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Abstract. Computer-interpretable implementations of clinical guidelines
(CIGs) add knowledge that is outside the scope of the original guideline. This
knowledge can customize CIGs to patients’ psycho-social context or address
comorbidities that are common in the local population, potentially increasing
standardization of care and patient compliance. We developed a two-layered
contextual decision-model based on the PROforma CIG formalism that sepa-
rates the primary knowledge of the original guideline from secondary arguments
for or against specific recommendations. In this paper we show how constraint
logic programming can be used to verify the layered model for two essential
properties: (1) secondary arguments do not rule in recommendations that are
ruled out in the original guideline, and (2) the CIG is complete in providing
recommendation(s) for any combination of patient data items considered. We
demonstrate our approach when applied to the asthma domain.

1 Introduction

Clinical practice guidelines (CPGs) include evidence-based recommendations intended
to optimize patient care [1]. When physicians use CPGs in practice to make clinical
decisions, they often take into consideration additional aspects related to the patient’s
personal context (e.g., the patient’s level of family support, the degree to which his/her
daily schedule is routine) [2]. Additional clinical aspects not contained in the CPG,
such as comorbidities that the patient may have, are also considered during decision
making. Typically there is no evidence-based recommendation for weighing in per-
sonal considerations into clinical decision-making. Moreover, CPGs cannot address all
possible comorbidities that patients may have and such considerations are usually left
to the discretion of the physician.

It follows that when a decision support system (DSS) is developed based on
computer-interpretable clinical guidelines (CIGs) [9], it may be desirable to customize
the CIG by also including arguments (conditions that provide support for and against
specific recommendations) that are based on comorbidities and personal considerations
which are common in the local settings. Customization aims to achieve more standard
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management by physicians, given that they better address relevant secondary consid-
erations not mentioned in the CPG. Moreover, patients may be more compliant to
recommendations that address their personal context [3].

Nevertheless, it is important to acknowledge that arguments associated with the
considerations not contained in the original CPGs should be secondary to the recom-
mendations found in the CPGs, as they are generally not evidence-based. Hence any
customized decision-making model should obey the secondarity property: Secondary
arguments should only modulate existing primary recommendations, while not sug-
gesting recommendations that are not clinically indicated. Modulation includes
re-ranking of decision options, changes in dose or frequency of treatment or moni-
toring, changes in treatment or monitoring schedule, etc. Moreover, we would like the
decision-model to obey the completeness property: for any valid combination of pri-
mary and secondary decision parameters (data items and results of previous deci-
sions), at least one recommendation is indicated. This property guarantees that the
customized CIG will not encounter a situation where no valid candidate exists.

In this paper we introduce a two-layered contextual decision-model based on the
PROforma CIG formalism [4] and operationalized within the Tallis enactment engine
(http://www.cossac.org/tallis). We then present logic-based methods for verifying the
secondarity and completeness properties of the two-layered model. We use a case-study
from the asthma domain to demonstrate our approach.

2 Related Work

2.1 Customization of CPGs

Other researchers have developed methodologies that allow customizing CIG models so
that they can be personalized at run time. Riaño et al.’s methodology [5] uses algorithms
that manipulate domain ontologies to yield a personalized view of the healthcare
knowledge to support clinical decisions for chronically ill comorbid patients. The
methodology uses domain ontologies to provide decision support for adjusting a
patient’s condition based on disease profiles; these profiles are consulted to suggest
additional signs and symptoms that the patient is likely to exhibit and which could be
used to generate a more complete record. Grandi and coauthors [6, 7] suggest efficient
management of multi-version CIGs collections by representing, in a knowledge base,
multi-version clinical guidelines and domain ontologies in XML or in relational sche-
mas. Personalized CIGs can be created by building from the knowledge base an on
demand version that is tailored to the patient’s current time (or desired temporal per-
spectives) and to the patient’s disease profile (i.e., set of comorbidities). Finally,
Michalowski et al. [8] expanded their mitigation framework based on first-order logic to
account for patient preferences related to treatment. These preferences are represented in
the form of preference-related revision operators that describe undesired circumstances
(e.g., a sequence of treatment actions) that the patient would like to avoid, and specify
changes that should be introduced to CPGs in order to make them consistent with patient
preferences.
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On one hand our work shares some similarities with the above approaches – the
secondary layer can be seen as a very complex revision operator that expands the
primary layer and brings additional data items into consideration. On the other hand,
unlike other approaches, it explicitly verifies the validity of the obtained model to
ensure it maintains the required properties.

