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Abstract. One dimensional cutting stock problems arise in many man-
ufacturing domains such as pulp and paper, textile and wood. In this
paper, a new real life variant of the problem occuring in the rubber
mold industry is introduced. It integrates both operational and strate-
gical planning optimization: on one side, items need to be cut out of
stocks of different lengths while minimizing trim loss, excess of produc-
tion and the number of required cutting operations. Demands are how-
ever stochastic therefore the strategic choice of which mold(s) to build
(i.e. which stock lengths will be available) is key for the minimization of
the operational costs. A deterministic pattern-based formulation and a
two-stage stochastic problem are presented. The models developed are
solved with a mixed integer programming solver supported by a con-
straint programming procedure to generate cutting patterns. The app-
roach shows promising experimental results on a set of realistic industrial
instances.

1 Introduction

Classical one-dimensional Cutting Stock Problems (CSP) consist of minimizing
the trim loss in the manufacturing process of cutting small items out of a set
of larger size stocks. Each item (also referred to as small object) i = 1, . . . , I
has an associated demand di, and a length li; the stock (also referred to as
large object or roll) has a length L out of which one or more items can be cut
out. The objective is to utilize the minimum amount of stocks, i.e. minimize
the trim loss (problem type 1/V/I/R, according to Dyckhoff’s classification [1]).
Many different variations of the classical CSP have been proposed since the
first formulation was introduced by Kantorovich in 1939 [2], including stock
of different lengths, setup costs, open stock minimization, number of pattern
minimization, to name just a few (see [3] for a survey).

In this paper, we present a new variation of the problem arising in the produc-
tion of a set of specific items in the rubber mold industry. In this manufacturing
process, a mold is used to create one stock typology of a given length. From
the mold, several stocks can be produced and they are then cut by an operator
(with the help of a cutting machine) in multiple pieces to meet the individual
item demands. Possibly, the left-over of the initial stock may be discarded (trim
loss) in case its trim length does not correspond to the length of any required
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items; alternatively, if the remaining length matches one of the item lengths and
the demand for that particular item is already met, it is stored in inventory (with
an associated cost) as excess of production for future use. Due to process con-
straints, inventory items cannot be further reworked, i.e. they cannot be re-cut
to meet future demands of smaller items. The operational planning optimization
consists of minimizing the trim loss, the over-production (i.e., inventory costs)
and the number of cuts to be performed by the operator.

The peculiarity of the problem at hand comes from the fact that the mold(s)
also needs to be built; that is, the stock length(s) has to be decided up-front in
order to meet the future demands. In the unrealistic case of infinite budget and
capacity, the trivial optimal solution would be to produce one mold for each item
length. In reality, however, the number of molds that can be manufactured is
limited. This leads to an integrated strategical and operational real-life planning
problem that, to the best of the author’s knowledge, has not been explored before
in the literature.

The contributions of the paper are: the introduction and formalization of a
new real-life cutting stock problem and its solution via an integrated strategical
and operational CSP model with either deterministic or stochastic demands.
The problems have been solved with a Mixed Integer Programming (MIP) solver
supported by a Constraint Programming (CP) procedure to generate different
cutting patterns.

The remainder of the paper is organized as follows: Sect. 2 summarizes the
relevant literature; Sect. 3 formalizes the strategical and operational planning
problem; experimental results are shown in Sect. 4; Sect. 5 draws some conclu-
sions and describes future work.

2 Background

One-dimensional cutting stock problems have been extensively studied in the
literature; several approaches have been proposed such as approximation algo-
rithms, heuristics and meta-heuristics, population-based methods, constraint
programming, dynamic programming and mathematical programming (please
refer to the recent survey in [4] for an ample review and comparison). Among
many, the most employed mathematical formulations are either item-based (orig-
inally introduced in [2]) or pattern-based (see [5]). In the former, a binary variable
is used to indicate whether item i is cut out of stock j. In the latter, a cutting
pattern defines a priori how many items and which item types are cut out of
a single stock; then an integer variable i represents the number of stocks that
are cut according to a given pattern i. As the number of cutting patterns grows
exponentially with the average number of items that can fit into a stock, the
problem is typically solved with column generation approaches. Pattern-based
branch-and-price and branch-and-cut-and-price algorithms are considered the
state-of-the-art complete methods (see [4,6]).

