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Abstract. When diagnosing patients suffering from dementia based on
imaging data like PET scans, the identification of suitable predictive
regions of interest (ROIs) is of great importance. We present a case study
of 3-D Convolutional Neural Networks (CNNs) for the detection of ROIs
in this context, just using voxel data, without any knowledge given a
priori. Our results on data from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) suggest that the predictive performance of the method
is on par with that of state-of-the-art methods, with the additional ben-
efit of potential insights into affected brain regions.
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1 Introduction

Alzheimer’s disease is a progressive, degenerative and incurable disease of the
brain and a common cause of dementia. One of the imaging modalities often used
in the Computer-Aided Diagnosis (CAD) of Alzheimer’s disease is positron emis-
sion tomography (PET). Recent years have seen a number of machine learning
based approaches applied to PET scans to distinguish between Alzheimer’s dis-
ease (AD), mild cognitive impairment (MCI) and normal control (NC), amongst
others [1,2]. Deep learning approaches have attracted particular interest in
attempts to transfer the progress made in computer vision to medical image
analysis.1 Besides classification, the identification of regions of interest (ROIs) is
of major concern in medical research, i.e. regions in 2-D or 3-D medical images
that are of particular importance for assessing the functioning of organs, for
diagnosis and for understanding disease progression. In this paper, we continue

1 For a good overview see the recent paper by Vieira et al. [2]. Apparently many more
papers can be found in online archives than papers that have appeared already.
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our previous work [1] and report first results towards the identification of ROIs in
PET scans, in the context of AD diagnosis, using deep learning methods. While
deep learning on PET scans is currently an active research topic and ROIs have
been investigated in other contexts (e.g. investigating different tracers), the com-
bination of deep learning and ROIs has not received much attention yet. The
approach employs a binary convolutional neural network (CNN) based classifier
to generate importance maps of PET voxel data.

2 Methodology

The main aim is to establish ROIs with respect to AD without medical back-
ground knowledge in an automated manner. In the following, we describe how
to apply a binary classifier to generate importance maps for extracting ROIs.

2.1 Data Acquisition and Preprocessing

To train the binary classifier used to extract importance maps (or ROIs), we
employed the Alzheimer’s Disease Neuroimaging Initiative2 (ADNI) data set.
The initiative has a large pool of PET images (co-registered, averaged), which
have been acquired on various scanners using different imaging parameters. In
the work presented here, we chose the

[
18F

]
fluorodeoxyglucose PET scans from

enrolled normal control (NC), mild cognitive impairment (MCI) and Alzheimer’s
disease (AD) subjects. Not all scans from a single patient possess the same class,
as the disease might occur at a later stage of a patient’s life time. To avoid
possible information leakage during the validation of our approach, we always
employed a k-fold validation based on patients and not on scans. Our aim is to
use this data to compare the predictive performance of the identified ROIs to a
smaller data set used in a previous study by Li et al. [1]. However, as this data
also originates from the same source, we excluded 84 subjects from the ADNI
data set (see Table 1). Overall, we used 1258 subjects and 2630 scans.

The ADNI data set contains globally normalized scans [3], which are not
suitable for our purposes as this kind of normalization does not easily allow the

Table 1. The two different data sets used in this work originating from the ADNI
project, DC the ADNI data set without the patients used in Li et al. (DROI).

Data Set Name Class LabelNo.Patients (male:female) Age No.Scans

NC 396 (186:210) 74 (±6) 749
MCI 662 (376:286) 73 (±7) 1292DC ADNI \ Li et al.
AD 330 (199:131) 76 (±8) 589

NC 30 (21:9) 74 (±5) 30
MCI 29 (23:6) 74 (±6) 29DROI Li et al.
AD 25 (15:10) 72 (±6) 25

2 URL: http://adni.loni.usc.edu/ (visited on Jan. 12, 2016).

http://adni.loni.usc.edu/
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comparison of PET images to each other. Therefore, and to allow comparison to
the works of Li et al., we used a different type of normalization. We employed
the same kind of spatial normalization as Li et al. based on the Automated
Anatomical Labeling (AAL) digital brain atlas: The normalization yields scans
in a 91×109×91 with 2mm3 voxel format. Next, each scan is intensity normalized
with respect to its cerebral global mean (also called grand mean normalization).
Finally, all scans are smoothed by an 8 mm FWHM Gaussian kernel.

2.2 Generation of Binary Classifiers

As mentioned above, the approach taken is to train a binary classifier in order to
extract informative regions of interest (ROIs). To train the binary classifier a 3-D
CNN is employed, expected to be able to incorporate local voxel relations as well
as to extract complex spatial patterns. Training a 3-D CNN on input volumes
with a size of 91×109×91 can be computationally expensive. Therefore, we down-
sampled all scans reducing the number of operations. First, all non-brain voxels
are removed to eliminate noise caused by the PET scanners. As a consequence,
we trim all scans to their minimum bounding box, which yields a new size of
88×108×88 voxels. The first and last ten sagittal slices contain very little brain
volume, but a considerably large ratio of the skull. Hence, we discard these slices
and obtain cubic volumes of dimension 88 × 88 × 88. Next, the scans are down-
sampled using “average pooling”, i.e. the input is divided into cubic pooling
regions of a particular size and the output consists of the average of each region.
We chose a pooling size of 4, resulting in scans of size 22 × 22 × 22.

