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Editor’s Notes

We are today living in the world of information explosion. Fortunately our human 
brain is reasonably fast and intelligent enough to capture relevant information from 
the large volume of data we are exposed to on every day basis. That helps us taking 
appropriate decisions and making right choices every moment in our business and 
personal lives. However, more and more, we have started facing difficulty in doing 
the same given that in many a case we need to take rapid decision after gathering 
insights from very high volume and numerous varieties of data. So having an aid in 
supporting human decision making process is becoming utterly important in today’s 
world to make everyone’s life easier and the decisions more accurate and effective. 
This aid is wh	 at we otherwise call as Analytics.

The Analytics is anything but new to the human world. The earliest evidence of 
applying Analytics in business is found in late of seventeenth century. At that point 
of time Founder Edward Lloyd used the shipping news and information gathered 
from his coffee house to assist bankers, sailors, merchants, ship owners, and others 
in their business dealings, including insurance and underwriting. This made Society 
of Lloyds the world’s leading market for specialty insurance for next two decades, 
as they could use historical data and proprietary knowledge effectively and quickly 
to identify risks. Next in early twentieth century human civilization saw few revolutionary 
ideas forming side by side in the area of Analytics both from academia as well as 
business. In academia, Moore’s common sense proposition gave rise to the idea of 
‘Analytic Philosophy’ which essentially advocates extending facts gathered from 
common place to greater insights. On the other hand, in the business side of the 
world, Frederick Winslow Taylor detailed out efficiency techniques in his book, The 
Principles of Scientific Management, in 1911, which were based on principles of 
Analytics. Also, during the similar time frame, the real life use of Analytics was 
actually implemented by Henry Ford by measuring pacing of the assembly line 
which eventually revolutionized the discipline of Manufacturing.

However, the Analytics started becoming more main mainstream, which we can 
refer as Analytics 1.0, with the advent of Computers. In 1944, Manhattan Project 
predicted behavior of nuclear chain reactions through computer simulations, in 
1950 first weather forecast was generated by ENIAC computer, in 1956 shortest 
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path problem was solved through computer based analytics which eventually 
transformed Air Travel and Logistics industry, in 1956 FICO created analytic model 
for credit risk prediction, in 1973 optimal price for stock options was derived using 
Black-Scholes model, in 1992 FICO deployed real time analytics to fight credit 
fraud and in 1998 we saw use of analytics for competitive edge in sports by the 
Oakland Athletics team. From the late 90’s onwards, we started seeing major 
adoption of Web Technologies, Mobile Devices and reduction of cost of computing 
infrastructures. That started generating high volume of data, namely Big Data, 
which made the world thinking about how to handle this Big Data both from storage 
and consumption perspectives. Eventually this led to the next phase of evolution in 
Analytics, Analytics 2.0, in the decade of 2000. There we saw major resurgence in 
the belief in potential of data and its usage through the use of Big Data Technologies. 
These Big Data Technologies ensured that the data in any volume, variety and 
velocity (the rate at which it is produced and consumed) can be stored and consumed 
at reasonable cost and time. And now we are in the era of Big Data based Analytics, 
commonly called as Big Data Analytics or Analytics 3.0. Big Data Analytics is 
essentially about the use of Analytics in every aspect of human needs to answer the 
questions right in time, to help taking decisions in immediate need and also to make 
strategies using data generated rapidly in volume and variety through human 
interactions as well as by machines.

The key premise of Big Data Analytics is to make insights available to users, 
within actionable time, without bothering them of the ways the data is generated 
and the technology used to store and process the same. This is where the application 
of principles of Distributed Computing comes into play. The Distributed Computing 
brings two basic promises in the world of Big Data (and hence to Big Data 
Analytics) – ability to scale (with respect to processing and storage) with increase 
in volume of data and ability to use low cost hardware. These promises are highly 
profound in nature as they reduce the entry barrier for anyone and everyone to use 
Analytics and it also creates a conducive environment for evolution of analytics in a 
particular context with the change in business direction and growth.

Hence, to properly leverage benefits out of Big Data Analytics, one cannot 
undermine the importance of principles of Distributed Computing. The principals of 
Distributed Computing that involve data storage, data access, data transfer, 
visualization and predictive modeling using multiple low cost machines are the key 
considerations that make Big Data Analytics possible within stipulated cost and 
time practical for consumption by human and machines. However, the current 
literatures available in Big Data Analytics world do not cover the use of key aspects 
of Distributed Processing in Big Data Analytics in an adequate way which can 
highlight the relation between Big Data Analytics and Distributed Processing for 
ease of understanding and use by the practitioners. This book aims to cover that gap 
in the current space of books/literature available for Big Data Analytics.

The chapters in this book are selected to achieve the afore mentioned goal with 
coverage from three perspectives  - the key concepts and patterns of Distributed 
Computing that are important and widely used in Big Data Analytics, the key 
technologies which support Distributed Processing in Big Data Analytics world, 
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and finally popular Applications of Big Data Analytics highlighting how principles 
of Distributed Computing are used in those cases. Though all of the chapters of this 
book have the underlying common theme of Distributed Computing connecting 
them together, each of these chapters can stand as independent read so that the 
readers can decide to pick and choose depending on their individual needs.

This book will potentially benefit the readers in the following areas. The readers 
can use the understanding of the key concepts and patterns of Distributed Computing, 
applicable to Big Data Analytics while architecting, designing, developing and 
troubleshooting Big Data Analytics use cases. The knowledge of working principles 
and designs of popular Big Data Technologies in relation to the key concepts and 
patterns of Distributed Technologies will help them to select right technologies 
through understanding of inherent strength and drawback of those technologies 
with respect to specific use cases. The experiences shared around usage of 
Distributed Computing principles in popular applications of Big Data Analytics will 
help the readers understanding the usage aspects of Distributed Computing 
principals in real life Big Data Analytics applications-what works and what does 
not. Also, best Practices discussed across all the chapters of this book would be easy 
reference for the practitioners to apply the concepts in his/her particular use cases. 
Finally, in overall, all these will also help the readers to come out with their own 
innovative ideas and applications in this continuously evolving field of Big Data 
Analytics.

We sincerely hope that readers of today and future interested in Big Data 
Analytics space would find this book useful. That will make this effort worthwhile 
and rewarding. We wish all readers of this book the very best in their journey of Big 
Data Analytics.

Editor’s Notes
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On the Role of Distributed Computing in Big 
Data Analytics

Alba Amato

1  �Introduction

Distributed paradigm emerged as an alternative to expensive supercomputers, in 
order to handle new and increasing users needs and application demands [1]. 
Opposed to supercomputers, distributed computing systems are networks of large 
number of attached nodes or entities connected through a fast local network [2]. 
This architectural design allows to obtain high computational capabilities by joining 
together a large number of compute units via a fast network and resource sharing 
among different users in a transparent way. Having multiple computers processing 
the same data means that a malfunction in one of the computers does not influence 
the entire computing process. This paradigm is also strongly motivated by the 
explosion of the amount of available data that make necessary the effective distrib-
uted computation. Gartner has defined big data as “high volume, velocity and/or 
variety information assets that demand cost-effective, innovative forms of informa-
tion processing that enable enhanced insight, decision making, and process automa-
tion” [3]. In fact the huge size is not the only property of Big Data. Only if the 
information has the characteristics of either of Volume, Velocity and/or Variety we 
can refer the area of problem/solution domain as Big Data [4].Volume refers to the 
fact that we are dealing with ever-growing data expanding beyond terabytes into 
petabytes, and even exabytes (1 million terabytes). Variety refers to the fact that Big 
Data is characterized by data that often come from heterogeneous sources such as 
machines, sensors and unrefined ones, making the management much more com-
plex. Finally, the third characteristic, that is velocity that, according to Gartner [5], 
“means both how fast data is being produced and how fast the data must be 
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processed to meet demand”. In fact in a very short time the data can become obso-
lete. Dealing effectively with Big Data “requires to perform analytics against the 
volume and variety of data while it is still in motion, not just after” [4]. IBM [6] 
proposes the inclusion of veracity as the fourth big data attribute to emphasize the 
importance of addressing and managing the uncertainty of some types of data. 
Striving for high data quality is an important big data requirement and challenge, 
but even the best data cleansing methods cannot remove the inherent unpredictabil-
ity of some data, like the weather, the economy, or a customer’s actual future buying 
decisions. The need to acknowledge and plan for uncertainty is a dimension of big 
data that has been introduced as executives seek to better understand the uncertain 
world around them [7]. Big Data are so complex and large that it is really difficult 
and sometime impossible, to process and analyze them using traditional approaches. 
In fact traditional relational database management systems (RDBMS) can not han-
dle big data sets in a cost effective and timely manner. These technologies are typi-
cally not enabled to extract, from large data set, rich information that can be 
exploited across of a broad range of topics such as market segmentation, user 
behavior profiling, trend prediction, events detection, etc. in various fields like pub-
lic health, economic development and economic forecasting. Besides Big Data have 
a low information per byte, and, therefore, given the vast amount of data, the poten-
tial for great insight is quite high only if it is possible to analyze the whole dataset 
[4]. The challenge is to find a way to transform raw data into valuable information. 

So, to capture value from big data, it is necessary to use next generation innova-
tive data management technologies and techniques that will help individuals and 
organizations to integrate, analyze, visualize different types of data at different spa-
tial and temporal scales. Basically the idea is to use distributed storage and distrib-
uted processing of very large data sets in order to address the four V’s. There come 
the big data technologies which are mainly built on distributed paradigm. Big Data 
Technologies built using the principals of Distributed Computing, allow acquizition 
and analysis of intelligence from big data. Big Data Analytics can be viewed as a 
sub-process in the overall process of insight extraction from big data [8].

In this chapter, the first section introduces an overview of Big Data, describing 
their characteristics and their life cycle. In the second section the importance of 
Distributed Computing is explained focusing on issue and challenges of Distributed 
Computing in Big Data analytics. The third section presents an overview of tech-
nologies for Big Data analytics based on Distributed Computing concepts. The 
focus will be on Hadoop.1 which provides a distributed file system, YARN2, a 
resource manager through which multiple applications can perform computations 
simultaneously on the data, and Spark,3 an open-source framework for the analysis 
of data that can be run on Hadoop, its architecture and its mode of operation in 
comparison to MapReduce.4 The choice of Hadoop is due to more elements. First 

1 hadoop.apache.org.
2 https://hadoop.apache.org/docs/current/hadoop-yarn.html.
3 spark.apache.org/.
4 https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html.
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of all it is leading to phenomenal technical advancements. Moreover it is an open 
source project, widely adopted with an ever increasing documentation and com-
munity. In the end conclusion are discussed together with the current solutions and 
future trends and challenge.

2  �History and Key Characteristics of Big Data

Distributed computing divides the big unmanageable problems around processing, 
storage and communication, into small manageable pieces and solves it efficiently 
in a coordinated manner [9]. Distributed computing are ever more widespread 
because of availability of powerful yet cheap microprocessors and continuing 
advances in communication technology. It is necessary especially when there are 
complex processes that are intrinsically distributed, with the need for growth and 
reliability.

Data management industry has been revolutionized by hardware and software 
breakthroughs. First, hardware’s power increased and hardware’s price decrease. As 
a consequence, new software emerged that takes advantage of this hardware by 
automating processes like load balancing and optimization across a huge cluster of 
nodes.

One of the problems with managing large quantities of data, has been the impact 
of latency that represents an issue in every aspect of computing, including commu-
nications, data management, system performance, and more. The capability to 
leverage distributed computing and parallel processing techniques reduced latency. 
It may not be possible to construct a big data application in a high latency environ-
ment if high performance is needed. It is necessary to process, analyse and verify 
this data in near real time. With the aim of reducing latency various distributed 
computing and parallel processing techniques have been proposed by researchers 
and practitioners from time to time.

Frequently problems are also related to high likelihood of hardware failure, 
improportionate distribution of data across various nodes in cluster and security 
issues due to the data access from anywhere.

The solution of those problems are typically based on distributed file storage 
(such as HDFS,5 OpenAFS,6 XtreemFS,7...), cluster resource management (such as 
YARN, Mesos,8...), and parallel programming model for large data sets and analysis 
model (such as MapReduce, Spark, Flink9).

The term Big Data is a broad and evolving term that refers to any collection of 
data so wide as to make it difficult or impossible to store it in a traditional software 

5 https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html.
6 https://www.openafs.org/.
7 www.xtreemfs.org/.
8 mesos.apache.org/.
9 https://flink.apache.org/.
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system, as RDBMS (Relational Database Management System). Although the term 
does not refer to any particular amount, usually it is possible to talk about Big Data 
from couple of Gigabytes of data, that is, when the data can not be easily processed 
by a single process. Big Data solutions are ideal for analysing not only raw struc-
tured data, but semistructured and unstructured data from a wide variety of sources 
[4]; Big Data solutions are ideal when all, or most, of the data needs to be analysed 
versus a sample of the data; or a sampling of data is not nearly as effective as a larger 
set of data from which to derive analysis; Big Data solutions are ideal for iterative 
and exploratory analysis when measures on data are not predetermined.

The collection of data streams of higher velocity and higher variety brings sev-
eral problems that can be addressed by big data technologies. Thanks to big data 
technology it is possible to build an infrastructure that delivers low, predictable 
latency in both capturing data and in executing simple and complex queries; it is 
also possible to handle very high transaction volumes, often in a distributed environ-
ment; and supports flexible, dynamic data structures [10]. When dealing with such 
a high volume of information, it is relevant to organize data at its original storage 
location, thus saving both time and money by not moving around large volumes of 
data. The analysis may also be done in a distributed environment, where some data 
will stay where it was originally stored and be transparently accessed for required 
analytics such as statistical analysis and data mining, on a wider variety of data 
types stored in diverse systems; to scale for extreme data volumes and deliver faster 
response times. Most importantly, the infrastructure must be able to integrate analy-
sis on the combination of big data and traditional enterprise data. New insight comes 
not just from analyzing new data, but from analyzing it within the context of the old 
to provide new perspectives on old problems [10]. Context-aware Big Data solu-
tions could focus only on relevant information by keeping high probability of hit for 
all application-relevant events, with manifest advantages in terms of cost reduction 
and complexity decrease [11]. Obviously the results of big data analysis are only as 
good as the data being analyzed.

In last two decades, the term database is used in several contexts and is usually 
used as synonymous with SQL. Recently, however, the world of data storage has 
changed and new and interesting possibilities are now based on NoSQL. NoSQL 
stands for “Not Only SQL” and this emphasizes that the NoSQL technology is not 
entirely incompatible with SQL (Structured Query Language), it describes a large 
class of databases which are generally not queried with SQL. NoSQL data stores are 
designed to scale well horizontally and run on commodity hardware. NoSQL is 
definitely not suitable for all uses and is not a replacement of the traditional RDBMS 
database, but it can assist them or in part replace, and its main advantages make it 
useful, if not essential, in some occasions. NoSQL can significantly reduce develop-
ment time because it eliminates the need to address complex SQL queries to extract 
structured data. The NoSQL database, if used properly, return the data in a timely 
way than a traditional database. This factor is really important with web and mobile 
applications. NoSQL data stores have several key features [12] that help them to 
horizontally scale throughput over many servers, replicate and distribute data over 

A. Amato
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many servers, and dynamically add new attributes to data records [12]. NoSQL Data 
Models can be classified in:

•	 Key-value data stores (KVS). They store values associated with an index (key). 
KVS systems typically provide replication, versioning, locking, transactions, 
sorting, and/or other features. The client API offers simple operations including 
puts, gets, deletes, and key lookups.

•	 Document data stores (DDS). DDS typically store more complex data than KVS, 
allowing for nested values and dynamic attribute definitions at runtime. Unlike 
KVS, DDS generally support secondary indexes and multiple types of docu-
ments (objects) per database, as well as nested documents or lists.

•	 Extensible record data stores (ERDS). ERDS store extensible records, where 
default attributes (and their families) can be defined in a schema, but new attri-
butes can be added per record. ERDS can partition extensible records both hori-
zontally (per-row) or vertically (per-column) across a datastore, as well as 
simultaneously using both partitioning approaches.

Another important category is constituted by Graph data stores. They [13] are 
based on graph theory and use graph structures with nodes, edges, and properties to 
represent and store data. Key-Value, Document based and Extensible record catego-
ries aim at the entities decoupling to facilitate the data partitioning and have less 
overhead on read and write operations, whereas Graph-based category take the 
modeling the relations like principal objective. Therefore techniques to enhancing 
schema with a Graph-based database may not be the same as used with Key-Value 
and others. The graph data model fits better to model domain problems that can be 
represented by graph as ontologies, relationship, maps etc. Particular query lan-
guages allow querying the data bases by using classical graph operators as neigh-
bour, path, distance etc. 

Because for many Big Data use cases, the data does not have to be 100 percent 
consistent all the time, applications can scale out to a much greater extent. Eric 
Brewer’s CAP theorem [14], formalized in [15], which basically states that is 
impossible for a distributed computing system to simultaneously provide all three 
of the following guarantees: Consistency, Availability and Partition Tolerance (from 
these properties the CAP acronym has been derived). Where:

•	 Consistency: all nodes see the same data at the same time
•	 Availability: a guarantee that every request receives a response about whether it 

was successful or failed
•	 Partition Tolerance: the system continues to operate despite arbitrary message 

loss or failure of part of the system that create a network partition

Only two of the CAP properties can be ensured at the same time. Therefore, only 
CA systems (consistent and highly available, but not partition-tolerant), CP systems 
(consistent and partition tolerant, but not highly available), and AP systems (highly 
available and partition-tolerant, but not consistent) are possible and for many people 
CA and CP are equivalent because loosing in Partitioning Tolerance means a lost of 
Availability when a partition takes place. 

On the Role of Distributed Computing in Big Data Analytics
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There are several other compute infrastructures to use in various domains. 
MapReduce is a programming model and an associated implementation for process-
ing and generating large datasets. Users specify a map function that processes a key/
value pair to generate a set of intermediate key/value pairs, and a reduce function 
that merges all intermediate values associated with the same intermediate key. Many 
real world tasks are expressible in this model, as show in [16]. Programs written in 
this functional style are automatically parallelized and executed on a large cluster of 
commodity machines. This allows programmers without any experience with paral-
lel and distributed systems to utilize the resources of a large distributed system eas-
ily. Ather key concepts related to Big Data Analytics are:

Bulk synchronous parallel processing [17] is a model proposed originally by 
Leslie Valiant. In this model, processors execute independently on local data for a 
number of steps. They can also communicate with other processors while comput-
ing. But they all stop to synchronize at known points in the execution; these points 
are called barrier synchronization points. This method ensures that deadlock prob-
lems can be detected easily.

Large data streaming generated by thousands of data sources at high velocity, in 
high volume. It contains valuable potential insights and need to be processing real 
time to capture and pipe streaming data, but also to enrich, add context, personalize, 
and act on it before it becomes data at rest. These high-velocity applications require 
the ability to analyze and transact on streaming data.10

Large scale In memory computing, necessary to meet the strict real-time require-
ments for analyzing mass amounts of data and servicing requests within millisec-
onds an in-memory system/database that keeps the data in the random access 
memory (RAM) all the time [1].

High availability (HA) that is the ability of a system to remain up and running 
despite unforeseen failures, avoiding unplanned downtime or service disruption. 
HA is a critical feature that businesses rely on to support customer-facing applica-
tions and service level agreements.11

3  �Key Aspects of Big Data Analytics

In recent years data, data management and the tools for data analysis have under-
gone a transformation. We have seen a significant increase in data collected by users 
thanks to web applications, sensors, etc. Unlike traditional systems, the type and the 
amount of data sources are varied. There is no longer just dealing with structured 
data, but also unstructured data from social networks, sensors, from the web, smart-
phones, etc. The acquisition of Big Data can be done in different ways, depending 
on the data source. The means for the acquisition of data can be divided into four 
categories: Application Programming Interface: the APIs are protocols used as a 

10 https://www.voltdb.com/fast-data.
11 https://www.mapr.com/resources/high-availability-mapr.
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communication interface between software components. Examples of APIs are the 
Twitter API, the Facebook Graph API and API offer by some search engines like 
Google, Bing and Yahoo! and the weather API. They allow, for example, to get the 
tweets related to specific topics (Twitter API) or examining the advertising content 
based on certain search criteria in the case of the Facebook Graph API. Web Scraping 
where data are simply taken by analysing the Web, i.e. the network of pages con-
nected by hyperlinks. This has given rise to the term Big Data, that has become very 
popular, but its meaning often takes on different aspects. In general, we can sum-
marize its meaning as a way to treat large volumes of data constantly increasing [7], 
an action that requires instruments for collecting, storage and analysis different 
from the traditional ones. In particular we refer to datasets that are so large to be not 
manageable by traditional systems, such as relational DBMS running on a single 
machine. In fact, when the size of a dataset is more than few terabytes, it is neces-
sary to use a distributed system, in which the data is partitioned across multiple 
machines. Several technologies to manage Big Data have been created that are able 
to use the computing power and the storage capacity of a cluster, with an increase in 
performance proportional to the number of machines present on the same cluster. 
Those technologies provide a system for storing and analysing distributed data. 
Using redundancy of data and sophisticated algorithms, can work even in the event 
of failure of one or more machines in the cluster, transparently to the user. Distributed 
systems provide the basis for those systems. In fact a distributed architecture is able 
to serve as an umbrella for many different systems.

4  �Popular Technologies for Big Data Analytics Utilizing 
Concepts of Distributed Computing

In the subsections below we discuss few popular open source Big Data technologies 
those are wideliy used to day across various industries.

4.1  �Hadoop

The Hadoop Distributed File System (HDFS) [18] is a distributed filesystem written 
in Java designed to be run on commodity hardware, in which the data stored are par-
titioned and replicated on the nodes of a cluster. HDFS is fault-tolerant and developed 
to be deployed on low-cost machines. Hadoop is just one example of a framework 
that can bring together a broad array of tools such as (according to Apache.org): 
Hadoop Distributed File System that provides high-throughput access to application 
data; Hadoop YARN for job scheduling and cluster resource management; Hadoop 
MapReduce for parallel processing of big data. Hadoop, for many years, was the 
leading open source Big Data framework but recently the newer and more advanced 

On the Role of Distributed Computing in Big Data Analytics
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Spark has become the more popular of the two Apache Software Foundation tools. 
Hadoop can run different applications, including MapReduce, Hive and Apache 
Spark. Through redundancy of data and sophisticated algorithms, Hadoop can work 
even in the event of failure of one or more machines in the cluster, transparently to the 
user. Hadoop is an open-source software system used extensively in this area, offer-
ing both a distributed file system for storing information that one for their computing 
platform. The module supports multiple software for the analysis of data, including 
MapReduce and Spark. The substantial difference between these two systems is that 
MapReduce obliges to store the data to disk after each iteration, while Spark can 
work in main memory, exploiting the disc only in case of need. The Spark system, 
which is a high-level framework, provides a set of specific modules for each scope.

4.2  �Yarn

YARN (Yet Another Resource Negotiator) is a main feature of the second version of 
Hadoop. Before YARN, the same node of the cluster, on which he was running the 
Job Tracker, took care of both of the cluster resource management is the scheduling 
of the task of MapReduce applications (which were the only possible ones). With 
the advent of YARN the two tasks were separated and were held respectively by the 
ResourceManager and AppliationMaster.

4.3  �Hadoop Map Reduce

Hadoop MapReduce is a programming model for processing large data sets on par-
allel computing systems. A MapReduce Job is defined by: the input data; a proce-
dure Map, which for each input element generates a number of key / value pairs; a 
phase of shuffle network; It reduces a procedure, which receives as input elements 
with the same key and generates a summary information from such elements; the 
output data MapReduce guarantees that all elements with the same key will be tried 
by the same reducer, since the mapper all use the same hash function to decide 
which reducer send the key / value pairs.

4.4  �Spark

Apache Spark is a project that otherwise to Hadoop MapReduce does not require 
the use of your hard disk, but may enter directly into the main memory managing to 
offer performance even 100 times on specific applications. Spark offers a broader 
set of primitive compared to MapReduce, greatly simplifying programming.

A. Amato



9

5  �Conclusion

A distributed computing system consists of number of processing elements inter-
connected by a computer network and co-operating in performing certain assigned 
tasks. When data becomes large, the database is distributed into various sites. The 
distributed databases need distributed computing to store, retrieve, and update data 
in a well coordinated way [9]. The advent of Big Data has led in recent years in 
search of new solutions for storing them and for their analysis. To manage Big Data, 
technologies have been created that are able to use the computing power and the 
storage capacity of a cluster, with an increase in performance proportional to the 
number of machines present on the same. In particular big data analytics is a prom-
ising area for next generation of innovation in the field of automation, with the ever 
increasing need of extracting value from data in several field of application. With 
that objetcive in mind various technologies/system have been evolved in last decade 
or so. The most used of these systems is Hadoop, which provides a system for stor-
ing and analyzing distributed data. YARN is a main feature of the second version of 
Hadoop, born to solve common problems. Hadoop Map Reduce, is designed for 
processing large data sets with a parallel and distributed algorithm on a cluster, and 
Spark performs in-memory processing of data. In this chapter an overview of tech-
nologies for Big Data analytics based on Distributed Computing concepts have been 
presented. With the increasing amount of data, the analytics will be ever more 
important in the decision-making process in several sectors allowing the discovery 
of new opportunities and increasing the quality of information.
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Fundamental Concepts of Distributed 
Computing Used in Big Data Analytics

Qi Jun Wang

1  �Introduction

The study of distributed computing became its own branch of computer science in 
the late 1970s and early 1980s. So it has been a long time since the advent of distrib-
uted computing technology and since then many fundamental concepts of Distributed 
Computing has been successfully used in various areas of real life applications. 
These fundamental concepts are the keys to achieve large-scale computation in a 
scalable and affordable way and hence most of the Big Data Technologies of today 
leverage those concepts to design their internal frameworks and features. In turn 
those Big Data Technologies are used to build applications around Big Data 
Analytics for various industries.

In this chapter we provide detail understanding of some of these fundamental 
concepts that are must to know by any Big Data Analytics practitioner. We also 
provide appropriate examples around these concepts wherever necessary. We start 
with explanation of the concepts of Multi-threading and Multi processing. Next we 
introduce the different types of computer architecture along with the concepts of 
scale up and scale out. Next we delve into the principles of Queuing system and use 
of the same in Distributed Computing. We also cover the relationship between 
Consistency, Availability, and Partition Tolerance and their trade of in Cap Theorem. 
Next we provide the concept of Computing Cluster and main challenges in the 
same. Finally we end with discussion around key Quality of Service (QoS) require-
ments applicable in Big Data Analytics area.
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2  �Multithreading and Multiprocessing

Multi-threading and Multi processing are two fundamental concepts in Distributed 
Computing. They are widely used to enhance the performance of Distributed Computing 
system. The main purpose of Multi threading and Multi processing is to enhance the 
parallelization, which reduces the system process delay.

2.1  �Concept of Multiprocessing

Multiprocessing is a mode of operation in which two or more processors in a com-
puter simultaneously process two or more different portions of the same program 
(set of instructions). Supercomputers typically combine thousands of such micro-
processors to interpret and execute instructions. The advantage of multiprocessing 
is it can dramatically enhance the system throughput and speed up the execution 
of programs.

2.2  �Example of Multiprocessing

The concept of multiprocessing has been used in many famous distributed comput-
ing or big data platform, such as Apache Hadoop. In Hadoop, users can concur-
rently start multiple mappers and reducers and each mapper or reducer corresponds 
to one process.

Figure 1 is the picture showing the multiprocessing model in the Hadoop runtime 
environment:

Hadoop client is responsible for submitting map-reduce jobs to the resource 
manager, and resource manager will look up the available resources (CPU, mem-
ory) on each slave node and allocate these resources to the Hadoop applications. 
After that, Hadoop application will split the jobs and start concurrent multi pro-
cesses (mappers) to process each splits. Finally, it will start another set of concur-
rent multi processes (reducers) to combine the results of mappers and output data to 
Hadoop Distributed File System (HDFS).

2.3  �Concept of Multithreading

A thread is the smallest sequence of programmed instructions that can be man-
aged independently by a scheduler. Multithreading is the ability of a central pro-
cess unit (CPU) or a single core in a multi-core processor to execute multiple 
threads concurrently, appropriately supported by the operating system. 

Q.J. Wang
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Multithreading aims to increase utilization of a single core by using thread-level 
as well as instruction-level parallelism, and the advantage of Multithreading is If 
a thread gets a lot of cache misses, which is s a state where the data requested for 
processing by a component or application is not found in the memory, the other 
threads can continue taking advantage of the unused computing resources, like 
CPU and memory. Also, if a thread cannot use all the computing resources of the 
CPU (because instructions depend on each other’s result), running another thread 
may prevent those resources from becoming idle [2]. If several threads work on 
the same set of data, they can actually share their cache, leading to better cache 
usage or synchronization on its values.

2.4  �Example of Multithreading

Apache Spark is one of the typical big data platforms using multi threading. Spark 
implements based on multithreading models for lower overhead of JVM (Java 
Virtual Machine) and data shuffling between tasks.

Fig. 1  Multiprocessing model in the Hadoop runtime environment
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Figure 2 shows the Apache spark multi threading model:
Spark applications run as independent sets of processes on a cluster, coordi-

nated by the SparkContext object in the main program (called the driver program). 
Specifically, to run on a cluster, the SparkContext can connect to several types of 
cluster managers (either Spark’s own standalone cluster manager, Mesos [20] or 
YARN [21] (Yet Another Resource Manager)), which allocate resources across 
applications. Once connected, Spark acquires executors on machines in the clus-
ter, which are processes that run computations and store data for your application. 
Next, it sends your application code (defined by JAR or Python files passed to 
SparkContext) to the executors. Finally, SparkContext sends tasks to the executors 
to run. Each application gets its own executor processes, which stay up for the 
duration of the whole application and run tasks in multiple threads. So, we can see 
that each executor is a process, but it includes multi threading (Task) to run the 
application.

2.5  �Difference between Multiprocessing and Multithreading

A process is an executing instance of an application and it has a self-contained 
execution environment. A process generally has a complete, private set of basic run-
time resources; in particular, each process has its own memory space. Also, a pro-
cess can contain multiple threads.

A thread is a basic unit of CPU utilisation; it comprises a thread ID, a program 
counter, register set, and a stack. It shared with other threads belonging to the same 
process its code section, data section and other operating system resources such as 
open files and signals. A thread of execution is the smallest sequence of programmed 
instructions that can be managed independently by a scheduler, which is typically a 
part of the operating system.

Fig. 2  Apache spark multithreading model

Q.J. Wang
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Figure 3 is the picture showing the difference between process and thread:
From above picture, you can see typically one process can have one or multi 

threads and all the threads in one process share the same code, data and files, but 
they have independent registers and stack.

It’s important to note that a thread can do anything a process can do. But since a 
process can consist of multiple threads, a thread could be considered a ‘lightweight’ 
process, like short-lived request to a web application for getting a user details. Thus, 
the essential difference between a thread and a process is the work that each one is 
used to accomplish. Threads are used for small tasks, whereas processes are used 
for more ‘heavyweight’ tasks, like a batch ETL job.

In addition, threads can share data among them, which processes cannot and 
hence they can communicate easily, Threads take lesser time to get started com-
pared to processes and through Threads multiple user requests can be supported 
concurrently.

The implementation of threads and process differs between operating systems, but 
in most cases a thread is a component of a process. Multiple threads can exist within one 
process, executing concurrently and sharing resources such as memory and open files, 
while different processes do not share these resources. In particular, the threads of a 
process share its executable code and the values of its variables at any given time.

Threads may not be actually running in parallel. It is the operating system, which 
does intelligent multiplexing so that the shares of the processes provided to each 
thread in a manner that it appears like the threads are executed in parallel.

In summary, multithreading and multiprocessing are two basic technologies to 
improve the system throughput, and as multicore computers are becoming more 
and more prevalent, a large number of distributed computing platform now support 
multithreading and multiprocessing. Big Data Technologies, like Spark, Hadoop, 

Fig. 3  Difference between process and thread [3]
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etc. use the Multithreading and Multiprocessing in various ways to ensure speedy 
execution of different types of Big Data Analytics jobs so that the insights can be 
created within an acceptable timeframe.

3  �Computing Architecture in Distributed Computing

Computer architecture has been evolving since the advent of the first computer. 
Now there are 3 main types of architecture: SISD, SIMD and MIMD, and there are 
two types in MIMD: SM-MIMD and DM-MIMD.

3.1  �SISD

At the very beginning, most of the computers used scalar processors, whose instruc-
tions operate on single data. Such processor model was called SISD (Single 
Instruction Single Data). It is very slow as there is no parallelism in such model.

3.2  �Vector Processor

Vector processor, also known as array processor was invented in the 1970s, which 
implements an instruction set containing instructions that operate on one-
dimensional arrays of data called vectors. Vector processors can greatly improve 
performance on certain workloads, such as arithmetical operation and digital signal 
processing. Today most commodity CPUs implement architectures that feature 
instructions for a form of vector processing on multiple data sets. Meanwhile, many 
companies, like Intel and IBM, provide Vector Processing library for users to 
develop their own Vector Processing program.

There are two types of vector processing: SIMD (Single Instruction Multiple Data) 
and MIMD (Multiple Instruction Multiple Data). They both provide data processing 
parallelism, and the difference is SIMD only provide the data level parallelism while 
MIMD can provide two dimensional parallelism: instruction level and data level.

3.3  �SIMD

SIMD is widely used for graphics and video processing, vector processing and digital 
signal processing. It is short for Single Instruction Multiple Data, which is one clas-
sification of computer architectures. SIMD operations perform the same computation 
on multiple data points resulting in data level parallelism and thus performance gains.

