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Abstract. Reduced-cost-based filtering in constraint programming and
variable fixing in integer programming are techniques which allow to cut
out part of the solution space which cannot lead to an optimal solution.
These techniques are, however, dependent on the dual values available
at the moment of pruning. In this paper, we investigate the value of
picking a set of dual values which maximizes the amount of filtering (or
fixing) that is possible. We test this new variable-fixing methodology
for arbitrary mixed-integer linear programming models. The resulting
method can be naturally incorporated into existing solvers. Preliminary
results on a large set of benchmark instances suggest that the method
can effectively reduce solution times on hard instances with respect to a
state-of-the-art commercial solver.

Keywords: Mixed-integer programming · Variable fixing methodology ·
Reduced-cost based filtering

1 Introduction

A key feature of modern mathematical programming solvers refers to the wide
range of techniques that are applied to simplify an instance. Typically considered
during a preprocessing stage, these techniques aim at fixing variables, eliminating
redundant constraints, and identifying structure that can either lead to speed-
ups in solution times or provide useful information about the model at hand.
Examples of valuable information include, e.g., potential numerical issues or
which subset of inequalities and variables may be responsible for the infeasibility
[12], if that is the case. These simplification methods alone reduce solution times
by half in state-of-the-art solvers such as CPLEX, SCIP, or Gurobi [4], thereby
constituting an important tool in the use of mixed-integer linear programming
(MILP) in practical real-world problems [11].

In this paper we investigate a new simplification technique that expands
upon the well-known reduced cost fixing method, first mentioned by Balas and
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Martin [2] and largely used both in the mathematical programming and the con-
straint programming (CP) communities. The underlying idea of the method is
straightforward: Given a linear programming (LP) model and any optimal solu-
tion to such a model, the reduced cost of a variable indicates the marginal linear
change in the objective function when the value of the variable in that solution
is increased [5]. In cases where the LP encodes a relaxation of an arbitrary opti-
mization problem, we can therefore filter all values from a variable domain that,
based on the reduced cost, incur a new objective function value that is worse
than a known solution to the original problem. The result is a tighter variable
bound which can then trigger further variable fixing and other simplifications.

This simple but effective technique is widely applied in MILP presolving
[4,11,12] and plays a key role in a variety of propagation methods for global con-
straints in CP [7–9]. It can be easily incorporated into solvers since the reduced
costs are directly derived from any optimal set of duals, which in turn can be
efficiently obtained by solving an LP once. The technique is also a natural way of
exploiting the strengths of MILP within a CP framework, since the dual values
incorporate a global bound information that is potentially lost when processing
constraints one at a time (a concept that is explored, e.g., in [3,17,19]).

However, in all cases typically only one reduced cost per variable is consid-
ered, that is, the one obtained after solving the LP relaxation of a MILP. In
theory, any set of feasible duals provides valid reduced costs that may lead, in
turn, to quite different variable bound tightenings. This question was originally
raised by Sellmann [16], who demonstrated that not only distinct dual vectors
would result in significantly different filtering behaviors, but that potentially
sub-optimal dual vectors could yield much more pruning than the optimal ones.

Our goal in this work is to investigate the potential effect of picking the
dual vector that maximizes reduced-cost-based filtering. By doing so, we revisit
the notion of relaxed consistency for reduced costs fixing; that is, we wish to
influence the choice of the dual values given by a relaxation so as to maximize
the amount of pruning that can be performed. We view the proposed techniques
as a first direction towards answering some of the interesting questions raised
in the field of CP-based Lagrangian relaxation [3,16], in particular related to
how to select the dual variables (or, equivalently, the Lagrangian multipliers) to
maximize propagation.

