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Abstract. Context awareness in autonomous robots is usually per-
formed combining localization information, objects identification, human
interaction and time of the day. We think that gathering environmental
sounds we can improve context recognition. With that purpose, we have
designed, developed and tested an Environment Recognition Component
(ERC) that provides an extra input to our Context-Awareness Compo-
nent (CAC) and increases the rate of labeling correctly users’ activ-
ities. First element, the Environment Recognition Component (ERC)
uses convolutional neural networks to classify acoustic signals and pro-
viding information to the Context-Awareness Component (CAC) which
infers the user activity using a hierarchical Bayesian network. The work
described in this paper evaluates the results of the labeling process in
two HRI scenarios: robot and user sharing room and robot, and when the
human and the robot are in different rooms. The results showed better
accuracy when the ERC uses acoustic signals.

1 Introduction

In order to produce natural responses to human behaviors, a robot should under-
stand user’s context. In this way to recognize and label the user activity is a
cornerstone in HRI [21].

Activity context identification enhances the overall performance of the delib-
erative system [12] and favors a natural robot-user experience. Adding the ability
to identify the context to autonomous robots will also help them to understand
the environment where it inhabits and be aware of the situations that happens
around it.

It is possible to define two procedures to infer and label the user activity. On
the one hand, direct procedure, for instance a dialog system on the robot (through
conversations or gestures) or using a software application connected to robot.
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214 F.J. Rodŕıguez Lera et al.

On the other hand, indirect procedure, that are based on inference approaches
using sensors or wearables devices [21]. Nevertheless, these procedures assume
that robots and humans share the physical space, but robots working in long time
missions, as for instance home assistance, do not have to.

This challenge scenario could be faced through the deployment of new sen-
sors in the robot platform or in the environment, notwithstanding, this research
proposes a solution based on gathering environmental sounds using the robot’s
microphone, due to the microphone range surpass occupied room.

To the best of our knowledge, environmental acoustic information is mainly
used for two tasks in the interaction with humans: automatic speech recognition
(ASR), and environmental sound recognition (ESR). Both provides an important
set of inputs for the decision taking of an autonomous robots. ASR is usually
processed using Hidden Markov Models [19] and efficient programming search
techniques [8]. ESR has been less faced in the literature [3], and although there are
well defined taxonomies [14], they have not been extended and refined as ASR.

We present here a method for improving the activity-context labeling sys-
tem recognizing acoustic sounds of the environment. The first contribution of
this research is the performance improvement of a generic Context Recognition
Component (CRC) based on localization, perception and timers caused by the
use of the Environment Recognition Component (ERC).

The second contribution is the use of a convolutional neural network for
classify the sound detected by the robot. First works on Convolutional Neural
Networks (CNN) date back to the early 1980s [5], but nowadays are receiving a
great attention [10]. CNN have been widely used for visual recognition contexts,
and also successfully applied in music analysis [4], speech [2] and our domain,
domestic sound classification [18].

The remainder of this paper is organized as follows. Section 2 presents the pro-
posed framework integrated on an generic hybrid architecture. Section 3 shows
the experiment setup and the description of the experiments to test it. Section 4
presents the discussion about the overall experiments. Finally conclusions and
future work are presented in Sect. 5.

2 Context-Awareness Framework

In order to achieve the goals of this research we need to propose a framework
able to be integrated in any control architecture. In that manner we propose a
hybrid approach (Reactive-Deliberative) based on a motivational principles, this
means that the decisions are not taking only with sensor information, but also
internal motivations as battery status or robot role.

Very briefly, our framework is made up by two components levels: the ERC
(Environment Recognition Component) and the Context-Awareness Component
(CAC). Both components are deployed in the reactive subsystem which is divided
in three blocks: data gathering, data preprocessing/fusion, and low-level reason-
ing. The ERC is a new element in the data gathering layer of the system, it works
directly with low-level data from sensors along with perception nodes. The CAC
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Fig. 1. ERC and CAC components integrated in a generic motivational architecture.

is a preprocessing-data fusion component that uses information from different
data acquisition sources. It is deployed along with Natural Language Processing
Components or Human recognition Components

Figure 1 shows the input stream associated to low-level sensors: percep-
tion, dialogue, ERC (Environment Recognition Component), localization and
the timeline of the robot in the environment. Sections below describe in detail
the environment-recognition component, in charge of the natural acoustic signal
recognition and the CAC.

