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Chapter 1
Introduction

In this chapter, we give a brief introduction to the history of algebraic coding theory
and give the basic definitions and notations necessary to begin a study of the subject.

1.1 History

Coding theory arose in the twentieth century as a problem in engineering concern-
ing the efficient transmission of information. Its study originated in the landmark
papers by Shannon [14] and Hamming [9]. Specifically, the theory was developed so
that electronic information could be transmitted and stored without error. Electronic
information can generally be thought of as a series of ones and zeros. Therefore,
coding theory, from this perspective, was largely done using the binary field as the
alphabet. However, the alphabet was quickly generalized to finite fields, at least for
mathematicians, since many of the proofs and techniques were identical to the binary
case viewed as the field with two elements. This type of coding theory remains a
vital part of electrical engineering in terms of ensuring effective communication in
telephones, computers, television, and the internet.

From the very beginning of its study, mathematicians viewed coding theory not
only as an application to electrical engineering and computer science, but also as a
part of pure mathematics. They were interested not only in the fundamental questions
of coding theory, but also into its connections with other areas of discrete mathe-
matics. Early results connected codes to designs, lattices, and combinatorics. These
connections were generally made with codes where the alphabet was a finite field.
Moreover, much of the early work from mathematicians in coding theory came by
applying previously known results from linear algebra, finite geometry, algebra, and
combinatorics to the study of codes. Since the inception of coding theory in 1948,
there has been a very fruitful interchange from pure mathematics to the application of
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2 1 Introduction

codes. As often happens in applied mathematics, interesting mathematical questions
arose in the application which sparked mathematicians’ interest in the subject.

During the first forty years of coding theory, the alphabet in question was usually a
finite field. There were a few papers written where the alphabet was aring, for example
Blake’s early papers [3, 4]. It wasn’t until the 1990s when coding theorists began to
study codes over finite rings in earnest. This study began with the understanding that
certain non-linear binary codes, which had some of the properties of linear codes
were, in fact, the images of codes over Z4 under a non-linear map. This breakthrough
came in [10, 11], however, Delsarte’s work in [6], years before, might have led the
coding theory community to these results earlier. This prompted an intense study of
codes over Z4 which rapidly moved into the study of codes where the alphabet was
either one of the three other commutative rings of order 4 or the ring Z;. Families of
rings presented themselves for study and a large literature emerged studying codes
over rings. The families of rings were usually chosen for some specific application.
For example, codes over the family of rings Z,; were studied because of an interesting
connection to unimodular real lattices, see [2]. It was a natural generalization from
this family to the family of chain rings. Later, with the understanding that all finite
commutative rings were the direct product of local rings via the Chinese Remainder
Theorem, codes over local rings were studied.

In [16], J. Wood showed that both MacWilliams theorems held for the class of
Frobenius rings. This showed that coding theory can be studied over this fairly
large family of rings without losing the fundamental foundations of coding theory.
Generally, when studying codes over rings, a blanket assumption is made that all
rings serving as alphabets for codes are finite Frobenius rings. An extensive and
expanding literature now exists on codes over various families of rings.

In this book, we shall not describe coding theory as a branch of engineering, nor
shall we motivate its study in terms of communication applications. Rather, we view
coding theory as a branch of pure mathematics serving as its own motivation for study.
We shall refer to this branch of pure mathematics as algebraic coding theory (which it
has often already been called) to distinguish it from coding theory as an application in
electrical engineering. Algebraic coding theory sits partly in algebra, number theory,
finite geometry, and combinatorics. As such, it has interesting connections to a wide
variety of topics in all these branches.

The interested reader can consult MacWilliams and Sloane’s seminal text “The
Theory of Error-Correcting Codes” [13] for an early description of classical coding
theory. For an updated description, see Huffman and Pless’s “Fundamentals of Error-
correcting Codes” [12]. For a description of the connection between designs and
codes see Assmus and Key’s “Designs and their Codes” [1]. In all three of these
classic texts, codes are generally defined over finite fields.

In this text, we shall be concerned with codes over finite commutative Frobenius
rings as was first established in [16]. It will become apparent why we need to restrict
to Frobenius rings when we discuss the MacWilliams relations in Chap. 3. We shall
give foundational results for algebraic coding theory and develop the structures to
view it as an interesting branch of pure mathematics. It is also possible to study
codes over non-commutative rings, but much of the theory is different and as yet
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has not been as widely studied. Codes over infinite rings have also been studied, but
generally in close association with codes over related finite rings. For example, codes
over the infinite ring of p-adic integers were studied but largely in relation to codes
over the finite ring Z .. For examples of the study of codes over these infinite rings,
see [5, 7].

While we are making the case for algebraic coding theory to be viewed as a branch
of pure mathematics, we strongly believe that the bridge to applications must also
be open. In fact, we look to applications as a rich source of interesting questions and
ideas.

1.2 Definitions and Notations

We shall now give the necessary definitions to begin our study of algebraic coding
theory. While we usually choose an alphabet for codes with an algebraic structure,
for example a group, ring, or field, some very interesting results can be obtained
while simply taking any set as an alphabet. This is how we shall start by taking the
most general definition of a code.

Definition 1.1 Let A be any finite set. A code C over the alphabet A of length 7 is
a subset of A”.

In terms of classical coding theory, the elements are called codewords and the
underlying set A is called an alphabet since a code was generally used to transmit
information. We retain this nomenclature and we say that if A is an alphabet then C
is a code over A. Using this definition one can even think of the English language
as a code over the standard English alphabet (allowing for padding of words with
blanks to make them all have the same length). The aims of classical coding theory
are not that much different than a spell checker to the English language as a code.
As we all know, it is quite difficult to have an effective spell checker because the
difference between two words in this language might simply be one letter. This idea
of distance is applied to classical codes in the same way.

The principal distance used in coding theory is known as the Hamming distance.

Definition 1.2 Let v, w € A" where A is any set. Then

du(v,w) = [{i | vi # w;}l. (1.1)

The minimum Hamming distance of a code C is d(C) = min{dy(v,w) | V,w €
C,v #w}.

We often remove the C from the notation and simply refer to the minimum Ham-
ming distance as d. It is an easy exercise to see that the Hamming distance is a metric
on the space A”.

This definition leads naturally to the following definition. Denote the all-zero
vector by 0.
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Definition 1.3 Let v be a codeword in A” where A is any alphabet. Then the Ham-
ming weight of v is
wty (v) = [{i | v; # 0} (1.2)

The minimum Hamming weight of a code C is min{wty (v) | v € C, v # 0}.
The fundamental question of classical coding theory is the following.

Question 1.1 Given an alphabet, a length n, and a size of the code M, what is the
largest d for which a code exists with these parameters?

Of course, the question can be rephrased in numerous ways by switching which
parameter you want to optimize. While much is known about this fundamental ques-
tion, especially for specific values, the general question remains open. Neither an
exhaustive theorem nor an effective algorithm has yet been found to answer the
question for an arbitrary set of parameters.

Example 1.1 A Hadamard matrix of order n is a matrix with elements from the set
{1, —1} such that HHT = nl,. It follows from the definition that any two distinct
rows split evenly between coordinates where they agree and coordinates where they
disagree. Let C be the code consisting of the rows of a Hadamard matrix. The code
has length n, cardinality n, and minimum distance % For example, the Hadamard

matrix of order 4 is:
11 1 1

1-11 -1
11 —-1-1
1-1-11

(1.3)

This gives a code with 4 elements of length 4 and the distance between any two
elements equal to 2. Except for n = 1, 2, the order of a Hadamard matrix must be a
multiple of 4. It remains an open question whether there exists a Hadamard matrix
foralln =0 (mod 4).

Definition 1.4 A code of length n, size M, and minimum Hamming distance d is
said to be optimal if it is has the largest d of any other codes with length n and size
M.

In general, the main question of coding theory is finding optimal codes for a given
set of parameters. In terms of actual coding theory applied to electronic communica-
tion, we are, in general, not simply looking for an optimal code, but an optimal code
which has an efficient decoding algorithm.

This definition of a code requires no algebraic structure. Rather it is simply a
combinatorial structure with very few constraints. However, it is enough to get to
one of the most important bounds for a code, which was first proven by Singleton
in [15].
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Theorem 1.1 (Singleton Bound) Let C be a code of length n over an alphabet of
size q with minimum Hamming distance d. Then log,(|C|) <n —d + 1.

Proof Consider the first n — (d — 1) coordinates. These must all be distinct, otherwise
the distance between two vectors would be less than d. Hence |C| < q”’(d’l). This

gives that log,(IC|) <n —d + 1. O
The most natural application of this result is when |C| = ¢*, when we have
k<n-—d+1.

Definition 1.5 A code of length n over an alphabet of size ¢ with |C| = ¢* and
minimum Hamming distance d satisfying k = n — d + 1 is said to be a Maximal
Distance Separable (MDS) code.

Example 1.2 A Latin square is an n by n matrix with entries from a set of cardinality
n such that each row and each column contains each element from the set exactly
once. Two Latin squares L, M are orthogonal if the set {(L;;, M;;)} contains each
ordered pair exactly once. Let L and M be a pair of orthogonal Latin squares of order
q where the symbolsusedare {1, 2, ..., q}.LetC = {(i, j, Lij, M;;) |1 < i, j < q}.
Then |C| = ¢%, n = 4, and the minimum distance is 3. Then 2 = 4 — 3 + 1 and the
code is an MDS code of length 4. It is well known that an orthogonal pair of Latin
squares of order ¢ exist for all integers g > 2, g # 6.

Note that the code in this example is not described algebraically and in fact may
have no algebraic structure. Finding MDS codes is largely a combinatorial problem.
However, as we shall see later in Example 1.6, one can construct some MDS codes
algebraically. Moreover, MDS codes have natural connections to finite geometry and
to many open questions in mathematics. We can now state one of the most interesting
open questions of the text.

Question 1.2 For which ¢, n and k do there exist MDS codes?

It is well known that the existence of a finite projective plane is equivalent to
the existence of a complete set of MOLS (Mutually Orthogonal Latin Squares).
Moreover, a set of MOLS gives an MDS code as in Example 1.2. Therefore, if one
were to solve Question 1.2, one would also determine when finite projective planes
exists and how many MOLS or order n there are for each n. Since these questions, in
themselves, have been open for centuries it becomes apparent how difficult a problem
this is.

Another very important combinatorial bound is the following sphere packing
bound. We denote the binomial number of choosing s objects from n by C(n, s).

Theorem 1.2 (Sphere Packing Bound) Let C be a code of length n over an alphabet
of size q with minimum Hamming distance 2t + 1. Then

[of (Z C(n. s)(q — 1)5) <q". (1.4)

s=0
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Proof Letvbe avectorin A" where A is an alphabet of size g. There are C (n, s)(q —
1)* vectors in A" that have Hamming distance s from v. This is because there are
C(n, s) ways of choosing the s coordinates to change and g — 1 choices for each
coordinate. A sphere of radius ¢ consists of all vectors that are distance less than or
equal to # from the vector v. It follows that there are Z;:o C(n,s)(g — 1)* vectors
in a sphere of radius ¢ around v.

Given that the minimum distance is 2¢ 4+ 1, we have that all of the spheres are
distinct. Hence the number of vectors in all of the spheres must be less than or equal
to the number of vectors in the ambient space which is g". (]

Definition 1.6 If C is a code of length n over an alphabet of size ¢ with minimum
Hamming weight 2¢ + 1 and |C]| (Zi _0C(n,s)(g—1)") = gq", then the code is said
to be perfect.

For a perfect code, the spheres of radius ¢, where the minimum distance is 27 + 1,
contain all of the vectors of the ambient space. In fact, each codeword in the ambient
space is in exactly one such sphere. This is the reason that the code is called perfect.

Example 1.3 Consider the binary code C of length 7 which consists of the all zero
codeword, the all one codeword, the characteristic function vectors of the lines of the
projective plane of order 2, and the characteristic function vectors of the hyperovals
(compliments of lines) of the projective plane of order 2. The code C has length 7,
|C| = 16, and minimum distance 3, givingt = 1. Then |C|(Z§ _oCm,9)g—-1D°) =
16(1 4+ 7) = 27 and hence the code is perfect.

Notice again that this code is described combinatorially, but this also has an alge-
braic description and is a member of a family of perfect codes as seen in Example 1.7.

The proof of the Sphere Packing Theorem shows how codes are used to correct
errors. Specifically, a received vector can be any vector in the space A”. The code-
words are the centers of the spheres. Then the vector is decoded to the center of the
sphere it lies in (provided that it lies in a sphere). This is precisely why it is desired
that the spheres be non-intersecting and cover as much of the ambient space as pos-
sible. While this description is completely combinatorial, in practice the algorithms
for decoding are highly algebraic.

If the minimum Hamming distance of a perfect code is 2¢ + 1, then a vector with
t or fewer errors will remain in the non-overlapping spheres of radius ¢. Moreover,
any vector in such a code must be within distance ¢ from a codeword. This is why
often in the literature a perfect code with minimum distance 2¢ + 1 is called a perfect
t-error correcting code.

We shall now begin to study codes from an algebraic standpoint. As such, we are
looking for alphabets with an algebraic structure. For us, this structure will almost
always be a finite commutative ring. For the remainder of the text, by ring we shall
always mean a ring with unity. We can now make the definition of a linear code over
aring.
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Definition 1.7 Let R be a finite ring. A linear code C over the alphabet R of length
n is a submodule of R".

Notice that we are not saying that any module will be a code, but rather only those
modules which are submodules of R”. If R is a field, then the linear codes are vector
spaces and we have the full force of linear algebra at our disposal. Given the main
problem of coding theory, we are usually searching for optimal codes or codes with
some particular characteristic. As such, we are generally concerned with codes up to
equivalence given by the following definition.

Definition 1.8 Two codes C and C’ in A", where A is any set, are said to be per-
mutation equivalent if C’ can be obtained from C by permutation of the coordinates.
Two codes C and C’ in R", where R is a finite ring, are said to be equivalent if C’
can be obtained from C by a combination of a permutation of the coordinates and
multiplication of a coordinate by a unit in the underlying alphabet.

The second definition requires that the alphabet be a ring so that the notion of unit
is defined. It is immediate that if C is an optimal code, then every code equivalent to
it is also optimal. We shall now show some of the strengths of using linear codes.

Theorem 1.3 If C is a linear code over a ring R, then the minimum Hamming
distance and the minimum Hamming weight are equal.

Proof Let C be a linear code with minimum Hamming distance d; and minimum
Hamming weight d,. Since the code is linear, we have that 0 € C. Let v be acodeword
with minimum Hamming weight d,. Then dy (v, 0) = d,. Hence there are vectors
that are distance d, apart so d; < d.

Now assume that vand w are vectors such thatdy (v, w) = d;. Then wty (v—w) =
d; and we know v — w € C since C is linear. This gives a vector with Hamming
weight d; so d» < d,. Hence, we have that d| = d,. O

Since the minimum distance and minimum weight are the same for linear codes,
they are often both denoted by d. Notice that, as we have just done, the term Hamming
from minimum Hamming distance and minimum Hamming weight is often dropped.
It is usually only used when there is ambiguity about which weight is being used.

For codes over finite fields, we often denote a code C as an [n, k, d] code when
it is linear where n is the length, k is the dimension, and d is the minimum distance.
For non-linear codes, we use the notation (n, M, d) to indicate the same except that
|C| = M. For codes over rings, this notation is not as useful since we do not have
dimension for all rings. While there is a notion of rank, it is not true that two codes
of the same rank have the same cardinality and, as such, it is not always an important
parameter.

One of the most important algebraic tools for codes is the inner-product. In fact,
in many applications, a code is described most naturally as the orthogonal to a code
generated by a specific matrix (usually called the parity check matrix). Moreover,
this matrix is used to determine if a given vector is in the code and also to decode in
many algorithms. We shall define these objects now in our setting.
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Let R be a finite commutative ring. To the ambient space R", we attach the
following Euclidean inner-product:

[v, w] = Zviwi. (1.5)

i=1

We can now define the standard orthogonal with respect to this inner-product,
namely
Ct={v|[v.w]=0, Yw € C}. (1.6)

The code C* is linear whether or not C is linear and if C is not linear then
C+ = (C)*, where (C) denotes the code generated by the vectors of C. It follows
immediately from the definition that for linear codes (C L)L = C and for non-linear
codes (C J-)l = (C). Up to this point, we have not used the commutativity of the
ring. In order to define C L we need the ring to be commutative. If it were not, then
both a left and right orthogonal would need to be defined. Usually, the left and right
orthogonals are not equal and in fact need not be of the same size. When the ring is
commutative, this difficulty disappears and we have a single orthogonal to a given
inner-product.

Example 1.4 Let C = (p) be the code of length 1 over Z,,, where p and g are
primes. Then C+ = (g). Here, ideals of the ring can be thought of as linear codes
and their annihilator as the dual code.

Example 1.5 The code over any ring given by C = ((1, 1,1, ..., 1)) is known as
the repetition code. This elementary code was actually used in early NASA missions
to correct errors in transmissions. If the ring is F» then C* consists of all vectors
with evenly many ones. This code is known as the even code E, of length n.

For some rings and applications, it is preferable to have a Hermitian inner-product
using an involution on the ring. In this case, we define the following inner-product:

v, Wl = D vy, (1.7)

i=1

where w; indicates the involution applied to the element w;.
For this inner-product we define the orthogonal as

CHl ={v|[v,wly =0, VYw € C}. (1.8)

As before, C* is linear whether or not C is linear.

For codes over finite fields, it follows from elementary linear algebra that dim (C)+
dim(C1) = n and that dim(C) + dim(C*) = n. These results will be generalized
later in Chap. 3.

We can now give examples of MDS and perfect codes that are linear.
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Example 1.6 Leta; denote n distinct elements of the finite field of order g, IF,. Then
let

1 1 1 ... 1
a a aj dy
2 2 2 2
H=| 4@ 4 a3 ... a; | (1.9)
d=2 d-2 _d-2 d-2
al a2 a3 e an

This matrix is a Vandermonde matrix and has a non-zero determinant. Hence the d — 1
rows of H are linearly independent and any d — 1 columns are linearly independent.

Let Dy be the code consisting of the rows of H. Define the code C to be C =
(Dy)*. Then C has length n, |C| = ¢"~“~V, and has minimum distance d. Then
we have thatn —k+1 =n— (n — (d — 1)) + 1 = d. Therefore, the code is a
linear code which meets the Singleton bound. This gives an infinite family of MDS
codes. These codes are known as Reed-Solomon codes and have been widely used
in applications, not only because they are optimal, but because there are efficient
decoding algorithms associated with them.

Example 1.7 Let H, , be ther by Z;T_ll matrix over I, formed by writing the columns
as all possible non-zero length r vectors over I, and deleting any that are a scalar
multiple of a previous vector. This gives that any two columns are linearly indepen-
dent. Let C,, = (H,,)*. Then C,, has dimension zz’%ll —r and length n = %.
The sphere packing bound gives that the minimum distance is at most 3, an(i{ the
fact that any two columns of H, , are linearly independent, gives that the mini-

mum distance is at least 3. Hence + = 1. Then |Cq,,|(z_’Y=0 C(n,s)(qg — 1% =

qqqf'l_’(l + ‘f;%ll(q —-1) = qqﬁl = g". Therefore the code C, , is a perfect code.
The family of codes C, , are the well known Hamming codes. If » = 3 and g = 2,
then it is the perfect code given in Example 1.3 constructed from the finite projective
plane of order 2.

Other examples of perfect codes are the [23, 12, 7] binary Golay code and the
[11, 6, 5] ternary Golay code. The codes were first described in [8].

Notice that the [7, 4, 3] perfect code is not an MDS code as 7 —4 + 1 = 4 # 3.
While any code meeting one of the bounds must be optimal, it does not imply that it
will meet the other bound.

Notice that in the examples of linear codes given so far, we have described the
code not by giving a generator matrix, but rather by giving the generator matrix of
the orthogonal, that is by giving the parity check matrix.

Example 1.8 The ten digit ISBN number for books used a code over ;. The accept-
able codewords of length 10 satisfied le i 1ic; = 0. Hence the code of acceptable
ISBN numbers was C = ((1,2,3,4,5,6,7,8,9, 10))*. This code was chosen so
that it could detect a single error and any double error caused by the transposition of
two numbers, these being the most common errors in entering a sequence of numbers.
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For codes over a finite field, it is an easy theorem from linear algebra that any code
of length n and dimension k is permutation equivalent to a code that has a generator
matrix of the form (/; | A,—,), where I; is the k by k identity matrix, and A is a
matrix with k£ rows and n — k columns. It is immediate that if C has such a generator
matrix, then C* has a generator matrix of the form (—AZ _, | In—). This simple fact
has a very nice consequence.

Theorem 1.4 If C is a linear MDS code over a field F,, then C* is an MDS code.

Proof The code C is MDS if and only if its parity check matrix (—AI | I,_;) has
the property that every square submatrix is non-singular. This is because any n — k
columns are linearly independent and so the minimum distance of the code must
be at least n — k 4 1 which implies it is MDS. If the matrix has this property, then
(I | A,—,), which is the parity check matrix of C*, has this property, and so C* is

an MDS code as well.

For codes over rings, you cannot always assume that you have a generator matrix
of the form (i | A,—,). For example, the code over Z4, generated by the matrix

101
010, (1.10)
002

has cardinality 32, which is not a power of 4 and hence cannot have a generator
matrix of the form (I; | A,_,).

In general, the question of a standard form for a generator matrix is more com-
plicated and will be studied in Sect.2.4.

References

1. Assmus, E.E, Key, J.D.: Designs and their Codes, Cambridge Tracts in Mathematics, 103.
Cambridge University Press, Cambridge (1992)

2. Bannai, E., Dougherty, S.T., Harada, M., Oura, M.: Type II codes, even unimodular lattices,
and invariant rings. IEEE Trans. Inf. Theory 45(4), 1194-1205 (1999)

3. Blake, L.LE.: Codes over certain rings. Inf. Control 20, 396-404 (1972)

4. Blake, L.F.: Codes over integer residue rings. Inf. Control 29(4), 295-300 (1975)

5. Calderbank, A.R., Sloane, N.J.A.: Modular and p-adic cyclic codes. Des. Codes Cryptogr.
6(1), 21-35 (1995)

6. Delsarte, P.: An algebraic approach to the association schemes of coding theory. Philips Res.
Rep. Suppl. 10 (1973)

7. Dougherty, S.T., Park, Y.H.: Codes over the p-adic integers. Des. Codes Cryptogr. 39(1), 65-80
(2006)

8. Golay, M.J.E.: Notes on digital coding. Proc. IRE 37, 657 (1949)

9. Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29, 147-160
(1950)

10. Hammons, A.R., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., Solé, P.: The Z4-linearity of

kerdock, preparata, goethals and related codes. IEEE Trans. Inf. Theory 40, 301-319 (1994)



References 11

11.

12.
13.
14.

15.
16.

Hammons, A.R., Kumar, P.V., Calderbank, A.R., Sloane, N.J.A., Solé, P.: On the apparent
duality of the Kerdock and Preparata codes. Applied algebra, algebraic algorithms and error-
correcting codes (San Juan, PR, 1993). Lecture Notes in Computer Science, vol. 673, pp. 13-24.
Springer, Berlin (1993)

Huffman, W.C., Pless, V.S.: Fundamentals of Error-Correcting Codes. Cambridge University
Press, Cambridge (2003)

MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes, Amsterdam. North-
Holland, The Netherlands (1977)

Shannon, C.E.: A mathematical theory of communication. Bell Syst. Techn. J. 27 (1948)
Singleton, R.C.: Maximum distance g-nary codes. IEEE Trans. Inf. Theory 10, 116-118 (1964)
Wood, J.: Duality for modules over finite rings and applications to coding theory. Amer. J.
Math. 121(3), 555-575 (1999)



Chapter 2
Ring Theory

In this chapter, we shall give the necessary definitions and foundational results from
commutative ring theory for the study of codes over rings.

2.1 Finite Commutative Rings

Rings are one of the fundamental objects of abstract algebra. They have numerous
applications in number theory, cryptography, and many other branches of mathemat-
ics. For a complete description of ring theory see [12, 14?, 15], and for a description
of commutative algebra, see [1].

We shall assume throughout this text that a ring has a multiplicative identity and
that the multiplication is commutative. We begin with some standard definitions.

Let R be a finite commutative ring. An ideal a of R is an additive subgroup of R
such that ra C a for all » € R. We note that, in terms of algebraic coding theory, an
ideal of R is a code of length 1. An ideal m is maximal if m is not properly contained
in any non-trivial ideal.

Let a be an ideal of a finite commutative ring. The chain a D a> D> a® D> ...
necessarily stabilizes. We call the smallest # > 1 such that a' = a'ti for i > 0 the
index of stability of a. If a is nilpotent, then the smallest # > 1 such that a’ = {0} is
called the index of nilpotency of a. In this case, it coincides with the index of stability
of a.

Definition 2.1 A ring is a local ring if it has a unique maximal ideal.

Local rings play an important role in coding theory because we often describe
rings as the product of local rings via the Chinese Remainder Theorem and reduce
much of the theory of codes to the case where the ring is local.

© The Author(s) 2017 13
S.T. Dougherty, Algebraic Coding Theory Over Finite Commutative Rings,
SpringerBriefs in Mathematics, DOI 10.1007/978-3-319-59806-2_2



14 2 Ring Theory

Example 2.1 Let R =TF,[x, y]/(x?, y*, xy — yx). The ring R is a local ring and
has cardinality 16. The maximal ideal is (x, y). This ring has been widely studied in
algebraic coding theory as the ring R, see [9].

Definition 2.2 A principal ideal ring is a ring in which each ideal is generated by a
single element, that is every ideal a can be written as a = (a) for some element a.

It is well known that Z; is a principal ideal ring for all k > 1. This family of rings
is one of the principal families of rings which are most studied in algebraic coding
theory. In fact, they were the first rings which were not fields to be used as alphabets
in coding theory, see [2, 3].

Definition 2.3 A chain ring is a principal ideal ring such that the ideals are linearly
ordered by set theoretic containment.

