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Abstract. Brain connectivity analysis has emerged as a tool to associate
activity generated in diverse brain areas, making possible the integration
of functionally specialized brain regions in networks. However, estima-
tion of the areas with relevant activity is well influenced by the applied
brain mapping methods. This paper carries out the comparison of three
reconstruction principles that differ in the way the prior covariance is
adjusted, including its generalization through multiple and sparse spa-
tial priors. To cluster the locations with significant brain activity (regions
of interest), we select the most powerful areas, for which the functional
connectivity is measured by the coherence and Kullback-Liebler diver-
gence. From the obtained results on simulated and real-world EEG data,
both measures show that the mapping method that includes Multiple
Sparse Priors allows improving the connectivity accuracy regardless the
used measure for all tested values of added noise.

1 Introduction

In the last years, connectivity analysis has gained considerable importance to
study the behavior of the brain during different tasks and cognitive processes,
as well as in the detection of some pathological conditions. In this regard, sev-
eral approaches have discussed whether the connectivity analysis should be per-
formed on EEG channel space or source space. As a result, it has been shown
that due to the effects of field spread, it is difficult to carry out a connectivity
analysis in the measured recordings on the scalp [15]. Moreover, it is difficult
to associate an anatomical meaning with the connections, as the measured sig-
nals do not locate in direct spatial proximity to the underlying sources. On the
other hand, EEG reconstruction methods each time achieve better performance
on space and time domains), because they take into account the propagation of
cortical activity towards the scalp. Furthermore, when the connectivity analysis
is performed at the source level, it might yield a better interpretation of cal-
culated interactions, which can be easily associated with the brain processes of
integration and segregation [14].
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Unfortunately, despite the latest advances in source connectivity analysis,
several problems that directly influence the accurateness of this analysis have
not been solved. These problems can be summarized as: (i) developing a realistic
conductivity model of the head, (ii) selection of the brain mapping method, (iii)
selection of a proper connectivity measure and (iv) validation of the obtained
results. In this work, we focus in how the chosen brain mapping method influ-
ences the performance of the source connectivity analysis.

In this regard, to select the brain mapping method, it must be considered
that there exist several models to estimate the source activity, which can be clas-
sified into two groups: (i) dipole-fitting models that represent brain activity as a
small number of dipoles with unknown positions and, (ii) the distributed-source
models that represent the brain activity as a large number of dipoles in fixed posi-
tions [5]. Distributed source models present a highly ill-posed inverse problem,
with no unique solution in the most general unconstrained case. Consequently, a
unique solution can only be obtained by making additional assumptions (spatial
and temporal) about the neural activity. For example, these assumptions can be
made by introducing prior beliefs on the structure of possible source configura-
tions in Bayesian inference framework [11] or based on geometric or physiological
properties of the brain. In this regard, the more realistic the considered assump-
tions, the more accurate the reconstructed source space, and consequently, the
connectivity analysis. However, to the best of our knowledge, there are no stud-
ies that systematically consider the influence of estimated source activity over
the source connectivity analysis, in spite of the fact that brain mapping errors
are known to have a significant effect on the accuracy of connectivity [4].

In this work, we compare three methods solving the inverse problem due to
they have a common mathematical framework differing only in the prior assump-
tions of the estimation of the source covariance matrix. This prior covariance
adjusts the primary differences between often used regularization schemes in the
source estimation and is generalized by the use of multiple and sparse spatial
priors. The comparison approach comprises three stages: (i) brain activity is esti-
mated through Empirical Bayesian Beamformer (BMF) [1], Low-resolution brain
electromagnetic tomography (LORETA) [13] and Multiple sparse priors (MSP)
[6] approaches. (ii) Some regions of interest are selected based on the recovered
sources with the highest energy. (iii) A connectivity brain measure is employed
to quantify the changes in the information flow over the selected regions of inter-
est. Obtained results show that the performance of brain connectivity depends
strongly on the employed mapping method because different regions of interest
(ROI) are obtained and, in the lower degree, on the used measure of similarity
between the estimated regions of interest.

