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DNA and Histone Methylation in Lung Cancer
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Abstract Oncogenesis is driven by the accumulation of genetic and epigenetic 
alterations that result in dysregulation of key oncogenes, tumor suppressor genes, 
and DNA repair/housekeeping genes. One of the major clinical needs is the discov-
ery and clinical validation of new molecular biomarkers using non-or minimally 
invasive procedures to assist early diagnosis, prognosis and prediction of response 
to treatment. Histone methylation has profound effects on nuclear functions such as 
transcriptional regulation, maintenance of genome integrity and epigenetic inheri-
tance. On the other hand, aberrant DNA methylation can be detected in several 
biological fluids of patients and could be served as a potential tumor biomarker. In 
the present chapter we describe latest developments on histone and DNA methyla-
tion based biomarkers in Lung cancer.
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1  Introduction

Lung cancer remains the second leading cause of death worldwide, after heart 
 disease with more than 200,000 new cases and 160,000 deaths each year. The high 
incidence of lung cancer in combination with the very low 5-year survival rate of 
17% is the main cause of high mortality rate in this type of cancer [188]. The main 
subtypes of lung cancer are small cell lung cancer carcinoma (SCLC) and non-small 
cell lung carcinoma (NSCLC), which includes squamous cell carcinoma, adenocar-
cinoma, and large cell carcinoma subtypes [38]. NSCLC is the most common type, 
accounting for approximately 85% of all lung cancer cases. Although smoking 
remains the major risk factor for all histologies (especially small cell and squamous 
cell carcinoma), it is important to note that only around 10% of smokers will 
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ultimately develop lung cancer [134]. Globally, an estimated 15% of men and 53% 
of women with lung cancer are never-smokers. This fact indicates additional risk 
factors for the disease. Adenocarcinoma, for example, is the most common form 
among nonsmokers. Other risk factors include exposure to radon, asbestos, and envi-
ronmental/occupational exposure to polycyclic aromatic hydrocarbons and other 
pollutants [177]. However, as with smoking, not all exposed to these environmental 
factors develop lung cancer.

The carcinogenic process is driven by the accumulation of genetic and epigenetic 
alterations that result in dysregulation of key oncogenes, tumor suppressor genes, 
and DNA repair/housekeeping genes. The probability that these pathologically 
important events will occur is not only dependent on the individual’s exposure but 
also on interpersonal phenotypic variability. Although genetic heterogeneity 
accounts for some of the variable risk, it does not totally explain this phenomenon 
[107]. Epigenetic variability, including DNA methylation, histone modifications, 
and noncoding RNA expression, also contribute to the phenotype of an individual 
and, accordingly, to the risk of malignancy [108].

Early detection of lung carcinoma could change the disease outcome; in fact, the 
survival rate can increase dramatically. In the effort to improve early detection, 
many imaging and cytology-based strategies have been employed; however, none 
has yet been highly effective, mainly because of limited sensitivity and the huge 
cost they bear to public health systems [7]. It is now widely accepted that epidemio-
logical risk modeling is required for stratification of individuals for CT screening 
for early detection of lung cancer [161]. In addition to CT, one of the major clinical 
needs is now the inclusion of new molecular biomarkers detected in clinical sam-
ples using non-or minimally invasive procedures to assist early diagnosis, prognosis 
and prediction of response to treatment. Understanding the molecular pathways 
within lung cancer, and focusing on their molecular heterogeneity, is the most effec-
tive way towards the development of novel diagnostic and therapeutic tools. In the 
last decade, a plethora of molecular factors all involved in lung carcinogenesis have 
been evaluated as prognostic biomarkers [8].

2  Histone Methylation

Histone post-translational modifications include methylation, acetylation, phos-
phorylation and ubiquitination; through the modulation of chromatin structure, his-
tones play a significant role in creating gene transcriptional activation or repression 
[224]. Their role is crucial for precise coordination and organization of the open 
and closed chromatin structure during many dynamic processes such as DNA rep-
lication, repair, recombination, and transcription. Changes in local or global chro-
matin structure have been found to be the key features of many if not all tumors, 
indicating that such epigenetic changes may make a potential contribution to carci-
nogenesis [184, 207].

S. Mastoraki and E. Lianidou



405

Histone methylation has profound effects on nuclear functions such as transcrip-
tional regulation, maintenance of genome integrity and epigenetic inheritance [132]. 
For example, histone methylation on arginine or lysine residues can either activate 
or repress gene transcription, depending on which particular arginine or lysine resi-
due become modified [103]. Methylation and demethylation on arginine or lysine 
residues in histone tails are reversible modifications that are tightly controlled by 
histone methyltransferases and histone demethylases. Such dynamic balance of 
methylation and demethylation is frequently altered in tumorigenesis and pathogen-
esis of other disorders as well [31, 45, 87, 220].

There are three histone methylation states: monomethyl (me1), dimethyl (me2) 
or trimethyl (me3) [162]. In general, methylation of H3K4, H3K36 and H3K79 is 
generally considered to activate genes while methylation of H3K9, H3K27, H3K56, 
H4K20 and H1.4K26 causes transcriptional repression [105]. H3K4me1 is related 
with enhancer functions and participates in gene repression in metazoans [30, 66], 
nucleosome dynamics and chromatin regulation of yeast stress-responsive genes 
[141]. H3K4me2 is connected to gene repression and transcription in yeast [130, 
151], whereas H3K4me3 is linked to active transcription and is present around tran-
scriptional start sites [14, 219].

Lysine-specific demethylation is facilitated by two families of enzymes, of 
which the JmjC (JumonjiC) domain-containing family of histone demethylases 
(JHDMs) is the major one. KDM proteins are divided in two subgroups; KDM1 
and KDM 2-7 [201]. Unfortunately, there are few studies on KDM demethylases 
in lung tumors. KDM5B (lysine-specific demethylase 5B), also known as 
JARID1B (jumonji AT-rich interactive domain 1B) or PLU-1, is one member of 
the JHDMs subfamily which has recently attracted much attention [64]. Famous 
oncogenes such as E2F1 and E2F2 are downstream genes in the KDM5B pathway 
[65, 114]. Recently, KDM5B was found to stimulate NSCLC cell proliferation and 
invasion by affecting p53 expression [183]. KDM4A and KDM4B remove the tri- 
and dimethylated marks from H3K9 and H3K36 thus leading to gene repression 
while KDM4D can only move a methyl group from a trimethylated mark of 
H3K36. In non-neoplastic tissues, expression of KDM- 4C is especially high in 
the testes and expression in the lung is very low. KDM4A and KDM4B have a 
generally higher expression in non-neoplastic tissues the highest levels being 
found in ovary and spleen, but they are moderately expressed also in the lung 
[105]. Another recent study was undertaken to investigate the immunohistochemi-
cal expression of KDM4A, KDM4B and KDM4D in a set of 188 lung carcinomas. 
The results were associated with tumor histology, parameters describing the 
spread of the tumors, and survival of the patients. As an additional marker, the 
antibody to H3 trimethylated state was used. KDM4A and KDM4D play a role in 
spread of the lung carcinomas. Further, cytoplasmic KDM4A positivity associates 
with patient survival. These results are in line with the supposed role of KDMs in 
epigenetic regulation of cancer cells, affecting proliferation, apoptosis and DNA 
repair mechanisms [192].
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In lung cancer, several global histone modifications have been associated with 
survival; in particular, decreased levels of H3K4diMe have been associated with 
poor outcome [178]. Furthermore, the combination of several histone modifications 
have been reported to predict survival (H3K4me2, H3K9ac, and H2AK5ac) [13], 
and H4K20me3 downregulation has been associated with poor prognosis in patients 
with stage I lung adenocarcinoma [210].

