
Scalable Computing and Communications

Distributed
Computing
in Big Data
Analytics

Sourav Mazumder
Robin Singh Bhadoria
Ganesh Chandra Deka 
Editors

Concepts, Technologies
and Applications

More information about this series at http://www.springer.com/series/15044

Scalable Computing and Communications

Series editor

Albert Y. Zomaya
University of Sydney
New South Wales, Australia

http://www.springer.com/series/15044

Sourav Mazumder  •  Robin Singh Bhadoria
Ganesh Chandra Deka
Editors

Distributed Computing
in Big Data Analytics
Concepts, Technologies and Applications

ISSN 2520-8632	          ISSN 2364-9496  (electronic)
Scalable Computing and Communications
ISBN 978-3-319-59833-8     ISBN 978-3-319-59834-5  (eBook)
DOI 10.1007/978-3-319-59834-5

Library of Congress Control Number: 2017947705

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors
or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Editors
Sourav Mazumder
IBM Analytics
San Ramon, CA, USA

Ganesh Chandra Deka
Directorate General of Training
Ministry of Skill Development and

Entrepreneurship
New Delhi, Delhi, India

Robin Singh Bhadoria
Discipline of Computer Science and

Engineering
Indian Institute of Technology Indore
Indore, Madhya Pradesh, India

v

Editor’s Notes

We are today living in the world of information explosion. Fortunately our human
brain is reasonably fast and intelligent enough to capture relevant information from
the large volume of data we are exposed to on every day basis. That helps us taking
appropriate decisions and making right choices every moment in our business and
personal lives. However, more and more, we have started facing difficulty in doing
the same given that in many a case we need to take rapid decision after gathering
insights from very high volume and numerous varieties of data. So having an aid in
supporting human decision making process is becoming utterly important in today’s
world to make everyone’s life easier and the decisions more accurate and effective.
This aid is wh	 at we otherwise call as Analytics.

The Analytics is anything but new to the human world. The earliest evidence of
applying Analytics in business is found in late of seventeenth century. At that point
of time Founder Edward Lloyd used the shipping news and information gathered
from his coffee house to assist bankers, sailors, merchants, ship owners, and others
in their business dealings, including insurance and underwriting. This made Society
of Lloyds the world’s leading market for specialty insurance for next two decades,
as they could use historical data and proprietary knowledge effectively and quickly
to identify risks. Next in early twentieth century human civilization saw few revolutionary
ideas forming side by side in the area of Analytics both from academia as well as
business. In academia, Moore’s common sense proposition gave rise to the idea of
‘Analytic Philosophy’ which essentially advocates extending facts gathered from
common place to greater insights. On the other hand, in the business side of the
world, Frederick Winslow Taylor detailed out efficiency techniques in his book, The
Principles of Scientific Management, in 1911, which were based on principles of
Analytics. Also, during the similar time frame, the real life use of Analytics was
actually implemented by Henry Ford by measuring pacing of the assembly line
which eventually revolutionized the discipline of Manufacturing.

However, the Analytics started becoming more main mainstream, which we can
refer as Analytics 1.0, with the advent of Computers. In 1944, Manhattan Project
predicted behavior of nuclear chain reactions through computer simulations, in
1950 first weather forecast was generated by ENIAC computer, in 1956 shortest

vi

path problem was solved through computer based analytics which eventually
transformed Air Travel and Logistics industry, in 1956 FICO created analytic model
for credit risk prediction, in 1973 optimal price for stock options was derived using
Black-Scholes model, in 1992 FICO deployed real time analytics to fight credit
fraud and in 1998 we saw use of analytics for competitive edge in sports by the
Oakland Athletics team. From the late 90’s onwards, we started seeing major
adoption of Web Technologies, Mobile Devices and reduction of cost of computing
infrastructures. That started generating high volume of data, namely Big Data,
which made the world thinking about how to handle this Big Data both from storage
and consumption perspectives. Eventually this led to the next phase of evolution in
Analytics, Analytics 2.0, in the decade of 2000. There we saw major resurgence in
the belief in potential of data and its usage through the use of Big Data Technologies.
These Big Data Technologies ensured that the data in any volume, variety and
velocity (the rate at which it is produced and consumed) can be stored and consumed
at reasonable cost and time. And now we are in the era of Big Data based Analytics,
commonly called as Big Data Analytics or Analytics 3.0. Big Data Analytics is
essentially about the use of Analytics in every aspect of human needs to answer the
questions right in time, to help taking decisions in immediate need and also to make
strategies using data generated rapidly in volume and variety through human
interactions as well as by machines.

The key premise of Big Data Analytics is to make insights available to users,
within actionable time, without bothering them of the ways the data is generated
and the technology used to store and process the same. This is where the application
of principles of Distributed Computing comes into play. The Distributed Computing
brings two basic promises in the world of Big Data (and hence to Big Data
Analytics) – ability to scale (with respect to processing and storage) with increase
in volume of data and ability to use low cost hardware. These promises are highly
profound in nature as they reduce the entry barrier for anyone and everyone to use
Analytics and it also creates a conducive environment for evolution of analytics in a
particular context with the change in business direction and growth.

Hence, to properly leverage benefits out of Big Data Analytics, one cannot
undermine the importance of principles of Distributed Computing. The principals of
Distributed Computing that involve data storage, data access, data transfer,
visualization and predictive modeling using multiple low cost machines are the key
considerations that make Big Data Analytics possible within stipulated cost and
time practical for consumption by human and machines. However, the current
literatures available in Big Data Analytics world do not cover the use of key aspects
of Distributed Processing in Big Data Analytics in an adequate way which can
highlight the relation between Big Data Analytics and Distributed Processing for
ease of understanding and use by the practitioners. This book aims to cover that gap
in the current space of books/literature available for Big Data Analytics.

The chapters in this book are selected to achieve the afore mentioned goal with
coverage from three perspectives - the key concepts and patterns of Distributed
Computing that are important and widely used in Big Data Analytics, the key
technologies which support Distributed Processing in Big Data Analytics world,

Editor’s Notes

vii

and finally popular Applications of Big Data Analytics highlighting how principles
of Distributed Computing are used in those cases. Though all of the chapters of this
book have the underlying common theme of Distributed Computing connecting
them together, each of these chapters can stand as independent read so that the
readers can decide to pick and choose depending on their individual needs.

This book will potentially benefit the readers in the following areas. The readers
can use the understanding of the key concepts and patterns of Distributed Computing,
applicable to Big Data Analytics while architecting, designing, developing and
troubleshooting Big Data Analytics use cases. The knowledge of working principles
and designs of popular Big Data Technologies in relation to the key concepts and
patterns of Distributed Technologies will help them to select right technologies
through understanding of inherent strength and drawback of those technologies
with respect to specific use cases. The experiences shared around usage of
Distributed Computing principles in popular applications of Big Data Analytics will
help the readers understanding the usage aspects of Distributed Computing
principals in real life Big Data Analytics applications-what works and what does
not. Also, best Practices discussed across all the chapters of this book would be easy
reference for the practitioners to apply the concepts in his/her particular use cases.
Finally, in overall, all these will also help the readers to come out with their own
innovative ideas and applications in this continuously evolving field of Big Data
Analytics.

We sincerely hope that readers of today and future interested in Big Data
Analytics space would find this book useful. That will make this effort worthwhile
and rewarding. We wish all readers of this book the very best in their journey of Big
Data Analytics.

Editor’s Notes

ix

Contents

On the Role of Distributed Computing in Big Data Analytics.................... 	 1
Alba Amato

Fundamental Concepts of Distributed Computing
Used in Big Data Analytics... 	 11
Qi Jun Wang

Distributed Computing Patterns Useful in Big Data Analytics.................. 	 35
Julio César Santos dos Anjos, Cláudio Fernando Resin Geyer,
and Jorge Luis Victória Barbosa

Distributed Computing Technologies in Big Data Analytics....................... 	 57
Kaushik Dutta

Security Issues and Challenges in Big Data Analytics
in Distributed Environment... 	 83
Mayank Swarnkar and Robin Singh Bhadoria

Scientific Computing and Big Data Analytics: Application
in Climate Science... 	 95
Subarna Bhattacharyya and Detelina Ivanova

Distributed Computing in Cognitive Analytics.. 	 107
Vishwanath Kamat

Distributed Computing in Social Media Analytics...................................... 	 121
Matthew Riemer

Utilizing Big Data Analytics for Automatic Building
of Language-agnostic Semantic Knowledge Bases....................................... 	 137
Khalifeh AlJadda, Mohammed Korayem, and Trey Grainger

1© Springer International Publishing AG 2017
S. Mazumder et al. (eds.), Distributed Computing in Big Data Analytics,
Scalable Computing and Communications, DOI 10.1007/978-3-319-59834-5_1

On the Role of Distributed Computing in Big
Data Analytics

Alba Amato

1  �Introduction

Distributed paradigm emerged as an alternative to expensive supercomputers, in
order to handle new and increasing users needs and application demands [1].
Opposed to supercomputers, distributed computing systems are networks of large
number of attached nodes or entities connected through a fast local network [2].
This architectural design allows to obtain high computational capabilities by joining
together a large number of compute units via a fast network and resource sharing
among different users in a transparent way. Having multiple computers processing
the same data means that a malfunction in one of the computers does not influence
the entire computing process. This paradigm is also strongly motivated by the
explosion of the amount of available data that make necessary the effective distrib-
uted computation. Gartner has defined big data as “high volume, velocity and/or
variety information assets that demand cost-effective, innovative forms of informa-
tion processing that enable enhanced insight, decision making, and process automa-
tion” [3]. In fact the huge size is not the only property of Big Data. Only if the
information has the characteristics of either of Volume, Velocity and/or Variety we
can refer the area of problem/solution domain as Big Data [4].Volume refers to the
fact that we are dealing with ever-growing data expanding beyond terabytes into
petabytes, and even exabytes (1 million terabytes). Variety refers to the fact that Big
Data is characterized by data that often come from heterogeneous sources such as
machines, sensors and unrefined ones, making the management much more com-
plex. Finally, the third characteristic, that is velocity that, according to Gartner [5],
“means both how fast data is being produced and how fast the data must be

A. Amato (*)
Department of Industrial and Information Engineering, Second University of Naples,
Caserta, CE, Italy
e-mail: alba.amato@unina2.it; albaamato@gmail.com

mailto:alba.amato@unina2.it
mailto:albaamato@gmail.com

2

processed to meet demand”. In fact in a very short time the data can become obso-
lete. Dealing effectively with Big Data “requires to perform analytics against the
volume and variety of data while it is still in motion, not just after” [4]. IBM [6]
proposes the inclusion of veracity as the fourth big data attribute to emphasize the
importance of addressing and managing the uncertainty of some types of data.
Striving for high data quality is an important big data requirement and challenge,
but even the best data cleansing methods cannot remove the inherent unpredictabil-
ity of some data, like the weather, the economy, or a customer’s actual future buying
decisions. The need to acknowledge and plan for uncertainty is a dimension of big
data that has been introduced as executives seek to better understand the uncertain
world around them [7]. Big Data are so complex and large that it is really difficult
and sometime impossible, to process and analyze them using traditional approaches.
In fact traditional relational database management systems (RDBMS) can not han-
dle big data sets in a cost effective and timely manner. These technologies are typi-
cally not enabled to extract, from large data set, rich information that can be
exploited across of a broad range of topics such as market segmentation, user
behavior profiling, trend prediction, events detection, etc. in various fields like pub-
lic health, economic development and economic forecasting. Besides Big Data have
a low information per byte, and, therefore, given the vast amount of data, the poten-
tial for great insight is quite high only if it is possible to analyze the whole dataset
[4]. The challenge is to find a way to transform raw data into valuable information.

So, to capture value from big data, it is necessary to use next generation innova-
tive data management technologies and techniques that will help individuals and
organizations to integrate, analyze, visualize different types of data at different spa-
tial and temporal scales. Basically the idea is to use distributed storage and distrib-
uted processing of very large data sets in order to address the four V’s. There come
the big data technologies which are mainly built on distributed paradigm. Big Data
Technologies built using the principals of Distributed Computing, allow acquizition
and analysis of intelligence from big data. Big Data Analytics can be viewed as a
sub-process in the overall process of insight extraction from big data [8].

In this chapter, the first section introduces an overview of Big Data, describing
their characteristics and their life cycle. In the second section the importance of
Distributed Computing is explained focusing on issue and challenges of Distributed
Computing in Big Data analytics. The third section presents an overview of tech-
nologies for Big Data analytics based on Distributed Computing concepts. The
focus will be on Hadoop.1 which provides a distributed file system, YARN2, a
resource manager through which multiple applications can perform computations
simultaneously on the data, and Spark,3 an open-source framework for the analysis
of data that can be run on Hadoop, its architecture and its mode of operation in
comparison to MapReduce.4 The choice of Hadoop is due to more elements. First

1 hadoop.apache.org.
2 https://hadoop.apache.org/docs/current/hadoop-yarn.html.
3 spark.apache.org/.
4 https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html.

A. Amato

http://hadoop.apache.org
https://hadoop.apache.org/docs/current/hadoop-yarn.html
http://spark.apache.org
https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html

3

of all it is leading to phenomenal technical advancements. Moreover it is an open
source project, widely adopted with an ever increasing documentation and com-
munity. In the end conclusion are discussed together with the current solutions and
future trends and challenge.

2  �History and Key Characteristics of Big Data

Distributed computing divides the big unmanageable problems around processing,
storage and communication, into small manageable pieces and solves it efficiently
in a coordinated manner [9]. Distributed computing are ever more widespread
because of availability of powerful yet cheap microprocessors and continuing
advances in communication technology. It is necessary especially when there are
complex processes that are intrinsically distributed, with the need for growth and
reliability.

Data management industry has been revolutionized by hardware and software
breakthroughs. First, hardware’s power increased and hardware’s price decrease. As
a consequence, new software emerged that takes advantage of this hardware by
automating processes like load balancing and optimization across a huge cluster of
nodes.

One of the problems with managing large quantities of data, has been the impact
of latency that represents an issue in every aspect of computing, including commu-
nications, data management, system performance, and more. The capability to
leverage distributed computing and parallel processing techniques reduced latency.
It may not be possible to construct a big data application in a high latency environ-
ment if high performance is needed. It is necessary to process, analyse and verify
this data in near real time. With the aim of reducing latency various distributed
computing and parallel processing techniques have been proposed by researchers
and practitioners from time to time.

Frequently problems are also related to high likelihood of hardware failure,
improportionate distribution of data across various nodes in cluster and security
issues due to the data access from anywhere.

The solution of those problems are typically based on distributed file storage
(such as HDFS,5 OpenAFS,6 XtreemFS,7...), cluster resource management (such as
YARN, Mesos,8...), and parallel programming model for large data sets and analysis
model (such as MapReduce, Spark, Flink9).

The term Big Data is a broad and evolving term that refers to any collection of
data so wide as to make it difficult or impossible to store it in a traditional software

5 https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html.
6 https://www.openafs.org/.
7 www.xtreemfs.org/.
8 mesos.apache.org/.
9 https://flink.apache.org/.

On the Role of Distributed Computing in Big Data Analytics

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://www.openafs.org
http://www.xtreemfs.org
http://mesos.apache.org
https://flink.apache.org

4

system, as RDBMS (Relational Database Management System). Although the term
does not refer to any particular amount, usually it is possible to talk about Big Data
from couple of Gigabytes of data, that is, when the data can not be easily processed
by a single process. Big Data solutions are ideal for analysing not only raw struc-
tured data, but semistructured and unstructured data from a wide variety of sources
[4]; Big Data solutions are ideal when all, or most, of the data needs to be analysed
versus a sample of the data; or a sampling of data is not nearly as effective as a larger
set of data from which to derive analysis; Big Data solutions are ideal for iterative
and exploratory analysis when measures on data are not predetermined.

The collection of data streams of higher velocity and higher variety brings sev-
eral problems that can be addressed by big data technologies. Thanks to big data
technology it is possible to build an infrastructure that delivers low, predictable
latency in both capturing data and in executing simple and complex queries; it is
also possible to handle very high transaction volumes, often in a distributed environ-
ment; and supports flexible, dynamic data structures [10]. When dealing with such
a high volume of information, it is relevant to organize data at its original storage
location, thus saving both time and money by not moving around large volumes of
data. The analysis may also be done in a distributed environment, where some data
will stay where it was originally stored and be transparently accessed for required
analytics such as statistical analysis and data mining, on a wider variety of data
types stored in diverse systems; to scale for extreme data volumes and deliver faster
response times. Most importantly, the infrastructure must be able to integrate analy-
sis on the combination of big data and traditional enterprise data. New insight comes
not just from analyzing new data, but from analyzing it within the context of the old
to provide new perspectives on old problems [10]. Context-aware Big Data solu-
tions could focus only on relevant information by keeping high probability of hit for
all application-relevant events, with manifest advantages in terms of cost reduction
and complexity decrease [11]. Obviously the results of big data analysis are only as
good as the data being analyzed.

In last two decades, the term database is used in several contexts and is usually
used as synonymous with SQL. Recently, however, the world of data storage has
changed and new and interesting possibilities are now based on NoSQL. NoSQL
stands for “Not Only SQL” and this emphasizes that the NoSQL technology is not
entirely incompatible with SQL (Structured Query Language), it describes a large
class of databases which are generally not queried with SQL. NoSQL data stores are
designed to scale well horizontally and run on commodity hardware. NoSQL is
definitely not suitable for all uses and is not a replacement of the traditional RDBMS
database, but it can assist them or in part replace, and its main advantages make it
useful, if not essential, in some occasions. NoSQL can significantly reduce develop-
ment time because it eliminates the need to address complex SQL queries to extract
structured data. The NoSQL database, if used properly, return the data in a timely
way than a traditional database. This factor is really important with web and mobile
applications. NoSQL data stores have several key features [12] that help them to
horizontally scale throughput over many servers, replicate and distribute data over

A. Amato

5

many servers, and dynamically add new attributes to data records [12]. NoSQL Data
Models can be classified in:

•	 Key-value data stores (KVS). They store values associated with an index (key).
KVS systems typically provide replication, versioning, locking, transactions,
sorting, and/or other features. The client API offers simple operations including
puts, gets, deletes, and key lookups.

•	 Document data stores (DDS). DDS typically store more complex data than KVS,
allowing for nested values and dynamic attribute definitions at runtime. Unlike
KVS, DDS generally support secondary indexes and multiple types of docu-
ments (objects) per database, as well as nested documents or lists.

•	 Extensible record data stores (ERDS). ERDS store extensible records, where
default attributes (and their families) can be defined in a schema, but new attri-
butes can be added per record. ERDS can partition extensible records both hori-
zontally (per-row) or vertically (per-column) across a datastore, as well as
simultaneously using both partitioning approaches.

Another important category is constituted by Graph data stores. They [13] are
based on graph theory and use graph structures with nodes, edges, and properties to
represent and store data. Key-Value, Document based and Extensible record catego-
ries aim at the entities decoupling to facilitate the data partitioning and have less
overhead on read and write operations, whereas Graph-based category take the
modeling the relations like principal objective. Therefore techniques to enhancing
schema with a Graph-based database may not be the same as used with Key-Value
and others. The graph data model fits better to model domain problems that can be
represented by graph as ontologies, relationship, maps etc. Particular query lan-
guages allow querying the data bases by using classical graph operators as neigh-
bour, path, distance etc.

Because for many Big Data use cases, the data does not have to be 100 percent
consistent all the time, applications can scale out to a much greater extent. Eric
Brewer’s CAP theorem [14], formalized in [15], which basically states that is
impossible for a distributed computing system to simultaneously provide all three
of the following guarantees: Consistency, Availability and Partition Tolerance (from
these properties the CAP acronym has been derived). Where:

•	 Consistency: all nodes see the same data at the same time
•	 Availability: a guarantee that every request receives a response about whether it

was successful or failed
•	 Partition Tolerance: the system continues to operate despite arbitrary message

loss or failure of part of the system that create a network partition

Only two of the CAP properties can be ensured at the same time. Therefore, only
CA systems (consistent and highly available, but not partition-tolerant), CP systems
(consistent and partition tolerant, but not highly available), and AP systems (highly
available and partition-tolerant, but not consistent) are possible and for many people
CA and CP are equivalent because loosing in Partitioning Tolerance means a lost of
Availability when a partition takes place.

On the Role of Distributed Computing in Big Data Analytics

6

There are several other compute infrastructures to use in various domains.
MapReduce is a programming model and an associated implementation for process-
ing and generating large datasets. Users specify a map function that processes a key/
value pair to generate a set of intermediate key/value pairs, and a reduce function
that merges all intermediate values associated with the same intermediate key. Many
real world tasks are expressible in this model, as show in [16]. Programs written in
this functional style are automatically parallelized and executed on a large cluster of
commodity machines. This allows programmers without any experience with paral-
lel and distributed systems to utilize the resources of a large distributed system eas-
ily. Ather key concepts related to Big Data Analytics are:

Bulk synchronous parallel processing [17] is a model proposed originally by
Leslie Valiant. In this model, processors execute independently on local data for a
number of steps. They can also communicate with other processors while comput-
ing. But they all stop to synchronize at known points in the execution; these points
are called barrier synchronization points. This method ensures that deadlock prob-
lems can be detected easily.

Large data streaming generated by thousands of data sources at high velocity, in
high volume. It contains valuable potential insights and need to be processing real
time to capture and pipe streaming data, but also to enrich, add context, personalize,
and act on it before it becomes data at rest. These high-velocity applications require
the ability to analyze and transact on streaming data.10

Large scale In memory computing, necessary to meet the strict real-time require-
ments for analyzing mass amounts of data and servicing requests within millisec-
onds an in-memory system/database that keeps the data in the random access
memory (RAM) all the time [1].

High availability (HA) that is the ability of a system to remain up and running
despite unforeseen failures, avoiding unplanned downtime or service disruption.
HA is a critical feature that businesses rely on to support customer-facing applica-
tions and service level agreements.11

3  �Key Aspects of Big Data Analytics

In recent years data, data management and the tools for data analysis have under-
gone a transformation. We have seen a significant increase in data collected by users
thanks to web applications, sensors, etc. Unlike traditional systems, the type and the
amount of data sources are varied. There is no longer just dealing with structured
data, but also unstructured data from social networks, sensors, from the web, smart-
phones, etc. The acquisition of Big Data can be done in different ways, depending
on the data source. The means for the acquisition of data can be divided into four
categories: Application Programming Interface: the APIs are protocols used as a

10 https://www.voltdb.com/fast-data.
11 https://www.mapr.com/resources/high-availability-mapr.

A. Amato

https://www.voltdb.com/fast-data
https://www.mapr.com/resources/high-availability-mapr

7

communication interface between software components. Examples of APIs are the
Twitter API, the Facebook Graph API and API offer by some search engines like
Google, Bing and Yahoo! and the weather API. They allow, for example, to get the
tweets related to specific topics (Twitter API) or examining the advertising content
based on certain search criteria in the case of the Facebook Graph API. Web Scraping
where data are simply taken by analysing the Web, i.e. the network of pages con-
nected by hyperlinks. This has given rise to the term Big Data, that has become very
popular, but its meaning often takes on different aspects. In general, we can sum-
marize its meaning as a way to treat large volumes of data constantly increasing [7],
an action that requires instruments for collecting, storage and analysis different
from the traditional ones. In particular we refer to datasets that are so large to be not
manageable by traditional systems, such as relational DBMS running on a single
machine. In fact, when the size of a dataset is more than few terabytes, it is neces-
sary to use a distributed system, in which the data is partitioned across multiple
machines. Several technologies to manage Big Data have been created that are able
to use the computing power and the storage capacity of a cluster, with an increase in
performance proportional to the number of machines present on the same cluster.
Those technologies provide a system for storing and analysing distributed data.
Using redundancy of data and sophisticated algorithms, can work even in the event
of failure of one or more machines in the cluster, transparently to the user. Distributed
systems provide the basis for those systems. In fact a distributed architecture is able
to serve as an umbrella for many different systems.

4  �Popular Technologies for Big Data Analytics Utilizing
Concepts of Distributed Computing

In the subsections below we discuss few popular open source Big Data technologies
those are wideliy used to day across various industries.

4.1  �Hadoop

The Hadoop Distributed File System (HDFS) [18] is a distributed filesystem written
in Java designed to be run on commodity hardware, in which the data stored are par-
titioned and replicated on the nodes of a cluster. HDFS is fault-tolerant and developed
to be deployed on low-cost machines. Hadoop is just one example of a framework
that can bring together a broad array of tools such as (according to Apache.org):
Hadoop Distributed File System that provides high-throughput access to application
data; Hadoop YARN for job scheduling and cluster resource management; Hadoop
MapReduce for parallel processing of big data. Hadoop, for many years, was the
leading open source Big Data framework but recently the newer and more advanced

On the Role of Distributed Computing in Big Data Analytics

http://apache.org

8

Spark has become the more popular of the two Apache Software Foundation tools.
Hadoop can run different applications, including MapReduce, Hive and Apache
Spark. Through redundancy of data and sophisticated algorithms, Hadoop can work
even in the event of failure of one or more machines in the cluster, transparently to the
user. Hadoop is an open-source software system used extensively in this area, offer-
ing both a distributed file system for storing information that one for their computing
platform. The module supports multiple software for the analysis of data, including
MapReduce and Spark. The substantial difference between these two systems is that
MapReduce obliges to store the data to disk after each iteration, while Spark can
work in main memory, exploiting the disc only in case of need. The Spark system,
which is a high-level framework, provides a set of specific modules for each scope.

4.2  �Yarn

YARN (Yet Another Resource Negotiator) is a main feature of the second version of
Hadoop. Before YARN, the same node of the cluster, on which he was running the
Job Tracker, took care of both of the cluster resource management is the scheduling
of the task of MapReduce applications (which were the only possible ones). With
the advent of YARN the two tasks were separated and were held respectively by the
ResourceManager and AppliationMaster.

4.3  �Hadoop Map Reduce

Hadoop MapReduce is a programming model for processing large data sets on par-
allel computing systems. A MapReduce Job is defined by: the input data; a proce-
dure Map, which for each input element generates a number of key / value pairs; a
phase of shuffle network; It reduces a procedure, which receives as input elements
with the same key and generates a summary information from such elements; the
output data MapReduce guarantees that all elements with the same key will be tried
by the same reducer, since the mapper all use the same hash function to decide
which reducer send the key / value pairs.

4.4  �Spark

Apache Spark is a project that otherwise to Hadoop MapReduce does not require
the use of your hard disk, but may enter directly into the main memory managing to
offer performance even 100 times on specific applications. Spark offers a broader
set of primitive compared to MapReduce, greatly simplifying programming.

A. Amato

9

5  �Conclusion

A distributed computing system consists of number of processing elements inter-
connected by a computer network and co-operating in performing certain assigned
tasks. When data becomes large, the database is distributed into various sites. The
distributed databases need distributed computing to store, retrieve, and update data
in a well coordinated way [9]. The advent of Big Data has led in recent years in
search of new solutions for storing them and for their analysis. To manage Big Data,
technologies have been created that are able to use the computing power and the
storage capacity of a cluster, with an increase in performance proportional to the
number of machines present on the same. In particular big data analytics is a prom-
ising area for next generation of innovation in the field of automation, with the ever
increasing need of extracting value from data in several field of application. With
that objetcive in mind various technologies/system have been evolved in last decade
or so. The most used of these systems is Hadoop, which provides a system for stor-
ing and analyzing distributed data. YARN is a main feature of the second version of
Hadoop, born to solve common problems. Hadoop Map Reduce, is designed for
processing large data sets with a parallel and distributed algorithm on a cluster, and
Spark performs in-memory processing of data. In this chapter an overview of tech-
nologies for Big Data analytics based on Distributed Computing concepts have been
presented. With the increasing amount of data, the analytics will be ever more
important in the decision-making process in several sectors allowing the discovery
of new opportunities and increasing the quality of information.

References

	 1.	Gartner. Hype cycle for big data, 2012. Technical report (2012) On the role of Distributed
Computing in Big Data Analytics 11

	 2.	Afgan, E., Bangalore, P., Skala, K. Application information services for distributed computing
environments. Future Generation Computer Systems 27 (2011) 173–181

	 3.	Cattell, R. Scalable sql and nosql data stores. Technical report (2012)
	 4.	Brewer, E.A. Towards robust distributed systems (abstract). In: Proceedings of the nineteenth

annual ACM symposium on Principles of distributed computing. PODC ‘00, New York, NY,
USA, ACM (2000) 7-.

	 5.	Nessi: Nessi white paper on big data. Technical report (2012)
	 6.	Dean, J., Ghemawat, S. Mapreduce: simplified data processing on large clusters. In: Osdi04:

Proceedings Of The 6th Conference On Symposium On Operating Systems Design And
Implementation, Usenix Association (2004)

	 7.	 IBM, Zikopoulos, P., Eaton, C. Understanding Big Data: Analytics for Enterprise Class
Hadoop and Streaming Data. 1st edn. McGraw-Hill Osborne Media (2011)

	 8.	Schroeck, M., Shockley, R., Smart, J., Romero-Morales, D., Tufano, P. Analytics: The real-
world use of big data. Ibm institute for business value – executive report, IBM Institute for
Business Value (2012)

	 9.	Gilbert, S., Lynch, N. Brewer’s conjecture and the feasibility of consistent, available, partition-
tolerant web services. SIGACT News 33 (2002) 51–59

On the Role of Distributed Computing in Big Data Analytics

10

	10.	Zhang, H., Chen, G., Ooi, B.C., Tan, K.L., Zhang, M. In-memory big data management and
processing: A survey. IEEE Transactions on Knowledge and Data Engineering 27 (2015)
1920–1948

	11.	Valiant, L.G. A bridging model for parallel computation. Commun. ACM 33 (1990) 103–111
	12.	Oracle: Big data for the enterprise. Technical report (2013)
	13.	Robinson, I., Webber, J., Eifrem, E. Graph Databases. O’Reilly Media, Incorporated (2013)
	14.	White, T. Hadoop: The Definitive Guide. 1st edn. O’Reilly Media, Inc. (2009)
	15.	Grover, P., Johari, R. Bcd: Bigdata, cloud computing and distributed computing. In:

Communication Technologies (GCCT), 2015 Global Conference on, IEEE (2015) 772–776
	16.	Gartner: Pattern-based strategy: Getting value from big data. Technical report (2011)
	17.	Gandomi, A., Haider, M. Beyond the hype: Big data concepts, methods, and analytics.

International Journal of Information Management 35 (2015) 137–144
	18.	Amato, A., Venticinque, S. In: Big Data Management Systems for the Exploitation of Pervasive

Environments. Springer International Publishing, Cham (2014) 67–89
	19.	Afgan, E., Bangalore, P., Skala, T. Scheduling and planning job execution of loosely coupled

applications. The Journal of Supercomputing 59 (2012) 1431–1454

A. Amato

11© Springer International Publishing AG 2017
S. Mazumder et al. (eds.), Distributed Computing in Big Data Analytics,
Scalable Computing and Communications, DOI 10.1007/978-3-319-59834-5_2

Fundamental Concepts of Distributed
Computing Used in Big Data Analytics

Qi Jun Wang

1  �Introduction

The study of distributed computing became its own branch of computer science in
the late 1970s and early 1980s. So it has been a long time since the advent of distrib-
uted computing technology and since then many fundamental concepts of Distributed
Computing has been successfully used in various areas of real life applications.
These fundamental concepts are the keys to achieve large-scale computation in a
scalable and affordable way and hence most of the Big Data Technologies of today
leverage those concepts to design their internal frameworks and features. In turn
those Big Data Technologies are used to build applications around Big Data
Analytics for various industries.

In this chapter we provide detail understanding of some of these fundamental
concepts that are must to know by any Big Data Analytics practitioner. We also
provide appropriate examples around these concepts wherever necessary. We start
with explanation of the concepts of Multi-threading and Multi processing. Next we
introduce the different types of computer architecture along with the concepts of
scale up and scale out. Next we delve into the principles of Queuing system and use
of the same in Distributed Computing. We also cover the relationship between
Consistency, Availability, and Partition Tolerance and their trade of in Cap Theorem.
Next we provide the concept of Computing Cluster and main challenges in the
same. Finally we end with discussion around key Quality of Service (QoS) require-
ments applicable in Big Data Analytics area.

Q.J. Wang (*)
Big Data Architect, Lab Service, IBM Analytics, Seattle, Washington, DC, USA
e-mail: wangqij@us.ibm.com

mailto:wangqij@us.ibm.com

12

2  �Multithreading and Multiprocessing

Multi-threading and Multi processing are two fundamental concepts in Distributed
Computing. They are widely used to enhance the performance of Distributed Computing
system. The main purpose of Multi threading and Multi processing is to enhance the
parallelization, which reduces the system process delay.

2.1  �Concept of Multiprocessing

Multiprocessing is a mode of operation in which two or more processors in a com-
puter simultaneously process two or more different portions of the same program
(set of instructions). Supercomputers typically combine thousands of such micro-
processors to interpret and execute instructions. The advantage of multiprocessing
is it can dramatically enhance the system throughput and speed up the execution
of programs.

2.2  �Example of Multiprocessing

The concept of multiprocessing has been used in many famous distributed comput-
ing or big data platform, such as Apache Hadoop. In Hadoop, users can concur-
rently start multiple mappers and reducers and each mapper or reducer corresponds
to one process.

Figure 1 is the picture showing the multiprocessing model in the Hadoop runtime
environment:

Hadoop client is responsible for submitting map-reduce jobs to the resource
manager, and resource manager will look up the available resources (CPU, mem-
ory) on each slave node and allocate these resources to the Hadoop applications.
After that, Hadoop application will split the jobs and start concurrent multi pro-
cesses (mappers) to process each splits. Finally, it will start another set of concur-
rent multi processes (reducers) to combine the results of mappers and output data to
Hadoop Distributed File System (HDFS).

2.3  �Concept of Multithreading

A thread is the smallest sequence of programmed instructions that can be man-
aged independently by a scheduler. Multithreading is the ability of a central pro-
cess unit (CPU) or a single core in a multi-core processor to execute multiple
threads concurrently, appropriately supported by the operating system.

Q.J. Wang

13

Multithreading aims to increase utilization of a single core by using thread-level
as well as instruction-level parallelism, and the advantage of Multithreading is If
a thread gets a lot of cache misses, which is s a state where the data requested for
processing by a component or application is not found in the memory, the other
threads can continue taking advantage of the unused computing resources, like
CPU and memory. Also, if a thread cannot use all the computing resources of the
CPU (because instructions depend on each other’s result), running another thread
may prevent those resources from becoming idle [2]. If several threads work on
the same set of data, they can actually share their cache, leading to better cache
usage or synchronization on its values.

2.4  �Example of Multithreading

Apache Spark is one of the typical big data platforms using multi threading. Spark
implements based on multithreading models for lower overhead of JVM (Java
Virtual Machine) and data shuffling between tasks.

Fig. 1  Multiprocessing model in the Hadoop runtime environment

Fundamental Concepts of Distributed Computing Used in Big Data Analytics

14

Figure 2 shows the Apache spark multi threading model:
Spark applications run as independent sets of processes on a cluster, coordi-

nated by the SparkContext object in the main program (called the driver program).
Specifically, to run on a cluster, the SparkContext can connect to several types of
cluster managers (either Spark’s own standalone cluster manager, Mesos [20] or
YARN [21] (Yet Another Resource Manager)), which allocate resources across
applications. Once connected, Spark acquires executors on machines in the clus-
ter, which are processes that run computations and store data for your application.
Next, it sends your application code (defined by JAR or Python files passed to
SparkContext) to the executors. Finally, SparkContext sends tasks to the executors
to run. Each application gets its own executor processes, which stay up for the
duration of the whole application and run tasks in multiple threads. So, we can see
that each executor is a process, but it includes multi threading (Task) to run the
application.

2.5  �Difference between Multiprocessing and Multithreading

A process is an executing instance of an application and it has a self-contained
execution environment. A process generally has a complete, private set of basic run-
time resources; in particular, each process has its own memory space. Also, a pro-
cess can contain multiple threads.

A thread is a basic unit of CPU utilisation; it comprises a thread ID, a program
counter, register set, and a stack. It shared with other threads belonging to the same
process its code section, data section and other operating system resources such as
open files and signals. A thread of execution is the smallest sequence of programmed
instructions that can be managed independently by a scheduler, which is typically a
part of the operating system.

Fig. 2  Apache spark multithreading model

Q.J. Wang

15

Figure 3 is the picture showing the difference between process and thread:
From above picture, you can see typically one process can have one or multi

threads and all the threads in one process share the same code, data and files, but
they have independent registers and stack.

It’s important to note that a thread can do anything a process can do. But since a
process can consist of multiple threads, a thread could be considered a ‘lightweight’
process, like short-lived request to a web application for getting a user details. Thus,
the essential difference between a thread and a process is the work that each one is
used to accomplish. Threads are used for small tasks, whereas processes are used
for more ‘heavyweight’ tasks, like a batch ETL job.

In addition, threads can share data among them, which processes cannot and
hence they can communicate easily, Threads take lesser time to get started com-
pared to processes and through Threads multiple user requests can be supported
concurrently.

The implementation of threads and process differs between operating systems, but
in most cases a thread is a component of a process. Multiple threads can exist within one
process, executing concurrently and sharing resources such as memory and open files,
while different processes do not share these resources. In particular, the threads of a
process share its executable code and the values of its variables at any given time.

Threads may not be actually running in parallel. It is the operating system, which
does intelligent multiplexing so that the shares of the processes provided to each
thread in a manner that it appears like the threads are executed in parallel.

In summary, multithreading and multiprocessing are two basic technologies to
improve the system throughput, and as multicore computers are becoming more
and more prevalent, a large number of distributed computing platform now support
multithreading and multiprocessing. Big Data Technologies, like Spark, Hadoop,

Fig. 3  Difference between process and thread [3]

Fundamental Concepts of Distributed Computing Used in Big Data Analytics

16

etc. use the Multithreading and Multiprocessing in various ways to ensure speedy
execution of different types of Big Data Analytics jobs so that the insights can be
created within an acceptable timeframe.

3  �Computing Architecture in Distributed Computing

Computer architecture has been evolving since the advent of the first computer.
Now there are 3 main types of architecture: SISD, SIMD and MIMD, and there are
two types in MIMD: SM-MIMD and DM-MIMD.

3.1  �SISD

At the very beginning, most of the computers used scalar processors, whose instruc-
tions operate on single data. Such processor model was called SISD (Single
Instruction Single Data). It is very slow as there is no parallelism in such model.

3.2  �Vector Processor

Vector processor, also known as array processor was invented in the 1970s, which
implements an instruction set containing instructions that operate on one-
dimensional arrays of data called vectors. Vector processors can greatly improve
performance on certain workloads, such as arithmetical operation and digital signal
processing. Today most commodity CPUs implement architectures that feature
instructions for a form of vector processing on multiple data sets. Meanwhile, many
companies, like Intel and IBM, provide Vector Processing library for users to
develop their own Vector Processing program.

There are two types of vector processing: SIMD (Single Instruction Multiple Data)
and MIMD (Multiple Instruction Multiple Data). They both provide data processing
parallelism, and the difference is SIMD only provide the data level parallelism while
MIMD can provide two dimensional parallelism: instruction level and data level.

3.3  �SIMD

SIMD is widely used for graphics and video processing, vector processing and digital
signal processing. It is short for Single Instruction Multiple Data, which is one clas-
sification of computer architectures. SIMD operations perform the same computation
on multiple data points resulting in data level parallelism and thus performance gains.

Q.J. Wang

17

Figure 4 is the picture to show what’s the difference between SISD and SIMD:
It can be seen from the picture that SIMD doesn’t provide instruction level paral-

lelism, but only data level parallelism. It can process multiple data vectors with one
instruction. This is very useful for some loop operation. For example, if you have
two Byte lists and you want to add them to one list, assuming the length of the two
lists is 1024, then it will take 1024 times to complete the adding operation, but if
SIMD is supported by the computer and the CPU is 64-bits, it will only take 128
times to finish the processing.

Figure 5 is the picture to show this example:

Fig. 4  Difference between SISD and SIMD

Fig. 5  SISD and SIMD example

Fundamental Concepts of Distributed Computing Used in Big Data Analytics

18

3.4  �MIMD

MIMD (Multiple Instruction Multiple Data) is another type of parallelism.
Compared with machine with SIMD, machines using MIMD have a number of
processors that function asynchronously and independently, [4] which means that
parallel units have separate instructions, so each of them can do something different
at any given time; one may be adding, another multiplying, yet another evaluating a
branch condition, and so on.

Figure 6 is the picture to show MIMD parallelism:
From the above picture, it can be seen that MIMD architecture can accept mul-

tiple instructions at the same time. Each instruction is independent from others and
has its own data stream to process.

There are two types of MIMD: Shared-Memory MIMD and Distributed-Memory
MIMD.

3.5  �SM-MIMD

In the Shared-Memory (SM) Model, all the processors share a common, central
memory. The distinguishing feature of shared memory systems is that no matter
how many memory blocks are used in them and how these memory blocks are con-
nected to the processors, address spaces of these memory blocks are unified into a
global address space, which is completely visible to all processors of the shared
memory system [5].

Fig. 6  MIMD parallelism

Q.J. Wang

19

Figure 7 is the SM-MIMD picture showing processors and memories are con-
nected by interconnection network:

One of the advantages of Shared-Memory model is it is easy to understand and
another advantage is that memory coherence is managed by the operating system
and not the written program, so it is easy for developer to design parallel program in
such model. The disadvantage is that it is difficult to scale out with Shared-Memory
model and it is not as flexible as Distributed-Memory model.