Very few research papers investigate uncertainty of demands arising in cut-
ting stock problems. Kallrath et al. [8] studied a real-life problem arising in
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the paper industry where they minimize the trim loss and the number of pat-
terns used, while not allowing over production. They solved the problem using
a column generation approach that falls back to column enumeration in certain
cases (i.e. precomputing all the columns explicitly). The column enumeration
is claimed to be easily applicable to MILP problems, easier to implement and
maintain and at times more efficient when the pricing problem becomes difficult
or when the number of columns is relatively small (see also [9]). In the same
paper, they also introduced a two-stage stochastic version of the problem with
uncertain demands: the first stage variables represent the patterns employed,
and in the second stage the related production is defined. They employ column
enumeration in a sample average approximation framework; unfortunately, no
experimental results are shown for the stochastic problem. Beraldi et al. studied
in [10] a similar problem for which they proposed an ad-hoc approach designed to
exploit the specific problem structure. Alem et al. in [7] also considered stochas-
tic CSP, where in the first stage the patterns and production plans are decided
and the second stage decision determines over and under production.

The main differences between the problems already studied in the literature
and this contribution are: firstly, the main cost drivers are the trim loss and
the allowed over production; as a secondary objective the number of cuts to be
performed (as opposed to the numbers of patterns utilized); secondly, the molds
to be built are the key initial investment and they determine the available stock
lengths (as opposed to predefined stock lengths).

In order to clarify the difference in solutions between minimizing the total
number of cuts or alternatively the number of patterns, let’s consider an example
in which the stock length is equal to 16 and two items, of lengths 7 and 8
respectively, need to be produced with a demand of 2 each. All the solutions that
are optimal in term of trim loss require 2 stocks. The solution that minimizes
the number of patterns employs only one pattern (8, 7); it will be used twice to
meet the demand and the production will require a total of 4 cutting operations.
Oppositely, the minimization of the number of cuts will make use of one pattern
(8, 8) and one pattern (7, 7); the first pattern requires only one cut to produce
two items, whereas the second two cuts.

3 Problem Formulation

In this section the problem is formalized: at first the deterministic operational
planning problem is shown followed by the integrated strategical and operational
planning problem. All the approaches use a pattern-based modelling1.

1 For comparison, an item-based model was also developed; it showed quickly its lim-
itations even in relatively small instances as soon as included the over production.
For brevity, we omit the item-based model and results.
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3.1 Operational Planning with Deterministic Demands

In this section, the lengths of the molds is assumed to be already defined and
the problem is to find the optimal production plan fulfilling some deterministic
demands. We will use the following notation:

Parameters and Variables

I The total number of different items to be produced; the items are indexed
by i = 1, . . . , I

li The length of the item i

di The demand for item i

ci The cost for over producing item i

M The total number of molds; molds are indexed by m = 1, . . . , M

Lm The length of the stock produced with mold m

Pm The total number of patterns related to the stock m; the patterns are
indexed by j = 1, . . . , Pm

pmji The number of items i produced with pattern j of mold m

wmj The amount of trim loss caused by pattern j of mold m

omj The number of cutting operations needed for pattern j of mold m

W The trim loss cost per unit of length

α The weight on the secondary objective function, i.e. number of cutting
costs (α � 1)

xmj The integer non-negative variable indicating the number of times pattern
j of mold m is used in the final solution