Q.J. Wang
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Figure 4 is the picture to show what’s the difference between SISD and SIMD:
It can be seen from the picture that SIMD doesn’t provide instruction level paral-

lelism, but only data level parallelism. It can process multiple data vectors with one 
instruction. This is very useful for some loop operation. For example, if you have 
two Byte lists and you want to add them to one list, assuming the length of the two 
lists is 1024, then it will take 1024 times to complete the adding operation, but if 
SIMD is supported by the computer and the CPU is 64-bits, it will only take 128 
times to finish the processing.

Figure 5 is the picture to show this example:

Fig. 4  Difference between SISD and SIMD

Fig. 5  SISD and SIMD example
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3.4  �MIMD

MIMD (Multiple Instruction Multiple Data) is another type of parallelism. 
Compared with machine with SIMD, machines using MIMD have a number of 
processors that function asynchronously and independently, [4] which means that 
parallel units have separate instructions, so each of them can do something different 
at any given time; one may be adding, another multiplying, yet another evaluating a 
branch condition, and so on.

Figure 6 is the picture to show MIMD parallelism:
From the above picture, it can be seen that MIMD architecture can accept mul-

tiple instructions at the same time. Each instruction is independent from others and 
has its own data stream to process.

There are two types of MIMD: Shared-Memory MIMD and Distributed-Memory 
MIMD.

3.5  �SM-MIMD

In the Shared-Memory (SM) Model, all the processors share a common, central 
memory. The distinguishing feature of shared memory systems is that no matter 
how many memory blocks are used in them and how these memory blocks are con-
nected to the processors, address spaces of these memory blocks are unified into a 
global address space, which is completely visible to all processors of the shared 
memory system [5].

Fig. 6  MIMD parallelism
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Figure 7 is the SM-MIMD picture showing processors and memories are con-
nected by interconnection network:

One of the advantages of Shared-Memory model is it is easy to understand and 
another advantage is that memory coherence is managed by the operating system 
and not the written program, so it is easy for developer to design parallel program in 
such model. The disadvantage is that it is difficult to scale out with Shared-Memory 
model and it is not as flexible as Distributed-Memory model.

3.6  �DM-MIMD

Distributed-Memory (DM) is another type of MIMD. In this model, each processor 
has its own individual memory location. Each processor has no direct knowledge 
about other processor’s memory. For data to be shared, it must be passed from one 
processor to another as a message. Since there is no shared memory, contention is 
not as great a problem with these machines [4].

DM-MIMD is the fastest growing part in the family of high performance com-
puters or servers as it can dramatically enhance the bandwidth by adding more 
processors and memories.

Figure 8 is the picture showing the structure of DM-MIMD:

Fig. 7  Shared memory MIMD
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The disadvantage of DM-MIMD is the communication cost between different 
processors can be very high and it is difficult to access the non-local data, which 
is located in other processors’ memories. Nowadays, there are many system 
designs to reduce the time and difficulty between processors, like Hypercube 
and Mesh.

MPP (massively parallel processors) is one of the typical examples of DM-MIMD 
and many famous big data technologies are base on MPP, like BIG SQL (SQL on 
Hadoop) from IBM and Impala from Cloudera.

In summary, MIMD is a trend in current computer architecture development and 
most of the distributed computing systems are based on such technologies.

4  �Scalability in Distributing Computing

Scalability is a frequently mentioned concept in Distributed Computing area. It 
means the capability of a system to handle a growing amount of work, or its poten-
tial to be enlarged in order to accommodate that growth. In this section, it will cover 
the definition of scalability, comparison of scale up method and scale out method.

4.1  �Scalability Requirement and Category

In the Internet era, rapid data growth is happening every day and such growth is 
bringing a lot of challenges to most of business and industries. As a result, every 
organization today has a need to build or design systems with reasonable scalability 
characteristic.

There are two approaches related to scalability: scale up and scale out. They are 
commonly used in discussing different strategies for adding functionality to 

Fig. 8  Distributed memory MIMD
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hardware systems. They are fundamentally different ways of addressing the need 
for more processor capacity, memory and other resources.

Figure 9 is the picture showing the basic difference of scale up and scale out.

4.2  �Scaling Up

Scaling up, also known as vertical scaling, means upgrading hardware. It generally 
refers to purchasing and installing a more capable central control or piece of hard-
ware. For example, when a application’s data demands start to push against the 
limits of an individual server, a scaling up approach would be to buy a more capable 
server with more processing capacity and RAM [6].

The advantages of scale up are:

•	 Availability of high amount memory can help processing lots of data with low 
latency.

•	 It is easier to control as you only upgrade the hardware, like CPU, memory, net-
work, disk in the same machine

•	 Less power consumption than running multiple servers as there are less machines 
in the scale up methodology.

•	 Less cooling cost in the data center.

Fig. 9  Basic difference of scale up and scale out
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The disadvantage of scale up is as follows:

•	 High price of the high-performance servers. Typically, scale up can be more 
expensive as you have to buy a lot of powerful hardware (CPU, Memory, Disk) 
and such hardware is much more pricy than ordinary one.

•	 Furthermore, sometimes scale up is not regarded as feasible because of the data 
explosion and the unmatched limits to individual hardware pieces on the market.

•	 In terms of fault tolerance, there is greater risk of hardware failure causing bigger 
outages.

4.3  �Scaling Out

By contrast, scaling out, also known as horizontal Scaling, means adding many 
lower-performance machines to the existing system to extend the computing 
resource and storage capacity [6]. With these types of distributed setups, it’s easy to 
handle a bigger data volume by running data processing across the whole system, 
which may include thousands of lower-performance machines.

Scale out has been gaining more and more popularities these days. Scale out 
architecture started getting popular when web applications supporting 100 s of users 
concurrently became popular in early 2000. The benefits of scale out methodology 
are:

•	 It is easy to add more storage and computing resource to the existing system by 
adding some low-performance computers.

•	 Another advantage is the price. Usually, the cost of scale out system is much 
lower than scale up system as most ordinary computers are much cheaper than 
high-performance computers.

•	 Most importantly, scale out provides a true scalability, which means the system 
capacity can be extend to an unlimited level by adding more computers to the 
system.

•	 In terms of fault tolerance, scale out is also easier as typically there is mechanism 
inside scale out system, which will put some standby nodes or servers to particu-
lar service and make data replication across the servers or even racks in the data 
center. Such mechanism makes it very easy to recover the service and data.

The disadvantages of scale out system are:

•	 The maintenance of such a big platform. It may take several days to trace one 
problem because it is very difficult to judge which node causes the problem and 
where is the log.

•	 Another drawback is in data center scale out system will take up more space, so 
the electricity and cooling expense are more expensive than scale up system.
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4.4  �Prospect of Scale Up and Scale Out

Nowadays Scale up and scale out are both growing rapidly. On the one hand, some 
companies, like IBM, Intel are still investing large amount of money on the advanced 
high-performance computer research and development that can support scale up. 
For example, IBM recently announced the latest POWER9 chip, which has up to 24 
cores and provides blazing throughput to speed up complex calculations. On the 
other hand, most of the Internet companies, like Google, Facebook and Yahoo invest 
a lot on the scale out system development. Apache Hadoop is one of the most suc-
cessful projects in the scale out area. In Hadoop, users can easily extend the storage 
size and computing resource by adding new nodes to the existing system.

However, scale up and scale out are not mutual exclusive. There are many cases 
where scale up and scale out are going hand in hand. For instance, in some data 
centers, adding a large number of new servers happens together with the upgrading 
of old servers, like more CPUs, more memory and more disks.

For example, in many real life Big Data Analytics systems, where the data growth 
is very fast and the big data cluster cannot process the high volume of data within 
the expected timeframe, both scale up and scale out approaches are leveraged. The 
specific measures taken are

•	 Put more memory in the existing servers to make the data analytics faster, which 
is scale up

•	 Add more servers to the cluster to extend the volume of the storage, which is 
scale out

In a nutshell, scalability is one of most important features of distributed comput-
ing system. Scale up and scale out are two main technologies to address the scal-
ability problem. These two methods are in nature different and designed to be used 
in different scenarios. Typucal systems supporting Big Data Analytics leverage both 
of these approaches optimaly as needed to address the scalability concerns of spe-
cific cases.

5  �Queuing Network Model for Distributed Computing

Queue system and Queue network model are mainly used to describe and analyze 
the quality of service in distributing computing system, and it is the theoretical basis 
of service scheduling in big data area. In this section, some basic characters of 
queue system will be presented.
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5.1  �Asynchronous Communication

Asynchronous communication is the basic concept behind the Queuing technol-
ogy. Synchronous communication is occurring in real time, like a phone call. 
You have to wait until the person on the other end answers your question in real 
time. When you are using asynchronous communication, you are not waiting for 
a response in real time. You can move on to another task before your first task is 
completely finished or once you are done with your part of a task. Email is a 
good example of asynchronous messaging. As soon as the email is sent from 
you, you can continue handling other things without the need of getting an 
immediate response from the receiver [23]. You can do other things while the 
message is in transit.

For example, if a web application receives a lot of requests, the Asynchronous 
Communication mechanism will let this web application generate tasks in response 
to user inputs, and then tasks will be sent to a receiver. A receiver can retrieve the 
task and process it when the receiver is ready and return a response when it is fin-
ished. In this a way the user interface can remain responsive all the time.

5.2  �Queue System

Queue system is based on the asynchronous communication. A queuing system 
consists of one or more servers that provide service of some sort to arriving custom-
ers [7]. The customers represent workloads, users, jobs, transactions or programs. 
Customers who arrive to find all servers busy generally join one or more queues 
(lines) in front of the servers, and leave the system after being served.

Figure 10 shows how a typical queuing system works.
Typically, A queuing system is characterized by following components: distribu-

tion of inter-arrival times, distribution of service times, the number of servers, the 
service discipline and the maximum capacity [8]. There are several everyday exam-
ples that can be described as queuing systems, such as bank-teller service, computer 
systems, manufacturing systems, maintenance systems, communications systems 
and so on.

Fig. 10  Queuing system model
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5.3  �Queue Modeling

Queuing modeling is an analytical modeling technique for the mathematical analy-
sis of systems with waiting lines and service stations. In queuing modeling, a model 
is constructed so that queue lengths and waiting time can be predicted.

There are two types of queuing: Single queuing service and Queuing Network.
A single queuing service consists of one or more identical servers with a joint 

waiting room. Jobs arrive at the queue with an arrival rate and have an expected 
service time. If the servers are all occupied, jobs have to line up in the queue. After 
being served, jobs will leave the queue.

A Queuing Network Model consists of a number of interconnected queues, 
which are connected by customer routing. After a customer is serviced at one node, 
it can join another node and queue for service, or leave the network directly.

Queuing networks can be classified into three categories: open, closed, and 
mixed queuing networks. Open queuing networks have an external input and an 
external final destination. In closed queuing networks the customers circulate con-
tinually never leaving the network. Mixed queuing networks combine open and 
closed Queuing, which means Open for some workloads and closed for others.

Queuing Network Models are now widely used to analyze computer system, 
communication system and product system. In the Distributing Computing area, 
Queuing Network Models can be used to analyze the workloads or jobs schedul-
ing efficiency, such as the average waiting time, service processing time and 
throughput.

Typically, users can submit multiple jobs into distributed cluster. At first, sched-
uler will gather all the available resources, such as Idle CPU, memory in the distrib-
uted cluster. If there are enough resources in the cluster, all the jobs can be executed 
concurrently and then all the jobs leave the cluster after being served. If the resources 
in the cluster in not enough, all the jobs will be put in one or multi queues and they 
have to wait for the scheduler to run the jobs one by one. Usually, there are different 
strategies to schedule jobs, such as FIFO (first input first out), LIFO (last input first 
out) and Priority based method. Different services may adopt different strategies 
and some of them can support user-defined strategies. For some types of service, 
they can set different priorities for the different queues, and users can submit jobs to 
different queues according to the job processing time and job priorities.

The technologies popularly used to achieve asynchronous communication/queu-
ing in Big Data Analytics world are Yarn, Mesos, Kafka, etc. The fundamental unit 
of scheduling in YARN and Mesos is a queue. The capacity of each queue specifies 
the percentage of cluster resources that are available for applications submitted to 
the queue. Queues can be set up in a hierarchy that reflects the database structure, 
resource requirements, and access restrictions required by the various organiza-
tions, groups, and users that utilize cluster resources. On the other hand, Kafka 
provides implementation of application level Queue where actual applications can 
send some tasks/messages that can be asynchronously acted upon by other 
applications.
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In summary, queue network modeling provides a methodology to analyze the 
service quality and then improve the service quality based on the analyze result.

6  �Application of CAP Theorem

CAP theorem is very famous in distributed computing system. The CAP Theorem, 
also known as Brewer’s theorem, states that, in a distributed system (a collection of 
interconnected nodes that share data.), you can only have two out of the following 
three guaranteed across a write/read pair: Consistency, Availability, and Partition 
Tolerance – one of them must be sacrificed [10].

6.1  �Basic Concepts of Consistency, Availability, and Partition 
Tolerance

Below is the detailed explanation of Consistency, Availability, and Partition Tolerance:

•	 Consistency – A read is guaranteed to return the most recent write for a given 
client.

•	 Availability – A non-failing node will return a reasonable response within a rea-
sonable amount of time (no error or timeout).

•	 Partition Tolerance  – The system will continue to function when network 
partitions occur [10].

Figure 11 shows the CAP theorem.

Fig. 11  CAP theorem [19]
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6.2  �Combination of Consistency, Availability, and Partition 
Tolerance

According to CAP theorem, it is impossible to build a general data store that is 
continually available, sequentially consistent and tolerant to any partition pattern. 
You can build one that has any two of these three properties. All the combinations 
available are:

•	 CA – data is consistent between all nodes – as long as all nodes are online – and 
you can read/write from any node and the data is the same, but if you ever develop 
a partition between nodes, the data will be out of sync (and won’t re-sync once 
the partition is resolved).

•	 CP – data is consistent between all nodes, and maintains partition tolerance (pre-
venting data de-sync) by becoming unavailable when a node goes down.

•	 AP – nodes remain online even if they can’t communicate with each other and 
will re-sync data once the partition is resolved, but you aren’t guaranteed that all 
nodes will have the same data (either during or after the partition) [11]

No distributed system is safe from network failures, thus network partitioning 
generally has to be tolerated. In the presence of a partition, one is then left with two 
options: consistency or availability [12].

If a system chooses to provide Consistency over Availability in the presence of 
partitions, it will preserve the guarantees of its atomic reads and writes by refusing 
to respond to some requests. It may decide to shut down entirely (like the clients of 
a single-node data store), refuse writes (like Two-Phase Commit), or only respond 
to reads and writes for pieces of data whose master node is inside the partition com-
ponent. There are plenty of things, which are made much easier (or even possible) 
by strongly consistent systems. They are a perfectly valid type of tool for satisfying 
a particular set of business requirements [13]. Typically, Database systems designed 
with traditional ACID (Atomicity, Consistency, Isolation, Durability) guarantees in 
mind such as RDBMS (relational database management system) choose consis-
tency over availability [12].

If a system chooses to provide Availability over Consistency in the presence of 
partitions, it will respond to all requests, potentially returning stale reads and accept-
ing conflicting writes. These inconsistencies are often resolved via causal ordering 
mechanisms like vector clocks and application-specific conflict resolution proce-
dures. There are plenty of data models which are amenable to conflict resolution and 
for which stale reads are acceptable [13]. Systems designed around the BASE 
(Basically available, soft state, eventually consistent) philosophy, common in the 
No-SQL movement for example, choose availability over consistency [12].

In the absence of network failure, which means the distributed system is running 
normally, both availability and consistency can be satisfied. CAP is frequently mis-
understood as if one had to choose to abandon one of the three guarantees at all 
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times. In fact, the choice is really between consistency and availability for when a 
partition happens only; at all other times, no trade-off has to be made [12].

One of the typical AP systems is Apache Cassandra Database, in which avail-
ability and partition tolerance are generally considered to be more important than 
consistency in Cassandra. But Cassandra can be tuned with replication factor and 
consistency level to also meet C.

7  �Quality of Service (QoS) Requirements in Big Data 
Analytics

In big data analytics area, there are many factors regarding to the Quality of Service 
(QoS) requirements, such as performance, Interoperability, fault-tolerance, Security, 
Manageability, Load-Balance, High-Availability and SLA.

7.1  �Performance

Most of Distributed Computing systems are designed to enhance the Performance 
of computing or IO (input, output) speed, so Performance is one of the key QoS 
requirements. Typically 3 things are related to performance: Throughput (in terms 
of data), Response Time and support for concurrent Requests. What is important for 
many Big Data Analytics application is all three – like real Time Analytics which is 
accessed by 100 s of concurrent users and which needs to process large volume of 
data. Many advanced technologies can enhance the performance, like pre-
computing, in memory processing, Thread level parallelism, using of hybrid storage 
like SSD + HDD etc.

In the cognitive computing area of Big Data Analytics, two types of advanced 
hardware technologies, FPGA (Field Programmable Gate Array) and GPU (graph-
ics processing unit) are leveraged to accelerate the speed of machine learning model 
training and real time classification or prediction.

7.2  �Interoperability

Interoperability is another important QoS requirement in Big Data ecosystem. It is 
the property that allows for the unrestricted sharing of resources between different 
systems. This can refer to the ability to share data between different components or 
machines, both via software and hardware, or it can be defined as the exchange of 
information and resources between different computers through local area networks 
(LANs) or wide area networks (WANs). Broadly speaking, interoperability is the 
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ability of two or more components or systems to exchange information and to use 
the information that has been exchanged [17]. Interoperability is a very important 
feature as sharing data between different systems is inevitable in the big data era, so 
most big data technologies support interoperability.

For instance, some web applications provide many interfaces or API to access 
different databases or big data storage. Apache Zeppelin [22] and Jupyter Notebooks 
are widely used tools for exploration in Big Data Analytics which provide interoper-
ability for accessing various data sources and sinks in a transparent manner.

7.3  �Fault-Tolerance

An important challenge faced by today’s big data analytics systems is fault-
tolerance. It is very normal that when running a parallel query at large scale, some 
form of failure is likely to occur during execution. Fault tolerance is the property 
that enables a system to continue operating properly in the event of the failure of 
some of its components. Fault tolerance places a significant role in big data area as 
both cluster scale and data are becoming increasingly complicated. Typically, there 
are two types of failure when running big data application: data failure and node 
failure. Data failure means some intermediate partitions of data may be lost due to 
application design or hardware problem. Big data system should design the mecha-
nism to handle such failure automatically. 

Apache Cassandra is an open-source distributed NoSQL database management 
system and it is a good example of such mechanism. Apache Cassandra is not driven 
by a typical master-slave architecture, where failure of the master becomes a single 
point of system breakdown. Instead, it harbors a concept of operating in a ring mode 
so that there is no single point of failure. Whenever required, users can restart the 
nodes without the dread of bringing the whole cluster down.

Another real example of Fault-tolerance is that one application used checkpoint 
approach in the spark-streaming project. Figure 12 shows the Steaming process in 
this case.

In this case, the application set checkpoint in each time interval, so when job 
failure happens due to software, hardware or network problem, it can easily find the 
broken point and then restart the streaming process.

7.4  �Security

Security is necessary in all Big Data Analytics systems. The big data explosion 
has given rise to a host of information technology tools and capabilities that 
enable organizations to capture, manage and analyze large sets of structured and 
unstructured data for actionable insights and competitive advantage. But with this 
new technology comes the challenge of keeping sensitive information private and 
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secure. Big data that resides within a big data environment can contain sensitive 
financial data in the form of credit card and bank account numbers. It may also 
containproprietary corporate information and personally identifiable information 
(PII) such as the names, addresses and social security numbers of clients, custom-
ers and employees. Due to the sensitive nature of all of this data and the damage 
that can be done should it fall into the wrong hands, it is imperative that it be 
protected from unauthorized access [18]. To handle security problem in big data 
environment, following aspects should be taken into consideration:

•	 Ensure the proper authentication of users who access the big data environment.
•	 Ensure that authorized users can only access the data that they are entitled to 

access.
•	 Ensure that data access histories for all users are recorded in accordance with 

compliance regulations and for other important purposes.
•	 Ensure the protection of data—both at rest and in transit—through enterprise-

grade encryption [18].

Kerberos is a very popular service level securities tool in big data area. It is a 
network authentication protocol, and designed to provide strong authentication for 
client/server applications by using secret-key cryptography.

7.5  �Manageability

Manageability is an indispensable requirement of big data analytics system to 
make the environment and services easily manageable. As big data systems are 
becoming increasingly complex, it is very important to provide system 

Fig. 12  Checkpoint in spark streaming
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administrators and users with enough and user-friendly interface, which can facili-
tate the daily management, such as service installation and configuration, service 
start and stop, service status check, metrics collection and visualization, job his-
tory, service and job log.

Most of big data platforms provide good Manageability, such as Apache Hadoop. 
Hadoop is an ecosystem, not a single product, so there are many tools providing 
Hadoop service management and one of the outstanding ones is called Ambari.

7.6  �Load-Balance

Load-Balance is a configuration in which cluster-nodes share computational work-
load to provide better overall performance. For example, a web server cluster may 
assign different queries to different nodes, so the overall response time will be opti-
mized. However, approaches to load balancing may significantly differ among 
applications. For example, a high-performance cluster used for scientific computa-
tions would balance load with different algorithms from a web-server cluster, which 
may just use a simple round-robin method by assigning each new request to a dif-
ferent node [15].

In some popular Distributed Computing systems, like Apache Hadoop, Load-
Balance is a very important feature. In Hadoop, Load balancing issues occur if there 
are some tasks significantly larger than others such that in the end only a few tasks 
are running while all others are finished. This situation happens in case of skewed 
reduce keys and can be easily identified (all tasks finished but a few). But the real 
challenge is not to detect load balancing issues but to either avoid data skew in the 
beginning (by clever partitioning and choice of parallelism) or to have adaptive 
methods that can mitigate the effect of data skew. Therefore, at first during the stage 
of job partitioning, it is critical to get enough sample data to calculate the partition 
points, which can make sure all the partitions’ size are similar. Secondly, if the data 
skew still happens as the performance of some nodes is not as good as others, in 
Hadoop, it can migrate the tasks from the lower-performance nodes to higher-
performance idle nodes.

7.7  �High-Availability (HA)

In computing, the term availability is used to describe the period of time when a 
service is available, as well as the time required by a system to respond to a request 
made by a user. High availability is a quality of a system or component that assures 
a high level of operational performance for a given period of time. One of the goals 
of high availability is to eliminate single points of failure. Typically, High-availability 
improve the availability of the cluster by having redundant nodes, which are then 
used to provide service when system components fail.
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There are commercial implementations of High-Availability clusters for many 
operating systems. The Linux-HA project is one commonly used free software HA 
package for the Linux operating system [15].

A good example of High-availability computing cluster is Apache Hadoop. 
Hadoop provides High-availability in HDFS system. The HDFS NameNode High 
Availability feature enables you to run redundant NameNodes in the same cluster in 
an Active/Passive configuration with a hot standby. This eliminates the NameNodes 
as a potential single point of failure (SPOF) in an HDFS cluster. Formerly, if a clus-
ter had a single NameNode, and that machine or process became unavailable, the 
entire cluster would be unavailable until the NameNode was either restarted or 
started on a separate machine. This situation impacted the total availability of the 
HDFS cluster in two major ways:

•	 In the case of an unplanned event such as a machine crash, the cluster would be 
unavailable until an operator restarted the NameNode.

•	 Planned maintenance events such as software or hardware upgrades on the 
NameNode machine would result in periods of cluster downtime.

HDFS NameNode HA avoids this by facilitating either a fast failover to the new 
NameNode during machine crash, or a graceful administrator-initiated failover dur-

ing planned maintenance [16].

7.8  �SLA

SLA (Service Level Agreement) is an agreement between consumer and service, 
which warrants generic service functionality. An SLA can be flexible and altered 
according to the different kinds of services as per the requirement. The purpose of 
an SLA is to offer evidence that keeps track records of performance, availability 
and billing. Because of its adaptable quality, a vendor can regularly update its ser-
vices like technology, storage, capability and infrastructure. By means of negotia-
tion, the consumer and the service provider will agree upon common policies in 
SLA. The termination phase in SLA delivers the end date of a service and offers the 
final service bill of utilized resources. It is an easy way to form a treaty between 
both parties [9].

To guarantee the service quality, some service providers allow customers to 
submit the SLA together with a job or workload. SLA is used to check whether the 
service provider can accommodate the job to meet the SLA. If it can, then the ser-
vice provider executes the job using the SLA.  If not, the consumer is asked to 
negotiate with the service provider to come up with an SLA that both parties could 
agree upon.

SLA can improve customers’ satisfaction. For example, if a user submits a job 
and expects the job to be finished in a certain time, like 1 h, but due to high usage of 
the cluster, the job is not completed within 1 h, so the customer is not satisfied with 
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the service. In such case, if there is a SLA to identify the job’s requirement and the 
available resource in the service provider, then the service provider can adopt some 
alternative methods to meet customer’s need, such as adjusting the priority of the 
job or adding more hardware resources.

In summary, performance, Interoperability, fault-tolerance, Security, Manageability, 
Load-Balance, High-Availability and SLA are the key Quality of Service aspects 
those contribute to the success of a well designed Big Data Analytics system.

8  �Conclusion

In summary, the concepts discussed in this chapter are fundamentals to Distributed 
Computing area. The Big Data Technologies implements these concepts and address 
the quality of services, like performance, fault tolerance, high availability, load bal-
ancing, and others while used to address the needs of real life applications and use 
cases. So understanding these fundamental concepts of Distributed Computing is 
very important for appropriate use of them in industries specific Big Data Analytics 
systems. Also using the right trade of across various quality of services is of para-
mount importance while applying these concepts in the context of specific Big Data 
Analytics use cases.

References

	 1.	https://www.britannica.com/technology/multiprocessing
	 2.	https://en.wikipedia.org/wiki/Multithreading_%28computer_architecture%29
	 3.	http://www.w3ii.com/en-US/operating_system/os_multi_threading.html
	 4.	https://en.wikipedia.org/wiki/MIMD
	 5.	http://essaymonster.net/science/69515-study-on-mimd-and-shared-memory-architectures.

html
	 6.	https://www.techopedia.com/7/31151/technology-trends/what-is-the-difference-between- 

scale-out-versus-scale-up-architecture-applicat
	 7.	MEN170: SYSTEMS MODELLING AND SIMULATION.  QUT, SCHOOL OF 

MECHANICAL, MANUFACTURING & MEDICAL ENGINEERING
	 8.	Queueing systems and networks. Models and applications. B. FILIPOWICZ and J. KWIECIEŃ
	 9.	https://www.researchgate.net/publication/273575710_Adaptive_Scheduling_in_the_

Cloud_-_SLA_for_Hadoop_Job_Scheduling
	10.	http://robertgreiner.com/2014/08/cap-theorem-revisited/
	11.	https://mytechnetknowhows.wordpress.com/2016/05/31/cap-theorem-consistency- 

availability-and-partition-tolerance/
	12.	https://en.wikipedia.org/wiki/CAP_theorem
	13.	https://codahale.com/you-cant-sacrifice-partition-tolerance/
	14.	https://www.techopedia.com/definition/6581/computer-cluster
	15.	https://en.wikipedia.org/wiki/Computer_cluster
	16.	https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.4/bk_hadoop-ha/content/ch_

HA-NameNode.html

Fundamental Concepts of Distributed Computing Used in Big Data Analytics

https://www.britannica.com/technology/multiprocessing
https://en.wikipedia.org/wiki/Multithreading_(computer_architecture)
http://www.w3ii.com/en-US/operating_system/os_multi_threading.html
https://en.wikipedia.org/wiki/MIMD
http://essaymonster.net/science/69515-study-on-mimd-and-shared-memory-architectures.html
http://essaymonster.net/science/69515-study-on-mimd-and-shared-memory-architectures.html
https://www.techopedia.com/7/31151/technology-trends/what-is-the-difference-between-scale-out-versus-scale-up-architecture-applicat
https://www.techopedia.com/7/31151/technology-trends/what-is-the-difference-between-scale-out-versus-scale-up-architecture-applicat
https://www.researchgate.net/publication/273575710_Adaptive_Scheduling_in_the_Cloud_-_SLA_for_Hadoop_Job_Scheduling
https://www.researchgate.net/publication/273575710_Adaptive_Scheduling_in_the_Cloud_-_SLA_for_Hadoop_Job_Scheduling
http://robertgreiner.com/2014/08/cap-theorem-revisited/
https://mytechnetknowhows.wordpress.com/2016/05/31/cap-theorem-consistency-availability-and-partition-tolerance/
https://mytechnetknowhows.wordpress.com/2016/05/31/cap-theorem-consistency-availability-and-partition-tolerance/
https://en.wikipedia.org/wiki/CAP_theorem
https://codahale.com/you-cant-sacrifice-partition-tolerance
https://www.techopedia.com/definition/6581/computer-cluster
https://en.wikipedia.org/wiki/Computer_cluster
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.4/bk_hadoop-ha/content/ch_HA-NameNode.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.4/bk_hadoop-ha/content/ch_HA-NameNode.html


34

	17.	https://www.techopedia.com/definition/631/interoperability
	18.	https://www.qubole.com/blog/big-data/hadoop-security-issues/
	19.	http://blingtechs.blogspot.com/2016/02/cap-theorem.html
	20.	http://mesos.apache.org
	21.	https://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/YARN.html
	22.	https://zeppelin.apache.org/
	23.	https://www.cloudamqp.com/blog/2016-09-13-asynchronous-communication-with-rabbitmq.

html

Q.J. Wang

https://www.techopedia.com/definition/631/interoperability
https://www.qubole.com/blog/big-data/hadoop-security-issues/
http://blingtechs.blogspot.com/2016/02/cap-theorem.html
http://mesos.apache.org
https://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/YARN.html
https://zeppelin.apache.org/
https://www.cloudamqp.com/blog/2016-09-13-asynchronous-communication-with-rabbitmq.html
https://www.cloudamqp.com/blog/2016-09-13-asynchronous-communication-with-rabbitmq.html


35© Springer International Publishing AG 2017 
S. Mazumder et al. (eds.), Distributed Computing in Big Data Analytics, 
Scalable Computing and Communications, DOI 10.1007/978-3-319-59834-5_3

Distributed Computing Patterns Useful in Big 
Data Analytics

Julio César Santos dos Anjos, Cláudio Fernando Resin Geyer, 
and Jorge Luis Victória Barbosa

1  �Introduction

Data-intensive applications like petroleum extraction simulations, weather forecast-
ing, natural disaster prediction, bio-medical and others research have to process an 
increasing amount of data. In view of this, Big Data applications lead to the need to 
find new solutions to the problem of how this should be carried out, related to the 
point of view of dimensions such as Volume, Velocity, Variety, Value and Veracity 
[1]. This is not an easy task, Volume depends on a hardware infrastructure to achieve 
scalability and Value depends on how much Big Data must be creatively and effec-
tively exploited to improve efficiency and the quality needed to assign Veracity to 
information. Variety of data typically originate from different sources, such as his-
torical information, pictures, sensor information, satellite data and other structured 
or unstructured sources. MapReduce (MR) [2] is a programming framework pro-
posed by Google that is currently adopted by many large companies, and has been 
employed as a successful solution for data processing and analysis. Hadoop [3] is 
the most popular open-source implementation of MR.

Since there is a wide range of data sources, the collected datasets have different 
noise levels, redundancy and consistency [4]. New platforms for Big Data like 
Cloud Computing (Cloud) have increasingly been used as a platform for business 
applications and data processing [5]. Cloud providers offer Virtual Machines (VMs), 
storage, communication and queue services to customers in a pay-as-you-go 
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scheme. Although, Cloud has grown rapidly in recent years, it still suffers from a 
lack of standardization and the availability of homogeneous management resources 
[6]. Private clouds are used exclusively by a single organization, that keeps careful 
control of its performance, reliability and security, but might have low scalability 
for Big Data analytics processing requirements. Public clouds have an infrastruc-
ture that is based on a specific Service Level Agreement (SLA) which provides 
services and quality assurance requirements with minimal resources in terms of 
processing, storage and bandwidth. The Cloud Service Provider (CSP) manages its 
own physical resources, and only provides an abstraction layer for the user. This 
interface might vary depending on the provider, but maintains properties like elas-
ticity, insulation and flexibility [7]. On the other hand, Hybrid clouds are a mix of 
the previous two systems and enable the cloud bursting application deployment 
model, where the excess of processing from the Private cloud is forwarded to the 
Public cloud provider. Cloud providers can negotiate a special agreement as a means 
of forming a Cloud federated system, where providers that operate with low usage, 
might be able to lease a part of their resources to other federation member to avoid 
wasting their idle computational resources [6].

For last few decades, finding information in large datasets was only possible 
through a relational database. The data professionals had to choose the right query 
to obtain the correct result. However, in the recent past, it was realized that Relational 
Database cannot be a tool for every type of domain and analytics problem. In Big 
Data, the queries can include both structured, semi-structured or unstructured data, 
such as audio, video, web pages, text and so on, and it can originate from multiple 
data sources. Multimedia, social networks and Internet of Things (IoT) are collect-
ing more and more information, which means that Big Data will have a growing 
prospect of being able to create value for businesses and consumers [4]. The pur-
pose of Big Data Analytics is to amass a lot of data and find anomalies or patterns 
in it, so that value and significance can be added. However, it is common to find 
multiple data in different places, since the cost of data transfers for a single site is 
prohibitive owing to the limitations of size and bandwidth [8, 9].

