
Chapter 3
MacWilliams Relations

In this chapter, we prove the MacWilliams relations for codes over finite Frobenius
commutative rings. These relations are one of the foundational results of algebraic
coding theory.

3.1 Introduction to the MacWilliams Relations

The MacWilliams relations are one of the most important foundations of algebraic
coding theory. They were first proven by F.J. MacWilliams for codes over fields in
[4, 5]. These relations are able to give the weight enumerator of the orthogonal of a
code from the weight enumerator of a linear code. They have numerous applications
in coding theory and in the connections of coding theory to other branches of mathe-
matics. For example, self-dual codes are codes that are equal to their orthogonals. As
such, their weight enumerators are held invariant by the action of the MacWilliams
relations. This leads to the natural application of invariant theory to the study of self-
dual codes. See Chap.19 of [6] for an early discussion of this application. Numerous
powerful results arose from this connection. See [8] for a detailed description of the
connection between self-dual codes and invariant theory.

The MacWilliams relations are so fundamental to the study of codes that it is our
opinion that an alphabet is an acceptable alphabet for algebraic coding theory if and
only if the alphabet admits MacWilliams relations. In [9], it is shown that the class
of Frobenius rings is the class of finite commutative rings that admit such relations
and this is precisely why we restrict ourselves to this class of rings. It is also possible
to take finite commutative groups as alphabets since there are also MacWilliams
relations for these alphabets. There are other possible alphabets, as well, but in this
text, we shall restrict ourselves to Frobenius rings and commutative groups.
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We begin with the standard definition of the complete weight enumerator. We
shall determine MacWilliams relations for this weight enumerator and then use this
to obtain MacWilliams relations for other weight enumerators.

Definition 3.1 Let C be a code over an alphabet A = {a0, a1, . . . , ar−1}. The com-
plete weight enumerator for the code C is defined as:

cweC (xa0 , xa1 , . . . , xar−1) =
∑

c∈C

r−1∏

i=0

xni (c)ai , (3.1)

where there are ni (c) occurrences of ai in the vector c. The symmetrized weight
enumerator of a code C over a group G is given by

sweC(y0, y1, . . . , yr ) =
∑

c∈C
swt (c), (3.2)

where swt (c) = ∏r
i=0 x

βi
i and the elements αi and (αi )

−1 appear βi times in the
vector c. The Hamming weight enumerator is given by

WC(x, y) =
∑

c∈C
xn−wtH (c)ywtH (c) = cweC (x, y, y, . . . , y). (3.3)

For codes over the finite field of order 2, these three weight enumerators coincide.
It was in this form that the MacWilliams relations first appeared in [4, 5]. For the
Hamming weight enumerator, x is often set to 1, and the weight enumerator is
described in terms of y.

Example 3.1 Consider the perfect code given in Example1.3. This code is a binary
code and has weight enumerator

WC(x, y) = x7 + 7x4y3 + 7x3y4 + y7.

3.2 MacWilliams Relations for Codes Over Groups

In this section, we begin in a slightly different setting. Namely, we temporarily leave
the world of codes over rings and move into codes over finite commutative groups.
The reason is that the fundamental structure needed for the MacWilliams relations
is the underlying additive group. Moreover, in some instances, it is useful to study
additive codes. That is we want to study those codes that are simply subgroups of
the underlying group structure, rather than codes that are submodules of Rn . For
example, additive codes over F4 have received a great deal of attention because of
their connection to quantum coding.
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We recall that a character of G is a homomorphism χ : G → C
∗. Let G be a

finite abelian group and fix a duality of G, that is we fix a character table of G. We
have a bijective correspondence between the elements of G and those of Ĝ = {π|π
a character of G}. We note that G and Ĝ are isomorphic as groups. However, this
isomorphism is not canonical. In general, we simply choose an isomorphism and
for each α ∈ G, we denote the corresponding character in Ĝ by χα. Note that this
implies that there would be a different correspondence for a different isomorphism.

