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Abstract. In this paper the performance of fractional order PID con-
troller as AQM mechanism and impact of traffic self-similarity on net-
work utilization are investigated with the use of discrete event simulation
models. The researches show the influence of selection of PID parameters
and degree of traffic self-similarity on queue behavior. During the tests
we analyzed the length of the queue, the number of rejected packets and
waiting times in queues. In particular, the paper uses fractional Gaussian
noise as a self-similar traffic source. The quantitative analysis is based
on simulation.

1 Introduction

Most AQM mechanism proposed by IETF to control the network congestions are
based on preventive packed dropping. For the most known active mechanism the
number of discarded packets grows with the increase in queue occupancy. The
basic active queue management algorithm is Random Early Detection (RED)
algorithm. It was primarily proposed in 1993 by Sally Floyd and Van Jacobson
[1]. Since that time a number of studies how to improve the basic algorithm have
been proposed. We have also proposed and evaluated a few variants, [2-7].

In 2001 the use of the PI controller as AQM mechanism was proposed by
C.V. Hollot, V. Misra and D. Towsley [8]. Based on the first implementation, a
number of PI controllers have been proposed later [9-11].

In recent years the fractional order calculus becomes very popular. The arti-
cles [12-14] show that non-integer order controllers may have better performance
than classic integer order. The first application of the fractional order PI con-
troller as a AQM policy in fluid flow model of a TCP connection was presented
in [15]. The detailed influence of fractional order PI controller on queue behavior
was presented in article [16].

Measurements and statistical analysis (performed already in the 90s) of
packet network traffic show that this traffic displays a complex statistical nature.
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It is related to such statistic phenomena as self-similarity, long-range dependence
and burstiness [17-20].

Self-similarity of a process means that the change of time scales does not
influence the statistical characteristics of the process. It results in long-distance
autocorrelation and makes possible the occurrence of very long periods of high
(or low) traffic intensity. These features have a great impact on a network per-
formance [21]. They enlarge the mean queue lengths at buffers and increase the
probability of packet losses, reducing this way the quality of services provided
by a network [22].

As a consequence of this fact, it is needed to propose new or to adapt known
types of stochastic processes when modeling these negative phenomena in net-
work traffic. Several models have been introduced for the purposes of model-
ing self-similar processes in the network traffic area. These models of traffic
use fractional Brownian Motion [23], chaotic maps [24], fractional Autoregres-
sive Integrated Moving Average (fARIMA) [25], wavelets and multifractals and
processes based on Markov chains: SSMP (Special Semi-Markov Process) [26],
MMPP (Markov-Modulated Poisson Process) [27,28], HMM (Hidden Markov
Model) [29].

The main purpose of the paper is to present simulation results for the AQM
mechanism in which fractional discrete calculus is used. Section 2 presents the-
oretical bases for PI®D? controller next used in simulation. Section3 briefly
describes a self-similar traffic used in this article and presents the obtained
results.

2 An AQM Mechanism Based on PI*D? Controller

A proportional-integral-derivative controller (PID controller) is a traditional
mechanism used in feedback control systems. The article [12] indicates that the
introduction non-integer controllers may improve closed loop control quality.
Therefore here we propose to use the PI*D? (PID controller with non integer
integral and derivative order) instead of the RED mechanism to determine the
probability of packet drop. Equation (1) is based on our proposition discussed
in [16] for PI® controller and extended here to the case of PI*DP.
This probability is calculated in the following way:

p= max{O, —(erk + K1 A%, + KDABEIC)} (1)

where Kp, K7, Kp are tuning parameters, e; is the error in current slot e; =
q — q4, q - actual queue size, ¢ - desired queue size and A% is defined as

follows: i
A =31 ()eucs 2)
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where o € R is generally a not-integer fractional order, e is a differentiated
discrete function and generalized Newton symbol (‘]") is defined as follows:

. 1 . for j =0
<]) = OZ(OZ — 1)(Oé _zﬁ)"(a —J+ 1) forj =1,2,... (3)

This definition unifies the definition of derivative and integral to one differin-
tegral definition. We have the fractional integral of the considered function ey
for a < 0. If the parameter « is positive, we obtain in the same way a frac-
tional derivative and, to distinguish, we denote this parameter as 8. If « = 0 the
operation (2) does not influence the function ey.