In addition to Cloud, several other types of infrastructure are able to support 
data-intensive applications. Desktop Grids (DGs), for instance, have a large number 
of users around the world who donate idle computing power to multiple projects 
[10]. DGs have been applied in several domains such as bio-medicine, weather fore-
casting, and natural disaster prediction. Merging DG with Cloud into Hybrid 
Infrastructures could provide a more affordable means of data processing. Several 
initiatives have implemented Big Data with Hadoop as a MR framework, for 
instance [11–13]. However, although MR has been designed to exploit the capabili-
ties of commodity hardware, its use in a Hybrid Infrastructure is a complex task 
because of the resource heterogeneity and high churn rate of desktops. This is usual 
for DGs but uncommon for Clouds. Hybrid Infrastructures like these are environ-
ments which have geographically distributed resources [9] in heterogeneous plat-
forms with a mixing of Cloud, Grids and DG.
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Frameworks and engines to Big Data follow known primitives in computer sci-
ence such as mechanisms to message synchronization, data distribution, task man-
agement and other. The message exchange is the basis of distributed systems, and 
primitives, like send and receive, are found built-in on the programming languages 
in the different frameworks. However, these primitives are only a part of these sys-
tems used for the data intensive processing which most of the time, remain hidden 
to users and programmers. This Chapter introduces some of these primitives and 
their possible implementations.

The Chapter is organized as follows. Sections 2 and 3 are about primitives for 
Distributed Computing. Section 2 shows an overview about the main primitives for 
concurrent programming. Section 3 discusses protocols and interfaces for message 
exchange. Section 4 presents the data distribution in Big Data over geographically 
distributed data environments. Section 5 approaches possible implementation prob-
lems in distributed Big Data environments. Finally, Sect. 6 presents conclusions.

2  �Primitives for Concurrent Programming

The primitives and patterns of Big Data Programming models can be classified into 
three main areas: concurrent expression and management, synchronization of con-
current tasks and communication between distributed tasks. In this section we’ll 
delve into them in detail.

2.1  �Concurrency Expression

The primitive-fork concept allows the creation of a new process within a program.
Other primitives related to this concept enable the execution of another program 

(executable code), creation and execution of the process on a remote (distributed) 
computer, and waiting for the termination of a child process. At first, because the 
process concept does not allow the sharing of variables (data) between two pro-
cesses, special libraries were created for the declaration of shared variables between 
processes. In a second moment, the multi-threaded programming model emerged 
which made concurrent programming much simpler and more efficient, in particular 
by the ease of native variable sharing. This model was implemented in several 
instances, highlighting the POSIX threads library, later the Sun Java threads, and 
then the Microsoft C# threads. When a process is created in the local memory of a 
machine, a thread is automatically launched as a parent thread. Figure 1 shows a 
parent thread (thread A) which can create one or more child threads (thread a’) to 
the data sharing and a parent thread created by a process (Proc 2).
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2.2  �Synchronization

The concurrent programming model with shared variables introduced the synchro-
nization problem. With the increasing popularity of this model, the search for better 
mechanisms for synchronization has been intensified. There are two major prob-
lems of synchronization: the effects of concurrent access of writing to a shared vari-
able and the dependence of one task on results produced by another task. Several 
authors such as Dijkstra, Hoare, and others have proposed different solutions such 
as mutex, condition variables, semaphores, and monitors, which have been imple-
mented in various libraries such as Posix threads, Java and C#. For some more 
specific patterns of concurrency between tasks, other synchronization mechanisms 
such as barriers and latches have emerged.

For the implementations to be efficient, some evolution in the processors (hard-
ware) was necessary. A good example was the introduction of TestAndSet instruc-
tion that allows reading and writing in a simple variable (boolean, integer). A great 
reference for these concurrent programming concepts and their instances is the 
book by Gregory Andrews [15]. More recently, with the advent of multicore proces-
sors and GPUs, there have been some interesting variations to solve the problems of 
synchronization in both hardware and software. A good example is the concept of 
transactional memory.

It is important to note that the development of distributed applications requires 
other primitives of resources and services beyond those presented above, with a 
particular focus on programming. A classic example is the concept of distributed 
file systems and their realizations such as NFS, another solution adopted by the Sun 
company. Also in programming terms, the popularization of systems and applica-
tions in local and wide networks, that is, a set of distributed and independent com-
puters required the development of the message-based programming concept, which 
will be presented in the next section. However, most of the primitives mentioned 
above for concurrent programmings, such as for thread creation and management, 
and for synchronization of shared variables, do not have satisfactory variants for the 
context of distributed systems.

Fig. 1  Processes and 
Threads in a local memory

J.C.S. dos Anjos et al.



39

3  �Communication Protocols and Message Exchange

The distributed messaging-based programming model allows two or more pro-
cesses, or programs, running on separate computers, without access to the concept 
of shared memory, to exchange information. Using the specific model of the send/
receive primitives, a sender process sends, through the send primitive, to an identi-
fied receiver process a data that it has in its local memory. The receiver process 
receives a copy of the data through the receive primitive and stores it in its local 
memory. Usually the receiver process does not need to identify the sender process. 
This principle is a basic, simple, and abstract model, as exemplified in Fig. 2.

There are numerous variations derived from this basic model considering aspects 
such as the synchronization that may occur between processes during the execution 
of send/receive primitives. In addition to model variations, the study of message 
exchange concepts is still more complex if one considers the numerous instantia-
tions (implementations). They can be differentiated for example by the different 
communication network protocols that can be used in the execution of the send/
receive primitives, such as TCP or UDP protocols.

3.1  �Synchronous Communication

In the synchronous communication the sender and receiver are synchronized in each 
message. The sender is blocked until the receive primitive is executed by the receiver 
process, delivering a copy of the data to the application. The sender process can 
execute a second (next) send only after the receiver has executed the receive primi-
tive for the precedent message. Usually the receiving process is blocked by the 
receive primitive until a message has been delivered by the system to the receiving 
process. However, the sender and receiver devices must have a temporization mech-
anism when multiple hosts are sending messages simultaneously, such as an atomic 
clock, to avoid the arrival of out-of-order messages. Also, another possible problem 
is when the sender remains blocked all the transmission time due to an inefficient 
synchronization problem. Thus, the system could have synchronization problems 
mainly on the Internet environment which is very unstable.

Fig. 2  Send and Receive Primitives
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Also, the synchronous communication is uncommon in the most of the distrib-
uted system and the synchronous model it is inefficient in many of the distributed 
systems [16].

3.2  �Asynchronous Communication

In the asynchronous communication, the send process is unlocked and can continue 
its execution (following the send command) soon after the send execution is passed 
to the service that implements the complete message exchange functionality. 
Usually, this service starts on the sending computer (operating system and network 
services) when a complete copy of the data is made by the service, allowing the send 
process to update the data sent in its local memory. The most implementations of the 
basic model adopt this semantic.

An important question is how processes identify the partner process in the send 
and receive primitives. For example, each process may have a unique identifier (ID) 
in the context of the system or application. This ID is generated dynamically at the 
time that the process is created and can be assigned by the programmer. Another 
option is to use a computer identifier, where the process is running, associated with 
a communication port allocated to that process. Other issues that distinguish the 
different implementations and that may consequently affect the techniques of use by 
the application are:

•	 What is the maximum size of each message?
•	 What types of data can be transmitted in a message?
•	 What control over any data transmission errors, such as message loss or duplica-

tion, and content change?
•	 Can sender and receiver processes be implemented in different languages and 

run on distinct platforms (e.g. operating systems)?

3.3  �Pseudo-Synchronous Communication

A variant of the two previous models was created in the context of some message 
oriented middleware (MOM). One of the advantages of synchronous communica-
tion is that the sending process, shortly after the execution of the send primitive, 
knows that its message has been received by the receiver. The same does not occur 
in asynchronous communication. In the pseudo-synchronous communication vari-
ant, the sending process is not blocked at each send. But the receiving processor 
sends asynchronously to the sender a message confirming the receipt of each mes-
sage sent by the sender. This confirmation message can have multiple meanings, for 
example, the message was only received or the message was received and processed. 
It is important to note that in the literature it is possible to find relevant variants for 
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the concept of pseudo-synchronous communication. In Distributed System theory, 
some authors define three systems models: synchronous, asynchronous and par-
tially synchronous communication. The concept of communication in partially syn-
chronous systems just expresses that the sender process is not blocked (as in the 
asynchronous model), but there is a time limit for communication to be completed, 
while in asynchronous this time is theoretically “infinite.”

3.4  �Client/Server Paradigm

In the context of the Client/Server model, for the distributed systems architecture, a 
new paradigm of communication called Remote Procedure Call (RPC) has emerged. 
In RPC, a client program makes a call to a procedure located on a remote server. The 
client is usually blocked until the procedure is completely executed. Communication 
is optional, through procedural arguments, and obviously can be performed in both 
directions. The client must know the server’s remote procedure interface, that is, a 
procedure name and types of input and output arguments. Initially an implementa-
tion was developed over the TCP protocol (which guarantees greater reliability than 
UDP) and applied in the development of several important distributed systems, such 
as NFS. Later on, variations of the basic RPC model, better adapted to new distrib-
uted system needs, emerged, such as the Web Services concept, more appropriate 
than the classic RPC for web-program communication.

The data serialization process in the distributed file system of Hadoop, a frame-
work extensively used in Big Data, produces byte streams for transmission over a 
network or for writing to persistent storage. The inter-process communication 
between nodes in the system is implemented under RPC to execute these tasks [3].

Finally, it is necessary to at least mention some models created for more specific 
purposes such as replication (data or servers), fault tolerance, or in the context of 
more recent computing paradigms such as Mobility, P2P, Cloud and IoT. Examples 
are libraries for group communication, tuple spaces, publish/subscribe, location, 
event processing and others. The following subsection discusses platforms that sup-
port communication in Big Data environments.

3.5  �Communication Deployment in Big Data

The Apache Flink, previously called Stratosphere, is a data analytics framework that 
follows the Lambda Architecture and enables the extraction, analysis and integra-
tion of heterogeneous datasets [17]. It has two APIs, one for DataSet and other for 
DataStream respectively deployed on process batch and stream applications which 
constitute a hybrid programming environment. The core is a dataflow in a distrib-
uted streaming that does not store data but converts it into optimized binary formats, 
after its reading. It is extensible for traditional data warehousing queries such as 

Distributed Computing Patterns Useful in Big Data Analytics



42

textual data queries and information integration in a Table API library. The imple-
mentation supports iterative programs that allow an analysis of execution graph and 
statistical applications inside the data processing engine. The architecture includes 
different deploying modes, such as local (in a single JVM), cluster (standalone and 
Hadoop-YARN environment) and Cloud computing (EC2 and GCE). Flink sup-
ports Java, Scala and Python programming languages [18]. Its implementation has 
a publish/subscribe API to connect with Apache Kafka [19], which is used as a data 
synchronization mechanism in heterogeneous environments.

MapReduce is a programming framework that abstracts the complexity of paral-
lel applications. It is a batch processing system that partitions and scatters datasets 
across hundreds or thousands of machines, bringing the computation and data as 
close to each other as possible [3]. The Map and Reduce phases are handled by the 
programmer, whereas the Shuffle phase is created while the task is being carried out. 
The input data is split into smaller pieces called chunks. The data is serialized and 
distributed across machines that form the Distributed File System (DFS). The 
Hadoop implementation which follows the MapReduce model uses a synchroniza-
tion mechanism through heartbeat between Master and Workers.

The master handles the task scheduling according to the data locality. Therefore 
the tasks are running locally in the first phase. When running an application, the 
master assigns tasks to workers and monitors the progress of each task. The machine 
that is assigned a Map task, executes a Map function and emits key/value pairs as 
intermediate results that are temporarily stored in the workers’ disks. The execution 
model creates a computational barrier, which allows the tasks to be synchronized 
between the producers and consumers. A Reduce task does not start its processing 
until all the Map tasks have been completed. This works as a data synchronization 
mechanism. A hash function is applied to the intermediate data to determine which 
key will carry out a Reduce task. The group of selected keys forms a partition. Each 
partition is transferred to a single machine during the Shuffle phase, to execute the 
next phase. The serialization function is an RPC client/server implementation which 
uses the primitives send/receive to do these transfers.

Spark [20] is a Big Data implementation widely popular to real-time applica-
tions. The main abstraction in Spark is the RDD (called resilient distributed datas-
ets) [21], a storage abstraction that avoids replication by using lineage for fault 
recovery, i.e., the events are grouped into micro-batches. The RDD is kept in mem-
ory not as a distributed shared memory abstraction, but as objects partitioned across 
a set of machines that can be rebuilt if a partition is lost. RPC is the main communi-
cation paradigm used to access these objects. The programmer produces operations 
with “map, filter and join” and enables interactive data mining. Although RDD are 
best suited for batch applications that apply the same operation to all elements of a 
data set; they are less suitable for applications that make asynchronous fine-grained 
updates to shared state.

Spark maintains the data synchronization and manages resource allocation in 
Big Data real-time applications. However, more complex environments use the 
Zookeeper [22] system to provide leader election and some state storage with mul-
tiple masters. Zookeeper is a service that maintains the configuration information 
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and provides the synchronization to distributed applications. This system enables 
the recovery process occurs between 1 and 2 min in failure cases. Thus, the complex 
implementations of race conditions in Big Data applications on distributed systems 
are hidden from users and programmers.

4  �Data Distribution in Big Data on Distributed 
Environments

Big Data applications can be implemented in several ways. Scattered data can be 
found in DNA research studies, where researchers need to investigate different data-
bases, such as those in protein structure analysis. These applications seek a genetic 
mapping that requires a pre-existing reference genome to be employed for the read 
alignment of a gene [23]. Thus, the data processing is characterized by its ability to 
compare input data with different databases. This processing consists of several 
phases of search-merge-reduce, where the data are given an incremental update 
[24]. Some researchers like Jayalath [8], Tudoran et al. [25], Krish [26] and Ji [27] 
have put forward Hadoop implementation based on a geo-distributed dataset in mul-
tiple data centers. The authors state that, for instance, it is possible to have multiple 
execution paths for carrying out a MapReduce job in this scenario, and the perfor-
mance can carry out a great deal.

Figure 3 illustrates the scenario where dispersal data is used. Each locality is con-
nected through slow links, where data transfers may not have a negligible cost. The 
data is scattered in the clusters. All the intermediate results must be combined to 
produce a single return for a Big Data analysis. These problems can be overcome by 
means of a hybrid infrastructure if there is a file system that supports the incremental 

Fig. 3  Geographically distributed data
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updates and highly concurrent data sharing. A possible solution involves integrating 
a distributed file system like the Hadoop Distributed File System (HDFS) with the use 
of a Cloud environment; otherwise, DGs are a large-scale infrastructure with specific 
characteristics in terms of volatility, reliability, connectivity, security and storage 
space. Both architectures are suitable for large-scale parallel processing. Finally, 
more complex combinations can be envisaged for platforms resulting from the use of 
multiple Clouds through an extension to a DG [28, 29]. However, these structures 
must use several synchronization primitives such as those discussed in Sect. 2.

Different Cloud infrastructures have their own configuration parameters, and the 
availability and performance of offered resources can change dynamically due to 
several factors, including the degree of over-commitment that a provider employs. 
In this context, solutions are needed for the automatic configuration of complex 
cloud services. The Cloud infrastructure comprising heterogeneous hardware envi-
ronments may need the specifications of configuration parameters at several levels 
such as the operating systems, service containers and network capabilities [30]. The 
users who need to execute applications may not know how to map their require-
ments to the available resources. The lack of knowledge about the cloud provider 
infrastructure will lead either to overestimating or underestimating the required 
capacity; both are equally bad and can lead to a waste of resources.

Organizations are increasingly relying on an infrastructure from multiple provid-
ers as a means of increasing fault tolerance and avoiding provider lock-in. A Multi-
Cloud infrastructure contains various configuration choices and can change its 
requirements and workloads dynamically at the time of execution. Given this, solu-
tions are needed for the automatic configuration of complex cloud services at differ-
ent abstraction levels. In this context, multiple cloud infrastructures, like clouds in 
heterogeneous environments, require different configuration levels and processing 
synchronization such as the operating system, service containers, and configuration 
capabilities [30].

The allocation of resources from CSPs to users is carried out in terms of the 
execution time, number of virtual machines, data transfer and size of data storage. 
The users must map their computational resource needs before running their appli-
cations. This means that, if there is a lack of knowledge on the part of users about 
the CSP infrastructure or a real need for resource allocations, it can lead to an incor-
rect lease of CSP resources for the users and a higher cost than expected. However, 
an optimal allocation is difficult to achieve, and so strategies to obtain an approxi-
mation can be accepted [31].

Mansouri et al. [32] propose the deploy of a brokering algorithm. This algorithm 
was employed for optimizing the storage availability and finding a placement of 
objects that was suitable for the required Quality of Service (QoS). The algorithm 
takes account of the cost of maintaining one object in a cloud provider, reduces the 
probability of failure and improves the associated QoS with each service-level 
agreement (SLA) contracted with a cloud provider. An object is a target data, with-
out a particular size or defined type. The data is split into chunks and the main goal 
is to find the optimal chunk placement depending on the user’s needs and financial 
means.
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A large number of transfers of objects from one cloud storage provider to another 
takes up time and is often impossible during the execution time. An expected avail-
ability represents M objects in each data center, and this determines the expected 
failure of the object in each data center. Mansouri et al. evaluate two parameters to 
each cloud provider, the failure probability and the cost per object. The objects are 
replicated in multiple sites in accordance with these metrics. However, the total size 
can achieve up to several exabytes, which can require a lot of time for these 
transfers.

The message synchronization in some cases is difficult to do when several sys-
tems are working together with different topologies under the Internet. One reason 
is that can have different time synchronization requirements on several applications 
simultaneously. In this case, an orchestrator is required to maintain this control. 
SALSA [30] is a framework for the orchestrated configuration of cloud services 
through multiple CSPs. This framework provides a model for application configura-
tions and the deployment of different kinds of services. The information about the 
configuration supports each level of cloud service such as application levels, deploy-
ment relationships at multiples software stacks and the link between service units 
and configuration capabilities. The configuration capabilities are obtained from reg-
istered services (cloud services and specifications of topology services) or user 
specifications. SALSA has a service unit orchestrator for multiple configuration 
services for each configuration task group. Its purpose is to control the application 
deployments, movement of virtual instances among different cloud providers and 
the deployment of an environment like VM, library loads and support for multiple 
stack deployments of cloud.

The creation of VM is a separate process from other software levels. The con-
figuration capabilities can be obtained via a registry service or from user specifica-
tions, to determine the relationship between the service units. A service orchestrator 
is generated for each service allowing it to handle the tasks. Meta Information con-
tains abstract nodes with generic types of service that implement the virtual nodes. 
SALSA adopts an approach where each service unit orchestrator runs indepen-
dently and interacts with a cloud service orchestrator. Although the framework 
enables heterogeneous configurations, there is not a mechanism to evaluate the per-
formance or the workloads used to adapt the load-balance in Cloud. The SALSA 
architecture, designed by [30], is shown in Fig. 4.

The framework has a central configuration service that orchestrates the setup 
operation through the local configuration layer in the VM. The information service 
keeps a good deal of information about the Cloud infrastructure which is handled by 
a configuration generator. The topology orchestration layer creates a dependency 
graph and sets a configuration plan for a Cloud configuration system and the VMs 
are managed in this way. The monitor layer keeps the status of both VMs and the 
Cloud elasticity but it is necessary for the services to be already working before new 
service instances can be distributed.

HyMR [33] is a framework for enabling an autonomic cloud burst for clusters of 
virtual machines that execute MapReduce jobs over Multi-Cloud. The authors 
implemented a Hybrid Infrastructure as a Service (HyIaaS) for the VM instance 
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(partitions management) in Multi-Cloud. HyIaaS implements an OpenStack1 exten-
sion. This partitioning is transparent to the users, since it allows them to have access 
to all the VMs in the same way, regardless of their physical allocation. HyIaaS 
receives the deadline specifications of the users that are stored in a user-policy for 
managing VM migrations. An external CSP will be responsible for receiving and 
launching the VMs across their Cloud Controller module.

The Logical Node monitors and analyses critical events from a physical machine 
and the Logical Cloud makes spawning/migration decisions based on Logical Node 
information. Figure 5 shows the HyMR architecture, where a HyIaaS orchestrates 
the application executions. The HyMR runs on the Cloud Controller and maintains 
data consistency in a part of HDFS. However, VM migrations have a poor perfor-
mance when carrying out data copying operations from the HDFS.

These approaches show the need for a more fine-grained system of task manage-
ment and data distribution across Big Data applications. Businesses and govern-
ments arrange their data in distributed cloud platforms for different reasons, such as, 
the need to maintain the proximity of resources; data storage with organizations that 
share common goals; and a desire to keep data replicas across regions for redun-
dancy purposes. This data information must be analyzed on a global scale.

One possible way to do this is to merge all the data in a single data center, and 
another is to use a Multiple Clouds infrastructure to execute individual instances of 
MapReduce across each dataset separately and then aggregate the results. The study 
of [8] suggests that this could be done by running jobs in a geo-distributed opera-
tion. The authors introduce the G-MR, a Hadoop implementation based on a geo-
distributed dataset across multiple data centers. They state that, for instance, it is 
possible to have multiple execution paths for carrying out a MapReduce job in this 
scenario, although the performance may vary considerably for each path. Another 
problem is that popular MapReduce open sources, like Hadoop, do not support this 

1 https://www.openstack.org/.

Fig. 4  The Salsa architecture (Adapted from [30])
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feature. In addition, most CSPs do not usually provide a bandwidth guarantee for 
large-scale data transfers in execution time [34].

The G-MR has an algorithm called a Data Transformation Graph (DTG) which 
determines an execution path for performing a job sequence for MapReduce. The 
problem is how to decide which stage should derive partitions that must be moved 
and how to reduce costs by finding the best performance for MapReduce applica-
tions. Figure 6 shows the architecture of G-MR, adapted from [8]. The architecture 
consists of the following modules: a Group Manager, Job Manager, Copy Manager 
and Aggregation. The Group Manager optimizes the execution path and may instruct 
the Job Manager to copy data for a remote data center or aggregate multiple sub-
datasets. The Job Manager performs the jobs over Hadoop which is deployed in each 
n data center. The Copy Manager is responsible for executing the data copy from one 
data center to another. However, the total number of nodes in a single job graph is 
O(pn) and can become huge when the number of p partitions grows. The Aggregation 
manager maintains the integrity of the results. The model shows that this architecture 
is feasible from the standpoint of data distribution and the integration of results.

The approach Write Once Read Many (WORM) is an accepted assumption for data 
access in Big Data applications like MapReduce. The handiest manner for Big Data 
processing across several data centers is to use a data replication mechanism among dif-
ferent CSPs. However, the variability in the high-performance required for cloud opera-
tions leads to bottlenecks [35, 36]. Thus, the best strategy is to reduce data transfers.

Tudoran et al. [25] argue that there are two methods for modeling complex infra-
structures. The analytical models use low-level details with workloads and are 

Fig. 5  The HyMR architecture (Adapted from [33])

Fig. 6  The G-MR architecture (Adapted from [8])
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characterized by their ability to predict the performance. This means the wealth of 
detail is what will determine the best modeling. The sampling method is an active 
approach which does not require any previous knowledge of the infrastructure. The 
information about network bandwidth, topology and routing strategies is not avail-
able to the users in public clouds. Because of this, the authors introduce a sample-
based category for modeling that monitors the environment with agents, called 
GEO-DMS. The agents carry out the monitoring for data transfers and geographi-
cally-distributed data management that is transferred across multiple clouds. The 
model registers the correlation between performance (execution time) and cost 
effectiveness (finance), and imposes budgetary constraints in the interests of safety.

The agents are implemented through VMs in each CSP where the applications 
are running. The decision manager is concerned with how the transfer paths are 
established between the source and destination. One way to achieve this is directly 
from the node to the data center or by using multiple paths across intermediate data 
centers. The data transfers are intra-site data replications that result from the pres-
ence of dedicated links among the data centers of the same CSP.  The scientific 
applications interact with an API to provide data transfers over a WAN. A monitor 
agent carries out environmental monitoring and makes the measurements for the 
decision manager. The measurements include bandwidth throughput between data 
centers, and the CPU load, I/O speed and memory status of the VM nodes. The deci-
sion manager updates the weights of the paths periodically with the aid of these 
measurements.

5  �Implementation Problems

This section has been organized to provide the first vision about some paradigms 
behind of the Big Data implementations and discuss possible problems that the 
developers must avoid. As previously discussed, in a distributed environment we 
can have several implementation issues. The biggest problem of the resource shar-
ing is related to the need to avoid the race condition between the systems and the 
loss of synchronization on message exchange problems. With basis on these issues, 
the next sections evaluate possible implementation problems in Big Data.

5.1  �Race Condition Problems

The reduction of performance in virtualization systems has led companies like 
Google and Facebook to use physical machines directly. The first reason for perfor-
mance decrease is the lock in the disk access due to race conditions. The semantic 
follows the send/receive paradigm in an asynchronous communication channel. The 
operating system of the virtualization manager provides the access control to the 
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internal bus for one single machine on each time where to do write on disk. If the 
data size is larger than the queue size, then several I/O interruptions will be neces-
sary. As more than one virtual system can access the same resource, the wait time to 
use the disk queue increases and produces a high wait time to each virtualized appli-
cation. Thus, this behavior will produce a low performance. This phenomenon also 
occurs when the cloud providers use storage under fibre channel networks.

Hybrid systems have been described in some scientific papers as a mixture of 
public and private clouds. At the same time, this factor refers to the degree of avail-
ability in the resource policies. Factors regarding the deployment of native and vir-
tualized clusters are evaluated in the work of Sharma et al. [37]. In their analysis, 
the authors argue that generic benchmarks show an overhead of 5% and 15% for 
computation and I/O workloads respectively, when confronted with a non-virtualized 
system. In addition, the level of overhead may vary depending on the workload, 
availability of resources and programming of interactive jobs. This I/O competition 
is related to the bandwidth of the disk bus buffers in the hardware environment 
which generates a race condition problem, called of disk contention problem.

There is an increasing need for a repeated analysis from Big Data in the Cloud 
with streaming characteristics. Streaming and data-intensive applications are often 
not the best profile for Cloud applications [38]. Streaming systems are event-driven 
and their behavior differs from batch systems like MapReduce [39]. The MapReduce 
model lacks efficient support for real-time processing. The traditional system that 
has been developed to process static databases like Hadoop cannot provide a low 
latency response in real-time or streaming processing. The main problem in stream-
ing is the lock in the receiving mechanism due to the over-information in the input 
queue during an event where occurs a data burst. Another problem is related with 
system incapacity to forecast the exact moment of occurring a data burst. Some 
implementations avoid this problem with the brokers use like the Kafka, which 
isolates the producers and consumers in a message queue system. This application 
can produce small overhead in comparison with achieved benefits.

Hadoop Streaming is a utility included in the Hadoop distribution in an attempt 
to enable streaming in the MapReduce model through two standard Unix interfaces 
for stream processing, one stdin (input) and one stdout (output) [40]. These inter-
faces have two “executables” (one mapper and one reducer) that use a Combiner 
function. The Combiner is an implementation that enables a map output to run in 
memory. Pipe operations are created by the Unix system call to build a half-duplex 
communication channel for an external executable file. A pipe call is invoked to 
establish a communication channel for each interface with send/receive primitives.

When a new pipe is created, two file descriptors are obtained. One of them is for 
reading and the other for writing. An inode identifies each pipe in the local file sys-
tem to temporarily store data. The communication channel may generate system 
overhead producing a lock and some critical fields of pipe can spawn race condi-
tions between the read/write operations. A manner to avoid this issue is to increase 
the size of the buffer greater than the queue length in the system memory.
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5.2  �Message Exchange

The MapReduce model was originally conceived for large homogeneous cluster 
environments. As a result, simplifications were adopted by the model with the aim 
of optimizing the task distribution. However, these simplifications may entail sys-
tem degradation in heterogeneous environments. The work of Zaharia et al. [41] 
was the first study to detect these problems. Their study points out that there are 
concerns over the simplification of the MapReduce model since this may lead to an 
excessive number of speculative tasks. These issues were observed among the exe-
cutions of different applications in large clusters with virtual environments, e.g. 
Amazon EC2, owing to the competition for applications that provide access to hard-
ware. The Cloud resources represent the most homogeneous environment possible, 
although, in fact, the resources have a heterogeneous behavior because they share 
virtual machines with other users at the same time. To overcome this problem, the 
authors proposed LATE (Longest Approximate Time to End), a new task scheduler. 
Although LATE does not completely avoid speculative tasks, it considerably 
reduces performance degradation in heterogeneous environments. The results of an 
experimental evaluation results show that, compared with the native Hadoop sched-
uler in speculative mode, LATE achieves a gain ranging from 8.5% to 58%, depend-
ing on the application and number of working machines and thus maximizes the 
message exchanges mechanism and avoids synchronization loss.

In the work of Tang et al. [42] the authors implement a layer to create a hybrid 
distributed file system (HybridDFS) under reliable data storage clusters in Cloud 
and unreliable data storage in desktop grid. Each data chunk in volatile nodes has at 
least one replica distributed for different volunteer PCs or cluster nodes. The vola-
tile node employs a fault-tolerance mechanism.

The authors developed a Node Priority-Based Fair Scheduler (NPBFS) algo-
rithm. This means that the node with greater computational capacity processes more 
tasks. The system takes into account both data location and storage capacity, and the 
length of the task queues is related to the computational capacity of each node. A 
weight coefficient indicates the node priority for receiving a greater number of 
tasks. The algorithm works as a FIFO queue, which maintains the task distribution 
under a REST Web Server. The REST Web Server is a structured message exchange 
service in computer networks following the Client/Server paradigm. The manage-
ment of the data transfers follows a synchronization mechanism based on two 
thresholds: the synchronization interval time (SIT) and failure timeout time (FTT). 
An FTP service provides the data movement.

In a Hybrid Cloud environment, the data centers are interconnected by means of 
slow links. The data is moved from the private to public Cloud when a new VM 
allocation is necessary to improve a task performance. The data locality and data 
movement are a challenge for accelerating iterative MapReduce in Hybrid Clouds. 
Furthermore, since the extra resources represent an additional cost for data move-
ment, a trade-off between performance gains and benefits must be evaluated. These 
issues are evaluated in the work by Clement [43] to address iterative MapReduce 
problems in a Hybrid IaaS Cloud environment. The authors argue that improving 
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the ability to take advantage of data locality in a hybrid Cloud environment is criti-
cal. The aim of the strategy is to extend the original fault-tolerance mechanism of 
HDFS and deploy data replicas from an on-premise VM in a private Cloud to 
another allocated off-premise VM in a public Cloud as if it was an external rack over 
the HDFS.

The off-premise VM initializes without data and needs re-balance the initial data 
blocks with on-premise VM. A heuristic determines a re-balance factor from an I/O 
intensive benchmark to approximate the application behavior for the duration of the 
re-balancing. The scheduler waits for the off-premise VM to get a minimal replica 
number to start the task distribution. This deploying is possible due to an application 
class called iterative application, which reuses the invariant input data, where the 
data locality can be leveraged. The solution improves the performance with increase 
parallel executions in a distributed environment in Cloud off-premise. The message 
exchange paradigm is deployed based on RPC, and the message synchronization is 
based on the heartbeat mechanism of Hadoop.

The strategies for implementing streaming in Cloud are discussed in the work of 
Tudoran et al. [38]. The authors evaluate applications like the Ocean Observatory 
Initiative, where sensors send information that is collected by satellites for geo-
spatial computations. The study shows how communication in the Cloud can inter-
fere with computation. The approach uses persistent and ephemeral storage. In the 
first, called Stream & Compute (SC), the data is sent directly to VM computation 
without storage persistence. In the second, called Copy & Compute (CC), the data 
is first saved in an attached storage, so that it can be conveyed to VM computation 
afterwards. When the sensors produce new data, it is processed against existing 
features as in a temporal process. This eliminates the need for communications 
between processes, but adds a huge volume of data that must be streamed for each 
worker. This mechanism uses a Web server in a client/server paradigm.

The Stream & Compute provides a better response time, but when carried out on 
a large scale, there is a network saturation that leads to a need for redistribution 
across different CSPs. The Copy & Compute makes it easier to do repairs, when an 
unexpected stop occurs in the VM. In contrast, the date is near to the computation. 
However, a high variability in the remote copy phase causes a variation of around 
20% in terms of data transfers per seconds. I/O contention is observed in the Copy 
& Compute approach on disc, when all the workers are trying to access the data at 
the same time. The classic problem of CPU utilization vs. I/O has a significant 
impact on the data throughput owing to virtualization. The I/O contention problem 
is typically one of race conditions in hardware.

6  �Conclusion

This Chapter has presented examples of primitives and patterns used in distributed 
systems which are implemented in several Big Data engines. The internal codes 
hide this implementation under methods in Java, C#, and other programming 
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languages. For instance, the synchronizing method, management of variables, inter-
process communications, and other primitives. In function of this, the implementa-
tions were analyzed in the deployment context of Big Data. Also, the studies on data 
distribution in the geographically distributed environments have discussed manners 
to avoid these problems.

Several implementations use the Client/Server model and try to avoid race condi-
tions with synchronization mechanisms previously discussed. The standard primi-
tives like send/receive and lock/mutex are widely used in programming languages 
like Java, C# and other. These program languages are the basis for the development 
in Big Data. For instance, a significant problem in Cloud environment is related 
with I/O contention. However, this issue can not be avoided but only minimized 
until this moment.