It follows that if R is a finite chain ring then there is an element ~ such that
generates the unique maximal ideal and we have the following chain:

OcrhHchH®c---C(ncR. (2.1)

Example 2.2 The ring Z,. where p is a prime and e > 0 is a chain ring. Here the
maximal ideal is {p). A Galois ring is a ring of the form Z ,¢[x]/(g (x)) where g (x)
is irreducible over Zp.. Galois rings are also chain rings and the maximal ideal is
again (p).

Let e be the index of nilpotency of the maximal ideal (vy) of a finite commutative
chain ring R. It is shown on page 340 of [15] that for every element a of a chain ring
R, we have that there exists a unique integer i with 1 <i < e — 1 suchthata = u’yi,
with p a unit.

It follows that a chain ring is necessarily a local ring, but a local ring need not be
a chain ring, as in the following example.

Example 2.3 Let R = Z4[x]/(x?). Then R is a ring of order 16 with maximal ideal
(2,x) ={0, x,2x,3x,2,2+ x,2 + 2x, 2 + 3x}. Buttheideals (2) = {0, 2, 2x, 2 +
2x} and (x) = {0, x, 2x, 3x} are not linearly ordered.

Let R be acommutative chain ring with maximal ideal (-y) with index of nilpotency
e. We know that R/() is isomorphic to a finite field . It is well known that
|(y/)| = |Fr|*~/ for 0 < j < e — 1.1t follows that

IR| = |Fpr [|(7)| = [Fpr|IFpr |°7" = p. (2.2)

We give the next definition in terms of commutative rings. This definition would
be slightly changed in the case of non-commutative rings. For a complete description
of the Jacobson radical and socle in their general usage see [12? ].

Definition 2.4 Let R be a commutative ring. Then the Jacobson radical J(R) of a
ring R can be characterized as the intersection of all maximal ideals.
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In any ring, commutative or non-commutative, the Jacobson radical is a two sided
ideal. In a local commutative ring, the Jacobson radical is necessarily the unique
maximal ideal.

Definition 2.5 The nilradical of a commutative ring R consists of the nilpotent
elements of the ring.

As we shall prove later, for finite commutative rings, the Jacobson radical and the
nilpotent radical coincide. Like the definition of the Jacobson radical, the following
definition of the socle of the ring would change slightly for rings in general.

Definition 2.6 Let R be a commutative ring. The socle of a ring R, Soc(R), is
defined as the sum of all the minimal ideals of the ring.

2.2 Frobenius Rings

For algebraic coding theory, the most important class of rings is the class of Frobenius
rings. This is because both MacWilliams theorems apply for Frobenius rings, but, in
general, they do not extend to larger families of rings, see Theorems 2.5 and 3.2. In
essence what this means is that for codes over this class of rings we have many of the
techniques and ideas that fuel classical coding theory over fields. In spaces where
these two theorems do not hold, things act in a very different way than classical
coding theory and we lose much of the power of the theory. Perhaps one of the most
significant implications of this is that for a code C over a Frobenius ring R of length
n, we have that |C||C*| = |R"|. This is not necessarily true when the ring is not
Frobenius. These results were first introduced in [17, 18].

In this section, we shall give a very brief explanation of Frobenius rings. Our expla-
nation is based on Nakayama’s definition. However, we shall not discuss Frobenius
rings in their broadest generality, but rather reduce definitions to their finite commu-
tative case. For example, one would generally begin the discussion with left (right)
Artinian rings, namely those that do not contain an infinite descending chain of left
(right) ideals. Since we only consider finite rings, all of these rings are Artinian
and we need not consider ideals as being left or right, since all ideals are two sided
ideals in a commutative ring. When we want to stress that something is a module
or an ideal in a ring, we shall use the notation as a left module or ideal. For a more
general description of Frobenius rings as applied to coding theory, including the
non-commutative case, see [5].

Recall that a module M is irreducible if it contains no non-trivial submodule and
a module M is indecomposable if it has no non-trivial direct summands. We note
that every irreducible module is indecomposable, but not the converse.

Any Artinian ring, as a module over itself, admits a finite direct sum decomposi-
tion, namely:

rRR = Rel,l D... Rel,p] DS---D Ren,l DS---D Ren,ﬂ,,,v (23)
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where the ¢; ; are primitive orthogonal idempotents with 1 = > ¢; ;. This decom-
position is known as the principal decomposition of the module of R over itself.

We index the Re; ; so that Re; ; is isomorphic to Rey ; if and only if i = k. Then
we set e; = e; ] and we write gk R = @, Re;.

We can extend the definition of socle and radical of a ring to a module in a natural
way. That is, the socle of a module M is the sum of the simple (i.e. contains no non-
zero submodules) submodules of M and the radical of a module M is the intersection
of all maximal submodules of M. Then the module Re; ; has a unique maximal
submodule Rad(R)e; ; = Re; j N Rad(R) and a unique irreducible top quotient
T(Re; j) = Re; j/Rad(R)e; ;. The socle S(R, ;) is the submodule generated by
the irreducible submodules of Re; ;.

We can now proceed to the standard definition. Let the module of R over itself be
decomposed as follows: g R = @, Re;. Then, an Artinian ring R is quasi-Frobenius

if there exists a permutation o of {1, 2, ..., n}, such that

T (Re;) = S(Reg(i)) 2.4)
and

S(R@i) = T(Re(,(i)). (25)

Then the ring is Frobenius if 11,y = 1 as well.

A module M over a ring R is injective if, for every pair of R-modules B; C B,
and every R-linear mapping f : By — M, the mapping f extends to an R-linear
mapping f : B, — M.

The proof of the following can be found in Theorem 1.2 and Remark 1.3 of [17].

Theorem 2.1 Let R be a finite commutative ring, then the following conditions are
equivalent:

e The ring R is Frobenius;

e the R-module R is injective.

e If R is afinite local ring with maximal ideal m and residue field Kk, these conditions
are equivalent with dimgAnn(m) = 1.

Example 2.4 Consider the ring R = Fy[x, y]/(x?, y?, xy). We have that |R| =
8 and R has a maximal ideal m = {0, x, y, x + y}. Notice that m = m=*. Then
dimg Ann(m) = 2 which violates the last condition in Theorem 2.1. Hence R is
not Frobenius. In this case, we have that [m||m*| # |R|. In a Frobenius ring this is
not possible.

Throughout this text, we view characters as homomorphisms x : M — C* rather
than maps into Q/Z. For a module M, let M denote the character module of M.
One of the most important aspects of Frobenius rings in terms of algebraic coding
theory is the characterization of their character module. The following theorem can
be found in [17]. It characterizes Frobenius rings in terms of the character module.
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Theorem 2.2 Suppose R is a finite ring. The following are equivalent:

e The ring R is Frobenius.
e Asa left module, R = gR.
e As aright module R = Rp.

Note that the result is more complex in terms of non-commutative rings since we
must be concerned with whether the module is a left or a right module.

Let R be a Frobenius ring. Let ¢ : R — R be the module isomorphism. Then set
x = ¢(1) sothat p(r) = x” forr € R. We call this character x a generating character
for R.

The following is an immediate consequence.

Theorem 2.3 The finite commutative ring R is Frobenius if and only if R has a
generating character.

Example 2.5 Consider the finite field F,, where p is a prime. Let £ be a | complex
primitive p-th root of unity. Then x(a) = £“ is a generating character for IF,.

The generating character for a Frobenius ring R is not necessarily unique. In fact,
we have the following theorem, which is Lemma 4.1 in [17], where it is stated in
broader generality for the non-commutative case as well.

Theorem 2.4 Let x be a character of a finite commutative ring R. Then x is a
generating character if and only if ker (x) contains no nonzero ideals of R.

Example 2.6 Consider the finite field F4 where the elements are written as a + bw
for a, b € . Then the character x; : F4 — C defined by x;(a + bw) = (—1ath
is a generating character for 4. Additionally, the chg\racter x2 : Fy — C defined
by x2(a + bw) = (—1)? is a generating character for [F4. Their respective character
tables are given by the following, where the value for row « and column 3 is x; (a3).

xi |01 wildw x2 01 wil4w
0 [1 1 1 1 0 [11 1 1
1 [1-1-1 1 {11 -1 —1
w [1-11 -1 w [1-1-1 1
l+wll 1T =1 —1 l+w/l-11 -1

The tables described in the previous example are very important in terms of coding
theory since they will be used to produce MacWilliams relations for codes over rings.
See Chap. 3 for a full description.

The final characterization of Frobenius rings that we shall give is the following
extension of MacWilliams’ first theorem, which she had proven for finite fields. It
was extended in [17] to the following theorem. In [? ], it was shown that this theorem
does not extend to quasi-Frobenius rings. We state the theorem here without proof.
A detailed proof can be found in [17].
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Theorem 2.5 (MacWilliams Theorem) (A) If R is a finite Frobenius ring and C is
a linear code over R, then every Hamming isometry C — R" can be extended to a
monomial transformation.

(B) If a finite commutative ring R satisfies that all of its Hamming isometries
between linear codes allow for monomial extensions, then R is a Frobenius ring.

This theorem, along with the MacWilliams relations in Chap. 3, explain why we
use Frobenius rings as the alphabets for codes. Specifically, we want both of these
theorems to be true in order to apply the most powerful results of algebraic coding
theory to codes over rings.

2.3 Chinese Remainder Theorem

The most powerful tool for codes over commutative rings is the classical Chinese
Remainder Theorem, which we now describe. For a full description of the approach
to the Chinese Remainder Theorem see [14].

Definition 2.7 Two ideals a and b of a ring R are said to be relatively prime if
a+b=R.

Occasionally, the term coprime is used instead of relatively prime for ideals sat-
isfying this definition.

Lemma 2.1 If a and b are relatively prime ideals of a commutative ring R, then
ab=anb.

Proof Ttisimmediate thatab CaNb.Ifa+ b= R,thenaNb=(aNb)R=(aN
b)(a + b) C ab. Therefore ab =aNb. O

Lemma 2.2 Let a, b and ¢ be ideals of a commutative ring R that are relatively
prime in pairs. Then a is relatively prime to be.

Proof We have that R = (a + b)(a + ¢) € a + bc. Therefore a + bc = R and a and
bc are relatively prime. O

Apply Lemmas 2.1 and 2.2 inductively and we have the following.

Lemma 2.3 Let ay, ay, ..., a, be ideals of a commutative ring R that are relatively
prime in pairs. Then aja; ...ag =a; Nay N---Nd.

Next we can use this to produce an isomorphism lemma.

Lemma 2.4 Let a and b be relatively prime ideals of a commutative ring R. Then
R/ab = R/a x R/b.

Proof Definethemap¥ : R — (R/a x R/b)by¥(x) = (x (mod a),x (mod b)).
We have ker () = a N b = ab, which gives that R/ab = R/a x R/b. ]
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Computationally we have the following. Since a 4+ b = R, there exists an o € a
anda g € bwith a4+ 3 = 1. Then ¥ (ca + df) = (d, c). Specifically, ¥ is surjec-
tive and we can compute the preimage in a straightforward computation. Applying
induction to Lemma 2.4 we have the following.

Lemma 2.5 Letay, ay, ..., a, beideals of a commutative ring R which are relatively
prime in pairs. Then

R/ajar...a;, = R/a; x R/a; x --- X R/ay. (2.6)

Let R be a finite commutative ring, with a an ideal of R. Let ¥, be the canonical
homomorphism ¥, : R — R/a, given by ¥ (x) = x + a.

Let my, ..., m; be the maximal ideals of a finite commutative ring R and let
e, ..., es be their respective indices of stability. The ideals mf‘, ..., my are rela-
tively prime in pairs and [[}_, m{" = N*_ m{" = {0}.

This leads us to the following well known theorem.

Theorem 2.6 (Chinese Remainder Theorem) Let R be a finite commutative ring,

with maximal ideals my, ..., m; where the index of stability of wm; is e;. Then the
map ¥ : R — [[i_; R/m{", defined by ¥ (x) = (x + m{', ..., x + m"), is a ring
isomorphism.

Proof We have that the m® are relatively prime in pairs and N!_;m;" = {0}. Then by
Lemma 2.5 we have that R = R/0 = R/m{" x R/m3* x --- x R/m*. This gives
the result. O

Let R; denote the local ring R/m;". The previous theorem gives that
R=Ry X Ry x--- X R;. 2.7)

We note that R is Frobenius if and only if each R; is Frobenius. See Remark 1.3 in
[17] for an explanation.

We denote the inverse isomorphism of ¥ by CRT, so that CRT : Ry X Ry X
-++ X Ry — R.

Example 2.7 Let [[;_, p;" be the prime factorization of a positive natural number
n. Then by Theorem 2.6 we have that Z, = Zp‘]’] X Zp;z X +++ X Zyes. This is the
classical application of the Chinese Remainder Theorem and is where the name
originates. Namely, it allows for the unique solution modulo [] n; of the system of
equations x = a; (mod n;) when the n; are relatively prime in pairs.

By an abuse of notation, we extend both ¥ and C RT to the n fold product of their
domains.

If C; is a code over R;, we let C = CRT(Cy, C,, ..., Cy) be the code over R
formed by this extended isomorphism. It is immediate that any code C over R is the
image of a some collection of codes Cy, C», ..., C; where C; is a code over R;.

The rank of a code, rank(C), is the minimum number of generators of C. A code
is said to be free if it is a free submodule over R. The following appears in [7].
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Corollary 2.1 Let R; be finite commutative rings and let
R =CRT(Ry, Ry, ..., Ry).

Let C; be a code over R; with C = CRT(Cy, C,, ..., Cy). Then
o [Cl =TI, ICil;

e rank(C) = max{rank(C;),i =1,...,s},

e C is free if and only if C; is free for all i each of the same rank.

Proof The first statement follows immediately from the fact that CRT is a bijection.
To prove the second, let 7; be the rank of C; and v’i , vé, e, vil be a set of generators
for C;. Let r be the maximum value for r;. Pad this set with zero vectors so that each
generator set has r elements. Then

{CRT(V},v3,...,V})),CRT (V) v2,....¥3),...,CRT(v\,v?, ..., v%)}

generates the code C. We need r vectors since there exists an i where r; =r. It
follows from this construction that the code C is free if and only if ; = r for each i
and each code C; is free. U

The following is a well known application of the Chinese Remainder Theorem.

Theorem 2.7 Let R = CRT (Ry, Ra, ..., Ry) be afinite commutative ring. Let C =
CRT(Cy, C,, ..., C,) beacode over R. Then

Ct = CRT(C{, Cs, ..., Ch). (2.8)

Proof Consider vectors v,w € R". Then ¥,(> viw;) = > Wa(v;) D Ya(w;).
Hence, when [v, w] = 0, we have that [¥,(v), ¥,(w)] = 0. Then the standard car-
dinality argument gives equality. (I

A similar proof gives the following theorem.

Theorem 2.8 Let R = CRT (R, Ra, ..., Ry) be a finite commutative ring. Let
C =CRT(Cy,Cy,...,Cy) be a code over R. If a = a and W, (V) = W, (V), where
the involution applies first in the ring R and then in the ring R/a, then CH =
CRT(CH,cH,....CH).

We can also find the minimum weight of a code in terms of its components via
the Chinese Remainder Theorem as in the following theorem.

Theorem 2.9 Let R = CRT (Ry, Ra, ..., Ry) be afinite commutative ring. Let C =
CRT(Cy, Cy,...,Cy) be acode over R. Then d(C) = min{d(C;)}.
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Proof Letd; be the minimum of {d(C;)}. Then, there exists j with d(C;) = d;. Let
v; be a minimum weight vector in C;, then

CRT(0,0,....0,v;,0,....0)

has Hamming weight d; which gives d(C) < d;. Then let v be a minimum weight
vector in C. Its projection ¥, (v) has weight less than or equal to d(C) which gives
d(C) > d,. Therefore, d; = d(C), and we have the result. [l

Recall that an ideal a is prime if ab € a implies either a € a of b € a. In a finite
ring, prime ideals and maximal ideals coincide since finite division rings are fields.
Therefore the nilradical and the Jacobson radical coincide. Moreover, since the ring
is finite, the nilradical is nilpotent. This is because you can simply take the maximum
nilpotency exponent of all nilpotent elements and apply this to the ideal.

Theorem 2.10 Let R be a finite commutative ring. Then R is isomorphic, via the
Chinese Remainder Theorem, to a direct product of local rings.

Proof Let my, my, ..., m; be the maximal ideals of R. Then the Jacobson radical
J(R)y=mNmyN---Nm; =mym,...m,; by Lemma 2.3. Since J (R) is nilpotent
we have that there exists k with (J(R)*) = {0}. This gives that (m;m, ... my)* =
m’f mé ...m* = {0}. We know thatm; and m j arerelatively prime fori # j. Then their
powers are also relatively prime by Lemma 2.2. This allows us to invoke the Chinese
Remainder Theorem, which gives us that R is isomorphic to R/m% x R/mf x ... x
R/ m’;. (Notice that k is greater than or equal to the individual index of stabilities of
the maximal ideals so that m¥ = m{".) It only remains to show that R/m¥ is local. A
maximal ideal in R/ mi.‘ corresponds to a maximal ideal a of R withm; C asince a is
necessarily a prime ideal. Then since m; is maximal, we have that a = m;. Therefore,
the unique maximal ideal of R/m; is m; /mf. O

Theorem 2.11 A finite commutative ring R is a principal ideal ring if and only if
R = CRT(Ry, Ry, ..., Ry) where R; is a chain ring for all i.

Proof Assume R = R; X R, x --- x Ry and each R; is a chain ring. Chain rings
are necessarily principal ideal rings. If a; is an ideal of R; with a; = (a;) then
the ideal a; X a; X --- X @y in Ry X Ry X --- X Ry is principal and generated by
(a1, an, ..., ay). Hence R is principal.

Assume R is principal. Then any ideal in Ry x R X --- X Ry is principal and
hence each R; is principal. By Theorem 2.10 we have that each R; is local. Therefore
R; is a principal ideal ring which is local and hence a chain ring. (]

The standard example of this theorem is the example given in Example?2.7.
Nam§ly, Zy, % Zpi'l X 7 p2 X e X Z s . Here Zy, is a principal ideal ring and each
Z,¢ is a chain ring.
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Example 2.8 For integers k > 1, define the family of rings A; to be Ay = Fr[vy,
Vo, ..., vk]/(vi2 —v;, v;v; — v;v;). Theideal (wy, wo, ..., wi), where w; € {v;, 1 +
v;}, 1s a maximal ideal of cardinality 22~ We denote these maximal ideals by m;.
We note that here are 2% such ideals and that m{ =m; for all i and e > 1. It is
elementary to see that the direct sum of any two of these ideals is Aj. Then, using
the Chinese Remainder Theorem, we have that the ring Ay is isomorphic to F%k. As
such, the ring Ay is a principal ideal ring and is isomorphic to the direct product of
chain rings. Codes over these rings were studied in [4].

2.4 Generators

One of the most important tools in coding theory is finding a generator matrix for a
code. In general, we do not only want a matrix whose rows generate the code, but we
want a matrix that generates the code with the minimum number of rows. For codes
over fields, we have a simple determination of a minimal generating set. Namely, a
setof vectors vy, vz, ..., v, is linearly independent if > ;v; = 0 implies o; = 0 for
all i. This standard definition and its implications from linear algebra gives that any
code over a finite field is equivalent to a code that has a minimal generating matrix
of the form (I; | A) where [ is the k by k identity matrix. For codes over rings this
is not always possible. For example, the code of length 1 over Z, generated by 2 is
the code {0, 2}. This code has no such matrix. Moreover, the minimality of a set of
generators can also be quite different. For example, consider the code C over Zg of
length 2 generated by the following matrix:

20

03)°
Here we have that |C| = 6 and it may appear that this generating set is minimal,
however, the vector (2, 3) also generates the code which shows that the original
set of generators was not minimal. In this section, we shall describe the theory for

minimal generating sets for codes over rings. Much of this material was first presented
in [8, 16].

Definition 2.8 Let R be a finite local commutative Frobenius ring with unique max-
imal ideal m, and let vy, v,, ..., v, be vectors in R". Then vy, va, ..., vV, are modular
independent if and only if > a;v; = 0 implies that ov; € m for all j.

A finite field is a local ring with maximal ideal {0}, so this definition is a nat-
ural generalization of linear independence. As an example for a code over a ring,
consider the generators (2, 0), (0, 4) over the local ring Zg. These vectors are mod-
ular independent since any linear combination summing to the zero vector implies
that the coefficients are in the maximal ideal (2). The following lemma is a natural
generalization for one of the primary implications of linear independence.
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Lemma 2.6 Let R be a finite local commutative Frobenius ring and let
Vi,V2,...,Vs € R" Thenvy, vy, ...,V are modular dependent if and only if some
v; can be written as a linear combination of the other vectors.

Proof Assume that the vectors vy, vy, ..., v, are modular dependent. This implies
that there exists «; with D a;v; = 0 and there exists «; such that a; ¢ m. We have
that m must contain all non-units giving that «; is a unit. Then we have that

Tapvi 4+ (_Oé;loéj—l)vj—l +

Vj = (—Oéj

—1 —1
(_04]‘ aj+1)vj+1 +- 4+ (_aj as)vs-

To prove the other direction, assume that v; can be written as a linear combination
of the other vectors. Then v; = Z‘;#j o;v;. Then we have that Zf# a;vi —v; =0.
The coefficient —1 is a unit in R and this implies that v|, v, ..., v are modular
dependent. (]

In terms of finite local commutative Frobenius rings, this result is enough to
determine minimal generating sets. Namely, we need a set of modular independent
vectors. For chain rings, we can say more. Since the ideals are in a chain we can
apply the previous lemma and the standard techniques of linear algebra (that is row
reduction done over a chain ring) to obtain the following result.

Theorem 2.12 Let R be a finite chain ring with maximal ideal () and let C be
a code over R. Then there exists a generator matrix for a code C over R that is
permutation equivalent to the following:

Ik() AO,I AO,Q Apz - . Ag.
0 vl vA12 A3 -0 -e YAl
0 0 ’yzlkz 72A2,3 e e ’72A2,e
.o 0 : , (2.9)
0 0 0 A (] ’ye’llkefl vg’lAe_l,e

where the A; ; are arbitrary matrices with elements from the ring R and Iy, is the k;
by k; identity matrix.

A code with generator matrix of this form is said to have type {ko, k1, ..., k.—1}.
The following is an immediate consequence of Theorem 2.12.

Corollary 2.2 Let R be a finite chain ring with maximal ideal (7). Let C be a code
over R of type {ko, k1, ..., ke—1}. Then,

IC| = |R/ ()| Zi=o ek, (2.10)
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For a code over a finite chain ring the type plays the role that the dimension plays
for codes over a field. This is because two codes with the same type will have the
same cardinality. This is not true for two codes with the same rank as a module over
the ring.

We now expand this theory to cover any finite commutative Frobenius ring.

Definition 2.9 Let R be a finite commutative Frobenius ring with
R =CRT(W(R), ¥>2(R), ..., ¥(R)) = (Ri, Ry, ..., Ry).

The vectors vy, ---, v, in R" are modular independent if ¥;(vy), --- , ¥;(vy) are
modular independent for some i, with 1 <i <.

Note that we are only requiring that their image under ¥; be modular independent
over one local ring. They need not be modular independent for all i.

Theorem 2.13 Let R be a finite commutative Frobenius ring and let vy, - - - , Vi be
vectors that are modular independent over R. If )" ajv; = 0, then «; is not a unit
forall j.

Proof Let R = CRT (¥ (R), ¥>(R), ..., ¥;(R)) and let i be the index such that
;(vy), - -+, ¥ (V) are modular independent over the local ring R;. Then D" a;v; =
0 implies that >~ ¥;(a;)¥;(v;) = 0, and hence we have that ¥; (a;) € m; where m;
is the maximal ideal of R;.

If o; were a unit in R then there would exista 8 € R with ;3 = 1, which gives
that ¥; (a;))¥;(8) = 1. This would imply that ¥; («;) is a unit in R;, which would be
a contradiction. Therefore, we have that ¥; («¢;) is not a unit for all j. U

The converse of this theorem is not true. For example, consider the vectors (5, 5)
and (7, 7) over Zss. If a1(5,5) + ax(7,7) = (0, 0), then «; and a, must be non-
units. However, these vectors are not modular independent over Zss, since their
images under ¥ and ¥, are not modular independent over Zs or Z;.

Because we do not have the biconditional yet, we need something else in the case
when the ring is not local.

Definition 2.10 Let R be a finite commutative Frobenius ring. Let vy, --- , v be
non-zero vectors in R". Then vy, - -- , v; are independent if >_ « ;v; = 0 implies
that ojv; = 0 for all ;.

Note that we are saying something different than the coefficient is zero. We are
saying that the vector a;v; = 0. Again, for a code over a field, this would imply that
the coefficient is O since we have no zero divisors. This definition would then reduce
to the standard definition for linear independence for vectors over a field.

Theorem 2.14 Let R be a finite commutative Frobenius ring with vy, - - - , Vi vectors
over R. If vy, - -+ , Vi are independent and aw ¢ (v, --- , Vi), for all o # 0, then
the vectors vy, - - - , Vi, W are independent.
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Proof If 3" a;jv; + fw =0, then > a;v; = —(3w, which is a contradiction since
then — 3w would be in the span of the v;, unless 3 = 0.If 3 = 0 then >_ «;v; =0,
and then o;v; = 0 for all j since vy, - - - , v, are independent. Therefore, we have
that the vectors vy, - - - , Vi, W are independent. O

Following Definition 2.10, we can easily get the following theorem.

Theorem 2.15 Let R be a finite commutative Frobenius ring with
R =CRT(W(R), ¥2(R), ..., ¥(R)) = (R1, Ry, ..., Ry).

Let vi,Va, ...,V be independent non-zero vectors in R". Then these vectors are
modular independent.

Proof If > a;v; =0, then a;v; = 0 for all j. Let m be the maximal ideal of R. If
aj ¢ m for some j, then o; is a unit. This implies that v; = 0. O

We are now in a position to give the definition that we use to replace the notion
of linear independence for codes over rings.

Definition 2.11 Let C be a code over a finite commutative Frobenius ring R. The
codewords vy, v, - -+ , v; are called a basis of C if they are independent, modular
independent, and generate C.

