of the watermark scheme against an
increasing percentage of the image being cropped out, and Fig. 12(d) to (f) in
turn show the results with increased watermark strength. It can be seen that
the proposed scheme is robust against cropping below a certain threshold. In
practice, cropping an image by too much will adversely affect the commercial
viability of the resulting cropped image.

6 Conclusion and Future Work

This paper presents an approach to QR code watermarking for digital images.
The proposed approach involves the use of a hybrid DWT-DCT technique in con-
junction with the error correction mechanism this is inherent as part of the QR
code structure. The aim of embedding QR code information within an image
lies behind that fact that the QR code can be correctly decoded even if the
watermarked image is distorted, as long as the QR code’s error tolerance capac-
ity has not been overwhelmed. The quality of the resulting watermarked image
is examined and experiment results demonstrating the robustness and security
characteristics of the proposed scheme are presented in this paper against a num-
ber of commonly used watermark attacks. Future work will focus on determining
an acceptable level of distortion from the human visual perspective, the use of
color images, and methods of using different types of two-dimensional barcodes
in the proposed scheme.
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Abstract. Twisted Edwards curves are elliptic curves of the form
ax2 + y2 = 1 + dx2y2 for some constants a and d. The curves are called
complete Edwards curves for the special case when a = 1 and d is not a
square. Using complete Edwards curves for elliptic curve cryptography
has many advantages as they have very efficient, complete, and unified
point addition formula. In order to use complete Edwards curves for
elliptic curve cryptography, we need to specify the curve as well as a
point on the curve (typically of prime order). In this paper, we intro-
duce some algorithms for generating complete Edwards curves over Fp

with 4p0 number of points, where p0 is a prime and p is a prime of user-
specified bit length. These algorithms are able to generate a complete
Edwards curve over Fp and a point of prime order on the curve in less
than 3 (resp. 15, 35) minutes when p is a 256 (resp. 384, 512)-bit prime.
These are much faster than the running time of the twisted Edwards
curves generation algorithm proposed by Costello et al. in [4].

Keywords: Elliptic curve cryptography · Elliptic curves generator ·
Edwards curves · Twisted Edwards curves

1 Introduction

Elliptic curve cryptography (ECC) was introduced independently by Koblitz [7]
and Miller [9] in the late 1980s. It is based on the elliptic curve discrete logarithm
problem (ECDLP) as the underlying hard problem. ECC is now a popular area
of public key cryptography due to the many advantages it offers. It requires
smaller key size to achieve the same level of security (as compared to RSA-
based cryptosystem). This results in cheaper computational cost and memory
requirement. It also facilitates faster key generation. It is for these reasons that
ECC is now more widely used.

Elliptic curve can be expressed in a few different forms. The most popular
form is the short Weierstrass form: y2 = x3+ax+b as it is the most general form
(for fields of characteristic �= 2, 3). Montgomery [10] later introduced what is now
called the Montgomery form: by2 = x3 + ax + x. The Montgomery form is less
general than the short Weierstrass form, in the sense that not all elliptic curves
can be expressed in Montgomery form. However, the computations in elliptic
curves in Montgomery form are more efficient than those in short Weierstrass
c© Springer International Publishing AG 2017
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form. Moreover, elliptic curves in Montgomery form are resistant against timing
attacks [12]. Other than short Weierstrass and Montgomery forms, there are
still a number of other different forms, such as extended Jacobi quartic form,
twisted Hessian form, etc. [8]. However, these forms are less commonly used in
cryptography.

More recently, a new form of elliptic curves called twisted Edwards form was
introduced. Elliptic curves in twisted Edwards form are defined by equation of
the form: ax2 + y2 = 1 + dx2y2. Edwards form was first introduced by Edwards
in [6]. Bernstein and Lange then considered using the Edwards form for ellip-
tic curve cryptography in [2] and introduced the twisted Edwards form in [3].
Twisted Edwards form has a lot of advantages compared to other forms. The
computations in twisted Edwards form can be performed very efficiently. The
point addition formulas in twisted Edwards form is currently more efficient than
any other point addition formulas in other forms of elliptic curves. Another ben-
efit of twisted Edwards form is that it has a complete and unified point addition
formula for certain classes of curves, which means that the formula works for
any pair of points on the curves without any exception. This is not the case for
elliptic curves in short Weierstrass form and Montgomery form. Having com-
plete and unified point addition formula, elliptic curves in twisted Edwards form
(or twisted Edwards curves for short) are more resistant against side-channel
attacks.

In order to use twisted Edwards curves for elliptic curve cryptography, we
need to specify the curve as well as a point on the curve (typically of prime order).
In this paper, we introduce an algorithm for generating complete Edwards curves
over the finite field Fp of p elements, where p is a prime of user-specified bit
length b. Our algorithm takes an integer b as input. It then generates a complete
Edwards curve E : x2 + y2 = 1+dx2y2 over Fp, where p is a b-bit prime and the
number of points on the curve E is 4p0 for some odd prime p0. We also present
another algorithm for generating a point of prime order p0 on the curve E. The
rest of this paper is organized as follows. In Sect. 2, a quick review on twisted
Edwards curves is given. In Sect. 3, we present our algorithm for generating
complete Edwards curves over Fp and another algorithm for generating a point
of prime order on the curves. The main significance of our algorithms is that they
are much faster than the current state-of-the-art method of generating twisted
Edwards curves. To illustrate this, in Sect. 4, we review the algorithm proposed
by Costello et al. in [4] for generating twisted Edwards curves over Fp, where p
is a user-specified prime. We then compare this algorithm with our algorithms.
Finally, the paper is concluded in Sect. 5.

2 Preliminaries

2.1 Twisted Edwards Curves

Let p be an odd prime and Fp be the finite field of p elements. A twisted Edwards
curve EE,a,d over Fp is an elliptic curve over Fp defined by

ax2 + y2 = 1 + dx2y2,
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where a and d are distinct elements of F×
p . Edwards curve is a special case of

twisted Edwards curve where we set a = 1.
Twisted Edwards curves support more efficient and unified point addition

formula. The addition law on twisted Edwards curves EE,a,d is given by

(x1, y1) + (x2, y2) :=
(

x1y2 + x2y1
1 + dx1x2y1y2

,
y1y2 − ax1x2

1 − dx1x2y1y2

)
.

With the above addition law, the points on twisted Edwards curves form
a group, with (0, 1) as the identity element. One may check that −(x1, y1) =
(−x1, y1) and that the point (0,−1) has order 2. In [3], it was shown that the
above addition formula holds for any pair of points (without any exception) if
a is a square and d is not a square in the field Fp. Twisted Edwards curves
satisfying these conditions are called complete twisted Edwards curves.

2.2 CM Method

CM method is a powerful method to generate an elliptic curve (in short Weier-
strass form) over Fp with a specified number of points. More precisely, given a
prime p and an integer N satisfying certain conditions, the CM method will out-
put a, b ∈ Fp such that the number of points in the elliptic curve y2 = x3+ax+b
over Fp equals to N . The conditions that must be satisfied by N and p are the
following Diophantine equations:

4p = u2 + |D|v2, N = p + 1 ± u,

for some integers u, v and some discriminant D. The CM method will then
generate two curves, which are quadratic twist of each other. One is of order
p + 1 + u and the other one is of order p + 1 − u. For more details on the CM
method, the reader is referred to Sect. 7.5.3 of [5].

3 Method to Generate Complete Edwards Curves

In this section, we present our method to generate complete Edwards curves. Our
strategy is to use the CM method to generate elliptic curves in short Weierstrass
form. We then convert it to complete Edwards curves. We remark that not all
elliptic curves (in short Weierstrass form) are birationally equivalent to complete
Edwards curves. Note that the point (1, 0) in an Edwards curve EE,1,d is of order
4. This implies that we cannot have a complete Edwards curve having prime
order. Thus, we look for complete Edwards curve of order N = 4p0 for some
prime p0 instead. We need some additional conditions to ensure that the elliptic
curves generated by the CM method can be expressed as complete Edwards
curves. These conditions are given by the following theorem.

Theorem 1. (Part of Theorem 20 of [11]). Let v be an odd integer and D
be a discriminant with D ≡ 0, 4 (mod 16). Then the elliptic curve generated by
the CM method has exactly one point of order two. Moreover, this elliptic curve
can be converted to a complete Edwards curve.
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Thus, in order to generate complete Edwards curves using the CM method,
we need to solve

4p = u2 + |D|v2, N = p + 1 ± u, (1)

where p, p0 are odd primes, u, v ∈ Z with v ≡ 1 (mod 2), and D is a discriminant
with D ≡ 0, 4 (mod 16).

In Subsect. 3.1, we give an algorithm to solve (1). We then address the prob-
lem of converting the elliptic curves produced by the CM method to a com-
plete Edwards curve in Subsect. 3.2. The complete algorithm is presented in
Subsect. 3.3.

3.1 Solving Diophantine Equations

The main tool that we need to solve (1) is the Cornacchia-Smith algorithm. It
is an algorithm to solve Diophantine equation of the form u2 + dv2 = p for u
and v.

Algorithm 1. Cornacchia-Smith algorithm (Algorithm 2.3.12 of [5])
Input : a prime p and a positive integer d
Output: [u, v], where p = u2 + dv2; or [0,0] if such u and v do not exist

1. if
(

−d
p

)
�= 1, then return [0, 0]

2. Set x0 :=
√−d (mod p)

3. if 2 · x0 < p, then x0 := p − x0

4. Set (a, b) := (p, x0)
5. Set c := �√p�
6. while (b > c) do (a, b) := (b, a (mod b))
7. Set t := p − b2

8. if
√

t/d is not an integer, then return [0, 0]

9. return [b,
√

t/d]

As an application of Cornacchia-Smith algorithm, we give an algorithm called
GenerateP0 to solve (1) for u, v, and p0. Given an odd prime p and a discriminant
D ≡ 0, 4 (mod 16), the algorithm will find u, v, p0 satisfying (1). However, as
we are only interested in the value of p0, the algorithm will only return the
value of p0 as its output. In the algorithm, we basically use the Cornacchia-
Smith algorithm to find integers u, v such that p =

(
u
2

)2 + |D|
4 v2, or equivalently

4p = u2 + |D|v2. Once the value of u and v are known, the value of p0 is
automatically determined by p0 = p+1±u

4 . We then check whether v is odd and
p0 is a prime. If these conditions are not satisfied, the algorithm simply reports
that there is no solution by returning 0. Otherwise, the algorithm will return the
value of p0. The algorithm is summarized in Algorithm2.
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Algorithm 2. GenerateP0
Input : an odd prime p and a discriminant D with D ≡ 0, 4 (mod 16)
Output: a prime p0 such that 4p0 = p + 1 ± u and 4p = u2 + |D|v2 for some

integer u and odd integer v; or 0 if there is no such p0.
1. Use Algorithm 1 to find u0, v such that 4p = 4u2

0 + |D| · v2

2. if there is no u0, v satisfying the above equation or v is even, then return 0
3. Set u := 2u0 (so that 4p = u2 + |D| · v2)
4. Check whether p+1−u

4
or p+1+u

4
is a prime,

if both of them are not prime, then return 0
5. Set p0 := p+1±u

4
(whichever is prime)

6. return p0

3.2 Conversion to Edwards Curves

Theorem 1 says that the elliptic curves produced by the CM method can be
expressed as complete Edwards curves. However, it does not tell us how to con-
vert the curves into complete Edwards curves. In this subsection, we give a
method to convert some elliptic curves in short Weierstrass form into complete
Edwards curves.

Lemma 1. Suppose (u, v) is a point of order 4 on the elliptic curve E : y2 =
x3 + Ax2 + Bx such that 2 · (u, v) = (0, 0). Then A = v2

u2 − 2u and B = u2.

Proof. Let µ be the slope of the tangent line to E at (u, v). Then µ = 3u2+2Au+B
2v .

As 2 · (u, v) = (0, 0), the tangent line to E at (u, v) passes through (0, 0). Being
the slope of the line connecting (u, v) and (0, 0), we have µ = v−0

u−0 = v
u . Equating

the two expressions for µ gives 2v2 = 3u3 +2Au2 +Bu. Moreover, as (u, v) ∈ E,
we have 2v2 = 2u3 + 2Au2 + 2Bu. Subtracting these two equations, we have
u3 = Bu, which implies that B = u2 (note that u �= 0 as (u, v) is not of order
two). We also note that A = v2−u3−Bu

u2 = v2

u2 − 2u. ��
Theorem 2. Suppose the elliptic curve E0 : y2 = x3 + ax + b over Fp has
a point of order 4 and exactly one point of order 2. Let (x2, 0) ∈ E0 be the
unique point of order two and (x4, y4) be a point of order 4 in the elliptic curve
E1 : y2 = x3 + (3x2)x2 + (3x2

2 + a)x. Then x3
2 + ax2 + b = 0 and x2

4 = 3x2
2 + a.

Moreover, E0 is birationally equivalent to E1 and they are birationally equivalent
to EE,1,d, where d = 1 − 4x4

2x4+3x2
.

Proof. It is clear that E0 is birationally equivalent to E1 via the map (x, y) �→
(x−x2, y). As (x4, y4) is a point of order 4 in E1 and E1 has exactly one point of
order two, we must have 2 ·(x4, y4) = (0, 0). We then apply Lemma 1 to conclude
that 3x2 = y2

4
x2
4

− 2x4 and 3x2
2 + a = x2

4, i.e. E1 is y2 = x3 +
(

y2
4

x2
4

− 2x4

)
x2 +x2

4x.

At this point, we have shown that x3
2 + ax2 + b = 0 and x2

4 = 3x2
2 + a.
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Let d = 1 − 4x3
4

y2
4

. Then the map E1 → EE,1,d defined by (u, v) �→ (x, y) :=(
y4u
x4v

, u−x4
u+x4

)
is a birational equivalence with inverse given by (x, y) �→ (u, v) :=(

x4(1+y)
1−y , y4(1+y)

(1−y)x

)
. Therefore, E1 is birationally equivalent to EE,1,d, where d =

1 − 4x3
4

y2
4

= 1 − 4x3
4

x3
4+3x2x2

4+(3x2
2+a)x4

= 1 − 4x3
4

2x3
4+3x2x2

4
= 1 − 4x4

2x4+3x2
. ��

Theorem 2 above gives a way to convert some elliptic curves in short Weier-
strass form into complete Edwards curves. We end this subsection by proving
the following simple but useful lemma.

Lemma 2. Let a, b, g ∈ Fp. Suppose at least one of E : y2 = x3 + ax + b and
E′ : y2 = x3 + ag2x + bg3 has a point of order 4 and exactly one point of order
2. Then there exist x2, x4, u2, u4 such that

x3
2 + ax2 + b = 0, x2

4 = 3x2
2 + a, (2)

u3
2 + ag2u2 + bg3 = 0, u2

4 = 3u2
2 + ag2, (3)

u2 = gx2, u4 = gx4. (4)

Proof. Suppose E has a point of order 4 and exactly one point of order 2. Then
by Theorem 2, there exist x2, x4 ∈ Fp satisfying (2). Defining u2 and u4 by (4),
we can check that (3) (and hence all of the equations) is satisfied.

Similarly, suppose E′ has a point of order 4 and exactly one point of order
2. Then by Theorem 2, there exist u2, u4 ∈ Fp satisfying (3). Defining x2 and x4

by (4), one can check that all of the equations are satisfied. ��

3.3 The Algorithm

In this subsection, we combine the tools developed in previous subsections by
presenting our algorithm (Algorithm4) to generate complete Edwards curves
over Fp, where p is a prime of user-specified bit length. We will also give another
algorithm to generate points of prime order on the complete Edwards curves
produced by Algorithm 4. We start this subsection by introducing the following
Algorithm 3.

Algorithm 3 consists of 4 phases: the Setup phase, the CM Method phase, the
Conversion phase, and the Final phase. The Setup phase consists of the first three
steps of the algorithm. In this phase, we solve (1) for p0 by using Algorithm 2
discussed in Subsect. 3.1. We let D to run through a list of discriminants and
check (using Algorithm 2) whether with the given value of p and D, we are able
to solve (1). Once (1) is successfully solved, we simply break the loop, and set
N = 4p0.

The CM Method phase consists of Step 4, 5, and 6. In this phase, we use the
CM Method (see Subsect. 2.2) to generate two elliptic curves of order p + 1 + u
and p + 1 − u respectively. The two elliptic curves are E : y2 = x3 + rx + s and
E′ : y2 = x3 + rg2x + bg3, where g is some quadratic non-residue modulo p.
However, these curves are in short Weierstrass form.
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Algorithm 3. Main
Input : an odd prime p
Output: [p, N, d], where the Edwards curve x2 + y2 = 1 + dx2y2 over Fp has

cardinality N = 4p0 for some prime p0; or [0,0,0] if such curve failed
to be generated

1. for D0 in [list of discriminants D with D ≡ 0, 4 (mod 16)] do:
(a) p0 := GenerateP0(p, D0)
(b) if p0 �= 0, then

i. Set D := D0

ii. break
2. if p0 = 0 (meaning there is no p0 satisfying the Diophantine equations

required in GenerateP0), then return [0,0,0]
3. Set N := 4p0

4. Set T := HilbertClassPolynomial(D) and S := T (mod p)
5. Compute the root j ∈ Fp of S
6. Set c := j

j−1728
(mod p), r := −3c (mod p), s := 2c (mod p)

7. Compute the root t1 ∈ Fp of y3 + ry + s = 0
8. Set t2 :=

√
3t21 + r in Fp

9. Set d := 1 − (4t2) · (3t1 + 2t2)
−1 and d2 := 1 + (4t2) · (3t1 − 2t2)

−1

10. Check whether the curve x2 + y2 = 1 + dx2y2 or x2 + y2 = 1 + d2x
2y2 over

Fp has cardinality N
11. return [p, N, d] or [p, N, d2] correspondingly

We then convert them to complete Edwards curves in the Conversion phase
(Step 7, 8, 9). By Theorem 1, we know that the elliptic curve produced in the CM
Method phase has a point of order 4 and a unique point of order 2. We then may
apply Lemma 2 to check that there exist t1, t2 ∈ Fp such that t31 + rt1 + s = 0
and t2 =

√
3t21 + r (these are computed in Step 7 and 8). By Theorem2, if

(x4, y4) is a point of order 4 in E, then x2
4 = 3t21 + r. Thus, we must have

x4 = ±t2. Theorem 2 also states that E is birationally equivalent to the Edwards
curve EE,1,d, where d = 1 − 4x4

2x4+3t1
= 1 − ±4t2

3t1±2t2
. Similarly, we may apply

Theorem 2 to E′. Let (u4, v4) be a point of order 4 in E′. By Lemma 2, we have
u4 = ±gt2. We then note that E′ is birationally equivalent to EE,1,d, where
d = 1 − 4u4

2u4+3gt1
= 1 − ±4gt2

3gt1±2gt2
= 1 − ±4t2

3t1±2t2
.

At the end of the Conversion phase, we have two candidate Edwards curves
EE,1,d and EE,1,d′ , where d = 1 − 4t2

3t1+2t2
and d′ = 1 − 4(−t2)

3t1−2t2
. One of these

Edwards curves is the desired curve, i.e. it is a complete Edwards curves with N
number of points. In the Final phase, we determine which of these two candidates
is the desired curve. In order to find the desired curve, we choose a random point
P on EE,1,d and compute N ·P . As the number of points in the desired curve is
N , we must have N · P = (0, 1) if EE,1,d is the desired curve. In other words, if
N · P �= (0, 1), then EE,1,d is not the desired curve and consequently EE,1,d′ is
the desired curve.
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In practice, we only work with a finite list of discriminants. For computational
purpose, it is suggested to use discriminants with class number ≤4. This is so that
the computation to find a root of the (reduced) Hilbert class polynomial (in step
5 of Algorithm 3) is not difficult. In AppendixA, we list the discriminants D with
D ≡ 0, 4 (mod 16) of class number at most 4. We exclude those discriminants
D with D ≡ 4 (mod 32) due to the following lemma.

Lemma 3. Let p, p0, u, v,D be integers such that p and p0 are prime, v is odd,
and D < 0. Suppose 4p = u2+ |D|v2 and 4p0 = p+1±u. Then D �≡ 4 (mod 32).

Proof. Suppose D ≡ 4 (mod 32). As 4p = u2 + |D|v2, we note that u is even,
say u = 2u0 for some integer u0. So, p = u2

0 + (|D|/4)v2. Note that |D|/4 ≡ −1
(mod 8), in particular it is odd. So, u0 is even, say u0 = 2u1 for some integer
u1. Then p = 4u2

1 +(|D|/4)v2. Now p0 = p+1±u
4 = u1(u1 ±1)+ (|D|/4)v2+1

4 . Note

that (|D|/4)v2 + 1 ≡ 0 (mod 8). Thus, (|D|/4)v2+1
4 is even. As, u1(u1 ± 1) is also

even, we then have p0 is even (and greater than 2). Thus, p0 is not a prime, a
contradiction. Hence, D �≡ 4 (mod 32). ��

We also list the Hilbert class polynomial of these discriminants in AppendixA.
The Hilbert class polynomial of any discriminant can be computed using Algo-
rithm 7.5.8 of [5]. Alternatively, it can also be obtained using a pre-defined com-
mand in Magma or Sage.

As we are working with a finite list of discriminants, it is possible that for
a fixed value of p and any value of discriminants D on the finite list, there
is no solution for (1). In that case, Algorithm 3 will simply terminate without
producing the desired curve. To overcome this issue, we present the following
final algorithm.

Algorithm 4. GenerateCurve
Input : an integer b (the bit-length of p)
Output: [p, N, d], where p is a b-bit prime and the Edwards curve EE,1,d over

Fp has cardinality N = 4p0 for some prime p0

1. Set p to be a random b-bit prime
2. Set O := Main(p)
3. if O = [0, 0, 0] (meaning there is no solution for (1) for the given value of p),

then go to 1
4. return O

In this algorithm, we simply repeat the process with different value of p if
there is no solution for (1) for the given value of p (and any value of discriminants
D on the list). One may modify Algorithm4 by imposing the condition that the
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prime chosen in Step 1 must be of certain forms (e.g. pseudo-Mersenne prime or
Montgomery-friendly prime).1

Algorithm 4 is an algorithm to generate complete Edwards curves over the
finite field Fp where p is a prime of specified bit-length. The number of points
on these curves is 4p0 for some prime p0. We end this section by presenting
an algorithm that will generate a point of prime order p0 on these complete
Edwards curves. The algorithm basically generates a random point P on the
Edwards curve EE,1,d and returns 4P as an output. This point 4P is of order
dividing p0 for the following reason. Recall that if g is an element of finite order
in a group G and k is an integer, then ord(gk) = ord(g)

gcd(k,ord(g)) . Thus, we have

ord(4P ) = ord(P )
gcd(4,ordP ) , and so 4P is a point of odd order. Hence, the order of 4P

is either 1 or p0. In the case that ord(4P ) = 1 (i.e. 4P = (0, 1)), we simply repeat
the process with different P . The algorithm is summarized in Algorithm5. Some
sample output of Algorithms 4 and 5 are given in AppendixB.

Algorithm 5. PrimeOrderPoint
Input : the output of Algorithm 4, i.e. [p, N, d], where p and N/4 are prime,

and the number of points on the Edwards curve EE,1,d over Fp is N
Output: [x, y], where (x, y) is a point on EE,1,d over Fp of prime order p0 = N

4

1. Choose y0 randomly from the interval [1, p − 1]

2. Set x′
0 :=

y2
0−1

dy2
0−1

(mod p)

3. if
(

x′
0

p

)
�= 1, then go to 1

4. Set x0 :=
√

x′
0 (mod p)

5. Set (x, y) := 4 · (x0, y0)
6. if (x, y) = (0, 1), then go to 1
7. return (x, y)

4 Comparison with Twisted Edwards Curves Generation
Method Proposed by Costello et al.

In this section, we review the twisted Edwards curves generation method intro-
duced by Costello et al. in [4] and compare it with our method described in
Sect. 3. While for Algorithm 4 the user can only specify the bit length of the
prime p, for the algorithm introduced in [4] the user may specify the prime p.
With a prime p as input, the algorithm will generate a twisted Edwards curve
EE,a,d over Fp.

1 Pseudo-Mersenne primes are primes of the form 2α − γ, while Montgomery-friendly
primes are primes of the form 2α(2β − γ) − 1, where α, β, γ are integers. Primes of
these forms are usually preferred for efficiency consideration [1].
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In their algorithm, a is chosen to be either 1 or −1 depending on the prime
p used. More precisely, they use

a :=

{
1 if p ≡ 3 (mod 4),
−1 if p ≡ 1 (mod 4).

Once the parameter a is fixed, it remains to determine the value of the parameter
d. This algorithm simply tests the values of d in the sequence ±1, 2,−2, 3,−3, · · ·
until it finds d with the smallest absolute value such that EE,a,d and its quadratic
twist have optimal cofactors (i.e. the number of points in these curves is either
4 × (prime) or 8 × (prime)). Counting the number of points on EE,a,d and
its quadratic twist can be done at the same time by computing the trace of
Frobenius ta,d = p+1−#EE,a,d(Fp) of the twisted Edwards curve EE,a,d. After
the trace of Frobenius ta,d is computed, the number of points in EE,a,d is given
by p + 1 − ta,d, while the number of points in its quadratic twist is p + 1 + ta,d.
The following is their algorithm for determining d when p ≡ 3 (mod 4).

for d ∈ [−1, 2,−2, 3,−3, · · · ] do
– Compute t1,d.
– Set (p + 1 − t1,d) = hr and (p + 1 + t1,d) = h′r′, where h = 2e, h′ = 2e

′
for

some integers e, e′; and r and r′ are odd.
– if h = h′ = 4 and r is prime and r′ is prime then return d.

end for

In [4], Costello et al. used the above algorithm with three different inputs
p = 2256 − 189, 2384 − 317, 2512 − 569. The result is tabulated in Table 1 below.

Table 1. Edwards curves generated by Costello et al. [4]

Security level Input: prime p Bit-length of p Output: parameter d (x2 + y2 = 1 + dx2y2)

128 2256 − 189 256 −15342

192 2384 − 317 384 −11556

256 2512 − 569 512 −78296

The running time of the algorithm is not mentioned in [4]. In the following,
we shall give a rough estimate on the running time of the algorithm. We take the
input p = 2256 − 189 as an example. For this input, the output is d = −15342.
To produce this output, the algorithm has to run through 30683 iterations. The
most expensive operation in each iteration is the computation of the trace of
Frobenius. The best known algorithm to compute the trace of Frobenius is the
SEA algorithm [13,14]. In Magma, running the SEA algorithm on elliptic curves
over Fp takes 9 s on average. Thus, to produce the output of d = −15342, the
algorithm would take about 30683 × 9 = 276147 seconds ≈76.7 h.
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Table 2. Running time comparison

Bit-length of p Algorithm 4 Algorithm in [4] (estimated)

256 ≤3 min 76 h

384 ≤15 min 	58 h

512 ≤35 min 	391 h

For the input p = 2384 − 317 and p = 2512 − 569, the numbers of iterations
needed to produce the output are 23111 and 156591 respectively. So, the running
time would be at least 207999 s ≈58 h for p = 2384 − 317 and 1409319 s ≈391 h
for p = 2512−569, assuming that each iteration takes 9 s on average. However, as
the bit length of p is bigger, it takes much longer to execute the SEA algorithm.
Thus, the actual running time is expected to be much longer than our estimates.

On the other hand, we run Algorithm4 (as well as its pseudo-Mersenne and
Montgomery-friendly variants) in Magma numerous times and noted the running
time. The running time of our algorithm is tabulated in Table 2. We remark that
the running time mentioned in Table 2 is the worst case running time out of the
numerous executions of the algorithm. We also put the running time estimates
of Costello et al.’s algorithm in the table as comparison. It is clear that our
algorithm is much faster than that of [4].

5 Conclusion

Twisted Edwards curves are elliptic curves which are defined by equation of the
form ax2+y2 = 1+dx2y2 for some constant a and d. When a = 1, the curves are
called Edwards curves. When a is a square and d is not a square in the underlying
field, point additions on the twisted Edwards curves can be evaluated using a
single unified formula that holds for any pair of points on the curves. In this
case, we say that the twisted Edwards curves is complete.

In this paper, we introduced an algorithm (Algorithm4) for generating com-
plete Edwards curves over Fp, where p is a prime of user-specified bit length, and
the number of points on the curve is 4 × (prime). We remarked that the algo-
rithm can be modified by specifying that the prime p must be a prime of special
form (e.g. pseudo-Mersenne or Montgomery-friendly prime). We also presented
another algorithm (Algorithm5) to produce a point of prime order on the curve
generated by Algorithm 4.

We then compared our algorithms with the algorithm for generating twisted
Edwards curve given by Costello et al. in [4]. We noted that for our algorithm
the user inputs the bit length of the prime p, while for the algorithm in [4], the
user enters the prime p as the input. We observed that our algorithms are able
to generate a complete Edwards curve, along with a point of prime order on the
curve in less than 3 (resp. 15, 35) minutes when the bit length of the prime p
is 256 (resp. 384, 512) bits. These are much faster than the estimated running
time of the algorithm proposed by Costello et al. in [4].
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Appendix

A List of Discriminants and Their Hilbert Class
Polynomials

B Sample Output of Algorithms 4 and 5

The sample output of Algorithms 4 and 5 are given in Tables 3, 4 and 5 below.
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Table 3. Input (bit-length of p) = 256

Prime p 2256 - 90437671211985546874316358605566976675

Parameter d 2232957402930888962690153848203737819511656455704365203613889338415517544966

# EE,1,d 4 × 28948022309329048855892746252171976963294556678555688323048256808032754388119

Point of prime
order

(38827631816508813273841327893835794280440756912139095629484251847080307749332,
45829116834518642034200069292195310273647442070782884666574460125768495421042)

Table 4. Input (bit-length of p) = 384

Prime p 2384 - 1431712715302249176153463591222786594736847634233865480307

Parameter d 1970100309819723960613952005007180690253986963523272333397343084576520976116052857
3911521734145089396586197062413255

# EE,1,d 4 × 985050154909861980306976002503590345126993481761636166698891272462085161841619
9716515265055521363641980466510748829

Point of prime
order

(202766969776173228811925149375818227812694647342750033649791204932164711080926764
21739531805311493757613371809813335,
20177608000332933836528309688591293759937886040186443658471691078279871203594520696
578763107668549007555074473299435)

Table 5. Input (bit-length of p) = 512

Prime p 2512 - 9236884931966751641228310144316961954531808116793136270160199561113067518679

Parameter d 83383734058756497708575189425057432137030276061623722108985809791633053053282236959
86850324431265351430266149215962893734385441401397014004945963621838618

# EE,1,d 4 × 3351951982485649274893506249551461531869841455148098344430890360930441007518439
998561692274611542134986503267678569602506179958498860373550699760692315387

Point of prime
order

(4221176987664061988834477481798535838679628228953622593354872274681074377661272412
205621206287722762297218626276294075053564148168996099225259593206694004,
799746207924148777642248198542630258363054382986153869775845683029646047777864404966
4970989485873761325036499067164466584007358797257459370337450680946804)
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Abstract. The GLV/GLS technique speeds up scalar multiplications on
elliptic curves endowed with an efficiently computable endomorphism: a
scalar multiplication by a full-size scalar becomes a double scalar multi-
plication by half-size scalars, which is significantly faster. However, this
requires to first decompose the original scalar into an appropriate lin-
ear combination of half-size scalars using reduction in a low-dimensional
lattice. Since a reduced basis of the lattice can be precomputed, this is
typically fast, but it tends to leak a lot of side-channel information about
the scalar.

To avoid this issue, Aranha et al. (ASIACRYPT 2014) proposed to use
“recomposition” instead, i.e. choose the two half-sized scalars at random
in a suitable interval, defining a corresponding full-size scalar implicitly.
If the statistical distance to uniform of the distribution of that scalar
is negligible, the recomposition method is secure and avoids any of the
leakage of GLV/GLS decomposition. The original paper obtained the
statistical distance result for GLS curves of prime order. In this work,
we extend their proof to GLS curves having a cofactor which can be
written as a sum of two squares. This shows in particular how to obtain
secure recomposition for (twisted) Edwards GLS curves and the fast
binary curve GLS254 of Oliveira et al. (CHES 2013), as these curves
have cofactor 4 and 2 respectively.

1 Introduction

The GLV/GLS Technique. In recent years, most of the record-breaking
implementations of elliptic curve cryptography have been achieved using spe-
cial elliptic curves endowed with fast endomorphisms: this includes [5,7,8,13]
and more. These implementations rely on the methods introduced by Gallant–
Lambert–Vanstone (GLV) [11], Galbraith–Lin–Scott (GLS) [9], and generaliza-
tions thereof. One can roughly describe these techniques as follows.

Consider an elliptic curve E over a finite field Fq, and an endomorphism ψ
of E over Fq which is assumed to be fast to evaluate. Suppose also, as is always
the case in elliptic curve cryptography, that E(Fq) contains a unique subgroup
G of large prime order �. Then, since ψ sends points of order � to points of order

c© Springer International Publishing AG 2017
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DOI: 10.1007/978-3-319-59870-3 20
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(dividing) �, it must leave G stable, and hence act on G by multiplication by some
scalar λ, which is typically of full size (i.e. the bit size of λ is roughly the same
as that of �). Therefore, in order to compute a scalar multiplication [k]P in G by
a full-size scalar k ∈ Z/�Z, one can first write k in the form k = k1 + k2λ mod �
(where k1, k2 can be chosen as roughly half-size scalar), and then compute the
double half-size scalar multiplication [k1]P + [k2]ψ(P ). Since operations such as
doublings are shared in a double scalar multiplication, this is significantly faster
than carrying out the single full-size scalar multiplication [k]P directly.

This approach was first considered by Gallant, Lambert and Vanstone over
prime finite fields, but constructing curves with efficient endomorphisms in that
setting is not easy, and the corresponding curves tend to be quite special (e.g.
have low CM discriminant). Galbraith, Lin and Scott later showed how to obtain
a much larger class of elliptic curves with fast endomorphisms by moving to
quadratic extension fields. Their strategy (or at least its most important special
case) is as follows: from an elliptic curve E over Fq for a prime q, take its
quadratic twist E′ over Fq2 ; E′ has an efficient endomorphism ψ induced from
the Frobenius map of E/Fq2 . If E′(Fq2) has a unique subgroup of a large prime
order �, the endomorphism ψ acts on that subgroup by multiplication by an
integer λ, which can be shown to satisfy λ2 ≡ −1(mod �). Thus, the fast scalar
multiplication technique above applies to E′ using ψ as the fast endomorphism.
Elliptic curves constructed in this way are the main focus of the present paper,
and what we will henceforth call GLS curves.

In their original paper, Galbraith, Lin and Scott had considered GLS curves
E′ obtained as twists of curves E defined over large prime fields: in particular,
they applied their technique to construct a particularly efficient twisted Edwards
curve [3] with fast endomorphism defined over F(2127−1)2 . As observed by Han-
kerson, Karabina and Menezes [12], however, the construction extends naturally
to fields of characteristic 2. This was used by Oliveira et al. [13] to obtain one
of the fastest software implementation of elliptic curve cryptography, on a GLS
curve over F2254 called GLS254.

Decomposition vs. Recomposition. To obtain the half-size scalars k1 and
k2 involved in the GLV/GLS double scalar multiplication, two competing
approaches have been suggested in the literature (including in some of the ear-
liest presentations of the GLV technique, like Gallant’s talk at ECC’99 [10]).

A very natural approach is to start from a given scalar k, and decompose
it in the form k = k1 + k2λ mod � using lattice reduction in dimension 2 (or
equivalently, continued fractions, a generalized Euclidean algorithm, etc.). Such
a decomposition algorithm is described in the original GLV paper [11], and
has received various improvements and simplifications (such as [14]). Since λ is
typically fixed, one can precompute a short basis of the corresponding lattice,
and the decomposition algorithm mostly boils down to a few multiplications by
known constants, so it is quite fast in practice.

However, in contexts where side-channel attacks are a concern, Aranha
et al. [1] have shown that the decomposition technique could be a security lia-
bility: because it involves the multiplication of the secret k by known constants
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(in a machine word by machine word fashion), it can very easily be targeted
using standard side-channel attacks (such as correlation power analysis, corre-
lation EM analysis, template attacks, etc.) to reveal partial or complete infor-
mation about k. As a result, Aranha et al. were able to mount a key recovery
against an 8-bit AVR smart card implementation of ECDSA on a GLS curve by
targeting the decomposition phase alone.

