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Preface

Direct methods refer to a class of analysis methods that aim to characterise the limit
state of a material or structure when subjected to an increasing or cyclic loading
history, without the need to generate the entire response to the history of loading.
Direct methods were originally developed for limit state and shakedown analysis
for an elastic perfectly plastic material model. Developments in recent years have
explored cyclic solutions for more general material models and for optimal design
and the characterisation of material behaviour in terms of material microstructure.
The resulting methods have been successfully applied to a number of industrially
important structural problems, including the design and prediction of life expec-
tancy of structures subjected to complex thermo-mechanical loading; and the
behaviour of road pavements subjected to repeated loading. Computational meth-
ods of increased efficiency continue to be developed.

The papers in this volume provide a state-of-the-art insight into the subject and
have arisen from an International Workshop held at the University of Oxford on
6-8 September 2015. More than 30 delegates from eleven countries attended and
represent the foremost researchers in this area. The workshop was the fifth such
workshop, following previous biannual workshops in Aachen, Lille, Athens and
Reggio Calabria. The papers from the previous workshops have also been published
by Springer.

The papers are arranged in the same format as the workshop in which groups of
papers, are concerned with similar issues. The papers have all been subjected to a
rigorous review procedure before acceptance for publication.

The editors would like to thank all the scientists who attended the workshop and
have contributed to the high quality of the papers in this volume. Special thanks go
to Amanda Bradbury for her exceptional help in organising the Workshop.
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We are also grateful to the editorial staff of Springer for their patience and
guidance during the production of this volume.

Oxford, UK Olga Barrera
Oxford, UK Alan Cocks
Leicester, UK Alan Ponter
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Limit Load Theorems
for the Drucker-Prager Yield Condition
with a Non-associated Flow Rule

A.R.S. Ponter

Abstract There exist a number of significant problems where the assumptions of
limit and shakedown analysis, i.e. the bounding theorems, are not fully satisfied.
Principal amongst such problems are those where the yield surface is convex but the
flow rule is non-associated. This includes limit states in geomechanics where yield
is pressure dependent but flow remains volume conserving. Coulomb friction
between elastic bodies shows related behaviour. The paper explores the extent to
which the classical limit theorems may be extended to the Drucker-Prager yield
condition with a non-associated flow rule where the plastic strain rate involves no
volume change. Bounds that correspond to the classical kinematic and static bounds
are derived which defines a range within which consistent limit state solutions will
exist, i.e. the limit state is not generally unique.

1 Introduction

The theory of limit analysis, Drucker, Prager and Greenberg [1], forms the foun-
dations of a wide range of design methods in industrial applications. The theory is
simple and elegant, derived from a set of specific material assumptions. Small strain
theory is assumed, i.e. any displacements prior to the arrival at a limit or shakedown
state are such that the equations of equilibrium in the original undeformed state are
sufficiently accurate. The material is elastic-perfectly plastic with a convex yield
surface and an associated flow rule. Hence the plastic properties are defined by a
yield condition, f (alj) =0, so that for;

fle;) <0, & =0 (1.1)

A.R.S. Ponter (=)
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2 AR.S. Ponter

p_ . of (o)
flo;)=0, fi}—n—a%f (1.2)

where 77 is a positive scalar multiplier. No plastic strains occur within the yield
surface and the plastic strain rate E‘Z forms an outward normal vector in stress space
to the yield surface. States of stress where f (aij) >0 are not allowed.

Consider a volume V subject to surface tractions AP(x;) acting on part of the
surface S of V, namely Sp, and zero displacements u; =0 over the remainder of S,
namely S,. Limit analysis seeks the value of the load parameter A=/, corre-
sponding to a state of plastic collapse.

The lower bound theorem for values of A5 <A, involves an arbitrary distribu-
tion of stress /105 (x;) which satisfies the equations of equilibrium and is in equi-
librium with AP(x;) on Sp. For any such distribution there will exist a 1 =1,5 so
that;

f(Agoy;) <Owithin V, and Ap <4, (1.3)

It is not possible that 1 > ;5 as, in this case the yield condition will be violated
somewhere within V. Hence 1,5 =, occurs for some optimal choice of 05, so that
Arp 1s an absolute maximum over all possible af; . Note that this argument makes no
reference to the flow rule, it is entirely concerned with finding the largest value of A
for which the yield condition may be satisfied throughout V. Hence the result is
equally applicable to a non-associated flow rule. There is, however, a distinction
between the two cases. For an associated flow rule this maximum A is the limit load,
whereas for a non-associated flow rule this may not be the case and a limit state
occurs at a lower value of A. This is a restatement of Radenkovic’s result [2] and
will be discussed in the next Sect. 3.3.

The upper bound theorem is expressed in terms of a distribution of plastic strain
rate 51; =¢;; that satisfies the compatibility equations and is compatible with a

displacement rate field # satisfying #{ =0 on S,. An upper bound on 4, Ayz is then
defined by the work balance equation;

ﬂUB/PqudSZ /al‘.;é‘l‘»}dV, Aup 2 AL (1.4)
Sp v

Here oy, is the state of stress on the yield surface that is associated with the plastic

strain rate &

. Coc . c .
ij» 1.€. 0;;€;; 18 the rate of plastic energy dissipation per unit volume.
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The upper bound is concerned with finding a mechanism so that the rate of work
done by the applied load is exactly balanced by the rate of plastic energy dissi-
pation. The limit load corresponds to the mechanism for which the load factor is
least.

The proofs of these results [1] rely upon the Maximum Work Principle, given by
the inequality,

(65— 0,)&20 (1.5)
where 0';. satisfies the yield condition f (O‘;) <0. The inequality (1.5) is only satisfied
for the yield condition so that f(c;) = 0 defines a convex surface in stress space, and

the flow rule is associated, i.e. given by (1.2).

As well as the bounds (1.3) and (1.4), the Maximum Work Principle also allows
the proof of a related result, first proven by Symonds [3]. Symond’s result was
concerned with a history of loading AP(x;,t) between an initial state, where the
body possesses some complex initial distribution of stress (resulting, for example,
from the fabrication of a structure). Symonds showed that the limit state (and the
shakedown state for variable loading) was independent of how the load history
arrived at A4, P(x;) and also the initial state of stress. In the development of Limit
State Design this result was particularly important. Elastic design methods had
always ignored initial residual stress in the structure as they were essentially
unknown, leaving the elastic approach, in an important way, inconsistent with the
known properties of metallic structures.

The subsequent development of design methods based on the Limit Theorems,
produced a methodology that was consistent with known properties of steel
structures, resulting in procedures that were easier to apply than elastic methods and
required less material. This last feature undoubtedly contributed to the rapid
advance of Limit State Design in the 1940s and 50s when steel was in short supply
and there was a pressing need to rebuild after World War 2.

Although it has always been known that association of the flow rule was not
consistent with materials that exhibit frictional behaviour, the elegance and sim-
plicity of the theory allowed whole ranges of calculations to be made. Radenkovic
[2], demonstrated that the limit load for the non-associated case is always less than
for the associated case for the same yield surface. Since that time the solution of
particular problems in geomechanics has usually assumed an associated flow rule
and often, in the literature, there is no mention of the underlying issue of the
non-association of the flow rule. Certainly, the assumption that a unique limit load
always existed that is independent of the initial state of stress, seems to persist.

In the following section, the extent to which the classical theorems may be
extended to a convex yield surface with a non-associated flow rule is discussed for
the Drucker-Prager yield condition [4].
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2 Limit States—A General Definition

The conditions for a limit state may be defined without placing restrictions on the
flow rule. Consider a body of volume V which experiences elastic strains e; and
plastic strains &,

:'—el,+8‘” and el;,-=C,~jk10'k1 (21)

where Cj; denotes the elastic stiffness tensor.
A history of loading to the limit state involves the generation of a distribution of

plastic strain &};(x;) = &(x;) which, generally, will not be compatible. As a result the

state of stress at a limit state A=/, will be given by,
0= ALEZ)(XI) +ﬁij(x,‘) (22)

where &7 (x;) denotes the linear elastic solution for 2=1 and 7;(x;) is the residual
stress field derived from the solution of the initial strain problem for Eﬁ(x,)

€T— yklpk1+€p (2.3)

T

where ¢;; is a compatible strain field consistent with corresponding displacements

consistent with the boundary conditions. afj must satisfy two conditions;

(a) Yield:

f(o;) <0 (24)

(b) Consistency with a failure mechanism: There exists a compatible distribution of
plastic strain rate &j(x;) with corresponding displacement field i (x;), so that at
positions x; where & (x;) #0,

0, =05, (2.5)

We know, from general theory, that the value of ; is uniquely defined for an
associated flow rule and convex yield surface. For a non-associated flow rule, we
begin with the assumption that 4; will generally not be unique and consistent
solutions may exist for a range of plastic strain distributions E’j](x,) In terms of step
by step calculations, the expectation must be that a limit state will depend upon both
the initial state of residual stress and the particular history of loading that leads to a
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limit state. An important issue is the range of possible 4 within which limit states
exist. In the following sections this is discussed for the Drucker-Prager yield
condition with volume conserving plastic flow.

3 Limit Analysis for a Non-associated Plastic Flow

3.1 Material Model

Consider, again, a body of volume V which experiences elastic strains e; and

plastic strains

€U=eij+8€j and eijICiﬂdel (31)

where Cjy; denotes the elastic stiffness tensor.
Consider the Prager-Drucker yield condition:

flo;.p)=6(c;) —c—|p| tang <0, p<0 (3.2)

where E(al'-j) =,/3 /25;]0;7 is the von Mises effective stress for the deviatoric stress

al'.j =0, —pd;, and where p=1/30,, is the hydrostatic component of stress, ¢ is the

cohesion and ¢ is an angle of friction. Plastic strain rates éZ for f (a;-j, p) =0 occur
according to the non-associated flow rule;

P OE(GU)
& =1 0.
)

and &, =0 (3.3)

where 7 is a positive scalar multiplier.
The rate of plastic work may be written in term of effective quantities;

W' =o,é = 5e (3.4)

ij=

where & =, /2/ 38585 denoted the von Mises effective plastic strain rates. Note that

the equality (3.4) only holds when 0;; is the state of deviatoric stress at yield

corresponding to S‘Z However, the Cauchy-Schwartz' inequality;

"The inequality may be recognised as a generalisation of the cosine rule for the dot product of two
vectors.
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o, é <& (3.5)

holds for a state of stress within yield 5 * and not necessarily corresponding to e”

Equality in (3.5) hold if and only if Uu corresponds to the stress where e‘Z occurs,
3.4).

In the following sections we consider bounds on the value of tan¢g for which
consistent limit states may exist for a constant 1. The choice of tan¢ allows entirely
frictional behaviour, ¢ = 0, to be included in a natural way.

3.2 The Static Bound Theorem

Consider a state of stress defined by the chosen load parameter A and a distribution

e'Z(x,) with associated residual stress field p;;. The resulting distribution of stress

p= 1/3{6kk xi, 1)} =1/3{464 (xi, 1) + P () } =Ap+p >0 (3.7b)
will lie within yield provided tan¢ is sufficiently large.
Consider
6 —c
tang} (2 &(x;) = max{|p*|} (3.8)

over all x; in V. If tangp > tangh (&, ;(x;)) then a , (3.7a), (3.7b), lies within yield.
This argument may now be extended by seekmg, over all eZ(x,), the absolute

minimum upper bound tand)ﬁ UB>
tang’, = min{tang[)%]B (E”U(x,)} over all E’; (3.9)

Hence for tang < tangh, there exists no &(x;) so that 0, =406+ p;; lies within
yield everywhere. The limit tanqbﬁUB may be recognised as the limit state for the
associated flow rule: the friction angle corresponds to the least value of tan¢ for
which an equilibrium stress state exists within yield everywhere within V for any
&(xi).

It is worth including a note of caution concerning the argument in the previous
paragraph. If the plastic strain distribution accumulated from plastic strain rates is
given by the flow rule (3.3), then ?Z(x,) contains no volumetric component,
& (x;) =0. However, if plastic strain accumulation begins with a strain field with a
volumetric component or, alternatively, the flow rule (3.3) applies only at the limit
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state but volumetric strains occur beforehand (as occurs in the numerical solution of
Krabbenhoft et al. [5]), then the plastic strain defines a potentially wider class of
residual stress field p;;.

3.3 The Kinematic Bound Theorem

A kinematic bound is concerned with values of tan¢ where there is a balance
between the work done by the applied load and the plastic energy dissipation,
which depends upon both ¢ and A. For such an argument to be meaningful A must be
greater than A for the associated flow rule for tang =0.

Consider, again, a distribution of plastic strain E’;(x,) with corresponding p;;. In
addition, consider a compatible distribution of strain rate &f;(x;) with &, (x;) =0 and
a corresponding displacement field u{(x;) which satisfies i{(x;) =0 on S,,.

Although the Maximum Work Principal does not hold for (3.2) and (3.3), a
restricted form is possible by considering the inequality applied to the cross section
of the yield surface defined by p*, (3.7b), which is defined by & (x:);

(6% — g;‘)g’f >0 (3.10)

! . . . . ./ . . £ T .
where 6,/ is the stress at yield associated with &; within the plane p=p" and ¢;; is
the deviatoric components of 0;, (3.7a).

From (3.2) and (3.7a), (3.7b), (3.10) may be rewritten as
G — (A6, +py)ef = (c+ |p+pltang)e* — (46, + ;)& > 0 (3.11)
Integrating (3.11) over the volume V we obtain,

/ (c+|p +pltang)é‘av > / 16e5dV (3.12)
v 14

Note that [ ﬁijé;;dV= [ p#5dV =0 from the principle of virtual work.
v v

Now consider (3.12) arranged so that it makes a statement about the friction
i

angle ¢ consistent with o;; satisfying yield and assuming fixed values of ¢ and 4,
and chosen distributions &j; and &j;

J {48, = & ydiav

tang > ¥ ) (3.13)

_ L (.c =
[pepay
Vv
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Note that the bounds (3.13) depend upon both the mechanism &j; and the plastic
strain distribution ep from which p is derived. For any chosen ?Z, and hence p;;,

there will exist a maximum bound with respect to &; this corresponds to a con-

l_/’
ventional limit load problem where the yield condition is defined everywhere in V.

Hence
tang > tang s (&} )= tangb (& U’Ep) (3.14)

where tang’, (&) =max{tan¢f3(é§, EZ)} over all kinematically admissible mech-
anisms &;.

It is now possible to take this argument a step further by seeking the absolute
maximum of tan¢LB( ) for all possible SZ, giving the extended inequality;

tang > tanghy, > tangy () > tangy (&5, ) (3.15)

where tan(/)ALB—max{tan(/)LB( u)} over all admissible &;. Hence, for potential

limit states, allowing for all possible mechanism &j; and plastic strain distributions
eg.‘ then tang> tang’, ,. This implies that for tan¢< tang}, ; there exists no
consistent limit states.

Hence both kinematic and static bounds exist but, for the non-associated case,
they are not defined independently of each other. Each is dependent on the choice
of the plastic strain field 8” and each possess, independently, extreme values. For
any particular choice of e” the bounds, tang (&, ;) (3.15) and tangi (2 &;) (3.14)
may not coincide and only for particular e‘Z will

tangy () = tangb] 5 (&) (3.16)

Such distributions are termed consistent distributions, producing equal upper and
lower bounds that correspond to a limit state. It is immediately evident that the
absolute extremes tang}, , (3.15) and tang%, 5, (3.9), may not necessarily corre-
spond to consistent states, although this, no doubt, may occur in some circum-
stances. Hence the search for limit states is the search for distributions of E—" and
mechanisms &;; that correspond to consistent equal upper and lower bounds. These
consistent 11m1t states may not be unique but are bounded by the absolute limits
(3.9) and (3.15). In the following section the relationship between the upper and
lower bounds is explored with this in mind.
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4 Consistent Limit States

The remaining question concerns the relationship between tand)ﬁB(é;fj,Epij) and

L /— . — .
tangyg(€;(x;)) for an arbitrary &, and &.

First note, as described earlier, for any Ep,] that there will exist a maximum lower
bound corresponding to &; =& so that;

tanqbﬁB('U, u) < tangt ("” z’&):tangbéB(E’;j) (4.1)
for all & (x;).

Consider the kinematic lower bound for E’; From (3.13)

/{/16 & — & }dV—tan¢LB &, & /Mp +p|Emav (4.2)

Vv

Now consider the static upper bound (3.8) which may be written as
E(AE;.]-+E;-;) —cZ|Ap +[7|tan¢f,B(E”ij) (4.3)
Noting the Cauchy Schwartz inequality (3.5);
(A6, +p5)&] <6(26,+p )E" (4.4)

where equality only occurs if and only if the stress and strain rate correspond at
yield. Hence, generally, from (4.3) and (4.4);

(/1(7 +P, e [’” c&™ <|Ap + pltangph g (& )Em (4.5)
Integrating (4.5) over the volume V yields

/ {Aa;.jg;;q - cEm}dV < tangt, () / 2D +plEmdV (4.6)

Vv Vv

Comparison of (4.6) with (4.2) yields;
tan¢LB( s l])< tan¢LB( j)< tand)UB( ,) (4.7)

Hence, for any choice of sZ, the static upper bound tanq{) 5(E j) forms a bound on
all kinematic lower bounds tan¢? (&, 7 &5;) for the same .

To summarize, for a chosen eg-, there exist upper and lower bounds to the ranges
of values of tang for which a distribution of stress exists that lies within yield,
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tang < tang’, 5 and for which an energy balance exists, tang > tang’ (;)- Each of

these bounds have extreme values over all possible E’;j,

)

tang’, ;= max{tand)ﬁB (?Z)} over all & (4.8)

tangps 5 = min{tanqﬁ%,B(E’;j} over all . (4.9)

y

Hence for tang > tangp}, , and tang < tangp, , consistent limit states cannot exist.
Consistent limit states occur for plastic strain distributions such that
tangz‘)fB(Z-"ij) =tan¢@B(Z-”ij) within the range tang’, ; <tang < tang} 5. For an arbi-

trarily chosen &), tangy 5 (&) < tangh ().

5 Conclusions

The extension of the limit theorems to the Drucker-Prager yield condition with a
non-associated flow rule demonstrates, in a limited way, that it is possible to make
general statements about the properties of limit states in such circumstances. The
limit state is defined by the plastic strain accumulated during the load history and
may not be unique. This aspect has been discussed at some length for the problem
of frictional contact between contacting elastic bodies by Barber, Hills, Klarbring
and others [6-8]. In particular, Flecek et al. [8] have shown, for variable loading,
the shakedown limits for such problems is non-unique. A theory for this class of
problems has been given by Ponter [9], based upon a similar approach to that used
in this paper. It is noticeable that, whereas in the study of frictional contact
non-uniqueness has been a dominant concern, in geomechanics it is relatively
ignored.

This paper does not discuss here applications of the theory to specific problems.
The limit theorems are more complex than those for the associated case but, as has
been shown by Ponter [9], it is possible to develop programming methods for the
identification of consistent limit states, at least for the much simpler case of friction
between elastic bodies. It seems likely that such programming methods are possible
where a primal-dual structure exists so that compatibility and equilibrium condi-
tions can occur within the same discretized structure.

