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Abstract. Deep learning is one of the breakthrough technologies that
have emergent in the last few years. It has been applied to a wide vari-
ety of problems, most of them related with image processing. It is also
being considered for 3D data in medical image processing. This paper
is a report of ongoing work about the development of deep learning
architectures for lung cancer prediction. Data has been extracted from
an ongoing Kaggel challenge, involving multi-center CTA data. First we
have normalized in intensity the images. Then we have devised an auto
encoder architecture with convolutional layers to obtain a compressed
representation of the lung images. These representations are fed as fea-
tures to a random forest classifier.

1 Introduction

In the United States, lung cancer strikes 225,000 people every year, and accounts
for $12 billion in health care costs. Early detection is critical to give patients the
best chance at recovery and survival. Realization of this urgent need has sparkled
initiatives of the american institutions directed to improve the availability of data
to researchers in order to advance on the detection and prediction issues, the so
called Cancer Moonshot initiative1.

As part of the activities under this initiative, a large dataset of CTA chest
images from many hospitals and health institutions has been released and a
computational challenge has been proposed in the Kaggle Data Science Bowl
convening the data science and medical communities to develop lung cancer
detection algorithms. The dataset offers thousands of high-resolution lung scans
provided by the National Cancer Institute. The goal is set to develop algorithms
that accurately determine when lesions in the lungs are cancerous. The aim
is to reduce the false positive rate, which is very high for the current detection
technology. Therefore, patients may get earlier access to life-saving interventions,
while radiologists have more time to improve attention to their patients.

Deep learning is everywhere. Several articles [4] and works had already
probe that deep learning is working really well in image based problems. In the
last years, Convolutional Neural Networks (CNNs) [2,3] have achieved excellent

1 https://www.cancer.gov/research/key-initiatives/moonshot-cancer-initiative.
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performance in many computer vision tasks. Several advances have solved con-
vergence issues, and the advent of easy to exploit powerful Graphics Processing
Units (GPUs) has speed up the training times by several orders of magnitude [1].
A CNN is a shared-weight neural network: all the neurons in a hidden layer share
the same weights and bias. In fact, each layer implements a linear convolution
filter whose kernel is learnt by gradient descent. Therefore, the output of the suc-
cessive layers is a series of filtered/subsampled images which are interpreted as
progressively higher level abstract features. Most CNN are applied to 2D signals,
i.e. images, however in the medical image domain they are increasingly applied
to 3D signals, i.e. volumetric imaging information. Autoencoders [6] are deep
architectures that can be trained unsupervisedly, because their training error is
the reconstruction error of the input after being processed by the entire auto
encoder. The typical architecture has a middle hidden layer of small dimension,
which is supposed to provide the features for further processing. Autoencoders
have been used for soft organ segmentation [5].

The main objective of this work was to develop and compare existing deep
learning methods capable of determining whether or not the patient will be
diagnosed with lung cancer within one year of the date the scan was taken.
When making this predictions we need to take in account that giving a wrong
diagnosis is never equal, diagnosis as a non cancer patient into a cancer patient
has less live cost than predicting a cancer patient to a non cancer patient, since
no having treatment because of a wrong diagnosis will lead to death easily.
Prediction method has to be accurate, reproducible and, above all, comparable
to pathologists diagnosis.

2 Materials and Methods

Data. The dataset comes from a kaggle competition2. The dataset, provides
over a thousand low-dose CT images from high-risk patients in DICOM format,
coming from several institutions across the states. Each DICOM image sequence
contains a series with multiple axial slices of the chest cavity which put together
provide a 3D image of the chest of the patient. The number of 2D slices may
vary between patients due to differences in the machines taking the scan. The
ground truth labels (i.e. developing cancer or not) were confirmed by pathology
diagnosis and were provided in the challenge dataset.

Server. We are using for this work a server with 2 connected nvidia 1080 GPU
cards. The deep architectures have been implemented in Python using Keras3

with Tensorflow as backend. For the explained methods the time considered for
preprocessing is for about 10 h and to train the network for less than a day.

2 https://www.kaggle.com/c/data-science-bowl-2017.
3 https://keras.io.

https://www.kaggle.com/c/data-science-bowl-2017
https://keras.io
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Data Preprocessing. The image data were provided in Digital Imaging and Com-
munication in Medicine (DICOM) format. For easier processing, we transform
the images to a unique HDF file using Python scientific libraries. The individual
image data had wide differences in intensity range, and resolution. Therefore,
we need to carry out several preprocessing steps:

1. We have to correct the geometry of the image to a standard square capture
layout. Some of the CAT systems have a circular filed of view.

2. We have to resample the images to obtain the same voxel size for all the
images.

3. We have to correct the intensity in order to have the same correspondence of
signal values to materials (air, fat, muscle, etc.).

4. We reduce the image size to 50 x 50 x 20 by subsampling in order to be able
to process the entire volume.

Figure 1 shows an example of a slice before and after preprocessing, the top row
shows the histograms of the images in the bottom row, so that it is possible
to appreciate the change in distribution made by the intensity correction. After
preprocessing we have volumetric images of the same size. Figure 2 shows two
example input volumes after preprocessing.

