
Using EEG Signals to Detect Different
Surfaces While Walking
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Abstract. Brain-Computer Interfaces are one of the most interesting
ways to work in rehabilitation and assistance programs to people who
have problems in their lower limb to march. This paper presents evidence
by means of statistical analysis sets that there are specific frequencies
ranges on EEG signals while walking on four different surfaces: hard
floor, soft floor, ramp and stairs, finding proportional differences in pre-
dictions between each pair of tasks for every user through the employ
of Matlab classifiers. In that way, our results are statistical sets of suc-
cessful percentages in classification of signals between two tasks. We
worked with five different volunteers and we found an average of 76.5%
of success in predictions between soft floor and stairs surfaces. Lower
results, around 60%, were obtained when differentiating between hard
floor/stairs and ramp/stairs. We can notice that magnitude of these per-
centages fits with a common sense about real physical differences between
four kinds of surfaces. This study means a starting point to go deeper in
signal morphology analyzing the specific mathematical characteristics of
EEG signals while walking on those surfaces and other ones.
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1 Introduction

Nowadays computing technologies are increasing fast and strongly due to global
spreading of demand in almost every way of human management tasks [1]. One
of those fields of study is the design and development of brain-computer inter-
face (BCI) in order to support people who have dysfunctional problems to walk,
because of physical injuries in their lower limb, through fit mechanical exoskele-
tons able to lead movements of muscles to make them strong and functional in
the fastest, effective and cheapest programs of rehabilitation [2–7].
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In relation with rehabilitation, several studies have been performed in order
to get patients more implicated into their therapies. For example, detection the
intention of starting or stopping gait [8,9] or detection the attention paid to
walk [10], so rehabilitation therapy can be modified to help more the patient.
Moreover, detecting unexpected obstacles can improve safety while working with
exoskeletons [11].

This study line works to endue these exoskeletons capability to adapt their
mechanical configuration to any kind of surface which user had intention to walk
through before he/she steps in by just reading his/her EEG signals, anticipating
changes to get the system ready to new walking conditions in the softest way.
This objective implies two great development phases: identifying states and ten-
dencies of EEG signal morphology as a function of surface characteristics and
implementing that knowledge in exoskeletons controlled by BCI systems with
correct responses in every way and an appropriate real time working. This paper
presents the most primitive work in which we simply show by statistical analysis
that EEG signals walking on a certain surface may high probably have a core
morphology related with that surface characteristics in order to be this study
the green light to approach EEG signals morphology and the development of the
project in general.

2 System Architecture

Experimental tasks consisted in a series of EEG signals registered while walking
in different surfaces. There were four different ones: a hard floor, a soft floor, a
ramp and stairs. One register file from a user contains data of four tasks, each
one corresponding to a different surface.

2.1 Acquisition and Users

Five users with ages between 14 and 25 years old perform the experiments.
EEG signals were recorded with the actiCHamp equipment from Brain-Products
Company. It allows registering 31 electrodes placed on the scalp following the
10/10 International System. The frequency sample was 500 Hz. They were placed
in next positions: FZ, FC5, FC1, FCZ, FC2, FC6, C3, CZ, C4, CP5, CP1, CP2,
CP6, P3, PZ, P4, PO7, PO3, PO4, PO8, FC3, FC4, C5, C1, C2, C6, CP3, CPZ,
CP4 and P1. The reference was placed on right ear lobe. The equipment allows
sending the information to the computer by a wireless connection through the
MOVE module. This was an important issue to allow the user climbing stairs.

2.2 Experimental Procedure

After placing the cap to register EEG signals, the users are asked to walk through
the four different surfaces. First the hard floor, then the soft floor, next the ramp,
and finally the stairs. User last around 7 s walking through each different surface.
Users repeat the same process 20 times. Figure 1 shows the environment where
the user performs the experiments.
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Fig. 1. Environment where users perform the experiments. The four different surfaces
are shown: hard floor, soft floor, ramp and stairs.

2.3 Processing

The software was developed in Matlab. EEG registered signals had segments
of invalid data due to failures of communication between emitter and receiver
in wireless acquisition device during registering. Thus, an initial procedure was
performed to clean registers by means of cutting off those parts of invalid data.
Secondly, once registers are ready, they are processed in order to extract proper
features to run the classification phase. For each clean user register, the pro-
gram divides the total length into small segments overlapped. Then, a Fourier
transform is calculated for each segment to get a simple feature for each task:
a geometric mean of power spectrum amplitude in a specific frequencies range
for all 31 electrode data arrays and an arithmetic mean of those 31 values. In
this point, once processed and consequently to this study, for each register its
built a matrix with 4 columns: first one with features for theta rhythm (3 to
7 hz), second one for alpha rhythm (8 to 14 Hz), third one for beta rhythm (14
to 31 Hz) and the last one contains the task number 1 to 4 associated to the row.
The number of rows was different for each register depending on the number
of overlapped segments, which in turn depends directly on the time length of
registering which is slightly variable between registers and users.