The Big Data applications can be implemented in different ways such as in geo-
graphically distributed environments. In this scenario, the control of synchroniza-
tion can be so complex for the traditional synchronization methods that it is 
necessary the use of dedicated tools like Kafka and Zookeeper to provide the activi-
ties control like the coordination of machines and message synchronizations. The 
dataintensive management is hard in heterogeneous environments because of the 
time synchronization. Due to this, the systems must maintain an external clock, 
such as the atomic clock mechanism with the NTP protocol under the Internet, to 
avoid the different timestamp between nodes which can generate several synchroni-
zation problems in Big Data applications.

Multimedia, social networks and Internet of Things (IoT) are collecting more 
and more information, which means that Big Data will have a growing prospect of 
being able to create value for businesses and consumers. The purpose of Big Data is 
to amass many data and find anomalies or patterns in it, so that value and signifi-
cance can be added. The emerging systems are highly heterogeneous environments 
with variable structures, where resources can be added or removed at any time. 
Thus, it is necessary to find new ways of processing Big Data which can exploit idle 
computational resources and allow them to be combined with heterogeneous infra-
structures in distributed computing.
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1  �Introduction

The database technology has evolved over time. As the application of database has 
extended from simple mainframe to desktop application to web application to 
mobile application, the size of data to store and manage through database has also 
increased. Figure  1 depicts this growth of the data. The first generation of data 
growth came from ERP software and following that with the introduction of 
CRM.  Next, the introduction of web moved the data volume to terabyte range. 
However, with the mobile, sensor and social media based applications, the data 
volume is growing in the range of petabytes.

Relational database (RDBMS) has been one of the most successful database 
technology since the 1980s. However, even with its solid technological growth, the 
relational database has failed to scale with the growth of data. Despite the advances 
in computing, faster processors and high-speed networks, the scalability of the rela-
tional database has been restricted. The applications built using RDBMS technol-
ogy either has failed to perform with increased data or the cost of the infrastructure 
to keep the application performing has grown exponentially.

Secondly, the relational database was designed for tabular data with a consistent 
structure and fixed schema. Relational database works best when the structure of the 
data is known beforehand. However, in the new world as the volume and velocity of 
the data are increasing, so is the variety and complexity of data. Applications need 
to be built into the database without the full understanding of the data to be stored 
and the structure of the data. Or, the structure of the data is being changed after the 
application has been built. For example, consider a retail application that is selling 
electronic goods. It can develop applications that can search and manage the known 

K. Dutta (*) 
University of South Florida, Tampa, FL, USA
e-mail: duttak@usf.edu

mailto:duttak@usf.edu


58

set of electronic goods. However, if in the future a new device comes up (such a 
brain-reader) with a new set of features and specifications, the applications will not 
know how to store and manage that device through a relational database. The rela-
tional structure does not allow to handle such unstructuredness with the data.

In the next section, we describe the fundamentals of distributed database and 
the basics of the no-SQL database. In describing the technologies, we rely on few 
software platforms supporting such tools. Though there are many different soft-
ware platforms supporting the similar technologies, mostly we have chosen the 
software that is popular and preferably supported by open source platforms. The 
database discussion is followed by the distributed file system and distributed com-
puting platform such as map-reduce and spark. Next, we follow the discussion on 
how these distributed technologies are being used to develop a newer generation of 
machine learning platforms. The textual document is one of the important sources 
of today’s information. We describe the basics of textual search platform and asso-
ciated software such as Lucene and ElasticSearch. Distributed caching enhances 
the performance of real-time access to data. We describe the distributed caching 
systems such as REDIS. As a number of components and systems grow exponen-
tially in big data infrastructure, the communication across these components need 
to be managed more efficiently. In this context, we describe the message passing 
software such as RabbitMQ and Kafka. Lastly, the traditional tools are unable to 
represent big data visually. The Newer generation of visualization tools is being 
developed to present the data. We describe these big data visualization tools in the 
later part of this chapter.
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2  �Distributed Database

The scalability issues in the relational database come with the ACID property. The 
ACID (Atomicity, Concurrency, Isolation, and Durability) property ensures the 
consistency of data and helps to execute transactions in databases. Database ven-
dors long ago recognized the need for partitioning databases and introduced a tech-
nique known as 2PC (two-phase commit) for providing ACID across multiple 
database instances [35].

It is relatively easy to maintain the ACID property in a single server database 
system or even with a two node master-slave database server. However, as the data 
volume grows, it becomes necessary to distribute the data across multiple nodes. 
With multiple nodes, the cost of communication to maintain ACID property 
increases. Also, the availability of any system is the product of the availability of the 
components required for operation. A transaction involving two databases will have 
the availability of the product of the availability of each database. For example, if 
we assume each database has 99.9% availability, then the availability of the transac-
tion becomes 99.8%, or an additional downtime of 43 min per month [35].

This leads us to an important barrier of distributed system – Brewer’s theorem 
[12] on the correlation between consistency, availability, and partition-tolerance. 
Brewer postulates three distinct properties for distributed systems with an inherent 
correlation [18].

Consistency  The consistency property describes a consistent view of data on all 
nodes of the distributed system. That is, the system assures that operations have an 
atomic characteristic and changes are disseminated simultaneously to all nodes, 
yielding the same results.

Availability  This property demands the system to eventually answer every request, 
even in the case of failures. This must be true for both read and write operations.

Partition Tolerance  This property describes the fact that the system is resilient to 
message losses between nodes. And according to the availability property, every 
node of any potential partition must be able to respond to a request.

The core statement of Brewer’s theorem is: “You can have at most two of these 
properties for any shared-data system.” (Fig. 2).

Though all the above properties in a distributed database system are desirable, 
any two of these three properties can be achieved [20].

In a distributed database the data is distributed across multiple geographical 
sites (as depicted in Fig. 3). In the new era of globalization, distributed database 
has become a common scenario due to several reasons – (1) Support the distrib-
uted Nature of Organizational Units (2) Support the need for Sharing of Data 
across multiple units and (3) Support for Multiple Application Software. Most of 
the COTS (commercial off-the-shelf) database server has a distributed version. 
For example, Oracle has a distributed database since Oracle 7. MySQL Cluster is 
the distributed version of MySQL Database. IBM’s DB2 has several versions of 
distributed base as part of the DB2 package. However, in the spirit of maintaining 
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the ACID property, all these relational models distributed database system has 
given up either the partition tolerance or the availability for consistency. When 
network separation happens across multiple sites in the distributed relational data-
base, the database fails to serve for that portion of data.

2.1  �NoSQL Database

In recent years, a new generation of the database has come up to handle the issues 
as discussed above with distributed relational database. It is NoSQL database. As 
the name suggests, it does not follow the relational structure – that allows to store 
and manage unstructured/semi-structured and unknown data structures. NoSQL 
systems are distributed, non-relational databases designed for large-scale data 

Fig. 2  Different properties 
that a distributed system 
can guarantee at the same 
time (Courtesy: Benjamin 
Erb [18])
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storage and massively-parallel data processing across a large number of commodity 
servers. The No-SQL database break through conventional RDBMS performance 
limits by employing NoSQL-style features such as relaxed ACID property, and 
schema-free database design. Unlike relational databases, NoSQL database has 
loosened up the consistency requirements to achieve better availability and parti-
tioning [35].

There are three types of No-SQL databases [29].

Key-Value Stores  As the name implies, a key-value store is a system that stores 
value indexed for retrieval by keys. These systems can hold structured or unstruc-
tured data. Typically, these database store items as alphanumeric identifiers (keys) 
and associated values in simple, standalone tables (referred to as ―hash tables). 
The values may be simple text strings or more complex lists and sets. Data searches 
can usually only be performed against keys, not values, and are limited to exact 
matches [29].

The simplicity of Key-Value Stores makes them ideally suited to lightning-fast, 
highly scalable retrieval of the values needed for application tasks like managing 
user profiles or sessions or retrieving product names. This is why Amazon makes 
extensive use of its Key-Value system, Dynamo, in its shopping cart. Dynamo is a 
highly available key-value storage system that some of Amazon’s core services use 
to provide highly available and scalable distributed data store [16].

The examples in this category include Amazon’s Dynamo [3, 16], Aerospike [2], 
BerkleyDB (now Oracle No-SQL database) [33] and Riak [11] (Table 1).

Document-Based Stores  These databases store and organize data as collections of 
documents, rather than as structured tables with uniform-sized fields for each record. 
With these databases, users can add any number of fields of any length to a docu-
ment. It is designed to manage and store documents. These documents are encoded 
in a standard data exchange format such as XML, JSON (Javascript Option Notation) 
or BSON (Binary JSON). Unlike the simple key-value stores described above, the 
value column in document databases contains semi-structured data – specifically 
attribute name/value pairs. A single column can house hundreds of such attributes, 
and the number and type of attributes recorded can vary from row to row. Also, 
unlike simple key-value stores, both keys and values are fully searchable in docu-
ment databases [29] (Table 2).

Document databases are good for storing and managing Big Data-size collections 
of literal documents, like text documents, email messages, and XML documents, as 
well as conceptual documents like denormalized (aggregate) representations of a 

Table 1  Example of key-value store

Product ID (KEY) Value (Product)

123112 Apple iPhone, 8GB, Gold
146177 Android, Samsung, Galaxy S7, 32GB, US 

Warranty, Lock Free
123112 Android, Samsung, Galaxy J7, Gold, Dual Sim
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database entity such as a product or customer. They are also good for storing sparse 
data in general, that is to say, irregular (semi-structured) data that would require an 
extensive use of nulls in an RDBMS (nulls being placeholders for missing or nonex-
istent values). The examples of document database are – CouchDB (JSON) [5] and 
MongoDB (BSON) [32].

Column-Oriented Database  These types of database store sets of information in 
a heavily structured table of columns and rows with uniform-sized fields for each 
record, as is the case with relational databases, column-oriented databases contain 
one extendable column of closely related data. It employs a distributed, column-
oriented data structure that accommodates multiple attributes per key. While some 
Wide Column (WC) /Column-Family (CF) stores have a Key-Value DNA (e.g., the 
Dynamo-inspired Cassandra), most are patterned after Google‘s Bigtable [13]. 
Google Bigtable is the petabyte-scale internal distributed data storage system 
Google developed for its search index and other collections like Google Earth and 
Google Finance. The tables with column-oriented databases are called column fam-
ily [29] (Fig. 4).

This type of DMS is great for (1) Distributed data storage, especially versioned 
data because of WC/CF time-stamping functions. (2) Large-scale, batch-oriented 
data processing: sorting, parsing, conversion (e.g., conversions between hexadeci-
mal, binary and decimal code values), algorithmic crunching, etc. (3) Exploratory 
and predictive analytics performed by expert statisticians and programmers. 
Examples of the Column-oriented database includes Cassandra and SimpleDB.

The Key-Value store databases are completely unstructured. The only query 
possible in key-value databases is given a key retrieving the value. The document 

{ “ProductID” : “123112”,
 “Manufacturer”: “Apple”,
 “Model” : “iPhone”,
 “Memory” : “8GB”,
 “Color” : Gold}
{ “ProductID” : “146177”,
 “Manufacturer”: “Samsung”,
 “OS” : “Android”,
 “Model” : “Galaxy S7”,
 “Memory” : “32GB”,
 “Warrantee” : “US Warrantee”,
“Lock” : “Lock Free”}
{ “ProductID” : “123112”,
 “Manufacturer”: “Samsung”,
 “OS” : “Android”,
 “Model” : “Galaxy J7”,
 “Color” : “Gold”,
 “SIM” : “Dual Sim”}

Table 2  Example of 
document database
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database provides some structure in the value by providing a constraint that the 
value has to be in JSON or BSON (or any other standard format) format. Other than 
retrieving the value based on the key, in the document database, it is possible to 
query based on the content of the value. For example, in MongoDB, the JavaScript 
based query is used to run a complex query on the value. The column-oriented 
database has a table structure very similar to a relational database, however, unlike 
relational tables, the tables with the column-oriented database may have different 
rows in different columns in the same table. This makes the column-oriented data-
base to handle semi-structured data, where data can be parsed and put into a struc-
tured format – but the structure may change from one data item to the next data 
item. Similar to relational databases, the column-oriented database has high-level 
query language very similar to SQL. For example, in Cassandra, we have CQL 
(Cassandra Query Language) [15]. Recently growing number of column-oriented 
No-SQL databases are implementing SQL-like query capability. Figure 5 depicts 
the sliding scale of structures in the data and where the different types of No-SQL 
database fall on this scale. The difference between these different types will be 
blurred as a growing number of products in one category will incorporate features 
from other categories.

Product Table (Column Family)
Row Key: 123112
ProductID Manufacturer Model Memory Color

123112 Apple iPhone 8GB Gold
Row Key: 146177
ProductID Manufacturer Model Memory OS Warrantee Lock
146177 Samsung Galaxy 

S7
32GB Android US Lock 

Free
Row Key 123112
ProductID Manufacturer Model Color OS SIM
123112 Samsung Galaxy J7 Gold Android Dual SIM

Fig. 4  Example of column-oriented database

Column-
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No-SQL
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Relational
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Structured Un-StructuredSemi-Structured

Key-Value
No-SQL
Database

Document
No-SQL
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Fig. 5  No-SQL database types
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3  �Distributed Storage

Though No-SQL database grew up as a requirement to support the growth of data 
in volume and variety, not every application requires a database to store and man-
age the data. Documents, images, videos can be stored in the file system and pro-
cessed with domain specific tools such as text parser and image processing 
software. As the size of data captured in these forms (i.e. Documents, images, and 
videos) are increasing, it became difficult to store and manage it in a single node 
computing system.

Node
Node

Node

Single node computing with
Single large disk Single node computing with

multiple disks in RAID

Node

Node

Node

Node

Node

Multiple node computing with
multiple disks in distributed file system

Distributed file system

 

Traditionally a single node computing system has processed the data stored 
in local file system. RAID-based storage has come up to accommodate large vol-
umes of data in the file system. The RAID also provides failover mechanism. 
However, still, only single node can process the data stored in RAID. Processing 
large volume of data in single node system has been almost impossible, just read-
ing Terabytes of data from a hard disk by a single node computing machine will 
take several days – any processing on that data will increase that time considerably. 
To solve this issue the distributed file system has been developed, where the data is 
distributed across multiple local hard disks each associated with a separate com-
puting node. In such a system, if the computation on the data in the distributed file 
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can be divided in such a way that each node does the processing on the data stored 
on its local hard disk and the processing in each of these nodes can be done in 
parallel – then we can complete the processing of terabytes of data in few minutes 
with the help several hundreds of such nodes. This motivated the development of 
distributed file system (such as HDFS (Hadoop distributed file system), GFS 
(Google File System), Amazon S3) and corresponding programming framework 
map-reduce and Spark. In this section, first we will discuss the distributed file sys-
tem HDFS, then we will discuss the map-reduce programming framework, and 
lastly, we will discuss the Spark.

3.1  �Hadoop Distributed File System (HDFS)

The HDFS is a distributed file system that spans across multiple nodes. Each of 
these nodes will have a local regular operating system (such as Linux), on top of 
which the HDFS file system is deployed. The interface to HDFS is patterned after 
the UNIX file system (Fig. 6).

HDFS store file system metadata and application data (i.e. the actual files) sepa-
rately. It stores metadata on a dedicated server called NameNode. Application data 
are stored on other servers called DataNodes [39]. The DataNode in HDFS does not 
have any individual failover mechanism such as RAID. Rather the file content is 
replicated on multiple DataNode for reliability. This has the advantage of data being 
local to the node, where the computation will be carried out. This reduces the over-
head associated with data transfers between the nodes for computational require-
ments. The GFS [19] has the similar structure (Fig. 7).

The HDFS namespace is a hierarchy of files and directories. File and directo-
ries are represented on the NameNode by inodes, which record attributes like 
permissions, modifications and access times, namespace and disk space quotas. 
The file content is split into blocks. Conceptually, this is very similar to regular 
file system blocks, but are much larger in size – typically 128 MB, but may be 
larger as selected by the user. These are HDFS blocks. Each HDFS block is rep-
licated at multiple DataNodes. The NameNode maintains the namespace tree and 
the mapping of the HDFS blocks to DataNodes (the physical location of the 
HDFS block) [39] (Table 3, Fig. 8).

An HDFS client first contacts the NameNode for the locations of data blocks 
comprising the file and then reads block contents from the DataNode closest to the 

HDFS

Linux (OS)
Node

Linux (OS)
Node

Linux (OS)
Node

Linux (OS)
Node

Linux (OS)
Node

Fig. 6  HDFS on top of Linux
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Fig. 7  HDFS architecture [39]

Table 3  NameNode metadata example

Filename Number of replicas Block-IDs

/usr/hue/test.dat 3 1, 3, 4, 6
/usr/hue/test2.dat 4 2, 5, 8, 9, 10

Block-ID Location (DataNode) (Total number of DataNode = 10)

1 1, 3, 5
3 2, 4, 6
4 3, 5, 7
6 4, 6, 8
2 1, 3, 5, 7
5 2, 4, 6, 8,
8 3, 5, 7, 9,
9 4, 6, 8, 10

client. When writing the data, the client requests the NameNode to nominate a suite 
of DataNodes to host the block replicas. The client then writes data to the DataNodes 
in a pipeline fashion. HDFS keeps the entire namespace in RAM.

Unlike conventional file system, HDFS provides an API that exposes the loca-
tions of a file block. This allows distributed programming like Map-Reduce frame-
work to process data in a node locally where the data is located [39].

K. Dutta



67

4  �Distributed Computation

Traditional parallel and distributed computation relied on synchronization and 
locking. However, the overhead of synchronization across multiple processes 
and locking the data has considerable overhead. Additionally, the traditional parallel 
and distributed computation have looked at the computation separately from the data. 
The assumptions that were made is the data resides in a database or any storage system 
that is equally accessible by multiple computing nodes. The parallel processing in 
these nodes will lock the data and process it. In addition to the overhead of locking 
such an approach adds tremendous overhead in transporting data from the data node 
(where the data is) to the processing node (the node that is processing the data). The 
Map-Reduce framework is a new parallel programming framework that addresses 
these issues with parallel and distributed computing. The Map-Reduce framework is 
based on two principles.

	1.	 If the computation can be divided based on data segmentation, such that each 
computational node is processing a different part of the data, the requirement of 
lock and synchronization can be avoided. This will improve the performance of the 
parallel computation.

	2.	 If the computation node processes data that is local to its node, then the overhead 
of data transmission from data node to computation node can be avoided.

Though the map-reduce framework was first developed as part of the Hadoop 
ecosystem along with the HDFS, the framework in generic and is applicable in a 
wider variety of data storage including No-SQL databases such as Cassandra and 
MongoDB.

Fig. 8  HDFS architecture (Courtesy: Hortonworks Inc. [23])
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4.1  �Map-Reduce in Hadoop

Figure 9 depicts the map-reduce architecture on HDFS. The Job Tracker in Map-
Reduce is responsible for breaking the job into multiple tasks and assigning to vari-
ous nodes. The Task Trackers are responsible for completing a task. The Job Tracker 
and The Name Node of HDFS can coexist in the same node. The Task Tracker and 
the HDFS Data Node coexist in the HDFS Hadoop framework. Such coexistence 
allows the Task Tracker to process local data without transmitting the data from one 
node to another node. The Job Tracker distributes the jobs in such a way that task 
tracker processes only the local data as far as possible. In Hadoop 2.0 replaced the 
Job Tracker with Yarn, a separate software component to manage the tasks.

The programming framework of Map-Reduce is based on considering data not as 
a single unit, but as a collection of multiple units. The example of such collection 
is – a file is a collection of lines, a directory is a collection of files, a database table 
is a collection of multiple rows and so on. In Map-Reduce term this collection is 
considered as a map. Thus the input to map-reduce programming is a map. For 
example, if a map has N units and there are m task trackers, the Job Tracker can 
ideally provide N/m units to each task tracker to complete. Obviously, the division 
of tasks across task-tracker will seldom be so uniform due to non-uniform distribu-
tion of data across DataNodes (Fig. 10).

A map-reduce programming framework works in three steps.

Map Shuffle & 
Sort Reduce

 

Fig. 9  Map-Reduce on HDFS (Courtesy: NDM Technologies)
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The input to Map step is set of (Keymap-input, Value). The output of map step is 
another set of (keymap-output, value). The shuffle and sort step sorts the output of map 
based on keys, group them together and send it to the reducer. So, the reducer input 
is another map of the form (keymap-output, {Value, Value, … , Value}), where each Key 
of the reducer is associated with a set of values coming out of the map step against 
that key. Note that the output keys of Map step are the same as the input keys of the 
reduce step.

Figure 11 provides an example of a map-reduce way of doing distributed computing 
to compute the word-count distribution in a group of files. The input to the map step is 
a set of files. Each file is split as a collection of lines. The collection of all the lines is a 
map, where the key is the location of the line and the value is the line. This map is the 
input of the Map step in this program. In most cases the map-reduce program does not 

Fig. 10  Hadoop 1.0 vs. Hadoop 2.0 (Courtesy: Saphanatutorial [38])
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Fig. 11  Map-Reduce example (Source: kickstarthadoop [28])
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use input keys, it uses only the values in the input map. The map step involves initiating 
multiple programs (in different threads in the same node and multiple nodes), each of 
these programs is called mapper. The input to each mapper is one entry of the input 
collection, i.e. the map of lines. Thus the input of each mapper in Fig. 11 is a line. The 
mapper program splits the line into words and creates a map of (Word, 1), where 1 is 
the count of the word in that line. The mapper program sorts and shuffles this map. 
With the help of sorts and shuffle, all the mapper programs send the entries (i.e. the 
count) associated with the same key (i.e. same word) to the same reducer. The reducer 
upon receiving all the values associated with a key (word, {count, count,…, count}) 
sums up all the counts for that word and writes into HDFS. Each reducer writes its 
output independently as a separate file in the HDFS. This creates multiple output file of 
a map-reduce program running on top of HDFS.

4.2  �Spark

In reality, for big data, a single map-reduce program cannot complete the computa-
tion required out of the data for analytic purposes. In most cases, a realistic data 
analytic computation requires a series of map-reduce programs. For example, 
computing the mean in a map-reduce form can be done in a single map-reduce 
program. However, the computation of the standard deviation in a map-reduce 
form will require two sequential map-reduce programs. The first map-reduce com-
putation will compute the mean. Using the result of the first map-reduce, the sec-
ond map-reduce computation will compute the standard deviation. The input to 
each map-reduce program is taken from HDFS or some other distributed persistent 
storage (such as No-SQL database). The output of each map-reduce program is 
also written into HDFS. This is depicted in Fig. 12.

However, the above workflow will be slow and time-consuming due to multiple 
reads and write from the HDFS system. Additionally, though map-reduce was 
developed to run large distributed parallel computing process on a number of regu-
lar consumer hardware, in present days computing machines with higher memory 
and processing capacity is very common in enterprise architecture. The spark has 
been developed to use the larger memory capacity of today’s computing hardware.

Spark exploits the memory capacity to avoid the repeated reading and writing on 
the map-reduce workflow. Spark has a concept called “Resilient Distributed Data” 
(RDD). In the most simplistic concept, the RDD considers the memory across 
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Fig. 12  Map-Reduce workflow
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multiple computers as a single contiguous memory. Typical RDD variables are 
collections (such as map, array, list) that stay in memory but spans across computer 
boundary. This results in two advantages. First, as the collection is distributed 
across multiple machines, any processing of the collection can be done in parallel 
on all these machines, where each machine does the computation on its local mem-
ory (very similar to map-reduce computation). Second, the distributed map-reduce 
processing in the case of the spark is done on RDD (memory resident collections), 
so the processing is much faster than the HDFS based map-reduce (Fig. 13).

In the case of RDD in Spark, the map is a transformation that passes each item in 
the RDD through a function and returns a new RDD representing the result. For 
example, there is an RDD x a collection of 10 K integers. We want to increase each 
item in the RDD by 1. This can be carried out as an RDD map. The reduction on an 
RDD is an action that aggregates all the elements of the RDD use some function and 
returns the final result. The example of reducing on x will be sum all the values. 
Typically RDDs are kept in the memory and cease to exist once the spark program 
execution has finished. However, it is also possible to persist an RDD in memory, in 
which case the Spark will keep the elements around on the cluster for much faster 
access the next time we carry. There is also support for persisting RDDs on disk or 
replicated across multiple nodes.

Spark
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5  �Machine Learning Platforms

With the popularity of Spark, running machine learning algorithms on big data has 
become much easier. The landscape of machine learning on big data in changing 
dramatically with Spark. All latest machine learning platforms are using Spark in 
some way or other. Using these platforms companies can build models on large data 
sets without sampling and achieve accurate predictions. These tools use few optimi-
zations to achieve so. First, they use more memory and processing power for 
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Fig. 13  RDD in spark
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making faster computations. Second, they use in-memory compression to handle 
large datasets. And third, they implement parallel distributed network training. The 
deep learning approaches used by these tools build hierarchies of hidden features 
that is composed to approximate complex functions with much less effort.

The Mahout [6] has been a very popular machine learning platform on HDFS 
platform. However, as Spark became popular many of the Mahout machine learning 
libraries migrated to Spark environment.

H2O [22] is another machine learning platform that can work on both Hadoop 
and Spark. SparkFlows [40] is a Big data application development platform for 
building and executing end-to-end data analytic products on Spark. It comes 
pre-packaged with an exhausting set of machine learning and ETL components 
making the workflow definition of big data use cases faster and easier.

The Sparkling Water project combines H2O machine-learning algorithms with 
the execution power of Apache Spark. Figure 14 illustrates the concept of technical 
realization. The application developer implements a Spark application using the 
Spark API and Sparkling Water library.

6  �Search System

With the growth of data, the requirement of real-time delivery of information has 
grown also. This has particularly become true for textual data. A vast amount of big 
data is unstructured textual data, such as the posts derived from Twitter, Facebook, 
and blogs, or textual description of products, or archival data of legal documents. 

implements

Sparkling Water Cluster

new H2OContext(sc).start()

Spark
Worker
JVM

Spark
Master
JVM

Sparkling
Water
App

Spark
Worker
JVM

Spark
Worker
JVM

Spark
Executor

JVM

Spark
Executor

JVM

H2O
Context

H2O
Context

H2O
Context

Spark
Executor

JVM

spark-submit

val sc: SparkContext = ...
val hc = new H20Context(sc).start()

val diModel = DeepLearning.train()
...

...
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The storage consisting of such textual data can easily reach in the range of few 
hundreds of terabytes to a petabyte. The real-time search of this data is impossible 
to achieve with the traditional database indexing scheme.

To make the textual data searchable, an inverted index is created out of textual 
data. In forward index, a document is stored in the database, and with a document 
ID, we can retrieve the document. An inverted index an index is created by words in 
documents. Then each word in the index points to the set of the documents that 
contain that word. Figure 15 shows one example of the inverted index.

The first table in Fig. 15 is the data of documents along with the forward index; 
the second right-hand side table is the inverted index. With the second table, one can 
easily answer queries such as “Find all the documents containing the word ‘sum-
mer.’” Without the inverted index, such query would have taken a long time by 
searching for the word `summer’ in each and every document on the table. As the 
number of words in a language is limited, even with a very large number of docu-
ments the number of entries in the inverted index will be limited, and thus the makes 
it possible to hold the index in memory of a single node or a cluster of nodes. The 
basic algorithm of the inverted index was implemented as part of Lucene library [9].

6.1  �Search Software

Solr [4] was developed on top of Lucene to have a server version that can support 
HTTP and XML based query. With big data, the requirement evolved to hold the 
index larger than single machine memory and have replication of the index to 
accommodate failover of a node hosting the index. This resulted in the development 
of ElasticSearch [17].

Elasticsearch is a distributed, RESTful search engine. It supports HTTP and 
JSON based query capability. Though the basics of ElasticSearch evolved to host 
the inverted index of textual data, the ElasticSearch can host index of any data. Say, 

Fig. 15  Inverted index example (Source: Hotcodeshare [25])
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for example; it can hold the index of product attributes such as manufacturer, model, 
price, year, rating, keywords in the product title and keywords in product descrip-
tions. Typically ElasticSearch is not used to store the actual data; it is used to store 
memory-resident index structure that can search and queried in real-time. In big 
data architecture, it is very common practice to query the ElasticSearch to retrieve 
the document ID (such as product ID) and then to query the HDFS or No-SQL data-
base to retrieve the actual document (or product details).

As shown in Fig. 16, the ElasticSearch has the inbuilt replica and sharding struc-
ture. The sharding allows the single index to be broken down into multiple partitions 
in different nodes. Each shard can be queried in parallel to retrieve data against a 
single query. This improves the query performance in ElasticSearch. Secondly, the 
sharding also allows the index larger than a single node memory to be stored and 
managed by ElasticSearch. The replica in ElasticSearch improves the reliability and 
failover mechanism in ElasticSearch making it a search platform of choice for 
online real-time applications.

Message Passing and Queuing System
In a big data system, nothing is a single node system – every component is a cluster 
of a large number of nodes that handle the distributed data and computation. In such 
a scenario, creating and managing one to one communication becomes a challenge. 
Consider a scenario where the data is coming from multiple sensors. A process is 
receiving the data from sensors and processing it to identify the structured data, and 
writing the semi-structure data into various data storage depending on the type of 
data and information (Fig. 17).

One of the critical problems with the above architecture is the flow of data out of 
sensor is non-uniform making it difficult to estimate the infrastructure requirement 
for processing the data. There will be a mismatch in the rate at which the data is 
coming out of sensors and the rate at which the data can be processed to write into 
the storage. This will result in having a large in-memory buffer in the data parsing 
and extraction program. Additionally, in case the data parsing and extraction pro-
gram fail during processing, there will be a loss of data.

Fig. 16  Failover and clustering in ElasticSearch (Source: Liip [30])
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7  �Big Data Messaging Software

To handle the above issues, a class of software has evolved – called message passing 
or stream processing software such as RabbitMQ, Kafka, Kinesis, Flink. These soft-
ware components allow handling a large volume of messages. These software has 
the capability to hold the messages temporarily with failover and replication capa-
bility and can process the messages before passing it to the data consumer (Fig. 18).

RabbitMQ [36] is one of the leading message passing software that has been 
popular in IT infrastructure to manage streaming data since pre-big-data days. 
Traditionally RabbitMQ is a single server system, thought with the growing popu-
larity of big data it has incorporated clustering in its architecture. The RabbitMQ has 
the capability to incorporate complex routing logic based on message content. The 
most popular message passing system in RabbitMQ is the pub-sub system. In the 
pub-sub system, a group of message producers publishes messages with subjects 
and a group of consumers consume these messages based on the subjects (Fig. 19).

Apache Kafka [8] is a clustered stream data processing software. Unlike 
RabbitMQ which can typically process messages in a range of 20–30 K per sec-
onds, with the inbuilt clustering technology a Kafka cluster can process a much 
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higher number of messages (100 K to few million messages per seconds). A Kafka 
cluster consists of multiple partitions and multiple servers. Each partition has one 
server which acts as the “leader” and zero or more servers which act as a “follow-
ers.” The leaders handle all read and write requests for that partition while the fol-
lowers passively replicate the leader. If the leader fails, one of the followers will 
automatically become the new leader. Each server acts as a leader for some of its 
partitions and a follower for others, so the load is balanced across multiple servers. 
Unlike RabbitMQ whose strength is in routing, the strength of Kafka can consume 
the massive volume of stream data (Fig. 20).

Apache Flink [7] is a streaming data processing system. It can handle large-scale 
system running thousands of nodes. It provides accurate computational results on 
streaming data. A very common use case for Apache Flink is analytics on stream 
data. Quite often Flink and Kafka are used together, where data streams for Flink 
are ingested from Kafka. Typically applications of Flink and Kafka start with event 

Fig. 19  Messaging with RabbitMQ (Source: https://keyholesoftware.com/2013/05/13/
messaging-with-rabbitmq/)

Fig. 20  Kafka cluster (Source: Hortonworks [24])
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streams being pushed to Kafka, which are then consumed by Flink jobs. These jobs 
range from simple transformations of data import/export to more complex applica-
tions that aggregate data in windows. The results of these Flink jobs may be fed 
back to Kafka for consumption by other services or written out to other systems like 
HDFS, Elasticsearch, No-SQL database or web front end. In such a system, Kafka 
provides data durability, and Flink provides consistent data movement and compu-
tation (Fig. 21).

8  �Cache

Caching is an important component of any big data-based systems that expect to 
provide a real-time response to requests. The generic idea of caching is most fre-
quently accesses data items are brought near to the application so that frequent 
requests of these data items can be served in near real time. In the most application, 
there is exists a skew in access pattern to data. For example, following power law 
[1], 80% of the users will access 20% of the data item. These 20% data can be 
brought into a memory based caching system, from where the requests for the data 
can be server much faster than persistent storage such as database or file system.

8.1  �Distributed Caching Systems

Memcached [31] is a very popular high-performance and distributed memory cach-
ing system. In essence, it is an in-memory key-value store for small chunks of data 
(strings, objects) from results of database calls, file-read or remote service call. 
Memcached is inbuilt in latest versions of MySQL to cache database calls. 
Traditionally Memcached has been a single server software component, but with 
the big data systems, Memcached has also grown to accommodate multi-node 

Fig. 21  Kafka and Flink together (Source: [42])
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cluster. Redis [37] is another software product that provides cache service. It is an 
in-memory data structure store and can store many complex objects such as arrays, 
sets, and lists. Unlike Memcached (which provides get and set operations only) 
Redis allows atomic operations on these objects such as appending to a string, push-
ing an element to a list, computing set union, intersection and difference or finding 
the item in a sorted set. Redis has built-in replication, high availability and data 
partition feature. Though Redis works with an in-memory dataset, it can persist the 
data by periodically dumping the data to disk. Redis can be used as both in-memory 
no-SQL Database and cache (Fig. 22).