2.2 Automatic Verification and Evaluation of CIGs

CIG verification techniques fall into three categories [9]: (1) proving that the CIG
specification is internally consistent and free of anomalies, (2) proving that the CIG
specification satisfies a set of desired formally defined properties, using model checking
or theorem proving, and (3) checking inconsistencies between CIGs that are concur-
rently applied to a patient with comorbidities [10]. The approach presented in [11] uses
two techniques: model checking to verify guidelines against semantic errors and
inconsistencies in CIG definition, and model-driven development to automatically
process manually-created CIGs against temporal logic statements that should hold for
these CIG specifications. Another technique is described in [12] where theorem
proving explores logical derivations of a theory representing a CIG to confirm whether
a formal CIG protocol complies with certain protocol properties.

Our approach relies on model checking – specifically we use constraint logic
programming (described in Sect. 3.2) to ensure that the required properties hold for a
given two-layered decision model. Generally, model checking is easier and more
efficient than theorem proving [13]. Moreover, applied techniques (e.g., constraint
propagation) further facilitate representation and processing of CIGs.

3 Methods

3.1 Two-Layered Contextual Decision Model

Following the definitions used in PROforma, a plan (task network) is a network
composed of tasks and scheduling constraints. Tasks are specialized into a plan, en-
quiry, action, and decision. A decision has at least two candidates (or recommenda-
tions). Each candidate has at least one argument – a condition that refers to patient data
items and an associated numerical weight (support) for or against the candidate. Our
two-layered contextual decision-model extends PROforma’s CIG model by distin-
guishing between primary and secondary arguments. Primary arguments are formal-
izations of evidence-based recommendations found in a CPG and refer to clinical
(primary) data items. Secondary arguments extend the CPG by constructing arguments
that relate to additional secondary data items that are not part of the CPG. In our
two-layered decision model, the primary layer is a plan where all arguments associated
with decision candidates are primary arguments; the secondary layer includes a set of
secondary arguments and their secondary data items that are associated with the
decision candidates of a given primary layer. Weights for primary arguments corre-
spond to the grades of evidence used by the CPG, while weights for secondary
arguments are established by clinical experts based on their knowledge and experience.
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Completeness is satisfied if for each decision there is at least one candidate with
total support (i.e., sum of argument weights) in both layers that is equal to or greater
than a threshold defined in the CIG; secondarity is satisfied if there is no decision
candidate for which total support in the primary layer is lower than 0 and support is
greater or equal to the threshold in both layers.

We created software that combines PROforma models representing primary and
secondary layers into a single two-layered model. The software integrates the primary
and secondary arguments into their respective decisions. Upon enactment (using Tallis),
all arguments are evaluated and decision candidates are ranked accordingly.

3.2 Constraint Logic Programming and MiniZinc

Constraint logic programming (CLP) unifies logic programming (LP) and a constraint
satisfaction problem (CSP) by using LP as a constraint programming language to solve
a CSP [14]. A CLP model is made up of a set of variables with finite domains, a set of
clauses with constraints, and a goal to be satisfied. The clauses in the model capture the
relationships between variables and they restrict the possible combinations of values
assigned to variables. Solving a CLP model entails satisfying the goal given the set of
constraints, where a value is assigned to each variable such that no constraints are
violated (i.e., bodies of all clauses are satisfied). It is also possible to expand the goal
with a goal function and look for solutions that optimize it (maximize or minimize this
function) while preserving all constraints. This is usually referred to as a constraint
optimization problem (however, in this work we are not considering this variant).