In this setting, we say that a code C over G is a subset of Gn . For a code to be
linear, we require only that C be an additive subset of Gn (note that we are referring
to the operation of G as an additive operation). As an example, consider the code
C = {(0, 0), (1, 0), (0, 1), (1, 1)} ⊆ F

2
4. This code is a subgroupof the additive group

of F
2
4, but it is not a vector space since, for example, the vector ω(1, 1) = (ω,ω) is

not in the code. Therefore, the code is not a linear code in the sense of a code over a
ring.

The standard definition of the Euclidean and Hermitian inner-products do not
apply here because we have only one operation. Rather, we introduce a different
inner-product whichwill coincidewith the traditional inner-products in the necessary
cases.

Definition 3.2 For a code C over G, with a given isomorphism between G and Ĝ,
define the orthogonal of C to be

C⊥ = {(g1, g2, . . . , gn)|
i=n∏

i=1

χgi (ci ) = 1,∀(c1, . . . , cn) ∈ C}.

It is imperative to understand that this orthogonal is defined with respect to a
specific duality for the group. If we change the duality then we change the orthogonal
for the code. In fact, a code can be equal to its dual in one duality and not in another.
Despite this very general definition of the orthogonal for codes over groups, forwhich
we shall prove MacWilliams relations, it will turn out that this description leads to
MacWilliams relations for codes over Frobenius rings in a canonical way.

To each element of Ĝn , we associate an element ofGn with the natural correspon-
dence. Since (Ĝ)n = Ĝn , the code C⊥ is associated with the set {χ ∈ Ĝn|χ(c) = 1
for all c ∈ C}. This gives that |C⊥| = |Ĝ|n

|C | = |G|n
|C | and that C = (C⊥)⊥.

For a function f : G → A, where A is a complex algebra, the Fourier Transform
f̂ of f is a function f̂ : Ĝ → A defined by

f̂ (π) =
∑

x∈G
π(x) f (x). (3.4)

The following example shows how the orthogonality relation can change when
the isomorphism between the group and its character group changes. When this is
done the orthogonality relation can change significantly.
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Example 3.2 Consider the character tables given in Example 2.6.

χ1 0 1 ω 1 + ω

0 1 1 1 1
1 1 −1 −1 1
ω 1 −1 1 −1

1 + ω 1 1 −1 −1

χ2 0 1 ω 1 + ω

0 1 1 1 1
1 1 1 −1 −1
ω 1 −1 −1 1

1 + ω 1 −1 1 −1

Note that each row gives the character associated to the element that indexes that
row. Hence there are four characters represented in each table corresponding to the
four elements of the group. For the duality generated by χ1, we have that ω is a
self-orthogonal element. Then the codeC1 = {0,ω} is a linear code over the additive
group of F4 and satisfies C1 = C⊥1

1 with respect to this duality. Note that this code
is not linear over F4 as a field, nor would ω be a self-orthogonal element over the
field. For the duality given by χ2, we have that the codes {0, 1}, {0,ω}, {0, 1 + ω}
are all linear codes over the additive group and satisfy C = C⊥2 . Note that in all of
these cases, the usual MacWilliams relations do not apply since the codes are not
linear over the field F4. For the duality given by χ2, the dual code C

⊥2
1 = {0, 1+ω}.

In this example, the complete weight enumerator of their duals is different. We shall
see that if the codes are in fact linear over the ring, the MacWilliams relations will
give that the weight enumerators of both orthogonals, in this case, would have to be
equal (even if the orthogonals themselves were not equal).

To find MacWilliams relations for these codes, we will need the following two
well known lemmas.

Let H be a subgroup of G and let (Ĝ : H) = {π ∈ Ĝ| π|H = 1}.
Lemma 3.1 (Poisson summation formula) Let G be a finite group and H a sub-
group of G. Let f be a function from G to a complex algebra. For every a ∈ G,

∑

x∈H
f (a + x) = 1

|(Ĝ : H)|
∑

π∈(Ĝ:H)

π(−a) f̂ (π). (3.5)

Lemma 3.2 Suppose fi : G → A are functions, i = 1, 2, . . . , n, and A a complex
algebra. Let f : Gn → A be given by

f (x1, . . . , xn) =
n∏

i=1

fi (xi ). (3.6)

