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Abstract The macroscopic growth of brain tumors has been studied by means of
different computational modeling approaches. Glioblastoma multiforme (GBM) is
the most common malignant type and is commonly modeled as a reaction–diffusion
type system, accounting for its invasive growth pattern. Purely biomechanical
models have been proposed to represent the mass effect caused by the growing
tumor, but only a few models consider mass effect and tissue invasion effects in a
single 3D model. We report first results of a comparative study that evaluates the
ability of a simple computational model to reproduce the shape of pathologies
found in patients. GBM invasion into brain tissue and the mechanical interaction
between tumor and healthy tissue components are simulated using the finite element
method (FEM). Cell proliferation and invasion are modeled as a reaction–diffusion
process; simulation of the mechanic interaction relies on a linear elastic material
model. Both are coupled by relating the local increase in tumor cell concentration to
the generation of isotropic strain in the corresponding tissue element. The model
accounts for multiple brain regions with values for proliferation, isotropic diffusion,
and mechanical properties derived from literature. Tumors were seeded at multiple
locations in FEM models derived from publicly available human brain atlases.
Simulation results for a given tumor volume were compared to patient images.
Simulated tumors showed a more symmetric growth pattern compared to their real
counterparts. Resulting levels of tumor invasiveness were in agreement with sim-
ulation parameters and tumor-induced pressures of realistic magnitude were found.

D. Abler (&) � P. Büchler
Institute for Surgical Technology and Biomechanics (ISTB),
University of Bern, Bern, Switzerland
e-mail: daniel.abler@istb.unibe.ch

P. Büchler
e-mail: philippe.buechler@istb.unibe.ch

© Springer International Publishing AG 2018
A. Gefen and D. Weihs (eds.), Computer Methods in Biomechanics
and Biomedical Engineering, Lecture Notes in Bioengineering,
DOI 10.1007/978-3-319-59764-5_7

57



Introduction

Brain tumors represent a rare but serious medical condition. With an incidence of
six cases per 100,000, gliomas are the most frequent primary brain tumors in adults,
accounting for 70% (Ricard et al. 2012) of cases. Gliomas are classified into four
grades by increasing aggressiveness, based on their microscopic structure and
cellular activity. Glioblastoma multiforme (GBM) is the most frequent and most
malignant subtype of glioma (grade IV), accounting for about 50% of diffuse
gliomas. These tumors infiltrate surrounding healthy tissue, grow rapidly, and form
a necrotic core of high cell density which is often accompanied by compression and
displacement of surrounding tissue. This so-called ‘mass effect’ leads to an increase
in intracranial pressure (ICP) and the progressive onset of a multitude of
pressure-related symptoms, from headache and nausea to coma or death due to
herniation which is the leading cause of death for GBM patients (Sizoo et al. 2010).
The standard treatment therefore involves surgical resection of the bulk tumor to
reduce the symptoms of mass effect, followed by a combination of chemo- and/or
radiation therapy. Long-term prognosis for GBM remains poor, with median overall
survival between 1 and 2 years (Ricard et al. 2012).

Different types of mathematical models (discrete, continuous, hybrid) on dif-
ferent spatial and spatiotemporal scales have been employed to improve the
understanding of GBM and to optimize treatment approaches (Hatzikirou et al.
2005). Continuous representations are particularly well suited for clinical applica-
tions as they allow modeling the temporal evolution of macroscopic processes on
the tissue level and at low computational cost. Emphasis has been placed on
simulating the invasion dynamics of glioma due to the direct clinical importance of
this growth characteristic. A framework for simulating GBM invasion was intro-
duced by Tracqui et al. (1995), Woodward et al. (1996), Burgess et al. (1997) based
on a reaction–diffusion equation that describes tumor cell migration as a random
walk process modeled by Fickian diffusion. These initial models were soon
extended to account for more realistic brain geometries and differences between cell
motility in gray and white matter (Swanson et al. 2000). Patient-specific parameters
have been estimated from routine clinical imaging to compute the invisible portion
of the tumor and to predict tumor recurrence after surgical resection (Swanson et al.
2003). Further extensions aim to incorporate heterogeneity and anisotropy of the
brain anatomy informed by routine clinical MRIs (Jbabdi et al. 2005) and consider
the effects of different treatments (Swanson et al. 2002, 2008a; Rockne et al. 2009).