Over the last decade, many studies have revealed epigenetic aberrations involv-
ing histone modifications in lung cancer. Miyanaga et al. [139] treated 16 NSCLC 
cell lines with HDAC inhibitors and both displayed antitumor activities in 50% 
of the cell lines tested. They also conducted gene expression profiling and cre-
ated a nine-gene classifier which predicts HDAC inhibitor drug sensitivities. 
Another group compared lung cancer cells with normal lung cells, and they found 
that lung cancer cells displayed aberrant histone H4 modification patterns with 
 hyperacetylation of H4K5/H4K8, hypoacetylation of H4K12/H4K16, and loss of 
H4K20 trimethylation [210]. These findings indicate an important role for histone 
H4 modifications and highlight H4K20me3 as a potential diagnostic biomarker and 
therapeutic target for lung cancer. Another study has shown that lower global levels 
of histone modifications are predictive of a more aggressive cancer phenotype in 
lung adenocarcinoma [178].

Additionally, the differential expression pattern of HATs and HDACs in the 
tumor samples, as compared to normals, may have important implications for the 
management of the patients [147]. HDAC1 gene expression appears to correlate 
with lung cancer progression; overexpression of HDAC1 and HDAC3 correlates 
with poor prognosis in pulmonary adebocarcinoma patients [137, 138, 171]. 
HDAC3 was also found in elevated levels in 92% cases of SCC tumors using anti-
body microarrays for detection of target proteins [15].

Histone deacetylase inhibitors (HDIs) might beneficially contribute to tumor 
treatment, by reducing the responsiveness of tumor cells to the TNF mediated acti-
vation of the NF-B pathway. This is shown in NSCLC cells treated with HDIs 
which down-regulated TNF-receptor-1 mRNA, protein levels, and surface protein 
expression, and consequently responded to TNF-treatment with attenuated NF-B 
nuclear translocation and DNA binding [78]. Treatment with trichostatin A (TSA) 
resulted in a dose dependent reduction of H157 lung cancer cells by apoptosis with 
nuclear fragmentation and an increase in the sub-G0/ G1 fraction. TSA initiated 
apoptosis by activation of the intrinsic mitochondrial and extrinsic/Fas/FasL system 
death pathways [93–95]. TSA is also a powerful NSCLC cell radiosensitizer, 
enhancing G2/M cell cycle arrest, promoting apoptosis, interfering with DNA dam-
age repair and synergistically causing cell death when combined with other HDAC 
inhibitors, such as vorinostat [180, 231]. It has been shown that vorinostat inhibits 
telomerase activity by reducing hTERT expression [113] and decreases bcl-2 
expression [100].

The first compound clinically used as an LSD1 inhibitor is tranylcypromine, a 
monoamine oxidase inhibitor approved more than 50  years ago for treatment- 
refractory depression. More potent and specific LSD1 inhibitors are presently under 
preclinical and early clinical development. The methylation of lysine 27 of histone 
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H3, H3K27, is regulated by the enhancer of zeste homolog 2 (EZH2), the catalytic 
domain of the polycomb repressive complex 2 (PRC2). Trimethylation of H3K27 
by EZH2 leads to silencing of PRC2 target genes that are involved in stem cell dif-
ferentiation and embryonic development. EZH2 is overexpressed in a variety of 
cancers, including NSCLC. 3-Deazaneplanocin A (DZNep) is an EZH2 inhibitor 
that leads to reduced trimethylated H3K27 levels in breast cancer cells and the de- 
repression of aberrantly silenced genes [172].

Aberrant histone methylation is a relatively recently discovered feature in 
NSCLC, which is reflected in the scarceness of studies using agents affecting his-
tone methylation. It was recently shown that EZH2 knockdown as well as indirect 
EZH2 inhibition using 3-deazaneplanocin A (DZNep) could prime NSCLC cell 
lines to the effect of the topoisomerase inhibitor etoposide [53]. Aberrant histone 
demethylation in NSCLC however is not extensively studied so far in NSCLC. LSD1 
knockdown as well as LSD1 inhibition using pargyline suppressed invasion, 
migration, and proliferation in lung cancer specimens [211]. To our knowledge, 
there are as yet no studies investigating combination therapies for lung cancer 
using LSD1 inhibitors [172].

Changes in the number of methyl residues in lysine residues of H3K9, H3K27 
and H3K36 through lysine methylation/demethylation is very important since it 
affects the expression of genes by loosening or tightening the attachment of DNA to 
the nucleosome [98].

3  DNA Methylation in Lung Cancer

DNA methylation is the most studied epigenetic regulatory mechanism. CpG island 
methylation is mediated by different DNA methyltransferases (DNMTs) that can 
lead to gene silencing. Three active DNMTs (DNMT1, DNMT3a, and DNMT3b) 
are in charge to transfer a methyl group from S-adenosyl-L-methionine to the CpG 
islands 5′-cytosine carbon [32, 55, 150] DNMT1 is primarily involved in the main-
tenance methylation after DNA replication, while DNMT3a and b are responsible 
of de novo DNA methylation [47, 118, 119, 235]. During the last years DNA meth-
ylation is gaining ground as a potential biomarker for diagnosis, staging, prognosis, 
and monitoring of response to therapy. The field of DNA methylation based markers 
for prognosis and diagnosis is still emerging and its widespread use in clinical prac-
tice needs to be implemented [83]. As DNA methylation is often considered an early 
event in carcinogenesis, tumor-specific methylation has a great potential to be used 
as a screening and/or diagnostic tool in a non- invasive and cost-effective way.

Hypermethylation includes tumor suppressor gene inactivation through pro-
moter methylation, is a hallmark of lung cancer and tends to occur as an early event 
in carcinogenesis [21, 236]. Tumor suppressor genes can be inactivated through a 
combined ation of promoter methylation in one allele and the presence of mutation 
or deletion in the other; in dominantly acting suppressor gene loci inactivation of 
one allele is generally insufficient to lead to clonal selection, since the protein can 
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still be produced from the other normal allele. However, there is also evidence that 
in some cases partial inactivation of one allele by promoter methylation can contrib-
ute to carcinogenesis and be sufficient for clonal selection [24].

Lung cancer involves an accumulation of genetic and epigenetic events in the 
respiratory epithelium. Mutations and copy number alterations play a well-known 
role in oncogenesis, though epigenetic alterations are, in fact, more frequent than 
somatic aberrations in lung cancer [28]. During the neoplastic progression from 
hyperplasia to adenocarcinoma, promoter methylation of specific tumor suppressor 
genes, along with the overall number of hypermethylated genes seems to be 
increased [115].

3.1  Tumor Suppressor Gene Inactivation Through Gene 
Promoter Methylation

Many of the tumor suppressor genes that are hypermethylated in lung cancer are 
found to be hypermethylated in other types of solid tumors as well. Moreover, some 
are specific, although many are not. In premalignant and malignant states, promoter 
methylation is commonly observed in genes involved with crucial functions, includ-
ing cell cycle control, proliferation, apoptosis, cellular adhesion, motility, and DNA 
repair [108]. Up to now, there is some evidence for a CpG island methylator pheno-
type (CIMP), a tumor phenotype characterized by widespread hypermethylation of 
a panel of genes, in lung cancer [124–126, 131, 186]. This is not wholly surprising, 
since the group of enzymes that catalyze the covalent attachment of the methyl 
group to the cytosine base (DNMTs), are upregulated in NSCLC  [93–95, 116].

3.2  lncRNAs and miRNAs Methylation in Lung Cancer

It has been recently shown that abnormal promoter methylation does not affect only 
protein coding genes but can also affect various noncoding RNAs that may play a 
role in malignant growth [128]. To identify which long non-coding RNAs (lncRNAs) 
are involved in non-small cell lung cancer (NSCLC), Feng et al. analyzed microar-
ray data on gene expression and methylation and identified 8500 lncRNAs that are 
expressed differentially between tumor and non-malignant tissues; 1504 of these 
were correlated with mRNA expression. Two of the lncRNAs, LOC146880 and 
ENST00000439577, were positively correlated with expression of two cancer- 
related genes, KPNA2 and RCC2, respectively. High expression of these two 
lncRNAs was also associated with poor survival. Analysis of lncRNA expression in 
relation to DNA methylation has shown that LOC146880 expression was down- 
regulated by DNA methylation in its promoter [51].

