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Abstract. Image processing in underwater robotics is one of the most
challenging problems in autonomous underwater robotics due to light
transmission in water. Although image restoration techniques are able
to correctly remove the haze in a degraded image they need many images
from the same location making impossible to use it in a real time system.
Taking into account the great results of deep learning techniques in other
image processing problems such as colorizing images or detecting objects
a deep learning solution is proposed. A convolutional neural network is
trained with image restoration techniques to dehaze single images out-
performing other image enhancement techniques. The proposed approach
is able to produce image restoration quality images with a single image
as input. The neural network is validated using images from different
locations and characteristics to prove the generalization capabilities.
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1 Introduction

One of the most challenging problems in underwater robotics is the processing of
underwater images. Besides the well known problems to automatically interpret
an image in order to interact with the environment, underwater robotics needs
to deal with additional problems caused by the degradation of the image due to
the light transmission in water.

A correct interpretation of the camera input is crucial to build autonomous
robots capable to move and interact in an unknown environment. In the case
of underwater robotics, there are many applications related to the underwa-
ter industry and, unfortunately, maritime disasters such as shipwrecks, leaks
on offshore or aircraft accidents. These interventions are usually performed by
Remote Operated Vehicles (ROVs) controlled by expert pilots through an umbil-
ical communication cable. Nevertheless, in the last few years, a more autonomous
architecture has been developed: Intervention Autonomous Underwater Vehicles
(IAUV) [4]. This architecture has many advantages such as the absence of delay
between commands and vehicle reaction.
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Usually, the first step in this kind of systems consists in processing the input
of the cameras to be able to localize the system, safely navigate and identify the
targets of interest. Due to the nature of light transmission in the underwater
environment, described in [15], images suffer from different degradation effects
such as absorption, scattering, marine snow or vignetting. These effects make
interpreting the scene a really challenging problem.

Absorption reduces the amount of light as the robot goes deeper or further
from the camera, colors drop off one by one depending on their wavelengths. This
effect is the cause of the bluish color of underwater images as this wavelength is
the least attenuated in the medium. The scattering effect changes the direction
of the light to the camera generating a characteristic veil that superimposes
itself on the image and hides the scene blurring the objects. Besides this effects,
a common problem is the presence of small floating particles known as marine
snow, that also increase the amount of scattered light. Finally, vignetting is a
light fade-out in terms of intensity in the corners of the image caused by the
geometry of the lens and sometimes by the lens housing.

For this reasons a preprocessing step is needed in order to restore the original
colors and enhance the image for further processing. This can be addressed from
two points of view. Image restoration that aims to recover a degraded image
using a model of the degradation and of the acquired image: it is essentially
an inverse problem. The second option, image enhancement, consists in using
qualitative subjective criteria to produce a more visually pleasing image. Both
methods have their own advantages and drawbacks, but the main difference is
image restoration produces more realistic results but requires to estimate or
measure several parameters thus it is difficult to use in a real time system.

In this work a hybrid solution is proposed: using a deep learning architecture
to learn an image enhancement function from image restoration techniques. A
dataset of pairs of raw and restored images is used to train a convolutional
network, thus it is able to produce restored images from degraded inputs. The
results are compared with other image enhancement methods using the image
restoration as groundtruth of the system.

The paper is organized as follows. In the next section a review of state of
the art techniques for image dehazing is presented. Section 3 describes the deep
learning method. The experiments and results of the proposed approach are
showed in Sect. 4. Finally, in Sect. 5 conclusions and further work are given.

2 State of the Art

Restoring degraded underwater images requires modelling and estimating
many parameters such as water absorption, scattering and distance to objects
(depthmap). This kind of inputs are difficult to estimate from a single image.
For this reason, a large set of images from the same location or a combination
of different sensors are typically used for this purpose. There is a large amount
of work on restoring underwater images, [20] offers a detailed review.

The work in [1] uses a whole dataset of images and depthmaps from the same
intervention to accurately estimate the water, light and camera parameters in
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order to restore the colors of the image. The main drawback of this approach is,
it requires a medium sized dataset of images and depthmaps of the same area,
which may not be available making impossible to use it in real time applications.

Similarly, the authors in [21] propose a method using a depthmap and use it
with a single image to estimate the rest of the parameters to restore the image.
However, this method depends on a dense depthmap that may not be available
when the environment is not textured enough.

Other works like [25], use specific hardware that dynamically mixes the illu-
mination of an object in a distance dependent way by using a controllable mul-
ticolor light source in order to compensate color loss. This approach achieves a
great color correction, but the main problem is the need of a specific hardware
to solve the problem. Similarly, in order to deal with scattering some methods
use specific hardware such as structured illumination [16] or polarizers [24].

In the context of single image dehazing there are a big family of algorithms
that use the dark channel prior as [10]. Dark Prior techniques are based on the
observation that in most of the non-background patches of outdoor haze-free
images, at least one color channel has some pixels whose intensity is very low
and close to zero. This has been proved to work in most outdoor air images
and has also been adapted to underwater environments in [3] or [6]. The main
disadvantage of this method is that it is based on a statistical observation that
may not be valid for some cases.