These concerns regarding side-channel leakage can be alleviated by avoiding
computation in the generation of k1 and k2. Instead of starting from k and
deriving k1 and k2 from there, a simpler approach is to simply pick k1 and k2
at random, which defines the scalar k = k1 + k2λ mod � only implicitly. Aranha
et al. call that method the recomposition technique, because k is “recomposed”
as a linear combination of k1 and k2. Gallant did mention that technique in
his ECC’99 presentation, but expressed concerns about possible biases in the
resulting scalar k. Such biases are not very serious for protocols like elliptic
curve Diffie–Hellman, but they are a grave security issue in other settings like
ECDSA signatures. Indeed, Aranha et al. demonstrated that when k1 and k2
are chosen in a naive way, the resulting bias on the distribution of k is sufficient
to completely recover the signing key using statistical techniques.

More generally, it is not clear in general that even a non-naive way of sampling
k1 and k2 will result in a recomposed scalar k with close to uniform distribution
in Z/�Z. In fact, some numerical evidence provided by Brumley and Nyberg [6]
suggested that in many specific settings, natural choices of sampling intervals for
k1 and k2 failed to yield a uniform k. In contrast to their results, however, Aranha
et al. proved that, in the specific case of GLS curves of prime order, choosing k1
and k2 uniformly at random in [0,

√
�) did yield a close-to-uniform distribution for

k. In that specific case, the recomposition method is thus almost always preferable
to decomposition: it is very simple and efficient (since it requires essentially no
computation), and it offers a very desirable protection against side-channels.

Unfortunately, the proof given by Aranha et al. uses arithmetic properties of
the number of points on GLS curves of prime order in a crucial way, and thus does
not generalize directly to other settings. It is therefore unclear in general how
to carry out secure recomposition (in the sense that k will be close to uniform),
even on GLS curves of non-prime order.

Our Contribution. In this paper, we revisit the uniformity proof of Aranha
et al., and show that it can be extended using slightly more advanced alge-
braic number theoretic techniques. More precisely, we show how to obtain secure
recomposition on GLS curves not just of prime order, but also with any cofactor
of the form h = a2 + b2 with a, b ∈ Z.

This captures in particular the case of cofactors 2 = 12 + 12 and 4 = 22 + 02,
which are of singular importance, because they cover twisted Edwards GLS
curves as well as GLS curves over binary fields such as GLS254. Side-channel
security is one of the major design goals of these curves, and it is thus especially
desirable to ensure that the generation of k1 and k2 does not leak all of our
secrets on a power or EM trace.
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The rest of this paper is organized as follows: In Sect. 2, we provide back-
ground material about Gaussian integers and the notion of statistical distance,
and review GLS curves and the result of [1] that describes secure GLS recompo-
sition on prime order curves. In Sect. 3, we present our first result about secure
GLS recomposition method for curves with cofactor 4 and 2. In Sect. 4, we extend
our result to curves with an arbitrary cofactor that is the sum of two squares.

2 Preliminaries

2.1 Gaussian Integers

We denote by Z[i] the ring of Gaussian integers: Z[i] = {a+bi : a, b ∈ Z, i2 = −1}.
For a Gaussian integer ζ = a+ bi, we denote its conjugate by ζ = a− bi, and we
define its norm by N(ζ) = ζζ = a2 + b2. Note that the norm N is multiplicative,
i.e. N(ζω) = N(ζ)N(ω) for any ζ, ω ∈ Z[i]. The units of Z[i] are {±1,±i}, which
are all elements with norm 1, and we call ±ζ,±iζ the associates of ζ.

In this paper, we often consider the existence of Gaussian integers having a
given norm, so we define a function fN (n) = #N−1(n) = #{ζ ∈ Z[i]|N(ζ) = n},
the number of Gaussian integers having norm n, for any positive integer n. If
fN (n) > 0, then there is a Gaussian integer ζ with N(ζ) = n.

Lemma 1 (Theorem 3.2.1 [2]). For a positive integer n,

fN (n) = 4(d1,4(n) − d3,4(n))

where dj,k(n) denotes the number of positive divisors d of n such that d ≡
j(mod k). In particular, for an odd prime integer r, fN (r) = 8 if r ≡ 1(mod 4)
and 0 otherwise.

It is easy to check that if fN (n) = 8 and N(a + bi) = a2 + b2 = n, then a �= b
and ab �= 0 and N−1(n) = {±(a + bi),±(a + bi)i,±(a − bi),±(a − bi)i} =
{a + bi,−a − bi,−b + ai, b − ai, a − bi,−a + bi, b + ai,−b − ai}. Thus, all the
Gaussian integers having norm n are associates of a+bi or those of its conjugate
a− bi, and we can say the Gaussian integer having norm n is unique up to order
and up to sign.

The following lemma describes how fN (mn) is related to fN (m) and fN (n)
when m and n are relatively prime.

Lemma 2. For any two relatively prime integers m and n, 4fN (mn) =
fN (m)fN (n).

Proof. Since gcd(m,n) = 1, for any divisor g of mn, there exists the unique pair
(d, e) such that d | m, e | n and g = de.

g ≡ 1(mod 4) if and only if d ≡ e ≡ 1(mod 4) or d ≡ e ≡ 3(mod 4).
Thus, we have d1,4(mn) = d1,4(m)d1,4(n)+d3,4(m)d3,4(n). Similarly, d3,4(mn) =
d1,4(m)d3,4(n) + d3,4(m)d1,4(n). Therefore,
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fN (mn) = 4(d1,4(mn) − d3,4(mn))

= 4(d1,4(m) − d3,4(m))(d1,4(n) − d3,4(n)) =
1
4
fN (m)fN (n). ��

Z[i] is a unique factorization domain (UFD), in which every non-zero non-unit
element can be written as a product of prime elements, uniquely up to units. A
Gaussian integer ζ is a Gaussian prime (a prime elements of Z[i]) if and only if
either N(ζ) is a prime integer, or ζ is an associate of a prime integer congruent to
3 modulo 4. Let π2 = 1 + i ∈ Z[i] with N(π) = 2, and let πp = a + bi ∈ Z[i] with
N(π) = a2 + b2 = p for all prime integers p with p ≡ 1(mod 4), then π2 and πp’s
are Gaussian primes. For πp = a + bi and N(πp) = a2 + b2 = p, since p is prime,
both a, b are nonzero, |a| �= |b|, and gcd(a, b) = 1 over Z. Thus, πp = a − bi is
not an associate of πp, and hence πp’s are also Gaussian primes different from π2

and πp’s. Note that if p ≡ 1(mod 4) is prime, then fN (p) = 8 by Lemma 1, and
±πp,±iπp,±πp,±iπp are all Gaussian integers of the norm p. Finally, let πq ∈ Z[i]
be the prime integer q for all q with q ≡ 3(mod 4), then πq’s are Gaussian primes
and hence the set of all Gaussian primes, up to units, is

{π2} ∪ {πp, πp | p ≡ 1 (mod 4), prime} ∪ {πq | q ≡ 3 (mod 4), prime}.

For two Gaussian integers α, β, we say that α divides β, denoted by α | β,
if there exists γ ∈ Z[i] such that β = αγ. By the multiplicative property of the
norm, if α | β, then N(α) | N(β) in Z and N(β

α ) = N(β)
N(α) .

2.2 Statistical Distance, Pushforward

For D a probability distribution on a finite set S, we write Pr[s ← D ] for the
probability assigned to the singleton {s} ⊂ S by D . The uniform distribution
on S is denoted by US (or just U if the context is clear).

Definition 1 (Statistical distance). Let D and D ′ be two probability distri-
butions on a finite set S. The statistical distance between them is defined as the
�1 norm:

Δ1(D ,D ′) =
∑

s∈S

∣∣ Pr[s ← D ] − Pr[s ← D ′]
∣∣.

We simply denote by Δ1(D) the statistical distance between D and US:

Δ1(D) =
∑

s∈S

∣∣∣ Pr[s ← D ] − 1
#S

∣∣∣,

and say that D is ε-statistically close to uniform when Δ1(D) ≤ ε. When Δ1(D)
is negligible, we simply say than D is statistically close to uniform.1

1 For this to be well-defined, we of course need a family of random variables on increas-
ingly large sets S. Usual abuses of language apply.
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Definition 2 (Pushforward). Let S, T be two finite sets and F any mapping
from S to T . For any probability distribution DS on S, we can define the push-
forward F∗DS of DS by F as the probability distribution on T such that sampling
from F∗DS is proportional to sampling a value s ← DS and returning F (s). In
other words:

Pr
[
t ← F∗DS

]
= Pr

[
s ← DS ; t = F (s)

]
= μS

(
F−1(t)

)
=

∑

s∈F −1(t)

Pr[s ← DS ],

where μS is the probability measure defined by DS.

Lemma 3. Let S, T be two finite sets and F any mapping from S to T . For
the uniform distribution US on S, if F : S → T is injective, then Δ1(F∗US) =
2
(
1 − #S

#T

)
.

Proof. For the uniform distribution US on S, Pr[s ← US ] = 1
#S . By the defini-

tion of the pushforward of US by F , we have

Δ1(F∗US) =
∑

t∈T

∣∣∣∣∣∣

⎛

⎝
∑

s∈F −1(t)

Pr[s ← US ]

⎞

⎠− 1

#T

∣∣∣∣∣∣
=
∑

t∈T

∣∣∣∣∣∣

⎛

⎝
∑

s∈F −1(t)

1

#S

⎞

⎠− 1

#T

∣∣∣∣∣∣
.

Since F is injective, #F−1(t) = 1 if t ∈ F (S) and 0 otherwise where F (S) is
the image of F . Then, Δ1(F∗DS) is

∑
t∈F (S) | 1

#S − 1
#T | +

∑
t∈T\F (S) |0 − 1

#T |.
Again, by the injectivity of F , #S ≤ #T and #F (S) = #S, and therefore

Δ1(F∗DS) = #S

(
1

#S
− 1

#T

)
+ (#T − #S)

1
#T

= 2
(

1 − #S

#T

)
. ��

2.3 GLS Curves and Scalar Multiplications

In general, we call an elliptic curve a GLS curve if it is the quadratic twist over Fq2

of an elliptic curve defined over Fq. Throughout the paper, we use the following
notation for GLS curves: For an elliptic curve E/Fq with #E(Fq) = q + 1 − t,
take its quadratic twist E′ over Fq2 , then E′ is a GLS curve. Then ψ = φπqφ

−1 is
an efficiently computable endomorphism on E′ where φ : E → E′ is the twisting
isomorphism and πq : E → E is the q-th power Frobenius map of E. We can
write #E′(Fq2) = (q − 1)2 + t2 = h� with cofactor h and � a large prime integer.
Then E′(Fq2) has the unique subgroup G of prime order � provided h < �, and
ψ acts on G by a multiplication by λ ∈ Z such that λ2 ≡ −1 (mod �). See [9]
for more details.

For P ∈ G, if k = k1 + k2λ (mod �), then [k]P can be computed by [k1]P +
[k2]ψ(P ) = [k1]P +[k2][λ]P = [k1 +k2λ]P as ψ(P ) = [λ]P . Since k1 and k2 have
size roughly half of the size of k, it is more advantageous to compute a double
scalar multiplication [k1]P + [k2]ψ(P ) than to compute [k]P directly.
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Example 1 (Twisted Edwards GLS curves). A twisted Edwards curve [3] over a
finite field Fq with char(Fq) �= 2 is defined by

EE,a,d : ax2 + y2 = 1 + dx2y2

where a, d ∈ Fq with a, d �= 0 and a �= d.
A twisted Edwards GLS curve is a GLS curve obtained from a twisted

Edwards curve. It is also a twisted Edwards curve, so it has very efficient unified
addition formula, as well as the fast endomorphism ψ like any other GLS curves.
Note that twisted Edward GLS curves have order divisible by 4: indeed, their
order is of the form (q − 1)2 + t2 with q odd, so it is congruent to t2 mod 4; but
since all twisted Edwards curves have even order, t must be even and hence 4
divides (q − 1)2 + t2.

In practice, one typically chooses curves with the optimal cofactor 4. One
such curve, with particularly efficient arithmetic, is constructed in [9, Sect. 8],
over the finite field F(2127−1)2 , together with 8-bit and 64-bit implementations
that outperform prime field Edwards curve arithmetic by a significant margin.

Example 2 (GLS254). GLS254 is the record-breaking GLS curve over F2254

introduced by Oliveira et al. in [13]. Its cofactor is even (as for all ordinary
curves in characteristic 2), and in fact exactly equal to 2. It also has an efficiently
computable endomorphism ψ which acts on the prime order � subgroup by a
scalar multiplication by λ with λ2 ≡ −1 (mod �). See [13, Sect. 3.2] for details.

2.4 Recomposition Method for Prime Order

Recall that a GLS curve E′ with cofactor h is an elliptic curve defined over
Fq2 endowed with an efficiently computable endomorphism ψ. We can write
#E′(Fq2) = (q − 1)2 + t2 = h� where � > h is prime and |t| ≤ √

q. On the large
prime order subgroup G of E′(Fq2) with #G = �, ψ(P ) = [λ]P for all P ∈ G
where λ2 ≡ −1 (mod �).

When computing [k]P for a random k ∈ Z/�Z and P ∈ G, we can apply the
GLS recomposition method to speed up scalar multiplications: choose k1, k2 with
|k1| = Θ(

√
�) and |k2| = Θ(

√
�), and compute [k1]P + [k2]ψ(P ). Let k = k1 +

k2λ mod �, then [k]P = [k1]P + [k2]ψ(P ), and thus a scalar multiplication [k]P
by a full-size scalar k becomes a double scalar multiplication [k1]P +[k2]ψ(P ) by
half-size scalars k1 and k2, which is significantly faster and easy to implement.
If k is random enough, then we have achieved our goal, computing [k]P with
k random, without introducing any side-channel information about the scalar
unlike decomposition technique. If these conditions are satisfied, then we say the
GLS recomposition method is secure. Let us define this notion more formally:

Definition 3 (Secure GLS recomposition). For c1, c2 > 0, the recomposi-
tion map F : [0, c1) × [0, c2) → Z/�Z on the domain [0, c1) × [0, c2) is defined
by

F (x, y) = x + yλ (mod �),
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where we denote [a, b) := {n ∈ Z|a ≤ n < b} for simplicity.
We say that the GLS recomposition method is secure for (c1, c2) if c1 = Θ(

√
�)

and c2 = Θ(
√

�), and the distribution Dλ,�(c1, c2) of the images of F

Dλ,�(c1, c2) = {choose (k1, k2)
$← [0, c1) × [0, c2) : output k = k1 + k2λ (mod �)}

is statistically close to the uniform distribution UZ/�Z.

Recall that c1 = Θ(
√

�) means c1 is both O(
√

�) and Ω(
√

�), and the same is true
for c2 = Θ(

√
�). The condition that c1 = Θ(

√
�) and c2 = Θ(

√
�) is essential,

otherwise we cannot take any advantage, in terms of speed, from recomposition
method computing [k1]P + [k2]ψ(P ) instead of [k]P . Note that the distribution
Dλ,�(c1, c2) is the pushforward F∗U[0,c1)×[0,c2) by F , in the sense of Sect. 2.2.

In 2015, Aranha et al. [1] proved that the GLS recomposition method is secure
when #E′(Fq2) = (q − 1)2 + t2 is prime �. They first showed that F : [0, q − 1) ×
[0, q − 1) → Z/�Z is injective, and then, using that injective, that the statistical
distance to uniform is negligible.

Proposition 1 (Lemma 3 [1]). The recomposition map F : [0, q−1)×[0, q−1) →
Z/�Z defined by F (x, y) = x + yλ(mod �) is injective where λ ∈ Z satisfies
λ2 ≡ −1(mod �).

Since we have q−1 = Θ(
√

�) from (q−1)2 ≤ � = (q−1)2 + t2 ≤ (q−1)2 +4q, we
can conclude that the GLS recomposition method for prime order GLS curve is
secure.

Proposition 2 (Theorem 1 [1]). Let E′ be a GLS curve over Fq2 of prime order,
namely, #E′(Fq2) = (q − 1)2 + t2 = � with � prime and |t| ≤ √

q. Then GLS
recomposition method on E′ is secure for (q − 1, q − 1).

3 Secure Recomposition Method for Cofactor 4 and 2

In this section, we prove that the GLS recomposition method is secure for the
cases that cofactor of GLS curves is 4 or 2.

If a GLS curve E′/Fq2 has cofactor 4, namely, #E′(Fq2) = (q − 1)2 + t2 = 4�
with � prime, then we first show that the recomposition map F is injective on
the domain [0, q−1

2 )× [0, q−1
2 ). If F is injective, then it becomes easy to compute

the statistical distance to uniform of the distribution of recomposed scalars.

Proposition 3. Let E′ be a GLS curve over Fq2 with cofactor 4, namely,
#E′(Fq2) = (q−1)2+t2 = 4� with � prime and |t| ≤ 2

√
q. Then the recomposition

map F : [0, q−1
2 ) × [0, q−1

2 ) → Z/�Z is injective.

Proof. At first, we note that since fN (4), fN (4�) �= 0 and 4fN (4�) = fN (4)fN (�)
by Lemma 2, we have fN (�) �= 0 and hence fN (�) = 8 as � is prime.

If F is not injective, then there exist (x, y) �= (x′y′) such that F (x, y) =
F (x′, y′). As λ2 ≡ −1(mod �), we have (x − x′)2 + (y − y′)2 ≡ 0(mod �). Since
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0 ≤ |x−x′|, |y−y′| < q−1
2 and (q−1)2 ≤ 4�, we have (x−x′)2+(y−y′)2 < (q−1)2

2 ≤
2�. Since (x, y) and (x′, y′) were distinct as points, we have (x−x′)2+(y−y′)2 �= 0
and therefore we can conclude that (x − x′)2 + (y − y′)2 = � over Z.

On the other hand, we can write 4� = (q − 1)2 + t2 = N(q − 1 + ti) and
4 = 22 + 02 = N(2). Note that q must be odd, otherwise we would have (q −
1)2+t2 ≡ 1+t2 ≡ 0(mod 4), but −1 is not a square mod 4. Thus, q is odd, and in
particular 4 | (q −1)2 and hence 4 | t2 = 4�− (q −1)2. Thus, both q −1 and t are
both even integers and q−1

2 , t
2 ∈ Z. Therefore, we have q−1+ti

2 = q−1
2 + t

2 i ∈ Z[i]
and N( q−1

2 + t
2 i) = N(q−1+ti)

N(2) = ( q−1
2 )2 + ( t

2 )2 = �.
And now, we can say that N((x − x′) + (y − y′)i) = N( q−1

2 + t
2 i) = �. Since

fN (�) = 8, by the arguments in Sect. 2.1, (x − x′) + (y − y′)i is an associate of
q−1
2 ± t

2 i. Therefore, either |x − x′| or |y − y′| is q−1
2 , which is a contradiction to

the fact that |x − x′|, |y − y′| < q−1
2 . ��

Corollary 4. Let E′ be a GLS curve over Fq2 with cofactor 4 with q odd,
namely, #E′(Fq2) = (q − 1)2 + t2 = 4� with � prime and |t| ≤ 2

√
q. Then

GLS recomposition method on E′ is secure for ( q−1
2 , q−1

2 ).

Proof. From 4� = (q−1)2+t2 and t2 ≤ 4q, we have (q−1)2 ≤ 4� ≤ (q−1)2+4q =
(q + 1)2, or equivalently,

q − 1
2

≤
√

� ≤ q + 1
2

.

Thus, q−1
2 = Θ(

√
�). By Proposition 3, F is injective and so we can apply

Lemma 3. The statistical distance to uniform is Δ1(Dλ,�( q−1
2 , q−1

2 )) = 2(1 −
(q−1)2

4� ) = t2

2� . Finally, as t2 ≤ 4q and 4� ≥ (q−1)2, Δ1(Dλ,�( q−1
2 , q−1

2 )) ≤ 8q
(q−1)2 ,

which is negligible. ��
Since twisted Edwards GLS curves (see Example 1) are typically chosen to have
cofactor exactly 4, this result applies to those curves. It does apply, in particular,
to the curve of Galbraith et al. in [9, Sect. 8]. That we can obtain secure GLS
recomposition on twisted Edwards GLS curves is particularly interesting in the
sense that those curves are designed with side-channel protection in mind (thanks
to their unified arithmetic formulas), and thus a side-channel protected method
to obtain the GLS scalars is also important.

Similarly, if a GLS curve E′/Fq2 has cofactor 2, namely, #E′(Fq2) = (q −
1)2 + t2 = 2� with � prime, then we can show that F is injective on the domain
[0, q−1−|t|

2 ) × [0, q − 1), and conclude that the recomposition method is secure
for GLS curves with cofactor 2.

Proposition 5. Let E′ be a GLS curve over Fq2 with cofactor 2, namely,
#E′(Fq2) = (q−1)2+t2 = 2� with � prime and |t| ≤ 2

√
q. Then the recomposition

map F : [0, q−1−|t|
2 ) × [0, q − 1) → Z/�Z injective.
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Proof. The proof will go similarly to Proposition 3. Note that fN (2) and fN (2�)
are positive, and so fN (�) is also positive and fN (�) = 8 as � is prime.

If F is not injective, then we can find (x, y) �= (x′, y′) such that (x − x′)2 +
(y − y′)2 ≡ 0(mod �). Since (x − x′)2 + (y − y′)2 < (q−1)2

4 + (q − 1)2 < 3�, there
are two possibilities for values of (x − x′)2 + (y − y′)2, namely 2� or �.

Note that since gcd(2, �) = 1 and fN (2) = 4, fN (2�) = 1
4fN (2)fN (�) = 8 by

Lemma 2. If (x−x′)2+(y−y′)2 = 2� = (q−1)2+t2, then N((x−x′)+(y−y′)i) =
N(q−1+ti) = 2�. Since fN (2�) = 8, we also can conclude that (x−x′)+(y−y′)i
is an associate of q − 1 ± ti. Therefore, either |x − x′| or |y − y′| is q − 1. This is
a contradiction to the fact that |x − x′|, |y − y′| < q − 1.

On the other hand, if (x−x′)2+(y−y′)2 = �, we can write 2� = N(q−1+ti)
and 2 = N(1+ i). From q−1+ti

1+i = q−1+t
2 + q−1−t

2 i, since (q−1)2+t2 = 2� is even,
q−1 and t have the same parity, i.e. q−1±t ≡ 0(mod 2). Hence q−1+t

2 + q−1−t
2 i ∈

Z[i] and N( q−1+t
2 + q−1−t

2 i) = N(q−1+ti)
N(1+i) = ( q−1+t

2 )2 + ( q−1−t
2 )2 = �. Thus,

N((x−x′)+(y−y′)i) = N( q−1+t
2 + q−1−t

2 i) = �. Since fN (�) = 8, (x−x′)+(y−y′)i
is an associate of q−1+t

2 ± q−1−t
2 i. Therefore, |x − x′| is either q−1+t

2 or q−1−t
2 ,

which is a contradiction to the fact that |x − x′| < q−1−|t|
2 . ��

Corollary 6. Let E′ be a GLS curve over Fq2 with cofactor 2, namely,
#E′(Fq2) = (q − 1)2 + t2 = 2� with � prime and |t| ≤ 2

√
q. Then GLS recompo-

sition method on E′ is secure for ( q−1−|t|
2 , q − 1).

Proof. From 2� = (q − 1)2 + t2 and t2 ≤ 4q, we have

q − 1√
2

≤
√

� ≤ q + 1√
2

,

and thus, q−1−|t|
2 = Θ(

√
�) and q − 1 = Θ(

√
�).

We have seen that F is injective in Proposition 5, so we can apply Lemma 3
again. The statistical distance to uniform is Δ1(Dλ,�(

q−1−|t|
2 , q − 1)) = 2(1 −

(q−1−|t|)(q−1)
2� ) = t2+(q−1)|t|

� . Since |t| ≤ 2
√

q and 2� ≥ (q − 1)2, Δ1(Dλ,�(
q−1−|t|

2 ,

q − 1)) ≤ 8q+4
√

q

(q−1)2 , which is negligible. ��
Thus, we have secure GLS recomposition over cofactor 2 curves, which

includes most interesting GLS curves over binary fields. In particular, our results
apply to Oliveira et al.’s GLS254 [13], which is of cofactor 2 over Fq2 with
q = 2127. Note however that, contrary to cofactor 1 and 4, the intervals in which
we have to choose k1 and k2 to get security are not the same. This is not an issue
for a performance or security standpoint, but it is important to keep in mind to
achieve security.

Interestingly, the GLS254 paper does mention recomposition as a possible
approach to generate the scalars k1 and k2, but it is quite vague as to how
the authors propose to choose these scalars. The most natural interpretation of
the relevant section is that they suggest taking them uniformly at random in
[0, q/

√
2), which is inadvisable: it would yield a biased value of k, and would
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also be less efficient than using the intervals of Corollary 6 (which are of length
essentially a power of 2). It turns out that the publicly available implementations
of GLS254 (submitted to eBATS [4]) use the decomposition technique, however,
so it is difficult to say for sure.

In any case, the result above seems to be the first proof that GLS recompo-
sition can in fact be used securely with GLS254 (or any other cofactor 2 curve),
provided that one chooses the intervals for k1 and k2 appropriately.

4 Secure Recomposition Method for Cofactor h = a2 + b2

In this section, we extend our result from Sect. 3 to GLS curves with any cofactor
of the form h = a2 + b2.

4.1 Technical Lemma: Existence of α′ Dividing q − 1 + ti

Until now, our strategy for proving that GLS recomposition is secure is as follows:

(i) F is injective on [0, c1) × [0, c2) with c1 = Θ(
√

�), c2 = Θ(
√

�)
(ii) Δ1(Dλ,�(c1, c2)) is negligible

For example, in order to prove that F is injective in Sect. 3, we wrote h = N(α)
and h� = N(q − 1 + ti) for h ∈ {2, 4} and saw that α divides q − 1 + ti. It is
crucial to have that α | q − 1+ ti in Z[i] since we compared the Gaussian integer
(x − x′) + (y − y′)i, obtained by assuming F is not injective, with Gaussian
integers related to q−1+ti

α to derive a contradiction.
If a GLS curve E′/Fq2 has cofactor h = a2+b2, i.e. #E′(Fq2) = (q−1)2+t2 =

h� with h = a2 + b2, then both h and h� can be seen as:

h = N(a + bi), and h� = N(q − 1 + ti)

If a + bi divides q − 1 + ti in Z[i], then we can also prove the injectivity of F in
the same way. However, we can’t guarantee that a + bi | q − 1 + ti in Z[i] only
from the condition N(a + bi) | N(q − 1 + ti) in Z. Although it holds that α | β
in Z[i] then N(α) | N(β) in Z, the converse does not hold in general. Namely,
N(α)|N(β) in Z does not means that α|β in Z[i].

Instead, in Theorem 7, we show that a partial converse holds: if N(α) | N(β)
and N(β) = N(α)� in Z with � prime, then we can always find α′ such that
α′ | β in Z[i], N(α′) = N(α), and hence N(α′) divides N(β). Using this result,
we will show that GLS recomposition method is secure for GLS curves with any
cofactor of the form h = a2 + b2 in the next section.

Theorem 7. For two Gaussian integers α, β ∈ Z[i], if N(α) = h and N(β) = h�
with � > h prime, then α′ = gcd(N(α), β) over Z[i] has norm N(α′) = N(α) =
h. In particular, α′ divides β in Z[i] and N( β

α′ ) = �.
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Proof. Note that since fN (h�) and fN (h) are positive, so is f(�) and N−1(�) �= ∅
where fN (n) = #N−1(n). Thus, � ≡ 1(mod �).

Since Z[i] is a UFD, the factorizations of α and β over Z[i] are unique, up to
units. With the notation of Gaussian primes in Sect. 2.1,

α = uπe2
2

∏

p≡1 (mod 4)

πep
p πp

e′
p

∏

q≡3 (mod 4)

πeq
q ,

β = u′πd2
2

∏

p≡1 (mod 4)

πdp
p πp

d′
p

∏

q≡3 (mod 4)

πdq
q ,

where u, u′ are units, N(π2) = π2π2 = 2, N(πp) = πpπp = p with p ≡ 1(mod 4)
prime, πq = q with q ≡ 3(mod 4) prime, and all exponents er, dr ≥ 0 for any
prime r. Note that all but finitely many of exponents are zero. Then

N(α) = 2e2
∏

p≡1 (mod 4)

pep+e′
p

∏

q≡3 (mod 4)

q2eq ,

N(β) = 2e2
∏

p≡1 (mod 4)

pdp+d′
p

∏

q≡3 (mod 4)

q2dq .

Since h = N(α) divides h� = N(β), we have e2 ≤ d2, ep + e′
p ≤ dp + d′

p, eq ≤ dq

for all p and q. However, since N(β)
N(α) = h�

h = � prime and � ≡ 1(mod 4), we have

N(β)

N(α)
= 2d2−e2�(d�+d′

�)−(e�+e′
�)

∏

p≡1 (mod 4)
p �=�

p(dp+d′
p)−(ep+e′

p)
∏

q≡3 (mod 4)

q2(dq−eq) = �.

Therefore, by comparing both sides, we can conclude that e2 = d2, (d� + d′
�) −

(e� + e′
�) = 1, ep + e′

p = dp + d′
p for all p �= �, and eq = dq for all q. Note that,

since � never divides h = N(α) as h < �, e� + e′
� = 0 and d� + d′

� = 1.
With these relations, the GCD of N(α) and β in Z[i] is

α′ = gcd(N(α), β) = πd2
2

∏

p≡1 (mod 4)
p�=�

πdp
p πp

d′
p

∏

q≡3 (mod 4)

πdq
q .

Then α′ = gcd(N(α), β) has norm

N(α′) = 2d2
∏

p≡1 (mod 4)
p�=�

pdp+d′
p

∏

q≡3 (mod 4)

q2dq = N(α). ��

4.2 Injectivity of the Recomposition Map

In this section, we give secure GLS recomposition for sum-of-square cofactor.
As in Sect. 3, we will first show that F is injective on a reasonable domain
(Theorem 8), then show the statistical distance is negligible and conclude that
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the GLS recomposition is secure (Corollary 9). Once F becomes injective, the
statistical distance is easy to compute by Lemma 3.

Our method to prove that F is injective on a given domain [0, c1)×[0, c2) with
c1 = Θ(

√
�), c2 = Θ(

√
�) is as follows: if there is a collision, which means that

there exist (x, y) �= (x′, y′) with F (x, y) = F (x′, y′), then x+yλ ≡ x′+y′λ(mod �)
and (x − x′)2 ≡ (y − y′)2λ2(mod �). As λ2 ≡ −1(mod �), we obtain a congruent
relation (x − x′)2 + (y − y′)2 ≡ 0(mod �). Since c1, c2 are proportional to

√
�, we

can bound (x−x′)2+(y−y′)2 from above by a multiple of �, say it bounded above
by B�. Obviously, (x−x′)2+(y−y′)2 > 0 by (x, y) �= (x′, y′), so (x−x′)2+(y−y′)2

should be z� for some z with 1 ≤ z ≤ B.
On the other hand, we can interpret (x − x′)2 + (y − y′)2 as the norm of the

Gaussian integer (x − x′) + (y − y′)i. Then we will show that (x − x′) + (y − y′)i
is different from all Gaussian integers having norm z� for all z with 1 ≤ z ≤ B,
which gives a contradiction.

To generate all Gaussian integers of the norm z�, we use γ ∈ Z[i] having norm
�. As we explain in Sect. 4.1, one can efficiently find γ by computing q−1+ti

gcd(h,q−1+ti)

from the known information of h and q − 1 + ti as N(q − 1 + ti) = h� and
N(α) = h. It is easy to find all ζz ∈ Z[i] with N(ζz) = z since z is a small integer
less than or equal to B. Then, we can find all Gaussian integers having norm z�
by multiplying ζz by γ in Z[i], and we have N(ζzγ) = N(ζz)N(γ) = z�.

From now on, we give our result of secure GLS recomposition for cofactor
h = a2 + b2. Let us fix notation first. For a GLS curve E′/Fq2 with cofactor
h = a2 + b2, i.e. #E′(Fq2) = (q − 1)2 + t2 = h� with � > h prime. Let α = a + bi
and β = p − 1 + ti, then N(α) = a2 + b2 = h and N(β) = (q − 1)2 + t2 = h�.
By Theorem 7, there exists α′ = gcd(h, β) ∈ Z[i] such that α′ | β in Z[i] and
N(α′) = h. Let α′ = a′ + b′i ∈ Z[i], then for γ := β

α′ ∈ Z[i], we have

γ =
q − 1 + ti

a′ + b′i
=

a′(q − 1) + b′t

h
+

−b′(q − 1) + a′t

h
i ∈ Z[i]

and

� = N(γ) =
(

a′(q − 1) + b′t

h

)2

+
(

b′(q − 1) − a′t

h

)2

.

Let d = gcd(a′, b′) over Z and write a′ = dm, b′ = dn and h′ = m2 + n2. Then
h = a′2 + b′2 = d2(m2 + n2) = h′d2. We may assume a′ ≥ 0 and b′ ≥ 0 by
multiplying units.

Theorem 8. Let E′ be a GLS curve over Fq2 with cofactor h = a2+b2, namely,
#E′(Fq2) = (q − 1)2 + t2 = h� with � > h prime and |t| ≤ 2

√
q. Then, with the

notation above, the recomposition map F : [0, (q−1)−2h′d|t|
h′d ) × [0, q−1

d ) → Z/�Z is
injective.

Proof. Note that fN (�) > 0 as fN (h) > 0 and fN (h�) > 0.
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If F is not injective, then there exist (x, y) �= (x′, y′) such that F (x, y) =
F (x′, y′) and hence (x−x′)2+(y−y′)2 ≡ 0(mod �). From the domain intervals of
F , we have (x−x′)2+(y−y′)2 <

(
q−1
h′d

)2
+

(
q−1

d

)2
=

(
1+h′2
h′h

)
(q−1)2 ≤ (

h′ + 1
h′

)
�

as h′d2 = h and (q−1)2 ≤ h�. Thus, (x−x′)2+(y−y′)2 ≤ h′� and (x, y) �= (x′, y′),
we have

0 < (x − x′)2 + (y − y′)2 ≤ h′�.

(i) If a′ = 0 or b′ = 0, say b′ = 0, then h = a′2, d = gcd(a′, b′) = a′ and h′ = 1.
From the description above, we can conclude that (x−x′)2 +(y − y′)2 ≤ �,
and hence it holds over Z that (x − x′)2 + (y − y′)2 = � = ( q−1

a′ )2 + ( t
a′ )2,

in other words, N((x − x′) + (y − y′)i) = N( q−1
a′ + t

a′ i) = �. Since fN (�) =
8, (x − x′) + (y − y′)i is an associate of q−1

a′ ± t
a′ i. In any cases, either

|x − x′| or |y − y′| is q−1
a′ = q−1

d , which is a contradiction to the fact that
|x − x′|, |y − y′| < q−1

d .
(ii) If a′b′ �= 0 and a′ = b′, then h = 2a′2, d = gcd(a′, b′) = a′, h′ = 2 and

(x − x′)2 + (y − y′)2 ≤ 2�. If (x − x′)2 + (y − y′)2 = 2�, then it holds that
2� = N((1+i)γ) = N((1+i)( q−1+t

2a′ +−(q−1)+t
2a′ i)) = N( q−1

a′ + t
a′ i) = ( q−1

a′ )2+
( t

a′ )2 where γ = a′(q−1)+a′t
2a′2 + −a′(q−1)+a′t

2a′2 i = q−1+t
2a′ + −(q−1)+t

2a′ i. Thus,
(x−x′)2+(y−y′)2 = ( q−1

a′ )2+( t
a′ )2 = 2�. Since fN (2�) = 1

4fN (2)fN (�) = 8,
(x−x′)+(y−y′)i is an associate of q−1

a′ ± t
a′ i. We can say that either |x−x′|

or |y − y′| is q−1
a′ , and at the same time, |x − x′|, |y − y′| < q−1

a′ , which is
not possible. The only possibility that remains is (x − x′)2 + (y − y′)2 =
� = ( q−1+t

2a′ )2 + ( q−1−t
2a′ )2 over Z. Again, (x − x′) + (y − y′)i is an associate

of q−1+t
2a′ ± q−1−t

2a′ i as fN (�) = 8. Then |x − x′| should coincide with q−1+t
2a′

or q−1+t
2a′ , but |x − x′| < q−1−|t|

2a′ and this is a contradiction.
(iii) If a′b′ �= 0 and a′ �= b′, then from � | (x − x′)2 + (y − y′)2 ≤ h′�, it suffices

to prove that (x − x′) + (y − y′)i is different from ζ for all ζ ∈ Z[i] with
N(ζ) = z�, and for all z such that 1 ≤ z ≤ h′ and fN (z) > 0.

