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Abstract. In recent years, Data Mining techniques such as classification, clus‐
tering, association, regression etc. are widely used in healthcare field to help
analyzing and predicting disease and improving the quality and efficiency of
medical services. This paper presents a web-based platform for big data analysis
of healthcare using Data Mining techniques. The platform consists of three main
layers: Apache Spark Layer, Workflow Layer and Web Service Layer. Apache
Spark Layer provides basic Apache Spark functionalities as regular Resilient
Distributed Datasets (RDD) operations. Meanwhile, this layer provides a cache
mechanism to maximize the use of the results as much as possible which were
calculated before. Workflow Layer encapsulates a variety of nodes for Data
Mining, which have different roles such as data source, algorithm model or eval‐
uation tool. These nodes can be organized into a workflow which is a directed
acyclic graph (DAG), and then it will be submitted to Apache Spark Layer to
execute. And we have implemented many models including Naïve Bayes model,
Decision Tree model and Logistic Regression model etc. for healthcare big data.
Web Service Layer implements rich restful API including data uploading, work‐
flow composition and analysis task submission. We also provide a web graphical
interface for the user. Through the interface users can achieve efficient Data
Mining without any programming which can greatly help the medical staff who
don’t understand programming to diagnose the patients’ condition more accu‐
rately and efficiently.
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1 Introduction

In human society, the development of Cloud Computing, Internet of Things and other
new services promotes the type and size of data growth at an unprecedented rate.
Academia, industry and even government agencies have begun to pay close attention to
the big data problems, and more and more people have a strong interest on it. Data
Mining is one of the most popular and motivating techniques of discovering meaningful
information from varies and huge amount of data. In recent year, Data Mining techniques
have been widely used in healthcare field due to its efficient analytical methodology for
detecting unknown and valuable information in health data as well as detection of fraud
in health insurance, availability of medical solution to the patients at lower cost, detec‐
tion of causes of diseases and identification of medical treatment methods. It also helps
healthcare researchers for making efficient healthcare policies, constructing drug recom‐
mendation systems and developing health profiles of individuals [1].

An amount of research works has been done for healthcare using Data Mining techni‐
ques. In [2], Data Mining techniques were used to predict Hypertension. And in [3, 4], the
authors have utilized classification techniques to predict the likelihood of Cardiovascular
Diseases, while in [5, 6], the researchers have put forward integrated Data Mining techni‐
ques to detect chronic and physical diseases. Besides, some other researchers [7, 8] devel‐
oped new methodology and framework for healthcare purpose. However, all of the above‐
mentioned studies have utilized desktop-based Data Mining techniques. As a result, it’s very
slow for analyzing the large data.

In the last decade, cloud computing has developed very quickly and provided a new
way to establish new healthcare system in a short time with low cost. The “pay for use”
pricing model, on-demand computing and ubiquitous network access allow cloud serv‐
ices to be accessible to anyone, anytime, and anywhere [9]. Therefore, it is urgently
needed to build an effective big data analysis platform for healthcare which can take
advantage of the cloud computing to allow that doctors can quickly and efficiently diag‐
nose the patients’ condition. For example, with the help of such platform, doctors can
analyze the patient’s symptom through the behaviors such as diet, sleep and medical
diagnosis history, which will help the doctor gain a more accurate recognition of the
patient’s condition. Besides, in public health field, the medical big data analysis can also
provide healthcare decision-making support, so that patients can get the correct preven‐
tive healthcare consulting services and it will change the hospital’s medical service
model. For medical institutions, the use of big data analysis has become to improve
productivity and healthcare services, enhance competitiveness and accelerate economic
growth.

Challenges to build such a platform which can handle the large volume of data are
as follows:

Challenge I: System Efficiency. As a big data analysis platform, users may not be able
to tolerate the long waiting time when handling large data analysis tasks. Therefore, the
platform should deal with large data analysis tasks very fast. Besides, for the platform
itself, it will take a lot of resources when dealing with the analysis tasks. And of course,
we expect that the energy consumption should be meaningful. That is, when a lot of
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users execute the analysis tasks in the same time period, if the intermediate results are
the same among multiple tasks, the platform should be able to reuse these results as
much as possible rather than recalculating these tasks from the beginning, which can
avoid unnecessary calculation and save the computing resources.