2 Methods

2.1 Estimation of Brain Source Activity

With the aim of estimating brain activity from measured EGG recordings, We
will consider the following distributed inverse solution Y = LJ + Ξ, so that
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Y ∈R
C ×T is the EEG data measured by C ∈N sensors at T ∈N time sam-

ples, J ∈R
D×T is the amplitude of the D ∈N current dipoles, which placed in

each three-dimensional dimension and distributed through cortical surface, and
the lead field matrix L∈R

C ×D is the relationship between sources and EEG
data. Besides, the EEG measurements are assumed to be corrupted by zero
mean Gaussian noise Ξ ∈R

C ×T , having matrix covariance QΞ = σ2
ΞIC , where

IC ∈R
C×C is an identity matrix, and σ2

Ξ is the noise variance. Under these
constraints, brain source activity can be estimated as:

̂J = QL�(QΞ + LQL�)−1Y , (1)

being Q ∈R
D ×D the source covariance matrix. For EEG brain mapping, the

used approaches differ in the imposed prior assumptions upon Q as follows:

– Low-Resolution Brain Electromagnetic Tomography (LORETA) or maximally
smoothed solution, Q = ID.

– Empirical Bayesian Beamformer (BMF) that imposes spatial priors to
include multiple modalities and subjects. In practice, the global prior assumes
a covariance with the following qdd element of the main diagonal:

qdd = (l�d (Y Y �)ld)−1/δd, ∀d = 1, . . . , D,

where ld ∈R
C × 1 stands for the d−th column of L, and δd = 1/l�d ld is the

normalization parameter. So, the source covariance is λpQ.
– Multiple Sparse Priors (MSP) that constructs the source covariance as a

weighted sum of P possible patches {Qp:p ∈P} so that each one regards a
single potentially activated cortex region and is weighted by its respective
hyperparameter, λp ∈R

+, as follows:

Q =
∑

p∈P
exp(λp)Qp.

2.2 Measurement of Brain Connectivity

To assess the brain connectivity analysis, we calculate, within the distributed
brain networks, a set of relevant regions of interest (ROI) that make evident the
existence of meaningful brain neural activity for the task at hand. Therefore, we
must localize a set of reproducible and accurate cortical ROIs that should be
consistent for all tested subjects. From EEG data, each brain is parcelled into
a set of ROI by selecting those areas encircling the recovered sources with the
highest energy. Each ROI area of the cortical surface has a 10 mm radius, cov-
ering approximately 300 dipoles, as suggested in [3]. However, the close active
dipoles are gathered so that each one belongs to just one ROI, avoiding spurious
connectivity. Further, the averaged time series over each ROI is extracted to
analyze the functional connectivity among all obtained regions. Thus, we esti-
mate the functional connectivity for the computed ROI sets, using the following
measures:
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– Coherence: This real-valued bivariate measure of the correlation between
signals u(t) and v(t) is defined trough their spectral representations,
Su,v(t, f) [8]:

ρuv(t, f) =
〈Su(t, f)S∗

v (t, f)〉
〈|Su(t, f)|〉 · 〈|Sv(t, f)|〉 (2)

– Kullback-Liebler (K-L) divergence that is computed for the random processes
u and v with finite states ui and vi, respectively, as follows:

�(u,v) = H(u,v) − H(u), �(u,v) ∈ R
+ (3)

where H(u)= −∑

n∈N p(un) log p(un) is the entropy of u and H(u,v)=
−∑

n∈N p(un, vn) log p(un, vn) is the cross entropy between u and v.

3 Experimental Set-Up and Results

For the purpose of validation, we investigate the influence of neural reconstruc-
tion on the brain connectivity analysis calculated from the assessed ROI sets.
Due to the shared mathematical framework, we compare three inverse problem
solutions (LORETA, BMF, MSP), differing only in the prior assumptions made
upon the estimation of source covariance.

Simulated EEG Data. Initially, we simulate the EEG data that reproduce dif-
ferent brain activities. To this end, two active dipoles are assumed, where each
one is a nonstationary source. All non-stationary time series are generated using
the real Morlet wavelet, encouraging a behavior similar to an evoked response
potential. Each recording lasts 1.5 s length and is sampled at 200 Hz. The random
central frequency of the Morlet wavelet is sampled from a Gaussian distribution
with a mean 9 Hz and standard deviation 2 Hz. The produced stimulus starts at
t = 0 and the activity is propagated from simulated active dipole # 1 to # 2 at
t = 0.1 s. Besides, the background noise of the dipole signals is set to have a 1/f
spectral behavior. Then, each simulated EEG is calculated by multiplying the
simulated brain activity to the lead field matrix. For source space modeling, a
tessellated surface of the gray-white matter interface is used that has 8196 ver-
tices (possible source localizations) with source orientations fixed orthogonally
to the surface. Also, the lead fields are computed by the BEM volume conductor
with a mean distance between neighboring vertices adjusted to 5 mm. As a result,
we obtain synthetic EEG data for 128-channels. Three experimental configura-
tions, carrying out 100 simulations each one, are performed to test sensibility
to the noise of the proposed connectivity-based approach. To this, measurement
noise is added to obtain SNR levels, ranging from −6 till 6 dB. Location of active
dipoles is randomly selected for each simulation.