If (x − x′)2 + (y − y′)2 = �, then since N(γ) = � and fN (�) = 8 for prime
�, (x − x′) + (y − y′)i is an associate of γ or γ. Thus, |x − x′| should be either
a′(q−1)+b′t

h or b′(q−1)−a′t
h . However, a′(q−1)+b′t ≥ a′(q−1)−b′|t| ≥ d(q−1)−2h|t|

by a′ ≥ d and 2h ≥ b′, and similarly, b′(q − 1)−a′t ≥ d(q − 1)− 2h|t|. Therefore,
|x−x′| = a′(q−1)+b′t

h or b′(q−1)−a′t
h , where both of them are greater than or equal

to d(q−1)−2h|t|
h = (q−1)−2h′d|t|

h′d . This is contradiction to the fact that |x − x′| <
(q−1)−2h′d|t|

h′d
Consider the case (x − x′)2 + (y − y′)2 = z� for some z such that 1 < z ≤ h′.

Note that there must exist a pair (z1, z2) such that z = z21 + z22 = N(z1 + z2i):
otherwise, fN (z) = 0 and hence fN (z�) = 0, a contradiction. We also emphasize
that we do not fix in advance a specific choice of (z1, z2) for z. Then z� =
N((z1 + z2i)γ) = ( (z1a′+z2b′)(q−1)+(z1b′−z2a′)t

h )2 + ( (z2a′−z1b′)(q−1)+(z2b′+z1a′)
h )2.

For simplicity, let Z1 = z1a
′ + z2b

′, Z2 = z1b
′ − z2a

′, Z ′
1 = z2a

′ − z1b
′, and
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Z ′
2 = z2b

′ + z1a
′, then z� = (Z1(q−1)+Z2t

h )2 +(Z′
1(q−1)+Z′

2t
h )2. Note that since z =

z21 +z22 ≤ h′ = h
d2 , we have |z1|, |z2| ≤

√
h

d , and furthermore |Z1|, |Z2|, |Z ′
1|, |Z ′

2| ≤
2h
d = 2h′d by definition.

Claim. If either 1 < z < h′, or z1+z2i has norm z = N(z1+z2i) = m2+n2 = h′,
but not an associate of m ± ni, then |Z1| ≥ d and |Z ′

1| ≥ d.

Since Z1 = z1a
′+z2b

′ = d(z1m+z2n), it suffices to show that |z1m+z2n| �= 0.
If |z1m+z2n| = 0, then m | z1m = −z2n and hence m divides z2 as gcd(m,n) =
1, say z2 = mz0. Thus, z1m = −z2n = −z0mn, and so z1 = −z0n. In any cases,
z ≤ h′, so we have z = z21 + z22 = z20(m

2 + n2) = z20h
′ ≤ h′ and z0 = 0,±1.

However, if z0 is zero, then z is also zero, which contradicts to z > 1. If z0 = ±1,
then z1 = ∓n, z2 = ±m, and thus z1 + z2i is an associate of m ± ni, which we
will treat later.

Back to the story, if (x−x′)2+(y−y′)2 = z�, then we can say that (x−x′)+
(y − y′)i is an associate of Z1(q−1)+Z2t

h ± Z′
1(q−1)+Z′

2t
h i. Thus, |x − x′| is either

|Z1(q−1)+Z2t|
h or |Z′

1(q−1)+Z′
2t|

h . However, |Z1(q−1)+Z2t| ≥ |Z1|(q−1)−|Z2||t| ≥
d(q − 1) − |Z2||t| ≥ d(q − 1) − 2h|t| by 2h ≥ 2h′d ≥ |Z2|, and similarly, |Z ′

1(q −
1) + Z ′

2t| ≥ d(q − 1) − 2h|t|. Therefore, |x − x′| = |Z1(q−1)+Z2t|
h or |Z′

1(q−1)+Z′
2t|

h ,
where both of them are ≥ d(q−1)−2h|t|

h = (q−1)−2h′d|t|
h′d . This is contradiction to

the fact that |x − x′| < (q−1)−2h′d|t|
h′d .

At last, if z1 + z2i has norm h′ and is an associate of m ± ni, then
z = N(z1 + z2i) = m2 + n2 = h′ and h′� = N((z1 + z2i)γ) = N((m + ni)γ) =
( (m

′a′+n′b′)(q−1)+(m′b′−n′a′)t
h )2 + (−(m′b′−n′a′)(q−1)+(m′a′+n′b′)t

h )2. From the defi-
nition of m,n, we have ma′+nb′ = d(m2+n2) = dh′, mb′−na′ = dmn−dmn = 0
and hence h′� = ( q−1

d )2 + ( t
d )2. By combining both equation, we can say that

either |x − x′| or |y − y′| is q−1
d , but both are less than q−1

d , and this is a
contradiction. This completes our proof. ��

Using the injectivity of F , it is easy to compute the statistical distance. Then
in the following corollary, we can conclude that if a GLS curves has cofactor of
the form h = a2 + b2, then we can have secure GLS recomposition method.

Corollary 9. Let E′ be a GLS curve over Fq2 with cofactor h = a2+b2, namely,
#E′(Fq2) = (q − 1)2 + t2 = h� with � > h prime and |t| ≤ 2

√
q. Then, with the

notation in Proposition 8, the GLS recomposition method on E′ is secure for
( (q−1)−2h′d|t|

h′d , q−1
d ).

Proof. From h� = (q − 1)2 + t2 and t2 ≤ 4q, we have

q − 1√
h

≤
√

� ≤ q + 1√
h

.

Both h′d and d are constants bounded by h = h′d2. Since the cofactor h is usually
much smaller than the prime factor �, we can say that (q−1)−2h′d|t|

h′d = Θ(
√

�) and
q−1

d = Θ(
√

�).
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In Theorem 8, we see that F is injective. By Lemma 3, the statistical distance
to uniform is Δ1(Dλ,�(

(q−1)−2h′d|t|
h′d , q−1

d )) = 2(1− (q−1)2−2h′d|t|(q−1)
h� ) which is less

than 2( t2+2h′d|t|(q−1)
h� ) ≤ 2( 4q+2h′d

√
q(q−1)

(q−1)2 ) since |t| ≤ 2
√

q and h� ≥ (q − 1)2.
Thus, the statistical distance is negligible. ��
Example 3. As a result of our work, we can have secure GLS recomposition
method for cofactor 5 = 12 + 22 or 13 = 22 + 32.

Furthermore, just as we have secure GLS recomposition for cofactor 4 and
2 as special cases, we can have secure GLS recomposition for any powers of 2
cofactor. For a positive integer n, 22n+1 = (2n)2 + (2n)2 and 22n = (2n)2 + 02

have the forms of sum of two squares, and hence we can apply our result. For
example, 8 = 22 + 22 or 16 = 42 + 02, and so on.
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Abstract. This paper presents new differential addition (i.e., the addi-
tion of two points with the known difference) and doubling formu-
las, as the core step in Montgomery scalar multiplication, for twisted
Edwards curves. The formulas are provided with cost of 5M+ 4S+ 1D,
3M + 7S + 1D and 3M + 6S + 3D when the given difference point is
in affine form. Here, M,S,D denote the costs of a field multiplication, a
field squaring and a field multiplication by a constant, respectively.

Keywords: Elliptic curves · Twisted Edwards curves · Montgomery
ladder · Differential addition

1 Introduction

An elliptic curve E over a field F is given by the Weiersrasß equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

where coefficients a1, a2, a3, a4 and a6 are in F. Elliptic curves are represented
in other forms such as Legendre equation, cubic equations, quartic equations
and intersection of two quadratic surfaces [16,17]. Koblitz [13] and Miler [14]
independently proposed the use of elliptic curves over finite fields in cryptogra-
phy. Since the introduction of elliptic curve cryptography (ECC) elliptic curves
over finite fields have been studied intensively and in particular, many proposals
have been made to speed up their group arithmetic. ECC is one of the attractive
asymmetric key cryptosystems with the main advantage of achieving smaller key
sizes under the same security level compare to that of other existing asymmetric
systems such as RSA. This makes ECC suitable for software and hardware imple-
mentation in constrained environments including RFID tags, mobiles, sensors,
and smart cards.

The scalar multiplication is the main important operation of ECC which is
implemented based on the basic operations in finite fields. That is to compute kP
for a given point P on elliptic curve E defined over a finite field Fq and a given
c© Springer International Publishing AG 2017
J. Pieprzyk and S. Suriadi (Eds.): ACISP 2017, Part II, LNCS 10343, pp. 366–378, 2017.
DOI: 10.1007/978-3-319-59870-3 21
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integer k. The scalar multiplication is performed recursively by point addition
and point doubling operations. One of the key factor in implementation of these
basic curve operations is to reduce the number of field operations. This is why
different forms of elliptic curves with several coordinates systems have been
studied to improve the efficiency and to speed up the point multiplication. The
well known recent form is Edwards curves [7] and their variants (see [1–3,12])
with great impact to ECC.

Side channel attacks use the time or power differences between implement-
ing point addition and point doubling to reveal information about the bits of
the secret k. Montgomery [15] introduced a technique for scalar multiplication
of points for a special type of curves in large characteristic that is known as
Montgomery ladder. In each step of the Montgomery scalar multiplication algo-
rithm both the addition and the doubling are used which makes this method
resistant against simple side-channel attacks. For Montgomery curves, the basic
formulas in each step of the Montgomery ladder is differential addition and dou-
bling expressed only by the x-coordinates of the points. For the fixed point P
on the curve, this method computes the x-coordinate of the point kP recur-
sively by computing the x-coordinates of the points P + 2Q and 2Q from the
x-coordinates of the points P + Q, Q. To avoid the costly field inversion opera-
tion, the computations are performed where points are represented in projective
coordinates and the cost of projective x-coordinate formulas for Montgomery
curves is 6M + 4S + 1D. Here a multiplication in Fq costs one M, a squaring
costs one S and the cost of field multiplication by a parameter (as a constant)
is denoted by D. The x-coordinate of the fixed base point P can be represented
in affine form, then the differential mixed addition and doubling formulas are
computed using 5M + 4S + 1D.

The Montgomery method is extended to other forms of elliptic curves, where
the basic operation in each step of the ladder is differential addition and doubling
expressed only by suitable w-coordinates of the points. That is to compute the w-
coordinates of the addition and doubling from the w-coordinates of given points
and their difference. The Montgomery-like formulas for Edwards and binary
Edwards curves are presented in [3,6,8]. Gaudry and Lubicz [9] presents a very
efficient Montgomery-like formulas for Kummer line the cost of 4M + 6S + 3D,
and 3M + 6S + 3D if the base point is affine. Bernstein and Lange [5] extends
the Kummer-line formulas for incomplete Edwards curves with the same costs.

From the literature, the mixed differential addition and doubling formulas
with the cost of 3M + 6S + 3D are only given for elliptic curves with 3 points
of order 2. Notice, complete twisted Edwards are suitable for cryptographic
applications because of their fast complete addition law. A complete twisted
Edwards curve has two points of order 4 and one single point of order 2. The
main contribution of this paper is to provide faster Montgomery-like formulas
for complete twisted Edwards curves, which covers all elliptic curves over finite
fields with a point of order 4 and a single point of order 2. This paper presents
new differential addition and doubling formulas for twisted Edwards curves with
cost of 5M+4S+1D, 3M+7S+1D and 3M+6S+3D when the given difference
point is in affine form.
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The rest of the paper is organized as follows. In Sect. 2 we review twisted
Edwards curves, and in Sect. 3 we briefly describe differential addition on ellip-
tic curves. The proposed new differential addition and doubling formulas are
provided in Sect. 4 and finally, Sect. 5 concludes the paper with a comparison
between our work and other previously related work.

Throughout the paper, the letter p always denotes an odd prime number and
q denotes a prime power of p. A field is denoted by F and a finite field of size q is
denoted by Fq. Let χ denote the quadratic character in Fq, where p ≥ 3. Then,
for any q where p ≥ 3, we have u = w2 for some w ∈ F

∗
q if and only if χ(u) = 1.

2 Twisted Edwards Curve

In 2007, Edwards introduced a new normal form for elliptic curves [7]. An original
Edwards curve, defined over a field F with characteristic p �= 2, by the equation

EE,c : X2 + Y 2 = c2(1 + X2Y 2),

with c ∈ F and c5 �= c. Bernstein and Lange [2] considered the use of Edwards
curves over finite fields for elliptic curve cryptography. They extended the orig-
inal curves to the family of so called Edwards curves

EBL,d : X2 + Y 2 = 1 + dX2Y 2,

where d ∈ F with d �= 0, 1. The family of Edwards curves over a finite field Fq

with odd characteristic is equivalent (up to Fq isomorphism) to the family of all
elliptic curves over Fq with a Fq-rational point of order 4 [1]. In other words,
EBL,d(Fq), the group of Fq-rational points of the Edwards curve EBL,d, has a
Fq-rational point of order 4 and in the other way around, every elliptic curve
E over Fq with a point of order 4 can be represented as an Edwards curve. In
addition, EBL,d(Fq) has a single point of order 2 if and only if χ(d) = −1, i.e.,
the group EBL,d(Fq) has three points of order 2 if and only if χ(d) = 1.

Edwards curves and their extensions have attracted great interest in elliptic
curve cryptography (see [1–3,12]). Bernstein et al. proposed the family of so-
called twisted Edwards, [1], given by

ETE,a,d : aX2 + Y 2 = 1 + dX2Y 2,

where a, d are distinct nonzero elements of Fq. The addition and doubling law
for ETE,a,d are given by

(x1, y1), (x2, y2) �→
(

x1y2 + x2y1
1 + dx1x2y1y2

,
y1y2 − ax1x2

1 − dx1x2y1y2

)
,

(x1, y1) �→
(

2x1y1
1 + dx2

1y
2
1

,
y2
1 − ax2

1

1 − dx2
1y

2
1

)
.

(1)

The identity point of the addition law is (0, 1) and the additive negation of a
point (x, y) is (−x, y). The point (0,−1) is a point of order 2. If χ(a) = 1 then
the points (±1/

√
a, 0) are of order 4.
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The projective closure of the twisted Edwards curve ETE,a,d in P
2 includes

the projective points (X : Y : Z) in P
2(Fq) satisfying the curve equation

aX2Z2 + Y 2Z2 = Z4 + dX2Y 2,

with the points at infinity ∞1 = (1 : 0 : 0) and ∞2 = (0 : 1 : 0). These points
are singular. In the nonsingular model of ETE,a,d the point ∞1 splits into two
distinct Fq-rational points if χ(ad) = 1 and is removed if χ(ad) = −1. Similarly,
above the point ∞2 there exists exactly two distinct points if χ(d) = 1 and
no point if χ(d) = −1. So, if χ(d) = χ(ad) = −1 then the set of Fq-rational
projective points of ETE,a,d is the set of Fq-rational affine points which form a
group. To represent the points above the points at infinity, the projective closures
of ETE,a,d in P

3 or in P × P are considered [4,12]. The twisted Edwards curve
ETE,a,d over Fq is represented by the set of points (X : Y : T : Z) in P

3(Fq)
satisfying the equations

aX2 + Y 2 = Z2 + dT 2, XY = ZT.

Here, the Fq-rational points above ∞1 are (1 : 0 : ±√
a/d : 0) if χ(ad) = 1, and

the points above ∞2 are (0 : ±√
d : 1 : 0) if χ(d) = 1. Hisil et al. [12] gave the

addition laws for the projective closure of ETE,a,d embedded in P
3 as follows.

(X1 : Y1 : T1 : Z1) + (X2 : Y2 : T2 : Z2)

=
((X1Y2 + Y1X2)(Z1Z2 − dT1T2) : (Y1Y2 − aX1X2)(Z1Z2 + dT1T2)
: (Y1Y2 − aX1X2)(X1Y2 + Y1X2) : (Z1Z2 − dT1T2)(Z1Z2 + dT1T2)).

(2)

Here the identity point is (0 : 1 : 0 : 1) and the additive negation of a point
(X : Y : T : Z) is (−X : Y : −T : Z)). The point (0 : −1 : 0 : 1) is a point of
order 2 and the points (1 : 0 : ±√

a/d : 1) are the points of order 2 if χ(ad) = 1.
The points (±1/

√
a : 0 : 0 : 1) and (0 : ±√

d : 1 : 0) are of order 4 if χ(a) = 1
and χ(d) = 1, respectively. Other points of order 4 are (α : β : αβ : 1) where
α4 = 1/ad and β4 = a/d.

Notice, that the family of twisted Edwards curves is the extension of the
family of Edwards curves. Clearly, every Edwards curve EBL,d is the twisted
Edwards ETE,1,d. Furthermore, a twisted Edwards curve ETE,a,d is a twist of
the Edwards curve EBL, da

. Therefore, the family of twisted Edwards includes
Edwards curves and their twists.

The addition law in twisted Edwards curve ETE,a,d is complete if χ(d) =
χ(ad) = −1. In other words, the projective formulas (2) have no exceptional
cases if χ(a) = 1 and χ(d) = −1 [1,12]. Here, we show that the addition law in
twisted Edwards curve ETE,a,d is also complete if χ(a) = χ(ad) = −1.

Theorem 1. Let a, d be elements of Fq such that ad(a − d) �= 0. Let ETE,a,d

be a twisted Edwards curve over Fq. Then, ETE,a,d has a complete projective
formulas over Fq if χ(ad) = −1.

Proof. If χ(d) = χ(ad) = −1, then the projective formulas (2) are complete
formulas for ETE,a,d [1,12]. If χ(a) = χ(ad) = −1, then the twisted Edwards
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curve ETE,a,d is birationally equivalent to ETE,d,a via the map (x, y) → (x, 1/y).
In other words, the projective points of the projective closures of ETE,a,d and
ETE,d,a in P

3(Fq) are corresponded to each other via the map (X : Y : T : Z) →
(T : Z : X : Y ). From (2) and using the exchange of variables, we obtain the
projective formulas for the curve ETE,a,d as follows.

(X1 : Y1 : T1 : Z1) + (X2 : Y2 : T2 : Z2)

=
((Z1Z2 − dT1T2)(T1Z2 + Z1T2) : (Y1Y2 − aX1X2)(Y1Y2 + aX1X2)
: (T1Z2 + Z1T2)(Y1Y2 − aX1X2) : (Z1Z2 − dT1T2)(Y1Y2 + aX1X2)).

(3)

Therefore, the projective formulas (3) are complete formulas for ETE,a,d over Fq

where χ(a) = −1 and χ(d) = 1 which concludes the proof.

It is shown in [1], that a twisted Edwards curve ETE,a,d over a field F is
birationally equivalent to a Montgomery curve [15] given by the equation

EM,A,B : BY 2 = X3 + AX2 + X, (4)

where A,B ∈ F with A �= ±2 and B �= 0. In more details a twisted Edwards
curve ETE,a,d is birationally equivalent to the Montgomery curve EM,A,B by the
map ψ : ETE,a,d → EM,A,B

ψ(x, y) =
(1 + y

1 − y
,

1 + y

x(1 − y)

)
. (5)

where A = 2(a+d)/(a−d), B = 4/(a−d). Also, the Montgomery curve EM,A,B

is birationally equivalent to the twisted Edwards curve ETE,a,d by the inverse
map

ψ−1(x, y) =
(x

y
,
x − 1
x + 1

)
,

where a = (A + 2)/B, d = (A − 2)/B.

3 Differential Addition

The main computational core for elliptic curve cryptography is performing scalar
multiplication in an efficient and secure way. The computation of kP , for a given
point P on elliptic curve E defined over a finite field Fq and a given integer k, is
performed recursively by point addition (PA) and point doubling (PD) formulas.
The time or power differences between implementing point addition (PA) and
point doubling (PD) can reveal information about the bits of the secret k which
makes the system insecure against side channel attacks.

In Montgomery curves [15], the special formulas for addition and doubling
is done with the X and Z coordinates of a point in projective form. In each
step of Montgomery ladder both addition and doubling are performed, which
makes this method resistant against simple side-channel attacks. Recovering the
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Algorithm 1. Projective x-coordinate dADD for Montgomery curves
Input : EM,A,B/Fq : BY 2 = X3 + AX2 + X � The Montgomery curve EM,A,B

(Xi : Zi) = x(Pi), i = 0, 1, 2. � x(P0) = x(P1 − P2)
Output : (Xi : Zi) = x(Pi), i = 3, 4. � x(P3) = x(P1 + P2), x(P4) = x(2P1)

1: function dADD((X0 : Z0), (X1 : Z1), (X2 : Z2))
2: X3 = Z0 (X1X2 − Z1Z2)

2

3: Z3 = X0 (X1Z2 − X2Z1)
2

4: X4 = (X2
1 − Z2

1 )2

5: Z4 = 4X1Z1( (X1 + Z1)
2 + (A − 2)X1Z1 )

6: return ((X4 : Z4), (X3 : Z3)) � The differential addition and doubling
7: end function

Y coordinate of the output point is done in the last step from the X and Z coor-
dinates. Algorithm 1 provides the differential x-coordinate formulas for Mont-
gomery curves EM,A,B over Fq [15].

We note, that O = (0 : 1 : 0) is the point at infinity on the Montgomery curve
EM,A,B over Fq and x(O) in P(Fq) is represented by (1 : 0). Also, x((0, 0)) is
given by (0 : 1). We can easily check, that the projective x-coordinate differential
addition formulas in Algorithm 1 work for all inputs except for the case where
x(P0) equals (1 : 0) or (0 : 1), i.e., where the point P0 equals O or (0, 0). In
other words, the Montgomery ladder works for all inputs if the base point is
not a point at infinity or the point (0, 0). The Montgomery ladder is given by
the Algorithm 2, that for any integer k and any point P (not equal O and
(0, 0)) computes x(kP ) correctly. In particular, the ladder works properly even
if the integer k is bigger than the order of the base point P . Therefore, one can
use random scalar k as a countermeasure to protect against differential power
analysis attack.

Algorithm 2. The modified Montgomery scalar multiplication
Input : EM,A,B/Fq : BY 2 = X3 + AX2 + X � The Montgomery curve EM,A,B

P = (x : y : z) ∈ EM,A,B(Fq) � P �= O = (0 : 1 : 0), P �= (0 : 0 : 1)
k = (km−1, · · · , k1, k0) � 0 ≤ k ∈ Z

(X0 : Z0) := (x : z), (X1 : Z1) := (1 : 0), (X2 : Z2) := (x : z).
Output : x(kP )

1: for i := m − 1 down to 0 do
2: if ki = 0 then
3: ((X1 : Z1), (X2 : Z2)) := dADD((X0 : Z0), (X1 : Z1), (X2 : Z2))
4: else
5: ((X2 : Z2), (X1 : Z1)) := dADD((X0 : Z0), (X2 : Z2), (X1 : Z1))
6: end if
7: end for
8: return (X1 : Z1), (X2 : Z2) � The differential addition and doubling
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The Montgomery method is extended to other forms of elliptic curves with a
suitable rational function. Let w be a rational function in the coordinate ring of
the elliptic curve E over Fq where w(P ) = w(−P ) for every point P in E(Fq).
The w-coordinate differential addition and doubling means to compute w(P +Q)
and w(2Q) from given values w(P ), w(Q) and w(P − Q), where P,Q are points
on E(Fq). If w is regular at the point P then w(P ) is represented by (w(P ) : 1)
in the projective line P(Fq). Otherwise, it is represented by (1 : 0). For the fixed
point P on the curve and a positive integer k, the w-coordinate of the point kP
is performed recursively by differential addition and doubling formulas expressed
only by w-coordinates of the points.

A projective w-coordinate differential addition is complete if it works for all
inputs. Also, it is almost complete if the w-coordinate differential formulas work
for all inputs except for the case where w(P0) equals w(O), where O is the neutral
element of the group of points E(Fq). Note that, the projective x-coordinate
differential addition for Montgomery curves given in Algorithm 1 works for all
inputs except for the case where w(P0) equals (1 : 0) or (0 : 1). The fast and
complete differential addition formulas are very interesting for implementations.
But, if the base point P0 has large prime order then with suitable w-function
w(P0) �= w(O) and w(P0) �= (1 : 0), (0 : 1). Therefore, the almost complete and
Montgomery-like formulas are usable for cryptographic applications.

The cost of projective x-coordinate differential addition and doubling formu-
las for Montgomery curves EM,A,B over Fq given by Algorithm 1 is 6M+4S+1D.
The x-coordinate of the fixed base point P can be represented by x(P ) = (X0 :
Z0), where Z0 = 1, then the differential addition and doubling formulas are
computed using 5M + 4S + 1D.

Castryck, Galbraith and Farashahi [6] give the y-coordinate differential addi-
tion Montgomery-like formulas for Edwards curves. They use the quasi free
projective map between twisted Edwards and Montgomery curves which pro-
vides the Montgomery formulas for twisted Edwards curves with the cost of
6M + 4S + 1D, and 5M + 4S + 1D if the base point is affine. They also
give a doubling formulas with cost of 1M + 3S + 3D assuming d is a square
element. Gaudry and Lubicz [9] obtained a very efficient differential addition
Montgomery-like formulas for Kummer line with the cost of 4M + 6S + 3D,
and 3M + 6S + 3D if the base point is affine. The Kummer line behaves very
similar to the Montgomery form. Compare to the Montgomery form, the Kum-
mer line formulas saves 2M − 2S, but have extra 2 multiplication by constants.
The Kummer line is linked to the Legendre curve Eλ : Y 2 = X(X − 1)(X − λ),
where λ = a4/(a4 − b4) and (a : b) defines the Kummer line. The group order of
the corresponding curve Eλ over Fq is divisible by 4, and in particular it has 3
points of order 2. Bernstein and Lange [5] provides a Kummer-line formulas for
Edwards curves EBL,d where d = r2 is a square element. They give the cost of
w-coordinates mixed differential addition and doubling formulas for w = ry and
w = ry2 by 3M + 6S + 5D and 3M + 6S + 3D respectively. Here, the Edwards
curve EBL,d over Fq with χ(d) = 1 has 3 points of order 2 and the addition law
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is not complete. In the next section, we provide new Montgomery-like formulas
for complete twisted Edwards curves.

4 New Differential Additions

In this section, we provide new differential addition and doubling formulas for
twisted Edwards. The mixed formulas have the cost 5M+4S+1D, 3M+7S+1D.
In addition, we give mixed formulas with cost of 3M + 6S + 3D for subfamily
of twisted Edwards curves. These efficient and fast formulas are applicable for
complete twisted Edwards in this subfamily. From the birational map between
the twisted Edwards and Montgomery curve, we can use similar formulas for
Montgomery curves.

4.1 Twisted Edwards

Here, we consider twisted Edwards curves ETE,a,d and present new w -coordinates
differential formulas.

We define the rational function w by w(x, y) = d(xy)2. This function
is well computed for all affine points on a twisted Edwards curves. Since
−(x, y) = (−x, y), for all points P on the curve, we have w(P ) = w(−P ). Also,
we have w(O) = 0. For i = 0, 1, 2, 3, 4, let wi = w(Pi), where Pi ∈ Ea,d with
w0 = w(P1 − P2), w3 = w(P1 + P2) and w4 = w(2P1). From the addition and
doubling formulas for ETE,a,d (1) with a straightforward calculation, we obtain
the following differential addition formulas.

w4 =
4w1((w1 + 1)2 − ew1)

(w2
1 − 1)2

, w3w0 =
(w1 − w2)2

(w1w2 − 1)2
. (6)

where e = 4a/d.
Assume that w0 is given as a field element, and the inputs w1, w2 are given

as fractions W1/Z1, W2/Z2 and the outputs w4, w3 are given as fraction W4/Z4

and W3/Z3. From Eq. (6) the explicit projective formulas are given by

W4

Z4
=

4W1Z1( (W1 + Z1)2 − eW1Z1)
(W1 − Z1)2(W1 + Z1)2

,

W3

Z3
=

Z0 (W1Z2 − W2Z1)2

W0 (W1W2 − Z1Z2)2
.

(7)

From the Eqs. (7), the cost of projective w-coordinates addition and doubling
formulas is 6M + 4S + 1D. If we set Z0 = 1, then the mixed projective w-
coordinates differential addition and doubling formulas have the total cost 5M+
4S + 1D as follows:

A1 = (W1 + Z1), B1 = (W1 − Z1), A2 = (W2 + Z2), B2 = (W2 − Z2),
C = A1B2, D = A2B1, E = A2

1 − B2
1 ,

W4 = E(A2
1 − (e/4) E), Z4 = A2

1B
2
1 ,

W3 = (C − D)2, Z3 = w0(C + D)2.

(8)
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From (8), the costs of differential addition and doubling formulas are 3M + 2S
and 2M + 2S + 1D, respectively. And, the total cost of the mixed differential
addition and doubling is 5M+4S+1D. In addition, the cost of following mixed
differential addition and doubling formulas is 3M + 7S + 1D.

A1 = (W1 + Z1), B1 = (W1 − Z1), A2 = (W2 + Z2), B2 = (W2 − Z2),
C = A1B2, D = A2B1, E = A2

1 − B2
1 , F = (A4

1 + B4
1) − E2,

W4 = 2(A4
1 − (e/4)E2) − F, Z4 = F,

W3 = (C − D)2, Z3 = w0(C + D)2.

(9)

Furthermore, for the twisted Edwards curves ETE,a,d with χ(e(e − 4)) =
χ(a(a−d)) = 1, the cost of the following mixed differential addition and doubling
formulas is 3M + 6S + 3D. Here we let r2 = (e − 4)/e.

A1 = (W1 + Z1), B1 = (W1 − Z1), A2 = (W2 + Z2), B2 = (W2 − Z2),
C = A1 B2, D = A2 B1, H1 = (rA2

1 + B2
1)

2, H2 = (rA2
1 − B2

1)
2,

G = (H1 + H2), K = (H1 − H2), S = 1
r K, T = rK,

W4 = 2G − S − T, Z4 = T − S,
W3 = (C − D)2, Z3 = w0(C + D)2.

(10)

From differential addition and doubling formulas (10), the costs of differential
addition and doubling are 3M+2S, 4S+3D respectively. And, the total cost of
the mixed differential addition and doubling formulas is 3M+6S+3D, where 2D
is the multiplication by the parameter r and one D is the multiplication by 1/r.
So, if the parameter r is chosen to be small then the cost of mixed differential
formulas is 3M + 6S + 1D.

Example 1. Let p = 2255 − 19. Let a = 1 and d = −204347024. The twisted
Edwards curve ETE,a,d is a complete Edwards curve over Fp of order 8�, where
� is the prime

� = 72370055773322622139731865630429942408
23162899814764622947667093616846653001.

The cost of the mixed differential addition and doubling formulas (10) is 3M +
6S + 3D, where 2D is the multiplication by the small constant r = 14295 and
one D is the multiplication by 1/r.

Remark 1. Let ETE,a,d be a complete twisted Edwards curve over Fq with χ(d) =
χ(ad) = −1. Then, ETE,a,d has the four torsion subgroup as

ETE,a,d(Fq)[4] = {(0, 1), (0,−1), (1/
√

a, 0), (−1/
√

a, 0)}.

Then the coset of the point P = (x, y) on the curve up to this subgroup equals

P + ETE,a,d(Fq)[4] = {(x, y), (−x,−y), (y
√

a,−x
√

a), (−y/
√

a, x
√

a)}.

We note that the proposed w-function has the property that w(Q) = w(P ) for
all points Q in the coset of P .
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As an alternative w-coordinate differential addition formulas, we define the
rational function w by w(x, y) = a(x/y)2. From the addition and doubling for-
mulas for ETE,a,d (1), we obtain the following differential addition formulas.

w4 =
4w1((w1 + 1)2 − ew1)

(w2
1 − 1)2

, w3w0 =
(w1 − w2)2

(w1w2 − 1)2
,

where e = 4d/a. Similarly, we obtain the same projective and mixed
w−coordinates formulas as (7), (8), (9) and (10). This w-function is also invari-
ant for the coset of a point up to the 4-torsion subgroup of the complete twisted
Edwards curve ETE,a,d over Fq with χ(a) = χ(ad) = −1.

Furthermore, for twisted Edwards curves where χ(ad) = 1, we define another

differential formulas by the rational function w by w(x, y) =
√

ad

(
2xy

ax2 + y2

)2

.

Similarly, we obtain the following differential addition formulas.

w4 =
4w1((w1 + 1)2 − ew1)

(w2
1 − 1)2

, w3w0 =
(w1 − w2)2

(w1w2 − 1)2
,

where e = 2 + (a + d)/
√

ad. So, we have the same results for this w-coordinates
by formulas (7), (8), (9) and (10). Note that, this w-function is invariant for
the coset of a point up to the full 2-torsion subgroup of the incomplete twisted
Edwards curve ETE,a,d over Fq with χ(ad) = 1.

4.2 Montgomery Curves

Now, we consider the Montgomery curves. Note that above w-coordinates differ-
ential addition and doubling formulas for twisted Edwards curves can be applied
for Montgomery curve using the birational maps between these two curves (5).
Furthermore, from formulas (9) and (10), we give the mixed x-coordinates dif-
ferential addition and doubling formulas for Montgomery curves with cost of
3M + 7S + 1D and 3M + 6S + 3D.

We recall [15], that for the Montgomery curve EM,A,B with the rational
function w(x, y) = x, we have the following differential addition formulas.

w4 =
(w2

1 − 1)2

4w1((w1 + 1)2 − ew1)
, w3w0 =

(w1w2 − 1)2

(w1 − w2)2
,

where e = 2 − A. In other words, the x-coordinates formulas for Montgomery
curves and above w coordinates formulas (6) for twisted Edwards curves are
inverse of each other. It means the projective formulas for Montgomery curves
is obtained by the projective formulas (7) only by swapping the role of W and
Z. Therefore, from formulas (9) we have the following formulas with cost of
3M + 7S + 1D

A1 = (W1 + Z1), B1 = (W1 − Z1), A2 = (W2 + Z2), B2 = (W2 − Z2),
C = A1B2, D = A2B1, E = A2

1 − B2
1 , F = (A4

1 + B4
1) − E2,

W4 = F, Z4 = 2(A4
1 − (e/4)E2) − F,

W3 = w0(C + D)2, Z3 = (C − D)2.

(11)
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and from formulas (10), we obtain the formulas with cost of 3M + 6S + 3D as
follows.

A1 = (W1 + Z1), B1 = (W1 − Z1), A2 = (W2 + Z2), B2 = (W2 − Z2),
C = A1 B2, D = A2 B1, H1 = (rA2

1 + B2
1)

2, H2 = (rA2
1 − B2

1)
2,

G = (H1 + H2), K = (H1 − H2), S = 1
r K, T = rK,

W4 = T − S, Z4 = 2G − S − T,
W3 = w0(C + D)2, Z3 = (C − D)2.

(12)

5 Concluding Remarks

The known Montgomery ladder differential addition formulas for elliptic curves
over a finite field are not complete; they work for all input points P except
for the case where w(P ) equals (1 : 0) or (0 : 1). However, the Montgomery
ladder algorithm works perfectly in cryptographic applications, since the order
of base point P should be a large prime number. The cost of the Montgomery-
like formulas is 5M + 4S + 1D if the base point P is affine. We believe, this
record can be obtained for any form of elliptic curve with group order divisible
by 4 by a suitable rational function. This includes the family of Jacobi curves.

Our proposed Montgomery-like formulas for twisted Edwards curves are
improved in terms of efficiency and speed. They are almost complete formulas
if the curve parameters are chosen carefully. The mixed formulas are provided
for twisted Edwards curves with the cost of 3M + 7S + 1D. Also, faster mixed
formulas are presented for a subfamily of twisted Edwards curves with the cost
of 3M + 6S + 3D which gives further speedup if the parameters are chosen to
be small.

