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Abstract Particulate reinforced metal matrix composites (PRMMCs) are typical

random heterogeneous materials whose global behavior depends on the microstruc-

tural characterisics. Recently a numerical approach was developed (Hachemi et al.,

Int J Plast 63:124–137, 2014 [1], Chen et al. Direct methods for limit and shake-

down analysis of structures, 2015 [2]), by applying it to a typical PRMMC material

WC/Co, we presented how the ultimate strength and endurance limit can be pre-

dicted from the material microstructures. Due to the randomness in the microstruc-

tures of PRMMCs, size of the representative volume element (RVE) has a nontrivial

influence over the predicted effective behaviors. In order to understand how size of

RVEs contribute to the result and based on that to eliminate its influence, a numerical

investigation is performed in the present study. In this study, a large number of rep-

resentative volume element (RVE) samples representing a representative PRMMC

material, WC-20 Wt% Co, were built from artificial microstructures. The samples

are obviously different in size, and by deploying the established numerical approach

to these samples, ultimate strength and endurance limit were calculated. Afterwards,

the derived material strengths were analyzed by multiple inferential statistical mod-

els. The statistical study reveals how strength and other effective material properties

react to the change of the RVE size. On that basis, the study proposed a feasible and

computationally inexpensive solution to minimize the size effect.
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1 Introduction

Over the past three decades, particulate reinforced metal matrix composites (PRMMCs)

have been transformed from a topic of scientific and intellectual interest to materials

of broad technological and commercial significance [3]. In many industrial sectors, a

clear trend can be seen that the application of PRMMCs prevail and gradually replace

the conventional metallic materials in structural components. This trend in turn fos-

ters the need to strengthen the understanding of the material behavior and based on

that further reduce the development period of new PRMMC materials. Components

made from PRMMCs often operate under variable loads with unknown time history.

In order to evaluate the serviceability of these materials, their fatigue behaviors have

to be well understood.

In many existing works, based on experimental observation, the dependence of

the fatigue behavior of PRMMCs on the microstructural characteristics, such as size

[4, 5] and distribution of the reinforcement phase [6, 7] have been investigated. In

addition to these experimental works, numerical methods based on the microme-

chanical finite element (FE) analysis were also developed and applied to the PRMMC

materials. By using these numerical methods, one can predict the macroscopic effec-

tive material behavior of interest from the material microstructure, and this sig-

nificantly reduces the time for developing new PRMMC materials. For PRMMCs,

one material behavior of particular interest is their load bearing capacity. However,

according to [8], this is probably the most disputed part. Despite the difficulties aris-

ing from modeling the representative material morphology and defining the bound-

ary conditions, Füssl and Lachner proposed in [8] to determine the strength from the

limit analysis. The similar technique has been presented in many studies, c.f. [9, 10].

In these papers, the global material strength, both ultimate strength and endurance

limit, were predicted by applying the direct method to the representative volume

element (RVE) and converting the results to their corresponding macro quantities

by means of the homogenization. Compared to the analytical approaches, the great-

est advantage of such approach is that the influence of the material microstructure

can be immediately identified.

In our latest studies, this numerical technique was extended to the random het-

erogeneous PRMMC materials. One major challenge pertained to these materials is,

that the microstructure can not be embodied by one individual RVE model. Due to

this reason, we proposed to predict the material strength from many RVE models

called statistical equivalent representative volume element (SERVE). Although the

method has been successfully implemented to an representative PRMMC material,

WC-Co, with different binder contents and the results obtained from SERVEs were

carefully interpreted by statistical models, one important issue, the size effect, is still

not fully exposed. The size effect can be explained as follows: For nonperiodic mate-

rials, the absence of periodicity of material excludes to embody the infinite domain

of the material by an individual RVE of finite size; therefore the predicted material

behavior depends largely on the adopted RVE size.
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In brief, the RVE size has to exceed a critical value to ensure that the simulation

results are independent of both the RVE size and the spatial distribution of the rein-

forcements [11]. Regarding the determination of the RVE size, Hill [12] has provided

an insight from an energetic point of view and developed a condition which requires

the equality to hold for a sufficiently large RVEs. Because this condition, which is

referred as the Hill’s condition, made no hypothesis on the link between stresses and

strains, therefore it should be compatible with any constitutive law. Beside Hill’s con-

dition, there are many pragmatic approaches for determining the RVE size, e.g. win-

dowing method [13] which arbitrarily builds RVEs with fixed window size and com-

pares between predicted results from different windows; boundary condition method

[14] which examines the consistency between predictions obtained from statically

uniform boundary conditions (SUBC), kinematically uniform boundary conditions

(KUBC), and periodic boundary conditions (PBC); size convergence approach [15]

which gradually enlarges the RVE size and accepts the size where the prediction is

stabilized.