There are, however, important implications of the theory. In pursuit of limit
states for non-associated flow rules, the limit state may well depend upon both the
assumed initial state of stress and the precise history of loading. The arrival at a
limit state may result in the decline in the load until a minimum alternative limit
state is found, i.e. overshooting of the limit state in numerical solutions may occur.
This implies that a safe load is provided by a minimum consistent limit state.

The full behaviour of geotechnical material is far more complex than the
behaviour contained in the Drucker Prager yield condition. At best it is a simulation
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of the flow conditions at a Critical State condition. However, it seems possible that
the type of theory described here may be extended to complex constitutive laws that
include state variables.
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A Direct Method for Predicting
the High-Cycle Fatigue Regime
of Shape-Memory Alloys Structures

Michaél Peigney

Abstract Shape Memory Alloys (SMAs) belong to the class of so-called smart
materials that offer promising perspectives in various fields such as aeronautics,
robotics, biomedicals or civil engineering. For elastic-plastic materials, there is an
established correlation between fatigue and energy dissipation. In particular, high-
cycle fatigue occurs when the energy dissipation remains bounded in time. Although
the physical mechanisms in SMAs differ from plasticity, the hysteresis that is com-
monly observed in the stress-strain response of those materials shows that some
energy dissipation occurs. It can be reasonably assumed that situations where the
energy dissipation remains bounded are the most favorable for fatigue durability. In
this contribution, we present a direct method for determining if the energy dissipa-
tion in a SMA structure (submitted to a prescribed loading history) is bounded or
not. That method is direct in the sense that nonlinear incremental analysis is com-
pletely bypassed. The proposed method rests on a suitable extension of the well-
known Melan theorem. An application related to biomedical stents is presented to
illustrate the method.

1 Introduction

The peculiar properties of Shape Memory Alloys (SMAs)—such as the superelastic
behavior or the shape memory effect—are the result of a solid/solid phase trans-
formation between different crystallographic structures (known as austenite and
martensite). That phase transformation takes place at the microscopic level and is
driven both by thermal and mechanical loading. The crystallographic structure of
the austenite is more symmetric than the crystallographic structure of the martensite.
This leads one to distinguish between several symmetry related martensitic variants
corresponding to different orientations of the martensitic lattice with respect to the
austenitic lattice [7]. Each martensitic variant is characterized by a transformation
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strain that describes the deformation from the austenitic lattice to the martensitic
lattice.

Shape memory alloys can be relevant in a lot of applications, but for the time
being the most successful applications are to be found in the biomedical domain, for
devices such as endovascular stents. In vivo, such devices are submitted to a cyclic
loading due to the cardiac cycle, and therefore may be subjected to fatigue [9, 28,
30]. Metal fatigue is a crucial issue for structures submitted to variable loading. A
conventional way to estimate the fatigue behavior of a material is to establish the
so-called S-N curves that show the number of cycles to failure N versus the loading
amplitude. Three different regimes are typically observed on S-N curves:

e the low-cycle fatigue regime, corresponding to N < 10* — 10° cycles. In that
regime, N decreases rapidly with the loading amplitude S.

o the high-cycle fatigue regime, corresponding to N > 10* — 10° cycles, for which
the decrease of N with the loading amplitude S is much slower.

o the unlimited lifetime regime, in which the material shows no sign of fatigue. That
behaviour is observed for loading amplitudes S smaller than a characteristic value
referred to as the endurance limit.

The demarcation between low- and high-cycle fatigue depends on the material con-
sidered [17]. Similarly, depending on the material considered, the endurance limit
may exist or not. For Nitinol (which is the most common shape memory alloy used
in applications), the three regimes listed above have been observed in cyclic traction
experiments [28].

For designing Shape Memory Alloys structures subjected to variable loading, it
is essential to have tools for assessing the fatigue life. A case in point is the design
of biomedical Nitinol stents. Since biomedical stents are required to have high dura-
bility, it is essential to make sure that those devices operate in the high-cycle fatigue
regime or—even better—in the unlimited lifetime regime. Although they provide
some valuable insight in the fatigue behavior, S-N curves are uniaxial in nature
and therefore are not sufficient for estimating the fatigue behavior of complex three-
dimensional structures subjected to multiaxial loading.

This contribution presents a rational method for predicting the high-cycle fatigue
regime of SMA structures. That method is based on the principle that high-cycle
fatigue corresponds to situations where phase transformation is limited, i.e. the
energy dissipation is bounded. By analogy with plasticity, that situation is referred
to as shakedown. The proposed method relies on recent theoretical results that give a
sufficient condition for shakedown to occur in SMA structures submitted to variable
loading.

This contribution is organized as follows: We start by setting some notations and
making some observations on the constitutive laws commonly used for SMAs. From
there we comment on the structural evolution problem, with a special emphasis on
the large time behavior and recent results regarding the shakedown behavior. This
leads us to propose a direct method for predicting the high-cycle fatigue regime. The
implementation of that method is detailed for a parametrized loading history. An
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application related to biomedical stents is presented to illustrate the method. In par-
ticular, the results delivered by the proposed method are compared with experimental
results from the literature.

2 Constitutive Laws

In most existing material models for SMAs, the strain € is decomposed in an elastic
part M : o proportional to the stress o and an inelastic part K : « related to phase
transformation, i.e.

e=M:0+K: a. (1)

In Eq. (1), M is the elasticity tensor, K is a fixed tensor, and « is an internal variable
that tracks the phase transformation. The Helmholtz energy w corresponding to (1)
is of the form

w(ez,oz):%(zz—K:oz):M_1 (e—-K: a)+f(a) 2)

where f is a positive function of a whose expression depends on the model consid-
ered (some examples will be given later on). In the following, we denote by A the
thermodynamical force associated with e, as defined by

-~ Ko@) )
a
where K is the transpose of K.

To account for hysteresis effects, Eq.(1) is complemented with an elasticity
domain % and a flow rule (describing the evolution of @) akin to plasticity. The
elasticity domain is assumed to be convex and to contain the origin. The normality
flow rule is commonly used, i.e.

@ € ol (A) @)

where the dot"denotes left-time differentiation and d/-(A) is the normal cone of the
elasticity domain .7 at point A, defined by

dlyA)={glg:A>g: A foranyA’ € ¢}. )
For later reference, we note that the normality flow rule (4) respects the principle of

maximum dissipation
a:A-A)>0VA €%. 6)
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As a first example, consider the model of Souza et al. [33]. In that model, the
internal variable « is a deviatoric strain (referred to as the transformation strain) and
K is taken as the projector on the deviatoric space, i.e.

1
K=1--1®1
3 ®

where 1 and [ are respectively the second- and fourth-order identity tensors. In such
a model, the thermodynamical force A specializes as

A=s—f(@)

where s is the deviatoric stress. The elasticity domain % considered by Souza et al.
is of the Von Mises type, i.e. defined by ||s — f’(a0)|| £ R where || - || is the Euclid-
ean norm and R is the yield limit for phase transformation. In addition, the internal
variable « is submitted to the constraint ||et|| < €;, which expresses the fact that the
transformation strain cannot be arbitrarily large and is bounded by some material
parameter €, that depends on the alloy considered.

A typical superelastic stress-strain delivered by such a model is represented in
Fig. 1. Note in particular that ¢; is the strain amplitude of the plateaux exhibited
by the stress-strain response. The hysteresis displayed by the stress-strain curve is
directly related to the energy dissipated in a strain-driven loading cycle of suffi-
ciently large amplitude Ae as represented in Fig. 1. If such a cyclic strain is applied
to the material, energy dissipation would occur at each cycle. In such a condition,
the material would be subjected to low-cycle fatigue. In contrast, if a cyclic strain of
low amplitude Ae is imposed (possibly around a non-zero mean value), then there
would be no dissipation in the stabilized regime so that high-cycle fatigue will prevail
(Fig. 2).

The model of Souza et al., as well as its further refinements and extensions
[4, 5] are phenomenological. In contrast, other SMA models rely on a microme-
chanical approach and make use of detailed information on the crystallography of
the phase transformation [2, 12, 13, 24, 25]. The simplest case is that of single

Fig. 1 Superelastic [0
stress-strain response for a A
loading cycle of large strain
amplitude Ae £
GH < >/
G
E
L = »t
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Fig.2 Superelastic o
stress-strain response for a A
loading cycle of small strain

amplitude Ae

crystals: the internal variable is typically chosen as (8,, -, 8,) where 6, is the volume
fraction of the martensite variant i. The stress-strain relation (1) specializes as

K
£=M20'+29i£§r’0

i=1

where eﬁr’o is the transformation strain for variant i and & is the number of martensitic
variants [7]. Both k and £”*°

i
ters. As mentioned in Sect. 1, the transformation strains &
L.e. for any (7, /) there exists a rotation R;; such that

(i=1,...,k) are to be considered as material parame-
tr,0
i

are symmetry-related

tr0 _ pT tr,0
£ = Rij E R,-j. 7
A common choice is to define the elasticity domain by

mflx|£§r’0 o—fil<G
where G is a yield limit for phase transformation and f; is the partial derivative of
f(@6,,-,68,) with respect to 6;. Note that the internal variable (6,, -, 6,) is bounded
because the volume fractions 6, are positive and their sum is less than 1.

Such a micromechanical approach can be extended to polycrystals, which is the
common form of commercially produced SMAs. A polycrystal is an assemblage of
N crystalline orientations. Each orientation j is characterized by a rotation R; with
respect to a reference orientation (which can be chosen to coincide with that of the
single crystal considered in (7)). In most of micromechanical models of polycrys-
talline SMAs [13, 19, 20], the internal variable is taken as & = (0,,, -, 0,,) where
0 is the volume fraction of martensite variant i in the crystalline orientation j. The
internal variable & = (0, -, 0,y ) is submitted to the constraint
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k
0<6; Y 0;=c (8)
i=1

where ¢; is the volume fraction of orientation j. The stress-strain relation and the
elasticity domain are respectively defined by

and

where f; is the partial derivative of f with respect to 6;; and e?jf is the transformation
strain of variant i in the crystalline orientation j. The transformation strain ef}’ can be
written as '
tr _ pT . tr,0 .
S Rj g R, )
In all the models mentioned, observe that the internal variable a used for tracking
the phase transformation is always bounded. This requirement can be written as

aceT (10)

where .7 is the bounded set of admissible values for a. For instance, in the model
of Souza et al., the set .7 is the set of deviatoric strains with norm less than ¢, .
The constraint (10) is a distinctive feature of SMAs (compared to plasticity) and
stems from the mass conservation in the phase transformation process. Rigorously
speaking, in the presence of such constraints, the normality flow rule (4) needs to be
modified as

aecdl,(A-A"); A" € dl () (11)

where 0] (&) is the normal cone of .7 at point a and is defined in a similar fashion
as in Eq. (5). For a convex set .7 (which is assumed throughout this chapter), the
following inequality—formally similar to (6)—holds [8]:

A (@a—a)>0Vd € 7. (12)
Reference is made to [11] for a derivation of (11) from the general principles of

thermodynamics. The term A, in (12) can be interpreted as a ‘reaction force’ and is
non zero only when a saturates the constraint (i.e. when « is on the boundary of .7).
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3 Structural Evolution Problem

Now consider a structure occupying a domain £2 and submitted to a given loading
history. For determining the evolution of the structure, the constitutive laws (1-11)
are to be satisfied at each point x and at each time 7. In addition, the stress field
needs to satisfy the equilibrium equations and the strain field has to derive from a
displacement field that respects the boundary conditions, i.e.

ced, (), e, (13)

where o7 () and .27, (t) are respectively the sets of statically admissible stress and
kinematically admissible strain fields at time ¢, defined by

o (1) = {o|dive +f* =0in Q;6.n = T? on I}, "

o (t)={ele =(Vu+VTu)/2inQ;u=u?on T} (14)
In (14), fd s T¢ and u? are functions of (x, 7) and define the loading history. The trac-
tions 7% and the displacements u? are applied respectively on a part I’ o and a part
I, = 0Q — I'; of the boundary 0£2.

Together the Eqs. (1)—(13) define the structural evolution problem. That problem
is nonlinear and is usually solved incrementally using space- and time-discretization
techniques, resorting for instance to Finite Element Analysis (FEA). Regarding
numerical implementation, handling the constraint (10) on the internal variable is
an additional difficulty compared to plasticity [3, 4, 31], especially for microme-
chanical models [12, 22, 23].

Asides from numerical issues, adding a constraint (10) has a profound impact on
the properties of the structural evolution problem, especially regarding the large-time
behavior. For large loadings, the large-time behavior is indeed strongly dependent on
the initial state. For instance, in the case of periodic loading, some initial conditions
may lead to shakedown while others may lead to alternate phase transformation (i.e.
a periodic but non constant evolution of the phase transformation) [21, 26]. Inter-
estingly, such dependence of the asymptotic regime on the initial state has also been
observed in other nonlinear mechanical problems, such as contact with friction [1]
and plasticity with temperature-dependent elastic moduli [27].

4 Shakedown Theorem

For fatigue design, we are especially interested in situations where the solutions
of the structural evolution problem are such that the energy dissipation remains
bounded in time. That situation is referred to as shakedown and corresponds to the
most favorable case of high-cycle fatigue. In standard plasticity, the Melan’s theo-
rem is a well-known result that gives a sufficient condition for shakedown to occur
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[15, 18, 34]. Melan’s theorem is path-independent, i.e. the obtained shakedown con-
dition is independent of the initial state. The original theorem cannot be directly
applied to SMAs because, contrary to standard plasticity, the internal variable is
bounded. The theoretical issue of extending Melan theorem to SMAs has been
addressed in [10, 21, 26]. In particular, a path-independent Melan’s theorem has
been obtained in [21, 26].
Let (6%, €%) be the fictitious elastic response of the structure, defined by the elas-
ticity problem
eE=M:6", 6 e (1), £ € F,(t) (15)

The statement of the theorem is the following:

Theorem 1 If there exists m > 1, 7 > 0 and a time-independent field A’ (x) such
that
mK" : 6F(x,) A" (x) €EVx € QVt> 1 (16)

then there is shakedown, whatever the initial condition is.

The proof of Theorem 1 is given in the Appendix. Some comments are in order. A
first observation is that Theorem 1 is path-independent, just as the standard Melan
theorem in perfect plasticity: If the condition in Theorem 1 is satisfied, then shake-
down occurs for all initial state. The shakedown condition provided by Theorem 1 is
thus independent of any residual stress that may exist initially in the structure (as a
consequence of material process, for instance). When the loading is beyond the limit
provided by Theorem 1, shakedown may still occur for some (but not all) initial con-
ditions (see [21, 26] for some examples). In such case, the asymptotic behavior is
strongly dependent on the initial state.

Observe also that the field A’ (x) in Theorem 1 is free from any constraint. This
makes for a simple geometrical interpretation of Theorem 1: Shakedown occurs if,
up to a time-independent translation, the local elastic response ¢ — K’ : o (x, 1)
remains in the elasticity domain ¢ at each point x (Fig. 3). The situation is reminis-
cent of linear kinematic hardening plasticity, for which shakedown is ensured under
a similar condition [16].

Fig. 3 Geometric
interpretation of the local
shakedown condition for
shape memory alloys
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On a final note, we observe that Theorem 1 is largely independent of the details
of the SMA model considered. In particular, the function f (that appears in the
Helmholtz energy w in Eq. (2)) and the exact expression of the set .7 (that defines
the constraints on the internal variable in Eq. (10)) do not play a role in Theorem 1.

5 Description of the Method

The above theorem leads to a design method against fatigue that can be broken down
into two steps:

1. Calculate the elastic response 6 (x, t) for the considered loading history.
2. Check if the local curve t = o (x, ) can be translated in €’ at each point x.

Note that Step 1. can be conveniently performed by a (linear elastic) FEA. Step 2.
is merely a post-processing of the results obtained in Step 1. Consider for instance
a parametrized loading history: The loading consists of body forces fd (x, 1), applied
tractions T%(x, ) and prescribed displacements u“(x, t) that vary respectively as

[, 1) = A0 o), T, 1) = AT o(x), u(x, 1) = AD)uy(x)

where A(f) is a time-dependent loading parameter. The elastic response o (x, t) being
defined by a linear problem, we have

o"(x,1) = Anoy(x)

where ag(x) is the elastic stress field for the loading (f(x), To(x), uy(x)). At each
point x, the curve = K” : ¢Z(x, 1) thus describes the line segment
[imins Amax)K' 2 0E @)

‘min> “max

where 4,,;, = min, A(¥) and 4,,,, = max, A(?).

Details of Step 2. depends on the model used. The simplest case is that of phe-
nomenological models, such as the model of Souza et al. [33] considered previously.
In that model, the elasticity domain % is a ball of radius R in the deviatoric space.
Denoting by sg (x) the deviatoric part of O'g , performing Step 2. amounts to checking
that

g = Amin) IS @I < 2R

at each point x, which is guaranteed if

Aomax — /lmin)mjlx lIs5 Il < 2R. (17)

If that condition is satisfied, then the structure experiences high-cycle fatigue, what-
ever the initial state is. In practice, the condition (17) can be used as a criterion
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for the design of SMA structures against fatigue: For say a given loading history,
the geometry of the structure should be designed in such fashion that max, ||sE @
remains smaller than 2R /(4,,,, — 4,,;,)- Note that the exact knowledge of the load-
ing parameter A(f) is not necessary: Only bounds on the extreme values are needed.
In particular, A(f) does not need to be periodic in time.

Now consider a micromechanical model of polycrystalline SMAs. Performing
Step 2. amounts to check whether there exists A;(x) and m > 1 such that

ImA(He(x) : ef — AL < GVG.))

i.e. that
Aimar = Amin)0G (%) © €7] < 2G V(i j).

This last requirement can be rewritten as

('lmax - mm) max |60 (x) : fjr(x)l < 2G. (18)

Proceeding further requires to evaluate max; |0'E (x) : " (x)| This can be done
exactly provided that the polycrystalline texture (1 e. the list of N rotations that appear
in (9)) is given. As an alternative, a simple bound on max;; |0'g x) : Z| can be used,
as is now explained. For any (7, ) we have indeed

trD <

O'OE(x) : e %tr O'E(x) tr 8” +sE(x) £ % E(x) tr 8” + ||sE(x)|| lle "D||

where the superscript © denotes the deviatoric part. Two observations are in order.
The first one is that, for the most common shape memory alloys, the transformation
strains can be considered as trace-free [7]. The second observation is that, as a result
of (7)—(9), ||£;.V’D || takes a constant value (denoted by ||€”||), independently of (i, ).