We can show, by the example given in [8], that modular independence does not
imply independence nor does independence imply modular independence. Let (11, 7)
and (3, 9) be vectors over Zj,. Then (11, 7) and (3, 9) map to (3, 3) and (3, 1) over
Z4 which are modular independent. Hence the vectors (11, 7) and (3, 9) are modu-
lar independent. But 6(11, 7) +2(3,9) = (0, 0), and 6(11,7) = (6,6) = 2(3,9) #
(0, 0). Therefore they are not independent. It is easy to see that (4, 0) and (0, 3) are
independent vectors over Z,. However, (4, 0) and (0, 3) map to (0, 0) and (0, 3) over
Z4 and map to (1, 0) and (0, 0) over Z3. Therefore, they are not modular independent.

Returning to the example which began this section, we consider the vectors (2, 0)
and (0, 3) over Zg. These vectors are independent, but they are not modular inde-
pendent. Hence they do not form a basis. However, the vector (2, 3) is both modular
independent and independent over Zg. Hence this single vector is the basis for this
code of length 2.

We shall now show a specific case for generating free Maximum Distance Sep-
arable codes over chain rings. These ideas can be found originally in [6] and then
later in more generality in [7]. Let R be a finite chain ring with the maximal ideal
m = R~ whose nilpotency index is e. This gives that |R/m| = g = p°, where p is
a prime and s is a positive integer. Let M = {w € R" | | (w) | < |R|}. That is, M
consists of vectors in R” that have no coordinate with a unit in it. Since we are in a
chain ring, we have that each coordinate of w € M is a multiple of . This gives that

M=R". @2.11)
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We take the standard definition of linear independence. Namely, the vectors

Vi,+-+,V, € R" are linearly independent if >_ a;v; = 0 implies ¢; = 0 for all ;.
Lemma 2.7 Suppose that vi,---,v,_; € R" are linearly independent. If v, ¢
(Vi, -+, Vi1, M), then vy, --- ,V,_1, V; are linearly independent.
Proof Assume Z;zl «;v; = 0. If o, =0, then since vy, ---v,_; € R" are linearly
independent, we have that a; = 0 for all i and we have the desired result.

Next assume that «, is a unit. This gives that v, € (v|, v, ..., v,_1) which is a
contradiction.

Finally, assume that o, # 0 and that «, is not a unit. Then o, = 37/ for some unit
3 and positive integer j. Then we have —37/v, = Zi;} «;v;. Multiply both sides

by v~/. Then we have 0 = Zf;i ~v¢~J;v;. We know that vy, - - - , v,_; are linearly
independent, which gives that v~/ a; = 0 foralli. This implies that o;; € (y/), which
gives that Zf‘:] a;V; € M. This contradicts the assumption. (]

Lemma 2.8 Let R be a finite commutative chain ring with |R/m| = g = p°®, where
m = (y) is the maximal ideal, p is a prime, and s is a positive integer. Let
M={weR | |(w)]|<IR|}. Ifvy,---,v; € R" are linearly independent, then
[(vi, oo v, M) =q'(IRI/q)"

Proof We have that
vi, v, M) ={oyvi+---+av,+yw| o, € R,we R}

Assume
avi+ - oV +ywp = Bivi -+ By +yws

for some wy, w, € R". Then
(ar = BV + -+ (o — BV + (Wi —w2) = 0.
Multiplying both sides by v*~!, we have
YN e = BV 4+ e = BV = 0.

Since vy, - - - , v; are linearly independent, c; — 3; € m, which gives that 3; = a; +
~6; forsome §; € R fori = 1, --- , t. Therefore, it suffices to choose representatives
of R/R~ as coefficients of the v; which counts ¢’ elements. Then, since |M| =
[YR"| = |RY|" = (|R]/q)", the lemma follows. ([l

We can now imitate the Gilbert-Varshamov construction found in [13, p. 33] to
obtain the following theorem.

Theorem 2.16 Let R be a finite commutative chain ring with |R/m| =q = p*,

where m = () is the maximal ideal, p is a prime, and s is a positive integer. Suppose
n—k_q

(Z:;) < fﬁ Then there exists a free code over R of length n and rank k with

minimum distance d.
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Proof LetM = {w € R" || (w)| < |R|}. Toprove the theorem, we construct an (n —
k) by n parity check matrix H with the property that no d — 1 columns are linearly
dependent. Setr = n — k. The firstcolumncanbeany v; € R",butnotin M. Suppose
that we have chosent — 1 columns vy, --- ,v,_; € R" sothatnod — 1 columns are
linearly dependent. Suppose there is a column v, ¢ | J (Vil s Vi M ), where the
union is taken over all possible choices of d — 2 columns from the t — 1 columns.
Then no d — 1 columns from the # columns vy, - - - , v, are linearly dependent. Such
a vector would exist if | (J(v;,, - -+, Vi, ,, M)| < |R|". Then for all 7 < n, we have:

r—1 M r—1 Y
(d_2)|<vls"'1vd27 >|_((d—2)_ )| |

-1
< (Z B 2) {a(RI/9)" = (RI/@)"} + (IRI/9)

_ ("1, a2
— (RI/g) ((d_z)(q 1)+1)

< (RI/9)"(@"™
= |R|".

IA

|U<Vi17"' 7Vi4727M)|

This gives the result. O
This leads to the following corollary.

Corollary 2.3 Let R be a finite chain ring with the maximal ideal m = R~. If
q =|R/m| > (nf;il) withn —k — 1 > 0, then there exists a Maximum Distance
Separable code over R of length n containing q"*+!

tancen —k + 1.

elements with minimum dis-

Proof If d = n — k + 1, then the inequality of Theorem 2.16 becomes (nf; 1) <
n—k 1

q‘ﬁ,kff_l. Since g < q‘,{:if_ll < g + 1 forany n and k such thatn > k + 1. This gives
the desired result. (Il
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Chapter 3
MacWilliams Relations

In this chapter, we prove the MacWilliams relations for codes over finite Frobenius
commutative rings. These relations are one of the foundational results of algebraic
coding theory.

3.1 Introduction to the MacWilliams Relations

The MacWilliams relations are one of the most important foundations of algebraic
coding theory. They were first proven by F.J. MacWilliams for codes over fields in
[4, 5]. These relations are able to give the weight enumerator of the orthogonal of a
code from the weight enumerator of a linear code. They have numerous applications
in coding theory and in the connections of coding theory to other branches of mathe-
matics. For example, self-dual codes are codes that are equal to their orthogonals. As
such, their weight enumerators are held invariant by the action of the MacWilliams
relations. This leads to the natural application of invariant theory to the study of self-
dual codes. See Chap. 19 of [6] for an early discussion of this application. Numerous
powerful results arose from this connection. See [8] for a detailed description of the
connection between self-dual codes and invariant theory.

The MacWilliams relations are so fundamental to the study of codes that it is our
opinion that an alphabet is an acceptable alphabet for algebraic coding theory if and
only if the alphabet admits MacWilliams relations. In [9], it is shown that the class
of Frobenius rings is the class of finite commutative rings that admit such relations
and this is precisely why we restrict ourselves to this class of rings. It is also possible
to take finite commutative groups as alphabets since there are also MacWilliams
relations for these alphabets. There are other possible alphabets, as well, but in this
text, we shall restrict ourselves to Frobenius rings and commutative groups.

© The Author(s) 2017 29
S.T. Dougherty, Algebraic Coding Theory Over Finite Commutative Rings,
SpringerBriefs in Mathematics, DOI 10.1007/978-3-319-59806-2_3
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We begin with the standard definition of the complete weight enumerator. We
shall determine MacWilliams relations for this weight enumerator and then use this
to obtain MacWilliams relations for other weight enumerators.

Definition 3.1 Let C be a code over an alphabet A = {ay, ay, ..., a,—1}. The com-
plete weight enumerator for the code C is defined as:

r—1
cwec (Xays Xays -+ Xa,_,) = antfj(“), (3.1)

ceC i=0

where there are n;(c¢) occurrences of a; in the vector ¢. The symmetrized weight
enumerator of a code C over a group G is given by

swee (Yo, 1. ¥) = D swi (o), (3:2)
ceC

where swt(c) = H;zo x;g" and the elements a; and (a;)~! appear (3; times in the

vector ¢. The Hamming weight enumerator is given by

We(x,y) = D x"Wm@yvin© = cwec(x, y, y, ..., y). (3.3)

ceC

For codes over the finite field of order 2, these three weight enumerators coincide.
It was in this form that the MacWilliams relations first appeared in [4, 5]. For the
Hamming weight enumerator, x is often set to 1, and the weight enumerator is
described in terms of y.

Example 3.1 Consider the perfect code given in Example 1.3. This code is a binary
code and has weight enumerator

We(x, y) = x7 +Tx*y? + 763y + 57,

3.2 MacWilliams Relations for Codes Over Groups

In this section, we begin in a slightly different setting. Namely, we temporarily leave
the world of codes over rings and move into codes over finite commutative groups.
The reason is that the fundamental structure needed for the MacWilliams relations
is the underlying additive group. Moreover, in some instances, it is useful to study
additive codes. That is we want to study those codes that are simply subgroups of
the underlying group structure, rather than codes that are submodules of R". For
example, additive codes over [F4 have received a great deal of attention because of
their connection to quantum coding.
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We recall that a character of G is a homomorphism y : G — C*. Let G be a
finite abelian group and fix a duality of G, that is we fix a character table of G. We
have a bijective correspondence between the elements of G and those of G = {n|x
a character of G}. We note that G and G are isomorphic as groups. However, this
isomorphism is not canonical. In general, we simply choose an isomorphism and
for each @ € G, we denote the corresponding character in G by X.. Note that this
implies that there would be a different correspondence for a different isomorphism.

In this setting, we say that a code C over G is a subset of G". For a code to be
linear, we require only that C be an additive subset of G" (note that we are referring
to the operation of G as an additive operation). As an example, consider the code
C ={0,0),(1,0), @, 1, 1,1} < Fﬁ.This code is a subgroup of the additive group
of ]Fﬁ, but it is not a vector space since, for example, the vector w(l, 1) = (w, w) is
not in the code. Therefore, the code is not a linear code in the sense of a code over a
ring.

The standard definition of the Euclidean and Hermitian inner-products do not
apply here because we have only one operation. Rather, we introduce a different
inner-product which will coincide with the traditional inner-products in the necessary
cases.

Definition 3.2 For a code C over G, with a given isomorphism between G and G,
define the orthogonal of C to be

i=n

Ct =199 g [ [ xa () = 1. V(er, ... c) € C.

i=1

It is imperative to understand that this orthogonal is defined with respect to a
specific duality for the group. If we change the duality then we change the orthogonal
for the code. In fact, a code can be equal to its dual in one duality and not in another.
Despite this very general definition of the orthogonal for codes over groups, for which
we shall prove MacWilliams relations, it will turn out that this description leads to
MacWilliams relations for codes over Frobenius rings in a canonical way.

To each element of 6”, we associate an element of G with the natural correspon-
dence. Since (6)" = @, the code C+ is associated with the set {x € G" Ix(c) =1
for all ¢ € C}. This gives that |C+| = % = % and that C = (C1)*.

For a function f : G — A, where A is a complex algebra, the Fourier Transform
fof f is a function f: G — A defined by

F@) =" mx) fx). (34)

xeG

The following example shows how the orthogonality relation can change when
the isomorphism between the group and its character group changes. When this is
done the orthogonality relation can change significantly.
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Example 3.2 Consider the character tables given in Example 2.6.

X1 |0 l wl4w X2 |0 1l wl4w
0O |11 1 1 0O |11 1 1

1 |[1-1-1 1 1 |11 -1 -1
w |[1-11 -1 w [1-1-1 1
l+w|l 1 -1 —1 l+w|l-11 -1

Note that each row gives the character associated to the element that indexes that
row. Hence there are four characters represented in each table corresponding to the
four elements of the group. For the duality generated by x;, we have that w is a
self-orthogonal element. Then the code C; = {0, w} is a linear code over the additive
group of [F4 and satisfies C; = C f‘ with respect to this duality. Note that this code
is not linear over F4 as a field, nor would w be a self-orthogonal element over the
field. For the duality given by x», we have that the codes {0, 1}, {0, w}, {0, 1 + w}
are all linear codes over the additive group and satisfy C = C*2. Note that in all of
these cases, the usual MacWilliams relations do not apply since the codes are not
linear over the field [F4. For the duality given by x», the dual code ClL > ={0, 1+w}.
In this example, the complete weight enumerator of their duals is different. We shall
see that if the codes are in fact linear over the ring, the MacWilliams relations will
give that the weight enumerators of both orthogonals, in this case, would have to be
equal (even if the orthogonals themselves were not equal).

To find MacWilliams relations for these codes, we will need the following two

well known lemmas.
Let H be a subgroup of G and let (G : H) = {m € G| 7|y = 1}.

Lemma 3.1 (Poisson summation formula) Let G be a finite group and H a sub-
group of G. Let f be a function from G to a complex algebra. For every a € G,

1 —~
D flatn == > w(=a)f(m). (35
xeH |(G : H)| ﬂe(a:H)
Lemma 3.2 Suppose f; : G — A are functions, i = 1,2, ...,n, and A a complex
algebra. Let f : G" — A be given by
fOn ) =[] i (3.6)
i=1

Then f: I1 3‘\, ie ifr = (my,...,m,)in G = I, G, then f(ﬂ) =1, f/,(ﬂ'\,)
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Let fi(c;) = x, and f(x) = [/, fi- Then apply the previous two lemmas,
which gives that for a subgroup H of G,

> fx )= ETI Z f. (3.7)

xeH (G H)

Then noting that f(w) = > . ™(x) f(x) gives that the action of the matrix 7' on
the weight enumerator gives us the MacWilliams relations, where T is indexed by
the elements of the group and is defined as 7, o, = Xq, (c;). For a vector v we let
T -v=(Tv)".

For an element a € G, let [a] denote the equivalence class formed under the
relation where @ = @’ if and only if @ = a’ of a=! = (a’), where a~! is the inverse
with respect to the operation of the group. Construct the matrix S indexed by (G/ =)
where Siu1.ip) = Tu.p + Ta.—p- Let s’ be the number of equivalence classes. Now we
can state the MacWilliams relations for groups.

Theorem 3.1 Let C be a code over G and let |G| = s, with weight enumerator
cwec(xg, X1, ..., Xs—1). Then, the complete weight enumerator of the orthogonal is
given by
1
cwecL = Ecwec(T (X0, X1y vy X5—1)), (3.8)
1
swecL = mswec(S (X0, X1y ey Xg—1)), (3.9)
and
Wer = EWC(X + G —1Dy,x—y). (3.10)

Proof The first equation follows from the discussion above. The second equation fol-
lows easily from specializing the variables. To get the Hamming weight enumerator,
notice that specializing the variables gives

D XaB)xs=x+ O xa(B)y. G.11)

aeG a0

where 0 is the identity of the group. If 5 = 0, then Za#o Xa(B)=s—1.1If3#0
then Zn#) Xo(B) = —1. O

We shall now generalize the MacWilliams relations to the g-fold joint weight for
codes over Frobenius rings.

Definition 3.3 Let G be a finite commutative group and let Cy, ..., C4 be additive
codes over G. The complete joint weight enumerator of genus g forcodes Cy, ..., Cy4
of length 7 is defined as
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where
=", --,cm), 1<l <g

and
na(cls e 5cg) = |{m|(clma e 7Cgm) =a, 1 =m= n}"

Fix a duality T for the group G. The proof of the following is a straightforward
computation similar to the proof for the usual MacWilliams relations.

Corollary 3.1 Let Cy,--- , Cq be additve codes over a finite group G and let G
denote either C; or Cll. Then
Je ~(X)—;.(®9 T’ 3, c,(Xa) (3.12)
a) — S . = ;o lyg als .
e [T, G = 1
where ~
oG =q,
G701 ifCG =ct

3.3 MacWilliams Relations for Codes Over Rings

‘We can now use the results for codes over groups to produce MacWilliams relations
for codes over Frobenius rings.

Lemma 3.3 Let R be a finite commutative Frobenius ring with R = (x). Define the
following function F : R* — R" by

F(v) = xv, where xy(w) = x([v, w]). (3.13)
Proof 1t is clear that the map is a homomorphism. We have that
ker(F) = {v | x([v,w]) = 1 for all w € R"}.

Since ¢; = (0,0,...,0,1,0,...,0) € R", we have that ker (F) is trivial and there-
fore F is an injection. Moreover, | R"| = |R"|, which gives that the map is a bijection
and hence an isomorphism. ]

Note that we are heavily using the fact that the ring is Frobenius in the definition
of this map since otherwise we would not have a generating character x to define it
in this manner.
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Let C be a linear code in R". Let C* be the standard orthogonal for a code over
a ring. Let £(C) be the orthogonal for C as a subgroup of the additive group of
R" with the duality given by the character x, namely x,(b) = x(ab). We have
from Lemma3.3 that F(C) = L(C) which together with the group theoretic
MacWilliams relations given in Theorem 3.1 gives the following MacWilliams rela-
tions for codes over finite commutative Frobenius rings.

Theorem 3.2 Let C be a linear code over a finite commutative Frobenius ring R.
Define T, , = x(ab), where X is the generating character associated with R. Let S
be the matrix indexed by the equivalence classes formed by the relation where a = a’
if and only if a = +a’, and Sia).1p) = Ta.p + Ta.r- Then we have the following:

1

cwecL = ﬁcweC(T (X0, X1, .0ty X521)), (3.14)
1

swecL = mswec(S (X0, X1, . vy Xg1)). (3.15)

Note that we are not saying that there is a unique way to express the MacWilliams
relations since it depends on the generating character which is not unique for a given
ring. However, different matrices will still give the same weight enumerator for the
orthogonal.

The following was first proven by F.J. MacWilliams in [4, 5]. There it was proven
for codes over finite fields. Here we can extend the proof to codes over finite com-
mutative Frobenius rings.

Theorem 3.3 Let R be a finite commutative Frobenius ring with |R| = r. Let C be
a linear code over R. Then

1
Wee(x,y) = EWC(x—}—(r— Dy, x —y). (3.16)

Proof The result follows from Theorem 3.2 by taking the matrix 7 given in that
theorem and by adding all non-zero columns. In the first row, adding all non-zero
columns gives (r — 1) since every element is 1. Then in any other row (since all
non-zero elements have the same Hamming weight), we get —1 when summing the
columns since ZbeR x(ab) = 0 for all non-zero a € R and x(a0) = 1.

Hence, the matrix that gives the MacWilliams relations is:

1(r—1)
(1 O ) (3.17)

and this gives the result. ]

It is unclear where the next corollary first appeared. It is implicit in [9] but does
not appear there. However, it is one of the most important consequences of the
MacWilliams relations.
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Corollary 3.2 IfC isalinear code over a finite commutative Frobenius ring R, with
|R| =r, then |C||C*| = |R"|.

Proof Consider Eq.3.16 and set x = 1 and y = 1. Then we have

1
|CY = —r" (3.18)
IC]

which gives |C||C+| = |R"|. O

One of the main uses of this corollary is that if we have a self-orthogonal code C
with |C| = /|R"], then C is self-dual. This corollary can also be used as a tool to
show aring is not Frobenius. Namely, if aring has an ideal a where its orthogonal does
not have cardinality %, then the ring is not Frobenius. We shall show an example
where this fails when the ring is not Frobenius.

Example 3.3 Let R = F,[x, y]/(x2, y?, xy). We can write the elements of R as
R={0,1,x,y,1+x,14+y,x+y,1+x+y}

The maximal ideal is m = {0, x, y, x 4+ y}. Hence, this ideal is a code of length
1. Its orthogonal is mt =m= {0, x, v, x + y}. This gives that m is a self-dual code
of length 1. However |m||m*| = 16 # |R| = 8. This implies that there cannot be
MacWilliams relations for this ring, since if there were then |C||C*| would have to
be |R|".

The MacWilliams relations are an extremely powerful tool. We shall exhibit one
of their classical applications.

Example 3.4 Consider the Hamming codes H(2,r) given in Example 1.7. The
orthogonal to this code has dimension r and length 2" — 1. Since every possible
non-zero column is represented in the generator matrix, then the sum of any subset
of rows produces a vector with weight 2"~!. This gives that the weight enumerator
of H?2,r)* is

Wi =" 46771y

Then applying the MacWilliams relations gives the weight enumerator of the binary
Hamming codes. Namely,

Whon =@+ T+ x+9¥ Ta—-n? .

Corollary 3.3 Let T be the matrix that gives the MacWilliams relations for a finite
commutative Frobenius ring R with |R| = r. Then T? = r M where M is a monomial
matrix corresponding to a permutation of the elements of R.

Proof For any linear code C we have that (C+)* = C. This gives that applying
the MacWilliams relations twice will result in the weight enumerator of the original
code. This implies that (%ﬁ T) (% T) must be a monomial matrix. The result follows.
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Example 3.5 For Z4, the matrix T which gives the MacWilliams relations is:

11 1 1
1 i —1—i
121 1 —1 (3.19)
1 —i —1 i
Then we have
1000
2 0001
T- =4 0010 (3.20)
0100

MacWilliams relations for non-Hamming weight enumerators can also be found.
See [2] for the MacWilliams relations for the Rosenbloom-Tsfasman metric.

3.4 A Practical Guide to the MacWilliams Relations

We shall now show how to construct MacWilliams relations for specific rings. As
usual with commutative rings and coding theory, one of the most powerful tools is
the application of the Chinese Remainder Theorem.

Theorem 3.4 Let R be a finite commutative Frobenius ring with
R =CRT(R\, Ry, ..., R;), where each R; is a local ring. Let X g, be the generating
character for R;. Then the character X for R defined by

x(@) =[x (@), (3.21)
where a = CRT (ay, ay, . . ., a,), is a generating character for R.

Proof 1f x were not a generating character, then by Theorem 2.4, it would be trivial
on an ideal of R. Then there would be an i such that xg, is trivial on an ideal of R;,
contradicting that y g, is a generating character. Hence, x is a generating character. []

This theorem allows us to focus on local rings since we know that any finite
commutative ring is isomorphic via the Chinese Remainder Theorem to a product of
local rings. With this in mind, let R be a finite local commutative Frobenius ring with
maximal ideal m. Then it follows that m* is the unique minimal ideal of R where m
is the unique maximal ideal.

Lemma 3.4 Let R be a finite local commutative Frobenius ring with maximal ideal
m. If x is a character of R that is not trivial on m*, then x is a generating character
for R.
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Proof We know that m~ is the unique minimal ideal. This means that m* is contained
in every non-trivial ideal of R. Hence if x is non-trivial on m*, then it is non-trivial
on every ideal of R. This gives that it is a generating character. (]

Lemma3.4 gives an easy way to find a generating character for any finite local
commutative Frobenius ring. Namely, we simply find a character that is not trivial
on the unique minimal ideal.

This lemma tells us a lot more about the MacWilliams relations for codes over
rings. Namely, there is not a unique way to give the matrix 7" for a specific Frobenius
ring. Rather the MacWilliams relations apply to any linear code over the ring but the
matrix T depends on the choice of the generating character which as we see from
the previous lemma is not necessarily unique. However, there is still only one matrix
that applies the MacWilliams relations for the Hamming weight enumerator. That is,
every possible matrix 7T still collapses to the same matrix for the Hamming weight
enumerator.

We shall give some examples of the matrix 7', which gives the MacWilliams
relations for various rings.

e Consider the ring Z,. The classical Chinese Remainder Theorem gives that Z,, =

Z p X Zpgz X -+ X Z e, where the p; are distinct primes. The ring Z i isa local

ring with maximal ideal (p;) and minimal ideal ( ?i_l). Let XZ . (a) =n}, where

n; is a primitive p{’-th root of unity. Then 771 7é 1 and so XZ is non-trivial on
the minimal ideal and therefore is a generating character. Then xz, =[xz .,
P

which is realized as xz, (a) = n* where 7 is a primitive n-th root of unity.
o Consider the Galois ring Z,.[x]/(q(x)), where g (x) is an irreducible polynomial
over Z e of degree k and p is a prime. Here any element is of the form ag +a;x +
-+ a;_1x*~1. Then

X(@o +arx + -+ aegxl) = €3 (322)

is a generating character for Z, [x/]/\ (g (x)) where & is a primitive p*-th root of
unity. Of course, when e = 1 thls gives us the class of finite fields.

e Consider the rings Ry = Fo[uy, us, ..., ug], where ul2 = 0and u;j; = uju; for
all i, j. Then for A C {1,2,...,k} we denote uy = HieA u; and each element
can be written as ZACp(“ 2. k) CAlla, where oy € F,. Then

X > oaup | =12 (3.23)
ACP(1,2,...k})

is a generating character for Ry.
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e Let R be a finite chain ring with maximal ideal () where R/(v) is isomorphic to
F,. Let x, be the generating character for IF,. We have that (y¢~1) is the minimal
ideal. Then let x be defined by

X(ao +ayy+ - +a, 17" = HXq(ai).

(3.24)

It follows that y is not minimal on (y°~') and therefore y is a generating character

for R.

In general, we are interested in determining the generating character of local rings,
since by using Theorem 3.4, we can then determine the MacWilliams relations for
any finite Frobenius commutative ring. In [7], it is shown that the smallest local
Frobenius ring that is not a chain ring has order 16. Hence, the previous discussion
gives the MacWilliams relations for all rings of order less than 16. Additionally in [7],
the local Frobenius rings of order 16 were classified. In [1], the generating character
for all of these rings is given. We give them in Table 3.1. In the table, n = e and

C:ezng_

Table 3.1 Generating characters for local Frobenius rings of order 16

Ring Additive structure Generating character

Fi6 = (xiFj_Eﬂl) Zo X L X Zp X Zp x(@ + bx + cx? + dx3) = (—1)atbtetd
Fi[f] Zo X ZoxZy xZy | x(a+bx+cx?+dx3) = (—1)etbtetd
Falx] ~ _ Falu,

‘)‘C[zx] = u2+21£:—11}]u2) o X Ty X Ty X T x(@ + bu + cv + duv) = (—1)atbtetd
’ij[“vg; Ty x 2y x Ty xZy | x(a+bu+ cv+ duv) = (—1)*+b+etd
(u;Fi[l‘;z'”iv) Ty xZy x Ty xZy | x(a+ bu+cv4 du?) = (—1)t+b+etd
GR(22,2) = XzZiEﬂn T X T x(a + bx) = i“+P
o Zs x Ly x(a + bx) = i+
R Zs x Ly X(@ +bx) = i+
Tkl Za X Ly x(a+ bx) = i®*?