2.1 Environment Recognition Component

The Environment Recognition Component (ERC in Fig. 1) identifies the sounds
perceived by robot microphones. It classifies the environmental sounds using a
convolutional deep neural network. It has been developed to identify 14 different
relevant sounds, associated to locations or scenarios, grouped into classes:

– General: Door bell, Entry Door, Phone, Door, Silence, Window
– Bathroom: Cistern, tap
– Kitchen: Induction, Fridge, Kettle, Microwave, Oven Alarm

We have used a convolutional neural network to implement this system, using
both the sound and its variation. The topology of the neuronal network is shown
in Fig. 2. It is composed by these layers:

– The input is a 60× 200 matrix. Each of the elements of the matrix is a tuple
of the spectrogram value and its variation in time (delta).

– The first convolution ReLU (Rectified Linear Units [6]) layer of 80 filters of
shape (57 × 6) and stride (1 × 1).

– A max pooling layer of shape (57 × 6) and stride (1 × 3).
– We use a dropout layer with probability of 0.5 to reduce over-fitting.
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Fig. 2. Convolutional neural network topology

– A second convolution ReLU layer of 80 filters of shape (1×3) and stride (1×1).
– A second max pooling layer of shape (1 × 3) and stride (1 × 3).
– A second dropout layer with probability of 0.5.
– Two fully connected hidden layer of 5000 ReLUs each.
– A SoftMax output layer with a neuron for each category of sounds.

The network topology is similar to successful works, like [16], with some
differences:

– A silence category which improves the classification results.
– Using a more appropriate duration in the input sound clips, attending to the

characteristics of the sound and the robot operation.
– Implementation in TensorFlow [1], which let us to try a great variety of learn-

ing algorithms.
– Integration of the trained net in ROS nodes [17] to on board evaluation of

sounds while robot operation.

The audio files from database are divided into clips of 2.95 s (200 frames). We
think that this is enough to classify domestic sounds whose main characteristic
is the monotonous repetition with different intervals, alarms or telephone tones.

Fig. 3. Examples of normalized and log-scaled spectrograms.
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These segments are processed to extract the input patterns for training and
evaluating the net:

– Log-scaled mel-spectrograms spec, resampled to 22050 Hz and normalized
with window size of 1024, hop length of 512 and 60 mel-bands, using the
librosa1 implementation. Figure 3 shows examples of the spectrogram of some
of the categorized objects.

– The variation in time of this spectrogram Δ = ∂spec
∂t , computed with default

settings.

2.2 Context Awareness Component (CAC)

Many researchers have faced the context awareness inference based on logic based
models [13], ontologies [20] or probabilistic approaches [22]. We will formalize it
using Bayesian methods [9,15], in particular, our inference system is supported
on a Bayesian network approach.

A Bayesian network (BN) is a probabilistic directed acyclic graph gener-
ated from a group of random variables and their dependencies. Nodes (random
variables) which are connected by arcs (conditional dependencies) compose it.

The definition of the variables of our BN is based on the American Occupa-
tional Therapy Association, Inc. (AOTA)2. We have determined three hierarchi-
cal layers for our BN: (1) class activities, (2) activities, and (3) Observations.
These three levels of abstraction allowed us to identify and formalize the elements
involved during the daily user activity, the notation used is:

– Observations: represent the information acquired by the robot. We denoted
these nodes as; O = {o1, o2, . . . , on} where the n is the total number of obser-
vation defined in our system.

– Activities: These nodes identify the daily activities made by the users. For
instance, meal preparation (cooking) or health management (medication con-
trol). Each activity is defined by a subset of observations: We denote this as:
P (A|O) = P (ai|o1, o2, o3, . . . , on).

– Class Activities: These nodes identify the class of activity used in the system.
In our case we used the eight AOTA class activity definition (ADLs, IADLs,
rest,..).

The system works as follows: The robot processes a set of observations. Each
activity has set of observations associated which different levels of probability,
that identifies the user activity context. With this information we calculate the
conditional distribution, the joint probability of all the nodes in our proposal is
defined by:

P (ClassActivity, Activity,Observation) =
P (Observation) · P (Activity|Observation) · P (ClassActivity|Activity,Observation)

1 librosa: v0.3.1 library by B. McFee et al., doi:10.5281/zenodo.12714.
2 https://www.aota.org/.

http://doi.org/10.5281/zenodo.12714
https://www.aota.org/
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At this point we have a set of contexts with different level of probabilities.
This information is then used in the behavioral or the deliberative level to take
decisions or generate new robot behaviors.

3 Experimental Validation

In the experiments, we wanted to measure the likelihood of positively labeling the
user activity context using just classical methods based on Localization, Dialogue
and Time of day (LDT) versus the use of environmental sound recognition in
addition to the classical methods.