It follows that o (x) : el <|le”|| - lls5 )|l for all (i, /), hence
max oo () el < el llsgColl- 19)

In view of (18) and (19), a sufficient condition for shakedown to occur is thus that

('lmax - 'lmin)lletr” ||S0 @I <2G

for all x € Q. That condition is satisfied if

) max [lsE0o) | < 22 20)

('lmax_ ‘min ” tr”

Observe that the final condition (20) is formally similar to that obtained in (17) for
a phenomenological model.
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6 Application to Biomedical Stents

We now describe the application of the proposed method to biomedical stents. Such
devices have a tubular geometry and are typically an assemblage of elementary cells.
Those cells often have the shape of a ‘strut V’, as represented in Fig. 4 (left). When
the stent is loaded radially (for instance a consequence of blood pressure), each
cell primarily experiences some uniaxial traction (along the horizontal direction in
Fig. 4). Extensive fatigue tests have been reported in [2]. Those tests were performed
on a diamond-shape specimen that consists of 2 ‘strut Vs’ arranged in a symmetric
fashion so as to be easily fitted in a fatigue test machine. A simplified model of such
specimen is shown in Fig. 4 (right). In the experiments reported in [2], each sample
was submitted to a given strain cyclically between a fixed minimum value ¢, and a
maximum value €,,,,. The number of cycles to failure was recorded for each sample.
The obtained experimental results showed that a low- to high-cycle fatigue transition
occurs at 0.4-0.5% strain amplitude, without any clear influence of the mean strain.
In order to illustrate the proposed approach based on shakedown theory, we apply
the method detailed previously and compare the predictions with the experimental
results in [2].

For the problem at hand, applying the proposed approach merely consists in per-
forming one single elastic calculation, namely calculating the elastic response of the
structure in Fig. 4 when it is submitted to a (arbitrary fixed) reference strain &,. Such
a calculation has been performed in 2D (plane stress) with the FEA software Freefem
[14]. We used the values E = 50 GPa, v = 0.35 which are representative of Nitinol
[33]. Because of the symmetries, only one fourth of the structure needs to be mod-
eled, as represented in Fig. 4. The mesh used in the FEA consists of 121847 triangular
elements with linear interpolation. In Fig. 5 is represented the map of ||sg @®)]l. The
maximum value of ||sg (x)|| (normalized with respect to &) is approximatively equal
to 6860 MPa.

Using the condition (17) with R = 40 MPa, we obtain that shakedown occurs
provided that
| <0.58%. (21)

| Emax — Emin

Fig. 4 Strut V (lefr) and
diamond-shaped specimen
(right)
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; D

Fig. 5 Map of ||/ (x)|| on a LI 1
stent cgll (valges are —>

normalized with respect to — ]

the maximum value . N

Using lattice parameters from the literature [7], the value ||€"|| for Nitinol is found
to be approximatively equal to 0.1048. Applying the conditions (20) with G = 4.7
MPa [2], we obtain that shakedown occurs for

|€max — Emin] < 0.65%. (22)
Both values in (21) and (22) are above the low- to fatigue transition that is assessed
experimentally (0.4-0.5%). However, given the uncertainties in the material parame-
ters and the lack of data on the exact geometry used in the experiments, the agree-
ment with the experimental results can be considered as satisfactory. Also note that
the predicted limit is independent of the mean applied strain, which is in line with
the experiments.

7 Conclusions

The proposed method is relevant for the fatigue design of SMA structures. It enjoys
the following key features:

1. It is based on rational theoretical results.

2. It can be used with a lot of existing SMA models (either phenomenological or

micromechanical).

It only relies on elastic calculations: Incremental nonlinear analysis is bypassed.

4. Only a partial knowledge of the loading is required (namely the knowledge of the
extreme values).

5. It does not require the knowledge of any residual stress that may exist initially
(as a consequence of processing for instance).

(O8]

In spite of all those attractive features, it should be reminded that the presented
method does not give all the information regarding the high-cycle fatigue: neither the
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exact value of the endurance limit, nor the number of cycles to failure, are provided
by the proposed approach (see [6] for recent progress in that direction). However,

due to its simplicity, the proposed method could possibly be useful at least in the
early stages of design.

Appendix

For the sake of completeness, we give in this Appendix a proof of Theorem 1. Con-
sider a solution (g, @, 6,A",A?) to the evolution problem (1)—(13). By (11) we have

A=A%+A"

with
@ € ol (A%); A" € 3l 5(a). (23)

The positive quantity

D(t) = / A% adx

Q

can be interpreted as the rate of dissipated energy. Note that D(¢) is positive because
of the principle of maximum dissipation (6) and the fact that the elasticity domain &
contains the origin. Under the condition (16), we show in the following that the total

dissipated energy fOT D(t)dt remains bounded as T — oo. To that purpose, consider
the positive functional W(¢) defined as

W) = / w(e(t) — €5(0), a(?)) dx.
Q
By time-differentiation we have
W(t) = /[(o—oE) (- —K: @) +f(a) : aldx.
Q

Since div(c — 6f) =0in 2, (6 — 6¥).n =0 on I'; and u — u* = 0 on I, the prin-
ciple of virtual power gives /(6 — 6%) : (¢ — &%) dx = 0. Therefore

W) = / [-KT : (6 — ") +f(@)] : @dx
Q
which using (3) and (23) can be rewritten as

W) = =D() + / [-A" + KT : 6] : adx. (24)
Q
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Let (A7, m) satisfying (16). Setting A = mK" : o¥(1) — A", we find

W(r) = -D(t) + / [-A” + nlq(Ajf +AD)] : adx. 25)

Q

The property (16) shows thatA:f € ¢ fort > 7. Since a € 01%0(Ad), the principle of
maximum dissipation (6) gives

A -AY >0 (26)

Moreover, since A" € 0l (&) and @ € .7, Eq. (12) gives A"(¢) : (a(t) — a(t')) > 0
for any #'. In the limit ¥ — 7 with ¢/ < 7, we obtain

A" a>0. (27)
Combining (26)—(27) with (25) gives

W < L=

D(t)+l/A; D adx. (28)
mJao

Since Ai is time-independent, the time-integration of (28) on a time interval [z, T
yields

T
(m—1) / D(r)dt < mW(z) + / A7 (a(T) — a(r)) dx (29)
T 0

where the property W(T) > 0 has been used. The set .7 being bounded, there exists
a positive constant K such that ||a|| < K for any a@ € .7. Therefore

[ A7 @0~ atenas <2k [ jazyan
Q Q

Combining that inequality with (29) gives

T
(m—l)/ D(t)dtSmW(f)+2K/ l|A” || dx.
T 0

The right-hand side of that inequality is independent of T'. This proves that the dis-
sipated energy fT ! D(t) remains bounded as T — +co.

From there we can show (under some technical assumptions) that a(7) tends to
a limit as t — +oc0. Assume that the elasticity domain % contains a ball of radius
r > 0 centered at the origin. In such a condition, we have ra(z)/||a(?)|| € € for any
t. Using the principle of maximum dissipation (6), we find

0<a:@—r%.
llell
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Hence !
lal < -A : &
’
which after space integration gives
/ lalldx < 2D0). (30)
Q r

Let A be the vectorial space in which a(x) takes values and let L, (£2, A) be the space
of integrable functions with values in A. The inequality (30) can be rewritten as

. 1
el (o.n) < ;D(t)

where || - ||LI(QA) is the norm in L, (£2, A). Since fOT D(¢) is bounded as T —> +c0,

the integral fOT [l L,(@.a)dt converges as T — +oo. From Riesz-Fischer theo-
rem, the space L, (£2, A) is a Banach space. It follows (see [29] or Theorem 97 in [32])
that the integral /OT a(t)dt converges as T — oo. Hence a(f) converges towards a
limit as T — co. O
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Shakedown Within Polycrystals:
A Direct Numerical Assessment

D. Magisano, E. Charkaluk, G. de Saxcé and T. Kanit

Abstract It is well known that in high cycle fatigue (HCF), macroscopically,
structures undergo elastic shakedown and the stress level commonly determines the
lifetime. In this domain, the fatigue phenomena is due to local plasticity at the grain
scale. Therefore, some multiscale HCF multiaxial fatigue criteria were proposed,
among them the well-known Dang Van criterion. This criterion supposes that in
a polycrystal, some misoriented grains can undergo plastic shakedown which con-
ducts to crack initiation. The objective of this work is to validate this assumption by
conducting numerical simulations on polycrystalline aggregates. As it is necessary
to estimate the stabilized state in each grain of the polycrystal, classical incremen-
tal simulations are not the best way as it will be highly time-consuming because of
the size of the aggregate. In the recent years, Pommier proposed a method called
Direct Cyclic Algorithm to obtain the stabilized response of a structure under cyclic
periodic loading, which it is shown to be more efficient compared to an incremen-
tal analysis in such situation. However, errors can be obtained in certain case with
respect to the incremental solution. In this work, a Crystal Plasticity FEM model,
based on dislocation densities, was used. As a first step, an aggregate of 20 grains
of AISI 316L stainless steel under strain controlled cyclic loading was studied. Pre-
cise comparisons were conducted with incremental analysis and the results show that
DCA seems to be an efficient solution in order to estimate the shakedown state of
polycrystalline aggregates.
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1 Introduction

The fatigue of metals under cyclic loadings is the consequence of crack initiation
and growth until the complete failure of the concerned structure. The design of
metal components requires physically based crack initiation criteria compatible with
structural computation, performed for example by Finite Element Method. In this
aim many theoretical developments were done in the last decades and this con-
ducted to different fatigue criteria. High cycle fatigue (HCF) criteria are generally
stress tensor based while low cycle fatigue (LCF) ones are often defined from strain
variables [22]. However, if elementary mechanisms have been extensively studied,
the complete understanding of transition from cyclic plasticity to strain localization
and crack initiation is still an open problem.

A common approach in LCF and HCF and an improvement of such criteria can
be researched by taking into account the crystalline microstructure and not only the
macroscopic behaviour. In fact, metallic materials are made of an aggregate of grains
more or less well-oriented, with respect to the loading axis. Under mechanical load-
ing, this leads to heterogeneous deformation at the microstructure scale [10, 19]. In
polycrystals with random crystallographic orientations, inhomogeneous stress and
plastic strain fields are established because of orientation, grain shape and size, and
geometrical effects. In LCF, bulk plastic deformation takes place, but this is by no
means homogeneous. It is expected, therefore, that localized regions of preferential
slip develop, leading to similarly localized regions of crack initiation. In HCF, the
material undergoes elastic deformation at the macroscopic level, and it is only in
small areas that plastic deformation occurs. For the case of a polycrystalline metal
subjected to HCF with uniform macroscopic stress, the localized regions deform-
ing plastically are generated again by the inhomogeneity of the stress resulting from
crystallographic orientation, grain shape, etc. Even in HCF, as very localized plastic
straining develops, hardening can occur, leading to a redistribution of stress and a
further localization of plasticity. In other words, this is shakedown occurring, and it
is the basis of the Dang Van criterion for crack initiation [3]. Dang Van argues that
local plastic flow is essential for crack initiation and that, if shakedown occurs at the
grain level, the material would have an infinite fatigue life.

Since many years, experimental tests and numerical simulations on
polycrystalline aggregates are made in order to understand and model such mech-
anisms. Finite element models, incorporating crystal plasticity [8], were developed
in order to study the evolution of mechanical quantities in the microstructure, the
variables which rule the heterogeneous behaviour, for example the role of grain ori-
entation with respect to the loading axis and misorientation with its neighbours
in causing load shedding and stress localizations, and for trying to find a link
between macroscopic and microscopic behaviour. Numerical simulations can be
conducted on real microstructures, built by using an EBSD technique in order to
obtain informations on grain boundaries and orientations, or on fictive microstruc-
tures, based on a random distribution of crystallographic orientations and grain
sizes [16]. The simulations are then made by using a FE code, after the introduction
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of the crystal plasticity models and the definition of boundary conditions and load-
ings. The classical incremental method (Newton-Raphson) is the standard technique
to solve this kind of nonlinear analysis. Due to the size of the aggregates and the
nonlinear character of the differential equations, such computations are very time-
consuming. Under cyclic loadings these simulations are quite not possible due to
the necessary high number of cycles before obtaining the stabilized response of the
aggregates. A method called Direct Cycle Analysis (DCA) has been recently imple-
mented in the commercial software ABAQUS [15] and it is today commonly used
to obtain the stabilized cycle for LCF design.

The aim of this work is to test the performances and the accuracy of the DCA
in the evaluation of the steady state of policrystalline aggregates under cyclic load-
ing. As a first step, an aggregate of 20 grains of AISI 316L stainless steel under
strain controlled cyclic loading is studied. A Crystal Plasticity FEM model based
on dislocation densities, already implemented in a User-subroutine for ABAQUS/
Standard [20], is considered. The fictive microstructure and the finite element mesh
are generated by NEPER, a software based on Voronoi tessellation [16]. This work
starts with an introduction to the behaviour of metals under cyclic loads. The crys-
tal plasticity model is then described together with how to obtain the geometrical
model of a microstructure. The DCA is briefly recalled and it is tested in the case of
crystal plasticity. Precise comparisons are conducted with an incremental analysis in
order to validate the DCA as an efficient and accurate tool for the evaluation of the
shakedown state of polycrystalline aggregates.

2 Steady State and Fatigue Criteria

Among different methods of fatigue design of metal structures, a decoupled approach
can be used. It plans to perform a thermomechanical analysis without taking into
account the damage and then appropriate fatigue criteria allow to link the mechan-
ical parameters of the stabilized state to the lifetime of the structure. A structure
whose material obeys Drucker’s postulate, will reach, after some cycles of loading,
a steady cycle in which the stresses and the strain rates gradually stabilize and remain
unaltered on passing to the next cycle. There are three different categories of steady
stress cycles:

» Ratcheting (or incremental collapse), where non-vanishing plastic strain rates £”
and a non-vanishing plastic strain ratchet Ae” # 0 occurs at various parts of V.
This happens for sufficiently high load amplitudes and is a dangerous long-term
response as the plastic strains grow bigger from cycle to cycle leading to large
displacements so that the structure becomes unserviceable or the ultimate strain
of the material is reached.

« Alternating plasticity (or plastic shakedown), in which non-vanishing plastic strain
rates £° exist but there is no increment of plastic strains, i.e. Ae” = 0. This also
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occurs for high load amplitudes and this type of long-term response leads to low
cycle fatigue, which reduces the working life of a structure or of a component.

» Shakedown (or elastic shakedown), where plastic strain rate £’ vanish over the
whole body. In this case further plastic straining stops when the steady cycle is
reached and the structure subsequently responds, to further cycling, purely elas-
tically. This long-term response occurs for relative low load amplitudes and is a
favourable situation provided the plastic deformation that has been produced at
the transient phase is sufficiently small. In this case the structure or a structural
component can have infinite fatigue life, i.e. there is no failure even after many
cycles, or finite life due to high cycle fatigue.

In the case of elastic shakedown the structure, suddenly or after some cycles,
has an elastic response. Even if the stress is less than yield stress failure can occurs
because of HCF. The HCF design is based on the stress control and the stress is
computed by considering the metal as homogeneous, without taking into account
stress concentration due to the material heterogeneity. Some metals, if the stress
level is low, show an infinite life, i.e. fatigue does not occur even if the number of
cycles is very high. When the structure undergoes plastic shakedown, fatigue occurs
after a lower number of cycle and the LCF design is usually strain controlled. Both
criteria are purely phenomenological, relying directly on the interpretation of exper-
imental results at the macroscopic scale. An example of fatigue criterion that takes
into account the difference between the macroscopic and the mesoscopic mechanical
fields is the Dang Van criterion for infinite life.

2.1 Dang Van Criterion

One of the fatigue models including grain level phenomena in a macroscopic fatigue
criterion is the Dang Van—Papadopulos criterion based on the following assumption:

 In the LCF regime, physical observations at both macroscopic and mesoscopic
scale show extensive plastic strains. Moreover homogenisation theory shows that
strains and stresses at the two scales tend to be closer to each other with increasing
plastic strain. This can be translated into saying that the higher the applied load,
the more similar mesoscopic and macroscopic scales will behave.

 In the HCF regime, two fatigue domains corresponding to finite and infinite life-
time can be considered. Physical observations at the macroscopic scale show that
structures are macroscopically in an elastic shakedown state. At the mesoscopic
scale of the grains, it is now commonly accepted that elastic shakedown occurs
only in the case of infinite lifetime. If lifetime is finite, some grains will be ori-
ented such that they can not reach an elastic shakedown state, but will experience
a plastic shakedown or ratcheting state leading to failure after a finite number of
cycles. The stress concentration due to this mesoscopic failure marks the initiation
of a macroscopic crack associated with failure on the macroscopic scale.
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Focusing on the case of HCF, one can imagine a case where only one
misoriented grain is subject to plastic slip. Then a simple homogenisation scheme
of a plastic inclusion in an elastic matrix can be used to derive closed-form relations
between mesoscopic and macroscopic fields. Examples of possible homogenisation
assumptions are:

« Lin-Taylor strain equality: € = E, that is the hypothesis of the initial Dang Van—
Papadopoulos fatigue criterion;
 Sachs stress equality ¢ = X

where € and o are strain and stress at grain level, £ and X are strain and stress at
macroscopic level.

If, in all the cases, the same elastic behaviour at the mesoscopic and the macro-
scopic scale is assumed, the relation between mesoscopic and macroscopic fields can
be written in the general form:

c=2X—-C'ef =X+ p" (1)

where p* should be interpreted as mesoscopic residual stress field. The particular
case of each homogenisation model is obtained depending on the form of C*:

e Lin-Taylor’s model: C* = C
e Sachs’s model C* = 0;

As we will see better in the next chapter the plastic deformation is the conse-
quence of atomic slip in preferential directions on particular atomic planes (slip sys-
tems). However under the assumption that the grain orientations statistically cover
all directions [14], and so even the slip systems, according to Dan Vang fatigue cri-
terion infinite life occurs if

mlax(TT(t) +acfl(r)) < b (2)

where 77 is the Tresca norm of mesoscopic shear, 6/ = 1/3 tr(c) is the hydrostatic
mesoscopic stress, a and b are material parameters.

The homogenisation assumptions seen previously cannot represent at the best
the reality. Numerical simulations on polycrystalline aggregates can be the way to
improve the link between mesoscopic and macroscopic quantities.

3 The Crystal Plasticity Model

3.1 Single Crystal Plasticity

In crystal plasticity theory, plastic deformation is modelled by using the slip sys-
tem activity concept. It is a physically based plasticity theory that represents the
deformation of a metal at the microscale. It is important to note that, in this theory,
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the continuum framework is kept even if at such scale the physics is not continuous
anymore. Dislocations are assumed to move across the crystal lattice along specific
crystallographic planes and directions. When the material is subjected to loading,
the local resolved shear stress occurs on a slip plane and along a slip direction and
its magnitude controls the movement, the creation and the annihilation of disloca-
tions. Consequently the material is locally loaded on specific directions while the
volume remains constant. Moreover the crystal lattice could deform elastically while
the resolved shear stress has not reached its critical level. Two laws are necessary to
describe the single crystal plasticity:

« the flow rule, that describes, for intragranular variable, the slip initiation for each
system,;

« the hardening rule, that describes the hardening which occurs on each system after
successive loadings.

The crystal plasticity model described in the following is that already imple-
mented as a User-subroutine for ABAQUS/Standard [20].

