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Abstract. We encode the problem of learning the optimal decision tree
of a given depth as an integer optimization problem. We show experi-
mentally that our method (DTIP) can be used to learn good trees up to
depth 5 from data sets of size up to 1000. In addition to being efficient,
our new formulation allows for a lot of flexibility. Experiments show that
we can use the trees learned from any existing decision tree algorithms as
starting solutions and improve the trees using DTIP. Moreover, the pro-
posed formulation allows us to easily create decision trees with different
optimization objectives instead of accuracy and error, and constraints
can be added explicitly during the tree construction phase. We show
how this flexibility can be used to learn discrimination-aware classifica-
tion trees, to improve learning from imbalanced data, and to learn trees
that minimise false positive/negative errors.

1 Introduction

Decision trees [3] have gained increasing popularity these years due to their
effectiveness in solving classification and regression problems. As the problem
of learning optimal decision trees is a NP-complete problem [11], greedy based
heuristics such as CART [3] and ID3 [15] are widely used to construct sub-
optimal trees. Greedy decision tree algorithm builds a tree recursively starting
from a single node. At each decision node, an optimization problem is solved
to determine the locally best split decision based on a subset of the training
data such that the training data is further split into two subsets. Decisions are
determined in turn for each of these subsets on children nodes of the starting
node. The advantage of such a greedy approach is its computational efficiency.
The limitation is that the constructed trees may be far from optimal.

In this paper, we aim to build optimal decision trees by optimizing all deci-
sions concurrently. We formulate the problem of constructing the optimal deci-
sion tree of a given depth as an integer linear program. We call our method
DTIP. One benefit of this formulation is that we can take advantage of the
powerful mixed-integer linear programming (i.e., MIP) solver to find good trees.
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Researcher have previously investigated using solvers for learning different kinds
of models and rules, see e.g., [4,6,8,10]. We are not the first who try such an app-
roach for decision tree learning. Bennett and Blue [1] proposed a formulation to
solve the problem of constructing binary classification trees with fixed structure
and labels, where paths of the tree are encoded as disjunctive linear inequalities,
and non-linear objective functions are introduced to minimize errors. Norouzi
et al. [14] linked the decision tree optimization problem with the problem of
structured prediction with latent variables. To the best of our knowledge, our
method is the first that encodes decision tree learning entirely in an integer pro-
gram. A similar approach for more general models is given in [2]. This method,
however, is quadratic instead of linear in the data set size and therefore requires
a lot of preprocessing in order to reduce the number of generated constraints. [4]
discusses modeling the problem of finding the smallest size decision tree that
perfectly separates the training data as a constraint program.

Section 2 shows the proposed encoding of learning optimal decision trees as
an integer optimization problem only requires O(2dn) constraints for regression
and O(nu+nv) constraints for classification, where n is the size of the dataset, v
is the number of leafs, and u is the number of tree nodes. In addition, it requires
O(mu+nk + vy) variables, where k is the tree depth and y is the unique target
values in the dataset. This makes the encoding linear in the dataset size for fixed
size trees. Moreover, the number of binary variables depends on the dataset size
up to a small constant factor (the tree depth). The formulated problem can be
directly solved by any MIP solver such as CPLEX. In Sect. 3, we show experi-
mentally that our method can be used to learn good trees up to depth 5 from
datasets of size up to 1000. In addition to being efficient, our new formulation
allows for a lot of flexibility. Our formulation enables that the trees obtained
from existing greedy algorithms from Scikit-learn can be used as starting solu-
tions for the CPLEX optimizer. Experiments with several real datasets show
that our method improves the starting solutions. Moreover, the proposed for-
mulation allows us to create decision trees with different optimization objectives
other than standard objectives such as accuracy and error, and constraints can
be added explicitly when learning trees. We show how this flexibility can be
used to learn discrimination-aware trees and to improve learning from imbal-
anced data. Starting from a solution given by Scikit-learn, our method can find
trees of good performance that are discrimination-free, and trees that return
zero false-positives on training data.