The robot assumes a place at home (kitchen or living room). In two cases, the
user is talking to the robot, in a third one there is no user speaking with the robot.
In each case, we trigger three of our previously defined acoustic signal during
the dialogue scene between user and robot. If ERC has recognized the signal the
context subsystem infers the context. In order to analyze the performance of the
CAC using the LDT procedure we also performs the same test without using
acoustic signals.

3.1 ERC

As we presented in Sect. 2.1, the dataset is composed by sound clips belonging
to 14 categories of domestic sounds: door bell, cistern, tap, induction plaque,
fridge, entry phone bell, kettle, phone, entry door bell, microwave alarm, door
closing, window closing, silence and oven alarm. The clips of each category have
different lengths, in a range of [55–371] seconds. To generate the segments of
the input data, we have split the whole clip into 88.5% overlapping segments of
2.95 s, with a step of 1 s.

The dataset used for the training phase is balanced, so we use 52 segments
(the size of the smaller category) of each category, 95% for training and 5% for
validation.

As we previously mentioned, we used TensorFlow framework to train and
evaluate the network. For the training process, we used a Stochastic Gradient
Descent algorithm with a learning rate of 0.002 a learning rate decay of 0.96
with a decay step of 1000. The training took 14 h in a i7-4960HQ CPU 8 cores
@ 2.60 GHz and 16 GB RAM computer for 300 epochs. The result is a net with
an accuracy of 86%. The prediction result for the entire dataset is:
DB CI TA IP FR EP KE PH ED MW DO WI SI OV
Door Bell [ 63 5 0 2 0 3 0 0 0 0 0 0 0 0 ]
Cistern [ 3 162 0 0 0 0 0 0 0 1 0 0 0 0 ]
Tap [ 3 9 555 3 0 0 62 0 1 0 10 5 2 0 ]
Induc Pla [ 0 0 0 301 0 0 0 0 0 0 0 0 0 0 ]
Fridge [ 0 0 0 0 99 0 0 0 0 3 1 0 0 0 ]
Entry Pho [ 2 0 0 0 3 95 0 0 0 0 0 0 0 0 ]
Kettle [ 0 0 0 16 1 0 183 0 0 0 0 0 0 0 ]
Phone [ 0 0 0 0 0 0 0 104 0 0 0 0 0 0 ]
Entry Door[ 5 26 0 0 3 0 0 11 192 24 9 3 0 0 ]
Microwave [ 0 0 0 22 228 0 0 0 0 558 1 0 0 60 ]
Door [ 0 0 0 0 0 0 0 0 0 0 224 0 0 0 ]
Window [ 0 0 0 0 0 0 0 0 0 0 14 130 0 0 ]
Silence [ 0 0 0 0 0 0 0 0 0 0 0 0 371 0 ]
Oven Alarm[ 0 0 0 0 0 0 0 0 0 0 10 0 3 184]
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3.2 CAC

Having in mind @home competitions as RoboCup or ERL, we have been tried
to formalize a set of scenarios where the dialogue, localization, time of day and
acoustic sounds are involved. The proposal divides the tests in six scenarios: (1)
and (4) the robot and human stayed at the same location and they have a conver-
sation about an activity which can be performed in their location; (2) and (3) the
robot and human stayed at the same place and they have a conversation about an
activity which can be performed in other location at home; and (5) and (6) the
robot and the human do not have a conversation nor share location context.

Under these six scenarios, the characteristics of the LDT+ Acoustic sounds
are:

(a) Dialogue: we reduced the dialogue possibilities to just two, one related to
cook something and one related with an upcoming visit.

(b) Localization: robot and user could stay in two places, kitchen and living
room, or each one in one place.

(c) Time of day: we fixed the time at 12:00 PM.
(d) Acoustic sounds: we used the signals previously defined and recognized in

the ERC section.

We defined three activity contexts: Meal (M) preparation context, that is
the probabilities to be cooking something are high. Emergency context (E), the
circumstances present a context where something is going wrong, so the user
has to make a decision; and Social Interaction (I) context, meaning that the
probabilities of interaction with other human are high.

We have used Elvira [11] to evaluate the inferences. Table 1 outlines the
results. We have set a threshold to label the context. We have defined a base
limit of 50%, under that value we do not recognize the case.

Table 1. Context classification results.