3.6  �DM-MIMD

Distributed-Memory (DM) is another type of MIMD. In this model, each processor
has its own individual memory location. Each processor has no direct knowledge
about other processor’s memory. For data to be shared, it must be passed from one
processor to another as a message. Since there is no shared memory, contention is
not as great a problem with these machines [4].

DM-MIMD is the fastest growing part in the family of high performance com-
puters or servers as it can dramatically enhance the bandwidth by adding more
processors and memories.

Figure 8 is the picture showing the structure of DM-MIMD:

Fig. 7  Shared memory MIMD

Fundamental Concepts of Distributed Computing Used in Big Data Analytics

20

The disadvantage of DM-MIMD is the communication cost between different
processors can be very high and it is difficult to access the non-local data, which
is located in other processors’ memories. Nowadays, there are many system
designs to reduce the time and difficulty between processors, like Hypercube
and Mesh.

MPP (massively parallel processors) is one of the typical examples of DM-MIMD
and many famous big data technologies are base on MPP, like BIG SQL (SQL on
Hadoop) from IBM and Impala from Cloudera.

In summary, MIMD is a trend in current computer architecture development and
most of the distributed computing systems are based on such technologies.

4  �Scalability in Distributing Computing

Scalability is a frequently mentioned concept in Distributed Computing area. It
means the capability of a system to handle a growing amount of work, or its poten-
tial to be enlarged in order to accommodate that growth. In this section, it will cover
the definition of scalability, comparison of scale up method and scale out method.

4.1  �Scalability Requirement and Category

In the Internet era, rapid data growth is happening every day and such growth is
bringing a lot of challenges to most of business and industries. As a result, every
organization today has a need to build or design systems with reasonable scalability
characteristic.

There are two approaches related to scalability: scale up and scale out. They are
commonly used in discussing different strategies for adding functionality to

Fig. 8  Distributed memory MIMD

Q.J. Wang

21

hardware systems. They are fundamentally different ways of addressing the need
for more processor capacity, memory and other resources.

Figure 9 is the picture showing the basic difference of scale up and scale out.

4.2  �Scaling Up

Scaling up, also known as vertical scaling, means upgrading hardware. It generally
refers to purchasing and installing a more capable central control or piece of hard-
ware. For example, when a application’s data demands start to push against the
limits of an individual server, a scaling up approach would be to buy a more capable
server with more processing capacity and RAM [6].

The advantages of scale up are:

•	 Availability of high amount memory can help processing lots of data with low
latency.

•	 It is easier to control as you only upgrade the hardware, like CPU, memory, net-
work, disk in the same machine

•	 Less power consumption than running multiple servers as there are less machines
in the scale up methodology.

•	 Less cooling cost in the data center.

Fig. 9  Basic difference of scale up and scale out

Fundamental Concepts of Distributed Computing Used in Big Data Analytics

22

The disadvantage of scale up is as follows:

•	 High price of the high-performance servers. Typically, scale up can be more
expensive as you have to buy a lot of powerful hardware (CPU, Memory, Disk)
and such hardware is much more pricy than ordinary one.

•	 Furthermore, sometimes scale up is not regarded as feasible because of the data
explosion and the unmatched limits to individual hardware pieces on the market.

•	 In terms of fault tolerance, there is greater risk of hardware failure causing bigger
outages.

4.3  �Scaling Out

By contrast, scaling out, also known as horizontal Scaling, means adding many
lower-performance machines to the existing system to extend the computing
resource and storage capacity [6]. With these types of distributed setups, it’s easy to
handle a bigger data volume by running data processing across the whole system,
which may include thousands of lower-performance machines.

Scale out has been gaining more and more popularities these days. Scale out
architecture started getting popular when web applications supporting 100 s of users
concurrently became popular in early 2000. The benefits of scale out methodology
are:

•	 It is easy to add more storage and computing resource to the existing system by
adding some low-performance computers.

•	 Another advantage is the price. Usually, the cost of scale out system is much
lower than scale up system as most ordinary computers are much cheaper than
high-performance computers.

•	 Most importantly, scale out provides a true scalability, which means the system
capacity can be extend to an unlimited level by adding more computers to the
system.

•	 In terms of fault tolerance, scale out is also easier as typically there is mechanism
inside scale out system, which will put some standby nodes or servers to particu-
lar service and make data replication across the servers or even racks in the data
center. Such mechanism makes it very easy to recover the service and data.

The disadvantages of scale out system are:

•	 The maintenance of such a big platform. It may take several days to trace one
problem because it is very difficult to judge which node causes the problem and
where is the log.

•	 Another drawback is in data center scale out system will take up more space, so
the electricity and cooling expense are more expensive than scale up system.

Q.J. Wang

23

4.4  �Prospect of Scale Up and Scale Out

Nowadays Scale up and scale out are both growing rapidly. On the one hand, some
companies, like IBM, Intel are still investing large amount of money on the advanced
high-performance computer research and development that can support scale up.
For example, IBM recently announced the latest POWER9 chip, which has up to 24
cores and provides blazing throughput to speed up complex calculations. On the
other hand, most of the Internet companies, like Google, Facebook and Yahoo invest
a lot on the scale out system development. Apache Hadoop is one of the most suc-
cessful projects in the scale out area. In Hadoop, users can easily extend the storage
size and computing resource by adding new nodes to the existing system.

However, scale up and scale out are not mutual exclusive. There are many cases
where scale up and scale out are going hand in hand. For instance, in some data
centers, adding a large number of new servers happens together with the upgrading
of old servers, like more CPUs, more memory and more disks.

For example, in many real life Big Data Analytics systems, where the data growth
is very fast and the big data cluster cannot process the high volume of data within
the expected timeframe, both scale up and scale out approaches are leveraged. The
specific measures taken are

•	 Put more memory in the existing servers to make the data analytics faster, which
is scale up

•	 Add more servers to the cluster to extend the volume of the storage, which is
scale out

In a nutshell, scalability is one of most important features of distributed comput-
ing system. Scale up and scale out are two main technologies to address the scal-
ability problem. These two methods are in nature different and designed to be used
in different scenarios. Typucal systems supporting Big Data Analytics leverage both
of these approaches optimaly as needed to address the scalability concerns of spe-
cific cases.

5  �Queuing Network Model for Distributed Computing

Queue system and Queue network model are mainly used to describe and analyze
the quality of service in distributing computing system, and it is the theoretical basis
of service scheduling in big data area. In this section, some basic characters of
queue system will be presented.

Fundamental Concepts of Distributed Computing Used in Big Data Analytics

24

5.1  �Asynchronous Communication

Asynchronous communication is the basic concept behind the Queuing technol-
ogy. Synchronous communication is occurring in real time, like a phone call.
You have to wait until the person on the other end answers your question in real
time. When you are using asynchronous communication, you are not waiting for
a response in real time. You can move on to another task before your first task is
completely finished or once you are done with your part of a task. Email is a
good example of asynchronous messaging. As soon as the email is sent from
you, you can continue handling other things without the need of getting an
immediate response from the receiver [23]. You can do other things while the
message is in transit.

For example, if a web application receives a lot of requests, the Asynchronous
Communication mechanism will let this web application generate tasks in response
to user inputs, and then tasks will be sent to a receiver. A receiver can retrieve the
task and process it when the receiver is ready and return a response when it is fin-
ished. In this a way the user interface can remain responsive all the time.

5.2  �Queue System

Queue system is based on the asynchronous communication. A queuing system
consists of one or more servers that provide service of some sort to arriving custom-
ers [7]. The customers represent workloads, users, jobs, transactions or programs.
Customers who arrive to find all servers busy generally join one or more queues
(lines) in front of the servers, and leave the system after being served.

Figure 10 shows how a typical queuing system works.
Typically, A queuing system is characterized by following components: distribu-

tion of inter-arrival times, distribution of service times, the number of servers, the
service discipline and the maximum capacity [8]. There are several everyday exam-
ples that can be described as queuing systems, such as bank-teller service, computer
systems, manufacturing systems, maintenance systems, communications systems
and so on.

Fig. 10  Queuing system model

Q.J. Wang

25

5.3  �Queue Modeling

Queuing modeling is an analytical modeling technique for the mathematical analy-
sis of systems with waiting lines and service stations. In queuing modeling, a model
is constructed so that queue lengths and waiting time can be predicted.

There are two types of queuing: Single queuing service and Queuing Network.
A single queuing service consists of one or more identical servers with a joint

waiting room. Jobs arrive at the queue with an arrival rate and have an expected
service time. If the servers are all occupied, jobs have to line up in the queue. After
being served, jobs will leave the queue.

A Queuing Network Model consists of a number of interconnected queues,
which are connected by customer routing. After a customer is serviced at one node,
it can join another node and queue for service, or leave the network directly.

Queuing networks can be classified into three categories: open, closed, and
mixed queuing networks. Open queuing networks have an external input and an
external final destination. In closed queuing networks the customers circulate con-
tinually never leaving the network. Mixed queuing networks combine open and
closed Queuing, which means Open for some workloads and closed for others.

Queuing Network Models are now widely used to analyze computer system,
communication system and product system. In the Distributing Computing area,
Queuing Network Models can be used to analyze the workloads or jobs schedul-
ing efficiency, such as the average waiting time, service processing time and
throughput.

Typically, users can submit multiple jobs into distributed cluster. At first, sched-
uler will gather all the available resources, such as Idle CPU, memory in the distrib-
uted cluster. If there are enough resources in the cluster, all the jobs can be executed
concurrently and then all the jobs leave the cluster after being served. If the resources
in the cluster in not enough, all the jobs will be put in one or multi queues and they
have to wait for the scheduler to run the jobs one by one. Usually, there are different
strategies to schedule jobs, such as FIFO (first input first out), LIFO (last input first
out) and Priority based method. Different services may adopt different strategies
and some of them can support user-defined strategies. For some types of service,
they can set different priorities for the different queues, and users can submit jobs to
different queues according to the job processing time and job priorities.

The technologies popularly used to achieve asynchronous communication/queu-
ing in Big Data Analytics world are Yarn, Mesos, Kafka, etc. The fundamental unit
of scheduling in YARN and Mesos is a queue. The capacity of each queue specifies
the percentage of cluster resources that are available for applications submitted to
the queue. Queues can be set up in a hierarchy that reflects the database structure,
resource requirements, and access restrictions required by the various organiza-
tions, groups, and users that utilize cluster resources. On the other hand, Kafka
provides implementation of application level Queue where actual applications can
send some tasks/messages that can be asynchronously acted upon by other
applications.

Fundamental Concepts of Distributed Computing Used in Big Data Analytics

26

In summary, queue network modeling provides a methodology to analyze the
service quality and then improve the service quality based on the analyze result.

6  �Application of CAP Theorem

CAP theorem is very famous in distributed computing system. The CAP Theorem,
also known as Brewer’s theorem, states that, in a distributed system (a collection of
interconnected nodes that share data.), you can only have two out of the following
three guaranteed across a write/read pair: Consistency, Availability, and Partition
Tolerance – one of them must be sacrificed [10].

6.1  �Basic Concepts of Consistency, Availability, and Partition
Tolerance

Below is the detailed explanation of Consistency, Availability, and Partition Tolerance:

•	 Consistency – A read is guaranteed to return the most recent write for a given
client.

•	 Availability – A non-failing node will return a reasonable response within a rea-
sonable amount of time (no error or timeout).

•	 Partition Tolerance – The system will continue to function when network
partitions occur [10].

Figure 11 shows the CAP theorem.

Fig. 11  CAP theorem [19]

Q.J. Wang

27

6.2  �Combination of Consistency, Availability, and Partition
Tolerance

According to CAP theorem, it is impossible to build a general data store that is
continually available, sequentially consistent and tolerant to any partition pattern.
You can build one that has any two of these three properties. All the combinations
available are:

•	 CA – data is consistent between all nodes – as long as all nodes are online – and
you can read/write from any node and the data is the same, but if you ever develop
a partition between nodes, the data will be out of sync (and won’t re-sync once
the partition is resolved).

•	 CP – data is consistent between all nodes, and maintains partition tolerance (pre-
venting data de-sync) by becoming unavailable when a node goes down.

•	 AP – nodes remain online even if they can’t communicate with each other and
will re-sync data once the partition is resolved, but you aren’t guaranteed that all
nodes will have the same data (either during or after the partition) [11]

No distributed system is safe from network failures, thus network partitioning
generally has to be tolerated. In the presence of a partition, one is then left with two
options: consistency or availability [12].

If a system chooses to provide Consistency over Availability in the presence of
partitions, it will preserve the guarantees of its atomic reads and writes by refusing
to respond to some requests. It may decide to shut down entirely (like the clients of
a single-node data store), refuse writes (like Two-Phase Commit), or only respond
to reads and writes for pieces of data whose master node is inside the partition com-
ponent. There are plenty of things, which are made much easier (or even possible)
by strongly consistent systems. They are a perfectly valid type of tool for satisfying
a particular set of business requirements [13]. Typically, Database systems designed
with traditional ACID (Atomicity, Consistency, Isolation, Durability) guarantees in
mind such as RDBMS (relational database management system) choose consis-
tency over availability [12].

If a system chooses to provide Availability over Consistency in the presence of
partitions, it will respond to all requests, potentially returning stale reads and accept-
ing conflicting writes. These inconsistencies are often resolved via causal ordering
mechanisms like vector clocks and application-specific conflict resolution proce-
dures. There are plenty of data models which are amenable to conflict resolution and
for which stale reads are acceptable [13]. Systems designed around the BASE
(Basically available, soft state, eventually consistent) philosophy, common in the
No-SQL movement for example, choose availability over consistency [12].

In the absence of network failure, which means the distributed system is running
normally, both availability and consistency can be satisfied. CAP is frequently mis-
understood as if one had to choose to abandon one of the three guarantees at all

Fundamental Concepts of Distributed Computing Used in Big Data Analytics

28

times. In fact, the choice is really between consistency and availability for when a
partition happens only; at all other times, no trade-off has to be made [12].

One of the typical AP systems is Apache Cassandra Database, in which avail-
ability and partition tolerance are generally considered to be more important than
consistency in Cassandra. But Cassandra can be tuned with replication factor and
consistency level to also meet C.

7  �Quality of Service (QoS) Requirements in Big Data
Analytics

In big data analytics area, there are many factors regarding to the Quality of Service
(QoS) requirements, such as performance, Interoperability, fault-tolerance, Security,
Manageability, Load-Balance, High-Availability and SLA.

7.1  �Performance

Most of Distributed Computing systems are designed to enhance the Performance
of computing or IO (input, output) speed, so Performance is one of the key QoS
requirements. Typically 3 things are related to performance: Throughput (in terms
of data), Response Time and support for concurrent Requests. What is important for
many Big Data Analytics application is all three – like real Time Analytics which is
accessed by 100 s of concurrent users and which needs to process large volume of
data. Many advanced technologies can enhance the performance, like pre-
computing, in memory processing, Thread level parallelism, using of hybrid storage
like SSD + HDD etc.

In the cognitive computing area of Big Data Analytics, two types of advanced
hardware technologies, FPGA (Field Programmable Gate Array) and GPU (graph-
ics processing unit) are leveraged to accelerate the speed of machine learning model
training and real time classification or prediction.

7.2  �Interoperability

Interoperability is another important QoS requirement in Big Data ecosystem. It is
the property that allows for the unrestricted sharing of resources between different
systems. This can refer to the ability to share data between different components or
machines, both via software and hardware, or it can be defined as the exchange of
information and resources between different computers through local area networks
(LANs) or wide area networks (WANs). Broadly speaking, interoperability is the

Q.J. Wang

29

ability of two or more components or systems to exchange information and to use
the information that has been exchanged [17]. Interoperability is a very important
feature as sharing data between different systems is inevitable in the big data era, so
most big data technologies support interoperability.

For instance, some web applications provide many interfaces or API to access
different databases or big data storage. Apache Zeppelin [22] and Jupyter Notebooks
are widely used tools for exploration in Big Data Analytics which provide interoper-
ability for accessing various data sources and sinks in a transparent manner.

7.3  �Fault-Tolerance

An important challenge faced by today’s big data analytics systems is fault-
tolerance. It is very normal that when running a parallel query at large scale, some
form of failure is likely to occur during execution. Fault tolerance is the property
that enables a system to continue operating properly in the event of the failure of
some of its components. Fault tolerance places a significant role in big data area as
both cluster scale and data are becoming increasingly complicated. Typically, there
are two types of failure when running big data application: data failure and node
failure. Data failure means some intermediate partitions of data may be lost due to
application design or hardware problem. Big data system should design the mecha-
nism to handle such failure automatically.

Apache Cassandra is an open-source distributed NoSQL database management
system and it is a good example of such mechanism. Apache Cassandra is not driven
by a typical master-slave architecture, where failure of the master becomes a single
point of system breakdown. Instead, it harbors a concept of operating in a ring mode
so that there is no single point of failure. Whenever required, users can restart the
nodes without the dread of bringing the whole cluster down.

Another real example of Fault-tolerance is that one application used checkpoint
approach in the spark-streaming project. Figure 12 shows the Steaming process in
this case.

In this case, the application set checkpoint in each time interval, so when job
failure happens due to software, hardware or network problem, it can easily find the
broken point and then restart the streaming process.

7.4  �Security

Security is necessary in all Big Data Analytics systems. The big data explosion
has given rise to a host of information technology tools and capabilities that
enable organizations to capture, manage and analyze large sets of structured and
unstructured data for actionable insights and competitive advantage. But with this
new technology comes the challenge of keeping sensitive information private and

Fundamental Concepts of Distributed Computing Used in Big Data Analytics

30

secure. Big data that resides within a big data environment can contain sensitive
financial data in the form of credit card and bank account numbers. It may also
containproprietary corporate information and personally identifiable information
(PII) such as the names, addresses and social security numbers of clients, custom-
ers and employees. Due to the sensitive nature of all of this data and the damage
that can be done should it fall into the wrong hands, it is imperative that it be
protected from unauthorized access [18]. To handle security problem in big data
environment, following aspects should be taken into consideration:

•	 Ensure the proper authentication of users who access the big data environment.
•	 Ensure that authorized users can only access the data that they are entitled to

access.
•	 Ensure that data access histories for all users are recorded in accordance with

compliance regulations and for other important purposes.
•	 Ensure the protection of data—both at rest and in transit—through enterprise-

grade encryption [18].

Kerberos is a very popular service level securities tool in big data area. It is a
network authentication protocol, and designed to provide strong authentication for
client/server applications by using secret-key cryptography.

7.5  �Manageability

Manageability is an indispensable requirement of big data analytics system to
make the environment and services easily manageable. As big data systems are
becoming increasingly complex, it is very important to provide system

Fig. 12  Checkpoint in spark streaming

Q.J. Wang

31

administrators and users with enough and user-friendly interface, which can facili-
tate the daily management, such as service installation and configuration, service
start and stop, service status check, metrics collection and visualization, job his-
tory, service and job log.

Most of big data platforms provide good Manageability, such as Apache Hadoop.
Hadoop is an ecosystem, not a single product, so there are many tools providing
Hadoop service management and one of the outstanding ones is called Ambari.

7.6  �Load-Balance

Load-Balance is a configuration in which cluster-nodes share computational work-
load to provide better overall performance. For example, a web server cluster may
assign different queries to different nodes, so the overall response time will be opti-
mized. However, approaches to load balancing may significantly differ among
applications. For example, a high-performance cluster used for scientific computa-
tions would balance load with different algorithms from a web-server cluster, which
may just use a simple round-robin method by assigning each new request to a dif-
ferent node [15].

In some popular Distributed Computing systems, like Apache Hadoop, Load-
Balance is a very important feature. In Hadoop, Load balancing issues occur if there
are some tasks significantly larger than others such that in the end only a few tasks
are running while all others are finished. This situation happens in case of skewed
reduce keys and can be easily identified (all tasks finished but a few). But the real
challenge is not to detect load balancing issues but to either avoid data skew in the
beginning (by clever partitioning and choice of parallelism) or to have adaptive
methods that can mitigate the effect of data skew. Therefore, at first during the stage
of job partitioning, it is critical to get enough sample data to calculate the partition
points, which can make sure all the partitions’ size are similar. Secondly, if the data
skew still happens as the performance of some nodes is not as good as others, in
Hadoop, it can migrate the tasks from the lower-performance nodes to higher-
performance idle nodes.

7.7  �High-Availability (HA)

In computing, the term availability is used to describe the period of time when a
service is available, as well as the time required by a system to respond to a request
made by a user. High availability is a quality of a system or component that assures
a high level of operational performance for a given period of time. One of the goals
of high availability is to eliminate single points of failure. Typically, High-availability
improve the availability of the cluster by having redundant nodes, which are then
used to provide service when system components fail.

Fundamental Concepts of Distributed Computing Used in Big Data Analytics

32

There are commercial implementations of High-Availability clusters for many
operating systems. The Linux-HA project is one commonly used free software HA
package for the Linux operating system [15].

A good example of High-availability computing cluster is Apache Hadoop.
Hadoop provides High-availability in HDFS system. The HDFS NameNode High
Availability feature enables you to run redundant NameNodes in the same cluster in
an Active/Passive configuration with a hot standby. This eliminates the NameNodes
as a potential single point of failure (SPOF) in an HDFS cluster. Formerly, if a clus-
ter had a single NameNode, and that machine or process became unavailable, the
entire cluster would be unavailable until the NameNode was either restarted or
started on a separate machine. This situation impacted the total availability of the
HDFS cluster in two major ways:

•	 In the case of an unplanned event such as a machine crash, the cluster would be
unavailable until an operator restarted the NameNode.

•	 Planned maintenance events such as software or hardware upgrades on the
NameNode machine would result in periods of cluster downtime.

HDFS NameNode HA avoids this by facilitating either a fast failover to the new
NameNode during machine crash, or a graceful administrator-initiated failover dur-

ing planned maintenance [16].

7.8  �SLA

SLA (Service Level Agreement) is an agreement between consumer and service,
which warrants generic service functionality. An SLA can be flexible and altered
according to the different kinds of services as per the requirement. The purpose of
an SLA is to offer evidence that keeps track records of performance, availability
and billing. Because of its adaptable quality, a vendor can regularly update its ser-
vices like technology, storage, capability and infrastructure. By means of negotia-
tion, the consumer and the service provider will agree upon common policies in
SLA. The termination phase in SLA delivers the end date of a service and offers the
final service bill of utilized resources. It is an easy way to form a treaty between
both parties [9].

To guarantee the service quality, some service providers allow customers to
submit the SLA together with a job or workload. SLA is used to check whether the
service provider can accommodate the job to meet the SLA. If it can, then the ser-
vice provider executes the job using the SLA. If not, the consumer is asked to
negotiate with the service provider to come up with an SLA that both parties could
agree upon.

SLA can improve customers’ satisfaction. For example, if a user submits a job
and expects the job to be finished in a certain time, like 1 h, but due to high usage of
the cluster, the job is not completed within 1 h, so the customer is not satisfied with

Q.J. Wang

33

the service. In such case, if there is a SLA to identify the job’s requirement and the
available resource in the service provider, then the service provider can adopt some
alternative methods to meet customer’s need, such as adjusting the priority of the
job or adding more hardware resources.

In summary, performance, Interoperability, fault-tolerance, Security, Manageability,
Load-Balance, High-Availability and SLA are the key Quality of Service aspects
those contribute to the success of a well designed Big Data Analytics system.

8  �Conclusion

In summary, the concepts discussed in this chapter are fundamentals to Distributed
Computing area. The Big Data Technologies implements these concepts and address
the quality of services, like performance, fault tolerance, high availability, load bal-
ancing, and others while used to address the needs of real life applications and use
cases. So understanding these fundamental concepts of Distributed Computing is
very important for appropriate use of them in industries specific Big Data Analytics
systems. Also using the right trade of across various quality of services is of para-
mount importance while applying these concepts in the context of specific Big Data
Analytics use cases.

References

	 1.	https://www.britannica.com/technology/multiprocessing
	 2.	https://en.wikipedia.org/wiki/Multithreading_%28computer_architecture%29
	 3.	http://www.w3ii.com/en-US/operating_system/os_multi_threading.html
	 4.	https://en.wikipedia.org/wiki/MIMD
	 5.	http://essaymonster.net/science/69515-study-on-mimd-and-shared-memory-architectures.

html
	 6.	https://www.techopedia.com/7/31151/technology-trends/what-is-the-difference-between-

scale-out-versus-scale-up-architecture-applicat
	 7.	MEN170: SYSTEMS MODELLING AND SIMULATION. QUT, SCHOOL OF

MECHANICAL, MANUFACTURING & MEDICAL ENGINEERING
	 8.	Queueing systems and networks. Models and applications. B. FILIPOWICZ and J. KWIECIEŃ
	 9.	https://www.researchgate.net/publication/273575710_Adaptive_Scheduling_in_the_

Cloud_-_SLA_for_Hadoop_Job_Scheduling
	10.	http://robertgreiner.com/2014/08/cap-theorem-revisited/
	11.	https://mytechnetknowhows.wordpress.com/2016/05/31/cap-theorem-consistency-

availability-and-partition-tolerance/
	12.	https://en.wikipedia.org/wiki/CAP_theorem
	13.	https://codahale.com/you-cant-sacrifice-partition-tolerance/
	14.	https://www.techopedia.com/definition/6581/computer-cluster
	15.	https://en.wikipedia.org/wiki/Computer_cluster
	16.	https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.4/bk_hadoop-ha/content/ch_

HA-NameNode.html

Fundamental Concepts of Distributed Computing Used in Big Data Analytics

https://www.britannica.com/technology/multiprocessing
https://en.wikipedia.org/wiki/Multithreading_(computer_architecture)
http://www.w3ii.com/en-US/operating_system/os_multi_threading.html
https://en.wikipedia.org/wiki/MIMD
http://essaymonster.net/science/69515-study-on-mimd-and-shared-memory-architectures.html
http://essaymonster.net/science/69515-study-on-mimd-and-shared-memory-architectures.html
https://www.techopedia.com/7/31151/technology-trends/what-is-the-difference-between-scale-out-versus-scale-up-architecture-applicat
https://www.techopedia.com/7/31151/technology-trends/what-is-the-difference-between-scale-out-versus-scale-up-architecture-applicat
https://www.researchgate.net/publication/273575710_Adaptive_Scheduling_in_the_Cloud_-_SLA_for_Hadoop_Job_Scheduling
https://www.researchgate.net/publication/273575710_Adaptive_Scheduling_in_the_Cloud_-_SLA_for_Hadoop_Job_Scheduling
http://robertgreiner.com/2014/08/cap-theorem-revisited/
https://mytechnetknowhows.wordpress.com/2016/05/31/cap-theorem-consistency-availability-and-partition-tolerance/
https://mytechnetknowhows.wordpress.com/2016/05/31/cap-theorem-consistency-availability-and-partition-tolerance/
https://en.wikipedia.org/wiki/CAP_theorem
https://codahale.com/you-cant-sacrifice-partition-tolerance
https://www.techopedia.com/definition/6581/computer-cluster
https://en.wikipedia.org/wiki/Computer_cluster
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.4/bk_hadoop-ha/content/ch_HA-NameNode.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.4/bk_hadoop-ha/content/ch_HA-NameNode.html

34

	17.	https://www.techopedia.com/definition/631/interoperability
	18.	https://www.qubole.com/blog/big-data/hadoop-security-issues/
	19.	http://blingtechs.blogspot.com/2016/02/cap-theorem.html
	20.	http://mesos.apache.org
	21.	https://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/YARN.html
	22.	https://zeppelin.apache.org/
	23.	https://www.cloudamqp.com/blog/2016-09-13-asynchronous-communication-with-rabbitmq.

html

Q.J. Wang

https://www.techopedia.com/definition/631/interoperability
https://www.qubole.com/blog/big-data/hadoop-security-issues/
http://blingtechs.blogspot.com/2016/02/cap-theorem.html
http://mesos.apache.org
https://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/YARN.html
https://zeppelin.apache.org/
https://www.cloudamqp.com/blog/2016-09-13-asynchronous-communication-with-rabbitmq.html
https://www.cloudamqp.com/blog/2016-09-13-asynchronous-communication-with-rabbitmq.html

35© Springer International Publishing AG 2017
S. Mazumder et al. (eds.), Distributed Computing in Big Data Analytics,
Scalable Computing and Communications, DOI 10.1007/978-3-319-59834-5_3

Distributed Computing Patterns Useful in Big
Data Analytics

Julio César Santos dos Anjos, Cláudio Fernando Resin Geyer,
and Jorge Luis Victória Barbosa

1  �Introduction

Data-intensive applications like petroleum extraction simulations, weather forecast-
ing, natural disaster prediction, bio-medical and others research have to process an
increasing amount of data. In view of this, Big Data applications lead to the need to
find new solutions to the problem of how this should be carried out, related to the
point of view of dimensions such as Volume, Velocity, Variety, Value and Veracity
[1]. This is not an easy task, Volume depends on a hardware infrastructure to achieve
scalability and Value depends on how much Big Data must be creatively and effec-
tively exploited to improve efficiency and the quality needed to assign Veracity to
information. Variety of data typically originate from different sources, such as his-
torical information, pictures, sensor information, satellite data and other structured
or unstructured sources. MapReduce (MR) [2] is a programming framework pro-
posed by Google that is currently adopted by many large companies, and has been
employed as a successful solution for data processing and analysis. Hadoop [3] is
the most popular open-source implementation of MR.

Since there is a wide range of data sources, the collected datasets have different
noise levels, redundancy and consistency [4]. New platforms for Big Data like
Cloud Computing (Cloud) have increasingly been used as a platform for business
applications and data processing [5]. Cloud providers offer Virtual Machines (VMs),
storage, communication and queue services to customers in a pay-as-you-go

J.C.S. dos Anjos (*) • C.F.R. Geyer
UFRGS, Federal University of Rio Grande do Sul, Institute of Informatics – PPGC,
Porto Alegre, Brazil
e-mail: jcsanjos@inf.ufrgs.br; geyer@inf.ufrgs.br

J.L.V. Barbosa
UNISINOS, University of Vale do Rio dos Sinos, Applied Computing Graduate
Program – PIPCA, São Leopoldo, Brazil
e-mail: jbarbosa@unisinos.br

mailto:jcsanjos@inf.ufrgs.br
mailto:geyer@inf.ufrgs.br
mailto:jbarbosa@unisinos.br

36

scheme. Although, Cloud has grown rapidly in recent years, it still suffers from a
lack of standardization and the availability of homogeneous management resources
[6]. Private clouds are used exclusively by a single organization, that keeps careful
control of its performance, reliability and security, but might have low scalability
for Big Data analytics processing requirements. Public clouds have an infrastruc-
ture that is based on a specific Service Level Agreement (SLA) which provides
services and quality assurance requirements with minimal resources in terms of
processing, storage and bandwidth. The Cloud Service Provider (CSP) manages its
own physical resources, and only provides an abstraction layer for the user. This
interface might vary depending on the provider, but maintains properties like elas-
ticity, insulation and flexibility [7]. On the other hand, Hybrid clouds are a mix of
the previous two systems and enable the cloud bursting application deployment
model, where the excess of processing from the Private cloud is forwarded to the
Public cloud provider. Cloud providers can negotiate a special agreement as a means
of forming a Cloud federated system, where providers that operate with low usage,
might be able to lease a part of their resources to other federation member to avoid
wasting their idle computational resources [6].

For last few decades, finding information in large datasets was only possible
through a relational database. The data professionals had to choose the right query
to obtain the correct result. However, in the recent past, it was realized that Relational
Database cannot be a tool for every type of domain and analytics problem. In Big
Data, the queries can include both structured, semi-structured or unstructured data,
such as audio, video, web pages, text and so on, and it can originate from multiple
data sources. Multimedia, social networks and Internet of Things (IoT) are collect-
ing more and more information, which means that Big Data will have a growing
prospect of being able to create value for businesses and consumers [4]. The pur-
pose of Big Data Analytics is to amass a lot of data and find anomalies or patterns
in it, so that value and significance can be added. However, it is common to find
multiple data in different places, since the cost of data transfers for a single site is
prohibitive owing to the limitations of size and bandwidth [8, 9].

In addition to Cloud, several other types of infrastructure are able to support
data-intensive applications. Desktop Grids (DGs), for instance, have a large number
of users around the world who donate idle computing power to multiple projects
[10]. DGs have been applied in several domains such as bio-medicine, weather fore-
casting, and natural disaster prediction. Merging DG with Cloud into Hybrid
Infrastructures could provide a more affordable means of data processing. Several
initiatives have implemented Big Data with Hadoop as a MR framework, for
instance [11–13]. However, although MR has been designed to exploit the capabili-
ties of commodity hardware, its use in a Hybrid Infrastructure is a complex task
because of the resource heterogeneity and high churn rate of desktops. This is usual
for DGs but uncommon for Clouds. Hybrid Infrastructures like these are environ-
ments which have geographically distributed resources [9] in heterogeneous plat-
forms with a mixing of Cloud, Grids and DG.

J.C.S. dos Anjos et al.

37

Frameworks and engines to Big Data follow known primitives in computer sci-
ence such as mechanisms to message synchronization, data distribution, task man-
agement and other. The message exchange is the basis of distributed systems, and
primitives, like send and receive, are found built-in on the programming languages
in the different frameworks. However, these primitives are only a part of these sys-
tems used for the data intensive processing which most of the time, remain hidden
to users and programmers. This Chapter introduces some of these primitives and
their possible implementations.

The Chapter is organized as follows. Sections 2 and 3 are about primitives for
Distributed Computing. Section 2 shows an overview about the main primitives for
concurrent programming. Section 3 discusses protocols and interfaces for message
exchange. Section 4 presents the data distribution in Big Data over geographically
distributed data environments. Section 5 approaches possible implementation prob-
lems in distributed Big Data environments. Finally, Sect. 6 presents conclusions.

2  �Primitives for Concurrent Programming

The primitives and patterns of Big Data Programming models can be classified into
three main areas: concurrent expression and management, synchronization of con-
current tasks and communication between distributed tasks. In this section we’ll
delve into them in detail.

2.1  �Concurrency Expression

The primitive-fork concept allows the creation of a new process within a program.
Other primitives related to this concept enable the execution of another program

(executable code), creation and execution of the process on a remote (distributed)
computer, and waiting for the termination of a child process. At first, because the
process concept does not allow the sharing of variables (data) between two pro-
cesses, special libraries were created for the declaration of shared variables between
processes. In a second moment, the multi-threaded programming model emerged
which made concurrent programming much simpler and more efficient, in particular
by the ease of native variable sharing. This model was implemented in several
instances, highlighting the POSIX threads library, later the Sun Java threads, and
then the Microsoft C# threads. When a process is created in the local memory of a
machine, a thread is automatically launched as a parent thread. Figure 1 shows a
parent thread (thread A) which can create one or more child threads (thread a’) to
the data sharing and a parent thread created by a process (Proc 2).

Distributed Computing Patterns Useful in Big Data Analytics

38

2.2  �Synchronization

The concurrent programming model with shared variables introduced the synchro-
nization problem. With the increasing popularity of this model, the search for better
mechanisms for synchronization has been intensified. There are two major prob-
lems of synchronization: the effects of concurrent access of writing to a shared vari-
able and the dependence of one task on results produced by another task. Several
authors such as Dijkstra, Hoare, and others have proposed different solutions such
as mutex, condition variables, semaphores, and monitors, which have been imple-
mented in various libraries such as Posix threads, Java and C#. For some more
specific patterns of concurrency between tasks, other synchronization mechanisms
such as barriers and latches have emerged.

For the implementations to be efficient, some evolution in the processors (hard-
ware) was necessary. A good example was the introduction of TestAndSet instruc-
tion that allows reading and writing in a simple variable (boolean, integer). A great
reference for these concurrent programming concepts and their instances is the
book by Gregory Andrews [15]. More recently, with the advent of multicore proces-
sors and GPUs, there have been some interesting variations to solve the problems of
synchronization in both hardware and software. A good example is the concept of
transactional memory.

It is important to note that the development of distributed applications requires
other primitives of resources and services beyond those presented above, with a
particular focus on programming. A classic example is the concept of distributed
file systems and their realizations such as NFS, another solution adopted by the Sun
company. Also in programming terms, the popularization of systems and applica-
tions in local and wide networks, that is, a set of distributed and independent com-
puters required the development of the message-based programming concept, which
will be presented in the next section. However, most of the primitives mentioned
above for concurrent programmings, such as for thread creation and management,
and for synchronization of shared variables, do not have satisfactory variants for the
context of distributed systems.

Fig. 1  Processes and
Threads in a local memory

J.C.S. dos Anjos et al.

39

3  �Communication Protocols and Message Exchange

The distributed messaging-based programming model allows two or more pro-
cesses, or programs, running on separate computers, without access to the concept
of shared memory, to exchange information. Using the specific model of the send/
receive primitives, a sender process sends, through the send primitive, to an identi-
fied receiver process a data that it has in its local memory. The receiver process
receives a copy of the data through the receive primitive and stores it in its local
memory. Usually the receiver process does not need to identify the sender process.
This principle is a basic, simple, and abstract model, as exemplified in Fig. 2.

There are numerous variations derived from this basic model considering aspects
such as the synchronization that may occur between processes during the execution
of send/receive primitives. In addition to model variations, the study of message
exchange concepts is still more complex if one considers the numerous instantia-
tions (implementations). They can be differentiated for example by the different
communication network protocols that can be used in the execution of the send/
receive primitives, such as TCP or UDP protocols.

3.1  �Synchronous Communication

In the synchronous communication the sender and receiver are synchronized in each
message. The sender is blocked until the receive primitive is executed by the receiver
process, delivering a copy of the data to the application. The sender process can
execute a second (next) send only after the receiver has executed the receive primi-
tive for the precedent message. Usually the receiving process is blocked by the
receive primitive until a message has been delivered by the system to the receiving
process. However, the sender and receiver devices must have a temporization mech-
anism when multiple hosts are sending messages simultaneously, such as an atomic
clock, to avoid the arrival of out-of-order messages. Also, another possible problem
is when the sender remains blocked all the transmission time due to an inefficient
synchronization problem. Thus, the system could have synchronization problems
mainly on the Internet environment which is very unstable.

Fig. 2  Send and Receive Primitives

Distributed Computing Patterns Useful in Big Data Analytics

40

Also, the synchronous communication is uncommon in the most of the distrib-
uted system and the synchronous model it is inefficient in many of the distributed
systems [16].

3.2  �Asynchronous Communication

In the asynchronous communication, the send process is unlocked and can continue
its execution (following the send command) soon after the send execution is passed
to the service that implements the complete message exchange functionality.
Usually, this service starts on the sending computer (operating system and network
services) when a complete copy of the data is made by the service, allowing the send
process to update the data sent in its local memory. The most implementations of the
basic model adopt this semantic.

An important question is how processes identify the partner process in the send
and receive primitives. For example, each process may have a unique identifier (ID)
in the context of the system or application. This ID is generated dynamically at the
time that the process is created and can be assigned by the programmer. Another
option is to use a computer identifier, where the process is running, associated with
a communication port allocated to that process. Other issues that distinguish the
different implementations and that may consequently affect the techniques of use by
the application are:

•	 What is the maximum size of each message?
•	 What types of data can be transmitted in a message?
•	 What control over any data transmission errors, such as message loss or duplica-

tion, and content change?
•	 Can sender and receiver processes be implemented in different languages and

run on distinct platforms (e.g. operating systems)?

3.3  �Pseudo-Synchronous Communication

A variant of the two previous models was created in the context of some message
oriented middleware (MOM). One of the advantages of synchronous communica-
tion is that the sending process, shortly after the execution of the send primitive,
knows that its message has been received by the receiver. The same does not occur
in asynchronous communication. In the pseudo-synchronous communication vari-
ant, the sending process is not blocked at each send. But the receiving processor
sends asynchronously to the sender a message confirming the receipt of each mes-
sage sent by the sender. This confirmation message can have multiple meanings, for
example, the message was only received or the message was received and processed.
It is important to note that in the literature it is possible to find relevant variants for

J.C.S. dos Anjos et al.

41

the concept of pseudo-synchronous communication. In Distributed System theory,
some authors define three systems models: synchronous, asynchronous and par-
tially synchronous communication. The concept of communication in partially syn-
chronous systems just expresses that the sender process is not blocked (as in the
asynchronous model), but there is a time limit for communication to be completed,
while in asynchronous this time is theoretically “infinite.”

3.4  �Client/Server Paradigm

In the context of the Client/Server model, for the distributed systems architecture, a
new paradigm of communication called Remote Procedure Call (RPC) has emerged.
In RPC, a client program makes a call to a procedure located on a remote server. The
client is usually blocked until the procedure is completely executed. Communication
is optional, through procedural arguments, and obviously can be performed in both
directions. The client must know the server’s remote procedure interface, that is, a
procedure name and types of input and output arguments. Initially an implementa-
tion was developed over the TCP protocol (which guarantees greater reliability than
UDP) and applied in the development of several important distributed systems, such
as NFS. Later on, variations of the basic RPC model, better adapted to new distrib-
uted system needs, emerged, such as the Web Services concept, more appropriate
than the classic RPC for web-program communication.

The data serialization process in the distributed file system of Hadoop, a frame-
work extensively used in Big Data, produces byte streams for transmission over a
network or for writing to persistent storage. The inter-process communication
between nodes in the system is implemented under RPC to execute these tasks [3].

Finally, it is necessary to at least mention some models created for more specific
purposes such as replication (data or servers), fault tolerance, or in the context of
more recent computing paradigms such as Mobility, P2P, Cloud and IoT. Examples
are libraries for group communication, tuple spaces, publish/subscribe, location,
event processing and others. The following subsection discusses platforms that sup-
port communication in Big Data environments.