3.1.1 Flow Rule

The Resolved Shear Stress vector z° is the projection of the local stress tensor
expressed in the global reference system on every possible slip system s. The Schmid
law takes the following general form [17]:

=0 :D’ 3)
D’ = %(b’ ®n'+n’'®b%) 4

where o is the local stress tensor, n* is the slip plane normal, »* is the the slip direc-
tion and D* is the Schmid matrix, that is the symmetric part of the Schmid tensor
L* = b* ® n® and we denote here W its antisymmetric part. One can easily find that,
in the case of a single crystal submitted to a uniaxial loading, the Schmid matrix D* is
reduced to a simple composition of crystallographic orientations cosy cosA, where 4
is the slip direction angle related to the load direction and y is the slip plane normal
angle. According to the Schmid law, a single crystal leaves the elasticity and shear
occurs when the Resolved Shear Stress on a slip system s reaches its threshold value,
the Critical Resolved Shear Stress (CRSS), noted . It could basically be written as
7¥=01<7

{7S>0,TSZT§ ©)

with 7° the slip rate associated to system s. The flow rule introduces a rate depen-
dent formulation. Classically one use a viscoplastic formulation more convenient for
numerical simulation [9], that consists in a power law:
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where y, is a reference value of the slip rate and 7 is the strain rate sensibility parame-
ter. The rate dependent approach in fact avoids to deal with discontinuous conditions
because all slip systems are allowed to be active but only some systems have non-
negligible slips (when n > 1, y* = 0 unless 7* = 77).

3.1.2 Hardening Rule

When sliding occurs on a specific system, it interacts with different obstacles:
additive elements, precipitates, dislocations “forest”, etc. The increasing of dis-
location density and these interactions lead to a local material resistance which
results in critical shear stress increasing. In some cases an annihilation process could
occurs leading to a decrease of dislocation density storage rate. One experimentally
observes that there is a critical distance between dislocation systems with opposite
sign leading to their annihilation. This process could conduct to a saturation process
of hardening and also softening process. A physical based hardening rule has to take
into account these basic mechanisms of dislocations generation and annihilation. It
can take the following general expression proposed by [11]:

o= H"|7'| (7)

where the H* terms are the components of the hardening matrix. This matrix
takes into account the slip on the considered system also on the others. Diagonal
terms H*, called self-hardening, account for the hardening on slip system s due to
its own slip activity. Remaining terms, called latent-hardening, account for the hard-
ening on slip system s due to the slip activity on the whole set of other systems u.
The form of the hardening matrix depends on the considered physical mechanisms.

To account for more physics Eq. 7 should be based on dislocation density. Basi-
cally, the total dislocation density could be divided in two parts: statistically stored
dislocations p}, which trap each others in a random way and/or are required for com-
patible deformation of various part of the crystal, and geometrically stored disloca-
tions p°, which are required when gradient of plastic shear exists. For simplicity’s
sake in this model it’s implicitly assumed that only p} influences the work hardening.
No geometrically stored dislocations are therefore considered. The form of the slip
resistance classically used was introduced in [5]:

T, =Ty + ub /Z dsup* ®)

where 7, is an initial value of Critical Resolved Shear Stress, y is the shear mod-
ulus, b the magnitude of the Burgers vector, d* the interaction coefficient between
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the slip systems s and u and p" represents the local density of the statistically stored
dislocations on the slip system u. In the case of FCC structure the hardening interac-
tion matrix is a 12 X 12 matrix composed by only 4 independent coefficients due to
crystal symmetries. The identification of these coefficients is still complicated and
is classically done by Discrete Dislocation Dynamics simulations. In practice one
uses here a simple form of the matrix depending on only two parameters: d, for the
self-hardening (s = u) and df for the latent-hardening (s # u).

The hardening rule needs to be completed by a flow rule for dislocation density on
each slip system s, function of slip rate y*. The description of dislocation generation
was firstly figured out by Frank and Read [6]. It takes generally the following form:

(D@ N
”‘b< 7 2ycﬂ>|Y| ©)

in which the term 2“2 accounts for dislocation creation and the term 2y.p°

accounts for dislocation annihilation.

The material parameter 2y, associated to annihilation is related to the critical
annihilation distance, which is here taken constant. The parameter L is the mean free
path of the mobile dislocations in system s, also assumed to be constant in this study.
Finally a*™ accounts for the geometrical interaction between dislocation densities.
Assuming that collinear, coplanar and orthogonal crystal interactions have the same
impact on mean free paths allows to reduce the number of a; unknown to only four
independent coefficients as shown in Table 1. Note that the Eq. 9 implies that there
exists a saturation of dislocation production which depends on the deformation path,
and more precisely on the dislocation quantity accumulated on the whole set of slip
systems. Note also that dislocation production rate p* depends on the absolute value

Table 1 Dislocation density interaction matrix of FCC material

A, A, Ag B, B, Bs C, Cs Cs D, D, Dy
A, | as as as as as as as ag as ag as
Aj a; as as as de as as as de as ds
Ag a as de as A ds as ds as as
B, a a3 as as de as as as de
B, a asz A az as as asz as
B; a; as as as de as as
G a; as as as as as
G a; as ads as de
Cs Sym a, as ag as
D, a as as
D, a a3
Dy a
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of slip rate y* and this hardening is therefore isotropic. Nevertheless, as each slip
direction has its own dislocation and yield evolution, the yield surface in spatial
domain evolves from an initial sphere of radius 7, to a more complex form (Fig. 1).

3.2 Microstructure Geometry

Numerical simulation can be computed on two different kind of polycrystalline
aggregates:

« real microstructure, built by E.S.B.D. analysis which provides information on
grain boundaries and crystallographic orientation

« fictive microstructure, based on a random distribution of crystallographic orien-
tations and grain sizes.

3.2.1 Fictive Microstructures

Several authors have proposed analytical and numerical methods to construct
random polycrystalline morphologies. These methods can be rooted in the basic
principles of phase transformations (leading in some cases to Voronoi tessellations),
physically-driven simulations of annealing or recrystallization, or algorithms that
attempt to directly reproduce statistical data coming from experimental character-
izations. Among randomly generated morphologies, Voronoi tessellations have the
advantages of being defined analytically and having straight triple lines and flat grain

47T
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Fig.1 Hardening evolution with dislocation density
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boundaries. Still, Voronoi tessellations show important variabilities in grain size and
shape which are representative of real polycrystalline morphologies [16].
Mathematically a Voronoi tessellation of a n-D space is a collection of n-D entities
that fills the space with no overlaps and no gaps. These entities are polyhedra and are
formally defined as zones of influence of a particular set of points, corresponding to
their centres. Being given a spatial domain D € R”, a set of points G;(x;) within D
and anorm d(s, »), a Voronoi polyhedron C; is associated to every point G; as follows:

C; = {P() € DIA(P,G) < d(P.G) Vj# i} (19)

There are different available software which provide a Voronoi tesselation of
2-D and 3-D domains, like for example NEPER [16], which provides the polycrys-
tal morphology, described by sets of points, lines, surfaces and volumes, and the
free meshing of the morphology. It uses an Euclidean distance like norm and the
set of points G; is taken randomly distributed. By construction, a Voronoi polyhe-
dron is convex; hence in 3-D the intersection of two Voronoi polyhedra is a plane,
called “tessellation face”, the intersection of three Voronoi polyhedra is a straight
line, called “tessellation edge”, and the intersection of four Voronoi polyhedra is a
point, called “tessellation vertex”. From a physical point of view, the generation of
Voronoi tessellations corresponds to a process of solidification or recrystallization
where all grains nucleate at the same time and grow isotropically at the same rate.
Voronoi tessellations qualitatively reproduce some important properties of real poly-
crystalline morphologies, like the distribution of grain size and the number of first
neighbours.

4 Review of the DCA

The classical approach in FE codes to obtain the stabilized response of an elastic-
plastic structure subjected to cyclic loading is to apply the periodic loading cycles
repetitively to the unstressed structure until a stabilized state is obtained. At each
instant in time it typically involves using Newton’s method to solve the nonlinear
equilibrium equations. To avoid the considerable numerical expense associated with
such a transient analysis, a DCA has been suggested in [15] and has been recently
implemented in the commercial software ABAQUS. It is based on the following
assumption:

 quasi-static analysis, i.e. without taking into account dynamic effect

« geometrically linear behavior

« use of Fourier series to describe the stabilized state

« direct research of the stabilized cyclic response of the structure iteratively using
the Modified Newton’s method with the elastic stiffness matrix
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4.1 Description of the Algorithm

In a quasi-static analysis with cyclic periodic loads the nonlinear equilibrium equa-
tions can be written as:
Rt)y=F@t)-1t)=0 an

where F(?) is the discretized form of a cyclic load that has the characteristic F(r +
T) = F(¢) at all times ¢ during a load cycle with period T, I(¢) represents the internal
force vector generated by the stress, and R(?) is the residual vector. We are looking
for a displacement function that describes the stabilized response of the structure,
i.e. a displacement function u(f) that at all times ¢ during a load cycle with period T
has the characteristic u(f) = u(¢ + T). Since the periodicity of the solution, the best
choice for this purpose seems to be a truncated Fourier series:

N
u(t) = uy + Z [} sin ket + u, cos kwt| (12)
k=1

where n stands for the number of terms in the Fourier series; @ = 2z /T is the angular
frequency; and u, u; and u are unknown displacement coefficients.

We also expand the residual vector in a truncated Fourier series in the same form
as the displacement solution:

N
R(H) = Ry + 2 [R]‘( sin kot + Rz cos ka)t] (13)
k=1

where each residual vector coefficient R, R‘,i and R; in the Fourier series corre-
sponds to a displacement coefficient. At each instant in time in the cycle the residual
vector R(f) is obtained by using standard element-by-element calculations and pro-
vides the Fourier coefficients:

T
Ry =2 / R(dt
0

T
T
R =2 / R(0) sin (keon)di (14)
T Jo
) T
R, =7 ‘/0 R(?) cos (kawt)dt

For the computing of the residual Fourier terms we need to evaluate the residual vec-
tor at some time points obtained by a discretization of time period in time increments.
ABAQUS uses a trapezoidal rule, which assumes a linear variation of the residual
over a time increment, to integrate the residual coefficients. For accurate integration
the number of time points must be larger than the number of Fourier coefficients
(which is equal to 2n + 1, where n represents the number of Fourier terms).
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The unknown displacement coefficients can now be computed iteratively by using
the Modified Newton method. Starting from their approximations obtained after an
iteration (i), the coefficient after an iteration (i + 1) are:

@i+1) @) @i+1)

l/to = MO + CO

sG+D) _sG) | sG]

Uy =u, + C, (15)
c(i+l) _  c@) c(i+1)

l/tk = Mk + Ck

where the corrections to the coefficients of the displacement solution are found by
solving the following linear systems:

G+ _ pG)
Kco = R0

s(i+1) _ ps@)
K™Y = R (16)

Kcz(m) _ Rz(i)
with K the initial elastic stiffness matrix. The updated displacement coefficients are
used in the next iteration to obtain displacements at each instant in time. This process
is repeated until convergence is obtained. Each pass through the complete load cycle
can therefore be thought of as a single iteration of the solution to the nonlinear
problem [1]. Since the use of the Modified Newton iterative scheme, the DCA cannot
be utilized in the presence of strong nonlinearities, such as geometric nonlinearities
and contact.

During the iterative solution process, the DCA imposes periodic conditions by
using the state obtained at the end of the previous iteration as the starting state for
the current iteration, i.e. sf:(l) = sj=T, where s is a solution variable such as plastic
strain.

5 Numerical Simulations on a Polycrystal

5.1 Geometric Model and Material

In this section we analyse a polycrystal composed by 20 grains. The specimen is a
square cuboid in which two dimensions are ten times the other one. The microstruc-
ture, the crystal orientations and the mesh are generated by NEPER. The geometrical
model and the boundary conditions are shown in Fig. 2. The model is composed by
2094 tetrahedral elements C3D4 and 636 nodes. The material used in the simulation
is the AISI 316L austenitic stainless steel, a material used for many structural appli-
cations. It is a polycrystalline aggregates with FCC structure and its crystal plasticity
parameters are available in literature and are reported below. The definition of elastic
fourth rank stiffness tensor C for a FCC crystal need only 3 parameters, due to the
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Fig.2 Geometrical model
and boundary condition of
the polycrystal

cubic symmetry, which for 316 L are shown in Table 2, where a = 2Cy, /(C}; — Cy,)
is the coefficient of anisotropy (a = 1 for isotropic material). The flow rule con-
sists in a power low defined by 2 parameters reported in Table 3: the reference value
of the slip rate 7, and the strain rate sensitivity parameter. Eleven parameters are
required to define the hardening behaviour of an FCC crystal and are summarized in
Tables 4 and 5.

Table 2 Elastic parameters of CPFEM for 316L [13]
C;, (MPa) C, (MPa) C,y (MPa) a
248000 142000 71000 1.34

Table 3 Flow parameters of

o1
CPFEM for 316L [2, 21] 7 ™) "

3.4x107° 10
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Table 4 Hardening parameters of CPFEM for 316L [4, 7]
tau, (MPa) | b (mm) Ve L (mm~2) Po d, dy
35 32x1077 |32x10°° |33 1073 0.06 0.004

Table 5 Dislocation density a, as as ag
interaction parameters of
CPFEM for 316L [12] 0.12 0.07 0.14 0.12

5.2 Monotonic Tensile Test

A strain controlled monotonic tensile test with a constant strain rate of 0.005s7! is
realized. The simulation is first performed without taking into account the geometric
nonlinearities, i.e. the rotation of crystal axis during the deformation.

Figure 3 shows the heterogeneous mechanical average behaviour of the different
grains in loading direction. At 2.5% of average strain the heterogeneity on strain is
about 1% and about 144 MPa on stress. We can see on the average strain vs stress
curve that, at 2.5% of average strain, the stress is 263 MPa and is consistent with
experimental and other numerical results [18]. The behaviour obtained is qualita-
tively acceptable although the number of grains is very low and the microstructure

350

300

w
o
a
o ;
o™ L}
“ 150
100
50 —
] Average
] Grains
D T L T T T T
0e0O Se-03 1e-02 1.5e-02 2e-02 2.5e-02 Je-02 3.5e-02

E22

Fig. 3 Monotonic test, stress-strain curve in load direction for each grain
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is fictive. The influence of the mesh on the results is not tested. The same test is per-
formed with both models, geometrically linear and nonlinear, up to 5% of average
strain in order to quantify the error of neglecting the rotation of crystal axis during
the deformation. In Fig.4 we can see that, even at 5% of average strain, the error
on the strain is certainly negligible, while the error on the average strain and on the
maximum stress becomes to be of few percent. However in fatigue design the values
of strain reached are usually much lower that 5% and so the neglecting of geomet-
ric nonlinearities are surely acceptable. After this observation we can safely use the
Direct Cyclic Algorithm on polycrystalline aggregates. In fact it cannot be used for
geometrically nonlinear analysis since it uses the modified Newton-Raphson method
to solve the equilibrium equations.

5.3 Cyclic Test

A strain controlled cyclic symmetric tensile-compression test up to 0.25% with a
constant strain rate of 0.0025s~! is now performed on the same aggregate and the
results are discussed. Figures 5 and 6 show the average behaviour and the behaviour

S22 average
— — — E22 max
----- = 8§22 max

ERROR (%)

08

0.6

0.4

0.2 4

Oe00 1e-02 2e-D2 3e-02 4e-02 Se-D2
E22 AVERAGE

Fig. 4 Error of neglecting geometric nonlinearities on maximum stress, maximun strain and aver-
age stress in load direction
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Fig.5 Stress-strain curve in load direction for the misoriented grain: direct cyclic and incremental
(cycle 1, 20, 100, 200, 600 and 1000) solution

of the misoriented grain. We can see that the steady cycle is reached by an incre-
mental analysis about 600 cycles. The DCA requires with 19 terms, the maximum
number of Fourier terms, 682 iterations to converge. We can also see that the results
obtained by DCA and Incremental analysis are roughly equivalent by looking at the
two stress-strain curves.

Figure 7 shows that the strain field obtained with the two method has practically
the same form and the same values. Looking at Fig. 8 we can see that even with
only 5 Fourier terms and practically the same number of iterations we can obtained a
solution very close to the incremental one. In fact, if we exclude the decomposition of
the stiffness matrix and the evaluation of the residual vector in each time increment,
which are the same in both analysis, we can link the remaining computational time
to the number linear systems required to achieve the convergence:

e 19 F.T. = 682 iterations X (2Xx 19+1) F.C.=26598 L.S.
« SET. = 682 iterations X (2x5+1) F.C.=7480 L.S.

In this case the number of linear systems with 5 Fourier terms is 3.5 times lower
than the number required with 19. The error is quantify in Tables 6 and 7 for the mis-
oriented grain and for the average behaviour for different number of terms. Looking
to these results we can make some consideration:
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Fig. 6 Stress-strain average curve in load direction: direct cyclic and incremental (cycle 1, 20, 100,
200, 600 and 1000) solution

« the DCA solution seems to converge to the solution with more Fourier terms;
« at convergence, the DCA solution is not coincident with the incremental one and
then a lower number of Fourier terms can provide better results.

In Fig. 9 it is shown the behaviour of two different grains with respect to the aver-
age behaviour. The load transfer between groups of grains of different orientation
occurs due to plastic deformation governed by crystal slip. In this respect the grain 7
and 8 in this polycrystalline aggregates are representative of the extremes of behav-
iour, grain 7 being the strongest orientation, and grain 8 being the softest and the most
compliant. It is interesting to note that grain 7 undergoes practically elastic shake-
down, while the response of grain 8 exhibits a significant hysteresis area. This is
indicative of inelastic deformation by crystal slip, which leads to energy dissipation.
It is interesting to interpret this result within the framework of energy-related criteria
of fatigue crack initiation. For example, Dang Van postulates that infinite life may
be expected, but only if after a certain initial period grain level shakedown occurs,
the cyclic deformation becomes purely elastic, and no energy dissipation takes place.
The result shown in Fig. 9 indicates that the situation is different between grains even
within the same macroscopic sampling volume. Some grains, e.g. grain 8, satisfy the
initiation criterion, while others, e.g. grain 7, must be expected to have infinite fatigue
life (Table 8).
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Fig. 8 Comparison of the stress-strain curve in load direction of the misoriented grain and the
average behaviour obtained by DCA with 19 and 5 Fourier terms

Table 6 Direct cyclic error for the misoriented grain

Analysis AE err (%) AS MPa) | err (%) Energy err (%)
(MPa)

D.C.5FE.T. |0.0060 —4.8 599 0.3 1.710 1.5

D.C.9FET. |0.0062 -1.7 602 0.9 1.753 4.0

D.C. 14 FE.T.| 0.0063 -0.2 605 1.4 1.754 4.1

D.C. 19 ET.| 0.0064 1.3 597 0.0 1.734 29

Incremental | 0.0063 597 1.685

Table 7 Direct cyclic error for the average behaviour

Analysis AE err (%) AS (MPa) | err (%) Energy err (%)
(MPa)

D.C.5FE.T. |0.0046 -6.2 625 -2.4 0.743 -2.0

D.C.9F.T. |0.0048 =32 639 -0.2 0.761 04

D.C. 14 E.T.| 0.0049 -1.6 640 0.0 0.761 0.4

D.C. 19 E.T.| 0.0050 0.0 642 0.2 0.753 -0.6

Incremental | 0.0050 640 0.758
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Fig. 9 Comparison of the stress-strain curve in load direction of different grains with respect to
the average one

Table 8 Comparison of the behaviour of different grains with respect to the average one

Variable Average Grain 7 Grain 8
AE 0.0050 0.0043 0.0064
AS 642 784 597
Energy 0.75 0.19 1.73

6 Conclusions

Fatigue criteria based on stress and strain control are commonly used to link the
steady response to the number of cycles that provides failure. In HCF the struc-
ture undergoes elastic shakedown and the life time is commonly determined by the
macroscopic stress level. In LCF the structure undergoes alternating plasticity and
the lifetime is estimated with the difference of strain of the steady cycles. However, a
metal is a polycrystalline aggregate made of many grains with different orientations
of the crystals. A heterogeneous response is expected due to the anisotropy of each
crystal with regard to the elastic and, much more, the plastic behaviour. An improve-
ment of fatigue criteria could be made by considering the behaviour of metals at
the microstructure scale. To understand and to model such heterogeneity Crystal
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Plasticity theory was used in the last years to build Crystal Plasticity FEM models.
In this work a model based on dislocation density and large deformation was con-
sidered. The numerical model was already implemented as a UMAT for ABAQUS
standard. We have seen that this model allows to achieve a first approximation of the
heterogeneity of an aggregate of 20 grains of AISI 316L stainless steel under strain
controlled monotonic and cyclic loading. The aggregate was built with the software
NEPER that provides a random distribution of grain size and orientations and at first
the analysis was performed incrementally with a full Newton method. This approach
is quite expensive in the case of cyclic loading, since the application of many loading
cycles may be required before the stabilized response is obtained, about 600 cycles
for our aggregate.