Figure 1 presents a comparison of the increase of packet dropping probability
in PI* and PD? controllers as a function of the queue length increased due to
arrivals of packets. Naturally, the response depends on the choice of parameters.
As can be seen, the integral order affects the time of controller reaction (below
a certain threshold there is no packet dropping). The derivative order influences
on increases packet dropping probability.
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Fig. 1. Packet dropping probability in PI® controller (the influence of the integral
order a, Kp = 0.00115, K; = 0.0011) (left), and in PD? controller (the influence of
the derivative order 3, Kp = 0.00115, Kp = 0.01) (right)

3 PI*DP? Controller Under Self-similar Traffic

In this article we use fractional Gaussian noise as an example of exactly self-
similar traffic source. Fractional Gaussian noise (fGn) has been proposed as
a model [30] for the long-range dependence postulated to occur in a variety
of hydrological and geophysical time series. Nowadays, fGn is one of the most
commonly used self-similar processes in network performance evaluation. The
fGn process is the stationary Gaussian process that is exactly self-similar [31].
The Hurst parameter H characterizes a process in terms of the degree of self-
similarity. The degree of self-similarity increases with the increase of H [32]. A
Hurst value smaller or equal to 0.5 means the lack of long range dependence.
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We use a fast algorithm for generating approximate sample paths for a fGn
process, introduced in [33]. We have generated the sample traces with the Hurst
parameter with the range of 0.5 to 0.90. After each trace generation, the Hurst
parameter was estimated. The simulations were done using the Simpy Python
simulation packet.

During the tests we analyzed the following parameters of the transmission
with AQM: the length of the queue, queue waiting times and the number of
rejected packets. The service time represented the time of a packet treatment
and dispatching. Considered input traffic intensities were A = 0.5, independently
of Hurst parameter. The distribution of service time was also geometric. Its
parameter changed during the test. The high traffic load was considered for
parameter p = 0.25. The average traffic load we obtained for y = 0.5. A small
network traffic was considered for parameter p = 0.75.

Table 1. FIFO queue

n Hurst parameter | Mean queue length | Mean waiting time | Rejected packets
0.25 | 0.50 299.099 119.380 249520 | 49.90%
0.25/0.70 298.118 119.158 249879 | 49.97%
0.25]0.80 296.878 118.883 250354 | 50.07%
0.25]0.90 248.553 102.061 256587 | 51.32%
0.50 | 0.50 163.7547 32.7147 889 | 0.17%
0.50 | 0.70 145.8734 29.8820 13342 | 2.66%
0.50 | 0.80 141.3440 29.5832 23828 | 4.76%
0.50 | 0.90 133.8558 32.5300 89659 | 17.93%
0.75]0.50 1.2930 0.1586 0

0.7510.70 3.0506 0.5101 0

0.75]0.80 6.9882 1.2976 0

0.7510.90 55.9574 11.5942 21484 | 4.29%

In order to better demonstrate the influence of degree of selfsimilarity on
queue behavior first experiment focused on the FIFO queue. The Fig. 2 presents
the distribution of the queue length. This figure clearly shows dependence of the
queue occupancy on the degree of traffic selfsimilarity. The figure shows three

situations: most overloaded network node (p = % = 2), medium overloaded

situation (p = 1) and almost empty buffer for (p = ). The detailed results
obtained during the simulation present Table 1. For overloaded buffer (1 = 0.25
and p = 0.50) the number of dropped packets increased with the traffic degree
of selfsimilarity increasing. This effect becomes more evident with congestion
decrease. In the case of an unloaded buffer (1 = 0.75) packet loss occur only in
the case of traffic with a high degree of selfsimilarity (Hurst parameter H = 0.9).
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Fig. 2. The influence of degree of traffic selfsimilarity on queue distribution, FIFO
queue, queue size = 300, A = 0.5, u = 0.25 (left), u = 0.5 (right), x = 0.75 (bottom)

The presented results show how models that do not consider self-similar traffic
may underestimate the queues occupancy and packet lost in routers.