There are specialized solvers for CSPs that employ various finite domain and linear
programming techniques and use different and often incompatible modeling languages.
MiniZinc is a medium-level constraint modeling language that has been widely
accepted as a standard for CLP models [15] and we use it as our modeling
language.

3.3 Using CLP to Check Properties of Two-Layered Decision Models

In this study we use CLP to verify the completeness and secondarity of two-layered
decision models and to control the process of introducing revisions necessary to ensure
these properties. More specifically, decision models given in PROforma are translated
into MiniZinc models, which in turn are verified and revised. Finally, the resulting
MiniZinc models are translated back to PROforma.

Our overall goal is to ensure that a given PROforma model satisfies the properties
of completeness and secondarity for all possible patient cases (i.e., all clinically valid
combinations of primary and secondary data items). We achieve this goal indirectly by
creating and solving a corresponding MiniZinc model with constraints to identify
problematic cases that violate at least one of these properties. Thus, if there are no
solutions to the MiniZinc model, this indicates that there are no such cases and the
validity of the underlying PROforma model has been positively verified.
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Our approach is outlined in more details below:

1. Create a MiniZinc model from the initial PROforma model. The MiniZinc model
contains three groups of variables:

– Variables corresponding to primary and secondary data items defined in the
enquiry steps (for each data item there is a unique variable),

– Variables corresponding to intermediate decision candidates, i.e., these decision
candidates that affect other decision candidates (for each intermediate candidate
there is a unique variable),

– Variables corresponding to support for specific decision candidates (for each
candidate there are two unique variables corresponding to support in each layer).

Moreover, it contains the following groups of constraints:

– Constraints enforcing (or computing) support for individual candidates (for each
variable corresponding to the support there is a unique constraint),

– A single constraint that is a disjunction of two “sub-constraints” – one that
enforces the violation of the completeness property, and the other that enforces
the violation of the secondarity property,

– Optional constraints corresponding to domain knowledge that exclude combi-
nations of variable values representing clinically invalid solutions. Unlike the
earlier constraints, the optional ones need to be specified manually by a clinical
domain expert.

2. Solve the MiniZinc model. If there are no solutions, then go to step 4.
3. Revise the MiniZinc model to avoid problematic cases by (1) modifying conditions

and weights in existing arguments, (2) removing existing arguments and/or
(3) adding new arguments, and then go to step 2. Revisions may be applied to both
layers, thus following the principles of evidence-based medicine, we allow experts
to adjust CPGs recommendations according to their experience.

4. Translate the MiniZinc model to the final PROforma model focusing on constraints
corresponding to arguments, as they are the ones that have been revised.

Currently revisions in step 3 are introduced manually using problematic patient
cases from step 2 to direct the search for appropriate modifications, however, we plan
to automate the revision step and thus to minimize the need for manual intervention.

3.4 Analysis of Property Violations and Revisions of the PROformaModel

We carried out a theoretical analysis of the reasons for violations of both properties and
proposed corresponding revisions. The prevalent reason was incorrect argument
weights. This calls for rescaling weights either in the primary or secondary layer to
increase the difference between their orders of magnitude. Another reason was certain
clinically infeasible combinations of data items that were initially missed by CIG
modelers. These need to be explicitly excluded. Introducing these revisions requires
changing the clinical flowchart and updating of CIG both layers.
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4 Case Study Example

We use an asthma guideline adapted from [16, 17] to which additional decision
arguments based on personal context variables were added as a secondary layer. The
additional arguments were based on interviews with 15 clinical experts from Israel. The
asthma guideline starts with a decision regarding the clinical goal: an aggressive goal
which tries to improve clinical indicators, or a basic goal, which tries to maintain their
levels. Once a treatment goal is selected, three decisions are made regarding medication
type (steroid or not), dose (high, medium, low), and treatment intervals (frequency:
daily or weekly). Decision arguments in the clinical guideline refer to four clinical
(primary) data items: number of monthly attacks (� 4, 4–8, >8), severity of attacks
(low, moderate, severe), forced expiratory volume (FEV1, which can be <60%,
60–80%, >80%) and daily limitation level (minor, medium, severe).