Despite the recognized importance of the biomechanical environment for tumor
evolution (Jain et al. 2014), the mass effect caused by the growing tumor received
less attention from the modeling community and has been investigated mainly in
the context of improving image registration methods (Mohamed and Davatzikos
2005; Hogea et al. 2007; Gooya et al. 2012; Bauer et al. 2012) for atlas-based
segmentation. Few models, such as (Clatz et al. 2005; Hogea et al. 2008), consider
both tumor invasion and mass effect in a realistic 3D model of the human brain
using solid mechanics approaches. Accurate morphological representation is crucial

58 D. Abler and P. Büchler



also for the validation of macroscopic tumor models, which often relies on multi-
modality imaging data. Indeed, the lack of anatomical correspondence has been
identified as one of the limitations of advanced reaction–diffusion based GBM
models (Gu et al. 2012).

We report first results of a comparative study that evaluates the ability of a
simple computational model of mechanically coupled diffusive tumor growth to
reproduce characteristics of pathologies found in patients. GBM invasion into brain
tissue and the mechanical interaction between tumor and healthy tissue components
are simulated using the finite element method (FEM).

Materials and Methods

The mathematical model employed in this study is designed to capture three
interrelated aspects of macroscopic glioma growth: (a) tumor cell proliferation,
(b) the diffuse invasion of the growing tumor into surrounding healthy tissue, and
(c) the resulting mass effect. The model operates on a domain that represents the
human brain. For the present study, each component of the domain was considered
homogeneous, with distinct isotropic material properties in each subdomain: white
matter (WM), gray matter (GM) and cerebrospinal fluid (CSF).

The invasive growth pattern of glioma was modeled as a reaction–diffusion
process (Tracqui et al. 1995; Woodward et al. 1996; Burgess et al. 1997):

@c
@t

¼ r � Drcð Þþ qc 1� cð Þ;

where c represents the normalized concentration of tumor cells in function of time
and space. The isotropic and locally constant diffusion D represents the migration
rate of GBM cells in brain tissue, with higher values in WM than in GM (Swanson
et al. 2000). Logistic growth with growth rate q was assumed as reaction term. This
formulation is known as Fisher’s equation (Fisher 1937) and leads to the creation of
a non-proliferating zone in regions of high tumor cell concentration, in agreement
with clinical observation of the formation of a necrotic core.

The creation of new tumor cells during growth results in volumetric increase of
the tumor and introduces growth-related strain eg in the tissue. The present model
assumes a linear relation between local cell concentration and tumor-induced strain
with a coupling constant k:

�̂g ¼ k c

Simulations were carried out over the SRI24 human brain atlas (Rohlfing et al.
2010). This atlas represents the normal brain anatomy and provides separate labels for
WM, GM, and CSF. The CSF domain was subdivided into two compartments, sep-
arating the fluid-filled brain ventricles from the remaining CSF. Brain tissues were
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modeled as linear elastic materials in this study with Poisson ratio m and Young’s
modulus E as the mechanical properties. The CSF of the brain ventricles wasmodeled
as a compressible elastic solid to account for physiological mechanisms that com-
pensate elevated ICP. Mechanical parameters for the model constituents are chosen
similar to Wittek et al. (2010) and are summarized in Table 1.

Parameter choices for diffusivity and proliferation were derived from literature
data based on clinical observations in glioblastoma patients (Swanson et al. 2008b;
Wang et al. 2009; Szeto et al. 2009; Rockne et al. 2010). Under the assumption of
fivefold higher diffusion in WM compared to GM (Swanson et al. 2000), three sets
of parameters (DGM/WM, q) were obtained, corresponding to low, medium, and high
levels of invasiveness, Table 2.

A volumetric expansion coefficient k = 0.15 was chosen for all simulations,
corresponding to a maximum tumor-related increase in local volume of 15% (Bauer
et al. 2012).

The healthy brain atlas was seeded at multiple locations, and simulated until the
tumor had reached a maximum volume corresponding to 3.5 cm equivalent radius.
Seed positions were obtained from a publicly accessible dataset of preoperative
GBM images (NCI–MICCAI 2013), which were registered to the healthy atlas and
segmented using an automatic GBM segmentation software (Porz et al 2014).
Center-of-mass positions of the tumors visible in T1-weighted MRI were extracted
and used as patient-specific seed position for all patients of the dataset, Fig. 1.

A tetrahedral mesh was generated from each seeded atlas using CGAL (http://
www.cgal.org). Spatial confinement of the brain within the skull was modeled by
imposing zero-displacement and zero-flux boundary conditions on the surface
nodes of the mesh. The model was implemented as thermal expansion analysis in
Abaqus (Simulia) by identifying relative cell concentration c with ‘temperature’ as
simulation variable.