In addition to the pragmatic approaches, the problem of RVE size determination

has been intensively studied from a theoretical perspective. For example, Drugan

and Willis [16] studied a linear elastic composite and proposed a criterion for deter-

mining the minimum RVE size by comparing the ratio of the magnitude of nonlocal

terms to the magnitude of local terms. According to this criterion, the minimum

RVE size is required to be at maximum twice the reinforcement diameter for any

reinforcement concentration level. This criterion has been subsequently approved in

few subsequent studies [17, 18]. In multiple studies concerning different types of

composite materials, a general observation has been reported that the size required

for predicting the effective elastic behavior is relatively small and depends only on

the volume fraction [19]. Beyond the scope of linear elasticity, many studies con-

firmed that the minimum size of an RVE needed to capture the nonlinear behavior

are much larger than the ones for determining the linear behavior [20, 21]. In our

previous study [22], we observed from few RVE samples built from the real scan-

ning electron microscope (SEM) images of WC-Co, that the disparity between the

models becomes more obvious when plastic deformation accumulates. Based on this

observation, we concluded that all indicators for checking the fulfillment of the size

requirement are necessary but insufficient criteria. Therefore a remedy to the diffi-

culty of determining the RVE size is to use SERVE models.

According to the concept of SERVE, the material behavior of a random compos-

ite should be evaluated from a series of statistically equivalent RVE samples [23].

The evaluation should be based on statistical descriptors such as mean-value, vari-

ances, and probability density function [24]. When the size of SERVEs increases,

each SERVE sample tends to become the RVE and differences among them become

negligible [25]. Meanwhile, using typical statistical analysis techniques such as cor-

relation analysis, the dominant factors influencing the material constitutive proper-

ties can be identified [26].

To achieve a satisfactory level of reliability, the number of SERVE samples should

be guaranteed to exceed a threshold value. This threshold value can be determined

from the margin of error, the confidence level and the standard deviation of the data.
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Among existing studies, the number of RVEs varies significantly. In most studies

only a small number of samples, e.g. 15 [27] or 25 [28], are used to predict the

material behavior. Only seldom would an extremely large number of samples be

adopted for the analogous purpose [29].

Although by using SERVE models the difficulty for determining the RVE size

and eliminating the size effect is greatly reduced, it is still an open question that,

how large should each statistically equivalent RVE be—especially, if the aim of the

homogenization study is not only to predict the mean value, but also other statistical

characteristics of an effective behavior. As has been summarized, the minimal RVE

size depends on the type of the behavior to be studied. Due to this reason, the objec-

tive of the present study is to expose how to determine the size of RVEs used for

determining the material strength. In the present study, the material investigated in

our previous works, tungsten carbide-cobalt hard metal with 20 Wt.% of the binder

phase, WC-20 Wt.% Co, was again used as an representative PRMMC material. WC-

Co is one of the most used materials in industrial applications where hardness and

wear resistance are crucial. The initial phase of this composite, WC, is the tough-

est in comparison to other hard phases used in tool materials. However, due to the

lack of sufficient toughness WC alone is not applicable for harsh applications since

it cannot resist deformation and wear well. This drawback can be compensated by

the counterpart Co phase. As the second phase, Co provides the necessary toughness

and other advantageous binder properties. In addition to that, what is also unique of

WC-Co is the almost perfect compatibility existed between its two constitutes and,

as a consequence, WC-Co is widely used in the machining, mining, forming and

similar industries [30].

To understand how size of the RVE models influences the effective ultimate

strength and endurance limit predicted for this material, we built 3 sample groups.

Each sample group consists of 500 RVE models built from artificial microstructures

of the material. RVE models in 3 sample groups have the same configuration but

the different RVE size. By deploying the established numerical approach to these

samples, ultimate strength and endurance limit were calculated and the results were

analyzed through statistical models with a particular focus on the size effect. On the

basis of the statistical analyses, in the end of the work, a feasible and computationally

inexpensive solution is proposed for minimizing the size effect.

2 Shakedown of RVE Models

The strength of the WC-Co composite was predicted from RVE samples using the

static direct method based on the Melan’s theorem [31]. Before presenting how this

method was applied to heterogeneous materials, first we revisit some fundamen-

tal micromechanical principles. Based on these principles results of the numerical

simulation of the RVE models were interpreted and converted to the corresponding

macroscopic effective quantities. The micromechanical laws adopted in the present

study were based on the mean field homogenization theory according to which the
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material can be reflected in two well-separated scales: the microscopic scale is small

enough for the heterogeneities to be identified. In contrary to that, the macroscopic

scale is large enough for the heterogeneities to be expelled. The two scales are well-

separated and they are described by two coordinate systems: the global coordinate

system x and local coordinate system y. The following relationship holds

y = x
𝜀

. (1)

𝜀 is a small scale parameter which determines the size of the RVE.