Note that the cost of over production is linked to the length li (the longer
the higher will be the cost) and to the demand of item i, i.e. the higher is
its demand, the lower will be the inventory cost; in general: W · li ≥ ci ≥ 0.
The real industrial problem analyzed in this paper exhibits integer item and
stock lengths. The following mathematical model formalizes the problem for the
optimal production planning:

min
M∑

m=1

Pm∑

j=1

(
W · wmj · xmj + α · omj · xmj

)
+

I∑

i=1

ci · ( M∑

m=1

Pm∑

j=1

pmji · xmj − di

)

(1)
M∑

m=1

Pm∑

j=1

pmji · xmj ≥ di, i = 1, . . . , I (2)

xmj ∈ Z (3)

The objective function in Eq. (1) is composed by three main elements: the
waste produced (wmj · xmj), the number of cuts required (omj · xmj) and lastly,
the over production. Equation (2) constrains the production of item i to meet
its demand di.
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Pattern Enumeration. An early analysis of the industrial instances showed
that for relevant mold sizes, the number of feasible cutting patterns is relatively
contained (about up to 50). For this reason and for the simplicity of the approach,
we decided to enumerate exhaustively all the patterns (see [8,9]). The pattern
enumeration is a pure constraint satisfaction problem that has been solved with
Constraint Programming.2 Once all the patterns have been generated, they are
fed as input to the mathematical model defined in Sect. 3.1. The parameters
pmji, wmj and omj of the previous section become variables for this sub-problem,
respectively:

– Zi ∈ {0, . . . , �Lm/li�} represents the number of units produced for item i
– Q ∈ {0, . . . Lm} represents the amount of trim loss for the pattern
– O ∈ {0, . . . Lm − 1} indicates the number of cut operations required

The model follows:

Lm = Q +
I∑

i=1

li · Zi (4)

Q �= q · li, q = 1, . . . , �Lm/li�, i = 1, . . . , I (5)

O =
I∑

i=1

Zi − 1 + (Q > 0) (6)

Equation (4) constrains the waste and the sum of the item lengths to be
equal to the mold size. The set of Eq. (5) avoids that the waste is equal to (or
a multiple of) the size of one of the items in demand. This restricts the number
of feasible patterns and it is valid as long as ci ≤ W · li; that is, the inventory
cost of an item of length li is at most as expensive as throwing away the same
quantity.3 Finally, Eq. (6) defines the number of cuts to be equal to the number
of items in the pattern minus 1; an additional cut is required if there is also a
final trim (reified constraint).

3.2 Strategical and Operational Planning Under Stochastic
Demands

In this industrial context the main practical challenge is that an initial invest-
ment is required for the construction of the molds that will be used to meet future
stochastic demands. The problem is a two-stage stochastic problem in which the
first stage decision variables are the mold to be built, and the second-stage is
the actual production plan once the demands are known.

We follow a sample average approximation approach in which a set of scenar-
ios s ∈ Ω with corresponding probabilities

∑
s∈Ω ps = 1 is Monte Carlo sampled.

The vector of demands ds
i now depends on the specific scenario realization. We

2 For comparison an equivalent MIP model was also developed, however it performed
orders of magnitude slower for enumerating all the solutions.

3 This was the case in the real industrial context examined.
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further introduce the binary variables ym indicating whether mold m is produced
or not. Due to manufacturing and operational constraints the molds considered
have to be limited to a maximum length L (Lm ≤ L). The model follows:

min
∑

s∈Ω

ps

( M∑

m=1

Pm∑

j=1

(
W · wmj · xmjs + α · omj · xmjs

)
+

I∑

i=1

ci ·
( M∑

m=1

Pm∑

j=1

pmji · xmjs − dis

))

M∑

m=1

ym ≤ M (7)

xmjs ≤ B · ym, s ∈ Ω,m = 1, . . . ,M, j = 1, . . . , Pm (8)
Pm∑

j=1

xmjs ≥ ym, s ∈ Ω,m = 1, . . . ,M (9)

M∑

m=1

Pm∑

j=1

pmji · xmjs ≥ dis, s ∈ Ω, i = 1, . . . , I (10)

ym ∈ {0, 1}, xmjs ∈ Z (11)

where M is the maximum number of molds that can be built (Eq. (7)). Equations
(8) and (9) indicate that if a mold is not built then none of its pattern can be
employed, and vice versa, if only one pattern is used then the associated mold
must be built (B is a large number). Finally, Eq. (10) constrains the production
to meet the demand for each possible scenario.