2 Learning Decision Trees as Integer Programs (DTIP)

We assume the reader to be familiar with decision trees. We refer to [9] for
more information. The optimization problem that we aim to solve is to find an
optimal classification/regression tree of depth exactly k for a given dataset of
n rows (samples) and m features. The Boolean decisions and predictions are
variables and need to be set such that accuracy, absolute error, or any other
linear measures, is optimized. We solve this problem by translating/encoding it
entirely into linear constraints and providing this to an off-the-shelf MIP solver.
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Table 1. Feature values from first few rows from the Iris data before (left) and after
(right) our data transform. The feature values are first sorted, and then identical values
are mapped to integers in increasing order. Several feature values (such as SepLen {4.9,
4.7, 4.6}, PetLen, PetWid) are combined into a single integer because these only occur
for Iris-setosa flowers. A SepWid value of 3.0 occurs most frequently in the data and
is mapped to 0. The target values are not transformed.

SepLen SepWid PetLen PetWid SepLen SepWid PetLen PetWid

5.1 3.5 1.4 0.2 −9.0 5.0 −3.0 −3.0

4.9 3.0 1.4 0.2 −11.0 0.0 −3.0 −3.0

4.7 3.2 1.3 0.2 −11.0 2.0 −3.0 −3.0

4.6 3.1 1.5 0.2 −11.0 1.0 −3.0 −3.0

5.0 3.6 1.4 0.2 −10.0 6.0 −3.0 −3.0

It has been shown in our previous work (e.g., [16]) that it is beneficial to
keep encoding from machine learning models to linear constraints as small as
possible, thereby increasing the data size it can handle. In contrast to earlier
decision tree encodings (e.g. [1,4,16]), we therefore encode the leaf every data
row ends up in using a binary instead of a unary encoding, i.e., using k variables
instead of 2k. We start our encoding with a transformation of the input data.

2.1 Data Transformation

Earlier encodings of decision trees [1] or similar classification/regression mod-
els [2] linearly scale the input data to the interval [0.0, 1.0]. There are good
reasons for doing so. For instance, this avoids large values in so-called big-M
formulations (a way to encode binary decisions in integer programming), which
can lead to numerical issues and long run-times. In spite of the benefits of a
linear scaling, we advocate the use of a non-linear transform that assigns every
unique value of every feature to a unique integer, only maintaining the ordering
of these values. Using this transform:

– The thresholds in decision nodes can be represented by integer values instead
of continuous ones. This allows MIP solvers to branch on these values instead
of whether a certain row takes a left or right branch, reducing and balancing
the search tree used by these algorithms.

– When all rows having successive integers as feature values also have the same
class label, these values can be merged into a single integer.

– The most frequently occurring feature value can be mapped to the value 0,
reducing the number of non-zero coefficients in the linear constraints.

– The ranges of feature values can all be centered around 0, see Table 1 for an
example. This reduces the size of M values used in the big-M formulations.

These benefits all affect the MIP solvers capacity to solve problems efficiently,
and therefore they are important considerations when encoding decision tree



Learning Decision Trees with Flexible Constraints and Objectives 97

Table 2. Summary of notation, constants, and variables used in the encoding.

Symbol Type Definition

n Constant Number of rows in data file

u Constant Number of nodes in tree, excluding leaf nodes

m Constant Number of features in data

v Constant Number of leaves in tree

k Constant Number of depths in tree

y Constant Number of unique target values in data

d(j) Constant Depth of node j of tree; the root node has depth 0

v(r, i) Constant Feature value for data row r and feature i

t(r) Constant Target value of data row r

LF, UF Constant Minimum, maximum feature value over all features

fi,j Binary Decision variable, feature i is used in decision rule of node j

cj Integer Decision variable, threshold of decision rule of node j

dh,r Binary Decision variable, path of data row r goes right/left at depth h

pl,t Binary Classifier prediction of leaf l and target t

pl Continuous Regressor prediction of leaf l

er Continuous Prediction error for data row r

learning problems. Although a simple linear scaling can provide better results
for some problem instances, we have experienced significant improvements in
the obtained solutions using the non-linear transform. In our experiments, we
demonstrate that our encoding is capable of producing good results when there
are 1000 rows in the input data, which is significantly greater than previous
works on integer programming encodings for decision trees and would not have
been possible without this data transform.

