Motion Detection by Microcontroller
for Panning Cameras

Jests Benito-Picazo'®) | Ezequiel Lépez-Rubio!,
Juan Miguel Ortiz-de-Lazcano-Lobato!, Enrique Dominguez!,
and Esteban J. Palomo!»?

! Department of Computer Languages and Computer Science,
University of Malaga, Bulevar Louis Pasteur, 35, 29071 Mélaga, Spain
{jpicazo,ezeqlr, jmortiz,enriqued,ejpalomo}@lcc.uma.es
2 School of Mathematical Sciences and Information Technology,
University of Yachay Tech, Hacienda San José s/n,

San Miguel de Urcuqui, Ecuador
epalomo@yachaytech.edu.ec

Abstract. Motion detection is the first essential process in the extrac-
tion of information regarding moving objects. The approaches based on
background difference are the most used with fixed cameras to perform
motion detection, because of the high quality of the achieved segmen-
tation. However, real time requirements and high costs prevent most of
the algorithms proposed in literature to exploit the background difference
with panning cameras in real world applications. This paper presents a
new algorithm to detect moving objects within a scene acquired by pan-
ning cameras. The algorithm for motion detection is implemented on a
Raspberry Pi microcontroller, which enables the design and implemen-
tation of a low-cost monitoring system.

Keywords: Foreground detection - Background modeling - Probabilis-
tic self-organizing maps - Background features

1 Introduction

Moving object detection is very important for video surveillance. This task is
known to be a significant and difficult research problem in many real environ-
ments. Motion detection consists of detecting a change in the position of an
object relative to its surroundings or a change in the surroundings relative to an
object.

Video surveillance systems have become an extremely active research area
due to increasing levels of social conflict and public awareness about security
issues. This has led to motivation for the development of robust and precise
automatic video surveillance systems, which are essential tools for safety and
security in both public and private sectors.

© Springer International Publishing AG 2017
J.M. Ferrdndez Vicente et al. (Eds.): IWINAC 2017, Part II, LNCS 10338, pp. 279-288, 2017.
DOI: 10.1007/978-3-319-59773-7_29

280 J. Benito-Picazo et al.

One of the most common algorithms is to compare the current frame with
the previous one. If the pixel difference is bigger than a predefined alarm level
or threshold, a motion event alarm is generated. The estimated background is
just the previous frame. It clearly works under easy conditions of foreground
objects, motion speed and frame rate but it is very sensitive to the threshold so
that for a noisy image, motion will be detected in many places even if there is
no motion at all. If the object is moving smoothly, a small change, which is less
than the predefined threshold, is obtained. Therefore, the moving object would
not be detected.

Microcontroller boards are economic, small and flexible hardware devices.
They are frequently employed in motion detection systems due to their low
energy consumption and reduced cost. Kinetically challenged people can benefit
from microcontroller based input devices specifically designed for them, which
measure motion on a plane in real time [11]. A flexible Printed Board Circuit
(PCB) prototype which integrates a microcontroller has been proposed to esti-
mate motion and proximity [5]. In this prototype, eight photodiodes are used as
light sensors. The efficiency of solar energy plants can be improved by low power
systems which estimate cloud motion [6]. The approximation of the cloud motion
vectors is carried out by an embedded microcontroller, so that the arrangement
of the solar panels can be optimized for maximum electricity output. Energy-
saving street lighting for smart cities can be accomplished by low power motion
detection systems equipped with low consumption microcontrollers and wireless
communication devices [1]. This way, the street lamps are switched on when peo-
ple are present in their surroundings. Finally, a motion detection algorithm based
on Self-Organizing Maps (SOMs) was developed in an Arduino DUE board [10].
The implementation of the SOM algorithm was employed as a motion detector
for static cameras in a video surveillance system.

Research on computer vision systems based on pan-tilt-zoom (PTZ) cameras
has been intense for many years [2,4,8,13]. Nevertheless, there is a lack of a
comprehensive theory which sets the foundations for the development of practical
systems. Fragmentary approaches that are limited to some parts of the problem
are available, but it is still not clear how to combine them to yield complete and
reliable systems that can be deployed in many situations. In the present work
we focus on the panning movement of a PTZ camera, which is able to cover the
entire environment of the camera.