For a heterogeneous material, when it is submitted to an external loading, its

microscopic stress field 𝝈 in y and its macroscopic counterpart 𝚺 satisfy the rela-

tionship

𝚺 = 1
Ω ∫

𝛺

𝝈(y)dV = ⟨𝝈(y)⟩ . (2)

Here ⟨⋅⟩ stands for the averaging operator, and Ω indicates the RVE domain. Simi-

larly, the relationship between strain measures satisfies

E = 1
Ω ∫

𝛺

𝜺(y)dV = ⟨𝜺(y)⟩ . (3)

The local strain 𝜺 can be decomposed into two parts: The average value E and a

fluctuating part 𝜺
∗

𝜺(u) = E + 𝜺
∗
. (4)

When all constituents of a RVE are elastic, the overall behavior of the RVE is elastic

as well. In this circumstance, 𝚺 and E are correlated by an effective elastic tensor ℂ

𝚺 = ℂ ∶ E. (5)

In case that the heterogeneous material to be considered behaves isotropically in

the macro scale, same to the single phase material, ℂ can be uniquely determined

from two elastic constants, such as effective Young’s modulus Ē and effective Pois-

son’s ratio 𝜈̄.

When the composite material is composed of elasto-plastic constituents, its

macroscopic ultimate strength 𝛴U and endurance limit 𝛴∞, which correspond to

plastic and shakedown limit in the RVE scale, can be studied by incorporating

homogenization techniques with direct methods. As formulated by Magoariec et al.

[32], when the shakedown state is attained in the micro scale, stress field pertained

to the reference elastic body BE
, 𝝈

e
, and the time invariant residual stress field 𝝆̄ are

required to satisfy following conditions
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𝝈
e ∶

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝛁 ⋅ 𝝈e = 0 in 𝛺,

𝝈
e = ℂ ∶ (E + 𝜺

∗) in 𝛺,

𝝈
e ⋅ n anti-periodic on 𝜕𝛺,

u∗ periodic on 𝜕𝛺,

⟨𝜺⟩ = E.

(6)

𝝆̄ ∶
{

𝛁 ⋅ 𝝆̄ = 0 in 𝛺,

𝝆̄ ⋅ n anti-periodic on 𝜕𝛺.

(7)

Here, 𝛺 indicates the RVE domain, 𝜕𝛺 the surface, n the outer normal, and u∗ the

fluctuation part of the displacement corresponds to 𝜺
∗
.

Although shakedown problem in the RVE scale can be studied by either strain or

stress approach [32], in present study we consider exclusively the stress approach.

For stress approach the load prescribed on RVE is the macroscopic stress𝜮. Because

the material to be studied is non-periodic, a small specification is made on conditions

(6) and (7), where, instead of enforcing the node-wise anti-periodicity of the resid-

ual stresses and periodicity of the fluctuating displacement, we apply the statically

uniform boundary conditions (SUBC) on the purely elastic reference RVE. As a con-

sequence, the shakedown problem yields 𝝆̄ ⋅ n = 𝟎 on 𝜕𝛺 and one can prove that, in

the absence of the body force ⟨𝝆̄⟩ = 𝟎, so 𝝆̄ does not contribute to the macroscopic

stress.

By discretizing the physical fields in (6) and (7) by means of the FE formulations,

the application of the static theorem to RVEs composed of elastic perfectly plastic

materials leads to following optimization problem

minimize
𝝆̄,𝛼

− 𝛼

subject to

NG∑

i=1
Ci 𝝆̄i = 𝟎 ,

F(𝛼𝝈e
ik + 𝝆̄i) − 𝜎

2
Y i ≤ 0

∀i ∈ [1,NG] ; k ∈ [1,NV] .

(8)

Here, 𝛼 is referred to as the load factor, C the equilibrium matrix, 𝝆̄i the stress tensor

associated with the ith Gaussian point, 𝝈
e
ik the abbreviation of 𝝈

e
i (Pk) which means

the 𝝈
e

at Gaussian point i and load vertex k, 𝜎Y the yield strength, F the yield func-

tion, NG the number of Gaussian points, and NV the number of vertices. Both phases

were assumed to obey the von Mises yield condition. Meanwhile, it is worthy to note

that, although in few studies, e.g. [33], it is suggested to replace the yield strength by

fatigue limit of the material to meet with the safety requirement, the present study

still sticks with the convention adopted in most existing works, such as [10, 34], in

which initial yield strength of the material is used. This choice is made since there is

no available data on the fatigue test of the binder cobalt alloy. Solving (8) yields the

load capacity of the RVE, and depending on if k = 1 or k > 1 the calculated strength
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corresponds to either plastic limit or endurance limit. In the present study, the load

scenario considered is restricted to non-reversed uniaxial stress, in this case NV = 2
and 𝝈

e
ik = 0 for all k = 2.