The contribution of this paper is to formulate the problem of finding the
dual vectors that maximize the number of reductions as an optimization problem
defined over the space of optimal (or just feasible) dual values. We compare this
approach to achieving full relaxed consistency, which can be obtained by solving
a large (but polynomial) number of LP problems. The resulting technique can
be seamlessly incorporated into existing solvers, and preliminary results over the
MIPLIB indicate that it can significantly reduce solution time as well as the size
of the branching tree when proving the optimality of a primal bound. We hope
to motivate further research on the quality of the duals used within both ILP
and CP technology.
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For the sake of clarity and without loss of generality, the proposed approaches
will be detailed in the context of integer linear programs (ILPs), i.e., where all
variables are integers, as opposed to mixed-integer linear programming models.
This technique is also applicable in the context of CP, if one can derive a (partial)
linear relaxation of the model [15].

The paper is organized as follows. Section 2 introduces the necessary notation
and the basic concepts of reduced cost fixing and the related consistency notions.
Next, we discuss one alternative to obtain an approximate consistency in Sect. 3.
Finally, we present a preliminary numerical study in Sect. 4 and conclude in
Sect. 5.

2 Reduced Cost Fixing and Relaxed-Consistency

For the purposes of this paper, consider the problem

zP := min{cTx : Ax ≥ b, x ≥ 0} (P)

with A ∈ R
n×m and b, c ∈ R

n for some n,m ≥ 1. We assume that (P) represents
the LP relaxation of an ILP problem PS with an optimal solution value of
z∗ ≥ zP and where variables {xi : i ∈ S} are subject to integrality constraints.
The dual of the problem (P) can be written as

zD := max{uT b : uTA ≤ cT , u ≥ 0} (D)

where u ∈ R
m is the vector of dual variables. We assume for exposition that PS ,

(P), and (D) are bounded (the results presented here can be easily generalized
when that is not the case).

We have zP = zD (strong duality) and for every optimal solution x∗ of
(P), there exists an optimal solution u∗ to (D) such that u∗T (b − Ax∗) = 0
(complementary slackness). Moreover, for some j such that x∗

j = 0, the quantity

cj = cj − u∗TAj (RC)

is the reduced cost of variable xj and yields the marginal increase in the objective
function if x∗

j moves away from its lower bound. Thus, if a given known feasible
solution with value zUB ≥ z∗ is available to the original ILP, the reduced cost
fixing technique consists of fixing x∗

j = 0 if

zP + cj ≥ zUB , (RCF)

since any solution with x∗
j > 0 can never improve upon the existing upper

bound zUB . We remark in passing that the condition (RCF) can be generalized
to establish more general bounds on a variable. That is, we can use the reduced
cost cj to deduce values lj and uj such that either x∗

j ≥ lj or x∗
j ≤ uj in

any optimal solution (see, e.g., [10]). In this paper we restrict our attention to
the classical case described above. We refer to Wolsey [18] and Nemhauser and
Wolsey [13] for the formal proofs of correctness.
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The dual variables u∗ for the computation of (RC) can be obtained with
very little computational effort after finding an optimal solution x∗ to (P) (e.g.,
they are computed simultaneously to x∗ when using the Simplex method). In
the most of practical known implementations concerning ILP presolving and CP
propagation methods, the reduced cost fixing is typically carried out using the
single u∗ computed after solving every LP relaxation [7,12]. Note, however, that
(D) may contain multiple optimal solutions, each potentially yielding a different
reduced cost cj that may or may not satisfy condition (RCF).

One therefore does not need to restrict its attention to a unique u∗, and
can potentially improve the number of variables that are fixed if the whole dual
space is considered instead. This would mean that if there exists a reduced cost
cj such that variable xj can be fixed to 0 with respect to zUB , then there exist a
dual vector u such that uT b + (cj − uTAj) ≥ zUB . This was first demonstrated
by [16] in the context of CP-based Lagrangian Relaxation, which also pointed
out that often more filtering occurs when u is not an optimal dual vector and
therefore we might have that uT b < zP .