3.5  �Communication Deployment in Big Data

The Apache Flink, previously called Stratosphere, is a data analytics framework that
follows the Lambda Architecture and enables the extraction, analysis and integra-
tion of heterogeneous datasets [17]. It has two APIs, one for DataSet and other for
DataStream respectively deployed on process batch and stream applications which
constitute a hybrid programming environment. The core is a dataflow in a distrib-
uted streaming that does not store data but converts it into optimized binary formats,
after its reading. It is extensible for traditional data warehousing queries such as

Distributed Computing Patterns Useful in Big Data Analytics

42

textual data queries and information integration in a Table API library. The imple-
mentation supports iterative programs that allow an analysis of execution graph and
statistical applications inside the data processing engine. The architecture includes
different deploying modes, such as local (in a single JVM), cluster (standalone and
Hadoop-YARN environment) and Cloud computing (EC2 and GCE). Flink sup-
ports Java, Scala and Python programming languages [18]. Its implementation has
a publish/subscribe API to connect with Apache Kafka [19], which is used as a data
synchronization mechanism in heterogeneous environments.

MapReduce is a programming framework that abstracts the complexity of paral-
lel applications. It is a batch processing system that partitions and scatters datasets
across hundreds or thousands of machines, bringing the computation and data as
close to each other as possible [3]. The Map and Reduce phases are handled by the
programmer, whereas the Shuffle phase is created while the task is being carried out.
The input data is split into smaller pieces called chunks. The data is serialized and
distributed across machines that form the Distributed File System (DFS). The
Hadoop implementation which follows the MapReduce model uses a synchroniza-
tion mechanism through heartbeat between Master and Workers.

The master handles the task scheduling according to the data locality. Therefore
the tasks are running locally in the first phase. When running an application, the
master assigns tasks to workers and monitors the progress of each task. The machine
that is assigned a Map task, executes a Map function and emits key/value pairs as
intermediate results that are temporarily stored in the workers’ disks. The execution
model creates a computational barrier, which allows the tasks to be synchronized
between the producers and consumers. A Reduce task does not start its processing
until all the Map tasks have been completed. This works as a data synchronization
mechanism. A hash function is applied to the intermediate data to determine which
key will carry out a Reduce task. The group of selected keys forms a partition. Each
partition is transferred to a single machine during the Shuffle phase, to execute the
next phase. The serialization function is an RPC client/server implementation which
uses the primitives send/receive to do these transfers.

Spark [20] is a Big Data implementation widely popular to real-time applica-
tions. The main abstraction in Spark is the RDD (called resilient distributed datas-
ets) [21], a storage abstraction that avoids replication by using lineage for fault
recovery, i.e., the events are grouped into micro-batches. The RDD is kept in mem-
ory not as a distributed shared memory abstraction, but as objects partitioned across
a set of machines that can be rebuilt if a partition is lost. RPC is the main communi-
cation paradigm used to access these objects. The programmer produces operations
with “map, filter and join” and enables interactive data mining. Although RDD are
best suited for batch applications that apply the same operation to all elements of a
data set; they are less suitable for applications that make asynchronous fine-grained
updates to shared state.

Spark maintains the data synchronization and manages resource allocation in
Big Data real-time applications. However, more complex environments use the
Zookeeper [22] system to provide leader election and some state storage with mul-
tiple masters. Zookeeper is a service that maintains the configuration information

J.C.S. dos Anjos et al.

43

and provides the synchronization to distributed applications. This system enables
the recovery process occurs between 1 and 2 min in failure cases. Thus, the complex
implementations of race conditions in Big Data applications on distributed systems
are hidden from users and programmers.

4  �Data Distribution in Big Data on Distributed
Environments

Big Data applications can be implemented in several ways. Scattered data can be
found in DNA research studies, where researchers need to investigate different data-
bases, such as those in protein structure analysis. These applications seek a genetic
mapping that requires a pre-existing reference genome to be employed for the read
alignment of a gene [23]. Thus, the data processing is characterized by its ability to
compare input data with different databases. This processing consists of several
phases of search-merge-reduce, where the data are given an incremental update
[24]. Some researchers like Jayalath [8], Tudoran et al. [25], Krish [26] and Ji [27]
have put forward Hadoop implementation based on a geo-distributed dataset in mul-
tiple data centers. The authors state that, for instance, it is possible to have multiple
execution paths for carrying out a MapReduce job in this scenario, and the perfor-
mance can carry out a great deal.

Figure 3 illustrates the scenario where dispersal data is used. Each locality is con-
nected through slow links, where data transfers may not have a negligible cost. The
data is scattered in the clusters. All the intermediate results must be combined to
produce a single return for a Big Data analysis. These problems can be overcome by
means of a hybrid infrastructure if there is a file system that supports the incremental

Fig. 3  Geographically distributed data

Distributed Computing Patterns Useful in Big Data Analytics

44

updates and highly concurrent data sharing. A possible solution involves integrating
a distributed file system like the Hadoop Distributed File System (HDFS) with the use
of a Cloud environment; otherwise, DGs are a large-scale infrastructure with specific
characteristics in terms of volatility, reliability, connectivity, security and storage
space. Both architectures are suitable for large-scale parallel processing. Finally,
more complex combinations can be envisaged for platforms resulting from the use of
multiple Clouds through an extension to a DG [28, 29]. However, these structures
must use several synchronization primitives such as those discussed in Sect. 2.

Different Cloud infrastructures have their own configuration parameters, and the
availability and performance of offered resources can change dynamically due to
several factors, including the degree of over-commitment that a provider employs.
In this context, solutions are needed for the automatic configuration of complex
cloud services. The Cloud infrastructure comprising heterogeneous hardware envi-
ronments may need the specifications of configuration parameters at several levels
such as the operating systems, service containers and network capabilities [30]. The
users who need to execute applications may not know how to map their require-
ments to the available resources. The lack of knowledge about the cloud provider
infrastructure will lead either to overestimating or underestimating the required
capacity; both are equally bad and can lead to a waste of resources.

Organizations are increasingly relying on an infrastructure from multiple provid-
ers as a means of increasing fault tolerance and avoiding provider lock-in. A Multi-
Cloud infrastructure contains various configuration choices and can change its
requirements and workloads dynamically at the time of execution. Given this, solu-
tions are needed for the automatic configuration of complex cloud services at differ-
ent abstraction levels. In this context, multiple cloud infrastructures, like clouds in
heterogeneous environments, require different configuration levels and processing
synchronization such as the operating system, service containers, and configuration
capabilities [30].

The allocation of resources from CSPs to users is carried out in terms of the
execution time, number of virtual machines, data transfer and size of data storage.
The users must map their computational resource needs before running their appli-
cations. This means that, if there is a lack of knowledge on the part of users about
the CSP infrastructure or a real need for resource allocations, it can lead to an incor-
rect lease of CSP resources for the users and a higher cost than expected. However,
an optimal allocation is difficult to achieve, and so strategies to obtain an approxi-
mation can be accepted [31].

Mansouri et al. [32] propose the deploy of a brokering algorithm. This algorithm
was employed for optimizing the storage availability and finding a placement of
objects that was suitable for the required Quality of Service (QoS). The algorithm
takes account of the cost of maintaining one object in a cloud provider, reduces the
probability of failure and improves the associated QoS with each service-level
agreement (SLA) contracted with a cloud provider. An object is a target data, with-
out a particular size or defined type. The data is split into chunks and the main goal
is to find the optimal chunk placement depending on the user’s needs and financial
means.

J.C.S. dos Anjos et al.

45

A large number of transfers of objects from one cloud storage provider to another
takes up time and is often impossible during the execution time. An expected avail-
ability represents M objects in each data center, and this determines the expected
failure of the object in each data center. Mansouri et al. evaluate two parameters to
each cloud provider, the failure probability and the cost per object. The objects are
replicated in multiple sites in accordance with these metrics. However, the total size
can achieve up to several exabytes, which can require a lot of time for these
transfers.

The message synchronization in some cases is difficult to do when several sys-
tems are working together with different topologies under the Internet. One reason
is that can have different time synchronization requirements on several applications
simultaneously. In this case, an orchestrator is required to maintain this control.
SALSA [30] is a framework for the orchestrated configuration of cloud services
through multiple CSPs. This framework provides a model for application configura-
tions and the deployment of different kinds of services. The information about the
configuration supports each level of cloud service such as application levels, deploy-
ment relationships at multiples software stacks and the link between service units
and configuration capabilities. The configuration capabilities are obtained from reg-
istered services (cloud services and specifications of topology services) or user
specifications. SALSA has a service unit orchestrator for multiple configuration
services for each configuration task group. Its purpose is to control the application
deployments, movement of virtual instances among different cloud providers and
the deployment of an environment like VM, library loads and support for multiple
stack deployments of cloud.

The creation of VM is a separate process from other software levels. The con-
figuration capabilities can be obtained via a registry service or from user specifica-
tions, to determine the relationship between the service units. A service orchestrator
is generated for each service allowing it to handle the tasks. Meta Information con-
tains abstract nodes with generic types of service that implement the virtual nodes.
SALSA adopts an approach where each service unit orchestrator runs indepen-
dently and interacts with a cloud service orchestrator. Although the framework
enables heterogeneous configurations, there is not a mechanism to evaluate the per-
formance or the workloads used to adapt the load-balance in Cloud. The SALSA
architecture, designed by [30], is shown in Fig. 4.

The framework has a central configuration service that orchestrates the setup
operation through the local configuration layer in the VM. The information service
keeps a good deal of information about the Cloud infrastructure which is handled by
a configuration generator. The topology orchestration layer creates a dependency
graph and sets a configuration plan for a Cloud configuration system and the VMs
are managed in this way. The monitor layer keeps the status of both VMs and the
Cloud elasticity but it is necessary for the services to be already working before new
service instances can be distributed.

HyMR [33] is a framework for enabling an autonomic cloud burst for clusters of
virtual machines that execute MapReduce jobs over Multi-Cloud. The authors
implemented a Hybrid Infrastructure as a Service (HyIaaS) for the VM instance

Distributed Computing Patterns Useful in Big Data Analytics

46

(partitions management) in Multi-Cloud. HyIaaS implements an OpenStack1 exten-
sion. This partitioning is transparent to the users, since it allows them to have access
to all the VMs in the same way, regardless of their physical allocation. HyIaaS
receives the deadline specifications of the users that are stored in a user-policy for
managing VM migrations. An external CSP will be responsible for receiving and
launching the VMs across their Cloud Controller module.

The Logical Node monitors and analyses critical events from a physical machine
and the Logical Cloud makes spawning/migration decisions based on Logical Node
information. Figure 5 shows the HyMR architecture, where a HyIaaS orchestrates
the application executions. The HyMR runs on the Cloud Controller and maintains
data consistency in a part of HDFS. However, VM migrations have a poor perfor-
mance when carrying out data copying operations from the HDFS.

These approaches show the need for a more fine-grained system of task manage-
ment and data distribution across Big Data applications. Businesses and govern-
ments arrange their data in distributed cloud platforms for different reasons, such as,
the need to maintain the proximity of resources; data storage with organizations that
share common goals; and a desire to keep data replicas across regions for redun-
dancy purposes. This data information must be analyzed on a global scale.

One possible way to do this is to merge all the data in a single data center, and
another is to use a Multiple Clouds infrastructure to execute individual instances of
MapReduce across each dataset separately and then aggregate the results. The study
of [8] suggests that this could be done by running jobs in a geo-distributed opera-
tion. The authors introduce the G-MR, a Hadoop implementation based on a geo-
distributed dataset across multiple data centers. They state that, for instance, it is
possible to have multiple execution paths for carrying out a MapReduce job in this
scenario, although the performance may vary considerably for each path. Another
problem is that popular MapReduce open sources, like Hadoop, do not support this

1 https://www.openstack.org/.

Fig. 4  The Salsa architecture (Adapted from [30])

J.C.S. dos Anjos et al.

https://www.openstack.org

47

feature. In addition, most CSPs do not usually provide a bandwidth guarantee for
large-scale data transfers in execution time [34].

The G-MR has an algorithm called a Data Transformation Graph (DTG) which
determines an execution path for performing a job sequence for MapReduce. The
problem is how to decide which stage should derive partitions that must be moved
and how to reduce costs by finding the best performance for MapReduce applica-
tions. Figure 6 shows the architecture of G-MR, adapted from [8]. The architecture
consists of the following modules: a Group Manager, Job Manager, Copy Manager
and Aggregation. The Group Manager optimizes the execution path and may instruct
the Job Manager to copy data for a remote data center or aggregate multiple sub-
datasets. The Job Manager performs the jobs over Hadoop which is deployed in each
n data center. The Copy Manager is responsible for executing the data copy from one
data center to another. However, the total number of nodes in a single job graph is
O(pn) and can become huge when the number of p partitions grows. The Aggregation
manager maintains the integrity of the results. The model shows that this architecture
is feasible from the standpoint of data distribution and the integration of results.

The approach Write Once Read Many (WORM) is an accepted assumption for data
access in Big Data applications like MapReduce. The handiest manner for Big Data
processing across several data centers is to use a data replication mechanism among dif-
ferent CSPs. However, the variability in the high-performance required for cloud opera-
tions leads to bottlenecks [35, 36]. Thus, the best strategy is to reduce data transfers.

Tudoran et al. [25] argue that there are two methods for modeling complex infra-
structures. The analytical models use low-level details with workloads and are

Fig. 5  The HyMR architecture (Adapted from [33])

Fig. 6  The G-MR architecture (Adapted from [8])

Distributed Computing Patterns Useful in Big Data Analytics

48

characterized by their ability to predict the performance. This means the wealth of
detail is what will determine the best modeling. The sampling method is an active
approach which does not require any previous knowledge of the infrastructure. The
information about network bandwidth, topology and routing strategies is not avail-
able to the users in public clouds. Because of this, the authors introduce a sample-
based category for modeling that monitors the environment with agents, called
GEO-DMS. The agents carry out the monitoring for data transfers and geographi-
cally-distributed data management that is transferred across multiple clouds. The
model registers the correlation between performance (execution time) and cost
effectiveness (finance), and imposes budgetary constraints in the interests of safety.

The agents are implemented through VMs in each CSP where the applications
are running. The decision manager is concerned with how the transfer paths are
established between the source and destination. One way to achieve this is directly
from the node to the data center or by using multiple paths across intermediate data
centers. The data transfers are intra-site data replications that result from the pres-
ence of dedicated links among the data centers of the same CSP. The scientific
applications interact with an API to provide data transfers over a WAN. A monitor
agent carries out environmental monitoring and makes the measurements for the
decision manager. The measurements include bandwidth throughput between data
centers, and the CPU load, I/O speed and memory status of the VM nodes. The deci-
sion manager updates the weights of the paths periodically with the aid of these
measurements.

5  �Implementation Problems

This section has been organized to provide the first vision about some paradigms
behind of the Big Data implementations and discuss possible problems that the
developers must avoid. As previously discussed, in a distributed environment we
can have several implementation issues. The biggest problem of the resource shar-
ing is related to the need to avoid the race condition between the systems and the
loss of synchronization on message exchange problems. With basis on these issues,
the next sections evaluate possible implementation problems in Big Data.

5.1  �Race Condition Problems

The reduction of performance in virtualization systems has led companies like
Google and Facebook to use physical machines directly. The first reason for perfor-
mance decrease is the lock in the disk access due to race conditions. The semantic
follows the send/receive paradigm in an asynchronous communication channel. The
operating system of the virtualization manager provides the access control to the

J.C.S. dos Anjos et al.

49

internal bus for one single machine on each time where to do write on disk. If the
data size is larger than the queue size, then several I/O interruptions will be neces-
sary. As more than one virtual system can access the same resource, the wait time to
use the disk queue increases and produces a high wait time to each virtualized appli-
cation. Thus, this behavior will produce a low performance. This phenomenon also
occurs when the cloud providers use storage under fibre channel networks.

Hybrid systems have been described in some scientific papers as a mixture of
public and private clouds. At the same time, this factor refers to the degree of avail-
ability in the resource policies. Factors regarding the deployment of native and vir-
tualized clusters are evaluated in the work of Sharma et al. [37]. In their analysis,
the authors argue that generic benchmarks show an overhead of 5% and 15% for
computation and I/O workloads respectively, when confronted with a non-virtualized
system. In addition, the level of overhead may vary depending on the workload,
availability of resources and programming of interactive jobs. This I/O competition
is related to the bandwidth of the disk bus buffers in the hardware environment
which generates a race condition problem, called of disk contention problem.

There is an increasing need for a repeated analysis from Big Data in the Cloud
with streaming characteristics. Streaming and data-intensive applications are often
not the best profile for Cloud applications [38]. Streaming systems are event-driven
and their behavior differs from batch systems like MapReduce [39]. The MapReduce
model lacks efficient support for real-time processing. The traditional system that
has been developed to process static databases like Hadoop cannot provide a low
latency response in real-time or streaming processing. The main problem in stream-
ing is the lock in the receiving mechanism due to the over-information in the input
queue during an event where occurs a data burst. Another problem is related with
system incapacity to forecast the exact moment of occurring a data burst. Some
implementations avoid this problem with the brokers use like the Kafka, which
isolates the producers and consumers in a message queue system. This application
can produce small overhead in comparison with achieved benefits.

Hadoop Streaming is a utility included in the Hadoop distribution in an attempt
to enable streaming in the MapReduce model through two standard Unix interfaces
for stream processing, one stdin (input) and one stdout (output) [40]. These inter-
faces have two “executables” (one mapper and one reducer) that use a Combiner
function. The Combiner is an implementation that enables a map output to run in
memory. Pipe operations are created by the Unix system call to build a half-duplex
communication channel for an external executable file. A pipe call is invoked to
establish a communication channel for each interface with send/receive primitives.

When a new pipe is created, two file descriptors are obtained. One of them is for
reading and the other for writing. An inode identifies each pipe in the local file sys-
tem to temporarily store data. The communication channel may generate system
overhead producing a lock and some critical fields of pipe can spawn race condi-
tions between the read/write operations. A manner to avoid this issue is to increase
the size of the buffer greater than the queue length in the system memory.

Distributed Computing Patterns Useful in Big Data Analytics

50

5.2  �Message Exchange

The MapReduce model was originally conceived for large homogeneous cluster
environments. As a result, simplifications were adopted by the model with the aim
of optimizing the task distribution. However, these simplifications may entail sys-
tem degradation in heterogeneous environments. The work of Zaharia et al. [41]
was the first study to detect these problems. Their study points out that there are
concerns over the simplification of the MapReduce model since this may lead to an
excessive number of speculative tasks. These issues were observed among the exe-
cutions of different applications in large clusters with virtual environments, e.g.
Amazon EC2, owing to the competition for applications that provide access to hard-
ware. The Cloud resources represent the most homogeneous environment possible,
although, in fact, the resources have a heterogeneous behavior because they share
virtual machines with other users at the same time. To overcome this problem, the
authors proposed LATE (Longest Approximate Time to End), a new task scheduler.
Although LATE does not completely avoid speculative tasks, it considerably
reduces performance degradation in heterogeneous environments. The results of an
experimental evaluation results show that, compared with the native Hadoop sched-
uler in speculative mode, LATE achieves a gain ranging from 8.5% to 58%, depend-
ing on the application and number of working machines and thus maximizes the
message exchanges mechanism and avoids synchronization loss.

In the work of Tang et al. [42] the authors implement a layer to create a hybrid
distributed file system (HybridDFS) under reliable data storage clusters in Cloud
and unreliable data storage in desktop grid. Each data chunk in volatile nodes has at
least one replica distributed for different volunteer PCs or cluster nodes. The vola-
tile node employs a fault-tolerance mechanism.

The authors developed a Node Priority-Based Fair Scheduler (NPBFS) algo-
rithm. This means that the node with greater computational capacity processes more
tasks. The system takes into account both data location and storage capacity, and the
length of the task queues is related to the computational capacity of each node. A
weight coefficient indicates the node priority for receiving a greater number of
tasks. The algorithm works as a FIFO queue, which maintains the task distribution
under a REST Web Server. The REST Web Server is a structured message exchange
service in computer networks following the Client/Server paradigm. The manage-
ment of the data transfers follows a synchronization mechanism based on two
thresholds: the synchronization interval time (SIT) and failure timeout time (FTT).
An FTP service provides the data movement.

In a Hybrid Cloud environment, the data centers are interconnected by means of
slow links. The data is moved from the private to public Cloud when a new VM
allocation is necessary to improve a task performance. The data locality and data
movement are a challenge for accelerating iterative MapReduce in Hybrid Clouds.
Furthermore, since the extra resources represent an additional cost for data move-
ment, a trade-off between performance gains and benefits must be evaluated. These
issues are evaluated in the work by Clement [43] to address iterative MapReduce
problems in a Hybrid IaaS Cloud environment. The authors argue that improving

J.C.S. dos Anjos et al.

51

the ability to take advantage of data locality in a hybrid Cloud environment is criti-
cal. The aim of the strategy is to extend the original fault-tolerance mechanism of
HDFS and deploy data replicas from an on-premise VM in a private Cloud to
another allocated off-premise VM in a public Cloud as if it was an external rack over
the HDFS.

The off-premise VM initializes without data and needs re-balance the initial data
blocks with on-premise VM. A heuristic determines a re-balance factor from an I/O
intensive benchmark to approximate the application behavior for the duration of the
re-balancing. The scheduler waits for the off-premise VM to get a minimal replica
number to start the task distribution. This deploying is possible due to an application
class called iterative application, which reuses the invariant input data, where the
data locality can be leveraged. The solution improves the performance with increase
parallel executions in a distributed environment in Cloud off-premise. The message
exchange paradigm is deployed based on RPC, and the message synchronization is
based on the heartbeat mechanism of Hadoop.

The strategies for implementing streaming in Cloud are discussed in the work of
Tudoran et al. [38]. The authors evaluate applications like the Ocean Observatory
Initiative, where sensors send information that is collected by satellites for geo-
spatial computations. The study shows how communication in the Cloud can inter-
fere with computation. The approach uses persistent and ephemeral storage. In the
first, called Stream & Compute (SC), the data is sent directly to VM computation
without storage persistence. In the second, called Copy & Compute (CC), the data
is first saved in an attached storage, so that it can be conveyed to VM computation
afterwards. When the sensors produce new data, it is processed against existing
features as in a temporal process. This eliminates the need for communications
between processes, but adds a huge volume of data that must be streamed for each
worker. This mechanism uses a Web server in a client/server paradigm.

The Stream & Compute provides a better response time, but when carried out on
a large scale, there is a network saturation that leads to a need for redistribution
across different CSPs. The Copy & Compute makes it easier to do repairs, when an
unexpected stop occurs in the VM. In contrast, the date is near to the computation.
However, a high variability in the remote copy phase causes a variation of around
20% in terms of data transfers per seconds. I/O contention is observed in the Copy
& Compute approach on disc, when all the workers are trying to access the data at
the same time. The classic problem of CPU utilization vs. I/O has a significant
impact on the data throughput owing to virtualization. The I/O contention problem
is typically one of race conditions in hardware.

6  �Conclusion

This Chapter has presented examples of primitives and patterns used in distributed
systems which are implemented in several Big Data engines. The internal codes
hide this implementation under methods in Java, C#, and other programming

Distributed Computing Patterns Useful in Big Data Analytics

52

languages. For instance, the synchronizing method, management of variables, inter-
process communications, and other primitives. In function of this, the implementa-
tions were analyzed in the deployment context of Big Data. Also, the studies on data
distribution in the geographically distributed environments have discussed manners
to avoid these problems.

Several implementations use the Client/Server model and try to avoid race condi-
tions with synchronization mechanisms previously discussed. The standard primi-
tives like send/receive and lock/mutex are widely used in programming languages
like Java, C# and other. These program languages are the basis for the development
in Big Data. For instance, a significant problem in Cloud environment is related
with I/O contention. However, this issue can not be avoided but only minimized
until this moment.

The Big Data applications can be implemented in different ways such as in geo-
graphically distributed environments. In this scenario, the control of synchroniza-
tion can be so complex for the traditional synchronization methods that it is
necessary the use of dedicated tools like Kafka and Zookeeper to provide the activi-
ties control like the coordination of machines and message synchronizations. The
dataintensive management is hard in heterogeneous environments because of the
time synchronization. Due to this, the systems must maintain an external clock,
such as the atomic clock mechanism with the NTP protocol under the Internet, to
avoid the different timestamp between nodes which can generate several synchroni-
zation problems in Big Data applications.

Multimedia, social networks and Internet of Things (IoT) are collecting more
and more information, which means that Big Data will have a growing prospect of
being able to create value for businesses and consumers. The purpose of Big Data is
to amass many data and find anomalies or patterns in it, so that value and signifi-
cance can be added. The emerging systems are highly heterogeneous environments
with variable structures, where resources can be added or removed at any time.
Thus, it is necessary to find new ways of processing Big Data which can exploit idle
computational resources and allow them to be combined with heterogeneous infra-
structures in distributed computing.

References

	 1.	M. D. Assuncao, R. N. Calheiros, S. Bianchi, M. A. Netto, R. Buyya, Big Data computing and
clouds: Trends and future directions, Journal of Parallel and Distributed Computing 79–80
(2015) 3–15, special Issue on Scalable Systems for Big Data Management and Analytics.
doi:10.1016/j.jpdc.2014.08.003.

	 2.	 J. Dean, S. Ghemawat, MapReduce - A Flexible Data Processing Tool, Communications of the
ACM 53 (1) (2010) 72–77. doi:10.1145/1629175.1629198.

	 3.	T. White, Hadoop - The Definitive Guide, 3rd Edition, Vol. 1, O’Reilly Media, Inc., California,
USA, 2012.

	 4.	M. Chen, S. Mao, Y. Liu, Big Data: A Survey, Mobile Networks and Applications 19 (2) (2014)
171–209. doi:10.1007/s11036-013-0489-0.

J.C.S. dos Anjos et al.

http://dx.doi.org/10.1016/j.jpdc.2014.08.003
http://dx.doi.org/10.1145/1629175.1629198
http://dx.doi.org/10.1007/s11036-013-0489-0

53

	 5.	L. M. Pham, A. Tchana, D. Donsez, V. Zurczak, P.-Y. Gibello, N. de Palma, An adaptable
framework to deploy complex applications onto multi-cloud platforms, in: Computing
Communication Technologies - Research, Innovation, and Vision for the Future (RIVF), 2015
IEEE RIVF International Conference on, 2015, pp. 169–174. doi:10.1109/RIVF.2015.7049894.

	 6.	A. N. Toosi, R. N. Calheiros, R. Buyya, Interconnected Cloud Computing Environments:
Challenges, Taxonomy, and Survey, ACM Comput. Surv. 47 (1) (2014) 7:1–7:47.

	 7.	S. Sakr, A. Liu, D. Batista, M. Alomari, A Survey of Large Scale Data Management Approaches
in Cloud Environments, Communications Surveys Tutorials, IEEE 13 (3) (2011) 311–336.
doi:10.1109/SURV.2011.032211.00087.

	 8.	C. Jayalath, J. Stephen, P. Eugster, From the Cloud to the Atmosphere: Running MapReduce
across Data Centers, Computers, IEEE Transactions on 63 (1) (2014) 74–87. doi:10.1109/
TC.2013.121.

	 9.	B. Heintz, A. Chandra, R. K. Sitaraman, J. Weissman, End-to-end Optimization for
GeoDistributed MapReduce, Cloud Computing, IEEE Transactions on PP (99) (2014) 1–14.
doi:10.1109/TCC.2014.2355225.

	10.	C. Cerin, G. Fedak (Eds.), Desktop Grid Computing, 1st Edition, Numerical Analysis and
Scientific Computing, CRC Press, 2012.

	11.	H. Lin, X. Ma, J. Archuleta, W.-c. Feng, M. Gardner, Z. Zhang, MOON: MapReduce On
Opportunistic eNvironments, in: Proceedings of the 19th ACM International Symposium on
High Performance Distributed Computing, HPDC ‘10, ACM, New York, NY, USA, 2010,
pp. 95–106. doi:10.1145/1851476.1851489.

	12.	F. Costa, L. Silva, M. Dahlin, Volunteer Cloud Computing: MapReduce over the Internet,
in: Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE
International Symposium on, 2011, pp. 1855–1862. doi:10.1109/IPDPS.2011.345.

	13.	L. Lu, H. Jin, X. Shi, G. Fedak, Assessing MapReduce for Internet Computing: A Comparison
of Hadoop and BitDew-MapReduce, in: Proceedings of the 2012 ACM/IEEE 13th Int.
Conference on Grid Computing, GRID ‘12, IEEE Computer Society, Washington, DC, USA,
2012, pp. 76–84. doi:10.1109/Grid.2012.31.

	14.	W. R. Stevens, S. A. Rago, Advanced Programming in the UNIX Environment, 3rd Edition,
Addison-Wesley Professional, 2013.

	15.	G. R. Andrews, Concurrent Programming: Principles and Practice, Benjamin/Cummings
Publishing Company, 1991.

	16.	N. A. Lynch, Distributed Algorithms, The Morgan Kaufmann Series in Data Management
System Series, Morgan Kaufmann Publishers, 1997.

	17.	A. Alexandrov, R. Bergmann, S. Ewen, J. Freytag, F. Hueske, A. Heise, O. Kao, M. Leich,
U. Leser, V. Markl, F. Naumann, M. Peters, A. Rheinlander, M. J. Sax, S. Schelter, M. Hoger,
K. Tzoumas, D. Warneke, The Stratosphere platform for big data analytics, VLBD Journal 23
(6) (2014) 939–964. doi:10.1007/s00778-014-0357-y.

	18.	A. Chauhan, T. Dunning, A. Gates, O. O’Malley, S. Owen, H. Saputra, Apache Flink (2015).
URL https://flink.apache.org

	19.	T. Zhang, Reliable Event Messaging in Big Data Enterprises: Looking for the Balance Between
Producers and Consumers, in: Proceedings of the 9th ACM International Conference on
Distributed Event-Based Systems, DEBS ‘15, ACM, New York, NY, USA, 2015, pp. 226–233.

	20.	M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica, Spark: Cluster Computing
with Working Sets, in: 2010 USENIX Federated Conferences Week, 2nd - Workshop on Hot
Topics in Cloud Computing, 2010, pp. 1–8.

	21.	M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker,
I. Stoica, Resilient Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster
Computing, in: Proceedings of the 9th USENIX Conference on Networked Systems Design
and Implementation, NSDI’12, USENIX Association, Berkeley, CA, USA, 2012, pp. 2–14.
URL http://dl.acm.org/citation.cfm?id=2228298.2228301

	22.	A. S. Foundation, Apache Zookeeper (Jul. 2016). URL https://zookeeper.apache.org
	23.	Q. Zou, X.-B. Li, W.-R. Jiang, Z.-Y. Lin, G.-L. Li, K. Chen, Survey of MapReduce frame

operation in bioinformatics, Journal Briefings in Bioinformatics 15 (4) (2014) 637–647.
doi:10.1093/bib/bbs088.

Distributed Computing Patterns Useful in Big Data Analytics

http://dx.doi.org/10.1109/RIVF.2015.7049894
http://dx.doi.org/10.1109/SURV.2011.032211.00087
http://dx.doi.org/10.1109/TC.2013.121
http://dx.doi.org/10.1109/TC.2013.121
http://dx.doi.org/10.1109/TCC.2014.2355225
http://dx.doi.org/10.1145/1851476.1851489
http://dx.doi.org/10.1109/IPDPS.2011.345
http://dx.doi.org/10.1109/Grid.2012.31
http://dx.doi.org/10.1007/s00778-014-0357-y
https://flink.apache.org
http://dl.acm.org/citation.cfm?id=2228298.2228301
https://zookeeper.apache.org
http://dx.doi.org/10.1093/bib/bbs088

54

	24.	A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. Garimella,
D. Altshuler, S. Gabriel, M. Daly, M. A. DePristo, The Genome Analysis Toolkit: A MapReduce
framework for analyzing next-generation DNA sequencing data, Genome Research 20 (9)
(2010) 1297–1303. doi:10.1101/gr.107524.110.

	25.	R. Tudoran, A. Costan, R. Wang, L. Bouge, G. Antoniu, Bridging Data in the Clouds: An
Environment-Aware System for Geographically Distributed Data Transfers, in: Cluster, Cloud
and Grid Computing (CCGrid), 2014 14th IEEE/ACM International Symposium on, Chicago,
IL, USA, 2014, pp. 92–101. doi:10.1109/CCGrid.2014.86.

	26.	K. Krish, A. Anwar, A. R. Butt, HATS: A Heterogeneity-Aware Tiered Storage for Hadoop,
in: Cluster, Cloud and Grid Computing (CCGrid), 2014 14th IEEE/ACM International
Symposium on, Chicago, IL, USA, 2014, pp. 502–511.

	27.	S. Ji, B. Li, Wide area analytics for geographically distributed datacenters, Tsinghua Science
and Technology 21 (2) (2016) 125–135. doi:10.1109/TST.2016.7442496.

	28.	G. Antoniu, J. Bigot, C. Blanchet, L. Bouge, F. Briant, F. Cappello, A. Costan, F. Desprez,
G. Fedak, S. Gault, K. Keahey, B. Nicolae, C. Perez, A. Simonet, F. Suter, B. Tang, R. Terreux,
Scalable Data Management for Map-Reduce-based Data-Intensive Applications: A View for
Cloud and Hybrid Infrastructures, Int. Journal of Cloud Computing 2 (2013) 150–170.

	29.	J. C. S. Anjos, G. Fedak, C. F. R. Geyer, BIGhybrid: a simulator for MapReduce applica-
tions in hybrid distributed infrastructures validated with the Grid5000 experimental plat-
form, Concurrency and Computation: Practice and Experience 28 (8) (2016) 2416–2439.
doi:10.1002/cpe.3665.

	30.	D.-H. Le, H.-L. Truong, G. Copil, S. Nastic, S. Dustdar, SALSA: A Framework for
Dynamic Configuration of Cloud Services, in: Cloud Computing Technology and Science
(CloudCom), 2014 IEEE 6th International Conference on, 2014, pp. 146–153. doi:10.1109/
CloudCom.2014.99.

	31.	L. Mashayekhy, M. Nejad, D. Grosu, A PTAS Mechanism for Provisioning and Allocation of
Heterogeneous Cloud Resources, Parallel and Distributed Systems, IEEE Transactions on PP
(99) (2014) 1–14. doi:10.1109/TPDS.2014.2355228.

	32.	Y. Mansouri, A. Toosi, R. Buyya, Brokering Algorithms for Optimizing the Availability and
Cost of Cloud Storage Services, in: Cloud Computing Technology and Science (CloudCom),
2013 IEEE 5th International Conference on, Vol. 1, 2013, pp. 581–589. doi:10.1109/
CloudCom.2013.83.

	33.	D. Loreti, A. Ciampolini, A Hybrid Cloud Infrastructure for Big Data Applications, in:
Proceedings of the 2015 IEEE 17th International Conference on High Performance Computing
and Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety and
Security, and 2015 IEEE 12th International Conf on Embedded Software and Systems, HPCC-
CSS-ICESS ‘15, IEEE Computer Society, Washington, DC, USA, 2015, pp. 1713–1718.
doi:10.1109/HPCC-CSS-ICESS.2015.140.

	34.	Z. Zheng, Y. Gui, F. Wu, G. Chen, STAR: Strategy-Proof Double Auctions for Multi-Cloud,
Multi-Tenant Bandwidth Reservation, Computers, IEEE Transactions on PP (99) (2014) 1–14.
doi:10.1109/TC.2014.2346204.

	35.	A. Iosup, N. Yigitbasi, D. Epema, On the Performance Variability of Production Cloud
Services, in: Cluster, Cloud and Grid Computing (CCGrid), 2011 11th IEEE/ACM International
Symposium on, 2011, pp. 104–113. doi:10.1109/CCGrid.2011.22.

	36.	N. Grozev, R. Buyya, Performance Modelling and Simulation of Three-Tier Applications in
Cloud and Multi-Cloud Environments, The Computer Journal 58 (1) (2015) 1–22. doi:10.1093/
comjnl/bxt107.

	37.	B. Sharma, T. Wood, C. Das, HybridMR: A Hierarchical MapReduce Scheduler for Hybrid
Data Centers, in: Distributed Computing Systems (ICDCS), 2013 IEEE 33rd International
Conference on, 2013, pp. 102–111. doi:10.1109/ICDCS.2013.31.

	38.	R. Tudoran, K. Keahey, P. Riteau, S. Panitkin, G. Antoniu, Evaluating Streaming Strategies
for Event Processing Across Infrastructure Clouds, in: Cluster, Cloud and Grid Computing
(CCGrid), 2014 14th IEEE/ACM International Symposium on, Chicago, IL, USA, 2014,
pp. 151–159.

J.C.S. dos Anjos et al.

http://dx.doi.org/10.1101/gr.107524.110
http://dx.doi.org/10.1109/CCGrid.2014.86
http://dx.doi.org/10.1109/TST.2016.7442496
http://dx.doi.org/10.1002/cpe.3665
http://dx.doi.org/10.1109/CloudCom.2014.99
http://dx.doi.org/10.1109/CloudCom.2014.99
http://dx.doi.org/10.1109/TPDS.2014.2355228
http://dx.doi.org/10.1109/CloudCom.2013.83
http://dx.doi.org/10.1109/CloudCom.2013.83
http://dx.doi.org/10.1109/HPCC-CSS-ICESS.2015.140
http://dx.doi.org/10.1109/TC.2014.2346204
http://dx.doi.org/10.1109/CCGrid.2011.22
http://dx.doi.org/10.1093/comjnl/bxt107
http://dx.doi.org/10.1093/comjnl/bxt107
http://dx.doi.org/10.1109/ICDCS.2013.31

55

	39.	M. Zaharia, T. Das, H. Li, S. Shenker, I. Stoica, Discretized streams: an efficient and faulttoler-
ant model for stream processing on large clusters, in: Proceedings of the 4th USENIX confer-
ence on Hot Topics in Cloud Computing, HotCloud’12, USENIX Association, Berkeley, CA,
USA, 2012, pp. 10–10.

	40.	M. Ding, L. Zheng, Y. Lu, L. Li, S. Guo, M. Guo, More Convenient More Overhead: The
Performance Evaluation of Hadoop Streaming, in: Proceedings of the 2011 ACM Symposium
on Research in Applied Computation, RACS ‘11, ACM, New York, NY, USA, 2011, pp. 307–
313. doi:10.1145/2103380.2103444.

	41.	M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, I. Stoica, Improving MapReduce Performance
in Heterogeneous Environments, OSDI (2008) 29–42.

	42.	B. Tang, H. He, G. Fedak, HybridMR: a new approach for hybrid MapReduce combining desk-
top grid and cloud infrastructures, Concurrency and Computation: Practice and Experience 27
(16) (2015) 4140–4155.

	43.	F. J. Clemente-Castello, B. Nicolae, K. Katrinis, M. M. Rafique, R. Mayo, J. C. Fernandez,
D. Loreti, Enabling Big Data Analytics in the Hybrid Cloud Using Iterative MapReduce, in:
Utility and Cloud Computing - UCC, 2015 IEEE/ACM 8th International Conference on , IEEE
Computer Society, 2015, pp. 290–299. doi:10.1109/UCC.2015.47.

Distributed Computing Patterns Useful in Big Data Analytics

http://dx.doi.org/10.1145/2103380.2103444
http://dx.doi.org/10.1109/UCC.2015.47

57© Springer International Publishing AG 2017
S. Mazumder et al. (eds.), Distributed Computing in Big Data Analytics,
Scalable Computing and Communications, DOI 10.1007/978-3-319-59834-5_4

Distributed Computing Technologies in Big
Data Analytics

Kaushik Dutta

1  �Introduction

The database technology has evolved over time. As the application of database has
extended from simple mainframe to desktop application to web application to
mobile application, the size of data to store and manage through database has also
increased. Figure 1 depicts this growth of the data. The first generation of data
growth came from ERP software and following that with the introduction of
CRM. Next, the introduction of web moved the data volume to terabyte range.
However, with the mobile, sensor and social media based applications, the data
volume is growing in the range of petabytes.

Relational database (RDBMS) has been one of the most successful database
technology since the 1980s. However, even with its solid technological growth, the
relational database has failed to scale with the growth of data. Despite the advances
in computing, faster processors and high-speed networks, the scalability of the rela-
tional database has been restricted. The applications built using RDBMS technol-
ogy either has failed to perform with increased data or the cost of the infrastructure
to keep the application performing has grown exponentially.

Secondly, the relational database was designed for tabular data with a consistent
structure and fixed schema. Relational database works best when the structure of the
data is known beforehand. However, in the new world as the volume and velocity of
the data are increasing, so is the variety and complexity of data. Applications need
to be built into the database without the full understanding of the data to be stored
and the structure of the data. Or, the structure of the data is being changed after the
application has been built. For example, consider a retail application that is selling
electronic goods. It can develop applications that can search and manage the known

K. Dutta (*)
University of South Florida, Tampa, FL, USA
e-mail: duttak@usf.edu

mailto:duttak@usf.edu

58

set of electronic goods. However, if in the future a new device comes up (such a
brain-reader) with a new set of features and specifications, the applications will not
know how to store and manage that device through a relational database. The rela-
tional structure does not allow to handle such unstructuredness with the data.