Challenge II: System Scalability. The massive-scale of available multidimensional
data hinders using traditional database management systems. Moreover, large-scale
multidimensional data, besides its tremendous storage footprint, makes it extremely
difficult to manage and maintain. The underlying database system must be able to digest
Petabytes of data and effectively analyze it.

Challenge III: User-Friendliness. User may be a professional, but without good
programming ability or even if he or she does not understand programming completely.
Therefore, it is important to build a visual interface that users who just need very little
knowledge of data mining or machine learning can deal with a big data analysis task.

Existing database systems have a whole set of data types, functions, operators and
index structures to handle the multidimensional data operations. Even though such
systems provide full support for the data storage and access, they suffer from a scalability
issue. Based upon a relational database system, such systems are not scalable enough to
handle large scale analytics over big data. The Hadoop distributed computing framework
based on MapReduce performs data analytics at scale. The Hadoop-based approach
indeed achieves high scalability. However, these systems though exhibit excellent
performance in batch-processing jobs, they show poor performance in handling appli‐
cations that require fast data analysis. Apache Spark, on the other hand, is an in-memory
cluster computing system. Spark provides a novel data abstraction called resilient
distributed datasets (RDDs) that are collections of objects partitioned across a cluster of
machines. Each RDD is built using parallelized transformations (filter, join or group by)
that could be traced back to recover the RDD data. In-memory RDDs allow Spark to
outperform existing models (MapReduce) by up to two orders of magnitude. In fact, this
can meet the demand of fast analysis. Unfortunately, when the same job runs on Spark
directly twice, both running cost the same time, that is, the Spark takes the same memory
and the same CPU time to execute the same job twice, though it can return the results
of the last time directly, which causes the waste of resources.

A cloud based framework [10] has been developed for delivering healthcare as a
service. In [11], the work provides a Cloud-based adaptive compression and secure
management services for 3D healthcare data which mainly focus on dealing with varies
kinds of healthcare data types for further disease detection. The work in [12] provides
a cloud based framework for home diagnosis over big medical data. All these research
works took the advantages of the fast development, scalability, rapid provisioning,
instant elasticity, greater resiliency, rapid re-constitution of services, low-cost disaster
recovery and data storage solutions made available by cloud computing [13]. However,
these systems are not user-friendly and require professional computer sciences engineers
to use.

In this paper, we design and implement a big data analysis platform for healthcare
which takes advantages of the mature Data Mining techniques in order to produce precise
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results while at the same time harness the opportunities of advanced distributed
computing framework–Apache Spark to offer low cost but high quality services. Our
platform significantly lowers the required expertise level for coding and machine
learning algorithm with the help of web user interface. In the usual big data analysis
research, our system has very good performance for the medical data. Our contributions
are as follows:

1. We developed a big data analysis system which can convert user-defined machine
learning workflow into an Apache Spark job. The workflow consists of different
kinds of nodes that can be data source, preprocessing tool, machine learning model
and evaluating tool.

2. We design a cache strategy to use the intermediate results calculated before as much
as possible, which makes the analysis faster and hardware resource utilization lower.
For every node of the user-defined workflow, we calculate the hash code according
to the node’s content which includes node inputs and node parameters. When a data
analysis job is submitted, the system can use the intermediate results calculated by
previous job, if the hash code of the nodes which the intermediate results depend on
is the same as the new job’s corresponding nodes.

3. Our platform provides a web-based graphical user interface to help users build the
big data analysis workflow conveniently and quickly. Users just need very little
knowledge of data mining or machine learning, that is, it is enough to deal with a
big data analysis task for everyone if the one makes sense of the meaning of every
node. Those users who are non-specialized programmer don’t need to do any coding
and can compose a big data analysis job just by clicking and dragging through the
mouse in our website.

We demonstrate our platform using an application: we will create a complex work‐
flow including Decision Tree model, Logistic Regression model and Naïve Bayes model
to analyze the medical big data which will show the power of quick analyzing. The
effectiveness of the cache strategy is proved by modifying part of the whole workflow.

2 Related Work

This section briefly describes data mining, Apache Spark and LRU cache strategy we
used in our work.