Table 2 Reaction–diffusion parameters in GM and WM for different levels of invasiveness

Invasiveness * D/q q (day−1) DGM (mm2 day−1) DWM (mm2 day−1)

Low 0.082 0.020 0.101

Medium 0.046 0.022 0.110

High 0.037 0.040 0.200

Zero diffusion D and proliferation q are assumed throughout both CSF compartments

Table 1 Mechanical
parameters for model
constituents

Tissue E (kPa) m

White/gray matter 3.0 0.45

Tumor 6.0 0.45

CSF (ventricles) 1.0 0.30

CSF (other) 1.0 0.49

The CSF of the ventricles is modeled as compressible elastic solid
to account for physiological compensation mechanisms
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For each seed position, three tumor growth simulations were carried out, cor-
responding to the different levels of invasiveness defined in Table 2. Simulated
tumors were compared to actual tumors in terms of shape and invasiveness when
volumetric agreement was reached. Additionally, the mechanical impact of the
simulated tumor was computed.

Results

Simulation of this mechanically coupled reaction–diffusion model yields as outputs
the temporal evolution of tumor cell concentration over the brain anatomy as well
as the mechanical impact of the tumor in terms of displacement and tissue stresses.

Parameter choices for different levels of invasiveness were correctly reflected in
simulation results with larger D/q consistently resulting in a higher portion of
invisible (c < 0.8) compared to visible (c > 0.8) tumor.

While the shape of near-spherical tumors was well reproduced in simulations,
more complex shapes were not. Figure 2 compares simulation and actual tumor for
two representative tumor shapes. Statistical evaluation showed the simulated tumors
to be more symmetric, as measured by their aspect ratio, compared to their real
counterparts.

The mechanical impact of the growing tumor was estimated for each simulated
case by computing the tumor-induced pressure acting on the skull. For a fatal tumor
burden, assumed at 3.5 cm equivalent radius (Swanson et al. 2008a), simulations
yield excess pressures between 1.0 and 1.4 kPa in addition to the normal
intracranial pressure of about 0.7–2.0 kPa (Rangel-Castillo et al. 2008).

Fig. 1 Cross-section of the anatomical atlas for an exemplary seeding scenario (a), and overview
of all seed positions within the healthy brain atlas (b)
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Discussion

The tumor model in this implementation assumed isotropic and locally constant
material properties and did not take into account biological processes other than cell
proliferation. Growth and mechanical properties were not personalized and simu-
lations were carried out over a standardized atlas of healthy brain anatomy. These
limitations explain the observed discrepancy in the shapes of simulated compared to
real tumors from the dataset, particularly the overall underestimation of tumor
asymmetry in simulations. Inclusion of anisotropic diffusion properties, with
increased diffusion along the fiber structure of the brain, has been shown to improve
spatial agreement between simulated and actual tumor (Jbabdi et al. 2005) in a pure
reaction–diffusion model. Anisotropic diffusion, as well as anisotropic mechanical
material properties, can be integrated in this model.

Despite its simplicity, the model yielded realistic order-of-magnitude estimates
of the mechanical impact of a growing tumor. According to simulations and under
the assumption of linear elasticity, the excess pressure caused by a tumor of 3.5 cm
equivalent radius would increase total ICP to up to 3.4 kPa representing a state of
mild intracranial hypertension that requires treatment in most circumstances
(Rangel-Castillo et al. 2008). Replacement of the currently linear elastic by a more
accurate material model for brain tissue is expected to increase these estimates
further into the range of life-threatening intracranial hypertension (>5.3 kPa;
Rangel-Castillo et al. 2008).

Tumor seed positions were derived from center-of-mass positions of preopera-
tive MR images. This approach is expected to provide realistic estimates under
(mostly) isotropic growth conditions. However, simulation results indicate that the
assumption of isotropic growth does not hold for irregularly shaped tumors, sug-
gesting that center-of-mass position is not a suitable indicator for tumor seed
location in those cases.

Fig. 2 Comparison of simulated (red) to observed tumor shapes (yellow) for selected cases.
Concentration field values c � 0.8 were chosen to represent the solid tumor. Good agreement is
observed for regularly structured shapes (a), whereas highly irregular shapes are not reproduced in
simulations (b)
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Conclusion

A FEM-based approach for simulating diffusive growth and mass effect of GBMwas
presented. Tumor evolution was simulated over a healthy brain atlas for a range of
seed positions and three sets of reaction–diffusion parameters. We showed quali-
tative agreement of resulting tumor invasiveness with simulation parameters and
found tumor-induced pressures of realistic magnitude. Comparison to real tumor
shapes confirmed previous observations from a pure reaction–diffusion model
(Jbabdi et al. 2005) that tumor shape depends on seed position and that asymmetric
shapes cannot be reproduced by isotropic growth assumptions. We therefore plan to
carry out a sensitivity study to investigate the role of seed position on shape and to
extend the present model to account for anisotropic material properties.
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