Real-World EEG Database. We also carry out the experimental testing
using an EEG database provided by theWellcome Trust Centre for Neuroimag-
ing, holding faces and scrambled faces. This data were collected from a single
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subjects at the time he made symmetry judgements on faces and scrambled
faces as described in [10]. All EEG recordings were acquired on a 128-channel
ActiveTwo system, sampled at 2048 Hz, plus electrodes on left earlobe, right
earlobe, and two bipolar channels. The epochs (168 faces and 168 scrambled
faces) were baseline-corrected from 200 to 0 ms. Also, data were down-sampled
at 200 Hz and averaged for each condition. For modeling the source space, we
used a tessellated surface of the gray-white matter interface with 8196 vertices
(possible source localizations) with source orientations fixed and being orthog-
onal to the surface. Finally, the head model was computed using a boundary
element method (BEM) to estimate the forward operator L.

Validation Results of Simulated EEG Data. Figure 1 shows the values of
connectivity computed between each couple of the simulated sources depending
on the employed estimator of neural activity. The connectivity values of a couple
of sources are estimated after carrying 100 runs, allocating randomly over the
head surface either source for each trial. As expected, the coherence measure
(plotted by dashed lines) rises as the SNR level grows higher. By contrast, the
K-L divergence (plotted in continued lines) reduces as the noise level decreases.
At the same time, the assessed connectivity measures are differently influenced
by the used mapping approach. Thus, the use of MSP makes either connectivity
measure to be more accurately estimated regardless of the SNR added.
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Fig. 1. Assessed values of connectivity after using different mapping approaches: coher-
ence (dashed lines), KL divergence (continuous lines)

It is worth noting that either used estimator of connectivity shows very close
standard deviation (KL-divergence provides 0.054 while coherence −0.058), mak-
ing both measures similar in terms of confidence.

Validation Results of ERP Data. Figure 2 shows the estimated ROIS after
mapping as well as the obtained values of connectivity (matrix of coherence).
For either testing paradigm (termed faces or scrambled faces), the top row
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Fig. 2. EEG brain activity estimated by each considered brain mapping approach for
a concrete task with the paradigm faces and scrambled faces. (Color figure online)

(see Fig. 2a) shows the lateral, superior, and sagittal views of the performed
LORETA mapping, where the estimated ROIs are marked by circles with a dif-
ferent color. Likewise, Fig. 2b and c display performed results for the BMF and
MSP methods, respectively. Visual inspection allows concluding that every tested
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mapping registers activity in the visual cortex (Occipital Lobe) and somatosen-
sory area. So far, this finding totally agrees the commonly accepted physiological
interpretation about visual stimulation. However, each mapping approach pro-
duces different amounts of spurious activity that is identified as ROI, but without
any reported clinical meaning. Thus, LORETA provides the highest number of
meaningless connections as can be corroborated in the coherence matrix, yielding
an activity in areas where it is assumed not to be at all, namely, ROI 3 (Broca’s
area), ROI 5 (Motor function), ROI 7 (Wernicke’s area). This result may be
explained because of its widely-known poor spatial resolution. Further, BMF
performs fewer ROIs with spurious, having even the less power. So, Broca’s and
Wernicke’s (rather related to speech) areas, Motor function and auditory areas
are wrongly labeled as salient ROIs for face recognition. Lastly, MSP produces
lower values of coherence for ROIs not belonging to the occipital lobe. As a
result, MSP yields the lowest number of the wrong ROIs, and thus, it promotes
the most accurate connectivity estimation since it focuses most of the estimated
ROIS on the Occipital lobe (ROI 4), linking correctly to the visual area.

For either paradigm faces (Top row) and scrambled faces (bottom row), Fig. 3
displays the values of connectivity computed by the K-L divergence upon the
same ROI set as in the case of the coherence measure. Although every mapping
method produces the same groups of associated activity, the MSP method makes
more evident the relation among ROIs (see Fig. 3c and f).

Fig. 3. Estimated matrices of connectivity using the K-L divergence for either paradigm
faces (Top row) and scrambled faces (bottom row).
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Fig. 4. Results of the paired t-test for the estimated sets of ROI by each mapping
method with K-L divergence.

Fig. 5. Results of the paired t-test for the estimated sets of ROI by each mapping
method with Coherence.