The secondary layer provides additional arguments for the existing decisions that
are based on personal considerations. These include the routineness of the patient’s
daily life (routine, semi-routine, no-routine), his/her communication level (low, med-
ium, high) and his/her level of family support (frequent, medium, low).

5 Results

5.1 A Decision Model for Asthma with the Secondary Personal Domains

The two-layered model developed for this case study is given in Fig. 1a. The first
decision in the model (“treatment_goal”) is an intermediate decision that does not lead
directly to any action, but influences other decisions. Moreover, the model invokes an
external plan for patients with a large number of monthly attacks (exceeding 20) as
required by the asthma guideline. Figure 1b displays arguments from the primary and
secondary layers associated with the “aggressive_goal” decision candidate of the
“treatment_goal” decision. For example, the aggressive goal is preferred for patients
with high communications skills (who understand directions) and frequent family
support (who may commit effort).

5.2 Verification and Revision of the Decision Model for Asthma

The PROforma model from Fig. 1 was the initial model for our verification and
revision procedure described in the Methods section. We started by constructing a
corresponding MiniZinc model – its representative parts are given in Figs. 2 and 3.

Figure 2 shows how we represent arguments (for brevity we focus on primary
arguments, secondary ones are defined similarly) and how we compute support asso-
ciated with specific candidates in the primary and secondary layers. Specifically, each
argument is a conditional if…then…else…endif expression associating conditions on
data items with a weight. For brevity in the MiniZinc model we encoded symbolic
values of specific data items with numbers (e.g., low, moderate, and severe attack
levels are represented as 1, 2, and 3 respectively). A quick comparison of Figs. 1b and
2 highlights the close correspondence between MiniZinc and PROforma.
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For brevity, Fig. 3 presents selected parts of the constraint that enforces the violation
of the completeness and secondarity properties. It is formulated over variables repre-
senting support for specific decision candidates. All support thresholds in the initial
PROforma model were equal to 1.0, and the same value was used in the MiniZinc
model. The constraint in Fig. 3 enables the solver to identify problematic patient cases
for whom these properties are violated. Moreover, the MiniZinc model contains con-
straints to eliminate solutions that are clinically invalid (e.g., that combine more than 8
monthly attacks with minor daily limitation level). The structure of these latter con-
straints is relatively simple and as such we do not present them here.

Fig. 1. (a) PROforma asthma CIG, where diamonds denote enquiries, circles – decisions,
squares – actions and ovals – invocation of an external plan. (b) Primary (01..06) and secondary
arguments (10..13) for the “aggressive_goal” candidate of the “treatment_goal” decision.

Fig. 2. Constraints that introduce arguments and calculate support for the “aggressive_goal”
candidate in the primary layer.

Fig. 3. Disjunctive constraint that identifies patient cases that violate the completeness property
(a) or the secondarity property (b) in the two-layer model. Prefixes “pl_” and “sl_” identify
variables associated with primary and secondary layers, respectively
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The initial MiniZinc model was solved and the solver found 28,656 solutions
violating any of the two considered properties. This large number was caused by
numeric primary data items leading to thousands of possible combinations of their
values (a pre-discretization of numerical data items could have addressed this problem).
Interestingly, all these solutions violated only the completeness property; there was no
solution that violated secondarity. In Table 1 we present examples of problematic
patient cases found at this stage. We performed a more detailed analysis of these patient
cases to identify specific decisions for which completeness was violated – they are
listed in the last row of this table.

Because of the identified problematic patient cases, the MiniZinc model had to be
revised. Revisions were introduced by a knowledge engineer, who worked with a
domain expert (physician). The knowledge engineer focused on primary decision
arguments. For each specific violation (associated with a specific decision or candidate)
he identified the reason and then proposed several fixes (i.e., modifications of the
argument list) that were vetted by the expert (the expert was also able to provide his
own corrections). The most appropriate fix was introduced to the MiniZinc model.
After the first round of revisions, the solver still found solutions indicating problematic
patients, thus the revision and verification steps needed to be repeated. Overall, it took
9 iterations to arrive at the final MiniZinc model where no patient cases violating any of
the properties were found. The knowledge engineer and the domain expert accepted
this model and it was translated to the final PROforma model.