MicroRNAs (miRNAs) also play an important role in cancer development and 
progression, altering several biological functions by affecting targets through either 
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their degradation or suppression of protein encoded. It has been recently shown that 
miR-1247, is downregulated in various cancers, but its biological role in non-small- 
cell lung cancer (NSCLC) is unknown. Furthermore, Stathmin 1 (STMN1) was 
found to be an immediate and functional target of miR-1247. The expression of 
STMN1 was significantly increased in NSCLC cell lines but was decreased by 
5-Aza treatment. In addition, miR-1247 upregulation partially inhibited STMN1- 
induced promotion of migration and invasion of A549 and H1299 cells. These 
results indicate that miR-1247 was silenced by DNA methylation. Therefore, miR- 
1247 and its downstream target gene STMN1 may be a future target for the treat-
ment of NSCLC [234].

3.3  Genomic Hypomethylation

DNA hypomethylation at CpG dinucleotides was the first epigenetic abnormality to 
be identified in cancer cells, over three decades ago. The degree of hypomethylation 
of genomic DNA was shown to correlate with the severity of the cancer; genome- 
wide DNA methylation decreased as the tumor progressed from a benign proliferat-
ing mass to metastatic invasive cancer [217].

A possible explanation for the mechanism of reduced DNA methylation contri-
bution to carcinogenesis is that hypomethylation of genomic DNA favors mitotic 
recombination between repetitive sequences resulting in chromosomal instability. 
Mitotic recombination normally occurs at a high frequency in human cells [60, 69]. 
Since recombination depends on the homology between nucleotide sequences, 
repetitive sequences are especially permissive to recombination events, resulting in 
gross chromosomal anomalies, including chromosomal rearrangements, deletions, 
and/or translocations [217].

Another mechanism through which DNA hypomethylation contributes to carci-
nogenesis is reactivation of transposable elements. It was shown already many years 
ago that SINEs and LINEs together make up approximately 45% of the human 
genome  [106]  and are usually methylated in normal tissues. LINEs belong to the 
class of transposable elements that lack LTRs at their ends. LINEs, which are part 
of the LINE-1 (or L1) family, constitute approximately 17% of the human genome 
and are the only transposable elements capable of autonomous transposition [17].

In lung cancer, genomic hypomethylation may be a late event in tumorigenesis 
in contrast to gene-specific hypermethylation, which can occur early during cancer 
development. However, currently there is not a clear consensus on the timing, as 
Anisowicz et al. [4] found that hypomethylation was associated with NSCLC pro-
gression from normal to lung cancer. DNA hypomethylation in lung cancers, as this 
was shown by high-resolution CpG methylation mapping, occur specifically at 
repetitive sequences [166], including heterochromatin repeats (e.g., satellite DNA), 
SINEs (short interspersed nuclear elements), LINEs (long interspersed nuclear ele-
ments), LTR (long terminal repeat) elements, and segmental duplications in sub-
telomeric regions. However cancer-specific hypomethylation at repeat regions was 
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not conserved between the individual tumors indicating randomness for targeting 
repeat sequences for demethylation in cancer [57]. In NSCLC widespread hypo-
methylation has been associated with genomic instability [35] that could result in 
oncogene activation [49] and loss of imprinting [101]. In lung cancer, hypomethyl-
ation tends to occur at nuclear elements, long terminal repeat (LTR) elements, seg-
mental duplicates, and subtelomeric regions. On the contrary, loss of methylation is 
much less common at non-repetitive sequences [166].

In addition to the genomic loss of methyl content, gene-specific hypomethylation 
has been reported for several loci, including MAGEA [58, 97], TKTL1 [86], BORIS 
[70, 167], DDR131 14-3-3s [160, 185], and TMSB10 [60]. MAGE overexpression 
with an associated loss of methylation is a common event in lung cancer, as it has 
been observed in 75–80% of NSCLC [81].

3.4  EMT and DNA Methylation

EMT is a fundamental and conserved process characterized by loss of cell adhesion 
and increased cell motility. EMT is essential for numerous developmental processes 
including mesoderm formation and neural tube formation and wound healing. 
However, initiation of metastasis involves invasion, which has many phenotypic 
similarities to EMT, including a loss of cell-cell adhesion and an increase in cell 
mobility [200].

EMT is regulated by a variety of growth factors including epidermal growth fac-
tor (EGF), platelet derived growth factors (PDGFs), fibroblast growth factor-2 
(FGF-2), and transforming growth factor-beta (TGF-β) [85] and is characterized by 
the loss of CDH1 (E-cadherin), a trans-membrane protein that is required for adher-
ent junctions [109]. Following the loss of epithelial markers, there is a correspond-
ing increase in mesenchymal markers, for example VIM (vimentin), CDH12 
(N-cadherin) FN1 (fibronectin), ACTA2 (alpha-smooth muscle actin), and increased 
activity of MMP (matrix metalloproteinases) [168, 221]. Recent studies have shown 
that a multilayer regulatory network of transcription factors controls EMT.  The 
most studied network is the regulation through SNAIL (SNAI1 and SNAI2), ZEB 
(ZEB1 and ZEB2), and TWIST (TWIST1) family members, which are referred as 
EMT transcription factors (EMT-TF) [190].

In NSCLC, DNA methylation of a subset of genes related to EMT leads to their 
transcriptional inactivation [120]. One of the master regulators of EMT, TWIST, 
binds to the CDH1 promoter and recruits the CHD4/nucleosome remodeling and 
deacetylase complex (CHD4/NuRD complex, also known as Mi2/NuRD complex) 
by direct interaction to several of its components as MTA2, CHD4, and RBBP7 
[56]. In addition, MTA2 directly recruits the histone deacetylase HDAC2. The 
TWIST/CHD4/NuRD complex represses CHD1 expression by nucleosome remod-
eling as well as deacetylation of histones. The biological relevance of this mecha-
nism of transcription regulation was demonstrated within the context of metastasis 
of two types of cancers, lung and breast cancer, since depletion of the components 
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of the TWIST/CHD4/ NuRD complex suppressed cell migration and invasion in cell 
culture and murine models of cancer metastasis. This work [56] shows that not only 
DNA methylation but also other chromatin modifications, as nucleosome remodel-
ing and histone modifications, play a role during cancer metastasis.

4  Smoking and DNA Methylation

Some epigenetic alterations reported for lung cancer may be smoking-specific, 
since they occur at greater frequency in smokers and increase with increasing 
smoking duration and intensity [90, 123, 202]. Genes reported to undergo smoking 
specific promoter hypermethylation include APC, FHIT, RASSF1A, and CCND2 
[50, 203]. Also, the frequency of promoter hypermethylation of p16INK4a, MGMT, 
RASSF1A, MTHFR, and FHIT is greater in the NSCLC tumors of smokers rela-
tive to nonsmokers [91, 123, 209]. Moreover, RARb, p16INK4a, FHIT, and 
RASSF1A promoter hypermethylation increases with increasing smoking inten-
sity [3, 71, 228].

DNMT1 expression is elevated in smokers with lung cancer, likely due to 
tobacco-specific nitrosamines that reduce DNMT1 ubiquitination and degradation  
[118, 119]. Additionally, it is widely accepted tha smoking-induced chronic inflam-
mation and increased reactive oxygen species generation lead to increased DNA 
methylation [144].