Fig. 1. Example of raw data (left) and preprocessed data (right). Top row: histograms
of the images. Bottom row: visualization of the central slice.
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Fig. 2. An example of a input volume to the networks, showing the 20 axial slices. (a)
cancer patient (b) no cancer patient.

Table 1. Autoencoder architecture layout

Layer Output shapes Params

Input (None, 1, 50, 50, 20)

Convolution3D (None, 32, 50, 50, 20) 896

MaxPooling3D (None, 32, 10, 10, 4)

Dropout (None, 32, 10, 10, 4)

Convolution3D (None, 64, 10, 10, 4) 55360

MaxPooling3D (None, 64, 3, 3, 1)

Dropout (None, 64, 3, 3, 1)

Convolution3D (None, 64, 3, 3, 1) 110656

(Code) Dropout (None, 64, 3, 3, 1)

UpSampling3D (None, 64, 9, 9, 3)

ZeroPadding3D (None, 64, 11, 11, 5)

Convolution3D (None, 32, 11, 11, 5) 55328

UpSampling3D (None, 32, 55, 55, 25

Convolution3D (None, 1, 53, 53, 23) 865

(Decoded) Cropping3D (None, 1, 50, 50, 20)

Total params: 223,105

Trainable params: 223,105

Non-trainable params: 0

Architectures. We have trained two architectures:

1. 3D Convolutional Neural Network (CNN). It is a conventional architecture
with 3D input volume corresponding to the CAT volume, the output is the
decision units, and we have two 3D convolution layers interspersed by three
maxpooling layers that produce the dimension reduction.

2. Autoencoder + classifier: We build an auto encoder whose hidden layers are
convolutional networks as specified in Table 1. The middle layer, denoted Code
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Fig. 3. The code achieved by the auto encoder after training for the input volumes in
Fig. 2. Left cancer patient, right no cancer patient. The code has been reshaped into a
matrix for visualization.

in the table, provides the features for classification carried out by conventional
machine learning classifiers. Figure 3 shows the representation of the code
for example cancer and non-cancer subjects, in fact it is not apparent the
existence of discriminant features. We have tested Random Forest (RF) and
Support Vector Machines (SVM), and k-NN with k= 5. The architecture has
three convolution layers interspersed by maxpooling and dropout layers, all
in 3D, to reduce the input to the Code dimensions. The reconstruction by
up-sampling and zero padding interspersed by 3D convolutions.

We have benefitted from the great flexibility of Keras and easy specification of
the architecture, as well as its easy interface to the GPUs for training speedup.

3 Results

One of the characteristics of the dataset is its class imbalance, there are much
more non-cancer subjects than cancer patients. We have carried out training of
the CNN with a small sample of 200 non cancer subjects and 100 cancer subjects,
training it for 10 epochs. Results are shown in Fig. 4. The maximum accuracy is
low, and there is a clear overfitting effect in the last epochs. The auto encoder
architecture has been trained with three different training sets featuring diverse
imbalance ratios, and they have been tested with 100 randomly selected subjects,
28 cancer and 72 non-cancer. Table 2 gives the results of our experiments so far.
We provide the confusion matrices, whose rows correspond to the actual class,

Fig. 4. The evolution of the error function (blue plot) and accuracy (red) of 3D CNN
training. (Color figure online)
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Table 2. Results given by the confussion matrices of the classifiers obtained with
different distributions of imbalance of the test data for the auto encoder

and columns to the predicted class. Highest specificity (correct classification of
cancer) is obtained when training with the imbalanced dataset containing more
cancer subjects. These experiments are not according to the orthodox treatment
of imbalanced datasets, which consist on one of the following strategies:

– manipulating the dataset adding new instances of the minority class by ran-
dom interpolation between minority class samples, i.e. the SMOTE algorithm.
Obviously, in the case at hand this amounts to generating new images of can-
cer prone patients, which is not feasible.

– manipulating the dataset removing instances of the majority class. This cor-
responds to the experiments with balanced datasets, which are not very
successful.

– changing the error function to weight more the minority class errors. We are
working on that solution as the most promising, but having to deal with
technical problems.

The conclusion from Table 2 is that the auto encoder is still very sensitive to the
class distribution of the training set, biasing towards the majority class in the
training set.

4 Conclusions

Lung cancer is a very dramatic and urgent problem in many countries, specifi-
cally the initiative in the USA has brought this kind of cancer to the forefront of
the search for innovative technical solutions to its diagnosis. The recent ongoing
Kaggle challenge provides thousands of chest images from many medical insti-
tutions, which is a very hard testing ground for image based diagnosis tools. We
are working with this data applying deep learning architectures. So far we have
achieved the normalization of the images, and testing preliminary architectures
with modest success. We have found that deep architectures are not immune to
problems raised by imbalanced datasets, which are specially difficult to attack
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when the input data are complex images where subtle features may induce dra-
matic change of the output. We are working in the near future to submit some
competitive solution to the Kaggle competition.
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