For RVE models considered in the present study, (8) turns out to be a large scale

optimization problem. In order to solve such a problem within a reasonable time,

it requires the problem to be carefully formulated and submitted to powerful opti-

mization algorithm. Several studies, e.g. [35, 36], acknowledged that by replacing

the original inequality constraints by Euclidean ball constraints, the sparsity of the

Karush-Kuhn-Tucker (KKT) system can be better exploited and thus the problem can

be solved more efficiently. This conclusion is approved by our own observations. For

this reason, the recommended reformulation is applied to all optimization problems

evaluated in the present study. The specific workflow to reformulate (8) can refer to

[35].

After reformulation, the static problem can be viewed as a typical SOCP prob-

lem with ni = 5, and therefore it can be handled by commercial optimization solvers

such as Gurobi [37], CPLEX [38], MOSEK [39], among others. In our previous

studies [1, 2], we proposed to solve (8) by the general purpose interior-point method

solver IPOPT [40, 41]. Compared to listed commercial SOCP solvers, the advan-

tage of IPOPT is that it can handle a large variety of nonlinear optimization prob-

lems. However, the price paid to achieve such a generality is that, when IPOPT is

not carefully customized to the problem, its efficiency on solving particular typed

problems, such as SOCP, is inferior to the listed commercial solvers. In order to find

a solver that, besides rendering an accurate solution, also demonstrates an excellent

numerical efficiency, in the present study we compared results from two selected

solvers: the general purpose solver IPOPT and the SOCP solver Gurobi; after con-

firming that the discrepancy between results obtained from two solvers is negligible,

the SOCP solver Gurobi is adopted for solving optimization problems originating

from PRMMC samples due to its outstanding efficiency (Details see this chapter).

3 Statistical Models for the Interpretation of Numerical
Results

Since we propose to predict the global material behavior from SERVE samples, the

study of the size effect is also based on rigorous statistical methods. In the present

study, we consider an RVE size to be sufficient if it results in effective behaviors

that are statistically equivalent to their counterparts predicted from larger RVEs.

Here, statistical equivalent is reflected from two aspects: the statistical characteristics

of one effective behavior and the correlation between different effective behaviors.

These two conditions were checked by statistical models presented in the present

section.

In order to check if the statistical characteristics of one effective behavior is

size independent, its mean value x̄ and the standard deviation s were compared to
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quantities derived from RVEs of a greater size. Next to that, hypothesis tests were

applied to examine if effective behaviors predicted from the current size and a larger

size can be regarded as belonging to the same statistics. To this end, two hypothesis

tests, namely the Kolmogorov-Smirnov test (K-S test) and Wilcoxon rank sum test

(rank sum test), were employed. K-S test examines if two samples X and Y are from

the same continuous distribution. Null and alternative hypotheses of this test are

H0 ∶ Two samples are from the same continuous distribution

Ha ∶ Two samples are from the distinctive continuous distribution

The decision of a two samples K-S test is made based on the distance between the

empirical distribution functions of two samples, where the empirical distribution

function indicates the cumulative distribution function of a sample that jumps up by

1∕n at each of the n data points. The rank sum test, on the other hand, can be seen as

a nonparametric equivalent to t-test which does not require the data to be subjected

to the normal distribution. Null and alternative hypotheses of rank sum test are

H0 ∶ Two samples are from continuous distributions with equal medians

Ha ∶ Two samples are not from continuous distributions with equal medians

In addition to the hypothesis test, we also study if the relationship between different

effective behaviors, e.g. the relationship between the effective Young’s modulus Ē
and the global endurance limit 𝛴∞, changes if the size of RVE increases. To this end,

the Pearsons correlation coefficient r from two random variables X and Y defined as

follows is evaluated

rXY =
∑N

i=1(Xi − X̄)(Yi − Ȳ)
√

∑N
i=1(Xi − X̄)2

√
∑N

i=1(Yi − Ȳ)2
. (9)

Here X̄ and Ȳ are mean values of the statistics X and Y , respectively. When more

than two random variables are considered, matrix of correlation plots is a convenient

way to present the data. In such matrix, the correlation between every two random

variables (Xi,Yj) is plotted as a component of the matrix, and the histogram of an

individual variable is plotted in the diagonal. Matrix correlation plot is employed as

a main tool for data presentation in the present study.