Then f̂ = ∏
f̂i ; i.e. ifπ = (π1, . . . ,πn) in Ĝn = ∏n

i=1 Ĝ, then f̂ (π) = ∏n
i=1 f̂i (πi ).
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Let fi (ci ) = xci and f (x) = ∏n
i=1 fi . Then apply the previous two lemmas,

which gives that for a subgroup H of G,

∑

x∈H
f (x) = 1

|(Ĝ : H)|
∑

π∈(Ĝ:H)

f̂ (π). (3.7)

Then noting that f̂ (π) = ∑
x∈G π(x) f (x) gives that the action of the matrix T on

the weight enumerator gives us the MacWilliams relations, where T is indexed by
the elements of the group and is defined as Tαi ,α j = χαi (α j ). For a vector v we let
T · v = (T vt )t .

For an element a ∈ G, let [a] denote the equivalence class formed under the
relation where a ≡ a′ if and only if a = a′ of a−1 = (a′), where a−1 is the inverse
with respect to the operation of the group. Construct the matrix S indexed by (G/ ≡)

where S[a],[b] = Ta,b + Ta,−b. Let s ′ be the number of equivalence classes. Now we
can state the MacWilliams relations for groups.

Theorem 3.1 Let C be a code over G and let |G| = s, with weight enumerator
cweC(x0, x1, . . . , xs−1). Then, the complete weight enumerator of the orthogonal is
given by

cweC⊥ = 1

|C |cweC(T · (x0, x1, . . . , xs−1)), (3.8)

sweC⊥ = 1

|C | sweC(S · (x0, x1, . . . , xs ′−1)), (3.9)

and

WC⊥ = 1

|C |WC(x + (s − 1)y, x − y). (3.10)

Proof The first equation follows from the discussion above. The second equation fol-
lows easily from specializing the variables. To get the Hamming weight enumerator,
notice that specializing the variables gives

∑

α∈G
χα(β)xβ = x + (

∑

α 
=0

χα(β))y, (3.11)

where 0 is the identity of the group. If β = 0, then
∑

α 
=0 χα(β) = s − 1. If β 
= 0
then

∑
α 
=0 χα(β) = −1. �

We shall now generalize the MacWilliams relations to the g-fold joint weight for
codes over Frobenius rings.

Definition 3.3 Let G be a finite commutative group and let C1, . . . ,Cg be additive
codes overG. The complete joint weight enumerator of genus g for codesC1, . . . ,Cg

of length n is defined as
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JC1,...,Cg
(Xa : a ∈ Gg) =

∑

(c1,...,cg)∈C1×···×Cg

∏

a∈Gg

X
na(c1,...,cg)
a ,

where
cl = (cl1, · · · , cln), 1 ≤ l ≤ g

and
na(c1, · · · , cg) = |{m | (c1m, · · · , cgm) = a, 1 ≤ m ≤ n}|.

Fix a duality T for the group G. The proof of the following is a straightforward
computation similar to the proof for the usual MacWilliams relations.

Corollary 3.1 Let C1, · · · ,Cg be additve codes over a finite group G and let C̃l

denote either Cl or C⊥
l . Then

JC̃1,··· ,C̃g
(Xa) = 1

∏g
l=1 |Cl |δC̃l

· (⊗g
l=1T

δC̃l )JC1,··· ,Cg
(Xa), (3.12)

where

δC̃l
=

{
0 if C̃l = Cl ,

1 if C̃l = C⊥
l .

3.3 MacWilliams Relations for Codes Over Rings

We can now use the results for codes over groups to produce MacWilliams relations
for codes over Frobenius rings.

Lemma 3.3 Let R be a finite commutative Frobenius ring with R̂ = 〈χ〉. Define the
following function F : Rn → R̂n by

F(v) = χv, where χv(w) = χ([v,w]). (3.13)

Proof It is clear that the map is a homomorphism. We have that

ker(F) = {v | χ([v,w]) = 1 for all w ∈ Rn}.