7(;(224—[;1) T4 X Ty x(a + bx) = jatb
(stj[;]z)c) Za X Ty X 1o X(a + bx + cx?) = i9(=1)bte = jat2b+2e

Zslx,y] _ ja(_1\b+c _ ;a+2b+2c
(XZ,Xy—ZZ%’Z,Z]X»%') Ty X Ty X L x(a + bx +cy) =i%(—1) =i

X, . A
—(xz—Z,xth,fﬂ,Zx,Zv) Z4 X To X 7L x(a+bx +cy) = la(_l)b-H: — jat2b+2c
7 ,

e Zy x L X(a +bx) = (Db = ne+t
Z16 Z16 x(a) =¢*
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Chapter 4
Families of Rings

The study of codes over rings began in earnest with studying codes over the ring Z4
in [20, 21]. The central result of this work was that certain non-linear binary codes
could be viewed as linear codes over Z, via a non-linear Gray map ¢. It was primarily
this result which started an intense study of codes over rings, especially codes where
there exists a Gray map from the ring to the Hamming space. Generally, the rings
that were first studied were the integer modular rings and rings which were similar
to those such as chain rings and principal ideal rings. Certain applications, like the
connection to unimodular lattices, caused other rings to become of interest to coding
theorists. For example, the ring Z,; has a natural connection to real lattices, and the
ring F, + ulF, has a connection to complex lattices. In this chapter, we shall study
families of rings that are of particular interest to coding theorists and, in many cases,
an associated Gray map with these families. Throughout this work, we shall say that
a map is a Gray map if it is a distance preserving map to IFQ’ for some N. Often,
the distance in the ring is the induced distance given by the Hamming distance in
FY. The map is then distance preserving by definition. The primary benefit of this
situation is that we are largely concerned with the code that is the image under the
Gray map. In this way, if the distance defined in this manner is non-canonical, it is
not a concern.

4.1 Rings of Order 4

The first rings that were studied heavily in coding theory were the commutative
rings of order 4. There are four commutative rings of order 4. We shall use the names
associated with them in the coding theory literature to be consistent with the existing
literature. These rings are Z4, Fo[ul/(u?), F2[v]/(v? + v), and Fy = Fr[w]/(@? +
w + 1). In the literature, F»[u]/(u?) is usually called F, 4+ uF, and Fo[v]/(v? + v) is
called F, 4 vF,. Each of these rings has a Gray map associated with it, where a Gray
map is a distance preserving map to the binary Hamming space. For Z4, we write
each element as a + b2, with a, b, € F, and define the Gray map ¢4 : Zs — IF% as
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¢4(a + b2) = (b, b + a). Likewise for F, + ulf,, we write each element as a + bu
and define the Gray map ¢, : F, + ulf, — IF% as ¢, (a + b2) = (b, b + a). These
two maps are similar but there is a significant difference. Namely, for Z4 the map is
non-linear, but for F, +uF, the map is linear. The ring F, 4 vIF; is isomorphic via the
Chinese Remainder Theorem to F3. Specifically, a + bv = (a + b)v +a(v + 1) and
we define the Gray map as ¢, (a + bv) = (a, a + b). This map is linear as well, as it
is the inverse of the canonical isomorphism from the Chinese Remainder Theorem.
Finally, for the field of order 4, the standard projection is the corresponding map. We
define ¢, (a + bw) = (a, b). These maps are realized in the following table:

F%| Z4|F2 + MF2|IF2 + U]F2| Fy

00| 0O 0 0 0
01] 1 1 v w
11| 2 u 1 1+ w
10/ 3| 14u 14+v 1

These maps are extended in the natural way to be a map from R" to F3". This
allows us to examine binary codes which are the images of linear codes over these
rings. For the ring Z4, we obtain binary codes which may not be linear but which do
have a group structure inherited from the group structure of the code in Z}. Given the
results in [5], it seems that this should have been noticed earlier. The primary result
which makes the Gray map for Z, so interesting is that certain non-linear binary
codes can behave like linear codes with respect to the all important MacWilliams
relations. Guided by this, we make the following definition.

Definition 4.1 Let R be a finite commutative Frobenius ring and let ¢ : R — T be
a Gray map. We define the Lee weight of an elementa € R as wt; (a) = wty(¢p(a)).

For example, the elements 1 and 3 in Z4 have Lee weight 1, and the element 2
has Lee weight 2. This definition allows us to define the Lee weight enumerator as
follows.

Definition 4.2 Let C be a code over a finite commutative Frobenius ring with an
associated Gray map. Then

Lc(x, y) — ZXN_WL(C)YWL(C), (4.1)
ceC
where N is the length of ¢ (C).

Note that the Lee weight enumerator of a code C is identical to the Hamming
weight enumerator of its image under the Gray map. Thatis, L¢ (x, y) = Wy (o) (x, ¥).
In [20, 21], the authors prove and make substantial use of the following theorem.

Theorem 4.1 Let C be a linear code over Z4. Then

Ler(x,y) = —Lc(x+y,x—y). (4.2)

1
IC]
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In other words, the Lee weight enumerator for linear codes over Z,4 follows the
same MacWilliams relations as a binary linear code even though its image may not
be a linear code. The same MacWilliams relations will hold for codes over F, + ulF,,
which we will prove later for the family of codes that generalizes this ring.

We have already defined the Hamming and Lee weights for codes over rings of
order 4. There are two additional weights we shall consider. The first is the Euclidean
weight which is defined on Z4 and F, + ulF,. The weights are 0, 1,4, 1 for 0, 1, 2, 3
and 0, 1, u, 14 u respectively. For the ring [F; 4+ vIF, the Bachoc weights are 0, 2, 1, 2
for 0, v, 1, 14+ v respectively. The Euclidean and Bachoc weights are derived from the
corresponding weight related to the corresponding weights in the lattices constructed
from these codes, see [1, 2, 9]. The minimum distance of the code with respect to
these weights are denoted by dy (C), d. (C), dg(C) and dg(C).

Recall that the rank of a linear code C, denoted by rank(C), is the minimum
number of generators of C and the free rank denoted by f-rank(C) is the maximum
of the ranks of R-free submodules of C. The code is said to be free when the free
rank and the rank coincide. The cardinality of a linear code over a ring of order 4 is
4f—rank(C) 2rank(C)—f-rank(C) .

We know that any binary code C satisfies dy(C) < n —log, |C| 4 1. This gives
the following theorem which first appeared in [13].

Theorem 4.2 Let C be a possibly non-linear code of length n over a commutative
ring of order 4 and minimum Lee distance d;. Then

d, <2n—1log, |C| + 1. (4.3)

If we let ky be f-rank(C) and k, = f-rank(C) — rank(C), then for a linear code
we can rewrite Eq.4.3 as

<n—k ——=. (4.4)

A code that meets this bound is known as a Maximum Lee Distance Separable
(MLDS) code. Itis immediate that the image of an MLDS code is a binary MDS code.
It is well known that for binary codes the only MDS codes are (j) with parameters
[n, 1, n], (j)* with parameters [n, n — 1, 2], and IF; with parameters [n, n, 1], where
j denotes the all-one vector. Therefore, the only MLDS codes are the preimages of
these codes under the Gray map.

‘We shall now describe a general approach to Singleton type bounds for codes over
rings of order 4, which first appeared in [13].

Lemma 4.1 Let C be a linear code of length n over a commutative ring of order 4.
Then
rank(C) + f-rank(C*) = n. (4.5)

Proof For the finite field, the result is trivial. For Z4 and F, + ulF,, the rings are
chain rings, and it follows from Theorem 3.1 in [22]. For the ring F, + v[F,, the
result follows from the fact that the ring is isomorphic to F, x [, via the Chinese
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Remainder Theorem. Therefore, if C is a code over this ring then C = CRT (Cy, C3)
and Ct = CRT(C?, Cj-). Then we have that rank(C) = max{dim(C}), dim(C;)}
and f-rank(C) = min{dim(C,), dim(C5)}, which gives the result. O

Let R be a commutative ring of order 4 and let D be a submodule of R".Let M
{1,2,...,n}.Let D(M) = {x € D | supp(x) € M} and let D* = Homg (D, R).

It is immediate that D(M) = D N R"(M) is a submodule of R" and |R"(M)| =
4M1There exists an isomorphism which gives D* = D and there is an R-
homomorphism g : R" — D* defined by

gy) =F:x— [x,¥)].

The map g is surjective since R is Frobenius, (see [26] for details). Since R is a
commutative Frobenius ring, we have the following basic exact sequence (see [29]).
Let C be a code of length n over R and M C {1,2,...,n} = N. Then there is an
exact sequence of R-modules:

inc

0— C-(M) = R"(M) L ¢* =5 C(N — M)* — 0. (4.6)

Here the inc denotes the inclusion map and res denotes the restriction map.

Define n,(x) to be n,(x) := |{i | x;, = r}|. Let a,,r € R — {0}, be positive
integers, set ap = 0, and let w(x) = > _pa,n.(x). When a, = 1, this is the
Hamming weight.

Let A :=max{a, | r € R}. If R = Z4 = {0, 1, 2, 3}, then setting a; = a3 = 1
and a, = 2 yields the Lee weight, while setting a; = a3 = 1 and a, = 4 yields the
Euclidean weight, and if R = F, + vF, = {0, 1, v, 1 4 v}, then setting a; = 1 and
a, = a4, = 2 yields the Bachoc weight.

Let G be a general weight and let dg be dg := min{w(x) | x € C — {0} }. That
is dg is the minimum weight with respect to that weight.

We note that w(x) < A|supp(x)|.

This takes us to our main general bound.

reR

Theorem 4.3 Let R be a commutative ring of order 4 and let C be a linear code of
length n over R with minimum weight dg and maximum a,-value A. Then

VGA_ IJ < n — rank(C). 4.7)

Proof In the above exact sequence, replace C with C+. This gives the following
exact sequence:

inc

0— C(M) 25 RM(M) L5 (CH)* 25 CH(N = M) — 0. (4.8)

Apply the duality functor * = Homg(—, R) and let M € N such that
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-5

Since C(M)* = 0 and V(M)* = R"(M), the exact sequence in Eq.(4.8) gives the
following short exact sequence:

0— C*(N-M) — Ct — V(M) — 0.

Since V(M) = RM! is a projective module, the above short exact sequence is split,
namely

Ct=CH(N - M)® R"(M).

Therefore we have

forank(CL) > forank(R"(M)) = |M| = VGA_ IJ .

Hence the theorem follows from Lemma4.1. |

This leads naturally to the following corollary given the maximum value for each
weight.

Corollary 4.1 Let R be a commutative ring of order 4 and let C be a linear code
of length n over R with minimum Hamming weight dy, minimum Lee weight dy,
minimum Euclidean weight dg, and minimum Bachoc weight dg. Then we have

d; —1
Lz < n — rank(C), (4.9)

dp — 1
E4 < n — rank(C), (4.10)

dg — 1
—5— | = n - rank(©), 4.11)

and

dy — 1 < n —rank(C). 4.12)

We generalize the definition to MDS codes to the following. Let R be a commu-
tative ring of order 4 and let C be a linear code over R.

e A code over R meeting bound (4.9) is a Maximum Lee Distance with respect to
Rank (MLDR) Code.

e A code over R meeting bound (4.10) is a Maximum Euclidean Distance with
respect to Rank (MEDR) Code.
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e A code over R meeting bound (4.11) is a Maximum Bachoc Distance with respect
to Rank (MBDR) Code.

e A code over R meeting bound (4.12) is a Maximum Hamming Distance with
respect to Rank (MHDR) Code.

4.2 Ranks and Kernels of Quaternary Codes

Binary codes, which are the images of linear codes, are not necessarily linear; how-
ever, these codes do have some natural structure. In [6, 28], it was shown that a
translation invariant propelinear binary code with a commutative group structure
must be isomorphic to Z§ x Zg for some «, B. In fact, it was stated in [6], that the
class of additive binary codes considered in that paper coincides with class of addi-
tive propelinear codes investigated by Rifa and Pujol in [28]. It is possible that there
is also a non-commutative group structure to the translation invariant propelinear
code, in which case the structure comes from the quaternion group of order 8, see
[28]. The theory for the case when the code is not translation invariant has not yet
been developed. However, the following theory applies to arbitrary binary codes so
no assumption is made about the structure of the possibly non-linear binary code. To
understand this structure, we define the kernel and rank of a binary code. In general,
we are concerned with these codes when the binary code is the image of a code under
the Gray map, but they apply universally. When the code is the image of a quaternary
code we also define quaternary codes associated with these binary codes. We follow
the notation given in [7]. We begin with the definition of the kernel of a code which
first appears in [3].

Definition 4.3 Let C be a binary code, then ker(C) = {ve C|v+C = C}. If
D is a quaternary code, then its kernel is defined to be IC(D) = {v € D | ¢4(v) €
ker(¢4(D))}.

We now examine the code formed by taking the minimal linear code containing
the binary code C and the quaternary code which is the preimage of the code.

Definition 4.4 Let C be a binary code. Let rank(C) = dim({C)). Let D be a
quaternary code. We let R(D) = {v | ¢4(V) € (p4(D))}.

The following results appear first in [25].

Theorem 4.4 Let C be a binary code containing the all zero vector. Then ker (C) is
the intersection of all maximal linear subspaces of C.

Proof Let C be a binary code containing the all zero vector. If v € ker(C), then
v+0 € Csoker(C) C C.Next,ifv,w € ker(C),thenv+(w+C) = v+C = C and
so ker(C) is a linear code. Therefore we have that ker (C) is a linear code contained
in C.
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Let D be a maximal linear subspace of C and let v € ker(C). Then (D, V) is
linear by definition and contained in C since v+ D C C. Since D is maximal we
have that (D, v) = D and therefore v € D. This gives that ker(C) € D and that
ker (C) is contained in the intersection of all maximal linear subspaces of C.

Next, assume v is in the intersection of all maximal linear subspaces of C and let
w € C. Since {0, w} is a linear subspace of C it is contained in a maximal linear
subspace D. Thenv € D andsov+w € D C C. This gives that v € ker(C) since
v+w e C forall w € C. Therefore, the intersection of all maximal linear subspaces
of C is contained in ker (C) and hence the two sets are equal. O

This theorem leads naturally to the following corollary, which was first proved
in [3].

Corollary 4.2 Let C be a binary code containing the all zero vector. Then C is the
union of disjoint cosets of the kernel.

Proof Let C be a binary code. We know that ker(C) is a linear subspace of C.
Then noting that if v € ker(C) and w € C, we have that v+ w € C. We see that
w + ker(C) C C for all w € C which gives the result. O

We note that the binary codes we are most interested in are the image of linear
quaternary codes under the Gray map. Therefore, the assumption that the binary code
contains the all zero vector is not much of a restriction since the image of a linear
quaternary code always contains the all zero vector. We required this restriction to
ensure that the kernel be contained in the code.

For vectors v, w € Zj, define v * w = (viw;, vawy, ..., V,w,). Namely it is the
componentwise product of the two vectors. The following lemma can be proved by
simply evaluating the possible cases for the elements of Z,. It appears first in [20].

Lemma 4.2 Let v, w be vectors in Zj. Then

G4 (v + W) = a(V) + ¢4(W) + 4 (2v x W). (4.13)
The following lemma appears in [17, 18].

Lemma 4.3 Let C be a linear quaternary code and let v e C. Then v € K(C) if
and only if2vxw € C forallw € C.

Proof Assume v € K(C), then ¢4(v) + ¢s4(W) € ¢4(C) for all w € C. Since
v+ w € C itis linear and therefore ¢4 (v + w) € ¢ (C). This gives that ¢4(v + w) —
Pa(V) — Ppa(W) = p4(2V * W) € ¢4(C) which gives that 2vxw € C.

If ve Cand 2vxw € C for all w € C, then ¢4(v + W) — 42V x W) =
$4(V) + Pa(W) € $4(C) and v € K(C). U

The following lemma first appears in [17, 18].
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Lemma 4.4 Let C be a linear quaternary code. Then KC(C) and R(C) are linear
codes.

Proof Assume v, w € K(C). This imples that ¢4(v) + ¢4(W) € ker(¢4(C)). By
Lemma4.3, we have 2v x w € C. This implies that ¢p4(v + w) = ¢4(2v * w) +
P4(V) + Pa(W) € ker(¢p4(C)). Then we have that v+ w € K(C). Therefore, I(C)
is a linear code.

For the second statement, notice that ker ({¢4(C))) = (¢4(C)) since (¢p4(C)) is a
linear code. Therefore, R(C) = IC(R(C)) and hence is a linear code. U

The previous lemmas give the following.

Theorem 4.5 Let C be a linear quaternary code. Then K(C) and R(C) are linear
codes and
K(C) € C CR(C). (4.14)

In [7], it is shown that for cyclic quaternary codes both X(C) and R(C) are cyclic
codes as well.

The code ¢4(C) is then a possibly non-linear code which sits between two linear
codes. The kernel, in some sense, indicates how non-linear the code is. That is, a very
small kernel means that the code is highly non-linear where a large kernel indicates
that the code is not that far from linearity.

4.3 X-rings

We have seen that there are 4 commutative Frobenius rings of order 4. As a next
step, the Frobenius rings of order 16 were studied. There are twelve local Frobenius
non-chain rings of order 16, (see [27] for a description of these rings). These rings
all have a maximal ideal that can be written as m = (u, v) for some pair of elements
u, v. This ideal has 8 elements and the minimal ideal m* consists of two elements 0
and w for some element w. The remaining ideals are of size 4 and are (u), (v), and
(u 4 v). It follows that the Jacobson radical is m and the socle is m™.

This structure allows for all elements in these local rings to be written as a +
bu+cv+dw,wherea, b, c,d € IF,. Note that we are not assuming that the ring has
characteristic 2. For example, we can have the ring Z[x]/(x?). Then the maximal
ideal is m = (2, x), the minimal ideal is (2x), and the characteristic of the ring is 4.

Given the form of these rings, the Gray map, as described for Z4 and F;, + ulF,,
can be applied recursively to obtain a Gray map for all of these rings, namely ¢ :
R — T3 by

bre(@a+bu+cv+dw)=(d,c+d,b+d,a+b+c+d), (4.15)

where a, b, ¢, d € {0, 1}.
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The form of these rings prompted the following definition first made in [12].
Specifically, we want a family of rings with a common structure and a canonical
Gray map which allows us to generalize the results about codes over rings of order
4 and 16.

Definition 4.5 A ring R is an X-ring if it is a finite commutative Frobenius local
ring with maximal ideal m = (u1, s, ..., uz) such that |R| = 2% and |m| = %,
where ug = [, ui #Oforall A € {1,2,...,k}.

Note that in the 12 rings of order 16 it is possible that uv = 0. For X-rings we
are assuming that this is not possible. Let A be a subset of {1,2, ..., k} and let
ua = [];cs i Itis clear that any element of an X-ring can be written in the form

E dalg,

ACP({1.2,...k})

where a4 € IF,.

Lemma 4.5 An element ZAgP({l,z ..... k) @ala in an X-ring R is a unit if and only
l'fotg =1L

Proof The result follows from the fact that m has 2 cosets in R and that uy, € m
whenever A is non-empty. (]

Example 4.1 We shall give two examples of X-rings. The first example is the

ring Zy[x]/(x"), which has characteristic 2°, where s = 2l andl > 0,1t =
2k=1 It has maximal ideal m = (2,4,16,...,2% " x,x%,x* ..., x2"") and
Soc(Zos[x]/{x")) = (22 =1x2"=1y The second example is the ring Zos[x]/{x" —
2"x™) which has characteristic 2° where s = 2/, 1 > 0, ¢t = 2!, m < 1,
r > 0. It has maximal ideal m = (2,4,16,...,2% " x,x% x* ..., x¥"") and

Soc(Za: /(6 — 2'a™)) = (221227,

We define a Gray map for X-rings of order 2% recursively. Let ¢; be the map
defined on a ring of order 4. That is ¢ (a + bu;) = (b, a + b). Take an element ¢
written as ¢ = ¢; + u;c;, where ¢ and ¢, are elements of the X-ring of order 227,
Define

@i (c) = (¢i—1(c2), i—1(c1) + di—1(c2)). (4.16)

Then extend the map coordinatewise to R".

We shall define another Gray map also defined for X-rings. This map will turn
out to be conjugate to the previously defined Gray map. We keep two maps because
often it is much easier to find results using one of the maps as opposed to the other.

Let R be an X-ring with |R| = 22k, m = (uy, us, ..., ur). We define the map
Y R — IF%k. View R as a vector space over [F, with basis {us : A € {1,2, ..., k}}
where u, = HieA u;. Define Y (us) = (cp) where

1 BCA

(cp) = 0 otherwise.



50 4 Families of Rings

Extend v linearly to be defined over the entire ring R. Specifically,
Vi(ua +up) = Yu(ua) + Vi(up). (4.17)
As an example, if k = 3, the subsets are ordered as
@, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}.

This gives that Yy (uuy) = (1 110100 O) and Yy (uy) = (1 010000 0).
Then by linearity, we have ¥y (uz + ujuz) = (01001000).

It follows from the definition, that the weight of the image an element ¢ € R,
Y (c), is odd if and only if ¢ is a unit. Moreover, we have that v (#;) has weight 2
forall i, 1 <i < k. The following lemma appears in [12].

Lemma 4.6 The map ;. is conjugate to ¢y by the permutation

2k—1
(1,202, 2" = D@3, 2k —2)... L 2y ) = H(i, 2641 —10).

i=1

Proof For k = 2, it is a simple computation to show that they are conjugate via the
permutation (1, 4)(2, 3). Then the recursion gives the rest. ([l

The following theorem is easily proven from the definition of the maps.

Theorem 4.6 Let R be an X-ring. The Gray maps ¢y and i are linear if and only
if char(R) = 2.

We shall now give three important families of X-rings. These three rings are of
particular importance as X-rings since for these rings we have ¢ (C+) = ¢;(C)*.
We shall prove this result later. This result is not true for all X-rings and we shall
give examples of this as well.

e The first family of rings is denoted by R; and has characteristic 2. These rings
have been studied extensively in [14—16, 24]. Define the rings as

Ry =Foluy, uz, .o ugl/ui®, wiuj — uju;). (4.18)

These rings are not chain rings when £ > 1 and they have characteristic 2. The
maximal ideal for the ring Ry is m = (uj, us, ..., u). The socle for the ring Ry
is Soc(Ry) = (uuz - - - ug). We have that |Ry| = 22'.

e The second family of rings is denoted by S; and has characteristic 4. The ring S
was first studied in [27]. Define the rings as

Sk = Luluy, ua, ..., uk]/(u%—Zul, u%—2u2, - ui—Zuk, winj—uju;). (4.19)

The maximal ideal for the ring Sy is (2, uy, uo, ..., ptk). The socle for the ring Sy
is Soc(Sk) = (2uyuy - - - uy). We have that | S| = 47,
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e The third family of rings is denoted by 7; and has characteristic 4. The ring T
was first studied in [27].

Ty = Lalur, uz, .. owgl/(uf —2,u5 — 2, ... up — 2, uu; — uju;).  (4.20)

The maximal ideal for the ring 7} is (2, uy, ua, ..., uy). The socle for the ring T
is (2ujuy - - - uy). We have that |7y | = 47,

The rings Ry, Sy, and T} are all X-rings. Therefore, they have the already defined
Gray map. However, for S; and Tj there are k + 1 generators of the maximal
ideal, not k as the notation may seem to indicate. Namely, the generators are
2,uy, Uy, ..., u;. Hence we shall use ¥ for these rings to denote the Gray map
defined by recursion on the u;, which maps to Zﬁk, and reserve ¢ for the full
Gray map to F2"".

The following results were first shown in [11].

Lemma 4.7 Let C be a code over Ry, Sy or Ty and let ;. be its corresponding Gray
map to Z2". Then Y (C+) = ¥, (C)*.

Proof We shall prove the theorem by induction for 7;; the proofs for Ry and S are
similar. If k = 1, we shall show that the Gray images of orthogonal vectors in S,
are orthogonal in Zy4. Let v| + u;w; and v, 4 u;w, be two orthogonal vectors in Sy,
where v;, w;,, are vectors in Z}. This gives

(Vi +uiwi, vo + uiwo] = [vy, Vo] + 2[wy, wa] + [vi, W] + [v2, wi ] = 0.
The images of the vectors have the following inner-product:

[Y1(vi +uiwi), Yi(vy +ugwo)] = [(Wi, vi + wp), (Wo, vi + Wp)]
= [wi, wol + [vi, vl + [vi, wal + [wy, val + [wy, wo]
0.

This gives that ¢, (C*) € ¢, (C)*. The fact that ¢, is a bijection gives the equality
of the two sets.

Next, let vi + u;w; and v, + u;wy be two orthogonal vectors in T;_;, where
v;, W; are vectors in T} ;. This gives

[Vi 4+ ueWi, Vo + ugwo] = [vi, V2] + 2[wy, Wal + [Vi, W] + [v2, wi ] = 0.
The images of the vectors have the following inner-product:

[V (Vi +upwi), Vi (vo + ugw2)] = [(Wi, vi +wp), (Wo, v + W3)
= [wr, wo] + [V, vl + [vi, wol + [wyq, vl + [wy, wa]
=0.
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This gives that ¢, (C1) C ¢ (C)*. The fact that ¢, is a bijection gives the equality
of the two sets.

Theorem 4.7 Let C be a self-dual code over Sy or Ty of length n. Then V. (C) is a
self-dual code of length 2*n over Zy.

Proof Let C be a self-dual code. Then C = C+ which gives ¥ (C) = ¥ (Ct) =
Y (C)* by Lemma 4.7. O

With a similar proof to the proof of Lemma 4.7, we have the following theorem.

Theorem 4.8 Let C be a code over Ry and let ¢y be its corresponding Gray map to
k
F3". Then Y (C*) = ¥ (C)*.