4 Comparison Between Optimization Solvers

Before investigating the size effect on the strength prediction for PRMMC samples, a

comparative study was performed on a benchmark model to check if results from the

general purpose nonlinear optimization solver IPOPT and the SOCP solver Gurobi
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Fig. 1 Geometry of the

plate with a hole model

Table 1 Dimensions of the benchmark model

Length L (mm) Diameter D (mm) Thickness h (mm) D∕L
100 20 2 0.2

Table 2 Material properties of the benchmark model

E (GPa) 𝜈 (−) 𝜎Y (MPa)

Steel 210 0.3 280

are consistent. The benchmark model chosen for the comparative study is the classic

plate with a hole model that has been studied in abundant direct method literature, c.f.

[42–44]. The geometry of the model is shown in Fig. 1 with the dimensions given in

Table 1. We study the strength of the structure submitted to two distributed pressures

Px and Py. By considering Px and Py as basic loads P̂1 and P̂2, a vertex in the load

space spanned by P̂1 and P̂2 can be uniquely defined as (cos 𝜃, sin 𝜃) by introducing

an angle 𝜃. This way, the load factor 𝛼 under different combinations of two loads can

be calculated by varying the magnitude of 𝜃. Due to the symmetry of the geometry

and loads, the finite element model contains only 1∕4 of the geometry. The model

adopts eight node linear solid elements and material properties outlined in Table 2.

In order to be consistent with existing literature, the material is considered in this

numerical study as an elastic-perfect plastic material.

To evaluate the limit and shakedown load of the given model, first the geometry

and the FE mesh were built in the commercial FE software ABAQUS [45] for cal-

culating the elastic stress 𝝈
e
. In this calculation, the magnitude of both basic loads

were fixed to 100 MPa. The model configuration and the von Mises stress of 𝝈
e

can

be seen in Fig. 2.

After𝝈
e

was calculated, the information of the finite element model and the elastic

stresses were output to Matlab [46]. In Matlab the formulation of the shakedown
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Fig. 2 Elastic stresses of the plate with a hole model

problem (8) is realized through an in-house Matlab finite element code. Using the

information passed by the commercial finite element software, the matrices involved

in the objective function and constraints were first evaluated on the element level and

then assembled into global matrices in sparse forms. The form of the shakedown

problem eventually used for the computation was customized to the solver. When

IPOPT is used as the solver, Jacobian and Hessian matrices used to assemble the

reduced Karush-Kuhn-Tucker (KKT) system were calculated. Based on the Jacobian

and Hessian matrices provided, IPOPT finds the optimal solution to a series of barrier

problems following the steps outlined in [41]. When commercial solver Gurobi is

used, the effort for evaluating Jacobian and Hessian matrices can be reduced, and the

difficulties lie in finding an appropriate scaling factor and an optimal set of solver

parameters which prevent the solver from slow convergence near the optimum. In the

present study, the linear system corresponding to the equality constraints was scaled

so that the entries in it are in the same order.

Before the shakedown problem pertained to the benchmark model was calculated

by two solvers, we first compared results of IPOPT adopting original formulation (8)

and the reformulated one. We noticed that, although original form demands more

time to compute, results derived from both forms are identical (discrepancy between

results is less than 0.001%). Next we fixed to the reformulated form and compared
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Table 3 Comparison of load factor 𝛼 determined by two optimization solvers (Gurobi and IPOPT)

θ [rad] α 1P(GUR) α 1P(IPO) ||Err.||% α 2P(GUR) α 2P(IPO) ||Err.||%
0 2.259 2.259 0.0 1.847 1.847 0.0

π /18 2.446 2.446 0.0 2.007 2.006 0.1
π /9 2.686 2.686 0.0 2.267 2.267 0.0
π /6 2.976 2.976 0.0 2.684 2.684 0.0
2π /9 3.356 3.356 0.0 3.484 3.485 0.0
5π /18 3.356 3.356 0.0 3.484 3.488 0.1
1π /3 2.976 2.976 0.0 2.684 2.684 0.0
7π /18 2.685 2.687 0.1 2.272 2.269 0.1
4π /9 2.446 2.446 0.0 2.007 2.007 0.0
π /2 2.259 2.259 0.0 1.847 1.847 0.0

results of two solvers. Result of the comparative study can be seen in Table 3. In this

table, abbreviation “GUR” indicates the solver Gurobi, and “IPO” the solver IPOPT.