In the next section, we describe the fundamentals of distributed database and
the basics of the no-SQL database. In describing the technologies, we rely on few
software platforms supporting such tools. Though there are many different soft-
ware platforms supporting the similar technologies, mostly we have chosen the
software that is popular and preferably supported by open source platforms. The
database discussion is followed by the distributed file system and distributed com-
puting platform such as map-reduce and spark. Next, we follow the discussion on
how these distributed technologies are being used to develop a newer generation of
machine learning platforms. The textual document is one of the important sources
of today’s information. We describe the basics of textual search platform and asso-
ciated software such as Lucene and ElasticSearch. Distributed caching enhances
the performance of real-time access to data. We describe the distributed caching
systems such as REDIS. As a number of components and systems grow exponen-
tially in big data infrastructure, the communication across these components need
to be managed more efficiently. In this context, we describe the message passing
software such as RabbitMQ and Kafka. Lastly, the traditional tools are unable to
represent big data visually. The Newer generation of visualization tools is being
developed to present the data. We describe these big data visualization tools in the
later part of this chapter.

Support Contacts Dynamic Funnels

Increasing Data Variety and Complexity

Search Marketing

Affiliate Networks

Dynamic Pricing

Web logs

User Click Stream

Mobile Web Sentiment

User Generated Content

Spatial & GPS Coordinates

External Demographics

Business Data Feeds

HD Video, Audio, images

Speech to Text

Product/Service Logs

SMS/MMS

Social Interactions & Feeds

Sensors / RFID / Devices

Big Data = Transactions + Interactions + Observations

Offer history

A/B testingWEB

BIG DATA

Behavioral Targeting
Purchase detail

Purchase record

Payment record

Megabytes

Gigabytes

Terabytes

Petabytes

ERP
Offer details

Segmentation
CRM

Customer Touches

Fig. 1  Data growth

K. Dutta

59

2  �Distributed Database

The scalability issues in the relational database come with the ACID property. The
ACID (Atomicity, Concurrency, Isolation, and Durability) property ensures the
consistency of data and helps to execute transactions in databases. Database ven-
dors long ago recognized the need for partitioning databases and introduced a tech-
nique known as 2PC (two-phase commit) for providing ACID across multiple
database instances [35].

It is relatively easy to maintain the ACID property in a single server database
system or even with a two node master-slave database server. However, as the data
volume grows, it becomes necessary to distribute the data across multiple nodes.
With multiple nodes, the cost of communication to maintain ACID property
increases. Also, the availability of any system is the product of the availability of the
components required for operation. A transaction involving two databases will have
the availability of the product of the availability of each database. For example, if
we assume each database has 99.9% availability, then the availability of the transac-
tion becomes 99.8%, or an additional downtime of 43 min per month [35].

This leads us to an important barrier of distributed system – Brewer’s theorem
[12] on the correlation between consistency, availability, and partition-tolerance.
Brewer postulates three distinct properties for distributed systems with an inherent
correlation [18].

Consistency  The consistency property describes a consistent view of data on all
nodes of the distributed system. That is, the system assures that operations have an
atomic characteristic and changes are disseminated simultaneously to all nodes,
yielding the same results.

Availability  This property demands the system to eventually answer every request,
even in the case of failures. This must be true for both read and write operations.

Partition Tolerance  This property describes the fact that the system is resilient to
message losses between nodes. And according to the availability property, every
node of any potential partition must be able to respond to a request.

The core statement of Brewer’s theorem is: “You can have at most two of these
properties for any shared-data system.” (Fig. 2).

Though all the above properties in a distributed database system are desirable,
any two of these three properties can be achieved [20].

In a distributed database the data is distributed across multiple geographical
sites (as depicted in Fig. 3). In the new era of globalization, distributed database
has become a common scenario due to several reasons – (1) Support the distrib-
uted Nature of Organizational Units (2) Support the need for Sharing of Data
across multiple units and (3) Support for Multiple Application Software. Most of
the COTS (commercial off-the-shelf) database server has a distributed version.
For example, Oracle has a distributed database since Oracle 7. MySQL Cluster is
the distributed version of MySQL Database. IBM’s DB2 has several versions of
distributed base as part of the DB2 package. However, in the spirit of maintaining

Distributed Computing Technologies in Big Data Analytics

60

the ACID property, all these relational models distributed database system has
given up either the partition tolerance or the availability for consistency. When
network separation happens across multiple sites in the distributed relational data-
base, the database fails to serve for that portion of data.

2.1  �NoSQL Database

In recent years, a new generation of the database has come up to handle the issues
as discussed above with distributed relational database. It is NoSQL database. As
the name suggests, it does not follow the relational structure – that allows to store
and manage unstructured/semi-structured and unknown data structures. NoSQL
systems are distributed, non-relational databases designed for large-scale data

Fig. 2  Different properties
that a distributed system
can guarantee at the same
time (Courtesy: Benjamin
Erb [18])

Central Database Distributed Database

Site 3Site 4

Communication
Network

Site 5

Site 1

Site 2

Site 3Site 4

Communication
Network

Site 5

Site 1

Site 2

Fig. 3  Distributed database [34]

K. Dutta

61

storage and massively-parallel data processing across a large number of commodity
servers. The No-SQL database break through conventional RDBMS performance
limits by employing NoSQL-style features such as relaxed ACID property, and
schema-free database design. Unlike relational databases, NoSQL database has
loosened up the consistency requirements to achieve better availability and parti-
tioning [35].

There are three types of No-SQL databases [29].

Key-Value Stores  As the name implies, a key-value store is a system that stores
value indexed for retrieval by keys. These systems can hold structured or unstruc-
tured data. Typically, these database store items as alphanumeric identifiers (keys)
and associated values in simple, standalone tables (referred to as ―hash tables).
The values may be simple text strings or more complex lists and sets. Data searches
can usually only be performed against keys, not values, and are limited to exact
matches [29].

The simplicity of Key-Value Stores makes them ideally suited to lightning-fast,
highly scalable retrieval of the values needed for application tasks like managing
user profiles or sessions or retrieving product names. This is why Amazon makes
extensive use of its Key-Value system, Dynamo, in its shopping cart. Dynamo is a
highly available key-value storage system that some of Amazon’s core services use
to provide highly available and scalable distributed data store [16].

The examples in this category include Amazon’s Dynamo [3, 16], Aerospike [2],
BerkleyDB (now Oracle No-SQL database) [33] and Riak [11] (Table 1).

Document-Based Stores  These databases store and organize data as collections of
documents, rather than as structured tables with uniform-sized fields for each record.
With these databases, users can add any number of fields of any length to a docu-
ment. It is designed to manage and store documents. These documents are encoded
in a standard data exchange format such as XML, JSON (Javascript Option Notation)
or BSON (Binary JSON). Unlike the simple key-value stores described above, the
value column in document databases contains semi-structured data – specifically
attribute name/value pairs. A single column can house hundreds of such attributes,
and the number and type of attributes recorded can vary from row to row. Also,
unlike simple key-value stores, both keys and values are fully searchable in docu-
ment databases [29] (Table 2).

Document databases are good for storing and managing Big Data-size collections
of literal documents, like text documents, email messages, and XML documents, as
well as conceptual documents like denormalized (aggregate) representations of a

Table 1  Example of key-value store

Product ID (KEY) Value (Product)

123112 Apple iPhone, 8GB, Gold
146177 Android, Samsung, Galaxy S7, 32GB, US

Warranty, Lock Free
123112 Android, Samsung, Galaxy J7, Gold, Dual Sim

Distributed Computing Technologies in Big Data Analytics

62

database entity such as a product or customer. They are also good for storing sparse
data in general, that is to say, irregular (semi-structured) data that would require an
extensive use of nulls in an RDBMS (nulls being placeholders for missing or nonex-
istent values). The examples of document database are – CouchDB (JSON) [5] and
MongoDB (BSON) [32].

Column-Oriented Database  These types of database store sets of information in
a heavily structured table of columns and rows with uniform-sized fields for each
record, as is the case with relational databases, column-oriented databases contain
one extendable column of closely related data. It employs a distributed, column-
oriented data structure that accommodates multiple attributes per key. While some
Wide Column (WC) /Column-Family (CF) stores have a Key-Value DNA (e.g., the
Dynamo-inspired Cassandra), most are patterned after Google‘s Bigtable [13].
Google Bigtable is the petabyte-scale internal distributed data storage system
Google developed for its search index and other collections like Google Earth and
Google Finance. The tables with column-oriented databases are called column fam-
ily [29] (Fig. 4).

This type of DMS is great for (1) Distributed data storage, especially versioned
data because of WC/CF time-stamping functions. (2) Large-scale, batch-oriented
data processing: sorting, parsing, conversion (e.g., conversions between hexadeci-
mal, binary and decimal code values), algorithmic crunching, etc. (3) Exploratory
and predictive analytics performed by expert statisticians and programmers.
Examples of the Column-oriented database includes Cassandra and SimpleDB.

The Key-Value store databases are completely unstructured. The only query
possible in key-value databases is given a key retrieving the value. The document

{ “ProductID” : “123112”,
 “Manufacturer”: “Apple”,
 “Model” : “iPhone”,
 “Memory” : “8GB”,
 “Color” : Gold}
{ “ProductID” : “146177”,
 “Manufacturer”: “Samsung”,
 “OS” : “Android”,
 “Model” : “Galaxy S7”,
 “Memory” : “32GB”,
 “Warrantee” : “US Warrantee”,
“Lock” : “Lock Free”}
{ “ProductID” : “123112”,
 “Manufacturer”: “Samsung”,
 “OS” : “Android”,
 “Model” : “Galaxy J7”,
 “Color” : “Gold”,
 “SIM” : “Dual Sim”}

Table 2  Example of
document database

K. Dutta

63

database provides some structure in the value by providing a constraint that the
value has to be in JSON or BSON (or any other standard format) format. Other than
retrieving the value based on the key, in the document database, it is possible to
query based on the content of the value. For example, in MongoDB, the JavaScript
based query is used to run a complex query on the value. The column-oriented
database has a table structure very similar to a relational database, however, unlike
relational tables, the tables with the column-oriented database may have different
rows in different columns in the same table. This makes the column-oriented data-
base to handle semi-structured data, where data can be parsed and put into a struc-
tured format – but the structure may change from one data item to the next data
item. Similar to relational databases, the column-oriented database has high-level
query language very similar to SQL. For example, in Cassandra, we have CQL
(Cassandra Query Language) [15]. Recently growing number of column-oriented
No-SQL databases are implementing SQL-like query capability. Figure 5 depicts
the sliding scale of structures in the data and where the different types of No-SQL
database fall on this scale. The difference between these different types will be
blurred as a growing number of products in one category will incorporate features
from other categories.

Product Table (Column Family)
Row Key: 123112
ProductID Manufacturer Model Memory Color

123112 Apple iPhone 8GB Gold
Row Key: 146177
ProductID Manufacturer Model Memory OS Warrantee Lock
146177 Samsung Galaxy

S7
32GB Android US Lock

Free
Row Key 123112
ProductID Manufacturer Model Color OS SIM
123112 Samsung Galaxy J7 Gold Android Dual SIM

Fig. 4  Example of column-oriented database

Column-
Oriented
No-SQL
Database

Relational
Database

Structured Un-StructuredSemi-Structured

Key-Value
No-SQL
Database

Document
No-SQL
Database

Fig. 5  No-SQL database types

Distributed Computing Technologies in Big Data Analytics

64

3  �Distributed Storage

Though No-SQL database grew up as a requirement to support the growth of data
in volume and variety, not every application requires a database to store and man-
age the data. Documents, images, videos can be stored in the file system and pro-
cessed with domain specific tools such as text parser and image processing
software. As the size of data captured in these forms (i.e. Documents, images, and
videos) are increasing, it became difficult to store and manage it in a single node
computing system.

Node
Node

Node

Single node computing with
Single large disk Single node computing with

multiple disks in RAID

Node

Node

Node

Node

Node

Multiple node computing with
multiple disks in distributed file system

Distributed file system

Traditionally a single node computing system has processed the data stored
in local file system. RAID-based storage has come up to accommodate large vol-
umes of data in the file system. The RAID also provides failover mechanism.
However, still, only single node can process the data stored in RAID. Processing
large volume of data in single node system has been almost impossible, just read-
ing Terabytes of data from a hard disk by a single node computing machine will
take several days – any processing on that data will increase that time considerably.
To solve this issue the distributed file system has been developed, where the data is
distributed across multiple local hard disks each associated with a separate com-
puting node. In such a system, if the computation on the data in the distributed file

K. Dutta

65

can be divided in such a way that each node does the processing on the data stored
on its local hard disk and the processing in each of these nodes can be done in
parallel – then we can complete the processing of terabytes of data in few minutes
with the help several hundreds of such nodes. This motivated the development of
distributed file system (such as HDFS (Hadoop distributed file system), GFS
(Google File System), Amazon S3) and corresponding programming framework
map-reduce and Spark. In this section, first we will discuss the distributed file sys-
tem HDFS, then we will discuss the map-reduce programming framework, and
lastly, we will discuss the Spark.

3.1  �Hadoop Distributed File System (HDFS)

The HDFS is a distributed file system that spans across multiple nodes. Each of
these nodes will have a local regular operating system (such as Linux), on top of
which the HDFS file system is deployed. The interface to HDFS is patterned after
the UNIX file system (Fig. 6).

HDFS store file system metadata and application data (i.e. the actual files) sepa-
rately. It stores metadata on a dedicated server called NameNode. Application data
are stored on other servers called DataNodes [39]. The DataNode in HDFS does not
have any individual failover mechanism such as RAID. Rather the file content is
replicated on multiple DataNode for reliability. This has the advantage of data being
local to the node, where the computation will be carried out. This reduces the over-
head associated with data transfers between the nodes for computational require-
ments. The GFS [19] has the similar structure (Fig. 7).

The HDFS namespace is a hierarchy of files and directories. File and directo-
ries are represented on the NameNode by inodes, which record attributes like
permissions, modifications and access times, namespace and disk space quotas.
The file content is split into blocks. Conceptually, this is very similar to regular
file system blocks, but are much larger in size – typically 128 MB, but may be
larger as selected by the user. These are HDFS blocks. Each HDFS block is rep-
licated at multiple DataNodes. The NameNode maintains the namespace tree and
the mapping of the HDFS blocks to DataNodes (the physical location of the
HDFS block) [39] (Table 3, Fig. 8).

An HDFS client first contacts the NameNode for the locations of data blocks
comprising the file and then reads block contents from the DataNode closest to the

HDFS

Linux (OS)
Node

Linux (OS)
Node

Linux (OS)
Node

Linux (OS)
Node

Linux (OS)
Node

Fig. 6  HDFS on top of Linux

Distributed Computing Technologies in Big Data Analytics

66

Fig. 7  HDFS architecture [39]

Table 3  NameNode metadata example

Filename Number of replicas Block-IDs

/usr/hue/test.dat 3 1, 3, 4, 6
/usr/hue/test2.dat 4 2, 5, 8, 9, 10

Block-ID Location (DataNode) (Total number of DataNode = 10)

1 1, 3, 5
3 2, 4, 6
4 3, 5, 7
6 4, 6, 8
2 1, 3, 5, 7
5 2, 4, 6, 8,
8 3, 5, 7, 9,
9 4, 6, 8, 10

client. When writing the data, the client requests the NameNode to nominate a suite
of DataNodes to host the block replicas. The client then writes data to the DataNodes
in a pipeline fashion. HDFS keeps the entire namespace in RAM.

Unlike conventional file system, HDFS provides an API that exposes the loca-
tions of a file block. This allows distributed programming like Map-Reduce frame-
work to process data in a node locally where the data is located [39].

K. Dutta

67

4  �Distributed Computation

Traditional parallel and distributed computation relied on synchronization and
locking. However, the overhead of synchronization across multiple processes
and locking the data has considerable overhead. Additionally, the traditional parallel
and distributed computation have looked at the computation separately from the data.
The assumptions that were made is the data resides in a database or any storage system
that is equally accessible by multiple computing nodes. The parallel processing in
these nodes will lock the data and process it. In addition to the overhead of locking
such an approach adds tremendous overhead in transporting data from the data node
(where the data is) to the processing node (the node that is processing the data). The
Map-Reduce framework is a new parallel programming framework that addresses
these issues with parallel and distributed computing. The Map-Reduce framework is
based on two principles.

	1.	 If the computation can be divided based on data segmentation, such that each
computational node is processing a different part of the data, the requirement of
lock and synchronization can be avoided. This will improve the performance of the
parallel computation.

	2.	 If the computation node processes data that is local to its node, then the overhead
of data transmission from data node to computation node can be avoided.

Though the map-reduce framework was first developed as part of the Hadoop
ecosystem along with the HDFS, the framework in generic and is applicable in a
wider variety of data storage including No-SQL databases such as Cassandra and
MongoDB.

Fig. 8  HDFS architecture (Courtesy: Hortonworks Inc. [23])

Distributed Computing Technologies in Big Data Analytics

68

4.1  �Map-Reduce in Hadoop

Figure 9 depicts the map-reduce architecture on HDFS. The Job Tracker in Map-
Reduce is responsible for breaking the job into multiple tasks and assigning to vari-
ous nodes. The Task Trackers are responsible for completing a task. The Job Tracker
and The Name Node of HDFS can coexist in the same node. The Task Tracker and
the HDFS Data Node coexist in the HDFS Hadoop framework. Such coexistence
allows the Task Tracker to process local data without transmitting the data from one
node to another node. The Job Tracker distributes the jobs in such a way that task
tracker processes only the local data as far as possible. In Hadoop 2.0 replaced the
Job Tracker with Yarn, a separate software component to manage the tasks.

The programming framework of Map-Reduce is based on considering data not as
a single unit, but as a collection of multiple units. The example of such collection
is – a file is a collection of lines, a directory is a collection of files, a database table
is a collection of multiple rows and so on. In Map-Reduce term this collection is
considered as a map. Thus the input to map-reduce programming is a map. For
example, if a map has N units and there are m task trackers, the Job Tracker can
ideally provide N/m units to each task tracker to complete. Obviously, the division
of tasks across task-tracker will seldom be so uniform due to non-uniform distribu-
tion of data across DataNodes (Fig. 10).

A map-reduce programming framework works in three steps.

Map Shuffle &
Sort Reduce

Fig. 9  Map-Reduce on HDFS (Courtesy: NDM Technologies)

K. Dutta

69

The input to Map step is set of (Keymap-input, Value). The output of map step is
another set of (keymap-output, value). The shuffle and sort step sorts the output of map
based on keys, group them together and send it to the reducer. So, the reducer input
is another map of the form (keymap-output, {Value, Value, … , Value}), where each Key
of the reducer is associated with a set of values coming out of the map step against
that key. Note that the output keys of Map step are the same as the input keys of the
reduce step.

Figure 11 provides an example of a map-reduce way of doing distributed computing
to compute the word-count distribution in a group of files. The input to the map step is
a set of files. Each file is split as a collection of lines. The collection of all the lines is a
map, where the key is the location of the line and the value is the line. This map is the
input of the Map step in this program. In most cases the map-reduce program does not

Fig. 10  Hadoop 1.0 vs. Hadoop 2.0 (Courtesy: Saphanatutorial [38])

Apple Orange Mango
Orange Grapes Plum

Input Files

Each line passed to
inividual mapper

instances

Map Key Value
Splitting

Sort and
Shuffle Reduce Key

Value Pairs

Final Output
Apple Orange Mango

Apple,1
Orange,1
Mango,1

Apple,1
Apple,1
Apple,1
Apple,1

Apple,4
Grapes,1
Mango,2
Orange,2
Plum,3

Grapes,1

Mango,1
Mango,1

Orange,1
Orange,1

Plum,1
Plum,1
Plum,1

Grapes,1

Mango,2

Orange,2

Plum,3

Apple,4

Orange Grapes Plum

Orange,1
Grapes,1
Plum,1

Apple Plum Mango
Apple Apple Plum

Apple Plum Mango
Apple,1
Plum,1
Mango,1

Apple Apple Plum

Apple,1
Apple,1
Plum,1

Fig. 11  Map-Reduce example (Source: kickstarthadoop [28])

Distributed Computing Technologies in Big Data Analytics

70

use input keys, it uses only the values in the input map. The map step involves initiating
multiple programs (in different threads in the same node and multiple nodes), each of
these programs is called mapper. The input to each mapper is one entry of the input
collection, i.e. the map of lines. Thus the input of each mapper in Fig. 11 is a line. The
mapper program splits the line into words and creates a map of (Word, 1), where 1 is
the count of the word in that line. The mapper program sorts and shuffles this map.
With the help of sorts and shuffle, all the mapper programs send the entries (i.e. the
count) associated with the same key (i.e. same word) to the same reducer. The reducer
upon receiving all the values associated with a key (word, {count, count,…, count})
sums up all the counts for that word and writes into HDFS. Each reducer writes its
output independently as a separate file in the HDFS. This creates multiple output file of
a map-reduce program running on top of HDFS.

4.2  �Spark

In reality, for big data, a single map-reduce program cannot complete the computa-
tion required out of the data for analytic purposes. In most cases, a realistic data
analytic computation requires a series of map-reduce programs. For example,
computing the mean in a map-reduce form can be done in a single map-reduce
program. However, the computation of the standard deviation in a map-reduce
form will require two sequential map-reduce programs. The first map-reduce com-
putation will compute the mean. Using the result of the first map-reduce, the sec-
ond map-reduce computation will compute the standard deviation. The input to
each map-reduce program is taken from HDFS or some other distributed persistent
storage (such as No-SQL database). The output of each map-reduce program is
also written into HDFS. This is depicted in Fig. 12.

However, the above workflow will be slow and time-consuming due to multiple
reads and write from the HDFS system. Additionally, though map-reduce was
developed to run large distributed parallel computing process on a number of regu-
lar consumer hardware, in present days computing machines with higher memory
and processing capacity is very common in enterprise architecture. The spark has
been developed to use the larger memory capacity of today’s computing hardware.

Spark exploits the memory capacity to avoid the repeated reading and writing on
the map-reduce workflow. Spark has a concept called “Resilient Distributed Data”
(RDD). In the most simplistic concept, the RDD considers the memory across

HDFS

Map
Reduce

HDFS

Map
Reduce

HDFS

Map
Reduce

HDFS

Map
Reduce

HDFS

Fig. 12  Map-Reduce workflow

K. Dutta

71

multiple computers as a single contiguous memory. Typical RDD variables are
collections (such as map, array, list) that stay in memory but spans across computer
boundary. This results in two advantages. First, as the collection is distributed
across multiple machines, any processing of the collection can be done in parallel
on all these machines, where each machine does the computation on its local mem-
ory (very similar to map-reduce computation). Second, the distributed map-reduce
processing in the case of the spark is done on RDD (memory resident collections),
so the processing is much faster than the HDFS based map-reduce (Fig. 13).

In the case of RDD in Spark, the map is a transformation that passes each item in
the RDD through a function and returns a new RDD representing the result. For
example, there is an RDD x a collection of 10 K integers. We want to increase each
item in the RDD by 1. This can be carried out as an RDD map. The reduction on an
RDD is an action that aggregates all the elements of the RDD use some function and
returns the final result. The example of reducing on x will be sum all the values.
Typically RDDs are kept in the memory and cease to exist once the spark program
execution has finished. However, it is also possible to persist an RDD in memory, in
which case the Spark will keep the elements around on the cluster for much faster
access the next time we carry. There is also support for persisting RDDs on disk or
replicated across multiple nodes.

Spark
Reduce

Spark
Reduce

Spark
Reduce

Spark
Reduce

HDFSHDFS
RDD Memory RDD Memory RDD Memory

5  �Machine Learning Platforms

With the popularity of Spark, running machine learning algorithms on big data has
become much easier. The landscape of machine learning on big data in changing
dramatically with Spark. All latest machine learning platforms are using Spark in
some way or other. Using these platforms companies can build models on large data
sets without sampling and achieve accurate predictions. These tools use few optimi-
zations to achieve so. First, they use more memory and processing power for

RDD Variables in Spark

Node

Memory

Node

Memory

Node

Memory

Node

Memory

Node

Memory

Fig. 13  RDD in spark

Distributed Computing Technologies in Big Data Analytics

72

making faster computations. Second, they use in-memory compression to handle
large datasets. And third, they implement parallel distributed network training. The
deep learning approaches used by these tools build hierarchies of hidden features
that is composed to approximate complex functions with much less effort.

The Mahout [6] has been a very popular machine learning platform on HDFS
platform. However, as Spark became popular many of the Mahout machine learning
libraries migrated to Spark environment.

H2O [22] is another machine learning platform that can work on both Hadoop
and Spark. SparkFlows [40] is a Big data application development platform for
building and executing end-to-end data analytic products on Spark. It comes
pre-packaged with an exhausting set of machine learning and ETL components
making the workflow definition of big data use cases faster and easier.

The Sparkling Water project combines H2O machine-learning algorithms with
the execution power of Apache Spark. Figure 14 illustrates the concept of technical
realization. The application developer implements a Spark application using the
Spark API and Sparkling Water library.

6  �Search System

With the growth of data, the requirement of real-time delivery of information has
grown also. This has particularly become true for textual data. A vast amount of big
data is unstructured textual data, such as the posts derived from Twitter, Facebook,
and blogs, or textual description of products, or archival data of legal documents.

implements

Sparkling Water Cluster

new H2OContext(sc).start()

Spark
Worker
JVM

Spark
Master
JVM

Sparkling
Water
App

Spark
Worker
JVM

Spark
Worker
JVM

Spark
Executor

JVM

Spark
Executor

JVM

H2O
Context

H2O
Context

H2O
Context

Spark
Executor

JVM

spark-submit

val sc: SparkContext = ...
val hc = new H20Context(sc).start()

val diModel = DeepLearning.train()
...

...

Fig. 14  Sparking water architecture (Courtesy: Cloudera [14])

K. Dutta

73

The storage consisting of such textual data can easily reach in the range of few
hundreds of terabytes to a petabyte. The real-time search of this data is impossible
to achieve with the traditional database indexing scheme.

To make the textual data searchable, an inverted index is created out of textual
data. In forward index, a document is stored in the database, and with a document
ID, we can retrieve the document. An inverted index an index is created by words in
documents. Then each word in the index points to the set of the documents that
contain that word. Figure 15 shows one example of the inverted index.

The first table in Fig. 15 is the data of documents along with the forward index;
the second right-hand side table is the inverted index. With the second table, one can
easily answer queries such as “Find all the documents containing the word ‘sum-
mer.’” Without the inverted index, such query would have taken a long time by
searching for the word `summer’ in each and every document on the table. As the
number of words in a language is limited, even with a very large number of docu-
ments the number of entries in the inverted index will be limited, and thus the makes
it possible to hold the index in memory of a single node or a cluster of nodes. The
basic algorithm of the inverted index was implemented as part of Lucene library [9].

6.1  �Search Software

Solr [4] was developed on top of Lucene to have a server version that can support
HTTP and XML based query. With big data, the requirement evolved to hold the
index larger than single machine memory and have replication of the index to
accommodate failover of a node hosting the index. This resulted in the development
of ElasticSearch [17].

Elasticsearch is a distributed, RESTful search engine. It supports HTTP and
JSON based query capability. Though the basics of ElasticSearch evolved to host
the inverted index of textual data, the ElasticSearch can host index of any data. Say,

Fig. 15  Inverted index example (Source: Hotcodeshare [25])

Distributed Computing Technologies in Big Data Analytics

74

for example; it can hold the index of product attributes such as manufacturer, model,
price, year, rating, keywords in the product title and keywords in product descrip-
tions. Typically ElasticSearch is not used to store the actual data; it is used to store
memory-resident index structure that can search and queried in real-time. In big
data architecture, it is very common practice to query the ElasticSearch to retrieve
the document ID (such as product ID) and then to query the HDFS or No-SQL data-
base to retrieve the actual document (or product details).

As shown in Fig. 16, the ElasticSearch has the inbuilt replica and sharding struc-
ture. The sharding allows the single index to be broken down into multiple partitions
in different nodes. Each shard can be queried in parallel to retrieve data against a
single query. This improves the query performance in ElasticSearch. Secondly, the
sharding also allows the index larger than a single node memory to be stored and
managed by ElasticSearch. The replica in ElasticSearch improves the reliability and
failover mechanism in ElasticSearch making it a search platform of choice for
online real-time applications.

Message Passing and Queuing System
In a big data system, nothing is a single node system – every component is a cluster
of a large number of nodes that handle the distributed data and computation. In such
a scenario, creating and managing one to one communication becomes a challenge.
Consider a scenario where the data is coming from multiple sensors. A process is
receiving the data from sensors and processing it to identify the structured data, and
writing the semi-structure data into various data storage depending on the type of
data and information (Fig. 17).

One of the critical problems with the above architecture is the flow of data out of
sensor is non-uniform making it difficult to estimate the infrastructure requirement
for processing the data. There will be a mismatch in the rate at which the data is
coming out of sensors and the rate at which the data can be processed to write into
the storage. This will result in having a large in-memory buffer in the data parsing
and extraction program. Additionally, in case the data parsing and extraction pro-
gram fail during processing, there will be a loss of data.

Fig. 16  Failover and clustering in ElasticSearch (Source: Liip [30])

K. Dutta

75

7  �Big Data Messaging Software

To handle the above issues, a class of software has evolved – called message passing
or stream processing software such as RabbitMQ, Kafka, Kinesis, Flink. These soft-
ware components allow handling a large volume of messages. These software has
the capability to hold the messages temporarily with failover and replication capa-
bility and can process the messages before passing it to the data consumer (Fig. 18).

RabbitMQ [36] is one of the leading message passing software that has been
popular in IT infrastructure to manage streaming data since pre-big-data days.
Traditionally RabbitMQ is a single server system, thought with the growing popu-
larity of big data it has incorporated clustering in its architecture. The RabbitMQ has
the capability to incorporate complex routing logic based on message content. The
most popular message passing system in RabbitMQ is the pub-sub system. In the
pub-sub system, a group of message producers publishes messages with subjects
and a group of consumers consume these messages based on the subjects (Fig. 19).

Apache Kafka [8] is a clustered stream data processing software. Unlike
RabbitMQ which can typically process messages in a range of 20–30 K per sec-
onds, with the inbuilt clustering technology a Kafka cluster can process a much

Database

Data

Parsing

and

Extraction

of

Se
ns

or
 D

at
a

No-SQL
HDFS

Fig. 17  Data processing & storing workflow

Data
Producer

Data
Consumer

Data
Producer

Data
Consumer

Data
Streaming /
Message
Passing
Software

Fig. 18  Role of data streaming/message passing software

Distributed Computing Technologies in Big Data Analytics

76

higher number of messages (100 K to few million messages per seconds). A Kafka
cluster consists of multiple partitions and multiple servers. Each partition has one
server which acts as the “leader” and zero or more servers which act as a “follow-
ers.” The leaders handle all read and write requests for that partition while the fol-
lowers passively replicate the leader. If the leader fails, one of the followers will
automatically become the new leader. Each server acts as a leader for some of its
partitions and a follower for others, so the load is balanced across multiple servers.
Unlike RabbitMQ whose strength is in routing, the strength of Kafka can consume
the massive volume of stream data (Fig. 20).

Apache Flink [7] is a streaming data processing system. It can handle large-scale
system running thousands of nodes. It provides accurate computational results on
streaming data. A very common use case for Apache Flink is analytics on stream
data. Quite often Flink and Kafka are used together, where data streams for Flink
are ingested from Kafka. Typically applications of Flink and Kafka start with event

Fig. 19  Messaging with RabbitMQ (Source: https://keyholesoftware.com/2013/05/13/
messaging-with-rabbitmq/)

Fig. 20  Kafka cluster (Source: Hortonworks [24])

K. Dutta

https://keyholesoftware.com/2013/05/13/messaging-with-rabbitmq/
https://keyholesoftware.com/2013/05/13/messaging-with-rabbitmq/

77

streams being pushed to Kafka, which are then consumed by Flink jobs. These jobs
range from simple transformations of data import/export to more complex applica-
tions that aggregate data in windows. The results of these Flink jobs may be fed
back to Kafka for consumption by other services or written out to other systems like
HDFS, Elasticsearch, No-SQL database or web front end. In such a system, Kafka
provides data durability, and Flink provides consistent data movement and compu-
tation (Fig. 21).

8  �Cache

Caching is an important component of any big data-based systems that expect to
provide a real-time response to requests. The generic idea of caching is most fre-
quently accesses data items are brought near to the application so that frequent
requests of these data items can be served in near real time. In the most application,
there is exists a skew in access pattern to data. For example, following power law
[1], 80% of the users will access 20% of the data item. These 20% data can be
brought into a memory based caching system, from where the requests for the data
can be server much faster than persistent storage such as database or file system.

8.1  �Distributed Caching Systems

Memcached [31] is a very popular high-performance and distributed memory cach-
ing system. In essence, it is an in-memory key-value store for small chunks of data
(strings, objects) from results of database calls, file-read or remote service call.
Memcached is inbuilt in latest versions of MySQL to cache database calls.
Traditionally Memcached has been a single server software component, but with
the big data systems, Memcached has also grown to accommodate multi-node

Fig. 21  Kafka and Flink together (Source: [42])

Distributed Computing Technologies in Big Data Analytics

78

cluster. Redis [37] is another software product that provides cache service. It is an
in-memory data structure store and can store many complex objects such as arrays,
sets, and lists. Unlike Memcached (which provides get and set operations only)
Redis allows atomic operations on these objects such as appending to a string, push-
ing an element to a list, computing set union, intersection and difference or finding
the item in a sorted set. Redis has built-in replication, high availability and data
partition feature. Though Redis works with an in-memory dataset, it can persist the
data by periodically dumping the data to disk. Redis can be used as both in-memory
no-SQL Database and cache (Fig. 22).

Case Study: Big Data Analytics Example Architecture
Figure 23 presents an example architecture of a big data analytics in an organization. At
the left-hand side, a massive stream of sensor data and social media data is coming as
input. This data is passed to Kafka for temporary holding. The Flink consumes these
messages from Kafka, processes and parses it, and writes to appropriate storage (HDFS
or No-SQL database). The analytic programs run on top of the data that is stored in
HDFS or No-SQL database. These analytics programs can be in the form of map-
reduce, spark and use advanced machine learning libraries such as SparkML, SparkFlow,
and TensorFlow. The output of analytics program is again saved into the database.
Depending on the use case and the data volume, the analytic output can be stored in
HDFS, No-SQL database or even in a relational database. The Elasticsearch or equiva-
lent search system is populated with the output of Flink and analytics program for index-
ing purpose. End users use a front end application to search and retrieve information.
The front application is running in the application server first contacts the Elasticsearch
to search for the information (such as a list of product ID) based on various attribute
values. Then it contacts the database to retrieve the actual information (such as product
details) associated with the search results. The cache (such as Redis) may be deployed

1. Check if book is in cache
3. If not in cache - get from
database, save to cache

and read
2. If in cache - read itApp Cache

Redis
Database

Mongo

Fig. 22  REDIS cache in front of MongoDB No-SQL database (Source: Gino [21])

Fig. 23  Example architecture for big data analytics

K. Dutta

79

in between the front end application (in application server) and the data storage to
improve the speed of access to popular items (such as daily hot products).

9  �Data Visualization

With the increase of data, the visualization of this volume and variety of data has
become a challenge. Some tools have emerged in recent years to present the data in
innovative ways. Tableau [41] has become a popular technology to do data visual-
ization. There are some tools on visualization that works in the cloud and others that
work as a desktop application with cloud-based access to reports. The traditional
technologies like Tableau replied on the later. Tableau is primarily used to develop
dashboard. Tableau is an end user-friendly tool. As soon as the data is connected
with the Tableau, the Tableau GUI can be used to develop various GUI based reports
and dashboards.

Recently a new technology “Notebook” has come up as a way to develop and
maintain rich visualization of data. One of such software is Jupyter [27]. The
notebook in Jupyter contains both computer code and rich text elements (para-
graphs, equations, figures, links, etc.). These documents contain analysis descrip-
tion and the results along with the executable code which can be run to perform data
analysis. This allows automatic generation of rich text document containing data
analysis text and visual representation of the data. The executable code associated
with a notebook can be shared and can be modified to develop new reports. In the
past, the report generators and reports were two different component in the enter-
prises that have been maintained separately. This used to lead to a lot of mismatch
in report generation code and the actual reports. The Notebook technology allows
these two to be merged and considered as a single unit. IBM’s Data Science
Experience [26] is another such technology by IBM. Apache Zeppelin [10] is an
Apache software that supports the Notebook functionality.

10  �Conclusion

In this chapter we have discussed various technologies related to big data technol-
ogy – NoSQL database, distributed file system, map-reduce and spark based dis-
tributed computation, distributed communication platform, distributed caching,
search platform and visualization technologies. Our intention here was to give an
overview of all these technologies so that appropriate technical discussion can be
led in future by the readers. Later in the chapter, we delved down into some associ-
ated technologies such as search system, message processing and caching that
makes the big data analytics application more robust and performance efficient.
Lastly, we present an example architecture of a big data analytics based application

Distributed Computing Technologies in Big Data Analytics

80

using these technologies. In Table 4 we summarize the technologies and products
described in this chapter.

Though there is abundance of technology and software platforms to process,
manage and use big data, the appropriate choice is very critical for the success of
these platforms. We expect more technology to evolve in next few years to support
distributed computation on big data. Once such technology is cryptocurrency (such
as bitcoin) and blockchain. The blockchain technology is gradually getting traction
to store the data in a peer to peer fashion without the control of any single entity. The
technology is now being applied in wide variety of domains including financial,

Table 4  Summary of big data technology

Technology type Purpose Product example Use case

Database Distribute data with
replication and failover

No-SQL databases
such as Cassandra,
MongoDB,
BerkleyDB,
CouchDB,
SimpleDB,
DynamoDB

Store and manage large
volume of structured
and unstructured data

File system File system distributed
across multiple nodes

HDFS, GFS Store and manage large
files or a large number
of small files

Programming Distributed
programming that can
process data in parallel

Hadoop Map-
Reduce, Spark

Computation and analytics
job on top of data in
distributed file system
or no-SQL database

Machine
learning platform

Complex analytical
work using machine
learning techniques

Mahout, H2O,
SparkML, Sparking
Water, SparkFlows

Deep learning and
machine learning
on big data

Search system To search unstructured
and semistructured data

ElasticSearch, Solr Store and manage index
on big data for search
purposes.

Messaging
system

To introduce an
intermediate buffer
between data collection
and data storage

RabbitMQ, Kafka,
Kinesis, Flink

Read high throughput
incoming data (such as
twitter data, sensor data)
and preprocess it before
writing into data storage

Caching Distributed application
level caching

REDIS, Memcached Store frequently accessed
data from in-memory
distributed cache to reduce
the access time to this data
compared to accessing
from persistent storage
of database or filesystem.

Data
visualization

Provides Notebook
functionality where
report generation code
and the actual report
co-exists

Tableau, Jupyter,
Zeppelin, Data
Science Experience

Generate complex report
including visual
representation and textual
description of data

K. Dutta

81

healthcare and contract management. IOT (internet of things) is another distributed
technology that is coming up. The application of IOT in every part of our life is
becoming the norms, where the data gathering, communicating and processing are
interconnected and distributed to the point where data is being generated.