In this paper, we propose a motion detection algorithm and its real-time
implementation on an inexpensive microcontroller. The system is able to detect
motion by analyzing the output of a panning PTZ camera with the help of a feed
forward neural network. Section 2 presents the motion detection algorithm for
panning cameras. Section 3 outlines the hardware part of the system, which is
based on the Raspberry Pi 3 model B microcontroller, and the employed software
architecture. Experimental results on real video footage are reported in Sect. 4.
Finally, Sect. 5 contains our conclusions.

Motion Detection by Microcontroller for Panning Cameras 281

2 Methodology

As mentioned before, our goal is to detect the motion of foreground objects while
a PTZ camera is moving. Let us consider the image acquired by the camera:

f:R =R (1)
f(.%‘h.'lﬁg,t) = (y1>y2ay3) (2)

where x = (21, x2) € [-A, A] X [—B, B] are the video frame coordinates in pixels,
with (0,0) at the center of the image and frame size (2A) x (2B) pixels; ¢ is the
time instant; and y = (y1, Y2, y3) comprises the color tristimulus values at the
frame location and instant of interest.

For a PTZ camera moving in the horizontal direction one can write:

(xl,x2) s (xl + 5, .IQ) € [—A,A] X [—B,B} =
f(z1,22,t) = f(x1+ 0,12, t +€) (3)

where § is the observed horizontal displacement of the image as € units of time
have elapsed, and the equality does not hold due to optical effects such as lens
aberration, and the motion of foreground objects in the scene. The precondition
means that the approximation applies to those points in the scene that are
visible both at time ¢ and ¢ + ¢; the remaining pixels in the video frame must be
ignored for our purposes. Then the error in the approximation can be computed
as follows:

S(wl,xg,t):f(xl,xg,t)—f(xl +(5,l’2,t+€) (4)

For given values of ¢ and the camera speed, the value of § can be estimated
experimentally by finding the value of § which minimizes ||£]|, where ||-|| stands
for any suitable norm. Now it is important to realize that the error comes from
two sources, namely optical effects and the presence of foreground objects:

& (1’17 X2, t) = goptical (‘le x2, t) + gobjects (xh X2, t) (5)

where the optical effects can be assumed to be small with respect to the fore-
ground objects effect, if those objects are present:

Fore (t) = ||goptical (1'1; ant)” < ||€Objects (1'1; ant)“ (6)

where Fore (t) means that there are foreground objects in motion at time ¢.
Moreover, if there are no foreground objects, then the associated error is zero:

Fore(t) © Eopjects (T1,22,t) # 0 (7)

Therefore, the expectation of the error norm should be larger when fore-
ground objects are present:

E[I€ (w1, xa,0)[| | Fore ()] > E[|€ (x1,22,)| | ~Fore (t)] (8)

282 J. Benito-Picazo et al.

Our proposal takes advantage of this by training a feed forward neural net-
work classifier in order to estimate the probability that foreground objects
are present, P (Fore (t)). To this end, the error norm is summarized by pixel
columns, so that the sum of the norms of the differences of the pixels at columns
x1 and x1 + § is computed. Then the error norm sums are added for contiguous
pixel columns, so that a reduced set of sums of error norms are obtained. These
sums are provided as inputs to the neural network, while the desired output
z (t) is 1 whenever Fore (t) holds, and —1 otherwise. The probability is then
estimated as follows:

P (Fore (1) = 5 (=(1) + 1) (9)

Subsequently a probability threshold 6 is applied in order to declare whether
foreground object motion has been detected:

Detection (t) < P (Fore(t)) > 0 (10)

Next the details of the implementation of the above proposal are described.

3 System Architecture

Hardware choice is such an important issue when it comes to microcontroller-
powered computer vision applications. In general, projects involving real-time
motion detection should consume a minimal amount of computing power, but
at the same time, they must be affordable and low-energy consuming insofar as
a certain amount of them may be required to monitor a medium sized building
or building complex and the spots they are going to be placed in may not have
access to the general power network. All these reasons present Raspberry Pi
class microcontrollers as a good choice for our project. Hence, we have chosen a
Raspberry Pi 3 model B microcontroller (Fig. 1), running under Linux Raspbian
distribution.