2.2 Encoding Classification Trees

Our encoding for classification and regression trees is partly based on earlier
work where we translated already learned models into linear constraints in order
to deal with optimization under uncertainty [16]. Two key differences between
this work and our new encoding are: (1) the coefficients denoting which constant
threshold and feature to use in a node’s binary decision are free variables, and
(2) the leaf that a data row ends up in is represented in binary instead of unary.
Table 2 summarizes the notation and variables that we use to encode trees. The
objective function minimizes the total prediction error for all data rows:

min
∑

1≤r≤n

er, for all r ∈ [1, n] (1)

where n is the number of input rows and er ∈ R is the error for data row r,
defined in Eq. 5. Every node j, excluding leaf nodes, in the tree needs a binary
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decision variable fi,j ∈ {0, 1} to specify whether feature i ∈ [1,m] is used in the
decision rule on node j:

∑

1≤i≤m

fi,j = 1 for all j ∈ [1, u] (2)

Every node j requires an integer decision variable cj ∈ [LF,UF ] that repre-
sents the threshold, where LF = min{v(r, i)|i ∈ [1,m], r ∈ [1, n]}, UF =
max{v(r, i)|i ∈ [1,m], r ∈ [1, n]}, and v(r, i) denoting feature value for row r and
feature i. For each row r, we encode whether it takes the left or right branch of a
node using a variable dh,r ∈ {0, 1} for every depth h, for all j ∈ [1, u], r ∈ [1, n] :

∑

1≤h≤d(j)

Mrdlr(h, j, r) + Mrdd(j),r +
∑

1≤i≤m

v(r, i)fi,j ≤ Mrd(j) + cj

∑

1≤h≤d(j)

M ′
rdlr(h, j, r) − M ′

rdd(j),r −
∑

1≤i≤m

v(r, i)fi,j ≤ M ′
r(d(j) − 1) − cj (3)

where Mr = max{(v(r, i) − LF )|i ∈ [1,m]} and M ′
r = max{(UF − v(r, i))|i ∈

[1,m]} are tight big-M values, d(j) is the depth of node j, and dlr(h, j, r) returns
the path directions from the root node required to reach node j:

dlr(h, j, r) =

{
dh,r if the path to node j goes left at depth h

1 − dh,r if the path to node j goes right at depth h
(4)

The formulation is essentially a big-M formulation for the constraint that if
row r takes the left (right) branch at depth d(j) of node j, denoted by dd(j),r,
and row r takes the path to node j (i.e.,

∑
1≤h<d(j)(dlr(h, j, r)) = d(j) − 1),

then the feature value v(r, i) for which fi,j is true has to be smaller (greater)
than threshold cj . This encodes all possible paths through the tree for all rows
using only O(nu) constraints and O(nk) binary variables, where k is the depth
of the tree. What remains is the computation of the classification error:

∑

1≤t≤y

pl,t = 1 for all l ∈ [1, v]

∑

1≤h≤k

dlr’(h, l, r) +
∑

t�=t(r)

pl,t ≤ er + k for all l ∈ [1, v], r ∈ [1, n] (5)

where pl,t ∈ {0, 1} is the prediction on leaf l, y is the number of unique target val-
ues (2 for binary classification), v is the number of leafs in the tree, dlr’(h, l, r)
is the same as dlr(h, j, r) but for leafs l instead of internal nodes j, and t(r) is
the target value for row r. These constraints force that if a row ends in a leaf l
(setting dlr’(h, l, r) to 1 along the path to l), then the error er for row r is 1
if the leaf prediction type (for which pl,t is 1) is different from the rows target
t(r). This adds O(vn) constraints and O(vy) to the encoding. This fully encodes
classification tree learning in O(n(u+ v)) constraints, O(mu+ nk + vy) binary
variables, and u integers. A nice property is that the number of variables grows
with a very small constant factor (the depth of the tree k) in the dataset size n.
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Fig. 1. The encoding of an example row r, with features values (5, 8, 10) and target
value 2 out of three possible targets {1, 2, 3}. We show the path taken by an assignment
of (d1,r, d2,r, d3,r) = (0, 1, 1), i.e., the row first takes the right branch to node 3, and
then two left branches to node 6 and leaf 5. Observe that the big-M formulation forces
many of the path constraints to be satisfied, e.g., 5f1,1+8f2,1+10f3,1+d1,rMr ≤ c1+Mr

reduces to 5f1,1 + 8f2,1 + 10f3,1 ≤ c1 + Mr, which is always true. The same holds for
all constraints in subtrees rooted under a � symbol. The constraint −5f1,1 − 8f2,1 −
10f3,1 − d1,rM