References

	 1.	Adamic, L. A., & Huberman, B. A. (2000). Power-Law Distribution of the World Wide Web.
Science, 287(5461).

	 2.	Aerospike. (2017). Aerospike | High Performance NoSQL Database. Retrieved March 23,
2017, from http://www.aerospike.com/

	 3.	Amazon. (2017). AWS | Amazon SimpleDB – Simple Database Service. Retrieved March 23,
2017, from https://aws.amazon.com/simpledb/

	 4.	Apache. (2015). Solr. Retrieved from http://lucene.apache.org/solr/
	 5.	Apache. (2017a). Apache CouchDB. Retrieved March 23, 2017, from http://couchdb.apache.

org/
	 6.	Apache. (2017b). Apache Mahout: Scalable machine learning and data mining. Retrieved

March 23, 2017, from http://mahout.apache.org/
	 7.	Apache Flink. (2017). Apache Flink: Introduction to Apache Flink®. Retrieved March 23,

2017, from https://flink.apache.org/introduction.html
	 8.	Apache Kafka. (2017). Apache Kafka. Retrieved March 23, 2017, from https://kafka.apache.

org/intro
	 9.	Apache Lucene. (2017). Apache Lucene – Welcome to Apache Lucene. Retrieved March 23,

2017, from https://lucene.apache.org/
	10.	Apache Zeppelin. (2017). Zeppelin. Retrieved March 23, 2017, from https://zeppelin.apache.org/
	11.	Basho. (2017). Riak – Distributed Databases. Retrieved March 23, 2017, from http://basho.

com/products/
	12.	Brewer, E., & Eric. (2010). A certain freedom. In Proceeding of the 29th ACM SIGACT-

SIGOPS symposium on Principles of distributed computing – PODC ’10 (pp. 335–335).
New York, New York, USA: ACM Press. http://doi.org/10.1145/1835698.1835701

	13.	Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., … Gruber,
R. E. (2006). Bigtable: A distributed storage system for structured data. In 7th Symposium
on Operating Systems Design and Implementation (OSDI ’06), November 6–8, Seattle, WA,
USA (pp. 205–218). USENIX Association. Retrieved from http://research.google.com/archive/
bigtable-osdi06.pdf

	14.	Cloudera. (2017). How-to: Build a Machine-Learning App Using Sparkling Water and Apache
Spark – Cloudera Engineering Blog. Retrieved March 23, 2017, from http://blog.cloudera.com/
blog/2015/10/how-to-build-a-machine-learning-app-using-sparkling-water-and-apache-spark/

	15.	Datastax. (2017). Introduction to Cassandra Query Language. Retrieved March 23, 2017, from
https://docs.datastax.com/en/cql/3.1/cql/cql_intro_c.html

	16.	DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., …
Vogels, W. (2007). Dynamo. In Proceedings of twenty-first ACM SIGOPS symposium on
Operating systems principles – SOSP ’07 (p. 205). New York, New York, USA: ACM Press.
http://doi.org/10.1145/1294261.1294281

	17.	Elastic. (2017). Open Source Search Analytics · Elasticsearch. Retrieved March 23, 2017,
from https://www.elastic.co/

	18.	Erb, B. (2016). The Challenge of Distributed Database Systems. Retrieved March 23, 2017,
from http://berb.github.io/diploma-thesis/community/061_challenge.html

	19.	Ghemawat, S., Gobioff, H., & Leung, S.-T. (2003). The Google file system. ACM SIGOPS
Operating Systems Review.

Distributed Computing Technologies in Big Data Analytics

http://www.aerospike.com/
https://aws.amazon.com/simpledb/
http://lucene.apache.org/solr
http://couchdb.apache.org/
http://couchdb.apache.org/
http://mahout.apache.org/
https://flink.apache.org/introduction.html
https://kafka.apache.org/intro
https://kafka.apache.org/intro
https://lucene.apache.org/
https://zeppelin.apache.org/
http://basho.com/products/
http://basho.com/products/
http://doi.org/10.1145/1835698.1835701
http://research.google.com/archive/bigtable-osdi06.pdf
http://research.google.com/archive/bigtable-osdi06.pdf
http://blog.cloudera.com/blog/2015/10/how-to-build-a-machine-learning-app-using-sparkling-water-and-apache-spark/
http://blog.cloudera.com/blog/2015/10/how-to-build-a-machine-learning-app-using-sparkling-water-and-apache-spark/
https://docs.datastax.com/en/cql/3.1/cql/cql_intro_c.html
http://doi.org/10.1145/1294261.1294281
https://www.elastic.co/
http://berb.github.io/diploma-thesis/community/061_challenge.html

82

	20.	Gilbert, S., & Lynch, N. (2002). Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. ACM SIGACT News, 33(2), 51. http://doi.org/
10.1145/564585.564601

	21.	Gino, I. (2017). Caching a MongoDB Database with Redis — SitePoint. Retrieved March 23,
2017, from https://www.sitepoint.com/caching-a-mongodb-database-with-redis/

	22.	H2O. (2017). H2O.ai. Retrieved March 23, 2017, from https://www.h2o.ai/h2o/
	23.	Hortonworks. (2017a). Apache Hadoop HDFS – Hortonworks. Retrieved March 23, 2017,

from https://hortonworks.com/apache/hdfs/#section_2
	24.	Hortonworks. (2017b). Introduction to Kafka – Hortonworks Data Platform. Retrieved March

23, 2017, from https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_kafka-
user-guide/content/ch_using_kafka.html

	25.	Hotcodeshare. (2017). How Elasticsearch index document? | Hot code share. Retrieved March
23, 2017, from http://www.hotcodeshare.com/content/how-elasticsearch-index-document

	26.	 IBM. (2017). IBM Data Science Experience. Retrieved March 23, 2017, from https://www.
ibm.com/us-en/marketplace/data-science-experience/resources

	27.	Jupyter. (2017). Project Jupyter. Retrieved March 23, 2017, from http://jupyter.org/
	28.	kickstarthadoop. (2017). Kick Start Hadoop: Word Count – Hadoop Map Reduce Example.

Retrieved March 23, 2017, from http://kickstarthadoop.blogspot.com/2011/04/word-count-
hadoop-map-reduce-example.html

	29.	Leavitt, N. (2010). Will NoSQL Databases Live Up to Their Promise? Computer, 43(2),
12–14. http://doi.org/10.1109/MC.2010.58

	30.	Liip. (2017). On ElasticSearch performance – Liip Blog. Retrieved March 23, 2017, from
https://blog.liip.ch/archive/2013/07/19/on-elasticsearch-performance.html

	31.	Memcached. (2017). memcached – a distributed memory object caching system. Retrieved
March 23, 2017, from https://memcached.org/

	32.	MongoDB Inc. (2015). mongoDB. Retrieved from https://www.mongodb.org/
	33.	Oracle. (2017). Berkeley DB Products. Retrieved March 23, 2017, from https://www.oracle.

com/database/berkeley-db/index.html
	34.	Ozsu, M. T., & Valduriez, P. (2011). Principles of Distributed Database Systems – M. Tamer Özsu,

Patrick Valduriez – Google Books. Retrieved from https://books.google.com/books?hl=en&lr=
&id=TOBaLQMuNV4C&oi=fnd&pg=PR3&dq=Distributed+Database&ots=LqFjgM_
P-7&sig=mcmEnxerBLtixHY-0CrzS2hFojc#v=onepage&q=Distributed Database&f=false

	35.	Pritchett, D., & Dan. (2008). BASE: AN ACID ALTERNATIVE. Queue, 6(3), 48–55. http://
doi.org/10.1145/1394127.1394128

	36.	RabbitMQ. (2017). RabbitMQ – Messaging that just works. Retrieved March 23, 2017, from
https://www.rabbitmq.com/

	37.	Redis. (2017). Redis. Retrieved March 23, 2017, from https://redis.io/
	38.	Saphanatutorial. (2017). How YARN Overcomes MapReduce Limitations

in Hadoop 2.0. Retrieved March 23, 2017, from http://saphanatutorial.com/
how-yarn-overcomes-mapreduce-limitations-in-hadoop-2-0/

	39.	Shvachko, K., Kuang, H., Radia, S., & Chansler, R. (2010). The Hadoop Distributed File
System. In 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST)
(pp. 1–10). IEEE. http://doi.org/10.1109/MSST.2010.5496972

	40.	Sparkflows. (2017). SparkFlows.io | Big Data Application Development Made Easy. Retrieved
March 23, 2017, from https://www.sparkflows.io/overview

	41.	Tableau. (2017). Business Intelligence and Analytics – Tableau Software. Retrieved March 23,
2017, from https://www.tableau.com/

	42.	Tzoumas, K., & Metzger, R. (2015). Kafka + Flink: A practical, how-to guide – data Artisans.
Retrieved March 23, 2017, from https://data-artisans.com/kafka-flink-a-practical-how-to/

K. Dutta

http://doi.org/10.1145/564585.564601
http://doi.org/10.1145/564585.564601
https://www.sitepoint.com/caching-a-mongodb-database-with-redis/
https://www.h2o.ai/h2o
https://hortonworks.com/apache/hdfs/#section_2
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_kafka-user-guide/content/ch_using_kafka.html
https://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.3.2/bk_kafka-user-guide/content/ch_using_kafka.html
http://www.hotcodeshare.com/content/how-elasticsearch-index-document
https://www.ibm.com/us-en/marketplace/data-science-experience/resources
https://www.ibm.com/us-en/marketplace/data-science-experience/resources
http://jupyter.org/
http://kickstarthadoop.blogspot.com/2011/04/word-count-hadoop-map-reduce-example.html
http://kickstarthadoop.blogspot.com/2011/04/word-count-hadoop-map-reduce-example.html
http://doi.org/10.1109/MC.2010.58
https://blog.liip.ch/archive/2013/07/19/on-elasticsearch-performance.html
https://memcached.org
https://www.mongodb.org/
https://www.oracle.com/database/berkeley-db/index.html
https://www.oracle.com/database/berkeley-db/index.html
https://books.google.com/books?hl=en&lr=&id=TOBaLQMuNV4C&oi=fnd&pg=PR3&dq=Distributed+Database&ots=LqFjgM_P-7&sig=mcmEnxerBLtixHY-0CrzS2hFojc#v=onepage&q=Distributed
https://books.google.com/books?hl=en&lr=&id=TOBaLQMuNV4C&oi=fnd&pg=PR3&dq=Distributed+Database&ots=LqFjgM_P-7&sig=mcmEnxerBLtixHY-0CrzS2hFojc#v=onepage&q=Distributed
https://books.google.com/books?hl=en&lr=&id=TOBaLQMuNV4C&oi=fnd&pg=PR3&dq=Distributed+Database&ots=LqFjgM_P-7&sig=mcmEnxerBLtixHY-0CrzS2hFojc#v=onepage&q=Distributed
http://doi.org/10.1145/1394127.1394128
http://doi.org/10.1145/1394127.1394128
https://www.rabbitmq.com/
https://redis.io
http://saphanatutorial.com/how-yarn-overcomes-mapreduce-limitations-in-hadoop-2-0/
http://saphanatutorial.com/how-yarn-overcomes-mapreduce-limitations-in-hadoop-2-0/
http://doi.org/10.1109/MSST.2010.5496972
https://www.sparkflows.io/overview
https://www.tableau.com/
https://data-artisans.com/kafka-flink-a-practical-how-to/

83© Springer International Publishing AG 2017
S. Mazumder et al. (eds.), Distributed Computing in Big Data Analytics,
Scalable Computing and Communications, DOI 10.1007/978-3-319-59834-5_5

Security Issues and Challenges in Big Data
Analytics in Distributed Environment

Mayank Swarnkar and Robin Singh Bhadoria

1  �Introduction

With the growth of technology, there is a huge expansion in the data generation and
its exchange over the Internet. This growth is massive and hence tough for tradi-
tional processing systems to process this amount data. Every day more than 2.5
Quintilian bytes of data is generated [1, 2]. Ninety percent of total data in the world
is generated in past 2–3 years [3]. This huge amount of data is termed as big data.
Traditionally, when it is not feasible to process data in a single machine, we take
help of distributed systems [23]. Multiple systems together process data in parallel
or sequentially using distributed processing algorithms [24]. But to process big
data, traditional algorithms of distributed processing systems are not efficient [4].
Therefore, to process big data, many big data processing tools are designed. Few of
the famous big data processing tools are Hadoop [5, 6], Spark [7], Hive etc.

Evolution of big data brings many security issues with it. Traditional security
mechanisms are designed for securing small and static data-sets. Those security
mechanisms are unfit for big data. Big data is efficiently processed in distributed
environments instead of on single machine. Algorithms like Map-Reduce [25] and
SCOPE [26] became the base of big data processing in distributed environment. The
key to processing big data is to divide the data into chunks and give it to multiple
processing units or nodes in distributed environment. When the data gets processed,

M. Swarnkar (*)
Indian Institute of Technology, Indore, Madhya Pradesh, India
e-mail: swarnkar.mayank@gmail.com

R.S. Bhadoria
Discipline of Computer Science and Engineering, Indian Institute of Technology Indore,
Indore - Khandwa Road, Indore, Madhya Pradesh, India
e-mail: robin19@ieee.org

mailto:swarnkar.mayank@gmail.com
mailto:robin19@ieee.org

84

combine the result and give output. This imports another security issues in big data.
Now, security issues of big data and distributed systems needs to be handled together.

In this chapter, we are going to discuss security issues in big data in distributed
environment. we give an overview of various security aspects of big data in distributed
environment. We also discuss some available solutions researched in literature.

Figure 1 shows the V’s of big data. These V’s are the drivers of Big Data. Data is
converted to big data when it follows the properties mentioned as V’s of big data.
We discuss another view of these drivers of big data. We say that these V’s are not
only drivers of big data but also the up-bringer of security issues in data analytics.
Following is the view of V’s in terms of issues and vulnerabilities:

•	 Volume: Tera-bytes of data is generated per day. To process this volume of data,
a fine architecture is required. Data needs to be stored in forms of tables, files etc.
This volume of data is tough to manage and process in distributed environments.
An attack which can generate ambiguous data is tough to detect when mixed
with normal data.

•	 Variety: Data obtained are structured, unstructured, single factor, multi factor,
probabilistic, linked or dynamic in nature. Handling such variety of data is an
issue for distributed database management systems. If an anomaly generates
vague data with fast variation in data eats up resources with no fruitful output.

•	 Velocity: Data obtained in batch (group or cluster of data) or stream. Sometimes
data processing requirements are real-time. Processing data incoming at such
speed is an issue for processors. If an anomaly launches flooding attacks, it may
be tough to detect, if flooding is done by mimicking the normal data.

•	 Veracity: Data changes its modeling from time to time. This needs to be handled
every-time data changes its modeling. Therefore linkage is again an issue for
such variability in data. An anomaly can implement it periodically with short
duration of a period may again lead to resource wastage. It also includes the
problem of trustworthiness, authenticity, origin, reputation, availability of
resources and its accountability.

V’s of Big Data

Volume Variety Velocity Veracity

Fig. 1  V’s of big data

M. Swarnkar and R.S. Bhadoria

85

1.1  �Security Issues in Big Data in Distributed Environment

Being Big Data widely used and adaptive technology, it is almost natural that
immense security and privacy challenges arise frequently. Four V’s of Big Data
which are also characteristics of Big Data affects information security and give
challenges to the design, functionality and management of architecture of big data.
These security issues or challenges have a straight impact on modeling of security
solutions that is necessary to handle characteristics and requirements of big data
architecture in distributed environment. Figure 2 shows the various issues as secu-
rity perspective in big data in distributed environment.

2  �Infrastructure Based Security

Infrastructure of big data tools is a combination of multiple high performing com-
puting clusters which are capable of processing huge data simultaneously.

These abilities comprise of management of data, cloud computing solution, and
data analytics. Big Data Life cycle Management (BDLM) [8] model imposes suit-
able infrastructure in big data industries for implementation of the scientific method
of data management. BDLM includes storing data in all stages of big data life-cycle
that allows data re-usability. Here, we are considering software related security
issues and not hardware related issues like hardware theft or hardware failure.
Following are some key points regarding infrastructure based security:

2.1  �Secure Computations

Let us consider Hadoop, a tool for big data processing which utilizes Map Reduce
as the framework. In Map-Reduce [9], an input file is split into multiple small
chunks. In the first phase, Mapper reads each chunk, performs computation and
outputs a list of key-value pair. This is provided as input to next phase which is a
reducer phase. Here, values belonging to each distinct key is combined and outputs
the result. Usually, Hadoop utilizes map-reduce in distributed environment i.e.
Master node gives the task to slave nodes and setup works as distributed system. So
here are the security issues related to it:

•	 The untrusted node of the system could return a wrong result. This will, in turn,
generate a wrong final output. Untrusted node points to the compromised system
which is under the control of anomaly.

•	 With the large system, it is practically impossible to identify the error in mapper
or reducer phase of Map-Reduce. it will take time to identify anomalous node.
This may happen with other frameworks of big data processing tools as a major-
ity of them processes data in distributed environment.

Security Issues and Challenges in Big Data Analytics in Distributed Environment

86

F
ig

. 2
 

Se
cu

ri
ty

 is
su

es
 in

 b
ig

 d
at

a

M. Swarnkar and R.S. Bhadoria

87

2.2  �Secure Non-relational Data Stores

NoSQL databases [10] are really popular to store non-relational databases. Since
NoSQL is still newer than traditional databases like RDBMS, therefore it is natural
that NoSQL is comparatively poor in terms of security as compared to the
RDBMS [11, 27]. For example, there is no robust solution for NoSQL injection
attacks [12]. It is well known that traditional database vulnerable to SQL injection
attacks are prone to be used. NoSQL does not provide any built-in security mecha-
nism [13] which can handle multiple attacks simultaneously. If we discuss in terms
of NoSQL then following are the basic security issues:

•	 Industries are dealing with the problem of migration from relational database to
non-relational databases which are still in development phase. It is not a good
move to depend on No SQL completely.

•	 In general, databases like NoSQL depends on external enforcing mechanisms for
security. Therefore industries who are trying to use Non-relational databases
should be clear with the security policies of the third party implemented on the
software.

•	 In distributed environments, vulnerabilities of non-relational databases increases
as it is vulnerable to SQL Injections as well distributed denial of service attacks.

3  �Data Privacy

Two terms closely related to each other comes into the picture: Data Privacy and
Data Security. Data privacy refers to the suitably appropriate use of data. In distrib-
uted environment, if data is shared between two or more parties or systems then the
data should be used to the agreed policies. Data security refers to the confidentiality,
availability and integrity of the data in distributed environment. Data Security and
Data Privacy goes hand to hand practically. Following are the two basic aspects:

3.1  �Privacy Preservation in Data Mining

Privacy preservation [14] in data mining refers to the maintenance of privacy of a
part of data such that no information can be gained from the anonymized part of
data by the data miners. It is known that huge amount of information is hidden in the
dataset. By proper data mining, these information can be extracted. Data mining can
also become a security issue as it may reveal private information which needs to be
hidden for personal, who is performing data mining). One of the live examples is
AOL released search logs after anonymization [15]. But due to inefficient anony-
mization, miners were easily identifying the users in the logs. There are other secu-
rity issues highlighted as:

Security Issues and Challenges in Big Data Analytics in Distributed Environment

88

•	 Data generated by industries, government agencies or institutes are usually con-
tinuously mine by analysts. A malicious insider or an untrusted partner can abuse
these datasets and extract private information from data.

•	 When big data is passed to multiple nodes for processing (in distributed environ-
ment), if any of the nodes is under the influence of malicious user or contains a
malicious code can easily result in providing data to the anomaly for mining.

3.2  �Cryptography Control Mechanism

This is one of the critical security aspects for big data in distributed environment.
Since the data needs to be processed at multiple nodes, data needs to be passed

through the network. Any anomaly can tap the network [16] or perform the man in
the middle attack [17] to the grab the data. Therefore it is important to ensure that
data must be secured from end to end and only readable to the parties whose sharing
the keys. Specific research in the field of big data has been done in this field because
usually big data processing is done in distributed environment. Attribute based
Encryption [18] is an important research as it provides rich security, decent effi-
ciency and scalability. Cryptography can give any data a high level of security but it
cannot be applied as a whole on full data because of following reasons:

•	 Daily data stored remains unencrypted. The reason behind this is the computa-
tional complexity of cryptographic algorithms. Encryption and decryption is a
highly time consuming process. It also consumes resources like computation
power for encryption and decryption. As a solution, Attribute based Encryption
is provided address this issue.

•	 Another reason is that the cryptographic algorithms either encrypt the whole data
or none. Therefore if analyst needs to mine the data then it has all data purely
visible or totally encrypted.

3.3  �Granular Access Control

This basically maps to the secrecy of data. This implies that data should not be
accessed by the people who do not have access to that data set. There are various
softwares available to provide granular access controls. Suppose for a data set con-
tains information about bank, school and hospital. If it is processed by big data
processing tool containing one master node and three slave nodes then each node
should have access to data of only one type i.e. of any one of bank, school and hos-
pital. Any slave node should not have access to the data given for processing of
other node.

•	 Big data analysis and cloud computing are increasingly focusing on handling
diverse data sets. Handling such data set with the responsibility of maintain-
ing the secrecy of varieties of data set during analysis and mining.

M. Swarnkar and R.S. Bhadoria

89

•	 Managing these restrictions on the dataset is a cost effective issue. Yet there are
many software and tools available for maintaining granular access but still, they
are costly.

4  �Data Integrity and Data Management

Data integrity is one of the fundamental components of security [19] and proper
data management is important to maintain data integrity. As a whole, it means the
maintenance, assurance of accuracy and consistency of data throughout its life
cycle. It is the critical aspect of design, implementation and usage of the big data
processing systems, especially in the distributed environment.

4.1  �Granular Audits

Granular Audit [20] basically points to the proper inspection of organization
accounts to find improper behavior. Sometimes there are attacks which happened on
the system cannot be detected by Intrusion detection system. Granular audit helps
in getting information about those missed attacks. It helps not only in finding the
reasons of missing attack detection but also helps in compliance and regulation of
security design of the system.

•	 Login and Logout including the number of attempts in any machine can be found
out. In the case of dictionary attacks, this is very useful.

•	 Commands issued to the system under administrative privileges from the same
system or from the master node in the distributed environment can be verified
from granular audits.

•	 Stored procedure executions of the systems.

4.2  �Secure Transactions and Transaction Logs

A transaction is a unit of work performed within a database system. This system can
be a standalone or in distributed environment. Mostly transaction occurs to make
changes in the database. Change may be a new entry or the modification in the pre-
vious entry within the database. Secure transaction simply means the transaction
happened from one end and the same transaction (without modification) has been
transmitted to other end and reflected in the database as well.

•	 A transaction can be tapped by an anomaly. In a network, it may be in non-
readable mode but the copy can be flooded to the destination. This may reflect
the normal user who performed the transaction as an anomaly.

Security Issues and Challenges in Big Data Analytics in Distributed Environment

90

•	 Theft of transaction logs gives information about the transactor as well as the
design of the database. It results in the privacy leakage and security breach.

4.3  �Data Provenance

Data provenance refers to the origination of data. This term is defined in different
ways in the literature. Provenance graphs are generated from provenance meta data.
These are used to check the data dependencies. Analysis of such graphs some times
results in the security or confidentiality leakage.

•	 Data provenance is a causality graph with annotations. The causality graph joins
the participating objects which describe the process producing an object’s cur-
rent state. Each node depicts an object and edge between the nodes depicts a
relationship between two nodes which are objects.

•	 It again reveals the indirect association of an object with another with
attributes.

Anomaly may extract information from the graph.

5  �Reactive Security

Security measures which are taken after the attack or breach happened once to avoid
those type of attack in future come under Reactive security [21] measurements.
Every organization takes some measures to prevent losses caused by anomalies.
Each organization also plans to respond to such losses when the proactive measures
either becomes ineffective or when they did not exist. Reactive methods of security
include disaster management plans, use of investigation services and use of recov-
ery specialists, re installation of operating systems and applications on compro-
mised systems also known as zombies, or switching to alternate systems in other
locations. Having an appropriate set of reactive responses prepared and ready to
implement is just as important as having proactive measures in place.

5.1  �Input Validation at Distributed Nodes

In various organizations and industries, big data collection happens at many end
point devices. A key challenge in the data collection process is the input validation.
A trust issue is always there with the collected data because it may contain mali-
cious data or the artificial formed data which may result in inappropriate outputs.
Input validation and filtering remain a challenge when data is collected from
untrusted sources in the distributed environment.

M. Swarnkar and R.S. Bhadoria

91

•	 Suppose data is retrieved from weather sensor and also collected by the manual
sources i.e. by using sensors of mobile phones and send the data manually may
have a mismatch. An adversary can send the bogus data from a virtual sensor
deployed in the same environment. Anomaly can spoof the phone ID to send the
wrong temperature.

•	 To perform these type of evaluation proper algorithms need to be designed which
may cluster out the anomalous data.

5.2  �Real Time Security

Real time security monitoring [22] remains an issue in distributed environment.
This issue grows even bigger when it comes to Big data in distributed environ-

ment. Intrusion Detection Systems take time to process data and generates alarms
but with latency. This is a high risk for big data processing. In general, false Alerts
or alarms generated are inversely proportional to the time taken to process data for
security. This means high false positives can be seen for Real time security tools.
Following are some key points in terms of security:

•	 It is important to know about the entity using the data. It is also important to
know about the access of that data to that entity in real time. This means the
amount of time user is accessing the data. Entities online who are accessing data.

•	 Real time monitoring can help in early detection of attacks including worms,
Zombies, Trojans etc.

6  �Countermeasures

It is important not to just detect the attack and then try to overcome but also to pre-
vent the attacks. There is work done in literature to keep big data processing in
distributed environment safe. To keep environment secure, it is important to keep
both system as well as network safe. Figure 3 shows a summarized overview of
additional countermeasures with examples of products under that section.

Many of the measures are described in the above sections with the related secu-
rity issues but few additional security measures to protect big data processing in
distributed environment which are as follows:

•	 Anti-virus: Software which contains definitions of anomalous computer codes. In
anti-virus, As soon as the malicious code is detected against the virus definition, an
alarm is generated. Attackers when tries to insert anomalous code like virus,
worms, zombies or Trojans in the systems, anti-virus detects it. Anti-virus also
have capabilities to delete these anomalous executable codes. It is necessary to
keep the definitions of anti-virus updated to have higher security in the system.

Security Issues and Challenges in Big Data Analytics in Distributed Environment

92

•	 Firewalls: It is a security software which monitors and controls the incoming and
outgoing traffic. It allows or blocks the traffic on the basis of defined rules. Rules
can be added, deleted or modified in the system as per requirement of the user
under administrative privilege. Firewall usually blocks packets from untrusted
sources and helps in system protection.

•	 Intrusion Detection Systems and Intrusion Prevention Systems: An intrusion
detection system (IDS) is a type of security software designed to automatically
alert administrators when someone or something is trying to compromise infor-
mation system through malicious activities or through security policy violations.
An intrusion prevention system (IPS) is a system that monitors a network for
malicious activities such as security threats or policy violations. The main func-
tion of an IPS is to identify suspicious activity, and then log information, attempt
to block the activity, and then finally to report it. Snort and Bro are famous IDS
used in industries.

•	 Cryptographic Algorithms: It is always suggested to use those cryptographic
algorithms which maintain the balance between processing time and cryptogra-
phy key strength. Now a days elliptical curve cryptography is popular.

•	 Third party trust certificates: In this chapter, we have seen the importance of the
third party especially for digital signatures. It should be a trust-able and known
third party for maintaining policies between the two parties involved in the
licensing.

Fig. 3  Few counter measures

M. Swarnkar and R.S. Bhadoria

93

These countermeasures can be used in different variants in the different type of
security issues mentioned in the earlier sections. We cannot say that we can have
one to one countermeasure mapping to security issues. It depends on the issue and
how critical issue is to use the relative countermeasures. In addition to it, there may
be other security solutions for providing secure big data processing in distributed
environment. Therefore it is the sole responsibility of the administration to define
the countermeasures for security related issues.

7  �Conclusion

In this chapter, we had a bird’s eye view of the security issues involved in Big Data
Analytics applications executed in distributed environment. We have seen that it is
important to protect not only the system but also the network in which distributed
systems are placed. We saw possibilities of many attacks as it is a new technology
and in its child state. We also gave some counter measures to these security issues.
However, there may be different and difficult situations in which all these counter-
measures may not succeed. Combinations of security software and tools can mini-
mize the risk of attacks but as a base rule of security, issues can never reduce to zero.

It is our hope that, with the passage of time, more research will be done in the
security aspects of big data in distributed environment which opens new doors to
protect big data processing in distributed environment.

References

	 1.	Chen M, Mao S, Liu Y et al (2014) Big Data: A survey. Mobile Networks and Applications
19(2): 171–209.

	 2.	http://www.vcloudnews.com/every-day-big-data-statistics-2-5-quintillionbytes-of-data-
created-daily/

	 3.	https://www.sciencedaily.com/releases/2013/05/130522085217.htm
	 4.	Jacobs A (2009) The Pathologies of Big Data. Communications of the ACM 52(8): 36–44.
	 5.	White T (2012) Hadoop: The Definitive Guide. O’Reilly Media, Inc.
	 6.	Shvachko K, Kuang H, Radia S et al (2010) The Hadoop Distributed File System. In IEEE 26th

symposium on mass storage systems and technologies (MSST): 1–10.
	 7.	Shanahan JG, Dai L (2015) Large Scale Distributed Data Science using Apache Spark. In

Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining: 2323–2324

	 8.	Li J, Tao F, Cheng Y, Zhao L et al (2015) Big Data in Product Lifecycle Management. The
International Journal of Advanced Manufacturing Technology 81(14): 667–684.

	 9.	McKenna A, Hanna M, Banks E et al (2010) The Genome Analysis Toolkit: A MapReduce
Framework for Analyzing Next-Generation DNA Sequencing Data. Genome research 20(9):
1297–1303.

	10.	Han J, Haihong E, Le G et al (2011) Survey on NoSQL Database. 6th international conference
on In Pervasive Computing and Applications (ICPCA): 363–366.

	11.	Leavitt N (2010) Will NoSQL databases live up to their promise?. Computer 43(2): 12–14.

Security Issues and Challenges in Big Data Analytics in Distributed Environment

http://www.vcloudnews.com/every-day-big-data-statistics-2-5-quintillionbytes-of-data-created-daily/
http://www.vcloudnews.com/every-day-big-data-statistics-2-5-quintillionbytes-of-data-created-daily/
https://www.sciencedaily.com/releases/2013/05/130522085217.htm

94

	12.	Halfond WG, Viegas J, Orso A. et al (2006) A Classification of SQL-injection Attacks and
Countermeasures. In Proceedings of the IEEE International Symposium on Secure Software
Engineering: 13–15.

	13.	Okman L, Gal N, Gonen Y et al (2011) Security Issues in NoSQL Databases. In 10th IEEE
International Conference on Trust, Security and Privacy in Computing and Communications:
541–547.

	14.	Agrawal R, Srikant R (2000) Privacy-Preserving Data Mining. In ACM Sigmod Record vol 29:
439–450.

	15.	Adar E, (2007) User 4xxxxx9: Anonymizing Query Logs. In Proceedings of Query Log
Analysis Workshop, International Conference on World Wide Web.

	16.	Garfinkel S (2002) Network Forensics: Tapping the Internet. IEEE Internet Computing 6:
60–66.

	17.	Desmedt Y (2011) Man-in-the-Middele Attack. In Encyclopedia of Cryptography and Security
Springer US: 759–759.

	18.	Goyal V, Pandey O, Sahai A et al (2006) Attribute-based Encryption for FineGrained Access
Control of Encrypted Data. In Proceedings of the 13th ACM conference on Computer and
communications security: 89–98

	19.	Hussain B (2006) U.S. Patent Application No. 11/425,524.
	20.	Futoransky A, Kargieman E, Bendersky D et al (2003). U.S. Patent Application No. 10/414,120.
	21.	Avramovic B, Fink LK (1992) Real-Time Reactive Security Monitoring. IEEE Transactions

on Power Systems 7: 432–437.
	22.	Anthony E, Phillips J (2003) U.S. Patent Application No. 10/347,050
	23.	Tanenbaum AS, Vansteen M (2007) Distributed systems. Prentice-Hall.
	24.	Bertsekas DP, Tsitsiklis JN (1989) Parallel and distributed computation: Numerical Method

vol 23.
	25.	Dean J, Ghemawat S (2008) MapReduce: Simplified Data Processing on Large Clusters.

Communications of the ACM 51: 107–113.
	26.	Chaiken R, Jenkins B, Larson P et al (2008) SCOPE: Easy and Efficient Parallel Processing of

Massive Data Sets. Proceedings of the VLDB Endowment vol 1: 1265–1276.
	27.	Ron A, Shulman-Peleg A, Puzanov A. (2016). Analysis and Mitigation of NoSQL Injections.

IEEE Security & Privacy 2:30–39.

M. Swarnkar and R.S. Bhadoria

95© Springer International Publishing AG 2017
S. Mazumder et al. (eds.), Distributed Computing in Big Data Analytics,
Scalable Computing and Communications, DOI 10.1007/978-3-319-59834-5_6

Scientific Computing and Big Data Analytics:
Application in Climate Science

Subarna Bhattacharyya and Detelina Ivanova

1  �Introduction

Analyzing and solving real world scientific and engineering problems are often
computationally challenging. Understanding origins of the universe, Earth’s weather
and climate dynamics, enabling cancer drug discovery are some examples of such
large-scale incredibly difficult problems in science and engineering. Intrinsically
such problems are multi-dimensional, multivariate, nonlinear and non-stationary in
their dynamics that do not have quick and easy closed-form computable mathemati-
cal solutions. Solutions to these problems involve complex mathematical modeling,
simulation and analysis that are usually achieved by the use of highly sophisticated
and expensive high performance computing [henceforth referred to as HPC] [1],
using Super-Computers [2]. However, the advent of data-intensive science [3] has
ushered a new era in the world of scientific computing, enabling scalable ‘Big Data’
[4] technologies and Big Data Analytics [5].

Current realm of science and engineering is getting redefined as we enter into an
era of data-driven and data-intensive applications across all interdisciplinary fields
from scientific discovery to business intelligence. The ease with which any and all
information can be disseminated digitally in a cost efficient and scalable manner is
phenomenal. Incredible opportunities are being created with the deployment of
numerous sensors, advances in machine learning, artificial intelligence and visual-
ization as new applications of data science open up. Such opportunities also face
new technological barriers and challenges, due to the ever-increasing volume,
velocity, and variety of information getting generated for mining and analysis.

S. Bhattacharyya (*)
Climformatics, Fremont, CA 94555, USA
e-mail: subarna.bhattacharyya@climformatics.com

D. Ivanova
Scripps Institute of Oceanography, UCSD, San Diego, CA, USA

mailto:subarna.bhattacharyya@climformatics.com

96

In this chapter we present an overview of how the problems associated with
Scientific Computing can be addressed using Big Data Analytics. In particular, we
focus on a real world complex scientific problem of Climate Change. Rest of this
chapter is organized into three more sections. Section 2 broadly discusses the nature
of Scientific Computing, their computational challenges, and two commonly used
approaches, namely Super Computer based High Performance Computing and
Cloud hosted Distributed Computing, to solve them. Next we discuss the challenges
involved in Climate Analytics, as an example of Scientific Computing, in Sect. 3
and explore how Big Data Analytics can help to address them. In Sect. 4 we delve
into details, showing how Earth’s climate is modeled using complex fluid dynamics
[6], and simulated, and how Big Data Analytics using Spark [7] platform enables
processing of significantly large-sized output data in an integrated manner.

2  �Computational Challenges in Solving Scientific Problems

In the last section, we briefly touch upon some examples of problems, solutions of
which require extensive scientific computing. Such problems are often modeled
using systems of simultaneous partial differential equations [8] that may be deter-
ministic [9] or stochastic [10], homogeneous/inhomogeneous, with initial and
boundary conditions. Usually there are no easy short-cut methods to solve these
systems of equations. One often needs to resort to Monte Carlo [11] and finite ele-
ment methods [12] to solve these systems of equations. For most part that process
involves breaking down the large dimensions to infinitesimally small grid elements.
Often that involves solving the complex dynamics for each such grid element,
accounting for interactions between grid elements, and then assimilating and inte-
grating results over millions of such grid points to obtain the bigger picture for
solutions. Such simultaneous (parallel) computing capabilities over millions of grid
points necessitate the hogging of large scale efficient compute resources. Such com-
putations can be performed using high performance computing such as Super-
Computers as well as using cheaper cost-efficient cloud computing alternatives.

‘Super-Computers’ are big monster machines built by companies like IBM, Cray
etc. with extra-ordinarily high compute capabilities (Fig. 1) [13].

The compute capabilities of these machines are measured in terms of ‘Petaflops’
where ‘flops’ is an acronym for floating point operations per second. Petaflops is a
quadrillion or a thousand teraflops or 1015 flops. For their extensive compute capa-
bilities, supercomputers are expensive, with some machines costing upwards of
$20 M each [14]. That makes their viability often very limited. Supercomputers are
suited for large-scale highly-complex, real-time applications and simulations.
Hence, traditionally, they are widely used in Scientific Computing which needs fast,
iterative computations on large volume of data as well as complex interactive com-
putation across large dimensions.

One problem that supercomputer users often face is the pain of handling and
storing large size of output data. Usually as such output gets generated, they are

S. Bhattacharyya and D. Ivanova

97

recursively stored away into HPSS (High Performance Storage System) storage or
archives. Downloading this stored data in parts and analyzing them separately is
often a very laborious exercise. More effort and time gets spent on effective manag-
ing of such data than in analyzing them to seek the exciting scientific findings.

In recent years, use of Distributed Computing frameworks for executing Scientific
Computations is also slowly becoming a practice. The Scientific Computations that
are not very sensitive to latency, can be reasonably handled by Distributed
Computing frameworks. Especially Distributed Computing facilities provided by
the Cloud vendors with on-demand access to a shared pool of configurable servers,
storage, applications and services [15], is emerging as a viable alternative to run
Scientific Computations on, at much cheaper cost and ease of accessibility. For
instance, large volumes of pictures collected by Mars Rovers were processed on a
computer cluster hosted on the Amazon Cloud by NASA [16] JPL efficiently, not
hindered by small delays on individual computation. Similarly IBM’s Cloud based
Spark Platform is used by SETI Institute [17] in expanding its search for Extra-
Terrestrial to include large-scale analysis of its 10-year archives (4.5 TB of data per
hour), wide-band signal processing, and new long-duration observations.

Some recent studies have particularly focused on comparing the viability of
using Distributed Computing frameworks in Cloud in detail over typical HPC using
Supercomputers particularly in Scientific Computing [15, 18–20]. The open-source
based software stacks in Cloud still poses some challenges for production science
use [15], like dynamic scaling, multi-tenancy, standardization, reliability, security
and privacy. However, these challenges can be addressed to reasonable extent from
case to case basis depending on the type of Scientific Computation.

In the next sections, we shall discuss the challenges associated with Climate
Analytics, an example of Scientific Computation, and the role of Big Data analytics
in addressing it.

Fig. 1  National Energy Research Scientific Computing Center, is the frontier of high-performance
computing sponsored by the U.S. Department of Energy’s Office of Science. Located at Lawrence
Berkeley National Laboratory its mission is to serve scientific research at national laboratories and
universities. Shown is a panoramic view of the latest super-computer Cori – Cray XC40 with more
than half million cores [13]

Scientific Computing and Big Data Analytics: Application in Climate Science

98

3  �Climate Change and Big Data Analytics

Climate change is ubiquitous. It is affecting us all. With warming temperatures,
increasing frequency of storms, floods, melting ice, rising sea levels, the first order
impacts of climate change is often seen in large scale destruction left in the wake of
unforeseen natural disasters. This in turn translates to economic and financial losses.
Climate changes slowly and often creeps up in an unforeseen manner. For instance,
one does not realize a drought at the onset of it, but likely to understand that when
they are in middle of it. But there are second order impacts, for instance, cost to
healthcare due to unforeseen climate-change driven diseases, cost to agriculture due
to unknown plant diseases, or business interruption across various industry verti-
cals. In fact a climate data company Weather Analytics, estimates that weather
affects 33% of global GDP [21].

In order to address this challenging problem of understanding, and hence manag-
ing and thus adapting to changing climate, many countries in the world have come
together to focus efforts to make a set of good action plan. Much of these actions
need to rely on accurate, real-time or near-time predictive and prescriptive BigData
analytics. There has been some progress towards that end in the development of
tools such as Global Forest Watch, Microsoft Research’s Madingley Model, and the
Google Earth Engine, but still much remains to be done. The fast changing climate
merits fast response in terms of generating and analyzing huge volumes of data to
obtain accurate insights.

With enormous networks of sensors collecting data on all possible climate and
weather variables like maximum and minimum temperatures, precipitation, humid-
ity, soil moistures, solar irradiance, wind, and many more, Big Data analytics can
help understand their interdependence and correlation that can then be used to come
up with predictive and prescriptive models. This together with robust understanding
of dynamics of weather and climate phenomena will be the tool that governments,
businesses and stakeholders will need to use in order to mitigate impacts of climate
change. In the next section we delve into the details of how we can model climate
and then use it together with Big Data technology in an attempt towards predictive
and hence prescriptive climate analytics.

4  �Use Case on Climate Analytics

4.1  �The Scientific Challenge of the Climate System

The Earth climate system is one of the most complex problems challenging the sci-
ence today. It is multi-disciplinary, multi-scale problem complicated by the non-
linearity of the interactions within the system. It consists of many components such
as atmosphere, oceans, cryosphere, biosphere etc. which are interacting and chang-
ing in a wide range of time scales. The solar radiation impacts us every day. The
fastest changing atmosphere controls the weather elements such as wind,

S. Bhattacharyya and D. Ivanova

99

precipitation and clouds on a weekly basis. The more inert oceans are impacting the
climate with phenomena such as El Nino on seasonal to interannual time scales. At
least one new volcano is erupting every century and the large continental ice sheets
and glaciers undergo changes over millennia (Fig. 2).

Centuries of scientific discoveries have synthesized the knowledge about each of
the Earth’s spheres (atmo-,aqua-,bio-,lito-,cryo-) in mathematical models including
the primitive equations of fluid dynamics [22] describing the atmospheric and oce-
anic circulations, thermo- and hydro- dynamics describing the Earth’s energy and
water cycles, all based on fundamental physical principles of conserving mass,
energy and momentum. These models are evolving continuously including new
scales and processes. Most recently a new generation of Earth System Models has
emerged in which bio-geo-chemistry processes have been added to the basic physi-
cal processes with the goal of accurate representation of the Earth’s carbon cycle
and explicit simulation of the green house effects.

The system of the fluid dynamics differential equations are solved by applying
various numerical methods such as finite difference, finite elements transforming
them into numerical equations discretized in space and time, requiring input of ini-
tial and boundary conditions. Initialized with the current climate state and with
defined forcing conditions at the boundaries (e.g. the solar radiation at the top of the
atmosphere, CO2 forcing) the solution then will be a future state of the Earth system.
This outlines the basic ideas of the climate and weather forecasting1.

The complexity of the climate system is further convoluted by its inherent non-
linear, chaotic nature [23] which makes it challenging to predict. Slight changes in
the initial conditions or in the forcing at the boundaries will cause different trajecto-
ries in its time evolution. The difficulty is that the observed climate system time

1 The weather and the climate are essentially the same phenomena but on different timescales.
While the weather is the high-frequency component (from hours to weeks) the climate is the long
term mean state of the climate system (30 years).

Fig. 2  Schematic representation of the major processes and components of the Earth’s Climate
System [29]

Scientific Computing and Big Data Analytics: Application in Climate Science

100

evolution is only one of the many possible trajectories which it can take. In order to
determine a range of possibilities or define solution uncertainty in our prediction we
need to run not one, but ensemble of many model simulations, which adds to the load
of computational needs and makes the problem computationally extensive as well.