In terms of image enhancement, a histogram equalization is typically used
as described in [7]. This techniques analyse the histogram and transform it to
accomplish a determined distribution that produces visually pleasing images.
The main drawback of this approach is it amplifies the noise in homogeneous
regions and creates false colours. Some research lines work to palliate this prob-
lems like [9,12] combining different techniques.

2.1 Deep Learning

In the last few years there have been a great variety of studies demonstrating
the effectiveness of deep learning methods in different application domains. In
addition to the classic Mixed National Institute of Standards and Technology
(MNIST) handwriting challenge [5] many applications have been studied such
as image classification [17] or speech recognition [11] and many others.

The growth of available data in computers for processing [19] combined with
the increasing processing capabilities of computers initiated this revolution. Deep
learning is the process that allows patterns to be found, discovered or learned in
large, complex data. Although applications are not restricted to image processing
tasks, this is the domain that has seen the biggest change in response to the
introduction of these deep learning methods.

In the case of neural network for image dehazing there are only a few works
and none of them, to the best of the authors knowledge, are tested in underwa-
ter environments. In [2,13] authors propose a deep learning solution to estimate
transmission. In the case of [22], it uses a random forest and several haze-relevant
features to estimate the transmission. The approaches proposed in [18,27]
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perform a similar step generating synthetic images from non-hazy ones, but
they also create a synthetic depth-map to produce the training images.

The main drawback of this learning approaches is they use synthetic images
created from non-hazy images to train a neural network that estimates trans-
mission due to the difficulty of finding hazy and non-hazy pairs. These images
ignore many problems of real images and difficult its use in a real situation.

Other learning techniques have also been explored in this context, [23] has
examined the use of Markov Random Fields (MRF) and a training stage to learn
how to assign the most probable color to each pixel. The MRF is trained using
pairs of input and output images learning transforms from a patch of degraded
colors to restored colors. In order to acquire the desired output images, a light
source is used, obtaining a better image to train. However, the method relies on
a illumination system that obtains “groundtruth” images to train the system.

3 Proposed Method

The approach proposed in this work uses a convolutional neural network to learn
the transformation from raw acquired images to enhanced images thus it can be
used as input for other vision algorithms. In order to train and evaluate the
system the images have been processed using the method in [1].

Fig. 1. Images of the different datasets used in the work.

The images used to train the neural network have been taking by an underwa-
ter camera mounted in an autonomous underwater vehicle [26] during different
real underwater interventions. The images have been divided in 6 sets depending
on the characteristics of the images, as Fig. 1 shows. Furthermore, the images
have been chosen to cover a wide variety of textures at different depths in order
to train different kind of images.

These dataset division allows to train with some sets of images and validate
the neural network with images from a different intervention. Thus it is possible
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to test the system in the case of a different intervention. Besides this, each dataset
has been organised in a training and testing set with images randomly selected
to measure the training performance.

Several architectures have been tested to train the system, but the one pro-
posed can be seen in Fig. 2. As can be seen, the neural net takes as input the
whole image and goes through 6 convolutional steps. In the first one, the image
size is reduced in an additional pooling step that extracts the most relevant
features. Besides this, every convolutional step but the last one also includes a
Rectifier Linear Unit (ReLU) layer as activation function.

Fig. 2. Architecture of the convolutional network used to dehaze.

With each convolutional layer the number of features extracted increase from
the 3 initial of the raw image (RGB) to 55 after five steps. At this moment the
features are combined in the last neural network step to produce a matrix of 3
features that corresponds to the restored image.

In order to train the parameters in the neural network, the Adam optimizer,
a gradient descent method, has been used with a l2 loss function as minimization
function. The l2 loss function is a commonly used function that computes the
squared sum of the differences between the estimated x and groundtruth y values:
l2 =

∑n
i=0(yi − xi)2. In this case minimizing the l2 loss means minimizing the

differences of intensities between the restored image and the ones estimated by
the neural network.

As a consequence, the neural network learns to perform the same transform
applied with the restoration methodology. However, the restoration method used
to train requires a depthmap and a whole dataset of images while the neural
network will need to do it with just a single image.

4 Results

Two experiments have been conducted to evaluate the precision of the neural
network estimations. In the first case all the datasets have been used to train
and evaluate it with the test images. However, this is not a realistic situation as
training images for the intervention location are not usually available. For this
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reason, the second experiment simulates this situation training with all but one
dataset that is used to validate the system.

In order to evaluate the precision of the neural network predictions the images
have been enhanced with two commonly used techniques and compared with the
proposed approach. The first, histogram equalization, analyses the histogram of
the raw image and displaces it to follow the desired distribution. The histogram
equalization used in this paper is the most commonly used, modifies the pixel
intensities to follow a normal distribution for every channel.