In Table 1, we compare our new differential addition formulas with the known
formulas for other forms of elliptic curves. Notice, the fast and efficient presented

Table 1. Cost of differential addition and doubling for families of elliptic curves in odd
characteristic

Model Projective differential Mixed differential

Montgomery [15] 6M + 4S + 1D 5M + 4S + 1D

This work (11) 4M + 7S + 1D 3M + 7S + 1D

This work (12) 4M + 6S + 3D 3M + 6S + 3D

Kummer curve [9] 4M + 6S + 3D 3M + 6S + 3D

Edwards curve EBL,d

(d = r2, w = ry) [5] 4M + 6S + 5D 3M + 6S + 5D

(d = r2, w = ry2) [5] 4M + 6S + 3D 3M + 6S + 3D

Jacobi quartic [10] 6M + 4S + 1D 5M + 4S + 1D

Twisted edwards

This work (8) 6M + 4S + 1D 5M + 4S + 1D

This work (9) 4M + 7S + 1D 3M + 7S + 1D

This work (10) 4M + 6S + 3D 3M + 6S + 3D
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formulas by Gaudry-Lubicz [9] and Bernstein-Lange [5] are given with the cost of
4M+ 6S+ 3D, and 3M+ 6S+ 3D if the base point is affine, only for subfamily
of elliptic curves with 3 points of order 2. Our formulas have the same costs
and presented for a subfamily of twisted Edwards with a point of order 4 which
includes the complete twisted Edwards curves therein.

For complete twisted Edwards curves, the proposed w functions are invariant
in the coset of a point P with respect to the subgroup of Fq-rational points with
order 4. And, for incomplete twisted Edwards curves the suggested w function
is invariant in the coset of a point P up to the subgroup of full 2-torsion points.
For future works, we are going to investigate the use of these differential addition
formulas along with the eliminating cofactors technique through point compres-
sion [11]. Computing the full point representation at the end of Montgomery
ladder is an alternative question which is useful for cryptographic applications
that need the full version of the scalar multiplication algorithm.
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Abstract. Browsers can detect malicious websites that are provisioned
with forged or fake TLS/SSL certificates. However, they are not so good
at detecting these websites if they are provisioned with mistakenly (or
maliciously) issued certificates. Google proposed certificate transparency
which is an open framework to monitor and audit certificates in real time.
Thereafter, a few other certificate transparency schemes have been pro-
posed which can even handle revocation. All currently known construc-
tions use Merkle hash trees and have proof size logarithmic in the number
of certificates/domain owners. We present a new certificate transparency
scheme with short (constant size) proofs. Our construction makes use
of dynamic bilinear-map accumulators. The scheme has many desirable
properties like efficient revocation, low verification cost and update costs
comparable to the existing schemes. We provide proofs of security and
evaluate the performance of our scheme.

Keywords: Certificate transparency · Revocation · Bilinear-map accu-
mulator

1 Introduction

In public key cryptography, a web user should be able to verify the authenticity
of public keys of different domains. For example, if a web browser uses the
public key of some attacker instead of a bank’s public key, then all the (possibly
sensitive) information along with login credentials may be known to the attacker
who can misuse them later. One solution to prevent such attacks is to rely on a
third-party entity called certificate authority (CA) that issues digital certificates
showing the association of public keys with the domain owners. The CA signs
each of these certificates using its private key. However, this CA model suffers
from two major problems [10]. Firstly, an untrusted CA may issue certificates
for fake public keys [4]. Secondly, if the private key of a certificate owner is
compromised, then the CA must revoke the certificate before its expiry date.
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Certificate transparency (CT) [7,8], a technique proposed by Google, aims
to make certificate issuance transparent by efficiently detecting fake certificates
issued by malicious CAs. Public append-only log structures are maintained con-
taining all the certificates. Domain owners can obtain proofs that their cer-
tificates are recorded in a log structure appropriately. Then, they provide the
certificate along with a proof to their clients so that the clients can be convinced
about the authenticity of the received certificate. Google’s CT scheme provides
proof of presence (if the issued certificate is present in the log structure) and
proof of extension (if the log structure is maintained in an append-only mode).
However, Google’s CT does not handle revocation of a certificate. Ryan [10]
extended Google’s scheme to provide proof of currency (if the issued certificate
is current or active) and proof of absence of a domain owner (if no certificates
have been issued for a particular domain owner). These schemes have proofs of
logarithmic size. We use bilinear-map accumulators [6] to have shorter proofs.

On the other hand, certificates can be revoked by CAs even before the expiry
of the certificates (e.g., when the corresponding private key is known to be
compromised). In this work, we introduce a proof of absence of a suspected
certificate so that an auditor can ask for such proofs from the log maintainer for
the certificates which belong to a certificate revocation list (CRL).

Our Contribution. Our contributions are summarized as follows.

– We have developed and extended the idea of enhanced certificate transparency
proposed by Ryan [10]. We have designed a certificate transparency scheme
(using bilinear-map accumulators and binary trees) that supports all the
proofs found in the previous works. For the existing proofs, the parameters
in our scheme are comparable to those proposed in the earlier schemes. Some
of our proofs are shorter than those proposed in previous works.

– In addition to the proof of currency, we have introduced another proof (proof
of absence of a certificate) related to certificate revocation. Both of these
proofs are of constant size, and verification cost is also constant for them.

– We have analyzed the security and performance of our scheme.

2 Certificate Transparency

Certificate transparency (CT) [7,8] is a technique proposed by Google to effi-
ciently detect certificates maliciously issued by certificate authorities. A certifi-
cate c = cert(u, pku) is a signed (by a CA) pair (u, pku), where u is a domain
owner and pku is a public key of u. The framework consists of the following main
components. We refer the full version [11] for more details related to CT.

Certificate Log: All the certificates issued by CAs are stored in append-only log
structures which are maintained by log maintainers in an authenticated fashion
using Merkle hash trees [9].

Monitors: Monitors are publicly run servers that look for suspicious certificates
by contacting the log maintainers periodically. Monitors also verify that all cer-
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tificates in the log structures are visible. Domain owners or CAs can check the
validity of a certificate with the help of monitors.

Auditors: Auditors are lightweight software components that can verify that
logs are behaving correctly. They can also check whether a particular certificate
is recorded in a log structure appropriately.

3 Our Construction

In our scheme, each certificate issued by a (possibly malicious) CA is associated
with proofs showing the validity of that particular certificate. The certificates
issued by various CAs are stored in public (and append-only) log structures
maintained by log maintainers.

3.1 Data Structures Used in Our Construction

In our construction, the public log structure maintained by the log maintainer
is organized by using the following tree data structures.

– chronTree: The chronTree is a Merkle hash tree where certificates are stored
as the leaf-nodes of the tree (arranged in the chronological order in left-to-
right manner). When a new certificate c = cert(u, pku) is issued by a CA, it
is added to the right of the chronTree. When a certificate c = cert(u, pku) is
revoked, a certificate c′ = cert(u, null) is added to the right of the chronTree.
The hash value of the root node (the root digest) is denoted by digCT .

– accTree: This tree is organized as a modified binary search tree in which
active certificates are stored in the lexicographic order of the domain own-
ers. Let X be the set of active (or current) certificates that is implemented
as accTree. Each node in the accTree contains a certificate c ∈ X and the
corresponding membership witness wc (using a bilinear-map accumulator).1

The accumulation value A(X) is linked to a leaf-node of the chronTree.
– searchTree: This tree is organized as a modified binary search tree where

data items corresponding to the domain owners are stored in the lexicographic
order (of the domain owners). A data item corresponding to a domain owner
u is of the form (u,List(pku)), where List(pku) is the list of N most recent
public keys of u. So, the last certificate in the list is the current public key
of the domain owner, and other keys are already revoked. The value of N is
taken to be constant, and the list is maintained in a first-in-first-out (FIFO)
fashion. The data items are stored in the nodes such that an in-order traversal
of the searchTree provides the lexicographic ordering of the domain owners.

1 A cryptographic accumulator [2] provides a witness to prove the membership of
an element belonging to a set X without revealing the individual members of X.
Damg̊ard and Triandopoulos [6] proposed a dynamic bilinear-map accumulator that
provides both membership and non-membership witnesses. We use this accumulator
(described in the full version [11]) in our construction.
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A collision-resistant function h is used to compute the hash values correspond-
ing to the nodes of the searchTree. The hash value of a node is computed on
the data item (of that node) and the hash values of its children. The hash
value of the root node (the root digest) of the searchTree is denoted by digST
that is linked to a leaf-node of the chronTree.

3.2 Detailed Construction

In this section, we describe our construction in details. Our construction involves
the following algorithms to achieve certificate transparency.

• Setup(1λ): Let λ be the security parameter. The Setup algorithm generates
(p, g,G,GT , e) as the parameters of a bilinear map, where g is a generator
of G. Let X be the set of active certificates issued by a certificate authority
(CA), that is, X = {cert(ui, pkui

)}, where pkui
is the active public key issued

by the CA for the domain owner ui. The Setup algorithm selects a random
element s

R←− Z
∗
p as the secret trapdoor information. The set {gsi |0 � i � q}

is made public, where q is an upper bound on |X|. The accumulation function
fs(X) : 2Z

∗
p → G gives the accumulation value A(X) defined as fs(X) = A =

g
∏

xi∈X(xi+s) [6].
The algorithm constructs a chronTree by inserting certificates in the

chronological (left-to-right) order and returns digCT as the root digest. It also
constructs a searchTree by inserting domain owners in the lexicographic order
along with other relevant data associated with each domain owner and returns
digST as the root digest. The algorithm constructs an accTree by inserting
(only) the active certificates (represented as the set X) along with their mem-
bership (in X) witnesses for different domain owners. For each active certifi-
cate c ∈ X, the membership witness wc = g

∏
xj∈X:xj �=c(xj+s) = A

1
(c+s) . We

note that a collision-resistant hash function h is used to compute the hash
values in the searchTree and the chronTree. Finally, (p, g,G,GT , e, {gsi |0 �
i � q}, h, A, digCT, digST ) is set as the public parameters PP , and the secret
key is the trapdoor value s.

• Insert(c, sk, PP ): When a CA issues a new certificate c = cert(u, pku), it
asks the log maintainer to insert c in the log structure. The certificate c is
added to the log structure as follows. The public parameters PP are updated
accordingly.

– Adding c to accTree: Compute the new accumulation value (correspond-
ing to the new set X ′ = X ∪ {c}) A′ = A(c+s). The membership witness
for c is A. For each i ∈ X, the updated membership witness is computed
as w′

i = w
(c+s)
i . The accTree is updated accordingly.

– Adding c to searchTree: Search for the node corresponding to the domain
owner u (if it is present) and then append the new public key pku to
the associated list of public keys for u. Otherwise, create a new node
for u with the list containing only pku and insert it in the searchTree.
Consequently, the root digest of the searchTree is updated as digST ′.
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– Adding c to chronTree: Add a new node containing (c,A′, digST ′) to the
right of the chronTree. The root digest of the chronTree is updated as
digCT ′.

• Revoke(c, sk, PP ): To revoke a certificate c = cert(u, pku), the following oper-
ations are performed. The public parameters PP are updated accordingly.

– Removing c from accTree: Compute the new accumulation value A′ (cor-
responding to the new set X ′ = X\{c}) as A′ = A

1
(c+s) . Remove the

node corresponding to the domain owner u of certificate c from the acc-
Tree. For each i ∈ X ′, the updated membership witness is computed as

w′
i = w

1
(c+s)
i . The accTree is updated accordingly.

– There are no changes in the searchTree for the revocation of c.
– Adding a new node for the domain owner u to chronTree: Add to the right

of the existing chronTree a new node containing (c′, A′, digST ), where c′ =
cert(u, null). The new root digest of the chronTree is updated as digCT ′.

• Query(PP ): This algorithm is run by an auditor to output a query Q.
– Proof of presence of a certificate (Type 1): The query Q asks for a proof

of whether a certificate c = cert(u, pku) is present in the log structure.
– Proof of absence of a certificate (Type 2): The query Q asks for a proof

of whether a certificate c is absent in the set of active certificates, that is,
c /∈ X.

– Proof of absence of a domain owner (Type 3): The query Q asks for a
proof of whether a domain owner u is absent (no certificates for u) in the
log structure.

– Proof of extension (Type 4): The query Q asks for a proof that if the
chronTree corresponding to digCT ′ is an extension of that corresponding
to digCT .

– Proof of currency (Type 5): The query Q asks for a proof of whether pku

is the current public key of the domain owner u, that is, whether the
certificate c is present in the set of active certificates (c ∈ X).

• ProofGeneration(Q,PP ): Upon receiving the query Q, the log maintainer
generates the corresponding proof Π(Q) as follows.

– Type 1 Proof: Search for the certificate c in the searchTree. If a node
for the domain owner u is present in the searchTree, define h1 and h2

to be the hash values of the children of the node (they are taken to
be null if the node is a leaf-node). Let the sequence of data items of
the nodes along the search path be dataseqtype1 = (d1, d2, d3, . . . , dr)
for some r ∈ N, where d1 is the data item corresponding to the node
for the domain owner u, dr is the data item corresponding to the root
node, and other data items correspond to the other intermediate nodes
in the search path. Let the sequence of hash values of the nodes in the
associated path (the path containing the siblings of the nodes along the
search path mentioned above) along with h1 and h2 be hashseqtype1 =
(h1, h2, h(v1), h(v2), h(v3), . . .). Send these sequences as Π.
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– Type 2 Proof: Search for the certificate c in the accTree. If there is
no node for u in the accTree, then send the non-membership witness
ŵc = (wc, vc) of c, where vc = −∏

x∈X(x − c) mod p ∈ Z
∗
p and

wc = g
(
∏

x∈X (x+s))+vc
c+s ∈ G.

– Type 3 Proof: The proof is similar to the Type 1 proof. Find the nodes
in the searchTree corresponding to the domain owners u1 and u2 such
that they were the neighbor (in the lexicographic ordering) nodes of the
node corresponding to u if u were present in the searchTree, that is,
u1 � u � u2 lexicographically. These nodes can be found by searching for
the domain owner u in the searchTree, and the search ends at some leaf-
node in the searchTree. The nodes corresponding to u1 and u2 reside on
this search path itself, and one of them is the leaf-node (where the search
ends). Let the sequence of data items of the nodes along the search path
be dataseqtype3 = (d1, d2, . . . , dr′) for some r′ ∈ N, where d1 is the data
item corresponding to the leaf-node, dr′ is the data item corresponding
to the root node, and other data items correspond to the other interme-
diate nodes in the search path. Let the sequence of hash values of the
nodes in the associated path be hashseqtype3 = (h(v1), h(v2), . . .). Send
(dataseqtype3, hashseqtype3) as Π.

– Type 4 Proof: Compare the chronTree structures corresponding to digCT
and digCT ′ and send one hash value per level of the latest chronTree as a
proof Π. If the chronTree corresponding to digCT ′ is an extension of the
chronTree corresponding to digCT , then the latter chronTree is a subtree
of the earlier chronTree. The proof Π = (h1, h2, . . .) is the sequence of
hash values of the nodes required to compute the current root digest
digCT ′ from the previous root digest digCT . Here, h1 is the hash value
of the sibling node of node v whose hash value is digCT (that is, v is the
root of the previous chronTree), h2 is the hash value of the sibling node
of parent node of v, and so on.

– Type 5 Proof: Search for the certificate c in the accTree. If c is present
in the node for u, then send the membership (in X) witness wc stored at
that node.

• Verify(Q,Π,PP ): Given the query Q and the corresponding proof Π, the
auditor V verifies Π in the following way depending on the type of the proof.

– Type 1 Proof: V checks if h(· · · h(d3, h(d2, h(d1, h1, h2), h(v1)), h(v2))
. . .) ?= digST and outputs accept if the equation holds (or reject oth-
erwise).

– Type 2 Proof: V checks if e(wc, g
c · gs) ?= e(A · gvc , g) and outputs accept

if the equation holds (or reject otherwise).
– Type 3 Proof: V checks if h(· · · h(d3, h(d2, h(d1), h(v1)), h(v2)) . . .) ?=

digST and outputs accept if the equation holds (or reject otherwise).
– Type 4 Proof: V checks if h(. . . (h(h(digCT, h1), h2) . . .) ?= digCT ′ and

outputs accept if the equation holds (or reject otherwise).
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– Type 5 Proof: V checks if e(wc, g
c · gs) ?= e(A, g) and outputs accept if

the equation holds (or reject otherwise).

4 Security Analysis

We assume that an auditor, a domain owner and a monitor are honest while a log
maintainer and a certificate authority may be dishonest. We further assume that
the log maintainer does not collude with the certificate authority. We analyze
the security of our scheme in the following lemmas (see [11] for the proofs).

Lemma 1. Let a certificate authority issue a fake certificate c = cert(u, pk′
u) for

a domain owned by u. If the certificate is not logged in the public log maintained
by an honest log maintainer, then an auditor will reject the certificate.

Lemma 2. Let a certificate authority issue a fake certificate c = cert(u, pk′
u)

for a particular domain owned by u. If the certificate is present in the public log
maintained by an honest log maintainer, then the domain owner will be able to
immediately identify this certificate issued maliciously and to report this problem.

Lemma 3. Let a log maintainer be honest. Let a dishonest certificate authority
issue a fake certificate c = cert(u, pk′

u) for a particular domain owned by u. If
the certificate c is not present in the log, then the certificate authority fails to
produce a valid proof Π of any type, except with some probability negligible in λ.

Lemma 4. If a dishonest log maintainer maliciously provides a proof Π of any
type for a certificate c = cert(u, pk′

u), then an auditor or the domain owner u
will be able to detect it.

Table 1. Comparison among certificate transparency schemes.

Schemes for
CT

Parameters Proof of
presence of a
certificate
(Type 1)

Proof of
absence of a
certificate
(Type 2)

Proof
absence of a
domain
owner (Type
3)

Proof of
extension
(Type 4)

Proof of currency
(Type 5)

Google [8] Proof size O(log n) - - O(log n) -

Cost of proof
computation

O(log n) - - O(log n) -

Cost of proof
verification

O(log n) - - O(log n) -

Ryan [10] Proof size - - O(log t) O(log n) O(log t)

Cost of proof
computation

- O(log t) O(log n) O(log t)

Cost of proof
verification

- - O(log t) O(log n) O(log t)

Our scheme Proof size O(log t) O(1) O(log t) O(log n) O(1)

Cost of proof
computation

O(log t) O(m) O(log t) O(log n) O(log m)

Cost of proof
verification

O(log t) O(1) O(log t) O(log n) O(1)
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5 Performance Analysis

Let n be the number of certificates present in the log structure, t be the number
of domain owners and m be the number of active certificates (n � t � m). The
asymptotic performance analysis is described in detail in the full version [11].
Table 1 shows a comparison among CT schemes. For performance evaluation,
we take λ = 128 and p = Θ(22λ). Barreto-Naehrig (BN) curves [1] are used
for pairings. We take SHA-256 as the collision-resistant hash function h used
in chronTree and searchTree. Timing analysis is done for a 2.5 GHz Intel Core
i5-3210M processor using the software frameworks PandA [5] and eBASH [3].

Size and Verification Cost of a Proof. We mention the size (in bits) and
the verification cost (in ms) of a proof as follows (see [11] for details).

• Type 1 Proof: The size of a proof is log t(256 + N · pksize) bits, where N is
the maximum size of the list of public keys stored corresponding to a domain
owner and pksize is the size of a public key. The verification of a proof takes
around (log t · hashin · (0.64) · 10−6) ms, where hashin ≈ (512 + N · pksize).

• Type 2 Proof: The size of a proof is 512 bits. The verification of a proof takes
around 3.06 ms.

• Type 3 Proof: The size of a proof is log t(256+N ·pksize) bits. The verification
of a proof takes around (log t · hashin · (0.64) · 10−6) ms.

• Type 4 Proof: The size of a proof is at most 256 log n bits. The verification
of a proof takes around (log n · 64 · (11.98) · 10−6) ms.

• Type 5 Proof: The size of a proof is 256 bits. The verification of a proof takes
around 3.06 ms.

6 Conclusion

We have developed a scheme which is an extended version of the existing cer-
tificate transparency schemes. Some of the proofs in our scheme enjoy constant
proof-size and constant verification cost. We have also analyzed the security and
performance of our scheme.
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Abstract. It is practically impossible for users to memorize a large
portfolio of strong and individual passwords for their online accounts.
A solution is to generate passwords randomly and store them. Yet, stor-
ing passwords instead of memorizing them bears the risk of loss, e.g., in
situations where the device on which the passwords are stored is dam-
aged, lost, or stolen. This makes the creation of backups of the passwords
indispensable. However, placing such backups at secure locations to pro-
tect them as well from loss and unauthorized access and keeping them
up-to-date at the same time is an unsolved problem in practice.

We present PASCO, a backup solution for passwords that solves this
challenge. PASCO backups need not to be updated, even when the user’s
password portfolio is changed. PASCO backups can be revoked without
having physical access to them. This prevents password leakage, even
when a user loses control over a backup. Additionally, we show how to
extend PASCO to enable a fully controllable emergency access. It allows
a user to give someone else access to his passwords in urgent situations.

1 Introduction

Online accounts are mainly protected by passwords. To resist the various known
attacks against passwords (e.g. [2]), users need to select a strong and different
password for each account. These two security conditions require a large port-
folio of strong and individual passwords to be memorized, which is practically
impossible for users [3].

One solution is to create passwords randomly and store them on a user device,
such as done by password managers. However, this approach has the drawback
that the passwords are not available on all user devices [8]. The PasswordLess
Password Synchronization (PALPAS) scheme [6] solves this problem. It cre-
ates strong and individual passwords for accounts and makes them available on
all user devices. PALPAS does not store passwords, neither on devices nor on
servers. Thus, it is not vulnerable to security breaches at servers and inherent
offline brute-force attacks. PALPAS generates passwords only when needed. This
is done using a secret stored on all devices and some synchronization data stored
on a server. However, PALPAS is vulnerable to password loss. In case the secret
on the device is lost users cannot computer their passwords anymore.
c© Springer International Publishing AG 2017
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In this paper, we advance the PALPAS scheme with a secure and usable
backup solution called PASCO (PALPAS RECOVERY). It allows users to
recover their passwords in case their devices get lost. Additionally, our backup
solution can be used to establish fully controllable emergency access to the pass-
words. Once a backup is created, it never needs to be updated even when the
password portfolio changes.

Therefore, it can be kept completely offline in secure, different, and physical
isolated locations which minimizes the risk of compromise and loss. Furthermore,
the backup solution has an built-in revocation mechanism, which allows the user
to completely invalidate a backup if he loses control over it. The revocation
mechanism works without having access to the backup itself and guarantees
that no passwords can be leaked from it once revoked.

The paper is organized as follows: In Sect. 2 we summarize related work and
we present the background about PALPAS in Sect. 3. We describe PASCO in
Sect. 4 and present its extension for emergency access in Sect. 5. We conclude
the paper in Sect. 6.

2 Related Work

Beside many approaches to simplify the creation and memorization of pass-
words (e.g. [1,3,4,9,12]), storing passwords on user devices is the most com-
mon approach to solve the memorability problem of passwords. A prominent
example are password managers. They store the user’s passwords in a database,
encrypted with a user-chosen master password. To synchronize the database
between devices and prevent its loss, it is stored on a server. In emergency sit-
uations, a user can give someone else the master password, but then the person
has access to all passwords. Moreover, a security breach at the server [10] allows
adversaries to steal the database and to perform offline brute-force attacks [13].
Another approach is to only store data on servers that is independent from the
passwords, as done by PALPAS [6], which we use in this paper. For a general
model of such schemes we refer to Al Maqbali et al. [11].

3 Background: PALPAS

Our work is based on PALPAS [6] which we summarize in the following.

Password Generation. As illustrated in Fig. 1, PALPAS generates a password
in two steps: First, a Pseudorandom Generator (PRG) generates a random value
based on a Seed and a Salt. Second, a Password Generator (PG) derives a
password from the random and ensures that it complies with a password policy
(PP ). The PRG and the PG are deterministic.

The Seed is a randomly generated secret that is used for the generation of
all passwords. It is created when a user uses PALPAS for the first time and it
does not change over time.
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PRG

Salt

Seed PGRandom Password

Password policy

Fig. 1. PALPAS password generation [6].

The Salt is also a random value, but it differs for each account so that
individual passwords for different accounts are created. Changing the Salt for an
existing account allows to create a new password, e.g., during a regular password
change. An initial salt is generated when PALPAS initially creates the password
for an account, e.g., during account creation.

The PP specifies the password requirements of a service such as the password
length and the allowed characters. By this, PALPAS ensures that the randomly
created password is actually accepted by the service. The PP is created when a
service is used for the first time. This can be done manually by the user or the
PP is retrieved from a central service as presented by Horsch et al. [7]. During
password change for an account (by changing the salt) it might also be necessary
to update the PP in order to comply with the recent password requirements of
a service.

Password Synchronization. PALPAS creates a password portfolio of strong
and individual passwords using a fixed Seed and an individual Salt and a PP for
each service, respectively. To enable the computation of the passwords on differ-
ent devices, the Seed is shared by all user devices and the salts and policies are
synchronized between them through a server, namely the Salt Synchronization
Service (SSS).

When creating new or changing passwords, the corresponding salts and poli-
cies are added or updated at the SSS. Each time PALPAS recomputes a pass-
word, the corresponding Salt and PP for the account is retrieved from the SSS.
In this way, any changes of the user’s password portfolio are immediately avail-
able on all of his devices.

Moreover, the usernames of the user’s accounts are synchronized between
the devices through the SSS. For each user account A an account data object
DataA = (SaltA, PPA, UsernameA, urlA) is stored at the SSS, where urlA is
the service’s URL. Each DataA is encrypted with a key KData,Enc by PALPAS
before it is transferred to the SSS. To retrieve only the DataA for a specific
account and not all of them, each DataA is associated with an identifier IDA.
It is generated by PALPAS by IDA = HMAC(KData,Mac, urlA), where urlA is
the service’s URL. Both keys, KData,Enc and KData,Mac, are derived from a key
KData which is randomly created when a user uses PALPAS for the first time.

Moreover, the user’s account at the SSS is protected from unauthorized
access. Each user device has an individual key pair KAuth for authentication,
consisting of a private key SKAuth and public key PKAuth. The key pair is
randomly created by the device when PALPAS is used for the first time and
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an account at the SSS is created. SKAuth is stored on the device and PKAuth

is transferred to the SSS. To register multiple devices at the SSS, an regis-
tered device requests an authentication token TAuth. The new device creates its
own key pair KAuth and uses TAuth to register its PKAuth at the SSS. To set
up PALPAS on all of his devices, a user needs to transfer the PALPAS secret
S = (Seed,KData) to each device and register the device at the SSS using an
authentication token. This has to be done only once. The data transfer can be
easily achieved by a file transfer or a QR code.

Password Loss. The Seed, the salts, and the password policies are crucial
for password generation. To retrieve the account data from the SSS, SKAuth

and KData are required. The availability of these five pieces of data must be
guaranteed. Otherwise, the user’s password portfolio is lost.

The account data is stored at the SSS. Their availability has to be guaranteed
by the SSS. We assume that the SSS implements proper measures to restore the
data at any time. We describe an alternative solution using multiple SSSs in the
extended version of this paper (see [5]).

The PALPAS secret S = (Seed,KData) and the individual SKAuth are exclu-
sively stored on user devices and thus are at high risk of loss. Typical cases are
lost, stolen, or damaged devices as well as malware.

4 PASCO

We now present PASCO (PALPAS RECOVERY). It ensures that users never
lose their password portfolio by providing recoverability of the essential PALPAS
data that is stored on the user device.

PASCO uses a separate backup device (BD) to store a backup of the PALPAS
data. We consider the BD to be a tamper resistant device that provides secure
storage, user authentication, and basic cryptographic algorithms. The BD stores
the PALPAS secret S = (Seed,KData) encrypted by a one-time-pad (OTP).
Furthermore, it has its own authentication key pair KAuth,BD for the SSS. The
BD is protected by a user-chosen PIN. To prevent guessing attacks, it has a retry
counter for the PIN. After five wrong PIN entries the BD erases all stored data.
We provide a security evaluation and an implementation using a smart card of
PASCO in [5].

Creating a Backup. We assume that the user already uses PALPAS and has
registered a device at the SSS. The procedure to create a backup is described in
the following. The data flow is illustrated in Fig. 2.

1. The user (U) initializes the BD with a PIN.
2. The user device (UD) connects to the SSS, authenticates itself with its

SKAuth,UD, and requests TAuth,BD.
3. The UD sends S = (Seed,KData) and TAuth,BD to the BD.
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Seed, KData, TAuth,BD
UD

UPIN

BD
SSS

TAuth,BD

PKAuth,BD, TAuth,BD, OTPBD

Fig. 2. Data flow of the PASCO backup procedure.

4. The BD randomly samples a one-time-pad key OTPBD and computes SBD

= S ⊕ OTPBD. Then, it generates a key pair KAuth. SKAuth,BD is stored at
the BD and PKAuth,BD, TAuth,BD, and OTPBD is send to the SSS. The SSS
verifies TAuth,BD and stores PKAuth,BD and OTPBD. Finally, BD stores SBD

and deletes OTPBD and S.

An update of the BD is not necessary, even when the user’s password portfolio
is changed. Changing, adding, or deleting passwords only requires to update,
store, or delete the related DataA at the SSS. This is already an integral part
of PALPAS. As the SSS provides availability of the account data, PASCO itself
does not need to take care of it.

Restoring Data from a Backup. To restore the PALPAS data on a device,
the user needs to have the BD, the PIN, and a device with PALPAS. The restor-
ing works as follows. The data flow is illustrated in Fig. 3.

1. The user (U) authenticates himself to the BD with his PIN.
2. The BD contacts the SSS, authenticates itself with its SKAuth,BD, and

requests TAuth,UD and OTPBD.
3. The BD computes S = SBD ⊕ OTPBD. Then, it transfers the Seed, KData,

and TAuth,UD to the UD. The UD stores the Seed and KData.
4. The UD creates a key pair KAuth. SKAuth,UD is stored at the UD and

PKAuth,UD and TAuth,UD is send to the SSS. The SSS verifies TAuth,UD and
stores PKAuth,UD. UD has now access to the user’s account at the SSS and
can retrieve the account data for generating the passwords.

Seed, KData, TAuth,UD UD

UPIN

BD

SSS

TAuth,UD, OTPBD

PKAuth,UD, TAuth,UD

Fig. 3. Data flow of the PASCO restore procedure.
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Revoking a Backup. All existing BDs are registered at the SSS with their
individual PKAuth,BD and OTPBD. To revoke a BD a user deletes the related
PKAuth,BD and OTPBD at the SSS. Now the BD can no longer retrieve any
account data nor request new authentication tokens. Moreover, the deletion of
the OTPBD invalidates SBD and it is impossible to recover the PALPAS secret
S from the BD. Thus, the BD is useless and the passwords cannot get leaked.

5 PASCO Backups with Emergency Access

We now describe how a user can allow someone else to use a BD to access his
accounts in urgent or emergency situations. In addition to storing the PALPAS
data, the BD now implements the PALPAS password generation procedure.
Furthermore, the SSS is equipped with a fine granular access control for the
account data. For each PKAuth, a user can specify different access rules. While,
one PKAuth,BD may have access to all data, another PKAuth,BD′ can only access
the data for the user’s mail account.

Creating and Managing a Backup. The procedure for creating a BD with
emergency access is nearly the same. It only differs in the second step, where
the UD requests TAuth,BD. The request is supplemented by an access control
list (ACL), which is basically a list of account data identifiers. The PKAuth,BD

registered using TAuth,BD is later only granted access to the account data defined
by the ACL. The ACL for each PKAuth can be modified at any time without
having physical access to a BD.

The BD can simultaneously act as a backup and password generation device.
Thus, depositing a single BD at a friend’s place is sufficient. To provide both
features, the BD is equipped with multiple authentication keys. One PKAuth,BD

is allowed to request an TAuth,UD as needed for the restoring procedure. Another
PK ′

Auth,BD can only retrieve certain account data and is used for the emer-
gency access. To equip a BD with multiple authentication keys, the creation
procedure is performed multiple times with a different TAuth, PKAuth, ACL,
and PIN. Depending on the PIN, the BD uses the corresponding PKAuth,BD for
authentication at the SSS.

H
PIN, URL

BD SSSDataA, OTPBDPassword,

Username

U PIN, URL

Fig. 4. Data flow of the PASCO emergency access procedure.
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Accessing a Backup in Case of an Emergency. Allowing the friend (i.e.
BD holder) to create the user’s password for an account works as follows. The
data flow is depicted in Fig. 4.

1. The user (U) tells the BD holder (H) the emergency PIN of the BD and the
URL of the service where H should access the user’s account.

2. H uses the PIN to authenticate himself to the BD and transfers the URL of
the service to the BD.

3. The BD connects to the SSS and authenticates itself with SKAuth,BD. It
calculates IDA for the URL and requests the corresponding DataA.

4. The SSS checks the ACL for PKAuth,BD and, if the access is allowed, returns
DataA and OTPBD.

5. The BD computes S = SBD ⊕ OTPBD and then decrypts DataA with
KData,Enc to obtain SaltA and PPA. Finally, it generates the password using
the Seed, SaltA, and PPA (cf. Sect. 3).

6. The BD deletes S and hands the password and username over to H. H can
now browse the service and log in to the user’s account.

6 Conclusion

In this paper we presented PASCO, a backup solution for PALPAS. The combi-
nation of both is the first solution that provides the confidentiality, availability,
and recoverability of the stored passwords. With the implementation we have
shown that PASCO can be realized in practice. We have also presented a revo-
cation mechanism that could additionally be integrated into PALPAS to enable
the secure revocation of user devices. With the emergency access, we address a
major concern of users regarding the storage of passwords. Moreover, this func-
tion can be used to generate passwords in general, which we will focus in our
future work. Using the smart card as a password generator allows users to liter-
ally have their passwords in their wallet. With the two key features of PASCO,
users need not update the card when their password portfolio is changed and
they are able to revoke it in case of loss at any time.
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3. Florêncio, D., Herley, C., van Oorschot, P.C.: Password portfolios and the finite-
effort user: sustainably managing large numbers of accounts. In: Proceeding of
USENIX Security Symposium (2014)

4. Halderman, J.A., Waters, B., Felten, E.W.: A convenient method for securely man-
aging passwords. In: Proceeding of WWW (2005)

5. Horsch, M., Braun, J., Metz, D., Buchmann, J.: Update-tolerant and revocable
password backup (extended version). CoRR, abs/1704.02883 (2017)



Update-Tolerant and Revocable Password Backup 397

6. Horsch, M., Hülsing, A., Buchmann, J.: PALPAS - PAsswordLess PAssword syn-
chronization. In: Proceeding of ARES (2015)

7. Horsch, M., Schlipf, M., Braun, J., Buchmann, J.: Password requirements markup
language. In: Liu, J.K.K., Steinfeld, R. (eds.) ACISP 2016. LNCS, vol. 9722, pp.
426–439. Springer, Cham (2016). doi:10.1007/978-3-319-40253-6 26

8. Karole,A., Saxena,N.,Christin,N.:A comparative usability evaluation of traditional
password managers. In: Rhee, K.-H., Nyang, D.H. (eds.) ICISC 2010. LNCS, vol.
6829, pp. 233–251. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24209-0 16

9. Kiesel, J., Stein, B., Lucks, S.: A large-scale analysis of the mnemonic password
advice. In: Proceeding of NDSS (2017)

10. LastPass Corporate. LastPass Security Notification, June 2015. https://blog.
lastpass.com/2015/06/lastpass-security-notice.html/

11. Al Maqbali, F., Mitchell, C.J.: Password generators: old ideas and new. In: Foresti,
S., Lopez, J. (eds.) WISTP 2016. LNCS, vol. 9895, pp. 245–253. Springer, Cham
(2016). doi:10.1007/978-3-319-45931-8 16

12. Shay, R., Bauer, L., Christin, N., Cranor, L.F., Forget, A., Komanduri, S., Mazurek,
M.L., Melicher, W., Segreti, S.M., Ur, B.: A spoonful of sugar?: The impact of guid-
ance and feedback on password-creation behavior. In: Proceeding of CHI (2015)

13. Ziegler, D., Rauter, M., Stromberger, C., Teufl, P., Hein, D.M.: Do you think your
passwords are secure? In: Proceeding of PRISMS (2014)

http://dx.doi.org/10.1007/978-3-319-40253-6_26
http://dx.doi.org/10.1007/978-3-642-24209-0_16
https://blog.lastpass.com/2015/06/lastpass-security-notice.html/
https://blog.lastpass.com/2015/06/lastpass-security-notice.html/
http://dx.doi.org/10.1007/978-3-319-45931-8_16


Redactable Graph Hashing, Revisited

(Extended Abstract)

Andreas Erwig, Marc Fischlin(B), Martin Hald, Dominik Helm, Robert Kiel,
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Abstract. We revisit the previous work of Arshad et al. (CODASPY
2014) about the security of redactable graph hashing schemes. Such
schemes, introduced in a series of works by Devanbu et al. (DBSec 2000,
CCS 2001, Algorithmica 2004), allow to hash graphs and to release sub
graphs which can be verified against the original hash value. Arshad
et al. introduce security notions for collision resistance and privacy of
graphs, where the latter should capture the infeasibility to reconstruct
the full graph from the hash value of a redacted one.