Recently, Pommier proposed a method called Direct Cyclic Algorithm to obtain
the stabilized response of a structure under cyclic periodically loading, which it is
shown to be more efficient of an incremental analysis, much more increasing the size
of the problem and the number of cycles required to obtain the steady cycle, but with
a small error with respect to the incremental solution. The same cyclic analysis of the
aggregate was performed by DCA, with the same time increment of the incremental
analysis and the maximum number of Fourier terms allowed, that provides the steady
cycle in 682 iterations. The convenience of this kind of analysis in terms of time is
clear because the number of linear systems to be solved for a single cycle with the
incremental method is surely higher that the number of linear system required for a
single iteration of DCA. Moreover the full Newton method needs to assemble and
decompose the stiffness matrix many times during a cycle, operation that dominates
the entire computational effort, while the DCA uses always the elastic matrix. Each
pass through the complete load cycle with DCA can therefore be thought of as few
iterations of incremental method. In the simulation performed in this work, the DCA
is about four time faster than the Incremental method. The DCA solution is close to
the incremental solution but it is not exactly coincident. The error with the maximum
number of Fourier terms on the strain difference, stress difference and energy of
steady cycle is, however, a few percent for the softest grain and negligible for the
average behaviour. The DCA is not able to deal with geometric non-linearities, but
the error of neglecting the rotation of crystal axis during the deformation has tested
and it was shown to be acceptable. We have also seen that a further reduction of the
computational cost can be achieved by using a lower number of Fourier terms with
a slightly larger error.

This result can be surely used in a future work where the model will take into
account the real morphology, number and orientations of grains, using EBSD analy-
sis of specimens used in experimental investigations. Since the size of this aggre-
gates, the DCA is maybe the only possible way to compute numerical simulations,
allowing a real comparison between mechanical fields at grain scale and to study the
interaction between the local constitutive law of the single crystal and the macro-
scopic behaviour of the specimen, for example with respect to crack initiation and
fatigue life. These informations could lead to the definition of new fatigue criteria.
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On the Size of the Representative Volume
Element Used for the Strength Prediction:
A Statistical Survey Applied to the
Particulate Reinforce Metal Matrix
Composites (PRMMCs)

Geng Chen, Alexander Bezold, Christoph Broeckmann and Dieter Weichert

Abstract Particulate reinforced metal matrix composites (PRMMCs) are typical
random heterogeneous materials whose global behavior depends on the microstruc-
tural characterisics. Recently a numerical approach was developed (Hachemi et al.,
Int J Plast 63:124-137, 2014 [1], Chen et al. Direct methods for limit and shake-
down analysis of structures, 2015 [2]), by applying it to a typical PRMMC material
WC/Co, we presented how the ultimate strength and endurance limit can be pre-
dicted from the material microstructures. Due to the randomness in the microstruc-
tures of PRMMCs, size of the representative volume element (RVE) has a nontrivial
influence over the predicted effective behaviors. In order to understand how size of
RVEs contribute to the result and based on that to eliminate its influence, a numerical
investigation is performed in the present study. In this study, a large number of rep-
resentative volume element (RVE) samples representing a representative PRMMC
material, WC-20 Wt% Co, were built from artificial microstructures. The samples
are obviously different in size, and by deploying the established numerical approach
to these samples, ultimate strength and endurance limit were calculated. Afterwards,
the derived material strengths were analyzed by multiple inferential statistical mod-
els. The statistical study reveals how strength and other effective material properties
react to the change of the RVE size. On that basis, the study proposed a feasible and
computationally inexpensive solution to minimize the size effect.
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1 Introduction

Over the past three decades, particulate reinforced metal matrix composites (PRMMCs)
have been transformed from a topic of scientific and intellectual interest to materials
of broad technological and commercial significance [3]. In many industrial sectors, a
clear trend can be seen that the application of PRMMCs prevail and gradually replace
the conventional metallic materials in structural components. This trend in turn fos-
ters the need to strengthen the understanding of the material behavior and based on
that further reduce the development period of new PRMMC materials. Components
made from PRMMCs often operate under variable loads with unknown time history.
In order to evaluate the serviceability of these materials, their fatigue behaviors have
to be well understood.

In many existing works, based on experimental observation, the dependence of
the fatigue behavior of PRMMCs on the microstructural characteristics, such as size
[4, 5] and distribution of the reinforcement phase [6, 7] have been investigated. In
addition to these experimental works, numerical methods based on the microme-
chanical finite element (FE) analysis were also developed and applied to the PRMMC
materials. By using these numerical methods, one can predict the macroscopic effec-
tive material behavior of interest from the material microstructure, and this sig-
nificantly reduces the time for developing new PRMMC materials. For PRMMC:s,
one material behavior of particular interest is their load bearing capacity. However,
according to [8], this is probably the most disputed part. Despite the difficulties aris-
ing from modeling the representative material morphology and defining the bound-
ary conditions, Fiissl and Lachner proposed in [8] to determine the strength from the
limit analysis. The similar technique has been presented in many studies, c.f. [9, 10].
In these papers, the global material strength, both ultimate strength and endurance
limit, were predicted by applying the direct method to the representative volume
element (RVE) and converting the results to their corresponding macro quantities
by means of the homogenization. Compared to the analytical approaches, the great-
est advantage of such approach is that the influence of the material microstructure
can be immediately identified.

In our latest studies, this numerical technique was extended to the random het-
erogeneous PRMMC materials. One major challenge pertained to these materials is,
that the microstructure can not be embodied by one individual RVE model. Due to
this reason, we proposed to predict the material strength from many RVE models
called statistical equivalent representative volume element (SERVE). Although the
method has been successfully implemented to an representative PRMMC material,
WC-Co, with different binder contents and the results obtained from SERVEs were
carefully interpreted by statistical models, one important issue, the size effect, is still
not fully exposed. The size effect can be explained as follows: For nonperiodic mate-
rials, the absence of periodicity of material excludes to embody the infinite domain
of the material by an individual RVE of finite size; therefore the predicted material
behavior depends largely on the adopted RVE size.
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In brief, the RVE size has to exceed a critical value to ensure that the simulation
results are independent of both the RVE size and the spatial distribution of the rein-
forcements [11]. Regarding the determination of the RVE size, Hill [12] has provided
an insight from an energetic point of view and developed a condition which requires
the equality to hold for a sufficiently large RVEs. Because this condition, which is
referred as the Hill’s condition, made no hypothesis on the link between stresses and
strains, therefore it should be compatible with any constitutive law. Beside Hill’s con-
dition, there are many pragmatic approaches for determining the RVE size, e.g. win-
dowing method [13] which arbitrarily builds RVEs with fixed window size and com-
pares between predicted results from different windows; boundary condition method
[14] which examines the consistency between predictions obtained from statically
uniform boundary conditions (SUBC), kinematically uniform boundary conditions
(KUBC), and periodic boundary conditions (PBC); size convergence approach [15]
which gradually enlarges the RVE size and accepts the size where the prediction is
stabilized.

In addition to the pragmatic approaches, the problem of RVE size determination
has been intensively studied from a theoretical perspective. For example, Drugan
and Willis [16] studied a linear elastic composite and proposed a criterion for deter-
mining the minimum RVE size by comparing the ratio of the magnitude of nonlocal
terms to the magnitude of local terms. According to this criterion, the minimum
RVE size is required to be at maximum twice the reinforcement diameter for any
reinforcement concentration level. This criterion has been subsequently approved in
few subsequent studies [17, 18]. In multiple studies concerning different types of
composite materials, a general observation has been reported that the size required
for predicting the effective elastic behavior is relatively small and depends only on
the volume fraction [19]. Beyond the scope of linear elasticity, many studies con-
firmed that the minimum size of an RVE needed to capture the nonlinear behavior
are much larger than the ones for determining the linear behavior [20, 21]. In our
previous study [22], we observed from few RVE samples built from the real scan-
ning electron microscope (SEM) images of WC-Co, that the disparity between the
models becomes more obvious when plastic deformation accumulates. Based on this
observation, we concluded that all indicators for checking the fulfillment of the size
requirement are necessary but insufficient criteria. Therefore a remedy to the diffi-
culty of determining the RVE size is to use SERVE models.

According to the concept of SERVE, the material behavior of a random compos-
ite should be evaluated from a series of statistically equivalent RVE samples [23].
The evaluation should be based on statistical descriptors such as mean-value, vari-
ances, and probability density function [24]. When the size of SERVEs increases,
each SERVE sample tends to become the RVE and differences among them become
negligible [25]. Meanwhile, using typical statistical analysis techniques such as cor-
relation analysis, the dominant factors influencing the material constitutive proper-
ties can be identified [26].

To achieve a satisfactory level of reliability, the number of SERVE samples should
be guaranteed to exceed a threshold value. This threshold value can be determined
from the margin of error, the confidence level and the standard deviation of the data.
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Among existing studies, the number of RVEs varies significantly. In most studies
only a small number of samples, e.g. 15 [27] or 25 [28], are used to predict the
material behavior. Only seldom would an extremely large number of samples be
adopted for the analogous purpose [29].

Although by using SERVE models the difficulty for determining the RVE size
and eliminating the size effect is greatly reduced, it is still an open question that,
how large should each statistically equivalent RVE be—especially, if the aim of the
homogenization study is not only to predict the mean value, but also other statistical
characteristics of an effective behavior. As has been summarized, the minimal RVE
size depends on the type of the behavior to be studied. Due to this reason, the objec-
tive of the present study is to expose how to determine the size of RVEs used for
determining the material strength. In the present study, the material investigated in
our previous works, tungsten carbide-cobalt hard metal with 20 Wt.% of the binder
phase, WC-20 Wt.% Co, was again used as an representative PRMMC material. WC-
Co is one of the most used materials in industrial applications where hardness and
wear resistance are crucial. The initial phase of this composite, WC, is the tough-
est in comparison to other hard phases used in tool materials. However, due to the
lack of sufficient toughness WC alone is not applicable for harsh applications since
it cannot resist deformation and wear well. This drawback can be compensated by
the counterpart Co phase. As the second phase, Co provides the necessary toughness
and other advantageous binder properties. In addition to that, what is also unique of
WC-Co is the almost perfect compatibility existed between its two constitutes and,
as a consequence, WC-Co is widely used in the machining, mining, forming and
similar industries [30].

To understand how size of the RVE models influences the effective ultimate
strength and endurance limit predicted for this material, we built 3 sample groups.
Each sample group consists of 500 RVE models built from artificial microstructures
of the material. RVE models in 3 sample groups have the same configuration but
the different RVE size. By deploying the established numerical approach to these
samples, ultimate strength and endurance limit were calculated and the results were
analyzed through statistical models with a particular focus on the size effect. On the
basis of the statistical analyses, in the end of the work, a feasible and computationally
inexpensive solution is proposed for minimizing the size effect.

2 Shakedown of RVE Models

The strength of the WC-Co composite was predicted from RVE samples using the
static direct method based on the Melan’s theorem [31]. Before presenting how this
method was applied to heterogeneous materials, first we revisit some fundamen-
tal micromechanical principles. Based on these principles results of the numerical
simulation of the RVE models were interpreted and converted to the corresponding
macroscopic effective quantities. The micromechanical laws adopted in the present
study were based on the mean field homogenization theory according to which the
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material can be reflected in two well-separated scales: the microscopic scale is small
enough for the heterogeneities to be identified. In contrary to that, the macroscopic
scale is large enough for the heterogeneities to be expelled. The two scales are well-
separated and they are described by two coordinate systems: the global coordinate
system x and local coordinate system y. The following relationship holds

x
y=- )]
£
€ is a small scale parameter which determines the size of the RVE.
For a heterogeneous material, when it is submitted to an external loading, its
microscopic stress field o in y and its macroscopic counterpart X satisfy the rela-

tionship

T=2 / o)AV = (6(y)). @)
Q

Here (-) stands for the averaging operator, and Q indicates the RVE domain. Simi-
larly, the relationship between strain measures satisfies

1
=1 /Q )V = () . 3)

The local strain € can be decomposed into two parts: The average value E and a
fluctuating part £*
euw)=E+¢". ()

When all constituents of a RVE are elastic, the overall behavior of the RVE is elastic
as well. In this circumstance, X and E are correlated by an effective elastic tensor C

*=C:E. 5)

In case that the heterogeneous material to be considered behaves isotropically in
the macro scale, same to the single phase material, C can be uniquely determined
from two elastic constants, such as effective Young’s modulus E and effective Pois-
son’s ratio v.

When the composite material is composed of elasto-plastic constituents, its
macroscopic ultimate strength X, and endurance limit X_, which correspond to
plastic and shakedown limit in the RVE scale, can be studied by incorporating
homogenization techniques with direct methods. As formulated by Magoariec et al.
[32], when the shakedown state is attained in the micro scale, stress field pertained
to the reference elastic body PBE, 6¢, and the time invariant residual stress field p are
required to satisfy following conditions
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V-6¢=0 in £,
c¢=C:(E+¢€")in Q,
c* c°-n anti-periodic on 0£2, (6)
u* periodic on 042,
(e)=E

. V-p=0in Q,
{ n %

anti-periodic on 0<2.

Here, Q2 indicates the RVE domain, 02 the surface, n the outer normal, and u* the
fluctuation part of the displacement corresponds to £*.

Although shakedown problem in the RVE scale can be studied by either strain or
stress approach [32], in present study we consider exclusively the stress approach.
For stress approach the load prescribed on RVE is the macroscopic stress X. Because
the material to be studied is non-periodic, a small specification is made on conditions
(6) and (7), where, instead of enforcing the node-wise anti-periodicity of the resid-
ual stresses and periodicity of the fluctuating displacement, we apply the statically
uniform boundary conditions (SUBC) on the purely elastic reference RVE. As a con-
sequence, the shakedown problem yields p - n = 0 on d£2 and one can prove that, in
the absence of the body force (p) = 0, so p does not contribute to the macroscopic
stress.

By discretizing the physical fields in (6) and (7) by means of the FE formulations,
the application of the static theorem to RVEs composed of elastic perfectly plastic
materials leads to following optimization problem

minimize — a
pa

NG
subject to Z C.p;=0, (8)
i=1
F(act +p)—o0;,<0
Vi€ [1,NG];k € [1,NV].

Here, « is referred to as the load factor, C the equilibrium matrix, p; the stress tensor
associated with the izh Gaussian point, o, the abbreviation of 67 (P;) which means
the o¢ at Gaussian point i and load vertex k, oy the yield strength, F the yield func-
tion, NG the number of Gaussian points, and NV the number of vertices. Both phases
were assumed to obey the von Mises yield condition. Meanwhile, it is worthy to note
that, although in few studies, e.g. [33], it is suggested to replace the yield strength by
fatigue limit of the material to meet with the safety requirement, the present study
still sticks with the convention adopted in most existing works, such as [10, 34], in
which initial yield strength of the material is used. This choice is made since there is
no available data on the fatigue test of the binder cobalt alloy. Solving (8) yields the
load capacity of the RVE, and depending on if k = 1 or k > 1 the calculated strength
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corresponds to either plastic limit or endurance limit. In the present study, the load
scenario considered is restricted to non-reversed uniaxial stress, in this case NV = 2
and 6;, =0 forall k = 2.

For RVE models considered in the present study, (8) turns out to be a large scale
optimization problem. In order to solve such a problem within a reasonable time,
it requires the problem to be carefully formulated and submitted to powerful opti-
mization algorithm. Several studies, e.g. [35, 36], acknowledged that by replacing
the original inequality constraints by Euclidean ball constraints, the sparsity of the
Karush-Kuhn-Tucker (KKT) system can be better exploited and thus the problem can
be solved more efficiently. This conclusion is approved by our own observations. For
this reason, the recommended reformulation is applied to all optimization problems
evaluated in the present study. The specific workflow to reformulate (8) can refer to
[35].

After reformulation, the static problem can be viewed as a typical SOCP prob-
lem with n; = 5, and therefore it can be handled by commercial optimization solvers
such as Gurobi [37], CPLEX [38], MOSEK [39], among others. In our previous
studies [1, 2], we proposed to solve (8) by the general purpose interior-point method
solver IPOPT [40, 41]. Compared to listed commercial SOCP solvers, the advan-
tage of IPOPT is that it can handle a large variety of nonlinear optimization prob-
lems. However, the price paid to achieve such a generality is that, when IPOPT is
not carefully customized to the problem, its efficiency on solving particular typed
problems, such as SOCP, is inferior to the listed commercial solvers. In order to find
a solver that, besides rendering an accurate solution, also demonstrates an excellent
numerical efficiency, in the present study we compared results from two selected
solvers: the general purpose solver [IPOPT and the SOCP solver Gurobi; after con-
firming that the discrepancy between results obtained from two solvers is negligible,
the SOCP solver Gurobi is adopted for solving optimization problems originating
from PRMMC samples due to its outstanding efficiency (Details see this chapter).

3 Statistical Models for the Interpretation of Numerical
Results

Since we propose to predict the global material behavior from SERVE samples, the
study of the size effect is also based on rigorous statistical methods. In the present
study, we consider an RVE size to be sufficient if it results in effective behaviors
that are statistically equivalent to their counterparts predicted from larger RVEs.
Here, statistical equivalent is reflected from two aspects: the statistical characteristics
of one effective behavior and the correlation between different effective behaviors.
These two conditions were checked by statistical models presented in the present
section.