Case Study: Big Data Analytics Example Architecture
Figure 23 presents an example architecture of a big data analytics in an organization. At 
the left-hand side, a massive stream of sensor data and social media data is coming as 
input. This data is passed to Kafka for temporary holding. The Flink consumes these 
messages from Kafka, processes and parses it, and writes to appropriate storage (HDFS 
or No-SQL database). The analytic programs run on top of the data that is stored in 
HDFS or No-SQL database. These analytics programs can be in the form of map-
reduce, spark and use advanced machine learning libraries such as SparkML, SparkFlow, 
and TensorFlow. The output of analytics program is again saved into the database. 
Depending on the use case and the data volume, the analytic output can be stored in 
HDFS, No-SQL database or even in a relational database. The Elasticsearch or equiva-
lent search system is populated with the output of Flink and analytics program for index-
ing purpose. End users use a front end application to search and retrieve information. 
The front application is running in the application server first contacts the Elasticsearch 
to search for the information (such as a list of product ID) based on various attribute 
values. Then it contacts the database to retrieve the actual information (such as product 
details) associated with the search results. The cache (such as Redis) may be deployed 

1. Check if book is in cache
3. If not in cache - get from
database, save to cache

and read
2. If in cache - read itApp Cache

Redis
Database

Mongo

Fig. 22  REDIS cache in front of MongoDB No-SQL database (Source: Gino [21])

Fig. 23  Example architecture for big data analytics
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in between the front end application (in application server) and the data storage to 
improve the speed of access to popular items (such as daily hot products).

9  �Data Visualization

With the increase of data, the visualization of this volume and variety of data has 
become a challenge. Some tools have emerged in recent years to present the data in 
innovative ways. Tableau [41] has become a popular technology to do data visual-
ization. There are some tools on visualization that works in the cloud and others that 
work as a desktop application with cloud-based access to reports. The traditional 
technologies like Tableau replied on the later. Tableau is primarily used to develop 
dashboard. Tableau is an end user-friendly tool. As soon as the data is connected 
with the Tableau, the Tableau GUI can be used to develop various GUI based reports 
and dashboards.

Recently a new technology “Notebook” has come up as a way to develop and 
maintain rich visualization of data. One of such software is Jupyter [27]. The 
notebook in Jupyter contains both computer code and rich text elements (para-
graphs, equations, figures, links, etc.). These documents contain analysis descrip-
tion and the results along with the executable code which can be run to perform data 
analysis. This allows automatic generation of rich text document containing data 
analysis text and visual representation of the data. The executable code associated 
with a notebook can be shared and can be modified to develop new reports. In the 
past, the report generators and reports were two different component in the enter-
prises that have been maintained separately. This used to lead to a lot of mismatch 
in report generation code and the actual reports. The Notebook technology allows 
these two to be merged and considered as a single unit. IBM’s Data Science 
Experience [26] is another such technology by IBM. Apache Zeppelin [10] is an 
Apache software that supports the Notebook functionality.

10  �Conclusion

In this chapter we have discussed various technologies related to big data technol-
ogy – NoSQL database, distributed file system, map-reduce and spark based dis-
tributed computation, distributed communication platform, distributed caching, 
search platform and visualization technologies. Our intention here was to give an 
overview of all these technologies so that appropriate technical discussion can be 
led in future by the readers. Later in the chapter, we delved down into some associ-
ated technologies such as search system, message processing and caching that 
makes the big data analytics application more robust and performance efficient. 
Lastly, we present an example architecture of a big data analytics based application 
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using these technologies. In Table 4 we summarize the technologies and products 
described in this chapter.

Though there is abundance of technology and software platforms to process, 
manage and use big data, the appropriate choice is very critical for the success of 
these platforms. We expect more technology to evolve in next few years to support 
distributed computation on big data. Once such technology is cryptocurrency (such 
as bitcoin) and blockchain. The blockchain technology is gradually getting traction 
to store the data in a peer to peer fashion without the control of any single entity. The 
technology is now being applied in wide variety of domains including financial, 

Table 4  Summary of big data technology

Technology type Purpose Product example Use case

Database Distribute data with 
replication and failover

No-SQL databases 
such as Cassandra, 
MongoDB, 
BerkleyDB, 
CouchDB, 
SimpleDB, 
DynamoDB

Store and manage large 
volume of structured  
and unstructured data

File system File system distributed 
across multiple nodes

HDFS, GFS Store and manage large 
files or a large number  
of small files

Programming Distributed 
programming that can 
process data in parallel

Hadoop Map-
Reduce, Spark

Computation and analytics 
job on top of data in 
distributed file system  
or no-SQL database

Machine 
learning platform

Complex analytical 
work using machine 
learning techniques

Mahout, H2O, 
SparkML, Sparking 
Water, SparkFlows

Deep learning and 
machine learning  
on big data

Search system To search unstructured 
and semistructured data

ElasticSearch, Solr Store and manage index 
on big data for search 
purposes.

Messaging 
system

To introduce an 
intermediate buffer 
between data collection 
and data storage

RabbitMQ, Kafka, 
Kinesis, Flink

Read high throughput 
incoming data (such as 
twitter data, sensor data) 
and preprocess it before 
writing into data storage

Caching Distributed application 
level caching

REDIS, Memcached Store frequently accessed 
data from in-memory 
distributed cache to reduce 
the access time to this data 
compared to accessing 
from persistent storage  
of database or filesystem.

Data 
visualization

Provides Notebook 
functionality where 
report generation code 
and the actual report 
co-exists

Tableau, Jupyter, 
Zeppelin, Data 
Science Experience

Generate complex report 
including visual 
representation and textual 
description of data
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healthcare and contract management. IOT (internet of things) is another distributed 
technology that is coming up. The application of IOT in every part of our life is 
becoming the norms, where the data gathering, communicating and processing are 
interconnected and distributed to the point where data is being generated.
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Security Issues and Challenges in Big Data 
Analytics in Distributed Environment

Mayank Swarnkar and Robin Singh Bhadoria

1  �Introduction

With the growth of technology, there is a huge expansion in the data generation and 
its exchange over the Internet. This growth is massive and hence tough for tradi-
tional processing systems to process this amount data. Every day more than 2.5 
Quintilian bytes of data is generated [1, 2]. Ninety percent of total data in the world 
is generated in past 2–3 years [3]. This huge amount of data is termed as big data. 
Traditionally, when it is not feasible to process data in a single machine, we take 
help of distributed systems [23]. Multiple systems together process data in parallel 
or sequentially using distributed processing algorithms [24]. But to process big 
data, traditional algorithms of distributed processing systems are not efficient [4]. 
Therefore, to process big data, many big data processing tools are designed. Few of 
the famous big data processing tools are Hadoop [5, 6], Spark [7], Hive etc.

Evolution of big data brings many security issues with it. Traditional security 
mechanisms are designed for securing small and static data-sets. Those security 
mechanisms are unfit for big data. Big data is efficiently processed in distributed 
environments instead of on single machine. Algorithms like Map-Reduce [25] and 
SCOPE [26] became the base of big data processing in distributed environment. The 
key to processing big data is to divide the data into chunks and give it to multiple 
processing units or nodes in distributed environment. When the data gets processed, 
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combine the result and give output. This imports another security issues in big data. 
Now, security issues of big data and distributed systems needs to be handled together.

In this chapter, we are going to discuss security issues in big data in distributed 
environment. we give an overview of various security aspects of big data in distributed 
environment. We also discuss some available solutions researched in literature.

Figure 1 shows the V’s of big data. These V’s are the drivers of Big Data. Data is 
converted to big data when it follows the properties mentioned as V’s of big data. 
We discuss another view of these drivers of big data. We say that these V’s are not 
only drivers of big data but also the up-bringer of security issues in data analytics. 
Following is the view of V’s in terms of issues and vulnerabilities:

•	 Volume: Tera-bytes of data is generated per day. To process this volume of data, 
a fine architecture is required. Data needs to be stored in forms of tables, files etc. 
This volume of data is tough to manage and process in distributed environments. 
An attack which can generate ambiguous data is tough to detect when mixed 
with normal data.

•	 Variety: Data obtained are structured, unstructured, single factor, multi factor, 
probabilistic, linked or dynamic in nature. Handling such variety of data is an 
issue for distributed database management systems. If an anomaly generates 
vague data with fast variation in data eats up resources with no fruitful output.

•	 Velocity: Data obtained in batch (group or cluster of data) or stream. Sometimes 
data processing requirements are real-time. Processing data incoming at such 
speed is an issue for processors. If an anomaly launches flooding attacks, it may 
be tough to detect, if flooding is done by mimicking the normal data.

•	 Veracity: Data changes its modeling from time to time. This needs to be handled 
every-time data changes its modeling. Therefore linkage is again an issue for 
such variability in data. An anomaly can implement it periodically with short 
duration of  a period may again lead to resource wastage. It also includes  the 
problem of trustworthiness, authenticity, origin, reputation, availability of 
resources and its accountability.

V’s of Big Data

Volume Variety Velocity Veracity

Fig. 1  V’s of big data
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1.1  �Security Issues in Big Data in Distributed Environment

Being Big Data widely used and adaptive technology, it is almost natural that 
immense security and privacy challenges arise frequently. Four V’s of Big Data 
which are also characteristics of Big Data affects information security and give 
challenges to the design, functionality and management of architecture of big data. 
These security issues or challenges have a straight impact on modeling of security 
solutions that is necessary to handle characteristics and requirements of big data 
architecture in distributed environment. Figure 2 shows the various issues as secu-
rity perspective in big data in distributed environment.

2  �Infrastructure Based Security

Infrastructure of big data tools is a combination of multiple high performing com-
puting clusters which are capable of processing huge data simultaneously.

These abilities comprise of management of data, cloud computing solution, and 
data analytics. Big Data Life cycle Management (BDLM) [8] model imposes suit-
able infrastructure in big data industries for implementation of the scientific method 
of data management. BDLM includes storing data in all stages of big data life-cycle 
that allows data re-usability. Here, we are considering software related security 
issues and not hardware related issues like hardware theft or hardware failure. 
Following are some key points regarding infrastructure based security:

2.1  �Secure Computations

Let us consider Hadoop, a tool for big data processing which utilizes Map Reduce 
as the framework. In Map-Reduce [9],  an input file is split into multiple small 
chunks. In the first phase, Mapper reads each chunk, performs computation and 
outputs a list of key-value pair. This is provided as input to next phase which is a 
reducer phase. Here, values belonging to each distinct key is combined and outputs 
the result. Usually, Hadoop utilizes map-reduce in distributed environment i.e. 
Master node gives the task to slave nodes and setup works as distributed system. So 
here are the security issues related to it:

•	 The untrusted node of the system could return a wrong result. This will, in turn, 
generate a wrong final output. Untrusted node points to the compromised system 
which is under the control of anomaly.

•	 With the large system, it is practically impossible to identify the error in mapper 
or reducer phase of Map-Reduce. it will take time to identify anomalous node. 
This may happen with other frameworks of big data processing tools as a major-
ity of them processes data in distributed environment.

Security Issues and Challenges in Big Data Analytics in Distributed Environment
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2.2  �Secure Non-relational Data Stores

NoSQL databases [10] are really popular to store non-relational databases. Since 
NoSQL is still newer than traditional databases like RDBMS, therefore it is natural 
that NoSQL is comparatively poor in terms of security as compared to the 
RDBMS [11, 27]. For example, there is no robust solution for NoSQL injection 
attacks [12]. It is well known that traditional database vulnerable to SQL injection 
attacks are prone to be used. NoSQL does not provide any built-in security mecha-
nism [13] which can handle multiple attacks simultaneously. If we discuss in terms 
of NoSQL then following are the basic security issues:

•	 Industries are dealing with the problem of migration from relational database to 
non-relational databases which are still in development phase. It is not a good 
move to depend on No SQL completely.

•	 In general, databases like NoSQL depends on external enforcing mechanisms for 
security. Therefore industries who are trying to use Non-relational databases 
should be clear with the security policies of the third party implemented on the 
software.

•	 In distributed environments, vulnerabilities of non-relational databases increases 
as it is vulnerable to SQL Injections as well distributed denial of service attacks.

3  �Data Privacy

Two terms closely related to each other comes into the picture: Data Privacy and 
Data Security. Data privacy refers to the suitably appropriate use of data. In distrib-
uted environment, if data is shared between two or more parties or systems then the 
data should be used to the agreed policies. Data security refers to the confidentiality, 
availability and integrity of the data in distributed environment. Data Security and 
Data Privacy goes hand to hand practically. Following are the two basic aspects:

3.1  �Privacy Preservation in Data Mining

Privacy preservation [14] in data mining refers to the maintenance of privacy of a 
part of data such that no information can be gained from the anonymized part of 
data by the data miners. It is known that huge amount of information is hidden in the 
dataset. By proper data mining, these information can be extracted. Data mining can 
also become a security issue as it may reveal private information which needs to be 
hidden for personal, who is performing data mining). One of the live examples is 
AOL released search logs after anonymization [15]. But due to inefficient anony-
mization, miners were easily identifying the users in the logs. There are other secu-
rity issues highlighted as:
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•	 Data generated by industries, government agencies or institutes are usually con-
tinuously mine by analysts. A malicious insider or an untrusted partner can abuse 
these datasets and extract private information from data.

•	 When big data is passed to multiple nodes for processing (in distributed environ-
ment), if any of the nodes is under the influence of malicious user or contains a 
malicious code can easily result in providing data to the anomaly for mining.

3.2  �Cryptography Control Mechanism

This is one of the critical security aspects for big data in distributed environment.
Since the data needs to be processed at multiple nodes, data needs to be passed 

through the network. Any anomaly can tap the network [16] or perform the man in 
the middle attack [17] to the grab the data. Therefore it is important to ensure that 
data must be secured from end to end and only readable to the parties whose sharing 
the keys. Specific research in the field of big data has been done in this field because 
usually big data processing is done in distributed environment. Attribute based 
Encryption [18] is an important research as it provides rich security, decent effi-
ciency and scalability. Cryptography can give any data a high level of security but it 
cannot be applied as a whole on full data because of following reasons:

•	 Daily data stored remains unencrypted. The reason behind this is the computa-
tional complexity of cryptographic algorithms. Encryption and decryption is a 
highly time consuming process. It also consumes resources like computation 
power for encryption and decryption. As a solution, Attribute based Encryption 
is provided address this issue.

•	 Another reason is that the cryptographic algorithms either encrypt the whole data 
or none. Therefore if analyst needs to mine the data then it has all data purely 
visible or totally encrypted.

3.3  �Granular Access Control

This basically maps to the secrecy of data. This implies that data should not be 
accessed by the people who do not have access to that data set. There are various 
softwares available to provide granular access controls. Suppose for a data set con-
tains information about bank, school and hospital. If it is processed by big data 
processing tool containing one master node and three slave nodes then each node 
should have access to data of only one type i.e. of any one of bank, school and hos-
pital. Any slave node should not have access to the data given for processing of 
other node.

•	 Big data analysis and cloud computing are increasingly focusing on handling 
diverse data sets. Handling such data set with the responsibility of maintain-
ing the secrecy of varieties of data set during analysis and mining.
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•	 Managing these restrictions on the dataset is a cost effective issue. Yet there are 
many software and tools available for maintaining granular access but still, they 
are costly.

4  �Data Integrity and Data Management

Data integrity is one of the fundamental components of security [19] and proper 
data management is important to maintain data integrity. As a whole, it means the 
maintenance, assurance of accuracy and consistency of data throughout its life 
cycle. It is the critical aspect of design, implementation and usage of the big data 
processing systems, especially in the distributed environment.

4.1  �Granular Audits

Granular Audit [20] basically points to the proper inspection of organization 
accounts to find improper behavior. Sometimes there are attacks which happened on 
the system cannot be detected by Intrusion detection system. Granular audit helps 
in getting information about those missed attacks. It helps not only in finding the 
reasons of missing attack detection but also helps in compliance and regulation of 
security design of the system.

•	 Login and Logout including the number of attempts in any machine can be found 
out. In the case of dictionary attacks, this is very useful.

•	 Commands issued to the system under administrative privileges from the same 
system or from the master node in the distributed environment can be verified 
from granular audits.

•	 Stored procedure executions of the systems.

4.2  �Secure Transactions and Transaction Logs

A transaction is a unit of work performed within a database system. This system can 
be a standalone or in distributed environment. Mostly transaction occurs to make 
changes in the database. Change may be a new entry or the modification in the pre-
vious entry within the database. Secure transaction simply means the transaction 
happened from one end and the same transaction (without modification) has been 
transmitted to other end and reflected in the database as well.

•	 A transaction can be tapped by an anomaly. In  a network, it may be in non-
readable mode but the copy can be flooded to the destination. This may reflect 
the normal user who performed the transaction as an anomaly.
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•	 Theft of transaction logs gives information about the transactor as well as the 
design of the database. It results in the privacy leakage and security breach.

4.3  �Data Provenance

Data provenance refers to the origination of data. This term is defined in different 
ways in the literature. Provenance graphs are generated from provenance meta data. 
These are used to check the data dependencies. Analysis of such graphs some times 
results in the security or confidentiality leakage.

•	 Data provenance is a causality graph with annotations. The causality graph joins 
the participating objects which describe the process producing an object’s cur-
rent state. Each node depicts an object and edge between the nodes depicts a 
relationship between two nodes which are objects.

•	 It again reveals the indirect association of an object with another with 
attributes.

Anomaly may extract information from the graph.

5  �Reactive Security

Security measures which are taken after the attack or breach happened once to avoid 
those type of attack in future come under Reactive security [21] measurements. 
Every organization takes some measures to prevent losses caused by anomalies. 
Each organization also plans to respond to such losses when the proactive measures 
either becomes ineffective or when they did not exist. Reactive methods of security 
include disaster management plans, use of investigation services and use of recov-
ery specialists, re installation of operating systems and applications on compro-
mised systems also known as zombies, or switching to alternate systems in other 
locations. Having an appropriate set of reactive responses prepared and ready to 
implement is just as important as having proactive measures in place.

5.1  �Input Validation at Distributed Nodes

In various organizations and industries, big data collection happens at many end 
point devices. A key challenge in the data collection process is the input validation. 
A trust issue is always there with the collected data because it may contain mali-
cious data or the artificial formed data which may result in inappropriate outputs. 
Input validation and filtering remain a challenge when data is collected from 
untrusted sources in the distributed environment.
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•	 Suppose data is retrieved from weather sensor and also collected by the manual 
sources i.e. by using sensors of mobile phones and send the data manually may 
have a mismatch. An adversary can send the bogus data from a virtual sensor 
deployed in the same environment. Anomaly can spoof the phone ID to send the 
wrong temperature.

•	 To perform these type of evaluation proper algorithms need to be designed which 
may cluster out the anomalous data.

5.2  �Real Time Security

Real time security monitoring [22] remains an issue in distributed environment.
This issue grows even bigger when it comes to Big data in distributed environ-

ment. Intrusion Detection Systems take time to process data and generates alarms 
but with latency. This is a high risk for big data processing. In general, false Alerts 
or alarms generated are inversely proportional to the time taken to process data for 
security. This means high false positives can be seen for Real time security tools. 
Following are some key points in terms of security:

•	 It is important to know about the entity using the data. It is also important to 
know about the access of that data to that entity in real time. This means the 
amount of time user is accessing the data. Entities online who are accessing data.

•	 Real time monitoring can help in early detection of attacks including worms, 
Zombies, Trojans etc.

6  �Countermeasures

It is important not to just detect the attack and then try to overcome but also to pre-
vent the attacks. There is work done in literature to keep big data processing in 
distributed environment safe. To keep environment secure, it is important to keep 
both system as well as network safe. Figure 3 shows a summarized overview of 
additional countermeasures with examples of products under that section.

Many of the measures are described in the above sections with the related secu-
rity issues but few additional security measures to protect big data processing in 
distributed environment which are as follows:

•	 Anti-virus: Software which contains definitions of anomalous computer codes. In 
anti-virus, As soon as the malicious code is detected against the virus definition, an 
alarm is generated. Attackers when tries to insert anomalous code like virus, 
worms, zombies or Trojans in the systems, anti-virus detects it. Anti-virus also 
have capabilities to delete these anomalous executable codes. It is necessary to 
keep the definitions of anti-virus updated to have higher security in the system.
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•	 Firewalls: It is a security software which monitors and controls the incoming and 
outgoing traffic. It allows or blocks the traffic on the basis of defined rules. Rules 
can be added, deleted or modified in the system as per requirement of the user 
under administrative privilege. Firewall usually blocks packets from untrusted 
sources and helps in system protection.

•	 Intrusion Detection Systems and Intrusion Prevention Systems: An intrusion 
detection system (IDS) is a type of security software designed to automatically 
alert administrators when someone or something is trying to compromise infor-
mation system through malicious activities or through security policy violations. 
An intrusion prevention system (IPS) is a system that monitors a network for 
malicious activities such as security threats or policy violations. The main func-
tion of an IPS is to identify suspicious activity, and then log information, attempt 
to block the activity, and then finally to report it. Snort and Bro are famous IDS 
used in industries.

•	 Cryptographic Algorithms: It is always suggested to use those cryptographic 
algorithms which maintain the balance between processing time and cryptogra-
phy key strength. Now a days elliptical curve cryptography is popular.

•	 Third party trust certificates: In this chapter, we have seen the importance of the 
third party especially for digital signatures. It should be a trust-able and known 
third party for maintaining policies between the two parties involved in the 
licensing.

Fig. 3  Few counter measures
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These countermeasures can be used in different variants in the different type of 
security issues mentioned in the earlier sections. We cannot say that we can have 
one to one countermeasure mapping to security issues. It depends on the issue and 
how critical issue is to use the relative countermeasures. In addition to it, there may 
be other security solutions for providing secure big data processing in distributed 
environment. Therefore it is the sole responsibility of the administration to define 
the countermeasures for security related issues.

7  �Conclusion

In this chapter, we had a bird’s eye view of the security issues involved in Big Data 
Analytics applications executed in distributed environment. We have seen that it is 
important to protect not only the system but also the network in which distributed 
systems are placed. We saw possibilities of many attacks as it is a new technology 
and in its child state. We also gave some counter measures to these security issues. 
However, there may be different and difficult situations in which all these counter-
measures may not succeed. Combinations of security software and tools can mini-
mize the risk of attacks but as a base rule of security, issues can never reduce to zero.

It is our hope that, with the passage of time, more research will be done in the 
security aspects of big data in distributed environment which opens new doors to 
protect big data processing in distributed environment.
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Scientific Computing and Big Data Analytics: 
Application in Climate Science

Subarna Bhattacharyya and Detelina Ivanova

1  �Introduction

Analyzing and solving real world scientific and engineering problems are often 
computationally challenging. Understanding origins of the universe, Earth’s weather 
and climate dynamics, enabling cancer drug discovery are some examples of such 
large-scale incredibly difficult problems in science and engineering. Intrinsically 
such problems are multi-dimensional, multivariate, nonlinear and non-stationary in 
their dynamics that do not have quick and easy closed-form computable mathemati-
cal solutions. Solutions to these problems involve complex mathematical modeling, 
simulation and analysis that are usually achieved by the use of highly sophisticated 
and expensive high performance computing [henceforth referred to as HPC] [1], 
using Super-Computers [2]. However, the advent of data-intensive science [3] has 
ushered a new era in the world of scientific computing, enabling scalable ‘Big Data’ 
[4] technologies and Big Data Analytics [5].

Current realm of science and engineering is getting redefined as we enter into an 
era of data-driven and data-intensive applications across all interdisciplinary fields 
from scientific discovery to business intelligence. The ease with which any and all 
information can be disseminated digitally in a cost efficient and scalable manner is 
phenomenal. Incredible opportunities are being created with the deployment of 
numerous sensors, advances in machine learning, artificial intelligence and visual-
ization as new applications of data science open up. Such opportunities also face 
new technological barriers and challenges, due to the ever-increasing volume, 
velocity, and variety of information getting generated for mining and analysis.

S. Bhattacharyya (*) 
Climformatics, Fremont, CA 94555, USA
e-mail: subarna.bhattacharyya@climformatics.com 

D. Ivanova 
Scripps Institute of Oceanography, UCSD, San Diego, CA, USA

mailto:subarna.bhattacharyya@climformatics.com


96

In this chapter we present an overview of how the problems associated with 
Scientific Computing can be addressed using Big Data Analytics. In particular, we 
focus on a real world complex scientific problem of Climate Change. Rest of this 
chapter is organized into three more sections. Section 2 broadly discusses the nature 
of Scientific Computing, their computational challenges, and two commonly used 
approaches, namely Super Computer based High Performance Computing and 
Cloud hosted Distributed Computing, to solve them. Next we discuss the challenges 
involved in Climate Analytics, as an example of Scientific Computing, in Sect. 3 
and explore how Big Data Analytics can help to address them. In Sect. 4 we delve 
into details, showing how Earth’s climate is modeled using complex fluid dynamics 
[6], and simulated, and how Big Data Analytics using Spark [7] platform enables 
processing of significantly large-sized output data in an integrated manner.

2  �Computational Challenges in Solving Scientific Problems

In the last section, we briefly touch upon some examples of problems, solutions of 
which require extensive scientific computing. Such problems are often modeled 
using systems of simultaneous partial differential equations [8] that may be deter-
ministic [9] or stochastic [10], homogeneous/inhomogeneous, with initial and 
boundary conditions. Usually there are no easy short-cut methods to solve these 
systems of equations. One often needs to resort to Monte Carlo [11] and finite ele-
ment methods [12] to solve these systems of equations. For most part that process 
involves breaking down the large dimensions to infinitesimally small grid elements. 
Often that involves solving the complex dynamics for each such grid element, 
accounting for interactions between grid elements, and then assimilating and inte-
grating results over millions of such grid points to obtain the bigger picture for 
solutions. Such simultaneous (parallel) computing capabilities over millions of grid 
points necessitate the hogging of large scale efficient compute resources. Such com-
putations can be performed using high performance computing such as Super-
Computers as well as using cheaper cost-efficient cloud computing alternatives.

‘Super-Computers’ are big monster machines built by companies like IBM, Cray 
etc. with extra-ordinarily high compute capabilities (Fig. 1) [13].

The compute capabilities of these machines are measured in terms of ‘Petaflops’ 
where ‘flops’ is an acronym for floating point operations per second. Petaflops is a 
quadrillion or a thousand teraflops or 1015 flops. For their extensive compute capa-
bilities, supercomputers are expensive, with some machines costing upwards of 
$20 M each [14]. That makes their viability often very limited. Supercomputers are 
suited for large-scale highly-complex, real-time applications and simulations. 
Hence, traditionally, they are widely used in Scientific Computing which needs fast, 
iterative computations on large volume of data as well as complex interactive com-
putation across large dimensions.

One problem that supercomputer users often face is the pain of handling and 
storing large size of output data. Usually as such output gets generated, they are 
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recursively stored away into HPSS (High Performance Storage System) storage or 
archives. Downloading this stored data in parts and analyzing them separately is 
often a very laborious exercise. More effort and time gets spent on effective manag-
ing of such data than in analyzing them to seek the exciting scientific findings.

In recent years, use of Distributed Computing frameworks for executing Scientific 
Computations is also slowly becoming a practice. The Scientific Computations that 
are not very sensitive to latency, can be reasonably handled by Distributed 
Computing frameworks. Especially Distributed Computing facilities provided by 
the Cloud vendors with on-demand access to a shared pool of configurable servers, 
storage, applications and services [15], is emerging as a viable alternative to run 
Scientific Computations on, at much cheaper cost and ease of accessibility. For 
instance, large volumes of pictures collected by Mars Rovers were processed on a 
computer cluster hosted on the Amazon Cloud by NASA [16] JPL efficiently, not 
hindered by small delays on individual computation. Similarly IBM’s Cloud based 
Spark Platform is used by SETI Institute [17] in expanding its search for Extra-
Terrestrial to include large-scale analysis of its 10-year archives (4.5 TB of data per 
hour), wide-band signal processing, and new long-duration observations.

Some recent studies have particularly focused on comparing the viability of 
using Distributed Computing frameworks in Cloud in detail over typical HPC using 
Supercomputers particularly in Scientific Computing [15, 18–20]. The open-source 
based software stacks in Cloud still poses some challenges for production science 
use [15], like dynamic scaling, multi-tenancy, standardization, reliability, security 
and privacy. However, these challenges can be addressed to reasonable extent from 
case to case basis depending on the type of Scientific Computation.

In the next sections, we shall discuss the challenges associated with Climate 
Analytics, an example of Scientific Computation, and the role of Big Data analytics 
in addressing it.

Fig. 1  National Energy Research Scientific Computing Center, is the frontier of high-performance 
computing sponsored by the U.S. Department of Energy’s Office of Science. Located at Lawrence 
Berkeley National Laboratory its mission is to serve scientific research at national laboratories and 
universities. Shown is a panoramic view of the latest super-computer Cori – Cray XC40 with more 
than half million cores [13]
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3  �Climate Change and Big Data Analytics

Climate change is ubiquitous. It is affecting us all. With warming temperatures, 
increasing frequency of storms, floods, melting ice, rising sea levels, the first order 
impacts of climate change is often seen in large scale destruction left in the wake of 
unforeseen natural disasters. This in turn translates to economic and financial losses. 
Climate changes slowly and often creeps up in an unforeseen manner. For instance, 
one does not realize a drought at the onset of it, but likely to understand that when 
they are in middle of it. But there are second order impacts, for instance, cost to 
healthcare due to unforeseen climate-change driven diseases, cost to agriculture due 
to unknown plant diseases, or business interruption across various industry verti-
cals. In fact a climate data company Weather Analytics, estimates that weather 
affects 33% of global GDP [21].

In order to address this challenging problem of understanding, and hence manag-
ing and thus adapting to changing climate, many countries in the world have come 
together to focus efforts to make a set of good action plan. Much of these actions 
need to rely on accurate, real-time or near-time predictive and prescriptive BigData 
analytics. There has been some progress towards that end in the development of 
tools such as Global Forest Watch, Microsoft Research’s Madingley Model, and the 
Google Earth Engine, but still much remains to be done. The fast changing climate 
merits fast response in terms of generating and analyzing huge volumes of data to 
obtain accurate insights.

With enormous networks of sensors collecting data on all possible climate and 
weather variables like maximum and minimum temperatures, precipitation, humid-
ity, soil moistures, solar irradiance, wind, and many more, Big Data analytics can 
help understand their interdependence and correlation that can then be used to come 
up with predictive and prescriptive models. This together with robust understanding 
of dynamics of weather and climate phenomena will be the tool that governments, 
businesses and stakeholders will need to use in order to mitigate impacts of climate 
change. In the next section we delve into the details of how we can model climate 
and then use it together with Big Data technology in an attempt towards predictive 
and hence prescriptive climate analytics.

4  �Use Case on Climate Analytics

4.1  �The Scientific Challenge of the Climate System

The Earth climate system is one of the most complex problems challenging the sci-
ence today. It is multi-disciplinary, multi-scale problem complicated by the non-
linearity of the interactions within the system. It consists of many components such 
as atmosphere, oceans, cryosphere, biosphere etc. which are interacting and chang-
ing in a wide range of time scales. The solar radiation impacts us every day. The 
fastest changing atmosphere controls the weather elements such as wind, 
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precipitation and clouds on a weekly basis. The more inert oceans are impacting the 
climate with phenomena such as El Nino on seasonal to interannual time scales. At 
least one new volcano is erupting every century and the large continental ice sheets 
and glaciers undergo changes over millennia (Fig. 2).

Centuries of scientific discoveries have synthesized the knowledge about each of 
the Earth’s spheres (atmo-,aqua-,bio-,lito-,cryo-) in mathematical models including 
the primitive equations of fluid dynamics [22] describing the atmospheric and oce-
anic circulations, thermo- and hydro- dynamics describing the Earth’s energy and 
water cycles, all based on fundamental physical principles of conserving mass, 
energy and momentum. These models are evolving continuously including new 
scales and processes. Most recently a new generation of Earth System Models has 
emerged in which bio-geo-chemistry processes have been added to the basic physi-
cal processes with the goal of accurate representation of the Earth’s carbon cycle 
and explicit simulation of the green house effects.

The system of the fluid dynamics differential equations are solved by applying 
various numerical methods such as finite difference, finite elements transforming 
them into numerical equations discretized in space and time, requiring input of ini-
tial and boundary conditions. Initialized with the current climate state and with 
defined forcing conditions at the boundaries (e.g. the solar radiation at the top of the 
atmosphere, CO2 forcing) the solution then will be a future state of the Earth system. 
This outlines the basic ideas of the climate and weather forecasting1.

The complexity of the climate system is further convoluted by its inherent non-
linear, chaotic nature [23] which makes it challenging to predict. Slight changes in 
the initial conditions or in the forcing at the boundaries will cause different trajecto-
ries in its time evolution. The difficulty is that the observed climate system time 

1 The weather and the climate are essentially the same phenomena but on different timescales. 
While the weather is the high-frequency component (from hours to weeks) the climate is the long 
term mean state of the climate system (30 years).

Fig. 2  Schematic representation of the major processes and components of the Earth’s Climate 
System [29]
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evolution is only one of the many possible trajectories which it can take. In order to 
determine a range of possibilities or define solution uncertainty in our prediction we 
need to run not one, but ensemble of many model simulations, which adds to the load 
of computational needs and makes the problem computationally extensive as well.

Since the models are only an approximation of the real system they require con-
tinuous validation via comparison with the available observations. The historical 
observational data sets date as early as the beginning of the twentieth century. The 
earlier parts of the observational periods are often sparse and suffer from gaps in 
time, largest over the oceans. During the satellite era in the last few decades we have 
the observational data sets covering the entire globe with continuous high-frequency 
time records. Nevertheless, the 30 years period of satellite record is too short to 
evaluate the long-term fidelity of the model solution.