Achieving the notion of Relaxed Consistency, as defined in [6], is thus quite
consuming in such a condition. This form of consistency can be casted, in the
context of ILP, as follows.

Definition 1. Let PS be an ILP model with linear programming relaxation (P)
and its corresponding dual (D). The model PS is relaxed consistent (or relaxed-
P-consistent) with respect to an upper bound zUB to PS if for any dual feasible
u∗ to (D) and its associated reduced cost c vector, condition (RCF) is never
satisfied, i.e., zP + cj < zUB for all j = 1, . . . , n.

If a model is relaxed consistent according to Definition 1, then it is not
possible to fix any variable xj via reduced costs.

Consistent with the theory presented in [6,16], any ILP formulation can be
efficiently converted into a relaxed consistent formulation in polynomial time.
Given an ILP model PS and the primal (P) and dual (D) of its associated linear
programming relaxation, the set of optimal dual solution coincides with the
polyhedral set D = {u ∈ R

m : uTA ≥ c, u ≥ 0}. Thus, a variable xj can be fixed
to zero if the optimal solution c∗

j of the problem c∗
j = max{cj − uTAj : u ∈ D}

is such that zP + c∗
j ≥ zUB . This means that the complexity of the procedure is

dominated by the cost of solving O(n) LP models, each of which can be done in
weakly polynomial time [18].

3 Dual Picking for Maximum Reduced Cost Fixing

Establishing relaxed consistency by solving O(n) LP models is impractical when
a model has any reasonably large number of variables. We thus propose a simple
alternative model that exploits the underlying concept of searching in the dual
space for maximizing filtering. Namely, as opposed to solving an LP for each
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variable, we will search for the dual variables that together maximize the number
of variables that can be fixed. This can be written as the following MILP model:

max
n∑

i=1

yi (DP-RCF)

s.t. uTA ≤ c (1)

uT b = zP (2)

uT b + (cj − uTAj) ≥ zUB − (1 − yj)M ∀j (3)
u ≥ 0 (4)
y ∈ {0, 1}n (5)

In the model (DP-RCF) above, we are searching for the dual variables u, on
the optimal dual face, that maximize the number of variables fixed. Specifically,
we will define a binary variable yi in such a way that yi = 1 if and only if we fix
it allows to deduce that xj can be fixed to 0.

To enforce this, let M be a sufficiently large number, and 1 an n-dimensional
vector containing all ones. Constraints (1), and (4) ensure that u∗ is dual feasible.
If yi = 1, then inequality (3) reduces to condition (RCF) and the associated xi

should be fixed to 0. Otherwise, the right-hand side of (3) is arbitrary small (in
particular to account for arbitrarily small negative reduced costs). Constraint (2)
enforces strong duality and the investigation of optimal dual vectors only, it can
be omitted in order to explore the whole dual feasible space (as sub-optimal dual
vectors can perhaps filter more [16]). Finally, constraint (5) defines the domain
of the y variable and the objective maximizes the number of variables fixed.

The model (DP-RCF) does not necessarily achieve relaxed consistency as it
yields a single reduced cost vector and it is restricted to the optimal dual face.
However, our experimental results indicate that the model can be solved quite
efficiently and yields interesting bounds. Notice also that any feasible solution to
(DP-RCF) corresponds to a valid set of variables to fix, and hence any solutions
found during search can be used to our purposes as well.

4 Preliminary Numerical Study

We present a preliminary numerical study of our technique on a subset of the
MIPLIB 2010 benchmark [1]. All experiments were performed using IBM ILOG
CPLEX 12.6.3 on a single thread of an Intel Core i7 CPU 3.40 GHz with 8.00 GB
RAM.