2.1 Data Mining

Data Mining is an interdisciplinary subfield of computer sciences [14, 15]. It is the
computational process of discovering patterns in large data sets involving methods at
the intersection of artificial intelligence, machine learning, statistics, and database
systems. The overall goal of the data mining process is to extract information from a
data set and transform it into an understandable structure for further use. Data mining
is the analysis step of the “knowledge discovery in databases” process.
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The actual data mining task is the automatic or semi-automatic analysis of large
quantities of data to extract previously unknown, interesting patterns such as groups of
data records (cluster analysis), unusual records (anomaly detection), and dependencies
(association rule mining). In general, such tasks can be classified into two categories:
descriptive and predictive. Descriptive mining tasks include association, clustering, and
summarization. These tasks, characterize properties of the data in a target data set.
Predictive mining tasks include classification, and regression. They perform induction
on the current data in order to make predictions [16].

2.2 Apache Spark

Apache Spark provides programmers with an application programming interface
centered on a data structure called the resilient distributed dataset (RDD), a read-only
multiset of data items distributed over a cluster of machines, that is maintained in a fault-
tolerant way [17]. It was developed in response to limitations in the MapReduce cluster
computing paradigm, which forces a particular linear dataflow structure on distributed
programs: MapReduce programs read input data from disk, map a function across the
data, reduce the results of the map, and store reduction results on disk. Spark’s RDDs
function as a working set for distributed programs that offers a (deliberately) restricted
form of distributed shared memory [18].

Apache Spark can run programs up to 100x faster than Hadoop MapReduce in
memory, or 10x faster on disk. Apache Spark has an advanced DAG execution engine
that supports cyclic data flow and in-memory computing. Spark powers a stack of libra‐
ries including SQL and DataFrames, MLlib for machine learning, GraphX, and Spark
Streaming [19].

Spark MLlib is a distributed machine learning framework on top of Spark Core that,
due in large part to the distributed memory-based Spark architecture, is as much as nine
times as fast as the disk-based implementation used by Apache Mahout and scales better
than Vowpal Wabbit. Many common machine learning and statistical algorithms have
been implemented and are shipped with MLlib which simplifies large scale machine
learning pipelines.

2.3 LRU Cache Strategy

LRU is an abbreviation for Least Recently Used. This cache strategy discards the least
recently used items first. And the algorithm requires keeping track of what was used
when, which is expensive if one wants to make sure the algorithm always discards the
least recently used item. General implementations of this technique require keeping “age
bits” for cache-lines and track the “Least Recently Used” cache-line based on age-bits.
In such an implementation, every time a cache-line is used, the age of all other cache-
lines changes. LRU is actually a family of caching algorithms with members including
2Q by Theodore Johnson and Dennis Shasha [20], and LRU/K by Pat O’Neil, Betty
O’Neil and Gerhard Weikum [21].

For CPU caches with large associativity (generally > 4 ways), the implementation
cost of LRU becomes prohibitive. In many CPU caches, a scheme that almost always
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discards one of the least recently used items is sufficient. So many CPU designers choose
a PLRU algorithm which only needs one bit per cache item to work. PLRU typically
has a slightly worse miss ratio, has a slightly better latency, uses slightly less power than
LRU and lower overheads compared to LRU.

3 Platform Architecture

As depicted in Fig. 1, our platform consists of three main layers: (1) Apache Spark Layer
(Sect. 3.1). (2) Workflow Layer (Sect. 3.2). (3) Web Service Layer (Sect. 3.3).

Fig. 1. The architecture of the platform

3.1 Apache Spark Layer

This layer consists of regular operations that are natively supported by Apache Spark
and responsible for loading/saving data from/to persistent storage which is either local
disk or Hadoop file system HDFS according to the file type and other RDD operations
of transformation and action to execute some user-defined workflow. Besides, we design
a cache strategy in this layer.

Storage Strategy. For the multidimensional big data needed to analyze, we will
generate a scheme file which describe the data type for every column. The DataFrame
is a distributed collection of data organized into named columns. It is conceptually
equivalent to a table in a relational database or a data frame in R/Python, but with richer
optimizations under the hood. When we generate a DataFrame object from the multi‐
dimensional big data, we need the corresponding scheme file. Because the scheme file
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size is very small about a few KB and the HDFS block size is 64 MB at least, so we
store the scheme file on the local file system and the data on HDFS.