In the late 80s International Intergovernmental Panel for Climate Change (IPCC) 
has been established to further our knowledge and understanding of the future of the 
Earth’s climate. The development of global observational networks together with 
fast growing technology of high performing parallel computing facilitated further 
the development of the climate models.

One of the most well-known climate models used worldwide is the Community 
Earth System Model (CESM) developed at the US National Center for Atmospheric 
Research (NCAR) in 1996 [24]. Figure 3 is a schematic representation of recent 
version of the model which consists of atmospheric (atm), oceanic (ocn), ocean-
wave (wav), land (lnd), sea ice (ice), land ice (glc), river runoff (rof), interacting via 
coupler (cpl) module.

4.2  �Computational Challenge of the Climate Modeling

Solving the equations of a climate model requires compute power and therefore 
through a variety of numerical methods the mathematical models are converted into 
programmable algorithms in which the otherwise continuum of space and time of 
the natural environment is discretized suitably in time and space grid 

Fig. 3  Diagram of the 
major components of the 
Community Earth System 
Model developed at 
National Center for 
Atmospheric Research 
(http://www.cesm.ucar.edu/
about/)

S. Bhattacharyya and D. Ivanova

http://www.cesm.ucar.edu/about
http://www.cesm.ucar.edu/about


101

configurations. Inevitably, the accuracy of the numerical solution depends on the 
grid resolution. The smaller size of grid cells will result in smaller solution errors 
due to numerical approximation. The current generation climate models used to 
predict the future Earth climate by International Panel for Climate Change (IPCC) 
are commonly with 1 deg. (~100 km) grid resolution (or the smallest regions seen 
by this grid configurations are covering about 10,000 km2 area) which is too coarse 
to resolve explicitly the fine scales of regional climate affecting our everyday life. 
Within the several decades of the Climate Model Intercomperison Project (CMIP) 
driven by the IPCC the climate models have increased their resolution 5 times, from 
~500 km to ~100 km grid resolution, (Fig. 4, [25]). Phenomena like clouds and 
ocean eddies, which are sub-grid scale features, hinder the major source of uncer-
tainty in the climate predictions. In order to build a climate model which includes 
explicit weather scale features like storms in the atmosphere and eddies in the ocean, 
we need numerical grid resolution of 10 km which scales computationally at a pet-
ascale level [26]. Going beyond this resolution sets a “Grand Challenge” for the 
currently existing computational resources.

An ongoing effort lead by the US Department of Energy is pioneering develop-
ment of new generation of ultra-high resolution climate Earth system model [27, 
Accelerated Climate Modeling for Energy (ACME)] which will serve as a tool for 
better planning, decision and policy making of energy and water resources particu-
larly in the era of climate change. The project roadmap will push the limits of the 
currently available high performance computing centers and it will utilize a new 
generation of exascale computer resources.

Fig. 4  Grid resolution evolvement of climate models used in the IPCC Assessment Reports

Scientific Computing and Big Data Analytics: Application in Climate Science



102

4.3  �Post-processing Climate Model Output

The output that climate models generate are usually large 4 dimensional multivari-
ate datasets varying from terabytes to petabytes in data size, the ‘Climate Big Data’. 
It is always a challenge to efficiently store, manage and analyze such huge data size 
to extract meaningful science from them. Not only is the huge data size a challenge, 
the usual format in which the data is stored and the language and platform needed 
to analyze this data is often nonstandard. For instance the usual data files are in 
netcdf [28] format and one needs to use the netcdf language to operate on them. 
Although not commonly used in the industry, these languages, format and platform 
are used by the climate modelers and other scientific communities around the world 
and one can use python and R with netcdf libraries to operate these data files. The 
large size of the data poses a resource problem for analysts because it is often not 
possible to look at the data in its entirety because of insufficient memory resources. 
Scientists usually have to download such data in parts which often is a laborious and 
cumbersome process and then analyze each part and then repeat the process for all 
such parts of interest. Then one has to piece together the analyses results and form 
the bigger picture from them.

With the advent of Big Data technologies like SPARK, this problem can be 
addressed in a meaningful way.

4.4  �BigData Climate Analytics Using Spark

The integrated platform of Spark not only offers a large memory in storage but 
is also quite versatile in terms of programming paradigms (see Fig. 5). As shown 
in this figure, the cloud infrastructure hosts the Spark platform and Data Storage. 

Fig. 5  A schematic diagram showing how Spark platform can be used to perform an end-to-end 
climate analytics
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The input climate data is stored in the Data Storage that is accessible to Spark plat-
form. Spark platform supports programming in sql, python, scala and SparkR as 
well as analytical tools like Apache System ML (for machine learning), GraphX (for 
graph computing). These can be used to perform Scientific format transformation 
(from netcdf to csv formats), climate analytics, climate prediction and risk assess-
ment. The output from these analytics are also stored in the Data Storage and can be 
accessed by web portal for visual display of output results. Thus such a platform can 
be used to ingest massive climate model datasets on which end-to-end climate ana-
lytics starting from data ingestion to customized climate prediction can be achieved.

We present some use-cases over select locations in California (see Figs. 6 and 7) 
to show how Climformatics (an early stage company in Climate Analytics) used 
SPARK for analyzing climate BigData towards customized climate prediction and 

Fig. 6  Comparison of precipitation in mm/day for Northern California locations of Napa and 
Livermore in 2015. As predicted by Climformatics using Climate BigData Analytics on Spark 
(shown in blue bars) and observations (shown in red bars)
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validate the accuracy of these hindcast predictions against historical observations. 
Such a tool can be used to obtain long-term climate driven catastrophe risk 
assessments and business insights particularly for businesses requiring large-scale 
multi-dimensional geospatial intelligence and data analytics.

5  �Conclusions

Let us briefly recapitulate what we have discussed in this chapter and what are our 
main take-aways. We have learnt about the needs of scientific computing and briefly 
discussed about how those needs can be met by computational capabilities of HPC 

Fig. 7  Comparison of maximum monthly temperatures in degree Celsius for Northern California 
locations of Napa and Livermore in 2015. Blue thick line with marker shows Climformatics predic-
tion, red thick line with markers shows observations
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supercomputers or Cloud based Distributed Computing frameworks typically used 
in Big Data Analytics. As a use case, we looked at Climate Analytics problem. We 
then delved deeper into the challenges of climate modeling and prediction. Further 
we explored how climate modeling, analytics and prediction problem can be han-
dled using Distributed Computing technology like Spark. In particular the Big Data 
technology platform like Spark, which uses Distributed Computing principles, 
enables scientists to take their compute analysis algorithms to the source of large 
sized storage data and execute such algorithms directly on the data without having to 
analyze it in parts due to limitations of memory and storage capacity. That opens up 
possibilities to do a lot more scientific enquiries and derive important insights from 
them much easily as compared to working the same using downloading data from 
HPSS storage in pieces and analyzing them.

With the rapid advances in Distributed Computing based Big Data technology 
and Cloud Computing services with the rapidly growing pool of enormous data 
information, there are growing synergies across different interdisciplinary sciences 
and engineering. The possibilities of doing amazing science and solving important 
problems facing the earth and its humanity, once believed to be intractable, seems 
to be within reach now through the use of Big Data Analytics.

References

	 1.	https://www.techopedia.com/definition/4595/high-performance-computing-hpc.
	 2.	https://en.wikipedia.org/wiki/Supercomputer.
	 3.	Mork et  al 2015, Contemporary Challenges for Data-Intensive Scientific Workflow 

Management Systems, Works 2015 2015 Austin, Texas USA.
	 4.	https://en.wikipedia.org/wiki/Big_data.
	 5.	https://www.sas.com/en_us/insights/analytics/big-data-analytics.html.
	 6.	https://www.gfdl.noaa.gov/climate-modeling/.
	 7.	http://spark.apache.org/.
	 8.	Courant, R. & Hilbert, D. (1962), Methods of Mathematical Physics, II, New  York: 

Wiley-Interscience.
	 9.	S.  Strogatz, Non-Linear Dynamics and Chaos: With Applications to Physics, Biology, 

Chemistry and Engineering (Perseus Books, New York, 2000).
	10.	Athanasios Papoulis and S. Unnikrishna Pillai, Probability, Random Variables and Stochastic 

Processes, 4th edition, McGraw Hill Boston, 2002.
	11.	Fishman, G.  S. (1995). Monte Carlo: Concepts, Algorithms, and Applications. New  York: 

Springer. ISBN 0-387-94527-X.
	12.	K. J. Bathe : Numerical methods in finite element analysis, Prentice-Hall Englewood Cliffs 

(1976).
	13.	http://www.nersc.gov/users/computational-systems/cori/configuration/.
	14.	http://insidehpc.com/hpc-basic-training/what-is-hpc/.
	15.	Sadashiv and Kumar 2011, Cluster, Grid and Cloud Computing: A Detailed Comparison, The 

6th International Conference on Computer Science & Education (ICCSE 2011) August 3–5, 
2011. SuperStar Virgo, Singapore.

	16.	https://www.datainnovation.org/2014/01/supercomputing-vs-distributed-computing-a-
government-primer/.

Scientific Computing and Big Data Analytics: Application in Climate Science

https://www.techopedia.com/definition/4595/high-performance-computing-hpc
https://en.wikipedia.org/wiki/Supercomputer
https://en.wikipedia.org/wiki/Big_data
https://www.sas.com/en_us/insights/analytics/big-data-analytics.html
https://www.gfdl.noaa.gov/climate-modeling/
http://spark.apache.org/
http://www.nersc.gov/users/computational-systems/cori/configuration/
http://insidehpc.com/hpc-basic-training/what-is-hpc/
https://www.datainnovation.org/2014/01/supercomputing-vs-distributed-computing-a-government-primer/
https://www.datainnovation.org/2014/01/supercomputing-vs-distributed-computing-a-government-primer/


106

	17.	https://www03.ibm.com/software/businesscasestudies/us/en/corp?synkey=P226318O092
27V08.

	18.	Roloff et al 2012, 2012 IEEE 4th International Conference on Cloud Computing Technology 
and Science.

	19.	Marathe et al, 2013, HPDC’13, June 17–21, 2013, New York, NY, USA.
	20.	The Magellan Report on Cloud Computing for Science U.S. Department of Energy Office of 

Advanced Scientific Computing Research (ASCR), December 2011.
	21.	http://www.kdnuggets.com/2015/12/big-data-predictive-analytics-climate-change.html.
	22.	Gill, Adrian. Atmosphere-Ocean Dynamics. (1982). Int. Geoph. Ser., Vol. 30, Academic Press
	23.	Lorenz, Edward 1963, Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–141.
	24.	http://www.cesm.ucar.edu/.
	25.	 IPCC 4th Assessment Report, 2007.
	26.	Bader, David; Covey, Curt; Gutowski, William; Held, Isaac; Kunkel, Kenneth; Miller, Ronald; 

Tokmakian, Robin; and Zhang, Minghua, “Climate Models: An Assessment of Strengths and 
Limitations” (2008). US Department of Energy Publications. Paper 8. http://digitalcommons.
unl.edu/usdoepub/8.

	27.	https://climatemodeling.science.energy.gov/projects/accelerated-climate-modeling-energy.
	28.	https://www.unidata.ucar.edu/software/netcdf/.
	29.	https://www.climatechangeinaustralia.gov.au/en/climate-campus/modelling-and-projections/

climate-models/theory-and-physics/

S. Bhattacharyya and D. Ivanova

https://www03.ibm.com/software/businesscasestudies/us/en/corp?synkey=P226318O09227V08
https://www03.ibm.com/software/businesscasestudies/us/en/corp?synkey=P226318O09227V08
http://www.kdnuggets.com/2015/12/big-data-predictive-analytics-climate-change.html
http://www.cesm.ucar.edu/
http://digitalcommons.unl.edu/usdoepub/8
http://digitalcommons.unl.edu/usdoepub/8
https://climatemodeling.science.energy.gov/projects/accelerated-climate-modeling-energy
https://www.unidata.ucar.edu/software/netcdf
https://www.climatechangeinaustralia.gov.au/en/climate-campus/modelling-and-projections/climate-models/theory-and-physics/
https://www.climatechangeinaustralia.gov.au/en/climate-campus/modelling-and-projections/climate-models/theory-and-physics/


107© Springer International Publishing AG 2017 
S. Mazumder et al. (eds.), Distributed Computing in Big Data Analytics, 
Scalable Computing and Communications, DOI 10.1007/978-3-319-59834-5_7

Distributed Computing in Cognitive Analytics

Vishwanath Kamat

1  �Introduction

Analytics is a method of logical analysis whereas Cognitive is involving conscious 
intellectual activity as thinking, reasoning, or remembering [1]. The science fiction 
writers have been describing super intelligent machines even centuries before 
Artificial Intelligence (AI) became discipline in academia. “The Turk”, a hoax 
mechanical device that can play chess was invented by Hungarian illusionist 
Kempelen Farkas in 1789 [2]. Although The Turk was not an AI device, but it does 
represent human desire to augment their own intelligence. The mechanical arithme-
tic machine Pascaline developed by Blaise Pascal in early seventeenth century 
could be attributed to development of early computing devices and then further 
evolved into AI field of study as we know today.

The Cognitive Analytics Systems aka Cognitive Systems is a special type of Big 
Data Analytics systems. Like any other Big Data Analytics systems, Cognitive 
Systems have to learn from vast amounts of data, some times in the range of hun-
dreds of millions documents, within reasonable timeframe. This needs processing 
of vast quantities of data in meaningful way to gather higher level of knowledge 
abstraction for a given dataset or field of study. Given the vast amount of data pro-
cessing and computation required for such Cognitive Systems, use of distributed 
computing frameworks such as Hadoop, Spark, TensorFlow play vital role in build-
ing such system. In this chapter we shall delve into fundamental building blocks of 
cognitive Systems along with some key usecases.
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2  �Building Blocks of Cognitive Analytic System

2.1  �The Data Repositories

The Cognitive Systems’s foundational feature is to learn from the data in an iterative 
fashion to identify trends and patterns to build analytical models. The effectiveness 
of such learning depends on type and quality of data that is provide during the learn-
ing period. Thus a Cognitive System should be able to ingest, manage and analyze 
variety of datasets often 100s of Terabyte scale.

Typically data stores used in cognitive system are based on variety and veloc-
ity of data assets that are being stored as input to the system. For structured data 
that needs to be queried and analyzed at large scale a system like Hadoop that 
include hive and hbase are fairly common. The Hadoop ecosystem works very 
well in distributed computing framework as underlying Hadoop filesystem stores 
data evenly across multiple systems. The execution frameworks such as Map/
Reduce and Spark within Hadoop ecosystem are data locality aware, so there is 
minimum network overhead while processing the queries in distributed fashion. 
For analysis that needs frequent random access to subset of data, traditional rela-
tional databases with MPP (massively parallel processing) architectures such as 
db2, Teradata and alike have been seen in use for decades. There are some vari-
ants of other databases such as MongoDB, CouchDatabase, Cloudant and other 
variants of open source databases are also good candidates as data stores in cogni-
tive systems. The use of data repositories could be driven by type of data being 
collected such as JSON formatted data would be better handled by Couch 
Database where as key-value pair data for random access suited for Hbase 
repositories.

2.2  �The Data Ingestion Tools

A data ingestion subsystem to load data as bulk or just-in time/real-time is one of 
the integral part of any cognitive system. The challenges faced in the data ingestion 
process often relates to the massive volume, variety and velocity of the data, often 
all three and sometimes combination of these three challenges. In this aspect 
Hadoop ecosystem of software fits the bill perfectly. The hadoop ecosystem soft-
ware component such as Sqoop, Flume and Kafka can handle variety of sources 
including relational databases, flat file feeds, message queues and many more data 
types perfectly. For just in-time or real time processing Apache Spark (Spark 
Streaming) and Apache Storm are very cost effective frameworks that are very 
popular as well.
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2.3  �The Analytical Frameworks

The foundational capability of cognitive system includes software to analyze data 
and finding patterns and trends, building analytical models, training and scoring 
frameworks for models. Although basic algorithms are fairly similar for model 
building, the choice of analytical tools is often influenced by familiarity of the tool-
set among the data scientists working on the project, The advancement in comput-
ing power has enabled to crunch massive amounts of data and run complex 
algorithms against datasets in fraction of time it used take just a few years ago. The 
cognitive analysis, includes some of the most compute intensive processing such as 
NLP (natural language processing), ML (machine learning), probabilistic reason-
ing, and traditional statistical computation among other compute intensive data pro-
cessing. The computation often requires the rapid prototyping and interactions to 
achieve desired outcome. Cognitive systems need to crunch huge amounts of data in 
order to learn the patterns and iterate through hypothesis. Often these cognitive 
systems are capable of learning on its own from new data as it churns through it 
without manual intervention.

The machine learning and deep learning are part of a broader Artificial 
Intelligence (AI) field of study. The machine learning sometime looked as a simpler 
version of deep learning that often includes multiple layers of Neural Network type 
of computation. The cognitive systems that use these deep learning techniques tries 
to gather higher level of knowledge abstraction for a given dataset or field of study. 
The cognitive system often uses “deep learning” algorithms such as Naïve Bayes, 
Decision Trees, and Neural Networks that include mathematical concepts such as 
“backpropagation”. When the datasets are large, it is difficult to understand all the 
nuances of the data pattern for individual experts. There are few different type of 
machine learning algorithms such as “Supervised learning” and “Unsupervised 
learning” techniques used in this aspect of data exploration. Supervised learning 
consists of a defined target or outcome based prediction. The algorithms for 
Supervised learning rely on predictor variables or “independent variables” to derive 
target or “dependent variable”. The computing algorithms include Regression, 
Decision Tree, Random Forest, Logistic Regression etc. Unsupervised learning 
consists of not knowing what to expect from the data and thus tries to find clusters 
of similar patterns or groups. Some popular use cases for such algorithm is used for 
customer segmentation using K-Means and Apriori algorithms. Each of these algo-
rithms are compute intensive and often implemented to exploit parallel execution in 
a distributed fashion.

The machine learning and deep learning are key to any cognitive systems and 
often use a methodology called CRISP-DM (Cross Industry Standard Process for 
Data Mining). As shown in following diagram CRISP-DM methodology is an itera-
tive process to build analytical model based on business requirements and 
understanding.
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As seen from CRISP-DM diagram, the analytical model development process 
revolves around data repositories and understanding of business relevance. It is 
often seen that data understanding and data preparation for modeling constitute 
80% of the work involved in building analytical model. The evaluation feedback 
loop help maintain the currency of the model being developed and deployed in the 
long run. The analytical frameworks help in each steps of the CRISP-DM process 
by virtue of using sophisticated libraries for data cleaning, preparation, and often 
ease of deployment where constraints for production are quite different than devel-
opment phase of model building.

The mathematical algorithms used in cognitive systems are implemented using 
various machine learning libraries such as R,Scikit-learn, nltk, Spark ML, Mahout 
and in recent days deep learning frameworks such as Theano, Caffe, DL4J, 
TensorFlow etc. These libraries and frameworks support various degree of computa-
tion efficiencies based on the problem it tries to solve. For example, Google’s 
TensorFlow used by various google applications and gadgets for language transla-
tion and email analysis could be used with standard linux based system using CPU/
GPUs as well specialized hardware called TPU (Tensor processing unit). The TPUs 
are similar in nature as CPUs but far less complex that are optimized to execute 
Tensor Flow, another machine learning framework efficiently.

 

Cross Industry Standard Process for Data Mining (CRISP-DM) process [4]
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2.4  �The Hardware Components

The amount of data to crunch through to find patterns and trends is huge in typical 
cognitive systems. In order to sustain acceptable throughput for activities such as 
reading data and being able to analyze in quick iterations, massively parallel pro-
cessing in distributed fashion is desired. The basic computing infrastructure for cog-
nitive system typically will include several computers in a single cluster or set of 
clusters. These clusters of computers are built with low cost commodity hardware, 
each with massive IO, memory and CPU bandwidth. The Jeopardy winning Watson 
cognitive computer system was built with 90 computers servers with over 15 TB of 
memory and 2880 Power7 CPU cores [3]. The systems often use open source oper-
ating systems such as Linux and processing frameworks that are part of Hadoop 
ecosystems. In order for cognitive systems to be effective, these systems have to 
learn a subject or topic from several different sources often from variety of data 
sources including structured, unstructured and semi-structured datasets. There are 
various type of tools used to achieve such cognitive capabilities including machine 
learning, massively parallel processing (MPP) data repositories.

2.5  �Key Non-functional Requirements to Consider

2.5.1  �High Concurrency Throughput

The cognitive system could become integral part of a data processing pipeline where 
an action and response is chained across multiple systems. For example in a ATM 
cash withdrawal transaction, the network operator has to validate the card number 
and pin as basic check but a fraud detection system that is powered with cognitive 
processing capability may need to identify potential fraud within a second or two at 
max. In such use cases, the cognitive system needs to be able to sustain huge con-
current access often thousands of transaction per second. A distributed system such 
as large clusters of computers play a vital role in divide and concur paradigm for 
such cognitive systems. The cognitive systems while exploiting parallel infrastruc-
ture for process need to maintain consistency across whole infrastructure making it 
another challenge for syncing up distributed transactions.

2.5.2  �Interfaces for Interaction with Systems

A consistent way to exchange information across different layers of the cognitive 
system is also a key requirement. This is often accomplished using REST 
(Representational State Transfer) API. The hadoop ecosystem enables REST APIs 
for various components for seamless exchange of information. The APIs help in 
abstracting the logic and processing of complex algorithms and enable it as service 
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to end user applications. The APIs approach to such complexes computation help in 
avoiding to build and manage a large infrastructure required to train and maintain 
currency of the models while keeping the knowledge and expertise with the service 
providers, making it even better economic choice for end users.

2.5.3  �High Availability and Disaster Recovery

The application of cognitive systems may result in being critical to businesses that 
a single point of failure could result in huge losses. For example failure of unavail-
ability of systems with in an oil rig that could be monitored and controlled by cogni-
tive system. In such application, the cognitive system needs to be made highly 
available i.e. should be configured with built-in redundancies to account for power 
failure, component failures, data center failure in case of disaster and be able to 
continue to function with minimal interruption. The systems in such scenarios need 
to account for making critical data and computing power available to the application 
seamlessly. This critical non-functional requirement often presents challenges to 
solution providers. The difficulty often stems from distance for disaster recovery 
site and backup/restore service level agreements within limited cost budgets.

2.5.4  �Linear Scalability

One of the key feature of distributed computing is being able scale linearly when 
you add more hardware power, the system can handle additional workload without 
sacrificing performance. For example a cognitive system that is monitoring a net-
work infrastructure for malicious attack needs to handle peak workloads during a 
special event such as launch of a product or handle seasonal increased demand dur-
ing Christmas or holidays. The distributed computing framework fits perfectly for 
such systems which can divide and concur workload across dynamically allocated 
resources such as addition of a node to existing cluster infrastructure. The elastic 
nature of cluster computing provides the flexible framework to increase or decrease 
the amount of computing resources required based on workload presented to the 
system. The scalability features of the cognitive systems need to be designed not 
only for hardware scalability but also its software counter parts. The algorithms 
used by cognitive systems need to be designed to be able to exploit the distributed 
infrastructure.

2.5.5  �Ability to Prioritize Workload

The cognitive systems when used in certain front end applications such as ATM 
and/or credit card transaction processing, needs to handle the priority of the requests 
that are flowing through the systems. For example, if during a peak demand for 
processing, the system should be able to bypass or halt a high dollar amount 
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transaction over low value transaction for identifying fraud. The system with proper 
workload management, can prioritize the processing based on importance to the 
application being served. The systems such as ATM processing needs to handle the 
real-time and in cases where real-time response may be taxing the system, then it 
should be able to handle near real-time response seamlessly in order to minimize 
exposure to the fraud and misuse.

2.6  �Cognitive System – Implementation Patterns

There are few technology patterns in cognitive system for implementation based on 
the use cases and certain functional and non-functional requirements. In its simplest 
form a cognitive system could be build using an on premise traditional cluster sys-
tem that includes hardware, software and analytical tools built within a single 
homogenous system. For example a hadoop cluster deployed on premise using 
commodity hardware. The hadoop ecosystem of products includes analytical frame-
works such as Spark and its components for building analytical models and execu-
tion pipelines. The hadoop ecosystem also includes products such as Hive and hbase 
for distributed data repositories. The open source community has created several 
frameworks to manage and maintain complex data structures such as Graph data-
bases for network relationships among dataset being processed. There are cognitive 
systems that often need sub-second response to given event or action. In such cases, 
streaming frameworks such as Apache Spark Streams or Apache Flink become 
essential components of the ecosystem.

In recent days cloud patterns are maturing with different flavors as well. For 
example Tensor Flow offering in Google cloud, IBM Watson ecosystem offered in 
Bluemix (IBM cloud offering), Genereal Electric’s Predix platform as a service 
geared mainly towards industrial applications, Amazon’s cloud cognitive services in 
the form of select APIs for facial recognition, speech conversion etc. Some of these 
cloud offerings help developer to choose from simple API calls to sophisticated 
models that can be trained and maintained by end user applications.

3  �Cognitive System – Use Cases

The cognitive systems have found their niche in various industries in recent years. 
The use cases described here showcases the breadth of the possibilities. The com-
mon theme across all use cases focus on machine learning, large scale data process-
ing and easy interaction pattern with systems and end users. The use case in health 
care can be looked at any industry where body of knowledge is embedded in the 
associated literature and expert humans experience that can be utilized by wider 
audience which otherwise would have been impossible to imagine. The use case in 
Internet of Things could be viewed as any industry where large scale data gathering 
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at various end-points is key and being able to act upon it intelligently and swiftly. 
The last use case around customer service will help understand how cognitive system 
could be used to build behavior patterns and predict possible proactive measures 
that can be taken to improve agility of any enterprise.

3.1  �Cognitive Systems in Health Care

IBM’s Watson Oncology is a cognitive system currently used by several doctors and 
healthcare providers across United States. The Memorial Sloan Kettering Cancer 
Center is using this system to individualize Cancer treatments to its patients. 
Although Watson Oncology system has been fed with various medical and research 
documents, the training of the algorithms was done by subject matter experts in the 
field. The system helps to correlate diagnosis with individual cases with vast 
research and early trial results to better serve patients. The Watson Oncology system 
is able to synthesize information in the massive quantity that will be near impossible 
for healthcare professionals to do in a consistent, repeatable manner. The system 
helps healthcare professional to identify new research drugs and trials that other-
wise would have been limited.

One of the major benefits of cognitive healthcare system is that it is able to learn 
from new patient data and improve the analytical models it has already learned from 
historic information. The cognitive system provides interfaces to learn, connect and 
store vast amounts of data whereas the healthcare providers, researchers are becom-
ing “trainers” to teach the analytical models by sharing their knowledge. When 
doctors ask questions in natural language, the Watson Oncology system is able to 
parse the patient conditions and show all treatment options with confidence level 
and effects so that doctors can choose best possible treatment option.

A typical flow of information in such a cognitive system will include a data 
repository or set of repositories to hold massive amounts of data. A special consid-
eration needs to be given to the type of access that will be required such as batch vs 
real-time processing.

 

The above diagram shows a simpler view of information flow in a cognitive sys-
tem focused on a particular subject area. The “normalize” and “machine learning” 
processes could be complex based on types of datasets involved. There is a significant 
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training and review of the models required by subject matter experts to validate and 
tune the enrichment models deployed to build rich “knowledge base”.

The hadoop ecosystem works very well in distributed computing framework as 
underlying hadoop filesystem stores data evenly across multiple systems. The exe-
cution frameworks such as Map/Reduce and Spark within hadoop ecosystem are 
data locality aware, so there is minimum network overhead while processing the 
queries in distributed fashion. For analysis that needs frequent random access to sub 
set of data, traditional relational databases with MPP (massively parallel process-
ing) architectures such as db2, Teradata and alike have been seen in use. There are 
some variants of other databases such as MongoDB, Couch Database, Cloudant and 
other variants of open source databases are also good candidates for data stores. 
Each of these open source technologies have their pros and cons based on complex-
ity and sometime non-functional requirements.

As discussed earlier for data ingestion, the system could employ real-time or 
near real-time framework based on technologies such as sqoop, flume, and Spark 
Streaming, Kafka etc. As part of data ingestion pipeline, it is possible to validate and 
enrich data as it arrives and augment the precision of the models to fine tune without 
human intervention.

It is key to identify patterns and trends within subject area being studied in a 
manner that the knowledge base is enriched with pre-determined clusters and/or 
associations among different attributes of datasets. The analytical framework like 
Apache Spark fulfills such requirements with help machine learning libraries it 
supports. The “unsupervised” models can derive such classification/association 
whereas the “supervised” models derive predictive behavior based on historical 
evidence as reference.

The visualization and interaction with the system could take various forms. The 
simple systems could be implemented using standard reporting and/or dashboard 
mechanism whereas the sophisticated system will need natural language processing 
(NLP).

To implement end to end a cognitive system, some of the key components come 
from systems such as Hadoop, various analytical libraries from Spark ML and R, 
repositories using Hive/Hbase or other noSQL databases. The system is then lay-
ered with API services for natural language processing and other API services to 
clean and enrich datasets. Each of these computational frameworks must exploit the 
parallelism in the distributed fashion in order achieve the scales needed for massive 
data repositories and running analytical workloads against such data sets to provide 
required service level objectives.

3.2  �Cognitive Systems in Internet of Things Domain

The advent of smart phones and internet of Things (IoT) devices that are in use 
today has created new generation of threats. The security of Electric grid or drink-
ing water supply in large cities have become vulnerable to such threats emerging 
from IoT devices. The e-meter change to electrical grid has provided enormous 

Distributed Computing in Cognitive Analytics



116

benefits to optimize the on-demand peak power generation. On the other hand, the 
e-meter devices, smarter substations, and distribution networks with billions of 
devices connected, opens possibility of attacks originating domestically as well as 
internationally.

The cognitive systems could take various forms such as improving consumer end 
points using smarter billing and usage to prevent theft and misuse to sophisticated 
systems that minimize outages and quick restoration of service after interruption. 
The complex web of millions of devices could be monitored and proactively main-
tain to reduce downtimes using predictive analysis of breakdown of components.

A cognitive system in such application will be able to handle massive amount of 
data at a very high frequency and be able to react in sub-seconds.

 

As seen in the above diagram, the data generated at power generation and distri-
bution network is collected using sensors/IoT devices in a central repository. The 
type of data ingestion from such devices is often in real-time or in near real-time 
format. The real-time ingestion of data may pose some challenges as distance to 
central repository could be several miles apart. The mechanism such as “publish/
subscribe” using Apache Kafka or other streaming protocol may be appropriate in 
such scenarios.

The data collected from various devices will be utilized to identify usage patterns 
as well as equipment functioning to gauge need for any proactive maintenance. The 
analytical models build to help with such scenarios may include linear regressions 
for anomaly detection or associations based on weather conditions and demand for 
power at a given point in time. As the data ingestion happens in real-time, it is pos-
sible to revalidate and fine tune the predictive model being utilized to generate alerts 
and feedback.

A cognitive system to cater to such functionality will include a data repository 
that can handle real time data ingestion, an inline predictive model scoring mecha-
nism to provide instant probability of an incidence and feedback protocol, a alert 
and reporting capability for point in time or historic reporting. A distributed 
framework in such system allows the system to linearly scale as complexity of gen-
eration and distribution network increases.
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3.3  �Cognitive Analytics to Become a Customer Centric 
Organization

3.3.1  �Next Best Action

The NBA (next best action) or BNA (best next action) refers to individualized mar-
keting campaigns targeted based on unique characteristics of a customer. Unlike the 
marketing campaigns of yester years, where marketing or sales initiated programs 
that were offered as generic programs irrespective of weather likelihood of a cus-
tomer utilizing is not considered. This type of campaigns were generally measured 
for success as aggregate conversions to sales often hitting low single digit success 
rates. With advent of new generation of computing frameworks and resources, it is 
possible to customize marketing offers based on individual customer behaviors pat-
tern, demographics, past history and social activity. This type of campaigns has 
shown to produce significantly better success rate for the campaigns.

3.3.2  �Changing Engagement Patterns

The generation of customers prior to millennium was primary engaged with busi-
ness through physical postal mail, telemarketing and to some extent in recent year 
in the email form. The degree of engagement would have varied across different 
industries. The customers in the retail industry were targeted primarily using mail-
in coupons and discounts whereas leisure and travel industries would have used 
telemarketing to sell their goods and services. The recent surge in use of social 
media fronts such as facebook, twitter, SMS, WhatsApp etc. not only from desktop 
computer but using handheld devices has created even more avenues for connecting 
with businesses. In order get a better understanding of customer it is becoming 
necessity to know how customer is connected in social media circles with others. It 
is becoming very important aspect for businesses to keep their presence in such 
social networking sites and domains.

The distributed technologies such as hadoop and open source documents data-
base systems play vital role in capturing massive social interaction data.

3.3.3  �360 ° View of Customer

In order better serve customers, it is required to know how customer is defined to 
business. It is possible that business may have different touch points to customer 
through sales, support channels as well as various subsidiary within parent business 
may interact with same customer. In order to provide accurate marketing campaign 
designed for individual customer, a single view of customer across different lines of 
business is required. To achieve such integration across multiple lines of business 
(LOB) a distributed computing framework becomes essential part of the system 
architectures required for integration.
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As shown in figure below, it is essential to have common understanding of “who 
is the customer” to various lines of business is key. The LOBs could capture differ-
ent attributes across businesses but will have value to each other for cross sell and 
upsell opportunities.