Damiani et al.  [34] developed an in vitro model that mimics the field canceriza-
tion observed in chronic smokers and identified several epigenetic changes and their 
kinetics. More specifically, immortalized normal human bronchial epithelial cells 
(HBECs) were exposed for 12 weeks to two cigarette carcinogens; methylnitrosurea 
(MNU) and benzo(a)pyrenediolepoxide 1 (BPDE). Stable knockdown of DNMT1, 
but not DNMT3 prevented cell transformation after exposure to these carcinogens. 
HBECs transform to a fibroblast like mesenchymal form after 4 weeks of carcino-
gen exposure. Significant reductions in miR-200b and miR-200c, were observed at 
4  weeks exposure and was sustained upon cell transformation at 12  weeks. 
Interestingly, these two microRNAs are involved in regulating and inhibiting the 
EMT. Further studies revealed that expression of these EMT-regulating microRNAs 
are initially reduced by transcriptionally inactive chromatin at 4 weeks, followed by 
cytosine methylation-mediated repression at their promoters [19].

Interestingly long-term exposure to carcinogenic stimuli would imply a later 
selection of existing clones, thus genes that are silenced due to the duration or 
amount of tobacco smoking, are likely later stage contributors to this disease. 
Experimentally, wide genomic hypomethylation and promoter hypermethylation 
of RASSF1A and RARb were observed when normal small-airway epithelial 
cells and immortalized bronchial epithelial cells were exposed to cigarette 
smoke condensate [125, 126]. There is also experimental evidence indicating 
that cigarette condensate decreases nuclear levels of H4K16ac and H4K2me3 in 
respiratory epithelial cells [133].
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Conversely, RASSF2, TNFRSF10, BHLHB5, and BOLL have been reported to 
be hypermethylated more frequently in NSCLC of patients who never smoked 
[108]. Moreover, chronic inflammation, which occurs in response to cigarette smok-
ing, also plays an important role in lung cancer development, stimulating cellular 
turnover and proliferation. Inflammation has long been associated with DNA meth-
ylation in lung cancer [11, 136]. There is evidence that reactive oxygen species, 
generated during chronic inflammation, target transcriptional repressors and lead to 
increased levels of DNA methylation [144].

Cigarette smoke also inhibits the metabolism and storage of folate [143]. It has 
been shown on studies based in experimental models, that nitrates, nitrous oxide, 
cyanates, and isocyanates found in tobacco smoke transform folate, a major source 
of methyl groups for 1-carbon metabolism, into a biologically inactive compound 
[1, 89]. In additional support of this, reduced serum folate levels have been observed 
in smokers relative to nonsmokers [145, 152]. One-carbon metabolism is a critical 
pathway in the DNA methylation process, and depletion of folate can impact 
 negatively the availability of s-adenosylmethionine, the primary methyl donor in the 
cytosine methylation reaction. Consequently, folate deficiency can result in chro-
mosomal damage through impaired nucleotide synthesis and aberrant DNA meth-
ylation [25, 48].

5  Hypermethylated Genes in Lung Cancer

DNA 5′-cytosine hypermethylation is an early event in lung carcinogenesis [28, 83]. 
Many genes are hypermethylated in lung cancer including p16, PAK3, NISCH, 
KIF1A, OGDHL, BRMS1, FHIT, CTSZ, CCNA1, NRCAM, LOX, MGMT, DOK1, 
SOX15, TCF21, DAPK, RAR, RASSF1, CYGB, MSX1, BNC1, CTSZ, and 
CDKN2A [6, 44, 46, 72, 80, 82, 140, 149, 176, 182, 191, 205, 215].

The percent of hypermethylation for each gene varies, for example p16 and 
MGMT are hypermethylated in 100% of patients with pulmonary SqCC up the 
3  years before cancer diagnosis. p16 inhibits cyclin-dependent kinases 4 and 6, 
which after binding cyclin D1, phosphorylate and inactivate the retinoblastoma 
(Rb) tumor suppressor gene, blocking cell cycle progression [218]. p16 is lost in 
~70% of lung cancer cases, often by promoter methylation, promoting the G1 to S 
phase transition [181]. Interestingly, p16 methylation occurs in normal-appearing 
epithelium from smokers and precursors lesions, and increases as the disease pro-
gresses [20]. The specific mechanisms by which each gene hypermethylation event 
promotes cancer vary, but most of them include repression of tumor suppressor 
genes with subsequent activation of genes promoting cell growth and cell cycle 
progression [6, 44, 46, 72, 80, 82, 140, 149, 176, 191, 205, 215].

Some of the most often studied hypermethylated genes in lung cancer include 
p16INK4a, RASSF1A, APC, RARb, CDH1, CDH13, DAPK, FHIT, and 
MGMT. Although p16INK4a is hypermethylated, mutated, or deleted frequently in 
NSCLC, with estimates for the prevalence of alteration of this gene around 60%, 
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p14arf, which is also encoded on the CDKN2A gene, is inactivated much less com-
monly (8–30% of NSCLC) [54, 204]. On the other hand, p16INK4a is disrupted in 
less than 10% of SCLC patients. In addition, RASSF1A is deleted or hypermethyl-
ated in 30–40% of NSCLC and 70–100% of SCLC, FHIT is deleted or hypermeth-
ylated in 40–70% of NSCLC and 50–80% of SCLC and finally TSLC1 is 
hypermethylated in an estimated 85% of NSCLC [204].

Hypermethylation of CDKN2A has been identified in premalignant lesions, thus 
may occur early in the tumorigenesis of some lung cancers types [18]. Promoter 
methylation of RASSF1A, APC, ESR1, ABCB1, MT1G, and HOXC9 have been 
associated with stage I NSCLC [117] suggesting they also are an early event in lung 
cancer. CpG island methylation of homeobox-associated genes is also common in 
stage I lung cancer, appearing in nearly all early-stage tumors  [165]. Conversely, 
other commonly hypermethylated genes, such as hDAB2IP, H-Cadherin, DAL-1, and 
FBN2, have been associated with advanced-stage NSCLC [29, 229], suggesting 
these changes may occur at a later point during cancer progression. However, it is 
 important to note that later involvement does not preclude the importance of the 
modification in the development of the disease, as these modifications may play key 
roles in the ability of the cancer to continue to develop in its advanced state, to slide 
over host immunity or exogenous cancer treatments, or to metastasize locally. 
Furthermore, due to the heterogeneity and the unique molecular signature of lung 
cancer, it is critical that these generalized “temporal” observations are kept in per-
spective; an early event in 1 tumor may not occur until later on in another [108].

Promoter methylation of CDKN2A and PTPRN2 has been shown to be one of 
the earliest events in cellular hyperplasia. Subsequently, studies have shown aber-
rant promoter hypermethylation of RASSF1A, CDH13, MGMT, and APC in lung 
cancer [92, 117, 158, 226]. Methylation of SHOX2, in bronchial aspirates as a bio-
marker, was identified in a 250-patient case-control study with 78% sensitivity and 
96% specificity [99]. Hypermethylation of each CDKN2A, CDX2, HOXA1, and 
OPCML individually distinguished lung adenocarcinoma from healthy donors with 
a sensitivity of 67–86% and a specificity of 74–82% and showed significant DNA 
methylation even in stage I tumor samples [206]. Moreover, hypermethylation of 
the DAPK promoter was found in 34% of lung cancer samples. Taking into consid-
eration the different histological subtypes of NSCLC, DAPK promoter methylation 
was more frequently observed in squamous cell carcinoma than in adenocarcinoma 
and large cell carcinoma; however, these differences were not statistically signifi-
cant [142].

In sputum, tumor cells can be identified by atypical cell morphology. Sputum 
collection is a procedure that can be done easily and non-invasively by the 
patient. However, sampling may be inadequate because of the presence of epithe-
lial cells resulting in underestimation of the methylation level in cancer cells. 
Sputum cytology is still implemented as standard diagnostic tool for lung cancer 
diagnosis, although in developed countries, it was replaced by tumor biopsies/
tumor cytology. Over the last decade, research on sputum cytology for risk 
assessment and recurrence of early lung cancer brought new insights and 
advanced highly sensitive molecular techniques [135].