Since ei = (0, 0, . . . , 0, 1, 0, . . . , 0) ∈ Rn , we have that ker(F) is trivial and there-
fore F is an injection. Moreover, |Rn| = |R̂n|, which gives that the map is a bijection
and hence an isomorphism. �

Note that we are heavily using the fact that the ring is Frobenius in the definition
of this map since otherwise we would not have a generating character χ to define it
in this manner.
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Let C be a linear code in Rn . Let C⊥ be the standard orthogonal for a code over
a ring. Let L(C) be the orthogonal for C as a subgroup of the additive group of
Rn with the duality given by the character χ, namely χa(b) = χ(ab). We have
from Lemma3.3 that F(C⊥) = L(C) which together with the group theoretic
MacWilliams relations given in Theorem3.1 gives the following MacWilliams rela-
tions for codes over finite commutative Frobenius rings.

Theorem 3.2 Let C be a linear code over a finite commutative Frobenius ring R.
Define Ta,b = χ(ab), where χ is the generating character associated with R. Let S
be the matrix indexed by the equivalence classes formed by the relation where a ≡ a′
if and only if a = ±a′, and S[a],[b] = Ta,b + Ta,b′ . Then we have the following:

cweC⊥ = 1

|C |cweC(T · (x0, x1, . . . , xs−1)), (3.14)

sweC⊥ = 1

|C | sweC(S · (x0, x1, . . . , xs ′−1)). (3.15)

Note that we are not saying that there is a unique way to express the MacWilliams
relations since it depends on the generating character which is not unique for a given
ring. However, different matrices will still give the same weight enumerator for the
orthogonal.

The following was first proven by F.J. MacWilliams in [4, 5]. There it was proven
for codes over finite fields. Here we can extend the proof to codes over finite com-
mutative Frobenius rings.

Theorem 3.3 Let R be a finite commutative Frobenius ring with |R| = r. Let C be
a linear code over R. Then

WC⊥(x, y) = 1

|C |WC(x + (r − 1)y, x − y). (3.16)

Proof The result follows from Theorem3.2 by taking the matrix T given in that
theorem and by adding all non-zero columns. In the first row, adding all non-zero
columns gives (r − 1) since every element is 1. Then in any other row (since all
non-zero elements have the same Hamming weight), we get −1 when summing the
columns since

∑
b∈R χ(ab) = 0 for all non-zero a ∈ R and χ(a0) = 1.

Hence, the matrix that gives the MacWilliams relations is:

(
1 (r − 1)
1 −1

)
, (3.17)

and this gives the result. �

It is unclear where the next corollary first appeared. It is implicit in [9] but does
not appear there. However, it is one of the most important consequences of the
MacWilliams relations.
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Corollary 3.2 If C is a linear code over a finite commutative Frobenius ring R, with
|R| = r , then |C ||C⊥| = |Rn|.
Proof Consider Eq.3.16 and set x = 1 and y = 1. Then we have

|C⊥| = 1

|C |r
n (3.18)

which gives |C ||C⊥| = |Rn|. �

One of the main uses of this corollary is that if we have a self-orthogonal code C
with |C | = √|Rn|, then C is self-dual. This corollary can also be used as a tool to
showa ring is not Frobenius.Namely, if a ring has an ideal awhere its orthogonal does
not have cardinality |R|

|a| , then the ring is not Frobenius. We shall show an example
where this fails when the ring is not Frobenius.

Example 3.3 Let R = F2[x, y]/(x2, y2, xy). We can write the elements of R as
R = {0, 1, x, y, 1 + x, 1 + y, x + y, 1 + x + y}.

The maximal ideal is m = {0, x, y, x + y}. Hence, this ideal is a code of length
1. Its orthogonal ism⊥ = m = {0, x, y, x + y}. This gives thatm is a self-dual code
of length 1. However |m||m⊥| = 16 
= |R| = 8. This implies that there cannot be
MacWilliams relations for this ring, since if there were then |C ||C⊥| would have to
be |R|n.

The MacWilliams relations are an extremely powerful tool. We shall exhibit one
of their classical applications.

Example 3.4 Consider the Hamming codes H(2, r) given in Example 1.7. The
orthogonal to this code has dimension r and length 2r − 1. Since every possible
non-zero column is represented in the generator matrix, then the sum of any subset
of rows produces a vector with weight 2r−1. This gives that the weight enumerator
of H(2, r)⊥ is

WH(2,r)⊥ = x2
r−1 + x2

r−1−1y2
r−1
.