Fig. 1. Raspberry Pi 3 model B overview

This device features an ARM CortexV8 Quad Core CPU running at
1200 MHz, 1 GB RAM, and a 8 GB micro-SD data storage card. It can be pow-
ered by a 5.1V power source and its power consumption reaches 1.2 Amps/h
approximately at max operating load.

Motion Detection by Microcontroller for Panning Cameras 283

The second component of our system architecture is a PTZ camera software
emulator called Virtual PTZ [3]. This software consists of a C4++ library that
simulates the functionality of an actual Sony SNC-RZ50N PTZ camera from
spherical panoramic video footage. In particular, the experiments in this paper
employ sequences obtained by a Point Grey Ladybug 3 Spherical camera (Fig. 2).

Fig. 2. 360° spherical images supplied by the Point Grey Ladybug 3 Spherical camera.

When it comes to PTZ cameras, Virtual PTZ software has been proposed
as a valid framework for researching because of its capability of substituting
a real PTZ camera by providing the user with the possibility of moving the
virtual camera through an almost-spherical 360° video frame that can be totally
controlled and that is not affected by dynamical issues or physical limitations.
Since the only output our system requires from the PTZ camera is real-time video
streaming from a panning-capable camera, the virtual PTZ software stands as
a convenient framework for this project.

4 Experimental Results

As explained in Sect. 2, our motion detection system can be regarded as a classi-
fier which consists of an algorithm that is in charge of obtaining training samples
from a set of consecutive images and supplying them to a multilayer perceptron
that will decide whether there are foreground moving objects in the video frames
supplied by a PTZ camera. Because of its speed and ease of use, the multilayer
perceptron implementation chosen for this project is the fast artificial neural
network from Nissen [9]. In order to increase our control over the experimenta-
tion process, tests have been performed from videos supplied by the Virtual PTZ
camera. For the same reason, as the video frame rate is about 16 fps, camera
rotation speed has been adjusted to a constant rate of 16 degrees per second
to the left. After performing several tests, the § value has been estimated as
5 pixels/degree and Mean Squared Error (MSE) has been considered as the error
norm ||€|| (see Sect. 2). All set up, to perform the comparison of two frames, the
process described in Fig. 3 has been carried out.

First, frame n + 1 is shifted § pixels to the left with respect to frame n to
compensate camera rotation. Next, both frames are divided into 63-pixel wide
stripes (all but the last stripe, which will be 68-pixel wide) and the mean squared
error is calculated for each stripe of the two frames. Finally, a 30 component

284 J. Benito-Picazo et al.

[1}

[oe3SIN “+“23SIN “TISINI]

Frame n+1

Fig. 3. Example of how samples are obtained and supplied to the perceptron.

vector (10 for each RGB color channel) plus one number, which will be 1 if the
sample is positive and —1 if the sample is negative, will be saved as a sample
for perceptron training, validation and testing.

In order to evaluate system performance and accuracy when it comes to
detecting movement in video streams supplied by the Virtual PTZ, several tests
have been performed. These tests involve multilayer perceptron general perfor-
mance values measured for various different network topologies.

Multilayer perceptrons can be calibrated by modifying several parameters
with the objective of achieving better performance rates. However, since the
number of parameter combinations would eventually grow exponentially, test-
ing the system by varying every parameter would not be practical. Therefore,
for this work, perceptron training and performance comparisons are done just
by modifying the number of neurons in its hidden layer, while keeping fixed
the rest of them. Thus, the neural network used for this system will have the
characteristics listed in Table 1.

Table 1. Test parameters for multilayer perceptron

Neural network class Multilayer perceptron
Number of inputs 30

Number of neurons in hidden layer | 50-600

Number of outputs 1

Learning algorithm Backpropagation
Max training epochs 10000

Learning rate 0.7

In order to guarantee a correct neural network performance evaluation as
much as possible, a 10-fold cross-validation procedure has been established for

Motion Detection by Microcontroller for Panning Cameras 285

our system, so separate sample sets have been used for the training, validation
and test phases. For this purpose, it is well known that several measures are
available. Because of its simplicity, one of the most popular ones is the classifi-
cation accuracy, which computes the number of correct predictions divided by
the total amount of test samples [12]. The networks have been trained with a
class-balanced set of 576 samples. Figure4 shows the accuracy values for the
training, validation and test sets versus the number of neurons in the hidden
layer of the perceptron.