The differences between the initial and final PROforma models are summarized in
Table 2. The changes were focused on the three decisions in the primary layer –

“treatment_goal”, “treatment_interval” and “medication type.” The most extensive
revisions were associated with candidates of the first decision, where more than 20 new
arguments were added to the model. Significant changes were also introduced for the
“steroids” candidate of “medication_type”. On the contrary, no revisions were made to
the secondary layer and to the “medication_dose” decision in the primary layer.

In Fig. 4 we present arguments associated with the “non_steroids” candidate of the
“medication_type” decision in the initial and final PROforma models. The introduced

Table 1. Sample problematic patient cases violating the completeness property of the
two-layered PROforma model.

Data item Case 1 Case 2 Case 3

asthma_attack_level low moderate low
daily_limitation_level severe minor minor
FEV1_result 81 81 81
monthly_attacks 5 1 5
daily_routine_level no_routine semi_routine routine
communication_level medium_comm medium_comm medium_comm
support_level low_supp medium_supp medium_supp
Decision with
violated
completeness

treatment_goal,
treatment_interval,
medication_type

treatment_interval medication_type
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revisions not only modified weights or expanded conditions in existing arguments
(compare argument 03 in Fig. 4a and 10 in Fig. 4b, or argument 04 in Fig. 4a and
arguments 02…04 and 11..12 in Fig. 4b), but also removed existing arguments (01 in
Fig. 4a) and added multiple new ones. We note that the list of arguments in the final
PROforma model could be shortened by combining some arguments (e.g. 08 and 09 in
Fig. 4b). However the extent of changes would still be significant.

6 Discussion and Conclusions

In this paper we demonstrated that the application of CLP to two-layered decision
models allows for their automatic verification and suggests areas of focus for revision,
saving a knowledge engineer significant manual work. Layered models can become
quite complex and although the knowledge engineer who created the models is

Table 2. Differences between the initial and final PROforma models in terms of the number of
arguments associated with specific decision candidates.

Decision Candidate # Arguments

Primary layer Secondary layer

Initial
model

Final
model

Change Initial
model

Final
model

Change

treatment_goal basic_goal 4 27 23 2 2 0

aggressive_goal 6 37 31 4 4 0
plan_for_over_20_attacks 1 1 0 0 0 0

treatment_interval weekly_interval 7 18 11 3 3 0
daily_interval 4 20 16 1 1 0

medication_type non_steroids 4 14 10 1 1 0

steroids 6 25 19 2 2 0
medication_dose low_dose 6 6 0 3 3 0

medium_dose 5 5 0 2 2 0
high_dose 8 8 0 2 2 0

Fig. 4. Arguments associated with the “non_steroids” candidate of the “medication_type”
decision in the initial PROforma model (a) and in the final PROforma model (b).
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experienced, he could not manually find all errors in the model within a reasonable
amount of time. All errors were exposed using the CLP verification approach by
iteratively checking the MiniZinc models for satisfiability allowing for easier con-
struction of more complex two-layered models. We plan to further expand this
approach to automatically find the appropriate weights for primary and secondary
arguments.

By encoding the guideline as a set of constraints in the model, the argument
weights as variables, and negating the current version of the secondarity and com-
pleteness verification constraint, our approach should solve this extended model for
feasibility. A feasible solution will represent an assignment of weights for all argu-
ments such that secondarity and completeness are guaranteed in the decision model.

In this work we focused on one way of modulating the recommendations provided
by the primary layer, specifically modulating the support for different candidates by
changing their ranking. Our secondary layer also only considered the psycho-social
context of patients.

Future research will examine the use of CLP for verifying PROforma models where
modulation also involves changes in dose or frequency of treatment or monitoring,
changes in treatment or monitoring schedule, etc., and where the secondary context
includes other factors such as additional comorbidities and local setting (e.g., organi-
zational resources, local regulations).
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