We discuss here that the original security notions of Arshad et al.
are too weak. Our argument is by virtue of intuitively insecure examples
which are deemed secure according to their notion. We therefore present
stronger security definitions. We also point out the differences in the pri-
vacy notions with respect to redactable and sanitizable schemes: In the
former case anyone can produce verifiable data from the graph, whereas
in the latter case only a designated party can. Sanitizable schemes allow
for stronger privacy guarantees. We finally discuss instantiation possibil-
ities for the various security notions.

1 Introduction

Cryptographic primitives are often used to protect static data. But with the
growth of outsourcing computations and data maintenance, the need to have
primitives supporting operations on the secured data has also increased. For
instance, the breakthrough construction of fully homomorphic encryption [11]
allows in principle to run now computations on encrypted data, ensuring the
privacy of the data towards the evaluating party. Even earlier, for authenticity
and integrity the ideas of redactable or sanitizable signature schemes [2,12,14]
have introduced the possibility to sign data in such a way that external parties
can prove authenticity of partial data. This may require to protect the privacy
of the redacted data, e.g., when handing out partial medical data [3–5,15].

1.1 Redactable Graph Hashing

In this work we look at the notion of redactable graph hashing. The idea is that
one can create a hash value of a graph such that one can later verify the hash
c© Springer International Publishing AG 2017
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against any (redacted) sub graph, yet possibly requiring some additional infor-
mation for the verification. The idea has been introduced by Martel et al. [13] for
(directed) acyclic graphs, with a focus on designing solutions. Recently, Arshad
et al. [1] extended the approach to cyclic graphs and augmented the security
considerations by more formal definitions and claims.

The approach of redactable graph hashing is highly convincing for designing
functional cryptographic schemes. First, graphs are very general concepts such
that devising constructions for graphs immediately gives solutions for a variety of
other data structures. Second, redactable hash functions instantaneously yield
redactable signature schemes. For this, one merely applies the common hash-
then-sign paradigm, where the signer signs the graph hash value with a regular
signature scheme. Redaction on the graph, which supposedly leaves the hash
value untouched, then does not require to change the signature part for updating
the cryptographic data.

1.2 Defining Security

Arshad et al. [1] present security definitions for collision-resistance and privacy of
redactable graph hashing, as well as constructions and performance results. The
former security property should guarantee that one cannot efficiently find distinct
graphs with identical hash values, and the latter one should prevent leakage of
information about the redacted parts. While Arshad et al. clearly deserve credit
for putting forward the formal requirements of such schemes, our starting point
is to note that their formal security notions do not seem to appropriately capture
the desired properties. For instance, we point out that their definition of collision
resistance only captures adversaries which faithfully create hash values and redac-
tions according to the scheme. In general, however, adversaries may choose such
data maliciously, and we indeed present a scheme which is intuitively insecure, but
provides collision resistance according to their definition.

We therefore present new definitions for the security properties, following
similar approaches for redactable and sanitizable signatures [6,7]. Our notion of
collision resistance of graph hashing demands that the adversary cannot output
a hash value and different graphs G,G′ such that they both verify against the
hash value. Of course, neither of the graphs can be a sub graph of the other one,
since otherwise an adversary could simply redact G to G′ to get different graphs
for the same hash value. But the exact formalization is even a bit more tricky,
since the adversary may derive both G and G′ form a common super graph with
the same hash value.

Another shortcoming in [1] refers to the privacy notion. If one adopts the
common idea of privacy from the domain of redactable signatures, then privacy
should guarantee that one cannot deduce any information about the original
graph from the redacted version. In the full version we demonstrate that the
privacy definition in [1] does not capture this property. That is, we present a
scheme where redaction clearly leaks information about the original graph, but
is deemed secure according to their notion. We therefore give a new definition
of privacy in the spirit of redactable and sanitizable signatures.
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1.3 Redactable Graph Hashes, or Sanitizable Graph Commitments?

An important conceptual observation we make here is that graph hashing may
come in two flavors. One flavor follows the idea of hashing more closely, and
assumes that anyone can re-hash the graph in question and check the graph
against a given hash value. This usually assumes that the randomness in the
hashing step, if any at all, is made public. Redaction can then be performed by
anyone. The other option is to view the hash of a graph rather as a commitment,
involving some secret randomness. This means that only a designated party,
usually called the sanitizer, can use the secret randomness to provide a verifiable
proof for redacted graphs.

Both approaches, redactable graph hashing and sanitizable graph commit-
ments, are valid strategies in order to give out partial and authenticated infor-
mation about the full graph. In both cases the owner of the graph may publish
(a signed version of) the hash value or commitment, and subsequently give out
sub graphs, whose correctness with respect to the initial value can be verified
with the help of additional data. In the sanitization case, however, this step can
be only done by a designated party holding some auxiliary secret data. Indeed,
Martel et al. [13] implicitly consider this option when they speak of a publisher
for the authenticated partial data, and made this even more explicit in a previ-
ous works [8–10]. We note that Arshad et al. [1] purely consider graph hashing
schemes.

The terminology in our paper will be general enough to capture both cases
simultaneously. Only for privacy we need to make a slight distinction. For sake
of simplicity we will subsume both notions under the term redactable graph
hashing.

1.4 Constructions

Finally, we show that our security properties can be met. Our construction fol-
lows the approach of Arshad et al. [1] by decomposing the graph into nodes and
edges, and hashing all these components individually with a cryptographic hash
function. Interestingly, our basic construction works for all of the aforementioned
security properties by switching to a different component for the cryptographic
hash function. For example, if one is only interested in collision resistance, but
not privacy, for the redactable hashing scheme, then a common collision-resistant
cryptographic hash function for the individual hashes suffices.

2 Preliminaries

Graphs. A directed labeled graph G = (V,E,content) is a set of nodes (or
vertices) V and a set of edges E ⊆ V × V , where each edge has a source and
a destination node. The content (or labeling) function content : V ∪ E → C
maps the nodes and edges to some string in the content space C ⊆ {0, 1}∗. In
the following we sometimes write e(u, v) to denote the edge e with source node u
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and destination node v. We usually denote the number of nodes by |V | = n and
the number of edges by |E| = m. A sub graph Gsub = (Vsub, Esub,contentsub)
of G, written Gsub ⊆ G, is itself a graph and satisfies Vsub ⊆ V and Esub ⊆
E∩Vsub×Vsub, as well as contentsub(x) = content(x) for all x ∈ Vsub∪Esub.

For hashing the graph it is convenient to associate an absolute order on
the nodes and edges. That is, we assume that there exists an implicit injective
mapping order : V ∪ E → {1, 2, . . . ,m + n}. For example, for some order on
the nodes v1, . . . , vn and the edges e1, . . . , em, e.g., according to their position
in the digital representation, the function could be defined by order(vi) = i
and order(ei) = n + i. This ordering also allows us to identify each node and
edge with a number between 1 and m + n. In addition, for privacy reasons we
also use a random order in the sense that we introduce a random permutation
π : {1, 2, . . . ,m + n} → {1, 2, . . . ,m + n}. Composing this with the ordering
order this gives a bijection orderπ = π◦order from V ∪E to {1, 2, . . . ,m+n}.

Redactable Graph Hashing. Recall that we treat both redactable graph hashes as
well as sanitizable graph commitments integratively, and only speak of redactable
graph hashes. The difference between the two cases shows in the approach below
when already the hashing algorithm outputs some secret information vo, called
verification object in [1,13], necessary to create verification data vosub for a sub
graph Gsub.

The key generation and hashing algorithms HKGen and Hash follow the com-
mon approach for defining hash functions. In addition, we introduce a redaction
algorithm HRedact. Since we consider randomized outputs for both hash val-
ues and commitments, we cannot necessarily recompute the hash value of some
input and compare it to a given value. We therefore more abstractly introduce
a verification algorithm HVf which checks the validity of a hash value. To define
a reasonable notion of collision-resistance later, we need to distinguish the cases
that the verification algorithm HVf checks for a full hash value or for a redacted
value, and hence pass the operation mode vfmode ∈ {hashed, redacted} as addi-
tional input to HVf.

Definition 1 (Redactable Graph Hashing). A redactable graph hashing
scheme H = (HKGen, Hash, HRedact,HVf) consists of four probabilistic
polynomial-time algorithms:

Key Generation: The key generation algorithm, on input the security para-
meter 1n, outputs a public hash key, hk ←$HKGen(1n).

Hashing: On input the hash key hk and a graph G, the (probabilistic) hashing
algorithm returns a hash value, together with a (potentially empty) verification
object, (gh, vo) ←$Hash(hk, G).

Redaction: On input the hash key hk, a hash value gh, a graph G, a sub graph
Gsub ⊆ G, and possibly empty data vo, the (probabilistic) redaction algorithm
returns a proof, vosub ←$HRedact(hk, gh, G,Gsub, vo).



402 A. Erwig et al.

Verification: On input the hash key hk, a hash value gh, a graph G, a (poten-
tially empty) proof vo, and a mode identifier vfmode ∈ {hashed, redacted}, the
verification algorithm returns a decision bit, d ←$HVf(hk, gh, G, vo, vfmode).

We assume the usual correctness property that genuine hash values of graphs are
accepted; a formal description is omitted from this extended abstract.

3 Security Properties

In this section we define our notion of collision resistance. The formal description
of the privacy notions has been omitted from this version for space reasons.

The underlying idea behind defining collision resistance is that the adversary
should neither be able to find different graphs which verify under the same
hash value, nor to make the verifier accept a graph which is not a sub graph of
the graph belonging to the hash value. The latter already includes the case of
different graphs, such that there is no need to distinguish the two events below.

The redaction property introduces some additional complications with the
above approach. Assume that the adversary creates the hash value gh for some
graph G, and then redacts this graph with the hash value twice, for two distinct
sub graphs Gsub, G

′
sub. By construction both graphs would result in the same

hash value gh, only the verification objects would differ, but they are a means
to an end, similar to the randomizer for computing the hash value. We therefore
ask the adversary to specify the super graph. That is, we let the adversary win
if one of the graphs verifies as a full hash, and the other graph may either verify
as a full hash or a redacted one. In any case, the second graph must not be a
sub graph of the former one.

To given an argument for the appropriateness of our notion of collision resis-
tance consider once more the setting where a party outputs the (signed) hash as
a commitment to the full graph G. Then the party should not be able to later
present a graph for the hash value which is not a sub graph of G. This is indeed
captured by our notion of collision resistance.

Fig. 1. Collision-resistance experiment for graph hashing
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Definition 2 (Collision-Resistance). A redactable graph hashing scheme H
is collision-resistant if for any probabilistic polynomial-time algorithm A the
probability

Prob
[
ExpCR

H,A(1n)
] ≈ 0

for the experiment ExpCR
H,A(1n) in Fig. 1 is negligible.

4 Constructions

In this section we describe our construction of a redactable graph hashing
scheme. All security proofs are left out from this version. The basic construc-
tion is similar to the idea [1] and first hashes all nodes and edges individually.
Then one can use advanced structures like iterated hash function evaluations or
Merkle hash trees to combine these hash values into a shorter representation.

The hashing is based on a cryptographic hash function (for redactable graph
hashing) or on a commitment (for sanitizable graph commitments). To cap-
ture all possibilities simultaneously, randomized hash functions, random ora-
cle based solutions, and commitments, we abstractly speak of a cryptographic
hash function CHash = (CHKGen,CHash,CHVf). This function consists of a
key generation algorithm chk ← CHKGen(1n), the (probabilistic) hash func-
tion (ch, cvo) ← CHashRO(chk, y), having possibly access to a random oracle
RO : {0, 1}∗ → {0, 1}n and possibly generating some additional verification
object, as well as the verification algorithm d ← CHVfRO(chk, ch, cvo, y). Note
that this also captures commitment schemes where cvo corresponds to the (ini-
tially secret) decommitment. We discuss the required security properties when
considering the concrete instantiations for the different cases.

Key Generation HKGen(1n): The key of our graph hashing scheme is given
by the key of the cryptographic hash function hk = chk ← CHKGen(1n).

Hashing HashRO(hk, G): To hash a graph G = (V,E,content) we first pick
a random permutation π over {1, 2, . . . ,m + n} for the ordered entries in V
and E. Then we go through the nodes and edges. For each node v ∈ V we
compute with the cryptographic hash function the value

(chv, cvov) ← CHashRO(chk, 0||v||content(v)).

For each edge e ∈ E we compute the hash value

(che, cvoe) ← CHashRO(chk, 1||e||content(e)).

In both case we assume that the node or edge identifier is represented with
some fixed-length encoding (in the sum of numbers n of nodes and m of
edges).
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The overall hash value gh and its verification object vo are given by

gh ← (chorder−1
π (1), . . . , chorder−1

π (n+m))

vo ← (π, cvoorder−1
π (1), . . . , cvoorder−1

π (n+m)).

Redaction HRedactRO(hk, gh, G,Gsub, vo): To redact a hash value gh, con-
sisting of a sequence of hash values ch, first check that Gsub really is a
sub graph of G and that the hash values ch for all nodes and edges in
the sub graph are correct. If so, then replace all verification objects cvo
in vo of nodes and edges which do not appear in Gsub by a special sym-
bol ⊥. Then, also redact the description of the permutation π by creating
πsub : Vsub ∪ Esub → {1, 2, . . . ,m + n} which coincides with the values of π
for all elements x in the sub graph:

π(order(x)) = πsub(ordersub(x))

for the implicit order ordersub for the sub graph. Let vosub be the redacted
object.

Verification HVfRO(hk, gh, G, vo, vfmode): The algorithm first checks that G
has at most the same number of nodes and edges as there are entries ch
in gh = (ch1, . . . , chm+n). If so, then recover the order orderπ from the
verification object vo = (π, cvo1, · · · cvom+n). For each node v in G check
for the orderπ(v)-th entries chorderπ(v) (in gh) and cvoorderπ(v) (in vo) that
cvoorderπ(v) �= ⊥ and

CHVfRO(chk, chorderπ(v), 0||v||content(v), cvoorderπ(v)) = 1,

and accordingly for edges. Finally, for mode vfmode = hashed also check that
there is no entry cvo = ⊥ in vo. If all these tests succeed, then output 1; else
return 0.

5 Conclusion

Our solution poses some questions for further research. One of the most inter-
esting aspects to be investigated is to improve the efficiency of such solutions.
Alternatively, one may be able to show lower bounds for the size of hash values
and verification objects for general redaction schemes. It would also be interest-
ing to derive schemes with specific redaction procedures, such as the projection
onto nodes (with edges being preserved). While such procedures can be easily
implemented with our general approach, they pose additional security require-
ments, e.g., it must be guaranteed that edges for nodes cannot be dropped.
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Abstract. Over the years Cellular Automata (CA) have been getting
importance as a better crypto-primitives in designing stream ciphers.
Wolfram identified Rule 30 as a powerful nonlinear function for crypto-
graphic applications. However, Rule 30 CA is vulnerable against Meier
and Staffelbach (MS) attack. This paper analyzes maximum period non-
linear CA (M-NHCA) which is shown to be secure against MS attack.
We present a new design construction of a stream cipher employing the
maximum period nonlinear CA and linear CA in conjunction with a
rotational symmetric bent function. The proposed cipher has also been
analyzed in aspect of almost all the known attacks in particular, the fault
attack against which most of the eStream candidates like Grain-128 are
vulnerable.

Keywords: Stream cipher · Cellular automata · MS attack · Crypt-
analysis of stream cipher

1 Introduction

Stream cipher is an important class in symmetric key cryptography. The
eSTREAM project started in 2004, introduced a number of stream ciphers which
are taken as standards in hardware and software efficient environments. However,
most of the ciphers in the eStream portfolio are susceptible to fault attacks. To
overcome these problems, Cellular Automata (CA) was proposed as one possible
candidate to prevent attacks.

The 3-neighborhood nonlinear Rule 30 CA has long been considered a good
pseudo-random generator and studied for cryptography [7]. It passed various
statistical tests for pseudo-randomness with good results, untill Willi Meier and
Othmar Staffelbach proposed an attack, called MS Attack [6]. Grain-like ciphers
NOCAS [5], CAR30 [2] proposed are all CA based ciphers, but most of them are
not strong against fault attack. Moreover, these works did not consider the MS
attack, though it is a real threat against a CA based cipher.

In this work, we study nonlinear rules of M-NHCA and show that M-NHCA
with multiple nonlinearity injections provide maximum length cycle as well as
c© Springer International Publishing AG 2017
J. Pieprzyk and S. Suriadi (Eds.): ACISP 2017, Part II, LNCS 10343, pp. 406–413, 2017.
DOI: 10.1007/978-3-319-59870-3 25
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better cryptographic primitives and they are also secure against MS attack.
We propose a design of a stream cipher using the M-NHCA. The design of the
cipher prevents almost all known attacks. The security of the proposed cipher
is analyzed against in the light of related attacks. The main contribution of this
work can be summarized as below:

– The first attempt to propose a scalable design architecture of CA based stream
cipher.

– Security analysis of the nonlinear CA against MS attack.
– Detailed security analysis of the proposed stream cipher with a special empha-

sis to fault attacks.

The organization of the rest of the paper is as follows. The design architec-
ture and working principle of the proposed cipher are shown in Sect. 2. Section 3
describes the design rationale of its each component. The detailed security analy-
sis is furnished in Sect. 4. The robustness of the cipher against the existing crypt-
analysis techniques with a special focus on MS attack is also studied in detail in
this section. Finally, the paper is concluded in Sect. 5.

2 Design Architecture

The new cipher consists of three building blocks, namely Linear block which
uses Linear Hybrid Cellular Automata (LHCA), Nonlinear block which uses
Nonlinear Hybrid Cellular Automata (NHCA) and a final combiner function
h(·). The overall structure can be found in Fig. 1.

Fig. 1. Overview of the cipher design Fig. 2. Initialization of the cipher

2.1 Linear Block

This block uses 128-bit maximum period LHCA L represented by
{s0, s1, · · · , ; s127} where si denotes the state of the i-th cell of L. The state
transition function of the i-th cell at time instant t can be expressed as:
st+1
i = sti−1 ⊕ di.s

t
i ⊕ sti+1, where di = 0(Rule 90)/ 1(Rule 150). Thus, an LHCA

can be completely specified by a combination of rule 90 and 150, denoted as an
n-tuple [d0, d1, · · · , dn−1]. An example of a 5-cell LHCA L′ is shown in Fig. 3,
specified by the rule vector [1, 1, 1, 1, 0]. Further details of CA can be found in
[1]. The LHCA L used in the design is selected in a way to ensure maximum peri-
odicity [1]. In our work, the characteristic polynomial of L, is defined as: f(x) =
x128 +x29 +x27 +x2 +1. which is primitive. The rule value of the LHCA L syn-
thesized from f(x), is given as 0x48882FBD67031A7A7A79C0E6BDF41112.
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Fig. 3. Cellular automata L′ with rule
vector [1, 1, 1, 1, 0]

Fig. 4. NHCA N ′ synthesized from
LHCA L′

2.2 Nonlinear Block

This block uses maximum period Nonlinear Hybrid Cellular Automata (M-
NHCA). An example of 5-cell M-NHCA N ′ (Fig. 4) is synthesized with non-
linearity inject at single point from a 5-cell LHCA L′ (Fig. 3) by the technique
[3]. Here, we remove the restriction of single injection point and introduce mul-
tiple injection points to increase the nonlinearity of synthesized NHCA N ′. We
consider an n-cell maximum period LHCA denoted by {x0, x1, · · · , xn−2, xn−1}.
For multiple nonlinearity injections, we follow the following criteria:

1. Non-linearity can be injected in cell position i, 2 ≤ i ≤ n − 3 to form the
nonlinear function fN (xt

i−2, x
t
i+2) = (xt

i−2 · xt
i+2).

2. To retain the maximum length cycle, two nonlinearity inject positions i and
j must satisfy |i − j| ≥ 4.

In the proposed cipher, the NHCA N represented by {b0, b1, · · · , b127}, where
bi denotes the state of the i-th cell, is a 7-neighborhood 128-bit M-NHCA syn-
thesized from LHCA L by injecting nonlinearity into the following set of inject
positions, denoted as X , as follows:

X = {13, 17, 29, 33, 44, 48, 64, 68, 77, 81, 93, 97, 109, 113}

2.3 Combiner Function h(·)
The function h(·) can be expressed as a sum of two parts, a linear function hl(·)
and a nonlinear bent function hbent(·), where h(·) = hbent(·) + hl(·). Before
stating the specification of h(·) used in the proposed cipher, we furnish some
basic concepts of a rotational symmetric Boolean function. Let {x0, x1, · · · , xn}
be the set of input bits to a Boolean function f(·). For 0 ≤ j ≤ n − 1, we define
the rotational shifting operation as: ρj(xi) = x(i+j)mod(n). This definition can
be extended for a Boolean function fs(·) as follows:

ρj(fs(x0, x1, · · · , xn−1)) = fs(ρj(x0), ρj(x1), · · · , ρj(xn−1))

A rotational symmetric function is defined as the summation of all the rota-
tionally permuted terms of a base element which is called the short ANF and is
denoted as

f(x0, x1, · · · , xn−1) =
n−1∑

j=0

ρj(fs(x0, x1, · · · , xn−1))
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where, fs(·) is the short ANF of f(·). e.g. the function f(x0, x1, x2) = x0x1 +
x1x2 + x2x0 can be denoted as

f(x0, x1, x2) =
2∑

j=0

ρj(fs(x0, x1, x2))

where, fs(x0, x1, x2) = x0x1. As mentioned earlier, the function hbent(·) in the
cipher is rotational symmetric. The short ANF form of hbent(·) is denoted as
hs(·). The specifications of hl(·) and hbent(·) are shown in the following equations.

hs(v0, v1, · · · , v7) = v0v1 + v0v2 + v0v3 + v0v1v2 + v0v1v4 + v0v1v6

+ v0v2v4 + v0v1v2v3 + v0v1v3v4 + v0v1v3v5

hbent(v0, v1, · · · , v7) =
7∑

j=0

ρj(hs(v0, v1, · · · , v7)

hl(u0, u1, · · · , u4) =
4∑

i=0

ui

The 256 memory elements in the two CA represent the state of the cipher.
From this state, 13 variables are taken as input to the combiner function h(·).
Six inputs are taken from L and seven inputs are taken from N . The set of the
input bits, also called tap bits, corresponds to the set denoted by T as follows:

T = {s12, s35, s58, s78, s97, s119, b16, b32, b47, b67, b80, b96, b112}
Hence, the output function (i.e. the combiner function h(·)) is defined as

z = h(v0, v1, · · · , v7, u0, u1, · · · , u4) = hbent(v0, v1, · · · , v7) + hl(u0, u1, · · · , u4)

where, v0, v1, v2, v3, v4, v5, v6, v7 correspond to b16, s12,s35, s58, s78, s97, s119, b96
and u0, u1, u2, u3, u4 correspond to b32, b47, b67, b80, b112.

The number of tap points for the final combiner function, h(·), should be
changed for different key lengths (e.g. 128, 192, 256). Moreover, the rotational
symmetric bent function hbent(·) should also be redesigned.

2.4 Initialization and Key Setup

Before generating any keystream, the cipher must be initialized with the key
and IV. Here we have used a 128-bit key k and a 128-bit IV. To initialize the
cipher, the key is loaded into N and the IV is loaded into L. The LHCA used
is synthesized from primitive polynomial and it provides maximum periodicity.
Therefore, the LHCA state bits never contain all 0’s while running the cipher
and it ensures to resist the chosen IV attack. It overcomes the restriction of
Grain of keeping 16 LSBs to be all 1’s. The diffusion rate of NHCA evolution
is much faster than that of nonlinear block of Grain-128. In 128 clock cycles,
all 256 state bits (128 bits of nonlinear block and 128 bits of linear block) will
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be diffused in all 256 bits, which strengthens the security against attacks like
algebraic attack and fault attack etc. Therefore, the cipher is clocked for 128
cycles without producing any keystream and the output of h(·) is fed back and
XORed with the LSBs of both L and N . The initialization phase is made 2 times
faster than that of Grain-128 [4]. The initialization phase is depicted in Fig. 2.

3 Design Rationale

In this section, we give the logic behind the choices for the design parameters.

Maximum period LHCA: In the proposed cipher, the linear sequence genera-
tor is constructed from LHCA instead of LFSR. This design choice is attributed
to the suitability of LHCA as a pseudorandom number generator (PRNG) due
to its better randmoness property than that of the LFSR [1]. Further, having
a maximum length cycle, an LHCA is considered as a cryptographically secure
PRNG.

Maximum period NHCA: In case of ciphers like Grain, the faults injected
into the nonlinear feedback shift register (NFSR) are directly transmitted to
the output, enabling the attacker to form low degree equations by observing
the output difference. Solving these set of equations facilitates the recovery of
the internal state of the NFSR and subsequently the key. However, the presence
of nonlinear hybrid cellular automata in the design of the cipher makes the
formation of such equations almost infeasible. This claim is justified by the
experimental results provided in the following section. Another notable difference
of the NHCA from that of the NFSR in Grain is the absence of any feedback
from the linear generator to the nonlinear one. This feedback is required to
ensure large period length and to provide balancedness to the output of NFSR.
However, as the NHCA N used here has maximum periodicity, such feedback is
extraneous and subsequently discarded.

Choice of hl(·) and hbent(·): The function hl(·) increases correlation immunity
and resilliency whereas hbent(·) provides high nonlinearity1. In addition, the
function hbent(·) is designed to be a rotational symmetric one. This ensures that
the occurence of a fault is equiprobable for all the nonlinear terms in the bent
function hbent(·) in case of a faulty output. The lack of rotational symmetry of
the filter function in Grain has already been exploited, therefore, it necessitates
the use of such function to conceal the fault positions.

Choice of output function h(·): Recovery of the state bits by reverse engineer-
ing is prevented by the use of a combiner function. For this purpose, a Boolean
function h(·) is selected as a sum of two parts, a nonlinear bent function hbent(·)
and a linear function hl(·). The combiner function has nonlinearity 3840 and
resiliency 4 that increase with iterations while expressed in terms of initial state
bits. Because of incorporating rotational symmetric bent function hbent(·), it
strengthens the security of the cipher against attacks like algebraic attack and
fault attack etc.
1 Bent function possesses the highest possible nonlinearity.
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4 Security Analysis

The following analyses show that the proposed cipher is secure against MS attack
and as well as some general attacks on stream ciphers.

4.1 Analysis Against MS Attack

MS attack [6] is a known plaintext attack. Let us consider a 3-neighborhood n-bit
maximum period null-boundary LHCA represented by {x0, x1, · · · , xn−1} with
rule vector [d0, d1, · · · , dn−1], where, di = 0 (Rule 90) / 1 (Rule 150). Let non-
linearity be injected with the nonlinear functions fN (xt

j−2, x
t
j+2) = (xt

j−2 ·xt
j+2)

at positions j and fN (xt
k−2, x

t
k+2) = (xt

k−2 ·xt
k+2) at positions k, where k−j = 4

as per criteria of multiple nonlinearity injections for producing M-NHCA N ′.
The state transition functions (nonlinear) of neighboring cells of N ′ around the
non-linearity positions j and k respectively, are as follows: for jth position:

xt+1
j−1 = xt

j−2 ⊕ dj−1 · xt
j−1 ⊕ xt

j ⊕ (xt
j−2 · xt

j+2) (1)

xt+1
j = xt

j−1 ⊕ dj · xt
j ⊕ xt

j+1 ⊕ dj · (xt
j−2 · xt

j+2)

⊕ ((xt
j−3 ⊕ dj−2 · xt

j−2 ⊕ xt
j−1) · (xt

j+1 ⊕ dj+2 · xt
j+2 ⊕ xt

j+3)) (2)

xt+1
j+1 = xt

j ⊕ dj+1 · xt
j+1 ⊕ xt

j+2 ⊕ (xt
j−2 · xt

j+2) (3)

Similarly, for kth position (in terms of j with k=j+4), we can generate the expres-
sions xt+1

j+i for i=3,4,5 as 2nd rule set, where (xt
0, x

t
1, · · · , xt

n−1) is the site vector
of M-NHCA N ′ at time step t.

Suppose, we are given the output sequence {xt
i} (i.e. the temporal sequence

{xt
j+3}) upto the unicity distance N as shown in Table 1, where i = j + 3 and

i = k − 1 since k − j = 4. The site vector forms left and right triangle w.r.t the
temporal sequence column. We choose a random seed < xt

i+1, · · · , xt
n−1 > out of

2n−(i+1) possibilities. In the completion forwards process, the right triangle can
be determined using equations in the 2nd rule set and 90/150 rules. In completion
backwards process, the left triangle can be formed using 90/150 rules and the 1st
rule set and hence, the seed < xt

0, · · · , xt
i−1 > can be determined. For the column

j+2, n−(i+1)
2 values can be computed deterministically and other n−(i+1)

2 values

can be chosen randomly with 2
n−(i+1)

2 possibilities. The columns j − 2 and j − 3
are chosen as random out of 2j+1 and 2j possibilities, respectively. The required
time complexity is: 2n−(i+1).2

n−(i+1)
2 .2j+1.2j = 2n+

3
4 (n−9), where j = i − 3 and

i = n−1
2 , the middle cell position of the CA. The required time is greater than

2n for n > 9.
Following

the similar approach, we can determine the seed < xt
i+1, · · · , xt

n−1 >
from the given output sequence {xt

i} by guessing the seed < xt
0, · · · , xt

i−1 >

with a time complexity of 2n+
n−5
2 , where k = j + 4 = i + 1 and i = n−1

2 .
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Table 1. Computing seed for NHCA N ′ Table 2. Cipher output for different
characteristics

4.2 Algebraic Cryptanalysis

Algebraic cryptanalysis depends on constructing a probabilistic pattern of the
outputs to distinguish the cipher from a random permutation and solving low
degree equations from them. As LHCA involves only linear terms, a combiner
Boolean function h(·) constructed out of it is immediately susceptible to alge-
braic attacks compromising its security. This can be prevented by introducing
nonlnearity in the design along with the LHCA and h(·). This is achieved by the
nonlinear transition function of the NHCA. Table 2 shows that the increase of
number of nonlinear terms and the Algebraic degree of a cipher also increase the
attack complexity. Therefore, from the result, it is expected that the recovery of
the internal state from the output is beyond practical measure.

4.3 Linear Approximation and Correlation Attack

The linear cryptanalysis technique depends on approximating the output with an
affine function. Nonlinearity is incorporated to prevent the affine approximation.
This is accomplished with a nonlinear sequence generator N and a combiner
function h(·). Table 3 shows the increase in nonlinearity of the injection points
with number of iterations. Moreover, the number of linear terms in the combiner
function h(·) increases during initialization. Hence, the resiliency of h(·) increases
with iterations as shown in Table 2. Thus, due to the faster growth of resiliency
of the output bit of the cipher, it is expected that this cipher is resistant against
Correlation Attack.

Table 3. Nonlinearity of N for various
iterations

Table 4. Fault location vs. NHCA
bits obtained
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4.4 Analysis Against Fault Attack

In this work, we have studied the effects of injecting single-bit faults into various
locations of N and L. After the initialization phase, we run the cipher for a
target cycle T to inject fault. We refer to this point as the base point. After
injecting single-bit fault at the base point T, we have run the cipher for t cycles
(say, t=10). As a result, only 13 bits of N at the base point T can be obtained
and no bits of L can be obtained as shown in Table 4. The design of the cipher
increases the degree, number of variables and number of non-linear terms in
the output expression with iterations as shown in Table 2. Thus, the design is
expected to be resistant against fault attack.

5 Conclusion

In this paper, we have introduced a new stream cipher using Cellular Automata.
The design produces fast initialization in only 128 cycles. The cipher is secure
against MS attack which is a real threat for CA based ciphers. The use of maxi-
mum period non-linear CA in place of NFSR, dropping of the feedback function
from LFSR to NFSR and the rotational symmetric bent function make the cipher
robust against fault attack.
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Abstract. We explore the power of steganographic computation in an
game-theoretic setting, where n stegocommunicants are attempting to
complete a shared computation, and where a well-resourced censor is
attempting to prevent the computation. For example, when collabora-
tively discovering the minimum value (mini xi) in a public n-vector X,
each stegocommunicant reads a randomly-selected element during each
timestep. Each then transmits the index i of the smallest value they have
seen to a randomly-selected collaborator. We prove that most stegocom-
municants will learn the minimum value in O(log n) time, w.h.p., if at
most 10% of their population is censored in any timestep. The censor in
our model retains a copy of all intercepted messages, using this informa-
tion to optimally select the targets of their censorship at the beginning
of each timestep. Our model of stegocomputation is relevant to stegosys-
tems in which: (1) the stegoencoding is determined by the address of the
recipient, (2) the censor does not have sufficient computational resource
to stegodecode more than a fixed fraction (nominally 10%) of the mes-
sages in flight, and (3) the censor cannot store any messages other than
the ones it has stegodecoded.

Keywords: Steganography · Communication protocols · EREW
PRAM

1 Introduction

Stegocommunication is similar to encrypted communication, because both
involve the transmission and reception of messages under adversarial conditions.

Stegocommunication is distinguished from encrypted communication,
because the former avoids revealing that messages are being transmitted,
whereas the latter prevents an adversary from reading or falsifying messages.

Stegoencoding is sometimes deprecated as “weak encryption”, because any
stegoencoded message can be decoded, with a modest expenditure of computa-
tional resource, by an adversary who has contextual information about the mes-
sage. By contrast, a strongly encrypted message can be read only by a skilled
adversary who deploys massive computational resource. Furthermore, crypto-
graphic techniques can be used to protect message integrity, whereas the integrity
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J. Pieprzyk and S. Suriadi (Eds.): ACISP 2017, Part II, LNCS 10343, pp. 414–421, 2017.
DOI: 10.1007/978-3-319-59870-3 26

http://orcid.org/0000-0002-4147-7898
http://orcid.org/0000-0002-0176-7129


Stegogames 415

of a steganographic message can be attacked by any adversary who is able to
decode it. However, a system’s availability is adversely affected by its reliance on
a cryptoprotocol, whenever a legitimate user has lost access to their key mater-
ial, and whenever a cryptographic service is unavailable for an extended period
of time. As we will show in this paper, a stegoprotocol can assure the successful
completion of a shared computation for most of its participants; but this avail-
ability assurance comes at some expense in confidentiality. In this regard, our
stegoprotocols are complementary to cryptoprotocols.

The Dolev-Yao model is widely accepted as the basis for cryptoprotocol
design, because its axioms of strong cryptography and key-material secrecy are
feasibly assured in many real-world situations, and because these axioms are
sufficient to support a wide range of useful cryptoprotocols.

The primary contribution of this paper is an axiomatic model for stegoproto-
col design. The adversary in our model is actively intercepting and interrupting,
but is neither modifying nor impersonating.

We present and justify our model in Sect. 2. In Sect. 3, we illustrate our model
by fully analysing a very small stegogame. In Sect. 4, we prove that stegocom-
municants cannot conduct a secret ballot. In Sect. 5, we sketch a proof that
stegocommunicants cannot be prevented from using a collaborative process to
discover the minimum value in a public dataset of n values. In the concluding
section, we summarise our findings and discuss some implications.

2 An Axiomatic Model of Stegocomputation

Axiom 1. Each stegocommunicant can perform O(1) randomized computations
on O(logc1 n)-bit words, during each timestep, for some fixed constant c1. Their
multi-headed adversary, whom we name the Hydra, cannot predict the outputs of
any stegocommunicant’s private pseudorandom number generator.

We strictly bound the computational power of stegocommunicants. We think
it reasonable to assume that real-world stegocommunicants are able to take
actions when cannot be predicted by their surveillants.

Axiom 2. Each stegocommunicant has a unique name gi, which is drawn at
random from a set of size O(nc2) for some constant c2 > 3.

Randomly-selected names are sometimes called gensyms by LISP program-
mers, so our notation is mnemonic. For convenience when describing our stego-
protocols, we assume that the i-th stegocommunicant is named Gia, that the
j-th is named Genji (when j �= i), and that the k-th is named Ganika (when
k �= i and k �= j).

