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Abstract. Parkinson’s, a progressive neural disorder, is difficult to iden-
tify due to the hidden nature of the symptoms associated. We present a
machine learning approach that uses a definite set of features obtained
from the Parkinson’s Progression Markers Initiative (PPMI) study as
input and classifies them into one of two classes: PD (Parkinson’s dis-
ease) and HC (Healthy Control). As far as we know this is the first
work in applying machine learning algorithms for classifying patients
with Parkinson’s disease with the involvement of domain expert dur-
ing the feature selection process. We evaluate our approach on 1194
patients acquired from Parkinson’s Progression Markers Initiative and
show that it achieves a state-of-the-art performance with minimal fea-
ture engineering.
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1 Introduction

We consider the problem of predicting the incidence of Parkison’s disease, a pro-
gressive neural disorder. Specifically, we consider the data collected as part of the
Parkisons Progression Marker Initiative (PPMI) and aim to predict if a subject
has Parkinson’s based on clinical data - particularly, motor assessments (motor
functions) and non-motor assessments (neurobehavioral and neuropsychological
tests). One of the most important challenges for this task is that there seem to
be no real strong indicator that explains the progression clearly [1].

Our hypothesis, which we verify empirically is that instead of considering a
small set of strongly influencing risk factors, it might be more effective to consider
a large set of weakly influencing risk factors. To this effect, we adapt the recently
successful gradient-boosting algorithm [2] for this task. We exploit the use of a
domain expert in identifying the right set of features and consider learning from
the longitudinal data. Unlike standard methods that require projecting the data
to a feature vector format (using what are called aggregation or propositional-
ization methods), our proposed approach models the data faithfully using time
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as a parameter of a logical representation. We evaluate our proposed approach
on ≈1200 patients from the PPMI study and demonstrate the effectiveness and
efficiency of the proposed approach.

We make the following key contributions: we consider the challenging task
of predicting Parkinson’s from 37 different features. These features were chosen
by interacting with a domain expert. The key advantage of this approach is
that it models the underlying data faithfully by utilizing logic based framework.
Evaluation on the PPMI dataset shows that our approach is superior to standard
classification approaches.

2 Background

Parkinson’s Progression Markers Initiative (PPMI) is an observational study
with the main aim of identifying features or biomarkers that impact Parkin-
son’s disease progression [1]. The collected data can be divided broadly into four
distinct categories: Imaging data, Clinical data, Biospecimens and Subject demo-
graphic data. We focus primarily on the clinical data which mainly consists of
motor assessments and non-motor assessments. Since Parkinson’s mainly affect
the motor system (i.e. the part of the nervous system associated with movement)
and the initial symptoms are mostly movement related, using motor assessment
data seems a natural approach. A subset of the clinical data is selected based
on the expert input after which a set of 37 features are obtained which can
be broadly defined in these categories: (1) Motor-UPDRS (consists of 34 fea-
tures) [4], (2) Montreal Cognitive Assessment (MoCA), a non-motor assessment
that contains the MoCA score of a patient for a single visit and the difference
in MoCA scores of the patient from the last visit, (3) total UPDRS score.

MoCA consists of series of questions assessing various parameters of a subject
such as the visual capability, capacity of recognizing objects, the attention span
and memorizing words to name a few. Each of the questions are scored with
the total score being 30. A subject with score of ≥26 is considered to be nor-
mal. Unified Parkinson Disease Rating Scale (UPDRS) is a rating scale used for
determining the extent of Parkinson’s disease progression in a subject and each
assessment ranges from 0 to 4, with 0 being normal behavior and 4 representing
severe abnormal behavior with respect to the assessment. Motor-UPDRS refers
to the value of motor assessments in the UPDRS scale. Total UPDRS score refers
to the sum of all the motor-UPDRS features.

Our goal is to estimate the conditional distribution - P (par|x) where x repre-
sents the set of motor and non-motor assessments (i.e., features) and par denotes
the incidence of Parkinson’s disease for the particular patient. One could apply
any machine learning algorithm for learning this distribution. We focus on the
gradient-boosting technique which has had success in medical applications [6].
Gradient-boosting is a gradient-ascent technique performed on the functional
space. For probabilistic models, gradient-boosting represents the conditional dis-
tributions using a functional representation, for instance a sigmoid function.
Then the gradients are calculated w.r.t to this function. For instance, one could
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represent P (par|x) = eψ(y|x)

1+eψ(y|x) . Friedman [2] suggested that instead of obtaining
the gradients w.r.t the global function ψ, one could obtain the gradient for each
example 〈xi, yi〉, where y denotes the target i.e., presence of Parkinson’s. The
key idea is that these gradients are good approximations of the overall gradients
because the direction of these gradients point to the same direction as that of the
true gradient. This functional gradient of likelihood w.r.t. ψ for each example i is
∂log(P (yi|xi)

∂ψ(yi|xi)
= I(yi = 1) − P ((yi = 1|xi) where I is the indicator function (equal

to 1 if yi = 1 and equal to 0 if yi = 0). The gradient is the difference between
the true label and the current prediction and is positive for positive examples
and negative for negative examples. In simpler terms, the negative examples are
pushed towards 0 and the positive examples are pushed to 1 resulting in a well
defined decision boundary. The ψ function is represented by relational regression
trees (RRT) [3] which uses the relational features as input to the trees that can
be easily guided by the domain expert who could provide preference information.