DNA and Histone Methylation in Lung Cancer



414

Analysis of the RASSF1A and 3OST2 promoters methylation in sputum speci-
men demonstrated a combined sensitivity of 85% with a specificity of 74% [77]. 
Promoter methylation of 31 genes was also analyzed in sputum of lung cancer 
patients in two independent cohorts to define a gene unique methylation signature 
for lung cancer risk assessment [111]. Accurate diagnosis was made for 71–77% of 
the patients using the promoter methylation signature of seven of these genes 
(PAX5β, PAX5α, Dal-1, GATA5, SULF2, and CXCL14). Whang et al. observed 
55% MLH1 promoter hypermethylation of the tumor samples obtained from stage 
I and II patients. Further evaluation demonstrated a similar promoter 
 hypermethylation in 38% of the sputum samples. Finally, they reported a 72% 
 concordance of sputum samples matched to tissue biopsies [213]. A different study 
found that CDKN2A was methylated in 80.2% of tumor tissues and showed a fre-
quency of 74.7% in sputum specimens. Several studies have evaluated the correla-
tion between tissue and sputum samples. Hypermethylation of the best studied 
gene, CDKN2A, seems to be higher in tumor samples than in sputum with an 
interquartile range of 84–37% to 74–32%, respectively [33, 40, 122].

In serum and plasma of cancer patients cell free DNA from necrotic and apop-
totic cancer cells have been detected [12]. A lot of genes have been evaluated in lung 
cancer patients to identify specific and sensitive targets for early lung cancer detec-
tion in clinical trials. In NSCLC, 75–87% of serum samples corresponding to their 
matched tissue samples for promoter hypermethylation of RASSF1A, CDKN2A, 
RARb, CDH13, FHIT, and BLU. In a study evaluating lung cancer risk using this 
panel of six genes, a sensitivity of 73% and a specificity of 82% were reported, with 
a concordance between tumor tissues and corresponding matched plasma samples, 
of 75% [74]. Promoter methylation of CDKN2A, DAPK, PAX5b, and GATA5 was 
analyzed in blood but it was 0.2–0.6-fold lower than in tissue biopsy samples [23]. 
Subsequent studies have shown CDKN2A methylation in blood, but the results 
given are very different in different studies, varying from 22.2% to 75.7% [16, 195]. 
Hypermethylation for DAPK was found in 35% of the bronchial epithelium and in 
41% of blood samples from smokers whereas the remaining samples from non-
smokers were unaffected, showing smoking−/lung cancer-associated methylation 
changes [169].

In a very recent study, Daugaard I et al. compared the genome-wide methylation 
pattern in tumor and tumor adjacent normal lung tissues from four lung adenocarci-
noma patients using DNA methylation microarrays and identified 74 differentially 
methylated regions (DMRs), 15 of which were validated and can be targeted as 
biomarkers in LAC [36]. Another study demonstrated that SPAG6 and L1TD1 are 
tumor-specifically methylated in NSCLC DNA methylation is involved in the tran-
scriptional regulation of these genes and tumor-cell growth suppressing properties 
of L1TD1 in NSCLC cells [2].

In the past, abberant estrogen receptor (ER) regulation has been associated with 
various lung pathologies, but so far its involvement in lung cancer initiation and/or 
progression has remained unclear. Tekpli et al., aimed to assess in vivo and in vitro 
ER expression and its possible epigenetic regulation in non-small cell lung cancer 
(NSCLC) samples and their corresponding normal tissues and cells, and they reported 
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significantly lower ERα and ERβ expression levels in the NSCLC tissue samples 
compared to their normal adjacent tissue samples. They also found that in tumor and 
normal lung tissues, smoking was associated with decreased ER expression and that 
normal lung tissues with a low ERβ expression level exhibited increased smoking-
related DNA adducts. Taken together, these results indicate that decreased ER expres-
sion mediated by DNA methylation may play a role in NSCLC development [199].

6  DNA Methylation Based Biomarkers

The virtually universal presence of DNA hypermethylation in all types of cancer 
makes it an ideal candidate tumor biomarker. Compared with other molecular marker 
classes such as mRNA and proteins, DNA methylation has many advantages. First, 
DNA methylation is a covalent modification of DNA, so it is chemically stable and 
can survive harsh conditions for long periods of time. Second, through simple pro-
cedures it can be readily amplifiable and easily detectable. In addition, contrary to 
cancer-specific mutations, which are relatively rare and present in different gene 
positions, the incidence of aberrant methylation of specific CGIs is much higher, and 
moreover such methylation can be discovered by genome-wide screening proce-
dures. Finally, DNA methylation has been detected in a number of body fluids of 
patients with cancer. In lung cancer, aberrant DNA methylation can be detected in 
the ctDNA, in sputum, in bronchoalveolar lavage and saliva of patients [8].

DNA hypermethylation in lung cancer patients can be detected in a plethora of 
biological samples, including bronchoscopic washings/brushings, sputum samples, 
and blood (plasma and serum), all of which are less invasive and easier on the 
patient than a tumor biopsy [5]. The clinical significance of detecting methylation 
biomarkers in blood could facilitate the evaluation of tumor progression next to 
routine screening. Nevertheless, it could be an indication of invasiveness, reflecting 
an advanced tumor stage [135].

6.1  Early Detection

Lung cancer mortality could be reduced significantly with the early detection of the 
disease. However, only about 15% of lung tumors are localized in the time of diag-
nosis, with the majority presenting at an advanced stage [38]. Five-year survival for 
lung cancer is markedly better for early-stage patients, with a less than 10% 5-year 
survival for advanced-stage patients vs greater than 70% for early-stage patients [68]. 
Cytology is by far the gold standard method for lung cancer diagnosis in minimally- 
invasive respiratory samples, despite its low sensitivity. Spiral computed tomography 
has shown promise for the early detection of lung cancer, but it has a high false posi-
tive rate [52], with as many as 30% of indeterminate nodules identified by computed 
tomography found ultimately to be benign [79], indicating that there is a need for 
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development of additional markers to increase specificity. As discussed previously, 
promoter hypermethylation can be an early event in lung carcinogenesis and, as such, 
may have utility in early detection of the disease.

Promoter hypermethylation of p16INK4a has been observed in NSCLC precur-
sor lesions [115], and PTPRN2 promoter methylation is reported to be an early 
event in pulmonary adenocarcinoma, with detectable changes in the premalignant 
atypical adenomatous hyperplasia [177].

More important, some of these early epigenetic events can be detected by non- or 
minimally invasive sample collection techniques, the most important characteristic 
for cancer-screening applications. For example, aberrant DNA methylation can be 
detected in sputum [109, 127], bronchoalveolar aspirate/lavage [37, 43, 175] and 
saliva [75, 189] in patients with lung cancer. For example, CDKN2A and MGMT 
promoter methylation was detected in sputum as long as 3-years before lung cancer 
diagnosis [148]  and promoter methylation of p16INK4a, MGMT, PAX5b, DAPK, 
GATA5, and in another study RASSF1A was detected in sputum 18 months before 
lung cancer diagnosis  [22].

Diaz et al. aimed to identify epigenetic biomarkers with clinical utility for cancer 
diagnosis in minimally or non-invasive specimens to improve the accuracy of cur-
rent technologies. They identified nine cancer-specific hypermethylated genes in 
early-stage lung primary tumors, four of which (BCAT1, CDO1, TRIM58 and 
ZNF177) presented consistent CpG island-hypermethylation compared to non- 
malignant tissue and were associated with transcriptional silencing. It was shown 
that this epigenetic signature achieved higher diagnostic efficacy in bronchial fluids 
as compared with conventional cytology for lung cancer diagnosis, indicating that 
minimally-invasive epigenetic biomarkers have emerged as promising tools for can-
cer diagnosis [41].

However, specificity can be an issue for some of these early markers; they can 
also be detected in individuals who never developed the disease, something that 
underscores the importance of multimarker panels. Interestingly, promoter methyla-
tion of p16INK4a has been detected in sputum from former and current smokers 
[21]. However, not all single markers are nonspecific, as exemplified by SHOX2 
promoter methylation, which has demonstrated good sensitivity (68–78%) and spec-
ificity (95–96%) for NSCLC in bronchial aspirates (AUC, 86–94%) samples [43].