In order to check if the statistical characteristics of one effective behavior is
size independent, its mean value X and the standard deviation s were compared to
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quantities derived from RVEs of a greater size. Next to that, hypothesis tests were
applied to examine if effective behaviors predicted from the current size and a larger
size can be regarded as belonging to the same statistics. To this end, two hypothesis
tests, namely the Kolmogorov-Smirnov test (K-S test) and Wilcoxon rank sum test
(rank sum test), were employed. K-S test examines if two samples X and Y are from
the same continuous distribution. Null and alternative hypotheses of this test are

H, : Two samples are from the same continuous distribution

H, : Two samples are from the distinctive continuous distribution

The decision of a two samples K-S test is made based on the distance between the
empirical distribution functions of two samples, where the empirical distribution
function indicates the cumulative distribution function of a sample that jumps up by
1/n at each of the n data points. The rank sum test, on the other hand, can be seen as
a nonparametric equivalent to t-test which does not require the data to be subjected
to the normal distribution. Null and alternative hypotheses of rank sum test are

H, : Two samples are from continuous distributions with equal medians

H, : Two samples are not from continuous distributions with equal medians

In addition to the hypothesis test, we also study if the relationship between different
effective behaviors, e.g. the relationship between the effective Young’s modulus E
and the global endurance limit X_, changes if the size of RVE increases. To this end,
the Pearsons correlation coefficient » from two random variables X and Y defined as
follows is evaluated

oo
¥ X=X P)
S . ©)

VEL G- Sy [Z) - 7

Here X and Y are mean values of the statistics X and Y, respectively. When more
than two random variables are considered, matrix of correlation plots is a convenient
way to present the data. In such matrix, the correlation between every two random
variables (X;, Y;) is plotted as a component of the matrix, and the histogram of an
individual variable is plotted in the diagonal. Matrix correlation plot is employed as
a main tool for data presentation in the present study.

4 Comparison Between Optimization Solvers

Before investigating the size effect on the strength prediction for PRMMC samples, a
comparative study was performed on a benchmark model to check if results from the
general purpose nonlinear optimization solver [IPOPT and the SOCP solver Gurobi
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Fig.1 Geometry of the
plate with a hole model
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Table 1 Dimensions of the benchmark model
Length L (mm) Diameter D (mm) Thickness & (mm) D/L
100 20 2 0.2

Table 2 Material properties of the benchmark model
E (GPa) v(-) oy (MPa)
Steel 210 0.3 280

are consistent. The benchmark model chosen for the comparative study is the classic
plate with a hole model that has been studied in abundant direct method literature, c.f.
[42—44]. The geometry of the model is shown in Fig. 1 with the dimensions given in
Table 1. We study the strength of the structure submitted to two distributed pressures
P, and P,. By considering P, and P, as basic loads P, and P,, a vertex in the load
space spanned by P, and P, can be uniquely defined as (cos 6, sin ) by introducing
an angle 6. This way, the load factor @ under different combinations of two loads can
be calculated by varying the magnitude of 8. Due to the symmetry of the geometry
and loads, the finite element model contains only 1/4 of the geometry. The model
adopts eight node linear solid elements and material properties outlined in Table 2.
In order to be consistent with existing literature, the material is considered in this
numerical study as an elastic-perfect plastic material.

To evaluate the limit and shakedown load of the given model, first the geometry
and the FE mesh were built in the commercial FE software ABAQUS [45] for cal-
culating the elastic stress ¢¢. In this calculation, the magnitude of both basic loads
were fixed to 100 MPa. The model configuration and the von Mises stress of 6¢ can
be seen in Fig. 2.

After ¢ was calculated, the information of the finite element model and the elastic
stresses were output to Matlab [46]. In Matlab the formulation of the shakedown
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Load P, = 100 MPa : Load P, = 100 MPa

o¢,(P: =100 MPa) : ¢, (P, =100 MPa)

Fig. 2 Elastic stresses of the plate with a hole model

problem (8) is realized through an in-house Matlab finite element code. Using the
information passed by the commerecial finite element software, the matrices involved
in the objective function and constraints were first evaluated on the element level and
then assembled into global matrices in sparse forms. The form of the shakedown
problem eventually used for the computation was customized to the solver. When
IPOPT is used as the solver, Jacobian and Hessian matrices used to assemble the
reduced Karush-Kuhn-Tucker (KKT) system were calculated. Based on the Jacobian
and Hessian matrices provided, IPOPT finds the optimal solution to a series of barrier
problems following the steps outlined in [41]. When commercial solver Gurobi is
used, the effort for evaluating Jacobian and Hessian matrices can be reduced, and the
difficulties lie in finding an appropriate scaling factor and an optimal set of solver
parameters which prevent the solver from slow convergence near the optimum. In the
present study, the linear system corresponding to the equality constraints was scaled
so that the entries in it are in the same order.

Before the shakedown problem pertained to the benchmark model was calculated
by two solvers, we first compared results of IPOPT adopting original formulation (8)
and the reformulated one. We noticed that, although original form demands more
time to compute, results derived from both forms are identical (discrepancy between
results is less than 0.001%). Next we fixed to the reformulated form and compared
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Table3 Comparison of load factor a determined by two optimization solvers (Gurobi and IPOPT)

6 [rad][a "’ (GUR)[ o "P(IPO) [[|Err.] [% | (GUR)| o> (IPO) [ [Exrr. | [ %
0 2259 | 2259 | 0.0 1847 | 1847 | 0.0
7/18 | 2446 | 2446 | 0.0 2007 | 2006 | 0.1
79 | 2686 | 2.686 | 0.0 2267 | 2267 | 00
7l6 | 2976 | 2976 | 0.0 2684 | 2684 | 0.0
27/9 | 3356 | 3.356 | 0.0 3484 | 3485 | 00
57/18| 3356 | 3.356 | 0.0 3484 | 3488 | 0.
13 | 2976 | 2976 | 0.0 2684 | 2684 | 00
/18| 2.685 | 2.687 | 0.1 2272 | 2269 | 0.1
4n/9 | 2.446 | 2446 | 00 2007 | 2007 | 0.0
72 | 2259 | 2259 | 00 1847 | 1847 | 00

results of two solvers. Result of the comparative study can be seen in Table 3. In this
table, abbreviation “GUR” indicates the solver Gurobi, and “IPO” the solver IPOPT.
Superscript 1P means only one load vertex is considered, and this corresponds to the
limit analysis. In contrast to that, the superscript 2P indicates that load P, and P, are
enforced to vary proportionately. Table 3 shows that, although the discrepancy is
slightly increased, the error is still tolerable and with the maximum value around
0.1%. This way, we confirmed that the problem can be handled by both IPOPT and
Gurobi. In the present study, most configuration parameters in IPOPT use the default
values, and in this circumstance the time it costs for [POPT to solve this problem is
about 10 times compared to the Gurobi. For this reason, Gurobi was used to solve the
shakedown problems pertained to RVE models, while IPOPT was used only occa-
sionally to cross-validate the results of [POPT on selected models.

1 T T T T T T T T T
— a(1P)
0.8 q|—-(2P)
—a(4P)
06r = sw. Simon(2011)
04) 4[—-Chen et al.(2008)
—+— Carvelli et al.(1999)
0.2
>~
)
= of 1
a9
-0.21 1
0.4 - 1
-0.6 .
-0.81 .

P, / gy

Fig. 3 Feasible load domains of the plate with a hole model



62 G. Chen et al.

Next, we compared our own results to literature in Fig. 3. Because results from
IPOPT and Gurobi are almost identical, the discrepancy between them is neglected;
in the following the result is presented indiscriminately as a. Results in Fig. 3 were
obtained by shakedown analyses considering one vertex (limit load), two vertices
(proportionally varied tow loads) and four vertices (independently varied two loads).
Results from our own calculation are found to be in line with results in [42—44]. For
this reason, we confirmed the validity of our numerical formulation.

5 Numerical Study of PRMMC Samples

The numerical study of the representative PRMMC material, WC-Co 20 Wt.%, is
based on 1,500 RVE models. The models fall into three sample groups, each group
consists of 500 samples. The samples were modeled from artificial morphologies
generated by a simple random sequential adsorption (RSA) algorithm as shown in
Fig. 4. The algorithm is developed in Matlab on the matrix basis. According to this
algorithm, the RVE domain is initialized as a zero matrix and the program contin-
uously projects prism shaped geometry into this matrix. After each projection, zero
elements in the matrix are set to one if they belong to the prism domain and remain
zero otherwise. The value of elements will not be reset if they have already been
picked in previous iterations. Parameters controlling the projection, such as prism

Fig. 4 Inclusion process & ‘ h|
with fixed grain size I

v "

(a) Iteration=1 (b) Iteration=4
K Bl i1g 5

"

(c) Iteration=10 (d) Final
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size, rotation angle, and center of the projection, are all random numbers. In order to
be consistent with real WC-Co microstructures, the algorithm adopts a configuration
that the diameter of WC grains, dy,, obeys a normal distribution with mean value
3 um and standard deviation 0.8 pm. The position where each particle locates is
independent from the others and therefore there is no predefined clustering. Due
to the high carbide content of the material, before a new grain is to be projected,
it is very likely that the corresponding RVE domain is already partially assigned
to other grains. When this happens, the algorithm will neither reject the projection
of the new grain nor record the overlapping information such as the grain bound-
aries. The new grain is simply projected and merged with the old ones to form a
unity. Although there are many obvious advantages to introduce grain boundaries
to the model, due to the numerical difficulty and tremendous computational cost it
requires, the data may become too expensive and thus statistical analysis becomes
impossible. For this reason, the simplest idealization is adopted and the overlapping
problem between grains is not explicitly accounted for. The projection stops when
binder contents reach a certain threshold. Based on the image analyses of 50 SEM
images obtained from WC-20 Wt.% Co, we noticed that the volume percent of the
binder phase, Co Vol.%, follows a normal distribution featured by the mean value
37.5 and the standard deviation 2.7. This distribution was adopted as the termina-
tion criterion for generating artificial RVE samples that represent the material. The
finite element models were built in commercial FE solver ABAQUS and meshed by
a uniform mesh configuration: the element type is fixed to linear wedge elements
(C3D6); elements covering non-critical regions were assigned with a global size of
0.8 pwm; while elements near the phase boundaries are of a finer density with an edge
size of 0.2 wm. Under this configuration, the number of elements for an RVE sample
having a size 40—40-1 wm varies between 15,000 and 20,000. The reason of using
a layer of 3D wedge elements instead of 2D elements to represent the composite
structure is that the results of direct method predicted from the former element type
demonstrate significantly less mesh dependency. More detailed discussion on this
issue can be found in [2].

The sample groups used to study the size effect were numbered successively as
Group 1, 2 and 3, the parameters used for generating the models in these groups
are detailed in Table 4. The RVE:s in three groups differ only in their size: Samples
in Group 1 have a size of 30-30-1 pm, while in Group 2 a greater size 40—40-
1 wm, and in Group 3 the greatest size 80-80-1 pm. In order to provide an intu-
itive insight about the models, we randomly picked one sample from each group and
compared the microstructures in Fig. 5. The binder content in three groups is slightly
different—this can be interpreted as a consequence of converting microstructures to
finite element mesh. The mesh pattern adopted for all three groups are identical and,
in consequence, FE models in different groups have very different number of nodes
and elements (Fig. 5). The load type used for calculating the strength were uniformly
fixed to SUBC. According to this boundary condition configuration, nodes lying
on the RVE surfaces were prescribed with nodal forces corresponding to the global
stress, and their degrees of freedoms are not restrained so that they can deform freely.
Materials of both phases are considered as elastic perfect plastic materials with para-
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Table 4 Description of sample groups

G. Chen et al.

Num.RVEs Wt./Vol.% Co | Length (um) | Type Particle size
(pom)

Group 1 500 20/N(37.2, 30 Artificial dye ~

2.7) N(3.0,0.8)
Group 2 500 20/N(37.3, 40 Artificial dye ~

2.9) N(3.0,0.8)
Group 3 500 20/N(37.5, 80 Artificial dye ~

2.8) N(3.0,0.8)

(Num.RVEs number of RVE samples, x ~ N(u, s): random variable x obeys a normal distribution

characterized by the mean value y and the standard deviation s)

Sample: 30 pmx 30 ymx 1 um

(10,344 Nodes; 10,215 Elements)

R

Sample: 40 ymx 40 pmx 1 pm

(18,760 Nodes; 18,584 Elements)

H'-

Sample: 80 umx 80 uymx 1 um

(43,132 Nodes; 42,875 Elements)

Fig. 5 RVE samples of WC-20 Wt.% Co with dy,- ~ N(3.0,0.8 wm) in different sizes
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Table 5 Material properties of both phases

E (GPa) v(-) oy (MPa)
WC 700 0.24 2000
Co 210 0.30 683

meters given in Table 5. In the present study, we investigate only the strength of the
composite material subjected to the uniaxial tensile load: For each RVE, it’s ulti-
mate strength X, derived by solving the optimization problem (8) with NV = 1 and
endurance limit X, which corresponds to the case NV = 2, were calculated on both
x and y directions, and the average was considered as the effective property of the
sample. In order to emphasize the strengthening effect of the reinforcement phase,
the strength of an RVE was presented after normalized with respect to the yield
strength of the binder phase ag”. The anisotropy ratio of a predicted effective behav-
ior x defined as

¢, = max(x, /x,,x,/x;) (10)

which measures the dissimilarity of a predicted effective behavior in two normal
directions was evaluated for selected macroscopic properties and considered as an
important indicator for evaluating the sufficiency of the RVE size. One necessary
condition for an RVE size to be sufficient is that ¢, predicted from this size should
be close to one.

We evaluated several key effective material parameters and their associated sta-
tistical descriptors (Table 6). Unlike most numerical studies of this kind, in Table 6
we did not observe a manifest trend where scatter of data reduces when RVE size
increases. This phenomenon implies that, for predicting certain material parameters,
e.g. E, a small RVE size may suffice and renders unbiased prediction. Moreover, in a
statistical sense, RVE samples become more isotropic when its size becomes larger.
The degree of anisotropy reflected by the magnitude of ¢ depends on the effective
behavior of interests. Roughly speaking, ¢ indicates the level how interactive local-

Table 6 Material parameters predicted from RVE samples having different sizes
30um (Group 1) 40 m (Group 2) 80um (Group 3)
X N X s X N
WC Vol.% [-]| 62.81 2.74 62.74 2.84 62.46 2.82
E [MPa] [4.41E+05|1.48E+04[4.40E+05 |1.53E+04|4.41E+05|1.48E+04
v [-] 0.277 0.0039 0.278 0.0034 | 0.277 0.0030
ZU/O')Q’ [-] 1.851 0.097 1.836 0.101 1.867 0.094
Zm/of" [-] 1.483 0.0798 1.433 0.0750 1.441 0.0602
Cr 1.012 0.008 1.007 0.006 1.004 0.003
Csy 1.066 0.11 1.052 0.074 1.048 0.066
S 1.100 0.083 1.098 0.077 1.072 0.058
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Fig. 6 Cumulative distribution functions of X, for RVEs of different sizes

ized behavior within a RVE body average and set-off. In this vein, comparing three
parameters illustrated in Table 6, i.e. {f, ¢ 5, and ¢ 5. it is clear that localized behav-
ior has greatest influence over X, and RVEs are required to be exceptionally large
to smear out these effects.

Beside presenting results by means of statistical indicators, cumulative distribu-
tion function of X;; and X are compared in Figs. 6 and 7, respectively. Function
diagrams in these figures demonstrate a greater difference among sample groups
compared to Table 6. In order to understand quantitatively how similar these results
are, we performed hypothesis tests on subsets randomly sampled from the existing
data. In this case study, 50 RVEs were randomly picked from each sample group, and
every two of them were submitted to K-S test and rank sum test with a significance

T T
0.9Ll—30 pm (Group 1)
---40 um (Group 2)
—+-80 um (Group 3)
——Total

0.8
0.7
—-0.6

0 Y 1 L
1.25 13 1.35 14 145 15 1.55 16 165 17
Soe/0%° [

Fig.7 Cumulative distribution functions of X for RVEs of different sizes
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Table 7 Hypothesis tests on randomly sampled RVEs of different sizes

Group m vs n
1vs2(2vs3|1vs3|lvsAll|l2vs All|3 vs All
K-S Test Hy% |95.00|94.67(97.67| 92.67 | 93.33 | 95.67
i p* [-1]0.759]0.6780.841 | 0.528 | 0.931 | 0.569
Rank Sum Hy% |97.67|97.67{95.00| 93.67 | 94.00 | 94.33
p*[-1/0.641]0.950|0.840 | 0.701 | 0.783 | 0.707
K-S Test Hy% |91.67|72.67(93.33 | 88.67 | 67.67 | 88.67
5 p* [-1]/0.840{0.904|0.845| 0.948 | 0.872 | 0.687
Y Rank Sum Hy% [96.67]94.67[94.67 | 96.00 | 89.00 | 91.00
p* [-1/0.678|0.679|0.759 | 0.772 | 0.553 | 0.772
K-S Test Hy% [28.00|94.38(27.00| 13.33 | 92.67 | 15.33
5 p* [-1/0.990]0.6780.982 | 0.991 | 0.942 | 0.989
“ Rank Sum Hy% [69.00|88.67(91.33| 57.00 | 81.67 | 90.33
p* [-1]0.780]0.769|0.860 | 0.997 | 0.705 | 0.921

level fixed to 0.05. This sampling process was repeated for 300 times and derived
results were recorded in Table 7. In this table, H,% represents the percentage of tests
in which null hypothesis H,, was not rejected. p* is calculated from the p value as
follows

p* =max(p,1 —p). (11

p* value presented in Table 7 is averaged over 300 tests. The purpose for introducing
this variable is to avoid averaging p that arises from different sides, such as 0.01
and 0.99. The letter “all” in the table corresponds to samples picked indiscriminately
from three sizes. One can see from the table that, compared to Eand X U» 2o 18 Mmore
sensitive to size because H,, is rejected for a greater amount of times. Meanwhile, for
more than half of 300 tests applied to 40 pm (Group 2) and 80 pm (Group 3) RVEs,
H, were favored which confirms the similarity of RVEs in these two sizes.