Cache Strategy. Figure 2 displays a workflow for medical data analysis. Users can
click the node of the workflow to view the data or the configuration of the node. We will
cache every output of the node and put the intermediate results into a Hash Map. And
the key corresponding to the intermediate result is a string of hash code which is calcu‐
lated according to the input and parameters of the node that is the data and configuration
of the node. When the user-defined workflow is executed on the Apache Spark layer,
the system will firstly call the cache strategy module to calculate every node’s hash code
from the origin of the directed acyclic graph and then search the hash code string from
the key set of the Hash Map. Once the key is found, the cache module returns the corre‐
sponding value immediately. Otherwise, the new key-value pair will be cached. This
will save a lot of computing time. Moreover, if the data source is the same as the before,
we can save a lot of time wasted in IO (loading data from HDFS).

Fig. 2. An example work flow

But memory is limited and the Hash Map will certainly not increase without limit.
So we designed an evict policy based LRU algorithm for key-value pairs of the Hash
Map. We set the maximum number for key-value pairs in the Hash Map and let a positive
integer to indicate the key-value pair’s access time. “1” indicates that the key-value pair
is accessed just now or a new item. The bigger the integer is; the easier the corresponding
key-value pair is evicted from the Map.

On Apache Spark, analysis task of multi-submission using the cache data depends
on that they share one Spark Context, that is, there are many jobs belonging to one Spark
Application. We set the whole web service as the Spark Application to ensure this.
Because the web listening service is a daemon process, the Spark Context will always
exist after an analysis task has finished.
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3.2 Work Flow Layer

This layer encapsulates a variety of nodes of machine learning workflow, for example,
table node that is regard as the data source, model nodes are machine learning algorithm
models including decision tree node, logistic regression node and so on, evaluation nodes
are used to evaluate the results calculated by the model nodes. Besides, it converts the
user-defined workflow to a directed acyclic graph and identifies the validity of the DAG.
The validation involves two aspects: on the one hand we will verify whether if the
workflow is really a DAG, on the other hand we will verify whether if the DAG is legal,
that is, whether the nodes meet the correlation between each other. For example, the
table node is the data source, so it must be the origin of some DAG and the DAG must
be illegal if there is any node as the prefix of the table node.

In fact, we develop a library named workflowLib to allow programmers to develop
all kinds of workflow nodes more conveniently. There are mainly two abstract classes
in the library: JobNode class and JobNodeParam class. And there is an abstract function
named computeResult in the JobNode class. The abstract function needs to define the
detail operations for the node, which defines how to deal with the input and get the
output. If the programmers want to add a new machine learning model, he or she just
needs to define a class which inherits the JobNode class and implement the abstract
function computeResult. Accordingly, the programmer needs to implement the JobNo‐
deParam class to define the parameters for the node. The developers don’t need to care
about how to verify the DAG. They just need to add the new node defined to a workflow.

The user-defined workflow is a JSON file as the input of this layer. According to the
detailed definition of every node of the workflow, the workflow layer module will
generate a DAG and then submit it to the Apache Spark Layer.

3.3 Web Service Layer

This layer provides the web service to users, which has two functions. On the one hand,
users can deal with big data analysis task on our platform without developing the algo‐
rithm themselves. For example, they just need to send a JSON file over HTTP request,
which will create a workflow on our platform. On the other hand, the whole platform is
really a web service running on the Apache Spark as a daemon process that is a Spark
Application which guarantees that the Spark Context always exists. This is the base of
the cache strategy described in Sect. 2.1.

The web service layer provides rich Restful APIs including upload the data, delete
the data, create a workflow, modify a workflow, execute a workflow and so on.

4 Experiment

In this session, we will display our platform using an analytical application which is
described below. The data set used in the display is the medical data, which has almost
45000 items and 43 dimensions. We provide a web user interface to be convenient for
users to analyze. A screenshot of this tool’s main interface “Workflows” is provided in
Fig. 3. The tool has a shockingly simple user interface, so that no programming technical
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background is needed and you just do your analysis for big data using just drag and drop
with the mouse. Figure 3 displays a new blank workflow, where you can customize your
own analyzing workflow. On the left side of Fig. 3, there are nodes that are used to create
the workflow. The menu of “Tables” in Fig. 3 shows data resources that are uploaded
by users through the upload function in “Tables” interface. The menu of “Preparation”
in Fig. 3 includes Random Sampling node, Sample node, Filter node, Join node and
Select node which are used to preprocess the data source. There are some machine
learning algorithm models including Decision Tree node, Logistic Regression node,
Naïve Bayes node, Linear Regression node, Gradient Boosting node, K-Means node
and Support Vector Machine node in “Models” menu. In the “Evaluating” menu, there
are Scoring node and Evaluating node which are used to identify the training model.
Figure 4 shows the “Tables Management” interface which provides functions including
uploading file, creating folder, deleting file or folder and moving the file, etc. Because
there were some projects using our platform, you can see some tables listed in Fig. 4.
All uploading files through the uploading function in Fig. 4 will be listed in the “Tables”
menu in Fig. 3. User can just drag and drop the nodes listed on the left side of “Work‐
flows” interface into the middle section of Fig. 3. When you drag a node into the work‐
flow, the system will help you combine the dragging node with nodes that have been in
the workflow automatically, if one’s output can be the input of the other.