Superscript 1P means only one load vertex is considered, and this corresponds to the

limit analysis. In contrast to that, the superscript 2P indicates that load Px and Py are

enforced to vary proportionately. Table 3 shows that, although the discrepancy is

slightly increased, the error is still tolerable and with the maximum value around

0.1%. This way, we confirmed that the problem can be handled by both IPOPT and

Gurobi. In the present study, most configuration parameters in IPOPT use the default

values, and in this circumstance the time it costs for IPOPT to solve this problem is

about 10 times compared to the Gurobi. For this reason, Gurobi was used to solve the

shakedown problems pertained to RVE models, while IPOPT was used only occa-

sionally to cross-validate the results of IPOPT on selected models.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Px/σY
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Fig. 3 Feasible load domains of the plate with a hole model



62 G. Chen et al.

Next, we compared our own results to literature in Fig. 3. Because results from

IPOPT and Gurobi are almost identical, the discrepancy between them is neglected;

in the following the result is presented indiscriminately as 𝛼. Results in Fig. 3 were

obtained by shakedown analyses considering one vertex (limit load), two vertices

(proportionally varied tow loads) and four vertices (independently varied two loads).

Results from our own calculation are found to be in line with results in [42–44]. For

this reason, we confirmed the validity of our numerical formulation.

5 Numerical Study of PRMMC Samples

The numerical study of the representative PRMMC material, WC-Co 20 Wt.%, is

based on 1,500 RVE models. The models fall into three sample groups, each group

consists of 500 samples. The samples were modeled from artificial morphologies

generated by a simple random sequential adsorption (RSA) algorithm as shown in

Fig. 4. The algorithm is developed in Matlab on the matrix basis. According to this

algorithm, the RVE domain is initialized as a zero matrix and the program contin-

uously projects prism shaped geometry into this matrix. After each projection, zero

elements in the matrix are set to one if they belong to the prism domain and remain

zero otherwise. The value of elements will not be reset if they have already been

picked in previous iterations. Parameters controlling the projection, such as prism

Fig. 4 Inclusion process

with fixed grain size
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size, rotation angle, and center of the projection, are all random numbers. In order to

be consistent with real WC-Co microstructures, the algorithm adopts a configuration

that the diameter of WC grains, dWC, obeys a normal distribution with mean value

3µm and standard deviation 0.8µm. The position where each particle locates is

independent from the others and therefore there is no predefined clustering. Due

to the high carbide content of the material, before a new grain is to be projected,

it is very likely that the corresponding RVE domain is already partially assigned

to other grains. When this happens, the algorithm will neither reject the projection

of the new grain nor record the overlapping information such as the grain bound-

aries. The new grain is simply projected and merged with the old ones to form a

unity. Although there are many obvious advantages to introduce grain boundaries

to the model, due to the numerical difficulty and tremendous computational cost it

requires, the data may become too expensive and thus statistical analysis becomes

impossible. For this reason, the simplest idealization is adopted and the overlapping

problem between grains is not explicitly accounted for. The projection stops when

binder contents reach a certain threshold. Based on the image analyses of 50 SEM

images obtained from WC-20 Wt.% Co, we noticed that the volume percent of the

binder phase, Co Vol.%, follows a normal distribution featured by the mean value

37.5 and the standard deviation 2.7. This distribution was adopted as the termina-

tion criterion for generating artificial RVE samples that represent the material. The

finite element models were built in commercial FE solver ABAQUS and meshed by

a uniform mesh configuration: the element type is fixed to linear wedge elements

(C3D6); elements covering non-critical regions were assigned with a global size of

0.8µm; while elements near the phase boundaries are of a finer density with an edge

size of 0.2µm. Under this configuration, the number of elements for an RVE sample

having a size 40–40–1µm varies between 15,000 and 20,000. The reason of using

a layer of 3D wedge elements instead of 2D elements to represent the composite

structure is that the results of direct method predicted from the former element type

demonstrate significantly less mesh dependency. More detailed discussion on this

issue can be found in [2].

The sample groups used to study the size effect were numbered successively as

Group 1, 2 and 3, the parameters used for generating the models in these groups

are detailed in Table 4. The RVEs in three groups differ only in their size: Samples

in Group 1 have a size of 30–30–1µm, while in Group 2 a greater size 40–40–

1µm, and in Group 3 the greatest size 80–80–1µm. In order to provide an intu-

itive insight about the models, we randomly picked one sample from each group and

compared the microstructures in Fig. 5. The binder content in three groups is slightly

different—this can be interpreted as a consequence of converting microstructures to

finite element mesh. The mesh pattern adopted for all three groups are identical and,

in consequence, FE models in different groups have very different number of nodes

and elements (Fig. 5). The load type used for calculating the strength were uniformly

fixed to SUBC. According to this boundary condition configuration, nodes lying

on the RVE surfaces were prescribed with nodal forces corresponding to the global

stress, and their degrees of freedoms are not restrained so that they can deform freely.