4.4 The Ring R, A

We can generalize the ring R into a larger family of rings. These rings have a
construction and a Gray map which will make them very useful in the construction
of quasicyclic codes. Specifically, cyclic codes over members of this family can be
used to give an algebraic understanding of g-ary quasicyclic codes of arbitrary index,
see Theorem 6.13 for a complete explanation. This idea was first described in the
binary case in [8].

Let pi, p2, ..., p; be prime numbers with t > 1 and p; # p; if i # j. Set
A= plf‘ p’;z e ph o Let {tp,,j}1<j<k) be a set of indeterminates. That is, we write
A in its unique prime factorization. We construct the following ring:

pi
Roa=Fqlup 1, o sthp by thpy oo tpy ko oo p i 1/t ), 4.21)
where the indeterminates {u, ;}(i<i<s,1<j<k;) commute. For each A € N, there is a
ring in this family of rings.
An indeterminate u , ; can have an exponent in the set

Ji=1{0,1,.... pi — 1}

ki a1 o, ki o . aj [T
Leto; € J;" and denote u,’y -~ -u ", by u;'. For a monomial u;" - - - u;" in Ry A

. k k
write u®, where o« = (o, ..., o) € J;' x --- x J;/". Let

J:Jlk‘ x - x g
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For an element ¢ in R, 4, we can write ¢ as

— o _ ol .k a1 ok
c= E cqu’ = E Callpy Uy Uy U, (4.22)

aelJ aelJ

with ¢, € IF,.

It follows immediately that the ring R, 4 is a commutative ring with |R, 4| =
gh' e

Define the ideal m = (u,,, ;)<i<:,1<j<k,)- Every element in R, 4 can be written
as Ry o ={ao+aym|ap,a € Fy,m emj.

It is easy to prove that all units in R, 4 are elements of the form ag + a;m, with
m € m and ay # 0. First, the following is needed.

The Jacobson radical of R, 4 is

J(Rg,a) =m = (up, j)<i<i1<j<k)-

For the ring R, 4 there is a unique minimal ideal. Therefore, the socle of the ring
R%Ais

Soc(R, ») = {0, uii]l i -'”212,1 . ..ug]l ) "”Z:Tk}}'
The socle of R, 4 is the annihilator of m. We have that Ry 4/J(Ry,4) = Ry a/m =
F, = Soc(m) and therefore R, A is a Frobenius ring.

We will now describe a Gray map for this ring. Consider the elements in R, as
binary vectors of length A and call this set A,. Order the elements of A, lexico-
graphically and use this ordering to label the coordinate positions of IFqA. Fora € Ay,
define ¥ : R, o — IFqA as follows. Forall b € A4,

Lifb C {auUl},
V(@) = [ 0 otherwise,
where ¥ (a), indicates the coordinate of ¥ (a) corresponding to the position of the
element b € A, with the defined ordering.

It follows that ¥ (a),, is 1 if each indeterminate u , ; in the monomial b with non-
zero exponent is also in the monomial a with the same exponent; in other words b is
a subset of a. Then extend ¥ linearly for all elements of R, a. Note that, generally,
orthogonality is not preserved by the map ¥.

The reason this family of rings is designed in this way is so that the image of
cyclic codes over this ring will produce quasicyclic codes, see Sect. 6.4 for a complete
description.
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4.5 Chain Rings and Principal Ideal Rings

We have generalized the ring I, + ulF; to the family of rings Ry and to R, 4. The
field of order 4 generalized to finite fields and codes over these fields have been well
studied. The remaining rings of order 4 are Z4 and F, + vIF,.

The ring Z4 generalizes to the principal ideal rings Z,,. Using the classical Chinese
Remainder Theorem these ring are isomorphic to direct products of chain rings of
the form Zp with p a prime.

We generalize the ring [F, + vIF, as follows. For integers k > 1, define

2
Ap =Folvg, va, .o v/ (V) — vi, vivy — vjv;).

This family of rings was first described in [4]. We can define the elements of these
rings as follows. Let B C {1, 2, ..., k} and then define vg = HieB v;. Wesetvy = 1.
Then each element of A, can be written in the form >, <P, ®BVB where ap € [F5,
and Py is the power set of the set {1, 2, 3, ..., k}. The ring Ay has characteristic 2

and cardinality 22 For any A, B C {1,2,...,k} we have that vavg = vaup. It
follows that

> apvp D Peve= > ( D apBc)vp.

BePy CePy DeP, BUC=D

It is easy to see that the only unit in the ring Ay is 1.

Theorem 4.9 In the ring Ay, the ideal (wy, wo, ..., wi), where w; € {v;, 1+ vi},
is a maximal ideal of Ay with cardinality 221,

Proof The ideal (vy, vy, ..., vi) consists of all elements of the form > agvg with
ay = 0. Therefore the cardinality of the ideal is half the cardinality of the ring A;.
The other maximal ideals described above are isomorphic to this ideal. Specifically,
given the maximal ideal (ay, a,, . .., ax), the isomorphism is formed by mapping a;
to v;. Therefore these maximal ideals all have the same cardinality.

The ideal is a subgroup of the additive group of the ring. Therefore, the cardinality
of an ideal must divide the cardinality of the ring. This ideal has cardinality %. Thus
it is a maximal ideal.

Denote these maximal ideals in Theorem4.9 by m;. There are 2 such ideals and
m{ = m; forall i and e > 1 which gives that its index of stability is 1. The direct
sum of any two of these ideals is Ay.

Theorem 4.10 The ring Ay is isomorphic, via the Chinese Remainder Theorem, to
F%k. Therefore the ring Ay is a direct product of finite fields and is a principal ideal
ring.

Proof Using Theorem4.9, we apply the Chinese Remainder Theorem. This gives
ok
that |Ag/m;| = % = 23;_] = 2. The ideal m; is a maximal ideal of the ring Ay,

which gives that Ay /m; = F, for all i. ]
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This theorem gives a natural Gray map, namely the inverse of the Chinese Remain-
der Theorem. This maps Ay to ]F%k. For this ring, there is a natural involution defined
by v; = 1 + v;, which we use for the Hermitian inner-product. It is this involu-
tion that gives the main use of this ring, namely to construct skew-cyclic codes as a
generalization of the skew-cyclic codes over [, + vIF;.

Example 4.2 Consider the ideal (v;). The ideal (v;) has elements of the form
24 %vs Where vy = [];., v; and i must be in A. Hence the cardinality of the
ideal is 22", Then we have v;0; = v; (1 4+v;) = v; +v; = 0. Hence C € C. Then
since |(v;)| = /A, we have that C = C* and the code is a Hermitian self-dual
code of length 1.

For chain rings in general there is an additional generalization of the Lee weight,
namely the homogeneous weight. It was introduced in [19]. Let R be a finite chain
ring where the maximal ideal is generated by y. Let |R| = ¢¢ with [R/(y)| = q.
Then the homogeneous weight is defined as:

0 x=0
wthom(x) = qgil X € ()/) - {O}
(@—=Dg? x ¢y,

Note that this weight is identical to the Lee weight for the chain ring Z,4. For
e = 1 it is not exactly the Hamming weight since non-zero elements have weight
2=1 rather than 1. This weight has found numerous applications especially in terms

of algebraic geometry codes. See [23, 32] for example.

4.6 Generalized Singleton Bound

In this section, we shall give a generalized version of the classical Singleton bound
for linear codes that applies for all finite commutative Frobenius rings. We shall
follow the proof as is given by Shiromoto in [31]. Shiromoto proves the results
for possibly non-commutative quasi-Frobenius rings. The importance of this bound
is that the algebraic structure of a code produces a sharper bound than the strictly
combinatorial bound. This will allow us to determine when a linear code can possible
be an MDS code in terms of its algebraic structure. We begin with some definitions.

Recall that a monomorphism is an injective homomorphism. An epimorphism is
amorphism f that satisfies go f = ho f implies g = h. Foracode C over aring R,
let f — rank(C) denote the free rank of C, that is the multiplicity of free R modules
in C as direct summands. Note that the free rank and the rank are only equal if the
code itself is free, that is, it is isomorphic to a k fold direct sum of R.

For a linear code C over R define P(C) as the minimum free R module such
that there exists an epimorphism from P(C) to C and Z(C) as the minimum free R
module such that there exists a monomorphism from P (C) to C. Let C* denote the
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R module Homz(C, R) where the action is defined by r¢ : ¢ — r¢(c) for all r
in R and all ¢ € Homg(C, R). There is an isomorphism ¥ between R" and (R")*
defined by ¥, (v') = [v, v']. Then we have that C* is the kernel of ¥|c — (R")*.

We now give a lemma which combines Lemmas 2 and 3 in [31] in a different
setting. We omit the proof which can be found in [31].

Lemma 4.8 Let C be a code over a finite commutative Frobenius ring of length n.
Then
f —rank(P(C)) = f — rank(Z(C*)) (4.23)

and
f —rank(Z(C)) = f — rank(P(C")). 4.24)

Moreover,

n=f—rank(CY) + f — rank((P(C*))
=f— rank(I(CJ‘)) + f — rank(C¥).

For a subset M of the coordinates of R" and a linear code C in R" define V(M)
to be {v € R" | support(v) C M} and C(M) to be C N V(M). This leads to the
following theorem which is Proposition 4 in [31].

Theorem 4.11 Let C be a linear code over a finite commutative Frobenius ring R.
Let M be a subset of N which is the coordinates of R". Then the sequence

0> CrN=Mm) 2 ct vy L comy = 0 (4.25)

of R modules is exact.

Proof Of course the inclusion map is a monomorphism. The fact that ¥ is a surjection
follows from the fact that the ring R is self-injective since it is a Frobenius ring. The
rest follows from a straightforward computation that Im(cut) is the kernel of ¥.

Theorem 4.12 Let C be alinear code of length n over a finite commutative Frobenius
ring R. Letk = min{€ | there exists a monommorphism from C to R* as R modules ).
Then

dy(C) <n—k+1. (4.26)

Proof Let M be a subset of the coordinates N of R” such that |M| = dy(C) — 1. It
follows that C(M)* = 0 which gives the following short exact sequence:

0> C*N-—M)—>Ct—> V(M) —0. 4.27)
Since the sequence splits we have

Ct=CH(N - M) V(M). (4.28)
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It follows that f — rank(C+ > |M|) which gives that
dg(C) <n—f —rank(P(C*)+1=n— f —rank(Z(C)) +1, (4.29)

by the results in Lemma4.8

If a code meets the bound in Eq.4.26 then we say that the code is a Maximum
Distance with respect to Rank (MDR) code.

Corollary 4.3 Let C be a linear code over a finite commutative Frobenius principal
ideal ring. Then dy (C) < n —rank(C) + 1.

Proof In this case min{¢ | there exists a monommorphism from C to R’ as R
modules } is the rank of the code.

From this corollary, we obtain the classical result for codes over fields which says
that dy (C) < n —dim(C) + 1.

We note that an MDR code is not necessarily MDS. For example, consider the
code {0, 2} of length 1 over Z,. The minimum distance is 1, and the rank is 1 giving,
1 =1— 1+ 1. However, the code is not MDS since 1 # 1 — % + 1.

Corollary 4.4 Let R be a finite commutative Frobenius ring and let C be a code
over R. The code C is an MDS code if and only if C is an MDR code and C is free.

Proof For a code C to be MDS we have that dy (C) = n — log|g|(C) + 1. Then, if
the code is MDR but not free, we have that |C| < |R|"~4#(©+! Hence by Eq.4.26
we have the result.
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Chapter 5
Self-dual Codes

Self-dual codes are one of the most important classes of codes. They have been
widely studied for both codes over fields and codes over rings. There are numerous
connections between self-dual codes over rings and fields and combinatorics, design
theory, and number theory. For example, one of the most successful techniques for
producing interesting designs uses self-dual codes over fields [2] and one of the
most powerful techniques for producing optimal unimodular lattices uses self-dual
codes over rings [3]. Moreover, the well known proof of the non-existence of the
projective plane of order 10 used the theory of binary self-dual codes, see [26] for
a complete explanation of this proof. In addition to their numerous applications in
mathematics, self-dual codes are interesting in their own rite. In this chapter, we shall
show when self-dual codes exist in general for codes over Frobenius rings and then
look at various connections to other mathematical objects.

5.1 Self-dual Codes Over Frobenius Rings

Self-dual codes over rings have been a widely studied object; see [31] for a detailed
description of the existing literature on self-dual codes. Part of this has been fueled
by the relationship between self-dual codes and unimodular lattices; see [8] for a
detailed description of this. In this chapter, we shall take a more general approach
to self-dual codes over rings rather than handling various rings separately. That is,
we shall establish existence of self-dual codes in a very broad sense and then look
to particular rings for various applications.

Recall that a code is said to be self-dual if C = C*. Under this definition, it is
immediate that a self-dual code must be linear since the code C* is always linear.
There are other notions of self-duality which we shall address at the end of the
chapter.
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The following lemmas are standard tools in determining when self-dual codes
exist.

Lemma 5.1 Let R be a finite commutative Frobenius ring. If | R| is not a square and
there exists a self-dual code C of length n, then n must be even.

Proof We know from Corollary 3.2 that |C||C*| = |R|. This gives that |C| = |R|.
If |R| is not a square, then |C]| is not an integer, which is a contradiction. Hence n
must be even. ]

We can say more if the alphabet is a finite field.

Lemma 5.2 Let F be a finite field. If C is a self-dual code over F of length n, then
n must be even.

Proof If C is a a self-dual code, then dim(C) + dim(C*) = 2dim(C) = n and
therefore n is even. O

Of course, this is not true when the underlying alphabet is not a field. For example,
the code {0, 2} is a self-dual code of length 1 over Zy.

We continue with an application of the Chinese Remainder Theorem. This theorem
allows us to focus on local rings in order to determine when self-dual codes exist.

The following result was first proven for codes over Zy in [15]. It was proven for
codes over Frobenius rings in [16].

Theorem 5.1 Let R be a finite commutative Frobenius ring that is isomorphic via
the Chinese Remainder Theorem to Ry x R, x --- X R. Let C; be a code over R;
andlet C = CRT(Cy, Cy, ..., Cs). Then C is a self-dual code over R if and only if
C; is a self-dual code over R; for all i.

Proof By Theorem?2.7 and Corollary 2.1 we have that |C| =[] |C;| and C*+ =
CRT(C{,Cs,...,Ch).
If C = C* then
C = CRT(C;,C5,...,CH)

and C; = Cil. IfC = Cf- for all i, then
C =CRT(C,,Cy,...,C;) = CRT(C;+, C5-, ..., CH =C*.

This gives the result. U

Example 5.1 By Theorem4.10, we have that Ay =TF[vi,vo,...,v]/
(v} = v;, v;v; = v;v;) is isomorphic via the Chinese Remainder Theorem to ]F%k.
Therefore by Theorem 5.1 we have that there exists a self-dual code over Ay if and
only if there exists a binary self-dual code. Specifically, a self-dual code over Ay

exists if and only if the length is even.
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Lemma 5.3 Let R be a finite commutative Frobenius ring and let C and D be a
self-dual codes of length n and m respectively. Then the direct product C x D is a
self-dual code of length n + m over R.

Proof Let (v,w), (V',w') € C x D. Then
[(v,w), (v, W)] = [v,V]+[w,w]=0+0=0.

This gives that C x D is a self-orthogonal code. Then we have that |C x D| = |C| -
n+m

|D| = |R|>|R|% = |R|"Z". Therefore C x D is a self-dual code of length n + m. ]

Moreover, it is immediate that if C and D are free codes, then C x D is a free
code.

Example 5.2 Consider thering Ry = Fo[uy, us, ..., uk]/(u,-z, uiuj — uju;). Recall
that |Ry| = 22 The ideal (u;) has elements of the form >, a,us where uys =
[1;ca u; andi mustbe in A. Hence the cardinality of the ideal is 227", We also have
that u? = 0, therefore the ideal is self-orthogonal. Then since the cardinality of the
ideal is o/| R and the ideal is self-orthogonal we have that the ideal is a self-dual
code of length 1. Then we can use Lemma 5.3 to obtain that there are self-dual codes
of all lengths over Ry.

In general, the key to finding free self-dual codes of even length is to find an
element « in the ring whose square is —1. It is well known that a finite field has a
square root of —1 if the characteristic of the field is 1 (mod 4). We shall exploit this
fact to find such an element in local rings with the property that the ring modded out
by its maximal ideal is a field of characteristic 1 (mod 4). We begin with a lifting
lemma.

Lemma 5.4 Let R be afinite local commutative Frobenius ring with maximal ideal m
such that R /m is a field of characteristic p, where p is an odd prime. Let S; = R /m'.
If there exists a € S; with o = —1, then there exists 3 € Sy with 3> = —1.

Proof Leta € S; with a? = —1. Let 8 = « + 7; be an element in S, |, where ; +
mT! e m'/m*!. Then we have that

(o + 'yi)2 =a’+ 2ary; + fyiz (mod m'*1)
=o® 420y (mod m'th)

=6—1+4+2ay (mod mth),

for some § € m’ since a? = —1 € §;.
Next we show that there exists an element +; suchthatd — 1 + 2ay; = —1 € S;44.
We have that

§—14+2ay =—-1 (mod m*!) < § = —2ay; (mod m'*1).
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Since p is odd, 2 is relatively prime to p. Hence the element 2 is a unit. Since

a? = —1 (mod m), this implies that o is a unit in R/m. Let 7; = —6(2a)~!. Then
a; +mitl e mi/mit! and (8)? = (« +’y,-)2 =0 —1+2aq; =—1 in §;;; since
elements in m'*! are 0 in S ;. O

Corollary 5.1 Let R be a finite local commutative Frobenius ring with characteristic
congruent to 1 (mod 4). Then there exists an o € R with o* = —1.

Proof The field R/m has characteristic 1 (mod 4) and hence has a square root of
—1. Then, by induction using Lemma 5.4, we have the result. (I

Notice that this result does not necessarily hold when R/m has characteristic 2.
For example, Z, is a local ring and Z4/(2) = F,, which has a square root of —1, but
the ring Z4 does not.

We can use this result to get the following theorem.

Theorem 5.2 Let R be a finite local commutative Frobenius ring with characteristic
congruent to 1 (mod 4). Then there exists self-dual codes for all even lengths over
R.

Proof By Corollary 5.1, the ring R has an element o with o> = —1. Then the code
generated by (1, o) is a self-dual code of length 2. Then, by applying Lemma 5.3,
inductively, we have the result. (]

Lemma 5.5 Let R be a finite local commutative Frobenius ring with maximal ideal

m such that R/m is a field of characteristic p, where p is an odd prime. Let S; =

R/m'. Ifthere exists o, 3 € S; with o® + 3> = —1, then there exists v, § € S;, with
2 82

v+ 6 =—1L

Proof Let o, 3 € S; with o®> + 32 = —1. Let y = a + ¢;, § = 3+ (; be elements
in S;; 1, where ¢ + m'™! € m’/m'*! and ¢; + m'*! € m’ /m/*!. Then we have that
o + 3 + 206 + 28 + € + ¢ (mod m't)

= o’ + 3>+ 2a€ + 206G (mod m'th)
=0—1+2a¢ +26¢ (mod m'*h.

(a+e)*+(B+G)?

Next we show that there exist elements ¢;, (; suchthat 0 — 1 + 2ae; +206¢( = —1 €
Si+1. We have that

—1=0—1+2a€ +208 — 0 = =206, — 26 (mod m'+1).

We know at least one of o and 3 is not 0. Without loss of generality, assume « is not
0. Then take (; = 0 and notice that 2 and « are units we take ¢; = —%. This gives
our desired result. (|

Corollary 5.2 Let R be a finite local commutative Frobenius ring with characteristic
congruent to 1 (mod 4). Then there exists o, 3 € R with o*> + > = —1.
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Proof The field R/m has characteristic 3 (mod 4) and hence v, § with 4> 4+ 6% =
—1. Then by induction using Lemma5.5 we have the result. O

This result leads naturally to the following theorem.

Theorem 5.3 Let R be a finite local commutative Frobenius ring with characteristic
congruent to 3 (mod 4). Then there exists self-dual codes for all lengths congruent
to 0 (mod 4) over R.

Proof By Corollary 5.2, the ring R has elements o, 3 with a? + 32> = —1. Then the
code C = ((1,0, «, 0), (0, 1, =3, —)) is a self-dual code of length 4. Then, by
applying Lemma 5.3 inductively, we have the result.

Finally, we can obtain our main result of this section.

Theorem 5.4 Let R be a finite commutative Frobenius ring that is isomorphic via
the Chinese Remainder Theorem to R; x Ry x --- X R;, where R; is a local ring.
Then if w; is the maximal ideal of R; and R; /m; has characteristic 1 (mod 4), then
there exists self-dual codes over R for all even lengths. If there exists i where R; /m;
has characteristic 3 (mod 4), then there exists self-dual codes over R for all lengths
congruent to 0 (mod 4).

Proof The result follows immediately by applying Theorem 5.1 to Theorems 5.2 and
5.3. O

For chain rings, the situation is easier to handle. In a chain ring, the maximal
ideal is m = (). Then there exists a minimal positive integer e with v* = 0, which
is called the index of niloptency. Every ideal in a chain ring is of the form () for
some i. This leads to the following.

Theorem 5.5 Let R be a finite commutative chain ring with index of nilpotency e
and maximal ideal m = (). If e is even, then a = (y?) is a self-dual code of length
1.

Proof We have that y2y2 = Oandsoa C a'. Assume thata # a’. Then at = (/)

with j < 5. Then 77?7/ = 0 contradicting that e is minimal. Therefore a = a* and
is a self-dual code of length 1.

This leads immediately to the following corollary.

Corollary 5.3 Let R be a finite commutative chain ring with index of nilpotency e.
If e is even, then there exists self-dual codes of length n for all n.

Proof The result follows immediately by applying Lemma 5.3 to the self-dual code
of length 1 in Theorem5.5. (]

Example 5.3 1f k is a positive integer greater than 1, then (k) is a self-dual code in
Zy>. Direct products of this code give self-dual codes of all lengths over Z;2.



64 5 Self-dual Codes

If a is a self-dual code of length 1 it must satisfy |a|> = |R|. Therefore, it is
necessary for |R| to be a square for a self-dual code of length 1 to exist. However,
it is not necessary for the ring to be a chain ring. For example, consider the ring of
order 16, Z4[x]/(x?*). Here (2), (x) and (2 + x) are all self-dual codes of length 1,
but the ring is not a chain ring.

Theorem 5.6 Let R be a finite commutative Frobenius ring of order k>. If there
exists an odd number of ideals of order k, then there exists a self-dual code of
length 1.

Proof Since any ideal in R satisfies (aH) = aand |a||at| = |R]|, each ideal of order
k is matched with a unique ideal of order k as its orthogonal. Since the number of
such ideals is odd, at least one ideal must be its own orthogonal and therefore is a

self-dual code of length 1. O

Example 5.4 1In the ring of order 16, Z4[x]/ (x2 + 2x), we have three ideals of order
4. Here (x)* = (2 + x). Then the remaining ideal of order 4, namely (2), is a self-
dual code of length 1.

5.2 Connections to Lattices

We shall describe a connection between self-dual codes over rings and unimodular
lattices. This has been one of the most productive areas of research for codes over
rings since the results obtained by studying codes over rings have, in general, been
much stronger than the results obtained by studying codes over finite fields. For
example, while the extremal lattice in 24 dimensions can be obtained from a binary
code, namely the extended Golay code, the connection will not produce an extremal
lattice in 72 dimensions. This is because the maximal minimum norm obtainable
from a binary code is 2. However, such an extremal lattice can be obtained from a
code over the ring Z4, see [20] for a description.

We shall give the usual definitions of lattices. For a complete description of lattices,
especially in relation to codes, see [8].

Let " be an n-dimensional space where [ is an infinite division ring. We attach the
standard Hermitian inner-product, namely v - w = > v;w;. Notice that we reserve
the notation [v, w] for codes and use the alternate notation when dealing with lattices.
Let O denote a ring of integers in F. An n-dimensional lattice L in F" is a free Z-
module spanned by n linearly independent vectors.

The fundamental volume V(L) of L is | det G|, where G is a generator matrix
formed by the n linearly independent vectors which generate L.

The dual lattice L* is givenby L* = {v e " | v-w € Z forall w € L}. A lattice
L is integral if L € L* and is unimodular if L = L*. If the norm v - v is in 20 for
all v € L, then the lattice is said to be even and it is odd otherwise.

When F =R, we have that O =7Z and a = a. When F = C, we have that
O =Z[i] and a + bi = a — bi. When F = H, we have that O = Z[i, j, k] and
a+bi+cj+dk=a—>bi —cj—dk.
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The minimum norm of a lattice L is the smallest norm among all nonzero vectors
of A.

We shall describe three families of rings that will be useful in constructing uni-
modular lattices. The first is the well known family Z,;. The second is the family

Oy = Zoylil/(i* + 1). (5.1)

The first ring in this family, &, is actually isomorphic to R; = F, 4 ulF, where i
corresponds to 1 + u. This family of rings was first studied in [10]. We attach the
standard involution to this family where a + bi = a — bi. The associated Hermitian
inner-product is defined with respect to this involution. That is [v, W]y = >_ v;w;.
For this ring, we are not concerned with the Euclidean dual.

The third family is

S = Tkl 7, k1) G2 41, 72+ 1, k% 4+ 1, ijk + 1). (5.2)

This family of rings was first studied in [9]. Note that unlike most of the rings in this
text, the ring is not commutative except when k = 1. However, we shall describe an
inner-product on the ring that makes it act in a way that is very similar to commutative
rings.

For X7 we attach the inner-product [v, w]y = > v;w;, where

a+bi+cj+dk=a—>bi —cj—dk.

Notice that the usual computation for the quaternions gives that o3 = @3 anda = «
for all o, B € X}.

In general, for non-commutative rings, we need both a left and a right orthogonal,
however, the following lemma eliminates the need for this.

Lemma 5.6 Letv,w € X}. Then we have that [v, wlg = Oifand only if[w, V]g =
0.

Proof 1f [v, w]ly = 0, then > v;w; = 0. Then > v;w; = 0 = 0, which gives that
> w;v; = 0. The other direction is the same computation where the roles of v and
w are reversed.