We evaluated the correlation matrix for all aforementioned sample groups. One
can notice from Figs. 8, 9 and 10 that, despite different r values, the fashion in which
the considered material parameters are correlated is independent from the size. More
specifically, homogenized elastic module E is strongly correlated to WC Vol.%, but
X, and X are only subtly correlated to WC Vol.%. This suggests that morphology
has a more crucial impact to X, and X, compared to E. In addition to that, for all
three groups, r between X, and X are quite small, which reveals that the linear
correlation between them is quite weak.
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Correlation Matrix
r=0.99 r=0.52 L r=0.36

. r=0.52

VR

0.55 0.6 0.65 0.7 4 42 44 46 4.8 1.6 1.8 2 1.4 1.6
WC Vol.% -| F GPa|  x10° S /oo | S /0G0 |-

Fig. 8 Correlation matrix evaluated from Group 1 (30-30-1 pum artificial RVEs of WC-20 Wt.%
Co, dy¢ ~ N(3.0,0.8)), r = correlation coefficient

- 07 v=0.99

0.55 0.6 0.65 4 42 44 46 1.6

1.8 2 1.2
WC Vol.% [-] E [GPa /0% [

Fig. 9 Correlation matrix evaluated from Group 2 (40—40-1 pm artificial RVEs of WC-20 Wt.%
Co, dy¢ ~ N(3.0,0.8)), r = correlation coefficient
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r=0.99 r=0.56 . r=0.39

r=0.

r=0.22

56

r=0.22

0.55 0.6 0.65 0.7 4 42 44 46 48 1.6 8 2 13 1.4 15 1.6
WC Vol.% [-] E [GPa) x10° Sy /ol [ Yoo/ o$0 -]

Fig. 10 Correlation matrix evaluated from Group 3 (80-80-1 pm artificial RVEs of WC-20 Wt.%
Co, dye ~ N(3.0,0.8)), r = correlation coefficient

6 Conclusions

In this paper, using an representative material, WC-20 Wt.% Co, it is presented how
size of RVE models influences the strength of PRMMC materials predicted from the
direct method. On the basis of 500 realizations for each selected RVE size (30, 40
and 80 wm), we performed the shakedown analyses and observed from the result that
the global material behavior predicted from different sizes has more commons than
dissimilarities in a statistical sense. Also, the correlation between different global
material parameters, which is represented by the correlation coefficient 7, is indepen-
dent from the model size. For all concerned material parameters, their mean values
are less sensitive to size compared to variances, thus smaller RVEs are sufficient if
the task is to predict the mean value of a certain material parameter. The variance of a
global material behavior is introduced by both composite structure and the RVE size,
where the latter one is undesired and becomes less critical when RVE size exceeds
a certain threshold.

On removing the variance caused by RVE size—the so called size effect, a viable
solution is proposed in the present paper: One can check the sufficiency of the RVE
size through applying hypothesis tests repeatedly on results predicted from one size
and a much greater size. If the chance to reject the hypothesis that the data are from
the same continuous distribution is small, e.g. less than 10%, then it is justified to
conclude that the size effect is expelled and results from two sizes are statistically
equivalent. According to this criterion, it can be concluded that the size 40—40-
1 pm is sufficient for the strength prediction of the current material, because it is
statistically equivalent to a much greater size 80—80—1 pm. It is worthy to note that
the disadvantage of this method is that it requires a large amount of data as input.
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For this reason, the conventional approaches which are based on indicator such as
the anisotropy ratio, still have significant practical values and thus should not be
abandoned. In addition to that, it is also plausible to overcome the size effect by
first taking the size as a random variable for generating RVEs, and then removing
its influence by means of advanced statistical learning methods. Although from a
theoretical point of view this approach appears to be uncomplicated, in practice it
might be challenging to find a capable statistical model to interpret the results.

In our future study, the focus would be put on interpreting the relationship between
different effective material behaviors, and the goal is to reveal from a mechanical
perspective how do these behaviors are correlate.
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R-adaptivity in Limit Analysis

José J. Muiioz, James Hambleton and Scott W. Sloan

Abstract Direct methods aim to find the maximum load factor that a domain made
of a plastic material can sustain before undergoing full collapse. Its analytical solu-
tion may be posed as a constrained maximisation problem, which is computation-
ally solved by resorting to appropriate discretisation of the relevant fields such as
the stress or velocity fields. The actual discrete solution is though strongly depen-
dent on such discretisation, which is defined by a set of nodes, elements, and the
type of interpolation. We here resort to an adaptive strategy that aims to perturb the
positions of the nodes in order to improve the solution of the discrete maximisation
problem. When the positions of the nodes are taken into account, the optimisation
problem becomes highly non-linear. We approximate this problem as two staggered
linear problems, one written in terms of the stress variable (lower bound problem)
or velocity variables (upper bound problem), and another with respect to the nodal
positions. In this manner, we show that for some simple problems, the computed
load factor may be further improved while keeping a constant number of elements.

1 Introduction

Direct methods allow engineers and practitioners to compute the ultimate loads and
determine collapse mechanisms of structures made of plastic materials. In the last
twenty years, robust and efficient optimisation methods, together with appropri-
ate discretisations of the stress and velocity fields have, respectively, allowed for
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effective computing of upper and lower bounds of the load factors. The accuracy of
these bounds is very much dependent on the distribution of the elements in the mesh,
which should adapt to the sliplines or, more generally, the collapse mechanism.

This dependence of the accuracy of the discrete solution on the mesh has prompted
the use of adaptive meshing strategies. Among them, we highlight element subdivi-
sion based on error estimates [10], anisotropic strategies according to the velocity
field [8], and fan type meshes [8, 11]. These strategies are applied with sequential
subdivisions of the element (embedded remeshing) or by redefining an element size
field and direction. In this work we propose an alternative strategy: perturbing the
location of the nodes, while keeping the number of elements constant and without
altering their connectivity. We in fact include the nodal positions as an additional
optimisation variable in the standard upper and lower bound formulations in limit
analysis. This is a similar idea to the perturbation analysis in upper bound formula-
tions with rigid blocks introduced in [3], which we here extend to more general finite
elements formulations in limit analysis [5-7, 10].

This work is related to similar strategies where the nodal positions of the problem
at hand are optimised in order to improve the accuracy of the results. This type of
analysis has been so far adopted in elasticity [13], elastodynamics [14], analysis of
stochastic materials [2] or in biomechanics [4, 9]. We here carry these ideas over
to limit analysis. Instead of moving the nodes as a function of an error estimate,
however, we make use of the optimisation problem in order to improve the discrete
solution.

In Sect. 2 we revise the discrete solutions of the lower and upper bound problems
in limit analysis. In Sect.3 we present the extension of the previous problems for
R-adaptivity. Although we have only implemented R-adaptivity for the lower bound
problem, we describe the form of the upper bound solution for completeness. In
Sect. 4 we apply the methodology to the vertical cut problem in order to test its
efficiency, and Sect. 5 gives some final remarks.

2 Preliminaries

In this work we will restrict our attention to perfectly plastic materials whose yield
criterion can be transformed as a second-order cone (SOC). In this case, upper and
lower bound solutions may be written as a second-order conic programming (SOCP
problem) that has the following general form,

Primal : A* = max 4
A0

st.Xo+ AMf =b (D
cex

Here, the global vector o denotes stress variables, which have been conveniently
transformed in order to write the yield criterion in the form ¢ € %', with J# a
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second-order cone. The variable A is the load factor, which is maximised in order to
compute the ultimate load of the problem at hand.

Matrix X and vectors f and b depend on the discretisation of the domain, that is,
on the nodal positions x and the triangulation .7 employed. If these are considered
fixed, as it is usually the case, the problem in (1) is convex. The lower and upper
formulations of limit analysis require different forms of matrix X and vectors f and
b, which may be found elsewhere [5-7, 10].

The problem in (1) is the standard form used for the lower bound (LB) limit analy-
sis. The upper bound (UB) problem is generally written in the dual form of this prob-
lem, which physically corresponds to minimisation of the power dissipation. It will
become convenient to derive next this dual form.

The Lagrangian function of the problem in (1) reads [1]:

L, Av,0)=1+Vb—-Xo - M)-0'c (2)
The optimal value A* may be then obtained as

A*=max min .Z(c,A;v,®)= min max.Z(c, 1;V,®) 3)
0,4 WEKX*V WEX*V 0,4

where the second equality holds due to strong duality. The dual set .#* of a cone .
is defined as [1],
7* = {wlw'6 >0Vo €.7)}

and for the second-order cone J#, it can be proved that .#™* = J# . The primal and
dual problems are then obtained by keeping the maximisation or the minimisation
at the left and right side of the second equality respectively. More explicitly, the
primal problem in (1) may be deduced by taking derivatives of the Lagrangian with
respect to the dual variables (v, @), while the dual form of the optimisation problem is
obtained by taking derivatives of the Lagrangian with respect to the primal variables
(x, A), which results in,

Dual : A* = minb’v
v

st.flv=1 €]
—X've . x*

In the previous equations, the fields o, @ and v have infinite dimensions. In prac-
tice though these fields are interpolated, and depending on the interpolation used,
the approximated discrete problem may yield upper, lower or non-strict estimates
of the load factor. We do not detail here these interpolations which may be found
elsewhere [6, 8, 10]. In our examples, we will use for the lower bound a piecewise
linear stress field, which is discontinuous at the element edges, and that yields strict
lower bound solutions [10], and a piecewise linear velocity field discontinuous at the
element edges, which furnishes a strict upper bound solution [11, 12].
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3 R-adaptivity

The previous lower and upper bound problems are usually implemented by appropri-
ately discretising the stress variable ¢ in the primal problem in (1), or by discretising
the velocity field v in the dual problem in (4).

We will here present an extension of these problems that includes the nodal posi-
tions as additional variables in order to further improve the load factor estimate.
Due to the non-linearity of the resulting problem and lack of convexity, the extended
problem may not have a unique solution, and the bounds may not be strict. For this
reason, the Lagrangian function is linearised at previous solutions.

Since the load factor must be either increased or decreased in the lower or upper
bound solution, respectively, the new position variables will be either primal or dual
variables in the extended problem. Although we have here implemented the lower
bound extension, we present the forms of the lower and upper bound solutions for
completeness.

3.1 Lower Bound Problem

We aim to further increase the optimal value of A by varying the nodal positions x.
This corresponds to adding a further maximisation in (3), which now reads,

MB = maxmax min Z(6, 4,X;V, ®)
X 6,0 WEKX*V

From this expression, the following primal problem is proposed,

A8 = max A
X,A,0

st.Xo+ A =b )
ce ..

Fig.1 Scheme of the
perturbation on nodal
positions. Initial nodal
coordinate: x*. Perturbed
nodal coordinate:

X = xk 4 6x
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It can be observed that the equality constraints above have become non-linear
on the variables ¢ and x, so that the optimisation problem is not a SOCP anymore.
However, given a (non-optimal) set of primal-dual variables (4;, 6;,X;; V;, @), the
Lagrangian may be linearised as follows:

0X of
L6, 4%:V,0) % A+ vV (b-X0 - M) -0 c -V <0_Xk6k + a_;’lk> 5x (6)

with 6x = x — x;, and X, denotes matrix X evaluated at the nodal positions x;. The
approximated Lagrangian gives rise to the following primal problem:

Primal(LB) — 6 : A% = max A

0X,A,0

X, o,
s.t. X0 + <Xok + &Ak> sx+if=b| (D

ce X, ||6x|| <€

This problem has only linear and second-order constraints, and is thus a SOCP.
We have added the constraint ||6x|| < € in order to limit the amount of nodal per-
turbation 6x, and therefore avoid elements that are too distorted or posses negative
Jacobians. Figure 1 illustrates this perturbation of the nodal positions. The matrices

%O‘k and %Ak may be approximated by using numerical differentiation as follows:

c)_xio-k - Ox;
of, A By, — B A
ox; ke Ox;

l

where matrix X, s, and vector f, ;. denote X and f evaluated with the nodal coor-
dinate xf perturbed by a small quantity ox;.
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We point out that the constraints in (7) are in fact equivalent to imposing the
equilibrium constraints on a moving mesh, such that the stresses and the final posi-
tion of the mesh are unknown. Due to the non-linearity of these constraints, these
equilibrium equations are linearised at the previous stress values o, and previous
nodal positions, which gives rise to the approximated equilibrium constraints in (7).
As such, this linearisation is an approximation, and thus the obtained solution may
be suboptimal with respect to the analytical non-linear problem. We aim though to
approach such optimal solutions as we solve successive problems from updated val-
ues of o, and X.

3.2 Upper Bound Problem

In contrast to the lower bound problem, we aim now to minimise the optimal value

of A (which is now an upper bound of the analytical optimal A*) with respect to the

nodal positions x, that is,
/1UB

=maxmin min Z(o,A;V,®,X)
6,A X @EX*V

The nodal positions thus now play the role of the dual variables v and @. Thus,
given a set of primal-dual solution (4, 6; v;, @, X;), we approximate the Lagrangian
as,

0X of
L0, hv,0.X)~ A+V (b-X,06 - M) —0'c -V (a—ka + a—",l) 5x  (8)
X X

From this expression, the following dual problem may be derived,

Dual(UB)-6 : AY2 = minb’v

v,0X

of
T T77%k _
s.t. f V+<ng>5x—1

T aX[ *
- ka - KV]( ox e X

l16x|| < €

)

where again, we have added the last constraint in order to avoid elements with large
aspect ratios or a negative Jacobian. This is an extension of the dual problem in (4)
for varying nodal positions x. It can be verified that the primal form of (9) reads,
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Primal(UB)-5 : A" = max /- o]¢
st.Xo+M=Db
X of,
T 9% 7 9% — 10
—<ng+/lvk&>0'—(02 ( )
cex
{0, 0,} € 7,

where the second set of constraints follows from deriving .Z with respect to the dual
variable 6x, and % is a cone equivalent to the constraint ||6x|| < &. Variables @,
and @, are new primal variables. The relative displacements are obtained from the
dual variables (Lagrange multipliers) of the second set of constraints in (10).

3.3 Update of Nodal Positions

The analytical solution of the limit analysis yields a unique value of A*, but not
necessarily a unique mechanism. For this reason, and due to the finite element dis-
cretisation, the optimal nodal positions x may differ in discrete upper and lower for-
mulations. In our implementation, which focuses on the lower bound solution, we
update the nodal positions according to

X1 = X + 0x8 1D
with 6x%8 the optimal value of the extended lower bound problem. We note though

that we could alternatively modify the nodal positions according to the average of
the two values of 6x obtained in each case, that is according to the following vector:

ox = (5XUB + 5xLB)

SN

or even from a weighted average according to the gain in each bound,
6x = (AA"P6xYP + A2"P5x"P)/ A

where AAUB = JUB — Je5 and AALE = ALB — )¢ correspond to the error of the load
factor for each discrete solution with respect to an estimate A%’ obtained from the
evolution of each bound. In our numerical examples we have not used these averaged
updates, and restricted our attention to the simplest case in (11).

As it will be shown, the effectiveness of R-adaptivity depends on the number of
elements and distribution. For this reason, we have also tested the combination of
R-adaptivity with 4 refinement, where the elements are subdivided according to an
error estimator, as described in [10].
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4 Results

We test here R-adaptivity in order to compute the safety factor of a vertical cut sub-
jected to an increasing gravitational field f. Figure 2 shows the geometry, boundary
conditions and initial mesh made of 140 elements. We have also tested an initial
coarser mesh made of 28 elements, as shown in Fig. 3a. In this figure, we also show
with thicker (black) lines the perturbed mesh after applying R-adaptivity.

The evolution of the upper and lower bounds for the initial meshes with 28 and
140 elements are shown in Fig. 4a, b, respectively. All values plotted in this figure,
including those computed from an R-adapted mesh, have been obtained using the
original reduced upper and lower bound problem, without approximations arising
from R-adaptivity, and are thus strict bounds. When comparing the lower bound
results with respect to the evolution when only using A-refinement, the lower bound
solution is improved with R-adaptivity: one R-adaptivity iteration is approximately
equivalent to one iteration in A-refinement. The latter though is obtained for a higher
number of elements, and thus has a higher cost. The upper bound solution though is
not necessarily improved. Indeed, it appears that for a low number of elements, the
improvement in the lower bound solution worsens the upper bound load factor, as
one might expect given the lack of correlation between the optimal meshes for the
lower and upper bound problems (see Sect. 3.3).

We note that the maximum nodal displacement in the extended optimisation prob-
lem, which is dictated by variable &, is different for each node. This value is computed
from the element sizes around each node. It follows that € decreases as A-refinement
is applied, which consequently reduces the impact of R-refinement.

We have also tested the evolution of the bounds when only using R-adaptivity.
Figure 5 shows the initial and final meshes for 12 iterations of R-adaptivity. The

NAVANAN /g
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mVVAVAg¢V¢v€:
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Fig.2 Vertical cut problem. Dimensions, boundary conditions and initial mesh made of 140 ele-
ments
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(a) (b)
(0) (d)
(e) ®

Fig. 3 Comparison of the unperturbed mesh (thinner and lighter lines) and the R-adapted mesh
(thicker and darker lines) after successive h-refinements, when using an initial mesh of 28 elements.
The evolution of the load factor is given in Fig. 4

corresponding evolution of the load factors when using a constant number of ele-
ments equal to 28 and 140 are shown in Fig. 6. As before, the load factors shown
are those obtained using the reduced optimisation problem (no R extension) for the
new meshes, and are thus strict bounds. It can be observed the initial improvement
of the lower bounds is greater for lower number of elements, but that the final gain
is higher when starting with a larger number of elements, as it should be expected.
Indeed, the optimal R-adapted solution in a finer mesh should be more accurate than
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Fig.4 Evolution of bounds for the vertical cut problem. a Mesh with initially 28 elements. b Mesh
with initially 140 elements

(a) (b)

Fig. 5 Initial (thinner and lighter lines) and final (thicker and darcker lines) meshes when using
R-adaptivity only. a Mesh with 28 elements. b Mesh with 140 elements. Elements with high aspect
ratio can be observed on the fop right side of the vertical cut
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the optimal R-adapted solution in a coarse mesh. The limitation on the values of €
(which is proportional to the mesh size) limits though the improvement in each iter-
ation in fine meshes, and thus more iterations are required for achieving a R-adapted
optimal solution.

Furthermore, after eight or nine iterations, the gain stagnates with small oscilla-
tions around an optimal solution. The fact that the extended optimisation problem in
R-adaptivity is non-linear with a linearised Lagrangian, one which is only approxi-
mate, may be the cause behind these small oscillations. It can be also observed that
the upper bound solution does not necessarily improve. As a final remark, we note
that some of the elements achieve a high aspect ratio (Fig. 5), and could be removed
from the mesh, to obtain further improvements in the computed bounds, as suggested
in previous work [3].

5 Conclusions

In this work we have presented a remeshing strategy that extends the limit analysis
optimisation problem to include the nodal positions of a given mesh in order to fur-
ther improve lower and upper bound solutions of the load factor. We have derived
the necessary modifications to the optimisation problems to take into account the
nodal positions as additional variables, and tested the lower bound formulation.

The strategy may be combined with other error based remeshing techniques such
as embedded remeshing [10]. In these techniques, the number of elements increases,
and adds new discontinuities in the discretised problem. The strategy described here
aims to improve the solution and mesh distribution before further refining the mesh.

Further tests are required in order to apply R-adaptivity on the upper bound solu-
tion and wisely combine the two mesh perturbations, and also appropriately combine
R-adaptivity with h-refinement. Importantly, nodal position perturbation allows us
to shift the sliplines that the initial coarse meshes impose when using only embedded
remeshing.

We note that the modifications of the optimisation problem are not restricted to
the linear interpolations of stresses or velocities employed here. Other discretisa-
tions may be equally perturbed, and linearised on the resulting optimal variables. In
addition, due to the localisation of the plastic zone, it may be advisable to allow the
nodes to move only along a reduced portion of the domain, thus reducing the cost of
the complete optimisation problem.

The extension of the optimisation problem with the perturbation of the nodal
coordinates has an additional computational cost. This extra cost may be reduced by
just adding in the optimisation process the position of those nodes that contribute to
the failure mechanism, that is, that are closer to the slipline, but keeping the positions
of more distant nodes unaltered. Since many geotechnical problems are driven by
localised sliplines, this concentration would have a strong beneficial impact in many
applications. In addition, element deletion strategies may be envisaged in order to
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remove elements with high aspect ratio, as they were encountered in the final meshes
when using R-adaptivity only. These strategies are currently under investigation.