For pure cutting stock problems minimizing the number of stocks used, a still
open conjecture, the Modified Integer Round-Up Property (MIRUP), states that
the integral optimal solution is close to the linear relaxation: zopt − �LLP 	 ≤ 1
(see [4] and [11]). In order to render the second stage sub-problem computation-
ally tractable, the integrality constraints on xmjs have been lifted (ym are kept
binary).

4 Experimental Results

The MIP and CP model have been developed using Google OR-Tools. The MIP
solver employed is the open source CBC. All the experiments have been con-
ducted on a MacBook Pro with an Intel Dual-core i5-5257U and 8 GB of RAM.

Pattern Enumeration. Creating all the possible patterns for all the molds ranging
from length 1 to 16 (lengths relevant in the studied industrial context) takes
30 ms for a total combined number of patterns of about 200. For reference, the
enumeration of the patterns for molds of lengths 15, 25 and 35 takes respectively
2, 28 and 300 ms, to enumerate resp. 40, 328 and 1995 patterns.
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Operational Planning with Deterministic Demands. We generated 2250 synthetic
instances with L = 20, and random demands (the ratio between the maximum
demand and the minimum demand - maxi di

mini di
- ranged from 3 to 20); in this

deterministic version the molds are predefined (M ranged from 1 to 3).
For brevity, we will not report the detailed results but just some observations.

Firstly, all the generated instances but one were solved to optimality within one
second (with all the integrality constraints); evidently, the item and stock lengths
at play in this domain are not challenging for the MIP solver.

Secondly, we compared the optimal objective value of the integer solution
with the one from the linear relaxation: the difference between the two is at
most 0.03%. This is reassuring for the two-stage stochastic approach in which
the integrality constraints on the second-stage decision variables have been lifted.

Thirdly, we used the deterministic model to analyze the variability of the
number of cutting operations on a real industrial instance after the trim loss and
over production had been fixed to their respective optimal values. Despite being
a secondary objective, the best and worst solutions showed as much as almost
10% of difference in the number of cutting operations; in the analyzed industrial
context, this translates to about 50 h of reduced time in cutting operations for
producing the same quantity of items (about 150 thousands).

Strategical and Operational Planning Under Stochastic Demands. We generated
the stochastic instances starting from a real industrial demand vector. We per-
turbated it using a gaussian distribution in order to create 20 different demand
vectors. Each of them represents the mean demand vector, on which another set
of gaussian distributions are centered for the scenario generation; their standard
deviations is proportional to the demands: σi = di

k . We tested different standard
deviation with k ∈ {1, 3, 5}, scenario set cardinalities, |Ω| ∈ {10, 20, 50}, and
number of molds to be constructed, M ∈ {3, 4}; L and maxi{di} are both set
to 16, as per the industrial setting. The total number of tests amount to 360
instances.

In order to evaluate the quality of the stochastic approach, we computed the
Expected Value of Perfect Information (EVPI) and the Value of the Stochastic
Solution (VSS). The EVPI represents how much one could gain with a wait-and-
see strategy, i.e. the expected decrease of the objective value in case of a priori
knowledge of the stochastic variable realizations; a high EVPI connotes that
the stochastic approach is not capable of capturing well the uncertainty on the
demands. The VSS indicates the expected increase of the objective value when
using a deterministic optimization fed with the expected values of the stochastic
variables (see [12] for a general procedure to compute it); a high VSS means that
capturing uncertainty with the stochastic approach is actually bringing a benefit;
oppositely, a low VSS shows that a deterministic optimization using expected
values leads to a solution that is similar to the one computed by the stochastic
approach.