Axiom 3. During each timestep, each stegocommunicant can send a stegomes-
sage to one other stegocommunicant. If the destination of the stegomessage is
unspecified, it is transmitted to a randomly selected stegocommunicant – and
no one, not even the Hydra, can predict this random choice. Alternatively, the
stegomessage may be addressed to someone already known (by gensym) to the
stegotransmitter.
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We introduce this axiom to model a globally-accessible social network with
millions or billions of participants. The participants in this network have agreed
to accept a small number of messages per day from unknown sources, despite
the risks of receiving objectionable messages, in order to participate in a public
consensus-formation process which cannot effectively be censored by any gov-
ernment.

Random-introductions in social-networking systems are currently available in
https://www.facebook.com/RandomFriendAdder/ and http://kikcontacts.com/
random.

Axiom 4. No stegocommunicant knows their index i in any compact range
1..c3n, for any constant c3 ≥ 1.

We leave it as an open problem to develop a stegoprotocol for mapping gen-
syms onto 1..n. We note that such a compact enumeration would allow stego-
communicants to map their names onto the nodes in a shuffle-exchange graph or
other powerful structure for parallel computation. If it turns out to be infeasible
for a compact indexing to be stegocomputed, then it would be interesting to
explore the properties of a stegomodel in which gensyms are drawn at random
from a set of size c3n.

For analytic convenience, we assume the Hydra always defines (at least
implicitly) a bijection of 1..n onto inboxes, as well as a bijection of 1..n onto
gensyms. When we refer to the i-th stegocommunicant, we are using the Hydra’s
bijections. Each stegocommunicant Gia therefore knows her own name, but not
her index i.

Axiom 5. The Hydra censors at most αn of the stegocommunicants in each
timestep.

To assure this axiom in a real-world setting, stegocommunicants could make
public postings on a popular, governmentally-sanctioned, social-networking sys-
tem that supports random-sharing of public posts. Censors would be expected
to block postings with abnormally high entropy, because these are likely to be
encrypted. However messages which closely resemble normal traffic [5–8] would
evade mass censorship: the censor must search each one, individually, for stego-
content.

In a practical implementation of a stegocommunication system that obeys
Axiom 5, stegotransmitters could randomly-share ten of their public postings
each day (or week), using the “share-to-random” facility of Axiom 3. One of
these random-shares is the cover message for that day’s stegotransmission, using
a stegosystem that is keyed to some recent public postings by the sender. The
recipient of each random-share must expend some computational resource to
search through all possible stegokeyings to discover its stegocontent, if any. Note
that this stegochannel is, essentially, employing a cryptographic system with a
keyspace that is small enough to allow stegodecoding of individual messages by
individual recipients, but is large enough to prevent the Hydra from stegodecod-
ing more than αn messages per timestep.

https://www.facebook.com/RandomFriendAdder/
http://kikcontacts.com/random
http://kikcontacts.com/random
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Axiom 6. The stegocommunications network delivers a stegomessage if and
only if there is no contention for the recipient’s inbox. The stegocommunicant
associated with this inbox is unaware of the message delivery if they are currently
being censored; in this case, the Hydra reads the message.

This axiom could be assured by a communication-services provider which
allocates one fixed-size inbox to each stegocommunicant. It is analytically attrac-
tive, because it makes our computational model very similar to the well-studied
Exclusive Read Exclusive Write (EREW) Parallel Random Access Machine
(PRAM) [3].

Axiom 7. The case of no incoming messages is indistinguishable from the case
of multiple incoming messages in an inbox, for the intended recipient and for the
Hydra.

We introduce this indistinguishability solely to simplify our analysis. In a
real-world deployment, this axiom could be violated by a governmental censor
who instrumented the communications fabric for traffic analysis, allowing it to
know how many stegomessages were sent to each stegocommunicant in each time
period. We leave it to future work to analyse the properties of our model without
this simplifying assumption.

Axiom 8. The stegocommunicants’ goal is a computation of a randomised func-
tion f(A,X) in polylog(n) time. The vector A has one private component per
stegocommunicant. The vector X is a globally-accessible, uncensorable, write-
once vector of length O(n). The value of each component of the domain and
range of f() is encoded in a bitstring of length polylogarithmic in n. For any
distribution on the domain (A,X), the stegocommunicants win the game if their
computation is complete, accurate, and widely-dispersed (as defined immediately
below) with high probability, i.e. with chance of failure O(n−c) for fixed c > 0.

1. Complete: A value for each of the components of f() is declared.
2. Accurate: No stegocommunicant declares an incorrect value for any compo-

nent of f().
3. Widely dispersed: At least half of the stegocommunicants declare a value for

at least one component of f().

We introduce the vector A of private information to model information that
is generated by individual stegocommunicants, and which they are attempting
to share with other stegocommunicants.

Each element in the vector X is written only once per stegocomputation.
Depending on the problem, X could be O(n) words of randomly-generated data,
data collected from O(n) real-world sensors, or data written by stegocommuni-
cants. For example, if Gia were initially provided with her index i, she could
write her vote into cell xi; and the problem to be solved might be to collate the
votes. In an implementation, xi could be a designated area on Gia’s timeline or
blog.

The completion conditions are complex. We think they are best understood
by working through an illustrative example in the next section.
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Axiom 9. All stegocommunicants follow the same (randomized) stegoprotocol,
and this stegoprotocol is known to the Hydra.

This axiom distinguishes our model sharply from distributed computing
models in which a fraction of the participants are untrustworthy. Furthermore,
distributed computing models are usually analysed for their worst-case perfor-
mance, rather than for the w.h.p. bounds of our Axiom8.

No axiom can ever be fully assured in a real-world system. Trustworthiness
axioms, such as this one, are especially problematic. The trustworthiness of any
stegocommunicant may change over time, and no person or computer system
is completely trustworthy – there is always some chance of faulty behaviour.
In this respect, our model is inaccurate: it provides an upper-bound, rather
than an unbiased estimate, of the likelihood that any real-world set of n stego-
communicants can successfully complete a stegocomputation over a censorious
communication network.

We note that the result of any stegocomputation may be assessed for accu-
racy in a subsequent stegocomputation. We leave the development of such
trustworthiness-assessment stegoprotocols to future work.

3 Private 3-Majority

In this section, we illustrate our model by analysing a stegogame on n = 3 stego-
communicants s1, s2, and s3. Their adversary is a one-headed Hydra (α = 1/3).

Each stegocommunicant has a private bit ai. Their shared goal is to evaluate
the majority predicate on their private bits, f(A) = (

∑
i ai > 1), after a single

round (T = 1) of communication. Each stegocommunicant must either declare
her answer, or remain silent, at the end of this round.

By our last axiom, the stegocommunicants win their game if a majority of
stegocommunicants declare a correct answer, and if nobody declares an incorrect
answer.

Below, we evaluate the stegocommunicants’ winning probability under a
plausibly-optimal stegoprotocol, when their private bits ai are independent
Bernoulli variates with p = 0.5. If this were a formal analysis rather than an
illustration of our model, we would prove (or disprove!) our conjecture that this
probability distribution is pessimal for the stegocommunicants.

In our exemplary stegoprotocol, each stegocommunicant Gia (si) chooses a tar-
get Genji (sj) uniformly at random under the constraint that j �= i. The body of
Gia’s message is her random value ai. If Genji receives Gia’s message, he reports
the value max(ai, aj) at time t = 1. Otherwise Genji reports the value aj .

In our model, a message is received by its intended recipient unless one or
more of the following conditions arise:

– the sender is censored,
– the receiver is censored, or
– there are multiple message-arrivals in the receiver’s inbox.
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Informally: when Gia is censored, her outgoing message is routed to the Hydra
rather than to Gia’s intended recipient. Furthermore, a censored Gia is unable
to access her own inbox – because one of the heads of the Hydra is accessing this
exclusive-read memory. If multiple messages arrive in Gia’s inbox during a single
round, this write-contention causes this inbox to be unreadable. Accordingly,
our computational model is essentially an adversarial EREW PRAM, with the
inboxes taking the role of memory cells in the PRAM model. However there are
only n cells of memory, memory cells have wordsize polylogarithmic in n [2], and
every memory cell is “owned” [4] by exactly one stegocommunicant.

In our illustrative single-round stegogame, the Hydra has just one head, so
it has only two possible strategies: it may censor nobody, or it may censor one
stegocommunicant. We identify two subcases in the first strategy:

1. The stegocommunicant’s randomly-chosen messaging pattern is a 3-cycle. In
this subcase, every stegocommunicant receives a message.

2. The messaging pattern has a 2-cycle. In this subcase, one stegocommunicant
receives a message, one stegocommunicant receives no message due to inbox
contention, and one stegocommunicant has an empty inbox.

In both subcases, the stegocommunicants compute the correct value if their
votes are unanimous:

∑
i ai ∈ {0, 3}. This event occurs with probability 1/4.

In both subcases, if
∑

i ai = 1, the stegocommunicant with aj = 1 reports an
incorrect answer, causing the stegocommunicants to lose the game. This event
occurs with probability 3/8.

In the first subcase, if
∑

i ai = 2 then the stegocommunicants compute the
correct value. This event occurs with probability 3/8, so the value of the game
in the first subcase is 1(1/4) + 0(3/8) + 1(3/8) = 5/8.

In the second subcase, if
∑

i ai = 2 then the stegocommunicant with aj =
0 reports a correct answer if and only if she receives a message. This event
occurs with probability 1/3, so the value of the game in the second subcase is
1(1/4) + 0(3/8) + (1/3)(3/8) = 3/8.

Subcase 1 arises with probability 1/4, independently of the values ai, by the
following argument. Without loss of generality s1’s target is s2. With probability
0.5, s2’s target is s3; and independently with probability 0.5, s3’s target is s1.

We conclude that the stegocommunicants win the game against an uncen-
soring Hydra with probability (5/8)(1/4) + (3/8)(1 − 1/4) = 14/32 = 7/16.

We leave it to the reader to perform the (rather tedious) analysis of the
Hydra’s other possible strategy, of censoring one stegocommunicant, establishing
the value of this game as 5/16.

4 Majority Voting with Unpublished Ballots

A Hydra with Ω(n) heads can effectively prevent majority voting with secret
ballots. Formally:

Theorem 1. For any constant censorship rate α > 0, the predicate (
∑

i ai ≥ n/2)
can not be reliably stegocomputed.
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Proof. A sufficient strategy for the Hydra is to choose αn stegocommunicants at
random, and to censor these stegocommunicants at all times. A censored stego-
communicant Gia does not communicate her ai value to anyone. The uncensored
stegocommunicants may estimate the total vote of the censored stegocommuni-
cants,

∑
{i:∃k:Ck(1)=i} ai, by random sampling. However for an input ensemble

in which ai are independent Bernoulli variates with probability p = 0.5, the
error in this estimate is Ω(ln c

√
αn) = Ω((ln(αc)

√
n) with probability Ω(n−c),

implying that the stegocommunicants will not accurately compute the majority
vote w.h.p.

5 Global Minimum-Finding on a Public Vector

A Hydra with n/10 heads cannot prevent n stegocommunicants from discov-
ering the value of a smallest component in their globally-readable n vector X.
A suitable stegoprotocol is easily described: each stegocommunicant probes the
n-vector at random, retaining the index of the smallest value it has seen so far,
and sending this index to a randomly-selected recipient.

Theorem 2. If α ≤ 0.1, then mini(xi) can be reliably stegocomputed.

Proof sketch. Every stegocommunicant probes at random into the n-vector X
during each timestep, discovering a global minimum with probability ≥ 1/n;
this bound is tight when the global minimum is unique. Every stegocommunicant
informs a randomly-selected stegocommunicant of the index of the minimal value
it has seen to date. We use a discrete-state branching process [1] to model the
spread of knowledge about the global minimum.

6 Discussion

We have exhibited a model of stegocommunication which supports proofs of
reliable computation on a EREW PRAM model with adversarial message inter-
ceptions and interruptions.

We have proven that the adversary can prevent stegocommunicants from
reliably computing the majority function on their private “votes”. We note that
an approximate private-vote could be stegocomputed by random-sampling. Fur-
thermore, a majority public-vote could be stegodecided unless the voting is close.

We have also proven that the adversary cannot prevent stegocommunicants
from discovering the minimum value in a public n-vector. This computational
power would allow stegocommunicants to form a public consensus on the “best
stegoprotocol” to be used in the next round of stegocomputation – if they had
a prior agreement on the metric to be used when comparing two stegoprotocols.

We note that our model bears some resemblance to models of fault-tolerant
distributed systems. However such models generally have a Byzantine trust
model, such that any communicant may be untrustworthy. Furthermore the
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models generally lack a probabilistic support, but instead are analysed for worst-
case behaviour: the algorithms are required to deliver correct results under a
bounded-fault assumption e.g. that no more than 1/3 of the Byzantine gener-
als are untrustworthy. Under such models of distributed computation, runtimes
are typically polynomial in n. By contrast, our model assumes n trustworthy
stegocommunicants who have only polylog time to complete their computation.

Our primary contribution in this article is an axiomatised model of stegocom-
putation which is simple enough to be analytic, while remaining realistic enough
to guide the design of reliable stegosystems of practical use. Some foreseeable
practical uses of stegocomputation are “white-hat”, for example the reliable dis-
tribution of digital certificates in a global public-key infrastructure – when one or
more governments are actively attempting to prevent this distribution. Reliable
stegocomputation would also be important to “black-hats”, for example crimi-
nal gangs may someday use a stegogame to coordinate their criminal activity,
if no crime-fighting agency has sufficient powers of censorship to prevent such
coordination.
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Abstract. The Prom Problem (TPP) represents a special class of matchmaking
challenges that amplify the conflicting requirements of anonymity and authen-
tication necessitating fair and privacy-enhanced matchmaking with
identity-linked wishes (ILW). ILW are wishes that involve particular identities
and are valid only if all associated parties have those same wishes. In this paper,
we provide a feasibility evaluation of an implementation of a previously pro-
posed algorithm for TPP along with a detailed characterization of its fairness,
and present results from computation and communication specific performance
testing. To quantify fairness, we propose the use of a fairness index that com-
bines the concepts underlying Jain’s index with previously established defini-
tions of fair matchmaking and details of the protocol. We also delineate upper
and lower bounds for the fairness index values in this context and discuss its
relationship to the participants’ confidence in the result. Finally, we present
performance results that answer key questions thereby demonstrating the prac-
ticality of the solution both in terms of computational costs and communication
overhead. The results quantify relative impacts of higher degrees of confidence
and anonymity to guide identification of appropriate tradeoffs as the solution is
applied to varying problem domains with security and privacy requirements
comparable to TPP with ILW.

Keywords: Privacy-Enhanced Technology � Matchmaking � Prom Problem �
Identity Linked Wishes

1 Introduction

Matchmaking scenarios attempting to match users with common wishes have provided
opportunities for researchers to respond to a variety of challenges related to security
and privacy [1–8]. Yet prior solutions are unsuitable in the case of the Prom Problem
(TPP) which exemplifies a special class of matchmaking challenges involving identity
linked wishes (ILW) – wishes that pertain to specific identities and are valid if and only
if all involved parties have those same wishes [9]. TPP amplifies the conflicting
matchmaking goals of anonymity and authentication necessitating fair and
privacy-enhanced matchmaking with ILW. In TPP, Alice secretly wishes to attend the
prom (a semi-formal dance of particular significance in high school) with Bob. She
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desires a privacy-preserving method of determining whether Bob has the same wish but
without the risk that someone else could find out. In fact, she does not even want Bob
to know that she inquired about the secret if Bob does not feel the same way about her.
The nature of ILW combined with a threat model in which no participants can be
trusted results in susceptibility to a variety of attacks such as impersonation, false
disclosure, database compromise, and inference. The Horne-Nair(HN) protocol has
been put forth to provide privacy-enhanced matchmaking with ILW affording joint
notification of wishes and equivalent exchange (i.e., fairness) using an untrusted
matchmaker. A pseudo-code example of the solution has been disclosed in one of its
simplest forms along with a security evaluation [9]. In this paper, we highlight notable
aspects of an implementation of this privacy-enhanced technology (PET), quantify the
fairness of the protocol, and present results from performance testing. The four fun-
damental questions for this study pertained to the real-world performance and practi-
cality of the HN protocol for fair and privacy-enhanced matchmaking with ILW
including computational performance, communication performance, a high degree of
fairness, and a high degree of anonymity. In the remainder of this paper, Sects. 2 and 3
summarize related work and the HN protocol respectively. Section 4 characterizes
fairness while Sects. 5 and 6 present results from performance testing and comment on
results and future work.

2 Related Work

Modern matchmaking challenges date back to at least the Baldwin and Gramlich
(BG) protocol for trustable matchmaking [1] that combined authentication, asymmetric
cryptography, fake transactions, anonymous communication, and a query-response
protocol with a trusted third party (TTP) to achieve a certain balance between
authentication and anonymity. The protocol provided joint notification of equivalent,
authenticated wishes which it equated with fairness in matchmaking but it failed to
provide secrecy of wishes and relied on a TTP. Unfortunately, the protocol also stored
wishes in a database posing a significant risk given frequent data breaches in modern
times. Not long after the BG protocol, Meadows presented a matchmaking protocol to
solve a different problem that used a TTP only for an initial phase and achieved secrecy
of wishes [2]. However, the Meadows protocol relied on a high degree of trust between
clients making it impractical for TPP.

After arguing that the BG and Meadows protocols are variants of mutual authen-
tication protocols, and pointing out that the BG protocol is vulnerable to substitution
attacks, Zhang and Needham proposed the notion of private matchmaking with addi-
tional privacy requirements [4]. The Zhang and Needham (ZN) protocol accomplished
match authentication, anonymity, and secrecy of wishes using a public database as the
matchmaker. In the ZN scheme, users would produce a key for encrypting wishes by
applying a one-way function to their wishes. The ciphertext would be committed to the
public database along with encrypted identity information and a session key to facilitate
future communications. The ZN protocol was a clever way to locate others with
common wishes in a private way. Yet when considered for TPP, the lack of fairness is a
critical problem. The protocol is also vulnerable to dictionary attacks as mentioned in
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[8] and that vulnerability is amplified by a small wish space. Hence, the ZN protocol is
not well-suited to achieve privacy and security in the context of TPP and ILW.

Additional strides toward a solution to TPP with ILW were made with the intro-
duction of the Shin and Gligor (SG) protocol [8]. The SG protocol was designed to
support privacy-enhanced matchmaking which was described as requiring the addi-
tional goals of forward privacy of identities and wishes as well as online dictionary
attack resistance. In the SG protocol, a user’s wishes are used in place of the password
in an existing protocol for password authenticated key exchange (PAKE) [10, 11].
Identities are also replaced with pseudonyms and authentication is achieved via digital
signatures of execution transcripts. While the SG protocol satisfies the authors’ prop-
erties of privacy-enhanced matchmaking, it lacks fairness in the context of TPP and it is
unable to fully support security and privacy with ILW. As an example, suppose that
Trudy impersonated Bob and executed the SG protocol with the wishes Alice and Bob
want to attend prom together. In the end, Alice would compute the digital signature
and learn that it was not Bob. Unfortunately, Alice’s privacy would have already been
compromised as Trudy would have learned her secret. The lack of fairness combined
with simple, guessable wishes poses a fundamental problem when applying the SG
protocol to TPP and ILW. Table 1 summarizes the most significant security and pri-
vacy related properties of the matchmaking protocols that readily lend themselves to
direct comparison.

A number of other matchmaking protocols have also been proposed but they have
more significant differences such as varying goals, problems they attempt to solve, and
security properties that complicate direct comparison. In [3], Lee and Kim presented a
protocol for matching registered users of a system using a TTP akin to the BG protocol
but it also included public commitment, public verification, and non-repudiation.
Atallah and Cho put forth a protocol to match registered users with common topics of
interest (TOIs) [5]. It requires semantic hierarchies of TOIs and assumes both users and
service providers are semi-honest. They also leverage useless messages that have a cost
to the user to limit excessive message sending. In [7], a method was disclosed for
verification of a shared secret. The approach combined asymmetric cryptography,
random data, and one-way hashing to accomplish its goal but it has weaknesses when
applied to TPP including vulnerability to inference, impersonation, and early termi-
nation attacks. Lastly, Patrick disclosed a method to confirm that two parties possess
the same document [6]. It suffers from many of the same drawbacks. Even though these

Table 1. Comparison of matchmaking protocols [9]

Matchmaking
protocol

Properties of matchmaking protocols

Third
party

Wish
secrecy

Anonymity Fairness Forward
privacy

Dictionary attack
resistance

ILW
support

Baldwin/Gramlich Trusted ✔

Meadows Trusted
(init.)

✔

Zhang/Needham Untrusted ✔ ✔

Shin/Gligor None ✔ ✔ ✔ ✔

Horne/Nair Untrusted ✔ ✔ ✔ ✔ ✔ ✔
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matchmaking protocols do not lend themselves to direct comparison as in Table 1, they
have many of the same vulnerabilities as the more closely related protocols in addition
to disparate goals and security properties resulting in unsuitability for TPP with ILW.

3 The Prom Problem and Horne-Nair Protocol

There is a formal or semi-formal dance in high school in the USA called the prom.
Comparable events in other countries go by names such as grad, debs, senior ball, or
formal. In TPP, Alice wants to attend the prom with Bob and she would like a privacy
preserving way of finding out if Bob feels the same way. However, if Bob does not
share the same secret, she does not even want Bob to know that she inquired about it.
TPP adds to the goals of privacy-enhanced matchmaking requirements for fairness and
support for ILW. The involvement of ILW is a key factor that distinguishes
TPP. Moreover, while we use matchmaking to frame the analysis and discussion, a
solution to TPP can be applied in other contexts that require fairness and ILW such as
voting negotiations in legislative bodies, corporate mergers and acquisitions, and
executive recruiting. Consideration of threats highlighted in [9] may assist with
appreciation of the challenges posed by TPP. Leading up to the prom, Eve might
conduct an inference attack by observing fellow students interacting with the match-
making protocol and inferring that they wish to attend the dance together, or Bob may
observe Alice initiating a secret sharing protocol with him and infer her wishes.
Impersonation attacks would also be commonplace if protocols that lack security and
privacy with ILW were used. In cases where sensitive data such as individual’s wishes
are stored in a database, there is significant risk of data compromise. Furthermore, in
matchmaking protocols that do not ensure fairness with ILW, early termination attacks
pose a significant threat to privacy.

A detailed description of the HN protocol along with security analysis and
pseudo-code examples representing one of the simplest embodiments appear in [9]. In
essence, HN uses an untrusted matchmaker M, the essence of which is a publicly
available database akin to M in the ZN protocol (also comparable to public broadcast).
The protocol itself provides anonymity and privacy protections in that identities,
pseudo-identities, or digital signatures of transcripts that could reveal participants’
identities are never included in any messages exchanged or stored in the database.
Despite that, the protocol assumes the use of anonymous communication to mitigate
risks of traffic analysis attacks. Commonly used examples include anonymous proxies,
virtual private networks (VPNs), and Onion routing networks like Tor [12]. If traffic
analysis attacks were not a concern in certain contexts, then the anonymous commu-
nications could be omitted. The concept of groups (e.g., all members of Alice’s senior
class or all persons within a 20 mile radius) was also incorporated as a convenience to
avoid all-to-all communication problems of some prior protocols. Identities and groups
can be managed by clients or entirely external to the application. Indeed, we expect
commercial versions to use separate, commonly used systems for identity management
(e.g., every Facebook® or LinkedIn® user is a potential user of the system). This is one
of the properties of the protocol that helps to prevent ill effects from data breaches such
as the Ashley Madison hack of 2015 [13]. The notation used includes H(x) for
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application of a one-way hash function to input x, E(PUU, P) for encryption of plaintext
P with user U’s public key, D(PRU, C) for decryption of ciphertext C with U’s private
key, and RU denoting random data (i.e., a nonce of appropriate length) selected by U.
The protocol involves a challenge, counter-challenge, computation of verifier, and
confirmation of said verifier in such a way as to provide anonymity, authentication, and
joint notification of wishes anonymously via an untrusted matchmaker M. A sample
execution of one embodiment of the protocol involves the following steps.

1. Generate Challenge. Alice selects a user (e.g., Bob), Gi 2 G IDU 2 Gij , and her
nonce RA. She then computes and sends X :¼ E PUB; w + E PRA;RAð Þð Þ to M.

2. Receive Challenge. Bob receives challenge X (e.g., by anonymously querying M
with Gi). Bob computes wþ Ff g :¼ D PRB; Xð Þ and chooses user U’ with whom
he may share generic wish w.

3. Generate Counter-Challenge. Assuming he chose Alice, Bob sends Y :¼
E PUA; E PRB; RBð Þð Þ to M.

4. Receive Counter-Challenge. Alice queries M with X and receives
counter-challenge Y.

5. Compute Verifier. Based on information available to each user, Alice computes
verifier VAB :¼ H H RAð Þ + H D PUB;D PRA;Yð Þð Þð Þð Þ and Bob computes verifier
VAB :¼ H H D PUA; Fð Þð Þ + H RBð Þð Þ.

6. Gradual Release of Verifier. Aside from the first bit, 8 bi 2 VABj0 � bi (mod 2)
Alice releases bi after Bob releases bi − 1 and 8 bj 2 VABj1 � bj (mod 2) Bob
releases bj after Alice releases bj − 1.

Initially, Alice has generic wish w (e.g., want to attend prom together) that will be
linked to her identity as well as Bob’s indirectly via the protocol resulting in ILW.
Anyone can guess such ILW, but their veracity would be unknown. In order for them to
be validated, the goal is for precisely Alice and Bob to anonymously locate each other
and authenticate the wishes in a fair and privacy-enhanced manner. Alice selects the Gi

of a group of which Bob is a member and generates random data RA. She encrypts RA

with PRA and encrypts the result appended to generic wish w with PUB yielding
challenge value X which is sent to M. Note in step 1 that, although the idea of
encrypting with one’s private key may seem counter-intuitive or non-standard, in this
context it can be considered a form of rudimentary signature with recovery and key
privacy [14]. This step is an important contributor to satisfying the conflicting goals of
anonymity and authentication with ILW. Subsequently, Bob may receive a push
notification or poll the server using Gi to receive challenge X. Bob decrypts X with
PRB to reveal generic wish w and encrypted random data F (equivalent to Alice’s E
(PRA, RA)). Other members of Gi would also receive X and attempt decryption with
their private keys but this would result in random data and the process would end. At
this point, Bob chooses user U’ with whom he may share secret w. To generate a
counter-challenge for U’, Bob selects RB, encrypts it with PRB, and encrypts the result
using PUU’ yielding Y. Note that w is an optional component of counter-challenge Y
since it is associated with the original challenge that included w. Bob then sends Y to M
as the counter-challenge associated with X. Subsequently, Alice receives
counter-challenge Y. Now each participant has the data necessary to produce verifier

426 D. Horne and S. Nair



VAB as described in step 5 so that it can be used for confirmation of the shared, secret
ILW. Alternatively, if Y had included generic wish w, then Alice would compute
w;Lf g :¼ D PRA;Yð Þ and VAB = H H RAð Þ + H D PUB;Lð Þð Þð Þ. At this point, if Bob

chose Alice as U’, then they would have independently computed the same VAB.
Finally, step 6 involves confirmation of the verifier by gradually releasing bits of VAB

anonymously, in an alternating fashion, via public database M. The gradual release
process could terminate upon the first non-matching bit and neither of the parties would
have a sizeable advantage. But improved security can be achieved by completing the
process with random bits and the use of decoy bits is assumed to be employed here-
after. A participant’s confidence in the matching result increases with each correct bit
that is gradually released. More precisely, for a number of bits released N, the confi-
dence k of the initiator and responder may be calculated as k ¼ 1� eð Þ where error e is
1=2ð Þ N=2b c and 1=2ð Þ N=2d e respectively (note the difference of floor versus ceiling).

4 Fairness in Matchmaking

In the matchmaking literature, fairness was distinguished early on as being exemplified
by the properties of joint notification of wishes and equivalent exchange [1]. Otherwise
stated, for a matchmaking protocol to be considered fair, the probability that the
participants compute the same correct result is approximately equal and no party can
achieve a sizeable advantage. The fairness property in matchmaking was later more
formally defined as follows [9]. Given users U1 and U2, the probability that a proba-
bilistic polynomial time adversary A can cause either of the following is negligible:

1. U1 receives answer b while U2 receives ¬b
2. Only one of the users receives a response

In the HN protocol, given that all users see each bit that is released, the second
property is trivially satisfied. Hence, attempts to quantify fairness concentrate on the
first property. A significant amount of work has led to a number of respected
approaches to quantifying fairness in resource allocation such as Jain’s fairness index
[15] and recent work has even sought a unifying theory or framework [16, 17] for
incorporating other formulas. But it is not obvious at first whether the formulas for
fairness in resource allocation are applicable to matchmaking.

A Matchmaking Fairness Index. One of Jain’s key contributions was reduction of
the notion of fairness to a combination of selecting an appropriate allocation metric and
quantifying equality [15]. Consequently, consider the two ways that adversary A may
attempt to prevent joint notification with equivalent exchange such that U1 and U2

might disagree as to the outcome. First, if A interacts with U1 via the protocol, A may
try to cause a false negative through early termination trying to achieve a
non-negligible difference in their assessments of the result. In the second case, A might
try to introduce a false positive result by attempting to correctly guess each bit that A is
responsible for contributing thus falsely convincing U1 of a match. In both attack
scenarios, each participant’s confidence in the result is the critical factor in determining
fairness. Recall that, for a number of bits released N, the confidence k of the initiator
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and responder may be calculated as k ¼ 1�eð Þ where error e is 1=2ð Þ N=2d e and

1=2ð Þ N=2b c for U1 and U2. This assumes matching bits because confidence drops to zero
upon the first incorrect bit. It follows then that considering matchmaking to be a special
case with one shared resource and selecting the aforementioned confidence value k as
the allocation metric in the context of Jain’s fairness index yields (1).

Fairness Index f xð Þ ¼ f Nð Þ ¼ ½1� 1=2 N=2b c�2
½1� 1=2 N=2d e�2

ð1Þ

Note that (1) has certain desirable qualities such as boundness and continuity. The
bounds theoretically range from 0.0 (no fairness) to 1.0 (perfect fairness). Intuitively,
the gradual release process achieves perfect fairness any time the participants have the
same confidence in the matching result, which holds true when an even number of bits
have been released. Indeed, in such cases the fairness index computation results in f
(x) = 1.0. However, cases with an odd number of bits result in different confidence
values and thus imperfect fairness. Initially it may appear that the worst case would be
a single bit release resulting in f(x) = 0.0. But consider that for a single bit release, the
odds of guessing the correct bit are 1/2 which is no better than the odds of randomly
guessing either match or no match. It is logical then to consider the single bit case to
have no true meaning when considering fairness. The more practical lower bound on
fairness would be in the case of a three bit release resulting in f(x) = 0.4444. Fortu-
nately, in this case the confidence of the adversary is low with odds of a match at 3/4.
In general, the strength of this approach is that the cases with the lowest fairness
correspond with the lowest confidence values. This helps to impede any advantage for
the adversary. In cases of early termination of the protocol with an odd number of bits
released, the confidence and fairness index values increase monotonically with the
number of bits as they approach the perfect confidence and fairness value of 1.0.
Although the verification value VAB may seem like a large number of bits to gradually
release (e.g., 512 bits for SHA3-512), for most applications acceptable levels of con-
fidence and fairness can be achieved with far fewer bits. For instance, greater than
99.99% confidence with a fairness index of 1.0 can be achieved by releasing only 28
total matching bits.

5 Performance Analysis

Due to multiple asymmetric encryptions in the protocol, assurance was desired
regarding computational performance of the protocol. The number of rounds of
communication required to achieve acceptable confidence and fairness via gradual
release combined with the use of anonymous communication channels also motivated
the need to evaluate feasibility before incurring the full costs of development. Con-
sequently, testing consisting of phases evaluating computational and communication
performance respectively was performed to answer the key feasibility questions for this
study. In the complexity analysis presented in Table 2, c represents a small constant
(e.g., 1 for communications based on push notifications or to 2–3 for polling) and k
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again represents the desired level of confidence in the result but disregarding the floor
versus ceiling differences in the case of early termination attacks. We now discuss
details of the experimental methodology and present results for each phase.

5.1 Computational Overhead

Methodology. Given that the matchmaker is just a database, and that a majority of the
computationally intensive tasks occur on the client side, we concentrate on the runtime
of computations performed by the client. We do not consider throughput given that the
number of attempts by a client will likely be constrained to a small constant (e.g., via
technical controls or associating a cost with each attempt) to mitigate potential brute
force attacks. The most computationally intensive portions of the protocol are the
challenge/counter-challenge steps and, to a lesser extent, the computation of the verifier
VAB. Our test program consisted of 100 iterations of the prom protocol selecting
random users and random values for each execution. The implementation was
instrumented with performance counters with <=1 µs resolution to measure execution
time of the code segments implementing computation of the challenge,
counter-challenge, and verification values. The test program was executed on a rep-
resentative sampling of processors including legacy and recent architectures, budget to
high-end processors, and desktop and mobile variants.

Results. The computational performance results are presented in Table 3. The average
runtimes for the challenge and counter-challenge phases of the protocol ranged from
just over 191 ms for the Intel® Atom™ Z3740D mobile processor running at
1.33 GHz to around 44 ms on the Intel® Core™ i7 CPU clocked at 3.4 GHz. Run-
times for computation of the joint verification value were considerably smaller and they
are consequently insignificant when considering fitness for everyday usage. Thus, the
most computationally intensive portions of the protocol have been demonstrated to be
well-suited for usage on a variety of processors and the answer to the computational
question is yes, the computational performance of the protocol is indeed practical.

Table 2. Complexity analysis of the HN protocol

Type of operation Alice Bob Matchmaker Total

# of asymmetric
encryptions

2 2 0 4

# of asymmetric
decryptions

2 2 0 4

# of string
concatenations

2 2 0 4

# of one-way
hashes

3 3 0 6

# of messages cþ logð1�kÞ
log 0:5 cþ logð1�kÞ

log 0:5 2� cþ logð1�kÞ
log 0:5

� �
4� cþ logð1�kÞ

log 0:5

� �
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5.2 Communication Overhead

Methodology. The primary concern regarding communication performance is that of
runtime rather than throughput. While database/server throughput challenges are sig-
nificant, well-studied, and broadly applicable to many problem domains, common
scalability solutions would be applicable such as employing clusters, geographic dis-
tribution, redundancy, and eventual consistency (e.g., see [18–20]). The key question
pertaining to the HN protocol is whether the runtime performance of the gradual release
process would be acceptable to users of the system. This concern is further amplified by
the utilization of anonymous communication channels. The test program instrumented
the gradual release with high resolution timers to measure runtime of the process ten
times for each test case of releasing N bits where N 2 8; 10; 12. . .58f g representing
cases where confidence in the matching result ranges from 0.9375 to 0.999999998. In
addition to testing a spectrum of the fairness index range, all tests were executed using
multiple approaches to achieve varying degrees of anonymity including VPN services,
onion routing, and combinations thereof. The test configuration used Tor onion routing
and OpenVPN with 256 bit AES and SHA-256. The client portion ran from the Dallas,
TX, USA area while the server portion ran on Amazon Web Services (AWS) at data
centers in Portland and Boardman, OR, USA. The tests were first executed without
extra layer(s) of anonymous communication channels for a baseline. The performance
was then compared with use of Tor and VPN services with servers in Austin, TX, USA,
Seattle, WA, USA, and Paris, France.

Results. The data of Fig. 1, sub-graph (a) represent the communication performance
results for the gradual release of even numbers of bits from 8 to 58, corresponding with
confidence values from 93.75% to 99.99998%. The mean runtimes are given in sec-
onds. The communication costs per anonymity approach for each of the confidence
values are depicted graphically as data points along with ellipsoid density which is
composed of confidence curves and density contours derived from the bivariate normal

Table 3. Computational performance results

CPU Average runtime
Challenge
(ms)

Counter-challenge
(ms)

Compute verifier
(ms)

Intel® Atom™ Z3740D,
1.13 GHz

188.123 191.255 0.0364

Intel® Pentium® N350,
2.16 GHz

114.779 109.071 0.0287

AMD Athlon™ 64 X2 4200+,
2.2 GHz

105.765 101.977 0.0215

AMD Athlon™ M320, 2.1 GHz 100.161 99.906 0.0145
Intel® Core™ i5 5200U,

2.2 GHz
57.591 54.978 0.0092

Intel® Core™ i7 4770, 3.4 GHz 44.158 43.963 0.0074
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distribution. Sub-graph (b) of Fig. 1 depicts the runtimes corresponding with varying
levels of confidence.