Since the models are only an approximation of the real system they require con-
tinuous validation via comparison with the available observations. The historical
observational data sets date as early as the beginning of the twentieth century. The
earlier parts of the observational periods are often sparse and suffer from gaps in
time, largest over the oceans. During the satellite era in the last few decades we have
the observational data sets covering the entire globe with continuous high-frequency
time records. Nevertheless, the 30 years period of satellite record is too short to
evaluate the long-term fidelity of the model solution.

In the late 80s International Intergovernmental Panel for Climate Change (IPCC)
has been established to further our knowledge and understanding of the future of the
Earth’s climate. The development of global observational networks together with
fast growing technology of high performing parallel computing facilitated further
the development of the climate models.

One of the most well-known climate models used worldwide is the Community
Earth System Model (CESM) developed at the US National Center for Atmospheric
Research (NCAR) in 1996 [24]. Figure 3 is a schematic representation of recent
version of the model which consists of atmospheric (atm), oceanic (ocn), ocean-
wave (wav), land (lnd), sea ice (ice), land ice (glc), river runoff (rof), interacting via
coupler (cpl) module.

4.2  �Computational Challenge of the Climate Modeling

Solving the equations of a climate model requires compute power and therefore
through a variety of numerical methods the mathematical models are converted into
programmable algorithms in which the otherwise continuum of space and time of
the natural environment is discretized suitably in time and space grid

Fig. 3  Diagram of the
major components of the
Community Earth System
Model developed at
National Center for
Atmospheric Research
(http://www.cesm.ucar.edu/
about/)

S. Bhattacharyya and D. Ivanova

http://www.cesm.ucar.edu/about
http://www.cesm.ucar.edu/about

101

configurations. Inevitably, the accuracy of the numerical solution depends on the
grid resolution. The smaller size of grid cells will result in smaller solution errors
due to numerical approximation. The current generation climate models used to
predict the future Earth climate by International Panel for Climate Change (IPCC)
are commonly with 1 deg. (~100 km) grid resolution (or the smallest regions seen
by this grid configurations are covering about 10,000 km2 area) which is too coarse
to resolve explicitly the fine scales of regional climate affecting our everyday life.
Within the several decades of the Climate Model Intercomperison Project (CMIP)
driven by the IPCC the climate models have increased their resolution 5 times, from
~500 km to ~100 km grid resolution, (Fig. 4, [25]). Phenomena like clouds and
ocean eddies, which are sub-grid scale features, hinder the major source of uncer-
tainty in the climate predictions. In order to build a climate model which includes
explicit weather scale features like storms in the atmosphere and eddies in the ocean,
we need numerical grid resolution of 10 km which scales computationally at a pet-
ascale level [26]. Going beyond this resolution sets a “Grand Challenge” for the
currently existing computational resources.

An ongoing effort lead by the US Department of Energy is pioneering develop-
ment of new generation of ultra-high resolution climate Earth system model [27,
Accelerated Climate Modeling for Energy (ACME)] which will serve as a tool for
better planning, decision and policy making of energy and water resources particu-
larly in the era of climate change. The project roadmap will push the limits of the
currently available high performance computing centers and it will utilize a new
generation of exascale computer resources.

Fig. 4  Grid resolution evolvement of climate models used in the IPCC Assessment Reports

Scientific Computing and Big Data Analytics: Application in Climate Science

102

4.3  �Post-processing Climate Model Output

The output that climate models generate are usually large 4 dimensional multivari-
ate datasets varying from terabytes to petabytes in data size, the ‘Climate Big Data’.
It is always a challenge to efficiently store, manage and analyze such huge data size
to extract meaningful science from them. Not only is the huge data size a challenge,
the usual format in which the data is stored and the language and platform needed
to analyze this data is often nonstandard. For instance the usual data files are in
netcdf [28] format and one needs to use the netcdf language to operate on them.
Although not commonly used in the industry, these languages, format and platform
are used by the climate modelers and other scientific communities around the world
and one can use python and R with netcdf libraries to operate these data files. The
large size of the data poses a resource problem for analysts because it is often not
possible to look at the data in its entirety because of insufficient memory resources.
Scientists usually have to download such data in parts which often is a laborious and
cumbersome process and then analyze each part and then repeat the process for all
such parts of interest. Then one has to piece together the analyses results and form
the bigger picture from them.

With the advent of Big Data technologies like SPARK, this problem can be
addressed in a meaningful way.

4.4  �BigData Climate Analytics Using Spark

The integrated platform of Spark not only offers a large memory in storage but
is also quite versatile in terms of programming paradigms (see Fig. 5). As shown
in this figure, the cloud infrastructure hosts the Spark platform and Data Storage.

Fig. 5  A schematic diagram showing how Spark platform can be used to perform an end-to-end
climate analytics

S. Bhattacharyya and D. Ivanova

103

The input climate data is stored in the Data Storage that is accessible to Spark plat-
form. Spark platform supports programming in sql, python, scala and SparkR as
well as analytical tools like Apache System ML (for machine learning), GraphX (for
graph computing). These can be used to perform Scientific format transformation
(from netcdf to csv formats), climate analytics, climate prediction and risk assess-
ment. The output from these analytics are also stored in the Data Storage and can be
accessed by web portal for visual display of output results. Thus such a platform can
be used to ingest massive climate model datasets on which end-to-end climate ana-
lytics starting from data ingestion to customized climate prediction can be achieved.

We present some use-cases over select locations in California (see Figs. 6 and 7)
to show how Climformatics (an early stage company in Climate Analytics) used
SPARK for analyzing climate BigData towards customized climate prediction and

Fig. 6  Comparison of precipitation in mm/day for Northern California locations of Napa and
Livermore in 2015. As predicted by Climformatics using Climate BigData Analytics on Spark
(shown in blue bars) and observations (shown in red bars)

Scientific Computing and Big Data Analytics: Application in Climate Science

104

validate the accuracy of these hindcast predictions against historical observations.
Such a tool can be used to obtain long-term climate driven catastrophe risk
assessments and business insights particularly for businesses requiring large-scale
multi-dimensional geospatial intelligence and data analytics.

5  �Conclusions

Let us briefly recapitulate what we have discussed in this chapter and what are our
main take-aways. We have learnt about the needs of scientific computing and briefly
discussed about how those needs can be met by computational capabilities of HPC

Fig. 7  Comparison of maximum monthly temperatures in degree Celsius for Northern California
locations of Napa and Livermore in 2015. Blue thick line with marker shows Climformatics predic-
tion, red thick line with markers shows observations

S. Bhattacharyya and D. Ivanova

105

supercomputers or Cloud based Distributed Computing frameworks typically used
in Big Data Analytics. As a use case, we looked at Climate Analytics problem. We
then delved deeper into the challenges of climate modeling and prediction. Further
we explored how climate modeling, analytics and prediction problem can be han-
dled using Distributed Computing technology like Spark. In particular the Big Data
technology platform like Spark, which uses Distributed Computing principles,
enables scientists to take their compute analysis algorithms to the source of large
sized storage data and execute such algorithms directly on the data without having to
analyze it in parts due to limitations of memory and storage capacity. That opens up
possibilities to do a lot more scientific enquiries and derive important insights from
them much easily as compared to working the same using downloading data from
HPSS storage in pieces and analyzing them.

With the rapid advances in Distributed Computing based Big Data technology
and Cloud Computing services with the rapidly growing pool of enormous data
information, there are growing synergies across different interdisciplinary sciences
and engineering. The possibilities of doing amazing science and solving important
problems facing the earth and its humanity, once believed to be intractable, seems
to be within reach now through the use of Big Data Analytics.

References

	 1.	https://www.techopedia.com/definition/4595/high-performance-computing-hpc.
	 2.	https://en.wikipedia.org/wiki/Supercomputer.
	 3.	Mork et al 2015, Contemporary Challenges for Data-Intensive Scientific Workflow

Management Systems, Works 2015 2015 Austin, Texas USA.
	 4.	https://en.wikipedia.org/wiki/Big_data.
	 5.	https://www.sas.com/en_us/insights/analytics/big-data-analytics.html.
	 6.	https://www.gfdl.noaa.gov/climate-modeling/.
	 7.	http://spark.apache.org/.
	 8.	Courant, R. & Hilbert, D. (1962), Methods of Mathematical Physics, II, New York:

Wiley-Interscience.
	 9.	S. Strogatz, Non-Linear Dynamics and Chaos: With Applications to Physics, Biology,

Chemistry and Engineering (Perseus Books, New York, 2000).
	10.	Athanasios Papoulis and S. Unnikrishna Pillai, Probability, Random Variables and Stochastic

Processes, 4th edition, McGraw Hill Boston, 2002.
	11.	Fishman, G. S. (1995). Monte Carlo: Concepts, Algorithms, and Applications. New York:

Springer. ISBN 0-387-94527-X.
	12.	K. J. Bathe : Numerical methods in finite element analysis, Prentice-Hall Englewood Cliffs

(1976).
	13.	http://www.nersc.gov/users/computational-systems/cori/configuration/.
	14.	http://insidehpc.com/hpc-basic-training/what-is-hpc/.
	15.	Sadashiv and Kumar 2011, Cluster, Grid and Cloud Computing: A Detailed Comparison, The

6th International Conference on Computer Science & Education (ICCSE 2011) August 3–5,
2011. SuperStar Virgo, Singapore.

	16.	https://www.datainnovation.org/2014/01/supercomputing-vs-distributed-computing-a-
government-primer/.

Scientific Computing and Big Data Analytics: Application in Climate Science

https://www.techopedia.com/definition/4595/high-performance-computing-hpc
https://en.wikipedia.org/wiki/Supercomputer
https://en.wikipedia.org/wiki/Big_data
https://www.sas.com/en_us/insights/analytics/big-data-analytics.html
https://www.gfdl.noaa.gov/climate-modeling/
http://spark.apache.org/
http://www.nersc.gov/users/computational-systems/cori/configuration/
http://insidehpc.com/hpc-basic-training/what-is-hpc/
https://www.datainnovation.org/2014/01/supercomputing-vs-distributed-computing-a-government-primer/
https://www.datainnovation.org/2014/01/supercomputing-vs-distributed-computing-a-government-primer/

106

	17.	https://www03.ibm.com/software/businesscasestudies/us/en/corp?synkey=P226318O092
27V08.

	18.	Roloff et al 2012, 2012 IEEE 4th International Conference on Cloud Computing Technology
and Science.

	19.	Marathe et al, 2013, HPDC’13, June 17–21, 2013, New York, NY, USA.
	20.	The Magellan Report on Cloud Computing for Science U.S. Department of Energy Office of

Advanced Scientific Computing Research (ASCR), December 2011.
	21.	http://www.kdnuggets.com/2015/12/big-data-predictive-analytics-climate-change.html.
	22.	Gill, Adrian. Atmosphere-Ocean Dynamics. (1982). Int. Geoph. Ser., Vol. 30, Academic Press
	23.	Lorenz, Edward 1963, Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–141.
	24.	http://www.cesm.ucar.edu/.
	25.	 IPCC 4th Assessment Report, 2007.
	26.	Bader, David; Covey, Curt; Gutowski, William; Held, Isaac; Kunkel, Kenneth; Miller, Ronald;

Tokmakian, Robin; and Zhang, Minghua, “Climate Models: An Assessment of Strengths and
Limitations” (2008). US Department of Energy Publications. Paper 8. http://digitalcommons.
unl.edu/usdoepub/8.

	27.	https://climatemodeling.science.energy.gov/projects/accelerated-climate-modeling-energy.
	28.	https://www.unidata.ucar.edu/software/netcdf/.
	29.	https://www.climatechangeinaustralia.gov.au/en/climate-campus/modelling-and-projections/

climate-models/theory-and-physics/

S. Bhattacharyya and D. Ivanova

https://www03.ibm.com/software/businesscasestudies/us/en/corp?synkey=P226318O09227V08
https://www03.ibm.com/software/businesscasestudies/us/en/corp?synkey=P226318O09227V08
http://www.kdnuggets.com/2015/12/big-data-predictive-analytics-climate-change.html
http://www.cesm.ucar.edu/
http://digitalcommons.unl.edu/usdoepub/8
http://digitalcommons.unl.edu/usdoepub/8
https://climatemodeling.science.energy.gov/projects/accelerated-climate-modeling-energy
https://www.unidata.ucar.edu/software/netcdf
https://www.climatechangeinaustralia.gov.au/en/climate-campus/modelling-and-projections/climate-models/theory-and-physics/
https://www.climatechangeinaustralia.gov.au/en/climate-campus/modelling-and-projections/climate-models/theory-and-physics/

107© Springer International Publishing AG 2017
S. Mazumder et al. (eds.), Distributed Computing in Big Data Analytics,
Scalable Computing and Communications, DOI 10.1007/978-3-319-59834-5_7

Distributed Computing in Cognitive Analytics

Vishwanath Kamat

1  �Introduction

Analytics is a method of logical analysis whereas Cognitive is involving conscious
intellectual activity as thinking, reasoning, or remembering [1]. The science fiction
writers have been describing super intelligent machines even centuries before
Artificial Intelligence (AI) became discipline in academia. “The Turk”, a hoax
mechanical device that can play chess was invented by Hungarian illusionist
Kempelen Farkas in 1789 [2]. Although The Turk was not an AI device, but it does
represent human desire to augment their own intelligence. The mechanical arithme-
tic machine Pascaline developed by Blaise Pascal in early seventeenth century
could be attributed to development of early computing devices and then further
evolved into AI field of study as we know today.

The Cognitive Analytics Systems aka Cognitive Systems is a special type of Big
Data Analytics systems. Like any other Big Data Analytics systems, Cognitive
Systems have to learn from vast amounts of data, some times in the range of hun-
dreds of millions documents, within reasonable timeframe. This needs processing
of vast quantities of data in meaningful way to gather higher level of knowledge
abstraction for a given dataset or field of study. Given the vast amount of data pro-
cessing and computation required for such Cognitive Systems, use of distributed
computing frameworks such as Hadoop, Spark, TensorFlow play vital role in build-
ing such system. In this chapter we shall delve into fundamental building blocks of
cognitive Systems along with some key usecases.

V. Kamat (*)
Lab Services, IBM Analytics, Dallas/Fort Worth Area, TX, USA
e-mail: vkamat@us.ibm.com

mailto:vkamat@us.ibm.com

108

2  �Building Blocks of Cognitive Analytic System

2.1  �The Data Repositories

The Cognitive Systems’s foundational feature is to learn from the data in an iterative
fashion to identify trends and patterns to build analytical models. The effectiveness
of such learning depends on type and quality of data that is provide during the learn-
ing period. Thus a Cognitive System should be able to ingest, manage and analyze
variety of datasets often 100s of Terabyte scale.

Typically data stores used in cognitive system are based on variety and veloc-
ity of data assets that are being stored as input to the system. For structured data
that needs to be queried and analyzed at large scale a system like Hadoop that
include hive and hbase are fairly common. The Hadoop ecosystem works very
well in distributed computing framework as underlying Hadoop filesystem stores
data evenly across multiple systems. The execution frameworks such as Map/
Reduce and Spark within Hadoop ecosystem are data locality aware, so there is
minimum network overhead while processing the queries in distributed fashion.
For analysis that needs frequent random access to subset of data, traditional rela-
tional databases with MPP (massively parallel processing) architectures such as
db2, Teradata and alike have been seen in use for decades. There are some vari-
ants of other databases such as MongoDB, CouchDatabase, Cloudant and other
variants of open source databases are also good candidates as data stores in cogni-
tive systems. The use of data repositories could be driven by type of data being
collected such as JSON formatted data would be better handled by Couch
Database where as key-value pair data for random access suited for Hbase
repositories.

2.2  �The Data Ingestion Tools

A data ingestion subsystem to load data as bulk or just-in time/real-time is one of
the integral part of any cognitive system. The challenges faced in the data ingestion
process often relates to the massive volume, variety and velocity of the data, often
all three and sometimes combination of these three challenges. In this aspect
Hadoop ecosystem of software fits the bill perfectly. The hadoop ecosystem soft-
ware component such as Sqoop, Flume and Kafka can handle variety of sources
including relational databases, flat file feeds, message queues and many more data
types perfectly. For just in-time or real time processing Apache Spark (Spark
Streaming) and Apache Storm are very cost effective frameworks that are very
popular as well.

V. Kamat

109

2.3  �The Analytical Frameworks

The foundational capability of cognitive system includes software to analyze data
and finding patterns and trends, building analytical models, training and scoring
frameworks for models. Although basic algorithms are fairly similar for model
building, the choice of analytical tools is often influenced by familiarity of the tool-
set among the data scientists working on the project, The advancement in comput-
ing power has enabled to crunch massive amounts of data and run complex
algorithms against datasets in fraction of time it used take just a few years ago. The
cognitive analysis, includes some of the most compute intensive processing such as
NLP (natural language processing), ML (machine learning), probabilistic reason-
ing, and traditional statistical computation among other compute intensive data pro-
cessing. The computation often requires the rapid prototyping and interactions to
achieve desired outcome. Cognitive systems need to crunch huge amounts of data in
order to learn the patterns and iterate through hypothesis. Often these cognitive
systems are capable of learning on its own from new data as it churns through it
without manual intervention.

The machine learning and deep learning are part of a broader Artificial
Intelligence (AI) field of study. The machine learning sometime looked as a simpler
version of deep learning that often includes multiple layers of Neural Network type
of computation. The cognitive systems that use these deep learning techniques tries
to gather higher level of knowledge abstraction for a given dataset or field of study.
The cognitive system often uses “deep learning” algorithms such as Naïve Bayes,
Decision Trees, and Neural Networks that include mathematical concepts such as
“backpropagation”. When the datasets are large, it is difficult to understand all the
nuances of the data pattern for individual experts. There are few different type of
machine learning algorithms such as “Supervised learning” and “Unsupervised
learning” techniques used in this aspect of data exploration. Supervised learning
consists of a defined target or outcome based prediction. The algorithms for
Supervised learning rely on predictor variables or “independent variables” to derive
target or “dependent variable”. The computing algorithms include Regression,
Decision Tree, Random Forest, Logistic Regression etc. Unsupervised learning
consists of not knowing what to expect from the data and thus tries to find clusters
of similar patterns or groups. Some popular use cases for such algorithm is used for
customer segmentation using K-Means and Apriori algorithms. Each of these algo-
rithms are compute intensive and often implemented to exploit parallel execution in
a distributed fashion.

The machine learning and deep learning are key to any cognitive systems and
often use a methodology called CRISP-DM (Cross Industry Standard Process for
Data Mining). As shown in following diagram CRISP-DM methodology is an itera-
tive process to build analytical model based on business requirements and
understanding.

Distributed Computing in Cognitive Analytics

110

As seen from CRISP-DM diagram, the analytical model development process
revolves around data repositories and understanding of business relevance. It is
often seen that data understanding and data preparation for modeling constitute
80% of the work involved in building analytical model. The evaluation feedback
loop help maintain the currency of the model being developed and deployed in the
long run. The analytical frameworks help in each steps of the CRISP-DM process
by virtue of using sophisticated libraries for data cleaning, preparation, and often
ease of deployment where constraints for production are quite different than devel-
opment phase of model building.

The mathematical algorithms used in cognitive systems are implemented using
various machine learning libraries such as R,Scikit-learn, nltk, Spark ML, Mahout
and in recent days deep learning frameworks such as Theano, Caffe, DL4J,
TensorFlow etc. These libraries and frameworks support various degree of computa-
tion efficiencies based on the problem it tries to solve. For example, Google’s
TensorFlow used by various google applications and gadgets for language transla-
tion and email analysis could be used with standard linux based system using CPU/
GPUs as well specialized hardware called TPU (Tensor processing unit). The TPUs
are similar in nature as CPUs but far less complex that are optimized to execute
Tensor Flow, another machine learning framework efficiently.

Cross Industry Standard Process for Data Mining (CRISP-DM) process [4]

V. Kamat

111

2.4  �The Hardware Components

The amount of data to crunch through to find patterns and trends is huge in typical
cognitive systems. In order to sustain acceptable throughput for activities such as
reading data and being able to analyze in quick iterations, massively parallel pro-
cessing in distributed fashion is desired. The basic computing infrastructure for cog-
nitive system typically will include several computers in a single cluster or set of
clusters. These clusters of computers are built with low cost commodity hardware,
each with massive IO, memory and CPU bandwidth. The Jeopardy winning Watson
cognitive computer system was built with 90 computers servers with over 15 TB of
memory and 2880 Power7 CPU cores [3]. The systems often use open source oper-
ating systems such as Linux and processing frameworks that are part of Hadoop
ecosystems. In order for cognitive systems to be effective, these systems have to
learn a subject or topic from several different sources often from variety of data
sources including structured, unstructured and semi-structured datasets. There are
various type of tools used to achieve such cognitive capabilities including machine
learning, massively parallel processing (MPP) data repositories.

2.5  �Key Non-functional Requirements to Consider

2.5.1  �High Concurrency Throughput

The cognitive system could become integral part of a data processing pipeline where
an action and response is chained across multiple systems. For example in a ATM
cash withdrawal transaction, the network operator has to validate the card number
and pin as basic check but a fraud detection system that is powered with cognitive
processing capability may need to identify potential fraud within a second or two at
max. In such use cases, the cognitive system needs to be able to sustain huge con-
current access often thousands of transaction per second. A distributed system such
as large clusters of computers play a vital role in divide and concur paradigm for
such cognitive systems. The cognitive systems while exploiting parallel infrastruc-
ture for process need to maintain consistency across whole infrastructure making it
another challenge for syncing up distributed transactions.

2.5.2  �Interfaces for Interaction with Systems

A consistent way to exchange information across different layers of the cognitive
system is also a key requirement. This is often accomplished using REST
(Representational State Transfer) API. The hadoop ecosystem enables REST APIs
for various components for seamless exchange of information. The APIs help in
abstracting the logic and processing of complex algorithms and enable it as service

Distributed Computing in Cognitive Analytics

112

to end user applications. The APIs approach to such complexes computation help in
avoiding to build and manage a large infrastructure required to train and maintain
currency of the models while keeping the knowledge and expertise with the service
providers, making it even better economic choice for end users.

2.5.3  �High Availability and Disaster Recovery

The application of cognitive systems may result in being critical to businesses that
a single point of failure could result in huge losses. For example failure of unavail-
ability of systems with in an oil rig that could be monitored and controlled by cogni-
tive system. In such application, the cognitive system needs to be made highly
available i.e. should be configured with built-in redundancies to account for power
failure, component failures, data center failure in case of disaster and be able to
continue to function with minimal interruption. The systems in such scenarios need
to account for making critical data and computing power available to the application
seamlessly. This critical non-functional requirement often presents challenges to
solution providers. The difficulty often stems from distance for disaster recovery
site and backup/restore service level agreements within limited cost budgets.

2.5.4  �Linear Scalability

One of the key feature of distributed computing is being able scale linearly when
you add more hardware power, the system can handle additional workload without
sacrificing performance. For example a cognitive system that is monitoring a net-
work infrastructure for malicious attack needs to handle peak workloads during a
special event such as launch of a product or handle seasonal increased demand dur-
ing Christmas or holidays. The distributed computing framework fits perfectly for
such systems which can divide and concur workload across dynamically allocated
resources such as addition of a node to existing cluster infrastructure. The elastic
nature of cluster computing provides the flexible framework to increase or decrease
the amount of computing resources required based on workload presented to the
system. The scalability features of the cognitive systems need to be designed not
only for hardware scalability but also its software counter parts. The algorithms
used by cognitive systems need to be designed to be able to exploit the distributed
infrastructure.

2.5.5  �Ability to Prioritize Workload

The cognitive systems when used in certain front end applications such as ATM
and/or credit card transaction processing, needs to handle the priority of the requests
that are flowing through the systems. For example, if during a peak demand for
processing, the system should be able to bypass or halt a high dollar amount

V. Kamat

113

transaction over low value transaction for identifying fraud. The system with proper
workload management, can prioritize the processing based on importance to the
application being served. The systems such as ATM processing needs to handle the
real-time and in cases where real-time response may be taxing the system, then it
should be able to handle near real-time response seamlessly in order to minimize
exposure to the fraud and misuse.

2.6  �Cognitive System – Implementation Patterns

There are few technology patterns in cognitive system for implementation based on
the use cases and certain functional and non-functional requirements. In its simplest
form a cognitive system could be build using an on premise traditional cluster sys-
tem that includes hardware, software and analytical tools built within a single
homogenous system. For example a hadoop cluster deployed on premise using
commodity hardware. The hadoop ecosystem of products includes analytical frame-
works such as Spark and its components for building analytical models and execu-
tion pipelines. The hadoop ecosystem also includes products such as Hive and hbase
for distributed data repositories. The open source community has created several
frameworks to manage and maintain complex data structures such as Graph data-
bases for network relationships among dataset being processed. There are cognitive
systems that often need sub-second response to given event or action. In such cases,
streaming frameworks such as Apache Spark Streams or Apache Flink become
essential components of the ecosystem.

In recent days cloud patterns are maturing with different flavors as well. For
example Tensor Flow offering in Google cloud, IBM Watson ecosystem offered in
Bluemix (IBM cloud offering), Genereal Electric’s Predix platform as a service
geared mainly towards industrial applications, Amazon’s cloud cognitive services in
the form of select APIs for facial recognition, speech conversion etc. Some of these
cloud offerings help developer to choose from simple API calls to sophisticated
models that can be trained and maintained by end user applications.

3  �Cognitive System – Use Cases

The cognitive systems have found their niche in various industries in recent years.
The use cases described here showcases the breadth of the possibilities. The com-
mon theme across all use cases focus on machine learning, large scale data process-
ing and easy interaction pattern with systems and end users. The use case in health
care can be looked at any industry where body of knowledge is embedded in the
associated literature and expert humans experience that can be utilized by wider
audience which otherwise would have been impossible to imagine. The use case in
Internet of Things could be viewed as any industry where large scale data gathering

Distributed Computing in Cognitive Analytics

114

at various end-points is key and being able to act upon it intelligently and swiftly.
The last use case around customer service will help understand how cognitive system
could be used to build behavior patterns and predict possible proactive measures
that can be taken to improve agility of any enterprise.

3.1  �Cognitive Systems in Health Care

IBM’s Watson Oncology is a cognitive system currently used by several doctors and
healthcare providers across United States. The Memorial Sloan Kettering Cancer
Center is using this system to individualize Cancer treatments to its patients.
Although Watson Oncology system has been fed with various medical and research
documents, the training of the algorithms was done by subject matter experts in the
field. The system helps to correlate diagnosis with individual cases with vast
research and early trial results to better serve patients. The Watson Oncology system
is able to synthesize information in the massive quantity that will be near impossible
for healthcare professionals to do in a consistent, repeatable manner. The system
helps healthcare professional to identify new research drugs and trials that other-
wise would have been limited.

One of the major benefits of cognitive healthcare system is that it is able to learn
from new patient data and improve the analytical models it has already learned from
historic information. The cognitive system provides interfaces to learn, connect and
store vast amounts of data whereas the healthcare providers, researchers are becom-
ing “trainers” to teach the analytical models by sharing their knowledge. When
doctors ask questions in natural language, the Watson Oncology system is able to
parse the patient conditions and show all treatment options with confidence level
and effects so that doctors can choose best possible treatment option.

A typical flow of information in such a cognitive system will include a data
repository or set of repositories to hold massive amounts of data. A special consid-
eration needs to be given to the type of access that will be required such as batch vs
real-time processing.

The above diagram shows a simpler view of information flow in a cognitive sys-
tem focused on a particular subject area. The “normalize” and “machine learning”
processes could be complex based on types of datasets involved. There is a significant

V. Kamat

115

training and review of the models required by subject matter experts to validate and
tune the enrichment models deployed to build rich “knowledge base”.

The hadoop ecosystem works very well in distributed computing framework as
underlying hadoop filesystem stores data evenly across multiple systems. The exe-
cution frameworks such as Map/Reduce and Spark within hadoop ecosystem are
data locality aware, so there is minimum network overhead while processing the
queries in distributed fashion. For analysis that needs frequent random access to sub
set of data, traditional relational databases with MPP (massively parallel process-
ing) architectures such as db2, Teradata and alike have been seen in use. There are
some variants of other databases such as MongoDB, Couch Database, Cloudant and
other variants of open source databases are also good candidates for data stores.
Each of these open source technologies have their pros and cons based on complex-
ity and sometime non-functional requirements.

As discussed earlier for data ingestion, the system could employ real-time or
near real-time framework based on technologies such as sqoop, flume, and Spark
Streaming, Kafka etc. As part of data ingestion pipeline, it is possible to validate and
enrich data as it arrives and augment the precision of the models to fine tune without
human intervention.

It is key to identify patterns and trends within subject area being studied in a
manner that the knowledge base is enriched with pre-determined clusters and/or
associations among different attributes of datasets. The analytical framework like
Apache Spark fulfills such requirements with help machine learning libraries it
supports. The “unsupervised” models can derive such classification/association
whereas the “supervised” models derive predictive behavior based on historical
evidence as reference.

The visualization and interaction with the system could take various forms. The
simple systems could be implemented using standard reporting and/or dashboard
mechanism whereas the sophisticated system will need natural language processing
(NLP).

To implement end to end a cognitive system, some of the key components come
from systems such as Hadoop, various analytical libraries from Spark ML and R,
repositories using Hive/Hbase or other noSQL databases. The system is then lay-
ered with API services for natural language processing and other API services to
clean and enrich datasets. Each of these computational frameworks must exploit the
parallelism in the distributed fashion in order achieve the scales needed for massive
data repositories and running analytical workloads against such data sets to provide
required service level objectives.

3.2  �Cognitive Systems in Internet of Things Domain

The advent of smart phones and internet of Things (IoT) devices that are in use
today has created new generation of threats. The security of Electric grid or drink-
ing water supply in large cities have become vulnerable to such threats emerging
from IoT devices. The e-meter change to electrical grid has provided enormous

Distributed Computing in Cognitive Analytics

116

benefits to optimize the on-demand peak power generation. On the other hand, the
e-meter devices, smarter substations, and distribution networks with billions of
devices connected, opens possibility of attacks originating domestically as well as
internationally.

The cognitive systems could take various forms such as improving consumer end
points using smarter billing and usage to prevent theft and misuse to sophisticated
systems that minimize outages and quick restoration of service after interruption.
The complex web of millions of devices could be monitored and proactively main-
tain to reduce downtimes using predictive analysis of breakdown of components.

A cognitive system in such application will be able to handle massive amount of
data at a very high frequency and be able to react in sub-seconds.

As seen in the above diagram, the data generated at power generation and distri-
bution network is collected using sensors/IoT devices in a central repository. The
type of data ingestion from such devices is often in real-time or in near real-time
format. The real-time ingestion of data may pose some challenges as distance to
central repository could be several miles apart. The mechanism such as “publish/
subscribe” using Apache Kafka or other streaming protocol may be appropriate in
such scenarios.

The data collected from various devices will be utilized to identify usage patterns
as well as equipment functioning to gauge need for any proactive maintenance. The
analytical models build to help with such scenarios may include linear regressions
for anomaly detection or associations based on weather conditions and demand for
power at a given point in time. As the data ingestion happens in real-time, it is pos-
sible to revalidate and fine tune the predictive model being utilized to generate alerts
and feedback.

A cognitive system to cater to such functionality will include a data repository
that can handle real time data ingestion, an inline predictive model scoring mecha-
nism to provide instant probability of an incidence and feedback protocol, a alert
and reporting capability for point in time or historic reporting. A distributed
framework in such system allows the system to linearly scale as complexity of gen-
eration and distribution network increases.

V. Kamat

117

3.3  �Cognitive Analytics to Become a Customer Centric
Organization

3.3.1  �Next Best Action

The NBA (next best action) or BNA (best next action) refers to individualized mar-
keting campaigns targeted based on unique characteristics of a customer. Unlike the
marketing campaigns of yester years, where marketing or sales initiated programs
that were offered as generic programs irrespective of weather likelihood of a cus-
tomer utilizing is not considered. This type of campaigns were generally measured
for success as aggregate conversions to sales often hitting low single digit success
rates. With advent of new generation of computing frameworks and resources, it is
possible to customize marketing offers based on individual customer behaviors pat-
tern, demographics, past history and social activity. This type of campaigns has
shown to produce significantly better success rate for the campaigns.

3.3.2  �Changing Engagement Patterns

The generation of customers prior to millennium was primary engaged with busi-
ness through physical postal mail, telemarketing and to some extent in recent year
in the email form. The degree of engagement would have varied across different
industries. The customers in the retail industry were targeted primarily using mail-
in coupons and discounts whereas leisure and travel industries would have used
telemarketing to sell their goods and services. The recent surge in use of social
media fronts such as facebook, twitter, SMS, WhatsApp etc. not only from desktop
computer but using handheld devices has created even more avenues for connecting
with businesses. In order get a better understanding of customer it is becoming
necessity to know how customer is connected in social media circles with others. It
is becoming very important aspect for businesses to keep their presence in such
social networking sites and domains.

The distributed technologies such as hadoop and open source documents data-
base systems play vital role in capturing massive social interaction data.

3.3.3  �360 ° View of Customer

In order better serve customers, it is required to know how customer is defined to
business. It is possible that business may have different touch points to customer
through sales, support channels as well as various subsidiary within parent business
may interact with same customer. In order to provide accurate marketing campaign
designed for individual customer, a single view of customer across different lines of
business is required. To achieve such integration across multiple lines of business
(LOB) a distributed computing framework becomes essential part of the system
architectures required for integration.

Distributed Computing in Cognitive Analytics

118

As shown in figure below, it is essential to have common understanding of “who
is the customer” to various lines of business is key. The LOBs could capture differ-
ent attributes across businesses but will have value to each other for cross sell and
upsell opportunities.

The repositories that store different records of the same customers could be
stored in several flavors of RDBMS that needs to be extracted, transformed and
loaded (ETL) into single repository to be made available to all LOBs. The process
of ETL is another resource intensive that can exploit distributed computing frame-
works. The “Entity Analytics” is another resource intensive process to identify
unique attributes of each customer and network relationships across other custom-
ers. The tools in the marketplace such as IBM Information Server, Informatica and
Abinitio are able to run parallel workloads in distributed fashion. There are special-
ized solutions for “Entity analytics” but open source does offer libraries and tools to
build own solution as well. This process of consolidating customer records results
in master customer record that then enable applications such as NBA and others
could exploit.

3.3.4  �Understand Thy Customer

The businesses today collect lot of data about customer and their interaction with
business in various forms such as call center interaction over phone and online, web-
site click-stream interaction, product specific review and discussion sites, popular
apps such as “yelp” and “Consumer reports” etc. The businesses need to understand
the impact of each of these interactions and build processes that can deliver overall

V. Kamat

119

a better experience with their business. For example if a customer is visiting a review
site to research a product, then to influence the decision businesses can showcase
their advertisement for their product om the same review site alongside the review
and discussion board. The computational frameworks that can perform machine
learning help to identify key patterns in the customer behavior from such interac-
tions. To make this data about customer interactions useful, cognitive systems use
the algorithms such as “Collaborative Filtering” and Content-based Filtering” that
can derive patterns and recommendations within NBA applications.

Collaborative Filtering uses historical behavior of the customer and sometimes
behavior of customers with similar characteristics to predict potential recommenda-
tions. Content-based Filtering uses historical behavior as well as content of the his-
torical data that was used in the reaching such behavior. These types of algorithms
often rely on explicit and implicit preferences of customer and description of prod-
ucts/services. The analytical model development and computation often done in a
batch cycle to maintain behavioral history with recommendations that help NBA
application to present just in-time marketing offer based on individual profile of
customer.

The cognitive system that support NBA type application must process massive
amount of data to consolidate various instances of customer data and merge to
effectively represent it as true view to business with confidence. The behavioral pat-
terns online and other means of interaction help build the rich profile that help in
creating unique offers personalized to each customer. The distributed computing
frameworks are able crunch such data and make it available for NBA.

4  �Conclusion

As discussed before, it is obvious that the amount of data and computation needs to
be carried out within short time span is enormous in order to find or guess patterns
in Cognitive System. These patterns may look very similar across use cases but it
may differ significantly in implementations specific to various industry contexts.
Also, the identified patterns and its influence on future predictions may need to be
revalidated on a frequent basis in order to maintain the accuracy of such cognitive
systems. That also calls for substantial amount of data crunching within reasonable
time frame. These patterns identified (and curated) would be eventually used as
integral part of front-end as well as back-end system of enterprises in a seamless
manner. All these necessitate the use of Distributed Computational frameworks and
the technologies implementing the same (popularly called as Big Data Technologies)
as the key building blocks of any cognitive system or application.

However, the implementations of various Distributed Computing constructs are
taking various new generation approaches for better efficiency in terms of time and
cost. Advent of Big Data Technologies like Hadoop, Spark, Flink, Kafka, etc., is
making development of Cognitive Systems much more affordable (better cost/
performance ratio) and fast compared to traditional technologies used in analytics.

Distributed Computing in Cognitive Analytics

120

The implementation of the Distributed Computing constructs in GPU based systems
over standard CPU based systems for pattern identification and enrichment is also
gaining huge momentum. Finally, use of these technologies either in on premise
infrastructure or through Cloud based services or a hybrid of both (as Infrastructure,
Platform or API as service) is providing numerous new avenues to integrate cogni-
tive systems with other applications in commercial world.

References

	1.	 “Cognitive.” Merriam-Webster.com. Merriam-Webster, n.d. Web. 18 Feb. 2017.
	2.	 B. Buchanan(2006)."A (Very) Brief History of Artificial Intelligence". AI Magazine Volume 26

Number 4 (20056) (© AAAI).
	3.	 “Building Watson:An Overview of the DeepQA Project”.(2010). Association for the

Advancement of Artificial Intelligence. ISSN 0738–4602
	4.	 Kenneth Jensen, 2013. CRISP-DM. retrieved from https://commons.wikimedia.org/wiki/

File:CRISP-DM_Process_Diagram.png.

V. Kamat

http://merriam-webster.com
https://commons.wikimedia.org/wiki/File:CRISP-DM_Process_Diagram.png
https://commons.wikimedia.org/wiki/File:CRISP-DM_Process_Diagram.png

121© Springer International Publishing AG 2017
S. Mazumder et al. (eds.), Distributed Computing in Big Data Analytics,
Scalable Computing and Communications, DOI 10.1007/978-3-319-59834-5_8

Distributed Computing in Social Media
Analytics

Matthew Riemer

1  �Introduction

These days Social Media Analytics is probably the most widely used Big Data
Analytics application across various industries. In this chapter, we will discuss
some of the most prominent use cases for Social Media analytics leveraged across
the enterprise sector today. Social Media analytics includes strategies for leveraging
intentionally public online interactions in order to drive business insights. This gen-
erally includes graph analytics to understand community networks, unstructured
content analytics to understand shared content, and predictive analytics to drive
supply chain optimization.

Specifically, we will address the use cases of influencer analytics and polling
public opinion. Additionally, we will discuss using this analysis to forecast product
demand. For each of these use cases, we will go into some of the most effective
analytics techniques used to produce these insights. When done well, these capabili-
ties can uncover significant benefits for organizations that use them. However, data
and signal cleansing is a significant issue impeding business from properly leverag-
ing social media data to generate real insights. Unfortunately, for this reason, only
organizations that truly embrace cutting edge analytics techniques can find signifi-
cant value in many cases.

For illustrative purposes to help readers understand the use cases presented in
this chapter, we will periodically leverage prototype software developed at the IBM
Watson Research Center. These and many other important capabilities have been
significantly enriched as part of the IBM product Watson Analytics for Social
Media.

In this chapter, we will proceed by first discussing commonly used open source
software for social media analytics, and then go into detail about best practice tech-

M. Riemer (*)
AI Foundations Lab, IBM T.J. Watson Research Center, New York, NY, USA
e-mail: mdriemer@us.ibm.com

mailto:mdriemer@us.ibm.com

122

niques influencer analytics and social polling use cases. Finally, we will conclude
by discussing using these insights for predictive modeling.

2  �Open Source Tools for Social Media Analytics

Because quality and efficient analytics is of premium concern for Social Media
Analytics use cases, Apache Spark is a natural starting point for a Big Data plat-
form. Apache Flume and Apache Kafka are very popularly used for ingestion. For
analyzing unstructured text data, it is easiest to use software for indexing. This
greatly reduces the computational overhead of searching for some content over
potentially many billions of user interactions. Popular alternatives for indexing are
Apache Solr and Elastic Search. Elastic Search is especially good to consider if
intensive geo-spatial analytics is required. Moreover, structured data is commonly
stored in HDFS and accessed with Spark SQL.

Apache Spark provides the GraphX library for efficient graph processing that is
very useful in influencer analytics and community detection use cases. Some
Machine Learning algorithms are also available in an optimized form through Spark
MLlib. However, for access to the most advanced and cutting edge Deep Learning
capabilities it would be easiest to leverage another open source framework like
Caffe or Tensorflow that has proven out Apache Spark integration.

3  �Influencer Analytics

The rise of social media has brought with it a lot of fascination among the public
with the idea of social influencers. These social influencers are critically important
to the success of various social media applications as they keep people coming
back. They can also influence the behavior of social media users by providing prod-
ucts with exposure. As such, proper utilization of social influencers has become a
key component of modern branding and advertising.