′
r ≤ −c1 reduces to −5f1,1 − 8f2,1 − 10f3,1 ≤ −c1, which is true only if

the feature value of the feature type of node 1 (fi,1) is greater than the constraint value
for node 1 (c1). The same reasoning holds for the constraints on other depths. This
thus encodes the node constraints of a decision tree. The depth values (d1,r, d2,r, d3,r)
have a similar effect on the leaf constraints. Only leaf 5 reached by r forces the error
er of row r to be 1 when the prediction type (pt,5) of leaf 5 is unequal to 2 (the target
type of r). All other leaf constraints are true for any error ≥ 0.

We strengthen the above encoding by bounding the node thresholds between
the minimum and maximum values of the features used in the binary decisions:

∑

1≤i≤m

LF · fi,j ≤ cj ≤
∑

1≤i≤m

UF · fi,j for all j ∈ [1, u]

In addition, it does not make sense for the two leaf nodes l and l′ of the same
parent node to have the same values. The following breaks this symmetry:

pl,t + pl′,t = 1 for all t ∈ [1, y] and all such pairs (l, l′).

Figure 1 shows the encoding for an example row.

2.3 Encoding Regression Trees

Our regression tree formulation is identical to the classification tree formulation.
We only replace the error computation in Eq. 5 with the following constraints,
for all l ∈ [1, v], r ∈ [1, n] :
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∑

1≤h≤k

Mtdlr’(h, l, r) + pl − t(r) ≤ er + Mtk

∑

1≤h≤k

M ′
tdlr’(h, l, r) + t(r) − pl ≤ er + M ′

tk (6)

where pl ∈ [LT,UT ] is the prediction value of leaf l, LT = min{t(r)|r ∈ [1, n]},
UT = max{t(r)|r ∈ [1, n]}, Mt = max{UT − t(r)|r ∈ [1, n]} and M ′

t =
max{t(r) − LT |r ∈ [1, n]}. This computes the absolute error for each row r
from the prediction value pl of the leaf it ends up in, depending on the path
variables from dlr’, using O(2vn) constraints.

3 Experiments

We conducted experiments on several benchmark datasets for both classifica-
tion and regression tasks from the UCI machine learning repository [12]. We
compared the performance of the following three methods: (1) the classification
and regression method from sciki-learn (i.e., optimized version of CART), (2)
the proposed decision tree as linear programs (DTIP) method that is solved
by CPLEX, and (3) DTIP solved by CPLEX with starting trees learned from
CART (DTIPs). The time limit for solving each problem is set to 30 min. We
learn decision trees of various depths, ranging from 1 to 5.

Classification. We tested our method on three real datasets. The “Iris” data
have 4 attributes and 150 data points with 3 classes. The “Diabetes” data are
from the Pima Indian Diabetes database, which have 8 attributes and 768 data
points to two classes. The “Bank” data are from direct marketing campaigns of
a Portuguese banking institution [13]. The “Bank” dataset is considerable larger
than Iris and Diabetes, with 51 attributes and 4521 instances. As the purpose
of this paper is to demonstrate the performance of DTIP, we use all data points
for constructing the trees and use the classification accuracy of the method on
all data points as the performance measurement. Table 3 reports the results.