Our goal for these experiments is twofold: We wish first to evaluate the
filtering achieved by the dual picking models (DP-RCF) in comparison to the
full relaxed-consistent model, and next verify what is the impact of fixing these
variables in CPLEX when proving optimality. For the first criteria, we considered
the number of fixed variables according to three different approaches:
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1. The model (DP-RCF) with a time limit of 10 min, denoted by DP.
2. A modified version of the model (DP-RCF) without constraint (2), i.e., we

increased our search space by considering any feasible dual solution, also fixing
a time limit of 10 min. We denote this approach by DP-M.

3. Solving the O(n) LP models to achieve relaxed consistency in view of
Definition 1, with no time limit. This method provides the maximum number
of variables that can be fixed thought RCF and thus an upperbound for both
DP and DP-M, it is denoted by RCC (relaxed reduced-cost consistency).

In all the cases above, we considered the optimal solution value of the instance
as the upper bound zUB for the (RCF) condition, which results in the strongest
possible filtering for a fixed set of duals.

Next, to assess the impact of fixing variables in the ILP solution process, we
ran the default CPLEX for each approach above, specifically setting the fixed
variables to zero and providing the optimal solution value of each instance to the
solver. We have also ran default CPLEX without any variable fixing and with
the optimal value as an input, in order to evaluate the impact of variable fixing
in proving the optimality of a particular bound.

As a benchmark we considered all “easy” instances of the MIPLIB that could
be solved within our memory or limit of 8 GB and a time limit of 60,000 s. We
have also eliminated all instances where relaxed consistency could not fix any
variable. This resulted in 36 instances.

The results are depicted in Table 1, where Aux stands for the CPU time
required to solve the auxiliary model (DP-RCF) and Vars is the number of
variables which could be fixed. Moreover, Cons and Vars in the Dimension cat-
egory indicate the number of constraints and decision variables of each instance,
respectively, and DC shows the number of variables that default CPLEX can
fix as a result of the final dual solution calculated by ourselves. Omitted rows
indicates the auxiliary problem reached its time limit. Due to space restric-
tions, instances neos-16..., neos-47..., neos-93..., neos-13..., neos-84..., rmatr-p5,
rmatr-p10, core253..., neos-93..., and sat... represent instances neos-1601936,
neos-476283, neos-934278, neos-1337307, neos-849702, rmatr100-p5, rmatr100-
p10, core2536-691, neos-934278, and satellites1-25, respectively.

We first notice that achieving full relaxed consistency is quite time consuming
and not practical with respect to the default solution time of CPLEX. When
looking at both DP models, it is obvious that restricting the search to the optimal
dual face, rather than the whole dual feasible space, yields practically the same
amount of filtering while being orders of magnitude faster. In fact, in many cases
the (DP-RCF) model can be solved in less than a second.

To determine whether such filtering is worth the extra effort, we compare
the solution time of DP against the default solution time of CPLEX. For each
instance we compute the speedup as the solution time of CPLEX divided by the
sum of both solution and dual picking (i.e., solving (DP-RCF)) time of DP. We
then compute the geometric mean of all speedups, which yields an average speed
up of 20% when using our dual picking methodology over the default CPLEX.
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Table 1. General results

Instance Dimension DC CPLEX Default DP DP-M RCC

Cons Vars Vars Time Nodes Time Nodes Aux Vars Time Nodes Aux Vars Time Nodes Aux Vars