A High Degree of Confidence is Practical. The degree of confidence in the result is a
function of the number of (correct) bits successfully released. Note also that the fairness
index is closely related with a perfect value of 1.0 when even numbers of bits have
been revealed and fairness index values that monotonically approach 1.0 for cases of
early termination with an odd number of bits released. Extrapolating the average
runtimes reflected in Fig. 1, maximizing confidence via gradual release of all bits of
VAB, where |VAB| = 512 could take one minute or more depending on geographic
distance, performance of the communication links, anonymity approach, and other
factors. However, a high degree of confidence can be achieved with far fewer bits
released and it is clear from the experimental data that a high degree of confidence is
practical. For instance, 99.99998% can be achieved with 44 bits released and an
average runtime t of 5 < t < 25 s. Furthermore, this highlights one of the advantages of
the approach. Parameters can be fine-tuned in a straightforward manner to achieve the
appropriate tradeoff between runtime performance and the desired level of confidence
in the matching result.

A High Degree of Fairness is Practical. The degree of fairness is also a function of the
number of bits released. For even numbers, the fairness index is 1.0 reflecting that the
parties have an identical level of confidence that they have computed the same
matching result. Thus, a high degree of fairness can be achieved with even a small
number of bits, but the confidence in that case might be low. The more important
question is really the degree of unfairness that can be achieved by a misbehaving
adversary. Recall that the lower bound on the fairness index is 0.4444 representing the
worst case in which Alice’s confidence is no better than randomly guessing while
Trudy knows that there is a 3/4 chance of a matching result. The interpretation of
unfairness at that point would require specific context but we believe that, in general, it
would not be wise for anyone to act with no real proof or evidence and a 1/4 chance
that their claims are false. As Trudy’s confidence in the matching result increases, the

(a) Runtime vs. # of bits released (b) Runtime vs. % confidence

Fig. 1. Communication performance results for the gradual release process
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difference between their confidence values becomes more negligible and f(x) approa-
ches 1.0. Moreover, the experimental data under real-world conditions suggest that a
high degree of both fairness and confidence is feasible. For instance, the 99.9939%
confidence case with runtime 3 < t < 17 s depending on the level of anonymity desired
corresponds with a fairness index of 0.9998779 < f(x) < 0.9999389.

A High Degree of Anonymity is Practical. The baseline of no anonymous communi-
cation was tested to quantify the relative costs of common, real-world approaches to
anonymity. The results of Fig. 1 reflect mostly linear performance with respect to the
number of bits released. But greater variation from the linear relationship was observed
with Tor and especially with certain combinations of VPN service and Tor usage. To
some extent, this may be exemplary of quality of service concerns such as those that
[21] has expressed with the design and implementation of Tor. Considering now rel-
ative performance, the runtime with VPN service was roughly 1.1 to 2 times that of the
baseline depending on server locations. Meanwhile, Tor required 2.5 to 3 times the
runtime and combinations of Tor with VPN service cost between 4 and 6 times as
much. Finally, when evaluating the communication costs of a relatively high degree of
anonymity, even with high degrees of confidence and fairness, the runtimes were
practical. Consider also that, rather than a user waiting in real-time, the matchmaking
process will typically happen asynchronously over minutes, hours, or even days. That
is, the gradual release would occur discretely in the background and be imperceptible to
the user in most cases. From the users’ perspectives, the next time they launch the app
they would often have an answer.

6 Conclusion and Future Work

We have presented a feasibility analysis for an implementation of a previously pro-
posed algorithm aimed at solving TPP. TPP represents a special class of matchmaking
challenges requiring fair and privacy-enhanced matchmaking in addition to support for
ILW. We have characterized fairness of the HN protocol, its relationship to confidence
in the matching result, and proposed a fairness index to quantify the degree of fairness
afforded by executions of the protocol. We summarized results from performance
testing designed to answer key questions about the feasibility of the approach. Even the
most computationally intensive portions of the algorithm were demonstrated to be
practical across a wide range of processors with the worst-case protocol phase aver-
aging less than 200 ms. The scrutiny on communication costs centered around the
gradual release, particularly over anonymous communication channels given the
increased overhead. The analysis evaluated runtimes for a broad range of confidence
and fairness test cases with and without VPNs, Tor, and combinations thereof. The
communication performance results showed that the protocol is practical even with
high degrees of confidence, fairness, and anonymity. Furthermore, the relative impacts
of varying each parameter are now well understood in the context of real-world net-
works and systems which will aid the application designers as the solution is applied to
varying domains with different thresholds of acceptability for security and privacy.

432 D. Horne and S. Nair



Having quantified the fairness of the HN protocol and demonstrated its feasibility,
we plan to incorporate the lessons learned into a full-featured implementation. While
we believe that the Intel® Atom™ CPU was a reasonable proxy for other mobile
processors, we will likely take advantage of opportunities to test on the ARM®
architecture along the way. We are also evaluating the possibility of testing with I2P
[22] for anonymity which could result in using I2P for the full-featured implementation
and/or developing a separate I2P service for TPP. Another future consideration is the
use of mix networks or an approach similar to Mix-In-Place Networks (MIPNets) [23].
Finally, we are planning for a number of enhancements to the basic protocol such as
temporal constraints, geographic constraints, decoys, measures to detect and prevent
certain brute force attacks, and an elegant mobile user interface to demonstrate the
potential of this privacy-enhanced technology.
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Abstract. Control-Flow Integrity (CFI) is a popular method against
control-flow hijacking attacks. For Commercial Off-the-Shelf (COTS)
binaries, in order to reduce the runtime overhead, traditional works pro-
vide coarse-grained CFI and thus are context-insensitive. Because of the
inaccuracy of the control-flow graphs (CFGs), they can hardly defend
against elaborately designed attacks. We present a fully context-sensitive
CFI method (FCCFI), which determines the validity of the control flow
of the current execution path through checking the whole execution path
instead of the single edge or partial edges in the execution path. FCCFI
gathers the control-flow information in the offline phase and tracks the
execution paths to gather the process-tracking information during run-
time. Then it compares the control-flow information with the process-
tracking information to check the validity of the control flow. We imple-
ment the system and evaluate the security of the implementation. The
evaluation results show that FCCFI can defend against most common
control-flow hijacking attacks.

Keywords: Control-Flow Integrity · Context-sensitive CFI · Emulation
execution

1 Introduction

Control-Flow Integrity (CFI) [1] is the most promising technique which prevents
the code reuse attacks [4] by ensuring that the control flow of a program is
consistent with its original control-flow graph (CFG). Several context-insensitive
CFI solutions for Commercial Off-the-Shelf (COTS) binaries [7,8,10–12] check
whether the control flow of the current execution path is valid by separately
checking the validity of a single edge or partial edges of the path in the CFG.
However, these context-insensitive CFI methods manually make some rules to
generate CFGs which inevitably brings many invalid edges, which makes the
CFGs inaccurate. Attackers can utilize these invalid edges to elaborately design
some attacks to bypass this kind of CFI methods, which has been proven by
many works [2–5].
c© Springer International Publishing AG 2017
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In this paper, we present a novel method, shortly named FCCFI, which can
achieve fully context-sensitive CFI. FCCFI is performed in the offline phase and
the runtime phase. In the offline phase, the control-flow information is gathered
through the emulation execution and the taint tracking. During runtime, it tracks
the execution paths by using features of processors to gather the process-tracking
information, which is then compared with the control-flow information to check
the validity of the control flow. Especially, it can check the whole execution path
instead of the single edge or partial edges in the execution path. In addition, the
key properties and advantages are as below.

First, instead of injecting the checking code into the protected programs
during runtime by using instrumentation, we separately place the checking code
and the protected programs to ensure the transparency of the protection scheme.
Because checking during runtime does not affect running of the protected pro-
grams, we can achieve the goal of transparency as well as the goal of low overhead.
Second, because of the emulation execution, we do not need to make any rule to
generate the CFGs. So it is compatible with sophisticated programs which are
compiled from any compiled language. Third, we are able to support modular-
ity since basic-block information for different executables and shared libraries is
generated separately. When the different processes start with the same shared
libraries, the basic-block information of these libraries can be reused. On the
other hand, the control-flow information for the certain process can be used
repeatedly when this process restarts.

In summary, the contribution is described as follows:

1. We present a fully context-sensitive CFI method for COTS binaries, FCCFI,
which checks the validity of the control flow quickly by checking an execution
path as a whole instead of checking each edge in this execution path one by
one.

2. We present the architecture of FCCFI system, which gathers the control-flow
information through the emulation execution and the taint tracking during
the offline phase and uses features of processors to gather process-tracking
information during runtime. It checks the validity of the control flow by com-
paring the control-flow information with the process-tracking information.
If the invalid execution path is met, FCCFI will stop the execution of the
protected program and gives the notification. FCCFI has many advantages,
including compatibility, transparency, modularity support and so on.

3. We implement FCCFI on Ubuntu 14.04 32-bit and systematically evaluate
the security of the implementation. The results show that FCCFI can defend
against most common control-flow hijacking attacks.

2 Threat Model

The trusted computing base (TCB) contains the following components: operating
system and its low-level environment including underlying software level, such
as hypervisors if existing, and underlying hardware level like CPU as well as
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auxiliary computing units and I/O devices. Programs in the user-mode which
are probably vulnerable are out of the TCB.

We assume that Write XOR Execute (W⊕X) and Address Space Layout Ran-
domization (ASLR) are enforced, which can be satisfied easily on modern sys-
tems. Attackers can arbitrarily access and write data segments through exploit-
ing vulnerabilities but cannot modify code segments and read-only data segments
due to the enforcement of W⊕X.

There is no self-modified code or dynamically generated code in programs.
Our method is not suitable for programs containing these codes because the
control-flow information will not match the execution paths during runtime.
Most programs generated by compiled languages meet this case.

3 CFI Policy

The traditional idea of CFI is to check the validity of partial edges of an execution
path in the CFG which is constructed in the offline phase. However, in order to
implement a fully context-sensitive CFI, a challenging task is to efficiently check
all edges.

3.1 Control-Flow Checking for the Whole Execution Path

Since it costs too much time to check each edge of an execution path in proper
order, we present a control-flow checking method which checks an execution path
as a whole instead of checking each edge in this execution path one by one.

A code sample and its CFG are respectively illustrated in Fig. 1(a) and
(b). The nodes in Fig. 1(b) are basic blocks which are numbered. The ter-
minal instruction of basic block 9 is an indirect branch which targets the
basic block 10 or the basic block 11. There are probably various valid execu-
tion paths. If the variable input is 3, the valid execution path (path A) is:
1 → 2 → 4 → 6 → 7 → 1 → 2 → 4 → 6 → 8 → 1 → 2 → 3 → 9 → 10,
which is supposed to be executed. The control-flow information of the execution
path A can be gathered during the offline analysis. During runtime, our method
checks the validity of the current execution path by using the information of
the previous execution path. For example, if the execution path reaches basic
block 9 by exactly conforming to the path A, the basic block 10 can be deter-
mined as the subsequent valid basic block. In other word, the basic block 11
will be determined as the invalid basic block. In this case, we check the validity
of the control flow through checking the execution path A as a whole, which
is reasonable because the value of each target-address variable can be uniquely
determined for a certain execution path.

3.2 Control-Flow Checking with Hash

In order to check the whole execution path quickly, we compute the hash value for
every execution path and check the execution path through matching the hash
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void funcA() {...}
void funcB() {...}
void (*func)() = NULL;
void funcC(int input) {
  while(1) {
    if(input == 0) {
      func = funcA;
      break;
    } else if(input == 1) {
      func = funcB;
      break;
    }
    if(input % 2)
      input = input/2 + 1;
    else
      input = input/3;
  }
  func();
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

(a) A code sample

while(1)
1

if(input == 0)
2

input = input/2 + 1
7

if(input % 2)
6

if(input == 1)
4

func = funcB
break

5

func()
9

func = funcA
break

3 call funcA()
10

call funcB()
11

input = input/3
8

(b) The CFG of the code sample

Fig. 1. A code sample with the CFG for illustrating the idea of FCCFI

value. Whenever a branch is executed, the hash value of the current execution
path is calculated. The format of a record for computing hash value is shown in
Fig. 2, among which the previous hash value contains information of the previous
execution path before the current branch is executed, and the pair of the file path
and the offset in the file is taken as the address of the subsequent basic block.
When the same executables or libraries are reloaded in different processes, the
address of basic blocks can be calculated from the pair of the file path and its
offset in the file, together with the load base address of these modules, thus we
can achieve the support of modularity. Another advantage of using this format
is that a hash value containing information of the whole execution path can be
calculated quickly.

previous hash value file path offset

fixed-length related to 
the hash algorithms

variable-length and 
ending with ‘ \ 0 ’

4B or 8B

Fig. 2. The format of a record for computing hash value

3.3 Region-Based Tracking and Checking

There is a problem that the execution path may be pretty long and may even
contain endless loops. Since all loops will be unrolled when tracking the execution
path, the path information in a hash value could be too massive. Moreover,
because the execution path is updated continually, new hash value will always
be generated and stored, leading to the size of the storage consumed by hash
value is very large, which brings in a path explosion problem.

In order to avoid the path explosion problem, we check execution paths in
critical regions, rather than the execution path in the whole life cycle of the
program. We specify critical regions by taking a suitable entry point as the start
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of tracking and setting up the upper limit for the number of basic blocks in
a checked execution path. In general, an attack starts from a malicious input
which will tamper with the value of a target-address variable used by a later
indirect branch. As we know, the distance between the program point after
the malicious input is taken and the program point before the affected indirect
branch is executed is critical to attackers. The longer this distance is, the harder
it is for the attackers to implement the exploits. Thus, we take some sensitive
syscalls, which get inputs from users or external systems, as entry points, and
set up a suitable upper limit for the number of basic blocks so that tracked
execution paths can contain enough indirect branches that will most probably
be manipulated by attackers. We only track and check the execution paths in the
regions beginning with the entry points and ending with the end points which
are determined according to the upper limit. In this way, the path explosion
problem can be avoided and the hash value which has been calculated can be
reused when the code in the same region is executed again, which results into
higher efficiency.

4 System Design

We present the fully context-sensitive CFI (FCCFI) system, which consists of
an emulation execution engine, a basic-block information generator, a process
tracker, and a control-flow checker, as shown in Fig. 3.

Fig. 3. FCCFI overview

4.1 Emulation Execution

The emulation execution engine is used to gather control-flow information during
the offline phase, which is implemented through instrumentation and standard
I/O streams redirection. The standard input stream is redirected to a set of
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test cases which is configured by specifying predefined data and random data as
seeds.

However, some of the input data could be invalid and might tamper with
target-address variables. We introduce the taint tracking to solve this problem.
We predefine some sensitive syscalls which take inputs from users or external
systems, such as read and socket, and take the data returned from the sensitive
syscalls or modified by these syscalls as taint data. If the taint data is propagated
to target-address variables, the input data will be considered invalid and the
control-flow information which is gathered this time will be discarded.

4.2 Basic-Block Information Generation

The basic-block information generator disassembles the binaries and identifies
basic blocks to generate basic-block information used to translate the process-
tracking information to be compared with the control-flow information gathered
by the emulation execution engine.

Because the targets of unconditional direct branches are determinable, the
basic-block information generator simplifies basic blocks into two kinds of basic
blocks. One is a conditional basic block, the terminal instruction of which is
a conditional branch. The other one is an indirect basic block, the terminal
instruction of which is an indirect branch.

After disassembling the binaries, the basic-block information generator iden-
tifies basic blocks through identifying the entry instruction and the terminal
instruction of basic blocks. However, some of the basic blocks, which are tar-
geted by indirect branches, cannot be identified by the basic-block information
generator. During runtime, when the control reaches a basic block which is not
identified in the offline phase, the information of this basic block will be extracted
by the control-flow checker from an existing basic block with the same terminal
instruction. In this way, we are able to generate the basic block information
lazily during runtime.

To support modularity, the basic-block information of different binaries (exe-
cutables or shared libraries) is stored separately for reusing.

4.3 Process Tracking

The process tracker contains a user-mode component and a kernel module. The
kernel module uses a feature of Intel processors, which is called Intel Proces-
sor Trace (Intel PT), to gather process-tracking information. When the control
reaches the entry point, Intel PT will be enabled and the tracking will start.
Intel PT is configured to store the process-tracking information in buffers which
store redundant process-tracking information. When buffers are filled, the kernel
module will disable Intel PT, trigger Performance Monitoring Interrupt (PMI)
and notify the user-mode component to dump the process-tracking information
into the storage.
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4.4 Control-Flow Checking

The control-flow checker compares process-tracking information with control-
flow information gathered by the emulation execution engine to check the validity
of the control flow. When the control reaches an indirect branch, the hash value
of the current execution path is compared with the hash value generated during
the offline phase. If the control-flow checker detects the invalidity of the control
flow, it will notify the process tracker to terminate the run of the program.

It is worth to mention that since the format of process-tracking information is
different from the format of control-flow, the control-flow checker needs to trans-
late the process-tracking information using the basic-block information before
checking. During the information translation, the control-flow checker locates
basic blocks from the basic-block information by going through each data packet
of the process-tracking information. If a basic block is found, the hash value
of the corresponding execution path is calculated. Otherwise, the control-flow
checker generates a new basic block information and then calculates the hash
value.

5 Implementation and Security

We implement the system and the emulation execution engine is on top of Intel
Pin with libdft [6]. We run the experiments on Ubuntu 14.04 32-bit with Intel i5-
5200U CPU 2.20 GHz and 4 GB RAM. We evaluate the security of FCCFI with
RIPE [9], a security analysis benchmark, which provides many exploits to buffer
overflow vulnerabilities. It attempts to perform control-flow hijacking attacks on
the programs by using various dimensions. We modify the RIPE benchmark to
make it take the inputs from a configuration file to trigger the vulnerabilities.

We test all of the 2770 exploits implemented by the current version of RIPE.
On Ubuntu 14.04, with all protections (W⊕X, ASLR, stack cookies) disabled,
1582 exploits succeed, and 1138 exploits fail (because of the segmentation fault
or the illegal instruction execution) but succeed to hijack the control flow. With
all protections enabled, 67–69 succeed (due to the ASLR, some succeed proba-
bilistically, hence the range), and 2011–2013 exploits fail but succeed to hijack
the control flow. With FCCFI enabled only, all of the exploits that succeed to
hijack the control flow are deterministically detected, and therefore none will do.

6 Conclusion

In this paper, we present a novel fully context-sensitive CFI method, FCCFI,
which generates control-flow information by using the emulation execution and
the taint tracking, as well as tracks execution paths by using features of proces-
sors. It separates the checking code from protected programs to offer the trans-
parency and decrease the runtime overhead. Especially, it can check the validity
of the control flow by checking an execution path as a whole instead of check-
ing each edge in this execution path one by one. FCCFI has many advantages,
including compatibility, transparency, modularity support, and so forth.
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Abstract. The existing LWE-based dual-mode scheme could not fit
the framework of dual-mode cryptosystem very well. In this paper, we
give two solutions of constructing “full-fledged” dual-mode cryptosys-
tems based on LWE. In our first construction, we give a modified “dual
version” of Peikert et al.’s (Crypto’08) construction, in which the simu-
lated public keys can be uniformly and randomly chosen just like the real
ones, thus it can fit the framework of dual-mode cryptosystem very well.
Then, our second construction gets rid of the lattice trapdoor, which is
known as lacking of efficiency and is used in our first construction as well
as Peikert et al.’s construction.

Keywords: Dual-mode cryptosystem · Public key encryption · Learning
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1 Introduction

1.1 Background

Dual-mode cryptosystem is firstly proposed by Peikert et al. in [12], in order
to construct oblivious transfer (OT) protocols that are efficient and universally
composable (UC) in the common reference string (CRS) model. Oblivious trans-
fer is a fundamental cryptographic primitive which is widely used in the secure
multiparty computation.

A dual-mode cryptosystem has two modes: the messy mode and the decryp-
tion mode, depending on the CRS. The CRS for different modes are compu-
tationally indistinguishable. There always is a trapdoor generated along with
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the CRS during the setup in both modes. In the messy mode, an algorithm
FindMessy uses the trapdoor to identify the messy branch. In the decryption
mode, an algorithm TrapKeyGen uses the trapdoor to generate a public key
and two corresponding secret keys. And the simulated public keys generated by
TrapKeyGen should be statistically indistinguishable with the real public keys
generated by KeyGen. Wee [15] gives a framework of dual-mode cryptosystem
based on smooth projective hash proof system.

Instances for the dual-mode cryptosystem based on DDH, QR, etc. assump-
tions that perfectly fit the framework is given by Peikert et al. in [12] and by Wee
in [15]. However, the schemes they gave based on LWE can not suit the frame-
work very well. It can only be performed by constant pairs of users, and the
bound is predetermined while the CRS is set up. Therefore, the corresponding
OT 1

2 can not be proved to be UC secure. Peikert et al. claimed that the reason is
that the key generated by TrapKeyGen is only computationally indistinguishable
with the real key for their construction. How to construct dual-mode cryptosys-
tems based on LWE that the pairs of users are not bounded by the CRS is still
an open problem [15].

1.2 Our Contributions

From our observation, the essential reason that the LWE-based dual-mode cryp-
tosystem in [12] can not fit their framework well is that, the public key generating
procedure of TrapKeyGen is deterministic while the real public keys are always
generated randomly.

We give two new constructions of LWE based dual-mode cryptosystems that
both solve the above problem. The first one can be viewed as a modified “dual
version” of the LWE based construction of [12]. The second one further gets rid
of the trapdoor of the lattice [1,4,7], which is used in the construction of [12] as
well as our first construction.

The Design of Construction 1. To solve the problem, we try to make
TrapKeyGen to choose the simulated public keys randomly and at the same time
being able to generate corresponding secret keys to decrypt correctly. Based on
the LWE problem, there are two types of encryption scheme in common, the
Regev type [14] and the dual Regev type [7] encryption scheme. Instead of using
the Regev type scheme in [12], we use the dual Regev type encryption scheme as
the basic encryption system in our construction, so that we can uniformly and
randomly generate a public key and then use the preimage sampling algorithm
to extract secret keys with the help of a lattice trapdoor. Interestingly, the lat-
tice trapdoor is used in FindMessy of [12] to find the messy branch of the CRS.
Therefore, though the usage of the dual Regev type encryption scheme solves the
problem in TrapKeyGen, it brings us new difficulties in finding a messy branch
in FindMessy. We then briefly introduce our construction.

The CRS in our construction is in the form of (B,A,U0,U1). In the messy
mode, (B,A) are LWE instances (B,BC + Z), and the trapdoor is C. In the
decryption mode, (B,A) are uniformly random matrices with a lattice trapdoor
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(using the trapdoor technique in [10]). Obviously, the messy mode is indistin-
guishable from the decryption mode based on the LWE assumption.

The design of TrapKeyGen in the decryption mode is natural. The public
key generated by TrapKeyGen is (U′|U′′) where U′ and U′′ are uniformly ran-
dom matrices. With the help of trapdoors for lattices, TrapKeyGen can sample
the secret key for these uniformly randomly chosen public key. Moreover, the
public key generated by KeyGen is (TB|TA + Uσ), which is statistically indis-
tinguishable from uniform distribution based on the leftover hash lemma [8].
Therefore, we have that the public keys generated by TrapKeyGen and KeyGen
are statistically indistinguishable.

In FindMessy, to distinguish the messy branch, we basically view the CRS
as the public key and the trapdoor as the secret key, then make KeyGen and
FindMessy to be a pair of encryption and decryption algorithms in the Regev’s
LWE cryptosystem [14]. Then we let the public key for the dual-mode cryptosys-
tem generated by KeyGen to be the “ciphertexts” of the message “0”. When the
branch is normal, FindMessy will decrypt the “ciphertexts” to “0” using the
“secret key” (which is the trapdoor of CRS) in the Regev’s LWE cryptosystem;
and when the branch is messy, it will get a uniform matrix and by using error
correcting code method, it will decrypt to “0” with negligible probability. And
we use the lossy results [3,6] to achieve the messy encryption for the messy
branch.

This scheme can be easily generalized to 1-out-of-k OT protocols by including
the uniformly random matrix Ub for every b ∈ {0, 1, ..., k − 1} in the CRS.

The Design of Construction 2. The above construction we give and the
construction in [12] all somehow rely on the lattice trapdoor, which is known
as lacking of efficiency. We give our second construction that avoids using the
lattice trapdoor. The basic encryption and decryption algorithms and FindMessy
is similar with the first construction. The main difference is in the simulated key
generation algorithm TrapKeyGen.

While the public key is uniformly and randomly chosen and the lattice trap-
door is used to extract secret keys in TrapKeyGen in our construction 1, in our
second construction, we choose one of the secret keys first and generate the pub-
lic key accordingly. Informally speaking, according to the leftover hash lemma,
there is (A, R̄A) ≈s (A,U) ≈s (A,R′R̄A), where A is a uniformly random
matrix, R′ and R̄ are matrices that each entry of R′ and R̄ is randomly chosen
from {0, 1}. So in our construction, we put R̄A in the CRS of decryption mode
and use R̄ as the trapdoor. In the key simulation algorithm TrapKeyGen, we
randomly choose a secret key R′ to generate the public key R′R̄A each time.
We can obtain the other secret key R′R̄ with the trapdoor R̄ directly.

In detail, in the decryption mode, the CRS consists of (Ā0, B̄0, Ā1 = R̄Ā0,
B̄1 = R̄B̄0) and the trapdoor is R̄. The real public key generated by KeyGen
is R[Āσ|B̄σ] where σ ∈ {0, 1}. The public key generated by TrapKeyGen is
R′R̄[Ā0|B̄0], where each entry of R′ is drawn from {0, 1} randomly and freshly.
The simulated secret keys are R′ and R′R̄ for branch 0 and branch 1 respectively.
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By applying the fact that the distribution of (U, rU) is statistically indistin-
guishable from uniform distribution, where U is a uniformly random matrix in
Z

m×n
q and r is a uniformly random vector in Z

m
2 , the public keys generated by

TrapKeyGen and KeyGen are statistically indistinguishable.
Our second construction gets rid of the lattice trapdoor and is more efficient

than the prior construction. However, depending on the structure of the CRS,
the first construction still has its advantage in extending to build OT 1

k .

2 Preliminaries

All operations are under the operation of modulo q. λ denotes the security
parameter. Bold lower-case letters denotes vectors, and bold upper-case let-
ters denotes matrices. x

$←X denotes that x is drawn uniformly at random
over a set X. x←X denotes that x is drawn according to a distribution X .
For any c ∈ R

n, s > 0, and n-dimensional lattice Λ, the discrete Gaussian
distribution over Λ is, ∀x ∈ Λ,DΛ,s(x) = ρs(x)

ρs(Λ) , where ρs(Λ) =
∑

y∈Λ ρs(y),
ρs(x) = exp(−π‖x‖2/s2) [2].

2.1 Dual-Mode Cryptosystem

As defined in [12], a dual-mode encryption system consists of seven algorithms:

– SetupMessy(1λ): given security parameter λ, outputs (CRS,τ). The CRS is
a common reference string for the remaining algorithms, and τ is a trapdoor
value that enables the FindMessy algorithm. All the remaining algorithms
take CRS as their first input, we omit it from the list of arguments.

– SetupDec(1λ): the input and the output are same as SetupMessy. τ is a
trapdoor value that enables the TrapKeyGen.

– KeyGen(σ): given a desired decryptable branch value σ ∈ {0, 1}, outputs
(PK,SK) where PK is a public encryption key and SK is a corresponding
secret key for the messages encrypted on branch σ.

– Enc(PK, b, μ): given PK, a branch value b ∈ {0, 1}, and a message μ ∈ {0, 1}l,
outputs a ciphertext c encrypted on branch b.

– Dec(SK, c): given SK and a ciphertext c, outputs a message μ ∈ {0, 1}l.
– FindMessy(PK, τ): given a trapdoor τ for the CRS generated in messy mode

and some (possibly malformed) public key PK, outputs a branch value b ∈
{0, 1} corresponding to a messy branch of PK.

– TrapKeyGen(τ): given a trapdoor τ for the CRS generated in decryp-
tion mode, outputs (PK,SK0,SK1) where PK is a public encryption key and
SK0,SK1 are the secret decryption keys corresponding to branches 0 and 1
respectively.

Definition 1 (Dual-Mode Encryption [12]). A dual-mode cryptosystem is a
tuple of algorithms described above that satisfy the following properties:
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1. Completeness for decryptable branch: For every (CRS,τ)← SetupMessy(
1λ) or (CRS,τ)← SetupDec(1λ), every σ ∈ {0, 1}, every (PK,SK)←
KeyGen(σ) and every μ ∈ {0, 1}l, decryption is correct on branch σ.

2. Indistinguishability of modes: the first outputs of SetupMessy and
SetupDec are computationally indistinguishable.

3. (Messy Mode) Trapdoor identification of messy branch: For every
(CRS,τ)← SetupMessy(1λ) and every (possibly malformed) PK, FindMessy(τ ,
PK) outputs a branch value b ∈ {0, 1} such that Enc(PK, b, ·) is messy.
Namely, for every μ0, μ1 ∈ {0, 1}l,Enc(PK, b, μ0) ≈s Enc(PK, b, μ1).

4. (Decryption Mode) Trapdoor generation of keys decryptable on
both branches1; For every (CRS,τ)← SetupDec(1λ), (PK,SK0,SK1) ←
TrapKeyGen(τ), (PK′,SK′) ← KeyGen(σ) and every σ ∈ {0, 1}: PK ≈s PK′.
SK0 and SK1 can decrypt properly for PK on both branches.

2.2 (Decisional) Learning with Error (DLWE)

Let m = m(n), q = q(n) be integers, and χ be a distribution on Zq. Let

A $← Z
m×n
q , s $← Z

n
q , e ← χm, then the DLWE(m,n, q, χ) problem is that given

(A,b), decide whether b is distributed by As + e or chosen uniformly at random
from Z

m
q .

The hardness of DLWE is reduced to the hardness of the worst-case problems
on lattices [5,9,11,13,14].

3 Construction

We just present our constructions in this section. In the full version, we show
these two schemes both fulfill the properties of dual-mode cryptosystem based
on the LWE assumption.

3.1 Our Construction 1

We use the lattice trapdoor in the algorithm TrapKeyGen, which helps us to
extract corresponding secrets from the randomly generated simulated public
key. The concrete construction is shown in Fig. 1. decode(µ′) will decode each
entry μ′

i of the vector µ′. For each bit, it outputs 0 if μ′
i is closer to 0 than to

� q
2� mod q; otherwise it outputs 1.

Parameters. q > 4r2mω(
√

log n), m > Cn log q + w, where C > 1 is
some constant, w = n
log q�, let r2 > max{r1(n − l)mω(

√
log(n − l)), ω(log n)

O(
√

m − w +
√

w)}, r1 ≥ 2
√

n, and let l ≤ (n − 2λ + 2)/(log q + 1), k ≤
(n − l − λ(log m + log q + 2) + 2)/ log q.
1 We do not require that SKσ ≈s SK′, σ ∈ {0, 1} as in [12]. As Wee mentioned in

[15] that the decryption mode is used in the case of a corrupted sender. And the
corrupted sender sees only PK and not SK0 or SK1. As long as SK0 and SK1 can
decrypt properly, we can extract both of its inputs. Therefore, this relaxed property
is also sufficient for UC-secure OT.
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SetupMessy(1λ)

B
$← Z

m×l
q , C

$← Z
l×(n−l)
q

Z ← Dm×(n−l)
Z,r1

, A = BC + Z

U0
$← Z

k×(n−l)
q , U1

$← Z
k×(n−l)
q

CRS = (B, A, U0, U1), τ = C
return (CRS, τ)

SetupDec(1λ)

Ā
$← Z

n×(m−w)
q , R ← D(m−w)×w

Z,ω(
√

log n)

[B|A] = [Ā| − ĀR + G]t where B ∈ Z
m×l
q , A ∈ Z

m×(n−l)
q

U0
$← Z

k×(n−l)
q , U1

$← Z
k×(n−l)
q

CRS = (B, A, U0, U1), τ = R

return (CRS, τ)

KeyGen(σ)

T ← Dk×m

Z,ω(
√

log n)
, PK1 = TB

PK2 = TA+Uσ , PK = [PK1|PK2]
SK = T

return (PK, SK)

Enc(PK, b,µ)

[PK1|PK2] = PK

s
$← Z

n
q , e ← Dm

Z,r2
c1 = [B|A]s+e,c2 = [PK1|PK2−Ub]s+µ� q

2 �
return (c1, c2)

Dec(SK, c1, c2)

µ′ = c2−SK·c1
µ = decode(µ′)

return µ

FindMessy(PK, τ = C)

[PK1|PK2] = PK
X = PK2 − U0 − PK1 · C
if (|each entry of X| < q

4 )
b = 1

else b = 0
return b

TrapKeyGen(R)

U′ $← Z
k×l
q , U′′ $← Z

k×(n−l)
q

SKt
0 = S(R, [B|A], [U′|U′′ − U0]

t)

SKt
1 = S(R, [B|A], [U′|U′′ − U1]

t)
PK = [U′|U′′]
return (PK, SK0, SK1)

Fig. 1. Our construction 1 of dual-mode cryptosystem

The scheme in Fig. 1 is a dual-mode cryptosystem, assuming the DLWE(m,
l, q, r1) problem is hard. Just like [12], we can easily generalize this construction
to a lager branch sets {0, 1}k by including uniformly random matrices Ub for
every b ∈ {0.1}k in the CRS.

3.2 Our Construction 2

In this construction, we do not use the lattice trapdoor which is used in the algo-
rithm FindMessy of the construction in [12] and in the algorithm TrapKeyGen of
our first construction. The concrete construction is shown in Fig. 2. This scheme
is a dual-mode encryption, assuming the DLWE(m, l, q, r1) problem is hard.

Parameters. Let q > 4r2m, m > Cn log q + n where C is a constant such
that C > 1, let r2 ≥ r1nm, r1 ≥ 2

√
n, and let l ≤ (n − 2λ + 2)/ log q, k ≤

(n − λ(log m + log q + 2) + 2)/ log q.

3.3 Comparison

We give an efficiency comparison among Peikert et al.’s construction in [12] and
both of our constructions as in Table 1 for an encryption of a k bits message.

Firstly, the size of the CRS of Peikert et al.’s construction and our first
construction are related to k, but in our second construction, it is independent
with the size of the secret message. However, when k is small, the size of the
CRS in the second construction is bigger. Therefore, our second construction is
more applicable to the case that each of the secret messages is big.



Dual-Mode Cryptosystem Based on the Learning with Errors Problem 449

SetupMessy(1λ)

A0
$← Z

m×l
q ,A′

0
$← Z

m×(n−l)
q ,S0

$← Z
l×n
q ,E0 ← Dm×n

Z,r1

A1
$← Z

m×l
q ,A′

1
$← Z

m×(n−l)
q ,S1

$← Z
l×n
q ,E1 ← Dm×n

Z,r1
Ā0 = A0S0+E0, B̄0 = [A0|A′

0], Ā1 = [A1|A′
1], B̄1 = A1S1+E1

CRS= (Ā0, B̄0, Ā1, B̄1)
τ = (S0, S1)
return (CRS,τ)

SetupDec(1λ)

Ā0
$← Z

m×n
q ,B̄0

$← Z
m×n
q

R̄
$← {0, 1}m×m

Ā1 = R̄Ā0, B̄1 = R̄B̄0

CRS= (Ā0, B̄0, Ā1, B̄1)

τ = R̄
return (CRS,τ)

KeyGen(σ)

R
$← {0, 1}k×m

PK1 = RĀσ , PK2 = RB̄σ

SK = R
return (PK1,PK2, SK)

Enc(PK1,PK2, b,µ)

s
$← Z

n
q , s′ $← Z

n
q , e ← Dm

Z,r2
c1 = Ābs+B̄bs

′+e, c2 = PK1s+PK2s
′+µ� q

2 �
return (c1, c2)

Dec(SK, (c1, c2))

µ′ = c2 − SK · c1
µ = decode(µ′)

return µ

FindMessy((S0, S1), (PK1,PK2))

[PK′
2|PK′′

2 ] ∈ Z
k×l
q × Z

k×(n−l)
q = PK2

X = PK1 − PK′
2 · S0

if (|each entry of X| < q
4 )

b = 1
else b = 0
return b

TrapKeyGen(τ = R̄)

R′ $← {0, 1}k×m, R′′ = R′ · R̄
PK1 = R′′Ā0, PK2 = R′′B̄0

SK0 = R′′, SK1 = R′

PK = (PK1,PK2)

return (PK, SK0, SK1)

Fig. 2. Our construction 2 of dual-mode cryptosystem

Table 1. Comparisons among constructions of dual mode

Peikert et al.’s
construction [12]

Our construction 1 Our construction 2

CRS size m× (n+ 2k) m× n+ 2k × (n− l) m× 4n

PK size m× k k × n k × 2n

SK size n× k k ×m k ×m

Ciphertext size n+ k m+ k m+ k

Parameters q = poly(n)
m = O(n log q)
k = poly(n)

q = poly(n)
m = O(n log q)
k = O( n

log q
), l = O( n

log q
)

q = poly(n)
m = O(n log q)
k = poly(n)

Lattice trapdoor Yes Yes No

Generalize to OT 1
d Easy Easy Complex

Satisfy dual mode × � �

Secondly, our second construction is more efficient since it avoids using the
lattice trapdoor and the preimage sample algorithm.