The results are presented in Table 1: each row reports aggregated values for 20
instances; the first three columns represent the instance parameters (described at
the beginning of the paragraph); four pairs of columns follow reporting averages
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Table 1. Aggregated results for 360 instances.

Time (secs) Obj EVPI VSS

M k | Ω| μ σ μ σ μ σ μ σ

3 1 10 2.7 0.2 25769.8 5042.6 10818.1 3484.8 4185.0 8861.5

3 1 20 6.2 0.6 28142.6 5993.8 13942.7 4252.7 8975.3 11289.0

3 1 50 21.2 2.1 26616.4 4261.9 13106.8 3046.9 9861.5 13553.5

3 3 10 2.8 0.5 13600.8 4601.2 2392.0 1861.2 457.8 1602.4

3 3 20 7.0 1.1 13560.2 4650.3 3185.7 2031.3 375.0 1148.8

3 3 50 23.6 2.8 13741.9 4276.0 3415.7 2146.0 977.4 2861.5

3 5 10 2.8 0.5 11991.5 4517.3 1146.3 1363.7 66.3 215.6

3 5 20 7.3 0.9 11777.4 4502.6 1544.0 1474.0 16.0 69.6

3 5 50 26.2 4.4 11793.1 4274.3 1553.6 1494.7 252.1 876.7

4 1 10 2.3 0.2 9628.9 3423.0 5796.7 2226.7 3321.9 5148.8

4 1 20 5.7 0.4 11546.6 3550.4 8101.1 2601.3 11531.5 11090.0

4 1 50 21.4 2.3 11492.7 2635.8 7864.9 1764.7 11942.2 12523.1

4 3 10 2.4 0.2 4383.6 2217.2 1006.9 823.7 231.7 945.6

4 3 20 6.1 0.6 4738.9 2240.3 1626.1 1091.7 490.6 1265.9

4 3 50 22.6 2.1 4669.2 1995.9 1649.8 1003.8 1071.8 2142.2

4 5 10 2.4 0.2 3748.4 2018.3 441.2 517.9 17.1 74.4

4 5 20 6.0 0.6 3857.9 1970.7 745.8 626.0 149.2 363.7

4 5 50 20.9 3.0 3812.3 1826.7 783.7 607.0 164.1 492.4

and standard deviations of respectively the solution time, the objective value,
the EVPI and the VSS.

As expected, by decreasing the level of stochasticity (lower standard devia-
tion of the scenario generation, k = 5), the VSS drops significantly as well as
the EVPI. Oppositely, as the scenario set cardinality grows, the VSS gets big-
ger in proportion than the EVPI. Finally, increasing M allows to significantly
decrease the value of the objective function, though the VSS, in proportion,
increases. From a computational standpoint, for reference, should the integral-
ity constraints be kept, an instance takes more than one minute to solve (with
|Ω| = 10). The parameters that impact the most the solution time are |Ω| and L.
Increasing |Ω| to 100, 200 and 500 leads to a solution time of respectively about
65, 189 and 831 s. Similarly, increasing L (the real life problem presents L = 16)
to 20, 25 and 30 (with |Ω| = 10) results to a solution time of respectively about
17, 162 and 852 s.

5 Conclusion

In this paper, we introduced a new two-stage stochastic problem arising in the
production of some rubber elements in the rubber mold industry. The uniqueness
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comes from deciding the stock lengths before knowing the actual production
demand. We believe this problem setup can be relevant for other domains as
well where stock purchase orders need to be placed despite uncertainty on the
demands. We formalized the problem and developed a solution that was able
to solve real-life instances to optimality within an acceptable time. Future work
includes the exploration of other optimization techniques to improve scalability,
the integration of other real-life constraints and explore a multi-stage stochastic
setup for planning the production and inventory for multiple time slots.

Acknowledgements. The author would like to thank Davide Zanarini for bringing
to his attention this industrial problem.
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