With Iris data, CART is able to find the optimal trees for depths 1, 2 and
5. Our proposed methods (DTIP and DTIPs) can always find the optimal trees
with depths 1 to 5, no matter whether it starts with initial trees returned from
CART or not. For Diabetes, DTIP and DTIPs can construct the optimal trees
with depth 1. When the trees are larger, the encoded MIP models become more
and more difficult to solve. This can be seen for depths 4 and 5, the performances
of DTIP are worse than CART when CPLEX tries to solve from scratch within
the limited running time (i.e., 30 min). This difficulty of CPLEX in solving large
instances becomes very obvious when DTIP builds the classification trees of
depth 4 for the Bank data. The accuracy drops below 0.2, it is essentially still
preprocessing the data. However, when CPLEX starts with initial solutions,
DTIPs always improves the initial trees that are found by CART, resulting
higher or equal accuracies on all datasets and all different sized trees.
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Table 3. Classification accuracy (top) and absolute error (bottom) of three regression
methods with trees of depths 1–5. The values with * indicate the optimal solutions.

d = 1 d = 2 d = 3 d = 4 d = 5

Iris CART 0.6667* 0.96* 0.9733 0.9933 1*

DTIP 0.6667* 0.96* 0.9933* 1* 1*

DTIPs 0.6667* 0.96* 0.9933* 1* 1*

Diabetes CART 0.7357 0.7721 0.776 0.7930 0.8372

DTIP 0.75* 0.7773 0.7969 0.7852 0.7852

DTIPs 0.75* 0.7773 0.7943 0.8255 0.8503

Bank CART 0.8848 0.9009* 0.9044 0.9124 0.9206

DTIP 0.8929* 0.8956 0.8213 0.1152 0.1152

DTIPs 0.8929* 0.9009 0.9056 0.9129 0.9208

RedWine CART 780* 745 718 687 661

DTIP 780* 747 749 745 996

DTIPs 780* 745 715 686 661

Boston CART 2518.1* 1755.6 1419.6 1230.7 1012

DTIP 2518.1* 1783.4 1410.2 1250.6 1200.6

DTIPs 2518.1* 1755.6 1413.6 1205 954

Regression. We used two real datasets. The first one “RedWine” is from the wine
quality dataset [7]. It contains 1599 data points, each with 11 input variables,
and 1 output variable indicating the wine quality with scores between 0 and 10.
The “Boston” data have 13 input attributes and 1 output attribute containing
median value of owned houses in suburbs of Boston. There are 506 instances. The
bottom of Table 3 shows the performances, measured with absolute error. The
conclusions of this set of experiments are similar to those from the classification
trees. The best performed one is DTIPs, where the regression trees learned from
CART are used as initial solutions to DTIP.

Discrimination-aware DTIP. In order to model the discrimination level of a
learned tree, we include a simple constraint that computes the difference in pos-
itive class probability for different sets of rows (by summing and comparing
errors er). This difference is added to the objective function with a large multi-
plier (the data size), in this way the solver will try find the most accurate tree
with zero discrimination. For this experiment, we assume that married is a sen-
sitive attribute in the bank data set. Since bank is too large to solve efficiently
using DTIP, we only use the top 1000 rows. After running DTIP for 15 min from
a Scikit-learn starting solution with accuracy 0.86 and 0.05 discrimination, we
obtain 0 discrimination for a depth 3 tree, with 0.85 accuracy. For comparison,
we also ran DTIP without discrimination constraints, which gives an accuracy
of 0.81 after 15 min. This result demonstrates the flexibility of DTIP: adding a
single constraint gives solutions satisfying a different objective.
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Imbalanced DTIP. For imbalanced data problems, such as the first 1000 rows
from the bank set, depending on the problem context it can be important to find
solutions with very few false positives or very few false negatives. In order to
demonstrate the flexibility of DTIP, we again add a single constraint for counting
false positives or negatives (by summing er values) and add it to the objective
function with a large multiplier. We ran DTIP for 15 min, starting from the
Scikit-learn solution, and obtain a depth 3 tree with 0 false positives and 101
false negatives, or one with 672 false positives and 0 false negatives.

4 Conclusion

We give an efficient encoding of decision tree learning in integer programming.
Experimental results demonstrate the strengths and limitations of our approach.
Decision trees of depth up to 5 can be learned from data sets of size up to 1000.
Larger data sets create to many constraints to be solved effectively using a MIP
solver. We show how to use our approach to improve existing solutions provided
by a standard greedy approach. Moreover, we demonstrate the flexibility of our
approach by modelling different objective functions. In the future, we will inves-
tigate other objectives, integration with existing MIP models, and speeding up
the search by fixing variables and using lazy constraints.
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