 

The repositories that store different records of the same customers could be 
stored in several flavors of RDBMS that needs to be extracted, transformed and 
loaded (ETL) into single repository to be made available to all LOBs. The process 
of ETL is another resource intensive that can exploit distributed computing frame-
works. The “Entity Analytics” is another resource intensive process to identify 
unique attributes of each customer and network relationships across other custom-
ers. The tools in the marketplace such as IBM Information Server, Informatica and 
Abinitio are able to run parallel workloads in distributed fashion. There are special-
ized solutions for “Entity analytics” but open source does offer libraries and tools to 
build own solution as well. This process of consolidating customer records results 
in master customer record that then enable applications such as NBA and others 
could exploit.

3.3.4  �Understand Thy Customer

The businesses today collect lot of data about customer and their interaction with 
business in various forms such as call center interaction over phone and online, web-
site click-stream interaction, product specific review and discussion sites, popular 
apps such as “yelp” and “Consumer reports” etc. The businesses need to understand 
the impact of each of these interactions and build processes that can deliver overall 
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a better experience with their business. For example if a customer is visiting a review 
site to research a product, then to influence the decision businesses can showcase 
their advertisement for their product om the same review site alongside the review 
and discussion board. The computational frameworks that can perform machine 
learning help to identify key patterns in the customer behavior from such interac-
tions. To make this data about customer interactions useful, cognitive systems use 
the algorithms such as “Collaborative Filtering” and Content-based Filtering” that 
can derive patterns and recommendations within NBA applications.

Collaborative Filtering uses historical behavior of the customer and sometimes 
behavior of customers with similar characteristics to predict potential recommenda-
tions. Content-based Filtering uses historical behavior as well as content of the his-
torical data that was used in the reaching such behavior. These types of algorithms 
often rely on explicit and implicit preferences of customer and description of prod-
ucts/services. The analytical model development and computation often done in a 
batch cycle to maintain behavioral history with recommendations that help NBA 
application to present just in-time marketing offer based on individual profile of 
customer.

The cognitive system that support NBA type application must process massive 
amount of data to consolidate various instances of customer data and merge to 
effectively represent it as true view to business with confidence. The behavioral pat-
terns online and other means of interaction help build the rich profile that help in 
creating unique offers personalized to each customer. The distributed computing 
frameworks are able crunch such data and make it available for NBA.

4  �Conclusion

As discussed before, it is obvious that the amount of data and computation needs to 
be carried out within short time span is enormous in order to find or guess patterns 
in Cognitive System. These patterns may look very similar across use cases but it 
may differ significantly in implementations specific to various industry contexts. 
Also, the identified patterns and its influence on future predictions may need to be 
revalidated on a frequent basis in order to maintain the accuracy of such cognitive 
systems. That also calls for substantial amount of data crunching within reasonable 
time frame. These patterns identified (and curated) would be eventually used as 
integral part of front-end as well as back-end system of enterprises in a seamless 
manner. All these necessitate the use of Distributed Computational frameworks and 
the technologies implementing the same (popularly called as Big Data Technologies) 
as the key building blocks of any cognitive system or application.

However, the implementations of various Distributed Computing constructs are 
taking various new generation approaches for better efficiency in terms of time and 
cost. Advent of Big Data Technologies like Hadoop, Spark, Flink, Kafka, etc., is 
making development of Cognitive Systems much more affordable (better cost/
performance ratio) and fast compared to traditional technologies used in analytics. 
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The implementation of the Distributed Computing constructs in GPU based systems 
over standard CPU based systems for pattern identification and enrichment is also 
gaining huge momentum. Finally, use of these technologies either in on premise 
infrastructure or through Cloud based services or a hybrid of both (as Infrastructure, 
Platform or API as service) is providing numerous new avenues to integrate cogni-
tive systems with other applications in commercial world.
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Distributed Computing in Social Media 
Analytics

Matthew Riemer

1  �Introduction

These days Social Media Analytics is probably the most widely used Big Data 
Analytics application across various industries. In this chapter, we will discuss 
some of the most prominent use cases for Social Media analytics leveraged across 
the enterprise sector today. Social Media analytics includes strategies for leveraging 
intentionally public online interactions in order to drive business insights. This gen-
erally includes graph analytics to understand community networks, unstructured 
content analytics to understand shared content, and predictive analytics to drive 
supply chain optimization.

Specifically, we will address the use cases of influencer analytics and polling 
public opinion. Additionally, we will discuss using this analysis to forecast product 
demand. For each of these use cases, we will go into some of the most effective 
analytics techniques used to produce these insights. When done well, these capabili-
ties can uncover significant benefits for organizations that use them. However, data 
and signal cleansing is a significant issue impeding business from properly leverag-
ing social media data to generate real insights. Unfortunately, for this reason, only 
organizations that truly embrace cutting edge analytics techniques can find signifi-
cant value in many cases.

For illustrative purposes to help readers understand the use cases presented in 
this chapter, we will periodically leverage prototype software developed at the IBM 
Watson Research Center. These and many other important capabilities have been 
significantly enriched as part of the IBM product Watson Analytics for Social 
Media.

In this chapter, we will proceed by first discussing commonly used open source 
software for social media analytics, and then go into detail about best practice tech-
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niques influencer analytics and social polling use cases. Finally, we will conclude 
by discussing using these insights for predictive modeling.

2  �Open Source Tools for Social Media Analytics

Because quality and efficient analytics is of premium concern for Social Media 
Analytics use cases, Apache Spark is a natural starting point for a Big Data plat-
form. Apache Flume and Apache Kafka are very popularly used for ingestion. For 
analyzing unstructured text data, it is easiest to use software for indexing. This 
greatly reduces the computational overhead of searching for some content over 
potentially many billions of user interactions. Popular alternatives for indexing are 
Apache Solr and Elastic Search. Elastic Search is especially good to consider if 
intensive geo-spatial analytics is required. Moreover, structured data is commonly 
stored in HDFS and accessed with Spark SQL.

Apache Spark provides the GraphX library for efficient graph processing that is 
very useful in influencer analytics and community detection use cases. Some 
Machine Learning algorithms are also available in an optimized form through Spark 
MLlib. However, for access to the most advanced and cutting edge Deep Learning 
capabilities it would be easiest to leverage another open source framework like 
Caffe or Tensorflow that has proven out Apache Spark integration.

3  �Influencer Analytics

The rise of social media has brought with it a lot of fascination among the public 
with the idea of social influencers. These social influencers are critically important 
to the success of various social media applications as they keep people coming 
back. They can also influence the behavior of social media users by providing prod-
ucts with exposure. As such, proper utilization of social influencers has become a 
key component of modern branding and advertising.

3.1  �Understanding the Impact of Influencers

In order to understand more about the role influencers have in the emerging social 
landscape, many research studies have been devoted to understanding their impact. 
This is particularly true for Twitter where interactions are largely publicly accessible. 
For example, Cha et  al. [1] carried out a comprehensive study on influencers on 
Twitter. They considered in-degree (the number of connections the user has), number 
of retweets, and the number of mentions as parameters for assessing the influence of 
a user. In their study of the influence of about 6 million users on a population of 54 
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million users they arrived at a few findings of interest. First, the in-degree of a node is 
not necessarily and indicator of top influence. They additionally found that top influ-
encers are often an influencer for not one but multiple topics. Moreover, they found 
that influence is not built over night, rather with a long term concerted effort. Bakshy 
et al. [2] looked at the cascade of tiny URLs in order to gain insight about Twitter 
influence. They explored 74 million cascades of tiny URLs among a population of 1.6 
million users. Their conclusion was that longer cascades were mostly started by influ-
ential users. Other papers have focused on variants of the PageRank algorithm to 
understand influence. A scalable version of PageRank is available as part of Apache 
Spark in its GraphX Library. A good example is “Twitterrank” [3] which has been 
shown to produce results that are very different from and sometimes qualitatively bet-
ter than methods that focus on counting in-degree, retweets, and mentions.

Chiefly, there are two aspects of social media relevant for analysis of influencers:

Graph Methods  First, is the follower graph and diffusion of posts over it. These 
social graphs can be analyzed by using popular graph analytics techniques like 
PageRank that are often based on the notion of centrality. A very notable graph 
analytics library for use at Big Data scale is GraphX of the Apache Spark project. It 
is argued in Embar et al. [4] that it makes sense to use not one, but multiple inter-
pretable graph based metrics to assess the influence of a user. In that work they show 
influence can be quantified by user graph centrality, social media activity, the 
response rate to their posts, the response volume to their posts, and the number of 
followers they have.

Content Methods  Secondly, it is important to look at the content of posts. In influ-
encer analytics it is rare to see use of sophisticated text analytics machine learning 
techniques. This is because a lot of important information can be ascertained by 
simple analysis of post with logical rules. Generally, hashtags are used to under-
stand key topics and other topics are filled in by setting topic monitors. Topic moni-
tors generally include a list of terms to search through for each post in order to flag 
relevant conversations. There have been some efforts to leverage popular unsuper-
vised machine learning techniques like Word2Vec [5] to help users expand terms, 
which makes this kind of analysis even easier [6].

3.2  �Wimbledon Influencer Case Study

We will now follow a real-world example of influencer analytics. Figure 1 shows an 
analysis of the influence of Roger Federer on Twitter at Wimbledon during a year in 
which he was heralded as the “Wimbledon Twitter Champion” by the London 
Evening Standard.

Engagement refers to the volume of responses to his tweets. Activity is the num-
ber of messages he posted during the time period of interest. Authority is a measure 
of if he is connected with or his content is shared with other authoritative people. 
Timeliness refers to the response rate to his tweets. Followers is just a count of his 
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Fig. 1  An analysis of Roger Federer’s influence on Twitter during Wimbledon leveraging five dif-
ferent metrics

Fig. 2  An analysis of influencers at Wimbledon and their sentiment across all topics
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twitter followers. Figure 2 looks at Roger Federer’s influencer at Wimbledon rela-
tive to other influential Twitter user handles. It also considers topics of discussion at 
Wimbledon and sentiment. Other tennis players that had a large degree of social 
influence at Wimbledon that year include Andy Murray, Novak Djokovic, Rafael 
Nadal, and Serena Williams.

The next chart, Fig. 3, looks at different media organizations and their influence 
on day 1 of Wimbledon that year.

ESPNTennis was the most authoritative on Twitter for the first day. ESPNTennis 
and ESPN in general had the highest influence. They were more impactful than 
BBCSports, Telegraph, Guardian, and so on. This is interesting because ESPNTennis 
has 180,163 followers to the 2,326,280 followers of BBCSports.

4  �Social Polling

Another very popular use case for Social Media Analytics is social polling. Social 
polling solutions are motivated by the thought that in contrast to the time and money 
spent on polling ideas within a small focus group of people, you can consider a 
much wider net of people that voluntarily express opinions about some topic.

4.1  �Sentiment Analysis

A key capability for this use case is sentiment analysis, which is determining the 
positive, negative, or neutral feelings of a speaker. Logical human derived rule 
based approaches have been proposed for this use case, which mostly rely on posi-
tive/negative sentiment word counting and negation analysis. The obvious downside 
of these approaches is that they need to be manually made from scratch. It may be 
difficult to build the term lists needed by hand without missing many relevant words. 

Fig. 3  An analysis across influence metrics of different media organizations on Twitter at 
Wimbledon
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In this case, semi-automated term suggestion tools based on unsupervised machine 
learning can help a lot [6].

Another very popular approach is using supervised machine learning techniques 
on annotated social media data. Supervised machine learning techniques are gener-
ally initialized without any prior knowledge and conduct all of their learning on the 
labelled training data provided. Supervised Deep Learning techniques like Recurrent 
Neural Networks [7, 8], or Convolutional Neural Networks [9] are increasingly 
becoming the method of choice for these use cases based on strong empirical results. 
However, bag of words approaches that treat each word as a unique element in a 
fixed vector that ignores word order are still very popular in industry. Generally, bag 
of words representations are used as features for Naïve Bayes, Maximum Entropy, 
SVM, or Random Forest machine learning models.

Deep Learning is a field of machine learning focused on the application of origi-
nally biologically inspired neural network models. Neural networks rose to popular-
ity in the machine learning community in the 1980’s and early 1990’s, and were 
largely abandoned before recently achieving breakthrough results across many 
machine learning problems. The rise of Deep Learning models over the last five 
years has significantly advanced the state of the art in sentiment analysis. At the 
same time, significant quantities of training data are generally needed to achieve 
great results. Annotating training data can be expensive and it is difficult to select a 
training set that is fully representative of testing conditions. For these reasons, we 
generally only have comparatively little labelled training data available. 
Unfortunately, “narrow AI” that knows nothing other than what it is taught in the 
training data performs poorly in this setting. To achieve good results without an 
ideal amount of training data, the most competitive machine learning social media 
sentiment analysis models leverage prior knowledge external to the dataset. For 
example, the winner of the SemEval 2016 shared task, Swiss Cheese [10], leverages 
90 million external tweets with noisy labels. This leverages a popular strategy of 
using massive amounts of tweets that contain emoticons in order to understand 
associations between words and sentiment at a large scale which was first innovated 
by [11]. Another very popular strategy is unsupervised feature sharing. This is when 
unsupervised features extracted from massive amounts of unlabeled data are used as 
base features for a classifier on top. Popular examples of this are Word2Vec [5] and 
Glove [12] that have been shown to build high quality unsupervised representations 
of words. These representations can also be built on the sentence level [13] or docu-
ment level [14]. An alternative strategy with similar motivation is unsupervised pre-
training. This strategy differs from feature sharing in that the shared representation 
is further tuned on the labelled training data as recently shown very effective for 
sentiment analysis in [15]. This kind of strategy is good when you have enough 
labelled target task data to improve the representation.

Another important family of techniques are those including Multi-task Learning, 
Knowledge Transfer, and Lifelong Learning that take knowledge of one task to 
improve their ability to do another. For example, [16] the current state of the art 
Twitter sentiment analysis technique leverages knowledge from a Common Crawl 

M. Riemer



127

of the internet, Movie Reviews, Emoticons, and a human defined rule logic model 
to drastically improve the performance of its recurrent neural network model.

Two advanced topics involved in sentiment analysis are aspect oriented senti-
ment and domain adaption. These are tough problems as they involve many consid-
erations to be done well. Aspect oriented sentiment does not produce a document 
level sentiment, but sentiment analysis specific to each item where there is senti-
ment in the document. Many aspect oriented sentiment analysis systems use a 
dependency parser as a pre-processing step to make it easier to focus the system. 
Not doing so generally requires a significant amount of training data in order to do 
the end to end task effectively. Domain adaption is adjusting a classifier built in one 
domain to another domain. Popular techniques in the research community leverage 
Grassmannian manifolds and only unlabeled in domain data in order to learn domain 
invariant representations for the original labelled task. The learned models tend to 
perform significantly better than those with no adaption. A recently proposed Deep 
Learning technique that tackles the problem of domain adaption is Domain 
Adversarial networks. Domain adaption is a very hot research topic that is likely to 
make major strides in the next ten years as the community moves away from “nar-
row AI” and towards general purpose AI models.

4.2  �Intent Detection

One very important social media analytics problem is intent detection. This refers to 
when someone explicitly expresses that they are going to buy a product or go to an 
event. To create a machine learning method capable of general purpose intent detec-
tion has been considered an NLP challenge problem with high confidence. As such, 
in industry we have seen logical rule based intent detection systems become very 
popular. One example of a popular system is IBM SystemT [23] that has the ability 
to match logical rules with granularity based on a semantic parsing of a sentence. 
The parser allows for higher accuracy rules matched to the linguistic patterns related 
to extracting intent. Intent detection is a process best done today by product domain 
experts to pick up on domain specific terminology and lingo for expressing intent.

4.3  �Topic Monitoring

In order to make social polling possible, a sentiment analytics solution needs to 
be tied with topics of discussion. This sentiment about topics is the core insight 
of social polling that provides client value. There are two major paradigms for 
monitoring topics in social media posts which we will refer to as “top down” and 
“bottom up”.
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Top down topic monitoring is when someone wants to explicitly search social 
media for trends about a topic. This is how the Google search engine works. The 
most common approach to this problem in social media is the use of query engines 
such as Elastic Search that facilitate matching against lists of terms combined via 
Boolean logic. The Boolean OR operator is used to compile terms together that 
form a sub-topic. The Boolean AND operator is used to create a “must contain” 
condition for multiple sub-topics within a social media post. The Boolean NOT 
operator is used to create an exclusion rule often used for commonly confused top-
ics that are unrelated. Unsupervised term expansion techniques can be really help-
ful in creating lists joined by the OR operator [6]. However, some recent Deep 
Learning techniques have explored a more ambitious solution to this problem, 
focusing on building document representations that are adequate for topic search, 
including [13, 14, 17].

Another example of top down topic monitoring is image analytics in Social 
Media. The main idea is that some posts contain most of their meaning in images. 
These solutions are top down because you generally need to build an image classi-
fier ahead of time for the specific thing you want to search for. Recently and espe-
cially since [18], a deep learning technique called Convolutional Neural Networks 
has become the method of choice overtaking traditional approaches that rely on 
feature engineering. A big catalyst for this has been the development of the massive 
ImageNet dataset that contains millions of images comprising 1000 categories. One 
common deployment scenario is using a pre-trained model, such as those available 
in the Caffe model zoo, that already gets superior results on ImageNet. ImageNet 
categories can be a good starting point for image topic analysis. Other techniques 
require potentially fine-tuning a model developed on ImageNet with new labels or 
using the ImageNet model’s hidden features as a basis for constructing a higher 
level reasoning model for new data. Common use cases include developing classi-
fiers for images of specific products or influencers. Large social media companies 
such as Facebook build their own Deep Learning classifiers to classify images as 
specific users.

Bottom up topic monitoring is different from top down monitoring in that it 
leverages the content of the tweets itself in order to aggregate important topics with-
out explicitly searching for them. Deep Learning techniques have recently shown 
the ability to perform high quality assessments of the semantic relatedness between 
two pieces of text for example in [19–22]. It has also been demonstrated that with 
N2 (where N is the number of posts to search over) similarity computations, high 
quality cohesive topics can be derived. However, when N can be over a billion posts 
included in a search, this computation becomes computationally infeasible with 
reasonable current hardware. As such, approaches like [17] that combine using a 
machine learning based semantic similarity computation with extremely fast key-
word match style search to focus on a smaller group of posts can lead to much more 
manageable computation in a bottom up fashion.

The most popular form of bottom up topic monitoring is information extraction. 
Information extraction pipelines such as those included in IBM SystemT [23] and 
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GATE’s Annie pipeline [24] generally come loaded with a full host of capabilities 
starting with very low level analysis like part of speech tagging and word group 
chunking. Higher level capabilities include Named Entity Recognition [25], and 
proposed for Twitter in [26]. Named Entity Recognition identifies words that are 
included in the same entity, and the type of entity that it is. In systems made for the 
news domain like the CoNNL 2003 shared task, the entity types are usually Person, 
Location, Organization, and Miscellaneous. However, in the social media domain 
we are usually interested in even more detail. For example, the WNUT 2016 Twitter 
Named Entity Recognition shared task dataset includes categories like Product, Geo 
Location, Facility, Person, Company, and Other. Perhaps the most difficult element 
of a typical information extraction pipeline to produce good results for are parsing 
tasks like Dependency Parsing, and Constituency Parsing. There have been at least 
initial experiments [27] applying parsing to the Twitter domain, but good datasets 
are needed to make further progress. Parsing attempts to totally deconstruct the 
meaning of text in a pre-defined way that can be used for down stream analysis.

Once topics have been monitored at the tweet level, aggregations are generally 
made to understand the current amount of tweets about a topic, the velocity of the 
growth of each topic, and the acceleration of each topic. Topic acceleration is a 
principled way to understand which topics may be rapidly growing whispers and 
more in depth approaches have also been considered as in [28].

4.4  �User Segmentation

Beyond what people are saying and when people are saying it, it is important to 
think about who is saying it. By this we rarely mean identifying exactly who said it, 
but more so what kind of person said it. Demographic analysis is a key aspect of 
understanding the projected impact of a few individual’s being randomly sampled 
for polling on an entire population. As such, it is vital component of polling both for 
elections and market research. Techniques for dividing users into categories vary in 
difficulty based on the level of high level inference needed for the task and the avail-
ability of user contributed metadata for a particular social media platform.

Some social networks, like Facebook, are largely successful in getting people to 
submit structured data about their demographics and interests. However, the quality 
of user submitted data varies significantly across platforms. Twitter, for example, 
has much lower reliability and less information included in a typical profile bio. 
When profile attributes submitted to the user are reliable, they can be the easiest 
way to segment users. Sites that have large quantities of reliable self-reported data 
have a huge advantage in analyzing user micro-segments. The next easiest way to 
segment users is when they directly mention or express sentiment towards a topic 
that is explicitly being monitored for. This can be monitored pretty easily by apply-
ing logical matching logic to a list of topic terms. This type of query of easily 
accessible with Big Data ready text matching software like SystemT [23], 
ElasticSearch, or Solr.

Distributed Computing in Social Media Analytics



130

The most difficult types of user segmentation require deep inference and higher 
level reasoning about the contents of a user’s post. Good examples of this include 
inference of age and inference of income. It is generally very difficult and costly to 
create training data for a setting like this one, so it is important to leverage machine 
learning techniques utilizing prior knowledge to get good results. For example, in [29] 
large scale unsupervised learning and transfer learning were used in combination to 
predict the age range of twitter users based on the contents of their tweets.

User segmentation based on post content is hard and generally not possible 
without collecting a large history of posts for each user. This makes deployment of 
these solutions difficult if you are using a pay for query service. This is because it 
is likely pivotal for good inference to have access to posts about a user that are not 
related to the query topic. As such, it is significantly more efficient for data provid-
ers and their partners to infer these attributes about users ahead of time and provide 
it along side the received query data. There are multiple offerings in industry that 
provide these kinds capabilities for purchase, allowing for more useful social poll-
ing insights [30, 31].

4.5  �Some Social Polling Examples

The following real-world social polling solution example in Fig. 4 leverages IBM 
software used to understand insights about customer segments by geography and 
topic category.

Additionally, it is useful to consider topic trends and customer segments associ-
ated with them. As you can see here, customer segments can be much more specific 
than the broad demographic categories used in traditional election polling as you 

Fig. 4  An analysis of customer segments by geography and topic category
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can keep track of stated interests and hobbies for more refined insights. Social poll-
ing is a very good way to keep your organization up to date about societal trends that 
effect your business the most and their prominence within different categories of 
your customers. As an example, in Fig. 5, we demonstrate an analysis of the trends 
of monitored topics across different categories over time.

4.6  �Social Polling for Demand Planning

In many industries, demand forecasting techniques have hit a wall in performance 
over the last decade. As popular univariate techniques like Holt-Winters and ARIMA 
models have staid stable for some time, the opportunity for additional gains in perfor-
mance now will seemingly rely on taking this analysis a step further by incorporating 
external data to the time series for modeling. This can potentially explain volatility in 
the signal that we traditionally considered to be “random anomalies” that we will 
only attempt to smooth out when using most univariate forecasting techniques.

Recent work has applied Deep Learning to multi-factor forecasting based on 
many factors external to the forecast [32]. The success of these techniques to learn 
good representations without extensive feature engineering by human analysts opens 
the doors for possibilities in modeling external trends to a forecast in order to explain 
currently unexplained forecast volatility. Common low hanging fruit factors to con-
sider in these models include weather and price, which could create economic value 
through significantly improved forecasts for organizations prepared to use them. 
Trends present in social media present a significant opportunity to explain human 
behavior that may effect consumer trends. Riemer et  al. [32] found social media 
trends to be nearly as influential to retail demand forecasting a week ahead of time 
as weather. Indeed, applying social media trends to time series problems has become 
an emerging trend in the industry, especially with the rise of Twitter [33, 34].

One of the most straightforward ways to use social media to help predict product 
sales is too look for mentions directly related to the product and its competitors on 
social media. Measuring the intensity of conversation over time and with analysis of 

Fig. 5  An analysis of conversation tends over time by customer segment
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sentiment and intent has been shown to allow for rich forecasting data in attempting 
to explain volatility not show with univariate models. In general, the same style of 
information used for social polling use cases should be useful in this setting as well. 
Unfortunately, the effects are generally shown to be most useful for forecasting in 
the near term. Indeed, to create long term forecasts that include social media trends, 
it often includes predicting social media trends over the same time span. This can be 
difficult and is unlikely to account for some of the most prominent trends that seem-
ingly come out of nowhere.

Another good use case for applying social trends to time series prediction is 
augmenting popularity information about events. For example, some events like 
Christmas have an effect far before their actual date. We can use social mentions as 
a proxy for understanding the natural ramp up and ramp down of an event. It is also 
useful for quantification of how big an event is likely to be this year. For example, 
we can project since everyone is talking about the Oscars early than they did last 
year and at a stronger intensity that it is likely to be a big Oscars this year. We can 
query systems built to predict based on external factors to understand how much of 
an impact, for example, uncertainty about the popularity of the Super Bowl can have 
on expected demand for various products.

An important aspect of demand forecasting based on external factor solutions is 
that they need to be interpretable to human analysts. This is especially true when 
they are predicting a big change in the forecast. This is a primary reason why deep 
learning attention models have been shown well suited to multi-factor forecasting 
[33]. Another emerging trend in Deep Learning is the great success of Reinforcement 
Learning since the Deep Q Networks idea proposed in Nature [35]. OpenAI has 
recently released “Universe” a massive open dataset meant to help push research 
forward in this area [36]. It makes more sense to think of forecasting as the rein-
forcement learning problem of planning stock. In actuality, there are many complex 
requirements about planning that are disconnected from the prediction of demand 
based on previous sales and more aligned with the actual profitability of a business. 
Looking forward, we should see the emergence of better techniques for this prob-
lem as the research community continues to push forward with Deep Learning and 
Reinforcement Learning.

5  �Conclusion

In this chapter, we have gone over some successful analytical choices for effectively 
executing influencer analytics, social polling, and product demand prediction based 
on public social media interactions. Our focus has been on graph based, machine 
learning based, and logical rule based analytical strategies for achieving these use 
cases. To enable these use cases, it is best to build off a Big Data platform that 
embraces efficient analytics like Apache Spark, Solr, and Elastic Search. The limit-
ing factor for what can be achieved with these solutions today is in many ways 
mostly technological. Analyzing unstructured data is very difficult and doing so can 

M. Riemer



133

be very manual, which increases the time to value for adding new analytical facets. 
Organizations that have had the most success have strongly followed new tech-
niques for unstructured analytics. In particular, this includes the huge achievements 
of Deep Learning in recent years for Natural Language Processing and Computer 
Vision. Social Media Analytics has the potential to see a large increase in capabili-
ties in the years to come as cutting edge machine learning techniques advance our 
ability to do analytics on unstructured data. A particularly interesting recent trend is 
the rise of machine learning for doing classification based on a very small number 
of examples [37–41]. As these techniques advance to the point where they can be 
reliable for text classification and image classification tasks, we can see once again 
a big decrease in time to value for creating new facets of capabilities that should 
drive even bigger benefits for social media analytics based use cases.
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Utilizing Big Data Analytics for Automatic 
Building of Language-agnostic Semantic 
Knowledge Bases

Khalifeh AlJadda, Mohammed Korayem, and Trey Grainger

1  �Introduction

In the era of Big Data Analytics, search and recommendation engines have become 
the primary mechanisms through which users both actively find and passively dis-
cover useful information. As such, it has never been more critical for these data 
systems to be able to deliver targeted, relevant results that fully match a user’s 
intent.

Search and recommendation engines can barely compete unless they leverage 
models containing deep insights into the kinds of questions being asked and - more 
importantly - the kinds of answers being sought. One of the most common ways of 
representing a domain in order to surface these insights is through the use of ontolo-
gies - combinations of taxonomies containing known entities, their properties, and 
their interrelationships. These ontologies can then be integrated into a search appli-
cation in order to improve its ability to meet the end-user’s information need. For 
example, if someone searches for the term server in the information technology 
domain, it has a very different meaning (a computer server) than in the restaurant 
domain (a waiter/waitress), and if someone is using a job search engine, this query 
could actually represent either meaning depending upon the user’s context.

Ontologies are usually built manually by human experts, making them expensive 
to create, maintain, and update. To combat this, ontology learning systems, which 
attempt to automatically learn relationships from a domain and then map them into 
an ontology, are becoming more prevalent [1].
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In this chapter we will discuss techniques and algorithms that utilize the power 
of big data analytics and distributed computing to automatically build languageag-
nostic semantic knowledge bases. Such semantic knowledge bases enable 
significantly better query and document understanding and, as a result, drive much 
more relevant results to any given search or recommendations query.

We will cover some of the core technologies that enable such a system to be built 
(Apache Lucene/Solr, and Apache Hadoop), and will walk through some practical 
details of how such a semantic search engine has been built and is being leveraged 
in a real-world implementation.

2  �Search Engines

Search engines are one of the most common ways through which people inter-
act with digital information, and they can benefit tremendously from the inte-
gration of semantic knowledge bases, which improve the search engine’s overall 
ability to accurately interpret and respond to queries. The underlying data 
structures within the search engine, as we’ll later see, are also ideal for auto-
generating and modeling those same semantic knowledge bases. Within the 
field of information retrieval, search engines are the tool of choice for enabling 
adhoc querying of free-text information (typically keywords) within massive 
amounts of content (up to trillions of documents), while simultaneously rank-
ing and sorting the results by their relevancy to the incoming query. Most of the 
time, search engines are expected to do all of this work in milliseconds, or at 
most seconds.

This ability to search for any combination of keywords across up to trillions of 
documents and rank the relevancy of all the results to the query with sub-second 
response times requires some purpose-built data structures and data modeling 
approaches running in parallel across a distributed system. Chief among these are 
an inverted index, sharding and replication of data, a denormalized datamodel, and 
a distributed aggregation and scoring model.

2.1  �Key Technologies

The search engine technology we utilize in our real-world example is Apache Solr, 
the popular open source search server [2]. The Apache Lucene/Solr project is the 
world’s most popular open source search project, with most search engines today 
being built on top of Lucene and/or Solr. The rest of this section will describe how 
search engines, such as Apache Solr, achieve their large-scale distributed search 
capabilities.
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2.2  �Inverted Index

An inverted index is the mechanism by which fast keyword lookups are made 
possible. While the underlying implementation of an inverted index can be very 
sophisticated in order to optimize the speed of lookups and maximize the compres-
sion of data to fit as much as possible into memory, the basic structure is very 
straightforward. To build an inverted index, it can be useful (though not necessary) to 
first build a forward index which maps each document to the list of terms contained 
within the document. This is useful for looking up a document to see which words it 
contains, but it is less useful if you are trying to find which documents match a given 
set of keywords, as you would have to loop the list of words for every document to 
determine if the any queried keyword was found within the document.

Instead, search engines rely on an inverted version of this index, which maps 
each keyword to the set of documents which contain it, for O(log n) time lookup of 
any keyword. An example of how a set of documents would be represented in both 
a forward index and an inverted index can be found in Fig. 1.

One piece of information potentially lost in a simplistic inversion of the forward 
index would be the position of the terms within the document, so these term positions 
(often along with additional meta data) are stored along with the document identifier 
in what’s called a postings list associated with each term in the inverted index.

Whenever a query is executed against the inverted index, a lookup is performed on 
the inverted index for each term in the query, and set operations can be performed on 
the sets of documents matching each term to quickly resolve arbitrarily complex 
Boolean queries (e.g. nurse AND hospital, java OR scala). Phrase queries (i.e. 
“brown fox”) can even be resolved by leveraging the positions within the postings list 
to filter down to documents where all of the terms occur in sequential positions.

2.3  �Sharding of Data

One of the additional beneficial characteristics of the inverted index is that, as the 
number of documents indexed increases, the probability of the terms from those 
documents already existing in the index also increases. This means that, with large 
scale data sets, the number of terms in the index will plateau, while the number of 
documents can continue to increase, since the number of terms is mostly a function 
of the distribution of terms within the underlying language(s) of the documents.

This makes it possible to easily partition an inverted index into multiple subin-
dexes and to subsequently distribute queries to each of the indexes in parallel and 
simply aggregate the resulting documents. This partitioning of the index is often 
referred to as sharding the index. This parallel searching and aggregation across 
shards can be done across a multiple networked computers, enabling search engines 
to search across billions or even trillions of documents in well under a second.
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2.4  �Replication of Data

Just as sharding makes it possible to increase the speed of queries across enormous 
numbers of documents and to scale beyond the capacity of a single server, it is often 
also necessary for a search engine to be able to handle large numbers of queries at a 
time. When the capacity of a single node to handle the volume of incoming queries 
to a shard of the index is exceeded, a replicated copy - or replica - of that shard can 
be placed on another servers such that the incoming queries can be load balanced 
across each of the replicas.

One additional benefit of replicas is that they can be used to provide fault toler-
ance within the search cluster. Since servers will fail from time to time, if at least 
one replicated copy of each shard exists on a separate server, then the search cluster 
can continue successfully responding to queries with no data loss as long as they 
re-route requests for that server to another replica of that shard.
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Fig. 1  Mapping documents into a forward index and inverted index
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2.5  �Denormalized Data Model

The ability to shard an inverted index, create replicas of those shards, and distrib-
uted queries and indexing across a distributed cluster of servers enables search 
engines to scale in almost any direction (faster response times, more data, more 
queries). A critical data modeling rule must be followed to enable this paralleliza-
tion, however  - adhering to the use of a denormalized data model. In traditional 
relational database management systems (RDBMS), the best practice is to normal-
ize tables and join on foreign keys as relationships between multiple tables in order 
to prevent data redundancy and inconsistencies from arising within the database. 
While this works well in theory, it prevents one from being able to easily shard out 
an index, since the requirement to join on separate indexes means you must have 
those indexes fully present on each server so that you can efficiently perform the 
join. While a few modern search engines (such as Apache Solr) do support join 
functionality, it must be used in a very intentional and cautious way in order to pre-
serve the scaling characteristics of the search cluster as well as ensure all joins have 
access to the correct data such that they resolve correctly. Treating every document 
as a full representation of all of its denormalized, related fields is the recommended 
approach for building large-scale distributed search engines.