097t 0.9
g E
§ 08¢ > 0.8
> o+
) =]
g 2
3ort Lor
< —#— Training set n —#— Training set
Validation set Validation set
06F —&— Test set 1 0.6 —&— Test set
0 200 400 600 0 200 400 600
Number of neurons Number of neurons

Fig. 4. Accuracy and F-measure error bar chart for training, validation and test sets
(higher is better).

Even though accuracy is widely accepted as an acceptable performance mea-
suring criterion, specially in cases like the one presented here, where the number
of positive and negative samples is balanced, it is interesting to extend our
experimental results with the F-measure performance (Fig.4), as F-measure is
considered as another valid performance measure which eventually can be even
more reliable than accuracy [12].

As both accuracy and F-measure limit their performance measurement to one
single threshold value, it has been considered that a measurement that integrates
all possible threshold values is necessary in order to complement the results
represented in the above charts [7]. For this purpose the AUC Area under the
Curve, has been calculated for every neural network model. So, in Fig.5 the
AUC values for our model can be seen.

All three charts illustrate how the model reaches high performance levels
from 200 hidden layer neurons on, and increases its stability as the number of
hidden layer neuron number grows higher. Results also show that for test samples
in configurations comprehending 200 neurons or more, all three performance
measures are above 80%. It is also remarkable that in order to prevent image
data loss, all the results above were obtained by just processing images as they
come from the Virtual PTZ. This means that no further image processing has
been done to correct neither camera sensor noise nor camera lens aberration.

286 J. Benito-Picazo et al.

0.95
0.9
o
S
w© 0.85
S
@]
O 08
<
0.75 —#— Training set
Validation set
0.7 —&— Test set
0.65
0 200 400 600

Number of neurons
Fig.5. AUC error bar chart for training, validation and test sets (higher is better).

Time consumption is an absolutely critical issue when it comes to real-time
video processing, not to say when using microcontrollers to undertake artificial
neural network processes which involve real-time presence detection from a pan-
ning camera as the one explained here does. Therefore, the algorithm not only
has to be reliable but it also has to prove that the training time stays within
acceptable limits and sample classifying is fast enough to provide real-time pres-
ence detection when being deployed in a Raspberry Pi. In Table 2, both training
average time and single sample average classifying time versus hidden layer neu-
ron number can be observed when executing the algorithm in a Raspberry Pi
microcontroller with the features enunciated in Sect.3. To give a clearer idea
about our system performance, Table2 also includes the average speed (mea-
sured in frames per second, fps) the system can work at, when receiving a video
stream from the Virtual PTZ.

Training average time has been calculated from the values obtained by launch-
ing the training process 90 times, each one corresponding to the same number of
neurons in the hidden layer. Single sample average time and processing speed in
fps have been calculated from the values obtained by passing 72 different samples
through the algorithm explained above, combined with each trained neural net-
work. As can be seen in Table 2, processing speed is approximately 50 frames per
second which is an excellent frame rate for real-time video processing.

Table 2. Training average time and sample processing average time versus number of
neurons in the hidden layer.

Neurons 50 100 200 300 400 500 600

Training avg. |39.49777|26.49671|36.32062 | 53.55619 | 54.05586 | 62.48622 | 93.27951
time (s)
Processing 0.01959| 0.01963| 0.01969| 0.01975| 0.01982 | 0.01988| 0.01995
avg. time (s)
Fps 51.03369 | 50.95048 | 50.78488 | 50.62035 | 50.45434 | 50.29447 | 50.13059

Motion Detection by Microcontroller for Panning Cameras 287

5 Conclusions

A microcontroller-based real-time motion detection system for video surveillance
panning cameras has been proposed. It features an algorithm that processes a
sequence of images streamed from a PTZ camera simulation software by dividing
every image in a set of stripes and comparing each one with the equivalent stripe
in the next frame in order to obtain a vector of numbers that will be fed as
training, validation or test samples to a multilayer perceptron that will be in
charge of pointing out whether there is movement in the video stream. With
the objective of increasing system power efficiency and portability, it has been
deployed in a Raspberry Pi type microcontroller.