Then applying the MacWilliams relations gives the weight enumerator of the binary
Hamming codes. Namely,

WH(2,r) = (x + y)2
r−1 + (x + y)2

r−1−1(x − y)2
r−1
.

Corollary 3.3 Let T be the matrix that gives the MacWilliams relations for a finite
commutative Frobenius ring R with |R| = r . Then T 2 = rM where M is a monomial
matrix corresponding to a permutation of the elements of R.

Proof For any linear code C we have that (C⊥)⊥ = C. This gives that applying
the MacWilliams relations twice will result in the weight enumerator of the original
code. This implies that ( 1√

r
T )( 1√

r
T )must be a monomial matrix. The result follows.
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Example 3.5 For Z4, the matrix T which gives the MacWilliams relations is:

⎛

⎜⎜⎝

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎞

⎟⎟⎠ . (3.19)

Then we have

T 2 = 4

⎛

⎜⎜⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞

⎟⎟⎠ . (3.20)

MacWilliams relations for non-Hamming weight enumerators can also be found.
See [2] for the MacWilliams relations for the Rosenbloom-Tsfasman metric.

3.4 A Practical Guide to the MacWilliams Relations

We shall now show how to construct MacWilliams relations for specific rings. As
usual with commutative rings and coding theory, one of the most powerful tools is
the application of the Chinese Remainder Theorem.

Theorem 3.4 Let R be a finite commutative Frobenius ring with
R = CRT (R1, R2, . . . , Rs), where each Ri is a local ring. Let χRi be the generating
character for Ri . Then the character χ for R defined by

χ(a) =
∏

χRi (ai ), (3.21)

where a = CRT (a1, a2, . . . , as), is a generating character for R.

Proof If χ were not a generating character, then by Theorem2.4, it would be trivial
on an ideal of R. Then there would be an i such that χRi is trivial on an ideal of Ri ,
contradicting that χRi is a generating character. Hence, χ is a generating character.�

This theorem allows us to focus on local rings since we know that any finite
commutative ring is isomorphic via the Chinese Remainder Theorem to a product of
local rings. With this in mind, let R be a finite local commutative Frobenius ring with
maximal ideal m. Then it follows that m⊥ is the unique minimal ideal of R where m
is the unique maximal ideal.

Lemma 3.4 Let R be a finite local commutative Frobenius ring with maximal ideal
m. If χ is a character of R that is not trivial onm⊥, then χ is a generating character
for R̂.
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Proof Weknow thatm⊥ is the uniqueminimal ideal. Thismeans thatm⊥ is contained
in every non-trivial ideal of R. Hence if χ is non-trivial on m⊥, then it is non-trivial
on every ideal of R. This gives that it is a generating character. �

Lemma3.4 gives an easy way to find a generating character for any finite local
commutative Frobenius ring. Namely, we simply find a character that is not trivial
on the unique minimal ideal.

This lemma tells us a lot more about the MacWilliams relations for codes over
rings. Namely, there is not a unique way to give the matrix T for a specific Frobenius
ring. Rather the MacWilliams relations apply to any linear code over the ring but the
matrix T depends on the choice of the generating character which as we see from
the previous lemma is not necessarily unique. However, there is still only one matrix
that applies the MacWilliams relations for the Hamming weight enumerator. That is,
every possible matrix T still collapses to the same matrix for the Hamming weight
enumerator.

We shall give some examples of the matrix T , which gives the MacWilliams
relations for various rings.

• Consider the ring Zn . The classical Chinese Remainder Theorem gives that Zn
∼=

Zp
e1
1

× Zp
e2
2

× · · ·× Zpess , where the pi are distinct primes. The ring Zp
ei
i
is a local

ring with maximal ideal 〈pi 〉 and minimal ideal 〈pei−1
i 〉. Let χZ

p
ei
i

(a) = ηa
i , where

ηi is a primitive peii -th root of unity. Then η
pe−1
i

i 
= 1 and so χZ
p
ei
i

is non-trivial on

the minimal ideal and therefore is a generating character. Then χZn = ∏
χZ

p
ei
i

,

which is realized as χZn (a) = ηa where η is a primitive n-th root of unity.
• Consider the Galois ring Zpe [x]/〈q(x)〉, where q(x) is an irreducible polynomial
over Zpe of degree k and p is a prime. Here any element is of the form a0 + a1x +
· · · + ak−1xk−1. Then

χ(a0 + a1x + · · · + ae−1x
e−1) = ξ

∑
ai

pe (3.22)

is a generating character for ̂Zpe [x]/〈q(x)〉 where ξpe is a primitive pe-th root of
unity. Of course, when e = 1 this gives us the class of finite fields.