2.6  �Distributed Aggregation and Scoring

One of the most important features of a search engine is the ability to score the rel-
evancy of each document to the query matching it, and to return all matching docu-
ments in a sorted order. That sorted order is usually the calculated relevancy score, 
but the sorting could also be based upon the value of any other field or function.

In order for a distributed search engine to be as efficient as possible, it needs to 
maximize the work done in parallel on each shard, while minimizing the number or 
network requests and the amount of data being transmitted in order to arrive at a 
final, sorted result set to return.

While each search engine calculates relevance scores slightly differently, most 
use statistics easily derived from the structure of the inverted index. Calculations 
leveraging tf-idf (term frequency * inverse document frequency) scores, such as 
the popular BM25 scoring algorithm, consider the number of times each term in 
the query appears within each document (the term frequency or tf) multiplied by 
how significant that word is believed to be to the query (the inverse document fre-
quency or idf). Term frequency can be calculated by the number of positions a term 
occupies within a document in the postings list, whereas inverse document fre-
quency can be calculated leveraging the size of the set of documents in the postings 
list for the term. While getting a perfectly accurate idf score across all shards would 
technically require each shard sharing the idf of each term in the query (which isn’t 
that expensive), due to the nature of word distributions within language, each shard 
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in a randomly partitioned index will often have approximately the same document 
frequency distributions for each term, allowing relevancy calculations to be done 
completely independently on each shard.

Thus, in order to return a final list of relevancy ranked results, at a minimum a 
query just needs to be distributed in parallel to each shard of an index, each shard 
must then independently lookup the set of documents matching each keyword and 
perform the appropriate set intersections based upon the query, the resulting docu-
ments must then be sorted using a relevancy score calculated from statistics avail-
able in the inverted index for that shard, and then a set of results large enough to 
satisfy the requested number of documents must be returned to the aggregating node 
within the cluster. The aggregating node then just needs to re-sort the final returned 
documents from each of the distributed shards and then filter that list to the number 
of documents to return to the end user.

There are many additional features such as faceting/analytics, highlighting, and 
spell correction available in most search engines which may add additional distrib-
uted steps to this workflow, but fundamentally they all operate in this parallel way 
across the shards to enable sub-second query execution across billions or trillions of 
documents.

One last particularly important characteristic of search engines is that, as users issue 
queries and see results, they interact with those results. They may click them, skip over 
them, or even issue additional queries to correct their own spelling or try additional 
related keywords to see if they will yield a more relevant result. In the later Semantic 
Discovery section, we will describe performing large-scale data mining of this log data 
as a key technique for automatically building semantic knowledge bases.

3  �Recommendation Systems

Recommendation Systems (RSs) automate the process of discovering the interests 
of a user by utilizing knowledge discovery and data mining techniques in order to 
predict items of interest to individual users and subsequently suggesting what 
should be relevant to his/her needs [3, 4]. Over the years, techniques and applica-
tions of RSs have evolved in both academia and industry (e-commerce/e-shopping, 
e-library, e-learning, e-tourism, etc.) due to the exponential increase in the volume 
of data. RSs can be broadly clustered into three main categories: Content-Based 
(CB) [5, 6], Collaborative Filtering (CF) [5, 7], and hybrid techniques [8]. 
Contentbased recommendation systems are the most sensitive of these to under-
standing the textual content since these RSs rely on matching items/users based on 
the similarity between their textual description. Thus, the availability of a semantic 
knowledge base is crucial for improving the performance of content-based recom-
mendation systems [9].

While recommendation systems are often built as stand-alone systems which can 
match content to users’ interests, they also overlap heavily with the functionality of 
a search engine. Whereas search engines are typically thought of as accepting  
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a query and returning results matching that query, search engines can also leverage 
information about users and their preferences to personalize the search results. 
Likewise, whereas recommendation systems are often thought of as utilizing behav-
ior of users to recommend based upon their tastes, it is very often helpful to be able 
to adjust recommendation matching in real-time and to be able to perform matching 
based upon arbitrary content and features, which is a task performed exceedingly 
well by search engines. Indeed, many modern recommendation system implemen-
tations are delivered through an inverted index, including the employment search 
use case we will be highlighting, enabling real-time recommendations and adjust-
ment of features and their scoring coefficients for matching dynamically through 
simple query manipulation versus requiring code changes. Both kinds of systems 
(search engines and recommendation engines) can be thought of as existing along a 
fluid continuum of relevancy-driven information retrieval engines.

For these kind of relevancy-driven information retrieval engines to function 
optimally, it is important that they have some grounding in the domain they are 
providing information retrieval for, versus just being a bunch of generic algorithms. 
As such, being able to access some kind of semantic knowledge base which repre-
sents an understanding of the concepts and relationships within the domain is 
critical to them adequately performing the task of meeting users’ information needs.

4  �Semantic Discovery

Building semantic knowledge bases has traditionally focused on utilizing ontologies/
taxonomies which are manually built and maintained, or employing clustering and 
dimensionality reduction to discover latent semantic links among terms of a given 
corpus. Building manual ontologies/taxonomies is not scalable, is hard to maintain, 
and is very labor expensive. On the other hand, dimensionality reduction is prone to 
noise and is not entirely human-understandable. Instead, we rely on search logs 
which turn out to be a rich source for discovering semantic relationships between 
phrases. In this section we discuss how to use distributed big data analytics for min-
ing search logs to discover semantic relationships between key phrases in a manner 
that is language-agnostic, easy to interpret, scalable since it utilizes the power of 
distributed computing, and mostly accurate. The specific implementation of our 
technique will be presented in the context of an employment search engine in 
English, but the technique is both domain- and language-agnostic.

4.1  �Problem Description

To better understand the problem, think of the different meanings of the word 
architect in the context of a building architect versus a software architect. If some-
one types architect into a search box, a keyword-based search engine will return a 
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mixed set of documents, with some being about software architects and others about 
building architects. These kinds of mixed results will frustrate the user who is 
almost certainly only looking for a specific one of the two meanings. Even if a user 
searches for building architect, typical keyword-based search engines will often 
transform that query to the boolean query building AND architect as independent 
terms, which may still cause the retrieval of documents that talk about someone who 
is a software architect that is building software. Developing smarter search engines 
to overcome such problems is what we’ll discuss throughout the rest of this chapter. 
With access to the search history of thousands or millions of users, we can discover 
relationships between search phrases and the most common meaning of each term. 
Such semantic knowledge can be then be further utilized to better understand the 
intent of the user.

4.2  �Semantic Similarity

Semantic similarity is a measure of the likeness of meaning between two terms [10, 
11]. The two major approaches used to compute semantic similarity are through 
semantic networks (knowledge-based approach) [12], and through computing the 
relatedness of terms within a large corpus of text (corpus-based approach) [11]. The 
major techniques classified under corpus-based approaches are Point-wise Mutual 
Information (PMI) [13] and Latent Semantic Analysis (LSA) [14]. Studies show 
that PMI typically outperforms LSA on mining synonyms on the web [15].

Another interesting methodology for discovering semantic relationships between 
words is what Google researchers proposed in [16]. The two novel models proposed 
by Google are the following:

	1.	 Continuous Bag-of-Words model (CBOW)
	2.	 Continuous Skip-gram model (SG)

These models use large-scale (deep) Neural Networks to learn word vectors. 
However, the two models are not suitable in our use case due to the a few restric-
tions. First is the lack of context in our dataset, which is composed of queries that 
usually contain only 1–3 keywords. The CBOW and SG do not perform well with-
out context, which make our use case challenging. The other limitation is that those 
models are most suitable for uni-grams or single tokens as opposed to phrases, 
whereas phrases are most commonly entered by users who conduct searches. For 
example “Java Developer” should be considered as a single phrase when we dis-
cover other semantically-related phrases. In our experiment, we discovered high 
quality semantic relationships using a data set of 1.6 billion search logs entries 
(made up of keywords used to search for jobs on careerbuilder.com). For this task, 
we utilized the Probabilistic Graphical Model for Massive Hierarchical Data 
(PGMHD) [17], which was implemented over the known distributed computing 
framework Apache Hadoop.
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4.3  �Probabilistic Semantic Similarity Scoring Using PGMHD

The probabilistic-based semantic similarity score is a normalized score between 
[0,1] that reflects the probability of seeing two terms in the same context. For exam-
ple, the probabilistic similarity score should reflect that Java and Hadoop are 
semantically-related, while Java and Registered Nurse are not. In order to accom-
plish this, we utilize the Probabilistic Graphical Model for Massive Hierarchical 
Data (PGMHD). PGMHD requires collection of the search terms entered by the 
users to conduct searches, as well as each user’s classification. The way to represent 
this data in order to calculate the probabilistic-based semantic similarity score is to 
place the classes to which the users belong in the top layer of the model, place the 
search terms in the lower layer of the model, and then connect them with edges that 
represent how many users from a given class in the top layer searched for a given 
term in the lower layer. Table  1 shows the row input data and Fig.  2 shows the 
representation of that raw data in PGMHD.

Table 1  Input data to PGMHD over hadoop

User1 Java Developer Java, Java Developer, C#, Software Engineer
User2 Nurse RN, Registered Nurse, Health Care
User3 .NET Developer C#, ASP, VB, Software Engineer, SE
User4 Java Developer Java, JEE, Struts, Software Engineer, SE
User5 Health Care Health Care Rep, HealthCare

Data Engineer
Software

Developer
Registered

Nurse
Health Care

RNLPNJavaHadoop

80 50

7 6
5

2

1
1

50

75

30
80

50 30

Health
Care

big
data

Fig. 2  Using PGMHD to represent job search logs by placing the users’ classification at the top 
layer while the search terms are placed at the lower layer. Each parent node on the top level (job 
category) stores the number of users classified under that category who conducted searches, while 
the child nodes (search terms) store the number of times people searched for that term. The edges 
stores the number of users from the parent node who searched for the term represented by the con-
nected child node
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4.4  �Distributed PGMHD

In order to process 1.6 billion search log entries (each search log entry contains one 
or more keywords entered by a user to search for jobs) in reasonable time, we 
designed a distributed PGMHD using several components of the distributed com-
puting framework Apache Hadoop: HDFS [18], Hadoop Map/Reduce [19], and 
Hive [20]. The design of distributed PGMHD is shown in Fig. 3. Basically, we use 
Hive to store the intermediate data while we are building and training the PGMHD. 
Once it is trained we can then run our inquiries to get an ordered list of the semanti-
callyrelated keywords for any specific term(s).

5  �Word Sense Ambiguity Detection

We can utilize the discovered semantically-related terms to improve query 
understanding. One way to do that is by expanding a submitted query to also include 
the semantically-related terms, which will help the search engine to retrieve more 
relevant results since the presence of the query and/or its semantically-related terms 
in a document will boost that document over the ones which only mentioned the 
term given in the query. For example, the query “big data” can be expanded to “big 
data” OR hadoop OR spark OR hive. As one would expect, the results of the 
expanded query will typically be more relevant and comprehensive. This technique 
will not work as intended, however, when dealing with terms that can represent 

1 ) Key: Term
2) Value: Calssification

•  Count term freq and
(term,class) freq.

Input Hive Table 

Map Reduce 

User Classification Search term

• Count calssification
freq.

Term Term freq class (term,class)
freq

Output Hive Table 1 

1 ) Key: Calssification
2) Value: UserID

Map Reduce 

Input  

class Class freq

Output Hive Table 2 

PGMHD 

Join 

Fig. 3  PGMHD implementation as Map/Reduce using the distributed computing framework 
Apache Hadoop. The distributed implementation enables PGMHD to represent and process data 
extracted from 1.6 billion search logs in 45 min
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significantly different meanings (ambiguous terms). An ambiguous term is a term 
that refers to more than one meaning depending on the context. For example,  
the term java may refer to the programming language Java, or a type of coffee called 
java, or an island in Indonesia named Java. Since a user executing a search query is 
most likely to be searching only for a specific sense of a term, it is important that we 
can identify and disambiguate between the possible senses. In order to detect those 
ambiguous terms we again utilize PGMHD, where we calculate a classification 
score for each term with its parents as potential classes. If the classification score is 
higher than a specific threshold for more than one parent, we consider that term may 
be ambiguous one. The idea behind this technique is that each parent class in 
PGMHD represents a group of users from different classifications, so when a term 
can be classified with a high confidence score to more than one class, it means it was 
used widely by users from both classes. Further, if the set of other terms used along 
with the term varies significantly across multiple classes, this further implies that 
the term refers to two or more different concepts. Our technique to detect the 
ambiguous terms is explained below:

Let:

•	 C: = {C1, ..., Cn} be the set of different classes of jobs (Java Developer, Nurse, 
Accountant, etc);

•	 S = {t1, ..., tN} be the set of different search terms entered by users when they 
conducted searches (N is the number of different terms); and.

•	 f(Cj,s) be the number times (frequency) a user from class Cj ∈C searched for the 
keyword s ∈S .

–– To reduce noise, we will only consider the frequencies with at least 100 dis-
tinct searches, i.e., f(c,s) ≥ 100.

	
f c s,( ) ³ 100. 	

Then, define

•	 O(c): the number of times a user from class c searched for a keyword i.e.:
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s
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Î
å:

S
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•	 T(s): the number of times the keyword tj is searched, i.e.:
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•	 T: the total number of keyword searches, i.e.:
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For every c ∈C and s ∈S, and letting C and S be the random variables representing 
the class of job and the search term of a single user query, respectively, we can 
estimate their PMI given by
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as follows
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The normalized version [13] of the original PMI estimate is given by
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This normalized version of the original PMI can then be leveraged to generate an 
ambiguity score to determine whether or not a term should be considered 
ambiguous.

5.1  �Ambiguity Score

For every search keyword s ∈S, we define the following ambiguity score Aα(s) as

	
A s i c spa ( ) ( ) >{ }: : , , 0

	

and we say that a search keyword tj is a candidate to be ambiguous if Aj(α) > 1. 
Then, we can define a set of candidate ambiguous terms CA as

	
CA t A j Nj j= ( ) > = ¼{ }: .a 1 1, , ,
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5.2  �Resolving Word Sense Ambiguity

After detecting ambiguous terms, the challenge next becomes how to resolve this 
ambiguity. Resolving ambiguity means defining the possible meanings of an ambig-
uous term. In our system we leverage the semantically-related terms which we dis-
covered using the previously-discussed semantic discovery module. Each group of 
those semantically-related terms represents a possible meaning of the original term 
given the context in which the terms were used when they appeared with that term. 
For example, the ambiguous term driver has semantically-related terms transporta-
tion, truck driver, software, embedded system, and CDL. By classifying these terms 
using the classes of the users who provided them in the search logs, we end up clas-
sifying them into the two groups “transportation, truck driver, CDL” and “soft-
ware, embedded system”. It is clear that each of these groups of those 
semanticallyrelated terms represents a separate possible meaning of driver, with the 
former group representing the sense of transportation and the later instead repre-
senting the idea of a computer device driver.

Figure 4 shows our methodology to resolve ambiguity. Since we already created 
a PGMHD for detecting the ambiguous terms, we can utilize the same model to find 
the semantically-related terms for any given term that falls within the same class. To 
do so, we calculate the probabilistic-based similarity score between the given term 
X and a term Y given they both share the same parent class(es) as follows:

Fix a level i ∈{2,...,m}, and let X,Y ∈ L2 × ··· × Lm be identically distributed ran-
dom variables. We define the probabilistic-based similarity score CO (CoOccurrence) 
between two independent siblings Xij,Yig ∈ Li by computing the conditional joint 
probability

	
CO pa paX Y P X Y X Yij ig ij ig ij ig, ,| ,|( ) ( ) ( )( )Ç:

	

Discover Related Terms for
term X

Using PGMHD

Get the classes to which term X
belongs {C1,C2,..}

Classify the related terms to the
given classes {C1,C2,..}

Each set of related terms
classified under the same class

provides a possible sense of
term X 

Fig. 4  The proposed 
system to resolve word 
sense ambiguity using 
PGMHD
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as
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Hence, we can estimate the correlation between Xij and Yig by estimating the 
probabilistic similarity score CO(Xij,Yig).

Once the list of related terms is generated using PGMHD, we classify them into 
the classes (since the term is ambiguous, they must belong to more than one class) 
to which the ambiguous term belongs. This classification phase of the related terms 
is also implemented using PGMHD as follows:

For a random variable at level i ∈{2,...m}, namely Xij ∈ Li, where Xij is the jth 
random variable at level i, we calculate a classification score Cl C Xk ij

¢( )| for Xij 
given its primary parent C Lk i

¢
-Î 1 . It is used to estimate the conditional probabil-

ity P C Xk ij
¢( )| . The notation Ck

¢  is used to denote a parent, and when it is at level 
1, it will represent class Cj as denoted previously. Let
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The classification score is the ratio of the co-occurrence frequency of Ck
¢  and Xij 

divided by the total occurrence of Xij. The total occurrence of Xij is calculated by 
summing up the frequencies of the co-occurrence of Xij and all its parents.
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The group of semantically-related terms that get classified under the same parent 
class will form a possible meaning of the ambiguous term. Using this technique we 
are not restricted to a limited number of possible meanings: some terms are assigned 
two possible meanings, some receive three possible meanings, and so on.
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6  �Semantic Knowledge Graph

In addition to mining query logs to automatically build up semantic knowledge 
bases, it is also possible to exploit the interrelationship between words and phrases 
encoded within both the free-text and structured content within a corpus of 
documents.

Given our focus in this chapter on leveraging big data analytics using large-scale 
distributed algorithms, our goal is to leverage a system that is able to generate a 
graph representation of a knowledge domain automatically, merely by ingesting a 
corpus of data representative of a domain. Once this graph is built, we can then 
traverse it to surface the interrelationships between each of the the keywords, 
phrases, extracted entities, and other linguistic variations represented in the corpus. 
This model is referred to as a Semantic Knowledge Graph [21], and an open source 
implementation is also publicly available.1

Other ontology learning systems typically try to extract specific entities from a 
corpus and build up a pre-generated graph of relationships between entities. This 
unfortunately results in a significant loss of information about the nuanced ways in 
which the meaning of a term or phrase changes depending upon its linguistic con-
text. One of the goals of the Semantic Knowledge Graph approach is to fully pre-
serve all the nuanced semantic interrelationships contained within a textual corpus 
of documents.

To really understand the significance of this goal, let’s consider how the meaning 
of words can vary depending upon the context in which they are found. The words 
architect and engineer are well known, but when found inside phases such as soft-
ware architect or electrical engineer, they take on a much more limited interpreta-
tion. Similarly, the word driver can take on numerous different meanings, such as 
when found near terms relating to computers (a hardware driver), a golf game (a 
kind of golf club), a business analysis (“a key driver of costs”), or in contexts related 
to transportation (truck driver or delivery driver). Even when focused on transport-
ing goods, the word driver will have a nuanced difference in meaning in the context 
of a night club (a taxi to safely transport someone home), a hospital (some kind of 
medical transport), or on a race track (a competitor trying to outrun other vehicles). 
While people typically think that most words have a limited number of meanings, it 
is more accurate to consider words and phrases as having a different meaning in 
every possible context in which they appear (even if the difference is nuanced). 
While the intended meaning of words and phrases across different contexts will all 
share strong similarities, the Semantic Knowledge Graph is able to model those sim-
ilarities while also preserving each of the context-dependent nuances in meaning. By 
surfacing these nuanced meanings of words and phrases during node traversals, the 
Semantic Knowledge Graph is thus able to better represent the entire underlying 
knowledge domain in a compact and highly context-aware representation.

1 https://github.com/careerbuilder/semantic-knowledge-graph
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6.1  �Model Structure

Given an undirected graph G = (V,E) with V and E ⊂ V × V denoting the sets of 
nodes and edges, respectively, we establish the following definitions:

•	 D = {d1, d2, ..., dm} is the set of documents that represents a corpus that we will 
utilize to identify and score semantic relationships within the Semantic 
Knowledge Graph.

•	 X = {x1, x2, ..., xk} is the set of all items which are stored in D. These items may 
be terms, phrases, or even any arbitrary linguistic representations that can be 
found within D.

•	 di = {x|x ∈ X} where each document d ∈ D is a set of items.
•	 T  =  {t1, t2, ..., tn} where ti is a tag that identifies an entity type for an item. 

Examples of tags may include keyword, location, school, company, person, etc.

Given these definitions, the set of nodesV in the graph is defined asV = {v1, v2, ..., 
vn} where vi represents an item xi ∈ X tagged with tag tj ∈ T, while Dvi = {d|xi ∈ d, d 
∈ D} is the set of documents containing item xi with its corresponding tag tj. We then 
define eij as the edge between (vi, vj) by a function f(eij) = {d ∈ Dvi ∩Dvj} that represents 
each edge with the set of documents containing both item xi and item xj, each with 
their corresponding tags. Finally, we define a function g(eij, vk) = {d: d ∈ f(eij)∩Dvk} 
that stores the common set of documents between f(eij) and Dk on each edge ejk.

6.2  �Materialization of Nodes and Edges

The SKG model differs from most traditional graph structures by leveraging a layer 
of indirection between any two nodes and the edge that connects them. Specifically, 
instead of two nodes vi and vj being directly connected to each other through an 
explicit edge eij, nodes are instead connected through documents, such that the edge 
eij between node vi and vj is said to materialize any time |f(eij)| > 0.

In order to traverse from a source node vi to another node vj, our system thus 
requires a lookup index (an inverted index) that maps node vi to an underlying set of 
documents, as well as different lookup index (a forward index) that is able to map 
those those documents to any other node vj to which those documents are also linked. 
This combination of inverted index and forward index allows all terms or combina-
tions of terms to be modeled as nodes in the graph, enabling the traversal between 
any two nodes through the set of shared documents between them, as shown in Fig. 5.

Since edges are based upon a set intersection of the documents both nodes are 
linked to, this means that an edge can also be generated on the fly between any 
arbitrary combination of other nodes. We refer to this dynamic generation of edges 
as materialization of edges. Further, because both nodes and edges are based 
entirely on set intersections of documents, this means it is also possible to dynami-
cally materialize new nodes based upon arbitrary combinations of other nodes, as 
shown in Fig. 6.
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Fig. 5  Materialization of edges using shared documents. Edges exist between documents which 
share terms. The edge weights are calculated on the fly using a function that leverages the statisti-
cal distribution of documents shared between the nodes

Fig. 6  Materializing new nodes dynamically. New nodes can be formed dynamically from any 
arbitrary combination of other nodes, words, phrases, or any other linguistic representation
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Since both nodes and edges can be materialized on the fly, this not only enables 
us to generate nodes representing arbitrarily-complex combinations of existing 
terms, but also to decompose arbitrarily-complex entities and relationships into 
their constituent parts. For example, we can store just the nodes software and engi-
neer in the inverted index and forward index (along with positional information 
about where they appear in each document), knowing that we can easily reconstruct 
the longer phrase “software engineer” later as a materialized node. We can even 
reconstruct arbitrarily-complex nodes such as “software engineer in in the location 
of New York that also have the skills of Java and Python and either the words con-
tract or contractor or work to hire or the word negotiable within three words of pay 
or salary”. The Semantic Knowledge Graph, therefore, provides both a lossless and 
yet highlycompressed representation of every possible linguistic variation found 
within the original corpus, as well as every potential edge that could connect all 
possible materialized nodes with other nodes.

6.3  �Discovering Semantic Relationships

One of the key capabilities of the semantic knowledge graph is its ability to uncover 
hidden relationships between nodes. In order to discover a relationship between a 
node with a specific tag (field name) tk to another item xi with a specific tag tj, we 
first query the inverted index item xi and assign its document set to node vi corre-
sponding with the document set Dvi. To then find the candidate nodes to which we 
should traverse, we then search the forward index for tag tk, and we reference this 
set of matching documents as Dtk = {d|x ∈ d,x: tk}. We then define Vvi,tk = {vj|xj ∈ d,d 
∈ Dtk ∩Dvi} with vj being the node that stores item xj, and we further define Vvi,tk as 
the set of nodes storing items with an edge to xi of type tk (see Fig. 7). We then apply 
∀vj ∈Vvi,tk,relatedness(vi,vj) in order to score the semantic relationship between vi and 
vj. This relatedness score, which will be described in the next subsection, enables us 
to rank each of the edges between nodes in order to pick the top m most related 
nodes. We can also define a threshold t in order to only accept relationships with rel
atedness(vi,vj) > t. This above operation can occur recursively in order to traverse 
into multiple levels of relationships, as shown in Fig. 8.

The weights are calculated based upon the entire traversed path here, though it is 
possible to alternatively calculate weights not conditioned upon the path and using 
only each separate pair of directly connected nodes.

6.4  �Scoring Semantic Relationships

One of the most powerful features of the Semantic Knowledge Graph (SKG) is its 
ability to score the edges between nodes in the graph based upon the strength of the 
semantic similarity between the entities represented by those nodes. If we don’t 
know how related the phrase physician’s assistant is to the keyword doctor or even 

K. AlJadda et al.



155

Fig. 7  Three representations of a traversal. The Data Structure View represents the underlying links 
from term to document to term in our underlying data structures, the Set Theory view shows the 
relationships between each term once the underlying links have been resolved, and the Graph View 
shows the abstract graph representation in the semantics exposed when interacting with the SKG

Fig. 8  Graph traversal. This example traverses from a materialized node (software developer*), 
through all has-related-skill edges, then from each node at that level again through their has related 
skill edges, and finally from those nodes to each of their has related job title edges
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the phrase truck driver, we can leverage the SKG to score the strength of the seman-
tic relationship between all of those terms. To calculate the semantic similarity 
score between items xi and xj, we materialize a source node vi (representing the 
document set containing xi) and destination node vj (representing the document set 
containing xj).

The simplest example of scoring semantic relationships is when comparing two 
directly connected nodes, which we’ll call vi and vj. To do this, we first query the 
inverted index for item xi, which is tagged with tj, and this query returns back Dvi. 
We then perform a similar query for xj, which is tagged with tk, which returns back 
Dvj. An edge eij exists between vi and vj when f(eij) 6 = φ. We refer to Dvi as our fore-
ground document set DFG and correspondingly call DBG ⊆ D our background docu-
ment set. Our scoring technique relies upon the hypothesis that xi is more 
semantically-related to xj when the relative frequency of xj occurring in the 
foreground document set DFG is greater the the relative frequency of xj occurring in 
the background document set DBG. We leverage the z score as our similarity measure 
for this hypothesis:
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Where n = |DFG| is the size of the foreground document set, y = |f(eij)| is the count 
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term xj with tag tk within the background document set.
We often may want to traverse the graph more than one level of depth to score 

the relationships between more than two nodes, however. If we chose to traverse 
from the entity java to developer to architect, for example, the weight of the edge 
between developer and architect would make more contextual sense if it were also 
conditioned upon the previous path traversed from java to developer. Otherwise, the 
nuanced difference in meaning of the word architect in this context is lost in the 
edge scoring. The Semantic Knowledge Graph enables us to retain this context from 
any previous n nodes along a path P = v1, v2, ..., vn, with each node storing an item 
xi having a tag tj. To calculate the same z(vi, vj) between any two nodes, but also 
conditioning the edge’s score upon the full path P, the following changes are 
required to the scoring function:
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where y D DFG vn
= Ç . We apply normalization on the z score using a sigmoid 

function such that the scores fall within the range [−1,1]. We refer to this normal-
ized score between nodes as their relatedness score, where 1 indicates a 

K. AlJadda et al.



157

completely positive relationship (very likely to appear together), where 0 means 
no relationship (unrelated and just as likely as any random node to appear together), 
and where −1 means a completely negative relationship (highly unlikely to appear 
together).

It is important to note that since the edge weights are calculated at traversal time 
(edges are materialized), that it is possibly to easily substitute a different scoring 
function when appropriate. A simpler, but typically less meaningful, alternate scor-
ing function would be the total count of overlapping documents, which is what most 
graph databases tend use for edge scoring. Plugging in more complex scoring func-
tions leveraging the statistics available in the inverted index and forward index is 
also possible.

6.5  �Scaling Characteristics

The Semantic Knowledge Graph, being built on top of an inverted index and for-
ward index, fundamentally shares the same scaling characteristics of the underlying 
distributed search engine.

As described in Sect. 1, both the inverted index and forward index data structures 
scale well horizontally to trillions of documents sharded across multiple servers. 
While there will be heavy overlap between the terms in every shard of the inverted 
index and forward index, the number of terms conveniently grows logarithmically, 
since each additional document is less likely than the last to add new terms to the 
index that were never seen in a previous document. The documents, conversely, are 
always partitioned across servers, such that all operations can occur in parallel 
against only the subset of documents on each shard. Once these distributed opera-
tions are completed, then only one final aggregation of the top results from each 
shard is necessary to return a final result.

For multi-relationship graph traversals (i.e. traverse from skills to job titles 
and then also to industries), it is necessary for an additional aggregation to occur 
for each nested level of traversal. This refinement process is to ensure that no 
nodes (terms) were missed due to not being returned from one or more shards. 
For example, if we run a graph traversal across two shards and shard 1 returns 
the nodes a, b, c, but shard 2 returns nodes a, c, d, then it is necessary to send 
another refinement request to shard 1 to return its statistics for the previously 
missing node d and one request to shard 2 to return its statistics for the previ-
ously missing node b.

This refinement cost scales linearly with the number of nested levels requested, 
and it should be uncommon to have many nested traversal levels for most common 
use cases. Given these scaling characteristics, the Semantic Knowledge Graph can 
be easily built and run at massive scale to enable distributed graph traversals across 
a massive semantic knowledge base.
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7  �Real World Applications

We implemented the techniques described throughout this chapter within the context 
of a career search website. Specifically, they were implemented as components of a 
semantic search system for CareerBuilder, one of the largest online job boards in 
the world. The system leveraged the described query log mining techniques (as 
described in 4.2) to build up a language-agnostic and domain specific taxonomy that 
was able to model and disambiguate words (as described in 5) and related terms, as 
well as the Semantic Knowledge Graph, which could also discover and score the 
strength of named relationships between terms. By combining both a user-inputbased 
approach (mining query logs) and a content-based approach (as described in 6), we 
were able to improve the quality of the output of both systems. For example, we 
were able to use the Semantic Knowledge Graph to score the terms and coterms 
found from mining the query logs, enabling us to reduce the noise in the coterms 
lists with 95% accuracy [21]. While the usefulness of the related coterms was higher 
in the list mined from query logs (because the logs directly model the language used 
by users of the system to express their intent), the Semantic Knowledge Graph was 
able to fill in holes in the learned taxonomy for terms or coterms which were not 
adequately represented within the query logs.

For our production system, we ended up indexing all discovered terms into a 
scalable, naive entity extractor called the Solr Text Tagger.2 The Solr Text Tagger 
leverages Apache Solr to build an inverted index compressed into a specialized data 
structure called a Finite State Transducer (FST). This data structure enables us to 
index millions of potential entities and subsequently pass incoming queries and 
documents in to perform entity extraction in milliseconds across reasonably large 
documents.

The extracted entities can then be passed to the Semantic Knowledge Graph in 
order to score their similarity with the topic of the document. This allows us to take, 
for example, a 10,000 word document and summarize it using the top ten phrases 
which are most relevant to that document. It is then possible to run a weighted 
search for those top keywords to find a relevant set of related documents (which 
provides a highly accurate content-based recommendation algorithm), or to 
alternatively traverse from those top ten phrases to a list of phrases most relevant to 
them, but potentially missing from the actual document. In this way, we can search 
on the concepts people are looking for, without relying on the exact words they have 
used within their documents.

The same process of entity extraction, ranking, and concept expansion that we 
described for documents also works well for interpreting and expanding queries in 
order to provide a powerful semantic search experience. This system, in production, 
was able to boost the NDCG scores (which is common metric used to measure 
relevancy of a search engine) of search results from 59–76%, representing a very 
significant improvement in the relevancy of the search engine [21].

2 https://github.com/OpenSextant/SolrTextTagger
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8  �Conclusion

We have discussed many techniques and tools available for building and utilizing 
semantic knowledge bases. These techniques include the mining of massive vol-
umes of query logs leveraging a Probabilistic Graphical Model for Massive 
Hierarchical Data (PGMHD) across a Hadoop cluster to find interesting terms and 
phrases along with semantically-related terms and phrases which can be used for 
concept expansion [22]. We also described a method for detection and disambigua-
tion of multiple senses of those discovered terms and phrases found within the query 
logs [23]. We further covered a model called a Semantic Knowledge Graph, which 
leverages the relationships inherent between words and phrases within a corpus of 
documents to automatically generate a relationship graph between those phrases. 
This graph can be traversed to further discover and score the strength of relation-
ships between any entities contained within it based purely upon the content within 
the documents in a search engine.

These components by themselves are useful tools, but when combined together, 
they can form a powerful “intent engine” which is able to index content into a search 
engine, and then leverage the auto-generated semantic knowledge bases to parse 
and interpret incoming queries (to match documents) or documents (to match other 
documents). We successfully applied these techniques at one of the largest job 
boards in the world and were ultimately able to boost the relevancy of the search 
engine (as measured by NDCG scores) from 59–76%. Such a significant improve-
ment in search results relevancy is a testament to the gains which can be achieved 
through utilizing distributed big data analytics to automate the creation of semantic 
knowledge bases and applying them to increase the relevancy of an information 
retrieval system.
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