On the other hand, we carry out the paired t-test over the set of estimated
ROIs to make clear which areas contribute the most to differentiate between the
different conditions, namely, faces and scrambled faces. For the sake of general-
ization, we also merge the obtained sets of ROI for both considered paradigms.
As a result, the most discriminating areas are identified in the occipitotemporal
brain (see Figs. 4 and 5). Meanwhile, this area has been reported to be related
to the structural encoding of faces [12]. In this regard, MSP is the mapping tech-
nique that shows the most powerful and localized activity in the occipitotemporal
area, favoring the interpretation of the assessed connectivity measures.

4 Discussion and Concluding Remarks

We have investigated the influence of EEG source reconstruction for brain con-
nectivity analysis, according to the following steps:

1. Selection of brain mapping method, contrasting LORETA, BMF and MSP
2. ROI selection based on the estimated maps of neural activity
3. We apply two connectivity measures: Kullback-Leibler divergence and

Coherence
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The main aspect concerns the selected brain mapping method for imaging
EEG activity. The first tested method of brain mapping was LORETA has a rel-
atively low spatial resolution because the localization is preserved with a certain
amount of dispersion [13].Therefore, the estimated brain activity is more blurred,
producing broad zones of neural activity. On the other hand, the use of BMF
improves identification of the source signals from electroencephalographic mea-
surements [1], nevertheless, BMF tends to estimate several spurious activated
areas, misleading the connectivity analysis. This effect appears to be directly
related to the estimation complexity of the source covariance matrix [12].

On the other hand, MSP allows to perform source activity reconstruction
so that we obtain more precise regions of activation. Furthermore, due to the
low spatial resolution, LORETA algorithm often locates erroneous regions with
activity, where powerful common sources should not be present. Therefore,
although LORETA has been widely used in the last years to reconstruct brain
activity, its confidence of estimated areas of activation may be not enough [7].
From obtained results validating on simulated and real-world recordings, MSP-
based estimation of ROI time courses allows improving the connectivity accu-
racy regardless the used measure for all tested values of SNR. Furthermore, MSP
allows estimating ROIs centered at locations related to the experimental task at
hand (i.e., face perception). Thus, the estimated energy has greater activity in
the visual cortex (Occipital Lobe) and the somatosensory area for either testing
paradigm (faces or scrambled faces). This result totally matches the accepted
physiological interpretation about visual stimulation.

Generally speaking, a challenging issue relating to brain connectivity analysis
is how to identify ROI sets (obtained from the brain mapping method) precisely,
at very short temporal scales; this dilemma remains common for all cognitive
tasks [9] and for the study of the brain pathologies [2,16]. We have used an
approach to select regions of interest ROI similar to [12], in order to ensure
that the selected regions of interest have been the ones that have had the most
energy and best describe the behavior of brain states. As a result, the intro-
duced ROI sets enhance the performed detection accuracy. Another aspect of
consideration is the involved measure of connectivity analysis. Here, we compare
both Kullback-Liebler divergence and Coherence measures that provide similar
behaviors as already had been reported in the literature [8]. Nevertheless, the
used EEG source estimation method clearly influences the assessed connectiv-
ity. For instance, a poor source reconstruction may lead the incorrect selection
of ROIs for separating responses to different stimulus. As a result, the source
estimation method must be chosen carefully in all studies conducted in brain
connectivity. As future work, authors plan to test the introduced approach over
diverse paradigms, clustering, and connectivity measures. Furthermore, an online
extension of the brain connectivity analysis can be proposed to include the tem-
poral variations of the inter-channel relationships directly.
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becas de doctorado, convocatoria 647 (2014).



86 J.I. Padilla-Buriticá et al.

References

1. Belardinelli, P., Ortiz, E., Barnes, G., Noppeney, U., Preissl, H.: Source reconstruc-
tion accuracy of MEG and EEG Bayesian inversion approaches. PLoS ONE 7(12),
51985 (2012)

2. Brier, M.R., Thomas, J.B., Fagan, A.M., Hassenstab, J., Holtzman, D.M., Ben-
zinger, T.L., Morris, J.C., Ances, B.M.: Functional connectivity and graph theory
in preclinical Alzheimer’s disease. Neurobiol. Aging 35(4), 757–768 (2014)

3. Brookes, M.J., O’neill, G.C., Hall, E.L., Woolrich, M.W., Baker, A., Palazzo
Corner, S., Robson, S.E., Morris, P.G., Barnes, G.R.: Measuring temporal, spectral
and spatial changes in electrophysiological brain network connectivity. NeuroImage
91, 282–299 (2014)

4. Cho, J.-H., Vorwerk, J., Wolters, C.H., Knösche, T.R.: Influence of the head model
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