Fig. 3. The main interface of our platform

We will use the workflow displayed in Fig. 2 to demonstrate the big data analyzing.
When a user clicks the “Run button” that is a triangle in Fig. 3, all of the nodes will be
gray and if one node’s job has been finished, the node will be lighted up. There is an
upward arrow in the bottom right corner of Fig. 3 and a user can look over the log
information by clicking that arrow. Users can click any node to configure it. For example,
the Random Sampling node can define the percent of training set and testing set and the
Decision Tree node can configure the training target from the 43 dimensions in the data
set and it can also define the parameters for the process of constructing the Decision

40 J. Zhang et al.



Tree which is displayed in Fig. 5. When all of the nodes have lighted up, the whole
workflow is completed. Users can click the “Evaluating” nodes to view the results for
the big data analysis.

Fig. 4. The data sources Fig. 5. The result

Because the results of every time for random sampling are different, the input of
nodes of the same workflow is different except the table node. In order to present our
cache strategy, we divide the table node into two parts manually, and execute the same
workflow twice. But there is a little of difference that we change the target of the Decision
Tree node. In the first execution, the running time of the Logistic Regression node is
more than the Decision Tree node’s obviously. But the opposite occurs in the second
execution. Because the input and configuration are the same in two executions for the
Logistic Regression node, the results of it should be same. Indeed, that is also the fact,
which indicates our cache strategy is correct and effective.

We know that it’s the presupposition and key to analyze the hospital’s electronic
medical records data(EMR) for the Clinical Decision Support System. In this paper, we
will take the acute chest pain data analysis process as an example to display the excel‐
lence of our platform.

Firstly, we selected 1571 data items of cardiovascular patients from the acute chest
pain information database, which includes four kinds of cardiovascular disease, that is,
aortic dissection, pulmonary embolism, myocardial infarction and steno cardia. The
detail information of the data is displayed in Table 1. We extract 31 disease features
from patients’ symptoms and signs, history feature, laboratory inspection and so on.
And then, we pre-processed the data of qualitative variables and quantitative variables
in 31 pathologic features and according to the actual data characteristics we get the final
17 pathologic features to analyze. Finally, we take advantage of the Decision Tree model,
Naïve Bayes model and Logistic Regression model to predict the incidence of the four
kinds of cardiovascular disease. Figure 6 displays the weights influence of each disease
feature on different diseases using Logistic Regression model. And Fig. 7 displays the
prediction accuracy of Logistic Regression model. From Fig. 7, we can find that the
prediction accuracy for aortic dissection is more than 99%, but just 64% for pulmonary
embolism, which is because the amount of data for pulmonary embolism is relatively
small and only 78/1571 of the total data.
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Table 1. Data of cardiovascular patients.

Disease Aortic dissection Pulmonary
embolism

Myocardial
infarction

Steno cardia

Number 719 78 266 497
Total 1571

Fig. 6. The weights influence of each disease
feature

Fig. 7. prediction accuracy of LR model

5 Conclusion

We develop a web service platform on Apache Spark for big data analysis on healthcare
data. In our system, we propose a cache strategy to realize the high efficiency of the
system, which does not exist in other big data analyzing platform as we know. And in
Workflow Layer, we develop a workflowLib which indeed is a framework for imple‐
menting user-defined nodes of workflow of machine learning. Besides, we develop a
web user interface through which anyone can do the big data analyzing easily. At present,
there are some big data analysis tasks running on our platform and it presents a good
performance.

In the future, we will develop a stronger platform on which users can write own code
for the model nodes in the web user interface when the nodes we provide cannot meet
their demands. We will also compile the user-writing code to a model node that will be
provided to others directly if the user agrees to publish the code.
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