MILP instances

30n20b8 578 18380 0 3 260 3 260 0.5 7282 3 90 494 13603

aflow40b 1442 2728 33 187 17461 1961 200477 0.03 499 281 21635 42 532

binkar10 1 1026 2298 165 7 1567 8 2135 0.1 200 5 902 51 281

core253... 2539 15293 2494 38304 239195 2414 8816 600 3046 4464 72010 79173 4818

biella1 1203 7328 219 942 1477 257 1107 52 429 204 1089 18220 1540

gmu-35-40 424 1205 0 68 351765 68 351765 0.02 0 124 ≈6e5 9 485 26 94209 19 493

mik-... 151 251 50 1 2205 0.7 1115 0.01 50 0.7 1115 0.5 50 0.7 1115 0.8 50

mzzv11 9499 10240 29 19 57 17 46 26 213 26 329 18679 678

neos13 20852 1827 8 6 485 5 399 1 8 5 399 68 8 6 7 588 179

neos-16... 3131 4446 867 327 4264 137 2259 2 1766 377 7549 7747 1782

neos-47 10015 11915 36 1054 1565 195 1129 2 69 195 1129 38293 69

neos-93... 11495 23123 15843 430 97 74 12 3 15981 132 39 86254 16088

net12 14021 14115 0 162 440 16 50 1 32 150 880 3057 334

ns1208400 4289 2883 2 21 860 21 860 0.08 286 21 860 107 286 32 1465 1286 592

ns1830653 2932 1629 0 208 24606 74 9185 0.2 850 217 31211 952 853 110 5203 65 915

pw-myciel4 8164 1059 0 0.4 17 0.4 117 0.05 0 0.4 117 6 0 1 580 54 160

rmatr-p10 7260 7359 100 20 455 27 345 0.2 100 27 345 3260 100

rmatr-p5 8685 8784 100 3 2 5 6 2 100 5 6 9601 100

rococo... 1293 3117 0 523 13193 4475 54077 0.3 511 531 15979 35 553

roll3000 2295 1166 0 2645 177058 2645 177058 0.08 120 1015 61271 50 149

sat... 5996 9013 99 220 442 25 497 2 2499 11 758 13845 4989

sp98ir 1531 1680 110 244 8607 241 13057 1.5 285 204 18659 86 524

timtab1 171 397 0 2393 ≈1e6 2393 ≈1e6 0.02 13 2393 ≈1e6 4 13 2393 ≈1e6 1 13

Binary-Only Problems

acc-tight5 3052 1339 1339 97 2262 97 2262 0 1339 97 2262 0 1339 97 2262 0 1339

air04 823 8904 0 7 493 7 46 6 64 5 54 1500 126

bab5 4964 21600 0 8313 49311 2903 12717 369 373 883 7904 18563 2309

eil33-2 32 4516 1004 112 15041 18 6825 6 1035 0.3 305 33 4013

eilB101 100 2818 45 595 26753 318 21666 1 125 84 10309 115 1588

n3div36 4484 22120 4755 57917 ≈2.7e6 57017 ≈2.7e6 1 4755 3518 83900 6568 6372

neos-13... 5687 2840 14 9 300 6 110 5 77 5 30 1098 150

neos18 11402 3312 0 0.4 1 0.4 1 0.08 84 0.4 1 142 84

neos-84... 1041 1737 1737 105 8223 105 8223 0 1737 105 8223 0 1737 105 8223 0 1737

ns1688347 4197 2685 0 8 260 5 1310 0.25 267 1 1 56 716

opm2-z7-s2 31798 2023 0 230 1000 230 1000 1 0 230 1000 35 0 25 260 2484 459

rmine6 7078 1096 0 69 15233 31 5920 0.25 1 31 5920 10 1 52 10497 116 66

sp98ic 825 10894 6902 29041 149629 40306 466555 62 7098 345 35647 4724 8488

5 Conclusion

In this paper, we revisited the notion of reduced-cost based filtering and variable
fixing, which are known to be dependent on the available dual information.
We defined the problem of identifying the set of dual values that maximize
the number of variables which can be fixed as an optimization problem. We
demonstrated that looking for a good set of such dual on the optimal dual face
is considerably faster and filter almost as many variables as when considering
the full feasible dual space. In many cases fixing more variable lead to a reduced
search tree that can be explored faster. However, in a good number of cases,
solution time increases when more variables are fixed, which is probably due to
the fact that early in the tree the search takes a different path.

Future research will consider dual picking during search, so as to try to fix
variables when the relative gap becomes small enough in a subtree, as well as
applying the techniques in the context of constraint programming.
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