It follows from the lemma that we can make a single definition of the orthogonal
rather than a left and right diagonal. Namely, we let C# = {v e X} | [v,w]y =0
for all w € C}. For this ring, we are not concerned with the Euclidean dual.

For both ®; and X} we define the norm of an element a to be N(a) = aa.
Then N(v) = > N(v;). For an element a € Z,; we define its Euclidean norm to be
min{a?, (2k — a)?} where the squares are read modulo 4.

Originally, Type I and Type II codes were defined for binary self-dual codes.
Namely a Type II code was a binary self-dual code where all of the weights were
doubly-even and a Type I code was a self-dual code that was not Type II. We shall
now generalize this definition to the rings in question.
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Definition 5.1 A code over Zy; is Type Il if N(v) =0 (mod 4) for all v € C and
is Type I otherwise. A code over © is Type Il if N(v) = 0in Oy forall v € C and
is Type I otherwise. A code over X is Type Il if N(v) = 0in Xy forall v € C and
is Type I otherwise.

Construction A was first described for binary codes; see [8] for a description. It
was extended to codes over Z,g in [3], to codes over @, in [10], and to codes over
sz in [9]

Let C be a code over Zy, @y, or Xy. Let F be one of R, C, or H and let
O be the corresponding ring of integers. Let pg be a map from R, where R is
one of Zyy, Oy, or Xy, to the corresponding ring of integers sending 0, 1, ...,k
to0,1,....,kand k+1,...,2k—1to 1 —k,...,—1, respectively and sending
i, j, k to the corresponding elements of the same name in C and H. Then extend p
coordinatewise to R". Note here that we have carefully chosen this description of
these rings to facilitate construction A.

Define the following lattice from a code C:

1
V2k

The following appear in [3, 9, 10]. We denote the minimum Euclidean weight of
acode C by dg(C).

Ap(C) = {p(C) + 2k0O"}. (5.3)

Theorem 5.7 If C is a self-dual code over Zyi, then Ar(C) is a real unimodu-
lar lattice and Ar(C) is even if C is Type II. The minimum norm of the lattice is
min{%, 2k}. If C is a self-dual code over ®y,,, then Ac(C) is a complex uni-
modular lattice and Ac(C) is even if C is Type II. The minimum norm of the lattice
is min{dEz(kC) , 2k}. If C is a self-dual code over Xy, then Ay(C) is a Quaternionic
unimodular lattice, and Ay (C) is even if C is Type II. The minimum norm of the

lattice is min{‘é—i, 2k}.

Proof Let n denote the length of the code. We shall prove all three cases at once. Let
v,w € Ap(C). We have that v = \/Lz—k(vo +2kv))andw = ﬁ(wo + 2kw,), where
vo, Wo € C and wy, wy € 2kO. It follows that

1
V-W= ﬁ(vo-wo—i—Zkvo-wl + 2kvy - wo + 4k*v; - wy. 5.4)

Then since [vg, W] = O in the rings, this implies that v, - wy € 2kO and we have
that v - w € O. Hence the lattice is integral.

Then we have that V (2kO") = (2k)" and |v/2k A(C)/2kO"| = (2k)?. This gives
that V (v/2kA(C)) = (2k)%, which gives that V (A(C)) = 1. Therefore, the lattice
is integral with volume 1 and hence is unimodular.
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If C is Type 11, then we have that

1
V-V= ﬁ(Vo Vo + 2kvo - V| + 2kv| - vo + 4k%v, V1)
1
= ﬂ(Vo Vo + 2k(Vo - Vi + Vo - Vi + 4KV - V)
1
= 57 (Vo Vo +2k(2r) + 4>y - vy).

Then since N (vg) is 0 modulo 4k, we have that this norm is in 20. Therefore, if the
code is Type II, then the lattice is Type II as well.
1

Finally, if v = vg 4 2kv; as before, it is immediate that v -v > Vo

which gives that minimum norm is min{‘é—z, 2k}. O

Yo

-
N

We have seen that a quaternary code can be used to construct a real extremal
lattice in R7? and a binary code can be used to construct a real extremal lattice in
R?*. In general, we would like to know exactly when we are able to do this.

Question 5.1 This question has three parts.

e Determine for which k and » can a real extremal lattice in R” be constructed from
a code over Zy; using the map Ag.

e Determine for which k and n can a complex extremal lattice in C" be constructed
from a code over ®y; using the map Ac.

e Determine for which k and n can a quaternionic extremal lattice in H" be con-
structed from a code over X using the map Ap.

5.3 Connections to Binary Self-dual Codes

In this section, we begin by giving a very brief explanation of the relation between
invariant theory and self-dual codes. The classical relationship has been well covered
in [27] and much expanded connection has been explained in [30]. We only include
here what we need in order to describe some open problems.

If C is a self-dual code over aring R with |R| = s, then the weight enumerator is
held invariant by the MacWilliams relations and hence by the following matrix:

I (1s—1
w=7(1"3):
This is because the weight enumerator of the code is the same as the weight enumera-
tor of the orthogonal code. In other words, M sends (x, y) to %(x + (6 —Dy,x—y)
which is precisely the action of the MacWilliams relations. Hence, if W (x, y) is
the weight enumerator of a self-dual code, then acting with this matrix will give
We(x, y).
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We can then apply the following famous theorem of Molien, see [27].

Theorem 5.8 (Molien) Define the series ®(\) = > a;\' for a group G, where
there are a; independent polynomials held invariant by the group. For any finite
group G of complex m by m matrices, @ () is given by

1 1
D) = @;W—M)’ (5.5)

where I is the identity matrix.

The invariants for this group were found in Chap. 19 of [27] long before anyone
was interested in codes over rings. They are the following.

If C is a self-dual code over a ring of size s, then the weight enumerator is held
invariant by the matrix corresponding to the MacWilliams relations

()

If s is not a square, then it is also held invariant by

-1 0
(v'5)
Then it follows that the weight enumerator of a self-dual code over a ring of size
s isin C[x% + (s — 1)y?, y(x — y)]. See [27], Chap. 19 for a complete description
modulo the fact that the MacWilliams relations for the Hamming weight enumerator
for a code over a Frobenius ring of size s are identical to the classical MacWilliams
relations.

For a binary Type II code, we can say more. The weight enumerator is also held
invariant by the following matrix:
10
0i)’

where i is the complex square root of —1 since the Hamming weight of every vector
is a multiple of 4.

The group G ; of matrices holding the weight enumerator invariant has order 192,
and applying the classic theorem of Molien, we have that

1
(1= A$)(1 — A2

P\ = =14+ AN 22 42032 4 (5.6)
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Table 5.1 The weight enumerator for a Type 11 [72, 36, 16] code

C; i

1 0,72
249849 16, 56
18106704 20, 52
462962955 24,48
4397342400 28, 44
16602715899 32,40
25756721120 36

The generating invariants can be found easily by a straightforward computation
which gives the well known Gleason’s Theorem first proven in [24] by Gleason. The
weight enumerator of a Type II self-dual code is a polynomial in C[x® + 14x*y* 4
¥ty = yHh.

It is a direct consequence of this theorem that if C is a Type II [, k, d] code then

d< 4L2”—4J +4. (5.7)

Any code that meets this bound is called an extremal code. Any code with para-
meters [24k, 12k, 4k + 4] is such an extremal code. It is not known whether these
codes exist until 24k > 3720 at which a coefficient becomes negative. The existence
of these codes has been a major question driving the study of binary self-dual codes.

For length 24, there is a [24, 12, 8] code, namely the well known extended Golay
code. For length 48, the code also exists and is called the Pless code. See [31]
for a description of both. Hence, the first unknown case is whether there exists a
[72, 36, 16] code.

It first appeared in print as an open question in [33]. In [27] it was Research
Problem 19.3. Despite being a celebrated problem since the 1970s, it remains an
open question. A complete description of various approaches to the problem can be
found in [18].

Question 5.2 Does there exist a Type II [72, 36, 16] code?

It is then easy to determine the weight enumerator for a putative [72, 36, 16] Type
II code. It is given in Table 5.1.

It is well known that the existence of a Type II [72, 36, 16] code is equivalent to
the existence of a Type I [70, 35, 14] code and that if these two codes exist, then
5-(72, 16, 78) designs exist.
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The more general version of this question is the following.

Question 5.3 For which k does there exists a doubly-even self-dual binary [24k, 12k,
4k + 4] code?

The reason we describe this problem here is that a great deal of work has been
done in an attempt to find a code over a ring which may have a Gray image that
would be the long sought after code. Up to this point, the technique has not solved
the problem, but it has found many interesting binary codes.

One of the difficulties of this problem can be seen with respect to the very close
relationship between the theory of self-dual codes and the theory of unimodular
lattices as we have seen in Sect.5.2. Because of this very close relationship there is
often a parallel proof for similar results in both settings. For example, the proof of
a bound on the minimum norm unimodular lattices often has a corresponding proof
for a similar bound on the minimum weight of a code. Additionally, a non-existence
proof of a lattice often has a corresponding proof for the non-existence of a code
with related parameters. An important example of this is the work done by Conway
and Sloane with respect to the shadow of codes and lattices, see [6]. It has been
shown in [29] that an extremal lattice of length 72 exists. From the perspective of
coding theory, this means that if the [72, 36, 16] code does not exist, then the proof
would have to be significantly different than the usual proofs in that it can have no
corresponding proof for the extremal lattice. This fact eliminates many of the usual
tools that coding theorists employ in similar situations.

Another reason for attempting to construct binary self-dual codes from codes over
rings is that the classification of binary self-dual codes has been a productive and
important area of research in coding theory for decades. See [5, 32] for early work
in this vein and [13] for later work. In terms of finding binary self-dual codes from
rings, see [19, 22, 23] for example.

Theorem 5.9 Let C be a self-dual code over the ring Ry of length n and let ¢y be
the Gray corresponding map. Then ¢, (C) is a binary self-dual code of length 2*n.

Proof If C = C* we have ¢ (C) = ¢(Ct) = ¢4 (C)* by Lemma 4.7. O

Definition 5.2 A code C over a finite commutative Frobenius ring R is said to be
formally self-dual if We(x, y) = Wee(x, y).

Example 5.5 Let R be a finite commutative Frobenius ring. The code C generated
by (1, 0) has orthogonal generated by (0, 1). Hence, C is a formally-self-dual code.

Since the weight enumerator of a formally self-dual code over a ring of cardinality
s is held invariant by the action of the MacWilliams relations, it must be an element
of Clx* + (s — )y, y(x — y)I.

Question 5.4 For any polynomial p(x, y) of C[x2 + (s — 1)¥?, y(x — y)] with non-
negative coefficients, determine if there is a code C over a ring of size s with
We(x, y) = p(x, y).
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In a more restricted setting, one of the most important questions has been the
following.

Question 5.5 This question splits into two cases.

1. (Type I) For any polynomial p(x, y) of C[x? + y?, y(x — y)] with non-negative
coefficients, determine if there is a binary code C with W¢(x, y) = p(x, y).

2. (Type II) For any polynomial p(x, y) of C[x% + 14x*y* + y8 x*y*(x* — yH4]
with non-negative coefficients, determine if there is a binary code C with
We(x, y) = p(x, y).

Notice that this important question is not only looking for codes which are formally
self-dual (in terms of the definition we have given). It is possible for a code to
be the non-linear image of a quaternary code and have a weight enumerator in
the desired space. The heart of this question is trying to determine when putative
optimal codes exist. For example, if a putative optimal code did not exist, but it
was difficult to prove the non-existence it might be possible that a non-linear code
with that weight enumerator existed. This would make any proof based solely on the
weight enumerator of the putative code impossible. In this vein we have the following
theorem.

Theorem 5.10 Let C be a self-dual code over Zs. Then ¢(C) has a weight enumer-
ator fixed by the action of the MacWilliams relations.

Proof Let C beaself-dual quaternary code. Thensince C = C+,wehave L¢(x, y) =
Lei(x,y) = ﬁLc(x +y,x —y) by Theorem4.1. Then since Lc(x,y)=
Wy, c)(x, y), we have the result. g

As an example of this theorem consider the quaternary self-dual codes of length
less than or equal to 8 as given in [7]. Their images are determined in [12] and are
presented in Table5.2. Notice that the image can be both linear or non-linear and
self-dual or not self-dual, but all have weight enumerators that are fixed by the action
of the MacWilliams relations.

Theorem 5.11 Let C be a self-dual code over the ring Sy or Ty of length n and let
¢r+1 be the corresponding Gray map. Then ¢y, (C) is a binary code of length 2¥+'n
which has a weight enumerator fixed by the action of the MacWilliams relations.

Proof By Theorem4.7, we have that i (C) is a quaternary self-dual code. Then
Ok+1(C) = ¢ (C)), where ¢ is the Gray map defined for Z4. Since 14 (C) is self-
dual, we apply Theorem 5.10, and we have the result. (]
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Table 5.2 Binary images of self-dual codes over Zy

Code Length Binary image Orthogonality

Ay 1 [2, 1, 2] Linear code | Self-dual

g 4 [8, 4, 4] Linear code | Self-dual

Dga 6 [12, 6, 4] Linear code | Not self-dual

& 7 (14,27, 4) Non-linear |Not self-dual
code

Dge 8 [16, 8, 4] Linear code | Not self-dual

Es 8 (16, 28, 4) Non-linear |Not self-dual
code

Ks 8 [16, 8, 4] Linear code | Self-dual

Ky 8 [16, 8, 4] Linear code | Self-dual

Os 8 (16, 28, 4) Non-linear | Not self-dual
code

Qg 8 [16, 8, 4] Linear code | Not self-dual

5.4 Connections to Designs

Self-dual codes and designs have had a symbiotic relationship. Namely, self-dual
codes have been used to construct designs and designs have been used to construct
self-dual codes. The most powerful tool in constructing designs from codes is the well
known Assmus-Mattson theorem which follows, see [2] for a complete description
of this theorem.

Theorem 5.12 (Assmus-Mattson) Let C be a code over F, of length n with minimum
weight d, and let d* denote the minimum weight of C*+. Let w = n when q = 2 and
otherwise the largest integer w satisfying w — (wq%"l_z) < d, define wt similarly.
Suppose there is an integer t with 0 < t < d that satisfies the following condition:
for Wer(Z) = B;Z!, atmostd — t of B1, B, ..., B,_; are non-zero. Then for each
iwithd <i < w, the supports of the vectors of weight i of C, provided there are any,
yield a t-design. Similarly, for each j with d+ < j < min{w™, n — t}, the supports
of the vectors of weight j in Ct, provided there are any, form a t-design.

As an example of the power of this theorem, consider the binary [24, 12, 8]
extended Golay code. Its weight enumerator is W¢ (1, y) = 1+ 759y% + 2576y!2 +
759y'6 + y2* By the above Assmus-Mattson theorem, the vectors of all weights hold
5-designs. In fact, it is easy to prove that any extremal [24k, 12k, 4k + 4] Type 11
binary code has the property that all of its non-trivial weights hold non-trivial 5-
designs.

Note however that the theorem is stated for codes over a finite field. Some small
generalizations for codes over rings have been made in this area, for example over
Z4 in [34]. However, as of yet, no really interesting results have come by finding
designs in the codes over rings. Hence, we state this as a question.
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Question 5.6 Determine a technique for finding interesting designs using codes over
rings.

There are well known constructions of self-dual codes over fields from designs;
see [1] for a description. There have been some constructions of self-dual codes over
rings, for example for Z4 in [21]. In general, these constructions required that there
is a prime p that sharply divided the order of the design and then this prime was the
characteristic of the underlying field. In [14], a construction was given, that did not
require that there was a prime that sharply divided the order of the design, for self-
dual codes over Z,,. This was a generalization of the construction given in [11, 25].
In Glynn’s construction the design was a finite projective plane and heavily used the
geometry of that plane. The generalized construction in [14] did not require that the
design was a plane, but rather a design from the broader class of symmetric designs.
We shall now generalize this construction for finite commutative Frobenius rings.

We recall the definition of a design. A r — (v, k, A) design is a set of v points,
with blocks of size k, such that any ¢ points are incident with A blocks. A symmetric
designisa?2 — (v, k, \) design where the number of points is equal to the number of
lines and the points and blocks have identical incidence properties. In a symmetric
design, the number of points incident with a block is n 4+ A and the number of blocks
incident with a point is n + A.

Let L be a block. Through each point incident with the block there are (n + A — 1)
blocks other than L. In this counting each block is counted exactly A times. Therefore,
in a symmetric design we have that the number of points is v = w + 1and
k = n 4 X, where n is the order of the design.

When A = 1, a symmetric design is a finite projective plane. When A\ =2, a
symmetric design is a biplane.

Let D = (P, B,Z) be a (v, k, \) symmetric design. If 5’ = {b’ | b’ is the com-
plement of a block in B}, then the complementary design D¢ = (P, B',7) is a
(v,v —k, b —2r — X\), where b is the size of the blocks.

For this construction, we let D be a symmetric design of order n and we let m be
an integer n 4+ 1. We let R be a finite commutative Frobenius ring with characteristic
m.

Denote the point set of D by P and the block set by B. We denote the points by
P ={q1,q2, ....qp} and the blocks by B = {{}, £, ..., £;p|}. The ambient space
for the codes we consider is R7V5.

For a point g € P, we denote the characteristic function of the point by x,. That
is, X, is the vector that is 1 at the coordinate corresponding to ¢ and O elsewhere.
Similarly, we let 1), be the vector that is 1 at the coordinate corresponding to £, if ¢
is incident with £, and O elsewhere.

Define the following vector:

A(gi,q)) = (Xi — Xj, Vi —¥)). (5.8)

The weight of A(g;, g;) is 2n + 2 where n is the order of the design.
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The following lemma is a direct generalization of the lemma in [14].

Lemma 5.7 Let D be a symmetric design of order n and let m be a positive integer
dividing n + 1. Let R be a finite commutative Frobenius ring with characteristic m.
Then we have that

[Agi. ), Algir. qj)] = 0. (5.9)

Proof We have three cases to consider.
Case 1: In this case, we assume that the points g; are 4 distinct points. In this case,
the supports of the vectors x(g;) are distinct. Then we have that

[(qu; - 17Z]6],')7 (¢q,¢ - wqu)] = [wqi’ wqif] - [qu ,l/]qu] - [1/JL],'7 wqir] + [1/1q,-v wqﬂ]
=A-A-A+2A=0.

Case 2: In this case, we assume that ¢; = g;» and that g; # g;. Then we have that

[(qu - qu)s (Xqi/ - Xq,»r)] =1, (5.10)

since the support of x(g;) is the support of x(g;/) and the other supports are disjoint.
This give that

[(wq,» - wq,’)v (¢q,r - wqj/)] = [wq," wq,'] - [wq," wqj/] - [wqjv "/)qi] + [wqj’ ¢qj/]
=m+AN)—-A=-A+A=n.

Then we have that

(X = Xg,)» g, = Vg ))s ((Xg = Xgp0)s (g — g N1 =14+n=0.  (5.11)

Case 3: For the third case, we assume g; = g;- and g; # ¢g;-. In an argument similar
to Case 2, we obtain

(X — Xa;)s (g — ¥g)), ((Xgy — Xg;)s (Wg — g, N1 = —(1 +n) =0.
(5.12)
O

Note that in this lemma nothing was assumed about the finite Frobenius ring
except that it had a characteristic dividing n + 1.
We are now in a position to construct a self-orthogonal code. Define Cg (D) to be

Cr(D) = (A(gi-q)) 1 9i-q; € P). (5.13)

‘We note that this code is self-orthogonal by Lemma5.7.
From this code we can construct self-dual codes in a variety of ways depending
on the structure of the ring R.
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Define the matrix M, to be the |P| — 1 by 2|P| matrix where the i-th row of Mp
is A(q1, gi+1). We have that the rows of M are mutually orthogonal over the ring
R when the characteristic of the ring divides n + 1. By definition we have that Mp,
generates Cg (D). Moreover, the structure of M gives that the code is a free code.
It follows that the cardinality of Cg(D) is |R|'FI=1.

We have proven the following.

Lemma 5.8 Let D be a symmetric design of order n with m an integer dividing
n+ 1. Let R be a finite commutative ring with characteristic m where m divides
n 4 1. We have that Cg(D) is a self-orthogonal, linear code with |R|P1=! elements.

We define two additional vectors. Define P to be the vector that is 1 on the
coordinates corresponding to the points and 0 on the coordinates corresponding to
the blocks. Define L to be the vector that is O on the coordinates corresponding to
the points and 1 on the coordinates corresponding to the blocks.

We have that both vectors are in the orthogonal of Cr(D). Specifically, P €
Cr(D)*since [A(gi,q;), P1=1—1=0and L € Cg(D)" since [A(gi. q;), L] =
n—n=0.

In order to make aP + (L a self-orthogonal vector, we need [P + SL, aP +
BL] = 0 which means that (o2 + 32)|P| = 0.If |P| # 0 (mod m), this means that
a? = —3? so that the ring must have an element ~y such that 4> = —1.

If the ring R has v with v> = —1 and m does not divide v, then we define the
following code:

Er(D) = (Cr(D), P +~L). (5.14)

We cannot use this description of E g (D) when m divides v and A — 1 is the square
root of —1 since then this the vector will already be in Cg (D). We explain this now.
In a symmetric design, we have

D A@GLg) = D (g — Xa))» (g — g))
i=2 i=2
=@w-1-1,—-1,..., =1, a(), a2), ..., a®)),

where
(i) = —n — A if ¢; is not incident with g
" |v—n—X if¢ isincident with ¢;.

Lemma 5.9 Let D be a symmetric design of order n withm an integer dividingn + 1.
Let R be a finite commutative ring with characteristic m where m divides n + 1. If
m divides v, then (—1,—1,...,—1,—n—\,—n—\,...,—n —X\) € Cr(D).
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Proof Using the previous computation when m divides v, we have

v
ZA(ql,qi) =(=1,—1,....,—l,—n—=X\,—n—X\,...,—n—N).  (5.15)
i=2

O

Multiplying the above vector by —1 we have (1, 1, ..., l,n+ A, n+ X, ...,n+
A). Then we have (n + \)? = (A — 1)2.
This leads to the following.

Lemma 5.10 Let D be a symmetric design of order n with m an integer dividing
n+ 1. Let R be a finite commutative ring with characteristic m where m divides
n+ 1. If m divides v and (A — 1) = /—1, then P + /—1L € Cg(D).

In this case, when P 4+ /—1L € Cg(D), we can define
Ex(D) = (Cr(D), P+ L). (5.16)

We know that P + Lisin Cg(D)*. Then[P + L, P + L] = 2v = 0, and this gives
the following.

Theorem 5.13 Let D be a symmetric design of order n with m an integer dividing
n + 1. Let R be a finite commutative ring of characteristic m. If m does not divide v
or \=1) is not /=1 and /=1 € Z,,, then Ex(D) is a self-dual code over Z,, of
length 2|P|. If m does divide v and (\ — 1) = =1, then E! (D) is a self-dual code
over L, of length 2|P]|.

Proof The code is self-orthogonal by construction and its cardinality is m|Cg(D)| =
m!Pl. O

Now we shall give a construction when the ring does not have a y with v> = —1,
but m is a square where m is the characteristic of the ring. Set m = g2 and define
Fr(D) = (Cr(D).qP,qL).

Theorem 5.14 Let R be a finite commutative Frobenius ring of characteristic m.
Let D be a symmetric design of order n with m = g° an integer dividing n + 1. The
code Fgr(D) is a self-dual code over R of length 2|P]|.

Proof Ttisimmediate that[q P, g P] = g> = Oand[¢gL, gL] = q*> = 0. We have that
|Fr(D)| = q(q(ICr(D)])) = m|Cr(D)| =m”!, so Fr(D) is a self-dual
code. (I
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5.5 Linear Complementary Dual

We shall now consider another family of codes, which in some sense are similar
to self-dual codes in that they are described in terms of their relationship with their
orthogonal. Specifically, it is the family of Linear Complementary Dual (LCD) codes.
Linear complementary dual codes were introduced by Massey in [28] and they
give an optimum linear coding solution for the two user binary adder channel. In [4],
these codes were used in counter measures to passive and active side channel analyses
on embedded cryto-systems. Given the importance of self-dual codes and LCD codes,
it seems natural to generalize these two families to codes whose intersection with its
orthogonal has a given cardinality. We make such a generalization in this section.

Definition 5.3 A code C over a finite commutative Frobenius ring is a Linear Com-
plementary Dual (LCD) code if CN C L ={o0}.

Example 5.6 The trivial code R" has dual {0} and hence is an LCD code. The code
generated by (1, 0) has an orthogonal generated by (0, 1) and is an LCD code.

We can now generalize some results given first in [17].

Lemma 5.11 Let vy, va, ..., Vi be vectors over a finite commutative Frobenius ring
suchthat[v;, v;] = 1foreachiand|v;,v;] = Ofori # j.ThenC = (v{, Va, ..., V)
is an LCD code over R.

Proof A vector in the code C is of the form w = >_ «;v;. If w is non-trivial, then
there exists a j such that a;; # 0. Then we have that [v;, w] = a;; # 0. This gives
thatw ¢ C L. Therefore, we have that no non-trivial vector in C is also in C+, which
gives that Hull(C) = {0}. ([l

As an immediate consequence we have the following corollary.

Corollary 5.4 Let G be a generator matrix for a code over a finite commutative
Frobenius ring. Then GGT = I, and G generates an LCD code.

If the ring is a field then we can also say that if det (GGT) # 0 then G generates
an LCD code.

One way to construct these codes using designs is given in [17].

We recall that a Balanced Incomplete Block Design (BIBD) with parameters
t — (b, v, k,r, A) is a set of v points, with blocks of size b, k points incident with
each block, r blocks incident with every point, and through any ¢ points there are A
blocks.

Theorem 5.15 [17] Let M be the incidence matrix of a 2 — (v, k, A\) BIBD, where
the columns are indexed by the points. If rk(r — \) = 0 (mod p), then M generates
an LCD code over a field of characteristic p.
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Proof From Theorem 1.4.1 in [1], we have that
detMMT) = rk(r — \)*~\.

Therefore, if rk(r — \) # 0 (mod p), we have that the row span of M is an LCD
code. ([l

We can also use the family of rings Ry, Sx, and T to construct LCD codes. Recall
that 1/ is their associated Gray map.