Materials of both phases are considered as elastic perfect plastic materials with para-
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Table 4 Description of sample groups

Num.RVEs Wt./Vol.% Co Length (µm) Type Particle size

(µm)

Group 1 500 20/N(37.2,

2.7)

30 Artificial dWC ∼
N(3.0, 0.8)

Group 2 500 20/N(37.3,

2.9)

40 Artificial dWC ∼
N(3.0, 0.8)

Group 3 500 20/N(37.5,

2.8)

80 Artificial dWC ∼
N(3.0, 0.8)

(Num.RVEs number of RVE samples, x ∼ N(𝜇, s): random variable x obeys a normal distribution

characterized by the mean value 𝜇 and the standard deviation s)

Fig. 5 RVE samples of WC-20 Wt.% Co with dWC ∼ N(3.0, 0.8µm) in different sizes
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Table 5 Material properties of both phases

E (GPa) 𝜈 (−) 𝜎Y (MPa)

WC 700 0.24 2000

Co 210 0.30 683

meters given in Table 5. In the present study, we investigate only the strength of the

composite material subjected to the uniaxial tensile load: For each RVE, it’s ulti-

mate strength 𝛴U derived by solving the optimization problem (8) with NV = 1 and

endurance limit 𝛴∞, which corresponds to the case NV = 2, were calculated on both

x and y directions, and the average was considered as the effective property of the

sample. In order to emphasize the strengthening effect of the reinforcement phase,

the strength of an RVE was presented after normalized with respect to the yield

strength of the binder phase 𝜎
Co
Y . The anisotropy ratio of a predicted effective behav-

ior x defined as

𝜁x = max(x1∕x2, x2∕x1) (10)

which measures the dissimilarity of a predicted effective behavior in two normal

directions was evaluated for selected macroscopic properties and considered as an

important indicator for evaluating the sufficiency of the RVE size. One necessary

condition for an RVE size to be sufficient is that 𝜁x predicted from this size should

be close to one.

We evaluated several key effective material parameters and their associated sta-

tistical descriptors (Table 6). Unlike most numerical studies of this kind, in Table 6

we did not observe a manifest trend where scatter of data reduces when RVE size

increases. This phenomenon implies that, for predicting certain material parameters,

e.g. Ē, a small RVE size may suffice and renders unbiased prediction. Moreover, in a

statistical sense, RVE samples become more isotropic when its size becomes larger.

The degree of anisotropy reflected by the magnitude of 𝜁 depends on the effective

behavior of interests. Roughly speaking, 𝜁 indicates the level how interactive local-

Table 6 Material parameters predicted from RVE samples having different sizes

30μm (Group 1) 40μm (Group 2) 80μm (Group 3)
x̄ s x̄ s x̄ s

WC Vol.% [-] 62.81 2.74 62.74 2.84 62.46 2.82
Ē [MPa] 4.41E+05 1.48E+04 4.40E+05 1.53E+04 4.41E+05 1.48E+04

ν̄ [-] 0.277 0.0039 0.278 0.0034 0.277 0.0030
ΣU/σ Co

Y [-] 1.851 0.097 1.836 0.101 1.867 0.094
Σ∞/σ Co

Y [-] 1.483 0.0798 1.433 0.0750 1.441 0.0602
ζ Ē 1.012 0.008 1.007 0.006 1.004 0.003
ζΣU 1.066 0.11 1.052 0.074 1.048 0.066
ζΣ∞ 1.100 0.083 1.098 0.077 1.072 0.058
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Fig. 6 Cumulative distribution functions of 𝛴U for RVEs of different sizes

ized behavior within a RVE body average and set-off. In this vein, comparing three

parameters illustrated in Table 6, i.e. 𝜁Ē, 𝜁
𝛴U

, and 𝜁
𝛴∞

, it is clear that localized behav-

ior has greatest influence over 𝛴∞, and RVEs are required to be exceptionally large

to smear out these effects.

Beside presenting results by means of statistical indicators, cumulative distribu-

tion function of 𝛴U and 𝛴∞ are compared in Figs. 6 and 7, respectively. Function

diagrams in these figures demonstrate a greater difference among sample groups

compared to Table 6. In order to understand quantitatively how similar these results

are, we performed hypothesis tests on subsets randomly sampled from the existing

data. In this case study, 50 RVEs were randomly picked from each sample group, and

every two of them were submitted to K-S test and rank sum test with a significance

Fig. 7 Cumulative distribution functions of 𝛴∞ for RVEs of different sizes
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Table 7 Hypothesis tests on randomly sampled RVEs of different sizes

Group m vs n
1 vs 2 2 vs 3 1 vs 3 1 vs All 2 vs All 3 vs All

H0% 95.00 94.67 97.67 92.67 93.33 95.67
K-S Test

p∗ [-] 0.759 0.678 0.841 0.528 0.931 0.569
H0% 97.67 97.67 95.00 93.67 94.00 94.33

Ē
Rank Sum

p∗ [-] 0.641 0.950 0.840 0.701 0.783 0.707
H0% 91.67 72.67 93.33 88.67 67.67 88.67