• Consider the rings Rk = F2[u1, u2, . . . , uk], where u2i = 0 and ui j j = u jui for
all i , j . Then for A ⊆ {1, 2, . . . , k} we denote uA = ∏

i∈A ui and each element
can be written as

∑
A⊂P({1,2,...,k}) αAuA, where αA ∈ F2. Then

χ

⎛

⎝
∑

A⊆P({1,2,...,k})
αAuA

⎞

⎠ = −1
∑

αA (3.23)

is a generating character for R̂k .
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• Let R be a finite chain ring with maximal ideal 〈γ〉 where R/〈γ〉 is isomorphic to
Fq . Let χq be the generating character for Fq .We have that 〈γe−1〉 is the minimal
ideal. Then let χ be defined by

χ(a0 + a1γ + · · · + ae−1γ
e−1) =

∏
χq(ai ). (3.24)

It follows that χ is not minimal on 〈γe−1〉 and therefore χ is a generating character
for R̂.

In general, we are interested in determining the generating character of local rings,
since by using Theorem3.4, we can then determine the MacWilliams relations for
any finite Frobenius commutative ring. In [7], it is shown that the smallest local
Frobenius ring that is not a chain ring has order 16. Hence, the previous discussion
gives theMacWilliams relations for all rings of order less than 16. Additionally in [7],
the local Frobenius rings of order 16 were classified. In [1], the generating character
for all of these rings is given. We give them in Table3.1. In the table, η = e

2πi
8 and

ζ = e
2πi
16 .

Table 3.1 Generating characters for local Frobenius rings of order 16

Ring Additive structure Generating character

F16 ∼= F2[x]
〈x4+x+1〉 Z2 × Z2 × Z2 × Z2 χ(a + bx + cx2 + dx3) = (−1)a+b+c+d

F2[x]
〈x4〉 Z2 × Z2 × Z2 × Z2 χ(a + bx + cx2 + dx3) = (−1)a+b+c+d

F4[x]
〈x2〉 ∼= F2[u,v]

〈u2+u+1,v2〉 Z2 × Z2 × Z2 × Z2 χ(a + bu + cv + duv) = (−1)a+b+c+d

F2[u,v]
〈u2,v2〉 Z2 × Z2 × Z2 × Z2 χ(a + bu + cv + duv) = (−1)a+b+c+d

F2[u,v]
〈u2+v2,uv〉 Z2 × Z2 × Z2 × Z2 χ(a + bu + cv + du2) = (−1)a+b+c+d

GR(22, 2) ∼= Z4[x]
〈x2+x+1〉 Z4 × Z4 χ(a + bx) = ia+b

Z4[x]
〈x2−2〉 Z4 × Z4 χ(a + bx) = ia+b

Z4[x]
〈x2−2x−2〉 Z4 × Z4 χ(a + bx) = ia+b

Z4[x]
〈x2〉 Z4 × Z4 χ(a + bx) = ia+b

Z4[x]
〈x2−2x〉 Z4 × Z4 χ(a + bx) = ia+b

Z4[x]
〈x3−2,2x〉 Z4 × Z2 × Z2 χ(a + bx + cx2) = ia(−1)b+c = ia+2b+2c

Z4[x,y]
〈x2,xy−2,y2,2x,2y〉 Z4 × Z2 × Z2 χ(a + bx + cy) = ia(−1)b+c = ia+2b+2c

Z4[x,y]
〈x2−2,xy−2,y2,2x,2y〉 Z4 × Z2 × Z2 χ(a + bx + cy) = ia(−1)b+c = ia+2b+2c

Z8[x,y]
〈x2−4,2x〉 Z8 × Z2 χ(a + bx) = ηa(−1)b = ηa+4b

Z16 Z16 χ(a) = ζa
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