Theorem 5.16 Let C be an LCD code over Ry. Then 1, (C) is an LCD code over
Fy. Let C be an LCD code over Sy or Ty. Then 1 (C) is an LCD code over Zy.

Proof This follows from the fact that, in each case, 1, (C1) = 1 (C)*. O

Given the importance of self-dual codes and LCD codes, it seems natural to
generalize the idea of codes defined by their relationship to their duals. We begin
with the following definition, which is inspired by the definition given in [2].

Definition 5.4 Let C be a code over a finite commutative Frobenius ring. The Hull
of the code is defined to be Hull(C) = C N C*.

Definition 5.5 Let C be a code over a finite field. Then we say that a code is an
i-dual code if Hull(C) has dimension i.

Then for a code over a finite field, we have that an %—dual code of length n is a
self-dual code and a 0-dual code is an LCD code.

For codes over arbitrary rings we no longer have the notion of dimension; so we
make the following generalized definition.

Definition 5.6 Let C be a code over a finite commutative Frobenius ring. Then we
say that a code is an M-dual code if |Hull(C)| = M.

Consider a code of length n over a finite commutative ring R generated by the
matrix (I;|A). This code has |R| elements and is a free code. The code generated
by (—AT|I,_;) has |R|"* elements. The inner-product of the i-th row of (I;|A)
and the j-th row of (—A”|I,_y) is —A;j + A;j = 0. These two facts give that the
code ((—=AT|I,_y)) = ((Ix]A))*. From this result we can give the following theorem,
which serves as an effective computational technique.

Theorem 5.17 Let C be a code over a finite field of length n generated by (Ii|A).
Let D be the code generated by

I, A

AT 1, )"

Ifdim(D) = s, then C is an (n — s)-dual code.
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Proof In this scenario we have that type(C) = {ko, 0, ..., 0} and type(C*) = {n —
ko,0,...,0}.  We have that dim(C)+dim(Ct)—dim(Hull(C)) =
n —dim(Hull(C)). This gives that dim(Hull(C)) = n — s and C is an n — s-dual
code. O

For a code over a finite field, this simplifies to the fact that if the generated code
has dimension s, then C is an n — 2-dual code. As an immediate consequence, if the

code generated by
I, A
AT I,

has dimension 7 then the code is an LCD code and if it has dimension k with k = 5
then the code is self-dual.
We can generalize Theorem 5.17 as follows.

Theorem 5.18 Let C be a code over a finite commutative Frobenius ring of length
n generated by (I;|A). Let D be the code generated by

I A
AT I, )

If(D)| = S, then C is a B -dual code.

Proof We have |D| = ‘IL,CJZ‘IC(Z‘” This gives that § = % and C is a %—dual

code. O

We keep Theorems 5.17 and 5.18 separate since the first theorem is significantly
easier to use. Namely, in Theorem 5.17, all that is required is to row reduce the given
matrix. This can be done very easily. However, in Theorem 5.18, it is not always
easy to determine the size of a code generated by a matrix over an arbitrary ring.
Specifically, there is not always a general form that a generator matrix can be placed
in for any code.
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Chapter 6
Cyclic and Constacyclic Codes

Cyclic codes are one of the most widely studied families of codes, both because of
their use in applications, and because of their rich algebraic structure. They were first
introduced by Prange in [25]. Cyclic codes have also been generalized in numerous
ways, including polycyclic, negacyclic, constacyclic, quasicyclic and skew cyclic
codes. In this chapter, we shall attempt to take a very general view of these families
of codes and couch them in an algebraic setting.

6.1 Polycyclic Codes

We begin with a very general algebraic description of a large family of codes. Let R
be a finite commutative Frobenius ring. If v = (¢, ¢y, ..., ¢,—1) is a vector in R",
then there is a natural connection to polynomials in R[x] by viewing the vector as
the polynomial 27;01 c;x". This allows us to associate codes, in the traditional sense,
with ideals in a polynomial ring. We begin with the standard definition of the various

types of codes in this family.

Definition 6.1 Let f(x) be a polynomial in R[x], where R is a finite commutative
Frobenius ring. A polycyclic code C over R is an ideal in R[x]/{f(x)).

o If f(x) = x" — 1, then the code is said to be a cyclic code.
e If f(x) = x" 4 1, then the code is said to be negacyclic.
o If f(x) = x" + A, X\ aunit, the code is said to be constacyclic.

The following conditions on the codewords follow immediately from the defini-
tion of cyclic, negacyclic, and constacyclic. A cyclic code satisfies the following:

(co, ¢ty .-, cpm1) € C = (Cp—1,C0,C1,5 ..., Cp2) € C.

© The Author(s) 2017 33
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A negacyclic code satisfies the following:
(cosC1y--vrCn1) € C = (—Cy_1,€0,C1,---,Cn_2) € C.
A constacyclic code satisfies the following:
(co,C1y.vnycney) € C = (Acy—1,¢0,C1y...,Ch) €C.

For much of this section, we prove results for constacyclic codes since the result
then applies to negacyclic and cyclic by letting A = —1 and A = 1.

Example 6.1 The perfect binary Golay code is a cyclic code with parameters
[23, 12, 7] and is generated by the polynomial 1 + x? + x* + x> + x + x10 4 x!1,
The perfect ternary Golay code is a cyclic code with parameters [11, 6, 5] and is
generated by the polynomial x° + x* — x3 + x? — 1.

The major drawback of a polycyclic code in general is that the orthogonal may not
be a polycyclic code. In [11], it was shown that this can be remedied by defining an
alternate duality for codes over finite fields. However, we can prove that for a consta-
cyclic code the orthogonal is again a constacyclic code. We first introduce a function.
For any vector ¢ = (co, ¢y, - .., Cph—1), let T\(€) = (Acp—1, €0, Cls -+« Cn2).

Theorem 6.1 Let R be a finite commutative Frobenius ring. If C is a constacyclic
code over R of length n, then C* is a constacyclic code of length n over R.

Proof Let ¢ be any vector in C, where C is a A-constcyclic code. Letd € C*. Then
[d, 7i(c)] =0fori =0toi =n— 1. It is a simple computation to see that this is
equivalent to the statement [¢, 7}_,(d)] = 0 fori = 0toi = n — 1. Therefore C* is
a A~ !-constacyclic code. ([

Given this theorem, it is apparent why A is always chosen to be a unit.

Corollary 6.1 Let R be a finite commutative Frobenius ring. If C is a cyclic code
over R of length n, then C* is a cyclic code. If C is a negacyclic code over R of
length n, then C* is a negacyclic code.

Proof The result follows immediately from Theorem 6.1, noting that both 1 and —1
are their own multiplicative inverses and hence they are units in any ring. |

We can use the Chinese Remainder Theorem, in the usual way, to show that the
important object to study is constacyclic codes over local rings.

Theorem 6.2 Let R be a finite commutative Frobenius ring and let R = CRT (R;,
Ry, ..., Ry) be the decomposition of R via the Chinese Remainder Theorem. If C; is a
\;-constacyclic code of length n over each R;, where and A = CRT (\1, \a, ..., \2),
then C = CRT (Cy, Cy, ..., Cy) is a A-constacyclic code over R.
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Proof Let¢' = (¢}, ci,...,cl_) be an arbitrary element in C;. Then we have that
7(c') = (Nic,,_y, ¢y - - -, Ch_p) is an element of C;, since it is \;-constacyclic, where
T represents the constacyclic action. Then any codeword ¢ = (¢, ¢y, - .., cy—1) Of

C is of the form ¢ = CRT (¢!, ¢?,...,¢%). Then CRT (7(c"), 7(c?), ..., 7(c*) €
C and CRT (7(c"), 7(c?), ..., 7(c*) = (ACp_1, Cl, - .., Cn_z). Therefore, C is a \-
constacyclic code. (I

It is clear that since we are looking for ideals in R[x]/(x" — \), we are in general
looking for divisors of the polynomial x” — A in R[x]. We describe a few examples.

Example 6.2 If the alphabet is a finite field, then every cyclic code C is generated
by a nonzero monic polynomial of minimal degree in C, which must be a divisor of
X" — 1 by the minimality of degree. The ring I, [x] is a unique factorization domain
and so the factorization of x" — 1 determines all cyclic codes. If gcd(n, p) = 1,
then x" — X has no repeated roots and I, [x]/(x" — A) is a semi-simple ring. If the
characteristic of the field and the length are not relatively prime, then we are in the
repeated root case.

Cyclic codes over Z,. were first studied by Calderbank and Sloane in [8]. Fol-
lowing this, Kanwar and Lépez-Permouth provided a different approach in [20].

Example 6.3 Let n be the length of a code over the ring Z,. and assume n and p
are relatively prime. Then x" — 1 factors uniquely over Z, by Hensel’s Lemma.
Cyclic codes over Z, have the form (fo, pfi, p*fa, ..., p* ' fo1), where f,_; |
fe—2 1+ | fo |l x™ — 1. These ideals are, in fact, principal and can be described as
follows:

(for PAi. P oo D o) = o+ DA+ P o+ -+ 07 fu). (6.1

See [8] for a complete description.

Notice in the previous example, that this case is very similar to the case for finite
fields, in that the unique factorization of x* — 1 easily determines all cyclic codes
when the length is relatively prime to the characteristic of the field.

Recall that a code is cyclic over a local Frobenius non-chain ring of order 16 if
and only if it is an ideal in the ring N, = R[x]/(x" — 1), see [10]. The next theorem
describes the ideals in N,,.

Example 6.4 If R is a commutative local ring of order 16 then the maximal ideal
is generated by two elements # and v. Let n be an odd integer and x" — 1 =
f1(x) f2(x) - - - fr(x) be the representation of x* — 1 as a product of basic irreducible
pairwise coprime polynomials in R[x]. Let f,-(x) denote the product of all f;(x)
except f;(x). Then any ideal in R[x]/(x" — 1) is a sum of the following ideals,
(f: ), (ufi(x),vfi(x)) and (afi(x)), a € {u, v, u + v, w}. See [10] for a com-
plete description of cyclic codes over these rings.
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Example 6.5 In [24], it was shown that a cyclic code of odd length over Z;4 is of the
form C = (fh,2fg), where fgh = x" — 1. Let R(C) be the quaternary code that
is the preimage of the binary code generated by the image under the Gray map. Let
KC(C) be the preimage of the binary kernel. Then R(C) and KC(C) are both cyclic
codes. See [9], for a complete description.

These examples lead us to the natural fundamental question of constacyclic codes.

Question 6.1 Let R be a finite commutative Frobenius ring. Find all ideals in
R[x]/{x" — \), where A\ is a unit in R.

This question really has two parts. The first is determining the structure of ideals
in the polynomial ring. The second is actually finding the specific ideals for a given
length in a computational manner. For example, one can find all cyclic codes over
a field by factoring x" — 1 over that field. However, this leads to the question of
factoring x" — 1 for all n. In a ring, the question is more complicated due to the
existence of zero divisors. For example, the code ((2)) is a cyclic code of length 1
over Z4 but has nothing to do with the factorization of x — 1 over Zy.

This question is usually divided into two distinct parts. The first, which is signifi-
cantly easier, is when the length n is relatively prime to the characteristic of the ring.
The second, which is often more difficult, is the so called repeated root case, when
n is not relatively prime to the characteristic of the ring.

6.2 Constacyclic Codes Over Formal Power Series Rings
and Chain Rings

In [27], Wan gave the structure of cyclic codes over Galois rings. This was extended
in [23] by Norton and Séldgean to finite chain rings. Dinh and Lépez-Permouth
generalized the structure of cyclic codes to finite chain rings in a more general
setting in [7]. Following these papers, Dougherty and Park studied general properties
of cyclic codes of length n over Z,,, where n is an arbitrary integer, that is, not
necessarily relatively prime to the characteristic of the ring.

Given the result in Theorem 6.2, which says that any A-constacyclic code over a
principal ideal ring is the product under the Chinese Remainder Theorem of constat-
cyclic codes over chain rings, it suffices to study codes over chain rings to understand
A-constacyclic codes over principal ideal rings. To study A-constacyclic codes over
chain rings, we shall take a very general view and study codes over formal power
series rings.

Calderbank and Sloane first started this view of cyclic codes in [8] by studying
codes over the ring of p-adic integers. They gave the structure of cyclic codes of
length n over the p-adic integers, in the case when gcd(n, p) = 1. Following this,
Dougherty, Kim and Park extended this work by studying the lifts of codes over Z,
to Z,. and to the p-adics. In [16], Dougherty, Liu and Park defined a series of finite
chain rings and introduced the concept of y-adic codes over a formal power series
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ring. In [14], cyclic codes over these rings were studied. We shall describe the results
given there in this section.

We begin by defining a family of rings.

Let IF, be an arbitrary finite field. Let 7 be an arbitrary positive integer. Define the
following rings:

Ai=lag+ay+--+a_1v " a eF,) (6.2)

where v/~! =£ 0, but ¥/ = 0in A;. The operations in this ring are defined as follows:

i1 i1 i1

Doan + D by =D (a+ by, (6.3)

1=0 1=0 1=0

i1 i1 i—1

Doay D by =D (D ab)y. (6.4)

1=0 1'=0 s=0 I+I'=s

We define the formal power series ring A, as follows:
o0
Aso =FgllMl = {D_ar las € Fy). (6.5)

1=0

For each i < oo, the ring A4, is a chain ring with maximal ideal (). In each case,
o0
A;/(v) =F,. The group of units of the infinite ring is RY = {2, ajvj |ay # 0}.
j=0
Note that ag is an element in a field. This implies that if it is not zero, then it is
necessarily a unit. The infinite ring A is a principal ideal domain.
We shall define a family of maps which serve to project from a larger ring to a
smallerring. Leti, j be two non-negative integers withi < j orleti be anon-negative
integer and let j be co. Then

WA — A, (6.6)
j—1 i—1
Zaml — Zafyl. (6.7)
=0 =0

It is immediate that each map of the form ¥/ is a ring homomorphism.

We have seen that codes over a chain ring have an easily described generator
matrix, see Theorem2.12. Let C be a nonzero linear code over A, of length n, it is
shown in [14] that any generator matrix of C is permutation equivalent to a matrix
of the following form:
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Y0 Iy Y0 Aot Y Aoz Y0 Ao Y Ao.r
Yy Y AL Y AL YAy
Yy, " Ans YY" Az,
G = . . , (6.8)

,ym,-,l Ik,fl ’Ym”' Arfl,r

where 0 < my < m; < --- < m,_; for some integer r.
The column blocks have sizes kg, ki, - - - , k, and the k; sum to n. With this gen-
erator matrix, we say that the code has type

G AR A A (6.9)

It is immediate that k = kg + k; + - - - + k,_; is the rank of the code as a module.
We refer to such codes as ~y-adic codes.

In general, for linear y-adic codes, we have that C € (C*)*. Unlike, for codes
over finite rings, we do not always have C = (C*)*. As an example, let C be a code of
length 3 over A, generated by (7, 7, 7). We have that C*+ = {(a, b,¢) |a + b+ ¢ =
0}. Then we have that (C)* contains the vector (1, 1, 1). However, this vector is
not in C. Therefore, C # (C1)L. The reason that this can occur is that the infinite
ring A, contains no zero-divisors, even though it is not a field. Therefore, if ¢ € C +
and ¢ = av, then [¢, w] = Oforall w € C, which gives [av, w] = a[v, w] = 0. This
implies that [v, w] = 0, which gives that the code C* must have type 1" for some
m.

We say that a linear code C over A, is basic if C = (C*)*. This definition was
first given in [16]. A

Extend the map ¥/ in the natural way to .4; [x], namely ¥, acts on the coefficients
of the polynomials and fixes the indeterminate x. For a polynomial f(x) € Ax[x],
if deg(f(x)) > 0 and gcd(ag, a, - -+ , a,) = 1, then we say that f(x) a primitive
polynomial.

We shall prove some technical results to study constacyclic codes over A,,. We
begin with a lemma that characterizes primitive polynomials in terms of the projec-
tions. It first appears in [16].

Lemma 6.1 Let f(x) be a polynomial in Axo[x] with deg(f(x)) > 0. Then f(x) is
a primitive polynomial if and only if ¥>°(f (x)) # 0 for all i < oo.

Proof Assume that the polynomial is primitive and that there exists i such that
¥2°(f(x)) = 0. Then all nonzero coordinates a; of f(x) must have the form a; =
fylfbj with [; > i. It follows that ged(ag, ay, - - - , a,) =™ for some m > i. This
contradicts that the polynomial is primitive.

Conversely, assume that f(x) is not a primitive polynomial over .A. This implies
that ged(ag, a1, - - - , a,) = ' for some i. It follows that ¥(f(x)) = 0. Then we
have the result. (I
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We relate polynomials to primitive polynomials in the following theorem.

Theorem 6.3 Let f(x) be a polynomial in Ax[x] such that deg(f(x)) > 0. Then
there exist a unique s and a primitive polynomial g(x) such that f(x) = v’ g(x).

Proof Let f(x) = ap+ aijx + - - - + a,x" € A[x]. Any nonzero element a; of the
ring can be written as a; = 7" bj, where j > 0, and the element b; is a unit. Set
s =min{/; |0 # a; = ¥b;}. Then, we have

) =7 (" by + 7" bix + -+ bex’ 4 44" bx"). (6.10)
Let
gx) =7""bg + " bix 4 - bex* 4 - hyx" (6.11)
This gives that f(x) = +'g(x).
The greatest common divisor gcd(’yl“’sbo, ’yl"sbl, <o, bg, ,’yl"’sbn) =1
since by € R . It follows that g(x) is a primitive polynomial. (]

We say that two polynomials f(x) and g(x) € A; are coprime if there exist
u(x), v(x) € A;[x]suchthat f(x)u(x) + g(x)v(x) = 1. Coprime polynomials f (x)
and g(x) satisfy (f(x)) + (g(x))) = Ai[x].

If apolynomial f(x) is reducible over A, then there exist polynomials g(x), & (x)
such that f(x) =g(x)h(x) and 0 < deg(g(x)),deg(h(x)) < deg(f(x)). This
implies that

V() =¥ (g(0)h(x) = ¥ (g) ¥ (h(x)). (6.12)

Assuming f(x) is a monic polynomial, we have that

0 < deg(¥;*(g(x))), deg(¥;* (h(x))) < deg(¥;™(f(x))) = deg(f(x)). (6.13)

It follows that if f'(x) is a monic polynomial in A [x], and ¥;*°(f (x)) is irreducible
in A;[x] for some i < oo, then f(x) must be irreducible over A.
We can now study constacyclic codes over .A,,. We assume that the characteristic
of the finite field is p and that the length of the code n is relatively prime to p.
Recall that for constacyclic codes we require A to be a unit. Therefore, let A be
an arbitrary unit of A,. Define the map P, in the usual manner. Namely,

Py R}, — Aso[x]/(x" = N),
Py(ag, ai, -+ ,ay_1) = ap+a1x + -+ a, 1 x" @ = \).
We note that a linear code C of length n over A, is a A-cyclic code if and only
if P,(C) is an ideal of A[x]/(x" — A).

We extend the map ¥ in the canonical way. That is,

WP Aglx]l/(x" — A) = Ai[x]/(x" = ). (6.14)
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This map is a homomorphism. Therefore, if I is an ideal of A [x]/(x" — \), then
w(I) is an ideal of A;[x]/(x" — A). It follows that > P; = Pi¥>.

To show that the image of a constacyclic code is again constacyclic under the map
¥ we need a technical lemma.

Lemma 6.2 An element A € Aw is a unit if and only W °(X) is a unit for all i.

Proof An element in A, is a unit if and only if gy is non-zero, where qy is the
coefficient of 7°. By noticing that the map ¥ fixes the coefficient of 4 we have
the result. (]

Theorem 6.4 If C is a A\-constacyclic code over Ay, then W°(C) is a W°(N)-
constacyclic code over A;, for all i < oo.

Proof First we note that by Lemma 6.2, we have that ¥,>°()) is a unit for all i. Let C
be a constacyclic code over A, then P (C) is an ideal of A [x]/(x" — 1). By the
homomorphism in Eq.(6.14), we have that ¥>°(P;(C)) = P{(¥°(C)) is an ideal
of A;[x]/(x" — 1). This gives the result. O

We have seen that the orthogonal of a constacyclic code over a finite ring is
constacyclic. For the ring, A, the proof is identical. Moreover, we have the following
theorem.

Theorem 6.5 Let C be a constacyclic code over A. Then the code ¥°(C Hisa
constacyclic code. If C is basic then lI/ioo(CJ‘) = l1/i°°(C)l,f0r alli < oo.

Proof By Theorem 6.4, we have that l1/[-""(Cl) is a constcyclic code for all i < 0o
since C* is a constacyclic code.

Letv e ¥>(C 1) and let w be an element of w2°(C). This implies that there exist
v € C*t and W' € C such that v =¥ (v') and w = ¥>°(w'). It follows that

[v, w] = [¥>W), W] =¥, w'l=¥>(0) =0. (6.15)

Therefore, we have that l1/i°°(CJ-) C (l1/i°°(C))J-.

We know that C* has type 1"* since it is the orthogonal of a code over Aq,. If C is
basic, we have that C = (C*)=. This implies that C has type 1*. Therefore, ¥>°(C*)
has type 1% and (&>°(C))* has type 1", This gives (¥>°(C))* = ¥>*(Ct). O

Let C be alinear non-basic constacyclic code over A, then the code C’ = (C+)*
has type 1™ for some m and C C C’. This gives that if C is a linear non-basic
constacyclic code over A, then we can find a linear basic constacyclic code C” with
C C C'. As a simple example, consider the code C = ((, 7, ..., )). This code is
cyclic (1-constacyclic) and (C+)* = ((1, 1, ..., 1)) which is cyclic and contains C.

We need a result which allows us to lift the factorization of a polynomial. Specif-
ically, we need Hensel’s lemma whose proof can be found in [21].
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Lemma 6..3 (Hensel’s Lemma) Let f(x) be a polynomial over A;, where i < 00,
assume Wi (f(x)) = g1(x)g2(x) - - - g, (x) where gi(x), g2(x), - - - , g-(x) are pair-
wise coprime polynomials over IF,. Then there exist pairwise coprime polynomials
f1(x), fa(x), -+, fr(x) over A; such that

f) = fike) folx) -+ fr(x)

and Wi (f;(x)) = g;(x), for j =1,2,--- .

Recall that if f(x) is a monic irreducible divisor of x" — 1 over [, then { f (x))
is a prime ideal in F, [x]/(x" — 1).

Lemma 6.4 Leti be a positive integer and let a be a prime ideal in A;[x]/{x" — \),
where X is a unit in A;. Then ~y € a.

Proof We know that ' = 0 € a, since the nilpotency index of 7 is i. It follows that
either v/ ~! or v is in a. If ¥ € a we are done. Otherwise, ¥/~ € a. Then proceeding
by induction, we have the result. O

Theorem 6.6 Leti be a positive integer and let \ be a unit in A;. The prime ideals
in A;[x]/{(x" — X} are of the form { f;(x), ), where f;(x) is any monic irreducible
divisor of x" — X over A,.

Proof Letabe aprimeideal in A4;[x]/(x" — \). It follows that lI/{ (a) is a prime ideal
in F,[x]/(x" — A). Then ‘I/Ii(a) = (f1(x)), where f;(x) is some monic irreducible
divisor of x" — A. By Lemma6.3, Hensel’s Lemma, we have that there exists a
polynomial f;(x) in A;[x] that is a monic irreducible divisor of x" — X in A;[x]
with llff(fi(x)) = f1(x). Then by Lemma6.4, we know that v € a. Then we have
that (f;(x),y) € a. The ring (A;[x]/{(x" — A))/{fi(x), ) is a field, and therefore
the ideal (f;(x), ) is maximal which gives that ( f;(x), v) = a. ([

For the infinite ring, we cannot guarantee that -y is in the ideal, but a similar proof
gives the following.

Theorem 6.7 The prime ideals in As,[x]/{x"™ — \) are either of the form { f (x), ')
or (f(x)), where f(x) is any monic irreducible divisor of x" — X over Ax.

Recall that a nonzero ideal a € 4; is called a primary ideal if a # .4; and when-
ever ab € a, then either a € a or b* € a for some positive integer k. A polynomial
f(x) € A;[x] is primary if ( f(x)) is a primary ideal of A; [x].

Theorem 6.8 Let i be a positive integer, the primary ideals in A;[x]/{x" — \) are
(fi(x),7"), where { f;(x)) is an irreducible divisor of x — X over A; and 0 <1 < i.

Proof Let a = (fi(x),7) = (eqa(x),~y) be an arbitrary prime ideal. It follows that
a = (eq(x),7) = (eqa(x)) + (7). Then, for any 0 </ < i, and a € d, there exist
dag,, -+, dg € asuch that
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1
a = Z g+ Ay = Z H(eu(x)y;[ +7Zf1)

Speee8] spesp t=1

= Z(ea(x)wsl...s, + 7lw§1...s,)

Speee8)

= ea(®) D W+ D Wl € (ealx). 7).

Speen8) Speen8)

This implies that a’ C (eq(x), ¥').

For the other direction, since eq(x) = eé (x) € a and ' € d/, we have that
{ea(x),~') € a'. Hence a = (eq(x), 7).

Let b be an arbitrary primary ideal whose associated prime ideal is a = (eq(x), ),
then (by [28], p. 200, Ex. 2) there exists an integer k such that a¥ C b C a, and from
this we get that a = a/ for some /. Hence the results hold. ([

A similar proof gives the following.

Theorem 6.9 The primary ideals in As[x]/{(x" — 1) are (f;(x)) and {f;(x), "),
where (f;(x)) is an irreducible divisor of x" — 1 over Ao and 0 <1 < oc.

When i < oo we have that (f;(x),y)" = (f;(x)). Then we have the following
chain:

(i) S (fi(x), vy - C(fix), 7 S (fi(x), 7). (6.16)

In A [x]/(x" — 1), we have the following infinite chain:

(foo(X)) € (fooX), 71 C - € (foo(2), 7 € (foolX), 7). (6.17)

Corollary 6.2 Let i be any positive integer or infinity. Let f!(x),1 <1 <s,i € N,
denote the distinct monic irreducible divisors of x" — X over A;. Then any ideal in
Ai[x]/{(x" — A\) can be written uniquely as

s

a= [t @, »m, (6.18)

=1
where O < m; < i. Ifi is finite, then there are (i + 1)° distinct ideals.