References

10.

11.

12.

Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University, Press

. Cottereau R, Diez P (2015) Fast r-adaptivity for multiple queries of heterogeneous stochastic

material fields. Comput Mech 66:601-612

Hambleton J, Sloan S (2013) A perturbation method for optimization of rigid block mecha-
nisms in the kinematic method of limit analysis. Comput Geotech 48:260-271

Kim J, Panatinarak T, Shontz SM (2013) A multiobjective mesh optimization framework for
mesh quality improvement and mesh untangling. Int J Numer Methods Eng 94(7):20-42
Krabbenhgft K, Lyamin AV, Hjiaj M, Sloan SW (2005) A new discontinuous upper bound
limit analysis formulation. Int J] Numer Methods Eng 63:1069—-1088

Lyamin AV, Sloan SW (2002a) Lower bound limit analysis using non-linear programming. Int
J Numer Methods Eng 55:576-611

Lyamin AV, Sloan SW (2002b) Upper bound limit analysis using linear finite elements and
non-linear programming. Int J Numer Anal Methods Geomech 26:181-216

Lyamin AV, Sloan SW, Krabbenhgft K, Hjiaj M (2005) Lower bound limit analysis with adap-
tive remeshing. Int ] Numer Methods Eng 63:1961-1974

Ma L, Klug WS (2008) Viscous regularization and r-adaptive remeshing for finite element
analysis of lipid membrane mechanics. ] Comput Phys 227(11):5816-5835

Muiioz JJ, Bonet J, Huerta A, Peraire J (2009) Upper and lower bounds in limit analysis: adap-
tive meshing strategies and discontinuous loading. Int ] Numer Methods Eng 77:471-501
Muiioz JJ, Bonet J, Huerta A, Peraire J (2012) A note on upper bound formulations in limit
analysis. Int J Numer Methods Eng 91(8):896-908

Sloan SW, Kleeman PW (1995) Upper bound limit analysis using discontinuous velocitiy
fields. Comput Methods Appl Mech Eng 127(5):293-314

. Thoutireddy P, Ortiz M (2004) A variational r-adaption and shape-optimization method for

finite-deformation elasticity. Int J Num Methods Eng 61:1-21
Zielonka MG, Ortiz M, Marsden JE (2008) Variational r-adaption in elastodynamics. Int J Num
Methods Eng 74:1162-1197



Shakedown Analysis Under Stochastic
Uncertainty by Chance Constrained
Programming

N.T. Tran, T.N. Tran, H.G. Matthies, G.E. Stavroulakis and M. Staat

Abstract In this paper we propose a stochastic programming method to analyse
limit and shakedown of structures under uncertainty condition of strength. Based on
the duality theory, the shakedown load multiplier formulated by the kinematic
theorem is proved actually to be the dual form of the shakedown load multiplier
formulated by static theorem. In this investigation a dual chance constrained pro-
gramming algorithm is developed to calculate simultaneously both the upper and
lower bounds of the plastic collapse limit and the shakedown limit. The edge-based
smoothed finite element method (ES-FEM) with three-node linear triangular ele-
ments is used for structural analysis.
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1 Introduction

The plastic collapse limit and the shakedown limit which define the load-carrying
capacity of structures are important in assessing the structural integrity. Due to the
high expenses of experimental setups and the time consuming elastic-plastic cyclic
loading analysis, the determination of these limits by means of numerically direct
plasticity methods has been of great interest to many designers. Moreover, a certain
evaluation of structural performance can be conducted only if the uncertainty of the
actual load-carrying capacity of the structure is taken into consideration since all
resistance and loading variables are random in nature. As the result of the need to
account in a rational way for such uncertainties, the theory of structural reliability
has been introduced and has developed rapidly also for limit and shakedown
analysis [e.g. 3-5, 9, 14-19].

Chance constrained programing is an approach of stochastic programming
which has originally been developed for decision problems [1, 2, 6, 7]. It seems to
be well suited for limit and shakedown analysis under uncertainty and in this
application it could be more generally denoted probability constrained program-
ming. Under uncertainty the shakedown problem can be stated with a random
objective function or with random constraints, a probability is set with which the
constraints have to be satisfied. This has been suggested for limit analysis of beam
problems and the Tresca yield function by chance constrained linear programming
[3, 4]. Numerical difficulties to calculate the probabilities have prevented a large
scale application. Here we assume normally distributed variables for which a simple
deterministically equivalent formulation can be found which has a simple solution.

In [5] the stochastic limit load problem has been replaced by a recourse problem.
For this a substitute problem is formulated by introducing primary costs for missing
carrying capacity and recourse costs (for damage, loss or repair of the structure or
for reduced structural capacity). This somewhat indirect approach is thought to be
numerically more effective for non-normally distributed variables. However, only
examples with normal distributions are shown.

The edge-based smoothed finite element method (ES-FEM) was recently pro-
posed to significantly improve the accuracy and convergence rate of the standard
finite element formulation for static, free and forced vibration analyses of solids. It
also was applied successfully in shakedown analysis of structures [8, 9].

In this study, we present a new primal-dual numerical algorithm of shakedown
problem under uncertainty. We restrict ourselves to the case of random yield limit,
the loads applied to the structures are still deterministic. Using the von Mises yield
function this leads to nonlinear chance constrained programming problems.
Restricting the analysis to normally distributed yield limits, we get deterministic
equivalent formulations based on upper bound and lower bound theorems and then
prove that both formulations are actually dual to each other. As aforementioned, in
the study described here the numerical approach is based on ES-FEM. In ES-FEM,
compatible strains are smoothed over the smoothing domains associated with the
edges of the finite elements. Using a constant smoothing function, only one
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Gaussian point is required for each domain ensuring that the total number of
variables in the resulting optimization problem is kept to a minimum compared with
the standard finite element formulation. In this study, three-node linear triangular
elements are used to analyse plane stress problems.

Some numerical examples were investigated to test the proposed algorithm. The
obtained solutions match well with analytical values and show remarkably good
performance.

2 Lower Bound Approach to Chance Constrained
Programming

Starting from the discretized form of the deterministic formulation [10, 11, 20]:

o =maxa
St 27:01 WiBiT_i=0 . (1)
"\ flaoh +p,] -1 <0,Vk=T,m, Vi=T,NG

in which B; denotes the deformation matrix, w; is the weighting factor of the ith
Gauss point and NG is the total number of Gauss points in the problem domain, & is
the number of vertices of the load domain, 7; is the strength of the material at Gauss
point i. The first constraint of (1) describes the self-equilibrium condition of time
independent residual stresses j;, 65 denotes the vector of elastic reference stress.
The second constraint describes the yield condition.

Consider the situation that the strength of the material is not given but must be
modelled through random variables r =r(w) in a certain probability space. Under
uncertainty, the inequalities of (1) are not always satisfied, the probability of the ith
yield condition being satisfied is greater than some reliability level y;. Problem (1)
becomes a stochastic programming:

a~ =maxa

B0 @
o Prob [f(acf;; +ﬁ,~) —ri(w) < 0] 2y,

Let us consider the individual chance constraint:
Prob[f (a6’ +p,) — ri(®) < 0] =Prob[f; — r;(w) < 0] > y, (3)

We assume that the strength r;(w) of the material follows a Gaussian distribution
N (p;, 0;) with mean value y; and standard deviation o;. Let us transform to standard
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normal distribution. The yield condition can be written as f%” < D=t and we

—_ o;

have:

Problf; < ri(a))]zProb{fi_'ui < r"(“’)_”'} (4)

o o

Using the property of the cumulative distribution function (c.d.f.) of the standard
normal distribution ®( —x)=1—®(x), we can write (4) as follows:

Oj Oj o; O
Now the probabilistic condition (3) is replaced by
o/t >, ©
O

Introducing a new variable x;=®~!(y;) so that y,=®(k;), inequality (6)
becomes:

@ [’i] > ®(k;) (7)
Oj
Because @ is monotonic, it holds
o< M o <o (8)

Oi

Finally we get an equivalent deterministic formulation of the static approach:

a” =maxa
NG
. ) ZwBlp=Blp=0 )

f[acﬁ +ﬁ,} < p,—kio,,Vk=1,m,Vi=1,NG

We also have the discrete ES-FEM equivalent deterministic formulation:

S.t.: i ( )
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Here ﬁ[ is the strain matrix, p; is the vector of constant residual stresses on
elements sharing edge i. u;, 0; are the mean value and standard deviation of yield
stress of material on elements sharing the edge i, respectively, they are constants.

3 Upper Bound Approach to Chance Constrained
Programming

Based on Koiter’s theorem, the ES-FEM deterministic formulation is created as
follows [8, 9, 20]:

+ o & 2 T 2
a”=min ), ) grm/e,‘keik"‘go
K=1i=1
m

Y ex—-Bu=0 ,vi=T,N,

K= (11)
S.t.: Dé; =0 ,Vi=1,N,, Vk=1,m

m N,

> Yelty—1=0

k=1li=1

in which r; is the yield stress and &} is a small positive number to ensure that the
objective function is differentiable everywhere. u, €, t; and ﬁi are the displace-
ment rate vector, strain rate vector, fictitious elastic vector and strain matrix,
respectively. N, is the number of edges in ES-FEM mesh. In three-dimensions the
square matrix D, in the incompressibility condition is

(12)

S OO = ==
cCoOo R~~~
R N =
SO OO oo
[ elolole Nl
S o OO oo

If the strength r; is an uncertain quantity, the objective function of the kinematic
problem is a stochastic variable and problem (11) becomes a stochastic program-
ming problem. We can state problem in such a way that one looks for a minimum
lower bound # of the objective function under the constraint that the probability y
of violation of that bound is prescribed [2, 7].
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at =mingy
m N,
Prob( >y \/%rm/éﬁé,-k+sg > ;1) =y
K=1i=1
Y éx—Bu=0 (13)
S.t.: k=1
Dvéik=0
m N,
kzl «21 ehty—1=0

For the sake of simplicity, we denote the plastic dissipation
m N, 2
0)= 3 ¥ \[5()/ehew+e (14)
k=1i=1

The first constraint of (13) can be rewritten as:

0—
Prob(@211)=1—Pr0b(6’§71)=1—Pr0b<—'u6 < M) =y (15)
o9 O¢

In (15), uy, 69 are mean value and standard deviation of 6(w). We can see in the
inequality

(16)

the left hand side is the normalized random variable with zero mean and unit
variance. Hence the probabilistic condition (15) is replaced by

W:l-cb(%):cp(""a—;”) (17)

Setting y = ®(x) we have ® ! (y) =x=#"" or y, —kop=1.

)
The separate chance constrained program has the deterministic equivalent:

at =ming
Ho —Kog=n
éx—Bu=0
A (19
D,é; =0
m N,
> Yelty—1=0

k=1li=1
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Finally, we can write clearly the discretized upper bound of shakedown limit
load to chance constrained programming:

. m N, 2
at=min Y ¥ g(ll,'—KGi)\/éiTkéik'i'ﬁz)

k=1li=1

Y e —Bu=0 Vi=1,N,

= (19)
s.t.: D=0 Vi=1,N.,, Vk=1,m

m N,

> Yelty—1=0

k=1li=1

4 Duality Approach to Chance Constrained Programming

As it is noted for the deterministic case, limit analysis may be considered as a
special case of shakedown analysis. Andersen et al. [12], while considering a
problem of minimizing a sum of Euclidean norms, found that in the case of limit
analysis there exists a dual form for (11). For the chance constrained shakedown
problem, the same property can be presented through the two propositions:

Proposition 1 [f there exists a finite solution a™ for the kinematic shakedown load
multiplier (19) with ¢y =0 then a* has its dual form as

a” =maxa
Ne . p
] BE= )

Vi + B +ati|| < \/%(,ui—zqa,-)

where || .|| denotes the Euclidean vector norm.

Proposition 2 If there exists a finite solution a™ for the kinematic shakedown load
multiplier (19) with ey=0 and if the incompressibility is automatically satisfied,
then the kinematic formulation has its dual form as the static formulation by the
Melan theorem

s.t.. < /=1
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Coming from Proposition 1, we can also present the primal-dual form as a set of
stationary conditions:

vV 2/3 i — KO
M —(YatBi+aty)=0 (a)

vere;

ik Cik

D,éx =0 (b)

e — ﬁ,‘fl =0 C)
R ( @)

N,

p;=0 (d)
D f elty—1=0 (e)

The second proposition shows that the shakedown load multipliers formulated
by static and kinematic theorems are actually the same.

Based on the above discussion on duality, a dual algorithm has been developed,
[10, 11, 20]. The objective is to obtain simultaneously both primal and dual values
by solving the system of Eq. 22. In order to keep the problem size as small as
possible, the penalty method is used to handle the incompressibility and compati-
bility conditions (22b and 22c). The Lagrange multipliers are used as intermediate
variables.

5 Numerical Examples

Two span continuous beam

In the first example, we consider the two span continuous beam with rectangular
cross-section. The beam is subjected to two concentrated forces shown in Fig. 1.
Each span has the random yield moment characterized by the mean values
My, =2.0kNm, 4y, =3.0kNm and the standard deviations oy, =0.1 1, . Let
us determine the limit load factor if the reliability level is y =®(x)=0.9999 for
which we get k=® ! () =3.719. Figure 2 shows the convergence of upper and
lower bounds in limit analysis. Figure 3 represents the dependence of the limit load
factor on the coefficient of variation for a reliability of 99.99%. The dependence of
the limit load factor on the failure probability is shown in Fig. 4.

The limit load problem has an analytical solution. For the kinematic theorem,
observe that the plastic moment of the first span is lower than the one of the second
span and the applied load P, is greater than P,. The failure mechanism is shown in
Fig. 5.

We easily calculate the upper bound limit load factor from the virtual work
equation:
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Fig. 1 Two span beam and the mesh using three-node triangular elements
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This is the exact limit load because the static theorem has the same result.
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Fig. 5 The failure mechanism of the beam at limit state

For random plastic moment, we can replace My 1 by uy, , —koy,, in the

deterministic equivalent problem. Let M, ; be normally distributed with mean value
Mty = 2kNm and standard deviation oy, , =0.2 kNm, respectively, and P; deter-
ministic. For the chosen reliability level the limit load factor is:

3( — K ) - .
o= W TRom ) 3(2-3.719-02) Lo (24
lim Pl'L 3

For comparison, the numerical solution converges to the limit load factors
Mim =2.19 and aji, = 1.38 for deterministic and stochastic strength, respectively.
The limit loads in [3] and the analytical limit loads are different from the numerical
limit loads because they are based on beam theory (Table 1).

Simple frame
In this example, we investigate a symmetric frame. Its left half depicted in Fig. 6.
The beam carries two uniormly distributed loads (p;, p>) which can varies in the

Table 1 Limit loads of the two span beam

Lower bound | Upper bound | Lower bound Upper bound

determ. determ. random strength random strength

2.0 2.0 1.15 1.36 [3]

2.19 2.19 1.38 1.38 Numerically
2.0 2.0 1.256 1.256 Analytically
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Fig. 6 The geometrical dimensions of frame and load domain
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Fig. 7 The FE-mesh of a half of a symmetric frame with 800 T3 elements
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Fig. 8 Convergence of the limit load factor ajip,

load domain as shown in Fig. 6. The geometrical data and material are analogously
chosen as in [13], i.e. E=2 X 10° MPa, v=0.3, and yield stress oy, =10MPa (for
deterministic case). The frame is discretized by 1600 T3 elements as shown in
Fig. 7.

Figures 8 and 9 show the convergence of limit and shakedown load factors for
both situations: deterministic and random strength. For limit analysis with
p1=3.0, p»=1.0, both bounds converge to the solutions o, =2.705 in case of
deterministic strength and aji,, = 1.697 in case of normally distributed strength. For
shakedown analysis, the results give the shakedown load factors asp =2.521 and
asp = 1.582 corresponding to deterministic and random strength, respectively.
Table 2 shows the present results in comparison with results in [13].
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Fig. 10 Domains based on linear and quadratic approximations in u space
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Table 2 Load factor a for limit and shakedown analysis of a simple frame

Garcea et al. [13] Present

Deterministic Random Deterministic Random
Limit (p; =3,p2=1) 2.645 - 2.705 1.697
Shakedown 2473 - 2.521 1.582

6 Reliability Analysis with the First Order Reliability
Method

So far, we have prescribed a reliability level and calculated the load factor with
stochastic programming. In structural reliability the failure probability is calculated
for a given load factor. In order to find the relation between both approaches we
consider briefly the First Order Reliability Method (FORM), which has been used
in [9, 14-19] to calculate failure probabilities in limit and shakedown analysis. For
more detail, see the given references.

Let the n-dimensional random vector X = (Xj, X, ...,X,) of basic variables
characterize uncertainties in the structure and load parameters. The limit state
function g(x)=0, which is based on the comparison of a structural resistance
(threshold) and loading, defines the limit state hypersurface oF which separates the
failure region F = {x|g(x) <0} from safe region.

<0 for failure,
g(X)< =0 for limit state, (25)
>(0 for safe structure.

This is shown in Fig. 10 after a transformation of x in the u space to be dis-
cussed below.
The failure probability Py is the probability that g(X) is non-positive, i.e.

P =P(g(X) < 0) = / fr(®)dx (26)

where fy (x) is the n-dimensional joint probability density function. Usually, it is not
possible to calculate P, analytically. However, First- and Second-Order Reliability
Methods (FORM and SORM) are analytical probability integration methods.
FORM and SORM apply to problems, where the set of basic variables are con-
tinuous. The numerical effort depends on the number of stochastic variables but not
on Py. Practical experience with FORM and SORM algorithms indicates that their
estimates provide very satisfactory reliability measures in limit and shakedown
analysis. Especially in the case of small failure probability (large reliability), FORM
and SORM are extremely efficient compared with Monte Carlo methods regarding
the required of computing time.
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The failure probability is computed in three steps. Firstly the physical space x of
uncertain parameters X is transformed into a new n-dimensional space u consisting
of independent standard Gaussian variables U. By this transformation, the original
limit state function g(x) =0 is mapped into the new limit state function g(u) =0 in
the u space, Fig. 10.

In FORM, g(U)=0 with g(0)>0 is approximated linearly by its Taylor

expansion g () =g(u*) + (V,g(u*)) (w—u") at the so-called design point
u” €0V (so that g(u*)=0)

g(u)=p+a’u,

V.g(u" N 27
(x=Lu*),ﬂ=—aTu. 27)
[Viug(u?)]|
The failure region V is linearly approximated by V;,
Ve={up+a’u <0} ={uja’u < -} (28)

*

The vector a is proportional to the sensitivities V,g(u ). The failure event
{u€aV,} is equivalent to the event {a’u < — 4}, such that an approximation of
the failure probability Py is

-p
PixP(a'U< —f)=d(-p)= / e 0% gy (29)

— 0

because the random variable a’ U is normally distributed.

The failure probability depends only on the so-called called reliability (or safety)
index f. For a linear limit state function FORM gives