For the binary classifier, we chose the following deep architecture: Overall
seven convolutional layers are followed by three fully connected layers, where
all of them use rectified linear units as activation function. The input layer
corresponds to the 223 down-sampled scan size and the output layer consists
of a single sigmoid output node (see Fig. 1). All feature maps use a stride of 1.
We employed 10-fold cross validation to estimate the optimal parameters using
DC . To cater for variations, we augmented the data set by mirroring the original
scans on the center coronal plane. Furthermore, we used a mini-batch size of 128
and trained the final classifier C on DC with the parameters found in the 10-fold
cross validation.
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Fig. 1. The architecture for the CNN classifier.
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2.3 ROI Discovery and Ranking

Given the binary classifier C from the previous section and a scan X, one can
assign each voxel of X a value of its importance towards the classification of
X. We assume X : Nn×n×n → R≥0. For 1 ≤ x, y, z ≤ n, we denote with vxyz
the voxel at position (x, y, z). We can exclude the information of vxyz from X
by setting X \ vxyz(x, y, z) = X(x, y, z) = γ3. We denote ConfC(X) ∈ [0, 1]
to be the confidence for correctly classifying the example X by C. Using this
information, the influence of vxyz ∈ X can be assessed as ΔConf(C,X, vxyz) =
ConfC(X) − ConfC(X \ vxyz). If ΔConf(C,X, vxyz) = 0, vxyz can be regarded
as redundant and can be omitted. However, if ΔConf(C,X, vxyz) > 0, the voxel
vxyz can be considered as important. Finally, ΔConf(C,X, vxyz) < 0 indicates
a decrease in the classification performance. Let bkx̃ỹz̃ be a cubic block of voxels
with center (x̃, ỹ, z̃) and size 2k−1. Analogously to the exclusion of single voxels,
we can exclude the information contained in a block from X as follows:

X \ bkx̃ỹz̃(x, y, z) =

{
γ, if vxyz ∈ bkx̃ỹz̃
X(x, y, z), otherwise.

(1)

Using this, we can can generate a map of voxel importance for the exclusion of
blocks with length 2k − 1 as IkC,X(x, y, z) = 1

|bkxyz|ΔConf(C,X, bkxyz). To accom-

modate for blocks in the border areas, we normalize IkC,X using the total amount
of voxels in a particular block, i.e. |bkxyz|. To investigate the varying size of poten-
tial patterns, we employed different block sizes k from K ⊂ {1, 2, . . . , n+1

2 }.

Workflow 1: General workflow for the extraction of ROIs
Input: DC : a data set to train a binary classifier, DROI : a data set to extract

ROIs, : a threshold value, K: the set of block sizes
Output: an importance map of voxels (≥ )
C = TrainC(DC) (train binary classifier C using DC)

∀(x, y, z) ∈ N
n×n×n, ∀X ∈ DROI calculate IK

C,X(x, y, z)

with IK
C,X(x, y, z) = 1

|K|
∑

k∈K IkC,X(x, y, z), K ⊂ {1, 2, . . . , n+1
2

}
return sort(filter(∀(x, y, z) ∈ N

n×n×n, ∀X ∈ DROI IK
C,X(x, y, z) ≥ ))

Parts of the process of generating IK
C,X (definition in Workflow 1) can exem-

plarily seen in Fig. 2.

3 Experiments and Results

First, we trained the initial binary classifier C as described above on DC using all
scans with label NC and AD. The accuracy of a 10-fold cross validation was 89%,
with TPr = 0.85, TNr = 0.91 and AUC = 0.95. To evaluate the benefit of using
importance maps, we used two different settings on DROI using a 10 × 10-fold
3 Different γs are possible. Here, we used γ1 = v̄xyz (the average voxel of all scans in

the data set) as well as γ2 = round
(

vxyz

max(X)

)
.
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Fig. 2. The original scan X is shown in (a). In (b), a block of voxels is excluded from
X. Subfigure (c) shows all voxels of IK

C,X for a threshold of δ ≥ 10−6. Lastly, (d) shows
some of the 50 most informative voxels obtained by IK

C,X .

Table 2. Performance measure obtained from different settings.

SROI
= 0.001 = 0.05 = 0.10 = 0.15

Performance
Measure

Li et al. Sall

(#v = 3251) (#v = 198) (#v = 42) (#v = 16)

Acc (%) 88.1 87.1±2.5 87.0±1.8 91.6±2.9 85.6±3.8 79.3±2.7

TPr 0.91 0.84±0.06 0.81±0.05 0.88±0.05 0.82±0.06 0.73±0.06

TNr 0.83 0.90±0.02 0.92±0.02 0.95±0.02 0.89±0.05 0.85±0.04

AUC 0.97 0.94±0.02 0.95±0.02 0.99±0.01 0.94±0.02 0.92±0.03

cross validation. Setting Sall uses all available voxels, while SROI only employs
voxels considered important according to varying δs. To only evaluate the use
of individual voxels and not their spatial neighbours, we train linear support
vector machines (SVM) based on individual voxels. A simple grid search for
C was performed to find optimal parameters. We used eight folds for training,
one as validation set, and the final one to evaluate the performance using the
optimal C. Furthermore, we employed block sizes K = {1, 3, 5} and γ2. The
averaged performance of Sall and SROI for different δs is given in Table 2. The
comparison to the works by Li et al. in the table is given as indication of state-
of-the-art methods using the same data set DROI .

4 Conclusions and Future Work

We have presented an approach to extract regions of interest from PET scans
based on binary classifiers. The extracted regions, or importance maps, can be
employed as a voxel subset to differentiate between scans labeled NC and AD.
The binary classifier employed here is based on a deep CNN architecture for
the extraction of complex spatial patterns. In contrast to many deep learning
approaches just aiming for the classification, our approach explicitly aims for
ROIs, but is, at this point, evaluated only quantitatively. As a next step, we are
going to evaluate the ROIs qualitatively together with our collaboration partners.
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