3.1  �Understanding the Impact of Influencers

In order to understand more about the role influencers have in the emerging social
landscape, many research studies have been devoted to understanding their impact.
This is particularly true for Twitter where interactions are largely publicly accessible.
For example, Cha et al. [1] carried out a comprehensive study on influencers on
Twitter. They considered in-degree (the number of connections the user has), number
of retweets, and the number of mentions as parameters for assessing the influence of
a user. In their study of the influence of about 6 million users on a population of 54

M. Riemer

123

million users they arrived at a few findings of interest. First, the in-degree of a node is
not necessarily and indicator of top influence. They additionally found that top influ-
encers are often an influencer for not one but multiple topics. Moreover, they found
that influence is not built over night, rather with a long term concerted effort. Bakshy
et al. [2] looked at the cascade of tiny URLs in order to gain insight about Twitter
influence. They explored 74 million cascades of tiny URLs among a population of 1.6
million users. Their conclusion was that longer cascades were mostly started by influ-
ential users. Other papers have focused on variants of the PageRank algorithm to
understand influence. A scalable version of PageRank is available as part of Apache
Spark in its GraphX Library. A good example is “Twitterrank” [3] which has been
shown to produce results that are very different from and sometimes qualitatively bet-
ter than methods that focus on counting in-degree, retweets, and mentions.

Chiefly, there are two aspects of social media relevant for analysis of influencers:

Graph Methods  First, is the follower graph and diffusion of posts over it. These
social graphs can be analyzed by using popular graph analytics techniques like
PageRank that are often based on the notion of centrality. A very notable graph
analytics library for use at Big Data scale is GraphX of the Apache Spark project. It
is argued in Embar et al. [4] that it makes sense to use not one, but multiple inter-
pretable graph based metrics to assess the influence of a user. In that work they show
influence can be quantified by user graph centrality, social media activity, the
response rate to their posts, the response volume to their posts, and the number of
followers they have.

Content Methods  Secondly, it is important to look at the content of posts. In influ-
encer analytics it is rare to see use of sophisticated text analytics machine learning
techniques. This is because a lot of important information can be ascertained by
simple analysis of post with logical rules. Generally, hashtags are used to under-
stand key topics and other topics are filled in by setting topic monitors. Topic moni-
tors generally include a list of terms to search through for each post in order to flag
relevant conversations. There have been some efforts to leverage popular unsuper-
vised machine learning techniques like Word2Vec [5] to help users expand terms,
which makes this kind of analysis even easier [6].

3.2  �Wimbledon Influencer Case Study

We will now follow a real-world example of influencer analytics. Figure 1 shows an
analysis of the influence of Roger Federer on Twitter at Wimbledon during a year in
which he was heralded as the “Wimbledon Twitter Champion” by the London
Evening Standard.

Engagement refers to the volume of responses to his tweets. Activity is the num-
ber of messages he posted during the time period of interest. Authority is a measure
of if he is connected with or his content is shared with other authoritative people.
Timeliness refers to the response rate to his tweets. Followers is just a count of his

Distributed Computing in Social Media Analytics

124

Fig. 1  An analysis of Roger Federer’s influence on Twitter during Wimbledon leveraging five dif-
ferent metrics

Fig. 2  An analysis of influencers at Wimbledon and their sentiment across all topics

M. Riemer

125

twitter followers. Figure 2 looks at Roger Federer’s influencer at Wimbledon rela-
tive to other influential Twitter user handles. It also considers topics of discussion at
Wimbledon and sentiment. Other tennis players that had a large degree of social
influence at Wimbledon that year include Andy Murray, Novak Djokovic, Rafael
Nadal, and Serena Williams.

The next chart, Fig. 3, looks at different media organizations and their influence
on day 1 of Wimbledon that year.

ESPNTennis was the most authoritative on Twitter for the first day. ESPNTennis
and ESPN in general had the highest influence. They were more impactful than
BBCSports, Telegraph, Guardian, and so on. This is interesting because ESPNTennis
has 180,163 followers to the 2,326,280 followers of BBCSports.

4  �Social Polling

Another very popular use case for Social Media Analytics is social polling. Social
polling solutions are motivated by the thought that in contrast to the time and money
spent on polling ideas within a small focus group of people, you can consider a
much wider net of people that voluntarily express opinions about some topic.

4.1  �Sentiment Analysis

A key capability for this use case is sentiment analysis, which is determining the
positive, negative, or neutral feelings of a speaker. Logical human derived rule
based approaches have been proposed for this use case, which mostly rely on posi-
tive/negative sentiment word counting and negation analysis. The obvious downside
of these approaches is that they need to be manually made from scratch. It may be
difficult to build the term lists needed by hand without missing many relevant words.

Fig. 3  An analysis across influence metrics of different media organizations on Twitter at
Wimbledon

Distributed Computing in Social Media Analytics

126

In this case, semi-automated term suggestion tools based on unsupervised machine
learning can help a lot [6].

Another very popular approach is using supervised machine learning techniques
on annotated social media data. Supervised machine learning techniques are gener-
ally initialized without any prior knowledge and conduct all of their learning on the
labelled training data provided. Supervised Deep Learning techniques like Recurrent
Neural Networks [7, 8], or Convolutional Neural Networks [9] are increasingly
becoming the method of choice for these use cases based on strong empirical results.
However, bag of words approaches that treat each word as a unique element in a
fixed vector that ignores word order are still very popular in industry. Generally, bag
of words representations are used as features for Naïve Bayes, Maximum Entropy,
SVM, or Random Forest machine learning models.

Deep Learning is a field of machine learning focused on the application of origi-
nally biologically inspired neural network models. Neural networks rose to popular-
ity in the machine learning community in the 1980’s and early 1990’s, and were
largely abandoned before recently achieving breakthrough results across many
machine learning problems. The rise of Deep Learning models over the last five
years has significantly advanced the state of the art in sentiment analysis. At the
same time, significant quantities of training data are generally needed to achieve
great results. Annotating training data can be expensive and it is difficult to select a
training set that is fully representative of testing conditions. For these reasons, we
generally only have comparatively little labelled training data available.
Unfortunately, “narrow AI” that knows nothing other than what it is taught in the
training data performs poorly in this setting. To achieve good results without an
ideal amount of training data, the most competitive machine learning social media
sentiment analysis models leverage prior knowledge external to the dataset. For
example, the winner of the SemEval 2016 shared task, Swiss Cheese [10], leverages
90 million external tweets with noisy labels. This leverages a popular strategy of
using massive amounts of tweets that contain emoticons in order to understand
associations between words and sentiment at a large scale which was first innovated
by [11]. Another very popular strategy is unsupervised feature sharing. This is when
unsupervised features extracted from massive amounts of unlabeled data are used as
base features for a classifier on top. Popular examples of this are Word2Vec [5] and
Glove [12] that have been shown to build high quality unsupervised representations
of words. These representations can also be built on the sentence level [13] or docu-
ment level [14]. An alternative strategy with similar motivation is unsupervised pre-
training. This strategy differs from feature sharing in that the shared representation
is further tuned on the labelled training data as recently shown very effective for
sentiment analysis in [15]. This kind of strategy is good when you have enough
labelled target task data to improve the representation.

Another important family of techniques are those including Multi-task Learning,
Knowledge Transfer, and Lifelong Learning that take knowledge of one task to
improve their ability to do another. For example, [16] the current state of the art
Twitter sentiment analysis technique leverages knowledge from a Common Crawl

M. Riemer

127

of the internet, Movie Reviews, Emoticons, and a human defined rule logic model
to drastically improve the performance of its recurrent neural network model.

Two advanced topics involved in sentiment analysis are aspect oriented senti-
ment and domain adaption. These are tough problems as they involve many consid-
erations to be done well. Aspect oriented sentiment does not produce a document
level sentiment, but sentiment analysis specific to each item where there is senti-
ment in the document. Many aspect oriented sentiment analysis systems use a
dependency parser as a pre-processing step to make it easier to focus the system.
Not doing so generally requires a significant amount of training data in order to do
the end to end task effectively. Domain adaption is adjusting a classifier built in one
domain to another domain. Popular techniques in the research community leverage
Grassmannian manifolds and only unlabeled in domain data in order to learn domain
invariant representations for the original labelled task. The learned models tend to
perform significantly better than those with no adaption. A recently proposed Deep
Learning technique that tackles the problem of domain adaption is Domain
Adversarial networks. Domain adaption is a very hot research topic that is likely to
make major strides in the next ten years as the community moves away from “nar-
row AI” and towards general purpose AI models.

4.2  �Intent Detection

One very important social media analytics problem is intent detection. This refers to
when someone explicitly expresses that they are going to buy a product or go to an
event. To create a machine learning method capable of general purpose intent detec-
tion has been considered an NLP challenge problem with high confidence. As such,
in industry we have seen logical rule based intent detection systems become very
popular. One example of a popular system is IBM SystemT [23] that has the ability
to match logical rules with granularity based on a semantic parsing of a sentence.
The parser allows for higher accuracy rules matched to the linguistic patterns related
to extracting intent. Intent detection is a process best done today by product domain
experts to pick up on domain specific terminology and lingo for expressing intent.

4.3  �Topic Monitoring

In order to make social polling possible, a sentiment analytics solution needs to
be tied with topics of discussion. This sentiment about topics is the core insight
of social polling that provides client value. There are two major paradigms for
monitoring topics in social media posts which we will refer to as “top down” and
“bottom up”.

Distributed Computing in Social Media Analytics

128

Top down topic monitoring is when someone wants to explicitly search social
media for trends about a topic. This is how the Google search engine works. The
most common approach to this problem in social media is the use of query engines
such as Elastic Search that facilitate matching against lists of terms combined via
Boolean logic. The Boolean OR operator is used to compile terms together that
form a sub-topic. The Boolean AND operator is used to create a “must contain”
condition for multiple sub-topics within a social media post. The Boolean NOT
operator is used to create an exclusion rule often used for commonly confused top-
ics that are unrelated. Unsupervised term expansion techniques can be really help-
ful in creating lists joined by the OR operator [6]. However, some recent Deep
Learning techniques have explored a more ambitious solution to this problem,
focusing on building document representations that are adequate for topic search,
including [13, 14, 17].

Another example of top down topic monitoring is image analytics in Social
Media. The main idea is that some posts contain most of their meaning in images.
These solutions are top down because you generally need to build an image classi-
fier ahead of time for the specific thing you want to search for. Recently and espe-
cially since [18], a deep learning technique called Convolutional Neural Networks
has become the method of choice overtaking traditional approaches that rely on
feature engineering. A big catalyst for this has been the development of the massive
ImageNet dataset that contains millions of images comprising 1000 categories. One
common deployment scenario is using a pre-trained model, such as those available
in the Caffe model zoo, that already gets superior results on ImageNet. ImageNet
categories can be a good starting point for image topic analysis. Other techniques
require potentially fine-tuning a model developed on ImageNet with new labels or
using the ImageNet model’s hidden features as a basis for constructing a higher
level reasoning model for new data. Common use cases include developing classi-
fiers for images of specific products or influencers. Large social media companies
such as Facebook build their own Deep Learning classifiers to classify images as
specific users.

Bottom up topic monitoring is different from top down monitoring in that it
leverages the content of the tweets itself in order to aggregate important topics with-
out explicitly searching for them. Deep Learning techniques have recently shown
the ability to perform high quality assessments of the semantic relatedness between
two pieces of text for example in [19–22]. It has also been demonstrated that with
N2 (where N is the number of posts to search over) similarity computations, high
quality cohesive topics can be derived. However, when N can be over a billion posts
included in a search, this computation becomes computationally infeasible with
reasonable current hardware. As such, approaches like [17] that combine using a
machine learning based semantic similarity computation with extremely fast key-
word match style search to focus on a smaller group of posts can lead to much more
manageable computation in a bottom up fashion.

The most popular form of bottom up topic monitoring is information extraction.
Information extraction pipelines such as those included in IBM SystemT [23] and

M. Riemer

129

GATE’s Annie pipeline [24] generally come loaded with a full host of capabilities
starting with very low level analysis like part of speech tagging and word group
chunking. Higher level capabilities include Named Entity Recognition [25], and
proposed for Twitter in [26]. Named Entity Recognition identifies words that are
included in the same entity, and the type of entity that it is. In systems made for the
news domain like the CoNNL 2003 shared task, the entity types are usually Person,
Location, Organization, and Miscellaneous. However, in the social media domain
we are usually interested in even more detail. For example, the WNUT 2016 Twitter
Named Entity Recognition shared task dataset includes categories like Product, Geo
Location, Facility, Person, Company, and Other. Perhaps the most difficult element
of a typical information extraction pipeline to produce good results for are parsing
tasks like Dependency Parsing, and Constituency Parsing. There have been at least
initial experiments [27] applying parsing to the Twitter domain, but good datasets
are needed to make further progress. Parsing attempts to totally deconstruct the
meaning of text in a pre-defined way that can be used for down stream analysis.

Once topics have been monitored at the tweet level, aggregations are generally
made to understand the current amount of tweets about a topic, the velocity of the
growth of each topic, and the acceleration of each topic. Topic acceleration is a
principled way to understand which topics may be rapidly growing whispers and
more in depth approaches have also been considered as in [28].

4.4  �User Segmentation

Beyond what people are saying and when people are saying it, it is important to
think about who is saying it. By this we rarely mean identifying exactly who said it,
but more so what kind of person said it. Demographic analysis is a key aspect of
understanding the projected impact of a few individual’s being randomly sampled
for polling on an entire population. As such, it is vital component of polling both for
elections and market research. Techniques for dividing users into categories vary in
difficulty based on the level of high level inference needed for the task and the avail-
ability of user contributed metadata for a particular social media platform.

Some social networks, like Facebook, are largely successful in getting people to
submit structured data about their demographics and interests. However, the quality
of user submitted data varies significantly across platforms. Twitter, for example,
has much lower reliability and less information included in a typical profile bio.
When profile attributes submitted to the user are reliable, they can be the easiest
way to segment users. Sites that have large quantities of reliable self-reported data
have a huge advantage in analyzing user micro-segments. The next easiest way to
segment users is when they directly mention or express sentiment towards a topic
that is explicitly being monitored for. This can be monitored pretty easily by apply-
ing logical matching logic to a list of topic terms. This type of query of easily
accessible with Big Data ready text matching software like SystemT [23],
ElasticSearch, or Solr.

Distributed Computing in Social Media Analytics

130

The most difficult types of user segmentation require deep inference and higher
level reasoning about the contents of a user’s post. Good examples of this include
inference of age and inference of income. It is generally very difficult and costly to
create training data for a setting like this one, so it is important to leverage machine
learning techniques utilizing prior knowledge to get good results. For example, in [29]
large scale unsupervised learning and transfer learning were used in combination to
predict the age range of twitter users based on the contents of their tweets.

User segmentation based on post content is hard and generally not possible
without collecting a large history of posts for each user. This makes deployment of
these solutions difficult if you are using a pay for query service. This is because it
is likely pivotal for good inference to have access to posts about a user that are not
related to the query topic. As such, it is significantly more efficient for data provid-
ers and their partners to infer these attributes about users ahead of time and provide
it along side the received query data. There are multiple offerings in industry that
provide these kinds capabilities for purchase, allowing for more useful social poll-
ing insights [30, 31].

4.5  �Some Social Polling Examples

The following real-world social polling solution example in Fig. 4 leverages IBM
software used to understand insights about customer segments by geography and
topic category.

Additionally, it is useful to consider topic trends and customer segments associ-
ated with them. As you can see here, customer segments can be much more specific
than the broad demographic categories used in traditional election polling as you

Fig. 4  An analysis of customer segments by geography and topic category

M. Riemer

131

can keep track of stated interests and hobbies for more refined insights. Social poll-
ing is a very good way to keep your organization up to date about societal trends that
effect your business the most and their prominence within different categories of
your customers. As an example, in Fig. 5, we demonstrate an analysis of the trends
of monitored topics across different categories over time.

4.6  �Social Polling for Demand Planning

In many industries, demand forecasting techniques have hit a wall in performance
over the last decade. As popular univariate techniques like Holt-Winters and ARIMA
models have staid stable for some time, the opportunity for additional gains in perfor-
mance now will seemingly rely on taking this analysis a step further by incorporating
external data to the time series for modeling. This can potentially explain volatility in
the signal that we traditionally considered to be “random anomalies” that we will
only attempt to smooth out when using most univariate forecasting techniques.

Recent work has applied Deep Learning to multi-factor forecasting based on
many factors external to the forecast [32]. The success of these techniques to learn
good representations without extensive feature engineering by human analysts opens
the doors for possibilities in modeling external trends to a forecast in order to explain
currently unexplained forecast volatility. Common low hanging fruit factors to con-
sider in these models include weather and price, which could create economic value
through significantly improved forecasts for organizations prepared to use them.
Trends present in social media present a significant opportunity to explain human
behavior that may effect consumer trends. Riemer et al. [32] found social media
trends to be nearly as influential to retail demand forecasting a week ahead of time
as weather. Indeed, applying social media trends to time series problems has become
an emerging trend in the industry, especially with the rise of Twitter [33, 34].

One of the most straightforward ways to use social media to help predict product
sales is too look for mentions directly related to the product and its competitors on
social media. Measuring the intensity of conversation over time and with analysis of

Fig. 5  An analysis of conversation tends over time by customer segment

Distributed Computing in Social Media Analytics

132

sentiment and intent has been shown to allow for rich forecasting data in attempting
to explain volatility not show with univariate models. In general, the same style of
information used for social polling use cases should be useful in this setting as well.
Unfortunately, the effects are generally shown to be most useful for forecasting in
the near term. Indeed, to create long term forecasts that include social media trends,
it often includes predicting social media trends over the same time span. This can be
difficult and is unlikely to account for some of the most prominent trends that seem-
ingly come out of nowhere.

Another good use case for applying social trends to time series prediction is
augmenting popularity information about events. For example, some events like
Christmas have an effect far before their actual date. We can use social mentions as
a proxy for understanding the natural ramp up and ramp down of an event. It is also
useful for quantification of how big an event is likely to be this year. For example,
we can project since everyone is talking about the Oscars early than they did last
year and at a stronger intensity that it is likely to be a big Oscars this year. We can
query systems built to predict based on external factors to understand how much of
an impact, for example, uncertainty about the popularity of the Super Bowl can have
on expected demand for various products.

An important aspect of demand forecasting based on external factor solutions is
that they need to be interpretable to human analysts. This is especially true when
they are predicting a big change in the forecast. This is a primary reason why deep
learning attention models have been shown well suited to multi-factor forecasting
[33]. Another emerging trend in Deep Learning is the great success of Reinforcement
Learning since the Deep Q Networks idea proposed in Nature [35]. OpenAI has
recently released “Universe” a massive open dataset meant to help push research
forward in this area [36]. It makes more sense to think of forecasting as the rein-
forcement learning problem of planning stock. In actuality, there are many complex
requirements about planning that are disconnected from the prediction of demand
based on previous sales and more aligned with the actual profitability of a business.
Looking forward, we should see the emergence of better techniques for this prob-
lem as the research community continues to push forward with Deep Learning and
Reinforcement Learning.

5  �Conclusion

In this chapter, we have gone over some successful analytical choices for effectively
executing influencer analytics, social polling, and product demand prediction based
on public social media interactions. Our focus has been on graph based, machine
learning based, and logical rule based analytical strategies for achieving these use
cases. To enable these use cases, it is best to build off a Big Data platform that
embraces efficient analytics like Apache Spark, Solr, and Elastic Search. The limit-
ing factor for what can be achieved with these solutions today is in many ways
mostly technological. Analyzing unstructured data is very difficult and doing so can

M. Riemer

133

be very manual, which increases the time to value for adding new analytical facets.
Organizations that have had the most success have strongly followed new tech-
niques for unstructured analytics. In particular, this includes the huge achievements
of Deep Learning in recent years for Natural Language Processing and Computer
Vision. Social Media Analytics has the potential to see a large increase in capabili-
ties in the years to come as cutting edge machine learning techniques advance our
ability to do analytics on unstructured data. A particularly interesting recent trend is
the rise of machine learning for doing classification based on a very small number
of examples [37–41]. As these techniques advance to the point where they can be
reliable for text classification and image classification tasks, we can see once again
a big decrease in time to value for creating new facets of capabilities that should
drive even bigger benefits for social media analytics based use cases.

References

	 1.	Cha, M., Haddadi, H., Benevenuto, F. and Gummadi, P.K., 2010. Measuring user influence in
twitter: The million follower fallacy. ICWSM, 10(10–17), p. 30.

	 2.	Bakshy, E., Hofman, J.M., Mason, W.A. and Watts, D.J., 2011, February. Everyone's an influ-
encer: quantifying influence on twitter. In Proceedings of the fourth ACM international confer-
ence on Web search and data mining (pp. 65–74). ACM.

	 3.	Weng, J., Lim, E.P., Jiang, J. and He, Q., 2010, February. Twitterrank: finding topic-sensitive
influential twitterers. In Proceedings of the third ACM international conference on Web search
and data mining (pp. 261–270). ACM.

	 4.	Embar, V.R., Bhattacharya, I., Pandit, V. and Vaculin, R., 2015, August. Online topic-based
social influence analysis for the wimbledon championships. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1759–
1768). ACM.

	 5.	Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S. and Dean, J., 2013. Distributed represen-
tations of words and phrases and their compositionality. In Advances in neural information
processing systems (pp. 3111–3119).

	 6.	Heath, F.F., Hull, R., Khabiri, E., Riemer, M., Sukaviriya, N. and Vaculín, R., 2015, June.
Alexandria: extensible framework for rapid exploration of social media. In Big Data (BigData
Congress), 2015 IEEE International Congress on (pp. 483–490). IEEE.

	 7.	Hochreiter, S. and Schmidhuber, J., 1997. Long short-term memory. Neural computation, 9(8),
pp. 1735–1780.

	 8.	Cho, K., van Merriënboer, B., Bahdanau, D. and Bengio, Y., 2014. On the Properties of Neural
Machine Translation: Encoder–Decoder Approaches. Syntax, Semantics and Structure in
Statistical Translation, p. 103.

	 9.	Dos Santos, C.N. and Gatti, M., 2014, August. Deep Convolutional Neural Networks for
Sentiment Analysis of Short Texts. In COLING (pp. 69–78).

	10.	Deriu, J., Gonzenbach, M., Uzdilli, F., Lucchi, A., De Luca, V. and Jaggi, M., 2016.
SwissCheese at SemEval-2016 Task 4: Sentiment classification using an ensemble of convolu-
tional neural networks with distant supervision. Proceedings of SemEval, pp. 1124–1128.

	11.	Go, A., Bhayani, R. and Huang, L., 2009. Twitter sentiment classification using distant super-
vision. CS224N Project Report, Stanford, 1(12).

	12.	Pennington, J., Socher, R. and Manning, C.D., 2014, October. Glove: Global Vectors for Word
Representation. In EMNLP (Vol. 14, pp. 1532–1543).

Distributed Computing in Social Media Analytics

134

	13.	Kiros, R., Zhu, Y., Salakhutdinov, R.R., Zemel, R., Urtasun, R., Torralba, A. and Fidler, S., 2015.
Skip-thought vectors. In Advances in neural information processing systems (pp. 3294–3302).

	14.	Le, Q.V. and Mikolov, T., 2014, June. Distributed Representations of Sentences and Documents.
In ICML (Vol. 14, pp. 1188–1196).

	15.	Dai, A.M. and Le, Q.V., 2015. Semi-supervised sequence learning. In Advances in Neural
Information Processing Systems (pp. 3079–3087).

	16.	Riemer, M., Khabiri, E., and Goodwin, R., 2016. Representation Stability as a Regularizer for
Improved Text Analytics Transfer Learning. arXiv preprint arXiv:1704.03617.

	17.	Mitra, B., Nalisnick, E., Craswell, N. and Caruana, R., 2016. A Dual Embedding Space Model
for Document Ranking. arXiv preprint arXiv:1602.01137.

	18.	Krizhevsky, A., Sutskever, I. and Hinton, G.E., 2012. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems
(pp. 1097–1105).

	19.	Tai, K.S., Socher, R. and Manning, C.D., 2015. Improved semantic representations from tree-
structured long short-term memory networks. arXiv preprint arXiv:1503.00075.

	20.	Bowman, S.R., Angeli, G., Potts, C. and Manning, C.D., 2015. A large annotated corpus for
learning natural language inference. In Empirical Methods in Natural Language Processing
(EMNLP) 2015.

	21.	Rocktäschel, T., Grefenstette, E., Hermann, K.M., Kočiský, T. and Blunsom, P., 2015.
Reasoning about entailment with neural attention. arXiv preprint arXiv:1509.06664.

	22.	Cheng, J., Dong, L. and Lapata, M., 2016. Long short-term memory-networks for machine
reading. arXiv preprint arXiv:1601.06733.

	23.	Krishnamurthy, R., Li, Y., Raghavan, S., Reiss, F., Vaithyanathan, S. and Zhu, H., 2009.
SystemT: a system for declarative information extraction. ACM SIGMOD Record, 37(4),
pp. 7–13.

	24.	Bontcheva, K., Derczynski, L., Funk, A., Greenwood, M.A., Maynard, D. and Aswani, N.,
2013, September. TwitIE: An Open-Source Information Extraction Pipeline for Microblog
Text. In RANLP (pp. 83–90).

	25.	Tjong Kim Sang, E.F. and De Meulder, F., 2003, May. Introduction to the CoNLL-2003 shared
task: Language-independent named entity recognition. In Proceedings of the seventh confer-
ence on Natural language learning at HLT-NAACL 2003-Volume 4 (pp. 142–147). Association
for Computational Linguistics.

	26.	Ritter, A., Clark, S. and Etzioni, O., 2011, July. Named entity recognition in tweets: an experi-
mental study. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing (pp. 1524–1534). Association for Computational Linguistics.

	27.	Kong, L., Schneider, N., Swayamdipta, S., Bhatia, A., Dyer, C. and Smith, N.A., 2014. A
dependency parser for tweets. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP).

	28.	Mathioudakis, M. and Koudas, N., 2010, June. Twittermonitor: trend detection over the twitter
stream. In Proceedings of the 2010 ACM SIGMOD International Conference on Management
of data (pp. 1155–1158). ACM.

	29.	Riemer, M., Krasikov, S. and Srinivasan, H., 2015. A deep learning and knowledge trans-
fer based architecture for social media user characteristic determination. SocialNLP 2015@
NAACL, p. 39.

	30.	https://console.ng.bluemix.net/catalog/services/insights-for-twitter
	31.	http://datasift.com/
	32.	Riemer, M., Vempaty, A., Calmon, F.P., Heath III, F.F., Hull, R. and Khabiri, E., 2016.

Correcting Forecasts with Multifactor Neural Attention. In Proceedings of The 33rd
International Conference on Machine Learning (pp. 3010–3019).

	33.	Chen, Z. and Du, X., 2013, September. Study of stock prediction based on social network. In
Social Computing (SocialCom), 2013 International Conference on (pp. 913–916). IEEE.

M. Riemer

https://console.ng.bluemix.net/catalog/services/insights-for-twitter
http://datasift.com/

135

	34.	Nguyen, L.T., Wu, P., Chan, W., Peng, W. and Zhang, Y., 2012, August. Predicting collective
sentiment dynamics from time-series social media. In Proceedings of the first international
workshop on issues of sentiment discovery and opinion mining (p. 6). ACM.

	35.	Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A.,
Riedmiller, M., Fidjeland, A.K., Ostrovski, G. and Petersen, S., 2015. Human-level control
through deep reinforcement learning. Nature, 518(7540), pp. 529–533.

	36.	https://openai.com/blog/universe/
	37.	Lake, B.M., Salakhutdinov, R. and Tenenbaum, J.B., 2015. Human-level concept learning

through probabilistic program induction. Science, 350(6266), pp. 1332–1338.
	38.	Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D. and Lillicrap, T., 2016. Meta-learning

with memory-augmented neural networks. In Proceedings of The 33rd International
Conference on Machine Learning (pp. 1842–1850).

	39.	Vinyals, O., Blundell, C., Lillicrap, T. and Wierstra, D., 2016. Matching networks for one shot
learning. In Advances in Neural Information Processing Systems (pp. 3630–3638).

	40.	Kaiser, L., Nachum, O., Roy, A. and Bengio, S., 2017. Learning to Remember Rare Events. In
ICLR 2017.

	41.	Kaiser, L., Nachum, O., Roy, A. and Bengio, S., 2017. Optimization as a model for few shot
learning. In ICLR 2017.

Distributed Computing in Social Media Analytics

https://openai.com/blog/universe/

137© Springer International Publishing AG 2017
S. Mazumder et al. (eds.), Distributed Computing in Big Data Analytics,
Scalable Computing and Communications, DOI 10.1007/978-3-319-59834-5_9

Utilizing Big Data Analytics for Automatic
Building of Language-agnostic Semantic
Knowledge Bases

Khalifeh AlJadda, Mohammed Korayem, and Trey Grainger

1  �Introduction

In the era of Big Data Analytics, search and recommendation engines have become
the primary mechanisms through which users both actively find and passively dis-
cover useful information. As such, it has never been more critical for these data
systems to be able to deliver targeted, relevant results that fully match a user’s
intent.

Search and recommendation engines can barely compete unless they leverage
models containing deep insights into the kinds of questions being asked and - more
importantly - the kinds of answers being sought. One of the most common ways of
representing a domain in order to surface these insights is through the use of ontolo-
gies - combinations of taxonomies containing known entities, their properties, and
their interrelationships. These ontologies can then be integrated into a search appli-
cation in order to improve its ability to meet the end-user’s information need. For
example, if someone searches for the term server in the information technology
domain, it has a very different meaning (a computer server) than in the restaurant
domain (a waiter/waitress), and if someone is using a job search engine, this query
could actually represent either meaning depending upon the user’s context.

Ontologies are usually built manually by human experts, making them expensive
to create, maintain, and update. To combat this, ontology learning systems, which
attempt to automatically learn relationships from a domain and then map them into
an ontology, are becoming more prevalent [1].

K. AlJadda (*) • M. Korayem • T. Grainger
CareerBuilder, Norcross, GA, USA
e-mail: khalifeh.aljadda@careerbuilder.com; mohammed.korayem@careerbuilder.com;
trey.grainger@careerbuilder.com

mailto:khalifeh.aljadda@careerbuilder.com
mailto:mohammed.korayem@careerbuilder.com
mailto:trey.grainger@careerbuilder.com
mailto:trey.grainger@careerbuilder.com

138

In this chapter we will discuss techniques and algorithms that utilize the power
of big data analytics and distributed computing to automatically build languageag-
nostic semantic knowledge bases. Such semantic knowledge bases enable
significantly better query and document understanding and, as a result, drive much
more relevant results to any given search or recommendations query.

We will cover some of the core technologies that enable such a system to be built
(Apache Lucene/Solr, and Apache Hadoop), and will walk through some practical
details of how such a semantic search engine has been built and is being leveraged
in a real-world implementation.

2  �Search Engines

Search engines are one of the most common ways through which people inter-
act with digital information, and they can benefit tremendously from the inte-
gration of semantic knowledge bases, which improve the search engine’s overall
ability to accurately interpret and respond to queries. The underlying data
structures within the search engine, as we’ll later see, are also ideal for auto-
generating and modeling those same semantic knowledge bases. Within the
field of information retrieval, search engines are the tool of choice for enabling
adhoc querying of free-text information (typically keywords) within massive
amounts of content (up to trillions of documents), while simultaneously rank-
ing and sorting the results by their relevancy to the incoming query. Most of the
time, search engines are expected to do all of this work in milliseconds, or at
most seconds.

This ability to search for any combination of keywords across up to trillions of
documents and rank the relevancy of all the results to the query with sub-second
response times requires some purpose-built data structures and data modeling
approaches running in parallel across a distributed system. Chief among these are
an inverted index, sharding and replication of data, a denormalized datamodel, and
a distributed aggregation and scoring model.

2.1  �Key Technologies

The search engine technology we utilize in our real-world example is Apache Solr,
the popular open source search server [2]. The Apache Lucene/Solr project is the
world’s most popular open source search project, with most search engines today
being built on top of Lucene and/or Solr. The rest of this section will describe how
search engines, such as Apache Solr, achieve their large-scale distributed search
capabilities.

K. AlJadda et al.

139

2.2  �Inverted Index

An inverted index is the mechanism by which fast keyword lookups are made
possible. While the underlying implementation of an inverted index can be very
sophisticated in order to optimize the speed of lookups and maximize the compres-
sion of data to fit as much as possible into memory, the basic structure is very
straightforward. To build an inverted index, it can be useful (though not necessary) to
first build a forward index which maps each document to the list of terms contained
within the document. This is useful for looking up a document to see which words it
contains, but it is less useful if you are trying to find which documents match a given
set of keywords, as you would have to loop the list of words for every document to
determine if the any queried keyword was found within the document.

Instead, search engines rely on an inverted version of this index, which maps
each keyword to the set of documents which contain it, for O(log n) time lookup of
any keyword. An example of how a set of documents would be represented in both
a forward index and an inverted index can be found in Fig. 1.

One piece of information potentially lost in a simplistic inversion of the forward
index would be the position of the terms within the document, so these term positions
(often along with additional meta data) are stored along with the document identifier
in what’s called a postings list associated with each term in the inverted index.

Whenever a query is executed against the inverted index, a lookup is performed on
the inverted index for each term in the query, and set operations can be performed on
the sets of documents matching each term to quickly resolve arbitrarily complex
Boolean queries (e.g. nurse AND hospital, java OR scala). Phrase queries (i.e.
“brown fox”) can even be resolved by leveraging the positions within the postings list
to filter down to documents where all of the terms occur in sequential positions.

2.3  �Sharding of Data

One of the additional beneficial characteristics of the inverted index is that, as the
number of documents indexed increases, the probability of the terms from those
documents already existing in the index also increases. This means that, with large
scale data sets, the number of terms in the index will plateau, while the number of
documents can continue to increase, since the number of terms is mostly a function
of the distribution of terms within the underlying language(s) of the documents.

This makes it possible to easily partition an inverted index into multiple subin-
dexes and to subsequently distribute queries to each of the indexes in parallel and
simply aggregate the resulting documents. This partitioning of the index is often
referred to as sharding the index. This parallel searching and aggregation across
shards can be done across a multiple networked computers, enabling search engines
to search across billions or even trillions of documents in well under a second.

Utilizing Big Data Analytics for Automatic Building of Language-agnostic Semantic…

140

2.4  �Replication of Data

Just as sharding makes it possible to increase the speed of queries across enormous
numbers of documents and to scale beyond the capacity of a single server, it is often
also necessary for a search engine to be able to handle large numbers of queries at a
time. When the capacity of a single node to handle the volume of incoming queries
to a shard of the index is exceeded, a replicated copy - or replica - of that shard can
be placed on another servers such that the incoming queries can be load balanced
across each of the replicas.

One additional benefit of replicas is that they can be used to provide fault toler-
ance within the search cluster. Since servers will fail from time to time, if at least
one replicated copy of each shard exists on a separate server, then the search cluster
can continue successfully responding to queries with no data loss as long as they
re-route requests for that server to another replica of that shard.

id: 1

job_title: Registered Nurse

desc: a registered nurse at

hospital doing hard work

skills: oncology,

phlebotemy

Documents Forward Index Inverted Index

desc

job_title

job_title

...

...

a

a

2

1

3

2 3

1 4

2 6

1 6

3 8

2 2

2 5

1 7

1 5

3 6

1 3

3 4

1 2

2 1

3 2

1 10

3 9

3 1

3 3, 7

1,5

1

4
at

at

doing

hard

hard

hospital

hospital

nurse

nurse

registered

registered

work

a

a

java

java

or

or

doing

doing

engineer

engineer

at

company

company

engineer

great

greatdesc

software

software

software

work

work

java developer

Registered
Nurse

field

1

2

3

1

fielddoc term postings list

doc pos

term

id: 2

job_title: Software

Engineer

desc: software engineer at

a great company

skills: .net, c#, java

id: 3

job_title: Java Developer

desc: a software engineer

or a java engineer doing

work

skills: java, scala, hibernate

Fig. 1  Mapping documents into a forward index and inverted index

K. AlJadda et al.

141

2.5  �Denormalized Data Model

The ability to shard an inverted index, create replicas of those shards, and distrib-
uted queries and indexing across a distributed cluster of servers enables search
engines to scale in almost any direction (faster response times, more data, more
queries). A critical data modeling rule must be followed to enable this paralleliza-
tion, however - adhering to the use of a denormalized data model. In traditional
relational database management systems (RDBMS), the best practice is to normal-
ize tables and join on foreign keys as relationships between multiple tables in order
to prevent data redundancy and inconsistencies from arising within the database.
While this works well in theory, it prevents one from being able to easily shard out
an index, since the requirement to join on separate indexes means you must have
those indexes fully present on each server so that you can efficiently perform the
join. While a few modern search engines (such as Apache Solr) do support join
functionality, it must be used in a very intentional and cautious way in order to pre-
serve the scaling characteristics of the search cluster as well as ensure all joins have
access to the correct data such that they resolve correctly. Treating every document
as a full representation of all of its denormalized, related fields is the recommended
approach for building large-scale distributed search engines.

2.6  �Distributed Aggregation and Scoring

One of the most important features of a search engine is the ability to score the rel-
evancy of each document to the query matching it, and to return all matching docu-
ments in a sorted order. That sorted order is usually the calculated relevancy score,
but the sorting could also be based upon the value of any other field or function.

In order for a distributed search engine to be as efficient as possible, it needs to
maximize the work done in parallel on each shard, while minimizing the number or
network requests and the amount of data being transmitted in order to arrive at a
final, sorted result set to return.

While each search engine calculates relevance scores slightly differently, most
use statistics easily derived from the structure of the inverted index. Calculations
leveraging tf-idf (term frequency * inverse document frequency) scores, such as
the popular BM25 scoring algorithm, consider the number of times each term in
the query appears within each document (the term frequency or tf) multiplied by
how significant that word is believed to be to the query (the inverse document fre-
quency or idf). Term frequency can be calculated by the number of positions a term
occupies within a document in the postings list, whereas inverse document fre-
quency can be calculated leveraging the size of the set of documents in the postings
list for the term. While getting a perfectly accurate idf score across all shards would
technically require each shard sharing the idf of each term in the query (which isn’t
that expensive), due to the nature of word distributions within language, each shard

Utilizing Big Data Analytics for Automatic Building of Language-agnostic Semantic…

142

in a randomly partitioned index will often have approximately the same document
frequency distributions for each term, allowing relevancy calculations to be done
completely independently on each shard.

Thus, in order to return a final list of relevancy ranked results, at a minimum a
query just needs to be distributed in parallel to each shard of an index, each shard
must then independently lookup the set of documents matching each keyword and
perform the appropriate set intersections based upon the query, the resulting docu-
ments must then be sorted using a relevancy score calculated from statistics avail-
able in the inverted index for that shard, and then a set of results large enough to
satisfy the requested number of documents must be returned to the aggregating node
within the cluster. The aggregating node then just needs to re-sort the final returned
documents from each of the distributed shards and then filter that list to the number
of documents to return to the end user.

There are many additional features such as faceting/analytics, highlighting, and
spell correction available in most search engines which may add additional distrib-
uted steps to this workflow, but fundamentally they all operate in this parallel way
across the shards to enable sub-second query execution across billions or trillions of
documents.

One last particularly important characteristic of search engines is that, as users issue
queries and see results, they interact with those results. They may click them, skip over
them, or even issue additional queries to correct their own spelling or try additional
related keywords to see if they will yield a more relevant result. In the later Semantic
Discovery section, we will describe performing large-scale data mining of this log data
as a key technique for automatically building semantic knowledge bases.

3  �Recommendation Systems

Recommendation Systems (RSs) automate the process of discovering the interests
of a user by utilizing knowledge discovery and data mining techniques in order to
predict items of interest to individual users and subsequently suggesting what
should be relevant to his/her needs [3, 4]. Over the years, techniques and applica-
tions of RSs have evolved in both academia and industry (e-commerce/e-shopping,
e-library, e-learning, e-tourism, etc.) due to the exponential increase in the volume
of data. RSs can be broadly clustered into three main categories: Content-Based
(CB) [5, 6], Collaborative Filtering (CF) [5, 7], and hybrid techniques [8].
Contentbased recommendation systems are the most sensitive of these to under-
standing the textual content since these RSs rely on matching items/users based on
the similarity between their textual description. Thus, the availability of a semantic
knowledge base is crucial for improving the performance of content-based recom-
mendation systems [9].

While recommendation systems are often built as stand-alone systems which can
match content to users’ interests, they also overlap heavily with the functionality of
a search engine. Whereas search engines are typically thought of as accepting

K. AlJadda et al.

143

a query and returning results matching that query, search engines can also leverage
information about users and their preferences to personalize the search results.
Likewise, whereas recommendation systems are often thought of as utilizing behav-
ior of users to recommend based upon their tastes, it is very often helpful to be able
to adjust recommendation matching in real-time and to be able to perform matching
based upon arbitrary content and features, which is a task performed exceedingly
well by search engines. Indeed, many modern recommendation system implemen-
tations are delivered through an inverted index, including the employment search
use case we will be highlighting, enabling real-time recommendations and adjust-
ment of features and their scoring coefficients for matching dynamically through
simple query manipulation versus requiring code changes. Both kinds of systems
(search engines and recommendation engines) can be thought of as existing along a
fluid continuum of relevancy-driven information retrieval engines.

For these kind of relevancy-driven information retrieval engines to function
optimally, it is important that they have some grounding in the domain they are
providing information retrieval for, versus just being a bunch of generic algorithms.
As such, being able to access some kind of semantic knowledge base which repre-
sents an understanding of the concepts and relationships within the domain is
critical to them adequately performing the task of meeting users’ information needs.