K-S Test
p∗ [-] 0.840 0.904 0.845 0.948 0.872 0.687
H0% 96.67 94.67 94.67 96.00 89.00 91.00

ΣU

Rank Sum
p∗ [-] 0.678 0.679 0.759 0.772 0.553 0.772
H0% 28.00 94.38 27.00 13.33 92.67 15.33

K-S Test
p∗ [-] 0.990 0.678 0.982 0.991 0.942 0.989
H0% 69.00 88.67 91.33 57.00 81.67 90.33

Σ∞
Rank Sum

p∗ [-] 0.780 0.769 0.860 0.997 0.705 0.921

level fixed to 0.05. This sampling process was repeated for 300 times and derived

results were recorded in Table 7. In this table, H0% represents the percentage of tests

in which null hypothesis H0 was not rejected. p∗ is calculated from the p value as

follows

p∗ = max(p, 1 − p) . (11)

p∗ value presented in Table 7 is averaged over 300 tests. The purpose for introducing

this variable is to avoid averaging p that arises from different sides, such as 0.01

and 0.99. The letter “all” in the table corresponds to samples picked indiscriminately
from three sizes. One can see from the table that, compared to Ē and 𝛴U , 𝛴∞ is more

sensitive to size because H0 is rejected for a greater amount of times. Meanwhile, for

more than half of 300 tests applied to 40µm (Group 2) and 80µm (Group 3) RVEs,

H0 were favored which confirms the similarity of RVEs in these two sizes.

We evaluated the correlation matrix for all aforementioned sample groups. One

can notice from Figs. 8, 9 and 10 that, despite different r values, the fashion in which

the considered material parameters are correlated is independent from the size. More

specifically, homogenized elastic module Ē is strongly correlated to WC Vol.%, but

𝛴U and 𝛴∞ are only subtly correlated to WC Vol.%. This suggests that morphology

has a more crucial impact to 𝛴U and 𝛴∞ compared to Ē. In addition to that, for all

three groups, r between 𝛴U and 𝛴∞ are quite small, which reveals that the linear

correlation between them is quite weak.
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Fig. 8 Correlation matrix evaluated from Group 1 (30–30–1µm artificial RVEs of WC-20 Wt.%

Co, dWC ∼ N(3.0, 0.8)), r = correlation coefficient

Fig. 9 Correlation matrix evaluated from Group 2 (40–40–1µm artificial RVEs of WC-20 Wt.%

Co, dWC ∼ N(3.0, 0.8)), r = correlation coefficient
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Fig. 10 Correlation matrix evaluated from Group 3 (80–80–1µm artificial RVEs of WC-20 Wt.%

Co, dWC ∼ N(3.0, 0.8)), r = correlation coefficient

6 Conclusions

In this paper, using an representative material, WC-20 Wt.% Co, it is presented how

size of RVE models influences the strength of PRMMC materials predicted from the

direct method. On the basis of 500 realizations for each selected RVE size (30, 40

and 80µm), we performed the shakedown analyses and observed from the result that

the global material behavior predicted from different sizes has more commons than

dissimilarities in a statistical sense. Also, the correlation between different global

material parameters, which is represented by the correlation coefficient r, is indepen-

dent from the model size. For all concerned material parameters, their mean values

are less sensitive to size compared to variances, thus smaller RVEs are sufficient if

the task is to predict the mean value of a certain material parameter. The variance of a

global material behavior is introduced by both composite structure and the RVE size,

where the latter one is undesired and becomes less critical when RVE size exceeds

a certain threshold.

On removing the variance caused by RVE size—the so called size effect, a viable

solution is proposed in the present paper: One can check the sufficiency of the RVE

size through applying hypothesis tests repeatedly on results predicted from one size

and a much greater size. If the chance to reject the hypothesis that the data are from

the same continuous distribution is small, e.g. less than 10%, then it is justified to

conclude that the size effect is expelled and results from two sizes are statistically
equivalent. According to this criterion, it can be concluded that the size 40–40–

1µm is sufficient for the strength prediction of the current material, because it is

statistically equivalent to a much greater size 80–80–1µm. It is worthy to note that

the disadvantage of this method is that it requires a large amount of data as input.
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For this reason, the conventional approaches which are based on indicator such as

the anisotropy ratio, still have significant practical values and thus should not be

abandoned. In addition to that, it is also plausible to overcome the size effect by

first taking the size as a random variable for generating RVEs, and then removing

its influence by means of advanced statistical learning methods. Although from a

theoretical point of view this approach appears to be uncomplicated, in practice it

might be challenging to find a capable statistical model to interpret the results.

In our future study, the focus would be put on interpreting the relationship between

different effective material behaviors, and the goal is to reveal from a mechanical

perspective how do these behaviors are correlate.
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