3 Proposed Approach

Since the aim of the PPMI study is to determine the most predictive features for
the disease progression, the involvement of a domain expert during the feature
selection process becomes beneficial. Our specific aim is to predict the incidence
of Parkinson’s in a patient. Since the data is longitudinal in nature, it is impor-
tant that we model time faithfully. We view time as a special type of relation and
hence we create features in the predicate logic format as feature name (patient
id, time, feature value). This allows the number of days since the start of the
study (time) to be an argument of the predicate.

The first step of the process starts with the correlation analysis of the raw
data obtained. The raw clinical data consists of 81 features. A correlation matrix
is constructed with each entry representing the correlation coefficient (we use the
Pearson correlation coefficient) between each variable and the others. The 50
features with low mutual correlation and high correlation to the class label are
selected. The second step consists of the expert evaluating the obtained features
giving us a further pruned set of 37 features and thus the final data to be used for
the classification task. The key reason for considering a relational representation
is two fold: First, relational models allow learning using the natural represen-
tation of the data and second, data is longitudinal i.e. a patient has multiple
entries in the data. Propositional classifiers have limitations in learning such
data (require aggregators).

The learner is provided with the training data which it uses to learn a rela-
tional regression tree. The last step is the prediction phase where the learned
model can be queried to return the probability of the target being true given
the evidence. Since all the evidence is observed, inference requires simply query-
ing all the relational regression trees, summing up their regression values and
returning the posterior estimates i.e. the probability that the given test example
belongs to the positive class.
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Interpretability: One key limitation of the proposed approach is the inter-
pretability of the final model. While each boosted tree in itself is interpretable,
given that they are not learned independently of each other makes the model dif-
ficult to interpret. To make the model comprehensible, we take an approximate
approach that we call the Craven approach [5] which was originally developed
for making neural networks interpretable. The key idea is to relabel the train-
ing data based on the boosted model that we have learned and then train an
overfitted tree to this labeled data. The intuition is that this new large tree will
represent the decisions made by the original set of trees due to its performance
on the training data. Recall that our original training data consists of Boolean
labels (Parkinson’s vs negative). But the relabeled data consists of regression
values that are being learned in the new tree. Hence, the resulting tree is closer
to the original learned model as we show in our experiments.

Table 1. Results for BoostPark with and without expert advice

With expert Without expert

Classifier Accuracy AUC-ROC AUC-PR F1 score Accuracy AUC-ROC AUC-PR F1 score

BoostPark10 0.889 0.973 0.937 0.808 0.854 0.932 0.9 0.797

BoostPark20 0.901 0.977 0.947 0.851 0.881 0.94 0.87 0.832

4 Experiments

In our empirical evaluations, we aim to explicitly ask the following questions:

Q1: How effective is the feature selection with expert in predicting Parkinson’s?
Q2: Given the longitudinal nature of the data, is our method more effective

than using standard classifiers in this prediction task?

Table 1 shows the result of learning from 50 features obtained after correlation
and 37 features after the expert advice. This helps us in answering Q1 affirma-
tively. Across all scoring metrics, expertly selected features outperforms models
built using the larger feature set.

We compare our method, BoostPark, to three propositional classifiers: Logis-
tic Regression, Gradient-Boosting and Support Vector Machines. The proposi-
tional data is aggregated using three aggregator functions: min, max and mean
over time. Our data consists of records for 1194 patients, with 378 positive exam-
ples (i.e. Parkinson’s patients) and 816 negative examples. Regression trees are
learned on the given data which form the training model. We perform 10-fold
cross validation and present the results.
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Table 2. Classifier results. Only the best classifiers among the aggregators are shown.

Classifier Accuracy AUC-ROC AUC-PR F1 score

BoostPark10 (10 relational regression trees) 0.889 0.973 0.937 0.808

BoostPark20 (20 relational regression trees) 0.901 0.977 0.947 0.851

Gradient Boosting (aggregator=mean) 0.920 0.914 0.904 0.885

Logistic Regression (aggregator=max) 0.903 0.896 0.884 0.862

Support Vector Machine (kernel= linear, aggregator=max) 0.897 0.892 0.877 0.855

Support Vector Machine (kernel=polynomial, aggregator=max) 0.895 0.883 0.875 0.848

Support Vector Machine (kernel=RBF, aggregator=mean) 0.757 0.806 0.784 0.734

Fig. 1. Combined tree learnt with BoostPark10.

Since we aggregate the
propositional data using 3
aggregators, the best per-
forming aggregator for all
the propositional classifiers
is selected and compared
to our methods BoostPark10
and BoostPark20 as shown in
Table 2. Our methods perform
considerably better than the
propositional counterparts in
terms of AUC-ROC and AUC-
PR and performs equally well
in terms of accuracy. This
helps answer Q2 positively.

Our method is more effective than the standard classifiers in this prediction
task (Fig. 1).

5 Conclusion

Identifying important features responsible for the progression in Parkinson’s
disease in a patient remains a compelling challenge. We use a human domain
expert to guide our method with identifying a relatively large set of influencing
risk factors. We then present a learning method that can consider this large set
of weak influences in learning a probabilistic model. We evaluated our results
on the PPMI data and demonstrated that our learning approach outperforms
standard machine learning classifiers. Since Parkinson’s is a progressive disease,
developing robust temporal models for this task remains an interesting challenge.
Extending our learning algorithm to handle hybrid temporal models will allow
for modeling the continuous data more faithfully. Finally, scaling up the learning
algorithm to learn from a broader set of population data rather than be limited
by a single study remains an interesting open problem.
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