In a first phase of the research we consider the influence of the PI% controller
on queue behavior. During the simulation the controller parameters were set
as follows: Kp = 0.00115, K; = 0.0011. The integral orders « changed and
I received the following values: —0.8, —1.0 and —1.2. For the integral orders
a = —1 the controller becomes standard PI control loop feedback mechanism.
The Tables 2, 3 and 4 present the obtained results. The queues distribution are
presented in Figs. 3 and 4 (the queue distribution for controller with parameter
a = 0.8 is similar to distribution shown in Fig.3). The controller desired point
was set at 100 packet. It should be noted that regardless of the integral order
the controller behaved properly.

These studies showed a very interesting controller behavior. In the case of
overloaded FIFO queue for traffic of the high degree of self-similarity (H = 0.9)
compared to less self-similar traffic the mean queue length decreases rapidly (see
Table 1). This phenomenon also occurs in the case of standard AQM mechanisms
[34]. In the case of PI® occurrence of this phenomenon depends on the integral
term and becomes less noticeable with the decrease in «. Comparing the mean
queue length for H = 0.9 and H = 0.8 can be stated that for « = —1.2 the
mean queue length decreases by 19% for p = 2 and decreases by 3% for p = 1.
For @ = —1.0 the mean queue length decreases by 8% for p = 2 and decreases
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by 2% for p = 1. Whereas for « = —0.8 the mean queue length increases by
6% for p = 2 and increases by 2% for p = 1. On the other hand, the number of
discarded packets analyze shows that for traffic with high degree of self-similarity
(H = 0.9 and H = 0.8) with integral order growth decreases the number of
dropped packets (for standard AQM queue, the situation is exactly opposite).

Interesting results were also obtained for the low traffic intensity. The mean
queue length grows with integral order decreasing. The Fig.1 explains these
phenomena. The controller response to increasing queue in depends on the queue
previous moments. The controller reaction is delayed with the integral order
increasing.

Table 2. PI* queue, Kp = 0.00115, K = 0.0011, « = —0.8

m Hurst parameter | Mean queue length | Mean waiting time | Rejected packets
0.25 | 050 105.2024 42.0998 250646 | 50.13%
0.25| 070 112.1730 44.8029 250112 | 50.02%
0.25 | 080 118.2300 47.1973 249966 | 49.99%
0.25 | 090 126.4218 53.4780 263974 | 52.79%
0.50 | 050 53.8331 10.7526 3954 | 0.79%
0.50 | 070 55.8842 11.6289 23524 | 4.7%
0.50 | 080 52.0427 11.1830 38757 | 7.75%
0.50 | 090 54.3019 13.9019 112126 | 22.43%
0.75 | 050 1.2806 0.1561 0
0.75]070 2.9819 0.4962 0

0.75 | 080 6.6740 1.2359 440 | 0.08%
0.75 | 090 26.1258 5.4831 32047 | 6.40%

The second phase of the researches shows how derivative term changes the
queue occupancy and packet waiting times. The Figs. 5, 6 and 7 present the queue
distribution for PID? controller (¢ = —1). The results for PI controller were
present in Fig. 3 and Table 3. Comparing the figures does not show a significant
visual amendments. Differences in the controllers responses show Tables 5, 6 and 7.

The most interesting results were obtained for controller with derivative
terms 8 = 0.8. For high traffic (u = 0.25 and p = 0.5) the controller reduces the
mean queue length and at the same time reduces the number of packet losses.
The further derivative order increasing (Tables6 and 7) reduces the mean queue
length and at the same time increases number of dropped packets. However,
these differences are much smoother as in the case of integral order o decreasing
(see Table4).

The last phase of the simulation evaluates the impact of derivate term on PI¢
controller. Controller with integral term o = —1.2 is an example of strong mech-
anism. For this controller the lowest values of mean queue length and waiting
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Table 3. PI* queue, Kp = 0.00115, K; = 0.0011, o = —1.0

m Hurst parameter | Mean queue length | Mean waiting time | Rejected packets
0.25 | 050 105.4769 42.0835 249914 | 49.98%
0.25 070 109.6279 43.6825 249538 | 49.90%
0.25 | 080 112.7636 45.0588 250246 | 50.04%
0.25 090 103.7300 43.9278 264321 | 52.86%
0.50 | 050 50.8356 10.1493 4024 | 0.80%
0.50 | 070 51.4054 10.6806 23202 | 4.64%
0.50 | 080 48.9152 10.5024 38644 | 7.72%
0.50 | 090 47.8680 12.2617 112735 | 22.54%
0.75 | 050 1.2892 0.1578 0