2.4 Classification

A classification stage has been developed to determine which field of data a new
set belongs to. One features matrix has the processed information of one register.
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Classification employs all the registers of one user, just one user once, so what
we give to it to be worked for each user is a matrices array as long as number of
registers he/she has processed. For most part of user feature data, this number
of processed registers is 20, so we introduced an array of 20 features matrices to
classify in all cases excepting one in which we just used 19 because one of the
registers was corrupt.

The algorithm of classification is based on creating models using all features
matrices except one which is later employed to test the model, that is a cross-
validation. Creating models is a process called training.

Classification, both for training and for testing, is run by classifiers, which
are more or less complex mathematical algorithms implemented on computing
program that are able to train and test data. We employed 5 different classifiers
to get a large map of results where to observe the best ones and select more
successful classifiers to analyze its inner logic in order to study the morphology
of surface walking EEG signals in later studies. Best results were provided by
classifier Nearest Neighbor. The rest of classifiers employed were Support Vector
Machine, Naive-Bayes, Regression Trees and Lineal Discriminant Analysis.

So as to get best quality and accuracy in our results, due to statistic nature
of this study, we did a cross validation, that means testing all the 20 feature
matrices individually on 20 different models built every time with all the rest
of matrices. In such a way, we got a wide number of predictions so our general
result values as success likelihoods got consistence.

As we said before, the program process and classify all the registers of one
user. Furthermore, classification was always run in pairs, which means that data
sets to test are sort in one class between two options. Thus, as there are four
tasks submitted to study there are six possible pairs, so the program simulta-
neously generates six different training models to test six times every testing
register. In this way, the program obtains six large columns with all its predic-
tions between two different tasks, so finally results are calculated just comparing
done predictions with real corresponding task numbers.

3 Results

Several analysis were performed with the registered data. Theta, alpha and beta
rhythms were calculated independently. Also, 3 different overlaps and 4 sizes
segments were analyzed. All possible combination of parameters was processed.
Table 1 summarizes the best average results for each user indicating the classifier
applied, and the size segment, overlap and rhythm used. For each user 960 values
were computed.

Its observed that most successful classifier, as we already said, is Nearest
Neighbor. Once best average results are showed, we proceed to present the parts
that compose those average values, it is mean, the likelihood values of success in
classification in each of six specific pair of tasks. Results are shown in Table 2.

We can observe that for all users those results show maximum values for
predictions in which walking upstairs is one of the two compared tasks. In three
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cases R/S has the higher value, followed closely by both Hard and Soft Floor
tasks. The other two cases present high similar value in these three predictions.
We can also notice that predictions between two Floor tasks and the Ramp one
are quite lower than stairs predictions. However for most part of users these
values are close to 60%, which is a higher value than predictions between Hard
and Soft Floor that have no auspicious percentages.

Table 1. Best results obtained for each user. NN: Nearest Neighbor.

Success rate (%) Classifier Size Overlap Rhythm

User 1 62.5 NN 2000 250 Alpha

User 2 64.7 NN 2000 400 Multirr.

User 3 74.3 NN 2000 250 Theta

User 4 62.4 NN 2000 250 Beta

User 5 66.9 NN 2000 400 Alpha

Table 2. Specific results for each pair of tasks (%). HF: Hard Floor; SF: Soft Floor;
R: Ramp; S: Stairs.

Success rate (%) HF/SF HF/R HF/S SF/R SF/S R/S

User 1 62.5 46.8 50.1 72.2 53.7 73.4 72.0

User 2 64.7 43.1 61.2 78.2 58.7 75.7 69.1

User 3 74.3 54.3 68.8 80.5 64.2 80.5 86.2

User 4 62.4 47.4 48.7 77.5 52.8 77.6 79.5

User 5 66.9 54.7 57.1 79.2 62.1 72.3 81.8

4 Conclusions

In this work the EEG signals of user that walks through different surfaces has
been analyzed. Most significative point to highlight in results of this study are
that values of six predictions have proportional relation for all user: HF/SF are
in all cases the lowest value, HF/R and SF/R the medium value and HF/S,
SF/S and R/S the highest values. We also consider meaningful the fact that
these magnitudes differentiating two tasks by processing EEG signals employing
classifiers fit with the difference grade that we could appreciate between tasks
with a naked eye.

The results of this study evidence that walking on a specific surface reflects
specific EEG signals univocally associated with that task, so in future studies
we could go deeper analyzing those signals mathematically to find characteristic
EEG signal morphologies relative to type and characteristics of different surfaces.
Moreover, the procedure will be improved to be able to differentiate between the
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four different surfaces simultaneously and online experiments will be performed.
These findings will contribute to adapt quickly the mechanics of lower limb
exoskeletons for rehabilitation just reading EEG signals.
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