Tests have been performed by varying the number of neurons in the hidden
layer of the perceptron. They indicate that it is possible to achieve good results
according to several well known classification performance measures. Time tests
indicate as well that the movement detection system proposed here shows accept-
able training times and when it comes to video processing, reaches processing
speeds higher than 50 fps, confirming it as a valid alternative for real-time move-
ment detection when combined with panning cameras.

Acknowledgments. This work is partially supported by the Ministry of Economy
and Competitiveness of Spain under grant TIN2014-53465-R, project name Video sur-
veillance by active search of anomalous events. It is also partially supported by the
Autonomous Government of Andalusia (Spain) under projects TIC-6213, project name
Development of Self-Organizing Neural Networks for Information Technologies; and
TIC-657, project name Self-organizing systems and robust estimators for video surveil-
lance. Finally, it is partially supported by the Autonomous Government of Extremadura
(Spain) under the project IB13113. All of them include funds from the European
Regional Development Fund (ERDF). The authors thankfully acknowledge the com-
puter resources, technical expertise and assistance provided by the SCBI (Supercom-
puting and Bioinformatics) center of the University of Mdlaga. They also gratefully
acknowledge the support of NVIDIA Corporation with the donation of the Titan X
GPU used for this research.

References

1. Adnan, L., Yussoff, Y., Johar, H., Baki, S.: Energy-saving street lighting system
based on the waspmote mote. Jurnal Teknologi 76(4), 55-58 (2015)

2. Boult, T., Gao, X., Micheals, R., Eckmann, M.: Omni-directional visual surveil-
lance. Image Vis. Comput. 22(7), 515-534 (2004)

3. Chen, G., St-Charles, P., Bouachir, W., Bilodeau, G., Bergevin, R.: Reproducible
evaluation of pan-tilt-zoom tracking. In: Proceedings - International Conference
on Image Processing (ICIP), pp. 2055-2059, December 2015

4. Ding, C., Song, B., Morye, A., Farrell, J., Roy-Chowdhury, A.: Collaborative sens-
ing in a distributed PTZ camera network. IEEE Trans. Image Process. 21(7),
3282-3295 (2012)

5. Dobrzynski, M.K., Pericet-Camara, R., Floreano, D.: Vision tape-a flexible com-
pound vision sensor for motion detection and proximity estimation. IEEE Sens. J.
12(5), 1131-1139 (2012)

288

10.

11.

12.

13.

J. Benito-Picazo et al.

Fung, V., Bosch, J.L., Roberts, S.W., Kleissl, J.: Cloud shadow speed sensor.
Atmos. Measur. Tech. 7(6), 1693-1700 (2014)

Ling, C.X., Huang, J., Zhang, H.: AUC: a statistically consistent and more dis-
criminating measure than accuracy. In: IJCAT International Joint Conference on
Artificial Intelligence, pp. 519-524 (2003)

. Micheloni, C., Rinner, B., Foresti, G.: Video analysis in pan-tilt-zoom camera net-

works. IEEE Signal Process. Mag. 27(5), 78-90 (2010)

Nissen, S.: Fast Artificial Neural Network (2016). http://leenissen.dk/fann/wp/.
Accessed 10 Jan 2017

Ortega-Zamorano, F., Molina-Cabello, M.A., Lépez-Rubio, E., Palomo, E.J.:
Smart motion detection sensor based on video processing using self-organizing
maps. Expert Syst. Appl. 64, 476-489 (2016)

Papadimitriou, K., Dollas, A., Sotiropoulos, S.N.: Low-cost real-time 2-D motion
detection based on reconfigurable computing. IEEE Trans. Instrum. Meas. 55(6),
2234-2243 (2006)

Parker, C.: An analysis of performance measures for binary classifiers. In: Pro-
ceedings - IEEE International Conference on Data Mining, ICDM, pp. 517-526
(2011)

Song, K.T., Tai, J.C.: Dynamic calibration of pan-tilt-zoom cameras for traffic
monitoring. IEEE Trans. Syst. Man Cybern. B Cybern. 36(5), 1091-1103 (2006)

http://leenissen.dk/fann/wp/

	Motion Detection by Microcontroller for Panning Cameras
	1 Introduction
	2 Methodology
	3 System Architecture
	4 Experimental Results
	5 Conclusions
	References