4  �Semantic Discovery

Building semantic knowledge bases has traditionally focused on utilizing ontologies/
taxonomies which are manually built and maintained, or employing clustering and
dimensionality reduction to discover latent semantic links among terms of a given
corpus. Building manual ontologies/taxonomies is not scalable, is hard to maintain,
and is very labor expensive. On the other hand, dimensionality reduction is prone to
noise and is not entirely human-understandable. Instead, we rely on search logs
which turn out to be a rich source for discovering semantic relationships between
phrases. In this section we discuss how to use distributed big data analytics for min-
ing search logs to discover semantic relationships between key phrases in a manner
that is language-agnostic, easy to interpret, scalable since it utilizes the power of
distributed computing, and mostly accurate. The specific implementation of our
technique will be presented in the context of an employment search engine in
English, but the technique is both domain- and language-agnostic.

4.1  �Problem Description

To better understand the problem, think of the different meanings of the word
architect in the context of a building architect versus a software architect. If some-
one types architect into a search box, a keyword-based search engine will return a

Utilizing Big Data Analytics for Automatic Building of Language-agnostic Semantic…

144

mixed set of documents, with some being about software architects and others about
building architects. These kinds of mixed results will frustrate the user who is
almost certainly only looking for a specific one of the two meanings. Even if a user
searches for building architect, typical keyword-based search engines will often
transform that query to the boolean query building AND architect as independent
terms, which may still cause the retrieval of documents that talk about someone who
is a software architect that is building software. Developing smarter search engines
to overcome such problems is what we’ll discuss throughout the rest of this chapter.
With access to the search history of thousands or millions of users, we can discover
relationships between search phrases and the most common meaning of each term.
Such semantic knowledge can be then be further utilized to better understand the
intent of the user.

4.2  �Semantic Similarity

Semantic similarity is a measure of the likeness of meaning between two terms [10,
11]. The two major approaches used to compute semantic similarity are through
semantic networks (knowledge-based approach) [12], and through computing the
relatedness of terms within a large corpus of text (corpus-based approach) [11]. The
major techniques classified under corpus-based approaches are Point-wise Mutual
Information (PMI) [13] and Latent Semantic Analysis (LSA) [14]. Studies show
that PMI typically outperforms LSA on mining synonyms on the web [15].

Another interesting methodology for discovering semantic relationships between
words is what Google researchers proposed in [16]. The two novel models proposed
by Google are the following:

	1.	 Continuous Bag-of-Words model (CBOW)
	2.	 Continuous Skip-gram model (SG)

These models use large-scale (deep) Neural Networks to learn word vectors.
However, the two models are not suitable in our use case due to the a few restric-
tions. First is the lack of context in our dataset, which is composed of queries that
usually contain only 1–3 keywords. The CBOW and SG do not perform well with-
out context, which make our use case challenging. The other limitation is that those
models are most suitable for uni-grams or single tokens as opposed to phrases,
whereas phrases are most commonly entered by users who conduct searches. For
example “Java Developer” should be considered as a single phrase when we dis-
cover other semantically-related phrases. In our experiment, we discovered high
quality semantic relationships using a data set of 1.6 billion search logs entries
(made up of keywords used to search for jobs on careerbuilder.com). For this task,
we utilized the Probabilistic Graphical Model for Massive Hierarchical Data
(PGMHD) [17], which was implemented over the known distributed computing
framework Apache Hadoop.

K. AlJadda et al.

http://careerbuilder.com

145

4.3  �Probabilistic Semantic Similarity Scoring Using PGMHD

The probabilistic-based semantic similarity score is a normalized score between
[0,1] that reflects the probability of seeing two terms in the same context. For exam-
ple, the probabilistic similarity score should reflect that Java and Hadoop are
semantically-related, while Java and Registered Nurse are not. In order to accom-
plish this, we utilize the Probabilistic Graphical Model for Massive Hierarchical
Data (PGMHD). PGMHD requires collection of the search terms entered by the
users to conduct searches, as well as each user’s classification. The way to represent
this data in order to calculate the probabilistic-based semantic similarity score is to
place the classes to which the users belong in the top layer of the model, place the
search terms in the lower layer of the model, and then connect them with edges that
represent how many users from a given class in the top layer searched for a given
term in the lower layer. Table 1 shows the row input data and Fig. 2 shows the
representation of that raw data in PGMHD.

Table 1  Input data to PGMHD over hadoop

User1 Java Developer Java, Java Developer, C#, Software Engineer
User2 Nurse RN, Registered Nurse, Health Care
User3 .NET Developer C#, ASP, VB, Software Engineer, SE
User4 Java Developer Java, JEE, Struts, Software Engineer, SE
User5 Health Care Health Care Rep, HealthCare

Data Engineer
Software

Developer
Registered

Nurse
Health Care

RNLPNJavaHadoop

80 50

7 6
5

2

1
1

50

75

30
80

50 30

Health
Care

big
data

Fig. 2  Using PGMHD to represent job search logs by placing the users’ classification at the top
layer while the search terms are placed at the lower layer. Each parent node on the top level (job
category) stores the number of users classified under that category who conducted searches, while
the child nodes (search terms) store the number of times people searched for that term. The edges
stores the number of users from the parent node who searched for the term represented by the con-
nected child node

Utilizing Big Data Analytics for Automatic Building of Language-agnostic Semantic…

146

4.4  �Distributed PGMHD

In order to process 1.6 billion search log entries (each search log entry contains one
or more keywords entered by a user to search for jobs) in reasonable time, we
designed a distributed PGMHD using several components of the distributed com-
puting framework Apache Hadoop: HDFS [18], Hadoop Map/Reduce [19], and
Hive [20]. The design of distributed PGMHD is shown in Fig. 3. Basically, we use
Hive to store the intermediate data while we are building and training the PGMHD.
Once it is trained we can then run our inquiries to get an ordered list of the semanti-
callyrelated keywords for any specific term(s).

5  �Word Sense Ambiguity Detection

We can utilize the discovered semantically-related terms to improve query
understanding. One way to do that is by expanding a submitted query to also include
the semantically-related terms, which will help the search engine to retrieve more
relevant results since the presence of the query and/or its semantically-related terms
in a document will boost that document over the ones which only mentioned the
term given in the query. For example, the query “big data” can be expanded to “big
data” OR hadoop OR spark OR hive. As one would expect, the results of the
expanded query will typically be more relevant and comprehensive. This technique
will not work as intended, however, when dealing with terms that can represent

1) Key: Term
2) Value: Calssification

•  Count term freq and
(term,class) freq.

Input Hive Table

Map Reduce

User Classification Search term

• Count calssification
freq.

Term Term freq class (term,class)
freq

Output Hive Table 1

1) Key: Calssification
2) Value: UserID

Map Reduce

Input

class Class freq

Output Hive Table 2

PGMHD

Join

Fig. 3  PGMHD implementation as Map/Reduce using the distributed computing framework
Apache Hadoop. The distributed implementation enables PGMHD to represent and process data
extracted from 1.6 billion search logs in 45 min

K. AlJadda et al.

147

significantly different meanings (ambiguous terms). An ambiguous term is a term
that refers to more than one meaning depending on the context. For example,
the term java may refer to the programming language Java, or a type of coffee called
java, or an island in Indonesia named Java. Since a user executing a search query is
most likely to be searching only for a specific sense of a term, it is important that we
can identify and disambiguate between the possible senses. In order to detect those
ambiguous terms we again utilize PGMHD, where we calculate a classification
score for each term with its parents as potential classes. If the classification score is
higher than a specific threshold for more than one parent, we consider that term may
be ambiguous one. The idea behind this technique is that each parent class in
PGMHD represents a group of users from different classifications, so when a term
can be classified with a high confidence score to more than one class, it means it was
used widely by users from both classes. Further, if the set of other terms used along
with the term varies significantly across multiple classes, this further implies that
the term refers to two or more different concepts. Our technique to detect the
ambiguous terms is explained below:

Let:

•	 C: = {C1, ..., Cn} be the set of different classes of jobs (Java Developer, Nurse,
Accountant, etc);

•	 S = {t1, ..., tN} be the set of different search terms entered by users when they
conducted searches (N is the number of different terms); and.

•	 f(Cj,s) be the number times (frequency) a user from class Cj ∈C searched for the
keyword s ∈S .

–– To reduce noise, we will only consider the frequencies with at least 100 dis-
tinct searches, i.e., f(c,s) ≥ 100.

	
f c s,() ³ 100. 	

Then, define

•	 O(c): the number of times a user from class c searched for a keyword i.e.:

	
O c f c s c

s

() () Î
Î
å:

S

C, ;
	

•	 T(s): the number of times the keyword tj is searched, i.e.:

	
T s f c s s

c

() () Î
Î
å:

C

S, ;
	

•	 T: the total number of keyword searches, i.e.:

	
T f c s O c T s

c s c s

:
,

.å å å() = () = ()
Î Î

,
C S 	

Utilizing Big Data Analytics for Automatic Building of Language-agnostic Semantic…

148

For every c ∈C and s ∈S, and letting C and S be the random variables representing
the class of job and the search term of a single user query, respectively, we can
estimate their PMI given by

	


 




C c S s

C c S s

C c S s

C c

= =()
=() =()

=
= =()

=()
. |

	

as follows

	

pmi log , .c s
f c s

T s

T

O c
c s,

,
() ()

() ()
Î Î: C S

	

The normalized version [13] of the original PMI estimate is given by

	

p c s
c s

f c s

T

T f c s O c T s
,

,

,

,
() ()

-
()

=
+ () - () ()éë ùû:

pmi

log

log log log

llog log

log log log

log log

T f c s

T O c T s

T f c s

- ()

= - +
- () - ()

- ()
Î -

,

,
,1

2
111[] Î Îc sC S, .

	

This normalized version of the original PMI can then be leveraged to generate an
ambiguity score to determine whether or not a term should be considered
ambiguous.

5.1  �Ambiguity Score

For every search keyword s ∈S, we define the following ambiguity score Aα(s) as

	
A s i c spa () () >{ }: : , , 0

	

and we say that a search keyword tj is a candidate to be ambiguous if Aj(α) > 1.
Then, we can define a set of candidate ambiguous terms CA as

	
CA t A j Nj j= () > = ¼{ }: .a 1 1, , ,

	

K. AlJadda et al.

149

5.2  �Resolving Word Sense Ambiguity

After detecting ambiguous terms, the challenge next becomes how to resolve this
ambiguity. Resolving ambiguity means defining the possible meanings of an ambig-
uous term. In our system we leverage the semantically-related terms which we dis-
covered using the previously-discussed semantic discovery module. Each group of
those semantically-related terms represents a possible meaning of the original term
given the context in which the terms were used when they appeared with that term.
For example, the ambiguous term driver has semantically-related terms transporta-
tion, truck driver, software, embedded system, and CDL. By classifying these terms
using the classes of the users who provided them in the search logs, we end up clas-
sifying them into the two groups “transportation, truck driver, CDL” and “soft-
ware, embedded system”. It is clear that each of these groups of those
semanticallyrelated terms represents a separate possible meaning of driver, with the
former group representing the sense of transportation and the later instead repre-
senting the idea of a computer device driver.

Figure 4 shows our methodology to resolve ambiguity. Since we already created
a PGMHD for detecting the ambiguous terms, we can utilize the same model to find
the semantically-related terms for any given term that falls within the same class. To
do so, we calculate the probabilistic-based similarity score between the given term
X and a term Y given they both share the same parent class(es) as follows:

Fix a level i ∈{2,...,m}, and let X,Y ∈ L2 × ··· × Lm be identically distributed ran-
dom variables. We define the probabilistic-based similarity score CO (CoOccurrence)
between two independent siblings Xij,Yig ∈ Li by computing the conditional joint
probability

	
CO pa paX Y P X Y X Yij ig ij ig ij ig, ,| ,|() () ()()Ç:

	

Discover Related Terms for
term X

Using PGMHD

Get the classes to which term X
belongs {C1,C2,..}

Classify the related terms to the
given classes {C1,C2,..}

Each set of related terms
classified under the same class

provides a possible sense of
term X

Fig. 4  The proposed
system to resolve word
sense ambiguity using
PGMHD

Utilizing Big Data Analytics for Automatic Building of Language-agnostic Semantic…

150

as

	

CO ,
pa pa

X Y P X C P Y Cij ig

C X Y

ij k ig k

k ij ig

, | |() =
Ç

() ()
¢ Î () ()

¢ ¢Õ
	

where P X C
P C X

P C
ij k

k ij

k

|
,

¢

¢

¢() = ()
()

 for every X C L Lij k i i, ¢
-()Î ´1 .

Given out Ck
¢() as the total number of occurrences of Ck

¢ and f C Xk ij
¢(), as the

frequency of co-occurrence of Ck
¢ with Xij, we can naturally estimate the joint prob-

abilities P X Cij k, ¢() with p̂ X Cij k, ¢() defined as

	

p̂ X C
f C X

out C
ij k

k ij

k

,
,

¢

¢

¢() ()
()

:

	

Hence, we can estimate the correlation between Xij and Yig by estimating the
probabilistic similarity score CO(Xij,Yig).

Once the list of related terms is generated using PGMHD, we classify them into
the classes (since the term is ambiguous, they must belong to more than one class)
to which the ambiguous term belongs. This classification phase of the related terms
is also implemented using PGMHD as follows:

For a random variable at level i ∈{2,...m}, namely Xij ∈ Li, where Xij is the jth
random variable at level i, we calculate a classification score Cl C Xk ij

¢()| for Xij
given its primary parent C Lk i

¢
-Î 1 . It is used to estimate the conditional probabil-

ity P C Xk ij
¢()| . The notation Ck

¢ is used to denote a parent, and when it is at level
1, it will represent class Cj as denoted previously. Let

	
f C X Frequency of co occurrence of C and Xk ij k ij

¢ ¢() = -,
	

	

Cl C X
f C X

in X
k ij

k ij

ij

¢

¢

() ()
()

|
,

:

	

The classification score is the ratio of the co-occurrence frequency of Ck
¢ and Xij

divided by the total occurrence of Xij. The total occurrence of Xij is calculated by
summing up the frequencies of the co-occurrence of Xij and all its parents.

	

in X f C X X Vij
C pa X

ij ij

ij

() () " Î
Î ()
å: , , ,

	

The group of semantically-related terms that get classified under the same parent
class will form a possible meaning of the ambiguous term. Using this technique we
are not restricted to a limited number of possible meanings: some terms are assigned
two possible meanings, some receive three possible meanings, and so on.

K. AlJadda et al.

151

6  �Semantic Knowledge Graph

In addition to mining query logs to automatically build up semantic knowledge
bases, it is also possible to exploit the interrelationship between words and phrases
encoded within both the free-text and structured content within a corpus of
documents.

Given our focus in this chapter on leveraging big data analytics using large-scale
distributed algorithms, our goal is to leverage a system that is able to generate a
graph representation of a knowledge domain automatically, merely by ingesting a
corpus of data representative of a domain. Once this graph is built, we can then
traverse it to surface the interrelationships between each of the the keywords,
phrases, extracted entities, and other linguistic variations represented in the corpus.
This model is referred to as a Semantic Knowledge Graph [21], and an open source
implementation is also publicly available.1

Other ontology learning systems typically try to extract specific entities from a
corpus and build up a pre-generated graph of relationships between entities. This
unfortunately results in a significant loss of information about the nuanced ways in
which the meaning of a term or phrase changes depending upon its linguistic con-
text. One of the goals of the Semantic Knowledge Graph approach is to fully pre-
serve all the nuanced semantic interrelationships contained within a textual corpus
of documents.

To really understand the significance of this goal, let’s consider how the meaning
of words can vary depending upon the context in which they are found. The words
architect and engineer are well known, but when found inside phases such as soft-
ware architect or electrical engineer, they take on a much more limited interpreta-
tion. Similarly, the word driver can take on numerous different meanings, such as
when found near terms relating to computers (a hardware driver), a golf game (a
kind of golf club), a business analysis (“a key driver of costs”), or in contexts related
to transportation (truck driver or delivery driver). Even when focused on transport-
ing goods, the word driver will have a nuanced difference in meaning in the context
of a night club (a taxi to safely transport someone home), a hospital (some kind of
medical transport), or on a race track (a competitor trying to outrun other vehicles).
While people typically think that most words have a limited number of meanings, it
is more accurate to consider words and phrases as having a different meaning in
every possible context in which they appear (even if the difference is nuanced).
While the intended meaning of words and phrases across different contexts will all
share strong similarities, the Semantic Knowledge Graph is able to model those sim-
ilarities while also preserving each of the context-dependent nuances in meaning. By
surfacing these nuanced meanings of words and phrases during node traversals, the
Semantic Knowledge Graph is thus able to better represent the entire underlying
knowledge domain in a compact and highly context-aware representation.

1 https://github.com/careerbuilder/semantic-knowledge-graph

Utilizing Big Data Analytics for Automatic Building of Language-agnostic Semantic…

https://github.com/careerbuilder/semantic-knowledge-graph

152

6.1  �Model Structure

Given an undirected graph G = (V,E) with V and E ⊂ V × V denoting the sets of
nodes and edges, respectively, we establish the following definitions:

•	 D = {d1, d2, ..., dm} is the set of documents that represents a corpus that we will
utilize to identify and score semantic relationships within the Semantic
Knowledge Graph.

•	 X = {x1, x2, ..., xk} is the set of all items which are stored in D. These items may
be terms, phrases, or even any arbitrary linguistic representations that can be
found within D.

•	 di = {x|x ∈ X} where each document d ∈ D is a set of items.
•	 T = {t1, t2, ..., tn} where ti is a tag that identifies an entity type for an item.

Examples of tags may include keyword, location, school, company, person, etc.

Given these definitions, the set of nodesV in the graph is defined asV = {v1, v2, ...,
vn} where vi represents an item xi ∈ X tagged with tag tj ∈ T, while Dvi = {d|xi ∈ d, d
∈ D} is the set of documents containing item xi with its corresponding tag tj. We then
define eij as the edge between (vi, vj) by a function f(eij) = {d ∈ Dvi ∩Dvj} that represents
each edge with the set of documents containing both item xi and item xj, each with
their corresponding tags. Finally, we define a function g(eij, vk) = {d: d ∈ f(eij)∩Dvk}
that stores the common set of documents between f(eij) and Dk on each edge ejk.

6.2  �Materialization of Nodes and Edges

The SKG model differs from most traditional graph structures by leveraging a layer
of indirection between any two nodes and the edge that connects them. Specifically,
instead of two nodes vi and vj being directly connected to each other through an
explicit edge eij, nodes are instead connected through documents, such that the edge
eij between node vi and vj is said to materialize any time |f(eij)| > 0.

In order to traverse from a source node vi to another node vj, our system thus
requires a lookup index (an inverted index) that maps node vi to an underlying set of
documents, as well as different lookup index (a forward index) that is able to map
those those documents to any other node vj to which those documents are also linked.
This combination of inverted index and forward index allows all terms or combina-
tions of terms to be modeled as nodes in the graph, enabling the traversal between
any two nodes through the set of shared documents between them, as shown in Fig. 5.

Since edges are based upon a set intersection of the documents both nodes are
linked to, this means that an edge can also be generated on the fly between any
arbitrary combination of other nodes. We refer to this dynamic generation of edges
as materialization of edges. Further, because both nodes and edges are based
entirely on set intersections of documents, this means it is also possible to dynami-
cally materialize new nodes based upon arbitrary combinations of other nodes, as
shown in Fig. 6.

K. AlJadda et al.

153

Fig. 5  Materialization of edges using shared documents. Edges exist between documents which
share terms. The edge weights are calculated on the fly using a function that leverages the statisti-
cal distribution of documents shared between the nodes

Fig. 6  Materializing new nodes dynamically. New nodes can be formed dynamically from any
arbitrary combination of other nodes, words, phrases, or any other linguistic representation

Utilizing Big Data Analytics for Automatic Building of Language-agnostic Semantic…

154

Since both nodes and edges can be materialized on the fly, this not only enables
us to generate nodes representing arbitrarily-complex combinations of existing
terms, but also to decompose arbitrarily-complex entities and relationships into
their constituent parts. For example, we can store just the nodes software and engi-
neer in the inverted index and forward index (along with positional information
about where they appear in each document), knowing that we can easily reconstruct
the longer phrase “software engineer” later as a materialized node. We can even
reconstruct arbitrarily-complex nodes such as “software engineer in in the location
of New York that also have the skills of Java and Python and either the words con-
tract or contractor or work to hire or the word negotiable within three words of pay
or salary”. The Semantic Knowledge Graph, therefore, provides both a lossless and
yet highlycompressed representation of every possible linguistic variation found
within the original corpus, as well as every potential edge that could connect all
possible materialized nodes with other nodes.

6.3  �Discovering Semantic Relationships

One of the key capabilities of the semantic knowledge graph is its ability to uncover
hidden relationships between nodes. In order to discover a relationship between a
node with a specific tag (field name) tk to another item xi with a specific tag tj, we
first query the inverted index item xi and assign its document set to node vi corre-
sponding with the document set Dvi. To then find the candidate nodes to which we
should traverse, we then search the forward index for tag tk, and we reference this
set of matching documents as Dtk = {d|x ∈ d,x: tk}. We then define Vvi,tk = {vj|xj ∈ d,d
∈ Dtk ∩Dvi} with vj being the node that stores item xj, and we further define Vvi,tk as
the set of nodes storing items with an edge to xi of type tk (see Fig. 7). We then apply
∀vj ∈Vvi,tk,relatedness(vi,vj) in order to score the semantic relationship between vi and
vj. This relatedness score, which will be described in the next subsection, enables us
to rank each of the edges between nodes in order to pick the top m most related
nodes. We can also define a threshold t in order to only accept relationships with rel
atedness(vi,vj) > t. This above operation can occur recursively in order to traverse
into multiple levels of relationships, as shown in Fig. 8.

The weights are calculated based upon the entire traversed path here, though it is
possible to alternatively calculate weights not conditioned upon the path and using
only each separate pair of directly connected nodes.

6.4  �Scoring Semantic Relationships

One of the most powerful features of the Semantic Knowledge Graph (SKG) is its
ability to score the edges between nodes in the graph based upon the strength of the
semantic similarity between the entities represented by those nodes. If we don’t
know how related the phrase physician’s assistant is to the keyword doctor or even

K. AlJadda et al.

155

Fig. 7  Three representations of a traversal. The Data Structure View represents the underlying links
from term to document to term in our underlying data structures, the Set Theory view shows the
relationships between each term once the underlying links have been resolved, and the Graph View
shows the abstract graph representation in the semantics exposed when interacting with the SKG

Fig. 8  Graph traversal. This example traverses from a materialized node (software developer*),
through all has-related-skill edges, then from each node at that level again through their has related
skill edges, and finally from those nodes to each of their has related job title edges

Utilizing Big Data Analytics for Automatic Building of Language-agnostic Semantic…

156

the phrase truck driver, we can leverage the SKG to score the strength of the seman-
tic relationship between all of those terms. To calculate the semantic similarity
score between items xi and xj, we materialize a source node vi (representing the
document set containing xi) and destination node vj (representing the document set
containing xj).

The simplest example of scoring semantic relationships is when comparing two
directly connected nodes, which we’ll call vi and vj. To do this, we first query the
inverted index for item xi, which is tagged with tj, and this query returns back Dvi.
We then perform a similar query for xj, which is tagged with tk, which returns back
Dvj. An edge eij exists between vi and vj when f(eij) 6 = φ. We refer to Dvi as our fore-
ground document set DFG and correspondingly call DBG ⊆ D our background docu-
ment set. Our scoring technique relies upon the hypothesis that xi is more
semantically-related to xj when the relative frequency of xj occurring in the
foreground document set DFG is greater the the relative frequency of xj occurring in
the background document set DBG. We leverage the z score as our similarity measure
for this hypothesis:

	

z v v
y n p

n p p
i j,() = - *

* -()1
	

Where n = |DFG| is the size of the foreground document set, y = |f(eij)| is the count

of documents that contain both xi and xj, and p
D

D

v

BG

j= is the probability of seeing

term xj with tag tk within the background document set.
We often may want to traverse the graph more than one level of depth to score

the relationships between more than two nodes, however. If we chose to traverse
from the entity java to developer to architect, for example, the weight of the edge
between developer and architect would make more contextual sense if it were also
conditioned upon the previous path traversed from java to developer. Otherwise, the
nuanced difference in meaning of the word architect in this context is lost in the
edge scoring. The Semantic Knowledge Graph enables us to retain this context from
any previous n nodes along a path P = v1, v2, ..., vn, with each node storing an item
xi having a tag tj. To calculate the same z(vi, vj) between any two nodes, but also
conditioning the edge’s score upon the full path P, the following changes are
required to the scoring function:

	

D

f e n

g e D n
FG

ij

i j i k j

n

ij vk

=
() =

()ì
í
î

ü
ý
þ

>

ì

í
ï

= = + = +

-

Ç

if

, if

3

3
1 1 1

3

, ,

ïï

î
ï
ï 	

where y D DFG vn
= Ç . We apply normalization on the z score using a sigmoid

function such that the scores fall within the range [−1,1]. We refer to this normal-
ized score between nodes as their relatedness score, where 1 indicates a

K. AlJadda et al.

157

completely positive relationship (very likely to appear together), where 0 means
no relationship (unrelated and just as likely as any random node to appear together),
and where −1 means a completely negative relationship (highly unlikely to appear
together).

It is important to note that since the edge weights are calculated at traversal time
(edges are materialized), that it is possibly to easily substitute a different scoring
function when appropriate. A simpler, but typically less meaningful, alternate scor-
ing function would be the total count of overlapping documents, which is what most
graph databases tend use for edge scoring. Plugging in more complex scoring func-
tions leveraging the statistics available in the inverted index and forward index is
also possible.

6.5  �Scaling Characteristics

The Semantic Knowledge Graph, being built on top of an inverted index and for-
ward index, fundamentally shares the same scaling characteristics of the underlying
distributed search engine.

As described in Sect. 1, both the inverted index and forward index data structures
scale well horizontally to trillions of documents sharded across multiple servers.
While there will be heavy overlap between the terms in every shard of the inverted
index and forward index, the number of terms conveniently grows logarithmically,
since each additional document is less likely than the last to add new terms to the
index that were never seen in a previous document. The documents, conversely, are
always partitioned across servers, such that all operations can occur in parallel
against only the subset of documents on each shard. Once these distributed opera-
tions are completed, then only one final aggregation of the top results from each
shard is necessary to return a final result.

For multi-relationship graph traversals (i.e. traverse from skills to job titles
and then also to industries), it is necessary for an additional aggregation to occur
for each nested level of traversal. This refinement process is to ensure that no
nodes (terms) were missed due to not being returned from one or more shards.
For example, if we run a graph traversal across two shards and shard 1 returns
the nodes a, b, c, but shard 2 returns nodes a, c, d, then it is necessary to send
another refinement request to shard 1 to return its statistics for the previously
missing node d and one request to shard 2 to return its statistics for the previ-
ously missing node b.

This refinement cost scales linearly with the number of nested levels requested,
and it should be uncommon to have many nested traversal levels for most common
use cases. Given these scaling characteristics, the Semantic Knowledge Graph can
be easily built and run at massive scale to enable distributed graph traversals across
a massive semantic knowledge base.

Utilizing Big Data Analytics for Automatic Building of Language-agnostic Semantic…

158

7  �Real World Applications

We implemented the techniques described throughout this chapter within the context
of a career search website. Specifically, they were implemented as components of a
semantic search system for CareerBuilder, one of the largest online job boards in
the world. The system leveraged the described query log mining techniques (as
described in 4.2) to build up a language-agnostic and domain specific taxonomy that
was able to model and disambiguate words (as described in 5) and related terms, as
well as the Semantic Knowledge Graph, which could also discover and score the
strength of named relationships between terms. By combining both a user-inputbased
approach (mining query logs) and a content-based approach (as described in 6), we
were able to improve the quality of the output of both systems. For example, we
were able to use the Semantic Knowledge Graph to score the terms and coterms
found from mining the query logs, enabling us to reduce the noise in the coterms
lists with 95% accuracy [21]. While the usefulness of the related coterms was higher
in the list mined from query logs (because the logs directly model the language used
by users of the system to express their intent), the Semantic Knowledge Graph was
able to fill in holes in the learned taxonomy for terms or coterms which were not
adequately represented within the query logs.

For our production system, we ended up indexing all discovered terms into a
scalable, naive entity extractor called the Solr Text Tagger.2 The Solr Text Tagger
leverages Apache Solr to build an inverted index compressed into a specialized data
structure called a Finite State Transducer (FST). This data structure enables us to
index millions of potential entities and subsequently pass incoming queries and
documents in to perform entity extraction in milliseconds across reasonably large
documents.

The extracted entities can then be passed to the Semantic Knowledge Graph in
order to score their similarity with the topic of the document. This allows us to take,
for example, a 10,000 word document and summarize it using the top ten phrases
which are most relevant to that document. It is then possible to run a weighted
search for those top keywords to find a relevant set of related documents (which
provides a highly accurate content-based recommendation algorithm), or to
alternatively traverse from those top ten phrases to a list of phrases most relevant to
them, but potentially missing from the actual document. In this way, we can search
on the concepts people are looking for, without relying on the exact words they have
used within their documents.

The same process of entity extraction, ranking, and concept expansion that we
described for documents also works well for interpreting and expanding queries in
order to provide a powerful semantic search experience. This system, in production,
was able to boost the NDCG scores (which is common metric used to measure
relevancy of a search engine) of search results from 59–76%, representing a very
significant improvement in the relevancy of the search engine [21].

2 https://github.com/OpenSextant/SolrTextTagger

K. AlJadda et al.

https://github.com/OpenSextant/SolrTextTagger

159

8  �Conclusion

We have discussed many techniques and tools available for building and utilizing
semantic knowledge bases. These techniques include the mining of massive vol-
umes of query logs leveraging a Probabilistic Graphical Model for Massive
Hierarchical Data (PGMHD) across a Hadoop cluster to find interesting terms and
phrases along with semantically-related terms and phrases which can be used for
concept expansion [22]. We also described a method for detection and disambigua-
tion of multiple senses of those discovered terms and phrases found within the query
logs [23]. We further covered a model called a Semantic Knowledge Graph, which
leverages the relationships inherent between words and phrases within a corpus of
documents to automatically generate a relationship graph between those phrases.
This graph can be traversed to further discover and score the strength of relation-
ships between any entities contained within it based purely upon the content within
the documents in a search engine.

These components by themselves are useful tools, but when combined together,
they can form a powerful “intent engine” which is able to index content into a search
engine, and then leverage the auto-generated semantic knowledge bases to parse
and interpret incoming queries (to match documents) or documents (to match other
documents). We successfully applied these techniques at one of the largest job
boards in the world and were ultimately able to boost the relevancy of the search
engine (as measured by NDCG scores) from 59–76%. Such a significant improve-
ment in search results relevancy is a testament to the gains which can be achieved
through utilizing distributed big data analytics to automate the creation of semantic
knowledge bases and applying them to increase the relevancy of an information
retrieval system.

References

	 1.	R. Navigli and P. Velardi, “Learning domain ontologies from document warehouses and dedi-
cated web sites,” Computational Linguistics, vol. 30, no. 2, 2004.

	 2.	T. Grainger and T. Potter, Solr in Action. Manning Publications Co, 2014.
	 3.	 J. Bobadilla, F. Ortega, A. Hernando, and A. Gutierrez,´ “Recommender systems survey,”

Knowledge-Based Systems, vol. 46, pp. 109–132, 2013.
	 4.	 J. Lu, D. Wu, M. Mao, W. Wang, and G. Zhang, “Recommender system application develop-

ments: a survey,” Decision Support Systems, vol. 74, pp. 12–32, 2015.
	 5.	C. C. Aggarwal, “Content-based recommender systems,” in Recommender Systems, pp. 139–

166, Springer, 2016.
	 6.	M. J. Pazzani and D. Billsus, “Content-based recommendation systems,” in The adaptive web,

pp. 325–341, Springer, 2007.
	 7.	X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering techniques,” Advances in

artificial intelligence, vol. 2009, p. 4, 2009.
	 8.	R. Burke, “Hybrid recommender systems: Survey and experiments,” User modeling and user-

adapted interaction, vol. 12, no. 4, pp. 331–370, 2002.

Utilizing Big Data Analytics for Automatic Building of Language-agnostic Semantic…

160

	 9.	M. de Gemmis, P. Lops, C. Musto, F. Narducci, and G. Semeraro, “Semantics-aware content-
based recommender systems,” in Recommender Systems Handbook, pp. 119–159, Springer,
2015.

	10.	S. Harispe, S. Ranwez, S. Janaqi, and J. Montmain, “Semantic measures for the comparison of
units of language, concepts or entities from text and knowledge base analysis,” arXiv preprint
arXiv:1310.1285, 2013.

	11.	R. Mihalcea, C. Corley, and C. Strapparava, “Corpus-based and knowledge-based measures of
text semantic similarity,” in AAAI, vol. 6, pp. 775–780, 2006.

	12.	A. Budanitsky and G. Hirst, “Semantic distance in wordnet: An experimental, applicationori-
ented evaluation of five measures,” in Workshop on WordNet and Other Lexical Resources, vol.
2, 2001.

	13.	G. Bouma, “Normalized (pointwise) mutual information in collocation extraction,” in
Proceedings of the Biennial GSCL Conference, pp. 31–40, 2009.

	14.	S. T. Dumais, “Latent semantic analysis,” Annual review of information science and technol-
ogy, vol. 38, no. 1, pp. 188–230, 2004.

	15.	P. D. Turney, “Mining the web for synonyms: PMI-IR versus lsa on toefl,” in Proceedings
of the 12th European Conference on Machine Learning, EMCL ‘01, (London, UK, UK),
pp. 491–502, Springer-Verlag, 2001.

	16.	T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in
vector space,” arXiv preprint arXiv:1301.3781, 2013.

	17.	K. AlJadda, M. Korayem, C. Ortiz, T. Grainger, J. A. Miller, and W. S. York, “Pgmhd: A scalable
probabilistic graphical model for massive hierarchical data problems,” in Big Data (Big Data),
2014 IEEE International Conference on, pp. 55–60, IEEE, 2014.

	18.	K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed file system,” in
Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th Symposium on, pp. 1–10,
IEEE, 2010.

	19.	J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large clusters,”
Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

	20.	A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff, and
R. Murthy, “Hive: a warehousing solution over a map-reduce framework,” Proceedings of the
VLDB Endowment, vol. 2, no. 2, pp. 1626–1629, 2009.

	21.	T. Grainger, K. AlJadda, M. Korayem, and A. Smith, “The semantic knowledge graph: A com-
pact, auto-generated model for real-time traversal and ranking of any relationship within a
domain,” in IEEE 3rd International Conference on Data Science and Advanced Analytics,
IEEE, 2016.

	22.	K. AlJadda, M. Korayem, T. Grainger, and C. Russell, “Crowdsourced query augmentation
through semantic discovery of domain-specific jargon,” in IEEE International Conference on
Big Data (Big Data 2014), pp. 808–815, IEEE, 2014.

	23.	M. Korayem, C. Ortiz, K. AlJadda, and T. Grainger, “Query sense disambiguation leveraging
large scale user behavioral data,” in IEEE International Conference on Big Data (Big Data
2015), pp. 1230–1237, IEEE, 2015.

K. AlJadda et al.

	Editor’s Notes
	Contents
	On the Role of Distributed Computing in Big Data Analytics
	1 Introduction
	2 History and Key Characteristics of Big Data
	3 Key Aspects of Big Data Analytics
	4 Popular Technologies for Big Data Analytics Utilizing Concepts of Distributed Computing
	4.1 Hadoop
	4.2 Yarn
	4.3 Hadoop Map Reduce
	4.4 Spark

	5 Conclusion
	References

	Fundamental Concepts of Distributed Computing Used in Big Data Analytics
	1 Introduction
	2 Multithreading and Multiprocessing
	2.1 Concept of Multiprocessing
	2.2 Example of Multiprocessing
	2.3 Concept of Multithreading
	2.4 Example of Multithreading
	2.5 Difference between Multiprocessing and Multithreading

	3 Computing Architecture in Distributed Computing
	3.1 SISD
	3.2 Vector Processor
	3.3 SIMD
	3.4 MIMD
	3.5 SM-MIMD
	3.6 DM-MIMD

	4 Scalability in Distributing Computing
	4.1 Scalability Requirement and Category
	4.2 Scaling Up
	4.3 Scaling Out
	4.4 Prospect of Scale Up and Scale Out

	5 Queuing Network Model for Distributed Computing
	5.1 Asynchronous Communication
	5.2 Queue System
	5.3 Queue Modeling

	6 Application of CAP Theorem
	6.1 Basic Concepts of Consistency, Availability, and Partition Tolerance
	6.2 Combination of Consistency, Availability, and Partition Tolerance

	7 Quality of Service (QoS) Requirements in Big Data Analytics
	7.1 Performance
	7.2 Interoperability
	7.3 Fault-Tolerance
	7.4 Security
	7.5 Manageability
	7.6 Load-Balance
	7.7 High-Availability (HA)
	7.8 SLA

	8 Conclusion
	References

	Distributed Computing Patterns Useful in Big Data Analytics
	1 Introduction
	2 Primitives for Concurrent Programming
	2.1 Concurrency Expression
	2.2 Synchronization

	3 Communication Protocols and Message Exchange
	3.1 Synchronous Communication
	3.2 Asynchronous Communication
	3.3 Pseudo-Synchronous Communication
	3.4 Client/Server Paradigm
	3.5 Communication Deployment in Big Data

	4 Data Distribution in Big Data on Distributed Environments
	5 Implementation Problems
	5.1 Race Condition Problems
	5.2 Message Exchange

	6 Conclusion
	References

	Distributed Computing Technologies in Big Data Analytics
	1 Introduction
	2 Distributed Database
	2.1 NoSQL Database

	3 Distributed Storage
	3.1 Hadoop Distributed File System (HDFS)

	4 Distributed Computation
	4.1 Map-Reduce in Hadoop
	4.2 Spark

	5 Machine Learning Platforms
	6 Search System
	6.1 Search Software

	7 Big Data Messaging Software
	8 Cache
	8.1 Distributed Caching Systems

	9 Data Visualization
	10 Conclusion
	References

	Security Issues and Challenges in Big Data Analytics in Distributed Environment
	1 Introduction
	1.1 Security Issues in Big Data in Distributed Environment

	2 Infrastructure Based Security
	2.1 Secure Computations
	2.2 Secure Non-relational Data Stores

	3 Data Privacy
	3.1 Privacy Preservation in Data Mining
	3.2 Cryptography Control Mechanism
	3.3 Granular Access Control

	4 Data Integrity and Data Management
	4.1 Granular Audits
	4.2 Secure Transactions and Transaction Logs
	4.3 Data Provenance

	5 Reactive Security
	5.1 Input Validation at Distributed Nodes
	5.2 Real Time Security

	6 Countermeasures
	7 Conclusion
	References

	Scientific Computing and Big Data Analytics: Application in Climate Science
	1 Introduction
	2 Computational Challenges in Solving Scientific Problems
	3 Climate Change and Big Data Analytics
	4 Use Case on Climate Analytics
	4.1 The Scientific Challenge of the Climate System
	4.2 Computational Challenge of the Climate Modeling
	4.3 Post-processing Climate Model Output
	4.4 BigData Climate Analytics Using Spark

	5 Conclusions
	References

	Distributed Computing in Cognitive Analytics
	1 Introduction
	2 Building Blocks of Cognitive Analytic System
	2.1 The Data Repositories
	2.2 The Data Ingestion Tools
	2.3 The Analytical Frameworks
	2.4 The Hardware Components
	2.5 Key Non-functional Requirements to Consider
	2.5.1 High Concurrency Throughput
	2.5.2 Interfaces for Interaction with Systems
	2.5.3 High Availability and Disaster Recovery
	2.5.4 Linear Scalability
	2.5.5 Ability to Prioritize Workload

	2.6 Cognitive System – Implementation Patterns

	3 Cognitive System – Use Cases
	3.1 Cognitive Systems in Health Care
	3.2 Cognitive Systems in Internet of Things Domain
	3.3 Cognitive Analytics to Become a Customer Centric Organization
	3.3.1 Next Best Action
	3.3.2 Changing Engagement Patterns
	3.3.3 360 ° View of Customer
	3.3.4 Understand Thy Customer

	4 Conclusion
	References

	Distributed Computing in Social Media Analytics
	1 Introduction
	2 Open Source Tools for Social Media Analytics
	3 Influencer Analytics
	3.1 Understanding the Impact of Influencers
	3.2 Wimbledon Influencer Case Study

	4 Social Polling
	4.1 Sentiment Analysis
	4.2 Intent Detection
	4.3 Topic Monitoring
	4.4 User Segmentation
	4.5 Some Social Polling Examples
	4.6 Social Polling for Demand Planning

	5 Conclusion
	References

	Utilizing Big Data Analytics for Automatic Building of Language-agnostic Semantic Knowledge Bases
	1 Introduction
	2 Search Engines
	2.1 Key Technologies
	2.2 Inverted Index
	2.3 Sharding of Data
	2.4 Replication of Data
	2.5 Denormalized Data Model
	2.6 Distributed Aggregation and Scoring

	3 Recommendation Systems
	4 Semantic Discovery
	4.1 Problem Description
	4.2 Semantic Similarity
	4.3 Probabilistic Semantic Similarity Scoring Using PGMHD
	4.4 Distributed PGMHD

	5 Word Sense Ambiguity Detection
	5.1 Ambiguity Score
	5.2 Resolving Word Sense Ambiguity

	6 Semantic Knowledge Graph
	6.1 Model Structure
	6.2 Materialization of Nodes and Edges
	6.3 Discovering Semantic Relationships
	6.4 Scoring Semantic Relationships
	6.5 Scaling Characteristics

	7 Real World Applications
	8 Conclusion
	References