The second compared algorithm is an Automatic Color Enhancement (ACE),
as explained in [8], that is also used in underwater environments in [14]. This
technique enhances the image based on a simple model of the human visual sys-
tem, inspired by different techniques such as gray world transformation, white
patch assumption, lateral inhibition and local global adaptation. The main draw-
back of this technique is it is computationally complex, each image requires
around 1.5 s in a i5 at 3.2 Ghz with a Geforce 960GTX while the time to process
a single image in a neural network is 0.013 s.

4.1 Experiment 1

In this experiment all the datasets have been used to train the neural network
keeping a few images of each in order to evaluate it. The system has been trained
for 1700 epochs, reaching a 5.6% training error. This error is the mean difference
between each intensity pixel and its groundtruth counterpart. In order to show
percent errors intensities are transformed from 0–255 to 0–1 range.

The results for the test images of each dataset can be seen in Table 1 together
with ACE and histogram equalization techniques. As can be seen the proposed
method obtains the best results in all cases. This is not surprising as it is training
with images from the same survey, thus it has similar examples that help to
dehaze the raw image. But it is important that the neural network is able to
learn the transform and correctly apply it to new images.

Table 1. Results for the experiment 1: training with every dataset.

Technique Rocks Kelp Rocks-sand Deep Medium Shallow

Proposed 3.5% 6.5% 5.1% 4.1% 3.4% 3.2%

ACE 6.8% 9.1% 15.3% 15.7% 7.5% 9.1%

Histeq 25.6% 37.9% 29.4% 20.5% 27.6% 27.5%

Another interesting result is ACE is obtaining results closer to the target
image than the histogram equalization. Although the histogram equalization is
enhancing the raw images is still far from the restored image. This means the
colors generated by the histogram equalization are exacerbated producing false
colors that were not present in the real objects.
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It is also important to notice that the techniques perform very differently
depending on the datasets. ACE has around 130% higher error in the case of
deep corals or rocks-sand than in rocks dataset. However, in the case of histogram
equalization deep corals is the best case scenario according to the used metric.
This means the technique performance depends on the characteristics of the
input images such as object colors or noise.

Fig. 3. Comparison of the image dehazing using different techniques in the first
experiment. (Color figure online)

The visual results that can be seen in Fig. 3 reflect the numerical results. A
test image of every dataset for each compared technique is showed together with
the raw and groundtruth (GT). As can be seen the proposed method and the
groundtruth images are indistinguishable in most cases, and in the cases that are
different such as RocksSand dataset it is difficult to decide which one is better.

The ACE methodology obtains slightly uncorrected images. The algorithm
is not able to completely remove the haze obtaining bluish or greenish images
depending on the input. However the images are greatly enhanced. On the other
hand, histogram equalization overcorrect the images producing unnatural images
with extreme colours in some cases such as the kelp dataset, but it shows at
least part of the error comes from the fact that the images are brighter than the
produced by the restoration method.

4.2 Experiment 2

The results of the previous experiment show the system is able to learn dehaze
transformations given training images, but a generalization experiment is needed.
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Taking this into account the second experiment focus on training with all but
one dataset and use this last dataset as validation.

The deep corals dataset has been chosen as validation dataset as it seems to
be the most complex for other techniques, thus it is a more challenging dataset.
For this reason the resting datasets are included in the training scheme and a
new neural network has been trained with them.

The results in this case are closer to the ACE performance, but the neural
network still performs better. The neural network obtained a 14.1% error in
the validation set while maintaining a 5% in the validation set. This is close
to the 15.7% error of the ACE technique. However, processing an image with
ACE requires 1.5 s making difficult to use it in a real time environment while
the neural network needed 0.013 s per image. The histogram equalization is far
from this results producing a 20.5% error for the validation set.

Fig. 4. Comparison of the image dehazing using different techniques in the second
experiment. (Color figure online)

The visual results are displayed in Fig. 4. In this case three images from the
validation set are showed, the worst and best performing images have been chosen
together with one close to the mean error. As can be seen the neural network
solution slightly overcorrects the images compared with the groundtruth result.
In the case of ACE, images are not completely corrected showing a greenish
color. Finally histogram equalization overcorrects inputs even more than the
proposed image resulting in colors very different from the target with too dark
and too bright zones.

This experiment proves the neural network performance is good, although
numerical results are close to the ACE performance visual results look much more
natural. Furthermore, the computation time is extremely shorter allowing to
include it in a real time system as a preprocessing step. Finally, it is important to
remark that the training never saw an image of the validation dataset permitting
to use images to train in a different location from the intervention.
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5 Conclusions and Future Work

In this work a real time deep learning solution for image dehazing is proposed
and compared with other state of the art alternatives. The system is trained
with other restoration methodologies that require several inputs that are hard
to estimate at the intervention time. However, when the system is trained it is
able to correctly dehaze images in real time with only a still raw image as input.

The results show that the system is able to generalize and learn to dehaze
with images from a location and be used in a different location. However, in this
situation the results are slightly worse, but still outperform other state of the
art alternatives for real time dehazing.

Furthermore, when images from the same location as the final intervention
are available to include in the training stage the results are visually indistin-
guishable from restoration techniques. This allows to obtain restoration results
with only a single image as input in real time.
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