0.75 070 3.0249 0.5047 0

0.75 | 080 6.4268 1.1868 587 0.11%
0.75 090 25.3451 5.3177 32175 | 6.43%
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Fig. 3. The influence of degree of traffic selfsimilarity on queue distribution, PI® queue,
queue size = 300, Kp = 0.00115, K; = 0.0011, a = —1.0, A = 0.5, u = 0.75 (left),
u=0.5 (right), . = 0.25 (bottom)
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Table 4. PI* queue, Kp = 0.00115, K; = 0.0011, a = —1.2

m Hurst parameter | Mean queue length | Mean waiting time | Rejected packets
0.25 | 050 102.9224 41.0802 250026 | 50.0%
0.25 070 103.0052 41.1281 250100 | 50.01%
0.25 | 080 102.2977 40.8632 250214 | 50.04%
0.25 | 090 81.8945 34.7584 265013 | 53.0 %
0.50 | 0.50 49.525675 9.8806 3789 | 0.75%
0.50 1 0.70 50.429557 10.4798 23351 | 4.67%
0.50 | 0.80 47.869046 10.2771 38708 | 7.74%
0.50 | 0.90 46.207823 11.8211 112356 | 22.47%
0.750.50 1.283052 0.1566 0
0.750.70 3.016572 0.5031 0
0.750.80 6.400407 1.1817 655 | 0.13%
0.750.90 24.920464 5.2269 32173 | 6.43%
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Fig. 4. The influence of degree of traffic selfsimilarity on queue distribution, PI® queue,
queue size = 300, Kp = 0.00115, K; = 0.0011, a = —1.2, A = 0.5, u = 0.75 (left),
u=10.5 (right), . = 0.25 (bottom)
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Table 5. PID queue, Kp = 0.00115, K; = 0.0011, « = —1.0, Kp = 0.01, 8 =0.8

o Hurst parameter | Mean queue length | Mean waiting time | Rejected packets
0.25 ] 0.50 105.2382 41.9506 249687 | 49.93%
0.25]0.70 109.0697 43.5297 249941 | 49.98%
0.25]0.80 111.5187 44.5991 250457 | 50.0%
0.25]0.90 102.2642 43.2207 263868 | 52.77%
0.50 | 0.50 52.9857 10.5912 4385 | 0.87%
0.50 | 0.70 51.2877 10.6640 23537 | 4.70%
0.50 | 0.80 49.3514 10.6034 38920 | 7.78%
0.50 | 0.90 47.5944 12.1854 112550 | 22.50%
0.75]0.50 1.2878 0.1575 0
0.75]0.70 3.0133 0.5025 0
0.75]0.80 6.3137 1.1643 0
0.7510.90 25.2454 5.2913 31734| 6.34%
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Fig. 5. The influence of degree of traffic selfsimilarity on queue distribution, PI%D?
queue, queue size = 300, Kp = 0.00115, K; = 0.0011, o = —1.0, Kp = 0.01, 8 = 0.8,
A=0.5, p=0.75 (left), p = 0.5 (right), p = 0.25 (bottom)
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Table 6. PID queue, Kp = 0.00115, K; = 0.0011, « = —1.0, Kp = 0.01, 8 =1.0

w Hurst parameter | Mean queue length | Mean waiting time | Rejected packets
0.25]0.50 105.1122 41.9762 250138 | 50.02%
0.25]0.70 109.4128 43.4958 248962 | 49.79%
0.25|0.80 112.3291 44.8387 249994 | 49.99%
0.25]0.90 104.6598 44.3687 264588 | 52.91%
0.50 | 0.50 52.6690 10.5310 4544 | 0.90%
0.50 | 0.70 51.1150 10.6226 23324 | 4.66%
0.50 | 0.80 48.9330 10.5084 38738 | 7.74%
0.50 | 0.90 47.6431 12.1726 111753 | 22.35%
0.75]0.50 1.2823 0.1564 0