Breath capture methods are also evaluated for early detection of lung cancer. 
Breath capture methods can be based on direct breathing into an analysis platform 
or on the collection of exhaled breath through cooling devices (exhaled breath con-
densates, EBCs) [164]. EBC-based lung cancer diagnosis has recently become more 
relevant, especially since studies have reported that EBCs can also be used to detect 
DNA mutations and DNA methylation patterns in lung cancer patients [39]. A recent 
study demonstrated promoter hypermethylation of CDKN2A in EBC of 40% of the 
NSCLC patients that were analyzed using fluorescent quantitative methylation- 
specific PCR (F-MSP) [222]. However, DNA methylation of DAPK, PAX5beta, and 
RASSF1A has been also assayed in EBCs of lung cancer patients showing high 
variability between each individual [62]. The discrepancies between different 
reports might be explained through the fact that EBC is a highly diluted mixtures of 

S. Mastoraki and E. Lianidou



417

compounds. Thus, EBC-based diagnosis of lung cancer requires appropriate strin-
gent standardization protocols in order to reduce variability and increase sensitivity 
of the technique. Nevertheless, collecting EBCs is a promising new strategy of diag-
nosis of lung diseases, including lung cancer [135].

Three studies reported methylation of p16 and RARbata; two studies showed 
methylation of APC, RASSF1A, DAPK, SHP1P2, DLEC1, KLK10, and SFRP1. 
The other genes were reported to be methylated only once. The genes found to be 
hypermethylated in over 30% of NSCLC (based on at least two independent stud-
ies) were APC and RASSF1A. The methylation frequency of DAPK between differ-
ent studies varied from 26.1% to 68.4%. Except for DAPK, the methylation 
frequencies of other genes had little differences across studies. Most of the studies 
involved controls; therefore, comparison of the data across cases and controls was 
possible. Methylation-specific PCR techniques have been employed by most of the 
studies to quantify the methylation statues of genes [104].

Many studies have demonstrated that hypermethylation in promoter region of 
RARb gene could be found with high prevalence in tumor tissue and autologous 
controls such as corresponding non-tumor lung tissue, sputum and plasma of the 
NSCLC patients, but due to the small number of subjects included in the individual 
study, the statistical power is limited. Hua et al. performed a meta-analysis using a 
systematic search strategy in PubMed, EMBASE and CNKI databases and calcu-
lated the pooled odds ratio (OR) of RARb promoter methylation in lung cancer 
tissue versus autologous controls. The results show a strong and significant correla-
tion between tumor tissue and autologous controls of RARb gene promoter hyper-
methylation prevalence across studies, indicating that RARb promoter methylation 
may play an important role in carcinogenesis of the NSCLC [76].

Another team performed a meta-analysis to review the diagnostic ability of 
CDH13 methylation in NSCLC as well as in its subsets. Thirteen studies, including 
1850 samples were included in this meta-analysis. In a validation stage, 126 paired 
samples from TCGA were analyzed and 5 out of the 6 CpG sites in the CpG island 
of CDH13 were significantly hypermethylated in lung adenocarcinoma tissues but 
none of the 6 CpG sites was hypermethylated in squamous cell carcinoma tissues. 
These pooled data showed that the methylation status of the CDH13 promoter is 
strongly associated with lung adenocarcinoma. The CDH13 methylation status could 
be a promising diagnostic biomarker for diagnosis of lung adenocarcinoma [157].

Han et al. investigated the correlation of hMLH1 promoter hypermethylation and 
NSCLC using 13 studies by comprising 1056 lung cancer patients via a meta- 
analysis. Initially, they observed that loss of hMLH1 protein expression was signifi-
cantly associated with its promoter hypermethylation, hMLH1 gene inactivation 
through hypermethylation contributed to the tumorigenesis of NSCLC, and that there 
is a correlation between histologic subtypes/disease stages (TNM I + II vs III + IV) 
and hypermethylation status of hMLH1 gene.Finally, they found that NSCLC 
patients with hMLH1 hypermethylation and subsequent low expression levels of 
hMLH1 have a short overall survival period than those patients with normal expres-
sion of hMLH1 gene. Thus, they concluded that hMLH1 hypermethylation should be 
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an early diagnostic marker for NSCLC and also a prognostic index for NSCLC. 
hMLH1 is an interesting therapeutic target in human lung cancers [63].

Abnormal miRNA expression and promoter methylation of genes detected in 
sputum may provide biomarkers for non-small lung cancer (NSCLC). In a recent 
study, they evaluated the individual and combined analysis of the two classes of 
sputum molecular biomarkers for NSCLC detection and they found that integrated 
analysis of 2 miRNAs (miR-31 and miR-210) and 2 genes (RASSF1A and 3OST2) 
yields higher sensitivity (87.3%) and specificity (90.3%) compared with the indi-
vidual panels of the biomarkers (P < 0.05) [194].

6.2  Prognostic Biomarkers

Promoter methylation of RASSF1A [214, 227], PTEN, DAPK[198], p16INK4a 
[59, 93–95, 146], Wif-1, CXCL12 [197], DLEC1, MLH1 [179], CDH1, CDH [96], 
APC [26, 208], RUNX3 [227], SPARC and DAL1 have all been associated with 
NSCLC outcome [27, 196, 230]. In addition, DNMT1 overexpression in NSCLC is 
associated with decreased survival [93–95, 116] and DNMT3b, only in patients 
younger than 65 years [223]. Along similar lines, the CpG island methylator pheno-
type has also been correlated with prognosis in NSCLC. Relative to advanced-stage 
lung cancers, chemotherapeutic recommendations are not as clear for earlystage 
disease, with no true consensus regarding the optimal approach [193]. Early-stage 
lung cancer can be controlled locally, but exhibits a high recurrence rate. Completely 
resected stage IB and II tumors have a near-50% recurrence rate, with a median time 
to recurrence of 1 year [88]. Patients with stage IA tumors are less likely to experi-
ence a recurrence, although certain IA subsets have high recurrence rates [187]. 
Methylation of p16INK4a, RASSF1A, CDH13, and APC has been associated with 
early recurrence in surgically treated stage I NSCLCs [27]. The combination of 
FHIT and p16INK4a promoter methylation has also been associated with recur-
rence in stage I NSCLC [93–95].

The results of a metaanalysis suggest that FHIT hypermethylation is associated 
with an increased risk and worse survival in NSCLC patients. FHIT hypermethyl-
ation, which induces the inactivation of FHIT gene, plays an important role in the 
carcinogenesis and clinical outcome and may serve as a potential drug target of 
NSCLC [225]. Another recent study was the first to investigate SFRP3 expression 
and its potential clinical impact on non-small cell lung carcinoma (NSCLC). WNT 
signaling components present on NSCLC subtypes were preliminary elucidated by 
expression data of The Cancer Genome Atlas (TCGA). They identified a distinct 
expression signature of relevant WNT signaling components that differ between 
adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC). Of interest, 
canonical WNT signaling is predominant in LUAD samples and non-canonical 
WNT signaling is predominant in LUSC. In line, high SFRP3 expression resulted 
in beneficial clinical outcome for LUAD but not for LUSC patients. Moreover, 
DNA hypermethylation of SFRP3 was evaluated in the TCGA methylation dataset 
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resulting in epigenetic inactivation of SFRP3 expression in LUAD, but not in 
LUSC, and was validated by pyrosequencing of our NSCLC tissue cohort and 
in  vitro  demethylation experiments. Immunohistochemistry confirmed SFRP3 
protein downregulation in primary NSCLC and indicated abundant expression in 
normal lung tissue. Thus, the above results indicate that SFRP3 acts as a novel 
putative tumor suppressor gene in adenocarcinoma of the lung possibly regulating 
canonical WNT signaling [173]. Functional analysis revealed that overexpressed 
STXBP6 in A549 and H1299 cells significantly decreased cell proliferation, colony 
formation, and migration, and increased apoptosis. Finally, significantly lower sur-
vival rates (P < 0.05) were observed when expression levels of STXBP6 were low, 
providing a basis for the genetic etiology of lung adenocarcinoma [112]. Moreover, 
recently Zhang et al. found that PAX6 gene was specifically methylated in NSCLC, 
and demonstrated the effect of promoter methylation of PAX6 gene on clinical 
outcome in NSCLC, indicating the methylated PAX6 may be useful biomarkers 
for prognostic evaluation in NSCLC [233]. Interestingly, it is found for the first 
time that TMEM196 acts as a novel functional tumour suppressor inactivated by 
DNA methylation and is an independent prognostic factor of lung cancer. 
Multivariate analysis showed that patients with TMEM196 expression had a better 
overall survival [127].