Thirdly, Peikert et al.’s construction and our first construction are easy to be
generalized from two branches (OT 1

2 ) to d branches (OT 1
d ), and the number of

matrices in the CRS increases from three to d+1. But our second construction is
inefficient to be generalized from two branches to d branches, since the number
of matrices in the CRS will increase from four to d2. Therefore, our second
construction is not suitable for the case with too many branches.
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At last, Peikert et al.’s construction does not satisfy the definition of dual-
mode cryptosystem and the corresponding OT protocol cannot achieve UC secu-
rity, while both of our constructions do not have this problem.

To sum up, in the environment of undetermined number of senders involved
per CRS, Peikert et al.’s construction is not applicable and both of our construc-
tions can be used. When each of the secret messages is big and there are not
too many branches, our second construction is preferable, considering that the
size of the parameters are not too big and the efficiency of the computation is
much better. When there are a lot of branches and each secret message is small,
our first construction is preferable, considering that the size of the CRS will be
much smaller.
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Abstract. Cyber-security of their critical infrastructure is the cur-
rent grand challenge facing nation-states. Development and research of
cyber-security solutions for operational technology environments of crit-
ical infrastructure is being inhibited by the lack of publically available
datasets. This paper provides a collection of labelled datasets containing
attacks on the widely used STEP 7 (S7) protocol. To achieve this goal,
we designed and executed a series of process-control attacks, using our
physical critical infrastructure test-bed. The created labelled datasets,
and the associated process logs, will directly aid in the development and
assessment of intrusion detection systems (IDSs). We validate our dataset
using Snort, configured with openly available S7 rule-sets.

Keywords: S7comm · STEP 7 · Cyber attacks · Datasets · Process
control attacks

1 Introduction

Supervisory Control and Data Acquisition (SCADA) systems are significantly
used around the world to provide automation to utilities such as water treatment,
manufacturing, power transmission and transportation. As critical infrastruc-
ture and corporate networks interconnect using Internet technologies, critical
infrastructure systems find themselves vulnerable to cyber-attacks that have
the ability to impact SCADA [4]. In recent years, the world has been intro-
duced to Stuxnet, Black Energy, Duqu, and Flame, which are some of the
known cyber-weapons that have been used against SCADA [4]. Due to resource
and process limitations in SCADA devices, researchers have identified intrusion
detection systems (IDSs) and intrusion prevention systems (IPSs) to be an effec-
tive method for detecting and preventing cyber-attacks [6]. Attack datasets allow
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IDS researchers to validate and evaluate the performance of their detection algo-
rithms using techniques in machine learning, data or process mining [5]. However
due to privacy issues, there is a lack of publicly available SCADA datasets for
IDS verification, and validation [7].

In this paper, we provide a collection of unique process control attacks on
a physical SCADA process control test-bed. Process control attacks focus on
the disruption of physical processes that are required to complete a manufactur-
ing or industrial process. Such attacks do not exploit vulnerabilities in SCADA
protocols, but they make the use of textbook client-server attacks that target
the procedures used to successfully complete an industrial process. From the
process control attacks presented in this paper, we make available a labelled
network traffic capture and a SCADA process log as datasets containing process
control attacks against the widely used STEP 7 (S7) protocol.1

2 Background and Related Work

SCADA process control networks consists of various automation devices such
as Programmable Logic Controllers (PLCs) or embedded, microprocessor-based
devices that are networked via serial or Ethernet technologies. The majority
of SCADA networks contains a hierarchy of master and slave devices, used to
maintain an industrial automation process. The master device is often used to
control, monitor and manage one or more slave devices. The communication
adapts the client-server-model of traditional networking services: The master
acts as a client and slaves provide services. The primary use of slave devices is
to convert sensory signals into digital data [4].

The dataset contribution of this work could be used to test the proposed IDS,
as the datasets contain extensive malicious activity on the S7 protocol. Recent
works have used also datasets to investigate network traffic patterns of SCADA
networks. Barbosa et al. [1] used multiple datasets to show that SCADA traffic
has similarities to Simple Network Management Protocol (SNMP). In later work,
Barbosa et al. [2] found that SCADA networks differ greatly from traditional IT
traffic by “not presenting diurnal patters or self-similar correlations in the time
series.” Datasets have been created and used to train IDSs before. Gao et al.
[3] created datasets of command injection, data injection, and Denial of Service
(DoS) for Modbus, DNP3, and EtherNET/IP protocols. These datasets were
used to help develop neural network based IDSs. This paper aims to contribute
datasets for the S7 protocol to train IDSs against process control attacks.

3 Test-Bed and Control Processes

The test-bed simulates a mining refinery plant. The main process consists of
three time-based sub-processes, which have to be executed in the order of Con-
veyor, Wash Tank, and finally the Pipeline Reactor. The Human Machine Inter-
face (HMI) also provides historian logs which log the control processes during
the experiment.
1 Link: https://github.com/qut-infosec/2017QUT S7comm.

https://github.com/qut-infosec/2017QUT_S7comm
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Fig. 1. Process control network test-bed structure.

An operator is to monitor the HMI, respond to unintended actions and only
able to use functions available in the HMI, as each sub process can only be
performed one-at-a-time via the HMI. A global reset button resets the process
so that it has to be started from the beginning. Moreover, an emergency stop
exists which pauses all processes for five minutes. Upon successful completion of
the entire control process, the HMI will produce a log entry of “Master Finish”,
in which the operator is to reset the equipment and start a new process, in
which HMI will produce a log entry of “HMI Master Reset”. The first process
is to simulate splitting material with a conveyor system which simulates the
separation of white impurities from raw black ore. This is done by detecting the
colours with a sensor and sorting them with a solenoid driven arm. The sub-
process is to run at least five minutes continuously. A successful separation is
done, if all white impurities are on the left side whereas the raw black ore is on
the right side. This will produce a log entry of “HMI Conv Finish” in the Master
HMI log.

In the second step, a simulated chemical washing is demonstrated. The sys-
tem consists of two tanks: In the first one the chemical wash is done; the second
one is an underground reservoir tank which holds the chemical2. The sub-process
can be run in Auto mode which controls a pump to ensure that the level in the
Wash Tank is between 50% and 80%. In this interval the ore is completely cov-
ered and the tank can not overflow. This is done for eight minutes before the
washed raw black ore is dumped into the Pipeline Reactor. In Manual mode the
operator has to monitor the fill level – an overflow is not prevented by the con-
trol logic. Setting the switch from Auto to Manual also resets the timer for the
sub-process. The successful completion of this process will produce a log entry
of “HMI Tank Finish”.

Finally, the end product is separated from the raw black ore with a catalytic
reaction in the Pipeline Reactor. For that, the system is pressurised to 40 psi.
Then, a solenoid valve opens and the pressure is dropped to 30 psi. This has to
be repeated for at least two minutes. After that, the Pipeline Reactor vents and
dumps the final product. The successful completion of this process will produce
a log entry of “HMI Pipeline Finish”.

2 The Wash Tank runs with water. In a real world scenario, this could be any chemical.
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Table 1. List of process attack.

Attack # Description Area Address Type Log tag Label

1.1 Turn Conveyor Belt

off

0x83 0x0331 bit HMI Conv Stop ConveyorBeltOff

1.2 Turn Conveyor Belt

on

0x83 0x0330 bit HMI Conv Start ConveyorBeltOn

1.3 Change direction of

Conveyor Belt

0x83 0x0332 bit HMI Conv Direction ConveyorBeltGate

ChangeDirection

1.4 Reset Conveyor Belt 0x83 0x0334 bit HMI Conv Reset ConveyorBeltReset

2.1 Turn Wash Tank off 0x83 0x0328 bit HMI Tank Stop WaterTankOff

2.2 Turn Wash Tank on

(Auto)

0x83 0x0329 bit HMI Tank In Auto WaterTankOnAuto

2.3 Turn Wash Tank on

(Manual)

0x83 0x032a bit HMI Tank In Manual WaterTankOnManu

3.1 Turn Pipeline Reactor

off

0x83 0x0320 bit HMI Pipe Pump On SP ReactorOff

3.2 Turn Pipeline Reactor

on

0x83 0x0322 bit HMI Pipe Pump Off SP ReactorOn

3.3 Change upper

threshold of Pipeline

Reactor

0x83 0x0040 real HMI Pipe Solenoid On SP ChangeUpperThreshold

3.4 Change lower

threshold of Pipeline

Reactor

0x83 0x0060 real HMI Pipe Solenoid On ChangeLowerThreshold

4.1 Reset complete

systems

0x83 0x0339 bit HMI Master Reset GlobalReset

4.2 Emergency stop 0x83 0x033b bit Emergency Stop EmergencyStop

The network structure of our test-bed is given in Fig. 1. The simulated plant
consists of three slave PLCs. Each of them is in charge of one of the sub-processes
and is controlled by a master device. These components are connected via a
managed switch. The operator monitors the process from the HMI. The Attacker
and a Global Positioning System (GPS) clock are also connected to a network
switch. For the dataset generation, we added two hubs to this network, which
are captured by the Attacker to aid in the labelling process.

3.1 Process Attacks

The scope of the Attacker is to target the sub-processes via the Master PLC.
Since this device stores important values for the sub-processes, it is possible to
change the behaviour of sub-processes by manipulating registers on the Mas-
ter PLC. The Attacker was modelled to only violate the control processes via
TCP/IP connection. The process attacks are given in Table 1 outlining the
attacks modelled in the Attacker. The attack script was implemented in Python
using the Snap7 library to handle the communication.

The attacks which turn sub-processes off (1.1, 2.1, and 3.1) have a limited
impact on the total process since the operator is able to start the process man-
ually again. When such attacks were performed, the associated sub-process has
to be started again. However, the Attacker is able to start sub-processes (1.2,
2.2, and 3.2) as well. Not only can already completed sub-processes be restarted
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by the Attacker, but also subsequent ones. This can cause serious damage in a
real world scenario when the Pipeline Reactor is started while there is no washed
material in it to be processed. In some circumstances, this will result in breaking
the catalyser, which means that it has to be replaced. As consequences, there
are long downtimes and therefore high costs.

The attack 1.3 changes the direction of the Conveyor Belt system so that
the white impurities were sorted to the site where the raw black ore should be.
As described above, the process can be completed even if the split process was
unsuccessful. But this leads to a tainted end product, which is unusable. If it is
detected in time the sub-process can be repeated which causes a loss of time.
In addition, the Attacker is able to reset the sub-process (1.4) which causes an
infinity loop since the sub-process timer is also reset but not restarted and the
sub-process ends only when the timer has run down. The attack 2.3 turns the
pump on and leaves it running until it is turned off. Therefore, the following
situation is possible: An attacker turns the pump on but the operator is unable
to stop it from the HMI even if he detects it. If the pump is not turned off
the wash tank overflows which, in the real world, could cause an environmental
catastrophe.

The Pipeline Reactor could be attacked by changing the pressure thresholds
(3.3 and 3.4). Since the Attacker writes directly to the memory of the PLC the
input validation of the HMI is bypassed. The damage can be caused by increasing
the upper limit so that a pipe bursts or the compressor explodes. Moreover, it
is also possible to set such a lower bound that this threshold is never reached
and therefore the solenoid valve stays opened. Furthermore, the entire process
can be disrupted by the Attacker by sending the command for the emergency
stop (4.1) or global reset (4.2). In both cases in the simulation, the process has
to be restarted and any previous progress in sub-processes is lost. Moreover, the
system needs at least five minutes before it is operational after an emergency
stop event.

Table 2. All process attacks from Table 1 and their time of occurrence in Fig. 2a and
Fig. 2b. All attack numbers marked with “F” are flooding attacks.

Time Attack Time Attack Time Attack Time Attack Time Attack Time Attack Time Attack Time Attack

2980 1.1 6198 2.1 8280 3.4 14517 2.1 F 17157 3.1 22971 1.2 25404 1.2 29968 4.2

3420 2.1 6237 2.2 8489 1.3 F 15457 3.1 F 17216 3.1 23367 1.4 25416 2.2 31326 1.1

3999 3.1 6796 3.1 8959 2.3 F 15861 2.2 20166 3.1 23369 1.2 26245 4.1 31332 1.2

4231 1.3 6826 3.1 9648 3.3 F 16575 3.1 21402 3.1 24098 1.2 27093 4.1 31340 1.3

4787 2.3 7057 1.3 9917 1.2 F 16605 3.1 21948 2.2 24107 1.4 27130 3.1 31359 2.3

5413 3.3 7146 1.3 10672 2.2 F 16655 3.1 21952 3.1 24109 1.2 27267 2.2 31377 3.1

5659 1.1 7460 2.3 12053 3.1 F 16753 3.1 22943 1.2 24113 3.1 27759 1.2 31388 3.3

5718 1.2 7648 2.3 12680 1.1 F 17087 3.1 22966 1.4 25401 1.4 28171 1.4 31396 3.4
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4 Datasets and Results

As we have discussed the attacks that were implemented against the test-bed,
in this section we present our attack datasets. The attack dataset, collected
approximately over 9 h, consists of network traffic and process log data with 30
processes. The control dataset contains approximately 8.5 h of network traffic
and process log data, with 32 processes. The datasets consists of network traffic
from the perspective of the Master switch and the HMI. The control dataset
contains an Emergency stop between the 22nd and 23rd process, and a stop of
the process at process 28. Shown in Table 2 are the occurrences of the process
control attacks on the test-bed. The table shows 64 attack instances over the data
collection period. The attack datasets contain a network packet capture (pcap),
and four process logs: Master log, Conveyor log, Tank log, and Reactor log. Each
attack pcap and log is accompanied with a control pcap and log containing
normal behaviour. The attack labels are correlated to the described attacks in
Table 1 under labels. We have provided the raw network captures to allow IDSs
developers to select their own features by preprocessing the pcaps with fields
relevant to their detection methods. The labelling method was automated, in
which packets that were produced by the Attacker was correlated against traffic
collected by the Master and the HMI. We provide four logs, the Master log,
Conveyor log, Tank log, and Reactor log. These logs were produced by the HMI
by polling from the Master PLC in the test-bed. Each process log contains tag
entries that identifies the state of the process during the time of polling.
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Fig. 2. Results showing the impact of the attacks on the process control network.

The occurrence of each of the attacks during the data collection is outlined
in Table 2. Each of the attacks is described in Table 1. Figure 2aa shows the test-
bed network from the Master’s interface under normal conditions. The flow of
traffic seems consistent during the data collection period. Figure 2ab shows the
test-bed network under attack conditions from the Master’s interface.
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Figure 2b consists of plots derived from logs collected from the test-bed.
Figure 2ba shows normal conditions of the Wash Tank system, and Fig. 2bb
shows normal conditions of the Pipeline Reactor. In both of the control plots,
we can distinctly see 30 processes, however between the 21000 s and the 23000 s
mark, we can see there is a distinct break between the 22nd and 23rd process,
this break is to demonstrate an emergency stop process.

Figure 2bc shows the conditions of the Wash Tank under attack conditions.
We can see, there is a significant impact to the Wash Tank during the data
collection process. It also shows various inconsistencies with each Wash Tank
process. We can see that the Wash Tank process continuously runs for approx-
imately 1500 s instead of the 480 s (8 min) from the 10500 s mark. We can also
see the Wash Tank process failing to run between the 12000 s and 14200 s mark.
Around the 9000 s mark, we can see the Wash Tank level exceeding the 80%
limit then reducing to below the 20% limit. These modifications were due to the
Attacker setting the pump to manual, thus attempting to overflow, and under
fill the wash tank. In Fig. 2bd, we can see various inconstancies in the pipeline
reactor when comparing the processes to Fig. 2bb. During the 9700 s mark in in
Fig. 2bd, we can see the alteration of the Solenoid on value, from 40 psi to 45 psi.
Around the 31100 s mark, we can see the Solenoid off value, being altered from
30 psi to 20 psi.

To evaluate our attack dataset, we used the open source, signature-based
IDS Snort. We configured Snort with S7 rules from the Digital Bond quick
draw project3. We tested the rules with the provided pcap, by replaying the
pcap to the IDS’s interface. Snort failed to pick up the attacks as the rules
are only designed to discover port scanning activity, particularly from Nmap.
There were only two rules provided by the rule-set. They were described to
detect any connection to port 102 (which is a S7comm port) with userdata
requesting to read cpu functions. The second rule detects the same condition,
but includes a specified master and slave IP address to prevent false positives
from an authorized handshake. This demonstrates the need for smarter detection
methods for the SCADA security community, as the attacks that were produced
in this paper were able to impact the SCADA equipment without being detected
by a widely used IDS.

5 Discussion and Future Work

Observations from our experiments show the attacker updating values via net-
work. The captures show the Attacker connecting to the Master PLC, but does
not interact with the process until the Attacker has updated a value in the PLC.
So it might be difficult to correlate actions between the Attacker and the system
logs, as the Attacker violates the system via the network.

The process logs produced in the presented work allows for the IDS develop-
ment community to extend to process mining techniques in order to detect faults
or attacks on process control systems. Finding the attacks in the logs requires
3 http://www.digitalbond.com/tools/quickdraw/.

http://www.digitalbond.com/tools/quickdraw/.
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searching for process tag values and determining whether the process is violated
based on the scenario described in Sect. 3.1.

One issue with using process logs to detect attacks, is the possibility of a
Man-in-the-middle (MITM). Most process logs are extracted from the HMI via
the communication protocol used in the network. During an attack with the
ability to perform ARP poisoning and packet modification attacks, the process
logs generated by HMI would be deceptive and unreliable for detecting attacks.
MITM may have the ability to target feedback control messages, by sending false
information back to the HMI or automated Master.

In our future work we will generate datasets containing a greater range of
attacks, including attacks that target slave operations and the configurations of
SCADA devices.
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Abstract. This paper describes methods of solving certain parameters
of the discrete logarithm problem with low Hamming weight product
exponents. Our approach is shown to be applicable for a concrete analysis
of the GPS identification scheme. To achieve this, we introduce the notion
of parameters dependent splitting system which served as tools to yield
two improved results. The first attains a lower time complexity over the
current state of the art without any compromise in memory. The second
achieves the first known attack of the GPS scheme in a time complexity
of under 264 at the expense of some added memory requirements over
the former.

Keywords: GPS scheme · Discrete logarithm problem with low
hamming weight product exponents · Splitting system

1 Introduction

The GPS identification scheme is an interactive protocol between a prover and
a verifier. It was introduced by Girault in [2] and later shown to be secure in [5].
This protocol is applicable for usage in low cost chips as the computational cost
required by the prover is relatively low. Nevertheless, every operation incurred is
still significant for low cost chips, like RFID tags. As such, Girault and Lefranc
proposed in [7] for the private key exponent to be the product of two integers
with low Hamming weight, thereby reducing the online computational cost. More
specifically the private key was chosen such that the private key is a product of a
142-bit number with 16 random bits equal to 1 chosen among the 138 least signif-
icant ones and a 19-bit number with 5 random bits equal to 1 chosen among the
16 least significant ones (from which we henceforth refer to as GL parameters).
In the same paper, it was computed that these parameters are not susceptible
to a routine attack by exhaustive search. Subsequent work by Coron, Lefranc
and Poupard [1] demonstrated a method of attack via Coppersmith’s splitting
system of the GL parameters with lower complexity than routine exhaustive
search. As a result, they instead proposed a different set of parameters; namely
that the private key be a product of a 30-bit number with 12 nonzero bits and
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a 130-bit number with 26 nonzero bits (from which we henceforth refer to as
CLP parameters). Moreover, they show that their line of attack is not effective
against the CLP parameters.

Parameterized splitting system was first introduced by Kim and Cheon in [3].
Parameterized splitting system can be regarded as a generalization of Copper-
smith’s splitting system. Using this tool, they demonstrated an improved attack
(with regards to speed) on the CLP parameters. They later further improve this
attack over the previous work by applying a refinement [4]. Thus far, this is
the current fastest known attack of the GPS identification scheme with CLP
parameters.

Our Contributions. This work highlights general methods of solving vari-
ous DLP with low Hamming weight product (LHWP) exponents by providing
improved results for certain settings of the parameterized splitting system. We
introduce the concept of parameters dependent splitting system which served as
tools to solve such problems more efficiently. Moreover, we show that the GPS
identification scheme utilizing CLP parameters satisfy such settings. There are
two significant results that arise from this work. The first provides an improved
attack on the GPS scheme with lower time over the most recent state of the art
without any increment in memory. The second result shows for the first time
that the GPS scheme can be attacked in time complexity of under 264 with a
slight increase in memory requirement over the former.

2 Preliminaries

Let G be a group, g ∈ G be a generator of the group and z be an integer. Denote
wt(z) and ord(g) to be the Hamming weight of z and the order of g respectively.
The low Hamming weight DLP seeks solution z such that gz = h for given known
G, g, h ∈ G, ord g and wt(z). The computational complexity of solving the low
Hamming weight DLP has been well understood and a good exposition of known
methods can be found in [6]. We denote CSS and PSS to mean Coppersmith’s
splitting system and parameterized splitting system respectively. In this work,
we are interested to solve the DLP with LHWP exponents which has applications
to the security of the GPS identification scheme. A definition of the DLP with
LHWP exponents is given as follows.

Definition 1 (DLP with LHWP exponents). Let z = xy, where x, y ∈ Z
+.

Given G, g, ord g, wt(x), wt(y) and h ∈ G, find z satisfying gz = h.

The Coppersmith’s splitting system is described in [6] as follows.

Definition 2 (Coppersmith’s splitting system (CSS)). Let n and t be even
integers such that 0 < t < n. A (N,n,t)-splitting system is a pair of (X,B)
satisfying
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1. |X|= n.
2. B is a set of n

2 -subsets of X called blocks and |B|= N .
3. For every Y ⊆ X such that |Y |= t, ∃ a block B ∈ B such that |B ∩ Y |= t

2 .

It was shown in [6] among others that N can be taken to be n
2 . This result was

applied in [1] to obtain improved attacks of the GPS scheme with GL parameters.
The parameterized splitting system was first introduced in [3]. It can be also

be regarded as a generalized version of Coppersmith’s splitting system and is
given as follows.

Definition 3 (Parameterized splitting system (PSS)). Let n and t be inte-
gers such that 0 < t < n. For any ts such that 1 ≤ ts ≤ t. A (N,n,t,ts)-
parameterized splitting system is a pair of (X,B) satisfying

1. |X|= n.
2. B = {B ⊂ X : |B|= � tsn

t 	} is a set of � tsn
t 	-subsets of X called blocks and

|B|= N .
3. For every Y ⊆ X such that |Y |= t, ∃ a block B ∈ B such that |B ∩ Y |= ts.

In particular, when ts = t
2 , the parameterized splitting system corresponds to

the Coppersmith’s splitting system.

3 Improved Results on the Parameterized Splitting
System

It was shown in [3,4] that the parameterized splitting system requires n blocks.
We prove that for numerous classes of parameters, the number of blocks required
in the parameterized splitting system is less than n. In particular, we show that
the GPS scheme with CLP parameters is among those arising in such situations.
As a result, we obtain a lower complexity attack on the GPS scheme.

We first provide a slight reformulation of the parameterized splitting system
in order to distinguish and make a comparison of the number of blocks required
of the splitting system. Let t1, t2, n1, n2 ∈ Z

+ such that t1 ≤ t2, n1 ≤ n2,
t = t1 + t2, n = n1 +n2 and ni = nti

t for i = {1, 2}. With these added notations,
we introduce the parameters dependent splitting system or PDSS as follows.

Definition 3* (Parameters dependent splitting system (PDSS)).
A (N,n1, n2, t1, t2)-parameterized splitting system is a pair of (X,B) satisfying
1. |X|= n = n1 + n2.
2. B = {B ⊂ X : |B|= t2n

t = n2} is a set of n2-subsets of X called blocks and
|B|= N .
3. For every Y ⊆ X such that |Y |= t, ∃ a block B ∈ B such that |B ∩ Y |= t2.

Remark. t2, n2 can essentially be swapped with corresponding t1, n1 by consid-
ering the complement. For example, let X ⊆ Zm so that X = {x =

∑n−1
i=0 xj2j :

xj = 0 or 1, wt(x) = t}. If |B ∩ Y |= t2 then |(Zm\B) ∩ Y |= t1.
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Theorem 1. Let n1 > n2
2 . For any n1, n2, let k ∈ Z

+\{1} be the integer
satisfying

k + 1
2k + 1

n2 ≤ n1 <
k

2k − 1
n2.

Suppose t1 and t2 satisfy the following:

2k + 1
k + 1

t1 − 3k + 1
k + 1

≤ t2 ≤ 2k − 1
k

t1 +
3k − 2

k
,

2k − 1
k

t1 < t2 ≤ 2k + 1
k + 1

t1.

Then N = 2n2 − n1 + 1 suffices to generate a parameterized splitting system.

Recall that N = n = n1+n2 was obtained in [3,4]. Since n1 > n2
2 , 2n2−n1+1 ≤

n = n1 + n2, we derive a parameterized splitting system which requires a fewer
number of blocks.

In situations where t2 ≈ 2t1, we show that Theorem 1 can be further
improved. In particular, we present the following result.

Theorem 2. Let 1
2n2 ≤ n1 ≤ 2

3n2. Suppose t2 = 2t1, 2t1 − 1 or 2t1 − 2. Then

N =

⎧
⎪⎨

⎪⎩

2n1� 1
3 (t1 − 1)� − n2(� 1

3 (t1 − 1)� − 1) + 1, if t2 = 2t1
2n1� 1

4 (t1 − 2)� − n2(� 1
4 (t1 − 2)� − 1) + 1, if t2 = 2t1 − 1

2n1� 1
5 (t1 − 3� − n2(� 1

5 (t1 − 3)� − 1) + 1, if t2 = 2t1 − 2

suffices to generate a parameterized splitting system.

When t2 ≈ 2t1, the results of Theorem 2 shows that fewer blocks than those
obtained in Theorem 1 suffices.

4 Solving the DLP with LHWP Exponents and
Applications

Upon obtaining improvements to the parameterized splitting system, the subse-
quent approach of solving the DLP with LHWP exponents is simply a meet-in
the-middle technique. We provide an outline of it below.

The DLP with LHWP exponents seeks the solution z satisfying h = gz = gxy

given wt(x) and wt(y). Without loss of generality, suppose that |X| > |Y |. Then
split x = u + v for u ∈ U , v ∈ V and where U and V are disjoint subsets
of Zm such that X ⊂ U + V = {u + v : u ∈ U, v ∈ V }. Denote n to be the
maximum binary size of an element X. Hence X = {x =

∑n−1
j=0 xj2n−1−j :

xj = 0 or 1,wt(x) = t}. Now, by considering elements of X in their binary
representations, say of the form x0x1 . . . xn−1 where each xi = 0 or 1, express
them in a more concise form based off their indices via Ai and Bi where Ai =
{i + j mod n : 0 ≤ j < n1} and Bi = {i + j mod n : 0 ≤ j < n2}. For example
A0 = {0, 1, . . . , n1 − 1} and this represents x0x1 . . . xn1−10 . . . 0.



464 J.H.M. Ying and N. Kunihiro

Express h = gxy as
hy−1

g−u = gv.

The method proceeds by computing and storing all the values of the left-hand
side followed by computing each value of the right-hand side and check if it is
in the list from the first part.

Let t′ ∈ {1, 2, . . . , � t
2� : nt′

t ∈ Z} be the value of t1 that minimizes |Y |(n1
t1

)
+

(
n−n1
t−t1

)
. If t′ and the corresponding t−t′ satisfy the conditions stated in Theorem 1

for the given k, then the computational complexity of solving the problem is given
by

O

(

(2n2 − n1 + 1)
(

|Y |
(
n′

t′

)

+
(
n − n′

t − t′

)))

where n′ = nt′
t . The corresponding memory requirement is given by

O

(

min
{

|Y |
(
n′

t′

)

,

(
n − n′

t − t′

)})

.

This already provides a lower computational complexity over the results in [3]
without any additional memory requirements via PDSS.

Improved results over [3] were subsequently obtained in [4]. Fix any subset
T ⊆ X such that |T |= t. The main improvement derives by noting that among
all blocks Bi such that |Bi ∩ T |= t2, there exists block Bi′ such that xi′ = 1
and block Bi′′ such that xi′′+n2−1 mod n = 1. A similar property holds for Ai.
However, this is not true in our PDSS. In the case of PDSS, there either exists
block Bi′ such that xi′ = 1 and block Bi′′ such that xi′′+n2−1 mod n = 1. From the
symmetry of t1 and t2 in PDSS, a similar property also holds for Ai. Crucially,
there is no way to determine which of the two stated block properties will occur
(or both). As such, a direct application of the PDSS as shown above while it
yields improvements to [3], does not provide better results over [4]. Nevertheless,
with some delicate refinements, we show how the results and properties of PDSS
can be utilized to obtain two improved results over the existing state of the art.
First, we present the following lemma.

Lemma 1. Suppose for inputs ti and ni there exists some s < n − 1 such that
for all 0 ≤ i ≤ s satisfying |Bi ∩ T |= t2, we have that xi+n2−1 mod n = 0.
Then there exists some m satisfying s < m ≤ n − 1 such that xm = 0 and
xm+n2−1 mod n = 1.

With the results of Theorems 1, 2 and Lemma 1, we provide 2 possible ways via
PDSS (dependent on parameters) to solve the DLP with low Hamming weight
exponents more efficiently. We will also show in the subsequent section on how
they can be applied to analyze or attack the GPS identification scheme utilizing
CLP parameters.

From the result of Lemma 1, we can refine the earlier procedure of solving
the DLP with LHWP exponent by computing gv (or g−u) where during the
computation of all possible elements with hamming weight of t2 in Bi, some bits
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are redundant and can be removed from the computations. More specifically for
i ≤ s, we first proceed with the assumption that one of the bits at the end edge
of a block is 1. Hence, this requires a total of (s + 1)

(
n2−1
t2−1

)
computations. If

the above does not yield a valid solution, then for i > s, we can deduce from
Lemma 1 that one of the bits at the initial edge of a block can be taken to
be 0 and one bit at the end edge within this same block can be taken to be
1. This requires (n − s)

(
n2−2
t2−1

)
computations. Lemma 1 ensures that ignoring

these redundant computations will nevertheless still ensure the solution can be
obtained. Without loss of generality, a similar result holds for Ai.

The roles of Theorems 1 and 2 arise in determining the values of s.
Our first improved result utilizing Theorem 1 and Lemma 1 is given as follows.

Let t′ ∈ {1, 2, . . . , � t
2� : nt′

t ∈ Z} be the value of t1 that minimizes |Y |(n1−1
t1−1

)
+

(
n−n1
t−t1

)
. If t′ and the corresponding t − t′ satisfy the conditions stated in

Theorem 1 then s can be taken to be 2n2 − n1 and the computational com-
plexity of solving the problem is given by

O

(

(2n2 − n1 + 1)|Y |
(
n′ − 1
t′ − 1

)

+ n

(
n − n′

t − t′

)

+ (2n1 − n2 − 1)|Y |
(
n′ − 2
t′ − 1

))

where n′ = nt′
t . The corresponding memory requirement is given by

O

(

min
{

|Y |
(
n′ − 1
t′ − 1

)

,

(
n − n′

t − t′

)})

.

This provides a strict improvement over the current best known result of [4]
with regards to time complexity while maintaining an equal amount of storage
required.

We can further improve on this result if t2 ≈ 2t1 using Theorem 2. Let
t′ ∈ {1, 2, . . . , � t

2� : nt′
t ∈ Z} be the value of t1 that minimizes |Y |(n1

t1

)
+

(
n−n1−1
t−t1−1

)
.

If t′ and the corresponding t − t′ satisfy the conditions stated in Theorem 2
then s can be taken to be 2kn1 − (k − 1)n2, where the value of k depends on
the relation between t1 and t2 as highlighted in Theorem 2. For brevity, let
k′ = 2kn1 − (k − 1)n2. The computational complexity of solving the problem is
then given by

O

(

(k′ + 1)
(
n − n′ − 1
t − t′ − 1

)

+ n|Y |
(
n′

t′

)

+ (n − k′ − 1)
(
n − n′ − 2
t − t′ − 1

))

where n′ = nt′
t . The corresponding memory requirement is given by

O

(

min
{

|Y |
(
n′

t′

)

,

(
n − n′ − 1
t − t′ − 1

)})

.

5 Application to the GPS Scheme

In this section, we provide 2 improved approaches of attacking the GPS iden-
tification scheme utilizing CLP parameters. The CLP parameters for the GPS
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scheme based on the DLP with LHWP exponents were proposed in [1]. We show
that these parameters satisfy the conditions to utilize the PDSS and provide
concrete security evaluations. Furthermore, we demonstrate additional enhance-
ments which can be applied to provide further improvements for these specific
parameters. One caveat is that the ord(g) is kept secret in the GPS. However,
it is already known (for instance in [1]) that this can be circumvented without
any significant increase in computational resources.

The CLP parameters are that the private key be a product of a 30-bit number
with 12 nonzero bits and a 130-bit number with 26 nonzero bits. As such, |Y |=(
30
12

)
, n = 130 and t = 26. Moreover, some simple computational checking reveals

that t′ = 10 is the value of t1 which minimizes |Y |(n1−1
t1−1

)
+

(
n−n1
t−t1

)
. Hence t1 = 10,

t2 = 16, n1 = 50 and n2 = 80. It is easily verified that k = 2 in Theorem 1 and
the conditions for ti are also satisfied. As a result, 2n2−n1+1 = 111 and so only
111 blocks are required as opposed to 130 required in [3,4]. In fact, by applying a
more deliberate argument for this particular set of parameters, it can be further
show that only 106 blocks are required. The computational complexity of this
attack can now easily be computed to be 264.49 exponentiations with memory
requirement of 254.58 which is an improvement in time complexity over the results
of [4] without any added storage requirements.

Our second improvement is achieved by minimizing |Y |(n1
t1

)
+

(
n−n1−1
t−t1−1

)
. The

minimum is attained when t1 = 9, t2 = 17, n1 = 45 and n2 = 85. In this case,
we have that t2 = 2t1 −1 and thus Theorem 2 can be applied. From the result of
Theorem 2, we obtain N = 96. By applying a more deliberate argument for this
particular set of parameters, it can be shown that only 95 blocks are required.
The computational complexity of this attack can now easily be computed to be
263.95 exponentiations with memory requirement of 255.83. It is of note that this
second approach yields the first known result that achieves a time complexity of
under 264 at a slight additional expense of memory space.

6 Results

Table 1 presented on the next page highlights this results of this work when
compared with other existing state of the art.

Table 1. Results

Attacks Method Exponentiations Storage

[1] CSS 277.3 243.9

[3] PSS 265.48 256.09

[4] PSS 264.53 254.58

[This work] PDSS 264.49 254.58

[This work] PDSS 263.95 255.83



Solving the DLP with LHWP Exponents and Improved Attacks 467

As evident from the results of Table 1, the method of PDSS introduced in this
work provides improvements to current known attacks and analysis of the GPS
identification scheme. They are two ways of approach to apply the PDSS method.
The former provides a reduced complexity of the best current known GPS scheme
without additional increment in storage requirement. The latter provides an even
lower time complexity that falls under 264 for the first time at the expense of
some storage increment.

7 Conclusion

In this work, we introduce a method of parameters dependent splitting system
(PDSS) which can be applied to analyze the security of the GPS scheme which
invokes the DLP with low hamming weight exponents as its security basis. The
method is shown to provide better results over existing state of the art. In
particular, we show for the first time that the security barrier for the GPS
scheme is under 264. The analysis of the minimum number of blocks required in
the parameterized splitting of given inputs might also be of independent interest
in the field of Combinatorics.
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