0.75]0.70 2.9884 0.4975 0

0.75]0.80 6.4988 1.2012 581 0.11%
0.7510.90 25.2075 5.2839 31798 | 6.35%
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Fig. 6. The influence of degree of traffic selfsimilarity on queue distribution, PI%D?
queue, queue size = 300, Kp = 0.00115, K; = 0.0011, o = —1.0, Kp = 0.01, 8 = 1.0,
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Table 7. PID queue, Kp = 0.00115, K; = 0.0011, « = —1.0, Kp =0.01, 8 = 1.2

o Hurst parameter | Mean queue length | Mean waiting time | Rejected packets
0.25 ] 0.50 105.3953 42.0064 249638 | 49.92%
0.25]0.70 109.8195 43.8410 250000 | 50.00%
0.25|0.80 112.8646 44.9803 249592 | 49.91%
0.25]0.90 105.0905 44.5343 264473 | 52.89%
0.50 | 0.50 50.5028 10.0713 3482 | 0.69%
0.50 | 0.70 50.6084 10.5039 22747 | 4.54%
0.50 | 0.80 48.2802 10.3441 37731 | 7.54%
0.50 | 0.90 47.9325 12.2640 112284 | 22.45%
0.75]0.50 1.2882 0.1576 0
0.75]0.70 3.0119 0.5022 0
0.75]0.80 6.3877 1.1789 561 | 0.11%
0.7510.90 25.1610 5.2733 31731 | 6.34%
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Fig. 7. The influence of degree of traffic selfsimilarity on queue distribution, PI*D?
queue, queue size = 300, Kp = 0.00115, K; = 0.0011, o = —1.0, Kp = 0.01, 8 = 1.2,
A=0.5, p=0.75 (left), p = 0.5 (right), p = 0.25 (bottom)
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times were obtained. At the same time increase the number of dropped packets
is insignificant. The results of the controller with derivative term and derivative
order § = 0.8 are shown in Fig.8. Table8 presents the detailed results. In this
case, the controller with derivative term response is softer.

Table 8. PID queue, Kp = 0.00115, K; = 0.0011, o = —1.2, Kp = 0.01, 3= 0.8

m Hurst parameter | Mean queue length | Mean waiting time | Rejected packets
0.250.50 102.8881 41.0135 249696 | 49.93%
0.250.70 102.9803 41.1081 250038 | 50.00%
0.250.80 102.2453 40.8194 250084 | 50.01%
0.250.90 81.9062 34.7162 264699 | 52.93%
0.50 | 0.50 52.6182 10.5227 4659 | 0.93%
0.50 | 0.70 49.8837 10.3693 23532 | 4.70%
0.50 | 0.80 48.0090 10.3122 38918 | 7.78%
0.50 | 0.90 46.0250 11.7805 112565 | 22.51%
0.750.50 1.2859 0.1571 0

0.750.70 3.0204 0.5039 0

0.75/0.80 6.5480 1.2112 610 0.12%
0.750.90 24.9491 5.2310 31991 | 6.39%
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Fig. 8. The influence of degree of traffic selfsimilarity on queue distribution, PI%D”
queue, queue size = 300, Kp = 0.00115, K; = 0.0011, o = —1.2, Kp = 0.01, 8 = 0.8,
A=0.5, u=0.75 (left), u = 0.5 (right), 4 = 0.25 (bottom)
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4 Conclusions

Our article presents the impact of the degree of self-similarity (ex- pressed in
Hurst parameter) on the length of the queue, queue waiting times and the
number of rejected packets. Obtained results are closely related to the degree
of self-similarity. The experiments are carried out for the four types of traffic
(H =0.5,0.7,0.8,0.9). During the test we also changed the parameter of distri-
bution of service time. This change allowed us to consider the different queues
loading.

The article presents an evaluation of the fractional order PI®D? controller
used as an active queue management mechanism. The effectiveness of the con-
troller as an AQM mechanism depends on proper parameters of the PID selec-
tion. In the case of fractional order controller we need to consider two additional
parameters: fractional derivative (3) and integral («) orders. The controllers
behavior was also compared to FIFO queue.

The results showed the usefulness of the PI®D? controller as AQM mecha-
nism. The proper selection of the controller parameters is important in adapta-
tion to various types of traffic (degree of self-similarity or various intensity).
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