Kitchen (Robot & Human) Living Room (Robot & Human)
Env. Signal (O) (F) (D) (-) (O) (F) (D) (-)
D:Dinner M(99%) M(97%) M(97%) M(97%) M(98%) M(15%) M(15%) M(15%)

E(1%) E(50%) E(5%) E(1%) E(24%) E(25%) E(5%) E(5%)
12:00pm I(1%) I(1%) I(41%) I(1%) I(5%) I(5%) I(45%) I(5%)

Scenario 1 Scenario 2

D:Visit M(95%) M(5%) M(5%) M(5%) M(83%) M(1%) M(1%) M(1%)
E(24%) E(50%) E(5%) E(1%) E(24%) E(25%) E(5%) E(5%)

12:00pm I(94%) I(94%) I(98%) I(94%) I(95%) I(95%) I(99%) I(95%)
Scenario 3 Scenario 4

Dialogue Kitchen (Robot alone) Living Room (Robot alone)
D:(-) M(95%) M(5%) M(5%) M(1%) M(83%) M(1%) M(1%) M(1%)

E(24%) E(50%) E(5%) E(5%) E(24%) E(25%) E(5%) E(5%)
12:00pm I(1%) I(1%) I(41%) I(5%) I(5%) I(5%) I(45%) I(5%)

Scenario 5 Scenario 6
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4 Discussion

The experiments in controlled scenarios have shown that the system is very
reliable. It was able to successfully recognize the context more than 85% of the
times even when random noise was added to the ambient.

In summary, we have developed a functional system for recognizing different
acoustic signals in real world and we have identified two main issues. First,
environmental noises as loud music or people shouting (this situation is common
in robotics competitions) contaminates the ambient sound, thus it increases the
number of false positives. Second, the microphone model and position in the
robot is a key decision, for instance a directional microphone has drawbacks in
indoors environments.

The context recognition component showed positive results in the six scenar-
ios proposed (S1–S6) (Table 1). On the one hand, we have those cases where the
robot is able to infer the context using LDT: scenarios S1, S3 and S4. It hap-
pens even when there is no acoustic signal triggered. The acoustic signal slightly
improve the probability (they are depicted as dark gray cells): the oven increases
a 2% the context probability in scenario S1; the doorbell increases 4% context
probability in scenario in scenarios S3 and S4. In addition, the acoustic signals
provided extra information about the human activity in these scenarios (black
cells), with a likelihood within our threshold (fifty percent or more).

We have defined and additional case called valuable information. These cases
are produced when the final probability is within a threshold between 25% and
50%. Even though these cases should not be used directly to the decision making
process, it can be used to generate alternative sub-tasks, for instance the robot
can ask about this special case.

Scenario S1 under doorbell signal presents this situation (41%), the robot
should ask about if the user is cooking because it is going to receive visits, thus
it is able to increase or decrease this probability.

On the other hand, we find those cases where the robot is not able to infer
the situation using LDT method: scenarios S2, S5, S6. These cases show overall
best results through our proposal.

The robot is not able to infer actual or future activity context of the user
using LDT on the scenario S2. However, if the oven signal is recognized the
robot knows that there is an activity related with meal preparation running.
This scenario has two cases with valuable information, fridge signal presents a
25% of an emergency and doorbell shows a 45% of a visit context.

Finally, we have the scenarios S5 and S6 where the robot is not able to infer
the situation using LDT because it is not sharing location or dialogue. In these
scenarios, our proposal presents better results. We have 95% of certainty in S5
and 83% in S6 if the oven signal is recognized. We have 50% of certainty in S5
that there is an emergency context if the fridge signal is recognized. We also have
three cases of valuable information that although we do not have the certainty
about the context, they give to the robot information about what is happen or
what will happen at home.
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5 Conclusions

We present a two components framework to recognize and label user activ-
ity context in indoor environments based on four elements: Localization Dia-
logue, timers and acoustic signals. Two major contributions are presented in
this paper: a component (ERC) for recognizing environmental acoustic signals
and a context-awareness component (CAC) that is able to recognize user activi-
ties even when the scenario is not shared between robot and user. The ERC uses
a deep convolution neural network for the Environment Recognition Component,
that provides 87% of accuracy in the recognition of acoustic signals.

As other authors have pointed out [7] modeling user contexts may seem
unnatural if the context consists of problems with solutions. However, the rele-
vance of this information for getting autonomous robots is beyond doubt as we
observed in those cases where human and robot do not share space.

The scalability of this solution depends of previous knowledge of user daily
life but not by learning. If we propose a solution by learning, we should care
about to store historical context data on runtime. In terms of memory, it would
generate an uncontrolled growth of past context information.

As future work we are going to add an automatic learning component into
ERC able to incorporate new user’s environment acoustic signals. As well as a
routine analysis system, to extract daily information to predict future context
schedule attending user tasks.
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