Proof The result follows from Theorem 6.8 and the Lasker-Noether decomposition
theorem ([28], p. 209). O

This takes us to our main theorem.

Theorem 6.10 We have the following characterization of ideals in A;[x]/{x" — \)
and Aso[x]/{(x" — A).
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e Leti be a positive integer, then any ideal of A;[x]/{x" — \) has the form

(fo), Y fi(x), -+ A fimi(x)), (6.19)

where fi(x) are divisors of x" — Aand fi_1(x)| ---| fi(x) | fo(x).
e Any ideal of Ax[x]/(x" — \) has the form

(Y So(x), Y i), - Y frm1 (X)), (6.20)
where 0 < sy < 851 < --- < Sp_1 for some b and f,_1(x)]| ---| f1(x) ]| fo(x).
Proof The result follows from Theorem 6.8 and Corollary 6.2. (]

This result gives the form of constacyclic codes over any chain ring and simultane-
ously over any principal ideal ring. This follows from the fact that any principal ideal
ring can be decomposed into the product of chain rings via the Chinese Remainder
Theorem. The following corollary is a direct consequence of this.

Corollary 6.3 Let R be a finite principal ideal ring, with R; a finite chain ring with
R =CRT(Ry, Ry, ..., Ry). Then any ideal in R[x]/{(x" — \) is of the form

a=CRT(a,0az,...,0a5),

where a; is an ideal in R;[x]/{x" — \;} and A = CRT (A1, A2, ..., Ag).
Proof Follows from Theorem6.2. |

Therefore, the characterization of ideals in Theorem 6.10 gives a characterization
of all constacyclic codes over finite principal ideal rings.

In a similar manner, determining the structure of ideals in R[x]/(x" — \) where
R is a finite commutative Frobenius local ring would find all constacyclic codes,
which leads to our next open question.

Question 6.2 Classify all ideals R[x]/(x" — A) where R is a finite commutative
Frobenius local ring.

6.3 Codes as Ideals in Group Rings

In the next three sections, we shall give some other generalizations of cyclic codes. In
this section, we shall give an alternate generalization of the concept of cyclic codes
and generalize this concept to groups other than the cyclic group.

It is natural to think of a cyclic code as an ideal in RC, where C, is the cyclic
group of order n. As such, it seems that this should be generalized to consider codes
as ideals in the group ring. The largest benefit in this is that you have a canonical
subgroup of the automorphism group, namely the group G in the group ring RG.
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See Theorem 6.12 for a complete description of this fact. We begin with the standard
definition of a group ring.

Definition 6.2 Let G be a finite group of order n, then the group ring RG consists of
elements of the form D_"_, a;g; where o; € Rand g; € G. Addition in the group ring
is done by coordinate addition, thatis >, cug; + > iy 5igi = > (i + B gi.
The product is given by

O aigNO_Big) =D aiBigig;.
i=1 j=I i,j

which gives that the coefficient of g; in the product is > g igi=g; i Bj.

In this definition, if the ring is a field, then the object is a called a group algebra.
Group rings are a well studied object and there is no restriction on the size of the
group and ring. However, for our purposes we will always assume that G is a finite
group and that R is a finite commutative Frobenius ring.

We shall now describe a construction of codes in a group algebra first appearing
in [19]. It was expanded to group rings in [11].

Let R be a finite commutative Frobenius ring and let G = {g;, g>, ..., g,} be a
group of order n. Let v € RG and define the matrix o (v) to be

o o

(&% «

g'a Yar'g Ygrlgs - Yglg,
Qgrtgr Ygrlg Ygilgs - Ygilg,

o(v) = . . . . (6.21)
Qglgr Ygilg Ygilgs 0 Ygilg,

From this matrix we are able to define a code of length n over R, specifically we
define
C(v) = (c(v)). (6.22)

Given an element v € RG, we have a matrix o(v) € M, (R) and a code C(v) of
length n over R. The following theorem first appeared in [11].

Theorem 6.11 Let R be a finite commutative Frobenius ring and G a finite group of
ordern. Foran elementv € RG, let C(v) be the corresponding code in R", let I (v) be
the set of elements of RG such that > «;g; € I(v) if and only if (o, aa, ..., @) €
C(v). Then I (v) is a left ideal in RG.

Proof The rows in the matrix o(v) are vectors that correspond to the elements hv
in RG where h is an arbitrary element of the group G. It is immediate that / (v) is
closed under addition since the sum of any two elements in / (v) corresponds to the
sum of the corresponding elements in C (v).

We shall show that the product of an element in RG and an element in 7 (v)
is in I(v). Let w; = >_[;g; be an arbitrary element in the group ring RG. Let
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w, correspond to a vector in C(v), which is of the form nyjhjv. Then wyw,; =
> 5igi > ~vihiv =2 Biv;gihjv, which corresponds to an element in C(v) and
gives that the element is in I (v). Therefore, we have that 7 (V) is a left ideal of
RG. O

It is natural then to consider the ideals of a group ring as a class of interesting
codes of length n over R.

Theorem 6.12 Let R be a finite commutative Frobenius ring and G a finite group of
order n. Let v € RG and C(v) be the corresponding code in R". The automorphism
group of C(v) has a subgroup isomorphic to G.

Proof We have by Theorem6.11 that 7 (v) is an ideal of RG. As such it is invari-
ant by multiplication by elements of G which corresponds to the group acting on
the coordinates of C(v). Therefore, we have that the automorphism group of C(v)
contains G as a subgroup. (]

This theorem shows the utility of this technique as one may start with a group
and easily define a code over a finite commutative Frobenius ring with that group as
part of the automorphism group. This is a natural generalization of the technique of
generating a cyclic code by taking cyclic shifts of a vector to generate a cyclic code.

Question 6.3 For a given finite group G and a finite commutative Frobenius ring R,
find the structure of all ideals in RG.

There are some natural choices of G which are quite close to the cyclic group. For
example, the dihedral group would be an interesting choice. This group was used in
[22] to construct the [48, 24, 12] extremal code. It would seem that dihedral codes
could find as many engineering applications and in applications in other branches of
mathematics as cyclic codes have found. In general, it would be of great interest to
find finite groups that provide such applications and study codes in that particular
group ring.

6.4 Quasicyclic Codes

Quasicyclic codes are another generalization of cyclic codes. They have received
less attention than many generalizations, since they do not have a canonical algebraic
description as ideals in a polynomial ring. In this section, we shall give a natural way
to think about quasicyclic codes over finite fields by examining cyclic codes over the
finite commutative Frobenius ring R, .

Let 7 be the standard cyclic shift. Specifically,

(€0, €1y v o vy Cnet1) = (Cu1, €05 C1s + -+, Cp—2).

We have the following definition.
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Definition 6.3 Let C be a code over a finite commutative Frobenius ring R. Then if
7*(C) = C, we say that C is a quasicyclic code of index k.

Recall the definition of the ring R, 4 givenin Eq.4.21 and the corresponding Gray
map ¥. We shall generalize some of the results that first appeared for the binary case
in [10].

From the definition of ¥, we see that if v is a vector in R’j, with corresponding
Gray map ¥, then we have that ¥ (m(v)) = 72 (¥ (v)). The next theorem, which
gives a construction of quasicyclic codes of arbitrary index, follows immediately
from this fact.

Theorem 6.13 Let C be a linear cyclic code over the ring Ry 4 of length n. Then
W (C) is a linear quasicyclic code over ¥, of length An and index A.

Proof The code C is a cyclic code, so we have that 7(C) = C. Then we have that
U (C) = ¥ (r(C)) = (¥ (C)). Therefore, ¥ (C) is a quasicyclic code of index A.
O

To study quasicyclic codes, it is then necessary to understand cyclic codes over
R, . Therefore, we shall study the ideal structure of the corresponding polynomial
ring.

Let A, be the set of all monomials of R, 4 and let A A be the subset of A4
of all monomials with one indeterminate. It is a simple computation to see that
|Aal=pi'ps - pi = Aand |Axl = py' + p5 + -+ pf'.

Any indeterminate u,, ; may have an exponent in the set J; = {0, 1, ..., p; —
1). Let o; € J/ and denote u;} : u‘;,]j by u. Let J = J{" x --- x J/. Each
elementa € A, canbe written as a = u® for some o € J, as the subset {u(;’J |y j #
OY<izri<j<ky S A 4. Denote by @ the corresponding subset of Ay

Take the vector of exponents o = (a1 1, ..., Q1 ks s Qr 1y ..., X g,) € J and
Qenote by a the vector (py — a1, -, P1 — Qi gy, » Pr — Qrg,). We note that
a = .

Denote by I, the ideal I, = (u®), for o € J. Define I(p, ... p,. pye.pr.pr) = 10}
Define the ideal

o~ Qi

Io= () = ()" | j # O)1i<ri=j<k)- (6.23)
The following theorems first appear in the binary case in [12].
Theorem 6.14 Let o € J. Then the ideal 7} = I;.

Proof Ttis easy to see that I; C I\

R Suppose it is not true that 7} C I5. Then there existan elementb = > 5, cpu’ €
'L that does not belong to . It follows that there exists a particular 3 such that

c3 #0and §;; < &; ; for some i and j. Then, uz’] -b # 0 for u(;’] € 1,, which

gives b ¢ 7} and 7} C I;. 0
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Here, we have Ij- = R = {0} = Iy, prpr o p) = I

Theorem 6.15 The number of elements of I, is gi<a® and the number of elements
of 1, is g2~ i<l

Proof There are p; — o | different monomials fixing all the indeterminates except
the first one, u, | in the set of all monomials of I,. There are p; — o, different
monomials fixing all the indeterminates except the second one, u,, ». By induction,
there are Hlsist,lsjsk; (pi — o, ;) different monomials in /.

Then, since « is the vector (p;1 — a1, -+, P1 — Q1 jy» -+ » Pr — Quk,) and all
elements in 1, are a linear combination of its monomials, we have that |I,| = glli<a’.
By Theorem 6.14, it follows that |I,,| = g4~ Tliea !,

Since cyclic codes over R, 4 can be viewed as ideals in R, a[x]/{x" — 1), we use
the canonical decomposition of rings to obtain the following theorem, noting that
when the characteristic of I, and n are relatively prime the factorization is unique.

Theorem 6.16 Let n be an integer relatively prime to the characteristic of F, and
x"—1= fifa... fr. The ideals in R, A[x]/(x" — 1) can be written as I = I, ®
L ®---® 1, where I; is an ideal of the ring Ry A[x1/{f;), fori =1,...,r

We shall now examine what form these ideals take. We generalize the approach
used for the binary case in [12]. Let f be an irreducible polynomial in F,[x], then
f is a basic monic irreducible polynomial over R, 4.

Since the polynomial is irreducible, we have that F,[x]/{f) is a finite field of
order ¢, Let Loo = Fy[x1/(f) and L, 1 = Loolup, 11/} ). For 1 <i <
t,1 < j <k, define

Lprlkzlupll]/( b >1f]=17

Loi =1L, i itup 1/ p ]) otherwise. 6.24)

Any element a € L, ; can be written as

— X 2 pi—1
a=dao+ap, j+ Uy, ;+-+dp_ily ;

where ag, ..., a,_1 belongto L, ;_jif j #lorto L, 4 ,if j =1.

Theorem 6.17 Let a = df 01 adup j be an element of L, ;. The element a is a

unitin L, ; ifand only if ag is aunitin L, j_1if j #1orin L,  , if j = 1.

Proof Assume that aO isaunitin L, ;_yif j #1orin L, _, _, if j = 1. Define
= a, 1(Zd | adup j)- Then b is a zero divisor and 1+ b is a unit since (1 +
b)(l +b+b*>+--- 4+ b7~ = 1. This gives that ay(1 + b) = a is also a unit.
If the element ay is not a unit, then there exists binL, ;_jif j #lorinL,  ;
if j = 1, such that bag = 0. Therefore, bu’, " a =0. O
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Denote the group of units of L, ; by U(L, ;). By the previous result we can see

that o
|u(Lp,>,1,k,-,1)||Lp,-,1,k,,1| lf J = 17

ULy, j—DIILp, j—1|  otherwise. (6.25)

ULy, ) = [

We have that [U(L,, 1)| = g%/ (%) — 1) since we have that [U/(Lo)| =
q%e/) — 1. Then by induction, we have that

1Ly s, | = (q*C)2 and UL, 1)| = (g*E)2 — (geD)A1 (6.26)

Theorem 6.18 The ideals of L, i, are in bijective correspondence with the ideals
Of Rq,A-

Proof Theorem6.17 gives that the zero-divisors of L, ; are of the form
> coul - upt with ¢, € Lo and cg = 0 and that there are (g9€))2~1 of them.
The result follows. O

The following corollary is an immediate consequence of the previous theorem.

Corollary 6.4 Let n be an integer relatively prime to the characteristic of IF,. Let
x"—1= fifa... [, be the unique factorization of x" — 1 into basic irreducible
polynomials over R, a. Let 1, be the number of ideals in Ry 5. Then the number of
linear cyclic codes of length n over Ry 4 is (14)".

Of course, it is not true that all quasicyclic codes over I, are images, under the
Gray map, of cyclic codes over R, 4. This fact leads to the following question which
is couched in the broadest setting.

Question 6.4 Let R be a finite commutative Frobenius ring. Classify all quasicyclic
codes with index k and length n over R.

6.5 6-Cyclic Codes

In this section, we shall describe another generalization of cyclic codes. This is
generalization has been extremely important in finding good codes, namely those
codes with large minimum distances with respect to their ambient space and size.
The theory of f-cyclic codes over fields has been described in [1-5]. They have also
been studied over rings in [18, 26] for example. We note that these codes are also
often called skew cyclic codes.

Definition 6.4 Let R be a Frobenius ring and let # be an automorphism of R. A
f-cyclic code is a linear code C such that

(co,c1y . Cno1) € C = (9(6‘”,1), 9(6‘0), 9(6‘1), e, 9(6‘,1,2)) eC.
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We define the following skew polynomial ring. Let
R[x, 0] = {ao +a1x1 + - +an_1x”*1 |a; € R,n € N},

where addition is the usual polynomial addition and multiplication is defined by
xa = O(a)x for all @ € R. We note that this ring is a non-commutative ring even
though the code alphabet is commutative. This ring is a common example in non-
commutative ring theory. We need to show what algebraic structures correspond
to f-cyclic codes. However, unlike our previous work, we must be sure to indicate
whether it is a left or a right module.

Theorem 6.19 Let C be a linear 6-cyclic code over a finite commutative Frobenius
ring R. Let a be the set of all polynomials of the form ag + a\x + apx* + -+ +

an_1x" " where (ag, ai, ..., a,_1) € C.Then ais aleft module of R[x, 0]/ (x" — 1).
Proof ltisclearthat ais an additive subgroup. Leta(x) = ap +ajx + .. Lap_1x" e
a. Then we have that
xa(x) = xap + xa1x + xa2x2 + -4 )can_l)c“1
= 0(ag)x + 0(a)x* + - + 0(a,_1)x"
= 0(ay_1) + Oap)x + - + 0(a,_2)x" ' € a.
Therefore, a is a left module of R[x, 0]/(x" — 1). O

When the alphabet is a finite field, then finding left ideals is equivalent to finding
right divisors of x” — 1 in R[x, 6], see [6] for a complete description. See also [5],
for a description of #-cyclic codes where the alphabet is a Galois ring. In general,
we have the following open question.

Question 6.5 Determine the structure of all -cyclic codes in R[x, 0]/(x" — \)
where R is a finite commutative Frobenius ring.

As an example of a ring that can be used in this setting, consider the ring F, + v,
where v?> = v. This ring has an automorphism which interchanges v and 1 + v. See
[26] for a description of skew cyclic codes in this case.

References

1. Boucher, D., Ulmer, E.: Self-dual skew codes and factorization of skew polynomials. J. Sym-
bolic Comput. 60, 47-61 (2014)

2. Boucher, D., Ulmer, F.: Linear codes using skew polynomials with automorphisms and deriva-
tions. Des. Codes Crypt. 70(3), 405-431 (2014)

3. Boucher, D., Ulmer, F.: Codes as modules over skew polynomial rings. In: Cryptography and
Coding. Lecture Notes in Computer Science, vol. 5921, pp. 38-55 (2009)



100

4.

5.

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.
20.

21.
22.

23.

24.

25.

26.

217.
28.

6 Cyclic and Constacyclic Codes

Boucher, D., Ulmer, F.: Coding with skew polynomial rings. J. Sym. Comput. 44(12), 1644—
1656 (2009)

Boucher, D., Solé, P., Ulmer, F.: Skew constacyclic codes over Galois rings. Adv. Math. Comput.
2(3), 273-292 (2008)

. Boucher, D., Geiselmann, W., Ulmer, F.: Skew cyclic codes. AAECC 18(4), 379-389 (2007)
. Dinh, H., Lépez-Permouth, S.R.: Cyclic and negacyclic codes over finite chain rings. IEEE

Trans. Inf. Theory 50, 1728-1744 (2004)

. Calderbank, A.R., Sloane, N.J.A.: Modular and p-adic cyclic codes. Des. Codes Crypt. 6,

21-35 (1995)

. Dougherty, S.T., Fernandez-Cérdoba, C.: Kernels and ranks of cyclic and negacyclic quaternary

codes. Des. Codes Crypt. 81(2), 347-364 (2016). doi:10.1007/s10623-015-0163-6
Dougherty, S.T., Fernandez-Cérdoba, C., Ten-Valls, R.: Quasi-cyclic codes as cyclic codes
over a family of local rings. Finite Fields Appl. 40, 138-149 (2016)

Dougherty, S.T., Gildea, J., Taylor, R., Tylshchak, A.: Constructions of self-dual and formally
self-dual codes from group rings (in submision)

Dougherty, S.T., Kaya, A., Saltiirk, E.: Cyclic codes over local frobenius rings of order 16.
Adv. Math. Comm. 11(1), 99-114 (2017)

Dougherty, S.T., Ling, S.: Cyclic codes over Z4 of even length. Des. Codes Crypt. 39(2),
127-153 (2006)

Dougherty, S.T., Liu, H.: Cyclic codes over formal power series. Acta Math. Sci. 31(1),331-343
(2010)

Dougherty, S. T., Liu, H.: Cyclic codes over formal power series rings. Acta Math. Sci. Ser. B
Eng. Ed. 311, 331-343 (2011)

Dougherty, S.T., Liu, H., Park, Y.H.: Lifted codes over finite chain rings. Math. J. Okayama
Univ. 53, 39-53 (2010)

Dougherty, S.T., Park, Y.H.: On modular cyclic codes. Finite Fields Appl. 13(1), 31-57 (2007)
Ezerman, M., Ling, S., Solé, P., Yemen, O.: From skew-cyclic codes to asymmetric quantum
codes. Adv. Math. Commun. 5(1), 41-57 (2011)

Hurley, T.: Group rings and rings of matrices. Int. J. Pure Appl. Math. 31(3), 319-335 (2006)
Kanwar, P., Lépez-Permouth, S.R.: Cyclic codes over the integers modulo p™. Finite Fields
Appl. 3, 334-352 (1997)

McDonald, B.R.: Finite Rings with Identity. Marcel Dekker Inc., New York (1974)
McLoughlin, I.: A group ring construction of the [48, 24, 12] Type II linear block code. Des.
Codes Crypt. 63, 2941 (2012)

Norton, G.H., Sdldgean, A.: On the structure of linear and cyclic codes over a finite chain ring.
Appl. Algebra Eng. Commun. Comput. 10, 489-506 (2000)

Pless, V.S., Qian, Z.: Cyclic codes and quadratic residue codes over Z. IEEE-IT 42(5), 1594—
1600 (1996)

Prange, E.: Cyclic error-correcting codes in two symbols. Technical Note TN-57-103, Air Force
Cambridge Research Labs, Bedford Mass

Solé, P., Yemen, O.: Binary quasi-cyclic codes of index 2 and skew polynomial rings. Finite
Fields Appl. 18(4), 685-699 (2012)

Wan, Z.: Cyclic codes over Galois rings. Alg. Collog. 6, 291-304 (1999)

Zariski, O., Samuel, P.: Commutative Algebra. Van Nostrand, New York (1958)


http://dx.doi.org/10.1007/s10623-015-0163-6

Index

Symbols Constacyclic, 83, 84

Ay, 54 Construction A, 66

M-dual code, 78 Coprime, 18

Ry, 50 Cyclic, 83

Ry.A» 52,98 Cyclic codes, 83

Si, 50

Tk, 51

Yok, 65 D

O, 65 Delsarte, P. , 2

0-cyclic codes, 98 Design, 73

i-dual code, 78 Direct product, 61
Dougherty, S.T., 86
Duality, 31

A Dual lattice, 64

Additive code, 33

Artinian ring, 15

Assmus, E.F., 2 E

Assmus-Mattson Theorem, 72 Epimorphism, 55
Equivalence, 7
Euclidean weight, 43

B

Bachoc weight, 43

Basis, 25 F

BIBD, 77 Formal power series, 86
Blake, 1. F,, 2 Free code, 19, 61

Frobenius, 16

Frobenius ring, 15
C Fundamental volume, 64
Calderbank, A.R., 86
Chain ring, 14, 21, 39, 63

Character, 31 G
Character table, 17, 31 Galois ring, 14, 38
Chinese Remainder Theorem, 13, 18-22, 37, Generating character, 17, 37, 39
38, 42, 60, 63, 84, 86 Generator matrix, 22
Code, 3 Gilbert-Varshamov construction, 26
Complete weight enumerator, 30 Golay code, 9, 64, 69, 72, 84
Complex lattice, 66 Gray map, 41, 49, 50, 53, 96
© The Author(s) 2017 101

S.T. Dougherty, Algebraic Coding Theory Over Finite Commutative Rings,
SpringerBriefs in Mathematics, DOI 10.1007/978-3-319-59806-2



102

Group algebra, 94
Group ring, 93

H

Hadamard matrix, 4
Hamming code, 36
Hamming distance, 3, 41
Hamming space, 41
Hamming weight, 4
Hamming weight enumerator, 30
Hamming, R., 1

Hensel’s Lemma, 61, 62, 91
Hermitian inner-product, 8
Hull, 78

I

Independent, 24

Index of nilpotency, 13
Index of stability, 13
Injective, 16
Inner-product, 8
Invariant theory, 67
Irreducible, 15

ISBN number, 9

J
Jacobson radical, 14, 21, 48, 53

K

Kernel, 46
Key, J.D., 2
Kim, J.L., 86

L

Lépez-Permouth, S., 86
Lasker-Noether decomposition theorem, 92
Latin square, 5

LCD code, 77

Lee weight, 42

Lee weight enumerator, 42
Linear code, 7

Linear independence, 26
Liu, H., 86

Local ring, 13

M
MacWilliams relations, 29, 30, 32-35, 37,
43,71

MacWilliams Theorem, 15, 18
MacWilliams, F.J., 2, 17, 29, 35
MBDR code, 46

MDR code, 57

MDS code, 5

MEDR code, 45

MHDR code, 46

Minimal generating set, 22
Minimum norm, 65

MLDR code, 45

MLDS code, 43

Modular dependent, 23
Modular independent, 22, 24
Molien series, 68

MOLS, 5

Monic polynomial, 85
Monomorphism, 55

N

Negacyclic, 83, 84
Nilpotency, 14, 21, 63
Nilradical, 15, 21
Norton, G.H., 86

(0]
Optimal, 4
Orthogonal, 8

P

Parity check matrix, 7, 9, 10
Park, Y.H., 86

Perfect code, 6

Pless code, 69

Pless, V., 2

Poisson summation formula, 32
Polycyclic, 83

Polynomial ring, 83

Prime ideals, 91

Primitive polynomial, 88
Principal ideal ring, 14, 21
Projective plane, 73
Propelinear code, 46

Q

Quasicyclic, 83
Quasicyclic code, 52, 95
Quasi-Frobenius, 16
Quaternionic lattice, 66

Index



Index

R

Rank, 46

Reed-Solomon codes, 9
Repetition code, 8
Rosenbloom-Tsfasman metric, 37

S

Saldgean, A., 86
Self-dual code, 59
Shannon, C., 1
Shiromoto, 55

Singleton bound, 5, 9, 43
Singleton, R. C., 4

Skew cyclic, 83

Skew cyclic code, 99
Sloane, N.J.A., 2, 86
Socle, 15, 48, 53

Sphere packing bound, 5
Symmetric design, 73
Symmetrized weight enumerator, 30

103

Type, 23

U
Unimodular lattice, 41, 64

Vv

Vandermonde matrix, 9

w

Wan, Z., 86

Weight enumerator, 67
Wood, J., 2

X
X-ring, 49, 50



	Acknowledgements
	Contents
	1 Introduction 
	1.1 History
	1.2 Definitions and Notations
	References

	2 Ring Theory
	2.1 Finite Commutative Rings
	2.2 Frobenius Rings
	2.3 Chinese Remainder Theorem
	2.4 Generators
	References

	3 MacWilliams Relations
	3.1 Introduction to the MacWilliams Relations
	3.2 MacWilliams Relations for Codes Over Groups
	3.3 MacWilliams Relations for Codes Over Rings
	3.4 A Practical Guide to the MacWilliams Relations
	References

	4 Families of Rings 
	4.1 Rings of Order 4
	4.2 Ranks and Kernels of Quaternary Codes
	4.3 X-rings
	4.4 The Ring Rq,Δ 
	4.5 Chain Rings and Principal Ideal Rings
	4.6 Generalized Singleton Bound
	References

	5 Self-dual Codes
	5.1 Self-dual Codes Over Frobenius Rings
	5.2 Connections to Lattices
	5.3 Connections to Binary Self-dual Codes
	5.4 Connections to Designs
	5.5 Linear Complementary Dual
	References

	6 Cyclic and Constacyclic Codes 
	6.1 Polycyclic Codes
	6.2 Constacyclic Codes Over Formal Power Series Rings and Chain Rings
	6.3 Codes as Ideals in Group Rings
	6.4 Quasicyclic Codes
	6.5 θ-Cyclic Codes
	References

	Index