Targeted therapies can be successfully used in a subset of patients with lung 
adenocarcinomas (ADC), but they are not appropriate for patients with squamous 
cell carcinomas (SCC). In addition, there is a need for the identification of prognos-
tic biomarkers that can select patients at risk of relapse in early stages. It has been 
shown that a high prometastatic serine protease TMPRSS4 expression is an inde-
pendent prognostic factor in SCC. Similarly, aberrant hypomethylation in tumors 
correlates with high TMPRSS4 expression and could be used as an independent 
prognostic predictor in SCC. The inverse correlation between expression and meth-
ylation status was also observed in cell lines. In vitro studies showed that treatment 
of cells lacking TMPRSS4 expression with a demethylating agent significantly 
increased TMPRSS4 levels. In conclusion, TMPRSS4 is a novel independent prog-
nostic biomarker regulated by epigenetic changes in SCC and a potential therapeu-
tic target in this tumor type, where targeted therapy is still underdeveloped [212].

6.3  Methylated ctDNA as a Biomarker in Liquid Biopsy

Several studies have reported the potential of investigating tumor-specific meth-
ylation in blood for the screening and diagnosis of lung cancer. Determination of 
the methylation patterns of multiple genes to obtain complex ctDNA methylation 
signatures can contribute importantly to cancer development and/or progression. 
In recent years, methylation specific PCR has been successfully applied in the area 
of evaluating gene hypermethylation in the ctDNA, leading to highly sensitive and 
specific methodologies for NSCLC diagnosis.

DNA and Histone Methylation in Lung Cancer



420

6.3.1  Methylated ctDNA as a Marker for Early Diagnosis

Various gene promoters were found to be differentially methylated in ctDNA of 
lung cancer patients and healthy controls. These differences have been evaluated 
towards early detection of lung cancer and are summarized in Table 1. Epigenetically 
regulated genes have been evaluated for this purpose, such as Short stature homebox 
2 (SHOX2) [100, 103], doublecortin like kinase 1 (DCLK1) [156], septin9 (SEPT9) 
[155], ras association domain family 1 isoform A (RASSF1A) and retinoic acid 
receptor B2 (RARB2) [154]. It is important to note that a large proportion of cases 
in these studies are late-stage cancers. Therefore, it has to be an inclusion of patients 
amenable to therapy in order to validate a biomarker useful for the screening and 
diagnosis of lung cancer [121].

Zhang Y et  al. evaluated the methylation status of 20 tumor-suppressor 
genes in serum of NSCLC patients using methylation-specific PCR [232]. They 
report that nine genes (APC, CDH13, KLK10, DLEC1, RASSF1A, EFEMP1, 
SFRP1, RARbeta, and p16 (INK4A) were hypermethylated in NSCLC patients. 
The   methylation frequencies in the plasma were consistent with those in the 
paired tumor tissues. The above results indicated that methylated alteration of 
multiple genes played important roles in NSCLC pathogenesis and the methylated 
genes in ctDNA might be potential candidate epigenetic biomarkers for NSCLC 
detection [54]. As the human 8-oxoguanine DNA glycosylase (hOGG1) gene pro-
moter is frequently methylated in NSCLC, Qin et al. evaluated whether genetic or 
epigenetic alterations of hOGG1 are associated with increased risk of non-small 
cell lung cancer. The methylation profiles of peripheral blood mononuclear cell 
specimens from 121 NSCLC patients and 121 controls were determined through 
methylation-specific PCR of hOGG1. hOGG1 methylation-positive carriers had 
a 2.25-fold greater risk of developing NSCLC than methylation-free subjects. 
Furthermore, the demethylating agent 5 aza-2′-deoxycytidine restored hOGG1 
expression in NSCLC cell lines. These data provide strong evidence of an associa-
tion between peripheral blood mononuclear cell hOGG1 methylation and the risk 
of NSCLC in a Chinese  population [159].

6.3.2  Methylated ctDNA as a Prognostic Marker

DNA methylation can be indicative of tumor aggressiveness and risk of cancer 
recurrence due to residual disease after surgical resection and/or chemotherapy. 
ctDNA has a short half-life (~2 h), and its persistence in the blood following surgery 
has been linked to poor prognosis [42]. In the context of early stage malignancies, 
prognostic biomarkers are urgently needed to distinguish patients who are cured 
with surgery alone, from those at high risk of disease recurrence who may benefit 
from adjuvant chemotherapy. The prognostic significance of gene promoter ctDNA 
methylation has been described in several studies, although most of them evaluate 
late-stage cancers, as summarized in Table 2.
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Table 1 DNA methylation as a diagnostic biomarker in lung cancer

Study, year/ref Gene Sample Patients Controls
Biomarker 
classification

Palmisano 
et al. [148]

P16 and 
MGMT

Sputum 21 sputum 
samples and 
matched SCC 
tissues

123 
cancer-free 
sputum 
samples

Diagnostic

Belinsky et al. 
[21]

p16 Sputum, 
plasma

56 plasma 
samples
56 sputum 
samples

195 normal 
plasma 
samples
121 sputum 
samples

Diagnostic

Belinsky et al. 
[22]

p16INK4a, 
MGMT, 
PAX5b, 
DAPK, 
GATA5, 
and 
RASSF1A

Sputum 98 92 Diagnostic

Licchesi et al. 
[115]

p16INK4a 
TIMP3, 
DAPK, 
MGMT, 
RARβ, 
RASSF1A, 
and hTERT

FFPEs 19 primary lung 
carcinomas

56 AAHs
46 
histologically 
normal lung 
samples

Diagnostic

Selamat et al. 
[177]

PTPRN2 FFPEs 50 
adenocarcinomas, 
16 AIS

41 AAHs, 63 
adjacent 
normal tissue

Diagnostic

Zhang et al. 
[232]

APC, 
CDH13, 
KLK10, 
DLEC1, 
RASSF1A, 
EFEMP1, 
SFRP1, 
RARbeta, 
and p16 
(INK4A)

FFPEs, 
plasma

78 NSCLC 
FFPEs
110 NSCLC 
plasma samples

78 adjacent 
normal tissue
50 cancer- 
free plasma 
samples

Diagnostic

Dietrich et al. 
[43]

SHOX2 BAS 125 125 Diagnostic

Lee et al. 
[110]

TMEFF2 Serum 316 50 Diagnostic

Ponomaryova 
et al. [154]

RASSF1A 
and RARB2

Plasma 60 32 Diagnostic

Powrózek 
et al. [155]

SEPT9 Plasma 70 100 Diagnostic

(continued)
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Detection of methylated breast cancer metastasis suppressor-1 (BRMS1) and 
(sex determining region Y)-box 17 (SOX17) in operable and advanced NSCLC, was 
shown to have a negative impact on survival [9, 10]. In contrast, SFN (14–3-3 
Sigma) promoter methylation was correlated with a reduced risk of death [163].

In SCLC evaluation of doublecortin-like kinase 1 (DCLK1) promoter region 
methylation may be useful in both early diagnosis and prediction of the course of 
lung cancer [156].

6.3.3  Methylated ctDNA in the Prediction and Monitoring of Response 
to Therapy

Several studies have reported the detection of tumor-specific methylation in plasma 
for tracking a patient’s response to therapy as summarized in Table 3. The value of 
methylated ctDNA in plasma to predict response to therapy has also been investi-
gated, although it is important to distinguish cfDNA from leukocytic DNA, because 

Table 1 (continued)

Study, year/ref Gene Sample Patients Controls
Biomarker 
classification

Diaz-Lagares 
et al. [41]

BCAT1, 
CDO1, 
TRIM58 
and 
ZNF177

FFPEs, 
BAS, 
BAL, 
sputum

122 FFPEs, 51 
BAS, 82 BAL, 72 
sputum samples
Discovery cohort: 
237 FFPEs (181 
lung 
adenocarcinomas 
and 56 SCCs)

79 FFPEs, 29 
BAS, 29 
BAL, 26 
sputum 
samples
Discovery 
cohort: 25 
FFPEs

Diagnostic

Pu et al. [157] CDH13 
(meta- 
analysis)

Tissue/
serum

1206 in total; 
1113 NSCLC 
tissue samples
93 serum samples

644 in total; 
589 normal 
tissue 
samples
55 normal 
serum 
samples

Diagnostic

Han et al. [63] hMLH1 
(meta- 
analysis)

Tissue 912 lung cancer 
tissues

666 
non- 
malignant 
lung tissues

Diagnostic

Konecny et al. 
[102]

SHOX2 Plasma 38 31 Diagnostic

Powrózek 
et al. [156]

DCLK1 Plasma 65 95 Diagnostic

Qin et al. 
[159]

hOGG1 Peripheral 
blood 
(PBMCs)

121 121 Diagnostic

AAH atypical adenomatous hyperplasia, AIS adenocarcinoma in situ, FFPEs formalin-fixed 
paraffin- embedded tissues, SCC squamous cell carcinoma, NSCLC non-small cell lung cancer, 
BAS bronchial aspirates, BAL bronchioalveoar lavages, NM not mentioned
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DNA methylation marks are coupled tightly to cellular differentiation and vary by 
cell type [73].

Wang and colleagues observed that there is an elevated level of adenomatous 
polyposis coli (APC) and RASSF1A promoter methylation in ctDNA within 24 h 
after cisplatin-based therapy, consistent with chemotherapy-induced cell death 
[216]. Moreover, methylation status of SHOX2, RASSF1A and RARB2 has shown 
potential to monitor disease recurrence after surgery and chemotherapy [174]. 
A recent manuscript addresses the role of O6-methylguanine-DNA methyltransfer-
ase (MGMT) as a biomarker in the oncogenesis of cancer and the opportunity of 
turning this gene into a drugable target in neuroendocrine tumours of the lung. 
Studies in brain tumours conclude that MGMT promoter methylation is considered 

Table 2 DNA methylation as a prognostic biomarker in lung cancer

Study, year/ref Gene Sample Patients Controls
Biomarker 
classification

Yanagawa et al. 
[227]

RASSF1A, 
RUNX3

Tissue 101 101 
non- 
neoplastic 
lung tissues

Prognostic

Kim et al.  [96] CDH1, CDH Tissue 88 88 adjacent 
normal 
tissues

Prognostic

Suzuki et al. [197] CXCL12 Tissue 236 163 tissues 
adjacent to 
resected 
tumors

Prognostic

Seng et al. [179] DLEC1, MLH1 FFPEs 239 200 Prognostic
Brock et al. [27] p16INK4a, 

RASSF1A, 
CDH13, and 
APC, SPARC, 
and DAL1

FFPEs 71 116 Prognostic

Balgkouranidou 
et al. [9]

BRMS1 Plasma 122 24 Prognostic

Zhang et al. [233] PAX6 Tissue 143 143 adjacent 
normal 
tissues

Prognostic

Liu et al. [127] TMEM196 Tissue 85 20 Prognostic
Yan et al. [225] FHIT 

(meta-analysis)
Tissue 735 708 Prognostic

Schlensog et al. 
[173]

SFRP3 Tissue 15 12 Prognostic

Villalba et al. [212] TMPRSS4 Tissue 88 66 Prognostic
Balgkouranidou 
et al. [10]

SOX17 Plasma 122 49 Prognostic

Powrozek et al. 
[156]

DCLK1 Plasma 32 8 Prognostic
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a strong predictive factor for a favourable outcome for treatment with temozolo-
mide, e.g. alkylating agent. In NSCLC MGMT promoter methylation is not a 
 prognostic and predictive factor, hence temozolomide has no place. Temozolomide 
can be considered a ‘personalized’ treatment if the predictive role of the gene is 
further confirmed [67]. Another example of the use of DNA methylation as a predictive 
biomarker, are patients with unmethylated checkpoint with forkhead and ring finger 
domains (CHFR) promoter who survived longer when receiving EGFR tyrosine 
kinase inhibitors as second-line treatment, compared to conventional chemotherapy 
[170]. Furthermore, Ramirez et al. found that 14-3-3 sigma methylation in pretreat-
ment serum may be an important predictor of NSCLC outcome in patients treated 
with platinum based chemotherapy [163]. Another study profiled DNA methylation 
in SCLC, patient-derived xenografts (PDX) and cell lines at single-nucleotide reso-
lution. DNA methylation patterns of primary samples are distinct from those of cell 
lines, whereas PDX maintain a pattern closely consistent with primary samples. 
Clustering of DNA methylation and gene expression of primary SCLC revealed 
distinct disease subtypes among primary patient samples with similar genetic altera-
tions which were histologically indistinguishable. SCLC is notable for dense clus-
tering of high-level methylation in discrete promoter CpG islands, in a pattern 
clearly distinct from other lung cancers and strongly correlated with high expres-
sion of the E2F target and histone methyltransferase gene EZH2. Pharmacologic 
inhibition of EZH2 in a SCLC PDX markedly inhibited tumor growth [153]. Finally, 
with the demonstration that combined epigenetic therapy has efficacy in lung cancer 
patients [84], future applications of methylated ctDNA for monitoring the activity 

Table 3 DNA methylation as a predictive biomarker in lung cancer

Study, 
year/ref Gene Sample Patients

Biomarker 
classification Treatment

Ramirez 
et al. [163]

14-3-3 sigma Serum 99 
NSCLC

Predictive Cisplatin plus 
gemcitabine

Salazar 
et al. [170]

CHFR Serum 179 Predictive EGFR tyrosine kinase 
inhibitors as second-line 
treatment

Wang et al. 
[216]

APC and 
RASSF1A

Plasma 216 Predictive 24 h after cisplatin-based 
therapy, consistent with 
chemotherapy-induced 
cell death

Schmidt 
et al. [174]

SHOX2, 
RASSF1A and 
RARB2

Plasma 31 Predictive Clinical course of late 
stage lung cancer patients 
receiving a systemic 
treatment

Poirier 
et al. [153]

EZH2 Tissue SCLC 
PDX

Predictive EPZ-6438 inhibits tumor 
growth in vivo in SCLC 
PDX

Hiddinga 
et al. [67]

MGMT Plasma 89 
SCLC

Predictive Temozolomide

SCLC PDX small cell lung cancer patient derived xenograft
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of demethylating agents will soon come to the forefront [121]. Thus, without careful 
study design, blood-based methylation profiles can be confounded by variation in 
relative circulating proportions of  leukocyte types associated with outcome, such as 
immune response [107].

7  Conclusions

DNA methylation is a very early step in tumorigenesis and analysis of DNA meth-
ylation in clinical samples is very informative. DNA methylation markers have 
potential as prognostic markers and, accordingly, have been studied and reported 
widely in the literature. It is now known that a variety of hypermethylated tumor 
suppressor genes is implicated in lung cancer oncogenesis and have been associated 
with prognosis. Moreover, detection of DNA methylated sequences in plasma sam-
ples is a very important liquid biopsy approach that allows continuous monitoring 
of tumor evolution in real ime, in a non-invasive way.
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